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Abstract  

 
Background: With the goal to improve the translation of cancer biomarkers, this 

dissertation examined strategies to overcome two barriers in the practice of translational 

epidemiology: Aim 1) practice of multidisciplinary team science to overcome threats to 

validity, and Aim 2) use of quantitative metrics to determine the influence of continued 

investigation to improve utility of information from future biomarker investigations. Aim 1 

and 2 strategies were used in Aim 3 to inform the analysis of multiple biomarkers of 

glycemia to better characterize the relationship between the natural history of diabetes 

and prostate cancer mortality. Methods: Aim 1 examined the impact of the practice of 

multidisciplinary team science on identifying and overcoming threats to validity. A case-

study of a multidisciplinary team’s investigation of three tissue biomarkers where threats 

to validity were identified along with appropriate solutions through the practice of team 

science was carried out. In Aim 2 the impact of continued investigation of a biomarker-

cancer relationship was quantified by adapting established research synthesis and 

clinical trial metrics – fail-safe number and conditional power analysis. To document how 

these metrics can be adapted to overcome the lack of utility of information from 

continued investigation, they were applied to a previously curated set of 98 meta-

analyses of prospective studies investigating biomarkers and cancer risk. The strategies 

evaluated in Aims 1 and 2 were applied to Aim 3, by first identifying evidence gaps about 

the relationship between diabetes and prostate cancer followed by assembling a team 

with expertise in glycemia biomarkers and diabetes, and prostate cancer etiology. The 

team developed a refined strategy of incorporating multiple biomarkers of glycemia to 

better define normo- and hyperglycemia to investigate the relationship between the 

natural history of diabetes and prostate cancer in the Atherosclerosis Risk in 

Communities study. Results: Aim 1: Through the practice of team science, the 
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multidisciplinary team consisting of a pathologist, cancer biologists, a biostatistician, and 

epidemiologist identified measurement error in the pre-analytic and analytic phase of the 

biomarker measurement, and was able to overcome the threats to validity by 

implementing appropriate corrections in the data analyses. Aim 2: Applying the fail-safe 

number and conditional power calculation to the 98 meta-analyses, we observed 

patterns in the characteristics of the existing evidence and the values of each of these 

metrics including the size of the observed summary estimate, the number of studies 

included in the observed meta-analysis, and the extent of between-study heterogeneity. 

Aim 3: After incorporating strategies from Aims 1 and 2, creating joint categories of the 

three glycemia biomarkers, and using men without diagnosed diabetes who had normal 

values for all three biomarkers as the reference group, men without diagnosed diabetes 

high on all three markers had close to a 5-fold increase in risk of prostate cancer death 

(HR: 4.80; 95% CI: 1.11 to 20.95). Men with diagnosed diabetes had a non-statistically 

significant 3-fold increase in risk of prostate cancer death. Conclusions: The inferential 

benefit achieved through the practice of multidisciplinary team science coupled with the 

adaptation of the fail-safe number and conditional power analysis to quantify the impact 

of continued biomarker investigation provide two strategies for the more efficient practice 

of translational epidemiology. Using these strategies to inform the analysis of biomarkers 

of glycemia and prostate cancer mortality, revealed an elevated risk of prostate cancer 

death in men without diagnosed diabetes with elevated glycemia and in men with 

diagnosed diabetes. These findings speak to the overall importance of diabetes 

prevention and good glycemic control in men with diagnosed diabetes. 

Thesis Committee:  

Dr. Elizabeth Platz (advisor) 

Dr. Corinne Joshu (co-advisor) 

Dr. Stephan Ehrhardt  
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Preface 

 
This dissertation is divided into five chapters. The first chapter provides an introduction 

to the translation of cancer biomarkers and the practice of translational epidemiology 

with a focus on two barriers in the translation of cancer biomarkers – threats to validity 

and lack of utility of information. The following two chapters describe meta-research 

investigations of strategies aimed at overcoming each of these barriers in the early 

phase of the translational continuum, including the practice of multidisciplinary team 

science to overcome threats to validity and the use of existing quantitative metrics (e.g., 

the fail-safe number and conditional power analysis) to determine the impact of 

continued investigation on the current evidence based summarized in a meta-analysis. 

Each of these practice-based strategies were incorporated into the conceptualization 

and design of the fourth chapter which describes the analysis incorporating multiple 

biomarkers of glycemia to better characterize the relationship between the natural 

history of diabetes and prostate cancer mortality. The final chapter summarizes the 

results of the preceding three chapters and as well as the overall strengths and 

limitations. I also describe a series of next-steps to incorporate the strategies aimed at 

overcoming barriers in the practice of translational epidemiology, as well as future 

directions for research that focus on exploring additional strategies to improve the 

translation of cancer biomarkers and for the analysis of biomarkers of glycemia and 

prostate cancer. The overall public health implications emanating from the results of 

each chapter are also described in the final chapter.  
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Chapter 1.  
 

 
Introduction 
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There is no other phase in the cancer research enterprise that generates as 

much excitement and enthusiasm than the discovery of a novel biomarker. In order to 

capitalize on such discoveries in a timely and efficient manner, the National Institutes of 

Health (NIH) introduced a series of initiatives to catalyze the translation of basic science 

discoveries into practice and improved health.2 Despite such initiatives, there remains 

some disagreements in what translational research actually means. Some hold the view 

of the “bench-to-bedside” continuum at the confluence of basic science and clinical 

practice with a drug or device as the final product of translational research. While others 

view translational research more broadly through a population-based lens at the 

intersection of research with practice and the successful implementation in the patients 

(clinical) and populations (public health) in which the research targeted as the end 

result.3 

 

Translational Epidemiology Framework  

For the purpose of this dissertation, we will draw on the translational framework 

(Figure 1.1) introduced by Khoury et al.,1 which recognizes epidemiologic methods and 

study designs as central to all phases in the translational continuum, referred to as 

translational epidemiology. In Figure 1.1, the discovery phase – T0, links the current 

understanding of a biological process in the form of a biomarker with a specific health 

outcome. This is followed by T1, which aims to determine the clinical validity by 

replicating and characterizing the T0 biomarker in clinical or population setting. T2 seeks 

to determine the clinical utility or efficacy of applications emerging from T0 and T1 

investigations, and is envisioned to support evidence-based recommendations and 

guidelines. T3 aims to evaluate the factors related to the implementation and uptake of 

evidence-based guidelines built on T2 evidence. Finally, T4 sets out to determine the 

real-world effectiveness of the intervention at improving population health. At the center 
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of the T0 to T4 continuum is knowledge integration, which incorporates knowledge 

synthesis, management, and translation. The aim of knowledge integration is to 

maximize the existing evidence base to facilitate progression through the translational 

continuum.4 It is important to note that knowledge integration is not specific to any one 

phase, but can be equally applied to evidence generated throughout the T0-T4 

continuum.  

 

Evolution of Biomarker Definitions  

In early molecular epidemiologic investigations, biomarkers were categorized as 

biomarkers of internal dose; markers of biologically effective dose; markers of early 

response/effect; markers of susceptibility; or markers of altered structure and function.5 

While this model of biomarker classification is particularly relevant in the continuum of 

molecular alterations leading to cancer, the introduction of modern high-throughput –

omic technologies have led to new opportunities for biomarker applications for cancer 

prevention and control.6 The definition from the National Cancer Institute offers a modern 

view of cancer biomarkers including biomarkers of treatment response and multi-marker 

panels: “A biological molecule found in blood, other body fluids, or tissues that is a sign 

of a normal or abnormal process, or of a condition or disease. A biomarker may be used 

to see how well the body responds to a treatment for a disease or condition. Also called 

molecular marker and signature molecule”.7 For the purposes of this dissertation, we will 

use the definition endorsed by the Institutes of Medicine8: “A characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, or 

pharmacologic responses to a[n]…intervention”.  
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Biomarker Failures and Successes  

Despite the remarkable advances in high-throughput technologies, exponential 

increase in knowledge of basic cancer biology, and investment in biomedical research 

the current landscape of biomarker discoveries is riddled with failed attempts at 

producing viable cancer-related applications.9-11 Contributing to the ineffective translation 

of promising discoveries is the absence of a clear clinical scenario or clinical decision 

process in which the application is intended for (i.e., etiologic risk prediction, early 

detection/screening, diagnostic, prognostic, or treatment response prediction). 

Identifying how the biomarker will be deployed and used in clinical and public health 

practice will determine the study design, population, and biospecimens required to 

answer the research questions.12  

 

Four general types of biomarker failures have been described,10 pointing to 

various aspects in the practice of translational epidemiology contributing to biomarker 

failures. Ioannidis10 describes a Type A failure when a biomarker implemented into 

routine practice is later shown to be ineffective or harmful (e.g., PSA for early detection 

of prostate cancer). A Type B failure is when a biomarker shows promise in the early 

phases of discovery, but eventually fails the later phases of validation. When a 

biomarker has demonstrated robust validation (e.g., T1), but has not gone through 

subsequent investigation to determine its utility (e.g., T2) represents a Type C failure; 

common among gene-expression panels for cancer prognosis. Finally, a Type D failure 

occurs when a biomarker is promoted for clinical or population use despite no evidence 

of its usefulness (e.g., direct-to-consumer genetic testing services). Alternatively, the 

successful implementation of applications targeting several biomarkers aimed at cancer 

prevention and control are supported by evidence-based recommendations and 

guidelines. These include HPV testing and vaccination to prevent cervical cancer; 
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screening for microsatellite instability in relatives of individuals diagnosed with Lynch 

Syndrome (screening of high-risk individuals); and HER2 testing for targeting breast 

cancer treatment.  

 

Barriers in the Practice of Translational Epidemiology 

 Within the translational continuum (e.g., T0 to T4), the validation phase (e.g., T1) 

can ultimately determine the fate of T0 biomarker discovery. Knowledge emanating from 

T1 investigations serves as the foundation for subsequent phases in the translational 

continuum. Questions addressed in validation studies are: Is the hypothesized 

association between the biomarker and outcome reproducible? Can the biomarker be 

effectively and efficiently applied in a population setting? Bypassing the critical validation 

steps may lead to the premature introduction of a biomarker (e.g., early detection of 

prostate cancer with PSA).10 Equally daunting are the number of potentially viable 

applications of etiologic biomarkers that are lost in translation due to insufficient 

validation efforts. Defining the subsequent research questions and designing the studies 

to establish the newly-minted assay’s performance characteristics as well as obtaining 

the appropriate clinical samples and funding are just a few of the methodological 

challenges encountered in the practice of T1 translational epidemiology.13-16 A sobering 

reminder that up to 90% of biomedical research findings cannot be replicated points to 

fundamental flaws in the early stages of the translational research continuum.17,18 The 

strongest line of defense against the potential biases within the discovery and validation 

of biomarkers is the use of well-defined study designs, populations and associated 

samples to address specific research questions.13,14 Adopting principles rooted in 

population science will ensure reliability of reported associations and allow for more 

efficient translation.19,20     
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 Deconstructing the practice of T1 translational epidemiology into the basic 

elements of the scientific method (Figure 1.2) will facilitate the identification of potential 

barriers as well as solutions for overcoming such barriers. Threats to validity occurring 

during study design and conduct and in the analysis and reporting of results, as well as 

insufficient efforts evaluating the utility of information from continued T1 biomarker 

validation have been cited as factors leading to promising application of biomarkers of 

cancer etiology, risk, prognosis, and treatment prediction (throughout called “cancer 

biomarkers”) getting lost in translation.1,14,16,21,22 A more efficient process, overcoming 

these barriers in translating T1 cancer biomarkers, would save time and allow 

researchers and funders to concentrate resources on promising biomarkers with the 

potential of improving population health outcomes. Current efforts to overcome threats to 

validity include data sharing, developing large-scale disease-specific consortiums, and 

multidisciplinary team-based research.9,14,23 Disease-specific consortiums have also 

been cited as another way to target specific gaps in knowledge directly improving the 

utility of information.23 Other systematic efforts include the Early Detection Network 

(EDRN) sponsored by the National Cancer Institute which aims to improve the discovery 

and translation of promising cancer biomarkers, and to eliminate biomarkers without 

added clinical value from further investigation.24 Further consideration of the existing 

evidence-base outlined in the principles of knowledge integration mentioned above4 is 

another approach for improving the utility of information.25 I have conducted a series of 

interrelated aims applying meta-research methods26 to empirically examine specific 

barriers in the practice of T1 translational epidemiology for cancer biomarkers. The 

primary objective of meta-research is to evaluate and improve research practices, and is 

broken down into 5 themes: methods; reporting; reproducibility; evaluation; and 

incentives.26 Thus, a meta-research approach is ideal for investigating barriers in the 

practice of T1 translational epidemiology.   
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Driving Translational Epidemiology with Team Science  

Aim 1. Adding the team into translational epidemiology: a case-study of team 

science in biomarker development. Given the challenges of translational research, 

multidisciplinary team science is promoted by funders and some researchers as a 

strategy to increase the likelihood of successfully moving from discovery to individual 

and population health impact. Many of the methodological challenges encountered in the 

practice of T1 translational epidemiology require a multidisciplinary team of researchers 

to successfully move a discovery from bench-to-bedside.23,27 Some have viewed the 

diversity of the training and experience of those participating in translational research as 

contributing to the unsuccessful translation.9,14,16,28 This might suggest the absence of 

well-defined epidemiology methods in all phases of translational research may contribute 

to the pervasive failure of discoveries from making a population impact.  

