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Abstract

This dissertation explores computational methods to address the problem of

physics-based modeling and ultimately doing inference from data in multiple modal-

ities where there exists large amounts of low dimensional data complementary to a

much smaller set of high dimensional data. In this instance the low dimensional time-

series data are active acoustics from a micro-Doppler sensor that include no or very

limited spatial information, and the high dimensional data is RGB-Depth skeleton

data from a Microsoft Kinect sensor. The task is that of human action recognition

from the active acoustic data. To accomplish this, statistical models, trained simul-

taneously on both the micro-Doppler modulations induced by human actions and

symbolic representations of skeletal poses, are developed. This enables the model to

learn correlations between the rich temporal structure of the micro-Doppler modula-

tions and the high-dimensional motion sequences of human action. During runtime,

the model then relies purely on the active acoustic data to infer the human action.

In order to adapt this methodology to situations not observed in the training data,

a physical model of the human body is combined with a physics-based simulation
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ABSTRACT

of the Doppler phenomenon to predict the acoustic data for a sequence of skeletal

poses and a configurable sensor geometry. The physics model is then combined with

a generative statistical model for human actions to create a generative physics-based

model of micro-Doppler modulations for human action.

Primary Reader: Andreas G. Andreou

Secondary Reader: Ralph Etienne-Cummings

Committee Members: Mounya Elhilali, Philippe O. Pouliquen, Charbel G. Rizk
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Chapter 1

Introduction

Human actions range from simple motions, such as a hand wave, to complex

sequences composed of many intermediate actions, such as figure skating. Every day

each of us performs many actions, even creating new actions to accomplish a novel

task. Moreover, we are able to recognize and interact with other people because

we can interpret their actions. Our brains enable all of this functionality, and they

are unparalleled in their ability to process the world around us. By incorporating

information from auditory, visual, olfactory and other sensory systems, humans are

able to reliably identify the objects and actions they encounter. As engineers, studying

the biological architecture and algorithms that have evolved in the brain to allow for

these capabilities directly enhances our ability to design better machines capable of

accomplishing tasks similar to those humans perform. As scientists, studying the

challenges associated with sensing complex natural scenes and modeling interactions

1
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provides insights that are critical to understanding how biological organisms achieve

these tasks so elegantly. While we allow biology to inspire our engineering, we are

eager to develop a deeper understanding of biology through the process of engineering

new systems.

Human actions occur in three-dimensional space and evolve over time. Most mod-

ern action recognition systems are based on visual data. Single RGB images capture a

two-dimensional projection of the spatial arrangement of the human body in a scene.

RGB video sequences capture the temporal evolution of those two-dimensional pro-

jections. Even more complete information can be gathered using RGB-Depth videos

that can provide the temporal evolution of a human body in three dimensions.

However, it is also possible to sense motion by analyzing scattered acoustic wave-

forms. The micro-Doppler effect is a physical phenomenon that explains how moving

objects induce frequency modulations when they scatter waves. The magnitudes of

the modulations are proportional to the radial velocities of the objects scattering

the waves. This mechanism provides an opportunity to infer information about mo-

tion from acoustic waves emitted by continuous active sonar sensors. Unfortunately,

the low-dimensional time-series recorded by these sensors provides little information

about the spatial arrangement of any moving objects and is therefore an incomplete

representation of the total movement in a scene. Nonetheless, it is a scientifically

interesting problem to investigate how much can be inferred about human actions

from impoverished, low-dimensional acoustic data, particularly if physical models are

2
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used to constrain the search space.

Although the space of possible human motions is quite large, there are a lot of

constraints placed on actions by the physical limitations and structure of the human

body. In theory, a model that captures the precise physical constraints of human

joints and dimensions could be used to bias the decisions of an action recognizer that

operates on impoverished acoustic signals. This approach leverages prior knowledge

about the task and models the physics of the environment.

Additionally, the physics behind the Doppler effect are well understood. By in-

corporating prior knowledge about the interactions between the sensor and the en-

vironment, models can be developed that account for the interaction between the

environment and the acoustics to extract as much information as possible from the

data recorded by a given sensor. They can also take advantage of the geometry of

the sensor array in the environment to combine information from multiple sensors.

Figure 1.1 shows the ideal relationship the variables in the generative probabilistic

model that incorporates the Doppler-physics and the structure of the human body.

Essentially, the action class label Zn defines the distribution of the skeletal poses Yt.

The joint positions Xt are defined by these poses and the properties of individual body

segments are computed from the joint positions. Once the motion of the human has

been defined, the Doppler modulations due to the human model can be determined

deterministically and a noise model accounts for artifacts in the modulations that

are either not captured by the human model or due to other moving objects in the

3
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Figure 1.1: Graphical model illustrating the relationship between a moving human
and acoustic micro-Doppler modulations.

environment. There are several global parameters used to tune the human model and

adapt it to particular individuals.

Unfortunately, performing inference in this model is difficult for two reasons. First

of all, computing the inverse to transform the frequency modulations back into joint

positions is an ill-posed problem with multiple solutions. Also, there is no efficient

closed form solution. Secondly, the temporal slices are not conditionally independent

of each other, which prevents the use of inference techniques that decompose the

computations efficiently.
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Action Recognizer

Rotation Representation

Skeletal Pose Sequences

Spectrogram Representation

Ultrasound Time-Series

Action LabelSkeletal Pose Estimate

Train Train/Test

Figure 1.2: Schematic of the proposed data flow in the action recognizer.

Therefore, several simpler models that each specialize in a particular aspect of

relating human action and active acoustics are developed. Figure 1.2 illustrates an

approach to acoustic action recognition that builds on the hidden Markov model

framework developed for traditional statistical speech recognition. This approach

utilizes a simpler graphical model to capture the temporal sequences of skeletal poses

and acoustic modulations and allows for the use of efficient inference algorithms.

Unfortunately, integrating the Doppler physics into the model is still a challenge and

the model instead learns purely statistical correlations between the data modalities.

Figure 1.3 illustrates an approach to incorporate physical models for both the

environment and the interactions between the environment and the sensor with a

generative probabilistic model to predict the acoustic modulations generated by a

particular environment configuration. This framework focuses on a more realistic

prediction of the acoustics and generating novel action sequences.

Given these challenges, is it possible to reliably recognize actions when only the

5
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Figure 1.3: Schematic of the proposed data flow in the human ultrasound simulator.

micro-Doppler modulations are observed? How fine-grained of an action can be rec-

ognized? Can knowledge of the human body and its physical constraints, along with

the physics behind the Doppler phenomenon, be used to bootstrap the impoverished

active acoustic data and leveraged to construct models capable of inferring actions

accurately? This scientific question is at the core of the modeling approach taken

throughout this work. The models are uniquely tailored to leverage both the Kinect

skeletal data and multiple active acoustic sensors.

The dissertation is organized as follows. Chapter 2 presents the underlying physics

behind the Doppler effect. This phenomenon is the physical mechanism by which

6



CHAPTER 1. INTRODUCTION

information about the velocity of moving objects can be inferred from the frequency

modulations in scattered acoustic signals. The micro-Doppler effect is an extension

of the Doppler effect for objects that have multiple components that each move with

separate velocities.

Chapter 3 describes the properties of the active acoustic sensors, the Microsoft

Kinect sensor and the data acquisition system used to continuously capture synchro-

nized data from multiple sensors. The data acquisition system includes a frequency

modulated beacon that allows sensors to be distributed across a wide area and con-

nected to separate data collection computers. As long as the sensors are within range

of the synchronization pulses emitted by the beacon, the data collected from the sen-

sors is augmented with embedded timestamps that preserve the temporal coherence

of the independent data streams. This allows the use of three active sonar sensors,

operating in non-overlapping frequency bandwidths, to observe the same scene from

multiple angles without interfering with each other.

Chapter 4 presents the Johns Hopkins University multimodal action (JHUMMA)

dataset. The JHUMMA dataset is a collection of thirteen independent trials of actors

performing twenty-one classes of actions. The dataset includes the recordings from

three independent active sonar sensors and the RGB-Depth imagery recorded by the

Kinect sensor. The actions recorded in the JHUMMA dataset strongly indicate that

the micro-Doppler modulation patterns are an intriguing modality for sensing action.

When a sonar unit is stationary, the Doppler phenomenon is uniquely selective for

7



CHAPTER 1. INTRODUCTION

sensing motion in the environment. On the flip side, there is very little information

about the spatial arrangement of moving objects present in the modulation patterns.

In fact, the modulations in a single ultrasound time-series don’t even contain complete

information about the velocities of moving objects in the scene. Only the radial

velocity components induce a Doppler shift.

Chapter 5 leverages machinery developed in the statistical speech recognition com-

munity and applies it to the task of recognizing the actions in the JHUMMA dataset

from only the active ultrasound observations. Hidden Markov models (HMMs) are

used to capture the sequential nature of the data and are trained such that the series

of skeletal poses derived from the Kinect sensor form the latent states and the Doppler

modulations recorded by the active ultrasound sensors form the visible states. The

trained HMMs are then used to identify the most likely human actions when only the

acoustic Doppler modulations of unseen sequences are observed.

Chapter 6 develops a physics based forward model that leverages the skeletal

representation tracked by the Kinect to predict the Doppler modulations induced by

human actions and observed by an active ultrasound sensor at any location. This

physics simulation builds upon a simple sound scattering model of the human body.

Chapter 7 develops a generative conditional deep belief network (CDBN) capable

of hallucinating the micro-Doppler modulations induced by novel human actions. The

CDBN can be trained on either the acoustics themselves or the skeletal poses tracked

by the Kinect. Combining the generative model for the skeleton with the Doppler-

8



CHAPTER 1. INTRODUCTION

physics model developed in the previous chapter results in a configurable model that

can be adapted to produce acoustic modulations for previously unobserved sensor

configurations.
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Chapter 2

The Micro-Doppler Effect

The velocity of an object moving in the direction of an observer can be estimated

by measuring the frequency shift of any wave radiated or scattered by the object. This

frequency shift is known as the Doppler effect. If the moving object has additional

moving components, each moving part will result in a modulation of the base Doppler

frequency shift. The scattered wave will then exhibit a spectrum with multiple fre-

quency modulations, as the frequency shifts induced by the individual movements are

superimposed. This frequency modulation is known as the micro-Doppler effect.

Throwing a rock into a relatively calm pond causes waves to travel radially out

from the point of impact. The rock does not move in the water, simply sinking to

the bottom, so the wavefronts are regularly spaced. A duck swimming in a pond also

creates waves; however, they are not regularly spaced. This is illustrated in Figure 2.1.

If you observe the duck swimming towards you, then the wavefronts ahead of the duck
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CHAPTER 2. THE MICRO-DOPPLER EFFECT

are squished together and will reach the shore with higher frequency. If you observe

the duck swimming away from you, then the wavefronts behind the duck are spread

out and will reach the shore with lower frequency. The observed shift in frequency

due to the direction of motion is an example of the Doppler effect. The observed shift

in frequency due to the motion of several ducks swimming together is an example of

the micro-Doppler effect.

Figure 2.1: A swimming “Doppler”-Duck generating waves on the water. a

The Doppler phenomenon originated in the field of astronomy. It was first pro-

posed in 1842, by Christian Doppler,1 to explain the color of binary stars. Two

aSource: Daniel R. Mendat, March 21, 2009.
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CHAPTER 2. THE MICRO-DOPPLER EFFECT

years later, the Doppler effect was demonstrated experimentally for acoustic waves

by C.H.D. Buys Ballot.2 He was able to detect the frequency shift of musicians

playing a constant tone on a train as it passed through a station.

2.1 The Doppler Effect

Formally, the Doppler effect involves a source, which emits or scatters a wave, and

an observer, which detects the wave. Although the Doppler effect is relevant to any

wave phenomenon, I focus on developing machinery for acoustic waves. It is assumed

that the scattering object is a simple point mass and that the wave emitted by the

source is a constant tone, with a wavelength λsource and frequency fsource related by

λsource =
cs

fsource

, (2.1)

where cs is the speed of sound.

A Doppler shift occurs when either the source or observer are moving. However,

the Doppler shift contributed by the motion of the source and the motion of the

observer is not symmetric. All motion is measured relative to the medium that the

wave travels through. In this work, the medium is air.

First consider the case where the source and receiver are stationary. By definition,

the distance between successive wavefronts is λsource and a period of 1
fsource

seconds

elapses between their arrivals. In this case, the frequency is unchanged. Figure 2.2
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Time = 0.0000(s)
Time = 0.0020(s)
Time = 0.0040(s)
Time = 0.0060(s)
Time = 0.0080(s)
Time = 0.0100(s)
Time = 0.0120(s)
Time = 0.0140(s)
Time = 0.0160(s)

Figure 2.2: Simulation showing the wavelength of an acoustic wave when neither
the source or the observer are moving.

simulates the acoustic wavefronts generated by the source where both the source and

the observer are stationary. The source is the square and the observer is the circle.

In this simulation, the transmitted frequency is fsource = 500Hz, the speed of sound is

cs = 340m/s and the distance between the source and observer is 5m. The wavefronts

are grayscale-coded based on the time that they were emitted.

Now consider the case where a stationary source emits a wave and the observer

is moving with a velocity vobserver. Note that vobserver is only the radial component

of the observer’s velocity relative to the source. Figure 2.3 simulates the acoustic

wavefronts generated by the source when the source is stationary and the observer is

moving towards the source at vobserver = cs
2

. The source is the square and the observer
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Time = 0.0000(s)
Time = 0.0020(s)
Time = 0.0040(s)
Time = 0.0060(s)
Time = 0.0080(s)
Time = 0.0100(s)
Time = 0.0120(s)
Time = 0.0140(s)
Time = 0.0160(s)

Figure 2.3: Simulation showing the relationship between the source wavelength and
the observed wavelength of an acoustic wave when the source is stationary and the
observer is moving.

is the circle. In this simulation, the transmitted frequency is fsource = 500Hz, the speed

of sound is cs = 340m/s and the initial distance between the source and observer is

5m. The wavefronts are grayscale-coded based on the time that they were emitted.

The distance between consecutive wavefronts is no longer λsource because vobserver

moves the observer closer to or farther from the source. The second wavefront will

have to travel a shorter or longer distance, respectively, before it arrives at the ob-

server. This results in the apparent frequency shift of the observed signal. The
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distance between the wavefronts is

λobserver = λsource −
vobserver

fobserver

.

By definition, λsource = cs
fsource

and λobserver = cs
fobserver

. Making these substitutions for

the wavelengths yields,

cs
fobserver

=
cs

fsource

− vobserver

fobserver

.

Solving for the observed frequency,

fobserver =
cs + vobserver

cs
fsource, (2.2)

results in an expression for the Doppler shift given a stationary source and moving

observer. By convention, the velocity of the observer is considered positive if the

observer is moving towards the source and negative if the observer is moving away

from the source, relative to the medium.

Finally consider the case where the source is moving while it emits a wave and

the observer is stationary. Figure 2.4 simulates the acoustic wavefronts generated by

the source when the source is moving toward the observer at vsource = cs
2

and the

observer is stationary. The source is the square and the observer is the circle. In

this simulation, the transmitted frequency is fsource = 500Hz, the speed of sound is

cs = 340m/s and the initial distance between the source and observer is 5m. The
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Time = 0.0000(s)
Time = 0.0020(s)
Time = 0.0040(s)
Time = 0.0060(s)
Time = 0.0080(s)
Time = 0.0100(s)
Time = 0.0120(s)
Time = 0.0140(s)
Time = 0.0160(s)

Figure 2.4: Simulation showing the relationship between the source wavelength
and the observed wavelength of an acoustic wave when the source is moving and the
observer is stationary.

wavefronts are grayscale-coded based on the time that they were emitted.

Let vsource be the radial component of the source’s velocity relative to the observer.

When a source is moving, the wavefronts will be more crowded together in front of

the source and more spread out behind it. This occurs because after a wavefront is

emitted, the source moves during the duration of the wave period before the next

wavefront is emitted. The distance between two consecutive wavefronts is now,

λobserver = λsource −
vsource

fsource

.

Again, substituting for the wavelengths yields the following expression in terms of
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the source and observed frequencies,

cs
fobserver

=
cs

fsource

− vsource

fsource

=
cs − vsource

fsource

.

Solving for the observed frequency,

fobserver =
cs

cs − vsource

fsource. (2.3)

results in an expression for the Doppler shift given a moving source and stationary

observer. By convention, the velocity of the source is considered positive if the source

is moving towards the observer and negative if the observer is away from the observer,

relative to the medium.

If both the source and the observer are in motion, then the effects are compounded.

The observed frequency is shifted by,

fobserver =
cs + vobserver

cs − vsource

fsource =
1 + vobserver

cs

1− vsource
cs

fsource. (2.4)

The same sign conventions that applied to the source and observer velocities apply

in this case also. For a more detailed development of the Doppler effect, see Chen3,4

and Murray.5
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2.2 The Doppler Effect for Monostatic

Active Sonar

Active sonar is one type of sensor capable of exploiting the Doppler effect to mea-

sure the velocity of a target. By emitting a waveform that is Doppler-sensitive, such

as a pure tone, the sonar can record the scattered waveforms and the difference be-

tween the transmitted and received frequencies can be measured. The radial velocity

component of the target object that scattered the wave can then be estimated from

any frequency difference between the transmitted and received signal.

In a monostatic sonar setup, the transmitter and receiver are co-located at the

same coordinates. It is assumed that the target is a moving point mass and that

the sonar equipment is stationary. Under these conditions, the Doppler phenomenon

actually occurs twice; once as the transmitted signal arrives at the target and again

as the target scatters the signal back to the receiver.

The first Doppler shift involves a stationary source, the sonar transmitter, and a

moving observer, the target. Therefore, using Equation 2.2 yields,

ftarget =
(

1 +
vtarget

cs

)
ftransmitter. (2.5)

The second Doppler shift involves a moving source, the target and a stationary ob-

server, the sonar receiver. The final Doppler shift observed by the receiver is found
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by applying the first Doppler shift to Equation 2.3. This yields,

freceiver =
( 1

1− vtarget
cs

)
ftarget

=
( 1

1− vtarget
cs

)(
1 +

vtarget

cs

)
ftransmitter

=
(1 + vtarget

cs

1− vtarget
cs

)
ftransmitter. (2.6)

This expression can be further simplified if it is assumed that the speed of sound

is much faster than the speed of the source. For most natural environments, this is

a very reasonable assumption as few things move at the speed of sound. The Taylor

series for a function f(x) evaluated at a point a is

f(x) ≈ f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · . (2.7)

For f(x) = 1+x
1−x , evaluated at a = 0, the Taylor series is,

1 + x

1− x ≈ 1 + 2x+
3

2
x2 + · · · (2.8)

Setting x = vsource
cs

, we can approximate the Doppler shift for the monostatic sonar

as,

freceiver ≈
(

1 + 2
vtarget

cs

)
ftransmitter. (2.9)
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If the speed of sound is much faster than the speed of the target, that is

vtarget

cs
� 1, (2.10)

then it is appropriate to approximate the function with the first order Taylor series,

ignoring the higher order terms.

2.3 The Micro-Doppler Effect

The micro-Doppler effect is an extension of the Doppler effect and occurs when

multiple moving objects scatter a wave. Each object contributes its own Doppler

shift related to the object’s radial velocity component with respect to the receiver.

