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Abstract 

Schizophrenia and autism spectrum disorder (ASD) are characterized by complex 

genetics, variable symptomatology, and anatomically distributed pathology, all of which 

have made identifying the etiology of these diseases extremely challenging. In addition, 

our understanding of the role of risk genes in mental disorders has been severely 

hindered by the lack of access to human neurons. Human induced pluripotent stem cells 

(iPSCs) derived from patients provide a unique opportunity to investigate the etiology 

and pathogenesis of these psychiatric disorders. Here, we report the generation and 

characterization of iPSCs derived from subjects with 15q11.2 copy-number variants 

(CNVs) and a frameshift mutation in Disrupted in Schizophrenia 1 (DISC1)—both types 

of mutations are associated with increased risk for schizophrenia and ASD. Mutant 

iPSCs differentiated toward cortical forebrain lineage revealed dysregulation of neural 

development and synaptic function. First, iPSC-derived neural progenitors from subjects 

carrying a 15q11.2 microdeletion exhibit deficits in adherens junctions and apical 

polarity. This results from haploinsufficiency of CYFIP1, a gene within 15q11.2 that 

encodes a subunit of the WAVE complex, which regulates cytoskeletal dynamics. 

Second, using isogenic cell lines with and without a specific 4-basepair deletion in 

DISC1, we show that iPSC-derived forebrain neurons with the DISC1 mutation exhibit 

functional abnormalities including synaptic transmission deficits and dysregulated 

expression of many genes related to synaptic function and implicated in psychiatric 

disorders. Together these iPSC-based investigations of development and function of 

human neurons demonstrate the capability of this technology for identifying the 

biological processes and cellular pathways that are impacted by genetic risk for 

psychiatric disorders. 
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Chapter 1: Introduction 

The vast majority of mental disorders, including schizophrenia and autistic spectrum 

disorder (ASD), are characterized by complex genetics and variable phenotypes. These 

diseases affect a large number of people across all ethnic groups worldwide. Although 

there are pharmacological agents available to alleviate some of the symptoms, they 

often have undesired side effects and are ineffective in a subset of patients1. To date, 

there is no cure for either schizophrenia or ASD and the mechanisms underlying these 

mental disorders are still mystery. As opposed to monogenic diseases in which a single 

gene has been identified as a causal factor, these polygenic diseases are associated 

with multiple risk genes that modulate susceptibility for the disease. Numerous genome-

wide studies designed to link genetic variants to complex mental disorders have 

identified hundreds of risk-associated genes2-5. But the investigation of the functional 

roles of these genes has lagged far behind and has been based on model organisms. 

Therefore, our knowledge of the biological roles of these risk genes in humans remains 

limited6. To bridge the gap between animal and human models and to work toward a 

new design for effective therapeutics, it is crucial to develop a better model for 

understanding how genetic risk factors that contribute to the development, function and 

regulation of neural systems that are disrupted in the disease state. 

Induced pluripotent stem cells (iPSCs) hold significant promise for transforming 

disease modeling, drug discovery, and regenerative medicine. iPSCs are derived from 

reprogrammed somatic cells (Figure 1); they are similar to embryonic stem cells due to 

their ability to give rise to all cell types in the body7. Because iPSCs retain the genetic 

information of the donor, they are useful for studying the functional roles of specific risk 

genes within genetic contexts that are known to be permissive for a given disease. A 
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number of iPSC lines derived from patients with various neurological diseases with 

complex genetics, including Parkinson’s disease, Alzheimer’s disease, schizophrenia 

and autism, have shown that iPSC-derived neurons exhibit some structural and 

functional phenotypes that respond to the same drug treatments in vitro that have been 

effective in patients8-13. However, these studies used iPSCs mainly to validate 

phenotypes previously identified in animal models or post-mortem brain samples.  

Two studies published by Yoon et al. (2014) and Wen et al. (2014) in Cell Stem 

Cell and Nature, respectively, used iPSCs derived from different at-risk populations to 

model psychiatric disorders14; 15. Importantly, these studies established a proof-of-

 
 

 Figure 1. Generation of iPSCs from patients to study mental disorders. 

iPSCs are reprogrammed from human-derived fibroblasts by over-expressing the 

four Yamanaka factors: OCT, SOX2, KLF4 and cMYC. These iPSCs could be 

maintained indefinitely in culture or differentiated into all cell types in the body. 
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principle experimental design in which iPSCs were used as a discovery tool to identify 

new phenotypes and generate novel hypotheses regarding how specific risk genes may 

contribute to dysregulation of neural development.  

In the Cell Stem Cell study, I derived and characterized iPSC lines and 

differentiated them into neuronal lineage. In the Nature study, I used a genome editing 

technology called TALENs to generate multiple isogenic iPSC lines with DISC1-4bp 

mutation. These isogenic iPSC lines served as the basis for determination of the DISC1 

mutation as a causative link for synaptic deficits and dysregulation of genes related to 

mental disorders that were observed in iPSC-derived forebrain neurons. The full details 

of the papers are written in Chapter 2 and Chapter 3. Below I provide a preview from 

each of the papers: 

Preview A: Neural stem cells derived from 15q11.2 deletion iPSCs show deficits in 

adherens junctions and apical polarity  

Copy-number variants (CNVs) have emerged as prominent risk factors for various 

mental disorders such as schizophrenia and autism16-18. In particular, 15q11.2 deletion, 

encompassing CYFIP1, GCP5, NIPA1 and NIPA2, was identified to have a significant 

association with schizophrenia. Notably, CYFIP1 has been shown to interact with fragile 

X mental retardation protein (FMRP) to mediate translation repression and to regulate 

axonal and dendritic outgrowth19-21. The functional roles of others genes in this region 

are not as clear, especially how they interact to impact risk for schizophrenia. In addition, 

it is difficult to model CNVs due to their disruption of multiple genes and large DNA 

regions. For this reason, animal- or cell-based models of 15q11.2 deletion had not been 

established. 
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To investigate how 15q11.2 deletion increases risk for schizophrenia, Yoon and 

colleagues derived iPSCs from three subjects with 15q11.2 deletion. Neuronal 

progenitor cells (NPCs) differentiated from 15q11.2 deletion iPSCs showed deficits in 

adherens junctions and apical polarity, early markers of structural integrity. This results 

from CYFIP1 haploinsufficiency, which, in turn, negatively affects the WAVE signaling 

complex. Strikingly, in vivo investigation of this phenotype revealed altered migration and 

ectopic localization of radial glial cells after knockdown of Cyfip1 during mouse cortical 

brain development. Building on these results, hypothesis-driven genetic analysis of 

human post-mortem brain samples identified ACTR2, a mediator of CYFIP1 and WAVE 

signaling complex, as being associated with an increased risk for schizophrenia.  

This is the first study to use human iPSCs to investigate 15q11.2 deletion as a prominent 

risk factor for schizophrenia. It is also the first study to use iPSCs as an entry point to 

identify a functional role for human CYFIP1, to discover a novel cellular phenotype 

during human neuronal development, to validate the role of CYFIP1 in vivo, and to 

identify genes that interact with CYFIP1 in human brain samples that may associate with 

schizophrenia. These findings are consistent with the hypothesis that defects during 

neural development contribute to psychiatric disorders22. However, the functional role of 

15q11.2 deletion in mature human neurons remains to be elucidated. 

Preview B: Neurons derived from iPSCs with DISC1 mutation show synaptic 

dysfunction 

The vast majority of psychiatric disorders are characterized by complex genetics and 

variable phenotypes, all of which have made identifying the etiology of these diseases 

extremely challenging. The identification of hundreds of risk genes has not itself 

significantly advanced our understanding of the specific biological and cellular processes 
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that are dysregulated. Once identified, in depth analyses of individual genes may reveal 

vulnerabilities in cellular function that are common to several disorders. One of the most 

prominent genetic risk factors is Disrupted in Schizophrenia 1 (DISC1), which was 

originally identified at the breakpoint of a balanced chromosomal translocation 

(1;11)(q42; q14) that co-segregates with schizophrenia and major mental disorders in a 

large Scottish family23. Additional association studies revealed that DISC1 modulates 

risk for schizophrenia, bipolar disorder, major depression, and autism24. However, due to 

different genetic and environmental backgrounds among affected individuals, it is difficult 

to determine the impact of DISC1 mutations in risk for major mental disorders, especially 

in the cases of incomplete penetrance. 

To investigate how a mutation in a single gene could lead to an increased risk for 

psychiatric disorders, Wen and colleagues derived iPSCs from an American family, 

whose members harbor a 4-basepair deletion in DISC1 and have a history of various 

major psychiatric disorders, including schizophrenia25. Compared to controls within the 

family and outside the family, forebrain neurons derived from patients have deficits in 

synaptic vesicle release and dysregulation of many genes related to synapses and 

psychiatric disorders. Unexpectedly, they found that mutant DISC1 depletes the wild 

type DISC1 in a gain of function manner. To confirm that DISC1 was responsible for 

these deficits, they employed a gene editing technique using transcription activator-like 

effector nucleases (TALENs) to generate isogenic iPSCs that differ solely at the 4-bp 

deletion locus in DISC1. Not only were they able to rescue the deficits in mutant 

neurons, but also recapitulated the deficits in control neurons by introducing the mutation 

with TALENs. These findings unequivocally demonstrate that mutant DISC1 is a causal 

factor for synaptic dysfunction in this iPSC-based model. 
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Chapter 2 

This work entitled “Modeling a risk factor for schizophrenia in iPSCs and mice reveals 

neural stem cell function associated with adherens junctions and polarity” was published 

in Cell Stem Cell (Volume 15, Issue 1, Pages 79-81) with permission to reprint granted 

by Elsevier (license # 3667691140503). For simplicity, only the main texts and figures 

are included; supplemental materials can be accessed online. Below is a graphical 

abstract associated with the published paper online. 

 



7 

 

Modeling a risk factor for schizophrenia in iPSCs and mice reveals neural stem 

cell function associated with adherens junctions and polarity 

 

Ki-Jun Yoon1,2, Ha Nam Nguyen1,3, Gianluca Ursini4, Fengyu Zhang4, Nam-Shik Kim1,2, 

Zhexing Wen1,2, Georgia Makri1,2, David Nauen5, Joo Heon Shin4, Youngbin Park1, 

Raeeun Chung1, Eva Pekle1, Ce Zhang1,2, Maxwell Towe1, Mohammed Qasim Hussaini 

S1, Yohan Lee6, Dan Rujescu7, David St. Clair8, Joel E. Kleinman4, Thomas M. Hyde4, 

Gregory Krauss2, Kimberly M. Christian1,2, Judith L. Rapoport6, Daniel R. Weinberger2,4,9, 

Hongjun Song1,2,3,9#, and Guo-li Ming1,2,3,9#   

1Institute for Cell Engineering, 2Department of Neurology, 3Graduate Program in Cellular 

and Molecular Medicine, 5Department of Pathology, 9The Solomon H. Snyder 

Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 

Maryland 21205, USA.  

4Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, 

Baltimore, Maryland 21205, USA. 

6Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, 

USA. 

7Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany. 

8University of Aberdeen Royal Cornhill Hospital, Aberdeen, UK.    

 

# Correspondence should be addressed to: 

Guo-li Ming, M.D. & Ph.D.   



8 

 

Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. 

Broadway, MRB 779, Baltimore, MD 21205, USA; Tel: 443-287-7498  

E-mail: gming1@jhmi.edu  

Hongjun Song, Ph.D. 

Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. 

Broadway, MRB 759, Baltimore, MD 21205, USA; Tel: 443-287-7499 

E-mail: shongju1@jhmi.edu 



9 

 

SUMMARY   

Defects in brain development are believed to contribute towards on-set of 

neuropsychiatric disorders but identifying specific underlying mechanisms has proven 

difficult. Here, we took a multi-faceted approach to investigate why 15q11.2 copy 

number variants are prominent risk factors for schizophrenia and autism. First, we show 

that human iPSC-derived neural progenitors carrying 15q11.2 microdeletion exhibit 

deficits in adherens junctions and apical polarity. This results from haploinsufficiency of 

CYFIP1, a gene within 15q11.2 that encodes a subunit of the WAVE complex, which 

regulates cytoskeletal dynamics. In developing mouse cortex, deficiency in CYFIP1 and 

WAVE signaling similarly affects radial glial cells, leading to their ectopic localization 

outside of the ventricular zone. Finally, targeted human genetic association analyses 

revealed an epistatic interaction between CYFIP1 and WAVE signalling mediator ACTR2 

and risk for schizophrenia. Our findings provide insight into how CYFIP1 regulates 

neural stem cell function and may contribute to the susceptibility of neuropsychiatric 

disorders. 
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INTRODUCTION 

Neuropsychiatric disorders, including schizophrenia and autism, are debilitating 

conditions that are postulated to have a neurodevelopmental aetiology (Geschwind, 

2009; Weinberger, 1987). Significant progress has been made to identify the genetic 

basis of these disorders. In addition to single-nucleotide polymorphisms (SNPs), 

submicroscopic variations in DNA copy number (CNVs) are also widespread in human 

genomes and specific CNVs have been identified as significant risk factors for 

schizophrenia and autism (Malhotra and Sebat, 2012). Because CNVs frequently 

contain multiple genes and are more difficult to model in mice using traditional gene 

targeting techniques, we know little about how these CNVs affect neural development. 