 In Aim 1, we present a case study documenting the utility of multidisciplinary team 

science from the epidemiologic perspective. I used primary research data from a team 

consisting of a pathologist, cancer biologists, a biostatistician, and epidemiologists 

specializing in prostate cancer biomarkers. I examined their contributions during each of 

phase of biomarker evaluation to identify where they, through the practice of team 

science, recognized and solved threats to internal validity. Then, I quantified extent of 

bias in the estimates avoided because the team recognized and solved the threats in 

evaluating the association of cancer biomarkers – Ki67 (IHC), stromal cell telomere 

length (FISH), and miRNA (miR-21, miR-141, miR-221, quantitative RT-PCR) – with 

prostate cancer risk or recurrence in nested case-control studies. In this case study, we 

were able to document an inferential benefit of multidisciplinary team science in 

biomarker evaluation.  
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Overcoming “Me Too Science” by Quantifying Utility of Information 

Aim 2. When is enough, enough? Adapting the fail-safe number and conditional 

power for deciding whether more research is needed on biomarker-cancer associations. 

Repetitive epidemiologic investigations of biomarker-cancer associations that do not fill 

knowledge gaps are not uncommon in the literature and can be a resource drain. The 

studies are often referred to as “Me Too Science”.29 Such redundant investigations that 

lack clinical or public health significance or the potential to improve biological 

understanding represent a practice-based barrier in translation, including for etiologic 

cancer biomarkers for determining cancer risk.11,16 The overall magnitude of the cost of 

research waste has been estimated to be as much as 85% of the $200 billion invested in 

biomedical research in 2010.30,31 A significant factor contributing to research waste is 

overlooking what is already known, or ignoring what is currently under investigation.31,32 

Unlike the necessary and legitimate practice of research reproducibility, redundant 

research neglects the existing evidence base and the context in which the current result 

will be considered. Thus, redundant uninformative research can be minimized by 

determining whether or not further investigation will provide a meaningful contribution to 

the existing evidence. Recently, Ioannidis and Khoury25 introduced a PQRST index 

composed of a series of metrics to appraise the quality and influence of existing 

biomedical research. The PQRST index includes general aspects that capture the 

productivity, quality, reproducibility, sharing of data, and translational influence of 

biomedical research. However, the PQRST index leaves room for a systematic process 

to quantify the impact of future biomedical research on the existing evidence base for a 

particular biomarker-cancer outcome relationship. A systematic method for stakeholders 

in translational epidemiology, including journal editors, grant reviewers, researchers, and 

research funders, can be used to determine whether more research on the same 

biomarker-outcome association is needed. We aim to introduce a systematic process for 
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determining whether further T1 investigation will influence the current evidence on that 

specific biomarker-outcome association. 

 

 In Aim 2, I adapted clinical trial research synthesis methods to quantify the 

impact of continued investigations. Two versions of the fail-safe number (FSN) were 

applied to 98 fixed and random effects meta-analyses on biomarkers and risk of 17 

cancers. Rosenberg’s FSN conditions on the statistical significance of each meta-

analysis to determine number of future studies of null effect (p≥0.05) and average study 

weight needed to drive the summary result to null. Orwin’s FSN conditions on the 

summary estimate of each meta-analysis to determine number of future studies of a 

specified effect size needed to be added to drive the combined summary estimate to a 

certain effect size. From this work, we concluded that together with traditional 

assessments of study quality and remaining knowledge gaps (e.g., subgroup 

associations), use of such metrics by researchers, funders, grant reviewers, and journal 

editors might help determine whether more research is needed or not on specific 

biomarker and cancer associations, potentially saving time, money, and allow 

researchers to focus efforts on biomarkers with the greatest promise of improving 

individual and population-level cancer burden.  

 

Maximizing Efficiency & Impact: Biomarkers of Glycemia and Prostate Cancer  

Aim 3. Glycemia is positively associated with prostate cancer mortality in white 

and black men without diabetes when better classifying hyper- and normo-glycemia 

using 3 biomarkers. The study conducted for Aim 3 is an example of the real-time 

execution of the strategies to overcome barriers in the practice of T1 translational 

epidemiology evaluated in Aims 1 and 2. The practice of translational epidemiology 

incorporating a team-science approach and considering alternative methods of 
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measuring biomarkers of important biologic processes will enhance the existing 

evidence base and maximize the utility of information generated. We first identified 

knowledge gaps and then assembled a multidisciplinary team to investigate the 

association of glycemia with prostate cancer mortality.  

 

Gaps: Epidemiologic investigations have shown that diabetes is associated with 

an increased risk for many cancers, but not prostate cancer.33-37 While diabetes is 

associated with a decreased prostate cancer risk, the association appears stronger the 

longer the duration of diabetes.38  With respect to prostate cancer mortality, in men 

without the diagnosis at baseline, some studies reported that diabetes is inversely 

associated,33,35,39 while more recent studies reported a positive association.40,41 

However, the exact mechanism(s) driving these diabetes associations are unclear. A 

joint consensus statement between the American Diabetes Association and the 

American Cancer Association highlighted the need to better understand the biologic 

mechanisms underlying the association between diabetes and cancer.42 Biomarkers of 

hyperglycemia characterizing states early in the natural history of diabetes (e.g., 

prediabetes and undiagnosed diabetes) provide an opportunity to investigate this 

relationship with the most clinically relevant outcome, prostate cancer mortality. Prostate 

cancer mortality has become the most clinically relevant outcome following the 

recognition of overdiagnosis of prostate cancer stemming from the introduction of routine 

screening with PSA. And whether associations are similar across race is also unknown. 

Thus, we aimed to rigorously characterize the association of diabetes and 

hyperglycemia with prostate cancer mortality in the ARIC cohort, which consists of ~25% 

African-American men. We classified hyperglycemia with a combination of 3 blood 

biomarkers – fasting glucose, hemoglobin A1c (HbA1c), and glycated albumin (%GA), 

which capture complementary aspects of glycemia.  
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Team: We assembled a diverse team with expertise in the landscape of prostate 

cancer etiology and in hyperglycemia and factors influencing biomarkers of 

hyperglycemia.  

 

Conclusions: We concluded that using 3 biomarkers that capture complementary 

aspects of glycemia and have different sensitivities to non-glycemic factors, men without 

diagnosed diabetes who have hyperglycemia have an increased risk of death from 

prostate cancer compared to men who have normal glycemia levels, independent of BMI 

and other factors. Our findings did not appear to be influenced by racial differences in 

hyperglycemia. The knowledge emanating from this efficient practice of translational 

epidemiology can be leveraged to identify more robust associations between modifiable 

risk factors in specific populations.  

 

Following this chapter, this dissertation is organized into three research papers 

addressing each aim described above followed by a final chapter summarizing the 

findings, synthesizing and contextualizing them, and providing next steps for their 

implementation to improve T1 translation.  

 



 12 

1.1 References  

1. Khoury MJ, Gwinn M, Ioannidis JP. The emergence of translational 
epidemiology: from scientific discovery to population health impact. Am J 
Epidemiol. 2010;172(5):517-524. 

2. Zerhouni EA. Clinical research at a crossroads: the NIH roadmap. Journal of 
investigative medicine : the official publication of the American Federation for 
Clinical Research. 2006;54(4):171-173. 

3. Woolf SH. The meaning of translational research and why it matters. Jama. 
2008;299(2):211-213. 

4. Ioannidis JP, Schully SD, Lam TK, Khoury MJ. Knowledge integration in cancer: 
current landscape and future prospects. Cancer Epidemiol Biomarkers Prev. 
2013;22(1):3-10. 

5. Perera FP, Weinstein IB. Molecular epidemiology and carcinogen-DNA adduct 
detection: new approaches to studies of human cancer causation. Journal of 
chronic diseases. 1982;35(7):581-600. 

6. Vineis P, Perera F. Molecular epidemiology and biomarkers in etiologic cancer 
research: the new in light of the old. Cancer Epidemiol Biomarkers Prev. 
2007;16(10):1954-1965. 

7. National Cancer Institute. NCI Dictionary of Cancer Terms. Accessed May, 2017. 
8. Medicine CotRoO-BTfPPOiCTBoHCSBoHSPIo. In: Micheel CM, Nass SJ, 

Omenn GS, eds. Evolution of Translational Omics: Lessons Learned and the 
Path Forward. Washington (DC): National Academies Press (US) Copyright 2012 
by the National Academy of Sciences. All rights reserved.; 2012. 

9. Diamandis EP. Cancer biomarkers: can we turn recent failures into success? J 
Natl Cancer Inst. 2010;102(19):1462-1467. 

10. Ioannidis JP. Biomarker failures. Clin Chem. 2013;59(1):202-204. 
11. Kern SE. Why your new cancer biomarker may never work: recurrent patterns 

and remarkable diversity in biomarker failures. Cancer Res. 2012;72(23):6097-
6101. 

12. Ransohoff DF, Gourlay ML. Sources of bias in specimens for research about 
molecular markers for cancer. Journal of clinical oncology : official journal of the 
American Society of Clinical Oncology. 2010;28(4):698-704. 

13. Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early 
detection of cancer. J Natl Cancer Inst. 2001;93(14):1054-1061. 

14. Ransohoff DF. How to improve reliability and efficiency of research about 
molecular markers: roles of phases, guidelines, and study design. J Clin 
Epidemiol. 2007;60(12):1205-1219. 

15. Simon R. Roadmap for developing and validating therapeutically relevant 
genomic classifiers. Journal of clinical oncology : official journal of the American 
Society of Clinical Oncology. 2005;23(29):7332-7341. 

16. Ioannidis JP, Greenland S, Hlatky MA, et al. Increasing value and reducing waste 
in research design, conduct, and analysis. Lancet (London, England). 
2014;383(9912):166-175. 

17. Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer 
research. Nature. 2012;483(7391):531-533. 

18. Begley CG, Ioannidis JP. Reproducibility in science: improving the standard for 
basic and preclinical research. Circulation research. 2015;116(1):116-126. 

19. Hiatt RA. Epidemiology: key to translational, team, and transdisciplinary science. 
Ann Epidemiol. 2008;18(11):859-861. 



 13 

20. Hiatt RA. Invited commentary: The epicenter of translational science. Am J 
Epidemiol. 2010;172(5):525-527; discussion 528-529. 

21. Lam TK, Chang CQ, Rogers SD, Khoury MJ, Schully SD. Evolution of the 
"drivers" of translational cancer epidemiology: analysis of funded grants and the 
literature. Am J Epidemiol. 2015;181(7):451-458. 

22. Schully SD, Benedicto CB, Gillanders EM, Wang SS, Khoury MJ. Translational 
research in cancer genetics: the road less traveled. Public health genomics. 
2011;14(1):1-8. 

23. Schully SD, Carrick DM, Mechanic LE, et al. Leveraging biospecimen resources 
for discovery or validation of markers for early cancer detection. J Natl Cancer 
Inst. 2015;107(4). 

24. Prensner JR, Chinnaiyan AM, Srivastava S. Systematic, evidence-based 
discovery of biomarkers at the NCI. Clinical & experimental metastasis. 
2012;29(7):645-652. 

25. Ioannidis JP, Khoury MJ. Assessing value in biomedical research: the PQRST of 
appraisal and reward. Jama. 2014;312(5):483-484. 

26. Ioannidis JP, Fanelli D, Dunne DD, Goodman SN. Meta-research: Evaluation and 
Improvement of Research Methods and Practices. PLoS biology. 
2015;13(10):e1002264. 

27. Lam TK, Spitz M, Schully SD, Khoury MJ. "Drivers" of translational cancer 
epidemiology in the 21st century: needs and ooportunities. Cancer Epidemiol 
Biomarkers Prev. 2013;22(2):181-188. 

28. Marchio C, Dowsett M, Reis-Filho JS. Revisiting the technical validation of 
tumour biomarker assays: how to open a Pandora's box. BMC medicine. 
2011;9:41. 

29. Past, present, and future of epidemiology are focus of Hopkins symposium 
celebrating 30th anniversary of summer institute. EpiMonitor. Vol 3. Roswell, 
GA2012. 