All of the scattered waves are additive, and the resulting micro-Doppler modulation

is a superposition of the individual components. Assuming that there are N moving

point masses in a scene where a pure tone with frequency fc is transmitted, then the

scattered signal seen by the receiver is

sreceiver(t) =
N∑
i=1

Ai(t) · sin(2πfct+ 2πfit+ φi(t)). (2.11)

Each point mass scatters the pure tone and modulates the frequency by fi = 2 vi
cs
fc.

This is precisely the Doppler shift contributed by the motion of a single point mass

developed for monostatic sonar in Equation 2.9. There is also a phase shift φi(t)
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that depends on the range of the point mass. The ability to resolve this phase shift

depends on the range of the point mass and the wavelength of the scattered wave.

The amplitude of each component, Ai, depends on the scattering surface and the

range of the point scatterer.

When the number of scattering targets is large, distinguishing the contribution

of each component to the overall micro-Doppler modulation is difficult. Some ap-

proaches use significant prior knowledge to better estimate each piece, but the prob-

lem remains a challenge, particularly when the scene is not well defined a priori.

2.4 Using Micro-Doppler Modulations to

Sense Action in Natural Environ-

ments

While the Doppler effect is very specific to sensing motion, there are still many

challenges associated with exploiting it to sense and identify actions. At a funda-

mental level, real actions are sequences of motion that evolve in time and three-

dimensional space. However, the micro-Doppler modulations recorded by a single

active sonar sensor are one-dimensional time-series. The modulations of a pure tone

used to sense a complex moving scene do not capture much in the way of range or

spatial information. Over a given time window, the frequency modulations provide
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a histogram of the velocities present in the scene. Fortunately, due to the physical

limitations of most multi-component objects, such as the human body, the realizable

set of actions is heavily constrained. In the case of a human, the scattering compo-

nents are linked rigid bodies, which constrain the space of human action and induce

distinctive temporal structure in the modulations across a sequence of consecutive

windows. This is a much more structured situation than the arbitrary sum of point

masses expressed in Equation 2.11. One of the primary scientific questions addressed

by this work is whether having a symbolic model of the physical objects of interest is

sufficient to bootstrap low-dimensional, impoverished sensory data in order to make

inferences about a complex, higher-dimensional, natural environment.

The micro-Doppler sonar technology complements cameras and visual surveillance

in situations where the mere presence of life is relevant (for security or search and

rescue reasons, for example), since although it depends upon a clear line of sight

between the detector and the object of interest it does not rely on visibility per se.

Preliminary work on human and animal species classification as well as action and

behavior recognition has yielded highly promising recognition rates.3,6–26

Another challenge is that many moving objects have symmetry in their motion.

For example, a pendulum may swing from side to side and a human body may move

its right or left arm. Distinguishing between these actions can be very challenging

for a single sonar sensor, located at the line of symmetry, due to paucity of spatial

information in the micro-Doppler modulations. One way to overcome this limitation
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is to use multiple sensor units arranged so that no single line of symmetry is common

to all the sensors. In the next chapter, a novel data acquisition system, that is

designed to integrate multiple acoustic sensors with very accurate temporal resolution,

is presented. Leveraging this system allows for synchronized data collection with

multiple sonar units that will help alleviate ambiguities due to spatial symmetry.
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Chapter 3

Data Acquisition and Processing

From an algorithmic perspective, some of the challenges associated with leveraging

the micro-Doppler, discussed in Section 2.4, can be mitigated by judiciously acquiring

a rich set of multimodal data on which to train models. Specifically, the use of multiple

ultrasound sensors, arranged to maximize the power of the acoustics to discriminate

between ambiguous orientational symmetry, and the collection of a limited amount

of higher-dimensional visual data to provide a spatial ground truth for the scene.

Of course, this places additional requirements on the system used to acquire the

experimental data, which must now be able to accommodate multiple sensors of

different types that are distributed throughout the sensing environment. Moreover,

maintaing precise temporal synchronicity between the data points recorded from each

sensor is important, so that the data from individual sensors can be aligned unambigu-

ously in time. This chapter describes the sensors, hardware, data collection software
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and basic signal processing algorithms used to acquire and visualize the acoustic and

visual data that is presented throughout this work.

3.1 Acoustic Data Acquisition System

The acoustic data acquisition system began development under the SCANDLE

project and was further improved during the MURI project.27,28 It consists of a

set of data acquisition (DACQ) units, and a frequency modulated (FM) transmitter

designed to synchronize the data collection process across all of the DACQ units. The

data acquisition units can be configured to interface with a wide range of acoustic

sensors including several types of passive microphones, microphone arrays, ultrasound

sonar transducers and seismic sensors. The data acquisition units have integrated

FM receivers that allow for synchronization among all units within range of the FM

transmitter. Additionally, other types of sensors can access the synchronization signal

if they are connected to the same computer as the FM transmitter.

3.1.1 Sampling Acoustic Signals

A single DACQ unit can be configured to operate with one to four channels de-

pending on the requirements of the target sensor. The total bandwidth of each DACQ

unit is 100kHz, which is divided equally among the number of channels. The sampling

frequency for each channel configuration is enumerated in Table 3.1.
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Table 3.1: DACQ sampling frequencies for each channel configuration.

Number of Channels Channel Sampling Frequency (Fs)

1 100kHz
2 50kHz
3 33kHz
4 25kHz

In each channel, the analog input signal xv(t) is digitized by a dedicated Analog

Devices AD7686 analog to digital converter (ADC) with 16-bit resolution. The output

codes of this ADC range from 0 to 216 − 1 = 65535 and encode the input voltage

range, which is approximately −2.5V to 2.5V . The conversion from ADC counts xc[n]

back into a voltage sample xv[n], is determined by scaling the counts to match the

input voltage range. Thus,

xv[n] = (xc[n]− 215)
(5V

216

)
. (3.1)

To relate the sampled sequence to the analog channel input, note that continuous

time t is related to the discrete sample index n by

t =
n

Fs
, (3.2)

where Fs is the channel sampling frequency. Therefore,

xv(t) = xv(
n

Fs
) = xv[n]. (3.3)
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3.1.2 Time-Frequency Representation of Acoustic

Signals

The frequency content of the acoustic signals changes over time. In order to cap-

ture these changes, the acoustic time series presented throughout this work are often

processed to produce a spectrogram. A spectrogram is a time-frequency represen-

tation generated by analyzing the frequency content of a signal in a series of time

windows. For the acoustic data recorded by the data acquisition system, a Hanning

function is generally used to window the signal in the time domain and the frequency

content of each window is analyzed using a discrete Fourier transform (DFT). When

visualizing the data, the convention is to plot the magnitude of the power spectrum

with the frequency content on the vertical axis and subsequent time windows on the

horizontal axis. One limitation of this representation is that phase information is

discarded.

3.1.3 Noise Characterization

The noise level for a channel in the data acquisition system was experimentally

measured to be approximately 2.5mV by grounding the input of the channel and

measuring the amplitude of the analog signal at the input pin of the channel ADC

with an oscilloscope. This measurement was taken with the programmable channel

gain set to 1, the minimum value. When digitized, 2.5mV corresponds to 32 ADC
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counts. The channel ADCs have a resolution of 16 bits, so the signal to noise ratio

(SNR) for a channel in the data acquisition system is approximately 12 bits.

However, it is less straightforward to determine the power of the noise spectrum

after transforming these signals into frequency and time-frequency representations.

When analyzing signals in the frequency domain, phase information is typically dis-

carded and only the log magnitude of the power spectrum in decibels (dB), referenced

to a 1V peak-to-peak sinusoid, is considered. The analysis of the noise level is further

complicated by quantization and spectral leakage from frequency binning effects intro-

duced by the fast Fourier transform (FFT), MATLAB’s implementation of the DFT.

Moreover, when processing the time-domain signals to produce time-frequency spec-

trograms, the effects of the time-domain windowing in the processing chain further

obfuscates how the 2.5mV noise specification is affected. Therefore, to understand

what level of power can be attributed to noise, the output of the signal processing

chain was analyzed for known, simulated, test signals. By setting the amplitude of

the sinusoid to the voltage level of a specified noise floor, 2.5mV for the DACQ sys-

tem, the power level of a signal that should be considered noise can be determined

empirically.

In order for the processed result to be independent of the length of the FFT, an

appropriate scaling factor must be applied. The DFT definition used by MATLAB is

X[k] =
N−1∑
n=0

x[n] · exp(−2πjk
n

N
), (3.4)
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where N is the length of the DFT and 0 ≤ k ≤ N . By convention, the FFT of a

sinusoid with a peak-to-peak amplitude of 1V should have a magnitude of 1V. There

is no normalization term to account for the length of the DFT, so longer DFTs can

result in higher amplitude frequency content. Additionally, the signal energy is split

between positive and negative frequencies. To account for these two effects, the DFT

X[k] is scaled by a factor of 2
N

, making the amplitude independent of the length

of the DFT and doubling the energy. This normalization term is used in all of the

subsequent signal processing so the signal power of various voltage levels is directly

comparable regardless of the length of the DFT used for that particular processing

algorithm.

The test signal is a discrete-time ideal sinusoid,

x[n] = A · sin(2πf
n

Fs
), (3.5)

with amplitude A and frequency f . The sampling frequency Fs is set to 100kHz,

the maximum bandwidth of a single data acquisition channel. The frequency of the

test signal was placed in the center of a frequency bin to minimize spectral leakage.

Table 3.2 reports the signal power attributed to test signals over a range of amplitudes

and for a single FFT versus a spectrogram analysis.

According to the convention described above, the 1.0V test signal is the reference

for the dB scale and should ideally have a power of 0dB. In practice the maximum
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Table 3.2: Noise power for simulated sinusoidal signals.

Amplitude FFT Signal Power (dB) Spectrogram Signal Power (dB)

2.5 V 7.9274 2.6062
1.0 V -0.0314 -5.3526

2.5 mV -52.0726 -57.3938
0.25 mV -72.0726 -77.3938

magnitude of the scaled FFT is only 0.9964V and there is a small amount of spec-

tral leakage exhibited in the frequency domain. This accounts for the −0.0314 dB

discrepancy.

3.1.4 Data Acquisition System Baseline Noise

To verify that the DACQ units fall within the simulated noise power specifications,

three of the DACQ units were configured as active ultrasound sensors and left to

record in a room with no moving objects. Using this setup, there should only be

significant signal power at the carrier frequency emitted by the unit and 0Hz, which

corresponds to direct current (DC). The ultrasound configuration is described in

more detail in Section 3.2. These DACQ sensor configurations were used for the data

collection described in Chapter 4.

The frequency spectrum, computed over an 80 second window of data recorded

by the 40kHz ultrasound unit, is shown in Figure 3.1. Although several harmonics

contain enough power to reach the decibel level corresponding to a 0.25mV amplitude

signal, only the power at the carrier frequency and DC is sufficient to reach the decibel

level corresponding to a 2.5mV amplitude signal. All of the analog components that
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Figure 3.1: Measured noise power spectrum in the 40 kHz ultrasound unit.

are part of the data acquisition channels were selected to have noise specifications

below 2.5mV.

The frequency spectrum, computed over an 80 second window of data recorded

by the 33kHz ultrasound unit, is shown in Figure 3.2. The noise power spectrum

responds similarly to the 40kHz case, although some of the harmonics are shifted.

The frequency spectrum, computed over an 80 second window of data recorded by

the 25kHz ultrasound unit, is shown in Figure 3.3. Again, the noise power spectrum

responds similarly to the 40kHz case, although some of the harmonics are shifted.
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Figure 3.2: Measured noise power spectrum in the 33 kHz ultrasound unit.

The variation between DACQ units is due to mismatch in the analog components.

3.1.5 Setting the Channel Gain and Operating

Mode

Each of the four channels in a data acquisition unit are equipped with a dedicated

Texas Instruments PGA112 programmable gain amplifier (PGA). The PGA precedes

the channel ADC in the analog processing chain, providing configurable gain control
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Figure 3.3: Measured noise power spectrum in the 25 kHz ultrasound unit.

for the analog signal as well as several diagnostic operating modes. These options are

all configured by sending a control byte to the data acquisition unit. If the MSB is set

to 0, then the following seven bits are interpreted to configure the PGA. If the MSB

is set to 1 and the DACQ unit has been configured with a special debugging features,

then the following seven bits are interpreted as several debugging protocols that are

described in the next section. The upper nibble of the control byte encodes the gain

setting, which can be any power of 2 ranging from 1 to 128. Table 3.3 enumerates the

control nibble for each gain setting. Note that the MSB is always set to 0 in every
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nibble, so any gain setting is interpreted as a PGA configuration.

Table 3.3: Format of the control nibble for selecting different PGA gain multipliers.

Upper Configuration Nibble Channel Gain

0000 1
0001 2
0010 4
0011 8
0100 16
0101 32
0100 64
0101 128

The lower nibble of the control byte encodes the operating mode. The PGA can be

configured to output either the analog signal connected to its input or any of several

constant voltage values derived from the power supply lines. Table 3.4 enumerates the

control nibble for each mode setting. The constant input voltages provide a known

input that can be used for diagnosing issues with the data acquisition process. They

are also useful for investigating noise on the power supply.

Table 3.4: Format of the control nibble for selecting different PGA operating modes.

Lower Configuration Nibble PGA Input Source

0000 5.0V (Vdd)
0001 analog input (normal operation)
1100 0.0V (Gnd)
1101 4.5V ( 9

10
× Vdd)

1101 0.5V ( 1
10
× Vdd)

1101 2.5V (1
2
× Vdd)

The control byte for configuring the PGA can be programmed using the stand-

alone dacq spga application.

34



CHAPTER 3. DATA ACQUISITION AND PROCESSING

3.1.6 Setting Debugging Configurations

When the MSB of the control byte is set to 1, the following seven bits are in-

terpreted as commands to effectively enable or disable several analog circuits on the

data acquisition board. These circuits are each capable of coupling noise into the

analog signal. These debugging configurations allow for the individual contributions

from each sub-circuit to be analyzed. Table 3.5 enumerates the sub-circuit enabled

by setting a particular debugging bit to 1. The MSB enables the debugging func-

tionality. The two LSBs operate as a channel select, allowing the dedicated ADCs on

each channel to be controlled independently.

Table 3.5: Format of the control byte for selecting different debugging modes.

Configuration Bit Index Debug Function

7 Debug Select
6 Phase-Locked Loop (PLL) On
5 FM Local Oscillator (LO) On
4 FM ADC On
3 Output DAC On
2 Channel ADC On

1-0 Channel Select

The control byte for the debugging circuit configurations can be programmed

using the stand-alone dacq sdbg application.

3.1.7 Data Acquisition System Frame Format

Every frame is composed of a header, which has twelve 16-bit words, followed by

960 samples, which are 16-bits each. The overall sampling rate of a data acquisition
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unit is 100kHz, so each frame corresponds to 9.6 milliseconds of data. Table 3.6

enumerates the contents of each word in the header.

Table 3.6: Format for the header information in a DACQ frame.

Word Index Upper Byte Lower Byte

0 Synchronization, Byte 1 Synchronization, Byte 0
1 Synchronization, Byte 3 Synchronization, Byte 1
2 Module ID, Byte 2 Module ID, Byte 0
3 Module ID, Byte 3 Module ID, Byte 1
4 Frame Index
5 1 Time-stamp, Bits 14 to 0
6 1 Time-stamp, Bits 29 to 15
7 1 Time-stamp, Bits 44 to 30
8 1 Time-stamp, Bits 59 to 45
9 PGA Gain/Mode RSSI
10 Minimum Value
11 Maximum Value

The frame synchronization pattern is the four byte sequence 0, 0, 0, 255. When

observing the data stream, this pattern can be used to identify the beginning of a

frame. All of the other fields in the frame have been modified where necessary to

prevent this pattern from occurring elsewhere.

The module identification is a four character code that describes the configuration

of the data acquisition unit used to collect the frame. For example, a unit configured

as an ultrasound sensor with a transmitted frequency of 40kHz has a module iden-

tification code of US40. All of the module identification codes have been chosen so

that they do not allow an erroneous synchronization pattern to appear in the data

stream.

The frame index is an integer from 1 to 65535 that is used to mark each frame.
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The time-stamp is a 60 bit number that encodes the time in milliseconds since Thurs-

day, January 1st, 1970. The MSB in each word is set to one so that an erroneous

synchronization pattern cannot appear in the data stream. Both the frame index and

the time-stamp can be used to detect missing or dropped frames in the event that the

data collection computer cannot keep up with the DACQ unit. However, it is possible

for the timestamp to be erroneous if the reception of the FM synchronization signal

is poor or the FM transmitter is not active. Conversely, the frame index is more

robust, but rolls over after only 65535 frames, which corresponds to approximately

629 seconds. Therefore, a combination of the two should be used for aligning the data

between multiple DACQ units.

The PGA gain setting and mode of operation that were programmed when the

frame was recorded are encoded in a single byte as illustrated in Table 3.3 and Ta-

ble 3.4. It should be noted that if a new gain or mode setting is programmed, it will

take effect immediately, even in the middle of a frame. Therefore, it is possible for

the data in a single frame to start with the settings listed in the header, but change

partway through the frame. The new settings will be listed in the next frame, but

there is no way to determine precisely at which sample the change occurred.

The relative signal strength indicator (RSSI) is an 8-bit integer between 1 and

255 that indicates the quality of the synchronization signal received from the FM

transmitter. This information can be used to monitor the synchronization signal and

is also used to tune the coil in the FM receiver circuit.
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The minimum value and maximum value of the data samples in each frame is also

reported in the header. This information can be used to automatically adapt the gain

of the unit over time and also may speed up data normalization procedures that are

part of many data post-processing steps.

Table 3.7: Format for the data samples in a DACQ frame.

Word Index
One Channel Two Channels Three Channels Four Channels
Ch. Sample Ch. Sample Ch. Sample Ch. Sample

12 0 0 0 0 0 0 0 0
13 0 1 1 0 1 0 1 0
14 0 2 0 1 2 0 2 0
15 0 3 1 1 0 1 3 0
16 0 4 0 2 1 1 0 1
17 0 5 1 2 2 1 1 1
18 0 6 0 3 0 2 2 1
19 0 7 1 3 1 2 3 1
...

...
...

...
...

971 0 958 0 478 1 318 2 238
971 0 959 1 479 2 319 3 239

The header is immediately followed by 960 data samples. These samples are

interleaved from each of the active channels in the data acquisition unit. Table 3.7

enumerates the order of the samples for each of the possible channel configurations.

When the data is buffered, any ADC samples that are zero get changed to one so

that an erroneous synchronization pattern cannot occur.
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3.1.8 Data Acquisition Software

A data acquisition unit communicates with its host PC through a USB interface

that emulates a serial port. Each unit has an on-board FPGA that buffers the data

and controls the USB interface. The RAM blocks on the FPGA only have enough

capacity to buffer three frames of data, so transferring them efficiently and without

interruption is critical.

On the PC side, the stand-alone application, dacq2pipe.exe, is used to contin-

uously transfer frames from the data acquisition unit to the hard disk of the host

PC. The application takes the COM port number associated with the serial port of

the data acquisition unit as an argument. As the data is transferred over the USB

interface it is saved in two minute files. The total sampling rate of a data acquisition

unit is 100kHz and there are 960 samples per frame. Therefore, each two minute file

contains precisely 12, 500 frames. dacq2pipe.exe also opens a Windows pipe that

allows other applications, such as MATLAB, to access the data as it is being streamed

over the USB interface and saved.

3.2 Active Ultrasound Sensors

The velocity of a moving object relative to an observer can be estimated by mea-

suring the frequency shift of a wave radiated or scattered by the object, known as

the Doppler effect. If the object itself contains moving parts, each moving part will
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result in a modulation of the base Doppler frequency shift. This is the micro-Doppler

effect that was described in Chapter 2.