Novel approaches are needed to investigate these genetic risk factors in neural 

development and identify their signalling mechanisms, which in turn could generate new 

hypotheses for identification of additional risk factors. 

15q11.2 CNVs have emerged as prominent risk factors for various 

neuropsychiatric disorders, including schizophrenia, autistic spectrum disorder and 

intellectual disability (Malhotra and Sebat, 2012). 15q11.2 microdeletion (15q11.2del) 

was identified as one of the most frequent CNVs associated with increased risk for 

schizophrenia in two large studies (Consortium, 2008; Stefansson et al., 2008), a finding 

subsequently confirmed in additional cohorts (Kirov et al., 2009; Tam et al., 2010; Zhao 

et al., 2013). Even in normal subjects, 15q11.2del is associated with cognitive variation 

and changes in structural measures on MRI scanning (Stefansson et al., 2013). 15q11.2 

CNVs encompass four genes, non-imprinted in Prader/Willi Angelman 1 and 2 (NIPA1 

and NIPA2), CYFIP1, and TUBGCP5 (Figure 1A). While little is known about functions of 

these genes in mammalian neural development, CYFIP1 has been shown to interact 
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with Rac1 (Kobayashi et al., 1998), FMRP (Schenck et al., 2001), and eIF4E (Napoli et 

al., 2008). Biochemical studies have also identified CYFIP1 as a regulator of the WAVE 

complex, consisting of WAVE1, WAVE2, Nap1 and Abi1, a complex known to regulate 

Arp2/3-mediated actin polymerization and membrane protrusion formation in non-

neuronal cell lines (Kobayashi et al., 1998; Kunda et al., 2003; Steffen et al., 2004). The 

function of WAVE signaling in mammalian neurogenesis is not well understood. 

Patient-derived induced pluripotent stem cells (iPSCs) provide a new means to 

investigate how risk factors affect nervous system development (Bellin et al., 2013; 

Christian et al., 2012). Reprogrammed from somatic cells, iPSCs capture identical risk 

alleles as the donor individual and provide a renewable resource of previously 

inaccessible, disease-relevant human cell types to facilitate molecular and cellular 

investigations. In this emerging new field, recent iPSC studies were mostly “proof-of-

principle” experiments that confirmed previous findings from animal and post-mortem 

human studies; its promise as a discovery tool is just beginning to be realized.  

While 15q11.2del is linked to schizophrenia, common variants within the deletion 

region have not shown similar association in case control studies, possibly because of 

the weak impact of common SNPs on biological functions of individual genes. To mimic 

the large dose effect of a whole gene deletion, we hypothesized that genetic interactions 

within the biological network linked to the function of specific genes within 15q11.2del 

would rise to the level of clinical association and that patient-derived iPSC studies could 

provide an entry point to identify these networks (Figure 1B). We established iPSC lines 

from three individuals carrying 15q11.2del and compared them with iPSCs from five 

individuals without the CNV. Analysis of iPSC-derived neural rosettes with 15q11.2del 

revealed impairments in adherens junctions and polarity of human neural progenitor 

cells (hNPCs) due to WAVE complex destabilization. Pinpointing CYFIP1-
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haploinsufficiency within 15q11.2 as a underlying cause of hNPC defects then guided 

our investigation of CYFIP1 and its signaling via the WAVE complex in regulating radial 

glia neural stem cells (RGCs) in the developing mouse cortex in vivo. This, in turn, led to 

targeted human genetic association analyses, resulting in the identification of an 

epistatic interaction for risk of schizophrenia. Our integrated analyses from multiple 

systems provide novel insight into how 15q11.2 CNVs may contribute to defects in 

neural development and brain disorders.  

 

RESULTS       

Defects in adherens junctions and apical polarity of hNPCs derived from human 

iPSCs carrying 15q11.2del 

To determine how 15q11.2del may affect human brain development, we established 

multiple iPSC lines from skin fibroblasts of 3 individuals carrying 15q11.2del in one 

chromosome (Y1, Y3 and Y4) and from 3 control individuals (C1, C2 and C3) using non-

integrating approaches (Figure 1C and Table S1). We performed detailed quality control 

analyses of all iPSC lines selected for the current study (Table S1). These iPSCs 

maintained embryonic stem cell-like morphology, expressed pluripotency-associated 

markers and exhibited normal euploid karyotypes (Figures 1C, S1 and Table S1, S2). All 

iPSC lines tested formed teratomas when injected into SCID mice (Table S1). We also 

included iPSC lines from two neuropsychiatric patients with a DISC1 mutation as 

another group for comparison (D2 and D3) (Chiang et al., 2011). Using DNA 

fluorescence in situ hybridization (FISH), we confirmed one copy microdeletion at 

15q11.2 locus in Y1, Y3 and Y4, but not in other fibroblasts and iPSC lines we examined 

(C1, C2, C3, D2, D3; Figure 1A, D and Table S1). 
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We first differentiated iPSCs into relatively homogenous primitive neural 

precursor cells (pNPCs) in monolayer using an established protocol (Li et al., 2011). All 

lines were efficiently differentiated into pNPCs expressing NESTIN and SOX2 (Figure 

S2A). No consistent differences in the NPC differentiation efficacy or proliferation among 

different groups of iPSC lines were detected (Figures S2A-B). To partially maintain cell-

cell interaction, we next generated cortical neural rosettes using small molecule 

inhibitors and retinoic acid (Shi et al., 2012). We initially used 4 iPSC lines for pilot 

phenotypic characterization, including one iPSC line each from two control subjects (C2-

1 and C3-1) and two lines from one subject with 15q11.2del (Y1-1 and Y1-3). Neural 

rosettes from C2-1 and C3-1 iPSCs showed robust expression of atypical PKC, an 

apical polarity marker, as a ring-like structure at the luminal surface of each rosette 

(Figure 1E), representing typical formation of apical-basal polarity of hNPCs (Shi et al., 

2012). Interestingly, the majority of neural rosettes from Y1-1 and Y1-3 iPSCs exhibited 

scattered expression of atypical PKC (Figure 1E). The structure of adherens junctions 

as revealed by N-cadherin immunostaining was also disrupted in the majority of rosettes 

from two Y1-iPSC lines (Figure 1F). These results suggest that gene(s) located within 

15q11.2del regulate apical polarity and maintaining adherens junctions of hNPCs. 

 

WAVE complex destabilization and polarity defects of hNPCs due to CYFIP1 

haploinsufficiency 

The actin cytoskeleton acts as a cytoplasmic anchor for cadherin/catenin proteins at 

adherens junctions and its proper organization is important for maintaining adherens 

junctions and polarity of neural precursors in the developing mouse cortex (Buchman 

and Tsai, 2007). Among the four genes within the 15q11.2 region, CYFIP1 is a regulator 

of the actin-modulating WAVE complex (Kunda et al., 2003, Steffen et al., 2004, Silva et 
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al., 2009). Indeed, co-immunoprecipitation (co-IP) analysis showed that CYFIP1 

interacts with WAVE complex components WAVE1, WAVE2 and NAP1 (NCKAP1) in 

normal hNPCs (Figure 2A). Therefore, we assessed WAVE complex integrity in hNPCs 

derived from different iPSC lines. Consistent with a haploinsufficiency model, mRNAs of 

all four genes within 15q11.2 were expressed at ~ 50% levels in all hNPCs carrying 

15q11.2del compared to those without the deletion (Figure S2C). CYFIP1 protein was 

also expressed at ~ 50% levels (Figures 2B, 2D and S2D). Strikingly, the expression of 

WAVE2 protein, but not its mRNA, in 15q11.2del hNPCs was only ~ 20% of that in 

control hNPCs (Figures 2B, 2E and S2D). The effect of 15q11.2 microdeletion appeared 

to be specific, as hNPCs derived from mutant DISC1-iPSC lines showed normal 

expression of CYFIP1 and WAVE2 proteins (Figures 2D-E and S2D). Together, these 

biochemical analyses demonstrated a specific defect of WAVE complex stabilization in 

hNPCs with 15q11.2 microdeletion.    

Is CYFIP1 haploinsufficiency the major cause of observed defects in hNPCs 

carrying 15q11.2del? First, we performed complementation experiments using 

lentiviruses to increase CYFIP1 levels in two Y1-iPSC lines. We selected two iPSC lines 

that gave rise to hNPCs with the total amount of CYFIP1 protein at comparable levels to 

C3-1 hNPCs (Y1-1-CP and Y1-3-CP; Figures 2B, 2D). Importantly, the WAVE2 protein 

level in these complemented lines was fully rescued (Figures 2B, 2E), suggesting that 

CYFIP1 haploinsufficiency is required for WAVE complex destabilization in hNPCs with 

15q11.2del. Second, to determine whether decreased CYFIP1 expression is sufficient to 

cause WAVE complex destabilization in hNPCs, we reduced the endogenous CYFIP1 

protein level in control hNPCs to ~ 50% with shRNA (Figure 2C and Table S3). Indeed, 

expression of shRNA-CYFIP1, but not shRNA-control, led to significantly decreased 

WAVE2 protein expression (Figure 2C). Finally, we examined whether CYFIP1 
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haploinsufficiency is the cause of adherens junction and apical polarity impairments 

observed in neural rosettes from hNPCs with 15q11.2del. We first validated our pilot 

results using an independent embryoid body protocol (Juopperi et al., 2012), which gave 

rise to pure PAX6+ neural progenitors (Figure S2E). Scattered expression of atypical 

PKC at the luminal surface was observed for the majority of neural rosettes from 

multiple iPSC lines with 15q11.2del (Figures 2F-G). Importantly, complementation of 

CYFIP1 expression to the normal level in two Y1 lines rescued the expression of atypical 

PKC at the luminal surface (Figures 2F-G), whereas reduction of CYFIP1 expression 

by shRNA in C3-1 hNPCs led to scattered expression of atypical PKC (Figure S2F). 

Consistent with an intact WAVE complex, neural rosettes derived from mutant DISC1-

iPSCs exhibited normal distribution of PKC at the luminal surface (Figure 2G). Analysis 

of additional polarity markers, including PAR3 and -catenin, also showed consistent 

results across the groups (Figure S2G).    

Taken together, this series of biochemical and functional analyses of a collection 

of 20 iPSC lines established that 15q11.2del, through CYFIP1 deficiency, leads to 

defects in the maintenance of adherens junctions, apical polarity and WAVE complex 

stability in hNPCs.     

 

Requirement of CYFIP1 in maintaining adherens junctions and apical polarity of 

RGCs in developing mouse cortex 

Given limitations of in vitro studies of human iPSCs, we next turned to in vivo mouse 

embryonic cortical development to assess whether the CYFIP1 function we identified in 

regulating hNPCs is physiologically relevant in vivo and, furthermore, to examine the 

long-term consequence of CYFIP1 deficiency in cortical development. In the E15.5 

dorsal neocortex, CYFIP1 was found to be accumulated at the ventricular surface in the 
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ventricular zone (VZ), with lower expression in migrating neurons in the intermediate 

zone (IZ; Figure 3A). The VZ of the mid-neurogenic period is mostly occupied by RGCs, 

which are neural stem cells in the developing cortex (Kriegstein and Alvarez-Buylla, 

2009). The apical processes of adjacent RGCs are attached to one another via 

cadherin-based adherens junctions at the ventricular surface (Loulier et al., 2009; Rasin 

et al., 2007). Co-immunostaining showed that CYFIP1 was highly expressed at the F-

actin-expressing lateral membrane domain, and N-cadherin- and -catenin-expressing 

adherens junctions in the apical endfeet of RGCs (Figures 3B-C). With an en face view 

from the ventricle, CYFIP1 was found as cytosolic puncta inside of the ring-like F-actin 

structure on the ventricular surface (Figure 3C).  

 To investigate CYFIP1 function in regulating RGCs, we generated effective 

shRNAs specifically against mouse Cyfip1 (Figure S3A and Table S3). We performed in 

utero electroporation with vectors co-expressing GFP and shRNA-Cyfip1#2 (sh-Cyfip1), 

or control shRNA (sh-control), into the E13.5 neocortex, and analyzed 3 days later. 