30. Macleod MR, Michie S, Roberts I, et al. Biomedical research: increasing value, 
reducing waste. Lancet (London, England). 2014;383(9912):101-104. 

31. Chalmers I, Glasziou P. Avoidable waste in the production and reporting of 
research evidence. Lancet (London, England). 2009;374(9683):86-89. 

32. Chalmers I, Bracken MB, Djulbegovic B, et al. How to increase value and reduce 
waste when research priorities are set. Lancet (London, England). 
2014;383(9912):156-165. 

33. Joshu CE, Prizment AE, Dluzniewski PJ, et al. Glycated hemoglobin and cancer 
incidence and mortality in the Atherosclerosis in Communities (ARIC) Study, 
1990-2006. International journal of cancer. 2012;131(7):1667-1677. 

34. Pierce BL. Why are diabetics at reduced risk for prostate cancer? A review of the 
epidemiologic evidence. Urologic oncology. 2012;30(5):735-743. 

35. Seshasai SR, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, 
and risk of cause-specific death. The New England journal of medicine. 
2011;364(9):829-841. 

36. Darbinian JA, Ferrara AM, Van Den Eeden SK, Quesenberry CP, Jr., Fireman B, 
Habel LA. Glycemic status and risk of prostate cancer. Cancer Epidemiol 
Biomarkers Prev. 2008;17(3):628-635. 

37. Stocks T, Rapp K, Bjorge T, et al. Blood glucose and risk of incident and fatal 
cancer in the metabolic syndrome and cancer project (me-can): analysis of six 
prospective cohorts. PLoS medicine. 2009;6(12):e1000201. 



 14 

38. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Diabetes 
mellitus and risk of prostate cancer (United States). Cancer causes & control : 
CCC. 1998;9(1):3-9. 

39. Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM. Diabetes and 
cause-specific mortality in a prospective cohort of one million U.S. adults. 
Diabetes care. 2012;35(9):1835-1844. 

40. Chen Y, Wu F, Saito E, et al. Association between type 2 diabetes and risk of 
cancer mortality: a pooled analysis of over 771,000 individuals in the Asia Cohort 
Consortium. Diabetologia. 2017. 

41. Best LG, Garcia-Esquinas E, Yeh JL, et al. Association of diabetes and cancer 
mortality in American Indians: the Strong Heart Study. Cancer causes & control : 
CCC. 2015;26(11):1551-1560. 

42. Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus 
report. Diabetes care. 2010;33(7):1674-1685.



 15 

 

Figure 1.1 Translational epidemiology framework1 
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2.1 Abstract 

Background: Given the challenges of translational research, multidisciplinary team 

science is promoted by funders and some researchers as a strategy to increase the 

likelihood of successfully moving from discovery to individual and population impact. We 

present a case study documenting the utility of multidisciplinary team science from the 

epidemiologic perspective. Methods: We used primary research data from a team 

consisting of a pathologist, cancer biologists, a biostatistician, and epidemiologists 

specializing in prostate cancer biomarkers. We examined their contributions during each 

phase of biomarker evaluation to identify where each team member, through the practice 

of team science, recognized and solved threats to internal validity. Next, we quantified 

the extent of bias in the estimates (from logistic or conditional logistic regression) 

avoided because the team recognized and solved the threats in evaluating the 

association of cancer biomarkers – Ki67 (IHC), stromal cell telomere length (FISH), and 

miRNA (miR-21, miR-141, miR-221; quantitative RT-PCR) – with prostate cancer risk or 

recurrence in nested case-control studies. Results: Threats to validity resulting in 

measurement error were tissue storage time (Ki67, miRNA; pre-analytic) and laboratory 

equipment maintenance (telomeres; analytic). Solutions were all in the data analysis 

phase and involved using tissue storage-time specific cut points and/or batch-specific 

cut points. Bias in the beta coefficients for each biomarker association ranged from 24 to 

423%, and for each test for trend ranged from 15 to 910%. Interpretation changed as 

follows: Ki67 – null to positive association; telomere length – null to positive association; 

and miR-21, miR-141 – null association remained, miR-221 – weak inverse to moderate 

inverse association. Conclusions: In this case study, we document an inferential benefit 

of multidisciplinary team science that includes epidemiology in T1 biomarker evaluation.  
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2.2 Introduction  

Remarkable advances in biomedical technology have contributed improved 

understanding of the molecular mechanisms driving cancer development and 

progression. The rapidly expanding knowledge of the molecular landscape of cancer has 

been incorporated in biomarker applications to estimate risk of cancer recurrence (e.g., 

gene-expression profiling) and in new therapies targeting specific molecular alterations 

(e.g., trastuzumab for HER2 positive breast cancer). However, despite these remarkable 

advances, improved population-level health outcomes remain to be seen from biomarker 

applications targeted at cancer prevention.1-3  

 

Within the translational continuum spanning discovery (e.g., T0) to population 

health impact (e.g., T4), the validation phase (i.e., T1) may ultimately determine the fate 

of T0 biomarker discovery. Knowledge emanating from T1 investigations serves as the 

foundation for subsequent phases in the translational continuum. Questions addressed 

in validation studies are: Is the hypothesized association between the biomarker and 

outcome reproducible? Can the biomarker be effectively and efficiently applied in a 

population setting? Bypassing the critical validation steps may lead to the premature 

introduction of a biomarker. The story of PSA exemplifies a scenario in which a validated 

biomarker that detects prostate cancers was introduced as marker for early detection 

without being formally evaluated in the setting of early detection to reduce prostate 

cancer mortality rates. The imbalance in benefits to harms from the routine use of PSA 

for early detection of prostate cancer to reduce prostate cancer mortality contributed to 

revised recommendations for shared decision making on the use of PSA.4 Equally 

daunting are the number of potentially viable applications of etiologic biomarkers that are 

lost in translation due to insufficient validation efforts.  
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Barriers in the Practice of Translational Research Despite the disparity in research 

funding and attitudes toward the T1 to T4 stages in the translational continuum,5,6 many 

of the methodological challenges encountered in the practice of translational 

epidemiology require a multidisciplinary team of researchers to successfully move a 

discovery from bench-to-bedside.7,8  In the translation of promising biomarker 

discoveries it is critical to clearly define clinical or public health scenario or decision 

process in which the application is intended for (i.e., etiologic risk prediction, early 

detection/screening, diagnostic, prognostic, or treatment response prediction).9,10 

Identifying how the biomarker will be deployed and used in clinical and public health 

practice will determine the study design, population, and biospecimens required to 

answer the research questions. Designing the studies to establish the biomarker’s 

performance characteristics as well as obtaining the appropriate clinical samples and 

funding are just a few of the methodological challenges in the validation phase of the 

translational continuum.9-12 

 

Within the discovery and validation process (i.e., T0 and T1), attention should be 

paid to the pre-analytic (i.e., sample characteristics, collection, processing, and storage), 

analytic (i.e., specimen analysis, assay performance, and analytic method), and post-

analytic (i.e., data analysis and interpretation) factors, which may influence the reliability 

of the hypothesized association. A systematic difference in the way samples and data 

are handled, for example between cases and controls, may inadvertently introduce 

artificial structure into the data and result in faulty interpretation of the results.13 The 

artificial structure with no inherent biological plausibility adds variability in the groups 

being compared, which can lead to spurious associations that cannot be explained, and 

ultimately will not be reproduced. Ensuring that external quality control measures are in 

place and following standard laboratory protocols may not be sufficient to preclude such 
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hidden factors. Because it is difficult to detect and guard against the many known and 

unknown biases, incorporating an understanding of how potential biases relate to the 

specific technology used as well as the provenance of samples and underlying biological 

processes may help to mitigate the overall adverse impact on study results. That up to 

90% of biomedical research findings cannot be replicated points to fundamental flaws in 

the translational research continuum.14,15  

 

Some have viewed the diversity in experience of those participating in 

translational research with limited training in epidemiologic study design, fundaments of 

unbiased participant/sample selection, and high-throughput data analysis as contributing 

to the unsuccessful translation.11,12,16-18 We see great value in this diversity of research 

perspective and approaches and instead postulated that an absence of well-defined 

epidemiology methods in all phases of translational research may contribute to the 

pervasive failure of discoveries from making a population impact. Like others,19,20 we 

propose that the strongest line of defense against the potential biases within the 

discovery and validation of biomarkers is the use of well-defined study designs, 

populations and associated samples to address specific research questions.9,11 Adopting 

principles rooted in population science will ensure reliability of reported associations and 

allow for more efficient translation.  

 

Driving Translational Research with Team Science including Epidemiology 

Multidisciplinary team science is the process through which researchers representing 

different disciplines work together to expand and integrate discipline-specific knowledge 

and methods to address a common research problem.21 Leveraging the diverse and 

complementary research perspectives in a collaborative effort is an ideal model for 

efficient translation.8,19,22-24 A robust multidisciplinary team, with a foundation in 
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fundamental epidemiology principles, will allow the cancer research community to 

capitalize on emerging technologies and investments in biomedical research. From our 

experience working in a multidisciplinary team, this approach to translational research 

has provided new insights and tools, including biomarkers, to tackle the current 

questions in cancer etiology, risk, prognosis, and treatment. To this end, large funding 

initiatives from the National Cancer Institute including the Cancer Center Support Grants 

and the Translational Research Program’s SPORE initiative emphasize the practice of 

multidisciplinary team science. The dynamics of team science in cancer research have 

been cited as a driver of translational cancer epidemiology.8 Team science is a 

contemporary topic of study currently supported though the mission of the Science of 

Research and Technology Branch in the Behavioral Research Program at the National 

Cancer Institute.21,25 However, there has been no effort to empirically evaluate how the 

multidisciplinary contributions cultivated in the practice of team science contribute 

directly to the effective translation of T1 cancer biomarkers.  

 

Thus, we followed the principles outlined in the methodology domain of meta-

research,26 which seeks to understand biases stemming from research conduct 

necessary to improve research practices, to perform a case study to illustrate the utility 

of multidisciplinary team science that includes epidemiology in the T1 translation of 

biomarkers and prostate cancer. We examined the team’s individual and joint 

contributions during each phase of biomarker evaluation to identify where through the 

practice of team science they recognized and solved threats to internal validity. Next, we 

quantified the extent of bias in the estimates (from logistic or conditional logistic 

regression) avoided because the team recognized and solved the threats in evaluating 

the association of cancer biomarkers with prostate cancer risk or recurrence in nested 

case-control studies. 
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2.3 Methods 

Our multidisciplinary team specializing in cancer biomarkers includes 

investigators with formal training and expertise in population science (e.g., epidemiology 

and biostatistics), clinical science (e.g., pathology and urology), and basic science (e.g., 

cancer biology, biochemistry, and molecular biology). The composition of the team is 

33% female and includes senior members who have worked together for the past 20 

years and mid-rank and junior members who joined the team initially as trainees who 

later went on to be appointed as faculty. The established working relationship between 

members of the team; success in receipt of extramural funding from the National 

Institutes of Health and Department of Defense; numerous peer-reviewed publications; 

prior reflection on practice of team science;22 and willingness to share data provides the 

ideal opportunity to examine the utility of team science in overcoming barriers 

encountered in T1 translational epidemiology.  

 

Members of the team participated in the investigation of three different etiologic 

tissue biomarkers and prostate cancer risk or recurrence including Ki67 expression 

(marker of cell proliferation);27 microRNA expression (non-coding regulatory RNA);28 and 

telomere length (marker of chromosome stability).29 In each of the investigations threats 

to internal validity (e.g., systematic measurement error) in the measurement of each 

tissue biomarker were revealed through the practice of team science along with the 

appropriate solutions to correct for the measurement error (Table 1).  

 

Key Indicators of Threats to Internal Validity A structured interview was conducted by 

an investigator not participating in the original investigations of the three biomarkers. 

Leading questions asked during team meetings and through individual correspondence 
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via email were designed to provoke team members to recall the events and 

circumstance raising suspicion of potential bias in the observed results for each 

biomarker association. Team members were asked to describe how the team jointly or 

individually was then able to identify the source of bias pointing to measurement error in 

the analytic pipeline (pre-analytic, analytic, and post-analytic). The corresponding 

solutions properly accounting for measurement error in the statistical analysis were also 

described during the team and individual interviews.  

 

Measuring Bias and Changes in Inference Using the primary research data collected 

and analyzed in each of the three scenarios (Table 1), the amount of bias avoided by the 

team identifying and correcting for the measurement error was quantified by calculating 

the percent difference in the team-science corrected and biased beta coefficients 

([corrected – uncorrected] / [corrected]) from adjusted unconditional (telomere length) 

and conditional (Ki67, microRNAs) logistic regression models. For each biomarker-

outcome comparison, changes in the magnitude and direction of the measures of 

associations are described to show the impact of team science on the overall inference 

and study conclusions.  