In order to leverage this phenomenon for sensing action, a continuous sinusoidal

carrier is transmitted and the modulated signal that is reflected off a moving object

is observed. A sinusoid is the simplest Doppler sensitive waveform and is well suited

for capturing frequency modulations due to motion. Continuous-wave (CW) sonar is

always transmitting, so it has the advantage of maximizing the signal power reflected

by a target. The downside of this setup is poor range resolution. To determine the

range of a target, it must be possible to distinguish precisely when the the waveform

that resulted in a reflection was transmitted so that the time-of-flight can be calcu-

lated. In the case of a continuous sinusoid, the transmitted waveform is repeated,

so reflections from distances greater than the wavelength of the sinusoid could have

come from ranges that are any multiple of the wavelength.

Table 3.8: The frequency and wavelength settings for each ultrasound carrier.

Carrier Frequency (kHz) Wavelength (mm)

25 13.7
33 10.3
40 8.55

Our ultrasound units transmit one of three different ultrasonic frequencies. Ta-

ble 3.8 enumerates the carrier frequency and its corresponding wavelength, assuming

the speed of sound in air is c = 343m/s. The wavelengths for these frequencies are on

the order of 10mm, so unless all of the energy was reflected from within this distance,
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determining the range of a target becomes ambiguous.
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Figure 3.4: Raw time-series recorded by the ultrasound unit of a human walking.

A data acquisition unit can be configured as an ultrasound sensor by connect-

ing the appropriate ultrasound receiver and transmitter transducers. Although the

fourth channel is configured to output the transmitted waveform, this configuration

is still considered single channel operation from the data acquisition perspective of

recording the signal from the receiver, so the sampling rate is 100kHz. There are

three sets of transducers centered at 25kHz, 33kHz and 40kHz. This allows sepa-

rate data acquisition units to operate simultaneously without interference. Usually

a single ultrasound unit is configured to use a transmitter and receiver in the same

band. When the transmitter and receiver pair are co-located, the setup conforms to
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the monostatic sonar configuration described in Section 2.2. However, the system is

flexible enough to support stand-alone transmitters and multiple receivers in a given

band as well as multi-band combinations. For instance, with three data acquisition

boxes, the system can be configured with one unit transmitting an ultrasonic sinusoid

and two other units receiving the reflected signal.

Figure 3.4 shows an example of the raw time-series recorded by an ultrasound

unit configured to transmit a 40kHz sinusoid signal and a co-located 40kHz receiver.

The frequency modulations in the signal are induced by the micro-Doppler effect of

the transmitted signal scattering off of a human walking in front of the sensor.
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Figure 3.5: Spectrogram visualizing the micro-Doppler frequency modulations of a
human walking.
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Figure 3.5 shows an example spectrogram computed from the time-series shown

in Figure 3.4. The time-frequency representation is more amenable to visualizing the

micro-Doppler modulations in the signal. The overall translation of the human body

as it walks back and forth is observed in the spectrogram modulations as the slower

overall oscillation around the carrier frequency. The motion of the legs and arms is

captured by the faster periodic modulations.

3.3 Microsoft Kinect Sensor

Kinect RGB Color And 2D Skeleton (Time−Stamp = 147059878465)

Figure 3.6: An example of the RGB color image captured by the Kinect for a human
walking. The two-dimensional tracked skeleton is overlaid.

The Microsoft Kinect sensor actually combines two imaging sensors, an RGB
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imager and a grayscale depth imager, into a single package.29 MATLAB interfaces

with the Kinect through the image acquisition toolbox, which can capture the RGB

image (640 × 480 pixels), the depth image (640 × 480 pixels), the two-dimensional

skeleton tracking and the three-dimensional skeleton tracking. Figure 3.6 shows an

example of an RGB image captured by the Kinect depth for a walking human and

the associated two-dimensional skeleton.

Kinect Depth (Time−Stamp = 147059878465)

Figure 3.7: An example of the depth image captured by the Kinect for a human
walking.

Based on the patent30,31 filed by Prime Sense, a company that developed some of

the intellectual property associated with the Kinect, the depth of each pixel in the

image is computed using a combination of depth from focus and depth from stereo
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techniques. The Kinect sensor uses a pair of stereoscopic imagers to capture each

frame. It also projects a known pattern of infrared light onto the scene using an

astigmatic lens. The lens changes the orientation of the pattern depending on the

depth of the object that it illuminates. The final grayscale depth map is computed by

combining these techniques. Figure 3.7 shows an example of the Kinect depth map

for the walking human portrayed in Figure 3.6.
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Figure 3.8: An example of three-dimensional skeleton tracked by the Kinect for a
human walking.

The body position is tracked by applying randomized decision forests32 to first

tag each pixel in the depth map if it is a human body part and then inferring the

position of the skeletal joints based on the tagged body parts. Figure 3.8 illustrates
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an example of the three-dimensional skeleton extracted from the Kinect depth map

for a single frame. The global coordinate system used by the Kinect places the sensor

at the origin and returns the skeletal joint positions in meters.

L. Elbow

L. Wrist

L. Hand

L. Shoulder

L. Knee

L. Hip

L. Ankle

L. Foot

Shoulder Center

Hip Center

Head

Spine

R. Hip

R. Ankle

R. Foot

R. Knee

R. Wrist

R. Shoulder

R. Hand

R. Elbow

Figure 3.9: Joint labels for the Kinect skeletons.

Figure 3.9 shows the joint labels used to reference each of the joints tracked by the

Kinect. The topology of the skeletal structure can by efficiently encoded as a tree,

where the root is generally considered to be the hip-center joint. Although each joint is

tracked in the global Kinect sensor space, there are several alternative representations

that introduce spatial invariances that are useful for comparing different skeletal

poses.

For human action recognition applications, it is preferable to develop algorithms

capable of recognizing a particular action regardless of where it occurs in the global
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coordinate system. When training these algorithms it is advantageous to consider

the hip-center as the origin for the skeleton at each frame. By referencing all of the

other joints in a given frame to the position of the hip-center, the skeletal pose can

be captured independently from the skeleton’s global position. This skeletal pose

representation provides translation invariance in the global coordinate system, which

can greatly simplify the problem of recognizing a particular pose regardless of where

a human is relative to the Kinect sensor. Storing the global position of the hip-center

maintains all the necessary information to reconstruct the recorded scene exactly.

Figure 3.10: Components of the rotation representation for a single limb.

It is also beneficial if a human action recognition algorithm can be trained on

skeletal poses collected from multiple subjects. One problem with the cartesian co-
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ordinates produced by the Kinect is their dependence on the height and limb lengths

of the individual person. A very tall person and a very short person can perform

the same action and generate very different cartesian joint coordinates even once the

pose is adjusted to account for translation of the hip-center. However, the angle of

the limbs as two people perform the same action is often much more consistent, even

when their limbs are different lengths.

To leverage this invariance, the skeleton can be represented using the rotation of

individual limbs instead of the cartesian coordinates of their constituent joints. The

rotation representation is composed of two objects; an axis of rotation and an angle

of rotation, θ. Figure 3.10 illustrates these components for a single limb. Each limb

(blue line) is defined by two points, referred to as joint A and joint B. By convention,

joint A is closer to the hip-center on the skeletal connection tree. The positive z-axis

is used as a reference vector (red vector). The axis of rotation is the vector around

which the limb must be rotated to match the reference. Due to the choice of reference,

this axis is always constrained to the x-y plane.

One aspect of the rotation representation that makes them more complicated

to use is the requirement that the precise limb lengths for each frame be stored

independently in order to reconstruct the Kinect data exactly. Although limb lengths

should be relatively consistent, errors in the skeletal tracking do not always result in

consistent lengths. In this work, the limb lengths are extracted as the limb lengths

averaged over each frame in the available data, for a particular individual.
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The Johns Hopkins University

Multimodal Action Dataset

There are several standard datasets that have been developed over a period of years

for action/activity analysis tasks. These are publicly available from various groups in

the computer vision and machine learning communities and are aimed towards “action

recognition” problems that have been an intense area of research in the respective

research communities. All datasets are associated with publications that provide

baseline performance scores and have “recognition” results reported in standard terms

“recognition accuracy”,“precision”, “precision/recall” curves7,10,11,28,33–46

The different datasets summarized in Table 4.1 have increasing “difficulty”, start-

ing with the KTH datasets that involve a static background and are actor staged

and continuing with the UCF-101, HOHA-2 and HMDB51 that have more complex
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Figure 4.1: The JHUMMA data collection setup.

backgrounds from movies and videos. It should be noted that the HMDB51 dataset

is selected in a way to accentuate action/activity categories that differ mainly in mo-

tion and hence especially suited for the development and evaluation of algorithms

and an architecture of for a system that relies on spatial-temporal and dynamic cues

as opposed to mostly shape cues, which most systems use today.

The Johns Hopkins University multimodal action (JHUMMA) dataset was col-

lected on August 26th, 2014, in the auditorium of Shriver Hall, on Johns Hopkins

University’s Homewood campus. Three ultrasound sensors and a Kinect sensor were
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Table 4.1: Action/Activity Recognition Datasets.

Dataset Action Classes Description
KTH46 6 static background, actor staged

Weizmann45 9 static background, actor staged
HOHA44 8 Hollywood movies

HOHA-243 12 Hollywood movies
UCF-5038 50 online videos (Youtube)

HMDB-5142 51 online videos (Youtube, Google)
UCF-10139 101 online videos (Youtube)

SCANDAL7,10,11,28 7 active-passive acoustics,
RGBD, static background actor staged

JHUMMA 21 static background, actor staged,
RGBD, active acoustics

used to record joint multimodal data of ten unique actors performing a set of actions.

The auditorium was chosen because it is a large open space and there are curtains

on the stage where the data was collected. These features both reduce the number

and strength of uninteresting reflections of the ultrasound carriers off static objects.

The reduction in the total energy of unmodulated ultrasound reflections enables the

use of higher gain settings on the ultrasound units, effectively increasing the dynamic

range of the modulated ultrasound reflections that we are interested in. Figure 4.1

shows the JHUMMA data collection setup.

4.1 Data Collection Configuration

Figure 4.2 illustrates schematically the configuration of the various sensors used

for the data collection. The bounding box, which corresponds to the area where the

Kinect sensor reliably tracks a human, was marked on the auditorium stage to guide
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Figure 4.2: The experimental setup for the Shriver Hall data collection.

the actors. All actions were confined to this space and the orientation of the actions is

referenced to the Kinect sensor, which was placed “north” of the bounding box. This

cardinal direction convention was used to orient the recorded actions with respect to

the sensor locations.

The Kinect sensor was placed directly on top of the 40kHz ultrasound sensor

(US40). The 25kHz ultrasound sensor (US25) was placed to the east and the 33kHz

ultrasound sensor (US33) was placed to the west.
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4.2 JHUMMA Action Classes

Table 4.2: Script of actions nominally demonstrated by each actor.

Action Orientation Repetitions / Duration
Lunges N 10 Per Leg (Alternating)
Lunges NE 10 Per Leg (Alternating)
Lunges NW 10 Per Leg (Alternating)

Left Leg Steps N 10
Right Leg Steps N 10

Left Arm Raise (Forward) N 10
Left Arm Raise (Sideways) N 10
Right Arm Raise (Forward) N 10
Right Arm Raise (Sideways) N 10

Walk in Place N 20 Steps
Walk Facing Forward N-S 10 cycles
Walk Facing Sideways W-E 10 cycles

Walk and Pivot NE-SW 10 cycles
Walk and Pivot NW-SE 10 cycles
Jumping Jacks N 10

Jump Rope N 10
Body Squats N 10

Jump Forward then Backward N-S 10 sets
Jump Forward then Backward NE-SW 10 sets
Jump Forward then Backward NW-SE 10 sets

Punch Forward N 10 Per Arm (Alternating)
Freestyle Mopping NA 1 min
Freestyle Walking NA 1 min

Table 4.2 enumerates the specific actions recorded for each actor and the nominal

number of repetitions or duration of the action. This script was performed by ten

unique actors and several performed it twice. A total of 14 runs through the script

were recorded. Actions that involve the whole body and limit the occlusion of limbs

maximize the potential of the Kinect sensor to accurately track the human skeleton.

The majority of the actions included in the script were chosen based on this criteria.
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Actions were also generally performed in an orientation relative to the Kinect sensor

that mitigated the occlusion of body parts. Several actions were performed using

multiple orientations so that the effects of recording ultrasound from several different

angles is captured by the dataset. These orientations are also enumerated in Table

4.2.

4.3 Visualizing the Dataset

Figures 4.3 to 4.5 show a snapshots of the data recorded in the JHUMMA dataset

during a single trial of each action. Figure 4.3 shows the first seven actions of the

JHUMMA dataset according to the script in Table 4.2. Figure 4.4 shows the second

seven actions and Figure 4.5 shows the final seven actions. The images in the first

column were captured by the Kinect sensor’s color imager and the two-dimensional

skeleton track has been superimposed on top of the image. The spectrograms in the

second column are generated from ultrasound data recorded by the 40kHz sensor. The

spectrograms in the third column are generated from ultrasound data recorded by the

33kHz sensor. The spectrograms in the fourth column are generated from ultrasound

data recorded by the 25kHz sensor. The time window used to choose the ultrasound

data for each actions is the same for each sensor and the Kinect frames are all from

within these windows. The window duration is fixed at just under nine seconds and

is independent of the action. The displayed frequency content is a bandwidth of 2kHz
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centered on the respective carrier frequency of each ultrasound unit. The time and

frequency markings are omitted for clarity.

By comparing the Doppler modulations recorded by each ultrasound sensor it is

possible to gain a significant amount of information based on knowledge of the sensor

positions and the orientation of the actions. For example, the right arm raise action

only produces a modulation in the 25kHz ultrasound, which was on the right side of

the actor’s body. The 33kHz ultrasound, which was on the left side, exhibits almost

no response as the body blocked almost all of the acoustic energy from reaching

it. Conversely, the situation is reversed for the left arm raise action. The 40kHz

ultrasound unit sees modulations for arm raise actions regardless of side because it

is positioned in front of the body. However, the modulations are less pronounced as

most of the motion is in the East to West plane.

There are also several other general characteristics of various actions that are

easily observed. For example, the actions where the torso translates, such as lunges,

walking and jumping, all exhibit a larger, relatively slow modulation component.

Actions where only the limbs move much tend to simply oscillate around the carrier

frequency because most of the actor’s body is stationary. Additionally, based on the

40kHz ultrasound modulations, the jump rope action appears to produce the largest

frequency shifts. This makes sense because the jump rope must move at a high

velocity in order for the actor not to trip. The punching action generally produced

the greatest frequency shifts generated purely by human motion.
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Lunges (N)

Lunges (NE)

Lunges (NW)

L. Leg Steps (N)

R. Leg Steps (N)

L. Arm Raises, Fwd (N)

L. Arm Raises, Side (N)

Figure 4.3: Examples of the first seven scripted actions in the JHUMMA dataset.
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R. Arm Raises, Fwd (N)

R. Arm Raises, Side (N)

Walk in Place (N)

Walk Facing Fwd (N-S)

Walk Facing Side (W-E)

Walk/Pivot (NE-SW)

Walk/Pivot (NW-SE)

Figure 4.4: Examples of the second seven scripted actions in the JHUMMA dataset.
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Jumping Jacks (N)

Jump Rope (N)

Body Squats (N)

Jump Fwd/Bwd (N-S)

Jump Fwd/Bwd (NE-SW)

Jump Fwd/Bwd (NW-SE)

Punch Fwd (N)

Figure 4.5: Examples of the final seven scripted actions in the JHUMMA dataset.
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4.4 Processing the Dataset for Action

Recognition Tasks

Figure 4.6: Screenshot of the JHUMMA labeling GUI.

In order to facilitate the construction of supervised models built on the JHUMMA

dataset, each action performed during each trial is coarsely labeled with a set of time-

stamps marking the beginning and end of the action sequence. Each coarsely labeled

action sequence still contains several repetitions of the particular action. The coarse

sequences are coherent temporal data streams, so more fine-grained labeling that

would split them up further is deferred to the tasks that requires those labels. The

graphical user interface (GUI), shown in Figure 4.6, was designed to facilitate labeling

of the dataset. The left side of the GUI displays data from the timestamp tracked

by the green bar. The data on the right side of the GUI displays data from the

timestamp tracked by the red bar. All of the data within the timeframe between
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these two timestamps can be labeled as a single action.

Given the time-stamps that mark the beginning and end of each action sequence,

the time-series data from each of the three ultrasound sensors is processed into a

sequence of spectrogram slices. Using the temporal synchronization afforded by the

DACQ system, the same series of overlapping time windows are used to produce

the spectrograms for each ultrasound data stream. Throughout this work, the FFT

window is set to 214 samples, which corresponds to just over 0.1638 seconds. How-

ever, there is an 80% overlap between successive FFT windows, so the time window

advances by approximately 0.0328 seconds between consecutive spectrogram slices.

The spectrogram slices have also been limited to a bandwidth of 2kHz centered on

the carrier frequency of the respective ultrasound sensor. These frequency ranges

generally contain the micro-Doppler modulations and limit the dimensionality of the

spectrogram modulations to reasonable range. Table 4.3 lists the velocity ranges that

correspond to these frequency ranges.

Table 4.3: Velocity ranges of spectrogram slices.

Carrier Frequency (kHz) Bandwidth Range (kHz) Velocity Range (m/s)
40.00 39.00 to 41.00 -4.25 to +4.25
33.33 32.33 to 34.33 -5.10 to +5.10
25.00 24.00 to 26.00 -6.80 to +6.80

The timestamps corresponding to these windows are also used to produce a series

of corresponding skeletal frames, one for every spectrogram slice. The average frame

rate from the Kinect is around 30 frames per second, which corresponds to approx-
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imately 0.0333 seconds. This happens to match the rate of spectrogram slices very

closely.

Now that a dataset has been developed that incorporates both visual data, which

facilitates the accurate tracking of human movement, and active acoustic data, which

captures the micro-Doppler modulations induced by the motion, the next chapter

begins to develop models that capture the interaction between these modalities. The

immediate goal is to accurately classify the actions in the JHUMMA dataset from

their acoustic modulations. Later, more sophisticated models are developed that

can accurately predict the acoustic modulations from the configuration of the human

motions and even hallucinate new modulations with configurable characteristics.
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A Simple Generative Model for

Human Action Recognition and

Active Acoustics

For years, the speech recognition community has had great success modeling ut-

terances with statistical models. In the traditional setup for speech recognition,47

the data is a sequence of acoustic evidence, A = a1, ..., am. Each element ai, in the

sequence is drawn from some alphabet A, such that ai ∈ A. This alphabet is of-

ten a discrete and finite set of phonemes. The acoustic data is then used to predict

the sequence of words W = w1, ..., wn that constitute the utterance. The individual

words, wi, are drawn from some vocabularyW , such that wi ∈ W . The goal of speech
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recognition is to find the best estimate for the uttered sequence,

Ŵ = arg max
W

P (W|A), (5.1)

where P (W|A) is the probability of the word sequence W being uttered given the

acoustic evidence A. Unfortunately, the probability that a particular word sequence

is generated given a set of acoustic data is not easy to model. To get around this,

Bayes rule is often applied to split the expression up into subproblems. Thus,

Ŵ = arg max
W

P (A|W)P (W). (5.2)

Here, P (W), often referred to as the language model, captures the relative frequency

of different words within the context that is relevant for the speech recognition sys-

tem. In general, these statistics are reliably culled from transcriptions or other text

documents. The likelihood that a word generates a particular sequence of acoustic

data is captured by P (A|W), often referred to as the acoustic model. Estimating

P (A|W) tends to be a much simpler problem because it is reasonable to develop com-

positional models that are built on components that model the acoustics for single

words and pairs of words.