GFP+ cells expressing sh-Cyfip1 showed largely absent CYFIP1 immunoreactivity, 

confirming the shRNA efficiency against endogenous CYFIP1 in vivo (Figure S3B). 

While GFP+ cells expressing sh-control in the VZ showed robust N-cadherin expression 

at the ventricular surface, those expressing sh-Cyfip1 did not (Figures 3D-E). En face 

view near the ventricular surface further showed reduced N-cadherin expression in some 

GFP- cells at regions in contact with GFP+ cells expressing sh-Cyfip1, suggesting a 

potential non-cell autonomous effect (Figure 3E). Thus, similar to its function in cultured 

hNPCs, CYFIP1 maintains adherens junctions and apical polarity of neural stem cells in 

the developing mouse cortex in vivo.  

Ectopic localization of CYFIP1-deficient RGCs outside of the VZ  
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What is the functional consequence of impairments in adherens junctions and apical 

polarity of RGCs from CYFIP1 deficiency? We examined RGC cell body distribution by 

Pax6 immunohistochemistry. Pax6+GFP+ cells expressing sh-control were mostly 

restricted within the VZ (Figures 4A, left panel, and 4B). In contrast, a significant 

percentage of Pax6+GFP+ cells expressing sh-Cyfip1 (#2) were ectopically misplaced in 

the SVZ and IZ, at the expense of VZ localization (Figures 4A, middle panel, and 4B). 

Aberrant localization of RGCs was also observed with an independent shRNA against 

mouse Cyfip1 (#1; Figure S4A). Importantly, this defect was rescued by co-expression of 

shRNA-resistant CYFIP1 cDNA (Figures 4A, right panel, and 4B), confirming the 

specificity of shRNA experiments.  

GFP+ mitotic cells labeled with phospho-HistoneH3 were also found to be 

scattered in the SVZ and IZ (Figure 4C). To determine whether NPC proliferation was 

affected by CYFIP1 deficiency, proliferating cells were pulsed with EdU and examined 2 

hours later. Similar to hNPCs in vitro (Figure S2B), CYFIP1-deficient cells showed EdU 

incorporation comparable to those expressing sh-control, despite their ectopic 

localization (Figures 4D and S4B). To examine cell cycle progression, we determined 

the cell cycle exit index defined as the percentage of EdU+Ki67- cells among all EdU+ 

cells at 24 hours after EdU administration and did not find any differences (Figure S4C). 

Together, these results indicate that CYFIP1 is important for proper placement and 

pattern of mitosis, but not essential for the proliferation and cell cycle progression of 

RGCs in the developing mouse cortex in vivo. 

 

Ectopic placement of intermediate progenitor cells and cortical neurons generated 

from CYFIP1-deficient RGCs  
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We next examined the direct progeny from RGCs, intermediate progenitor cells (IPCs), 

which express Tbr2 and proliferate transiently in the SVZ to generate neurons (Englund 

et al., 2005). Tbr2+GFP+ cells expressing sh-Cyfip1 were also scattered in the 

VZ/SVZ/IZ, while Tbr2+GFP+ cells expressing sh-control mainly resided in the SVZ 

(Figures 5A-B). On the other hand, the proportion of Pax6+GFP+ cells and Tbr2+GFP+ 

cells were not altered between those expressing sh-control and sh-Cyfip1 (Figure 5C), 

suggesting that CYFIP1 is dispensable for the proper differentiation of RGCs into IPCs.    

Glutamatergic projection neurons of the adult cortex are generated in a 

stereotyped temporal order, with deep layer neurons (layer V/VI: CTIP2+) produced first 

and upper layer neurons (layer II/III/IV: Cux1+) produced later (Gaspard et al., 2008; 

Leone et al., 2008). Defects in RGCs, which serve as the main radial scaffold for 

migrating neurons, could potentially lead to failure of neurons to reach their normal 

position. To examine the long-term consequence of Cyfip1 knockdown on cortical layer 

formation, we analyzed P5 brains after in utero electroporation of shRNAs at E13.5. 

CTIP2+ neurons, which normally localize in deeper layers, showed more frequent 

localization in upper layers after sh-Cyfip1 expression in RGCs (Figures 5D-E). On the 

contrary, Cux1+ neurons, which normally localize in upper layers, were present in a 

higher percentage in deep layers after sh-Cyfip1 expression (Figures 5D-E). The ratio of 

CTIP2+ versus CUX1+ cells among all GFP+ cells was not significantly different between 

sh-control (0.22 + 0.03) and sh-Cyfip1 (0.23 + 0.02; n = 4), suggesting that CYFIP1 is 

dispensable for neuronal subtype specification. Some mis-localized Cux1+ and CTIP2+ 

cells appeared to be GFP- (Figure 5D). This could be due to the diluted GFP expression 

in the P5 brain after multiple rounds of cell division or, alternatively, non-cell autonomous 

migration defects due to aberrant radial scaffolds of CYFIP1-deficient RGCs. These 
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results demonstrate that CYFIP1 deficiency causes improper placement of IPCs and 

glutamatergic projection neurons, resulting in cortical layer malformation.  

 

CYFIP1 signaling mechanism in regulating RGCs in the developing embryonic 

mouse cortex 

Similar to findings from hNPCs (Figure 2A), co-IP analysis using E14.5 mouse cortical 

lysates showed that endogenous CYFIP1 interacted with several WAVE components, 

including WAVE1, WAVE2, Abi1 and Nap1 (Figure 6A). Knockdown of CYFIP1 in mouse 

NPCs in vitro also led to marked decrease of WAVE2 and Abi1 proteins (Figure 6B). 

Immunohistological analysis showed that WAVE2 protein expression at the ventricular 

surface was drastically decreased after Cyfip1 knockdown in vivo (Figure 6C). These 

results suggested a conserved role and signaling mechanism of CYFIP1 in regulating 

WAVE complex stability and adherens junctions in both human and mouse NPCs.   

 Next, we examined the functional role of CYFIP1-dependent WAVE complex and 

downstream signaling in regulating RGCs in vivo (Figure S5A). We developed effective 

shRNAs against mouse Abi1 and downstream mediators Arp2/3 (Figures S5B-C). In 

utero electroporation analyses showed a lack of N-cadherin expression at the ventricular 

surface by GFP+ cells expressing sh-Abi1 or sh-Arp2/3 (double knockdown; Figure 6D). 

GFP+Pax6+ cells expressing sh-Abi1 or sh-Arp2/3 also showed scattered distribution in 

the VZ/SVZ/IZ (Figures 6E-G). These results suggest that, similar to CYFIP1, WAVE 

complex-mediated signaling is important for the maintenance of adherens junctions and 

proper placement of RGCs in the developing cortex.   

 

Epistatic interaction of gene expression-associated variants of the WAVE 
signalling components for risk of schizophrenia 
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Our findings of similar roles of WAVE signaling components in regulating RGCs, 

together with previous findings of association of 15q11.2del with risk for schizophrenia 

(Malhotra and Sebat, 2012), led to a new hypothesis that common genetic variants 

within the WAVE signalling pathway might interact to affect risk for schizophrenia even in 

the absence of association at the individual gene level (Figure 1B). The goal of the 

clinical genetic association analyses was to model molecular interactions of CYFIP1 and 

WAVE components identified in iPSC and animal studies. We first examined mRNA 

expression in the dorso-lateral prefrontal cortex (DLPFC) of post-mortem human brains 

in order to find specific genetic variants that were associated with expression of genes in 

the WAVE signalling pathway (i.e. expression quantitative trait loci or eQTLs). We 

performed a cis-association analysis of SNP variants with gene expression measured by 

RNA-seq in a group of 64 Caucasian subjects with no history of medical or psychiatric 

disease (Table S4). Significant associations were found for rs268864 with ACTR2/Arp2 

expression (p = 0.02), rs2797930 with ABI1 expression (p = 0.02) and rs7168367 with 

CYFIP1 expression (p = 0.006). SNP rs4778334, previously associated with risk for 

schizophrenia in a case-control Han Chinese sample (Zhao et al., 2013), was also 

associated with CYFIP1 gene expression (p = 0.05). Interestingly, rs4778334 does not 

show linkage disequilibrium with other genotyped SNPs in the European ancestry 

populations or in the Chinese, consistent with a potential functional effect of this SNP 

(Figure S6). We also found that, except for CYFIP1, all genes in this network (ABI1, 

WASF1/WAVE1, WASF2/WAVE2, NCKAP1/Nap1, ACTR2/Arp2 and ACTR3/Arp3) tend 

to be co-expressed together in a similar pattern (Table S5). 

To search for evidence that eQTLs in the WAVE signalling pathway might be 

associated with risk for schizophrenia, we performed single genetic association analysis 

of the selected four expression-associated SNPs (or proxy SNPs) in four independent 
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schizophrenia case-control datasets of European ancestry. No significant single SNP 

association was found in any of the four cohorts (Table S6). Targeted pair-wise SNP-

SNP interaction analyses were carried out among three SNPs - rs268864 (SNP1) at 

ACTR2, rs4778334 (SNP3) at CYFIP1||NIPA2 and rs7168367 (SNP4) at CYFIP1||NIPA1 

as these were only SNPs genotyped in all four cohorts. An interaction was detected 

between rs268864 at ACTR2 and rs4778334 at CYFIP1||NIPA2 at a marginal 

significance (p = 0.0553) in the largest American LIBD/CBDB cohort (Figure 7A). The 

same trend of interaction with these exact alleles was also found in three smaller 

schizophrenia case-control cohorts of American (GRU; p = 0.147), German (MUN; p = 

0.258) and Scottish origin (ABE; p = 0.215). Meta-analysis of the pair-wise interaction in 

all four cohorts showed significant evidence for interaction (p = 0.00417) between 

rs268864 at ACTR2 and rs4778334 at CYFIP1||NIPA2; interaction analysis of the 

combined sample of four cohorts confirmed the interaction in both an additive model (p = 

0.0035) and a genotypic model (p = 0.0048; Figure 7A). The results of the meta-analysis 

are significant after correction for all combinations of two way interactions based on the 

three SNPs analysed. Moreover, the interactions, which were directionally consistent 

across all four datasets, were hypothesized based on eQTLs that specifically modelled 

the directionality of biologic interactions in the model system experiments.   

It is interesting to note that depending on the genotype background of the ACTR2 

SNP rs268864, genotypes of rs4778334 at CYFIP1 showed varying effects from 

negative to positive on risk of schizophrenia (Figure 7B). In the group of rs268864 

genotype AA, individuals carrying genotype CC and CT at rs4778334 were less likely 

associated with risk of schizophrenia in comparison with TT genotype (p = 0.0244), and 

odds ratio estimates were 0.716 and 0.772 respectively. In contrast, in the group of 

rs268864 genotype GG, individuals carrying genotype CC and CT at rs4778334 were 
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more likely associated with risk of schizophrenia in comparison with TT genotype (p = 

0.0103), and odds ratio estimates were 11.14 and 4.56, respectively. Alternating 

genotype associations at one locus based on the genotype at another locus are classic 

epistatic phenomena.   

 

DISCUSSION 

Our study identified the functional role and signalling mechanism underlying CYFIP1 

regulation of neural stem cells and provides novel insight into how risk factors for 

neuropsychiatric disorders regulate neural development. Using human iPSCs as an 

entry point to investigate a prominent CNV risk factor encompassing multiple genes for 

schizophrenia and other neuropsychiatric disorders (Figure 1A-B), we uncovered novel 

cellular phenotypes in derived hNPCs and identified the responsible gene within the 

CNV. These in vitro findings of developmentally relevant phenotypes in human cells 

guided our analyses of neural stem cells in the developing mouse cortex in vivo and led 

to the identification of the underlying signalling mechanism. The mechanistic insight 

allowed us to generate a new hypothesis and test it with gene expression analyses in 

human brains and genetic association studies, resulting in the identification of a novel 

epistatic interaction for risk of schizophrenia. Our study provides an example of how 

genetic risk factors for complex human disorders can be studied in complementary 

systems using patient-derived iPSCs as the leading tool for discovery. 

15q11.2 CNVs have emerged as a prominent risk factor for several 

neuropsychiatric disorders (Malhotra and Sebat, 2012). Our results from multiple levels 

of analyses provide evidence to support a specific gene within this CNV, CYFIP1, as a 

potential major contributing factor to biological processes implicated in the 

neurodevelopmental origins of these disorders. 15q11.2del has been identified as one of 
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the three most frequent CNV risk factors for schizophrenia and increases risk 2-4 fold 

(Consortium, 2008; Stefansson et al., 2008). While none of the SNPs we examined 

within the CYFIP1 and WAVE signalling pathway showed significant independent risk for 

schizophrenia in four cohorts of European ancestry, we identified a potential epistatic 

interaction between CYFIP1 and WAVE signalling mediator ACTR2 /Arp2 for increased 

risk for schizophrenia with an odds ratio up to 11 (Figure 7B). While these results must 

be taken as preliminary and in need of further replication as the overall statistics are not 

particularly strong, our study implicates, for the first time, WAVE signalling in risk for 

schizophrenia and supports an emergent model that multiple factors within the same 

signalling pathway interact epistatically to affect the risk for psychiatric disorders. 