 

2.4 Results 

Ki67 Expression and Prostate Cancer Recurrence The team investigated the 

association between Ki67 immunohistochemical (IHC) staining in tumor in formalin-fixed 

paraffin embedded tissue blocks from prostatectomy tissue sampled and arrayed on 

tissue microarrays (TMAs) and prostate cancer recurrence. The team used an 

established case-control study30-33 nested in a clinical cohort of men with clinically 

localized prostate cancer undergoing prostatectomy between 1993 and 2001 at the 

Johns Hopkins Hospital followed through 2004.34 Controls were sampled using incidence 
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density sampling35 and were matched to cases of biochemical recurrence on age, race, 

stage and grade. A greater extent of biopsy prostate tissue Ki67 staining had previously 

been observed to be associated with a higher risk of prostate cancer progression in the 

setting of radiation therapy.36 The team hypothesized that higher percentage of cell 

staining positive for Ki67 are associated with increased risk of prostate cancer 

recurrence. The team categorized men into quartiles of Ki67 staining, based on the 

distribution in the controls; and in initial analyses, they observed no association between 

higher quartiles of Ki67 staining compared with the first quartile and biochemical 

recurrence. Because this finding was inconsistent with published studies and with team 

member’s clinical experience, the team suspected potential bias in their findings. Prior 

discussions among the team’s epidemiologists and pathologists regarding the temporal 

decay in IHC staining in stored tissue blocks in a different context prompted the team to 

perform stratified analyses by date of tissue collection. The stratified analyses revealed a 

difference in the distribution of Ki67 staining confirming that the older tissue samples had 

weaker staining. While cases and controls were matched on follow-up time, they were 

not matched on year of surgery. The nested case-control study was originally designed 

to study germline DNA variants, which is unaffected by block storage time. Additionally, 

when the team realized the value of this nested case-control study for discovery and 

validation of tissue-based prognostic biomarkers, the complexities introduced by 

variation in block storage were not yet appreciated.  

 

 Based on these observations, emanating from team discussions and exploratory 

data analyses, the team detected measurement error in Ki67 staining attributed to tissue 

block storage time (Table 2), which was differential between cases and controls. To 

overcome this measurement error, the team used calendar-time specific cut points for 

Ki67 quartiles based on the distribution in controls. The bias in the beta coefficients from 
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the adjusted conditional logistic regression model for quartiles of the Ki67 staining 

distribution (vs Q1) the initial results relative to those from the team-science corrected 

results was 85% for Q2, 70% for Q3, 45% for Q4. The bias in the beta coefficient for an 

ordinal variable with median Ki67 for each quartile to test for trend was 910% (Figure 1). 

The inference from the initial results was a null association between Ki67 staining and 

prostate cancer recurrence. After accounting for the differential measurement error, the 

team-science corrected inference suggested a positive association with a strong dose 

response. The initial conversation between members discussing the temporal decay of 

tissue biomarkers, prior to the current analysis, is representative of the conducive 

environment emerging from the practice of team science, which allowed the team to 

recognize threats to validity and incorporate steps to overcome the corresponding 

measurement error. 

 

Telomere Length and Prostate Cancer Risk The team investigated the association 

between prostate cell telomere length measured using telomere-specific fluorescence in 

situ hybridization (FISH) and the odds of prostate cancer overall and aggressive disease 

in a subset of a case-control study nested in the placebo arm of the Prostate Cancer 

Prevention Trial.29 Telomere length was measured in stromal, luminal epithelial, and 

basal epithelial cells from prostate biopsy tissue. Cases were detected on biopsies 

performed for clinical indication or on biopsies performed during end-of-study biopsies 

per trial protocol in men free of disease during trial follow-up. Controls were men who 

had an end-of-study biopsy per trial protocol who did not have prostate cancer detected. 

The majority of the controls did not have a clinical indication for biopsy at the time of the 

end-of-study biopsy. This investigation was designed to test hypothesis that men with 

shorter telomeres in normal cells collected from diagnostic biopsies have a higher risk of 

having prostate cancer. During the analytic phase of measuring intensity of FISH 
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signals, the light guide on the fluorescent microscopy system was replaced due to 

normal deterioration over time. One member of the team performing telomere-specific 

FISH assay noticed inconsistent telomere FISH and DAPI signals after rerunning a 

single batch following replacement of the illumination system. After discussion with the 

rest of the team, significant batch-effects were observed in the distribution of telomere 

FISH and DAPI signals prior to and after replacement of the light guide. The team 

science environment facilitating an equal exchange of ideas, comments, and questions, 

whereby a member of the team noted an inconsistency in the data after routine 

maintenance of laboratory equipment allowed the entire team to concentrate their 

collective experience to undercover hidden structure in the data that could have 

otherwise gone unnoticed.  

 

 Batch-specific cut points based on the median telomere length in controls were 

used to compare telomere length across each of the three cell types and the odds of 

prostate cancer (Table 2). The bias in the beta coefficients from the adjusted 

unconditional logistic regression model for shorter telomere length (<median vs longer) 

from the initial results relative to those from the team-science corrected results was 

128% for stromal cells, 45% for luminal epithelial cells, and 107% for basal epithelial 

cells (Figure 2). After correcting for the measurement error by using batch specific cut 

points, the association between telomere length and the odds of prostate cancer shifted 

from a non-statistically significant inverse association to a statistically significant positive 

association in the stromal cells, but remained null for luminal and basal epithelial cells.  

 

microRNA Expression and Prostate Cancer Recurrence The team investigated the 

association between three index microRNAs (miR-21, miR-141, and miR-221) and 

prostate cancer recurrence28 in the same nested-case control study used for the Ki67 



 28 

investigation. This investigation was designed to test the hypothesis that differential 

expression of microRNAs is associated with an increased risk of prostate cancer 

recurrence following prostatectomy. The index microRNAs were measured by 

quantitative real-time RT-PCR after extraction of total RNA from cancer tissue. The ratio 

of the index miRNA to U6 non-coding small nuclear RNA (snRNA) was calculated to 

normalize quantities for any variation resulting from the RNA extraction and quantitative 

RT-PCR steps. U6 snRNA, which has been shown to have uniform expression, is often 

used in miRNA studies for normalization.37 The team confirmed the abundance and 

quality of the extracted RNA. While protein degradation in tissue blocks is now 

recognized to be a problem in biomarker research, RNA is thought to be more stable in 

formalin-fixed paraffin embedded tissue blocks.38 Assuming the stability of U6 snRNA in 

tissue blocks over time, the team performed stratified analyses for the association 

between the ratio of the index miRNA to the reference miRNA and recurrence by date of 

tissue collection after reviewing the initial results. The results still appeared contrary to 

the hypothesis. So, the team next evaluated the distribution of the index miRNAs and the 

reference U6 snRNAs separately by date of tissue collection. They observed different 

rates of decay among the index miRNAs and in U6 snRNA over time, with the greatest 

decay observed for U6 snRNA and miR-21.39 Reflecting on the team’s prior experience 

working with stored tissue samples in the same nested study as the Ki67 investigation, 

the member of the team conducting the statistical analyses together with guidance from 

other team members with expertise in the biology and measurement of mircoRNAs, led 

to the detection of time-dependent measurement error in the biomarker used to 

standardized expression of the index biomarkers.39 Differential measurement error was 

introduced because of the difference in block storage time between the cases and 

controls as described in the Ki67 example above. In the analyses, the team corrected for 

the measurement error by using cut points for U6-normalized miRNA expression 
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(miRNA / U6) based on the distribution in controls to generate tertiles in across two 

calendar-time periods (Table 2). The bias in the beta coefficients from the adjusted 

conditional logistic regression model for tertiles of the index microRNAs (vs T3 [highest 

expression]) the initial results relative to those from the team-science corrected results 

was 190% for T1 (lowest) and 423% T2 (middle) for miR-21; 115% for T1 and 215% for 

T2 for miR-141; and 24% for T1 and 93% for T2 for miR-221 (Figure 2.3). The bias in the 

beta coefficient for an ordinal variable with values of 1, 2, and 3 corresponding to the 

lowest to highest tertile to test for trend was 283%; 87%; and 23% for miR-21; miR-141; 

and miR-221 respectively (Figure 2.3). After implementing the team-science correction in 

the data analysis properly accounting for the measurement error, the magnitude of the 

positive association for miR-221 was stronger in the team-science corrected association, 

while null associations remained for miR-21 and miR-141 (Figure 2.3).   

 

2.5 Discussion 

We presented a case study of a prostate cancer research team’s research to 

illustrate the utility of multidisciplinary team science that includes epidemiology in the T1 

investigation of etiologic tissue biomarkers for prostate cancer. A structured interview led 

by an investigator not a part of the original investigations provides a unique perspective 

to characterize the contributions from each team member in the initial suspicion of 

potential bias, how the team then was able to hone in on the exact source of bias in the 

analytic pipeline, followed by the implementation of appropriate solutions in the data 

analysis. The scenarios discussed herein highlight the shared responsibility in detecting 

problems and developing solutions; requiring active participation from team members 

with expertise in basic science, population science, and clinical science.  

 



 30 

In each scenario, we compared the naïve inference based on the biased 

associations with the inferences from the team-science corrected associations to 

illustrate how a traditional, single discipline approach may have led to incorrect results 

and distorted inferences as compared to a multidisciplinary team-science approach. In 

all three scenarios, measurement error was detected after thoughtful and reflective 

consideration of the initial results followed by discussion among members of the team. 

The exact source of measurement error – degradation with tissue storage time coupled 

with differing distribution of block storage time (Ki67 and microRNA) and batch-effect 

(telomere length) points to the necessity of a multidisciplinary approach to detect errors 

that potentially would have gone unrecognized without the unique perspectives from a 

multidisciplinary team. The specific threats to validity encountered – all of which were 

types of measurement error – a core epidemiologic concept, points to the value of 

epidemiologic principles in a translationally-focused multidisciplinary team. The 

experience gained through these investigations has contributed methodological 

awareness in working with archived tissue samples in the T1 phase of biomarker 

validation.39 Given this awareness, steps can be taken in early in the study-design phase 

to deal with these issues to ensure valid contributions to the evidence base with the goal 

of identifying valid biomarker targets for further clinical evaluation (e.g., T2).  

 

Our case study further highlights the iterative process of evaluating initial results 

and formulating alternative, non-biological explanations before constructing plausible 

biological explanations for the observed results. In each scenario, contributions from 

team members with expertise in epidemiologic methods were coupled with team 

members with expertise in cancer biology and pathology establishing a synergy 

anchored by epidemiologic design and principles. The ability of the team to identify and 

correct for unforeseen errors in the biomarker pre-analytic and analytic phases via 
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corrections in the statistical analysis phase highlights the importance of population 

science and the impact that proper statistical analyses can have through uncovering 

hidden biases leading to new discoveries and strengthening findings.  

 

In 2 of the 3 scenarios, the team-science corrected inference shifted from null to 

a significant association, one in the positive direction (Ki67 and prostate cancer 

recurrence) and one in the inverse direction (telomeres and prostate cancer risk). In both 

of these cases, a valid biomarker-cancer association would not have been detected and 

would not have the potential to be considered for further investigation in the translational 

continuum in the absence of team-science. Given the results of the telomere 

investigation, the team has received subsequent funding to study the telomeres-prostate 

cancer association in the full set of nested cases and controls. In the case of Ki67, the 

team is now looking in other settings because of its promise to inform prostate cancer 

outcomes, but also to provide information on how modifiable factors, such as obesity 

and smoking, influence recurrence as we observed in the source population for this 

nested case-control set.40,41 In the other scenario (microRNA and prostate cancer 

recurrence), the team-science corrected inference became stronger for one index 

microRNA (miR-221), supporting its further investigation as a potentially valid biomarker 

of recurrence. The team-science corrected inference remained a null association for two 

index microRNAs (miR-21 and 141), and so the net effect on biomarker investigation is 

unchanged. While the implementation of the team science solutions produced 

associations corrected for measurement error, use of these solutions resulted in reduced 

precision of the estimates of these associations (Figures 1.1 to 1.3). Furthermore, the 

team science approach to correct for measurement error – use of batch or year specific 

cut points – did not provide an opportunity to determine optimal cut points in the 
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distribution of each biomarker for clinical or public health use. Calibration of the using 

known biomarker levels was not possible.  