There are many similarities between human speech and human activity. Both are

temporal sequences and Table 5.1 enumerates the basic components that compose

each sequence. In speech, the features extracted from an acoustic time-series are
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Table 5.1: Comparison of speech and action objects.

Speech Activity
MFCCs Spectrogram Frequency Bins

Phonemes Skeletal Poses
Words Actions

Sentences Activity

traditionally Mel-scale cepstral coefficients (MFCCs). These features are extracted

by a set of logarithmic spaced filters in the frequency domain over the audible range.

Conversely, for the acoustic data in the JHUMMA dataset, the spectrogram features

are linearly spaced in the frequency domain and centered in a narrow bandwidth

around the carrier frequency of interest. In both cases, these features are computed

for short time windows on the order of a few milliseconds each.

At the most granular level, the latent state space used for speech recognition is

a set of symbolic phoneme labels. An analogous latent state for action recognition

would be a set of symbolic skeletal poses. Sequences of phonemes are strung together

to form words just as actions are formed by stringing together sequences of skeletal

poses over time. At the highest level of granularity, sentences are formed by sequences

of words that are governed by the grammar of a given language. Similarly, human

activities are formed by sequences of actions that are governed by the task at hand.

In fact, language models for human activity have even been proposed.48–50

Complex utterances are composed from sequences of words just as complex actions

are formed from sequences of motions. In turn words are composed of sequences of

phonemes classified from a speech signal. Drawing upon this methodology and devel-
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oping a set of patterns classified from active acoustic signals is a reasonable approach

to begin investigating the potential of micro-Doppler modulations to recognize and

classify human actions. In this chapter, the action recognition task is roughly analo-

gous to an isolated word recognition task in speech.

One major difference between speech and action is that human language is built

around a core symbolic representation that is comparatively easy to define as a finite

vocabulary of words. Human action on the other hand is composed of motions that are

much more ambiguous to define. In lieu of trying to develop a well-defined dictionary

of sub-motions, a set of representative skeletal pose prototypes are learned directly

from the Kinect skeletal tracks. Similarly, much work has gone into developing the

alphabet of phoneme classes that discretize the speech time-series into a sequence of

symbols. No such symbolic representation exists for micro-Doppler modulations in

active acoustics. Therefore, a set of representative spectrogram slice prototypes are

learned directly from the active acoustics modulations.

The JHUMMA dataset is critical to training and testing models built using this

approach. The availability of multimodal data that supports building symbolic repre-

sentations for both human sub-motions and acoustic modulations for labeled actions

provides the foundation for training supervised models. Moreover, the temporal align-

ment capabilities provided by the synchronization beacon integrated into the DACQ

system enables the models to learn statistical correlations between the modalities

accurately.
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In Section 5.1 the speech recognition approach is adapted more formally to the ac-

tion recognition task of classifying the samples in the JHUMMA dataset. Section 5.2

describes the structure of the hidden Markov model (HMM) used to model the actions

and their acoustic observations. Section 5.3 details the parameters of the models and

develops the procedure for estimating them from training data. Section 5.4 develops

the Viterbi algorithm for HMMs that is used to find the most likely skeletal pose

sequence given a test sequence of spectrogram slices. Section 5.5 describes how the

JHUMMA dataset is divided into cross-validation datasets as well as the division of

training and testing examples. Section 5.6 describes the K-means algorithm used to

learn prototype clusters from the training data for both the skeletal poses and the

spectrogram slices. Section 5.7 examines the skeletal pose prototypes and provides

additional details on their construction. Section 5.8 examines the spectrogram slice

prototypes for each of the three ultrasound bands. Section 5.9 presents the classifica-

tion procedure and results on the JHUMMA dataset. Section 5.11 illustrates example

test sequences of each action and their prototype representations. It also suggests the

limitations of a simplistic model like the HMM for capturing longterm correlations

required to properly model actions.
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5.1 The Active Acoustic Action Recogni-

tion Model

Assume that an appropriate vocabulary, H, of skeletal poses exist. A sequence of

skeletons can then be described as H = h0, ..., hT , where ht ∈ H. Also assume that

an appropriate alphabet, V of acoustic spectrogram slices exist. A spectrogram can

then be described as V = v1, ..., vT , where vt ∈ V . The methodology for generating

the vocabulary and alphabet is developed later in Sections 5.7 and 5.8, respectively.

There is also a set of action class labels C that enumerate the twenty-one actions

contained in the JHUMMA dataset. Each sequence H is generated by an action,

a ∈ C, that modifies the parameters of the probability distributions accordingly.

The goal of the action recognizer is to estimate the most likely action that pro-

duced the visible sequence V of spectrogram slices. This can be expressed as

â = arg max
a

(
max
H

Pa(V|H)Pa(H)
)
. (5.3)

where the same Bayes decomposition is applied to split the probability of a skeletal

pose sequence given a spectrogram into a product of the action model, Pa(H), and

the active acoustic model, Pa(V|H), that is used in the speech recognition setting.

However, the action recognition task differs from speech recognition in that the focus

is on correctly identifying the particular action that gave rise to the observed acoustic
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modulations instead of the the unobserved sequence of sub-motions. This change is

manifest in the additional maximization over the possible action labels such that â is

the best estimate for that action.

An HMM can be used to model a single pair of visible and hidden sequences, whose

joint probability can be decomposed as Pa(V|H)Pa(H). In order to leverage this

model for recognizing actions, a set of HMM parameters are each trained separately

on the portions of the training data that contain examples of a single action, a.

When a new test sequence of acoustic spectrogram slices, V, is observed, each of

the individual action HMMs are used to predict the most likely sequence, H, of

unobserved sub-actions. Computing the likelihoods of the sequences produced using

each set of action parameters allows the models to predict the most likely action a

by choosing the model that produces the most likely sequence. In Section 5.2, the

HMM model for sub-motions and active acoustics is developed further.

Finally, there are actually three independent sets of ultrasound observations in

the JHUMMA dataset. In order to investigate the effects of using active acoustics

from different orientations, three separate sets of HMMs are developed, one for each

ultrasound sensor. While they can all share the same skeletal pose state space built

upon the Kinect sensor data, their observation state spaces are all unique, requiring

independent sets of parameters.
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5.2 The Hidden Markov Model

The chain rule of probability states that the joint distribution of a set of D random

variables can be decomposed into a product of joint probabilities such that,

P (X1, ..., XD) = P (X1)P (X2|X1)P (X3|X2, X1) . . . P (XD|XD−1, ..., X1), (5.4)

where the order of the random variables is interchangeable. When using a stochas-

tic process to model a temporal sequence of data, this decomposition of the joint

distribution becomes problematic as the number of conditioning terms in the indi-

vidual conditional probability terms grows linearly with the length of the sequence in

addition to the total number of terms growing with the length of the sequence. How-

ever, it is possible to make assumptions about the conditional independence between

some of the random variables in order to produce a simpler factorization of the joint

distribution.

A Markov chain is the simplest stochastic process that still incorporates memory.

The Markov property states that the probability of the next state in the process

depends only on the previous state. The joint distribution of a sequence of D random

variables can now be decomposed as,

P (X1, ..., XD) = P (X1)P (X2|X1)P (X3|X2) . . . P (XD|XD−1). (5.5)
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Now the number of terms still grows linearly with the sequence, but the number of

random variables each term is conditioned on is constant. Of course the random vari-

ables are no longer interchangeable, but that is a reasonable restriction for modeling

temporal sequences.

An HMM is an extension of a Markov chain where the random variables in the

Markov sequence are considered hidden and not observed. Instead, an additional

visible random variable is observed at each step in the sequence. The visible random

variable is conditional independent of all the other hidden and visible random vari-

ables given the hidden variable at that step. Figure 5.1 depicts the basic structure of

the HMM used to represent the active acoustic action model.

H0 H1 H2 · · · Ht−1 Ht Ht+1 · · · HT

V1 V2 Vt−1 Vt Vt+1 VT

Figure 5.1: Structure of the HMM used to capture sequences of Doppler modulations
given a hidden sequence of skeletal poses.

The hidden sequence is encoded by the variables H = H0, H1, ..., HT . The visible

sequence is encoded by the variables V = V1, ..., VT . The HMM also has a start state

H0 that is used to encode a set of prior probabilities indicating the likelihood that a

chain starts in each state.

This HMM encodes the structure of the sub-motion and spectrogram slice se-

quences for a specific action a in the action recognition model if the sub-motions are
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assumed to adhere to the Markov property. Under this condition, the joint probability

of the HMM can be decomposed as,

Pa(Ha,V) = Pa(V|H) · Pa(H) =
( T∏
t=1

Pa(Vt|Ht)
)
·
( T∏
t=1

Pa(Ht|Ht−1)
)
Pa(H0). (5.6)

The factorization of the joint distribution coincides with the conditional independence

assumptions encoded in the graphical structure of the HMM. In Equation 5.6, the

dependence of the individual hidden variables Ht on the action a was suppressed for

conciseness. The HMM is a generative model because it encodes the full joint prob-

ability distribution instead of just the discriminative class conditional distribution

Pa(H|V).

The HMM parameters for action a are θa = (πa,Aa,Ba), where πa is the vector

of state priors, Aa is the matrix of transition probabilities between the hidden skeletal

pose states and Ba is the matrix of emission probabilities of spectrogram slices from

each of the hidden states. There are |H| hidden skeletal pose states and |V| visible

spectrogram slice states. If i ∈ {1, ..., |H|} indexes into the the set of possible hidden

states, then the elements of the state prior vector are,

πa(i) = Pa(H0 = i). (5.7)

If i, j ∈ {1, ..., |H|} both index into the set of possible hidden states, then the elements
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of the transition matrix are,

Aa(i, j) = Pa(Ht = j|Ht−1 = i). (5.8)

If i ∈ {1, ..., |H|} indexes into the the set of possible hidden states and k ∈ {1, ..., |V|},

then the elements of the emission matrix are,

Ba(i, k) = Pa(Vt = k|Ht = i). (5.9)

5.3 Learning the Hidden Markov Model

Parameters

When the training data includes instances of both the hidden and visible se-

quences, the parameters for the HMM can be learned via closed-form maximum

likelihood estimates (MLE).47,51–53 To derive the MLE estimates, consider the joint

probability of a training example, (V = v,H = h), where both the hidden and vis-

ible variables are known. Using Equation 5.6 gives the probability of the training
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example,

Pa(H = h,V = v) =
( T∏
t=1

Ba(Vt, Ht)
)
·
( T∏
t=1

Aa(Ht, Ht−1)
)
πa(H0)

=
T∏
t=1

|H|∏
i=1

|V|∏
k=1

Ba(i, k)I(Ht=i,Vt=k)

×
T∏
t=1

|H|∏
i=1

|H|∏
j=1

Aa(i, j)
I(Ht=j,Ht−1=i)

×
|H|∏
i=1

πa(i)
I(H0=i). (5.10)

The parameters θa have been substituted for the appropriate probability distribu-

tions and the indicator function I is used to specify the number of times each prob-

ability term occurs. The probability of L independent training sequences is simply∏L
l=1 Pa(H = hl,V = vl). sequences of training examples. Taking the log of this

distribution yields,

L∑
l=1

logPa(H = hl,V = vl) =

|H|∑
i=1

|V|∑
k=1

Nik logBa(i, k)

+

|H|∑
i=1

|H|∑
j=1

Nij logAa(i, j)

+

|H|∑
i=1

Ni log πa(i). (5.11)
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Here the emission counts across the training set are defined as,

Nik =
L∑
l=1

T∑
t=1

I(Hl,t = i, Vl,t = k). (5.12)

The transition counts across the training data are defined as,

Nij =
L∑
l=1

T∑
t=1

I(Hl,t = j,Hl,t−1 = i). (5.13)

The prior counts across the training data are defined as,

Ni =
L∑
l=1

I(Hl,0 = i). (5.14)

It is necessary to add additional constraints via Lagrange’s multiplier. Essentially,

the fact that the parameters are also proper probability distributions, and therefore

sum to unity, must be enforced. That is,
∑|H|

i=1 πa(i) = 1,
∑|H|

j=1A(i, j) = 1 and∑|V|
k=1B(i, k) = 1. To find the MLE estimates for the various parameters, first add

the appropriate constraint to the log-likelihood in Equation 5.11. Let λ be the La-

grange multiplier coefficient. Then take the partial derivatives of the constrained

log-likelihood with respect to both the parameter of interest and λ. This results

in two equations and two unknowns. For more details on using the Lagrangian to

find the MLEs of the parameters, see Chapter 3 in Murphy.54 Solving the system of
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equations for the state prior probabilities yields,

π̂a(i) =
Ni∑|H|
i′=1Ni′

. (5.15)

Solving for the transition probabilities yields,

Âa(i, j) =
Nij∑|H|
j′=1 Nij′

. (5.16)

Solving for the emission probabilities yields,

B̂a(i, k) =
Nik∑|V|
k′=1 Nik′

. (5.17)

Under the supervised training paradigm, finding the MLE estimates for the HMM

parameters essentially boils down to counting the number of times the relevant event

occurred in the training data and normalizing the results into proper distributions.

In order to train one set of HMM parameters for each action a ∈ C, the training data

is split according to the action that generated it and the parameters for each action

are trained solely on the associated training data.

Many of the possible hidden state transitions and visible observation combinations

were never observed in the training sets. To alleviate this, add-one smoothing was

applied to the MLE estimates. This technique amounts to adding one phantom count

to each element prior to normalization.
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5.4 Finding the Most Likely Hidden Se-

quence in a Hidden Markov Model

Given the trained parameters for an HMM and a test sequence of observations, the

Viterbi algorithm47,52,55 can be used to find the most likely sequence of hidden states.

The Viterbi algorithm is a dynamic programming technique to efficiently compute the

maximum a posteriori (MAP) probability estimate of the most likely sequence in a

chain-structured graphical model, such as the HMM.

The Viterbi algorithm is composed of a forward pass through all possible sequences

of states where the likelihood of ending up in state j ∈ {1, ..., |H|} at time t ∈

{1, ..., T} is computed for each state. Given an observed sequence V1 = k1, ..., VT = kT ,

the likelihood δt(j) of a state j, at each time step t, can be computed based on the

likelihoods of the states at the previous time step t − 1, the transition probabilities

between the states and the probability that each state emits the current observed

symbol kt,

δt(j) = max
i=1,...,|H|

δt−1(i)A(i, j)B(j, kt). (5.18)

The forward pass can be initialized using the prior probability of each state such that,

δ1(j) = π(j)B(j, k1). (5.19)

In addition to tracking the likelihood of each state, the previous state that gave rise
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to the likelihood is also tracked.

αt(j) = arg max
i=1,...,|H|

δt−1(i)A(i, j)B(j, kt). (5.20)

The Viterbi algorithm for an HMM terminates once the final time step T is reached.

At this point the sequence of most likely states can be traced backwards through

time. Beginning at time step T , the most likely state is

h∗T = arg max
i=1,...,|H|

δT (i), (5.21)

and the sequence is unrolled using the previous states that were tracked. Thus,

h∗t = αt+1(h∗t+1). (5.22)

5.5 Splitting the JHUMMA Dataset into

Examples and Batches

The JHUMMA dataset provides a perfect foundation for building HMMs that

jointly model sequences of skeletal poses and sequences of Doppler-modulations and

to evaluate their ability to classify actions sequences. The classification task requires

a well-defined set of actions. The freestyle mopping and freestyle walking sequences
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were omitted as some of the motions involved in the sequences are examples of some

of the other actions, such as walking and pivoting. This leaves 21 distinct action

classes on which to evaluate the performance of the HMMs.

As described in Section 4.4, the JHUMMA dataset contains a sequence of spectro-

gram slices for each of the three ultrasound sensors and a sequence of skeletal frames

for each of the actions performed during each of the thirteen trials. Unfortunately,

each of these coarsely labeled sequences contains multiple repetitions of the same

action. Nominally each sequence contains ten repetitions, although there are several

instances where the actor lost track of the count. In order to generate test sequences

suitable for training and testing HMMs, each sequence was split into ten examples of

equal numbers of consecutive frames. Any remaining frames were appended to the

last example so that temporal cohesion is maintained.

Five batches of training and testing data were set up for cross-validation. For

each action/trial pair, two of the ten data sequences were randomly selected as test

examples, while the remaining eight were selected as training examples. The random

permutations were constructed such that each of the ten examples serves as a test

sequence in exactly one of the five batches. One of the actors accidentally skipped

three actions, so there are precisely 2, 160 training examples and 540 test examples

in each batch.
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5.6 Learning Cluster Prototypes

The K-means algorithm is a common method for performing vector quantiza-

tion,54,56 a technique for modeling probability densities based on the location of pro-

totype vectors. The idea behind K-means was first proposed by Steinhaus as least

squares quantization in pulse-code modulation (PCM) and the standard algorithm

used to implement the technique was first published by Lloyd57,58 with efficient large

scale applications of the algorithm advanced by Coates59 and Kanungo.60 In Sec-

tions 5.7 and 5.8 the details of using K-means to learn prototype clusters for both

the skeletal poses and spectrogram slices are described. Here the basic algorithm is

developed for performing unsupervised clustering.

Let X = x1, ...,xN be a set of unlabeled training data, where each xi ∈ RD.

Define a set of j = {1, ..., K} cluster prototypes µj ∈ RD. The cluster prototypes are

initialized using the K-means++ algorithm,61 which randomly selects one of the data

points from X to be the first cluster prototype and selects subsequent points, one at

a time, from X to be initial cluster prototypes with probability inversely proportional

to their distance from the nearest existing selected prototype.60

Once all K of the clusters have been initialized, the training data points are all

assigned to the nearest cluster. In this work, the distance between any data point in
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the training set and any cluster mean is given by

d(xi,µj) =

√√√√ D∑
d=1

(xd − µd)2, (5.23)

the Euclidean distance in D-dimensional space. Once the cluster assignment is com-

plete, the cluster prototypes are updated by computing the mean value of all the

data points in the cluster assignment. Then, using these new cluster prototypes, the

procedure is repeated. The stopping criterion is generally when no data points change

clusters in successive iterations.

In this work, the K-means algorithm was performed four times with different

random data points used for the K-means++ cluster initialization. The decision to

use four starting points was based on the number of available independent CPU cores.

The number of iterations was also capped at 750, although the cluster prototypes

converged before that in all cases.

5.7 Skeletal Pose State Space Model

Ideally, the model for the hidden state variables would capture the skeletal pose

precisely at a given instant in time. However, one limitation of the HMM is that the

state space is finite, so there must be a finite number of hidden states. The approach

taken in this work is to find a set of skeletal poses that suitably approximate the

space of skeletons recorded by the Kinect sensor in the JHUMMA dataset. This
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was accomplished through unsupervised clustering, using the K-means algorithm

described in Section 5.6, to find cluster prototypes given all of the skeletal frames in

the training data of a given batch. The process was then repeated separately for each

of the cross-validation datasets. The principle parameter involved with this method

is the degree to which the training skeletons are quantized, which is the number of

skeletal clusters, K. The hidden state variables Ht take on values ht ∈ {1, ..., K},

which index the set of skeletal pose clusters.