Notably, 15q11.2 CNVs themselves are not specific to schizophrenia (De Wolf et al., 

2013). In a large study with over 15,000 patient samples, 15q11.2del was found to be 

strongly associated with developmental delay in children (Cooper et al., 2011). Studies 

have also linked 15q11.2del to epilepsy (de Kovel et al., 2010; Jahn et al., 2013; Mullen 

et al., 2013). Interestingly, CNVs with a duplication of this same region have been 

associated with autistic spectrum disorder (Nishimura et al., 2007; van der Zwaag et al., 

2010; Wegiel et al., 2012). In addition, CYFIP1 is within larger 15q11.2-13.1 CNVs that 

have also been linked to schizophrenia, autistic spectrum disorder, and bipolar disorder 

(Malhotra and Sebat, 2012). Therefore, our findings have broad implications for these 

disorders and identify a new signalling pathway for future targeted investigation.  

Our study provides novel insight into how CYFIP1 signaling regulates early 

mammalian neural development. While several previous studies have investigated roles 

of CYFIP1 in neurons, its function in neural stem cells was completely unknown. In 

Drosophila, the fly ortholog of Cyfip1 was shown to regulate neuromuscular junction 

formation (Schenck et al., 2003; Zhao et al., 2013) and eye morphogenesis (Bogdan et 
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al., 2004; Galy et al., 2011). In mice, CYFIP1 interacts with FMRP and cap protein eIF4E 

to regulate activity-dependent protein translation in mature neurons (Napoli et al., 2008). 

Furthermore, Cyfip1 haploinsufficiency in mice produces fragile X-like phenotypes 

(Bozdagi et al., 2012). By focusing on the earliest stages of cortical development, our 

study provides evidence for a critical role of CYFIP1 in regulating adherens junctions 

and apical polarity of both human neural stem cells in the neural rosette model and 

mouse RGCs in the developing cortex in vivo. Moreover, as a functional consequence of 

CYFIP1 deficiency, RGCs and their progeny are aberrantly localized in the developing 

cortex in vivo, resulting in altered stratification of projection neurons and cortical layer 

malformation. Correct positioning of neurons in the mammalian cortex is a critical 

determinant of connectivity and neural function, as highlighted by severe neuronal 

migration disorders in humans (Ross and Walsh, 2001). Deficits in cortical patterning 

have also been suggested in schizophrenia (Arnold, 1999). A recent study found high 

incidence of patches of neocortical disorganization in autistic brains (Stoner et al., 2014), 

reminiscent of what we observed in mouse cortex after in utero exploration to 

knockdown CYFIP1. Our study therefore provides a new mechanistic model to 

understand how 15q11.2 CNVs as risk factors may contribute to susceptibility of 

neuropsychiatric disorders. Our study does not rule out the possibility that other factors 

within 15q11.2 CNVs affect neural development or that 15q11.2 CNVs also affect 

functional integrity of mature neurons, as suggested by rodent studies involving eIF4E  

(Napoli et al., 2008). Future studies of human neurons derived from our iPSC collection 

will help address the relevance of this pathway in human neuronal function.  

Our study also reveals, for the first time, a critical role of the WAVE complex 

signaling in regulating neural stem cells. Early lethality of knockout mice for the majority 

of WAVE signaling components, including CYFIP1 (Bozdagi et al., 2012), WAVE2 



25 

 

(Yamazaki et al., 2003; Yan et al., 2003), Abi1 (Dubielecka et al., 2011), and Arp3 (Vauti 

et al., 2007), supports a requisite role of this pathway for mouse survival, which may 

have precluded in vivo investigation of its role in neural stem cells in early studies. Given 

that adherens junctions are rapidly lost in newly committed IPCs and neurons (Itoh et al., 

2013; Rousso et al., 2012) and that there is little or reduced CYFIP1 expression in IPCs 

and immature neurons (Figure 3A), our result suggests that aberrant positioning of 

cortical projection neurons is caused by CYFIP1-WAVE signaling defects in RGCs. 

Future studies of cell type specific manipulation of CYFIP1-WAVE signaling in IPCs 

and/or immature neurons will provide a more definitive answer.  

Human iPSC technology provides a new experimental platform to investigate 

cellular phenotypes and mechanisms in genetically tractable and disease-relevant 

human cell types. To date, patient-derived iPSCs, especially those related to monogenic 

disorders, have been successfully used to support models of disease pathology 

developed from animal studies, to demonstrate conserved cellular function of signalling 

pathways across species, or to facilitate large-scale screening of compounds to identify 

novel therapeutics (Bellin et al., 2013). Different from monogenic disorders, psychiatric 

disorders are often genetically complex and typically present with substantial variations 

in symptoms and degrees of impairment across individuals. Further, many risk 

associated genetic mutations are not exclusive to clinical populations, nor a particular 

disease. A key challenge and opportunity for human iPSC biology is to generate new 

insight into (patho)physiological phenotypes and mechanisms beyond merely supporting 

previous findings and concepts. Using human iPSCs as a leading discovery tool, we 

identified novel and consistent cellular phenotypes of neural stem cells that are specific 

for 15q11.2del, as they were not present in hNPCs derived from iPSCs with a DISC1 

mutation, another risk factor for neuropsychiatric disorders (Thomson et al., 2013). While 
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genetic risk factors for psychiatric disorders do not code for behaviour, we provide an 

example that they can lead to specific cellular abnormalities of biological processes 

implicated in the neurodevelopmental origins of these disorders. Using human iPSCs as 

an entry point enabled identification of novel investigative targets, followed by validation 

of in vivo physiological relevance and identification of underlying mechanisms using 

animal models, and finally, a return to human genetic association studies to support the 

disease-relevance of the identified pathway in humans (Figure 1B). 

In summary, by leveraging and integrating information derived from multiple 

levels of analyses, ranging from cellular processes in human neural stem cells, in vivo 

animal models, to targeted human genetic association studies, we provide a novel 

mechanistic understanding of how 15q11.2 microdeletion affects neural developmental 

processes. Furthermore, our study illustrates the potential of human iPSC-based 

research to enable a multifaceted approach to tackle the mystery of complex psychiatric 

disorders.  

 

EXPERIMENTAL PROCEDURES 

iPSC Generation, Culture, Characterization and Neural Differentiation 

All iPSC lines were derived from human donor dermal skin fibroblasts using integration-

free episomal or Sendai virus methods. Fibroblasts with 15q11.2del (Y1, Y3, and Y4) 

were collected through the NIMH childhood-onset schizophrenia cohort and their family 

members (Mattai et al., 2011). All procedures were performed in accordance with IRB 

and ISCRO protocols approved by the Institutional Committees. iPSCs were cultured 

and characterized as previously described (Chiang et al., 2011; Juopperi et al., 2012).  
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 iPSCs were differentiated into pNPCs according to a published protocol (Li et al., 

2011). Neural rosette formation assays were performed using the mono-layer (Shi et al., 

2012) and embryoid body methods (Juopperi et al., 2012). Neural rosettes were initially 

identified based on polarized pattern of DAPI staining and NESTIN immunoreactivity. 

Only individual non-overlapped neural rosettes that were 50-200 m in diameter were 

included for quantification. The number of rosettes showing an intact apical-ring 

structure (more than 90% of coverage of apical-ring circumference with atypical PKC, 

N-cadherin, PAR3 or -catenin immunoreactivity) and incomplete/partial apical structure 

(less than 90% coverage) were quantified.  

In utero Electroporation and Quantitative Analysis of Mouse Cortical Development 

 in utero electroporation was performed as described (Saito, 2006). For quantitative 

analysis of electroporated neocortices, GFP+ cells localized within the dorso-lateral 

cortex were examined. A total of 3–6 brain sections were analyzed per animal by taking 

3x3 images to cover the electroporated region of each coronal section with a 25× or 40× 

objective and comparing them with equivalent sections in littermate counterparts. 

Quantifications were performed using Imaris software (Bitplane). For distribution plots, 

the distances between GFP+Pax6+ cells or GFP+Tbr2+ cells and the ventricular surface 

were calculated by using an in-house MATLAB script (The MathWorks, Inc.), and plotted 

after dividing each distance by total length of the neocortex and subgrouping into ten 

equal-size vertical bins (1: the most apical, 10: the most basal).  

All animal procedures were performed in accordance with the protocol approved 

by the Institutional Animal Care and Use Committee. 
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mRNA Expression Analysis of Post-mortem Human Brains, SNP Genotyping and 

Clinical Genetic Association and Interaction Analyses  

mRNA expression data were generated from post-mortem DLPFC grey matter from 64 

subjects without history or diagnosis of a medical or psychiatric disorder (51 males; 

mean age: 44 ± 14.9 years), all from European ancestry population and matched on age 

and various post-mortem tissue characteristics. Detailed methods relating to the Brain 

Tissue Collection of the Clinical Brain Disorders Branch at NIMH (CBDB/NIMH) and the 

Lieber Institute for Brain Development (LIBD) have been described elsewhere 

(Colantuoni et al., 2011).  

DNA for genotyping was obtained from the cerebella of samples in the collection 

using Illumina OMNI 2.5M SNP chips. We used ANCOVAs, with age, sex and RIN (RNA 

Integrity Number) as covariates, to investigate main effects of SNPs on gene expression.  

We carried out clinical genetic association and interaction analyses using logistic 

regression in four independent sample cohorts of cases with schizophrenia and healthy 

controls. Final interaction analysis was also assessed in the combined sample of four 

cohorts while controlling cohort effect in order to gain adequate power to detect 

interactions. The sample collection, genotyping and quality control have been described 

elsewhere (Zhang et al., 2011).  

 

SUPPLEMENTAL INFORMATION  

Supplementary information includes six tables and six figures.  
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 FIGURES AND LEGENDS 

 

 

Figure 1. iPSC derivation and aberrant neural rosette formation of hNPCs 

differentiated from iPSC lines carrying 15q11.2del 

(A) An ideogram of Chromosome 15 with proximal 15q11.2 region expanded. Blue 

boxes indicate the four deleted genes within 15q11.2del, including CYFIP1.  

(B) A schematic summary of the current study design. 

(C) Sample light microscopic images and fluorescent images of fibroblasts and iPSC 

colonies for immunostaining of pluripotency markers. Scale bars, 100 m. 
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(D) Sample fluorescence in situ hybridization (FISH) images of donor fibroblasts and 

derived iPSC lines. Two FISH probes, one for CYFIP1 locus and one for SNRPN locus 

(outside of 15q11.2; See A for the genomic location), were used. Scale bar, 10 m.  

(E-F) Defects in adherens junctions and apical polarity of hNPCs derived from iPSCs 

with 15q11.2del. Shown on the left are sample confocal images of immunostaining of 

atypical PKC (E) and N-cadherin (F) for neural rosettes differentiated from iPSCs by 

the mono-layer method. Scale bars, 20 m. Shown on the right are quantifications of 

neural rosettes with complete “apical ring-like structure” (> 90% coverage of apical-ring 

circumference with atypical PKC or N-cadherin immunoreactivity) or “partial/scattered” 

(< 90% coverage). Values represent mean + SEM (n = 3 cultures; ***p < 0.001; 

Student’s t-test). 

See also Figures S1, S2 and Tables S1, S2. 
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Figure 2. Destabilization of the WAVE complex and polarity defects of hNPCs due 

to CYFIP1 deficiency 

(A) CYFIP1 is a component of WAVE complex in human pNPCs. Shown are sample 

Western blot images of co-IP analysis of pNPCs using anti-CYFIP1 antibodies.  

(B) Reduced CYFIP1 and WAVE2 protein levels in pNPCs carrying 15q11.2del. 

Lentiviruses were used to establish two CYFIP1 complementation lines (Y1-1-CP and 

Y1-3-CP). 

(C) Decreased WAVE2 protein levels after CYFIP1 knockdown by lentivirus-mediated 

shRNA expression in normal pNPCs for 48 hrs.    

(D-E) Quantification of protein levels of CYFIP1 and WAVE2 among different pNPCs. All 

data were normalized to ACTIN levels for loading control and then normalized to CYFIP1 
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(D) or WAVE2 (E) in C2-1 pNPCs for comparison. Values represent mean + SEM (n = 3-

5 cultures; *p < 0.05; Student’s t-test). 