 

This case study focused on documenting the utility of the team science model in 

identifying and overcoming, what turned out to be, different types of measurement error 

in the investigation of tissue biomarkers for prostate cancer. Using a quantitative 

approach designed to evaluate the impact of systematic measurement error, we 

determined the extent of the bias and the change of the inferences resulting from team 

science corrected estimates to document the potential benefits of the multidisciplinary 

approach. While the extent of the bias and the nature of the shift in the inferences are 

specific to these particular studies, the utility of team science is not limited to these 

specific examples. The disciplines represented by team members (pathology, cancer 

biology, biostatistics, and epidemiology) reflect the scope and focus of this team’s 

research, but we do not mean to suggest these specific disciplines are prerequisites for 

a multidisciplinary team to be successful. Rather, we provide some evidence that the 

multidisciplinary team science approach can be a useful model for translational 

research. Because this team is focused on T0 to T1 phases of the translational 

continuum, in this case study, we could not assess the impact of team science on the 

subsequent phases of the translational continuum, specifically clinical evaluation of 

efficacy, implementation, and impact assessment. The subsequent stages in the 

translational continuum (T2 and T3) evaluating the real-time use of biomarkers 

applications to inform clinical and public health decisions may not be vulnerable to the 

same threats to validity encountered during the T1 phase (i.e., increasing biomarker 

waning with longer block storage time). While different in scope and focus, epidemiology 

principles applied in a multidisciplinary team science approach will continue to provide a 

vital contribution to overcome barriers in the practice of translational research. Additional 
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meta-research drawing on the existing T0 to T4 evidence base of cancer biomarkers 

could be designed to comprehensively evaluate the influence of the practice of team 

science on moving through each phase of the translational continuum. This approach, 

would also help identify other practice-based barriers in the efficient translation of cancer 

biomarkers – from discovery to implementation.  

 

The team’s success, illustrated through each scenario discussed, can be 

attributed to the ability to coordinate discipline-specific activities including epidemiology, 

into an effective team process along with similar attitudes and beliefs among team 

members; factors that have been cited to facilitate successful team science initiatives.25 

While this case study focused on the utility of a successful multidisciplinary team, there 

are also limitations to implementing team science. Previous qualitative evaluation of 

multidisciplinary team science identified integration of conceptual and scientific efforts, 

differences in methods, terminology, and work-styles as some of the challenges in 

multidisciplinary team science.25 
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Table 2.1 Characteristics of three tissue-based biomarker and prostate cancer risk 
and recurrence: T1 translation 

 Ki67 Telomeres miRNA 

Study design  Nested case-
control of 
retrospective 
clinical cohort with 
cases and 
controls matched 
on pathologic 
stage, Gleason 
sum, race, and 
age 

 Prospective 
analysis of sample 
from placebo arm of 
randomized 
controlled trial  

 Nested case-control 
of retrospective 
clinical cohort 

Index 

biomarker  

 IHC-detected Ki67 
protein  

 Telomere length 
measured by 
telomere-specific 
FISH  

 quantitative RT-
PCR detected miR-
21, 141, and 221 
expression 

Tissue 

sample 

 Tissue 
microarrays 
constructed from 
tumor foci in 
prostatectomy 
tissue samples  

 Benign areas of 
prostate tissue 
biopsies performed 
irrespective of 
indication42  

 Tumor cores from 
FFPE 
prostatectomy 
tissue samples 

Outcome  Prostate cancer 
recurrence 
defined as PSA 
>0.2 ng/mL, local 
recurrence of 
disease, 
development of 
distant 
metastases, or 
death from 
prostate cancer 

 Incident prostate 
cancer relative to 
entering parent 
study 

 Prostate cancer 
recurrence defined 
as PSA >0.2 ng/mL, 
local recurrence of 
disease, 
development of 
distant metastases, 
or death from 
prostate cancer 

Threat to 

validity 

 Temporal decay of 
Ki67 protein  

 Decreased intensity 
and replacement of 
illumination system 
used to 
microscopically 
measure telomere 
length  

 Different temporal 
decay of reference 
RNA (U6 snRNA) 
used to normalize 
expression of index 
miRNAs relative to 
that of the index 
miRNAs 

Analytic 

measurement 

error 

 

 Differential tissue 
storage times 
between cases 
and controls 

 

 Batch-specific 
telomere length 
introduced by 
variable intensity of 
illumination system  

 Differential tissue 
storage times 
between cases and 
controls  
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  Systematic 
difference in Ki67 
expression 
between cases 
and controls 
(differential error) 

 Systematic 
difference in 
telomere length by 
batch (non-
differential error) 

 Systematic 
difference in relative 
normalized 
expression levels of 
miRNA between 
cases and controls 
(differential error) 

Team-

science 

solution 

 Calendar time-
specific Ki67 cut 
points in cases 
and controls 
based on calendar 
time-specific Ki67 
distribution in 
controls 

 Applied batch-
specific telomere 
cut points (e.g., 
short vs. long) to 
both cases and 
controls based on 
the distribution in 
controls 

 Calendar time-
specific miRNA cut 
points in cases and 
controls based on 
calendar time-
specific miRNA 
distribution in 
controls 

IHC – immunohistochemistry; FISH -  fluorescence in situ hybridization; FFPE – 
formalin-fixed paraffin embedded  
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Table 2.2 Key indicators of threats to validity and source of measurement error identified 

by the practice of team science in three investigations of tissue-based biomarker and 

prostate cancer risk and recurrence: T1 translation 

 Ki67 Telomeres miRNA 

Indicator of threat to validity 

Data-analysis 

& 

Interpretation  

 Observed null 
association 
between increased 
Ki67 expression 
and prostate cancer 
recurrence; lack of 
consistency with 
hypothesis based 
on prior studies in 
other settings 

 Observed null 
association 
between short 
telomere length 
and prostate 
cancer risk; lack of 
consistency with 
hypothesis 
 

 Observed weak or 
null associations 
between the index 
miRNAs and 
prostate cancer 
recurrence; lack of 
consistency with 
hypothesis based 
on prior studies in 
other settings 
 

   Observed structure 
in the data 
indicative of batch-
effects due to 
variable intensity of 
the illumination 
system 

 Observed 
inconsistent 
patterns in 
associations for the 
index miRNA 
relative to U6 
snRNA based on 
calendar time of 
tissue collection 

    Temporal 
differences in index 
miRNAs and 
especially in U6 
snRNA with higher 
values observed in 
tissue samples 
collected in earlier 
calendar years 
compared to later 
years in cases and 
controls separately  

Source of measurement error  

Tissue 

collection & 

storage 

 Proteins, including 
Ki67, as detected 
by IHC decay over 
time in FFPE tissue 
blocks 
 

  Observed temporal 
decay of U6 snRNA 
used to normalize 
expression of index 
miRNAs 

  Observed temporal 
decay of Ki67 in the 
study TMA spots 
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Biomarker 

assay 

technologies 

  Waning intensity of 
the microscopy-
based illumination 
system used to 
digitally measure 
fluorescent 
telomere FISH 
signals 

 

   Replacement of 
illumination source 

 

   Rerun single batch 
after replacing 
illumination system 
with changed 
values for telomere 
signals 
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 Result Ca/Co 
Adjusted 

beta* 
95% CI % Bias** 

 

      Ki67 and prostate cancer recurrence 

Q1 NA 29/45 0.00 Ref  

 

Q2 Corrected 30/37 0.58 -0.48 to 1.62 85% 

Q3 Corrected 44/43 0.94 0.0 to 1.87 70% 

Q4 Corrected 64/42 1.43 0.36 to 2.49 45% 

Q2 Biased 30/37 0.09 -0.84 to 1.03  

Q3 Biased 44/43 0.28 -0.73 to 1.30  

Q4 Biased 64/42 0.78 -0.26 to 1.82  

      

      Adjusted beta and 95% CI 

p-trend 
 

Corrected Beta: 0.46314 p = 0.007 910% 
 

 Biased Beta: 4.67842 p = 0.003   

Ca/Co – number of cases and controls 
*ln(odds ratio) 
** Percent difference in the team-science corrected and biased beta coefficients ([corrected – uncorrected] / [corrected]) 

 

Figure 2.1 Comparison of biased and team science-corrected associations between Ki67 quartiles and prostate 
cancer recurrence 

 

 

-1 -0.5 0 0.5 1 1.5 2 2.5
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Result Ca/Co 

Adjusted 
beta** 

(95% CI) % Bias*** 
 

      Telomere Length and incident prostate cancer 

Basal Corrected 32/50 0.77 -0.15 to 1.68 107% 

 

Luminal Corrected 32/50 0.14 -0.76 to 1.03   45% 

Stromal Corrected 32/50 0.98  0.05 to 1.90 128% 

Basal Biased 32/50 -0.05 -0.94 to 0.84  

Luminal Biased 32/50 0.08 -0.80 to 0.97  

Stromal Biased 32/50 -0.27 -1.17 to 0.63  
      

      Adjusted beta & 95% CI 

Ca/Co – number of cases and controls 
*Below the median versus at or above 
**ln(odds ratio) 
*** Percent difference in the team-science corrected and biased beta coefficients ([corrected – uncorrected] / [corrected]) 
 

Figure 2.2 Comparison of biased and team science-corrected association between short* telomere length and 
incident prostate cancer 
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Result Ca/Co 
Adjusted 

beta* 
(95% CI) % Bias**  

      miR-21 and prostate cancer recurrence 

T3 NA 24/22 0.0 Ref 
 

 

T2 Corrected 19/18 0.08 -1.43 to 1.56 423% 

T1  Corrected 16/19 -0.21 -1.61 to 1.19 190% 

T2 Biased 19/18 -0.25 -1.97 to 1.46  

T1 Biased 16/19 0.19 -1.61 to 2.00  

 
  

 
 

 

      Adjusted beta & 95% CI 
p-trend Corrected Beta: 0.09856 p = 0.7813 233%  
 Biased Beta: -0.13134 p = 0.7573   

       
      miR-141 and prostate cancer recurrence 

T3 NA 14/21 0.0 Ref 
 

 

T2 Corrected 19/20 -0.37 -2.21 to 1.50 215% 

T1 Corrected 26/18 0.75 -0.94 to 2.45 115% 

T2 Biased 19/20 0.43 -2.12 to 3.00 

 

T1 Biased 26/18 1.62 -1.11 to 4.35 

 

 
 

 
 

  

      Adjusted beta & 95% CI 
p-trend Corrected Beta: -0.48533 p = 0.2371 87%  
 Biased Beta: -0.90576 p = 0.1772   

-2 -1 0 1 2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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miR-221 and prostate cancer recurrence 

T3 NA 10/22 0.0 Ref 
 

 

T2 Corrected 21/19 0.95 -0.97 to 2.85 93% 

T1 Corrected 28/18 1.64 -0.01 to 3.28 24% 

T2 Biased 21/19 0.07 -1.51 to 1.63  

T1 Biased 28/18 1.24 -0.36 to 2.83  
   

 

  

      Adjusted beta & 95% CI 
p-trend Corrected Beta: -0.80259 p = 0.0502 15%  
 Biased Beta: -0.68547 p = 0.0870   

Ca/Co – number of cases and controls 
**ln(odds ratio) 
*** Percent difference in the team-science corrected and biased beta coefficients ([corrected – uncorrected] / [corrected]) 

 
Figure 2.3 Comparisons of biased and team science-corrected associations between micro-RNA tertiles and prostate cancer 
recurrence 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
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3.1 Abstract 

Repetitive epidemiologic investigations of biomarker-cancer associations that do 

not fill knowledge gaps are not uncommon and can be a resource drain. We adapted 

clinical trial synthesis methods to quantify the impact of continued investigations. Two 

versions of the fail-safe number (FSN) and conditional power calculations were applied 

to 98 fixed and random effects meta-analyses on biomarkers and risk of 17 cancers. 

Rosenberg’s FSN conditions on the statistical significance of each meta-analysis to 

determine the number of future studies of null effect and average study weight needed to 

drive the summary P value to > 0.05. Orwin’s FSN conditions on the effect size in each 

meta-analysis to determine the number of future studies of a specified effect size 

needed to be added to drive the summary result to a certain, trivial effect size. Example 

1: For the random effects meta-analysis of 15 studies on H. pylori infection and gastric 

cancer (OR=2.29; 95% CI 1.71-3.05), Rosenberg’s FSN was 805; and Orwin’s FSN was 

240 future studies with an average OR=1.00 to drive the combined association from 

positive to null (OR to 1.05). The large number of additional studies needed to change 

the inference illustrates the futility of further study of this established association. 

