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ABSTRACT 
 
 

In the management of symptomatic bone metastases, selection of appropriate palliative 

radiotherapy (RT) regimens should be based on patient-specific characteristics including 

estimated survival time. Yet, provider predictions of patient survival are notoriously 

inaccurate. Moreover, available evidence- and consensus-based guidelines do not 

provide clear criteria for selecting between the range of palliative RT regimens available.   

 

In an effort to improve selection of prognosis- and guidelines-appropriate palliative bone 

treatments, we developed the Bone Metastases Ensemble Trees for Survival (BMETS) 

model.  Built using an institutional database of 397 patients seen in consultation for 

symptomatic bone metastases, this machine-learning model estimates survival time 

following RT consultation using 27 prognostic covariates. Cross validations procedures 

revealed excellent discrimination for survival, and the BMETS outperformed validated, 

simpler statistical models, justifying its use in this population.  

 

To better characterize a component of decisional uncertainty faced by providers, we next 

sought to identify the prevalence of “complicated” symptomatic bone metastases across 

a breadth of possible operational definitions. Our efforts identified up to 96 possible 

definitions of “complicated” bone metastases, present in up to 67.1% of patients in our 

database. Given that such “complicated” lesions may have been excluded from clinical 

trials in this setting, these data highlight the difficulty faced by providers when attempting 

to select appropriate RT regimens using inadequately defined selection criteria. 

 

Informed by these insights, we developed the BMETS Decision Support Platform 

(BMETS-DSP). This provider-facing, web-based tool was created to (1) collect relevant 
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patient-specific data, (2) display an individualized predicted survival curve as per the 

BMETS model, and (3) provide case-specific, evidence-based recommendations for 

treatment of symptomatic bone metastases. We then conducted a pilot assessment of 

the clinical utility of the BMETS-DSP. In this preliminary assessment, the BMETS-DSP 

significantly improved physician accuracy in estimating survival and increased 

prognostic confidence, likelihood of sharing prognosis, and use of prognosis-appropriate 

RT regimens in the care of case patients.  

 

Collectively, this research provides early justification for the use of a machine-learning 

survival model and resultant decisions support platform to guide individualized selection 

of palliative RT regimens for symptomatic bone metastases.  These data support a multi-

institutional, randomized trial of the BMETS-DSP. 
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Chapter 1: Introduction 

 Bone metastases are common among patients with advanced cancer and can 

substantially worsen quality of life through associated morbidities1.  Radiotherapy (RT) 

serves as a particularly useful means for managing bone metastasis, with evidence 

supporting its efficacy for (1) reduction of pain and analgesia requirements2,3, (2) 

treatment of or prophylaxis for morbidities from local progression such as fracture4,5 and 

neuraxis compromise6–8, and (3) potential provision of long-term disease control in select 

patients with expected prolonged survival9,10. Correspondingly, dose and technique may 

vary according to the intent of treatment, from single- and multiple-fraction conventional 

external beam radiotherapy (EBRT) to highly conformal stereotactic body radiotherapy 

(SBRT) regimens.  

 Because intent of therapy is often linked to prognosis, RT providers report strong 

consideration of life expectancy when selecting appropriate RT regimens in this 

setting11. Meta-analyses suggest that pain control for uncomplicated bone metastases is 

equivalent for single- versus multiple-fraction EBRT regimens, with pain response 

generally lasting from 3 to 7 months3. As such, guidelines and consensus statements 

generally support the use of single-fraction EBRT for patients with shorter life 

expectancies who are unlikely to benefit from more prolonged local control12–14. 

Conversely, retreatment rates were significantly higher for single- versus multiple-

fraction regimens (20% versus 8%, respectively, p<0.001), and individual studies 

suggest higher rates of fracture and spinal cord compression with single-fraction EBRT3. 

Thus, dose escalation strategies using multiple-fraction EBRT15 and SBRT techniques 

may be considered for patients with prolonged life expectancy, particularly for lesions 

such as spinal metastases at risk for morbidity at local progression. 

 



 2 

However, studies repeatedly indicated that physicians’ unaided estimates of 

survival time are notably inaccurate for patients with advanced cancer, ranging from 20-

60% across studies16.  In one systematic review, physicians overestimated survival in 

this population in 9 out of 12 included studies17. Such over-optimism of survival 

predictions is associated with selection of more aggressive—and likely low value—

therapies near the end of life18. Specifically regarding palliative RT, practice patterns 

show persistent use of prolonged palliative RT regimens for symptomatic bone 

metastases irrespective of survival. A study of the National Cancer Database reported 

that from 2010 to 2014, 85% of patients with bone metastases from prostate cancer 

received palliative RT delivered in 10 or more fractions, with no difference in survival 

detected as compared to patients treated in 1-5 fractions19. Indeed, our own institutional 

data suggests that single-fraction RT was only delivered in 8% of patients during their 

final course of palliative bone radiotherapy20. 

In order to address these issues, a number of prognostic models have been 

developed to guide in clinical decision-making for patients treated with metastatic 

cancer21–26. Most of these models rely on traditional statistical approaches such as Cox 

proportional hazards` using a limited number of prognostic covariates. Yet despite the 

breadth of options, few providers report common use of these models in standard clinical 

practice, potentially due to the barriers including complexity of use, time, and inability to 

incorporate the tool into clinical workflow11. 

In the era of Big Data, increasing access to large-volume clinical databases and 

advanced statistical methodology offer the promise of new approaches to improve 

survival model predictions in medicine. Standardized use of electronic medical records 

(EMR) provides new access to enormous reservoirs of data, 27 and large-scale 

transitions to EMR across health systems create a novel environment for efficiently data 

sharing between institutions28. In parallel, statistical advances including growing use of 
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machine learning algorithms offer a means for effectively processing these complex data 

sources, in which limitations of traditional statistical approaches may render them 

inadequate29. 

However, simply improving prognostic estimates using these novel technologies 

may not be sufficient to alter providers’ recommendations for treatment selection.  For 

management of bone metastases, available evidence- and consensus-based guidelines 

imply that selection of regimens should be made on the basis of specific patient 

characteristics including prognosis but do not generally provide concrete criteria upon 

which to make treatment choices. Even when prognosis is addressed, there remains 

conflicting information regarding which patient characteristics are best matched to 

specific palliative regimens. As such, multiple aspects of the decision-making process 

may need to be addressed to improve selection of palliative regimens most appropriate 

for individual patient characteristics. 

An appealing means for potentially improving individualized selection of palliative 

RT regimens is through the application of decision support aids. Often drawing from 

general psychology, social psychology, and decision theory, these tools seek to target 

specific aspects of the decision-making process30 and are consistently associated with 

selection of more conservative treatment options31. While there are no such aids 

specifically developed to address management of symptomatic bone metastases with 

palliative RT, there is a growing body of evidence for the use of similar aids in other 

clinical scenarios in advanced cancer32. 

The overarching goal of this dissertation is to combine an optimized statistical 

approach for survival estimation with a theory-grounded decision support framework to 

aid the selection of prognosis-appropriate and evidence-based palliative RT regimens for 

managing symptomatic bone metastases. In Chapter 2, we use information from a large 

institutional database containing granular patient-level data to build the Bone Metastases 
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Ensemble Trees for Survival (BMETS), a machine learning approach that provides 

patient-specific survival estimations on the basis of 27 prognostic covariates. Our 

hypothesis is that use of the BMETS will improve survival predictions as compared to 

those produced by traditional statistical methods. If so, these data will justify the use of 

similar machine learning models for prediction in the setting of evolving complex, large 

datasets in Radiation Oncology. 

Chapter 3 will address concerns regarding definitions used to delineate what 

types of bone metastases may be eligible to receive shorter-fraction palliative RT. 

Specifically, we will provide the first detailed review of rates of “complicated” bone 

metastases encountered after applying a breadth of possible operational definitions for 

this term.  Given that “complicated” bone metastases have been excluded from trials 

establishing non-inferiority of single- versus multiple fraction regimens, these data seek 

to characterize the uncertainties faced by providers in the decision-making process 

when choosing appropriate RT treatment regimens in the absence of concrete selection 

criteria. 

Chapters 4 and 5 will detail the development and evaluation of the BMETS 

Decision Support Platform (BMETS-DSP), built to guide clinical decision-making in this 

setting. In Chapter 4, we will use an established theoretical framework build a decision 

aid that (1) collects relevant patient-specific data, (2) displays an individualized predicted 

survival curve as per the BMET survival model, and (3) provides case-specific, 

evidence-based recommendations for radiotherapy (RT) and other interventions to aid in 

the decision-making process for patients with symptomatic bone metastases. In Chapter 

5, we will use a simulated clinical environment with case presentations to perform a pre-

post analysis of the BMETS-DSP and its ability to improve both providers’ survival 

predictions as well as their selection of palliative RT regimens that are appropriately 

matched to patient characteristics. We hypothesize that the BMETS-DSP will improve 
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the decision-making process in the management of symptomatic bone metastases by 

affecting both of these outcomes. 

As opposed to simply testing the impact of the BMETS model and BMETS-DSP 

on improving providers’ prognostic accuracy, our methodology is specifically selected to 

ensure that use of the tool significantly impacts clinically important outcomes as well 

(i.e., change in treatment choice). These results will provide the justification for a larger-

scale assessment of the BMETS-DSP in a multi-institutional validation study and will 

form the foundation for development of similar tools for use in improving outcomes in 

treatment of advanced cancer. 

 

 

 

 

 

 

 

 



 6 

CHAPTER 2: Optimized Survival Estimation to Guide Bone 

Metastases Management:  Developing an Improved 

Statistical Approach  

 

 

 

Sara R. Alcorn1, Jacob Fiksel2, Jean L. Wright1, Thomas J. Smith3, Theodore L. 

DeWeese1, Scott Zeger2 

 

 

1Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins 
School of Medicine, Baltimore, MD 
 
 
2 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 
Baltimore, MD 
 
 
 
3 Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 
 
 
 
 



 7 

ABSTRACT 
 
Background: In managing bone metastases, estimation of life expectancy is central for 

individualizing patient care when selecting appropriate radiotherapy (RT) treatment 

options. Yet providers’ estimates of patient survival are often inaccurate, leading to the 

development of numerous survival models using traditional statistical methods for use in 

patients with metastatic disease. Interestingly, simpler survival models tend to perform 

as well as more complex models in this setting. To determine if a machine learning 

approach may further improve survival predictions, we developed the Bone Metastases 

Ensemble Trees for Survival (BMETS) model to predict survival for patients with bone 

metastases using up to 27 predictor variables. To establish its relative clinical utility, we 

then compared our method to two simpler, validated Cox regression models. 

Materials/Methods: For 397 patients evaluated in RT consultation for bone metastases 

from 1/2007 to 1/2013, data for 27 readily available clinical variables was collected. 

Primary outcome was time from consultation to death. We then performed Cox 

regressions per Chow’s 3-item Number of Risk Factors model (C-3) and Westhoff’s 2-

item tool (W-2). Model performance was then assessed using 200 repeats of pooled 5-

fold cross-validation and measured by time-dependent area under the curve (tAUC) for 

the BMETS, C-3, and W-2 models. 

Results: Patient mean age was 62 years (SD 13). Median survival across the group was 

6.3 months. Variable importance was greatest for performance status, blood cell counts, 

recent chemotherapy type, and receipt of concurrent palliative RT to non-bone sites. The 

cross-validation technique revealed excellent discrimination of the BMETS model across 

time points following consultation, with tAUC at 3 months, 6 months, and 12 months 

measured at 0.83, 0.81, and 0.81 for the BMETS model, respectively. The BMETS 
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outperformed simpler models across all time points, with respective values of tAUC of 

0.78, 0.76, and 0.74 for the C-3 model and 0.80, 0.78, and 0.77 for the W-2 model. 

Conclusion: For patients with bone metastases, the BMETS model substantially 

improved survival predictions versus relatively simpler traditional models. As such, we 

have developed a web platform to facilitate ease of data entry and display predicted 

patient survival probabilities from our BMETS to guide in selection of appropriate RT 

regimens.  
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INTRODUCTION  

In the management of symptomatic bone metastases, selection of treatments 

including palliative radiotherapy (RT) depends on accurate estimation of life expectancy. 

However, providers are notoriously inaccurate at estimating survival—particularly at the 

end-of-life33—which can result in the delivery of high-cost care and reduced quality of 

life18.  

In order to address this concern, a number of prognostic models have been 

developed to guide in clinical decision-making for patients treated with palliative RT. 

Table 1 summarizes prediction models for patients treated with palliative RT across 

treatment site and primary cancer type. Numerous other models offer predictions for 

specific subpopulations such as those with spinal metastases34–37. Review of these 

models show that most depend on Cox proportional hazards methodology, with final 

models using up to 7 prognostic covariates.  

Yet despite the breadth of options, one survey of 113 radiation oncologists found 

that only 31% rated such tools as moderately or very important to their estimation of life 

expectancy11.  Potential reasons for underuse include the complex and time-consuming 

nature of available models.  

In response to such limitations, two of the models summarized in Table 1 

compared the predictive capacity of full versus reduced lists of predictor variables. 

Chow, et. al., compared survival predictions from 6- versus 3-covariate Cox proportional 

hazard models38. Their 3-variable number of risk factors (NRF) model comprised of non-

breast cancer, presence of metastases other than bone, and KPS <60 yielded a C-

statistic of 0.65, as compared to the C-statistic of 0.67 for the full 6-variable model. 

Similarly, Westhoff, et al.25, compared discriminative capacities of an 6-versus 2-variable 

Cox proportional hazard model. Their 2-variable model comprised of only primary tumor 

site and KPS yielded a C-statistic of 0.71, which was comparable to the C-statistic of 
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0.72 for the full 6-variable model. In both cases, authors concluded that the reduced 

models resulted in similar predictive capacity and should be used instead of the full 

models due to ease of clinical application.  

While these data offer compelling evidence that simpler models may be preferred 

when rendered from traditional statistical methods, newer machine learning approaches 

may offer a means to further optimize survival predictions using a larger number of 

covariates. Yet, no such machine-learning model is currently available for clinical use in 

this setting. As such, we built the Bone Metastases Ensemble Trees for Survival 

(BMETS) model to provide survival estimates for patients with bone metastases using up 

to 27 prognostic variables. To establish its clinical utility relative to simpler, traditional 

statistical methods, we then compared survival estimations from our approach to 

predictions from two validated Cox regression models. 

 

METHODS 

Data Source and study population 

Patients seen in consultation for bone metastases between 3/1/2007 and 7/31/2013 at 

the Johns Hopkins Department of Radiation Oncology were identified through query of 

our departmental treatment database on the basis of ICD9 codes for bone site or 

treatments using <15 fractions and age >18 years. 

 

Study population 

The query yielded 424 patients seen in consultation for bone metastases.  We limited 

analysis to patients with pathologically- or radiologically-confirmed metastatic cancer 

with dissemination to the bone, resulting in pain or other neurological sequelae. Due to 

infrequent use of stereotactic body radiotherapy (SBRT) during the study period, patients 

seen in consultation for this approach were excluded. In total, 20 patients were excluded 
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of the basis of these criteria. To minimize the statistical implications of multiple 

treatments within the same patient, only data from the first palliative treatment 

consultation within the study period was included.  

 

Patient and disease characteristics 

Electronic medical records (EMR) were retrospectively assessed for 27 patient, disease, 

and treatment factors felt to be prognostic for survival in this patient population. In 

addition to covariates evaluated in models from Table 1, new covariates of interest were 

identified from the literature: white blood cell (WBC) and lymphocyte counts within 1 

month of consultation39,40, steroid use41,42, opiate pain medication use (as a proxy for 

magnitude of pain)43, type of chemotherapy most recently (including newer targeted oral 

agents44–46), and presence of central spinal canal and/or neuroforaminal stenosis 

(CC/NFS) at the site of palliative RT47. Moreover, to capture granular data of metastatic 

burden, detailed information on other sites of metastatic disease was included.  

Table 2 lists the 27 covariates, values coded for categorical variables, and 

pertinent definitions used. Notably, symptomatic bone lesions considered for primary RT 

(preferred to as the RT target site) were categorized as spine, hip/pelvis, extremity, 

chest wall, and skull. If the bone lesion involved more than one site category, the site 

affected by the majority of the lesion was recorded. When evaluated other sites of 

metastatic involvement, radiologic confirmation of a definite lesion at a given metastatic 

sites was considered to be positive, whereas indeterminate lesions or sites without 

directed radiologic evaluation were considered to be negative for metastatic 

involvement.  

A documented performance status was available in the EMR for 72% of patients, 

including Karnofsky Performance Status (KPS) in 60% and Eastern Cooperative 

Performance Status (ECOG PS) in an additional 12% of patients. To minimize missing 
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values for performance status, a single author (SA) reviewed all EMR notes within 1 

month of consultation to estimate a KPS based on documentation reflecting the patient’s 

functional level at the time. For those with a recent EMR-recorded KPS, a clinically 

significant difference of >15 points between EMR-recorded and author-estimated KPS 

was identified in 3% of patients.  Given rarity of discordance, the estimated KPS was 

used for all patients in our analysis. A total of 7 patients did not have recorded KPS, 

ECOG PS, or sufficient information to permit for author estimation and were thus 

excluded from this analysis. 

The primary outcome was survival time between the date of palliative RT 

consultation and the date of death or last follow-up. Date of death was identified in the 

EMR and/or via the Social Security Death Index.   

 

Statistical Analysis 

1.  BMETS methodology 

We utilized established random survival forests methodology48 to model survival 

time following consultation for palliative RT using the 27 candidate prognostic covariates. 

To do so, we employed bootstrap aggregation (bagging) by first taking 1,000 bootstrap 

samples from the original dataset. A binary survival tree was grown in each bootstrap 

sample48. To estimate the survival curve for a new individual based on the model, we 

first “dropped” the observation down each survival tree and obtained a Kaplan-Meier 

curve for each tree, based on the observations in the terminal node in which the dropped 

observation landed. The algorithm then averaged these Kaplan-Meier curves across 

trees for the final prediction. Specific methodology for the RSF model and subsequent 

survival time predictions is described in Appendix 1. We named the final model the Bone 

Metastases Ensemble Trees for Survival (BMETS). 
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Notably, multiple symptomatic bone sites considered for RT treatment during the 

same consultation visit in the same patient were all included in the model. To account for 

this, each different target site and the number of concurrent bone sites treated were 

coded as covariates. 

To offer insight into the covariates that were most important for predicting 

survival, we used the minimal depth statistic. It is assumed that a highly prognostic 

variable will more frequently split the tree closer to the root node across the random 

survival forest. As such, the distance between the root node and the node first used to 

split each covariate was calculated for each tree and then averaged across trees to 

estimate the variable minimal depth. With the root node positioned at 0, increasing 

minimal depth values thus signify decreasing prognostic importance for a variable48. 

 

2.  BMETS model validation 

Estimation of the model’s expected performance on external data was achieved 

using 200 repeats of pooled 5-fold cross-validation. Model discrimination was measured 

using time-dependent area under the curve (tAUC). Utilizing methodology for time-to-

event data from Heagerty and Zheng49, we let Ŝ(t|Xi)  denote the estimated probability 

that individual i survives past time t. Then tAUC(t) is the probability that Ŝ(t|Xi) < Ŝ(t|Xj) 

for any two individuals i and j picked at random from the population with 𝑇𝑖 ≤  𝑡 and 𝑇𝑗 >

 𝑡, where the true time-to-death of the two individuals is 𝑇𝑖   and 𝑇𝑗  respectively. Thus, this 

is a measure of discrimination, asking the question, “Does the model predict a higher 

survival probability for individuals who live past a certain time when compared to those 

who do not?” A model with tAUC of 0.5 would predict survival no better than chance, 

whereas a tAUC of 1 would suggest perfect model discrimination. tAUC was measured 

for survival times from 0 to 12 months post consultation. 



 14 

 

3.  Comparative clinical utility of RSF versus existing models 

To assess the relative utility of the BMETS model to simpler, traditional statistical 

models, we selected the 2-variable (W-2) model by Westhoff, et. al.25, and the 3-variable 

NRF model (C-3) by Chow, et. al.38, for comparison.  For both, the Cox proportional 

hazards models described were re-fitted using a complete dataset from our source 

population. Model discrimination between RSF, W-2, and C-3 models was compared 

across time points using tAUC estimates, utilizing the cross-validation methodology 

noted above.  

 

 All statistical analysis was performed using the R statistical computing language, 

Version 3.5.1.  

 

RESULTS 

 A total of 397 patients met the inclusion criteria and were evaluated in this 

analysis. Patient, disease, and treatment characteristics are summarized in Table 2. 