The skeletal poses from the Kinect were adapted in three ways to simplify the

problem and facilitate clusterings that capture the most important information. The

first adaptation was to remove the translation of the hip joint from the features

included in the skeletal clusters. As discussed in Section 3.3, this provides translation

invariance, which is critical so that the pose clusters that are learned are applicable to

any location in the dataset. It would be prohibitively expensive to produce and label

a dataset extensive enough to support learning individual clusterings for different

spatial areas.

The second adaptation was to remove the hand and feet joints from the skeletal

poses. Studying the Kinect data in the JHUMMA dataset reveals that the hands and

feet tend to be the noisiest joint estimates. The feet in particular tend to exhibit a

significant amount of jitter from frame to frame. Removing these joints prevents the

learned skeletal clusters from spending any modeling power accounting for the jitter

in these noisy joints. It also has the added benefit of reducing the dimensionality of
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the skeletal pose features, which is also the dimension of the cluster space. Removing

the hands and feet left only 16 joints in the abbreviated skeleton structure.

The third adaptation was to use the rotation representation of the skeletal pose,

described in Section 3.3. This allows all of the training data, regardless of the actor, to

be merged together. The skeletal poses are clustered in limb rotation space, which is

more amenable to cross-training between actors than cartesian joint coordinates. The

limb rotations are referenced to the vertical and only take on values in the range of 0

radians, which corresponds to straight up, to π radians, which corresponds to straight

down. In this representation, the discontinuity between 0 radians and 2π radians is

avoided, so the Euclidean distance remains a natural choice of metric. Applying

all three of these adaptations resulted in each skeletal pose being represented by a

45-dimensional feature vector.

In order to explore the effect of different quantization levels in the pose space, the

K-means clustering procedure was performed for various numbers of clusters on the

first batch of data. Figure 5.2 shows the average joint error for each set of skeletal

pose clusters. The error was calculated by computing the distance between each joint

in each skeletal frame of the training data and the corresponding joint in the cluster

mean that the training frame was associated with. For the purposes of computing

the error, the rotation representation of the cluster mean was transformed back into

cartesian coordinates. The error was summarized by averaging across each of the 16

joints in each of the 225, 483 training frames, which were pooled across all thirteen
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trials and 21 actions in the first batch of data.

Figure 5.2: Comparison of the error between each skeletal frame in the training
data and the associated skeletal cluster for various numbers of clusters.

The curve in Figure 5.2 illustrates a tradeoff between model complexity and ac-

curacy. As the number of skeletal clusters increases, the clusters do a better job of

approximating the training data, so the error decreases. However, more clusters re-

quire more model parameters to be estimated. Unless otherwise specified, the data

shown in the following sections was generated using 200 skeletal clusters, which errs

on the side of accurately modeling the skeletal poses with a more complex model.

The effect of the number of clusters on the ability of the model to predict action
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sequences is explored more in Section 5.10.

Figure 5.3: Comparison of the error between each skeletal joint in the training data
and the closest skeletal cluster for each data batch. The number of skeletal clusters
was fixed at 200.

In order to confirm that the training data in each cross-validation batch produces

similar quantization results, the error of each joint labeled in Figure 3.9 was inves-

tigated. The error was computed as the Euclidean distance from each joint in the

training data relative to the corresponding joint in the associated skeletal cluster.

Figure 5.3 shows the error for each of the 16 joints, averaged across all of the training

examples in each of the five batches. The error bars in Figure 5.3 correspond to one
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standard deviation of the joint errors.

Figure 5.4: Histogram illustrating the number of occurrences of each skeletal cluster.
The cluster indices have been sorted by their frequency.

As mentioned earlier, the hip translation was removed from the representation, so

all of the hip joints were fixed to the origin when the other joint errors were computed,

which is why they appear to have zero error. It is also interesting to note that the

wrist and ankle joints have significantly higher error and variance than the others.

This makes sense because they tend to move more during actions. They are also more

likely to be tracked erroneously by the kinect. This result supports the decision to

omit the hand and foot joints, which were even more unreliable.

Figure 5.4 shows the frequency of each skeletal pose cluster in the training data

for the first cross-validation batch. The cluster indices are sorted according to their
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Figure 5.5: A random sampling of 25 of the 200 skeletal clusters learned from the
first batch of training data.

frequency. Although the frequency is not uniform, the balance between cluster fre-

quencies appears reasonable. Some actions have relatively unique skeletal poses that

are not exhibited often, while many actions share similar skeletal poses that are clus-

tered together and occur more frequently.

Figure 5.5 shows a random sampling of the skeletal pose clusters learned from the

first batch of cross-validation data. These poses appear to be relatively diverse and

interesting, indicating that the unsupervised clustering approach is at least reason-

able.
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5.8 Doppler Modulation Observation

Model

While the hidden variables for each of the three HMM models can all utilize the

same set of skeletal pose clusters, it is necessary to develop sets of spectrogram slice

clusters that are tuned to each of the three ultrasound sensors individually.

Figure 5.6: Histogram illustrating the number of occurrences of each 40kHz ultra-
sound cluster. The cluster indices have been sorted by their frequency.

An approach similar to the skeletal clustering was taken to quantize the spec-

trogram slices associated with each ultrasound sensor. The spectrogram slices from
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all of the training sequences were pooled together and the K-means algorithm was

again used to choose a set of average clusters that were representative of the entire

set. Although the Euclidean, or L2, distance metric is not an obvious choice for com-

paring two spectrogram slices, empirical testing demonstrated almost no difference

between the character or performance of spectrogram clusters created using the L2

distance metric versus the L1 distance metric. For consistency with the skeletal pose

clustering, the spectrogram data presented here was generated using the Euclidean

distance metric.

Figure 5.7: Comparison of the error between each 40kHz spectrogram slice in the
training data and the associated spectrogram cluster for various numbers of clusters.

88



CHAPTER 5. A SIMPLE GENERATIVE MODEL FOR HUMAN ACTION
RECOGNITION AND ACTIVE ACOUSTICS

Figure 5.7 shows the average error for a spectrogram slice in the first batch of

40kHz ultrasound data over several values of K. For clustering the ultrasound spec-

trogram slices, a value of K = 100 was used. This process was repeated separately for

the data from each of the three ultrasound sensors and for each of the cross-validation

datasets.

Figure 5.6 shows the frequency of each 40kHz ultrasound cluster extracted from

the first batch of cross-validation data. The cluster frequencies appear reasonable.

Some are certainly more frequent than others, but no cluster dominates.

Figure 5.8: The collection of 40kHz ultrasound representative spectrogram slice
cluster means, ordered by their frequency in the training data.
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One nice feature of the spectrogram slices is that they are relatively easy to display

and interpret in two-dimensions. Figure 5.8 shows all of the cluster means for the

40kHz training data. These representative spectrogram slices are sorted according

to their frequency in the training data. Actions are still more often composed of

periods of little movement, with large motions being relatively rare, which parallels

the general trend of clusters with larger Doppler modulations being less frequent.

Figure 5.9: Histogram illustrating the number of occurrences of each 33kHz ultra-
sound cluster. The cluster indices have been sorted by their frequency.

Figure 5.9 shows the frequency of each 33kHz ultrasound cluster extracted from

the first batch of cross-validation data. The distribution is slightly more skewed than
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the one for the 40kHz data.

Figure 5.10: The collection of 33kHz ultrasound representative spectrogram slice
cluster means, ordered by their frequency in the training data.

Figure 5.10 shows all of the cluster means for the 33kHz training data. The clusters

are very similar in character to those culled from the 40kHz data. The modulations

are smaller overall, but this is due to the lower carrier frequency and the fact that

the sensor was positioned to the side of the majority of the actions in the JHUMMA

dataset. The side sensors tended to observe smaller velocity components for the

majority of actions. This is also supported by the histogram of the clusters, which

indicates that the higher modulation clusters, indicative of more motion towards the
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side sensors, are less frequent compared to the histogram of the 40kHz sensor, which

was positioned directly in front of most of the actions.

Figure 5.11: Histogram illustrating the number of occurrences of each 25kHz ultra-
sound cluster. The cluster indices have been sorted by their frequency.

Figure 5.11 shows the frequency of each 25kHz ultrasound cluster extracted from

the first batch of cross-validation data. Similarly to the 33kHz spectrogram slice

clusters, the 25kHz spectrogram slice clusters also appear to have a more skewed

distribution than the 40kHz spectrogram slice clusters. This is in line with the less

variable nature of both the positioning of the sensor off to the side and the lower

magnitude of the 25kHz modulations. Figure 5.12 shows all of the cluster means for
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Figure 5.12: The collection of 25kHz ultrasound spectrogram slice cluster means,
ordered by their frequency in the training data.

the 25kHz training data.

5.9 Classifying Human Action Sequences

Now that an appropriate vocabulary of skeletal pose prototypes has been con-

structed from the training data, and alphabets of spectrogram slice prototypes have

been learned separately for each of the ultrasound frequencies, the parameters for

each of the actions classes and ultrasound sensors can be computed using Equa-
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tions 5.15, 5.16 and 5.17. To classify a novel test sequence from one of the ultrasound

sensors, it must first be translated into a sequence of spectrogram slice prototypes.

This is done by choosing the prototype with the smallest Euclidean distance from each

spectrogram slice in the test sequence. Examples of a single test spectrogram for each

action and the associated sequence of spectrogram slice prototypes are included in

Section 5.11 in Figures 5.17 through 5.37.

Once the test data is translated into spectrogram prototypes v, the most likely se-

quence of hidden skeletal pose prototypes h∗a is computed using the Viterbi algorithm,

described in Section 5.4. This procedure is repeated for each set of parameters θa.

Note that only the parameters trained for that particular ultrasound frequency are

considered and the subscript on the most likely hidden sequence is used to indicate

the action the set of HMM parameters used to produce it was trained on.

The log-likelihood of a hidden sequence h and an observed sequence v, normalized

for the number of time steps in the sequences, is

La(h,v) = log πa(h0) +
T∑
t=1

logA(ht−1, ht) +
T∑
t=1

logB(vt, ht)− log T. (5.24)

After computing the log-likelihood of the hidden sequence produced by each action

model, the sequence is classified as the action that best modeled the sequence. That

is,

â = arg max
a

La(h,v). (5.25)
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Figure 5.13: Confusion matrix enumerating the action classification decisions re-
sulting from the 40kHz ultrasound model.

Figure 5.13 shows the confusion matrix for the action classification task that re-

sults from HMMs trained on the 40kHz ultrasound data. Overall, the HMM model

correctly classified 63.63% of the 2700 test examples in the JHUMMA dataset. There

were twenty-one actions, so classifying the actions by chance would yield a classifica-

tion rate of under 5%. These results are compiled using all five of the cross-validation

batches.

The confusion matrix indicates that the model tends to make very specific types of

errors. It has significant difficulty distinguishing left versus right orientation among
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the action classes that have a similar action but different orientation. This is evident

by the blocks of misclassification errors that are formed around many of the actions

that have multiple orientations. One such example is the classification of the left leg

steps and the right leg steps. The classifier places almost all of the probability mass

on one of those two actions, but there is a lot of error between them.

Recall that the 40kHz ultrasound sensor was positioned to the north of the ac-

tor, which is roughly the line of symmetry for left versus right actions. Section 2.4

discussed the limitations of using micro-Doppler modulations to distinguish actions

along this line of symmetry. With limited spatial information in the modulations,

distinguishing between arm raises to one side or the other is difficult and results in

significant classification errors.

On the other hand, the 40kHz ultrasound HMM does a good job of predicting

actions with unique orientations such as punching and jumping jacks. This indi-

cates that the modulations themselves are reasonable informative patterns to use for

classifying coarse-grained action sequences.

Figure 5.14 shows the confusion matrix for the action classification task that

results from HMMs trained on the 33kHz ultrasound data. Overall, the HMM model

correctly classified 73.70% of the 2700 test examples in the JHUMMA dataset. Almost

all of the actions with multiple orientations were symmetric with respect to the North

to South axis of the JHUMMA setup. Therefore, it makes sense that the HMM

trained on the micro-Doppler modulations recorded by the 33kHz ultrasound sensor,
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Figure 5.14: Confusion matrix enumerating the action classification decisions re-
sulting from the 33kHz ultrasound model.

which was off to the West, made significantly fewer errors than the 40kHz ultrasound

sensor. In fact, the one set of actions that did have some orientations facing the

33kHz sensor, walking back and forth, exhibited the same block error patterns in the

confusion matrix as are evident in the 40kHz ultrasound classifications.

Figure 5.15 shows the confusion matrix for the action classification task that

results from HMMs trained on the 25kHz ultrasound data. Overall, the HMM model

correctly classified 75.30% of the 2700 test examples in the JHUMMA dataset. The

errors made by the HMM model trained on data from the 25kHz ultrasound sensor,
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Figure 5.15: Confusion matrix enumerating the action classification decisions re-
sulting from the 25kHz ultrasound model.

which was positioned to the East, is qualitatively similar to the errors made by the

33kHz ultrasound sensor. This is reasonable as both sensors were on the same cardinal

axis and, therefore, encountered the same ambiguities due to the orientation of the

actions in the JHUMMA dataset.

Given that the position of the ultrasound sensor has a significant effect on the

classification accuracy of the model trained on data recorded by it, a fourth model

that is a fusion of all three individual ultrasound HMMs was created to investigate the

benefits of combining multiple ultrasound sensors to disambiguate the orientations of
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the actions. The combined model was constructed as a product of the individual

models by summing the log-likelihoods for each action that were produced by the

individual ultrasound models prior to choosing the most likely action. A test sequence

v is now classified based on,

â = arg max
a

(
L40
a (h,v) + L33

a (h,v) + L25
a (h,v)

)
. (5.26)

Figure 5.16: Confusion matrix enumerating the action classification decisions re-
sulting from combining the output of the three ultrasound models as a product of
experts.

Figure 5.16 shows the confusion matrix for the action classification task that
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results from combining each of the individual ultrasound HMM as a “product of

experts” model. Overall, the HMM model correctly classified 88.56% of the 2700 test

examples in the JHUMMA dataset. Combining the output of the individual HMM

models gives a significant boost in classification performance and appears to be a

reasonable approach to leveraging multiple ultrasound sensor units.

Table 5.2: Action classification performance of the HMM models on the JHUMMA
dataset.

Action 25kHz 33kHz 40kHz Combined Examples
Lunges (N) 95.38 95.38 59.23 100.00 130

Lunges (NE) 81.54 75.38 40.77 91.54 130
Lunges (NW) 83.85 73.08 60.77 87.69 130

L. Leg Steps (N) 75.83 53.33 67.50 87.50 120
R. Leg Steps (N) 46.67 80.83 64.17 93.33 120

L. Arm Raises, Fwd (N) 96.15 73.85 90.77 100.00 130
L. Arm Raises, Side (N) 99.23 100.00 68.46 100.00 130
R. Arm Raises, Fwd (N) 76.15 91.54 31.54 96.92 130
R. Arm Raises, Side (N) 100.00 99.23 54.62 100.00 130

Walk in Place (N) 39.23 45.38 89.23 85.38 130
Walk Facing Fwd (N-S) 66.92 53.85 7.69 69.23 130
Walk Facing Side (W-E) 40.77 29.23 98.46 89.23 130

Walk/Pivot (NE-SW) 74.62 57.69 60.77 64.62 130
Walk/Pivot (NW-SE) 58.46 80.77 65.38 78.46 130

Jumping Jacks (N) 95.38 93.85 93.08 98.46 130
Jump Rope (N) 86.15 78.46 83.85 84.62 130
Body Squats (N) 84.62 89.23 100.00 100.00 130

Jump Fwd/Bwd (N-S) 53.08 56.92 37.69 83.85 130
Jump Fwd/Bwd (NE-SW) 73.85 77.69 32.31 76.92 130
Jump Fwd/Bwd (NW-SE) 70.00 68.46 37.69 74.62 130

Punch Fwd (N) 81.67 72.50 95.00 98.33 120
Overall 75.30 73.70 63.63 88.56 2700

Table 5.2 gives a more detailed breakdown of the exact classification rates for

each of the three individual ultrasound models as well as the product of experts
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model combining them all.

5.10 Classifying Human Body Poses

Table 5.3 presents a comparison of classification performance for several different

numbers of skeleton pose cluster prototypes. On the left side, the overall classification

results for the action sequences are shown. On the right side, the pose classification

rate for the hidden sequence of cluster prototypes predicted from the data of each

ultrasound band are shown. The pose classification rate is computed by comparing the

closest skeletal pose prototype, at each time step in a test sequence, to the skeletal pose

prototype predicted by the HMM given the test sequence of ultrasound modulations.

Table 5.3: Action and pose classification performance on the JHUMMA dataset.

Action Classification Pose Classification
Number of Clusters 25kHz 33kHz 40kHz 25kHz 33kHz 40kHz

100 73.56 72.89 60.63 25.36 25.53 20.91
150 74.07 74.00 64.00 23.34 23.25 19.80
200 75.30 73.70 63.63 22.12 21.80 17.97
300 75.11 74.63 62.67 19.30 19.39 15.82

In general, more skeletal pose prototypes result in a more expressive state space

that is able to model the actual recorded skeletal poses more closely. However, this

precision comes at the price of a significantly larger model that now has many more

parameters to estimate from the same fixed pool of training data. This is a classic

model selection tradeoff and the results in Table 5.3 illustrate this. The action classifi-

cation rates generally increase with the number of skeletal pose prototypes. However,
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the pose classification rates increase with fewer skeletal pose prototypes. This is rea-

sonable because fewer prototypes make estimating the closest one significantly easier.

Overall, using 200 skeletal pose prototypes, the conclusion drawn from the tradeoff

in Figure 5.2, seems to be a reasonable compromise between these two trends.

5.11 Visualizing Ultrasound Sequences

and Hallucinating Novel Sequences

from Skeletal Poses

Figures 5.17 through 5.37 show several aspects of a single test sequence from each

action class. Each column represents results derived from a single ultrasound sensor,

and the time window from which the data was taken is identical across the sensors.

The first row shows the spectrogram computed from recorded ultrasound data for

each sensor. The second row shows the decomposition of the test sequence into the

spectrogram cluster prototypes learned for that particular ultrasound bandwidth.

This row is presented primarily to show the level of quality achieved by the vector

quantization in the time-frequency domain. The third row shows an example of

micro-Doppler modulations hallucinated by the corresponding HMM.

One of the attractive aspects of generative probabilistic models, such as the HMM,

is their ability to hallucinate novel output sequences based on the parameters learned
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from the training data. These generated sequences can provide an important tool for

understanding precisely what the model has captured from the training data. More

importantly, the sequences can also provide important insights into the limitations of

the generative model to capture certain aspects of the data.

The HMMs, developed in this chapter, turn out to be fairly unremarkable in their

ability to generate convincing micro-Doppler modulations for human actions. Clearly

they have culled enough information to be able to reliably estimate action sequences,

but they are built using the simplest Markov dynamics, which fail to capture the long

term correlations necessary to structure convincing hallucinations of human action.

Each skeletal pose in the generated sequence is based purely from the transition

statistics of the previous pose. This limited modeling power results in the jumpy

structure in the modulations produced by the HMMs.

There are definitely certain aspects of the generated sequences that are correlated

with the actions. The overall strength of the modulations tends to change appropri-

ately from one action relative to another. However, without the longterm temporal

correlations to structure the hallucinated modulation, it is difficult to recognize the

result.