Example 2: For the random effects meta-analysis of 7 studies on 

dehydroepiandrosterone sulfate and prostate cancer risk (OR=1.29; 95%CI: 0.99 to 

1.69; I2 = 17%), only 5 studies would need to be added to drive the combined 

association from null to statistically significantly positive (OR=1.29). This result suggests 

additional investigation could change the inference. Together with traditional evidence 

synthesis and appraisal methods, including assessments of between-study 

heterogeneity, small-study effects bias, study quality and remaining knowledge gaps 

(e.g., subgroup associations), use of such metrics by researchers, funders, grant 

reviewers, and journal editors might help determine whether more research is needed or 

not on specific biomarker and cancer associations, potentially saving time, money, and 
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allowing researchers to focus efforts on biomarkers with the greatest promise of 

improving individual and population-level cancer burden. 
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3.2 Introduction 

Biomarkers of cancer etiology, risk, prognosis, and prediction are of 

contemporary interest in current cancer epidemiology, prevention and control research 

efforts. Yet, it is quite common to observe in the published literature, conference abstract 

proceedings, submitted grant applications, and submitted manuscripts repetitive 

investigations of established biomarker-cancer associations, referred to as Me-too 

Science.1 Such redundant investigations that lack clinical or public health significance or 

the potential to improve biological understanding represent a practice-based barrier in 

translation, including for etiologic cancer biomarkers for determining cancer risk.2,3 The 

overall magnitude of the cost of research waste has been estimated to be as much as 

85% of the $200 billion invested in biomedical research in 2010.4,5 A significant factor 

contributing to research waste is overlooking what is already known, or ignoring what is 

currently under investigation.5,6 Unlike the necessary and legitimate practice of research 

reproducibility, redundant research neglects the existing evidence base and the context 

in which the current result will be considered. Thus, redundant uninformative research 

can be minimized by determining whether or not further investigation will provide a 

meaningful contribution to the existing evidence.  

 

This brings into focus the importance of up-to-date systematic reviews and meta-

analyses, which contribute to the domain of knowledge integration centrally positioned 

within the translational epidemiology framework.7,8 The objective of knowledge 

integration is to synthesize the existing scientific evidence to accelerate the translation of 

discoveries into clinical and public health applications, and contribute to evidence-based 

recommendations by supporting or not supporting the implementation of the application 

into routine practice.8 In cases where additional biomarker investigations are unlikely to 

provide a meaningful contribution to the current evidence, investigator’s attention should 
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be focused on addressing existing evidence gaps in the biologic understanding of the 

biomarker-cancer relationship by evaluating new or improved methods to measure the 

biomarker or using other markers correlated and more specific to the studied biomarker, 

evaluating clinically meaningful outcomes, and reducing heterogeneity and imprecision 

in the observed associations by investigating the biomarker-cancer relationship in 

important subpopulations. 

 

Existing quantitative metrics developed to determine how future investigations 

will contribute to the current evidence base can be adapted into a systematic process to 

overcome uninformative and redundant cancer biomarker investigations. A common 

practice contributing to non-reproducibility of biomedical research is the file-drawer 

problem9, where investigators file away their uninteresting or nonsignificant results; 

ultimately leading to a selected sample of statistically significant results in the published 

literature (e.g., publication bias). To quantify the impact of selectively unpublished 

research on the existing meta-analysis, Rosenthal9 introduced the fail-safe-number 

indicating the number of unpublished studies with an average null effect needed to be 

included in an updated meta-analysis to drive the combined P value to ≥ 0.05. In the 

context of redundant uninformative biomarker investigations, the fail-safe number can be 

adapted to determine whether the inference based on the existing meta-analysis for a 

statistically significant biomarker-outcome relationship will likely change with the addition 

of further research. Additional quantitative strategies have been developed to determine 

the sample size of a future study, based on the existing meta-analysis, needed to 

provide sufficient power in the combined meta-analysis.10,11 In the context of an existing 

statistically non-significant meta-analysis, conditional power analysis can be used to 

determine the size and number of future studies needed to provide sufficient power to 

observe a statistically significant finding if one exists.12 Conditional power analysis can 
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be adapted to determine the feasibility of conducting a sufficient number of future 

investigations to provide sufficient power to detect a significant association in the 

combined meta-analysis.  

 

The objective of the current study is to adapt the fail-safe number and conditional 

power analysis to quantify the impact of further investigation of individual biomarker-

cancer relationships on the existing evidence base, and to encourage the translational 

research community to consider existing evidence gaps to overcome uninformative 

redundant investigations. Utilizing a collection of 98 meta-analyses13 describing the 

relationship between an array of cancer biomarkers and risk for multiple types of cancer 

provides an opportunity to demonstrate the empirical application of these metrics. The 

implementation and characterization of these metrics as applied to the 98 meta-analyses 

is followed by a summary of these metrics in the context of a well-established biomarker-

cancer relationship (e.g., H. pylori and gastric cancer) and in a more uncertain 

biomarker-cancer relationship (e.g., androgens and prostate cancer). 

 

3.3 Methods 

We used an existing sample of 98 meta-analyses of prospective observational 

studies describing the association between a diverse range of non-genomic biomarkers 

and cancer risk including: Insulin-like growth factor(IGF)/insulin markers (21 meta-

analyses); sex hormones (13 meta-analyses); dietary markers (31 meta-analyses); 

inflammatory markers (3 meta-analyses); infectious agents (22 meta-analyses); and 

environmental markers (8 meta-analyses).13 The 98 meta-analyses described biomarker 

associations and risk of 17 specific cancer types. The most common cancer sites include 

breast (28 meta-analyses); prostate (24 meta-analyses); lung (10 meta-analyses); and 

colorectal (8 meta-analyses). As described by Tsilidis et al.13 a comprehensive search 
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strategy was used to search PubMed between 1996 and 2010 to identify the 98 meta-

analyses described in 37 publications which included a total of 847 individual studies 

with a median of seven included studies in each meta-analysis (range: 2 to 42). For each 

of the 98 meta-analyses both fixed- and random effects summary estimates are 

available as well as the corresponding 95% confidence intervals, number of included 

studies, total number of cases and non-cases, effect estimate from the study with the 

largest sample size included in each meta-analysis, and the I2 statistic describing the 

between study heterogeneity. Based on random-effects models, 44 (45%) of the meta-

analyses reported statistically significant summary odds ratios (OR), whereas fixed-

effect models revealed 54 (55%) statistically significant meta-analyses. The summary 

ORs described in the 98 meta-analyses ranged from 0.41 to 65, with meta-analyses 

comparing infectious diseases with cancer risk at the extreme end of this distribution.  

 

Fail-Safe Number (FSN) We applied two variations of the FSN to both fixed and random 

effects summary estimates in the 98 meta-analyses. We used Rosenberg’s FSN14 to 

quantify the number of future studies with an average null effect and average weight 

(e.g., inverse variance), needed to be included in the observed statistically significant 

meta-analysis, to drive the combined meta-analysis to null (p ≥ 0.05) when the original 

meta-analyses observed statistically significant results. To overcome the restriction of 

statistical significance at the meta-analysis level, we used Orwin’s FSN15 to calculate the 

number of future studies with a specified average effect needed to be included in all 

meta-analyses to reduce to combined effect to a specified trivial value. The added utility 

of Orwin’s FSN is the ability to test specific values of the effect in the future studies 

against a range of values for the effect in the combined analysis. We took an approach 

consistent with the underlying assumptions in Rosenberg’s FSN by assuming the 

average effect in the future studies was null (OR = 1.00). We applied our approach to 
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Orwin’s FSN to a range of effect estimates (OR = 1.05; 1.10; 1.25; 1.5; and 2.00) for the 

combined summary estimate.  

 

Conditional power analysis For the meta-analyses not reaching statistical significance 

(p ≥ 0.05), we conducted conditional power analysis to determine the number of future 

studies needed to achieve sufficient power to detect a statistically significant summary 

effect when added to the observed meta-analysis. We set the targeted power to 0.8 and 

took a pragmatic approach declaring an alternative hypothesis equivalent to the 

observed summary fixed and random effects OR and assumed the future studies were 

of average weight as those included in the observed meta-analysis. Our conditional 

power analyses were based on two approaches described by Roloff et al.12 In approach 

1, we assumed there was no heterogeneity between studies included in the observed 

meta-analysis (I2 = 0%) and that the future studies will not introduce heterogeneity. In 

the second approach, we focused on the random-effects meta-analyses to determine the 

conditional power analysis while still taking a pragmatic approach with an alternative 

effect size equivalent to the OR observed in the meta-analysis and average weight of the 

studies included in the meta-analysis. When using the random effects meta-analysis, we 

assumed between-study heterogeneity was equivalent in the new studies so that the 

new studies will not introduce additional between-study heterogeneity when combined 

with the observed meta-analysis. We calculated the two variations of the FSN and both 

conditional power analysis approaches in STATA version 13 (STATA Corp, College 

Station, TX).  

 

3.4 Results 

Among the 54 and 44 statistically significant fixed and random effects meta-

analyses with a median I2 = 42% and 36% (range: 0 to 94%) respectively, the median 
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number of included studies was 9 (range: 2 to 42) and the median total number of 

participants was 3,727 (range: 357 to 1,381,129) for the fixed-effect meta-analyses and 

3,781 for the random effects meta-analysis (Table 3.1). For the statistically significant 

fixed-effect meta-analyses with a median summary OR of 1.28 (range 0.41 to 65), the 

median value of Rosenberg’s FSN, the number of additional studies of average weight 

and average null effect needed to be included in the observed meta-analysis to drive the 

combined summary estimate to null (p ≥ 0.05), was 31.5 (range 3.2 to 24,939). For the 

random effects meta-analyses with a median OR = 1.52 (range 0.41 to 61.2), the median 

value of Rosenberg’s FSN was 31.1 (range 3.2 to 3,464). The median FSN for meta-

analyses with no heterogeneity (I2 = 0%; 15 fixed and random effects meta-analyses; 

median OR = 1.7; median number of included studies - 4) was 17.0 for both fixed and 

random effects meta-analyses; 53 and 45 for fixed and random effects meta-analyses 

with low heterogeneity (I2: 1 to 29%; 6 and 5 meta-analyses; median ORs = 1.35 and 

1.54; median number of included studies - 12); 31 and 26 for fixed and random effects 

meta-analyses with moderate heterogeneity (I2: 30 to 59%; 17 and 11 meta-analyses; 

median ORs = 1.19 and 1.28; median number of included studies – 8 and 9); 30 and 17 

for fixed and random effects meta-analyses with high heterogeneity (I2: 60 to 80%; 9 and 

5 meta-analyses; median ORs = 1.24 and 1.99; median number of included studies - 

11); and 1497 and 148 for fixed and random effects meta-analyses with extreme 

heterogeneity (I2: > 80%; 7 and 8 meta-analyses; median ORs = 3.88 and 3.13; median 

number of included studies – 15 and 21) (Figure 3.1).  

The influence of between-study heterogeneity on Rosenberg’s FSN is illustrated by 

comparing the FSN for fixed and random effects meta-analyses from the same study. 

The FSN for the fixed-effect model tends to be larger compared to the corresponding 

FSN for random effects meta-analysis given the assumption of no between-study 

heterogeneity resulting in tighter confidence intervals around the fixed-effect summary 
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estimates (Figure 3.1). Smaller values for the FSN in the random effect meta-analyses 

are indicative of the between-study heterogeneity incorporated into the summary 

estimates which introduces additional uncertainty in the precision of the random effects 

estimates. With the additional uncertainty in the random effects meta-analysis, fewer 

studies would be needed to drive the combined meta-analysis to null, compared to the 

corresponding fixed-effect meta-analysis. The pattern of larger values of Rosenberg’s 

FSN with increased precision of the summary estimate is illustrated further when 

conditioning on the number of studies included in the observed meta-analysis within 

strata of between-study heterogeneity (Figure 3.2). Among meta-analyses with similar 

between-study heterogeneity, meta-analyses with more included studies tend to have 

high values for the FSN.  

Conditioning on summary estimates observed in the existing meta-analyses 

revealed larger values for the FSN for meta-analyses with larger summary estimates 

(Figure 3.3). Among statistically significant fixed and random effects meta-analyses with 

summary ORs between 1.00 and 1.10, the median FSNs were 24 and 17 respectively; 

49 and 16 for meta-analyses with summary ORs between 1.11 and 1.25; 68 and 27 for 

meta-analyses with summary ORs between 1.26 and 1.50; 14 and 17 for fixed and 

random effects meta-analyses with summary ORs between 1.51 and 2.00; and 795 and 

155 for meta-analyses with summary ORs greater than 2.00.  

 

 Conditioning on the summary estimates in the observed meta-analyses, the size 

of the effect in the future studies, and size of the summary effect in the combined result, 

Orwin’s FSN does not take into account within- or between-study variance in the 

observed meta-analysis. Therefore, we only considered the values of Orwin’s FSN for 

the fixed-effect meta-analyses and assumed the average effect in the future studies was 

null (OR = 1.00). We observed a pattern where larger values for Orwin’s FSN were 
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observed for the smaller combined summary estimates (Figure 3.4). To reduce the 

combined effect size to 1.05 among 38 meta-analyses with a summary OR greater than 

1.05, Orwin’s FSN was 271. The median FSN was 140; 58; 29; and 33 to reach a 

combined OR of 1.10; 1.25; 1.50; and 2.00 respectively among meta-analyses with 

summary ORs greater than the combined effect size (e.g., 1.10, 1.25, 1.50, and 2.00). 