Median age was 62.3 years (standard deviation 13.4), with median KPS of 80 (range 40-

100). The most common primary cancer site was lung (32% of cases), and the most 

frequent sites of palliative RT were spine and hip/pelvis (55% and 20% of cases, 

respectively). A large majority of patients (88%) had known metastatic disease outside of 

the current palliative RT site, most commonly within other bone (69% of cases). Over the 

study period, 370 deaths were observed, and median survival from the time of 

consultation was 6.3 months. Figure 1 shows the Kaplan-Meier curve for the overall 

group. 

 As per above, we built the BMETS model from 1000 bootstrap samples using the 

27 candidate prognostic covariates. KPS, WBC count, the type of chemotherapy last 
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used, concurrent delivery of palliative RT to non-bone sites, and primary cancer site 

showed the lowest minimal depth across survival trees, suggesting that these covariates 

offer the greatest prognostic information (Figure 2). Among these covariates, KPS and 

primary cancer site were included in both C-3 and W-2 final models, whereas WBC 

count, the type of chemotherapy last used, concurrent delivery of palliative RT to non-

bone sites were not assessed by any of the previous published models from Table 1. 

Given the complexity and number of survival trees produced by the BMETS 

algorithm, model output cannot be easily visualized in tree form for clinical use. For 

illustrative purposes, Figure 3 shows an example single survival tree from one bootstrap 

sample limited to just the five variables with lowest minimum depth. In order to facilitate 

clinical application of the BMETS model, we have developed a web platform that collects 

patient information for the 27 prognostic covariates and displays the predicted survival 

probabilities across time points based on these data. This can be accessed at 

http://oncospace.radonc.jhmi.edu/Overview/Topics/PalliationPrediction.aspx. Figure 4 

demonstrates the BMET model output for a sample patient. 

 

Model validation 

Cross-validation techniques revealed excellent discrimination for the BMETS 

model across time points (Figure 5). Specifically, tAUC at 1 month, 3 months, 6 months, 

and 12 months post-consultation was 0.87, 0.83, 0.81, and 0.81 for the BMETS model, 

respectively. 

 

Relative utility as compared to simpler, traditional models 

Table 3 shows Cox proportional hazards analyses for the C-3 and W-2 models 

re-fit using the data from our source population. The hazard ratios and confidences 

intervals for the reduced C-3 and W-2 models were not published. However, our hazard 

http://oncospace.radonc.jhmi.edu/Overview/Topics/PalliationPrediction.aspx
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ratios were of similar magnitude and directionality relative to the specified control groups 

when compared to values published for the full 6-variables models from each author 

group25,38. 

Comparing discriminative capacity between models, tAUC remained >0.74 for 

survival times up to 12 months post consultation for all three models (Figure 4). 

However, tAUC was highest for the BMET model across all time points. For 

comparisons, the tAUC at 1 month, 3 months, 6 months, and 12 months post-

consultation was 0.79, 0.78, 0.76, and 0.74 for the C-3 model, respectively, and 0.82, 

0.80, 0.78, and 0.77 for the W-2 model, respectively. Whereas the W-2 model begins to 

converge toward the BMETS model after the 6-month time point, tAUC for the C-3 model 

continues to decline over time. 

 

DISCUSSION 

 In this study, we successfully developed the BMETS machine-learning model for 

predicting survival in patients seen in consultation for symptomatic bone metastases. To 

our knowledge, the BMETS model is the first of its kind to use granular patient data and 

a random survival forests methodology to create patient-specific predicted survival 

curves for clinical use. Further, we demonstrated that the BMETS model out-performed 

survival predictions made by simpler, traditional models in this setting, providing 

justification for its use. To offset its added complexity, we have created a web-based 

platform to facilitate ease of data entry, display, and interpretation of BMETS predictions. 

 As compared to use of the Cox regression models generally employed for 

survival prediction in this setting, the BMETS methodology offers a host of potential 

advantages. First, the random survival forest algorithm does not require a priori 

understanding of the relationships between variables. Thus, it may be better able to 

handle complex interactions and non-linear effects than Cox models, where these 
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components must be pre-specified50. Unlike traditional statistical methods, the random 

survival forests approach is robust to inclusion of non-prognostic and collinear 

covariates—perhaps even when the number of covariates exceeds the number of 

subjects51. Further, this algorithm handles missing data in a native fashion, by imputing 

missing values based on similar individuals within the same branch of the tree. Both of 

these factors permitted for our inclusion of a larger number of covariates than past 

models, perhaps explaining why the BMETS outperformed simpler approaches.  

 Moreover, all of the studies reported in Table 1 presented survival estimates 

according to prognostic groups categorized on the basis of covariate values. While this 

was likely performed to facilitate ease of clinical use, such groupings are associated with 

loss of important clinical information conveyed by the shape and slope of the underlying 

survival curves. Moreover, these categories do not provide information on the relative 

position of an individual patient within the ranges of survival provided, nor do they allow 

providers to estimate survival at specific time points that may be used as thresholds for 

selecting clinical interventions16.  Conversely, visualization of even a 5-covariate random 

survival forests model produces output that is too complex for standard clinical use, as 

demonstrate in Figure 3. Our web-based platform circumvents both of these issues by 

permitting for display of a patient-specific survival curve that provides useful prognostic 

details while maintaining simplicity of interpretation. 

A significant limitation to this analysis is the retrospective nature of our data 

collection. Namely, this design limited our ability to include patient-reported outcomes 

(PRO), which previous studies have identified as potentially useful for prognostication in 

advanced cancer52.  In part, PRO were omitted in line with our goal of designing a model 

that could be applied using only information collected in standard clinical practice. It is 

noted that in addition to the best reduced model comprised of KPS and primary tumor 

site, Westhoff, et. al., also analyzed 2 other reduced models containing primary tumor 
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site plus either patient-reported visual analogue scale of general health (VAS-gh) or 

verbal rating scale of overall valuation of life (VRS-vl) outcomes. Both of these models 

had worse predictive accuracy than the best reduced model, and the authors concluded 

that these PRO were less prognostic than provider-reported KPS25. At least two other 

studies for patients with metastatic cancer also found that inclusion of PRO did not 

substantially improve prediction over models comprised of clinical and physician-

reported factors53,54.  Nonetheless, the value of PRO in a RSF model has not been 

described, and our future work may include prospective collection of PRO in the model.  

Moreover, although our model is well calibrated, its performance in clinical 

practice must be tested. Because random survival forests may be especially susceptible 

to loss of validity when applied to non-source populations, next steps must certainly 

include testing in external environments55. However, proof of external validity for a 

survival model does not necessarily provide evidence of its clinical utility. For example, if 

our model improves survival estimates but these improved predictions fail to result in 

measurable changes in the decision-making process, we have failed to move science 

forward. As such, even before attempting to establish external validity of the BMETS 

model, we will first attempt to establish clinical utility by assessing the model for its 

capacity to measurably affect the decision-making process in the management of 

symptomatic bone metastases. Chapters 4 and 5 describe these efforts.  
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Table 1:  Summary of previously published survival prediction models for patients treated with palliative radiotherapy 
across treatment site and primary cancer type* 

Model 
Setting and 

patient 
population 

Model type Candidate covariates Results 
Test of model 
performance / 

external validation 

Chow 
200221, 
200922 

Prospective, 395 
patients seen in 
consultation for 
palliative 
radiotherapy to 
any treatment 
site at a single 
institution 

Cox 
proportional 
hazards model 

Included in final model:  
Non-breast primary cancer site, presence 
of metastases other than bone, KPS<60, 
and ESAS scores for fatigue>4, 
appetite>8, and shortness of breath>1 
Not included in final model: 
Age, weight loss, time from cancer 
diagnosis to consultation, analgesia type, 
and ESAS scores for pain, nausea, 
depression, anxiety, drowsiness, and 
sense of well-being 

Total number of risk 
factors (1 point each)= 
NRF score 
 
Survival estimate at 3, 6 
and 12 months*: 
NRF score<3: 80%, 64% 
41% 
NRF score 4: 51%, 25%, 
10% 
NRF score>5: 20%< 
13%, 3%   
 
 

C-statistic for NRF 
model= 0.67** 
R2 = 0.31 

_____________ 
 
Temporal validation 
set with same source 
population:   
C-statistic  for NRF 
model= 0.65 
R2= 0.2722 

Chow 
200923 

Same source 
population as 
above 

Recursive 
partitioning 
analysis 

Included in final model:  
KPS and site of metastases 
Not included in final model: 
Primary caner site, age, weight loss, time 
from cancer diagnosis to consultation, 
analgesia type, and ESAS scores for 
appetite, drowsiness, pain, nausea, 
depression, anxiety, fatigue, shortness of 
breath, and sense of well-being 

3 prognostic groups on 
basis of KPS and site of 
metastases 
 
Survival estimate at 3, 6 
and 12 months: 
KPS >60: 79%, 62%, 
37% 
KPS <60 and bone 
metastases only: 65%, 
36%, 32% 
KPS <60 and non-bone 
metastases: 39%, 43%, 
29% 
 
 

C-statistic = 0.64 
R2 = 0.23 
 
External validation 
set:   
C-statistic= 0.61 
R2= 0.15 
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Model 
Setting and 

patient 
population 

Model type Candidate covariates Results 
Test of model 
performance / 

external validation 

Katagiri 
201437 

Prospective, 808 
patients treated 
for symptomatic 
bone metastases  
at a single 
institution 

Cox 
proportional 
hazards model 

Included in final model:  
Rapidly growing primary tumor type, 
presence of visceral or cerebral 
metastases, abnormal laboratory data+, 
ECOG PS>3, previous receipt of 
chemotherapy, and presence of multiple 
skeletal metastases 
Not included in final model: 
Gender, age, neurological deficits, 
disease remaining at primary site, RT 
treatment site, presence of pathologic 
fracture 

Total number of risk 
factors (1 point 
each)=risk category score 
 
12-month survival 
estimate: 
Score ≤3: >80%  
Score 4–6: 30–80%  
Score 7–10: ≤10%  
 

Not reported 
____________ 

 
External validation 
set with 12-month 
survival estimates: 
Score ≤3: 58%  
Score 4–6: 32% 
Score 7–10: 9%56 
 

Krishnan 
201424 

Retrospective, 
862 patients who 
received 
palliative 
radiotherapy to 
any treatment 
site at a single 
institution 

Cox 
proportional 
hazards model 

Included in final model:  
Non-breast or prostate primary cancer 
site, age>60 years, presence of liver 
metastases, ECOG PS>2, hospitalization 
in past 3 months, and >2 previous 
palliative radiotherapy courses 
Not included in final model: 
KPS, location of metastasis, time from 
diagnosis of primary disease to metastatic 
disease, time from metastasis diagnosis 
to radiotherapy consultation, presence of 
non-bone metastases, and other 
metastases to bone, lung, liver, CNS, and 
other sites 

Total number of risk 
factors (1 point each)= 
NRF score 
 
Median survival in 
months: 
NRF score 0-1: 19.9 
NRF score: 2-4: 5.0 
NRF score: 5-6: 1.7 

C-statistic= 0.59 
____________ 

 
External validation 
with C-statistic=0.78 
R2=0.1757 

Westhoff 
201425 

Prospective, 
1157 patients 
treated for 
symptomatic 
bone metastases 
at multiple 
institutions 

Cox 
proportional 
hazards model 

Included in final model:  
Sex, primary tumor site, presence of 
visceral metastases, baseline KPS, VAS-
gh, and VRS-vl 
Not included in final model: 
Age and pain scale 

Survival estimate at 3-18 
months presented in table 
by category of primary 
tumor site and KPS 

C-statistic= 0.72 
(95% CI 0.70-0.74)  

____________ 
 
External validation 
set with C-statistic= 
0.7125 
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Model 
Setting and 

patient 
population 

Model type Candidate covariates Results 
Test of model 
performance / 

external validation 

Zhang 
201626 

Retrospective, 
125 patients 
treated for bone 
metastases at a 
single institution 

Cox 
proportional 
hazards model 

Included in final model:  
Male sex, KPS<80, esophageal or 
colorectal primary cancer site, <3 years 
between tumor diagnosis and diagnosis of 
bone metastases, T-staging>3, and poorly 
differentiated tumor 
Not included in final model: 
Age, postoperative status, CEA, N-stage, 
M-stage, anatomic group stage, and 
previous metastases to lung, liver, or 
brain 

Each risk factor is scored 
from 0 to -2; total score 
divided into 3 prognostic 
groups 
 
Median survival estimates 
in months: 
Group 1: 4.9 
Group 2: 10.5 
Group 3: 29.7 

Not reported 
____________ 

 
No validation set 

 
*Due to calculation error in 2002 publication, these data reflect values reported as per the authors’ 2009 publication  
+Laboratory values included C-reactive protein, LDH, serum albumin, platelet count, serum calcium level, and total bilirubin 
CEA= carcinoembryonic antigen, CI= confidence interval, ECOG PS= Eastern Cooperative Oncology Group Performance Status, ESAS= 
Edmonton Symptom Assessment Scale, KPS= Karnofsky Performance Status, NRF= Number of Risk Factors method, R2= Multiple correlation 
coefficient for comparison of actual survival with predicted survival, VAS-gh= Visual Analogue Scale of general health, VRS-vl= Verbal Rating 
Scale of overall valuation of life 
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Table 2: Patient, disease, and treatment characteristics for 397 patients included 
in the BMETS model  

Patient-specific factors Disease-specific factors 
Treatment-specific 

factors 

Name  Name  Name  
1. Age in years—

mean (SD) 
2. Sex—%  

Female 
Male  

3. Race—% 
White 
Black 
Asian 
Other 

4. KPS in unites 
of 10—median 
(range) 

5. WBC count 
within prior 1 
month in cells 
per 
microliter—
mean (SD) 

6. Lymphocyte 
count within 
prior 1 month 
in cells per 
microliter—
mean (SD) 

7. Inpatient 
status+—%  
Yes 
No  

8. Any weight 
loss in prior 6 
months—% 
Yes  
No 

 
62 (12) 

 
48% 
52% 

 
72% 
23% 
2% 
3% 

 
80 (40-
100) 

 
 
 
 

8,8,78 
(5,725) 

 
 
 
 

1,519 
(2,565) 

 
 

25% 
75% 

 
 
 

67% 
33% 

9. Primary cancer site—%   
Breast 
Prostate 
Lung 
Leukemia, lymphoma, 
myeloma 
Other 

10. Number of concurrent 
palliative RT to other non-
contiguous bone sites§—%  
0 
1 
2+ 

11. Concurrent palliative RT to 
non-contiguous sites other 
than bone§—%  
None 
Brain 
Lung 
Other or > 1 type   

12. Current steroid use—%  
Yes    
No 

13. Current opiate analgesic use— 
%  
Yes  
No    

14. Chemotherapy delivered within 
the previous 1 month—%  
Yes   
No 

15. Type of chemotherapy last 
delivered||—% 
None 
Intravenous 
Non-hormonal oral 
Hormonal 

16. Prior surgery at RT target 
site—%  
Yes 
No 

 
19% 
12% 
32% 

 
5% 

32% 
 
 
 

81% 
15% 
4% 

 
 
 

92% 
5% 
2% 
1% 

 
25% 
75% 

 
 

29% 
71% 

 
 
55% 
45% 

 
 

31% 
39% 
11% 
19% 

 
 

12% 
88% 

17. RT target 
site‡—%   

Spine 
Hip/pelvis 
Extremity 
Chest wall 
Skull 

18. CC/NFS¶—(%)  
Yes   
No 

19. Time from 
initial diagnosis 
in months—
mean (SD) 

 
Other metastases 

to# (% Yes):  
20. Brain  
21. Lung  
22. Liver  
23. Adrenal gland  
24. Lymph 

nodes**  
25. Soft tissue  
26. Other bone  
27. Other sites  
 

 

 
 

53% 
13% 
18% 
13% 
4% 

 
38% 
62% 

40 
(55) 

 
 
12% 
40% 
20% 
8% 

 
42% 
5% 
69% 
7% 

 
 
 

+Admission to offsite inpatient rehabilitation or nursing home facilities were excluded 
 ‡  If RT target lesion encompassed multiple sites, site containing majority of target lesion was selected 
§ Does not include RT target sites requiring multiple contiguous fields due to large target size  
|| If multiple types of chemotherapy were delivered concurrent, a single response was selected in the 
following order: IV > non-hormonal oral > hormonal 
¶ Defined as radiologic evidence of spinal cord, spinal canal, nerve root, or neuroforaminal 
impingement from direct involvement of the target lesion 
#Includes all radiologically-confirmed definite areas of metastatic disease outside of the current 
palliative RT field. Indeterminate lesions or sites without radiologic evaluation were as “no.” 
** Includes locoregional nodal metastases for the primary site 
BMETS= Bone Metastases Ensemble Trees for Survival, CC/NFS= central canal and/or neuro-
foraminal stenosis, KPS= Karnofsky Performance Status, RT=radiotherapy, WBC= white blood cells 



 23 

Table 3: Multivariate Cox proportional hazards analyses for covariates 
from two validated Cox proportional hazards models, re-fitted using 
our source population data* 

Model and 
covariates** 

Hazard ratio 95% Confidence interval 

Chow’s 3-variable NRF (C-3) model38 

Primary cancer site   

   Breast 1.00 - 

   Non-breast 1.75 1.34−2.29 

KPS   

   >60 1.00 - 

   <60 3.70 2.88−4.75 

Site of metastases   

   Bone only 1.00 - 

   Other 2.25 1.79−2.82 

Westhoff’s 2-variable (W-2) model25 

Primary cancer site   

   Breast 1.00 - 

   Prostate 1.17 0.78−1.75 

   Lung 2.57 1.89−3.49 

   Other 2.05 1.53−2.77 

KPS   

   90-100 1.00 - 

   70-80 1.81 1.37−2.40 

   20-60 6.17 4.41−8.58 

 
*A complete dataset with no missing values for the above covariates was 
used to refit the models. 
**Covariate values are specified as per the source model’s definitions. 
 
KPS= Karnofsky Performance Status, NRF= Number of Risk Factors 
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Figure 1: Kaplan-Meier survival estimate for the overall group, N=397. 
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Figure 2. Minimal depth for each covariate within the BMETS model.  
This value represents the distance between the root node (at position 0) and the node first used to split each covariate, averaged across trees. A 
lower minimum depth indicates higher prognostic importance for a given variable.  
BMETS= Bone Metastases Ensemble Trees for Survival, KPS= Karnofsky Performance Status, CC/NFS= central canal and/or neuroforaminal 
stenosis, RT= radiotherapy, WBC= white blood cells 
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Figure 3. An example single survival tree grown from our full data set, limited to 5 prognostic covariates.  
Numbers 1-29 represent model nodes. Estimated percent survival following consultation for palliative radiotherapy is displayed in months for each 
terminal node.  
KPS= Karnofsky Performance Status, WBC= white blood cells 



 27 

Figure 4. Example output for the web platform developed to collect covariate 
information and display the estimated survival probabilities from time of 
consultation to death as predicted by the BMETS model.  
 
 
Case: 71-year-old Black/African American woman with metastatic thyroid cancer is seen in 
outpatient consultation for symptomatic metastatic disease at the lumbar spine. She was initially 
diagnosed with cancer 5 years and 3 months ago. Her most recent systemic therapy was oral 
therapy (sorafenib), which has been administered within the past 1 month. She denies a history of 
prior surgery to the current symptomatic site. She reports weight loss in the past 6 months. KPS 
is 70. She is currently taking opiate pain medication but not steroids. White blood cell count is 
9,160 and lymphocyte count is 2,390. Available imaging shows no definite impingement of the 
spinal canal or of the neuroforamina. Metastatic involvement is also identified at other bone sites. 
There are no plans to undergo concurrent palliative radiotherapy to any other non-contiguous 
metastatic sites. 

 
 
 
 

 
The interactive orange curve displays the predicted survival for the case patient following 
consultation for palliative radiotherapy. The blue curves demonstrate the predicted survival for all 
other patients with symptomatic bone metastases in the database, displayed for comparison 
purposes only. 
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Figure 5. Comparison of time-dependent area under the curve (tAUC) between 
prognostic models across survival time points following palliative radiotherapy.  
The BMETS model outperforms simpler, traditional model by Chow, et. al.22, and Westhoff, et. 
al.25, at all time points evaluated. 
BMETS= Bone Metastases Ensemble Trees for Survival model, C-3= Chow’s 3-variable Number 
of Risk Factors model, and W-2= Westhoff’s 2-variable model 
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ABSTRACT 

 

Background: Numerous randomized trials have demonstrated non-inferior pain control 

from single- versus multiple-fraction palliative radiotherapy (RT) in the management of 

“uncomplicated” symptomatic bone metastases. Yet there is no clear definition of what 

constitutes a “complicated” lesion for which single-fraction RT may not be appropriate. 