(F-G) Defect in adherens junction and apical polarity of hNPCs carrying 15q11.2del and 

its rescue by CYFIP1 complementation. Shown on the left are sample confocal images 

of immunostaining of atypical PKC for neural rosettes differentiated from iPSCs using 

the embryoid body method. Scale bar, 20 m. Shown on the right are quantifications of 

neural rosettes similar as in Figure 1E. Values represent mean + SEM (n = 5 cultures; 

***p < 0.001; **p < 0.01; Student’s t-test). 

See also Figure S2 and Tables S1, S3. 

 

Figure 3. Critical role of CYFIP1 in regulating adherens junctions and apical 

polarity of RGCs in the developing mouse cortex  
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(A-C) Expression of CYFIP1 in the mouse neocortex at E15.5. Shown are sample 

confocal images of immunostaining of CYFIP1 and N-cadherin. VZ: ventricular zone; IZ: 

intermediate zone; CP: cortical plate. Also shown is the en face view of CYFIP1 

expression at the ventricular surface (C, left panel). The structure of F-actin, which forms 

the boundary between apical endfeet of RGCs on the ventricular surface, was labelled 

by Phalloidin-Alexa594 (Red). Cross-section images are shown in right panels. Scale 

bars, 50 m (A), 20 m (B) and 5 m (C). 

(D-E) Expression of CYFIP1 and other apically polarized proteins in the mouse 

neocortex at E16.5 after in utero electroporation at E13.5 to co-express GFP and sh-

control or sh-Cyfip1 (#2). Shown are sample confocal images of immunostaining for GFP 

and N-cadherin (D) and the en face view at 3 m from the ventricular surface (E). Scale 

bars: 50 m (D) and 10 m (E). 

See also Figure S3 and Tables S2, S3. 
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Figure 4. Ectopic localization of CYFIP1-deficient RGCs outside of the VZ in the 

developing mouse cortex  

(A-B) Ectopic localization of Pax6+ RGCs in the SVZ and IZ of E16.5 neurocortices after 

in utero electroporation at E13.5 to co-express GFP and sh-control or sh-Cyfip1, or co-

express GFP/sh-Cyfip1 and cDNA for shRNA-Cyfip1 resistant HA-tagged CYFIP1. 

Shown in (A) are sample confocal images of immunostaining of Pax6, GFP and HA. Co-

transfection of GFP/sh-Cyfip1 and shRNA-resistant HA-tagged CYFIP1 was confirmed 

by co-localization of GFP and HA immunostaining (the right-most panel). Scale bar, 50 

m. Shown in (B) are two different quantifications of the distribution of GFP+Pax6+ cells 
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in the neocortex. Upper panel represents GFP+Pax6+ cells in each of ten equal-size 

vertical bins expressed as percentages of total GFP+Pax6+ cells (1: the most apical, 10: 

the most basal). Lower panel represents percentages of GFP+Pax6+ cells in the VZ (VZ) 

and in other layers (non-VZ). Values represent mean + SEM (n = 4-5 animals; **p < 

0.01; Student’s t-test). 

(C) Aberrant localization of proliferating cells expressing sh-Cyfip1 in E16.5 neocortex. 

Sample confocal images of immunostaining for GFP and an M-phase marker, phospho-

HistoneH3 (pH3), are shown. Scale bar, 50 m. Also shown are quantifications of 

percentages of GFP+pH3+ cells at the ventricular surface (surface division) and at other 

locations (non-surface division). Values represent mean + SEM (n = 5 animals; ***p < 

0.001; Student’s t-test)  

(D) Proliferation of CYFIP1-deficient RGCs outside of the VZ. E13.5 embryos were 

electroporated to co-express GFP and sh-Cyfip1 and fixed at 2 hrs after EdU injection at 

E16.5. Shown are sample confocal images of staining for GFP, Pax6, EdU and DAPI. 

Note that ectopic GFP+Pax6+ cells in the IZ still incorporated EdU, representing their 

ability to proliferate far from the ventricular surface. Scale bars, 50 m (left panel) and 20 

m (insets).   

See also Figure S4 and Table S2. 
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Figure 5. Ectopic placement of intermediate progenitor cells and cortical neurons 

upon CYFIP1 knockdown in RGCs  

(A-C) Ectopic placement of intermediate progenitor cells (IPCs) upon CYFIP1 

knockdown in RGCs. E13.5 embryos were electroporated to co-express GFP and sh-
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Cyfip1 or sh-control and examined at E16.5. Shown in (A) are sample confocal images 

of immunostaining for GFP, Pax6, Tbr2 and DAPI. Scale bar, 50 m. Shown in (B) are 

quantifications of the distribution of GFP+Tbr2+ cells in the neocortex. The graph 

represents GFP+Tbr2+ cells in each of ten equal-size vertical bins expressed as the 

percentage of total GFP+Tbr2+ cells. Values represent mean + SEM (n = 4-5 animals; **p 

< 0.01; Student’s t-test). Shown in (C) are quantifications of percentages of GFP+ cells 

that were Pax6+ or Trb2+. Values represent mean + SEM (n = 4 animals; p > 0.1; 

Student’s t-test).  

(D-E) Ectopic placement of cortical neurons upon CYFIP1 knockdown in RGCs. Same 

as in (A-C), except that electroporated brains were examined at P5. Shown in (D) are 

sample confocal images of immunostaining for GFP, Cux1, and CTIP2. Right panels 

represent two different insets in the left panels. Arrows point to GFP+CTIP2+ or 

GFP+Cux1+ cells. Scale bars, 100 m. Shown in (E) are quantifications of percentages 

of GFP+CTIP2+ cells (top panel) or GFP+Cux1+ cells (bottom panel) that were distributed 

in upper or deeper layers, respectively. The boundary between upper and lower layers 

was established at the apical limit of Cux1+ cells. Values represent mean + SEM (n = 4 

animals; *p < 0.05; Student’s t-test). 

See also Table S2. 
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Figure 6. Critical role of CYFIP1 signalling in maintaining adherens junctions and 

proper placement of RGCs in the developing mouse cortex 

(A) CYFIP1 is a component of WAVE complex in the developing mouse cortex. Shown 

are sample Western blot images of co-IP analysis using anti-CYFIP1 antibodies and 

E14.5 forebrain lysates. 
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(B) Reduced WAVE2 protein levels by CYFIP1 knockdown in mouse NPCs. Mouse 

NPCs were infected with retroviruses expressing sh-control, or sh-Cyfip1 (#1 or #2) and 

then subjected to Western blot analyses 3 days later. Shown are sample Western blot 

images and quantifications of CYFIP1 and WAVE2 protein levels. Values represent 

mean + SEM (n = 3; **p < 0.01; Student’s t-test).  

(C) Reduced WAVE2 protein levels at the ventricular surface in E16.5 neocortices in 

vivo. E13.5 embryos were electroporated to co-express GFP and sh-Cyfip1 or sh-control 

and examined at E16.5. Shown are sample confocal images of immunostaining for GFP, 

WAVE2 and DAPI. Scale bar, 20 m. 

(D-G) Similar RGC defects among knockdown of CYFIP1, WAVE complex component 

Abi1, or downstream effectors Arp2/3. E13.5 embryos were electroporated to co-express 

GFP and sh-Abi1 or sh-Arp2/sh-Arp3 (double knockdown), and examined at E16.5. 

Shown in (D) are sample confocal images of immunostaining for GFP, Pax6, N-cadherin 

and DAPI. Shown in (E) are sample confocal images of immunostaining for GFP, Pax6, 

and DAPI. Scale bars, 50 m. Also shown are two different quantifications of the 

distribution of GFP+Pax6+ cells in the neocortex among the different experiments, similar 

as in Figure 4B. Values represent mean + SEM (n = 4 animals; **p < 0.01; ***p < 0.001; 

Student’s t-test). 

See also Figure S5 and Tables S2 and S3. 



48 

 

 

Figure 7. Epistatic interaction of gene expression-associated variants of the 

WAVE signalling components for risk of schizophrenia 

(A) Interaction analysis of SNPs rs2688674*ACTR2 and rs4778334*CYFIP1-NIPA1 in 

combined samples of four cohorts in European ancestry population. Analysis was 

performed adjusting for sex and cohort effect. DF, degree of freedom. 

(B) Effect of interaction by genotypes on risk of schizophrenia from a logistic regression 

model based on genotypic interaction of ACTR2 and CYFIP1 in combined samples of 

four cohorts. Adj p is p value after adjusting for multiple testing from post-hoc analysis. 

SNPs were coded as 0, 1 and 2 for number of minor alleles.  

See also Figure S6 and Tables S4, S5 and S6. 
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Dysregulated neurodevelopment with altered structural and functional connectivity is 

believed to underlie many neuropsychiatric disorders1 and “a disease of synapses” is the 

major hypothesis for the biological basis of schizophrenia2. While this hypothesis has 

gained indirect support from human post-mortem brain analyses2-4 and genetic studies5-

10, little is known about the pathophysiology of synapses in patient neurons and how 

susceptibility genes for mental disorders could lead to synaptic deficits in humans. 

Genetics of most psychiatric disorders are extremely complex due to multiple 

susceptibility variants with low penetrance and variable phenotypes11. Rare, multiply 

affected, large families in which a single genetic locus is likely to be responsible for 

conferring susceptibility have proven invaluable for the study of complex disorders. Here 

we generated induced pluripotent stem cells (iPSCs) from four members of a family in 

which a frame-shift mutation of Disrupted-in-schizophrenia-1 (DISC1) co-segregated 

with psychiatric disorders and we further produced different isogenic iPSC lines via gene 

editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPSC-

derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 and, furthermore, 

dysregulates expression of many genes related to synapses and psychiatric disorders in 

human forebrain neurons. Our study reveals that a psychiatric disorder-relevant mutation 

causes synapse deficits and transcriptional dysregulation and our findings provide novel 

insight into the molecular and synaptic etiopathology of psychiatric disorders.  

DISC1 was originally identified at the breakpoint of a balanced chromosomal 

translocation that co-segregated with schizophrenia, bipolar disorder and recurrent major 

mailto:shongju1@jhmi.edu
mailto:gming1@jhmi.edu
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depression in a large Scottish family12. Another rare mutation of a 4 base-pair (bp) 

frame-shift deletion at the DISC1 C-terminus was later discovered in a smaller American 

family (Pedigree H), which shares many similarities with the Scottish pedigree13. DISC1 

variants and polymorphisms have since been found to be associated with schizophrenia, 

bipolar disorder, major depression, and autism, and animal studies support a critical 

contribution of DISC1 to the etiopathology of major mental disorders12, including 

regulating neuronal development and synapse formation14. Little is known about DISC1 

function and dysfunction in human neurons.  

Pluripotent stem cells reprogrammed from patient somatic cells offer a new way 

to investigate mechanisms underlying complex human diseases15. Using an episomal 

non-integrating approach16 we establish iPSC lines from Pedigree H13, including two 

patients with the frame-shift DISC1 mutation (D2/schizophrenia and D3/major 

depression) and two unaffected members without the mutation (C2 and C3; Fig. 1a). We 

also included an unrelated healthy individual as an additional control (C1). We 

performed extensive quality control analyses and selected two iPSC lines from each 

individual for detailed studies (Extended Data Fig. 1 and Extended Data Table 1a).  

We differentiated iPSCs into forebrain-specific human neural progenitor cells 

(hNPCs) expressing NESTIN, PAX6, EMX-1, FOXG1 and OTX2 (Fig. 1b; Extended data 

Fig. 2a-b and Extended Data Table 1b), and then into MAP2AB+ neurons (99.92 + 

0.08%; n = 5). About 90% of neurons expressed VGLUT1 or -CAMKII, indicative of 

glutamatergic neurons, while few neurons expressed VGAT or GAD67 (GABAergic), and 

even fewer expressed TH (dopaminergic; Fig. 1c and Extended Data Fig. 3). These 

neurons express different cortical layer markers, including TBR1, CTIP2, BRN2 and 

SATB2 (Fig. 1d). Quantitative analyses showed no differences in neuronal subtype 

differentiation among all lines (Fig. 1c-d and Extended Data Fig. 3).  
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The mutant DISC1 allele is predicted to generate a frame-shift mutant DISC1 

protein (mDISC1) with 9 de novo amino acids at the C-terminus13 (Extended Data Fig. 

4a). Quantitative real-time PCR (qPCR) analysis of a common exon 2 showed similar 

mRNA levels in different neurons (Extended Data Fig. 4b and Extended Data Table 1c). 