 

Our first approach to conducting conditional power analysis was to determine the 

number of future studies of average weight as those included in the observed meta-

analysis assumed no between-study heterogeneity in the observed and combined meta-

analysis. The assumption of no between-study heterogeneity in both the observed and 

combined meta-analyses leads to equivalent results in the fixed and random effects 

meta-analyses. Therefore, we only considered the 18 fixed-effect meta-analyses not 

reaching statistical significance with summary ORs greater than 1.01 in our first 

approach. With a median power of 15% (range: 0.5% to 50%) for the existing meta-

analysis with a median of 6 (range: 2 to 14) included studies, we observed a median of 

78 (range: 4 to 994) future studies of average weight with no between-study 

heterogeneity needed to be included in the combined meta-analyses to achieve 80% 

power to detect the observed summary OR reported in the existing meta-analysis (Table 

3.1). In our second approach, between-study heterogeneity in the future studies was 

assumed to be equivalent to the between-study heterogeneity in the observed meta-

analysis. Based on 21 statistically non-significant random effects meta-analyses with 

summary ORs greater than 1.01, a median power of 21% (range: 6% to 47%), with a 

median I2 of 50% (range: 0% to 92%) and a median of 7 included studies (range: 2 to 

14), 103 future studies (range 5 to 6,656) of average weight and equivalent between-

study heterogeneity as in the observed meta-analysis would be required to achieve 80% 

power in the combined meta-analysis (Table 3.1). The greater number of future studies 
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required to achieve 80% for the random effects meta-analyses compared with the fixed-

effect meta-analyses is consistent with the different assumptions regarding between-

study heterogeneity incorporated into our two approaches. By taking into account the 

between-study heterogeneity, our second approach incorporated additional uncertainty 

into the summary estimates, thereby increasing the number of future studies. With 

respect to the size of the observed summary estimates conditioned on in our power 

analysis, we observed a decrease in the number of future studies with increasing size of 

the summary estimate in the both fixed and random effect meta-analyses (Figure 3.5).  

 

3.5 Discussion  

In this paper, we adapted two established metrics – the fail-safe number (FSN)14 

and conditional power analysis12 – to quantify the impact of future investigations on the 

inferences drawn from existing meta-analyses. Each of these metrics provides a 

heuristic approach to determine if continued investigation is warranted versus sufficient 

evidence is available to establish or refute a biomarker-cancer association. We applied 

these metrics to 98 meta-analyses of observational epidemiologic studies evaluating the 

associations between non-genomic biomarkers and cancer risk to demonstrate the 

ability of these metrics to identify situations where future research would not provide a 

meaningful contribution in an update meta-analysis. The results of the FSN and 

conditional power analysis are consistent with the underlying computation of each 

metric, which summarize characteristics of the cumulative evidence, including the 

number of studies included in the meta-analysis, the summary estimate and the 

precision of the summary estimate, and the heterogeneity in the findings of the studies 

included in the meta-analysis. We saw the values of the FSN to increase with 

decreasing levels of heterogeneity, increasing number of included studies, and larger 

summary estimates, while the size of the summary estimate appeared to be the 
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strongest factor influencing the results of the conditional power analysis. Our motivation 

to adapt these metrics as a means of quantifying the impact of further investigation 

stems from the abundance of wasteful biomedical research.5 We envision the application 

of this process along with traditional assessments of study quality and remaining 

knowledge gaps (e.g., subgroup associations) by stakeholders engaged in translational 

epidemiologic research including principle investigators, funding agencies, grant 

reviewers, journal editors, and peer-reviewers, will lead to more informative research. 

  

Application of FSN and conditional power analysis to cancer biomarker 

investigations 

We describe here the application of these adapted methods to two example biomarker-

cancer meta-analyses. 

 

FSN – H. pylori and gastric cancer In 1994 the International Agency for Research on 

Cancer (IARC) classified Helicobacter pylori as a Group 1 carcinogen.16 At the time, the 

evidence supporting IARC’s classification included four cohort studies and nine case-

control studies evaluating the relationship between H. pylori infection and gastric cancer. 

In the time since the initial classification, the accumulation of evidence suggests the 

relationship between H. pylori and gastric cancer has been well established. This is 

reflected in the greater than 2-fold increase in risk of gastric cancer described in the 

meta-analysis of 15 studies with more than 5,000 cases and controls reported by Huang 

et al.17 Rosenberg’s FSN indicates 805 future studies would be required to reduce the 

reported fixed-effect summary OR of 2.05 (95% CI: 1.79 to 2.35; I2= 76%) to null (p ≥ 

0.05) and 224 future studies based on the random effects meta-analysis (summary OR: 

2.29; 95% CI 1.71 to 3.05; I2= 76%). Based on Orwin’s FSN, a total of 615 future studies 

averaging null effect (OR = 1.00) would be required to drive the observed fixed-effect 
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summary OR of 2.05 to a trivial 1.05. The implementation of each FSN to the example of 

H. pylori and gastric cancer illustrates the futility of further investigation of the 

association between H. pylori and gastric cancer, while the extreme between study 

heterogeneity (I2= 76%) suggests the need for further subgroup analysis. To this end, 

further investigations have shown associations between dietary factors and the risk of 

gastric cancer, which help explain the geographic and ethnic differences in the 

distribution of gastric cancer. This line of research has shown a substantial increase in 

risk associated with diets high in salt after accounting for H. pylori infection, which 

provides evidence that dietary salt intake acts to modify the effect of H. pylori infection 

on gastric cancer.18,19 The role of dietary salt intake as a modifier of the effect of H. pylori 

is supported by additional research that identified cagA gene expression in H. pylori, a 

marker of higher risk of gastric cancer, is modified by dietary salt intake.20 These findings 

further illustrate the importance of examining subgroups or different populations once the 

main effect of the etiologic cancer biomarker has been established, which can provide 

additional understanding of the underlying biology driving the biomarker cancer 

association. Finally, greater public health impact could be gained from developing and 

examining approaches targeting H. pylori prevention and treatment. To this end, future 

investigations could be designed to examine factors influencing the successful 

implementation of such approaches and the impact of these strategies on reducing the 

burden of gastric cancer.  

 

Conditional power analysis – androgens and prostate cancer  In 1993 the Prostate 

Cancer Prevention Trial was launched to investigate the effects of finasteride, a drug 

that blocks the transformation of testosterone into dihydrotestosterone (DHT), in 

preventing prostate cancer,21 which eventually was stopped early in 2003 given a 25% 

reduction in the period prevalence of prostate cancer in the treatment group receiving 
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finasteride.22 The reduction in prostate cancer incidence in the finasteride group 

provided additional evidence supporting the underlying hypothesis that DHT is an 

etiologic factor in prostate cancer development. However, several methodological 

challenges encountered in population-based epidemiologic investigations including 

adequacy of measuring circulating hormones, difficulty integrating multiple components 

of the androgen pathway, difficulty incorporating clinical and population health import 

outcomes, and detection bias (e.g., differential opportunity to be screened with PSA by 

exposure; and differential detection of prostate cancer due to relationship between 

exposure and screening with PSA), have contributed to the inconsistent associations 

between circulating androgens and prostate cancer incidence.23 The relationship 

between individual components in the androgen pathway and prostate cancer have been 

summarized in the meta-analyses by Roddam et al.24 (Table 3.2). In 6 of the fixed-effect 

meta-analyses not reaching statistical significance with no between-study heterogeneity 

(I2 = 0%), conditional power analysis revealed 18 to 1173 future studies of average 

weight as those included in the observed meta-analysis required to achieve 80% power 

to detect the observed summary OR in the combined meta-analysis (Table 3.2). For 

these comparisons, the large number of future studies needed to achieve sufficient 

power may not be within reach of existing resources, and points to a situation where 

further research should be aimed at overcoming the methodologic challenges mentioned 

above23 to fill important evidence gaps with respect to androgens and prostate cancer.  

 

In the case of the random effects meta-analysis with 7 included studies comparing 

dehydroepiandrosterone sulfate and prostate cancer (summary OR: 1.29; 95% CI: 0.99 

to 1.68; I2: 17%), the 5 future studies required to achieve 80% power to detect the 

observed summary OR in the combined meta-analysis may be within reach of existing 

resources, and points to a scenario where additional research could provide a 
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meaningful contribution to the existing meta-analysis. However, we caution against the 

inappropriate interpretation of the results of the conditional power analysis applied to the 

example of androgens and prostate cancer incidence. Our approach assumed the 

number of future studies required to achieve sufficient power are of average weight as 

those already included in the observed meta-analysis and will not introduce additional 

between-study variance into the combined meta-analysis. Overlooking the composition 

of the existing evidence base and failure to consider the methodological issues 

previously cited as factors leading to inconsistent associations when considering future 

investigations would reflect practice of Me too science we are trying to overcome. With 

respect to molecular epidemiologic investigations, measurement error in the index 

biomarker assay may introduce between-study heterogeneity in the summary estimates. 

In settings where the FSN or conditional power analysis indicate potential benefit from 

continued research, future research should be designed to account for the known 

measurement error in the existing evidence in order to maximize the contributions from 

the future investigations.  

 

Furthermore, sufficient biological plausibility of the biomarker-cancer relationship, 

and applicability of strategies incorporating the biomarker into cancer prevention and 

control efforts are necessary for future research to be informative. The meta-analyses 

with sufficiently low number of future studies, determined by the FSN or conditional 

power analysis, suggesting future research may influence the observed association 

(Table 3.2) may not be relevant given the current state of cancer prevention efforts and 

are not in step with the progress that has been made by the cancer research community. 

To this end, Emmons and Colditz25 made the point of focusing on the implementation of 

current strategies aimed at cancer prevention with sound evidence supporting their 

implementation. This scenario is analogous to the example of H. pylori and gastric 
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cancer previously described, where future research should be targeted to enhance 

efforts aimed at the subsequent stages within the translational continuum from discovery 

to population health impact.  

 

Adapting research synthesis metrics for translational research 

For this work, we selected the FSN, a metric previously developed for use in 

settings different from ours, specifically to quantify potential publication bias in a 

systematic review and meta-analysis. However, the Cochrane Collaboration does not 

recommend its use for this purpose.26 This critique stems from the reliance on statistical 

significance rather than on clinical significance of an observed effect. Other metrics 

endorsed by the Cochrane Collaboration for evaluating publication bias,26 include 

inspection of the funnel plots for asymmetry and corresponding metrics developed by 

Egger et al.27 to statistically test for the presence of such asymmetry. Our use of the 

FSN for a different purpose (to determine if future research can provide meaningful 

information to the current evidence base) is not subject to this critique.  

 

For this work we also adapted conditional power analysis in the context of a null 

meta-analysis, which was developed to determine the sample size and number of future 

studies based on an existing meta-analysis necessary to provide sufficient power to 

detect a specific effect in the combined meta-analysis.12 While our use is consistent with 

the intent of the method, other methods, which we did not consider here, are available 

for planning and designing future research. In the context of randomized controlled trials 

of intervention, for example, Sutton et al. evaluated Barrowman’s n and a simulation 

approach to determine the number of additional participants needed to be included in an 

updated meta-analysis to achieve sufficient power, and demonstrated the application of 

such metrics to prioritize updating systematic reviews of interventions.11 In that review, 
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Sutton et al. noted the computational challenges associated with the simulation based 

approach, which may impede the use of this metric.10,11 In contrast,  conditional power 

analysis, which we used, has straightforward implementation and interpretation. 

 

To our knowledge no method has been introduced to directly quantify the impact 

of continued observational epidemiologic research on the current evidence base. While 

our motivation was to show how both the FSN and conditional power analysis could be 

used to quantify the impact of future research, additional work is needed to incorporate 

the FSN and conditional power analysis into a formal framework prioritizing 

observational epidemiologic research. Constructing evidence maps by plotting the level 

of evidence determined by the FSN and/or conditional power analysis for each 

biomarker and cancer against the relevant outcomes and subgroups would provide a 

formal approach incorporating these metrics with other factors to consider when 

planning future research. However, the application of the FSN and conditional power 

analysis for such purposes would need to be supported by further evaluation to 

determine explicit stopping points based on the FSN and conditional power analysis. 

Exploring the distribution of each metric in the context of symmetrical (e.g., unbiased 

sample of studies included in the meta-analysis) and asymmetrical (e.g., potentially 

biased sample of included studies) effects of the included studies quantified by Egger’s 

test27 may serve as starting point for developing such an approach.  