Moreover, there are no published studies detailing the prevalence of “complicating” 

features in patients treated for such symptomatic lesions. Thus, we identify a range of 

operational definitions of “complicated” symptomatic bone metastases supported by the 

available literature and review our institutional data to characterize the frequency of 

potential “complicating” features at a high-volume, tertiary care center. 

Methods: Patients seen in consultation for symptomatic bone metastases between 

3/1/2007 and 7/31/2013 at the Johns Hopkins Department of Radiation Oncology were 

identified via the electronic medical record. Retrospective chart review including 

physician review of radiologic imaging was performed to collect patient and disease 

characteristics. Descriptive statistics were used to characterize the frequency of the 

following potential “complicating” features: prior RT, prior surgery, neuraxis compromise, 

pathologic fracture, and soft tissue component at the symptomatic site. A range of 

operational definitions for “complicated” bone metastases was evaluated based on all 

possible combinations of these “complicating” features. Uni- and multivariable logistic 

regression evaluated the odds of “complicated” bone metastases as a function of site of 

primary cancer and of the symptomatic target lesion. 

Results: A total of 696 symptomatic bone metastases in 404 patients were evaluated. 

Percent of target sites with prior RT was 4.6%, prior surgery was 8.9%, pathologic 

fracture was 22.7% (of which 80% were vertebral body compression fractures), neuraxis 

compromise was 50% among spine and medial pelvis sites, and soft tissue component 



 31 

was 42.2%. Based on the available literature, a total of 96 possible definitions of 

“complicated” bone metastases were identified. The presence of such “complicated” 

lesions ranged from 2.3% to 67.1%, depending on the operational definition used. Odds 

of a “complicated” lesion were significantly higher for spine sites.   

Conclusions: In this retrospective study, we found “complicated” symptomatic bone 

metastases may be present in up to two-thirds of patients at our institution. Our review of 

the literature also demonstrates no clear standard definition of “complicated” bone 

metastases, potentially explaining underutilization of single-fraction palliative RT in this 

setting. These data will be used to inform development of a decision support platform to 

guide in selection of appropriate palliative RT regimens in this population.
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INTRODUCTION 

In a seminal systematic review of randomized trials comparing single- versus 

multiple fraction radiotherapy (RT) in the management of “uncomplicated” symptomatic 

bone metastases, Chow, et. al., found no significant difference in pain control across 

studies comparing single- versus multiple fraction RT58. These data have resulted in 

consensus recommendations from the American Society of Radiation Oncology 

(ASTRO)12, the American College of Radiology (ACR)59–61, and the National 

Comprehensive Cancer Network (NCCN)62–67 supporting non-inferiority of 8 Gy in one 

fraction versus multiple-fraction regimens in a range of clinical scenarios. 

Yet, the definition of “uncomplicated” bone metastases for which 8 Gy in one 

fraction is most appropriate remains ill-defined. Recently, Cheon, et al., sought to clarify 

this definition by reviewing inclusion and exclusion criteria for 25 trials included in the 

above-noted systematic review68. The authors concluded that a conservative definition of 

“uncomplicated metastases” supported across studies is the “presence of painful bone 

metastases unassociated with impending or existing pathologic fracture or existing 

spinal cord or cauda equina compression1.”  

Table 1 summarizes clinical features that would result in exclusion from the trials 

reviewed by Cheon, et. al., plus four additional randomized trials published subsequent 

to their analysis 69,70 and included in ASTRO’s most recent systematic review12. Studies 

reporting the same patient population are listed in the same row and one study reported 

as abstract alone was excluded71, resulting in 23 unique sets of exclusion criteria. 

Although 18 out of 23 trials excluded patients on the basis of existing or impending 

pathologic fracture, the studies notably lack details regarding clinical or radiologic 

features that constitute fracture. Similarly, 15 of the 23 trials excluded cases due to 

neuraxis compromise, but there is little description of what comprises spinal cord or 

peripheral nerve compression across trials.  
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Moreover, consensus recommendations for fractionation vary on the basis of 

features not contained with the conservative definition of “complicated” proposed by 

Cheon, et. al. Table 2 provides a summary of key differences across guidelines in the 

setting of prior RT, prior surgery, existing or impending pathologic fracture, presence of 

soft tissue component, location of the treatment site, and presence of neuraxis 

compromise. Moreover, there is little data describing the prevalence of these potentially 

“complicating” features despite their propensity to dictate treatment decisions. 

In order to augment understanding of potential “complicating” factors for which 

single-fraction palliative RT may not apply, we review the frequency of these features at 

our institution across a breadth of operational definitions supported by the available 

literature.  

 

 

METHODS 

Data Source and study population 

Patients seen in consultation for bone metastases between 3/1/2007 and 7/31/2013 at 

the Johns Hopkins Department of Radiation Oncology were identified through query of 

our departmental database on the basis of ICD9 codes for bone site or treatments using 

<15 fractions and age >18 years. 

 

Study population 

The query yielded 424 patients seen in consultation for bone metastases.  We limited 

analysis to patients with pathologically- or radiologically-confirmed metastatic cancer 

with dissemination to the bone, resulting in pain or other neurological sequelae. Due to 

infrequent use of stereotactic body radiotherapy (SBRT) during the study period, patients 
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seen in consultation for this approach were excluded. In total, <5% of the initial 

population was excluded. 

 

Patient and disease characteristics 

A review of the electronic medical record was performed for each patient to collect basic 

demographic information. Site of bone metastasis was categorized as spine, hip/pelvis, 

extremity, chest wall, and skull. If the bone lesion involved more than one site category, 

the site affected by the majority of the lesion was recorded.  

 

In order to characterize potential “complicating” features at symptomatic sites of disease, 

the following factors were identified on the basis of their inclusion in randomized studies 

or consensus statements reviewed in Table 1 or Table 2, respectively.  

1. Prior RT. Treatment with prior definitive or palliative radiotherapy to the current 

site of symptomatic metastasis was recorded. 

2. Prior surgery. Surgical intervention at the current site of symptomatic metastasis 

at any time prior to consultation were recorded, including open surgical procedures, 

vertebroplasty, and kyphoplasty.  

3. Pathologic fracture. Presence of pathologic fracture as determined as per 

documentation of fracture by attending physicians in Radiology, Orthopedic Surgery, or 

Neurosurgery. Given lack of use of standardized means for characterizing impending 

fractures during the study period, only existing fractures were considered. For spine 

sites, fracture was defined as documentation of loss of vertebral body height, 

compression fracture, or vertebral body collapse. 

4. Neuraxis compromise. Given a range of definitions employed to characterize 

spinal cord and peripheral nerve compression, we documented radiologic evidence of 

central canal stenosis, neuroforaminal stenosis, and/or spinal cord edema. Presence of 
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corresponding symptoms was not required. Radiologic evidence was determined by 

personal review of CT and MRI images performed within 1 month of consultation by SA 

whenever available. When not available, documentation per Radiology reports or per 

clinical notes was used.  At a minimum, CT used for radiation planning was reviewed if 

performed. Neuraxis compromise was considered in spine and in medial pelvic sites in 

proximity to the central canal or neuroforamen. 

5. Soft tissue component. The presence of an extraosseous, soft tissue 

component directly extending from the site of bone metastasis was noted.  As with 

neuraxis compromise, this was confirmed via direct review of available CT and MRI 

images by SA whenever available, with minimum review of the planning CT if performed. 

In the absence of these studies, radiology reports or clinical notes were used. 

 

For patients seen in consultation for more than one symptomatic site of bone disease, 

each non-contiguous site was evaluated separately. Non-contiguous sites were defined 

as sites for which radiotherapy would be delivered using two separate and non-abutting 

radiation fields. Contiguous sites treated with abutting fields due to large treatment area 

were considered as one site (i.e., T5-T12 and L1-L4 would be considered 1 site, 

whereas C1-3 and T5-T12 would be considered 2 sites.) Multiple courses of concurrent 

and non-concurrent palliative RT within the same patient but occurring within the study 

period were included in the analysis.  

 

Outcomes analysis 

The presence or absence of a “complicating” feature was evaluated as a binary 

outcome. When the presence of the “complicating” feature was indeterminate or could 

not be confirmed by imaging or documentation in the medical record, the feature was 

coded as absent. For target sites with prior surgery, no additional radiologically-
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assessed “complicating” features were coded due to inability to accurately review 

imaging in the setting of artifact and postoperative changes. Thus, only prior RT status 

was documented in patients with prior surgery. 

 

The frequency of each potential “complicating” feature was first considered individually. 

To demonstrate the breath of operational definitions that could constitute a “complicated” 

lesion as per the randomized trials and consensus guidelines in Table 1 and 2, the 

frequencies of “complicated” bone metastases were then estimated using definitions 

derived from all possible combinations of the above-noted “complicating” features. When 

assessed as combinations of features, presence of at least one “complicating” feature 

included in the definition was sufficient for coding as a “complicated” bone metastasis. 

For the variables of prior RT, prior surgery, and soft tissue component, one definition 

(described above) was utilized. For pathologic fracture, two definitions were considered: 

any fracture versus non-spine fractures only. For neuraxis compromise, three definitions 

were considered:  all neuraxis compromise, central canal stenosis only, or spinal cord 

edema only. No study included consideration of neuroforaminal stenosis alone, so this 

component was not assessed individually. Only one definition of pathologic fracture and 

neuraxis compromise was included at a time when considering combinations of features. 

 

Statistical analysis 

Descriptive statistics were performed for patient and disease characteristics. 

Associations between potential “complicating” features and the corresponding target site 

of symptomatic bone metastasis were analyzed using Fisher’s exact tests. Odds ratios 

for presence of “complicated” bone metastases using the most inclusive definitions as a 

function of primary cancer site and target symptomatic metastasis site were assessed 

using uni- and multivariable logistic regression.  Given the hypothesis that both primary 
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cancer site and target symptomatic metastasis site may be independently associated 

with the presence of “complicated” bone metastases, we made an a priori decision to 

include both variables in the multivariable assessment regardless of univariable results.  

 

In the case of multiple palliative treatments within the same patient to different target 

sites, each target site was considered independently in these analyses. 

 

 All statistical tests utilized a two-sided α= 0.05 for significance testing. Statistics were 

performed using Stata Version 14.0 (College Station, Texas). 

 

This study was approved by the Institutional Review Board of Johns Hopkins University 

School of Medicine.  

 

 

RESULTS 

A total of 696 non-contiguous sites of symptomatic bone disease were evaluated for 404 

patients. Patients were treated at an average of 1.7 sites (standard deviation 1.1) during 

the study period. Among included patients, primary cancer site was 32% lung, 18.3% 

breast, 11.6% prostate, 5.0% leukemia/lymphoma, and 33.2% other. Among separate 

lesions considered, site of symptomatic sites were 50.1% spine, 21.1% hip/pelvis, 17.2% 

extremity, 8.3% chest wall, and 3.2% skull. Table 3 shows disease features and 

treatment characteristics by site of the target symptomatic bone metastasis.  

 

Frequency of individual “complicating” features 
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Table 3 also displays the frequency of various “complicating” features arranged by target 

site. Fisher’s exact tests showed significant differences in prevalence of these features 

by target site for all factors except for presence of prior RT. 

1. Prior RT. Prior radiotherapy to the target site was noted in 32 (4.6%) of target 

sites. Of all prior RT cases, 46.9% were spine, 12.5% were extremity, 25% were 

hip/pelvis, 9.4% were chest wall, and 6.3% were skull sites. 

2. Prior surgery. Prior surgery to the target site was noted in 62 (8.9%) of target 

sites. Of all postoperative cases, 62.9% were spine, 21.0% extremity, 14.5% were 

hip/pelvis, 0% were chest wall, and 1.6% were skull sites. 

3. Pathologic fracture. Definite pathologic fracture was identified in 144 (22.7%) of 

target lesions. Of all fractures, 79.9% were spine, 6.3% extremity, 9.7% were hip/pelvis, 

4.2% chest wall, and 0% were skull sites.  

4. Neuraxis compromise. Among sites of the spine and medial pelvis considered 

for this “complicating” feature, 180 (49.2%) were noted to have definite neuraxis 

compromise. Figure 1 delineates details of neuraxis compromise. When neuraxis 

compromise was present, 26.1% of cases were central canal stenosis (without spinal 

cord edema) only, 2.8% were central canal stenosis with spinal cord edema, 24.8% were 

neuroforaminal stenosis only, 41.1% were both central canal stenosis (without spinal 

cord edema) and neuroforaminal stenosis, and 6.1% were central canal stenosis with 

spinal cord edema and neuroforaminal stenosis.  

5. Soft tissue component. A definite soft tissue component was identified in 268 

(42.2%) of target lesions. Of all fractures, 50.4% were spine, 12.3% extremity, 20.5% 

were hip/pelvis, 11.9% chest wall, and 4.9% were skull sites.  
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Frequency of “complicated” bone metastases across a range of definitions 

For illustrative purposes only, Appendix 2 shows the percent of cases with at least one 

“complicating” feature present across the 96 possible definitions created from various 

combinations of the 8 variables listed. Depending on the definition used, the percent of 

“complicated” bone metastases ranged from 2.3% to 67.1%.  

 

Figure 2 shows the percent of cases with at least one “complicating” feature present 

across the most commonly used definitions of “complicated” symptomatic bone 

metastasis seemingly used in the randomized studies and census statements. Variable 

definitions of fracture and neuraxis compromise were included owing to the uncertainty 

on how these features were specified. The most inclusive definition yielded 67.1% 

“complicated” lesions, whereas a stricter definition requiring spinal cord edema and 

excluding vertebral body compression fractures and soft tissue components resulted in 

classification of 19.3% “complicated” lesions. 

 

Odds of “complicated” metastasis by disease features 

Table 4 shows the uni- and multivariable logistic regression for odds of having a 

“complicated” symptomatic bone metastasis using the most inclusive definition, as a 

function of primary cancer site and target symptomatic bone site. As compared to breast 

cancer metastases, leukemia/lymphoma and “other” cancer (but not prostate or lung 

cancer) yielded higher odds of “complicated” bone metastases on univariable analysis. 

As compared to spine target sites, extremity, hip/pelvis, and chest wall (but not skull) 

sites had significantly lower odds of “complicated” bone metastases on univariable 

analysis. All of these associations persisted on multivariable analysis. 
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DISCUSSION 

In this retrospective study, we found “complicated” symptomatic bone 

metastases were identified in up to 67% of patients at our institution. However, when 

applying the breadth of operational definitions for “complicated” lesions that can be 

deduced from review of randomized trials and consensus statements, the percent of 

“complicated” lesions varies widely. To our knowledge, this is the first attempt to 

characterize frequency of “complicated” bone metastasis using granular patient-level 

data, detailed radiologic review, and a range of definitions for the outcome of interest. 

Given that such “complicated” lesions may be ineligible for management with single-

fraction palliative RT, our results lend insight into the clinical applicability of consensus 

statements when selecting appropriate palliative regimens in our patient population. 

Our data shows that one of the most frequently encountered “complicating” 

feature was neuraxis compromise. Further, we found that odds of having a “complicated” 

lesion were highest at spine sites. These findings are congruent with data reporting 

spine as the most common site of bone metastasis72, with an associated high risk of 

developing skeletal-related events and resultant decrement to quality of life73. Notably, 

neuraxis compromise was among the most complex features to operationalize. In 

randomized trials, exclusion criteria related to the nervous system ranged from simple 

notation of “spinal cord compression” to the use of qualifiers such as “suspected 

compression”, radiologically-confirmed compression, effacement of the cord74,75, or 

presence of clinical symptoms consistent with compression. Some trials also excluded 

cases due to effacement of or clinical or radiologic evidence of cauda equina or 

peripheral nerve compression (See Table 1).  In the absence of standardized clinical or 

radiologic criteria to define neuraxis compromise, we erred on the side of recording 

radiologic presence of central canal stenosis, neuroforaminal stenosis, and/or spinal 

cord edema.  Peripheral nerve compromise was included in the definition of all neuraxis 
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compromise but not considered independently when analyzing combination definitions 

since no trial excluded cases on the basis of peripheral nerve compromise alone. 

Our definitions of neuraxis compromise are associated with significant strengths 

and limitations. Strengths include its utilization of relatively objective measures and 

coverage of most of the exclusion criteria from the randomized trials evaluated. Use of a 

radiologic measure is aligned with current management frameworks used for spinal 

tumors, which generally utilize assessments such as the MRI-based Bilksy Criteria to 

dictate care76.  Yet unlike the Bilksy scoring method, our measure can be determined 

using CT- or MRI-based imaging, affording greater generalizability. Limitations of our 

definition include lack of detail regarding symptoms of neuraxis compromise. 

Unfortunately, use of these data was limited by the retrospective nature of our study. 

However, it is our assumption that morbidity associated with symptomatic lesions and its 

impact on treatment selection will be captured through estimates such as Karnofsky 

Performance Status, as detailed in Chapter 2. Another limitation is that the frequency of 

“complicated” metastasis varies widely depending on which of our criteria is applied 

when defining neuraxis compromise. While a flexible definition enhances applicability 

over a wider range of cases, it does not permit for a precise classification of which types 

of neuraxis lesions are best considered “complicated.”  

Another frequent “complicating” feature was fracture, which was again ill-defined 

on the basis of available studies and guidelines. Specifically problematic was whether 

vertebral body compression fractures should be included in the definition of a 

“complicating” fracture, given high rates of pathologic fracture of the spine among 

patients with metastatic disease77. Whereas some of the randomized studies analyzed 

expressly specified exclusion of non-spine fractures only, at least one excluded cervical 

through thoracic vertebral body collapse, and most did not specify site of fracture at all. 

Although there are available radiologic-based guidelines such at the SINS criteria for 
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measuring percent vertebral body collapse to guide management in this setting78, the 

relevance of such ratings to questions regarding single- versus multiple-fraction 

radiotherapy is unknown. As with the definitions used for neuraxis compromise, the 

decision to consider both all fractures and non-spine fractures when estimating 

“complicated” metastases enhances flexibility but limits precision and results in a wider 

range of estimated “complicated” lesions. An additional limitation is our inability to 

include “impending” fracture in the absence of a standardized definition for this variable 

in our field.  

Although not common in the study population, prior RT or surgery at the target 

symptomatic metastasis were included in all key definitions specified in Figure 2. 

Consistent with our decision to prioritize previous treatment, nearly all of the randomized 

trials analyzed cited prior RT as an exclusion criterion. Conversely, prior surgery was 

inconsistently specified as cause for exclusion. However, it is inextricably linked with 

existing or impending fracture for most bone sites, and it is a key feature for dictating 

fractionation schemes in both ACR and NCCN guidelines59–62. As such, we included it 

when selecting features most commonly used to define “complicated” metastases. 

Perhaps most contentious was our decision to include the presence of a soft 

tissue component as a potential “complicating” feature. As found by Cheon, et.al., in 

their initial analysis68, we also determined that none of the 29 trials considered in Table 1 

excluded cases on the basis of a soft tissue component. However, a soft tissue 

component may contribute to bony instability or fracture, and when present near the 

neuraxis, it may lead to nervous system compromise. Moreover, presence of a soft 

tissue component is used to guide fractionation decision as per the NCCN consensus 

guidelines for non-small lung cancer65 and mesothelioma63, justifying our consideration 

of this feature. 
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An additional limitation to our analysis involves the fact that cases came from a 

high-volume Radiation Oncology clinic within a tertiary care hospital setting. It is feasible 

that “uncomplicated” cases are more likely to be referred out of our facility. As such, 

external generalizability regarding the frequency of “complicated” metastases noted may 

be restricted. However, our study question requires review of granular, patient-level 

data, which impairs the ability to use information from multi-institutional or national 

databases.    

Because “complicated” bone metastases may have been excluded from 

randomized trials comparing single- versus multiple-fraction palliative RT, lack of a 

consensus definition and high frequency of possible “complicating” features may 

contribute to low utilization of single-fraction RT observed in current clinical practice.  

Despite efforts by campaigns such as Choosing Wisely to encourage use of 

foreshortened regimens of palliative RT79, practice patterns suggest persistent use of 

prolonged palliative RT regimens irrespective of survival, as delineated in Chapter 1. In 

the absence of a concrete definition of “complicated” bone metastases, the data 

presented offers providers a range of definitions that may be used at their discretion to 

guide in selection of appropriate fractionation based on patient-specific clinical features. 