In order to improve these HMM models, it is possible to build more complex states

that include dependencies on the previous two or even three poses. Unfortunately,

the hidden state space is already quite large, so this approach does not seem practi-

cal. Additionally, the HMM generates the observed spectrogram slice based purely on
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statistical parameters culled from the training data. The physics behind generating

micro-Doppler modulations is well understood. In Chapter 6, a more sophisticated

forward model that incorporates the physics of the Doppler phenomenon will be de-

veloped. In Chapter 7, a neural network, specifically tailored to model more longterm

temporal correlations, is developed. Incorporating aspects from both of these mod-

els may allow for improved generation of novel micro-Doppler modulations of human

action.
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Figure 5.17: An example of a test data sequence for the lunge (N) action is shown
in the first row for each of the three ultrasound sensors. The second row shows the
corresponding observation sequence composed of elements from the appropriate set of
ultrasound clusters. The third row shows an example ultrasound sequence generated
by each of the three HMM models.
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Figure 5.18: An example of a test data sequence for the lunge (NE) action is shown
in the first row for each of the three ultrasound sensors. The second row shows the
corresponding observation sequence composed of elements from the appropriate set of
ultrasound clusters. The third row shows an example ultrasound sequence generated
by each of the three HMM models.
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Figure 5.19: An example of a test data sequence for the lunge (NW) action is shown
in the first row for each of the three ultrasound sensors. The second row shows the
corresponding observation sequence composed of elements from the appropriate set of
ultrasound clusters. The third row shows an example ultrasound sequence generated
by each of the three HMM models.
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Figure 5.20: An example of a test data sequence for the left leg step (N) action is
shown in the first row for each of the three ultrasound sensors. The second row shows
the corresponding observation sequence composed of elements from the appropriate
set of ultrasound clusters. The third row shows an example ultrasound sequence
generated by each of the three HMM models.
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Figure 5.21: An example of a test data sequence for the right leg step (N) action is
shown in the first row for each of the three ultrasound sensors. The second row shows
the corresponding observation sequence composed of elements from the appropriate
set of ultrasound clusters. The third row shows an example ultrasound sequence
generated by each of the three HMM models.
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Figure 5.22: An example of a test data sequence for the left forward arm raise (N)
action is shown in the first row for each of the three ultrasound sensors. The second
row shows the corresponding observation sequence composed of elements from the
appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.
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Figure 5.23: An example of a test data sequence for the left side arm raise (N)
action is shown in the first row for each of the three ultrasound sensors. The second
row shows the corresponding observation sequence composed of elements from the
appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.
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Figure 5.24: An example of a test data sequence for the right forward arm raise (N)
action is shown in the first row for each of the three ultrasound sensors. The second
row shows the corresponding observation sequence composed of elements from the
appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.
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Figure 5.25: An example of a test data sequence for the right side arm raise (N)
action is shown in the first row for each of the three ultrasound sensors. The second
row shows the corresponding observation sequence composed of elements from the
appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.
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Figure 5.26: An example of a test data sequence for the walk in place (N) action is
shown in the first row for each of the three ultrasound sensors. The second row shows
the corresponding observation sequence composed of elements from the appropriate
set of ultrasound clusters. The third row shows an example ultrasound sequence
generated by each of the three HMM models.
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Figure 5.27: An example of a test data sequence for the walk facing forward (N-S)
action is shown in the first row for each of the three ultrasound sensors. The second
row shows the corresponding observation sequence composed of elements from the
appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.
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Figure 5.28: An example of a test data sequence for the walk facing side (W-E)
action is shown in the first row for each of the three ultrasound sensors. The second
row shows the corresponding observation sequence composed of elements from the
appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.
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Figure 5.29: An example of a test data sequence for the walk and pivot (NE-SW)
action is shown in the first row for each of the three ultrasound sensors. The second
row shows the corresponding observation sequence composed of elements from the
appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.
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Figure 5.30: An example of a test data sequence for the walk and pivot (NW-SE)
action is shown in the first row for each of the three ultrasound sensors. The second
row shows the corresponding observation sequence composed of elements from the
appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.

118



CHAPTER 5. A SIMPLE GENERATIVE MODEL FOR HUMAN ACTION
RECOGNITION AND ACTIVE ACOUSTICS

Figure 5.31: An example of a test data sequence for the jumping jacks (N) action is
shown in the first row for each of the three ultrasound sensors. The second row shows
the corresponding observation sequence composed of elements from the appropriate
set of ultrasound clusters. The third row shows an example ultrasound sequence
generated by each of the three HMM models.
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Figure 5.32: An example of a test data sequence for the jump rope (N) action is
shown in the first row for each of the three ultrasound sensors. The second row shows
the corresponding observation sequence composed of elements from the appropriate
set of ultrasound clusters. The third row shows an example ultrasound sequence
generated by each of the three HMM models.
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Figure 5.33: An example of a test data sequence for the body squats (N) action is
shown in the first row for each of the three ultrasound sensors. The second row shows
the corresponding observation sequence composed of elements from the appropriate
set of ultrasound clusters. The third row shows an example ultrasound sequence
generated by each of the three HMM models.
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Figure 5.34: An example of a test data sequence for the jump forward and backward
(N-S) action is shown in the first row for each of the three ultrasound sensors. The
second row shows the corresponding observation sequence composed of elements from
the appropriate set of ultrasound clusters. The third row shows an example ultrasound
sequence generated by each of the three HMM models.
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Figure 5.35: An example of a test data sequence for the jump forward and backward
(NE-SW) action is shown in the first row for each of the three ultrasound sensors.
The second row shows the corresponding observation sequence composed of elements
from the appropriate set of ultrasound clusters. The third row shows an example
ultrasound sequence generated by each of the three HMM models.
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Figure 5.36: An example of a test data sequence for the jump forward and backward
(NW-SE) action is shown in the first row for each of the three ultrasound sensors.
The second row shows the corresponding observation sequence composed of elements
from the appropriate set of ultrasound clusters. The third row shows an example
ultrasound sequence generated by each of the three HMM models.
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Figure 5.37: An example of a test data sequence for the punch forward (N) action is
shown in the first row for each of the three ultrasound sensors. The second row shows
the corresponding observation sequence composed of elements from the appropriate
set of ultrasound clusters. The third row shows an example ultrasound sequence
generated by each of the three HMM models.
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Chapter 6

Simulating the Doppler Physics of

Human Action

In this chapter a more sophisticated, physics-based, forward model for predicting

micro-Doppler modulations from a sequence of skeletal poses is developed. The model

approximates the scattering surfaces of the human body with a set of ellipsoids and

uses the physics of the Doppler effect to model the frequency shifts induced by motion

in the action sequences. Although the model assumes a monostatic sonar configura-

tion, the location of the sonar sensor is configurable. Therefore, a single sequence of

skeletal poses can be used to estimate the resulting micro-Doppler modulations that

would be observed at any location around the subject. This is an important step to-

ward developing algorithms that can operate in new environments, because it allows

a learning algorithm to potentially leverage data collected under one configuration to
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train the parameters for a novel configuration without collecting a new dataset.

6.1 Calculating Doppler Components for

Kinect Joints

The physics-based micro-Doppler model assumes the monostatic sonar configura-

tion described in Section 2.2. It is also tailored for the continuous-wave transmission

model used by the ultrasound sensor units, described in Section 3.2. The transmit-

ted signal is a continuous sinusoid with a fixed carrier frequency fc. The joints on

a skeletal track from the Kinect sensor form a set of time-series of points in three-

dimensional space. The timestamp ti is available for each Kinect frame thanks to the

DACQ synchronization signal. The Doppler shift associated with a skeletal joint is

computed using Equation 2.6. However, this requires the radial velocity component

of the joint with respect to the sonar.

Focusing on a single joint, the velocity uti , at frame ti is computed by taking the

difference between the position, pti , in the current frame and in the previous frame,

which occurred at ti−1. The difference is adjusted for the elapsed time between frames

and the three-dimensional velocity can be expressed as,

uti =
pti − pti−1

ti − ti−1

. (6.1)
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If r is the directional vector from the joint to the sonar sensor, then the radial velocity

component vti of the joint with respect to the sonar at frame ti is,

vti =
r

||r|| · uti . (6.2)

The transmitted frequency is simply the carrier frequency fc. Applying the radial

velocity component of the joint and the carrier frequency to Equation 2.6 gives the

received frequency, fr, at the sonar as

fr =
(

1 + 2
vti
cs

)
· fc. (6.3)

Unfortunately, the Doppler modulation observed in the received frequency is not

limited to a single skeletal joint, approximated as a point mass. Instead, a human

body is composed of a number of body segments or limbs, each with its own scattering

cross-section. In general, these surfaces each have their own range of radial velocity

components and the carrier signal is modulated accordingly by each surface when

it is scattered. The observed micro-Doppler modulation is a superposition of all of

these scattered signals. In the rest of the chapter, a simple compositional model of the

human body is proposed and the simple Doppler physics expressed in Equation 6.3 are

extended to model the full micro-Doppler modulation induced by a moving human.
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6.2 The Human Model

The human body is modeled with a set of twelve rigid ellipsoids, each of which

approximates a particular body segment. This segment model was originally proposed

by Bradley16 and Boulic.62 All of the body segments are modeled by prolate spheroids

(a = b < c) except for the torso, which is considered wider than it is thick (a = 2∗b <

c). An ellipsoid is defined by the equation,

x2

a2
+
y2

b2
+
z2

c2
= 1. (6.4)

The parameters are marked in the ellipsoid schematic, illustrated in Figure 6.1.

a

b

c

Figure 6.1: Geometry of an ellipsoid segment.

To animate the human model, the segments are mapped onto the joints of a human

skeleton model. Skeletal models can be recorded using motion capture systems or

extracted from RGB-Depth sensors like the Kinect. The mapping of the ellipsoids

onto the skeletal model involves choosing two skeletal joints to be the end-points of

each segment. Table 6.1 enumerates this mapping between ellipsoid segments and

skeletal joints captured by the Kinect sensor. Note that not all of the joints in a full
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Kinect skeleton are utilized when mapping the body segment model onto the Kinect

skeleton data. This mapping between the ellipsoids and the joints is diagramed in

Figure 6.2.

Table 6.1: Mapping ellipsoid body segments to Kinect skeletal joints.

Ellipsoid Segment Skeletal Joint A Skeletal Joint B
left upper leg left hip left knee

right upper leg right hip right knee
left lower leg left knee left ankle

right lower leg right knee right ankle
left foot left ankle left toe

right foot right ankle right toe
left upper arm left shoulder left elbow

right upper arm right shoulder right elbow
left lower arm left elbow left wrist

right lower arm right elbow right wrist
torso shoulder center hip center

head & neck head shoulder center

Figure 6.2: Relationship between the Kinect skeletal model and the ellipsoid seg-
ments used to represent the human body.

The ellipsoid segment model allows us to take readily available human motion

data in the form of skeletal models and augment the skeleton with geometric shapes

that have volume and surfaces that can reflect sound. While an ellipsoid is a rough
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approximation for many of the body segments, the closed form solution for an ellip-

soid’s cross-sectional area plays a critical role in the Doppler model described in the

next section. This efficiency is important because the cross-sectional area must be

recalculated every time the human model moves relative to the ultrasound sensor.

6.3 Doppler Model of a Body Segment

After decomposing the human body into a set of ellipsoid segments that are rea-

sonably simple to deal with computationally, the next step is to model how the

segments scatter the transmitted carrier frequency. The Doppler model for a single

body segment combines the pair of skeletal joint sequences that define the endpoints

of the segment and the ellipsoid approximation of the segment to predict the micro-

Doppler modulations resulting from the segment’s motion. The model results in a

time-frequency representation that describes the contribution of the body segment to

a spectrogram. The contributions of each segment can be developed independently

before they are superimposed in the time-frequency domain.

The micro-Doppler modulation is estimated using three parameters that are ex-

tracted for each ellipsoid body segment from the the skeletal tracking data at each

frame. The first two parameters are the maximum and minimum radial velocity com-

ponents contributed by each segment. The third parameter is an orientation angle

that summarizes how the ellipsoid is rotated relative to the ultrasound sensor.
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The radial velocity component parameters are used to generate the envelope of

the segments contribution in the time-frequency domain. Each ellipsoid segment is

a rigid object. Therefore, the minimum and maximum radial velocity components

are attributed to the endpoints of the ellipsoid. The velocities of all other points on

a rigid ellipsoid are distributed between these two extremes. The endpoints are the

joints from the human skeletal model associated with the given ellipsoid segment. By

convention, the joint closer to the hip-center in the skeletal tree structure is labeled

as joint A and the joint farther from the hip-center is labeled as joint B. This is

illustrated in Figure 6.4. The radial velocities of these joints, extracted for a single

frame, are vA and vB respectively.

Micro-Doppler modulations depend only on the radial velocity component of hu-

man motion with respect to the ultrasound sensor. Figure 6.3 illustrates the pair of

time-series created by concatenating the joint velocities, bounding a left leg segment,

from a sequence of Kinect frames. This defines an envelope in the time-frequency

domain that constrains the range of frequency contributions from a single rigid seg-

ment.

The orientation angle is used to compute the appropriate scattering cross-sectional

area, σθ, of the ellipsoid segment. The scattering area represents the size of the surface

that is available to reflect the transmitted signal back to the ultrasound sensor. For
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Figure 6.3: Simulation of the Doppler contribution from a single ellipsoid segment.
In this case the segment is the lower left leg, joint A is the knee and joint B is the
ankle.

prolate spheroids, it can be expressed as

σθ =
πa2b2c2

(a2 sin2(θ) + c2 cos2(θ))
1
2

. (6.5)

This solution for the scattering area assumes that the dimensions of the ellipsoid

are much larger than the wavelength of the scattered signal.63 The amount of energy

reflected by the ellipsoid segment is proportional to the scattering area σθ. This quan-

tity is used to adjust the intensity contributed by a given segment to the frequency
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range within the envelope defined by the velocity bounds as illustrated in Figure 6.3.

There are many other factors, such as the strength of the transmitted signal and the

distance between the reflector and the transmitter, that affect the intensity of the

reflected signal. However, the scattering area is a good first-order approximation to

the relative reflected signal intensity among the segments as long as the range of the

human body from the ultrasound sensor does not vary too drastically.

vB

θ

Ultrasound

Sensor

vA
A

B

S

O

rBA

rOS

Figure 6.4: Diagram illustrating the parameters extracted for each ellipsoid segment.
Note that the 2D plane of the diagram is rotated to contains the joint A, joint B and
the ultrasound sensor S.

In order to compute the scattering area, the orientation and dimensions of each

ellipsoid segment need to be quantified. Computing the orientation angle θ of the

ellipsoid segment requires the directional vectors rBA, the vector from the lower joint

B to the upper joint A, and rOS, the vector from the lower joint B to the ultrasound

sensor S. Figure 6.4 illustrates these quantities and the overall geometry of an el-

lipsoid segment relative to the ultrasound sensor. Given these direction vectors, the

orientation angle θ can be expressed as,

θ = cos−1
( rBA · rOS
||rBA||||rOS||

)
. (6.6)
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The dimensions of the ellipsoid segments are derived from physical properties of

the human body. The length of an ellipsoid segment is determined by the parameter

c, which is half the length of the represented body section as illustrated in Figure

6.1. The skeletal motion data is estimated algorithmically from RGB-Depth maps, so

there is some jitter in the position of the joints. The estimation of the joint positions

can be affected significantly by the orientation of the human body. To mitigate these

effects the limb lengths are averaged over N skeletal frames to provide a more robust

estimate. Given a sequence of skeletons for a particular individual, the limb lengths

are the average distance between joint A and joint B for each body segment. For each

ellipsoid, the parameter c is half this average. Given a sequence of N skeletal poses,

c =
1

2N

N∑
t=1

||XA −XB||. (6.7)

The thickness and width of an ellipsoid segment is determined by the parameters

a and b. The majority of the ellipsoid segments in the human body model are prolate

spheroids, so a = b. In Bradley,16 the ellipsoid dimensions for each body segment

are estimated from the overall height H in meters and mass M in kilograms of a

human subject. Our model utilizes the same method for estimating the thickness

of the ellipsoid segments, Table 6.2 reproduces the density ρs of each body segment

used in the human model as well as the percentage of the total mass M attributed to

the mass Ms of each segment. These anthropometric measurements were originally
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reported in Winter.64

Table 6.2: Anthropometric data used to extract ellipsoid segment dimensions .

Body Segment Density [ρs] (gm/cm3) Mass [Ms] (kg)
upper leg 1.05 0.100×M
lower leg 1.09 0.0465×M

foot 1.10 0.0145×M
upper arm 1.07 0.028×M
lower arm 1.14 0.022×M

torso 1.03 0.497×M
head 1.11 0.081×M

Each body part is modeled by an ellipsoid segment, so the volume of a segment

Vs can be expressed in closed form as

Vs =
4

3
πabc. (6.8)

The mass of the segment Ms is related to the volume of the segment by the density

of the segment ρs, such that

Ms = ρsVs. (6.9)

Setting the segment volumes to be equal yields the expression

Ms

ρs
=

4

3
πabc, (6.10)

which can be rearranged to solve for the thickness a of the ellipsoid in terms of Ms,
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ρs, c and b such that

a =
3

4

Ms

ρs

1

πbc
. (6.11)

Adding the assumption that the body segments are prolate spheroids, which by defini-

tion sets a = b, eliminates the dependence on b and results in the following expression

for both the width and thickness dimensions of the ellipsoid,

a =

√
3

4

Ms

ρs

1

πc
. (6.12)

The prolate spheroid assumption is used for all segments except the torso, where it

is assumed that the ellipsoid is twice as wide as it is thick. That is, b = 2a, which

simplifies to,

a =

√
3

8

Ms

ρs

1

πc
. (6.13)

6.4 Combining the Modulations in the

Time-Frequency Domain

In the previous section the capability of modeling the Doppler modulation con-

tribution of a single segment was developed. In this section, the contributions are

combined to form a complete micro-Doppler modulation. In general, the goal is to

produce a spectrogram representation that mimics and is synchronized to the spectro-

grams derived from actual ultrasound recordings. The result is a spectrogram model
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that can be compared side-by-side with the actual ultrasound data.

Given a sequence of skeletal poses and the location of an ultrasound sensor, the

Doppler modulation due to each of the body segments is computed every time a new

FFT slice would be computed in the recorded ultrasound spectrogram. This requires

a buffer to hold the previous frame of Kinect skeletal data in order to compute

the joint velocities. The resulting radial joint velocities are then mapped onto a

set of frequency bins identical to those used in the spectrogram representation of

the recorded ultrasound data. Each pair of joints that define a body segment now

also define a range of frequency bins that the segment contributes energy to. The

amount of energy is proportional to the scattering cross-sectional area σθ normalized

by the number of frequency bins the segment contributed to. Intuitively, a body

segment scatters an amount of signal energy proportional to it’s cross-sectional area.

If the segment is moving with a uniform radial velocity, then all of this energy is

concentrated in a single frequency bin corresponding to that velocity. However, if the

segment has a large range of radial velocities, the reflected energy will be divided more

or less evenly across a range of frequency bins that correspond to those velocities.

Finally, the contributions of all the segments are superimposed and the energy

contributed by each segment to each frequency bin is accumulated together. Unfor-

tunately, there is some unknown proportionality constant related to the strength of

the transmitted signal and the range of the human body from the ultrasound sensor.

In order to scale the simulated modulations appropriately, the baseline noise level of
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the DACQ system, which was derived in Section 3.1.3, is used as a baseline offset.

Then a global gain is applied uniformly to the frequency bin contributions so that

the model output roughly matches the range of the actual ultrasound recordings.

6.5 Skeletal Smoothing

One of the challenges associated with using skeletal motion data is that some of

the joints, particularly the hands and feet, tend to exhibit a fair amount of jitter.