Strikingly, D2 and D3 neurons only expressed ~ 20% of the total DISC1 protein detected 

in control neurons using antibodies17 that recognized both human full-length wild-type 

DISC1 (wDISC1) and mDISC1 when expressed in HEK293 cells (Fig. 1e). DISC1 

interacts with itself and forms multimers, and sometimes aggregates18. Given that 

patients are heterozygous for the DISC1 mutation (Extended Data Fig. 1f), this result 

suggested a model that mDISC1 interacts with wDISC1 to form aggregates and deplete 

soluble DISC1. Indeed, differentially tagged wDISC1 and mDISC1 co-

immunoprecipitated when co-expressed in HEK293 cells (Extended Data Fig. 4c). 

mDISC1 significantly decreased soluble wDISC1 proteins in a dose-dependent manner 

and, furthermore, increased wDISC1 ubiquitination (Extended Data Fig. 4d-e). These 

results suggest a mechanism distinct from DISC1 haploinsufficiency in mutant human 

neurons.   

We next examined human forebrain neuron development. As in animal models14, 

quantitative analyses showed both increased soma size and total dendritic length at 1 

and 2 weeks after neuronal differentiation for mutant neurons; however, these properties 

became indistinguishable from control neurons at 3 and 4 weeks (Extended Data Fig. 5). 

Electrophysiological recordings of neurons did not show any consistent changes in their 

I-V relationship at 4 weeks after differentiation (Extended Data Fig. 6). To examine 

synapse formation, we immunostained synaptic vesicle protein SV2 (Fig. 2a), which is 

associated with mature synaptic vesicles and regulates presynaptic release19,20. The 

density of SV2+ synaptic boutons was significantly reduced in D2 and D3 neurons 
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compared to control neurons at both 4 and 6 weeks (Fig. 2b). We next performed whole-

cell patch-clamp recordings of human neurons of similar densities co-cultured on 

astrocytes21 (Fig. 2c). The frequency of excitatory spontaneous synaptic currents 

(SSCs), but not the amplitude, was significantly lower for D2-1 and D3-1 neurons 

compared to those of C3-1 neurons at both 4 and 6 weeks (Fig. 2d), suggesting a 

presynaptic defect in synaptic release. Results appeared to be more complex when 

neurons derived from outside of the pedigree (C1) were compared. D2-1 neurons 

exhibited markedly reduced SSC frequency and amplitude compared to C1-1 neurons at 

4 weeks and slightly reduced frequency and amplitude at 6 weeks (Fig. 2d). For D3-1 

neurons, similar results of reduced SSC frequency, but not amplitude, were observed 

when compared to C1-1 or C3-1 neurons at 4 or 6 weeks (Fig. 2d). While uniform results 

were obtained from comparison of neurons derived from the same family, all 

electrophysiological data showed functional synaptic transmission deficits in DISC1 

mutant neurons and further suggested a component of presynaptic dysfunction. Indeed, 

quantitative FM1-43 imaging analyses revealed a significant defect in depolarization-

induced vesicle release for mutant neurons compared to control neurons (Fig. 2e).  

To address whether the DISC1 mutation is necessary and/or sufficient for 

observed synaptic defects, we generated different types of isogenic iPSC lines using 

transcription activator-like effector nuclease (TALEN; Fig. 3a). First, we corrected the 4-

bp deletion in one mutant DISC1 iPSC line (D3-2-6R). Second, we introduced the 4-bp 

deletion into two control iPSC lines, one within the pedigree (C3-1-3M) and, importantly, 

one outside of the pedigree (C1-2-5M) to control for potential effects of family genetic 

background. We confirmed successful gene editing by Sanger sequencing and validated 

the quality of targeted iPSCs (Extended Data Fig. 7). As expected, the total DISC1 

protein was rescued in D3-2-6R neurons to a level comparable with control neurons, and 
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reduced in C1-2-5M and C3-1-3M neurons to a level similar to DISC1 mutant neurons 

(Fig. 3b).   

 We next compared forebrain neurons derived from isogenic and parental iPSC 

lines in parallel. Deficits in the density of SV2+ synaptic boutons were rescued in D3-2-

6R neurons and recapitulated in C1-2-5M and C3-1-3M neurons (Fig. 3c). To examine 

morphological synapses further, we co-immunostained neurons with presynaptic marker 

SYNAPSIN1 (SYN1) and postsynaptic marker PSD95 (Fig. 3d). Quantification using the 

SYN1/PSD95 pair as a synapse marker showed reduced density in mDISC1-dependent 

fashion (Fig. 3d). Functional electrophysiological recording and FM-imaging analyses 

also confirmed mDISC1-dependent presynaptic release defects (Fig. 3e-f). These 

results, from three different isogenic iPSC lines, including the knock-in line from outside 

of the pedigree, established a causal role for the DISC1 mutation in synaptic defects of 

human neurons and suggested a pathogenic nature of this DISC1 mutation at the 

cellular level.   

  To gain molecular insight into how this pathogenic DISC1 mutation causes 

synaptic defects, we performed RNA-seq analysis of 4 week-old forebrain neurons 

derived from a control (C3-1) and two mutant (D2-1 and D3-2) iPSC lines in triplicate 

(Extended Data Table 2a). There were a large number of differentially expressed genes 

between C3-1 and D2-1/D3-2 neurons (FDR < 5%; Fig. 4a and Extended Data Table 2b-

c), while the expression profiles of D2-1 and D3-2 were very similar (Extended Data Fig. 

8a). Results from qPCR analyses of selected genes using independent samples of C3-1 

and D2-1 neurons were consistent with RNA-seq data (Extended Data Fig. 8b). Detailed 

bioinformatic analyses revealed several striking features of differentially expressed 

genes. First, top three significantly enriched categories from GO analysis were “synaptic 

transmission”, “nervous system development” and “dendritic spine” (Fig. 4a and 
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Extended Data Table 2d). Second, a large number of genes encoding DISC1-interacting 

proteins22 were differentially expressed (Fig. 4b). This result is surprising because 

previous studies have not appreciated the transcriptional relationship between DISC1 

and its protein-interacting partners at a large scale. Third, 89 differentially expressed 

genes are linked to schizophrenia, bipolar disorder, depression and mental disorders 

(Fig. 4c and Extended Data Table 2e). Thus, mDISC1 also functions as a hub for 

transcriptional regulation of genes implicated in psychiatric disorders.  

To extend these results and establish a causal link between differential gene 

expression and the DISC1 mutation, we performed qPCR analyses of synapse-related 

genes using forebrain neurons derived from multiple isogenic iPSC lines. Differential 

expression of many genes was found to be mDISC1-dependent (Fig. 4d and Extended 

Data Fig. 8c). Consistent with a presynaptic defect, mRNAs for a number of presynaptic 

proteins, including SYN isoforms 2 and 3, SYNAPTOPHYSIN (SYP), SYNAPTOPORIN 

(SYNPR), NRNX1, and VAMP2, were increased in neurons carrying the DISC1 mutation 

(Fig. 4d and Extended Data Fig. 8c). Western blot analyses further confirmed increased 

protein expression of SYN and SYP in mutant neurons (Fig. 4e and Extended Data Fig. 

8d). Previous studies in multiple neuronal systems have shown that elevated synapsin 

levels suppress pre-synaptic neurotransmitter release23,24. In contrast, some 

postsynaptically localized proteins, including GLUR1 and NR1, were not affected at 

either mRNA or protein level in bulk preparations (Fig. 4d-e and Extended Data Fig. 8c-

d). We also observed differential expression of several transporters (Fig. 4d). Notably, 

the transcription factor MEF2C was drastically increased at mRNA and protein levels in 

mutant neurons (Fig. 4d-e and Extended Data Fig. 8c-d). In mice, MEF2C functions to 

restrict glutamatergic synapse numbers25 and elevated MEF2C leads to decreased 



56 

 

frequency, but not amplitude of SSCs26, which resembles what we observed in DISC1 

mutant human neurons and suggests an underlying molecular mechanism.  

Our study of human forebrain neurons derived from a collection of patient iPSCs 

and different isogenic lines suggests a model that susceptibility genes for major 

psychiatric disorders could affect synaptic function via large-scale transcriptional 

dysregulation in human neurons. Our results illustrate a potential mechanistic link in 

human patient neurons for three major hypotheses of complex psychiatric disorders – 

genetic risk, aberrant neurodevelopment, and synaptic dysfunction. We have developed 

an enhanced iPSC model for schizophrenia and major mental disorders at the cellular 

level27 that includes a high-penetrance and disease-related genotype, iPSC lines from 

multiple members of the same family, different types of isogenic lines to address 

causality, and a relatively homogeneous neuronal subtype population. A key challenge 

and opportunity for iPSC disease-modeling is to generate new insight into 

pathophysiology, as opposed to confirming existing hypotheses or validating previous 

results from animal models. Much of our knowledge of DISC1 functions has come from 

understanding the biology of DISC1-interacting proteins and the function of these protein 

complexes, derived mostly from rodent models based on overexpression of truncated 

DISC1 proteins or loss-of-function via genetic deletion or shRNA knockdown12. 

Unexpectedly, we found that disease-relevant, endogenous mutant DISC1 in human 

neurons causes large-scale transcriptional dysregulation of genes related to synapses, 

DISC1-interacting proteins, and psychiatric disorders. Our DISC1 mutant phenotypes 

partially overlap with those observed in previous studies of neurons derived from 

idiopathic schizophrenia patient iPSCs28-30, including decreased synaptic connectivity 

and transcriptional dysregulation of shared genes, suggesting the potential of a common 

disease mechanism. Our collection of iPSC lines and identified cellular phenotypes also 
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provide a platform both for mechanism-guided exploration of therapeutic compounds in 

correcting synaptic defects of human neurons and for nonbiased large-scale screens.  

 

Methods Summary 

iPSC lines were derived from skin fibroblasts using a non-integrating approach and 

subject to full characterization similarly as previously described16. Isogenic iPSC lines 

were generated using the TALEN strategy. iPSC lines were differentiated into forebrain-

specific hNPCs and further to cortical neurons for characterization using 

immunocytochemistry, electrophysiology, FM1-43 imaging, Western blot and gene 

expression analyses. See the full Methods section for detailed description.     
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Methods 

Generation and characterization of patient iPSCs and isogenic iPSC lines. Skin 

biopsy samples were obtained from four individuals in a previously characterized 

American family, Pedigree H13 (Fig. 1a). C1 fibroblasts were from ATCC (CRL-2097). All 

studies followed institutional IRB, ISCRO and animal protocols approved by Johns 

Hopkins University School of Medicine. Informed consents were obtained from 

individuals from Pedigree H. Mouse embryonic fibroblasts (MEFs) were derived from 

E13.5 CF-1 mouse embryos16. Fibroblasts were cultured in Dulbecco's modified Eagle's 

medium (DMEM, Mediatech Inc.) supplemented with 10% fetal bovine serum (FBS, 

HyClone) and 2 mM L-glutamine (Invitrogen).   

iPSCs were generated with the EBV-based vectors as previously described16. 

Briefly, plasmids pEP4 EO2S ET2K (Addgene Plasmid 20927), pEP4 EO2S EN2L 

(Addgene Plasmid 20922), and pEP4 EO2S EM2K (Addgene Plasmid 20923) were 

transfected into human fibroblasts by Amaxa Nucleofector (Lonza; program U-023) at a 

concentration of 2 µg per 100 µl electroporation solution per 2 x 106 cells. Colonies of 

iPSCs were manually picked after 3-6 weeks for further expansion and characterization. 

Lack of vector integration was confirmed by qPCR analysis as previously described16. 

mailto:gming1@jhmi.edu
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Two lines from each individual that passed stringent criteria were used for the current 

study (Extended Data Table 1a). iPSCs (passage ≤ 35) were cultured on irradiated 

MEFs in human iPSC medium consisting of D-MEM/F12 (Invitrogen), 20% Knockout 

Serum Replacement (KSR, Invitrogen), 2 mM L-glutamine (Invitrogen), 100 µM MEM 

NEAA (Invitrogen), 100 µM -mercaptoethanol (Invitrogen), and 10 ng/ml human basic 

FGF (bFGF, PeproTech) as described16. For feeder-free culture of iPSCs, cells were 

cultured on Matrigel (BD Biosciences) with mTeSR1 media (Stem Cell Technologies). 

Media were changed daily and iPSC lines were passaged by collagenase (Invitrogen, 1 

mg/ml in D-MEM/F12 for 30 min at 37⁰C).  

Karyotyping analysis by standard G-banding technique was carried out by the 

Cytogenetics Core Facility at the Johns Hopkins Hospital or Cell Line Genetics Inc. 

Results were interpreted by clinical laboratory specialists of the Cytogenetics Core or 

Cell Line Genetics. Genotyping analysis was performed as described previously16. 