Moreover, we use these definitions to aid in the development of individualized 

recommendations for the decision support platform described in Chapter 3. 
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Table 1: Summary of features used as exclusion criteria by randomized studies of singe- versus multiple-fraction 
radiotherapy for symptomatic bone metastases* 

Study 
N=23** 

Prior therapy Fracture Nervous system compromise 

RT Surgery 
Long 
bone 

Vertebra NOS Impending CNS PNS 

Altundag80 ✓  ✓    ✓   
✓  

(Symptoms of SCC) 
 

Amouzegar 
Hashemi81 

    ✓  ✓  SCC  

Badzio82 ✓     ✓     

BPTWP83 ✓   ✓       

Cole84     ✓  ✓  
✓  

(SCC syndrome) 

✓  
(PN compression 

syndrome) 

El-
Shenshawy85 

✓     

✓  
(Except 
vertebral 

compression 
fracture) 

 
✓  

(Suspicion of SCC) 
 

Foro86     ✓  ✓  
✓  

(Medulla compression) 
 

Foro 
Arnalot87 

✓     ✓  
✓  

(If Mirel’s 
criteria >9) 

✓  
(Clinical or radiologic 

evidence of SCC) 
 

Gaze88 ✓  ✓   
✓  

(If collapse 
above L2) 

✓  ✓  
✓  

(SCC) 
 

Gutierrez 
Bayard70 

✓     

✓  
(If lesion 
requires 
fixation) 

 
✓  

(SCC) 
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Study 

Prior therapy Fracture Nervous system compromise 

RT Surgery 
Long 
bone 

Vertebra NOS Impending CNS PNS 

Hamouda89 ✓     ✓     

Hartsell74, 
Howell75 

    ✓  ✓  

✓  
(Clinical or radiologic 
evidence of SCC or 

effacement) 

✓  
(Clinical or radiologic 
evidence of CEC or 

effacement) 

Kaasa90, 
Sande91 

✓     

✓  
(If lesion 
requires 
fixation) 

 
✓  

(SCC) 
 

Kagei92     

✓  
(Except if 
vertebral 

compress-
ion fracture) 

   

Koswig93 ✓         

Majumder69 ✓     ✓  ✓  
✓  

(SCC) 
 

Nielsen94 ✓     

✓  
(Except if 
vertebral 

compress-
ion fracture) 

 
✓  

(Suspicion of SCC) 
 

Ozsaran95 
 
✓  

 
 
 
✓  
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Study 

Prior therapy Fracture Nervous system compromise 

RT Surgery 
Long 
bone 

Vertebra NOS Impending CNS PNS 

Price96 ✓   ✓       

Roos97 ✓   ✓     
✓  

(Clinical or radiologic 
evidence of SCC) 

✓  
(Clinical or radiologic 

evidence of CEC) 

Safwat98 ✓       
✓  

(Clinical or radiologic 
evidence of SCC) 

✓  
(Clinical or radiologic 

evidence of CEC) 

Sarkar99 ✓     ✓     

Steenland100, 
Van der 

Linden101, 
Meeuse102 

✓     

✓  
(If lesion 
requires 
fixation) 

 
✓  

(SCC) 
 

Total studies 
with 

exclusion 
criterion, 

N (%) 

18 
(78%) 

3 
(13%) 

3 
(13%) 

1 
(4%) 

17 
(30%) 

4 
(17%) 

15 
(65%) 

4 
(17%) 

* Adapted from Cheon, et. al.68, with 4 additional studies considered as per systematic review update12 
** 29 studies considered, with published trials containing the same study population and exclusion criteria grouped in 1 row, resulting in 23 
unique sets of exclusion criteria considered 
✓  indicates presence of exclusion criteria, with qualifying details in parenthesis if present 
CEC=cauda equine compression, CNS= central nervous system, NOS=not otherwise specified, PNS=peripheral nervous system, RT= 
radiotherapy, SCC=spinal cord compression 
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Table 2: Summary of key variations in consensus recommendations on the 
basis of possible “complicating” features of symptomatic bone metastasis 

Clinical Feature ASTRO12 ACR59–61 NCCN62–64,103 

Prior 
radiotherapy 

Consider 1-5 
fractions EBRT 

Consider 1-6 fractions 
EBRT 

Consider SBRT for 
spine sites 

Prior surgery - 
Consider multiple 
fraction radiotherapy 

Consider SBRT for 
spine sites if 
oligometastatic or 
radioresistant  

Pathologic or 
impending 
fracture 

- 
Consider multiple 
fraction radiotherapy 

- 

Soft tissue 
component 

- - 

Consider multiple 
fraction radiotherapy 
for NSCLC 
metastases with soft 
tissue component 

Uncomplicated 
spine and other 
critical sites 

Single-fraction 
radiotherapy most 
appropriate when 
limited life 
expectancy  

Consider multiple 
fraction radiotherapy 
unless limited life 
expectancy 

Consider multiple 
fraction radiotherapy 
for estimated 
survival >6 months 

Spinal cord or 
cauda equina 
compression 

- 

Consider multiple 
fraction radiotherapy 
unless limited life 
expectancy 

Consider SBRT for 
spine sites if 
oligometastatic or 
radioresistant 

ASTRO= American Society for Radiation Oncology, ACR= American College of Radiology, 
NCCN= National Comprehensive Cancer Network (NCCN), EBRT= external beam 
radiotherapy (conventional), SBRT=stereotactic body radiotherapy, NSCLC= non-small cell 
lung cancer 



 48 

Table 3: Characteristics of the target symptomatic bone metastasis by 
treatment site 

 
Spine, 
N=349 

Extremity, 
N=120 

Hip/ 
pelvis, 
N=147 

Chest 
wall, N=58 

Skull, 
N=22 

p-
value* 

n (%) n (%) n (%) n (%) n (%) 

Primary cancer site 

Breast 
67  

(12.1%) 
21  

(17.5%) 
33  

(22.5%) 
8  

(13.8%) 
5  

(22.7%) 

- 

Prostate 
57  

(16.3%) 
11  

(9.2%) 
20  

(13.6%) 
5  

(8.6%) 
4  

(18.2%) 

Leukemia/ 
lymphoma 

23  
(6.6%) 

5  
(4.2%) 

2  
(1.4%) 

0 
5  

(22.7%) 

Lung 
101  

(29.0%) 
37  

(30.8%) 
43  

(29.3%) 
31  

(53.5%) 
3  

(13.6%) 

Other 
101  

(28.9%) 
46  

(38.3%) 
49  

(33.3%) 
14  

(24.1%) 
5  

(22.7%) 

Other palliative RT 

>1 
concurrent  
site 

118 
(33.8%) 

48 
(40.0%) 

53 
(36.1%) 

26 
(44.8%) 

4 
(18.2%) 

0.161 

>1 course in 
study period 

208 
(59.6%) 

80 
(66.7%) 

108 
(73.5%) 

45 
(77.6%) 

15 
(68.2) 

0.009 

Presence of “complicating” features at the target site 

Prior RT  
15 

(4.3%) 
4  

(3.3%) 
8 

(5.4%) 
3 

(5.2%) 
2 

(9.1%) 
0.640 

Prior surgery  
39  

(11.2%) 
13 

(10.8%) 
9 

(6.1%) 
0 

1 
(4.6%) 

0.015 

Pathologic 
fracture 

115 
(37.1%) 

9 
(8.4%) 

14 
(10.1%) 

6 
(10.3%) 

0 
 

<0.001 

Neuraxis 
compro-
mise** 

171 
(55.6%) 

- 
9  

(15.5) 
- - <0.001 

Soft tissue 
component 

135 
(43.5%) 

33 
(30.8%) 

55 
(39.6%) 

32 
(55.2%) 

13 
(61.9%) 

0.008 

* p-value as per Fisher’s exact test. No statistical testing was performed on the site of 
bone metastasis x primary cancer site comparison due to prohibitive number of cells. 
** Only sites of spine and medial pelvis considered, N=366  
RT= radiotherapy 
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Figure 1: Percent of all target spine and medial pelvis bone metastases with 
neuraxis compromise, N=366. CCS= central canal stenosis, CE= cord edema, NFS= 
neuroforaminal stenosis.  
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Figure 2: Percent of all target symptomatic bone metastases cases with at least one “complicating” feature across most 
common definitions of “complicated” symptomatic bone metastasis.  
✓  Indicates that the selected variable was used as part of the operational definition for “complicated” bone metastasis  
RT= radiotherapy, CCS= central canal stenosis, CE= cord edema  
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Table 4: Uni- and multivariable logistic regressions for odds of “complicated” 
symptomatic bone metastasis using most inclusive definition* as a function of 
primary cancer site and target symptomatic bone site 

 Univariable Multivariable 

Odds 
ratio 

95% 
confidence 

interval 
p-value 

Odds 
ratio 

95% 
confidence 

interval 
p-value 

Primary cancer site 
 

Breast - - - - - - 

Prostate 1.14 0.67-1.96 0.608 1.01 0.58-1.77 0.965 

Leukemia/ 
lymphoma 

3.58 1.39-9.19 0.008 3.09 1.14-8.38 0.026 

Lung 1.47 0.94-2.29 0.089 1.60 1.00-2.58 0.051 

Other 2.1 1.33-3.32 0.001 2.48 1.52-4.05 <0.001 

Target symptomatic bone site  

Spine - - - - - - 

Extremity 0.20 0.12-0.31 <0.001 0.18 0.11-0.28 <0.001 

Hip/pelvis 0.28 0.19-0.43 <0.001 0.28 0.18-0.43 <0.001 

Chest wall 0.36 0.20-0.65 0.001 0.34 0.19-0.64 0.001 

Skull 0.51 0.20-1.30 0.157 0.48 0.18-1.23 0.135 

* Definition includes the presence of at least one of the following features: prior RT, prior 
surgery, any facture, any neuraxis compromise, and/or soft tissue component 
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ABSTRACT 

 

Background: In the management of symptomatic bone metastases, current consensus-

based guidelines do not provide clear methodology for selecting palliative radiotherapy 

(RT) regimens based on specific patient and disease features. Decision support aids 

may offer an effective means for translating the complex data needed to render 

individualized treatment decisions. However, there are currently no decision support 

tools available for use in this setting. Thus, in order to promote selection of evidence- 

based, individualized palliative RT regimens for patients with bone metastases, we 

created the BMETS decision support platform (BMETS-DSP). In this chapter, we 

describe methodology used to develop the BMETS-DSP. 

Methods: The theoretical basis used to inform development of the decision aid was the 

Ottawa Decision Support Framework. First, we used stakeholder input and review of the 

literature to assess determinants underlying the provider decision. Based on these 

determinants and iterative stakeholder feedback, we then developed a web-based, 

provider-facing decision support platform. Consistent with the underlying theoretical 

framework, our design also included plans for assessing decision quality and decision 

outcomes. The International Patient Decision Aids Standards (IPDAS) certification 

checklist was used to evaluate quality of the BMETS-DSP. 

Results: Stakeholder input and review of 54 evidence- or consensus-based publications 

identified the following determinants of the provider decision: estimated patient survival, 

characteristics of the target symptomatic lesion and the primary cancer type, consideration of 

alternative intervention strategies, access to patient-specific recommendations, and patient 

preferences. Based on these determinants, we developed a decision support platform that 1) 

collects relevant patient-specific data, (2) displays an individualized predicted survival curve and 

(3) provides case-specific, evidence-based recommendations for radiotherapy (RT), open 
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surgery, systemic therapy, and hospice referral to aid in the decision-making process. The 

finalized tool met quality and certification requirements as delineated by the IPDAS 

checklist. 

Conclusions: We describe the successful development of a patient-facing decision 

support platform to aid in the provision of palliative RT in better alignment with prognosis 

and other relevant patient features. Assessment of the BMETS-DSP in Chapter 5 will 

provide insight into the efficacy of the tool in altering aspects of the decision-making 

process.
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INTRODUCTION 

As noted in Chapter 1, in the management of symptomatic bone metastases, 

there is currently no validated means for selecting individualized palliative radiotherapy 

(RT) regimens that match patient features and preference.  While consensus guidelines 

support use of a range of RT regimens for palliative radiotherapy to symptomatic bone 

metastases, the source cooperative groups and professional organizations do not 

provide clear recommendations on how to select between regimens. Moreover, all 

groups imply the central role of patient prognosis, performance status, and patient 

preference in the treatment decision, but they provide no dedicated instructions on how 

to assess or incorporate these factors into the decision-making process12,59–67. 

Decision support aids may provide an effective means for translating complex 

data regarding individual patients’ risks and benefits in order to guide treatment 

decisions104.  While a number of decision aids have been proposed or developed in the 

management of cancer, there are no decision support tools to guide in management of 

symptomatic bone metastases105. Unlike available educational material and consensus 

guidelines available in this clinical setting, an optimal decision support tool would provide 

individualized estimates of patient survival time, magnitude of the relative efficacy and 

risks of available treatment regimens, and assessment of patient preference.  

In order to promote selection of palliative RT regimens in better alignment with 

predicted patient prognosis and best evidence in the management of symptomatic bone 

metastases, we sought to develop the provider-facing BMETS decision support platform 

(BMETS-DSP) for use in this patient population. We aimed to design a tool that (1) 

collects patient-specific demographic, disease, and treatment data, (2) displays an 

individualized survival curve based on the BMETS model described in Chapter 2, and (3) 

provides case-specific, evidence-based recommendations for radiotherapy (RT), open 
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surgery, systemic therapy, and hospice referral to aid in the decision-making process.  In 

this chapter, we describe the underlying conceptual framework, platform components, 

and steps in the development of the BMETS-DSP. 

 

METHODS   

The conceptual framework utilized for the BMETS-DSP is the Ottawa Decision Support 

Framework to Address Decisional Conflict (ODSF)30. Drawing its theoretical basis from 

general psychology, social psychology, and decision theory, the ODSF is based on 

concepts of decisional conflict, social support, and expectancy value106. This framework 

was selected due to its appropriateness for the clinical dilemma faced in selection of 

palliative RT regimens. Such choices are typified by decisional conflict, which is the state 

of uncertainty that arises when making a choice that may involve risk, loss, and 

regret106,107. The authors of the ODSF developed the framework to address health 

decisions involving such decisional conflict, specifically those that (a) arise from new 

circumstances or health transitions, (b) require particular consideration due to 

uncertainty regarding the nature of risks and benefits, and (c) require more effort in the 

decision-making phase than the implementation phase (i.e., decisions in which there are 

not clearly delineated or automatic responses106. It has been used in over 30 other 

patient- and provider-facing decision support aids, including several that address cancer-

specific questions108. Figure 1 shows the three interrelated components of the ODSF30:  

 

Functionally, the ODSF is organized into four steps, noted below106. The methodological 

approach performed or planned for the development of the BMETS-DSP is described for 

each step. 

1. Assessing determinants of the provider decision.  



 57 

To identify key determinants of the decision in the selection of appropriate RT regimens, 

key stakeholders were recruited, including attending and resident physicians in 

Radiation Oncology, Palliative Care/Medical Oncology, and Orthopedic Surgery. SA 

interviewed these stakeholders regarding key determinants of the decision-making 

process and what evidence- or consensus-based resources they rely upon for clinical 

decision-making when choosing RT regimens for symptomatic bone metastases. A 

review of the stakeholder-cited resources was then performed. A list of decision-making 

themes was then synthesized from stakeholder responses and their cited key resources. 

Lastly, the decision themes identified were again reviewed with these stakeholders for 

final feedback. 

2. Providing decision support, with the goal of preparing the provider and/or 

patient for the decision-making process and structuring the interaction.  

Based upon the decision-making themes identified, a provider-facing decision support 

platform was created. As per the ODSF, the goal of the BMETS-DSP was to address 

modifiable determinants of the decision, particularly those that contribute to decisional 

conflict and uncertainty106. From review of the literature in Chapter 1 and in alignment 

with the goals of the BMETS model from Chapter 2, we assumed that survival prediction 

would be a central theme and planned to use the BMETS model for this purpose in the 

decision support tool. In order to uphold delivery of standard-of-care and evidence-

based medicine, we elected to provide educational material of the highest category of 

evidence available, with clear citations to enable review of the source data by users if 

desired.  

To facilitate data collection needed for the BMETS model, enable it to interface with the 

electronic medical record, and permit for ease of future distribution, the BMETS-DSP 
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was created as a web-based platform.  All regulatory standards for management of 

patient protected health information were maintained in the development of the platform.  

3. Evaluating decision quality and facets of the decision-making process. 

Informed by the finalized components of the BMETS-DSP, the platform was developed 

with the expressed intent to create measurable changes to modifiable determinants of 

the decision-making process. To assess the platform’s impact on these determinants, a 

pilot assessment of the BMETS-DSP was planned. Chapter 5 describes this process.  

4. Evaluating the decision outcome.  

In addition to impacting the decision-making process itself, the BMETS-DSP was 

developed with the goal of potentially changing practice patterns in the realm of palliative 

bone RT. Thus, the pilot assessment was designed to also capture the impact of the 

BMETS-DSP on clinical outcomes relevant to the management of symptomatic bone 

metastases. This is also detailed in Chapter 5. 

 

Following development of a preliminary version of the BMETS-DSP, stakeholder input 

was once again sought and incorporated regarding formatting, ease of use, and 

elements included. 

 

Assessing Quality of the BMETS-DSP 

To improve and standardize the quality of decision support aids, the International Patient 

Decision Aids Standards (IPDAS) collaboration developed a checklist of quality criteria 

for decision-making tools109. Based on this list, Joseph-Williams, et. al., created a set of 

minimum standards based on the most critical components of the checklist in an effort to 

potentially permit for certification of such tools110. A decision support tool meeting all 
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“qualifying” requirements can be considered for certification, and one meeting all 

“certification” requirements would be eligible to be certified. As such, the BMETS-DSP 

was intentionally developed to meet these criteria. To comment on the quality of the 

BMETS-DSP, we report its adherence to the minimum standards criteria. 

 

RESULTS 

Assessing Determinants of the Decision 

Stakeholders queried regarding determinants of the decision-making process included 

attending physicians in Radiation Oncology (N=2), Palliative Care/Medical Oncology 

(N=1), and Orthopedic Surgery (N=1), as well as resident physicians in Radiation 

Oncology (N=2). Key resources included the American Society for Radiation Oncology 

(ASTRO) Guideline on Palliative Radiation Therapy for Bone Metastases12, the 

American Society for Clinical Oncology (ASCO) Quality Oncology Practice Initiative 

(QOPI)111, the ASCO Patient-Clinician Communication Guideline112, the Choosing Wisely 

Campaign113, the American College of Radiology (ACR) Appropriateness Criteria114, and 

National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in 

Oncology115.  In total, these resources yield 54 separate publications, which were 

individually assessed. When prior versions were available, only the most recently 

updated version was considered. 

In review of stakeholder responses and the above resources, the following key themes 

were identified as determinants of the decision-making process: 

1. Estimated patient survival time  

As per the methodology in Chapter 2, 27 potential predictor covariates were identified 

from the literature and used to build the BMETS model. Stakeholder feedback 
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universally cited uncertainty with survival estimates as the primary sources of decisional 

conflict when selecting appropriate palliative RT regimens. Consideration of prognosis 

and/or performance status during treatment selection was identified in 9 of the 54 

stakeholder-cited resources12,59–62,67,103,112,113,116–118. 

2. Characteristics of the target symptomatic bone metastasis  

As described in Chapter 3, the presence of possible “complicating” features including 

prior surgery, prior RT, fracture, neuraxis compromise, and soft tissue component are 

associated with either exclusion from randomized trials of different palliative RT 

regimens or differential recommendations from consensus groups. Stakeholders also 

cited this factor as a key cause of decisional conflict when choosing among palliative RT 

regimens. Five stakeholder-cited resources recommended potential alteration of 

fractionation on the basis of the treatment site, particularly for spine and other critical 

sites including weight-bearing long bones12,59–62. 

3. Characteristics of primary cancer type 

Guidelines’ recommendations may vary by histology, particularly for tumor types 

deemed to be radioresistant or radiosensitive. In particular, review of the stakeholder-

cited resources found histology-specific recommendations for palliative RT fractionation 

in 15 publications, including for cervical cancer119, kidney cancer120, mesothelioma63, B-

cell lymphoma64, non-small cell lung cancer65, small cell lung cancer121, prostate 

cancer66, soft tissue sarcomas122, gastrointestinal stromal tumors122, and thymic 

carcinoma67, as well as “radioresistant” tumor types in general12,59–62.   

4. Consideration of alternate non-RT interventions 

Stakeholder-cited resources noted that some subsets of patients may benefit from other 

interventions including surgery, systemic therapy, and hospice referral, either in place or 

in addition to RT12,59–62.  Although not specifically mentioned by stakeholders, information 

regarding alternative options is felt to be a key component per the ODSF106. 
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5. Access to patient-specific recommendations 

Stakeholders also reported the need for individualized recommendations that matched a 

specific patient’s demographic, disease, and treatment characteristics. This is aligned 

with the ODSF’s providing “tailored information” to improve the decision-making 

process106. 

6. Patient preferences 

Stakeholders reported consideration of patients’ attitudes toward factors including cost, 

time, fraction of remaining life spent in treatment, and travel when selecting palliative RT 

regimens. Notably, decision-making on the basis of patient preference was not 

specifically referenced in the stakeholder-cited resources. This determinant is out of the 

scope of the current decision support tool but will be addressed in future phases of 

BMETS-DSP development (see Chapter 6). 