Many applications that rely on skeletal motion data actually drop the noisier joints if

possible as was done for the HMMs in Chapter 5. Unfortunately, the hands and feet

tend to have some of the highest velocity components and are critical for accurately

generating micro-Doppler modulations that have enough rich structure to be compa-

rable to the modulations seen in the spectrograms computed from actual ultrasound

sensor recordings.

As a compromise, the skeletal motion data is filtered in order to reduce the jitter

and discontinuities associated with skeletal tracking failures. To achieve this a Kalman

filter65,66 was applied to the joint positions, velocities and accelerations. The jitter in

joints tends to produce very high velocities (i.e. a foot jumping between two positions

frame by frame) that generate very spiky modulations in the time-frequency domain.

The Kalman filter is tuned to dampen these large jumps without dampening the

overall motion too much. This is important because any dampening of the joint
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velocities creates error in the frequency modulations. However, it is reasonable to

accept some amount of dampening in order to eliminate some of the erroneous velocity

spikes caused by jittery skeletal motion.

6.6 Spectrogram Smoothing

Within the spectrogram output by the model itself there are also a lot of disconti-

nuities in the frequency bins. In actual data, the contributions of the individual limbs

tend to be more gradual and blended together than the hard cutoffs assumed by de-

composing the human body into just a handful of discrete segments. To help remedy

this, a small averaging filter, with a 3 × 3 kernel, was applied to the model output

as a post-processing step. Although a larger kernel does a better job of smoothing

over the discontinuities, it also loses a lot of the finer structure that makes the output

spectrograms interesting, so the kernel size was kept small.

6.7 Example Simulated Micro-Doppler

Modulations of Human Actions

Figures 6.5 through 6.25 show an example output of the micro-Doppler physics

model for each of the 21 actions in the JHUMMA dataset. In each of the figures,

the first row contains a spectrogram computed from recorded ultrasound data from
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Figure 6.5: The first row shows an example of raw ultrasound data for the lunge
(N) action. The second row shows the spectrogram predicted by the Doppler physics
simulation for each of the ultrasound sensors.

each of the three ultrasound sensors. The 40kHz unit was positioned in front of the

majority of the actions, to the north, and the 33kHz and 25kHz units were positioned

on the sides, to the west and east respectively. The second row of each figure shows

the output of the micro-Doppler physics model configured to predict the modulations

for an ultrasound unit with the same frequency and location as the actual recorded

data. The model takes a single sequence of Kinect skeletons to generate all three

of the outputs. The time window for the Kinect sequence and each of the recorded

ultrasound time-series is identical.

For the most part, the model does a reasonable job reproducing the character

of the micro-Doppler modulations. Certainly the timing of the modulations in the
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Figure 6.6: The first row shows an example of raw ultrasound data for the lunge
(NE) action. The second row shows the spectrogram predicted by the Doppler physics
simulation for each of the ultrasound sensors.

model spectrograms is faithful to the spectrograms computed from recorded data.

The physics model also does an excellent job tracking the slow major modulations

induced by actions where the entire body, and particularly the torso, translate in

space.

However, there are also mistakes that can be attributed to limitations of various

aspects of the Doppler physics model. One that is easy to observe in many of the

actions is shrinkage of the frequency range covered by the modulations relative to

those in the recorded data. This is at least partially due to the Kalman filter used

to smooth out the skeleton tracks from the Kinect sensor that feeds the Doppler

physics model. Even with the smoothing, there are still noticeable modulation spikes
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Figure 6.7: The first row shows an example of raw ultrasound data for the lunge
(NW) action. The second row shows the spectrogram predicted by the Doppler
physics simulation for each of the ultrasound sensors.

in the output of the physics model that coincide with jitter and larger discontinuities

due to poor tracking in the Kinect data. These spikes would be improved by more

accurate skeletal tracking or better smoothing of the joint trajectories. Unfortunately

the smoothing comes at the expense of the character created by actual quick actions.

Another interesting limitation of the physics model manifests very clearly in Fig-

ure 6.11 and Figure 6.13, which show the left and right side arm raise actions, respec-

tively. In the recorded data, it is clear that the head and torso block the ultrasound

sensor on the far side of the moving arm from observing much scattering from the ac-

tion. For instance, on the left arm side raise, the 25kHz sensor, which was positioned

off to the right of the body, is almost completely blind to the action. Conversely, on
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Figure 6.8: The first row shows an example of raw ultrasound data for the left leg
step (N) action. The second row shows the spectrogram predicted by the Doppler
physics simulation for each of the ultrasound sensors.

the right arm side raise, the 33kHz sensor, which was positioned off to the left of the

body, is almost completely blind to the action. However, the physics model clearly

produces Doppler modulations for each of the side sensors. This is a limitation of

treating each segment independently and ignoring any potential of one segment to

interfere with or block a second segment from scattering the transmitted signal.

Figure 6.20 illustrates a deficiency of the Doppler physics model that is unique to

the jumping rope action in the JHUMMA dataset. That is, of course, the presence of

the jump rope in the scene. In the spectrogram computed from the recorded ultra-

sound data, large modulations due to the jump rope scattering the carrier frequencies

are observed. However, the jump rope is not modeled at all in the Doppler-physics
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Figure 6.9: The first row shows an example of raw ultrasound data for the right leg
step (N) action. The second row shows the spectrogram predicted by the Doppler
physics simulation for each of the ultrasound sensors.

model, so there are no additional modulations due to the jump rope in the model

output. Instead, the Doppler-physics model only produces modulations due to the

movement of the human actor. There are several other objects, such as clothing, that

the physics model does not account for. In fact, the flapping of clothing can pro-

duce very fast modulations that add a significant amount of character to the actual

spectrograms, but is missing from the output of the physics model.

While there are many ways to improve upon the accuracy of the predictions made

by the Doppler physics model, it does a remarkable job of predicting the actual sensor

data from a completely different sensor modality. The fact that the Kinect sensor can

provide a reliable estimate of the underlying scene that can be leveraged by the physics
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Figure 6.10: The first row shows an example of raw ultrasound data for the left
forward arm raise (N) action. The second row shows the spectrogram predicted by
the Doppler physics simulation for each of the ultrasound sensors.

model to generate reasonable Doppler modulations is a powerful tool. Improvements

to both the human body model, which could certainly be made more expressive, and

the Doppler model, which, for example, could be modified to account for transmission

losses due to range, would improve the accuracy of the results. However, all of

these modifications add both computational and modeling complexity, which may

not be necessary for the task at hand. As it stands, the Doppler-physics model

provides a valuable proof of concept approach for generating examples of micro-

Doppler modulations that may not be present in an existing training set.
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Figure 6.11: The first row shows an example of raw ultrasound data for the left
side arm raise (N) action. The second row shows the spectrogram predicted by the
Doppler physics simulation for each of the ultrasound sensors.

Figure 6.12: The first row shows an example of raw ultrasound data for the right
forward arm raise (N) action. The second row shows the spectrogram predicted by
the Doppler physics simulation for each of the ultrasound sensors.
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Figure 6.13: The first row shows an example of raw ultrasound data for the right
side arm raise (N) action. The second row shows the spectrogram predicted by the
Doppler physics simulation for each of the ultrasound sensors.

Figure 6.14: The first row shows an example of raw ultrasound data for the walk in
place (N) action. The second row shows the spectrogram predicted by the Doppler
physics simulation for each of the ultrasound sensors.
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Figure 6.15: The first row shows an example of raw ultrasound data for the walk
facing forward (N-S) action. The second row shows the spectrogram predicted by the
Doppler physics simulation for each of the ultrasound sensors.

Figure 6.16: The first row shows an example of raw ultrasound data for the walk
facing side (W-E) action. The second row shows the spectrogram predicted by the
Doppler physics simulation for each of the ultrasound sensors.
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Figure 6.17: The first row shows an example of raw ultrasound data for the walk
and pivot (NE-SW) action. The second row shows the spectrogram predicted by the
Doppler physics simulation for each of the ultrasound sensors.

Figure 6.18: The first row shows an example of raw ultrasound data for the walk
and pivot (NW-SE) action. The second row shows the spectrogram predicted by the
Doppler physics simulation for each of the ultrasound sensors.
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Figure 6.19: The first row shows an example of raw ultrasound data for the jumping
jacks (N) action. The second row shows the spectrogram predicted by the Doppler
physics simulation for each of the ultrasound sensors.

Figure 6.20: The first row shows an example of raw ultrasound data for the jump
rope (N) action. The second row shows the spectrogram predicted by the Doppler
physics simulation for each of the ultrasound sensors.
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Figure 6.21: The first row shows an example of raw ultrasound data for the body
squats (N) action. The second row shows the spectrogram predicted by the Doppler
physics simulation for each of the ultrasound sensors.

Figure 6.22: The first row shows an example of raw ultrasound data for the jump
forward and backward (N-S) action. The second row shows the spectrogram predicted
by the Doppler physics simulation for each of the ultrasound sensors.
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Figure 6.23: The first row shows an example of raw ultrasound data for the jump
forward and backward (NE-SW) action. The second row shows the spectrogram
predicted by the Doppler physics simulation for each of the ultrasound sensors.

Figure 6.24: The first row shows an example of raw ultrasound data for the jump
forward and backward (NW-SE) action. The second row shows the spectrogram
predicted by the Doppler physics simulation for each of the ultrasound sensors.
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Figure 6.25: The first row shows an example of raw ultrasound data for the punch
forward (N) action. The second row shows the spectrogram predicted by the Doppler
physics simulation for each of the ultrasound sensors.
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Chapter 7

A Generative Model for

Doppler-Modulations of Action

Sequences

In this chapter, the conditional deep belief network (CDBN), a type of deep neural

network architecture that incorporates a limited temporal history, is developed to in-

terface with the JHUMMA dataset. The CDBN is a more sophisticated probabilistic

graphical model than the HMM utilized in Chapter 5 and is capable of hallucinating

more convincing micro-Doppler modulations. Deep neural networks have had signif-

icant success in recent years67 learning hierarchical representations of sensory input.

The CDBN was originally developed in68 and used to model motion capture data.

In this chapter, the CDBN is used to learn representations of both the ultrasound
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modulations and the skeletal poses. The model that learns a direct representation of

the ultrasound modulations can generate novel sequences, however, the model does

not offer any control over parameters related to the environment or sensor configu-

ration. On the other hand, the model that learns a direct representation of skeletal

poses can be configured to generate novel sequences for different situations. The rota-

tional skeletal representation allows the sequences to be adapted to different humans

by swapping the limb lengths. Moreover, the generated sequences can be coupled with

the Doppler-physics model developed in Chapter 6, which allows the sensor geometry

to be configurable. This combination of models provides a framework for generating

new examples of ultrasound modulations that can be adapted to new situations.

7.1 Restricted Boltzmann Machine

Deep belief networks are generative statistical models traditionally consisting of

a hierarchical layering of restricted Boltzmann machines (RBMs). An RBM is a

particular type of undirected probabilistic graphical model. Undirected probabilis-

tic graphical models are also known as Markov networks, or Markov random fields

(MRFs), and were originally developed in the field of statistical physics.51,69 In an

MRF, the random variables X1, ..., XN are represented by nodes and the edges be-

tween the nodes indicate a direct probabilistic interaction between the two random

variables. The interaction between random variables, for example Xi and Xj, is cap-
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tured by a factor φ(Xi, Xj), that is a function of the variables. In general factors

are simply functions that map a set of random variables to a nonnegative value and

are not limited to pairwise terms. Figure 7.1 illustrates a simple MRF that has five

random variables. In this example, the graph is fully connected, with a factor linking

every pair of random variables.

X2

X1

X5

X4

X3

φ(X1, X2)

φ(X1, X3)

φ(X1, X4)

φ(X1, X5)

φ(X2, X3)
φ(X2, X4)

φ(X2, X5)

φ(X3, X4)

φ(X3, X5)

φ(X4, X5)

Figure 7.1: Diagram of a simple MRF.

The joint probability distribution of any MRF can be expressed as a normalized

product of all the factors. Suppose that an MRF has N random variables, X =

X1, ..., XN , and K factors, Φ = {φ1(D1), ..., φK(DK)}, where Dj is some set of the

random variables X. Then the joint distribution of the MRF is

PΦ(X1, ..., XN) =
1

Z
· P̃Φ(X1, ..., XN), (7.1)
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where P̃Φ(X1, ..., XN) =
∏K

j=1 φj(Dj) and Z =
∑

X1,...,XN
P̃Φ(X1, ..., XN). In general,

P̃Φ(X1, ..., XN) is an unnormalized distribution and the partition function Z is used

to normalize it. For most MRFs, the partition function is notoriously difficult to

compute.

If the sum of the log factors is substituted into Equation 7.1, then it is recognizable

as the Gibbs equation, which is in fact the form of the joint probability for any MRF.

The log of a factor is generally referred to as a potential function. Thus,

PΦ(X1, ..., XN) =
1

Z
·
K∏
j=1

φj(Dj) (7.2)

=
1

Z
· exp

( K∑
j=1

log φj(Dj)
)

(7.3)

=
1

Z
· exp−E(X1,...,XN ), (7.4)

where the energy function E(X1, ..., XN) = −∑K
j=1 log φj(Dj).

A Boltzmann machine (BM)70 is an MRF where the factors between the random

variables that compose the energy function have been restricted to linear functions.

The random variables are also typically constrained to be binary and are differentiated

by whether they are observed, called visible nodes, or unobserved, called hidden nodes.
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Therefore the energy function is restricted to the form,

E(H1 = h1, ..., HM = hM , V1 = v1, ..., VN = vN) =

−∑N
i=1

∑M
j=1Wijvihj −

∑M
i=1 aivi −

∑N
j=1 bjhj

−∑M
j=1

∑M
k=1 Ujkhjhk −

∑N
i=1

∑N
k=1 Vikvivk.

(7.5)

There are N visible variables and M hidden variables. Here, Wij are the connection

weights between hidden nodes and visible nodes. The visible node bias terms are ai

and the hidden node bias terms are bi. The parameters Ujk and Vik are the connec-

tion weights between hidden nodes and the connection weights between visible nodes,

respectively. The bias terms can also be cast as connection weights by including a

node, whose value is always one, and connecting each other node to it via the bias

connection. Even with these restrictions, BMs are capable of capturing complex dis-

tributions quite accurately. Unfortunately, it is very difficult to do learning efficiently

in BMs. However, if additional assumptions are made about the structure of the

network, the learning process can be greatly simplified and implemented efficiently.

In particular, if the visible and hidden random variables in a BM are separated

into two disjoint sets such that the connections in the network are restricted to only

involve variables from opposite sets, then learning can be implemented quite efficiently

via approximate Markov chain Monte Carlo (MCMC) sampling methods. An MRF

with this network topology condition is known as a restricted Boltzmann machine

(RBM).
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Figure 7.2 illustrates a simple RBM, where the five nodes have been split into a

group of three hidden nodes and two visible nodes. In this arrangement, the bipartite

structure of an RBM, that restricts connections to only exist between the two sets,

is evident. The reason this structure is critical for efficiently implementing learning

algorithms is that all of the nodes in one set are independent of each other given

all the nodes in the other set. This allows for blocked sampling algorithms that can

sample an entire set of variables at once, given the other set of variables. Without

the independence structure asserted by the restricted connections, sampling each node

would generally be a serial process.

H1

V1

H2

V2

H3

W11

W21

W12 W22

W13

W23

Figure 7.2: Diagram of a simple RBM.

Given the bipartite structure restricting the connections between the hidden and

visible random variables, the energy function of an RBM is,

E(H1 = h1, ..., HM = hM , V1 = v1, ..., VN = vN) =

−∑N
i=1

∑M
j=1Wijvihj −

∑N
i=1 aivi −

∑M
j=1 bjhj.

(7.6)
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Here, Wij are the connection weight parameters between the ith node in the visible set

and the jth node in the hidden set. The visible bias parameters are ai and the hidden

bias parameters are bj. In summary, the parameters for an RBM are θ = (W, a,b).

Although RBMs are just a particular type of MRF, they are often used as building

blocks in neural network models because they can be interpreted as the connections

between two layers of neurons. Historically, the visible set of random variables is

labeled as such because those are the random variables that are mapped to input

features of the data. Then the hidden random variables are trained to turn on and

off the connection weights such that correlations between visible feature nodes are

learned by the RBM.

In Section 7.2, the RBM is extended to include a notion of temporal history, called

a conditional restricted Boltzmann machine (CRBM). In Section 7.3, the restriction

to binary random variables is relaxed, allowing the visible layer to represent real-

valued input. However, the hidden random variables are still restricted to binary

values. In Section 7.4, multiple CRBM layers are combined in a hierarchy to form a

conditional deep belief network (CDBN), where the output of the first layer is used

to train the second layer.
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7.2 Conditional Restricted Boltzmann

Machine

The conditional restricted Boltzmann machine (CRBM) is an extension of the

RBM that incorporates a temporal history.68,71 Consider a single input vector

vt ∈ {0, 1}N at time step t. The vector contains N features, which are mapped

to the visible random variables Vt in the current time slice. There are undirected

connections between these visible units and the hidden units Ht ∈ {0, 1}M . Alone,

these connections form an unaltered RBM at for the input vector at time step t. How-

ever, the CRBM incorporates additional directed autoregressive connections from the

input vectors at the τ previous time steps. This necessitates a temporal sequence to

the input data. The variable τ indicates the size of the temporal history buffer used

by the CRBM and is refered to as the autoregressive order of the model. Figure 7.3

illustrates the graphical architecture of the model.

The autoregressive directed connections from previous visible time steps to both

the current visible units Vt and the current hidden units Ht in the CRBM can be

thought of as dynamic biases. Given the temporal history Vt−τ , ...,Vt−1, then the
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Figure 7.3: Diagram of a CRBM.

energy function of the CRBM is

E(Vt = vt,H = ht|Vt−1,...,t−τ = vt−1,...,t−τ ) =

−
N∑
i=1

M∑
j=1

Wijvihj︸ ︷︷ ︸
Undirected
Connections

−
N∑
i=1

(
ai +

Visible to Visible
Autoregressive
Connections︷ ︸︸ ︷
τ∑
k=1

Akivt−k
)
vi︸ ︷︷ ︸

Visible Biases

−
M∑
j=1

(
bj +

Visible to Hidden
Autoregressive
Connections︷ ︸︸ ︷
τ∑
k=1

Bkjvt−k
)
hj︸ ︷︷ ︸

Hidden Biases

.

(7.7)

Note that vt = v1, ..., vN and ht = h1, ..., hM . As the temporal history is given,

the contribution of the directed autoregressive connections can be directly com-

puted and added to the appropriate bias terms. The parameters of a CRBM are

θ = (W, a,b,A,B), where the autoregressive connection weights are actually sets of

weights, one matrix for each time step in the buffer.
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7.3 Accommodating Real-Valued Input

One way of accommodating real-valued random variables in the set of visible nodes

is the Gaussian CRBM (GCRBM). The energy function of the GCRBM,

E(Vt = vt,H = ht|Vt−1,...,t−τ = vt−1,...,t−τ ) = 1
2

∑N
i=1

(
vi−ai−

∑τ
k=1 Akivt−k

)2

σ2
i

−∑N
i=1

∑M
j=1 Wij

vi
σ2
i
hj

−∑M
j=1

(
bj +

∑τ
k=1 Bkjvt−k

)
hj,

(7.8)

is derived in a similar manner to the RBM.71

In principle, the parameters σi can be learned during training, but it is not a

straightforward procedure.72 In practice, it is preferable to normalize the features of

the input data so that they are each zero-mean and have a standard deviation σi = 1.