Genomic DNA of fibroblasts and derived iPSCs was extracted by DNeasy Blood & 

Tissue Kit (Qiagen) following the manufacturer’s recommended protocol. A pair of 

specific primers was used to amplify the region around the 4-bp deletion (Extended Data 

Table 1c). PCR products were cloned by TA cloning and sequenced. Bisulfite genomic 

sequencing was carried out with the EZ DNA Methylation-Direct Kit (Zymo Research) as 

previously described31. After bisulfite conversion of genomic DNA from iPSCs, primers 

specific to human OCT4 and NANOG promoters (Expended Data Table 1c) were used 

to amplify genomic DNA sequences with Platinum Taq DNA Polymerase High Fidelity 

(Invitrogen) for sequencing.  

To assess the in vivo pluripotency of iPSC lines, teratoma formation assays were 

performed16. iPSCs were injected subcutaneously into the dorsal flank of SCID mice. 

Animals were monitored and teratomas were dissected at 8 to 10 weeks post-injection. 
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Tissues were fixed in 10% neutralized formalin solution (Sigma). Embedding, sectioning 

and H&E staining were carried out by the Pathology Core Facility at the Johns Hopkins 

University Hospital.  

TALEN designs and constructions were based on a Golden Gate Assembly 

protocol with modifications to the vector backbone32. Donor DNA vectors with a loxP-

flanked PGK-Hygromycin cassette were cloned between 5’ and 3’ homology arms (Fig. 

3a), which were amplified from genomic DNA of a healthy subject and a patient with the 

DISC1 4-bp mutation. For targeting, TALENs (4 g DNA of each plasmid) and linearized 

donor vectors (10 g DNA) were electroporated into individual iPSCs (1-2 x 106 cells 

pretreated with 5 M ROCK inhibitor, Y-27632, Cellagentech) using Nucleofector 2b 

(Lonza; program A-023). Transfected cells were transferred onto a 6-well dish pre-plated 

with inactivated MEFs and supplemented with Y-27632 in standard iPSC medium. 

Positive colonies were selected by 10 g/ml Hygromycin B (Invitrogen) after 5 days of 

culture or until small colonies appeared. Resistant colonies were sub-cloned and 

expanded in 48-well plates. Over 200 clonal lines were screened. The loxP-flanked 

PGK-Hygromycin cassette was removed by electroporation of a Cre Recombinase 

expression vector (4 g DNA). Specific integration, correct genetic editing and efficient 

removal of PGK-Hygromycin cassette at each stage were verified by Sanger 

sequencing.  

 

Differentiation of iPSCs into forebrain-specific neural progenitors and cortical 

neurons. The protocol is illustrated in Extended Data Fig. 2a. Specifically, iPSCs 

colonies were detached from the feeder layer with 1 mg/ml collagenase treatment for 1 

hr and suspended in EB medium, consisting of FGF-2-free iPSC medium supplemented 

with 2 µM Dorsomorphin and 2 µM A-83, in non-treated polystyrene plates for 4 days 
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with a daily medium change. After 4 days, EB medium was replaced by neural induction 

medium (hNPC medium) consisting of DMEM/F12, N2 supplement, NEAA, 2 µg/ml 

heparin and 2 µM cyclopamine. The floating EBs were then transferred to matrigel-

coated 6-well plates at day 7 to form neural tube-like rosettes. The attached rosettes 

were kept for 15 days with hNPC medium change every other day. On day 22, the 

rosettes were picked mechanically and transferred to low attachment plates (Corning) in 

hNPC medium containing B27. For neuronal differentiation, resuspended neural 

progenitor spheres were dissociated with Accutase at 37⁰C for 10 min and placed onto 

Poly-D-Lysine/laminin-coated coverslips in the neuronal culture medium, consisting of 

Neurobasal medium supplemented with 2 mM L-glutamine, B27, 10 ng/ml BDNF and 10 

ng/ml GDNF. Half of the medium was replaced once a week during continuous culturing. 

Neural progenitors were plated on a confluent layer of rodent astrocytes only for 

electrophysiological recordings as previously described21,33. These cultures exhibited 

similar neuronal densities and parallel cultures were used for recordings of different 

iPSC lines in a blind fashion. 

 

Immunocytochemistry. Cells were fixed with 4% paraformaldehyde (Sigma) for 15 min 

at room temperature. Samples were permeabilized and blocked with 0.25% Triton X-100 

(Sigma) and 10% donkey serum in PBS for 20 min as previously described16. Samples 

were then incubated with primary antibodies (Extended Data Table 1b) at 4⁰C overnight, 

followed by incubation with secondary antibodies for 1 hr at room temperature. 

Antibodies were prepared in PBS containing 0.25% Triton X-100 and 10% donkey 

serum. Images were taken by Zeiss LSM 710 confocal microscope, or Zeiss Axiovert 

200M microscope, and analyzed with ImageJ (NIH). Images were acquired with identical 

settings for parallel cultures. For analysis of synaptic bouton density, total SV2+ puncta 
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in a given image were counted by ImageJ Analyze Particles, and the total dendritic 

length were measured by ImageJ plugin NeurphologyJ34. The numbers of SYN1/PSD95 

pairs were manually counted. The synaptic density was determined by D (D = total SV2+ 

puncta or SYN1/PSD95 pair per 100 m total dendritic length).  

  

Electrophysiological and FM1-43 imaging analyses: Whole-cell patch-clamp 

recordings were performed using Multiclamp 700A patch-clamp amplifier (Molecular 

Devices, Palo Alto, CA) as previously described21. Briefly, the recording chamber was 

constantly perfused with a bath solution consisting of 128 mM NaCl, 30 mM glucose, 25 

mM HEPES, 5 mM KCl, 2 mM CaCl2, and 1 mM MgCl2 (pH 7.3; 315-325 mOsm/L). 

Patch pipettes were pulled from borosilicate glass (3 - 5 MΩ) and filled with an internal 

solution consisting of 135 mM KGluconate, 10 mM Tris-phosphocreatine, 10 mM 

HEPES, 5 mM EGTA, 4 mM MgATP, and 0.5 mM Na2GTP (pH 7.3). The series 

resistance was typically 10-30 MΩ. For SSC recording, the membrane potential was 

typically held at -70 mV. Drugs were applied through a gravity-driven drug delivery 

system (VC-6, Warner Hamden, CT). Data were acquired using pClamp 9 software 

(Molecular Devices, Palo Alto, CA), sampled at 10 kHz and filtered at 1 kHz. 

Spontaneous synaptic events were analyzed using MiniAnalysis software (Synaptosoft, 

Decatur, GA). All experiments were conducted at room temperature. 

For monitoring synaptic vesicle release, human iPSC-derived neurons were 

loaded with 10 μM FM1-43 for 2 min in FM image buffer (FMIB, consisting of 170 mM 

NaCl, 3.5 mM KCl, 0.4 mM KH2PO4, 5 mM NaHCO3, 1.2 mM Na2SO4, 1.2 mM MgCl2, 

1.3 mM CaCl2, 5 mM glucose, 20 mM N-tris(hydroxymethyl)-methyl-2-aminoethane-

sulfonic acid, pH 7.4, ∼360 mOsmol) supplemented with 60 mM KCl, followed by wash 

with 10 μM FM1-43 in FMIB for 2 min. Subsequent washing was with FMIB for 5 min 
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followed by FMIB supplemented with 1 mM ADVASEP-7. FM1-43 imaging was 

performed on a Nikon TE2000 imaging system with a 20x objective. Neurons were 

perfused with FMIB for 1 min as the baseline, followed by stimulation with 60 mM KCl for 

4 min. Cells were excited at FITC spectra, and the green fluorescence was collected as 

FM1-43 signal. Images were acquired every 5 sec and analyzed using NIH ImageJ 

software. The FM1-43 signal was determined by F (F = (F1-B1) /(F0-B0)), which was 

normalized to the mean fluorescence intensity measured at the baseline condition (set 

as 1).  

 

qPCR and RNA-seq analyses: Human forebrain neurons without astrocyte co-culture 

were used for gene expression analyses. Total RNA was isolated using mirVana kit 

(Invitrogen) according to manufacturer’s instructions. For qPCR, a total of 1 μg RNA was 

used to synthesize cDNA with the SuperScript® III First-Strand Synthesis System 

(Invitrogen). Quantitative RT-PCR was then performed using SYBR green (Applied 

Biosystems) and the StepOnePlus™ Real-Time PCR System (Applied Biosystems). 

Quantitative levels for all genes were normalized to the housekeeping gene GAPDH and 

expressed relative to the relevant control samples. All primer sequences are listed in 

Expended Data Table 3.  

For deep RNA sequencing, libraries for three biological replicates of 4 week-old 

forebrain neurons derived from iPSCs of three individuals within the pedigree H (C3-1, 

D2-1 and D3-2) without astrocyte co-culture were prepared and sequenced on an Ion 

Proton Torrent. Libraries were prepared using the Ion Total RNA-Seq Kit v2 for Whole 

Transcriptome sequencing following the protocol provided by the manufacturer (Life 

Technologies, Carlsbad, CA). Briefly, poly(A)-enriched mRNA samples were 

fragmented, Ion Adaptors were hybridized, and cDNA generated through reverse 
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transcription. Barcodes were added and the libraries were amplified for sequencing. 

From the poly(A)+ RNA-Seq libraries, a total of 123 million reads were generated 

comprising between 9 and 34 million reads from each of the 9 samples (Extended Data 

Table 2a). Sequencing generated strand-specific single-end reads of variable length 

between 8-240 bp. Reads were mapped to the UCSC Human Reference Genome 

(hg19) using TopHat35 (v2.0.10) and Bowtie36 (v2.1.0). Resulting sequence alignment 

files were analyzed using RSeQC package for quality control37. Reads covering gene 

coding regions were counted with BEDTools and count data were analyzed for 

differential expression using edgeR38 (v2.15.0). For Gene Ontology analysis, gene lists 

were obtained for disease enrichment from PharmGKB, KEGG pathways from the 

Encyclopedia of Genes and Genomes and gene ontology (GO) from AmiGO. IDs for 

each gene list are provided in Extended Data Table . P-values were calculated from a 

cumulative hypergeometric distribution, calculated at 

http://www.geneprof.org/GeneProf/tools/hypergeometric.jsp. The total population size 

was set to 20687. Additional gene ontology analysis was performed with WebGestalt39.     

 

DNA constructs and biochemical analyses: Full-length human DISC1 cDNA were 

amplified by PCR and subcloned with HA-tag through AgeI and EcoRV into the pFUGW 

vector. The 4-bp deletion mutation was introduced through synthesized long length PCR 

primer and cloned with flag-tag through AgeI and EcoRV into the pFUGW vector. All 

expression plasmids were confirmed by DNA sequencing. 

HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen), 

supplemented with 10% FBS (GIBCO). Once reaching 70% confluence, the cells were 

transiently transfected with cDNA constructs using Lipofectamine 2000 (Invitrogen). 

Cells were harvested 48 hr after transfection for biochemical analyses. Cells were lysed 



69 

 

in RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS; 

50 mM Tris, pH 8.0) containing Complete Protease Inhibitor Cocktail (Roche). Samples 

were left on ice for 30 min and sonicated briefly. The insoluble fraction was removed by 

centrifugation at 15,000 rpm for 15 min at 4°C. Protein concentration was determined by 

BCA protein assay kit (Bio-Rad). 2X SDS sample buffer (Bio-Rad) containing 5% β-

mercaptoethanol (Sigma) was added to equal amounts of protein. Proteins were then 

separated by 4-15% SDS PAGE (Bio-Rad) and transferred to nitrocellulose membrane 

(0.45 μm). 5% dried milk in TBST (Tris buffered saline with 0.1% Tween 20) was 

incubated for blocking, and membranes were applied with specific antibodies as listed in 

Extended Data Table 1b. After washing with TBST and incubation with horseradish 

peroxidase-conjugated anti-rabbit or anti-mouse IgG (Santa Cruz Biotechnology), the 

antigen-antibody was detected by chemiluminescence (ECL; Pierce) and X-ray film (GE 

Healthcare). 

For immunoprecipitation experiments, cells were lysed using an IP lysis buffer 

containing 25 mM HEPES, pH 7.4, 1 mM EDTA, 10 mM NaCl, 0.5% Triton X-100, 

protease inhibitors cocktail (Roche) and 1 mM PMSF, except for the ubiquitination assay 

in which the IP lysis buffer contains 0.2% SDS (Extended Data Fig. 4e). Equal amount of 

protein was incubated overnight with Fast Flow Protein G agarose beads (Millipore) and 

mouse IgG or specific antibody in IP lysis buffer. After pull-down, protein-G beads were 

washed five times with IP washing buffer (25 mM HEPES, pH 7.4, 1 mM EDTA, 100 mM 

NaCl, 0.5% Triton X-100 and protease inhibitors cocktail (Roche) and boiled with 2X 

SDS sample buffer (Bio-Rad) containing 5% β-mercaptoethanol (Sigma). Western 

Blotting was then carried out with primary antibodies listed in Extended Data Table 1b. 