 

Development of the Decision Support Platform 

The web-based, provider-facing BMETS-DSP was designed to be utilized before or 

during consultation with a patient with symptomatic bone metastases. It is self-

administered and self-paced. The BMETS-DSP is comprised of 3 components, each 

developed to address the determinants of the decision process listed above (1-5). 

1. Data entry  

Given the primacy placed on individualized recommendations based on a patient’s 

prognosis and demographic and disease features, a web-based data collection platform 

was created. In addition to the 27 covariates required for the BMETS survival model, 

additional features felt to be critical to the decision are also entered: specific histology 

information (as per the stakeholder-cited resources—cervical cancer, kidney cancer, 

mesothelioma, B-cell lymphoma, non-small cell lung cancer, small cell lung cancer, 
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prostate cancer, soft tissue sarcomas122, gastrointestinal stromal tumors122, thymic 

carcinoma, and colorectal carcinoma), prior RT at the target site, features of neuraxis 

compromise, presence of soft tissue component, and weight-bearing bone status. 

For internal users, the BMETS-DSP can be accessed through our department clinical 

web page, where it interfaces with the electronic medical record. As such, up to 50% of 

the BMETS model covariates can be pre-populated, and responses entered using the 

department clinical web page are saved into a prospective BMETS database. For 

external users, the BMETS-DSP will not save any data entered in order to maintain 

protection of health information. Data entry time is estimated at less than 1 minute for 

experienced users and less than 2 minutes for novice users. 

2. Predicted survival time following consultation  

Values of covariates entered that inform the BMETS survival model are used to create a 

survival curve. As described in Chapter 2, the survival curve is interactive, displaying 

probability of survival at various times from consultation. For comparison purposes only, 

the predicted survival curves for all patients included in the BMETS model are displayed 

behind the patient’s survival curve to provide a relative measure of survival as compared 

to other patients with symptomatic bone metastases. 

3. Individualized treatment recommendations 

In order to provide individualized treatment options across a breadth of interventions, 

best evidence and consensus statements appropriate for patient characteristics 

(demographic, disease, and treatment) and median survival time (as estimated by the 

BMETS survival model) were provided. Recommendations were arranged according to 

the following potential interventions: (a) discussion of prognosis, (b) open surgery, (c) 

RT, (d) systemic therapy, and (e) hospice referral. Although “discussion of prognosis” 

was not cited as a determinant of the decision-making process, it was included due to its 
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status as an element of best practice112 and as a means for future measurement of the 

impact of the DSP. Because the focus of the clinical question surrounds selection of 

appropriate RT regimens, the most detailed evidence-based information was provided 

for the RT intervention. Conversely, the inclusion of recommendations for open surgery, 

systemic therapy, and hospice referral was done in order to provide an appropriate 

range of alternatives to RT. We did not intend for the BMETS-DSP to permit for detailed 

decision-making within the context of these other interventions.    

 

Output was individualized on the basis of values for specific variables from the data 

entry phase (i.e., histology, features of neuraxis compromise, etc.). Table 1 shows the 

evidence- or consensus-based output and source populated when the value of a given 

variable is selected on the data entry page.   The default recommendation for each 

intervention is also listed, with factors that trigger a change to the alternate 

recommendation listed in blue. For the RT intervention, recommendations were 

categorized into three groups: consideration of shorter fraction, multiple-fraction, or a 

range of fractionation options. The “shorter fraction” option was specifically selected for 

predicted survival less than 3 months, whereas the “multiple fraction” regimen was 

selected for patients with prior surgery or non-spine fracture on the basis of available 

literature. Uncertainty regarding the definition of what constitutes a “complicated” lesion 

was emphasized when applicable, as per Chapter 3. 

 

Figure 2 shows the sample output based on data entry for a case patient. Alternatively, 

pending peer review and publication, a demo can be accessed at: https://nomogram-

demo.alcorn.dayflower.io/ Although the data entry cannot be altered in this demo, the 

survival curve is interactive. 

 

https://nomogram-demo.alcorn.dayflower.io/
https://nomogram-demo.alcorn.dayflower.io/


 64 

Quality of the BMETS-DSP  

 Table 2 shows performance of the BMETS-DSP as per the minimum standard of 

quality required by the IPDAS collaborative group. With the exception of components 

that are not applicable for the population or aim of the BMETS-DSP, all qualifying and 

certification criteria are met. 

 

DISCUSSION 

Following the Ottawa Decision Support Framework, we developed a provider-

facing decision support platform aimed at promoting selection of palliative RT regimens 

in better alignment with predicted patient prognosis and best evidence in the 

management of symptomatic bone metastases. To our knowledge, the BMETS-DSP is 

the first of its kind in oncology to incorporate an individualized patient survival prediction 

as well as evidence-based treatment recommendations specifically matched to patient 

features.  

Several design elements of the BMETS-DSP reflect our dedicated attempts to 

optimize its clinical utility by circumventing a number of barriers to implementation cited 

in the literature. The web-based design was selected to provide answers in real-time, 

addressing issues faced when there is time lag or multiple steps required to access 

recommendations123. Since web-based access alone is insufficient to ensure its use124, 

the BMETS-DSP was created to interface with our departmental clinical web page. 

Because providers used this clinical web page for a number of critical functions in a 

typical clinic day, its position on this web page means that the BMETS-DSP is poised for 

use as part of standard clinical workflow123.  Up to half of the covariates from the BMETS 
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survival model can be populated directly from the electronic medical record into the data 

collection page, further avoiding problematic workflow obstruction125.  

Another strength of our tool is that it was developed with the expressed intention 

to improve clinically relevant and measurable outcomes. While assessments of decision 

aids often evaluate the impact of the tool on measures of the decision-making process, 

few tools comment on efficacy in the clinical setting or measure decision outcomes32. As 

noted by authors of the ODSF, it is critical to distinguish measurement of decision quality 

from decision outcomes; whereas the decision-making process may be optimized to 

improve participants’ satisfaction, this feature may be independent from the actual 

clinical outcome106.  

One limitation of our design is that in its current incarnation, there is no direct 

input from patients regarding their preferences in the decision-making process. Indeed, 

whereas many decision support tools are patient-facing108, we elected to start with a 

provider-facing component. Primarily this was a functional decision, since assessing the 

clinical efficacy of the BMETS-DSP would first require stakeholder buy-in from the 

perspective of the physician given the potentially sensitive subject matter. There was 

concern that providers might feel ill at ease with presenting survival estimates to patients 

if the tool was not first validated from the provider perspective.  Second, given the 

sensitive nature of survival predictions, a patient-facing tool could pose ethical concerns 

if used by patients without provider input126. However, we did attempt to include a shared 

decision-making element in our design by encouraging discussion of prognosis among 

recommended interventions.  

Moreover, evidence from the ODSF suggests that intervention at the level of the 

provider may be particularly important for aligning decisional conflict scores between 

patients and providers. In one pre-post assessment of the ODSF performed with 120 
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physicians and 903 patients, there was less dissimilarity in both patient and providers’ 

decision conflict scores after ODSF implementation, with much of the variance in the 

outcome explained by physician scores127. While next steps in development of the 

decision tool will likely involve a patient-facing component, these data support our 

decision to emphasize a provider-facing aspect as well. 

 An additional limitation of the tool is that concrete and specific recommendations 

cannot be rendered for a sizable portion of patients. As demonstrated by our efforts in 

Chapter 3, available evidence- and consensus-based recommendations addressing this 

clinical question are complex, ill-defined, and do not provide instructions for selecting 

between available regimens. Consequently, our recommendations for radiotherapy fell 

within 3 relatively broad, overlapping categories: consideration of shorter fraction, 

multiple fraction, or a range of fractionation options. Whether these categories offer 

enough direction to alter practice patterns is the subject of the BMETS-DSP assessment 

discussed in Chapter 5. 

 Some may also criticize the decision to use 3 months as the cut point for 

recommending shorter fraction radiotherapy. This time point was selected because 

durability of single-fraction palliative RT from randomized trials is generally measured at 

4-7 months. As such, the group of patients with survival time <3 months are unlikely to 

benefit from additional durability afforded by multiple-fraction RT. Moreover, 3 months is 

the median survival time of patients included in two recent trials of shorter fraction 

palliative radiation in the setting of symptomatic spinal cord compression7,8. Given that 

these studies showed adequacy of shorter treatment in the setting of complicated 

lesions posing substantial risk of morbidity, we felt that this served as reasonable 

justification for use of 3 months as a cutoff across a breadth of disease features.  

Although it is not codified in consensus guidelines, it is noted that other authors in the 

field have cited the 3-month time point as a threshold for using shorter fractionation 
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regimens as well24,128,129. 

 As per the ODSF, development of an optimized decision support tool requires 

dedicated testing of its efficacy prior to broader implementation.  In Chapter 5, we will 

assess the impact of the BMETS-DSP on providers’ estimates of patient survival, their 

confidence in and willingness to share these prognoses with patients, and whether the 

tool improves delivery of palliative RT in better alignment with patient-specific factors 

including survival time. 
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Figure 1: Three interrelated components of the Ottawa Decision Support 
Framework.  
Adapted from O’Connor, et. al.30
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Table 1: Evidence- or consensus-based output populated into the BMETS Decision Support Platform (BMETS-DSP) for 
each patient-specific value listed across interventions of (a) discussion of prognosis, (b) open surgery, (c) radiotherapy, 
(d) cancer-directed systemic therapy, and (e) hospice referral  

Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

(a) Discussion of prognosis 
Default: 
Recommend
ed in all 

(all) 
Prognosis should be discussed early in the course of terminal illness, ideally within 1 
month of diagnosis with the terminal illness. 

ASCO Patient-
Clinician112  

- 

(b) Open surgery 

Default:  
No definite 
contraindica
-tion 

Spine 

Open surgery is recommended, except in the presence of the following contraindications to 
surgery: 

 Hematologic tumors (i.e., leukemia, lymphoma, myeloma) 

 Life expectancy <3 months 

 Paraplegia for >24 hours  
 
Vertebral augmentation (i.e., kyphoplasty, vertebroplasty) can also be used (not evaluated 
in the current assessment, since it is not an open surgical procedure). 

 
NCCN CNS62 

Possible 
contraindica
-tion 

Extremity-Femur Open surgery is contraindicated for life expectancy < 2 weeks. 
Institutional +  
 

Possible 
contraindica
-tion 

Extremity-Other Open surgery is contraindicated for life expectancy < 1.5 months. 
Institutional + 
 

Possible 
contraindica
-tion 
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Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

Hip/Pelvis-Hip Open surgery is contraindicated for life expectancy < 2 weeks. 
Institutional+ 
 

Possible 
contraindica
-tion 

Hip/Pelvis-Pelvis Open surgery is contraindicated for life expectancy < 2 months. 
Institutional+ 
 

Possible 
contraindica
-tion 

Chest wall Open surgery is contraindicated for life expectancy < 2 months. 
Institutional+ 
 

Possible 
contraindica
-tion 

Skull Open surgery is contraindicated for life expectancy < 2 months. 
Institutional+ 
 

Possible 
contraindica
-tion 

(c) Radiotherapy 

Default: 
Consider a 
range of 
radiotherapy 
regimens 

(all) 
Palliative radiotherapy for bone metastases can be considered in patients with life 
expectancy greater than days to weeks. 

NCCN 
Palliative 
Care130 

- 

Uncomplicated+-
(all) 

High-quality data demonstrate that 30 Gy/10 fractions, 20 Gy/5 fractions, and 8 Gy/1 
fraction provide equivalent pain control for uncomplicated** ______ sites. 8 Gy x 1 
optimizes convenience but is associated with a higher retreatment rate. Evidence of higher 
risk of fracture with 8 Gy/1 fraction is equivocal. 
 
Treatment in >10 fractions may be appropriate in select cases [survival > 3months]. 
 
** “Uncomplicated” metastases are painful lesions unassociated with impending or existing 
pathologic fracture or existing spinal cord or cauda equina compression. Presence of these 
features generally led to exclusion from trials comparing single versus multiple fraction 
radiotherapy. 
 

ASTRO12; 
ACR Non-
Spine59; 
Cheon68 

- 
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Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

Uncomplicated+- 
skull or femur 

High-quality data demonstrate that 30 Gy/10 fractions, 20 Gy/5 fractions, and 8 Gy/1 
fraction provide equivalent pain control for uncomplicated**   _____ sites.  
 
Although more convenient for patients, 8 Gy/1 fraction is associated with higher retreatment 
rates. Evidence of higher risk of fracture with 8 Gy/1 fraction is equivocal. Given that the 
_____ may be considered critical site, 8 Gy/1 fraction to uncomplicated _____ sites may be 
most appropriate for patients with limited life expectancy. 
 
Treatment in >10 fractions may be appropriate in select cases [survival >3 months] 
 
** “Uncomplicated” metastases are painful lesions unassociated with impending or existing 
pathologic fracture or existing spinal cord or cauda equina compression. Presence of these 
features generally led to exclusion from trials comparing single versus multiple fraction 
radiotherapy. 
 

ASTRO12; 
ACR Non-
Spine59; 
Cheon68 

- 

Uncomplicated+- 
spine 

High-quality data demonstrate that 30 Gy/10 fractions, 20 Gy/5 fractions, and 8 Gy/1 
fraction provide equivalent pain control for uncomplicated**   _____ sites.  
 
Although more convenient for patients, 8 Gy/1 fraction is associated with higher retreatment 
rates. Evidence of higher risk of fracture with 8 Gy/1 fraction is equivocal. Given that the 
_____ may be considered critical site, 8 Gy/1 fraction to uncomplicated _____ sites may be 
most appropriate for patients with life expectancy < 6 months. 
 
Treatment in >10 fractions may be appropriate in select cases [survival >3 months]. 
 
** “Uncomplicated” metastases are painful lesions unassociated with impending or existing 
pathologic fracture or existing spinal cord or cauda equina compression. Presence of these 
features generally led to exclusion from trials comparing single versus multiple fraction 
radiotherapy. 
 

ASTRO12; 
ACR60; 
NCCN 
CNS62; 
Cheon68 

- 
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Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

Fracture-spine 

There is no consensus statement regarding optimal fractionation for spine sites with 
fracture. 
 
It is unclear if spine sites with fracture were included in trials of single versus multiple 
fraction radiotherapy**. Thus, there may be insufficient evidence to support routine use of 8 
Gy/1 fraction in this setting. 
 
**Trials comparing single versus multiple fraction radiotherapy were inconsistent in 
definitions of fracture, with some excluding and some including vertebral body collapse or 
fracture under this definition. 

ASTRO12; 
Cheon68 

- 

Fracture- 
extremity, 
hip/pelvis, chest 
wall, skull 

There is no consensus statement regarding optimal fractionation for _____ with fracture. 
 
Such complicated** hip/pelvis sites were likely excluded from trials comparing single versus 
multiple fraction radiotherapy. Thus, there may be insufficient evidence to support routine 
use of 8 Gy/1 fraction in this setting.  
 
 
** “Uncomplicated” metastases are painful lesions unassociated with impending or existing 
pathologic fracture or existing spinal cord or cauda equina compression. Presence of these 
features generally led to exclusion from trials comparing single versus multiple fraction 
radiotherapy. 

ASTRO12; 
Cheon68 

- 

Postoperative-
spine 

There is little evidence to guide in treatment selection in the postoperative setting. Such 
postoperative patients were generally excluded from trials comparing single versus multiple 
fraction radiotherapy. Thus, there may be insufficient evidence to support routine use of 8 
Gy/1 fraction in this setting.  
 
Per ACR guidelines for postoperative spine sites, 30 Gy/10 fractions (preferred for good 
prognosis, which is not defined in the guidelines), 20 Gy/5 fractions, and use of >10 
fractions are usually appropriate. 8 Gy/1 fraction may be appropriate in select cases.  

Cheon68; 
ACR Spine60; 
ACR 
MESCC61 

- 
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Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

Postoperative-
non-spine 

There is little evidence to guide in treatment selection in the postoperative setting. Such 
postoperative patients were generally excluded from trials comparing single versus multiple 
fraction radiotherapy. Thus, there may be insufficient evidence to support routine use of 8 
Gy/1 fraction in this setting.  
 
Per ACR guidelines for postoperative ____sites, 30 Gy/10 fractions is usually appropriate 
(particularly for good prognosis, which is not defined in the guidelines), whereas 20 Gy/5 
fractions and 8 Gy/1 fraction may be appropriate in select cases. 

Cheon68; 
ACR Non-
spine59 

- 

SBRT [inserted addition to the above for all cases] 

SBRT- no 
modifier 

Regarding SBRT, guidelines cite insufficient evidence to support the routine use of 
stereotactic radiotherapy in this setting, outside of oligometastatic disease, clinical trial, or 
registry research. 

ASTRO12; 
ACR Non-
spine59  

- 

Other RT modifying factors [inserted in addition to above when applicable] 

Life expectancy 
<3 months 

-  

Consider 
shorter 
fractionation 
radiotherapy 

Postoperative 
and/or non-
spine fracture 

- 
ACR Non-
Spine, ACR 
Spine59,60 

Consider 
multiple 
fraction 
radiotherapy 
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Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

Soft tissue 
component 

**“Uncomplicated” metastases are painful lesions unassociated with impending or existing 
pathologic fracture or existing spinal cord or cauda equina compression. Presence of these 
features generally led to exclusion from trials comparing single versus multiple fraction 
radiotherapy. Soft tissue component was not used as an exclusion criterion in any these 
trials and is thus not considered a definite “complicating” factor. 

Cheon68 - 

Neuraxis 
compromise‡ -
survival >6 
months 

It is unclear if ______ features were included in trials of single versus multiple fraction 
radiotherapy**. Thus, there may be insufficient evidence to support routine use of 8 Gy/1 
fraction in this setting.  
 
**Trials comparing single versus multiple fraction radiotherapy generally excluded patients 
with existing “spinal cord or cauda equina compression.” However, the definitions of “spinal 
cord or cauda equina compression” were generally not provided, and a minority of trials 
required radiologic confirmation of these findings. 

Cheon68 - 

Neuraxis 
compromise‡ -
survival <6 
months 

It is unclear if ______ features were included in trials of single versus multiple fraction 
radiotherapy**. Thus, there may be insufficient evidence to support routine use of 8 Gy/1 
fraction in this setting.  
 
However, extrapolating early evidence from randomized trials for spinal cord compression 
in patients with life expectancy <3-6 months, 20 Gy/5 fractions may be non-inferior to 30 
Gy/10 fractions, and 8 Gy/1 fraction may possibly be non-inferior to 20 Gy/10 fractions 
(data in abstract form only). 
 
**Trials comparing single versus multiple fraction radiotherapy generally excluded patients 
with existing “spinal cord or cauda equina compression.” However, the definitions of “spinal 
cord or cauda equina compression” were generally not provided, and a minority of trials 
required radiologic confirmation of these findings. 

SCORE-27; 
SCORAD III8 

- 

SBRT-spine with 
fracture 

There is no consensus statement regarding stereotactic radiotherapy in this setting of 
spine sites with fracture in the non-operative setting. 
 

 
NCCN CNS 
 
 

- 
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Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

SBRT-spine, 
postoperative 

Per ACR and NCCN guidelines, postoperative spine stereotactic radiotherapy may be 
appropriate in select cases, such as oligometastatic disease. 
 
However, other guidelines cite insufficient evidence to support the routine use of 
stereotactic radiotherapy in this setting, outside of clinical trial or registry research. 
 

ACR Spine60; 
NCCN CNS62; 
ASTRO12 

- 

Spine, KPS<60 
Stereotactic radiotherapy is generally contraindicated for KPS<60. 
 

Spinal SBRT 
Guidelines131 

- 

SBRT- renal cell, 
melanoma, 
sarcoma, 
hepatocellular, 
colorectal, non-
small cell lung 

Per NCCN guidelines, stereotactic radiotherapy can be considered if cancer is 
oligometastatic and/or radioresistant (including renal cell, melanoma, sarcoma, 
hepatocellular, and some colorectal and non-small cell lung cancer cases). 

NCCN CNS62 - 

SBRT-cervical 
cancer 

Per NCCN guidelines, aggressive local therapy can be considered for oligometastasis to 
bone, nodes, lung, or liver from cervical cancer. 

NCCN 
Cervical119 

- 

SBRT-kidney 
cancer 

Per NCCN guidelines, surgical resection or ablative techniques can be directed to sites of 
oligometastasis from kidney cancer. 

NCCN 
Kidney120 

- 

SBRT-soft tissue 
sarcoma 

Per NCCN guidelines, metastasis to a single organ with limited bulk that are amendable to 
local therapy: 

 Metastasectomy +/- neoadjuvant or postoperative radiotherapy  

 Stereotactic radiotherapy 

NCCN Soft 
tissue 
sarcoma122 

- 

SBRT-thymic 
carcinoma 

Per NCCN guidelines, stereotactic radiotherapy may be appropriate for limited focal 
metastases, and conventional radiotherapy may be preferred for larger metastases. 