7.4 Conditional Deep Belief Network

In order to learn more complex distributions, RBMs are often stacked in layers

such that the hidden random variables in the first layer are the visible random vari-

ables in the second layer. This procedure can include many layers stacked on top of

each other and is called a deep belief network (DBN).

The same procedure applies to CRBMs. In this work, two layers, which is the

simplest model that can learn hierarchical representations, are used. Figure 7.4 il-
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Figure 7.4: Diagram of a CDBN.

lustrates the architecture of the Conditional DBN (CDBN). The bottom layer is a

GCRBM, while the second layer is regular binary CRBM. Note that if any more layers

were included in the CDBN, they would also be binary CRBMs so that the hidden

layer of the lower CRBM is compatible with the visible layer of the CRBM on top of

it.

Another aspect of the CDBN is the temporal history buffer required to support

multiple layers. In Figure 7.4, each layer has the same autoregressive order, τ . In

general, each layer could have a different autoregressive order. However, the overall

temporal buffer required to support all of the layers is the sum of the autoregressive

orders for each layer. The reason is that a sufficient buffer must exist to support

enough time steps in the first hidden layer so that there is enough of a temporal

buffer for the second hidden layer. This results in a temporal “fanout” in terms of
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the number of buffered time steps in each layer. This is of practical concern because

most sequential data is collected as a time series. Therefore, the first samples cannot

be used to train the model because they do not have enough previous samples to

support the required temporal buffer. In the case of Figure 7.4, the first 2 × τ data

points are not eligible to train the model.

7.5 Training Model Parameters

Usually the parameters of a probabilistic graphical model are trained using maxi-

mum likelihood estimation (MLE). Unfortunately, there is no analytical MLE solution

for the parameters of the Gibbs distribution. In such cases, the usual approach is to

fall back on gradient ascent and maximize the likelihood of the observed, or visible,

units.

The joint probability of any MRF with observed visible nodes and unobserved

hidden nodes is,

Pθ(V = v,H = h) =
1

Z
exp

(
− Eθ(V = v,H = h)

)
, (7.9)

where the partition function Z =
∑

v′
∑

h′ exp
(
− Eθ(V,H)

)
. In order to make the

notation more concise, the realizations of the hidden and visible random variables

are omitted from the remainder of the calculations in this section. The marginal

distribution of the visible nodes is found by summing out the hidden variables in the
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joint distribution. This results in,

Pθ(V) =
∑
h′

Pθ(V,H)

=
1

Z

∑
h′

exp
(
− Eθ(V,H)

)
. (7.10)

The conditional distribution of the hidden nodes given the visible nodes is,

Pθ(H|V) =
Pθ(V,H)

Pθ(V)

=
exp

(
− Eθ(V,H)

)∑
h′ exp

(
− Eθ(V,H)

) (7.11)

The log-likelihood of the MRF is,

LV(θ) = log
(
Pθ(V)

)
= log

(∑
h′

exp
(
− Eθ(V,H)

))
− log

(∑
v′

∑
h′

exp
(
− Eθ(V,H)

))
. (7.12)
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Taking the derivative of the log-likelihood yields,

∂

∂θ
LV(θ) =

∂

∂θ
log
(∑

h′

exp
(
− Eθ(V,H)

))
− ∂

∂θ
log
(∑

v′

∑
h′

exp
(
− Eθ(V,H)

))
= −

∑
h′

Pθ(H|V)
∂

∂θ
Eθ(V,H)

+
∑
v′

∑
h′

Pθ(V,H)
∂

∂θ
Eθ(V,H)

= −
∑
h′

Pθ(H|V)
∂

∂θ
Eθ(V,H)

+
∑
v′

Pθ(V)
∑
h′

Pθ(H|V)
∂

∂θ
Eθ(V,H). (7.13)

Note that both the joint distribution of the MRF and the conditional distribution of

the hidden nodes given the visible nodes, both of which were defined earlier, end up

being components of the derivative of the log-likelihood. Unfortunately, evaluating

the first term of the log-likelihood requires iterating over all possible values of the

hidden variables and the second term requires iterating over all possible values of both

the hidden and the visible variables, is not tractable. To avoid this computational

burden, Gibbs sampling is used to estimate the log-likelihood.

Due to the bipartite structure of the connections between the visible and hidden

nodes in a CRBM, each of the hidden nodes are independent from each other given the

visible nodes, and each of the visible nodes are independent from each other given the
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hidden nodes. Therefore, the conditional distributions of the CRBM factorize as,73

Pθ(Ht|Vt, ...,Vt−τ ) =
M∏
j=1

P (Hj|Vt, ...,Vt−τ ), (7.14)

and

Pθ(Vt|Ht,Vt−1, ...,Vt−τ ) =
N∏
i=1

P (Vi|Ht,Vt−1, ...,Vt−τ ). (7.15)

For the CRBM, these single node conditional densities71 are given by,

P (Hj|Vt, ...,Vt−τ ) = σ
( N∑
i=1

Wijvt,i + bj +
τ∑
k=1

Bkjvt−k
)

(7.16)

and

P (Vj|Ht,Vt−1, ...,Vt−τ ) = σ
( M∑
j=1

Wijhj + ai +
τ∑
k=1

Akivt−k
)
, (7.17)

where σ(·) denotes the sigmoid function.

Using these simplified distributions for the CRBM, the derivative of the log-
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likelihood with respect to the undirected connection weights is,

∂LV=v(θ)

∂Wij

= −
∑
h′

Pθ(H = h′|V = v)
∂Eθ(V = v,H = h′)

∂Wij

+
∑
v′

∑
h′

Pθ(V = v′,H = h′)
∂Eθ(V = v′,H = h′)

∂Wij

=
∑
h′

Pθ(H = h′|V = v)vjhi

−
∑
v′

Pθ(V = v′)
∑
h′

Pθ(H = h′|V = v′)vihj

= Pθ(Hj = 1|V = v)vi

−
∑
v′

Pθ(V = v′)Pθ(Hj = 1|V = v′)vi, (7.18)

where the realizations of the random variables have been specified to avoid confusion

with respect to the summations. Note that this derivation assumes binary valued

random variables. The derivative of the log-likelihood can be computed in a similar

manner for the CRBM bias parameters.71 This is the derivative for a single training

example v. Given a full set of training data, D = {v1, ...,vD}, that has D examples,

the derivative of the undirected connection weights is,

1
D

∑
v′∈D

∂LV=v′ (θ)

∂Wij
= 1

D

∑
v′∈D

(
EPθ(H=h|V=v′)Q(V=v′)[vihj]

− EPθ(V=v,H=h)[vihj]
)
,

(7.19)

where the distribution Q(V = v′) is the true, but unknown distribution of the train-

ing data. Unfortunately, this the second term is still to difficult to sample from

because it would require running a Gibbs sampling chain until it converges to the
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true distribution of the CRBM, Pθ(V,H).

Fortunately, Hinton72 developed an approximation for the second term computed

using samples from the CRBM after just k iterations of blocked Gibbs sampling.51

The approximation works well in practice for training the CRBM parameters with

gradient ascent. In fact, RBMs are often trained with a single sampling step such

that k = 1. This approximation for the log-likelihood gradient is known as the k-step

contrastive divergence (CDk), defined by

CDk(θ,v
(0)) = −

∑
h

Pθ(H = h|V = v(0))
∂Eθ(V = v(0),H = h)

∂θ

+
∑
h

Pθ(H = h|V = v(k))
∂Eθ(V = v(k),H = h)

∂θ
. (7.20)

Here the superscript (0, ..., k) denotes the number of sampling steps required to pro-

duce a particular sample. Samples are produced by initializing v(0) to a training

example v ∈ D. Then Equations 7.16 and 7.17 can be used iteratively to generate

the sequence of samples

v(0) ⇒ h(1) ⇒ v(1) ⇒ h(2) ⇒ v(2) ⇒ . . .⇒ h(k) ⇒ v(k). (7.21)

Using CDk, iterative gradient ascent to update the parameters of the CRBM can
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be performed according to the following update rule,71

θ(t+1) = θ(t) +

∆θ(t)︷ ︸︸ ︷
ηCDk(θ,v

(0))︸ ︷︷ ︸
Contrastive Divergence

Gradient Approximation

+ λθ(t)︸︷︷︸
Weight Decay

+ ν∆θ(t−1)︸ ︷︷ ︸
Momentum

. (7.22)

These parameter updates include a weight decay regularization term and a momentum

term that promotes larger step sizes in areas where the gradient is large.

In practice, the standard approach to unsupervised training in a CDBN is to train

the parameters of each CRBM layer one at a time in a greedy fashion. The first layer

to be trained is the bottom layer that interfaces directly with the features in the

training set D. Equation 7.22 is used to update the parameters for a set number of

iterations, or epochs, through the training set. Once the parameters for the first layer

are trained they are held fixed. The training set is then propagated through the first

layer to produce a transformed training set that is used to train the parameters of

the second layer in the same way as those of the first. This procedure is repeated

until all layers of the CDBN are trained.
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7.6 Hallucinating Novel Doppler Modula-

tions from Ultrasound

In order to use the CDBN to generate, or hallucinate, novel examples of motions,

a network is trained on data from the JHUMMA dataset for a set of actions. In

principle, a network could be trained on the entire dataset, but the real valued visible

units in the Gaussian CRBM have difficulty modeling the variation across all twenty-

one actions and thirteen trials in the dataset. In order for the real-valued data to

be processed by the Gaussian CRBM, each feature is normalized across the training

data to a standard normal. Unfortunately, this representation is not the best model

for the variability in the data across entire JHUMMA dataset. Therefore, smaller

models were trained to demonstrate the capabilities of the system on smaller subsets

of actions, where the variability is less extreme.

Once a CDBN is trained, generating a new sequence from the distribution simply

requires a seeded history buffer. By buffering with data from a particular action, it is

highly likely that the hallucinated sequence will correspond to that action, although

there is nothing preventing the model from switching to another action that it was

trained on. Once the buffer is fixed, blocked Gibbs sampling is used to generate a

novel sequence from the distribution encoded by the CDBN. This procedure uses the

same sampling equations described in Section 7.5 to iteratively update the visible and

hidden layers. For all of the generated sequences shown in this chapter, 30 iterations
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of blocked Gibbs sampling were used to hallucinate the visible layer at each time step.
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Figure 7.5: The top spectrogram shows a recorded ultrasound sequence of walk and
pivot data. The first 14 frames were used to seed the CRBM and sampling the model
produced the hallucination shown in the bottom spectrogram.

The lower spectrogram of Figure 7.5 shows a sequence of ultrasound modulations

generated from a two layer CDBN trained on 40kHz ultrasound data. The autore-

gressive order of the CDBN was set to τ = 7 time steps. Both layers shared the same

autoregressive order, so the model was seeded with the first 14 spectrogram slices of

the 40kHz ultrasound test sequence shown in the upper spectrogram of Figure 7.5.

The visible layer was composed of 328 real-valued nodes that map directly to the
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spectrogram frequency bins. Each of the two hidden layers contained 300 binary

nodes. The model parameters were trained on 3, 790 spectrogram slices of the “walk

and pivot” action from the JHUMMA dataset. These slices were pulled from two

trials of the same actor.

Figure 7.5 demonstrates that the CDBN model does a significantly better job of

modeling longterm temporal correlations than the HMM model developed in Chap-

ter 5. For comparison, the HMM generated sequence for the “walk and pivot” action

is shown in Figure 5.29. Due to the finite state space limitations of the HMM, the

state space would have to grow very large to accommodate the same temporal history

and still represent the set of skeletal poses well.

With only a very short window of seed data, the CDBN model recognizes the

walking pattern and is able to hallucinate a reasonable set of modulations. In par-

ticular it accurately captures the overall cadence of the walking motion and the back

and forth movement of the torso. However, it fails to maintain the proper number

of sub modulations in each period of the walking motion. This is akin to adding or

subtracting limbs from the human. By incorporating a physical notion of the human

body, it should be possible to avoid these types of errors.
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7.7 Hallucinating Novel Doppler Modula-

tions from Skeletal Sequences

Figure 7.6 shows a sequence of ultrasound modulations generated from a two

layer CDBN trained on kinect data for the side arm raise actions from the JHUMMA

dataset. The output of the CDBN was then processed by the Doppler-physics model

developed in Chapter 6. The autoregressive order of the CDBN was set to τ = 7 time

steps. Both layers shared the same autoregressive order, so the model was seeded

with 14 skeletal poses. Each of the two hidden layers contained 500 nodes. All 57

rotation features, plus the three translation parameters for the skeleton were learned

by the CDBN. The model was trained on 1, 961 skeletal poses derived from both the

left and right “arm raises” for a single actor, but seeded with a buffer of left arm

raises.

The hallucination produced by the model is remarkable stable over many repeti-

tions. Due to the relative simplicity of the skeletal pose representation, the distribu-

tion learned by the CDBN is able to produce a skeletal sequence that approximates

the action well. By running the Doppler-physics model three times, where each simu-

lation is configured to mimic one of the three ultrasound sensors used in the JHUMMA

dataset, the combination of the two models is able to predict the acoustic modulations

for a novel action.

Figure 7.7 shows a sequence of ultrasound modulations generated from a two layer
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L. Arm Raises, Side (N) @ Time = 1.9122
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Figure 7.6: Three simulated ultrasound modulations of left arm raises to the side.
They were generated by a CDBN trained to model the skeletal motions for these
actions and then processed through the Doppler-physics model.

CDBN trained on kinect data for the walk in place action from the JHUMMA dataset.

The model parameters were identical to those described for the arm raise model. The

model was trained on 5, 150 skeletal poses derived from both “walking in place” and

“walking forwards and backwards” for a single actor, but seeded with a buffer of the

“walking in place” action.

Figure 7.7 shows a sequence of ultrasound modulations generated from a two layer

CDBN trained on kinect data for the walk in place action from the JHUMMA dataset.

The model parameters were identical to those described for the arm raise model. The
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Figure 7.7: Three simulated ultrasound modulations of walking in place. They were
generated by a CDBN trained to model the skeletal motions for these actions and
then processed through the Doppler-physics model.

model was trained on 3, 790 skeletal poses derived from “walk and pivoting” for a

single actor.

The CDBN trained on skeletal frames does a much better job of learning the

sequence of individual limb actions for the walking motion. This results in a much

more consistent sequence of longterm modulation patterns than the CDBN trained

on the ultrasound data.
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Figure 7.8: Three simulated ultrasound modulations of walking and pivoting. They
were generated by a CDBN trained to model the skeletal motions for these actions
and then processed through the Doppler-physics model.

7.8 Configuring Limb Lengths

One of the advantages to building a CDBN that learns the underlying skeletal

representation is having access to configurable parameters like the human lib lengths.

The CDBN has simply learned the relative rotations of the limbs, so adjusting the

limb lengths allows for the model to be adapted to mimic people of different sizes. In

Figure 7.9, shows the results from doubling and halving the original limb lengths for a

walking sequence hallucinated by the CDBN. The associated spectrograms show the

output of the Doppler-physics model given each of the three skeleton models. The
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scaling on the spectrograms is different because it was derived from a demonstration

of the Doppler-physics model and a CDBN trained on an older dataset that was not

part of the JHUMMA and used a different noise model to scale the background of the

Doppler-physics model. However, the implementation of the Doppler-physics model

is otherwise identical.
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Figure 7.9: Sequence of skeletal walking data hallucinated by a CDBN trained on
Kinect skeletal frames and the resulting ultrasound modulations generated by the
physics-baed model of a human walking. Two additional sequences were generated
by doubling and halving the original limb lengths of the human body model.

The skeleton with the longest limbs generates the fastest limb velocities because

it has to move it’s limbs a longer distance in the same time period. The Doppler

modulations predicted by the physics model have correspondingly larger magnitudes.

Conversely, the smaller skeleton has slower limb velocities, which result in smaller

Doppler modulations.
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Chapter 8

Conclusion

At its core, the framework presented in this dissertation investigates the potential

of using low-dimensional impoverished sensor data to make inferences about higher-

dimensional natural phenomenon. To overcome the ambiguities associated with mak-

ing decisions from the incomplete information contained in the low-dimensional data,

prior knowledge about the structure and physics of both the environment and the

sensor modality is used to constrain and bootstrap the inference procedure.

Specifically, these principles are demonstrated by using low-dimensional active

acoustic data to recognize higher-dimensional human actions. In order to facilitate

the construction of models, the Johns Hopkins University multimodal action dataset

was constructed. It consists of twenty-one actions and focuses on examples of orienta-

tional symmetry that a single active ultrasound sensor should have the most difficulty

discriminating. The data collection includes recordings from three independent ul-
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trasound sensors, which provides the necessary foundation to explore using data from

multiple views to resolve the orientational ambiguity in the dataset. The data col-

lection also includes higher-dimensional RGB-Depth images that are used to track

the human movements. This provides a basis for developing the physical models to

constrain the inferences made from the acoustic data.

A simple generative probabilistic graphical model is developed and used to clas-

sify the actions in the JHUMMA dataset, providing a performance baseline that

can be used to guide future work. This action recognizer is based on a set of hidden

Markov models (HMM) that are jointly trained on both the low-dimensional acoustics

and a skeletal representation of the human body that is extracted from the higher-

dimensional RGB-Depth data. The model achieves an action classification rate from

63% to 75% using input from a single ultrasound sensor. When the classifiers built

on each individual sensor are combined, the system demonstrates a large gain in per-

formance, reaching over 88% classification accuracy. While the models are well suited

to classifying action sequences, they do not perform particularly well when classify-

ing individual skeletal poses. Moreover, they are demonstrated to be unsuitable for

generating predictions of novel sequences that could be used in simulations.

The HMM based classifier used the simplest dynamics to capture the sequential

nature of the data. An area of future research involves expanding this model to

include a more realistic model for the evolution of skeletal poses over time.

One of the primary challenges associated with using acoustic action recognizers
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is that both the geometry of the sensors, as well as the characteristics of the moving

human, greatly affect the modulation patterns recorded in the reflected signals. An

important step toward achieving models that are truly adaptable to new situations

is the capability to predict what the acoustic modulations will look like at an arbi-

trary sensor location given a human action. A computationally efficient physics-based

simulation, that predicts the acoustic Doppler modulations at configurable sensor lo-

cations, was developed.

Although the output of the simulator was demonstrated to be a reasonable pre-

diction of actual action data in the JHUMMA dataset, there are many modifications

that can be made to further improve the performance. For instance, accounting for

clothes and obstructions would solve several of the models most obvious deficien-

cies. Moreover, the framework of classification from active can be extended to tasks

other than action recognition by building acoustic scattering models for other moving

objects.

Finally, conditional deep belief networks (CDBNs), a generative probabilistic deep

neural network with autoregressive temporal connections, were developed and used to

capture the dynamics of both ultrasound modulations and skeletal motion sequences.

The models demonstrate promising capabilities for generating novel sequences in both

sensory domains. The CDBN trained on skeletal poses can be coupled with the

physics simulation to generate micro-Doppler modulations for novel action sequences

that demonstrate realistic long term structure.
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The primary contribution of the work presented in this dissertation is a complete

implementation of an end-to-end framework for collecting temporally coherent mul-

timodal sensor data and the development of statistical models infused with physical

constraints. While each of the components in the system, both hardware and soft-

ware, can certainly be upgraded to include more advanced techniques, the overall

approach demonstrates a consistent methodology for the co-development of highly

integrated models for processing novel sensory data.
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