 

Data collection and statistics 
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All experiments were replicated at least three times using iPSC lines indicated in 

Extended Data Table 1 and data from parallel cultures were acquired. The sample size 

and description of the sample collection are reported in each figure legend. 

Qualifications of synaptic puncta density, FM-imaging and electrophysiological analyses 

were performed in a blind fashion. Statistical analyses used for comparison are reported 

in each figure legends.   
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Figures and Legends 

 

Figure 1. Normal neural differentiation, but markedly reduced total DISC1 protein 

levels in forebrain neurons derived from patient iPSCs carrying the DISC1 

mutation. a, A schematic diagram of the pedigree for iPSC generation. In addition, 

iPSCs from a control individual outside of the pedigree (C1, male) were used in the 

current study. “+”: one copy of the 4-bp deletion in the DISC1 gene; “-“: lack of the 4-bp 



72 

 

deletion in the DISC1 gene. b-d, Neural differentiation of iPSCs. Shown in (b) are 

sample bright field and confocal images of NESTIN and PAX6 immunostaining of 

hNPCs. See Extended Data Fig. 2 for characterization of additional forebrain neural 

progenitor markers. Shown in (c) are sample confocal images of immunostaining of 

human neurons at 4 weeks after neuronal differentiation for VGLUT1 and VGAT, and 

quantification of VGLUT1+ neurons among different iPSC lines. Values represent mean 

+ s.e.m. (n = 5 cultures). See Extended Data Fig. 3 for characterization of other markers. 

Shown in (d) are sample confocal images of immunostaining for MAP2AB and neuronal 

subtype markers of different cortical layers and quantification of neuronal subtype 

differentiation among different iPSC lines. Values represent mean + s.e.m. (n = 4 

cultures). Scale bars: 20 m. e, DISC1 protein levels in forebrain neurons derived from 

different iPSC lines. Shown are sample Western blot images and quantification. Data 

were normalized to that of ACTIN for sample loading and then normalized to C2-1 in the 

same blot for comparison. Values represent mean + s.e.m. (n = 3; ANOVA). Note that 

the DISC1 antibodies used recognized both full-length human wDISC1 (HA-tagged) and 

mDISC1 (Flag-tagged) exogenously expressed in HEK293 cells. More protein samples 

from mutant neurons were loaded to show the presence but reduced levels of DISC1 

protein in the sample image. See Fig. 3b for sample images with similar sample loading.  
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Figure 2. Defects of glutamatergic synapses in forebrain neurons carrying the 

DISC1 mutation. a-b, Decreased density of SV2+ puncta by human forebrain neurons 

derived from patient iPSC lines carrying the DISC1 mutation compared to control lines. 

Shown in (a) are sample confocal images of SV2 and DCX immunostaining of neurons 

at 4 weeks. Scale bar: 20 m. Shown in (b) are summaries of quantification of SV2+ 

puncta density for neurons derived from two iPSC lines for each individual. Values 

represent mean + s.e.m. (n = 5 cultures; ANOVA). c-d, Defects in glutamatergic synaptic 
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transmission by DISC1 mutant neurons. Forebrain hNPCs were co-cultured on confluent 

astrocyte feeder layers. Shown in (c) are sample phase images of co-culture (Scale bar: 

20 m) and sample whole-cell voltage-clamp recording traces of excitatory spontaneous 

synaptic currents (SSCs). Shown in (d) are distribution plots of SSC event intervals and 

amplitudes (n = 10-12 neurons for each condition; Kolmogorov–Smirnov test). Mean 

frequencies and amplitudes are also shown. e, Decreased vesicle release by DISC1 

mutant neurons. Six week-old neurons were imaged for KCl (60 mM)-induced release of 

FM1-43. Values represent mean + s.e.m. (n = 4 cultures; ANOVA).  

 



75 

 

 

Figure 3. A causal role of the DISC1 mutation in regulating synapse formation in 

human forebrain neurons. a, Generation of two types of isogenic iPSC lines. Shown 

on the left is a schematic illustration of the gene editing strategy for correction of the 

mutation (4-bp deletion; red bar) in a mutant iPSC line and for knock-in of the same 
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mutation into two control iPSC lines. HA: homology arm. Shown on the right are sample 

images of iPSC colonies for the correction line (D3-2-6R) and the knock-in line (C3-1-

3M) and confirmation by Sanger sequencing. Scale bar: 50 m. b, Expression of DISC1 

protein in forebrain neurons derived from different isogenic iPSC lines. Shown are 

sample Western blot images and quantification of the total DISC1 protein level. Data 

were normalized to that of ACTIN for sample loading and then to C2-1 in the same blot 

for comparison. Values represent mean + s.e.m. (n = 3; ANOVA). c-f, mDISC1-

dependent regulation of synaptic puncta density and vesicle release. Shown in (d) are 

sample confocal images of SYN1 and PSD95 immunostaining. Scale bar: 20 m. Also 

shown are summaries of densities of SV2+ puncta (c) or SYN1 and PSD95 pair (d) of 6 

week-old neurons. Values represent mean + s.e.m. (n = 4 cultures; ANOVA). Shown in 

(e) are summaries of SSC frequencies and amplitudes. Values represent mean + s.e.m. 

(n = 10-16 neurons for each condition; Kolmogorov–Smirnov test). Shown in (f) is a 

summary of FM1-43 imaging analysis, similarly as in Fig. 2e. Values represent mean + 

s.e.m. (n = 4 cultures; ANOVA). 
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Figure 4. Dysregulation of neuronal transcriptome encoding a subset of 

presynaptic proteins, DISC1-interacting proteins and mental disorder-associated 

proteins in human forebrain neurons carrying the DISC1 mutation. a-c, Summary of 

RNA-seq analysis of 4-week old forebrain neurons derived from C3-1, D2-1 and D3-2 

iPSCs (n = 3 samples for each iPSC line). Shown in (a) are histographs of differentially 

expressed genes in DISC1 mutant neurons (both D2 and D3) compared to control 

neurons and GO analysis. Shown in (b) is an illustration of differentially expressed 

genes encoding DISC1-interaction proteins. Heat-map indicates mean values of 

differential expression for each gene. Shown in (c) is an illustration of differentially 

expressed genes that are related to mental disorders. See Extended Data Table 4e for 

the gene list. (d) Validation of differential mRNA expression of selected genes related to 

synapses in forebrain neurons from different isogenic iPSC lines. Shown is a heat-map 
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of mean values of each gene under different conditions (n = 3 experiments). Values 

were normalized to those of C3-1 neurons. See Extended Data Fig. 8c for detail. (e) 

Validation of differential protein expression of selected genes in forebrain neurons from 

isogenic iPSC lines. Shown is a heat-map of mean values of each protein under different 

conditions (n = 3 experiments). See Extended Data Fig. 8d for detail. 
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Chapter 4: Conclusions 

Cellular reprogramming of patient-derived cells to iPSCs provides a new translational 

platform for studying human-specific and disease-causing mutations, validating existing 

hypotheses and generating new hypotheses about psychiatric disease etiology, and 

uncovering relevant phenotypes and signaling pathways that may be important in the 

development of more efficacious and targeted therapeutic strategies. Despite the 

promise of cellular reprogramming technology for all of these purposes, its potential has 

not been fully realized, yet. The studies highlighted in this dissertation have shown that 

using iPSCs as a discovery tool can lead to novel biological insights and reveal 

promising avenues of investigation to understand genetically complex diseases26. In the 

case of 15q11.2 microdeletion, for the first time, a stem cell model served as an entry 

point to test and to identify a specific risk gene (CYFIP1) that affects early brain 

development in a mouse model and in human large-scale gene expression data sets. 

And in the other study, for the first time, a DISC1 frameshift mutation was shown to 

cause synaptic dysregulation and dysfunction in human forebrain neurons. Together, 

these studies have enhanced our understanding of the cellular and molecular 

mechanisms that may contribute to psychiatric disorders, and they have set a new 

standard for using iPSCs to model disease. However, there are many challenges that 

must be overcome in order for iPSC technology to be efficiently used to model diseases 

and to serve as a platform for drug screenings and therapeutics. 

A. Major challenges in using iPSCs to model mental disorders 

Many diseases affect specific regions or organs in the body and, in particular, psychiatric 

diseases target the brain. One of the major hurdles in studying psychiatric diseases had 
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been accessing human neurons. With the advent of iPSC technology, patient-derived 

neurons generated in the dish provide some remedies7; 27. However, the efficiency of 

differentiating iPSCs into specific neuronal subtypes is still suboptimal28. The 

heterogeneity of different types of neurons at various stages of maturity, and a mixture of 

different cell types present in the whole population could skew data analysis and make 

disease phenotypes difficult to observe and validate. To my knowledge, currently, there 

are no standard protocols that differentiate iPSCs into any pure subtype of neurons. 

Trying to improve the differentiation efficiency is still an undertaking for many research 

groups and it remains a struggle in the field. 

 One way to circumvent the heterogeneity is to use high-throughput next-

generation sequencing of single cells to identify the specific neuronal subtypes of 

interest and their maturation stages and to only compare those with similar identity. This 

way, any subtle changes in gene expression can be teased out and validated using 

other methods, such as protein expression analysis and real-time PCR. Although next-

generation sequencing is becoming more practical, it is still expensive and the method 

for analysis is not standardized, yet29; 30. Moreover, isolation of single neurons can be 

challenging and the process may perturb genetic expression. 

 Another obstacle in using iPSCs to model psychiatric diseases is due to inherent 

clonal and line-to-line variabilities31. In other words, multiple iPSC clones can be derived 

from one donor (line) and these clones are not identical—they have altered genetics and 

epigenetics32. These changes may influence both the ground state and the disease state 

of the target cells, which makes comparison between control and disease even more 

difficult. Also, these clones and lines have different proliferation rates and different 

propensities to differentiate into neurons. To remedy this problem, prudent stem cell 
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scientists usually analyze at least two to three iPSC clones from each donor, and when 

possible, include multiple donors, with their ages matched, into their studies. To make 

matters even more complicated, not all control lines have similar gene or protein 

expression levels. This is due to the lines having different genetic backgrounds and to 

the possibility that not all “control” individuals are completely healthy.  

 Additionally, with the improvement of genome editing technologies such as 

CRISPR-cas system and TALENs33; 34, genetic variability can be overcome by either 

correcting a disease-causing mutation or introducing a relevant mutation or a reporter 

into any locus of the genome. Theoretically, this should solve the variability issue; 

however, manipulation of the genome itself can give rise to off-target effects and risk 

introducing new mutations that may affect gene activities in the cells35; 36. Furthermore, 

the efficiency of gene editing and homologous recombination are still very low in human 

iPSCs compared to other cell types37. As a result, the screening process, sometimes 

involving the use of antibiotics, is laborious and it can take up to many months to find the 

correct clones. During this long period, iPSCs are susceptible to further undersired 

genetic modifications that may lead to abnormal karyotypes38. 

These challenges I have outlined above are not limited to psychiatric disorders, 

but they can be extended to other iPSC disease models as well. However, with proper 

tools to monitor genetic integrity and better differentiation protocols, iPSC technology 

harnesses tremendous potential in disease modeling and beyond32; 39. 

B. An emerging promise: iPSCs in 3-D modeling 

Most iPSC studies have been focused on culture of cells attached to the bottom of the 

dish in monolayer. Although this two-dimensional system is sufficient to validate some 

disease phenotypes, it is not ideal to recapitulate some developmental processes that 
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naturally occur in vivo and hallmarks of certain diseases.  For example, microcephaly is 

a neurodevelopmental disorder that affects normal brain development, learning abilities 

and motor functions40. Modeling microcephaly using a two-dimensional system would 

not be ideal.  Recently, Lancaster and co-workers differentiated iPSCs into cerebral 

organoids that resemble various regions, including the cerebral cortex, of the brain41. 

These organoids were able to grow and develop in three-dimensional suspension in a 

bioreactor in vitro.  They further showed that organoids derived from patients with 

microcephaly not only have premature neuronal differentiation, but are also smaller in 

size compared to controls. Thus, their findings have paved the way for improvement of 

the system and for studying diseases that are associated with brain development42-44. It 

is now possible to differentiate human iPSCs into neocortex with primitive cortical layers, 

similar cellular make-up, and correct organization. With more effort, it is imaginable in 

the near future that iPSCs can be used to fully model early human brain development—

all in 3-D. 
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