 
NCCN 
Thymoma and 
thymic 
carcinoma67 

- 

SBRT-thyroid 
cancer 

 
Per NCCN guidelines, external beam radiotherapy or stereotactic radiotherapy cab be 
considered to iodine-resistant symptomatic metastatic sites. 
 

NCCN 
Thyroid132 

- 
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Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

B-cell lymphoma 

Per NCCN guidelines, bone lesions from follicular, marginal zone, and mantle cell 
lymphoma can be treated in 4 Gy/1-2 fractions; doses up to 30 Gy may be appropriate in 
select circumstances; lesions from diffuse large B-cell lymphoma can be treated in 24-30 
Gy 
 

NCCN B-cell 
Lymphoma64 

- 

Non-small cell 
lung cancer-
KPS<70 

Per NCCN non-small cell lung cancer guidelines, 8 Gy/ 1 fraction or 20 Gy/5 fractions is 
recommended for any bone metastasis in patients with poor performance status (likely 
corresponds to KPS < 70). 
 

NCCN Non-
small cell lung 
cancer65 

- 

Non-small cell 
lung cancer-soft 
tissue component 

Per NCCN non-small cell lung cancer guidelines, 20 Gy/5 fractions or 30 Gy/10 fractions 
are recommended for bone metastases with soft tissue mass. 

NCCN Non-
small cell lung 
cancer65 

- 

Non-small cell 
lung cancer- no 
soft tissue 
component 

Per NCCN non-small cell lung cancer guidelines, 8 Gy/1 fraction, 20 Gy/5 fractions, or 30 
Gy/10 fractions are recommended for bone metastases without soft tissue mass. 

NCCN Non-
small cell lung 
cancer65 

- 

Mesothelioma-
chest wall 

Per NCCN guidelines, pain from chest wall involvement should be treated in 20-40 Gy in > 
4 Gy fractions delivered in 1-2 weeks or in 30 Gy/10 fractions 

NCCN 
Mesothelioma
63 

- 

Mesothelioma-
non-chest wall 

Per NCCN guidelines, pain from non-chest wall bone metastases should be treated in 30 
Gy/10 fractions 

NCCN 
Mesothelioma
63 

- 

Prostate cancer 
Per NCCN guidelines, Strontium-89 or Samarium-153 can be administered for widespread 
bone metastases, with or without focal external beam radiotherapy. 
 

NCCN 
Prostate66 

- 

Thymic 
carcinoma 

Per NCCN guidelines, symptomatic lesions can be treated with 8 Gy/1 fraction, 20 Gy/5 
fractions, 30 Gy/ 10 fractions, or definitive doses can be considered in the case of limited 
metastases. 

 
NCCN 
Thymoma and 
thymic 
carcinoma67 
 

- 
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Variable value Evidenced- or consensus-based output 
 

Source 

Default or 
triggered 

recommend-
ation* 

Thyroid cancer 

 
Per NCCN guidelines, metastases can be treated with radioactive iodine if not previously 
delivered. Suppression of TSH with levothyroxine can be started or continued. 
 

NCCN 
Thyroid132 

- 

(d) Cancer-directed systemic therapy 

Default: No 
definite 
contraindica
-tion 

 (all) 

Cancer-directed therapy should no be continued or initiated in patients with either of the 
following: 

 Solid tumors and low performance status (ECOG PS 3 or 4, corresponding to KPS 
<50). Exceptions include: those with disease characteristics (e.g., mutations) that 
suggest a high likelihood of response to therapy 

 Life expectancy < 2 weeks 

Choosing 
Wisely113; 
ASCO 
QOPI118 

Possible 
contraindica
-tion 

Hospice referral discussion 

Default: No 
definite 
contraindica
-tion 

(all) Hospice referral is recommended for patients with life expectancy <6 months. 
Hospice 
Referral 
Eligibility133 

Possible 
contraindica
-tion 

Lines marked in italics (e.g., survival >3 months) are only populated when italicized content is true. 
Note: publications by Cheon, Jabbari, and Howell, as well as SCORE-2 and SCORAD III trials were not part of the 54 stakeholder-cited 
resources but were included due to citation by at least one of these resources 
* Presence of blue text prompts recommendation header to change as indicated 
+ No consensus-based data is available. As such, these recommendations are based on institutional practices only. 
‡ Neuraxis compromise includes central canal or neuroforaminal stenosis, with or without cord edema or associated neurological symptoms  
** Uncomplicated as defined per Cheon, et. al.68 
ACR=American College of Radiology, ASCO=American Society of Clinical Oncology, ASTRO=American Society for Radiation Oncology, ECOG 
PS= Eastern Cooperative Oncology Group Performance Status, KPS= Karnofsky Performance Status, MESCC= malignant epidural spinal cord 
compression, NCCN=National Comprehensive Cancer Network, SBRT= stereotactic radiotherapy, QOPI= Quality Oncology Practice Initiative 
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Figure 2:  A demonstration of the BMETS Decision Support Platform (BMETS-DSP) 
based on a sample patient 
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Table 2: Performance of the BMETS Decision Support Platform (BMETS-DSP) at 
meeting features required for a minimum standard of quality as per the 
International Patient Decision Aids Standards* 

 
Section of BMETS-DSP 

addressing specific criteria 

Qualifying criteria 

“Describes health condition or problem for which index decision is 
required” 

Introduction section 

“Explicitly states decision under consideration (index decision)” Introduction section 

“Describes the options available for the index decision” 
Treatment 
Recommendations section 

“Describes the positive features of each option” 
Treatment 
Recommendations section 

“Describes the negative features of each option” 
Treatment 
Recommendations section 

“Describes the features of options to help patients imagine the 
physical, social and/or psychological effects” 

N/A; provider-facing tool 

Certification criteria 

“Shows positive and negative features of options with equal 
detail” 

Treatment 
Recommendations section 

“Provides information about the funding source used for 
development” 

Funding Source section 

“Provides citations to the evidence selected” Treatment Recommendations section 

“Provides a production or publication date” Publication Date section 

“Provides information about update policy” 
Update Date section (when 
applicable) 

“Provides information about the level of uncertainty around 
outcome probabilities” 

Treatment 
Recommendations section 

“Describes what the test is designed to measure” N/A 

“Describes next steps taken if test detects a condition/problem” N/A 

“Describes next steps if no condition/problem detected” N/A 

“Describes consequences of detection that would not have 
caused problems if the screen was not done” 

N/A 

*Adapted from Durand, et. al.134 
N/A= not applicable 
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ABSTRACT 

Background: To improve selection of appropriate palliative radiotherapy regimens in 

patients with symptomatic bone metastases, we developed the BMETS Decision 

Support Platform (BMETS-DSP). This decision support aid displays a patient-specific 

predicted survival curve and provides case-specific, evidence-based recommendations 

for RT, open surgery, systemic therapy, and hospice referral for use in this patient 

population. In the present study, we conducted a pilot assessment of the clinical utility of 

the BMETS-DSP using a pre-post design in a simulated clinical environment. 

Methods:  Five trainee and 5 attending physicians in Radiation Oncology participated in 

the BMETS-DSP assessment. A total of 55 patient cases were randomly selected from 

the 397 patients used to build the BMETS model; each predicted survival curve 

displayed as part of the DSP was refitted leaving the case patient out. Relevant case 

data including BMETS covariates were summarized and presented to physicians at 2 

times: without and then with use of the BMETS-DSP (separated by a 3- to 4-week 

washout). At each time, physicians were asked to estimate patient survival in the 12 

months following radiotherapy consultation; their confidence in and likelihood of sharing 

this estimate with the patient (increasing 1-10 scales); recommendations for open 

surgery, systemic therapy, and hospice referral; and preferred radiotherapy regimen (0, 

1, 5, 10, or >10 conventional fractions or stereotactic radiotherapy). Wilcoxon signed-

rank test evaluated paired survival estimates and rating scales, and McNemar’s test 

compared accuracy of survival estimates at clinically relevant binary time points. 

Results: Assessment completion rate was 96%. Pre- vs. post-DSP, physicians' 

estimates of survival were mean 7.9 (SD 3.6) vs. 6.9 (SD 3.7) months, respectively, 

p<0.001. There was a significant reduction in overestimation of true minus estimated 
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survival time, with a mean difference of -2.1 (SD 4.1) vs. -1 month (SD 3.5), p<0.001. 

This improvement was observed across training level. Accuracy of survival prediction 

was significantly improved at clinically relevant binary time points of <3 (72 vs. 79%, 

p<0.001), ≤6 (64 vs. 71%, p=0.007), and ≥12 months (70 vs. 81%, p<0.001). Median 

ratings of confidence in and likelihood of sharing prognosis each increased from 6 to 8, 

both p<0.001. There was greater concordance in matching use of 1-fraction RT with true 

survival <3 months (70 vs. 76%, p=0.001) and <10 fraction RT with true survival <12 

months (55 vs. 62%, p=0.006). There was also greater concordance in matching use of 

open surgery when not contraindicated by survival time (47% vs. 53%, p=0.022).  There 

was no significant improvement in appropriate selection of hospice referral or systemic 

therapy. 

Conclusions: In this pilot study, use of the BMETS-DSP significantly improved 

physician accuracy in estimating survival and increased prognostic confidence, 

likelihood of sharing prognosis, and use of prognosis-appropriate RT regimens in the 

care of symptomatic bone metastases. These preliminary data support future multi-

institutional validation of the BMETS-DSP. 
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INTRODUCTION 

 

In the management of symptomatic bone metastases, selection of appropriate 

palliative radiotherapy (RT) regimens would ideally be based on patient-specific 

characteristics including estimated survival. Yet as detailed in the previous chapters, 

provider estimates of patient survival are notoriously inaccurate and overoptimistic135. 

Moreover, available evidence-based and consensus guidelines do not provide clear 

criteria for selecting between the range of palliative RT regimens12,114,115. To address 

these issues, in Chapter 4, we described development of the provider-facing BMETS 

Decision Support Platform (BMETS-DSP), which (1) collects patient-specific 

characteristics critical to the treatment selection, (2) displays a patient-specific predicted 

survival curve based on the BMETS survival model described in Chapter 2, and (3) 

provides case-specific, evidence-based recommendations for RT, open surgery, 

systemic therapy, and hospice referral in the care of symptomatic bone metastases. 

While a range of decision support aids have been described in the literature, 

fewer have undergone dedicated assessment of efficacy in the clinical setting105. In 

accordance with standards delineated by the International Patient Decision Aids 

Standards (IPDAS) Collaboration, a dedicated assessment of such tools is a required 

metric of decision aid quality110. However, features of an optimal decision aid 

assessment were not provided. An interesting approach to piloting a decision support 

tool was performed at our institution by Cheng, et. al.136. The authors sought to assess 

whether a model for predicting weight loss would improve providers’ estimates of this 

outcome in the management of patients with head and neck cancer. To do so, four 

physicians were asked to review case patients and estimate risk of weight loss at two 

time points—first without and then with the use of the prediction model. Statistical 
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analysis appropriate for matched pairs were performed, and the assessment provided 

preliminary evidence of the efficacy of the model. 

Given success of this assessment within our institution, we performed a similar 

pilot assessment of the BMETS-DSP, using a pre-post design in a simulated clinical 

environment using case presentation. The goal of this assessment was to provide early 

evidence of the clinical utility of the BMETS survival model and associated BMETS-DSP 

to provide justification for future evaluation in a multi-institutional randomized trial.  

 

METHODS 

Data source 

All case patients included in the assessment were part of the initial BMETS database, 

described in Chapter 2. After stratifying by quartiles of actual survival time, 55 case 

patients were randomly selected from the BMETS database population. 

  

Study population 

To evaluate the clinical utility of the BMETS-DSP, an email query recruiting study 

participants was sent to physicians with clinical privileges and access to the electronic 

medical record at the Johns Hopkins Department of Radiation Oncology and Molecular 

Radiation Sciences. The first 5 trainee and 5 attending physicians to respond were 

selected to participate, and informed consent was obtained. 

 

A total of 55 patient cases were randomly selected from the 397 patients used to build 

the BMETS model. Relevant case data was collected including the 27 BMETS survival 

model covariates described in Chapter 2 as well as additional covariates used to create 

individualized treatment recommendations in the BMETS-DSP: prior RT, specific 

histologic type, detailed description of neuraxis compromise at the target site, presence 
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of neurologic symptoms other than pain attributable to the target lesion, and the 

presence of soft tissue component at the target site. These data were summarized to 

create case histories. To estimate predicted survival for the BMETS-DSP assessment, 

the BMETS model was refitted to produce a survival curve for each case, leaving the 

case patient out.  Individualized recommendations were rendered on the basis of the 

BMETS’s median predicted survival time and other patient and disease characteristics 

for each case, as detailed in Chapter 4. 

 

Case histories were presented to physicians at 2 times: without and then with use of the 

BMETS-DSP output. The two assessment times were separated by a washout period of 

no less than 3 and no greater than 4 weeks, as per Cheng et al136. Time between start 

and completion of each phase of the assessment once started was <1 week. 

 

Outcome assessments 

At each assessment time, physicians were asked to answer 7 identical questions 

regarding the case patients. They were instructed that there may be no single correct 

answer and to choose their response on the basis of their clinical knowledge and 

practice alone during time 1 and with the assistance of the BMETS-DSP at time 2.  

1. Estimated survival in the 12 months following the simulated consultation. 

Answers were entered as continuous values between 0.0 to 12.0 months, with the 

instruction to select 12.0 for estimated survival time of > 12 months. 

2. Confidence in their prognostic estimate. Answers were collected on a Likert scale 

ranging from 1 to 10, where 1= not at all confident and 10= very confident. 

3. Likelihood of sharing the prognostic estimate with the case patient. Answers 

were collected on a Likert scale ranging from 1 to 10, where 1= very unlikely and 10= 

very likely. 
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4. Recommendations for open surgical intervention. To capture recommendations 

for prognosis-appropriate surgical interventions, physicians were asked to assume 

that associated symptoms and/or radiologic features of the target site (including 

those potentially not listed in the case presentation) would meet criteria and 

feasibility for a surgical intervention if otherwise appropriate for the given clinical 

scenario. Responses accepted were: yes, no, or “not applicable” for patients who 

had already undergone surgery at the target site. 

5. Recommendations for RT. To evaluate recommendations for RT, physicians were 

asked to assume that no further surgery (other than that mentioned in the case 

history, if applicable) was elected at the symptomatic site. Then they were told to 

assume that the symptomatic site could be encompassed in a reasonable RT 

treatment field and meet dosimetric objectives for any of the listed RT regimens if 

otherwise appropriate for the given clinical scenario. The six response options were:  

no radiotherapy; 1-, 5-, 10-, or >10- fraction conventional RT; and SBRT. 

6. Recommendations for cancer-directed systemic therapy. To capture 

recommendations for appropriate systemic therapy interventions, physicians were 

asked to assume that a systemic agent appropriate for the metastatic cancer existed 

and could be administered if otherwise appropriate for the given clinical scenario. 

They were asked to make this decision independent of their answers regarding local 

therapy with surgery or RT. Responses accepted were: “yes” or “no.” 

7. Recommendations for hospice referral. Responses accepted were: “yes” or “no.” 

 

Regarding questions about recommendations for appropriate interventions, the term 

“appropriate” was define as the condition in which the patient would not be excluded 

from the intervention on the basis of patient or disease features described or implied in 
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the case presentation. This term was meant to capture decision uncertainties including 

prognosis. The complete assessment form is included in Appendix 3. 

 

Survival estimates and intervention recommendations were also evaluated in relation to 

case patients’ actual survival to clinically relevant binary time points of 3, 6, and 12 

months. The 3-month time point was defined as <3 months vs. > 3 months to mirror the 

cut point used for appropriateness of spine surgery62. As described in Chapter 4, this 

was also the cut point we used to determine whether “shorter fraction RT” would be 

recommended in the BMETS-DSP. The 6-month time point was defined as < 6 months 

vs. > 6 months, corresponding to the cut point used for appropriate hospice referral133. 

This cut point also reflects the upper range of survival for which shorter fraction RT has 

been tested for patients with spinal cord compression7.  Institutionally, this cutoff is 

sometimes used to determine appropriateness for stereotactic body RT (SBRT). The 12-

month time point was defined as < 12 months vs. > 12 months to reflect the phrasing 

used in the questionnaire for estimates of survival noted above.  

 

Statistical analysis 

Descriptive statistics were performed to characterize patient and disease features for 

case patients and to describe the participating physicians.  

 

Physicians’ estimates of survival were first assessed as a continuous variable, using 

Wilcoxon signed-rank test to evaluate paired survival estimates before and after use of 

the BMETS-DSP. 

 

Physician performance in estimating survival time pre- and post-DSP was analyzed 

using accuracy, sensitivity, specificity, area under the receiver-operative characteristics 
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curve (AUC), and positive and negative predictive value (PPV and NPV, respectively), 

comparing physicians’ estimates of survival versus actual survival at the clinically 

relevant binary time points of < 3 months, < 6 months, and < 12 months. Accuracy was 

defined as number of correct predictions (sum of true positives and true negatives) 

divided by the total number of cases. To evaluate these performance measures, 

physicians’ continuous survival estimates were converted to binary values of surviving 

versus not surviving at each binary time point. A true positive was defined as a correct 

prediction of surviving relative to actual survival at that time point, and a true negative 

was correct prediction of not surviving relative to actual survival.  McNemar’s test 

compared paired values of pre- and post-DSP accuracy. 

 

Confidence in and likelihood of sharing prognostic estimates were evaluated using 

Wilcoxon signed-rank test for paired ratings of these measures, pre- and post-DSP. 

 

Appropriate selection of treatment interventions was assessed by the match between the 

recommendation for a given intervention and appropriateness of that intervention, as 

defined by evidence- or consensus-based guidelines and/or clinically relevant binary 

time point. Percent of concordant matches at each assessment time was specified as 

the sum of (“correct” recommendation for the intervention in the case where it is 

appropriate) plus (“correct” recommendation for no intervention in the case where it is 

not appropriate), divided by the total number of cases. For each intervention, 

appropriateness was categorized as follows: 

1. Surgery: Appropriateness was defined according to cut points of actual survival for 

which surgery at a given target site was contraindicated [i.e., open surgery is 

contraindicated when actual survival time is <3 months for spne62; <2 weeks for 
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extremity (femur) and hip/pelvis (hip); <1.5 months for extremity (non-femur); and <2 

months for hip/pelvis (non-hip), chest wall, and skull].  

2. RT. Appropriateness was defined according to both clinically relevant binary time 

points and presence of “complicating” features. For assessment by binary time 

points, an assumption was made that a “correct” choice would be the use of shorter 

fractionation/non-SBRT regimens for shorter actual survival time. For example, when 

evaluating <1-fraction RT and the binary time point of 3 months, percent concordant 

match would be the sum of (recommendation for <1-fraction RT given actual survival 

<3 months) plus (recommendation for multiple fraction RT given actual survival > 3 

months), divided by total cases. For assessment by complicating features, a “correct” 

recommendation was assumed to be the use of longer fractionation or SBRT 

regimens in the presence of a complicating feature. 

3. Systemic therapy. Appropriateness was defined according to the cut points of both 

actual survival time and Karnofsky performance status (KPS) for which systemic 

therapy was contraindicated [i.e., systemic therapy is contraindicated when actual 

survival is < 2 weeks and KPS <50113,118].  

4. Hospice referral. Appropriateness was defined according to the cut point of actual 

survival < 6 months used to establish hospice eligibility. 

Concordant matches for each intervention were compared pre- and post-DSP using 

McNemar’s test, using different definitions of “appropriateness” when indicated. 

 

 All statistical tests utilized a two-sided α= 0.05 for significance testing. Confidence 

intervals were reported for logistic regressions as per Louis and Zeger137. Statistics were 

performed using Stata Version 14.0 (College Station, Texas). 
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This study was approved by the Institutional Review Board of Johns Hopkins University 

School of Medicine.  

 

 

RESULTS 

Table 1 shows characteristics of the case patients included in the assessment of the 

BMETS-DSP. Distributions of key patient-, disease-, and treatment-specific factors were 

similar to those found in the larger BMETS database from Chapter 2.  

 

All 10 physicians participated in both pre- and post-DSP assessments, and response 

completion rates were 96%. Half of the physicians were trainees and completed medical 

school an average of 3.5 years [standard deviation (SD 1.3)] prior. The remaining five 

participants were attending physicians who completed medical school an average of 

16.5 years (SD 11.6) prior. All physicians were actively training in or board certified in 

the field of Radiation Oncology. 

 

Estimates of survival time 

Mean actual survival time across case patients was 5.9 months (SD 4.0). Pre- vs. post-

DSP, physicians' estimates of survival were mean 7.9 (SD 3.6) versus 6.9 (SD 3.7) 

months, respectively, p<0.001. Use of the DSP resulted in a reduction in overestimation 

of actual minus estimated survival time, with a mean difference of -2.1 (SD 4.1) vs. -1 

month (SD 3.5), p<0.001. This improvement was observed across training level.  

 

Table 2 displays accuracy of physicians’ survival estimates at clinically relevant time 

points, before and after use of the BMETS-DSP. Pre-DSP accuracy was lowest when 

considering exact matches into survival categories and highest for the binary time point 
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of 3-months. Use of the BMETS-DSP significantly improved accuracy across all time 

points considered. The largest absolute increase was noted for accuracy at the binary 

time point of 12 months, where post-DSP accuracy increased by over 10% from 70.1% 

to 80.5%. 

 

Measures of physician performance for survival estimation without and with the use of 

the BMETS-DSP are listed in Table 3.  Pre-DSP, sensitivity was lowest but specificity 

was highest for survival estimates at the binary time point of 3-months (0.15 and 1.00, 

respectively). Physician performance at distinguishing survivors was poor to satisfactory 

across time points without use of the DSP, ranging from 0.56 to 0.64. Positive predictive 

value was highest for survival estimates at the 12-month time point, whereas negative 

predictive value was highest at the 3-month time point (0.88 and 0.77, respectively). 

 

Use of the BMETS-DSP improved nearly all measures of prediction performance across 

time points. Although it remained relatively low, sensitivity at the 3-month time point 

increased by more than 2-fold to 0.33. Specificity remained lowest at the 12-month time 

point but did not change appreciably with the use of the BMETS-DSP (from 0.53 to 

0.52). AUC was improved to a satisfactory to good range for all time points, ranging from 

0.66 to 0.71. Notably, positive predictive values were increased to > 0.72 with use the 

BMETS-DSP. Negative predictive values increased across all time points but remained 

relatively low at 0.47 at the 12-month time point. 

 

Ratings of confidence in and likelihood of sharing prognosis 

Prior to use of the BMETS-DSP, median rating for confidence with survival estimate was 

6 (range 1-10). Post-DSP, this rating increased to median score of 8 (range 2-10). Pre-

DSP, median rating for likelihood of sharing the survival estimate with the case patient 



 94 

was 6 (range 1-10). Post-DSP, this rating also increased to a median score of 8 (range 

1-10). In both cases, this increase was statistically significant, p<0.001.  

 

Recommendations for appropriate open surgical intervention 

Seven cases were excluded for consideration due to previous open surgical intervention. 

After applying prognostic cutoffs specific for each treatment site, there was no clear 

contraindication to open surgery in 33 out of 48 cases (67.4%). Before use of the 

BMETS-DSP, open surgical intervention was recommended by physicians in 28.7% of 

cases. After use of the BMETS-DSP, surgical intervention was recommended in 38.6% 

of cases. Match between prognosis-appropriate surgery status and recommendation for 

surgery were 47.3% and 52.8%, respectively, without and then with use of the DSP. This 

increase in match agreement was statistically significant (McNemar’s Χ2= 5.24, 

p=0.022). 

 

Recommendations for appropriate systemic therapy intervention 

After applying prognostic and KPS cutoffs, there was no clear contraindication to 

systemic therapy in 51 out of 55 cases (92.3%). Before use of the BMETS-DSP, 

systemic therapy was recommended by physicians in 82.5% of cases. After use of the 

BMETS-DSP, systemic therapy was recommended in 80.8% of cases. Match between 

appropriate use of system therapy status and recommendation for systemic therapy 

were 83.1% and 82.9%, respectively, without and then with use of the DSP. This change 

in match agreement was not statistically significant (McNemar’s Χ2= 0.01, p=0.915). 

 

Recommendations for appropriate hospice referral intervention 

After applying prognostic cutoffs, there was no clear contraindication to hospice referral 

in 29 out of 55 cases (52.7%). Before use of the BMETS-DSP, hospice referral was 
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recommended by physicians in 55.8% of cases. After use of the BMETS-DSP, hospice 

referral was recommended in 53.1% of cases. Match between appropriate hospice 

referral status and recommendation for hospice referral were 66.5% and 70.9%, 

respectively, without and then with use of the DSP. This change in match agreement 

was not statistically significant (McNemar’s Χ2= 3.18, p=0.074). 

 

Recommendations for appropriate RT intervention 

Figure 1 shows the percent at which each fractionation scheme was recommended, pre- 

and post-DSP. Treatments above 10 fractions or with SBRT were more common at the 

pre- versus post-DSP assessment (12.6% versus 9.1%, respectively), whereas use of 

single-fraction (4.9% versus 6.8%, respectively) was more common in the post-DSP 

group, p<0.001. At both assessment times, regimens utilizing < 5 fractions were selected 

in approximately half of cases.  

 

Table 4 shows the percent of cases in which there was a concordant match between the 

“appropriate” choice of a shorter fraction regimen for a patient with a lower actual 

survival time, evaluated at different survival time and fractionation cut points. These data 

show that use of the BMETS-DSP increased concordant match of selection of < 1 

fraction palliative RT for patients with actual survival time < 3 months from 69.9% to 

76.0% (McNemar’s Χ2=11.0, p<0.001) and for patients with actual survival time < 6 

months (McNemar’s Χ2=4.15, p=0.042). Additional, use of the BMETS-DSP increased 

concordant match of selection of < 5 fractions palliative RT for patients with actual 

survival time <12 months (McNemar’s Χ2=7.71, p=0.006).  

 

In Table 5 the percent of cases in which there was a concordant match between the 

“appropriate” choice of a longer fraction regimen for a patient with a potential 



 96 

“complicating” feature is evaluated, using a range of fractionation cut points and types of 

“complicating” features. Unlike survival time, there were no significant differences in 

concordant match of fractionation according to presence of various “complicating” 

features. 

 

 

DISCUSSION 

In this pilot assessment of the BMETS-DSP, use of the decision support aid 

improved accuracy of physicians’ survival estimates, increased confidence in and 

likelihood of sharing prognosis with the patient, and improved selection of prognosis- 

and guidelines-appropriate surgery and RT interventions.  These data provide early 

evidence of the efficacy of the BMETS-DSP in guiding clinical decision-making, with the 

goal of optimizing individualized care for patients with symptomatic bone metastases. 

 In alignment with the underlying Ottawa Decision Support Framework (ODSF) 

used to develop our decision support tool106, we sought to evaluate both facets of the 

decision-making process as well as decision outcomes in the assessment of the 

BMETS-DSP. We evaluated physicians’ confidence in their prognostic estimates as a 

facet of the decision-making process, whereas we assessed their likelihood of sharing 

prognosis and their selection of interventions as measures of decision outcomes. The 

success of the BMETS-DSP in producing improvements in both of these capacities 

offers support of the quality of its design and its potential to reduce decisional conflict in 

this setting. 

Results of the BMETS-DSP assessment confirm the trend that providers’ survival 

estimates tend to be over-optimistic. In a systematic review regarding clinician estimates 

of survival for patients with cancer, 9 out of 12 included studies demonstrated an over-

estimation in survival time17. Although the means by which survival estimates were 



 97 

measured vary between studies and limit direct comparison, our physicians’ survival 

overestimation ratio of 1.33 (7.9 months estimated/5.9 months actual survival) falls 

within the range of 1.08 to 5.3 reported in other publications. Use of the BMETS-DSP 

reduced this overestimation ratio to 1.17, which is among the lowest ratios reported135. 

This reduction in overestimation may be particularly important, since such over-optimism 

is linked to high-cost, low value care in this setting18. 

 It is noted that past studies show survival estimates may be particularly 

inaccurate at the extremes of survival time. For example, the study by Vigano, et. al., 

found that physicians’ sensitivity for prediction survival was lowest for patients with 

actual survival times < 2 months138. Conversely, other publications have confirmed a 

“horizon effect”—that short-term forecasts for survival and other outcomes tend to be 

more accurate than longer-term predictions17. This effect was reflected in the results of a 

study of 39 patients with cancer, in which the AUC for providers’ 3-month and 12-month 

survival predictions were 0.75 and 0.57, respectively139. Given that the magnitude of 

improvement in survival estimates with the BMETS-DSP was greatest for discriminating 

between survivals at the 3- and 12-month binary time points, our tool may be an 

especially valuable resource for use in this setting. 

 Regarding its effect on selection of appropriate palliative RT regimens, the 

primary impact of the BMETS-DSP appears to have occurred at the level of improved 

survival predictions. Whereas prognosis-appropriate RT decisions improved over several 

binary survival time points and fractionation schemes as per Table 4, there were no 

apparent changes in fractionation choice measured in relation to increasing 

“complicating” features of the target lesion. It is unclear if this is due to inadequate 

sample size for detecting changes or the inability of the authors to provide sufficiently 

concrete criteria for selecting between regimens on the basis of “complicating” features. 
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Interestingly, the BMETS-DSP improved prognosis-appropriate 

recommendations for surgical but not for systemic therapy or hospice referral 

interventions. Notably, when designing the BMETS-DSP, it was not our expressed goal 

to allow for detailed determination of the appropriateness of surgery or systemic therapy. 

Instead, the intended goal was to promote appropriate referral to Medical Oncology or 

Surgical Oncology colleagues should these interventions be deemed appropriate relative 

to expected prognosis. As such, the significance (or lack thereof) of the impact of the 

BMETS-DSP on these interventions should be interpreted with caution.  

Recommendations for hospice referral were similar before and after use of the 

BMETS-DSP—and notably similar to the 56% referral rate measured by retrospective 

review of our own institutional data20. Given that physicians’ accuracy for discriminating 

survival at the 6-month time point was improved to 70.9% at the post-DSP assessment, 

it is unclear why concordant match of appropriate hospice referral rates were not 

similarly increased. Additional efforts should be dedicated to understanding this residual 

non-adherence to hospice referral guidelines. 

Most notably, this study is limited by its status as a pilot assessment, using a 

simulated clinical environment with limited sample size and non-randomized design. 

Small numbers preclude use of more advanced statistical approaches such as attempts 

to account for cluster effect at the level of the provider. It is noted that the primary goal of 

this assessment was to provide preliminary evidence of the feasibility and efficacy of the 

BMETS-DSP, to be used as justification for a randomized, multi-institutional study. While 

its results support this goal, caution must be used in drawing extensive conclusions 

outside of the study’s intended context. Whereas numerous decision support tools have 

been assessed in pilot studies such as this, few have been evaluated in the clinical 

context140, where early efficacy may not translate into measurable clinical effectiveness.  
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Given the complex, ill-defined, and conflicting nature of guidelines available for 

this patient population, testing the BMETS-DSP required that we make a number of 

assumptions regarding the “appropriateness” of the various interventions.   For example, 

we assumed that shorter regimens of RT were most appropriate for patients with more 

limited estimated survival. As previously noted in Chapter 4, this decision was based on 

reasonable extrapolation from the literature and supported in the works of other 

authors24,128,129. Yet in reality, the trials of single- versus multiple-fraction palliative RT for 

uncomplicated symptomatic bone metastases were generally designed as non-inferiority 

studies12,141. Thus, while there is an implied benefit to the use of shorter treatment 

regimens in the setting of non-inferiority, these data do not conclude that use of longer 

regimens is contraindicated. Moreover, “appropriateness” is a highly subjective term that 

is likely to vary across institutions and medical systems, potentially limiting the 

generalizability of these results to external users. 

 An additional limitation of our assessment design is its reliance on review of case 

histories as opposed to in-person patient-physician interactions. As our review of the 

BMETS survival modal in Chapter 2 implies, a subjective provider-rated variable—

KPS—is the strongest predictor of survival in this group. As such, it could be argued that 

the survival estimates and treatment choices garnered from our study may vary from 

what the physician might answer in a realistic clinical setting. However, the directionality 

of the impact of this potential bias is unclear. For example, one study showed that the 

length of time a physician has known a patient is linked to a reduction in prognostic 

accuracy—with each additional year of the patient-physician relationship resulting in a 

12% increase in likelihood of prognostic error142.  Moreover, while some studies indicate 

superiority of clinician predictions over use of prognostic tools such as performance 

status alone143, other studies show similar predictions between methods144. Again, 
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prospective evaluation of the BMETS-DSP in the clinical environment will be required to 

confirm its true effectiveness. 

 In summary, this pilot assessment of the BMETS-DSP provides preliminary 

evidence of its impact on improving physicians’ estimates of survival and selection of 

prognosis-appropriate palliative RT regimens in the management of symptomatic bone 

metastases. These data provide justification of the feasibility and efficacy of the tool, 

justifying more extensive assessment in a randomized, multi-institutional study. 

Moreover, results highlight the need for future studies that clarify optimal fractionation 

schemes in the setting of “complicated” metastases. Lastly, these results emphasize the 

need for interventions addressing inadequate hospice referral patterns, which appear to 

persist even in the setting of improved survival predictions.  
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Table 1: Patient, disease, and treatment characteristics for case patients included 
in the BMETS Decision Support Platform assessment.  

Patient-specific factors Disease-specific factors Treatment-specific factors 

Name  Name  Name  

1. Age in 
years—mean 
(SD) 

2. Sex—% 
female  

3. Race*—% 
White 
Black 
Other 

4. KPS—median 
(range) 

5. WBC count 
within prior 1 
month in cells 
per 
microliter—
mean (SD) 

6. Lymphocyte 
count within 
prior 1 month 
in cells per 
microliter—
mean (SD) 

7. Inpatient 
status+—% 
Yes  

8. Any weight 
loss in prior 6 
months—% 
Yes   

   

 
 

14.4% 
 

45.5% 
 

70.9% 
25.5% 
3.6% 

70 (30-
100) 

 
 
 
 

11,014 
(9,956) 

 
 
 
 

2119 
(5853) 

 
 

29.1% 
 
 
 

76.1% 
 

9. RT target site‡—%   
Spine 
Hip/pelvis 
Extremity 
Chest wall 
Skull 

10. Concurrent palliative 
RT to other non-
contiguous bone 
sites§—% Yes   

11. Concurrent palliative 
RT to other non-
contiguous sites 
other than bone§—% 
Yes   

12. Current steroid 
use—% Yes    

13. Current opiate pain 
medication use— % 
Yes     

14. Chemotherapy 
delivered within the 
previous 1 month—
% Yes   

15. Type of 
chemotherapy last 
delivered||—% 
None 
Intravenous 
Non-hormonal oral 
Hormonal 

16. Prior surgery at RT 
target site—% Yes 

 
52.7% 
12.7% 
18.2% 
12.7% 
3.6% 

 
 
 

20% 
 
 
 
 

0% 
 

34% 
 
 

77.8% 
 
 
 

50% 
 
 
 

26.4% 
35.9% 
15.1% 
22.6% 

 
12.7% 

17. Primary cancer 
site—%   
Breast 
Prostate 
Lung 
Leukemia, 
lymphoma, 
myeloma 
Other 

18. Neuraxis 
compromise¶—n 
(%) Yes   

20. Neurological 
symptoms other 
than pain — (%) 
Yes   

19. Soft tissue 
component—(%) 
Yes   

19. Time from initial 
diagnosis in 
months—mean 
(SD) 

 
 
Other metastases 

to# (% Yes):  
20. Brain  
21. Lung  
22. Liver  
23. Adrenal gland  
24. Lymph node**  
25. Non-visceral soft 

tissue  
26. Other bone  
27. Other sites  

 
 

16.4% 
14.6% 
36.4% 

 
 

1.8% 
30.9% 

 
 

31.0% 

 
 

14.5% 
 
 

43.6% 
 
 
 

41.0 
(49.6) 

 
 
 

 
12.7% 
40.0% 
27.3% 
12.7% 
45.5% 

 
2.8% 

61.8% 
5.5% 

* Patient-reported 
+Admission to offsite inpatient rehabilitation or nursing home facilities were excluded 
 ‡  If the RT target lesion encompassed multiple sites, the site containing the majority of the target 
lesion was selected 
§ Does not include RT target sites requiring multiple contiguous fields due to large target size  
|| If multiple types of chemotherapy were delivered concurrent, a single response was selected in 
the following order: IV > non-hormonal oral > hormonal 
¶ Defined as radiologic evidence of spinal cord, spinal canal, nerve root, or neuroforaminal 
impingement from direct involvement of the target lesion 
#Includes all radiologically-confirmed definite areas of metastatic disease outside of the current 
palliative RT field. Indeterminate lesions or sites without radiologic evaluation were as “no.” 
** Includes locoregional nodal metastases for the primary site 
KPS= Karnofsky Performance Status, RT=radiotherapy, WBC= white blood cells 
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Table 2: Physicians’ accuracy for predicting survival at clinically relevant time points, 
before and after use of the BMETS-Decision Support Platform (BMETS-DSP) 

 Pre-DSP Post-DSP McNemar’s Χ2 p-value 

Survival category*  34.8% 42.9% 9.5 0.002 

<3 vs. > 3 months 72.2% 80.3% 24.0 <0.001 

<6 vs. >6 months 64.2% 70.9% 7.32 0.007 

<12 vs. > 12 months 70.1% 80.5% 22.8 <0.001 

* Test of exact match using 4 survival categories: (1) <3, (2) > 3 to < 6 months, (3) > 6 months 
to < 12 months, and (4) > 12 months 

 
 
 
 
 
 
Table 3: Sensitivity, specificity, area under the receiver operator characteristic curve, 
positive predictive value, and negative predictive value of physicians’ survival 
estimates at clinically relevant time points, before and after use of the BMETS-
Decision Support Platform (DSP) 

 

Sensitivity Specificity AUC 
Positive 

Predictive 
Value 

Negative 
Predictive 

Value 

Pre-
DSP 

Post-
DSP 

Pre-
DSP 

Post-
DSP 

Pre-
DSP 

Post-
DSP 

Pre-
DSP 

Post-
DSP 

Pre-
DSP 

Post-
DSP 

<3 vs. 
>3 
months 

0.15 0.33 0.97 1.00 0.56 0.66 0.70 1.00 0.72 0.77 

<6 vs. 
>6 
months 

0.57 0.74 0.71 0.68 0.64 0.71 0.69 0.72 0.59 0.70 

<12 vs. 
>12 
months 

0.75 0.87 0.53 0.52 0.64 0.70 0.88 0.89 0.32 0.47 

AUC= area under receiver-operator characteristic curve 

 
 
  



 103 

 
Figure 1: Percent of cases for which each fractionation scheme [1 to >10 or stereotactic 
body radiotherapy (SBRT)] was recommended, before and after use of the BMETS-
Decision Support Platform (DSP) 
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Table 4: Percent concordant match between choice of lower fractionation regimen and lower actual survival time, before and after use 
of the BMETS-Decision Support Platform (DSP) 

 
< 3 months < 6 months < 12 months 

Pre-
DSP 

match 

Post-
DSP 

match 

McNemar’s 
Χ2 

p-
value 

Pre-
DSP 

match 

Post-
DSP 

match 

McNemar’s 
Χ2 

p-
value 

Pre-
DSP 

match 

Post-
DSP 

match 

McNemar’s 
Χ2 

p-
value 

< 1 fraction 69.9% 76.0% 11.0 <0.001 54.3% 58.1% 4.15 0.042 28.9% 32.3% 3.32 0.068 

< 5 fractions 59.6% 60.0% 0.03 0.870 59.8% 63.0% 1.71 0.191 55.3% 62.0% 7.71 0.006 

<10 fractions 38.8% 37.2% 1.10 0.294 55.5% 55.2% 0.07 0.793 78.2% 79.7% 1.10 0.294 

 
 
 
 
 
 
 
Table 5: Percent concordant match between choice of higher fractionation regimen and in the presence of “complicating” features, 
before and after use of the BMETS-Decision Support Platform (DSP) 

 

Prior surgery or fracture 
Prior surgery, fracture or neuraxis 

compromise 
Prior surgery, fracture, neuraxis 

compromise, or critical site 

Pre-
DSP 

match 

Post-
DSP 

match 

McNemar’s 
Χ2 

p-
value 

Pre-
DSP 

match 

Post-
DSP 

match 

McNemar’s 
Χ2 

p-
value 

Pre-
DSP 

match 

Post-
DSP 

match 

McNemar’s 
Χ2 

p-
value 

>1 fraction 44.7% 44.1% 0.10 0.748 59.0% 57.1% 0.93 0.335 69.1% 68.9% 0.01 0.915 

> 5 fractions 52.2% 54.9% 1.3 0.253 57.7% 56.5% 0.24 0.624 62.8% 61.2% 0.24 0.624 

 

 



 105 

Chapter 6. Conclusion  

Our research provides preliminary evidence that the BMETS survival model and 

associated BMETS Decision Support Platform (BMETS-DSP) improve providers’ 

prognostic estimates as well as selection of prognosis-appropriate and evidence-based 

palliative radiotherapy regimens in the management of patients with symptomatic bone 

metastases. Specifically, we have shown that the BMETS model and its underlying 

machine learning algorithm outperforms traditional statistical approaches in estimating 

survival time following consultation for symptomatic bone metastases. Moreover, we 

provided characterization of “complex” metastases and prevalence of these lesions 

across a range of operational definitions for this term. This lends insight into sources of 

decisional uncertainty encountered when applying clinical guidelines in the context of ill-

defined selection criteria. We demonstrated the feasibility of creating a decision support 

platform based on the BMETS model that not only facilitates data entry and display but 

also attempts to provide individualized recommendations on the basis of patient-specific 

characteristics. Lastly, we used an innovative approach to testing the efficacy of the 

BMETS model and BMETS-DSP in which the success of the platform was measured in 

terms of both better survival predictions but also improved selection of patient-

appropriate treatment regimens. 

Next steps for the BMETS-DSP include a multi-institutional, randomized 

evaluation of the BMETS-DSP. Based on presentation of early data, we have formed a 

consortium of 4 international institutions that have agreed to participate in data-sharing 

and evaluation of the BMETS-DSP. Our end goal is to create a large, dynamically 

updating database from these shared sources from which the BMETS model can be 

frequently refitted. Our aim is to circumvent issues of external validity encountered with 

machine learning models by optimizing the size of the source repository for model 
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training. We will also work to incorporate patient preference into the decision support 

platform, as this is a key and untapped element of the decision-making process in this 

setting. Additionally, we will be working with patients and patient advocates to develop a 

patient-facing view of the BMETS model prediction in order to encourage discussion of 

prognosis between patients and providers. Given that more than half of patients with 

advanced cancer may not receive dedicated discussion of prognosis145, this is an 

imperative next step in ensuring that patients have all the information that they need to 

make informed decisions and participate in advanced planning at the end of life. 

Currently, there is a growing trend toward development of even more advanced 

machine learning models in our field. Notably, Banerjee, et al., have described a deep 

learning model analyzing free text clinical notes for 10,293 patients with metastatic 

cancer in order to predict survival outcomes. Authors report high model performance, 

with area under the curve (AUC) for prediction of survival <3 months of 0.89146. While 

such approaches are promising, it was our opinion that efforts should first be directed 

toward establishing the superiority of a machine-learning model as compared to more 

readily available and easier to use traditional models. As such, the success of the 

BMETS model provides justification for continued development of even more complex, 

deep learning models in this setting.  

Lastly, the decisional dilemma underlying development of the BMETS-DSP is of 

course not unique to our clinical question. Clinical Evidence published a review of 2500 

commonly-used medical treatments across fields and revealed that the relative costs 

and benefits of most medical treatments are rarely straight-forward: 13% of such 

treatments are rated as beneficial, 23% are likely beneficial, 8% are typified by the 

balance of costs and benefits, 6% are not likely to be beneficial, 4% may be harmful or 

ineffective, and 46% have unknown effectiveness147.   An entire field of study is 

dedicated to describing difficulties with development of and adherence to consensus 
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guidelines, citing limitations including inadequate definitions and lack of concrete 

selection criteria148–150 that parallel the experiences documented in our work.   We are 

hopeful that our research may provide some valuable preliminary insights into the 

rationale and development of decision support tools to aid in the delivery of 

individualized care in ours and other contexts in medicine. 
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APPENDIX 1 
 
Supplemental Statistical Methods for the BMETS Survival Model 

As per the primary Methods section, our objective was to use the collection of 

covariates {Xi} for each patient i to model survival time, S(t|Xi). As noted, our RSF model 

utilized bootstrap aggregation (bagging) by first taking 1000bootstrap samples from the 

original data. We then grew a binary survival tree from each bootstrap sample via 

iterative binary splitting of the sample population into non-overlapping groups (nodes). 

Each split was created on the basis of a predictor covariate to maximize the log-rank 

statistic between the two nodes, creating clusters of patients with similar survival. The 

final predicted outcome was averaged across the B trees. In order to obtain a survival 

tree from each bootstrapped sample, all data from the sample was initially grouped 

together within a root node. For each covariate Xj ∈ {X1, …,  Xp}, where Xj is the 

collection of all values of covariate j (Xj = (X1j, X2j, …,XNj), and all possible cutpoints s 

of Xj , each individual i was placed in one of two groups, based on whether Xi,j ≤ s or Xi,j 

> s. The log-rank statistic for each of these groupings was calculated, and the covariate 

Xj and cut point s that maximized the log-rank statistic were used to split the data into 

two child nodes. This procedure was repeated for each node, growing the tree such that 

on average (across the forest), each final node contained 3 unique observations48. 

Within a given node, missing values for a covariate used for splitting were imputed by 

sampling with replacement from the empirical distribution of observed values within that 

node. After splitting into child nodes, the imputed values for the covariate of interest 

were reset to missing. 

To estimate the survival curve for a new individual i, Ŝ(t|Xi), we first “dropped” the 

observation down each tree and observed the final node that it belongs to, based on its 

covariate values. For each tree built with b-th bootstrapped dataset (b = 1, . . . , B), we 

denoted this final node 𝜂𝑏. Our estimated survival curve for individual i within the bth 
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tree, Ŝ𝑏  (t|X𝑖), was the Kaplan-Meier estimate at time t based on observations in 𝜂𝑏. To 

make a prediction for a new observation, the algorithm collects the predicted values from 

each tree and averages these predictions together for the final prediction. Thus, our final 

prediction of survival time for an observation with covariates Xi using RSF is:  

 

ŜRSF (t|Xi) = 
1

B
 ∑ Ŝ𝑏  (t|X𝑖)𝐵

𝑏=1  
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APPENDIX 2 
 
Percent of target symptomatic bone metastases categorized as “complicated,” 
calculated across all possible definitions for complicated bone metastases using 
the 8 variables listed.  

Prior 
RT 

Prior 
surgery 

All 
fracture 

Non-
spine 

fracture 
only 

All 
neuraxis 

com-
promise 

CCS 
only 

CE 
only 

Soft 
tissue 
comp-
onent 

Percent of 
“complicated” 

cases 

✓  ✓  ✓  
 

✓  
  

✓  67.1% 

✓  ✓  ✓  
  

✓  
 

✓  66.2% 

 
✓  ✓  

 
✓  

  
✓  65.7% 

 
✓  ✓  

  
✓  

 
✓  64.8% 

✓  ✓  ✓  
   

✓  ✓  62.1% 

✓  ✓  ✓  
    

✓  61.9% 

✓  ✓  
 

✓  ✓  
  

✓  61.8% 

✓  ✓  
 

✓  
 

✓  
 

✓  60.5% 

 
✓  ✓  

   
✓  ✓  60.2% 

 
✓  

 
✓  ✓  

  
✓  60.2% 

 
✓  ✓  

    
✓  60.1% 

✓  ✓  
  

✓  
  

✓  59.1% 

 
✓  

 
✓  

 
✓  

 
✓  58.9% 

✓  
 

✓  
 

✓  
  

✓  58.6% 

✓  ✓  
   

✓  
 

✓  57.8% 

✓  
 

✓  
  

✓  
 

✓  57.8% 

 
✓  

  
✓  

  
✓  57.3% 

  
✓  

 
✓  

  
✓  56.8% 

 
✓  

   
✓  

 
✓  56.0% 

  
✓  

  
✓  

 
✓  55.9% 

✓  
 

✓  
   

✓  ✓  53.6% 

✓  
 

✓  
    

✓  53.4% 

✓  
  

✓  ✓  
  

✓  53.3% 

✓  ✓  
 

✓  
  

✓  ✓  53.0% 

✓  ✓  
 

✓  
   

✓  52.4% 

✓  
  

✓  
 

✓  
 

✓  52.0% 

  
✓  

   
✓  ✓  51.3% 

   
✓  ✓  

  
✓  51.3% 

  
✓  

    
✓  51.1% 

 
✓  

 
✓  

  
✓  ✓  50.9% 

✓  
   

✓  
  

✓  50.6% 
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✓  ✓  50.3% 

 
✓  

 
✓  

   
✓  50.3% 

   
✓  

 
✓  
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✓  ✓  
     

✓  49.7% 

✓  
    

✓  
 

✓  49.3% 

    
✓  
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✓  

    
✓  ✓  48.0% 
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✓  
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✓  
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✓  
  

✓  
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✓  ✓  ✓  
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✓  
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✓  
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Prior 
RT 

Prior 
surgery 

All 
fracture 

Non-
spine 

fracture 
only 

All 
neuraxis 

com-
promise 

CCS 
only 

CE 
only 

Soft 
tissue 
comp-
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Percent of 
“complicated” 

cases 

   
✓  

   
✓  41.4% 

✓  ✓  
 

✓  ✓  
   

41.2% 

✓  
      

✓  41.2% 

 
✓  ✓  

  
✓  

  
40.7% 

✓  
 

✓  
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39.1% 
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        0.0% 

✓  Indicates that the selected variable was used as part of the definition for “complicated” bone 
metastasis 
CCS= central canal stenosis, CE= cord edema, RT=radiotherapy 
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APPENDIX 3 
 
Data Collection Form for the BMETS Decision Support Platform Assessment 
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on Health Equity, Diversity and Inclusion 
2018-2019 Appointed member, American Society for Radiation Oncology, Research 

Grants Evaluation Subcommittee 
 
 

 
Conference Organizer, Session Chair   
None 

 
Consultantships   
None 

 
 

RECOGNITION 
  

Awards, Honors  
2005  Howard Hughes Research Scholar, Cornell University, Ithaca, NY 
2005  Magna cum laude honors for thesis entitled: Factors affecting mycorrhizal 

fungi growth in wetland ecosystems, Cornell University, Ithaca, NY 
2010 Honors Award in Research for thesis entitled: Patients’ experiences of 

religion and spiritualty in advanced cancer:  a qualitative research study 
to guide spiritual care in the medical setting, Harvard Medical School, 
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Boston, MA 
2011 Intern of the Year Award, Harvard Cambridge Health Alliance 
2014  Travel Award, American Radium Society Annual Meeting  
2014   Travel Award, American Society of Clinical Oncology Annual Meeting 
2014  Workshop Scholarship, AACR/ASCO Workshop: Methods in Clinical 

Cancer Research 
2014  Young Investigator Award, International Society of Paediatric Oncology 

Annual Congress, Toronto, Ontario, Canada 
2014-2015  Chief Resident, Radiation Oncology, Johns Hopkins Department of 

Radiation Oncology and Molecular Radiation Sciences, Baltimore, MD 
2015  Excellence in Patient Care Award, Miller-Coulson Academy, Johns 

Hopkins Hospital, Baltimore, MD 
2018  Teaching Award, Sidney Kimmel Comprehensive Cancer Center, Johns 

Hopkins Hospital, Baltimore, MD 
2018 First Prize Presentation, Annual Research on Aging Showcase, Johns 

Hopkins Bloomberg School of Public Health, Baltimore, MD 
2018           Best of ASTRO Award in Palliative Radiation Oncology, American 

Society for Radiation Oncology 
  

Invited Talks, Panels  
9/12/13  Speaker, Cancer Outcomes & Health Services Research Interest Group 

Meeting, Baltimore, MD 
3/16/18  Panelist, The Ninth Biennial Johns Hopkins Breast Cancer Conference, 

Baltimore, MD 
4/28/18  Panelist, 4th Annual Johns Hopkins Breast Cancer Survivorship Day, 

Baltimore, MD 
5/11/18  Keynote Speaker, Johns Hopkins Breast Cancer Research Retreat, 

Baltimore, MD 
3/22/19  speaker, Allegheny Health Network Updates in Breast Cancer, Pittsburg, 

PA 
 
 
 
 
 
 
OTHER PROFESSIONAL ACCOMPLISHMENTS 
 
 
National Scientific Meeting Presentations  
 
2009  ASTRO Annual Meeting, Chicago, IL. Predictors of symptomatic failure after 

palliative radiation therapy for multiple myeloma. Presented by: Sara Alcorn MD  
 2012  ASTRO Annual Meeting, Boston, MA. Multisite Assessment of the Utility of Daily 

Cone Beam CT in Achieving Clinical CTV-PTV Setup Margin. Presented by: Sara 
Alcorn MD  

 2012   ASTRO Annual Meeting, Boston, MA. Assessing utility of daily cone beam CT in 
head and neck cancers: Effect of disease site. Presented by: Sara Alcorn MD  

 2012  ASTRO Annual Meeting, Boston, MA. Utility of daily cone beam CT in predicting 
setup within clinical CTV-PTV margins in lung radiotherapy. Presented by: Sara 
Alcorn MD  
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 2012  ASTRO Annual Meeting, Boston, MA. Radiation dose to the floor of mouth 
muscles predicts swallowing complications after chemoradiation in 
oropharyngeal squamous cell carcinoma. Presented by:  Rachit Kumar MD  

 2012  ASTRO Annual Meeting, Boston, MA. Analysis of cone beam CT shifts in image-
guided radiation therapy for abdominopelvic soft-tissue sarcomas. Presented by:  
Andrew Sharabi MD  

 2013 American Society of Clinical Oncology Annual Meeting, Chicago, IL. Patterns of 
palliative radiation near the end of life: A single-institution retrospective analysis. 
Presented by: Sara Alcorn MD (Awarded a Travel Award) 

 2013  ASTRO Annual Meeting, Atlanta, GA. A Comparison of clinical outcomes of adult 
and pediatric medulloblastoma. Presented by: Sara Alcorn MD  

 2013 ASTRO Annual Meeting, Atlanta, GA. Utility of remarking regimens for improving 
setup accuracy in definitive lung radiotherapy.  Presented by: Lauren Douglass, 
RT therapy  

 2013  ASTRO Annual Meeting, Atlanta, GA. Comparison of setup accuracy by 
immobilization type in image-guided lung radiotherapy.  Presented by: Annette 
Souranis, RT therapy  

 2014 American Society of Clinical Oncology Annual Meeting, Chicago, IL. Pre- and 
post-radiation lymphopenia predicts survival in management of bone metastases. 
Presented by: Sara Alcorn MD 

 2014 American Society of Clinical Oncology Annual Meeting, Chicago, IL. Patterns of 
chemotherapy near the end of life for patients receiving palliative bone 
radiotherapy. Presented by: Powell Perng MD 

 2014 American Radium Society Annual Meeting, St. Thomas VI. Prospective and real-
time of image-guided CNS radiotherapy across a multi-national pediatric 
consortium: Methodology and considerations. Presented by: Sara Alcorn MD 
(Awarded a Travel Award) 

 2014 ASTRO Annual Meeting, San Francisco CA. Comparison of setup accuracy with 
low-dose and standard-dose CBCT in pediatric and adult brain image-guided 
radiotherapy. Presented by: Minh Phuong Huynh-Le, MS III 

 2014 ASTRO Annual Meeting, San Francisco CA . A predictive model for survival 
following palliative radiation for bone metastases. Presented by: Sara Alcorn, MD 

 2014 ASTRO Annual Meeting, San Francisco CA. Predictors of setup accuracy in 
image-guided CNS radiotherapy: Prospective data from a multi-national 
pediatrics consortium. Presented by: Sara Alcorn, MD 

 2014 ASTRO Annual Meeting, San Francisco CA. Analysis of factors complicating 
treatment for bone metastases: Why are patients not receiving single fraction 
radiotherapy? Presented by: Sara Alcorn, MD 

 2014 ASTRO Annual Meeting, San Francisco CA. Nutritional parameters predict 
survival in chemoradiation for esophageal cancer. Presented by: Amanda 
Choflet, RN 

 2014 ASTRO Annual Meeting, San Francisco CA. Reduced lymphocytopenia following 
stereotactic body radiation therapy (SBRT) for spine metastases compared with 
conventional radiation therapy (CRT). Presented by: Omar Mian MD 

 2014 International Society of Pediatric Oncology (SIOP) Annual Congress, Toronto, 
Ontario Canada. Low-dose cone-beam CT protocol for image-guided CNS 
radiotherapy: Predictors of setup accuracy from a multi-national pediatric 
consortium. Oral presentation by: Sara Alcorn MD (Awarded the Young 
Investigator Award) 

 2015 ESTRO Annual Meeting, Barcelona Spain. Practice patterns of stereotactic 
radiotherapy in pediatrics: Results from an international pediatric research 
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consortium. Presented by: Sara Alcorn MD 
2015 ASTRO Annual Meeting, San Antonio TX. Set-up Accuracy in Image-Guided 

CNS Radiation Therapy: Final Analysis from a Prospective Low-Dose Cone-
beam CT Protocol from a Multi-national Pediatrics Consortium. Presented by: 
Sara Alcorn MD 

2016  Association for Clinical and Translational Science Annual Translational Science 
Conference, Washington DC. Use of dynamic data modeling for optimizing 
survival predictions in palliative radiotherapy. Presented by: Sara Alcorn MD 

2016    ASTRO Annual Meeting, Boston MA. Clinical outcomes of palliative radiotherapy 
for pediatric oncology patients. Presented by: Avani Rao, PGY-3 

 2016 ASTRO Annual Meeting, Boston MA. Practice Patterns of Palliative Radiation 
Therapy in Pediatric Oncology Patients Amongst an International Pediatric 
Research Consortium. Presented by: Avani Rao, PGY-3 

 2016    SIOP Annual Meeting, Dublin Ireland. Practice patterns of palliative radiation 
therapy in pediatric oncology patients in an international pediatric research 
consortium Presented by: Avani Rao, PGY-3 

 2016    SIOP Annual Meeting, Dublin Ireland. Clinical outcomes of palliative radiotherapy 
for pediatric oncology patients. Presented by: Avani Rao, PGY-3 

 2017 Association for Clinical and Translational Science Annual Translational Science 
Conference, Washington DC. Use of a computer-based decision tool to optimize 
shared decision-making between oncology patients and providers in palliative 
radiotherapy. Presented by: Sara Alcorn MD 

2017  RSNA Annual Meeting, Chicago IL. Bolus Technique in Post-Mastectomy 
Radiotherapy: Practice Patterns and Acute Toxicity Outcomes. Oral presentation 
by: Adam Ferro, PGY-4 

2018 ASTRO Annual Meeting, San Antonio TX. Precision of Two Low-Dose 
Abdomen/Pelvis CBCT Protocols for Alignment to Bone and Soft Tissue in 
Pediatric Patients Receiving Image-Guided Radiation Therapy. To be presented 
by: Avani Rao, PGY-5  

2018 ASTRO Annual Meeting, San Antonio TX. Acute Toxicity Outcomes and 
Dosimetric Implications from Incidental Irradiation of Adjacent Tissues in Tangent 
Field Hypofractionated Breast Radiotherapy. To be presented by: Sara Alcorn, 
MD 

2018  ASTRO Annual Meeting, San Antonio TX. Optimized Survival Evaluation to 
Guide Bone Metastases Management: Developing an Improved Statistical 
Approach. Oral presentation to be given by: Sara Alcorn, MD (Awarded Best of 
ASTRO Selection) 
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BRIEF BIOGRAPHICAL SKETCH 
 

Dr. Sara Alcorn was born on October 5, 1983, in Mariposa, CA, and she grew up in 

the Central Valley of California. After graduating from Golden Valley High School, she 

studied ecology and sociology at Cornell University, where she graduated with Honors 

for her thesis regarding symbiotic fungi in wetland plants. She then attended Harvard 

Medical School, again graduating with Honors for her thesis on spiritual and religious 

themes cited by patients end-stage cancer. She also earned a Master of Public Health at 

the Harvard School of Public Health, where she studied family and community health as 

and research methods. After graduation in 2010, she completed internship at Harvard’s 

Cambridge Health Alliance before starting residency in Radiation Oncology at the Johns 

Hopkins Hospital, where she served as Chief Resident during her fifth year. Since 

completing residency, Dr. Alcorn has served as an attending physician at the Johns 

Hopkins Hospital, with promotion to Assistant Professor in 2018. 

 

Dr. Alcorn has focused her clinical and research efforts on the improvement of clinical 

outcomes and quality of life in the fields of breast and palliative radiotherapy. She 

established the foundations of her current research through earlier applications of big 

data analysis, including of assessments of setup accuracy to improve radiotherapy 

delivery, patterns of care in the management of metastatic cancer, and relationships 

between dose, treatment technique, and patient-reported adverse effects in breast 

radiotherapy.  She was awarded a KL2 Career Development Award through the National 

Institutes of Health, which permitted her to complete the work described in this thesis.  

Her next steps include building decision support platforms that incorporate patient 

preference in an effort to promote shared decision-making. She is a member of the 

Committee on Health Equity, Diversity and Inclusion and the Research Grants 

Evaluation Subcommittee for the American Society for Radiation Oncology. 