 

We do not intend for the use of these methods by stakeholders to stop new 

research on biomarkers considered to be established (number of future studies needed 

to change a significant result to non-significant is very large) or not establishable 

(number of future studies needed to change a non-significant result to significant is very 

large). A goal is to prevent research that is Me-too science that does not advance 
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knowledge. Instead, we intended for these metrics to encourage translational 

researchers to not simply perform the “same” biomarker study in their cohort, but to 

consider designing a study that addresses the association in different populations and 

subpopulations than previously studied, use different or novel approaches to measuring 

the biomarker in accessible tissue (e.g., blood) or the biological pathway or process 

directly in the target organ, and refined endpoints, including those defined based location 

within the organ, histology, molecular phenotype, and step in the natural history of the 

cancer. Such practices would help inform more productive research and will provide 

valuable insights by addressing existing evidence gaps with greater potential for 

navigating the translational continuum from discovery to population-health impact. 

 

While our work was focused on determining whether additional individual studies 

are needed to inform a biomarker-cancer association, these adapted methods could also 

be easily applied to determine when an updated meta-analysis on the same biomarker-

cancer association is needed. A comparison of the results for the FSN and conditional 

power analysis would provide an opportunity to explore the impact of updating an 

existing meta-analysis with new studies. This would have allowed us to extend our 

approach to informing and prioritizing the conduct of meta-analyses. The conduct and 

dissemination of uninformative meta-analyses is an analogous problem as redundant 

uninformative primary research. Recently, Ioannidis28 described two issues observed in 

the exponential increase in the number of uninformative systematic reviews and meta-

analyses: 1) methodologic flaws in the conduct of the systematic review and meta-

analysis, and 2) the absence of a significant number of primary studies in the relevant 

systematic review. We see the application of the FSN and conditional power analysis to 

serve in a similar capacity for prioritizing observation epidemiologic analyses as we 
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demonstrated in the current analyses, as well as prioritizing the conduct of meta-

analyses of observational epidemiologic research.  

 

We recognize that application of these adapted methods to existing meta-

analyses is not the only strategy to minimizing the problem of Me-too science. The Me-

too Science problem arises when individual investigators conduct and publish on the 

same topic without coordination of the sufficiency of what has already been published. 

We highlight a quantitative approach to determine whether another study is needed. An 

alternative approach to avoid the Me-too science problem is a coordinated effort among 

individual investigators to collectively determine which biomarkers require additional 

investigations, to share and pool their data and biospecimens, and to standardize the 

biomarker’s measurement and harmonize the outcome and covariate data. Using this 

approach, research on particular biomarkers is prioritized through consensus, 

biomarker-cancer associations can be investigated in subpopulations of the pooled 

studies, and power is maximized. This practice-based approach has been used over the 

past 15 years by large consortia including the Cancer Cohort Consortium (>50 cohorts 

with 7 million participants) and the Early Detection Research Network both supported by 

the National Cancer Institute (NCI),29 and the Endogenous Hormones, Nutritional 

Biomarkers and Prostate Cancer Collaborative Group (35 studies with biomarker data on 

23,000 men with prostate cancer and 35,000 controls).24  

 

Several aspects of the design of this work warrant further consideration in terms 

of the application of the FSN and conditional power analysis in determining contribution 

of future investigations on the current evidence base. With respect to the conditional 

power analysis, we declared the alternative hypothesis equivalent to the summary 

estimate reported in the observed meta-analysis, and assumed no additional between-
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study heterogeneity was introduced by the new studies. The veracity of these 

assumption could have been tested through an iterative approach evaluating different 

alternative hypotheses (e.g., using the OR of the largest study included in the observed 

meta-analysis) that would be more sensitive to small study effect on the summary OR. 

Given the focus on observational epidemiologic studies, different degrees of between-

study heterogeneity in the future studies would also be informative. However, our 

intention was not to investigate the impact of an unlimited number of conditions on the 

composition of the future studies. While the focus of our work was to apply the fail-safe 

number and conditional power analysis to an existing list of meta-analyses of 

observational epidemiology studies of etiologic cancer biomarkers and cancer risk, these 

methods are equally applicable to observational epidemiology studies on any exposure-

outcome association, including non-biomarker exposures and other important outcomes 

such as mortality, and prognosis.  

 

In summary, we show how the fail-safe number and conditional power analysis 

can be adapted to quantify the impact of future investigations of individual biomarkers 

and cancer risk on the current evidence base summarized in the corresponding meta-

analysis. In the context of a well-established biomarker-cancer relationship, and a less 

certain biomarker-cancer relationship, we show how these metrics can precipitate 

investigator’s consideration of characteristics of the existing evidence related to the 

populations previously studied, different approaches to measuring the underlying 

biologic construct, and meaningful endpoints, thereby contributing to more informative 

research. We envision the systematic application of these metrics by stakeholders 

engaged in validation and replication of cancer biomarkers including journal editors, 

grant reviewers, funding agencies, and principal and junior investigators will ultimately 
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lead to more productive research with greater potential for navigating the translational 

continuum form discovery to population-health impact.  
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Table 3.1 Results for Rosenberg’s and Orwin’s FSN and conditional power analysis for the 98 meta-analysis  

Area Author & Year Cancer Biomarker 
No.of 
studies 

No.cases/ 
controls 

I2 
Fixed-effect Random effects 

OR (95% CI) FSN1 FSN2 M3 OR (95% CI) FSN1 M4 

Diet Chen 201030  BrCA 1a,25(OH)2 vitamin D  3 3627 47 1.02 (0.81-1.29) NA NA 858 0.99 (0.68-1.44) NA 27210 
Diet Saadatian-Elahi 200431  BrCA Arachidonic acid  5 2226 0 0.89 (0.65-1.22) NA NA 79 0.89 (0.65-1.22) NA 181 
Diet Saadatian-Elahi 200431  BrCA Linoleic acid  8 3081 60 0.88 (0.69-1.12) NA NA 67 0.85 (0.57-1.26) NA 457 
Diet Saadatian-Elahi 200431  BrCA MUFA  5 2291 67 1.33 (0.98-1.81) NA NA 4 1.44 (0.82-2.53) NA 31 

Diet Saadatian-Elahi 200431  BrCA Palmitic acid  7 2802 59 1.04 (0.81-1.35) NA NA 621 1.05 (0.69-1.58) NA 6656 
Diet Saadatian-Elahi 200431  BrCA Palmitoleic acid  2 798 81 1.09 (0.68-1.74) NA NA 123 1.26 (0.41-3.89) NA 301 
Diet Saadatian-Elahi 200431  BrCA SFA  6 2570 0 1.05 (0.79-1.39) NA NA 410 1.05 (0.79-1.39) NA 1430 
Diet Saadatian-Elahi 200431  BrCA Stearic acid  7 2802 14 0.93 (0.71-1.23) NA NA 200 0.93 (0.69-1.26) NA 937 
Diet Saadatian-Elahi 200431  BrCA a Linolenic acid  8 3444 39 0.82 (0.65-1.03) NA NA 12 0.80 (0.59-1.08) NA 39 
Diet Saadatian-Elahi 200431  BrCA n-3 PUFA  8 2946 37 0.79 (0.60-1.03) NA NA 11 0.79 (0.56-1.11) NA 51 
Diet Saadatian-Elahi 200431  BrCA n-6 PUFA  7 2667 16 0.75 (0.55-1.03) NA NA 36 0.75 (0.53-1.06) NA 369 
Diet Chen 201030  BrCA 25(OH) vitamin D  7 11330 86 0.58 (0.51-0.66) 230 75 NA 0.55 (0.38-0.80) 29 NA 
Diet Saadatian-Elahi 200431  BrCA Docosahexanoic acid  7 3262 36 0.76 (0.59-0.99) 5 106 NA 0.73 (0.53-1.02) NA 9 
Diet Saadatian-Elahi 200431  BrCA Eicosapentanoic acid  5 2291 0 0.91 (0.87-0.95) 48 88 NA 0.91 (0.87-0.95) 48 NA 
Diet Buck 201032  BrCA Enterolactone  12 7710 71 0.84 (0.74-0.96) 24 200 NA 0.79 (0.61-1.02) NA 14 
Diet Larsson 200733  BrCA Folate  6 3584 41 0.69 (0.53-0.90) 18 79 NA 0.67 (0.46-1.00) 6 NA 
Diet Saadatian-Elahi 200431  BrCA Oleic acid  9 3723 70 0.83 (0.71-0.98) 14 144 NA 0.99 (0.70-1.38) NA 184370 
Diet Larsson 201034  CRC Vitamin B6  4 2307 0 0.52 (0.38-0.71) 31 39 NA 0.52 (0.38-0.71) 31 NA 
Diet Yin 200935  Colon CA 25(OH) vitamin D  7 2944 46 0.77 (0.59-1.00) 7 103 NA 0.78 (0.53-1.13) NA 46 
Diet Gallicchio 200836  Lung CA A-carotene  5 5618 53 0.91 (0.69-1.19) NA NA 65 0.88 (0.59-1.33) NA 438 
Diet Gallicchio 200836  Lung CA B-cryptoxanthin  5 5618 75 0.87 (0.62-1.21) NA NA 44 0.82 (0.40-1.69) NA 529 
Diet Gallicchio 200836  Lung CA Lutein/zeaxanthin  4 5066 11 0.95 (0.68-1.33) NA NA 342 0.95 (0.67-1.36) NA 1192 
Diet Zhuo 200437  Lung CA Selenium  6 2687 42 0.80 (0.63-1.02) NA NA 6 0.77 (0.56-1.08) NA 17 
Diet Gallicchio 200836  Lung CA B-carotene  10 37629 41 0.83 (0.73-0.94) 31 160 NA 0.84 (0.66-1.07) NA 36 
Diet Gallicchio 200836  Lung CA Carotenoids  4 7803 45 0.70 (0.50-0.97) 5 53 NA 0.70 (0.44-1.11) NA 12 
Diet Gallicchio 200836  Lung CA Lycopene  4 5294 0 0.71 (0.51-0.99) 5 54 NA 0.71 (0.51-0.99) 5 NA 
Diet Yin b 200938  PrCA 25(OH) vitamin D  11 7806 26 1.03 (0.97-1.10) NA NA 82 1.03 (0.95-1.11) NA 536 
Diet Collin 201039  PrCA Folate  7 9920 39 1.04 (0.98-1.11) NA NA 25 1.11 (0.96-1.28) NA 17 
Diet Collin 201039  PrCA Total Homocysteine  4 7015 14 0.93 (0.74-1.17) NA NA 77 0.91 (0.70-1.19) NA 123 
Diet Collin 201039  PrCA Vitamin B12  6 9401 45 1.09 (1.03-1.14) 24 127 NA 1.10 (1.01-1.19) 10 NA 
Diet Simon 200940  PrCA a Linolenic acid  6 2361 16 1.51 (1.17-1.94) 26 181 NA 1.54 (1.16-2.06) 21 NA 
Environment Khanjani 200741  BrCA Cis-nonachlor  3 1387 0 1.09 (0.72-1.64) NA NA 137 1.09 (0.72-1.64) NA 290 
Environment Lopez-Cervantes 200442  BrCA DDT  24 11369 17 0.97 (0.87-1.09) NA NA 668 0.97 (0.85-1.11) NA 8663 
Environment Khanjani 200741  BrCA Dieldrin  5 3223 43 1.18 (0.89-1.58) NA NA 26 1.15 (0.77-1.69) NA 288 
Environment Khanjani 200741  BrCA Trans-nonachlor  6 3248 0 0.86 (0.68-1.07) NA NA 23 0.86 (0.68-1.07) NA 35 
Environment Khanjani 200741  BrCA Oxychlordane  5 2718 51 0.75 (0.57-0.98) 4 73 NA 0.77 (0.51-1.14) NA 38 
Environment Veglia 200843  CA (cur smokers) DNA adducts  8 916 94 3.88 (3.31-4.54) 1146 628 NA 3.76 (1.75-8.05) 39 NA 
Environment Veglia 200843  CA (for smokers) DNA adducts  7 632 0 0.94 (0.71-1.25) NA NA 291 0.94 (0.71-1.25) NA 1041 
Environment Veglia 200843  CA (nev smokers) DNA adducts  9 564 79 1.20 (0.88-1.64) NA NA 41 1.64 (0.72-3.77) NA 103 
IGF/insulin Pisani 200844  BrCA C-peptide  11 3517 64 1.26 (1.07-1.48) 27 269 NA 1.35 (1.01-1.81) 11 NA 
IGF/insulin Morris 200645  CRC IGFBP-3  7 3501 60 1.00 (0.77-1.30) NA NA NA 0.98 (0.64-1.51) NA 47178 
IGF/insulin Pisani 200844  CRC C-peptide  12 5542 54 1.36 (1.15-1.62) 64 322 NA 1.51 (1.14-1.99) 39 NA 
IGF/insulin Pisani 200844  CRC Glucose  11 1381129 47 1.19 (1.07-1.32) 49 257 NA 1.28 (1.06-1.54) 26 NA 
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IGF/insulin Rinaldi 201046  CRC IGF-1  11 7828 0 1.07 (1.01-1.14) 17 230 NA 1.07 (1.01-1.14) 17 NA 
IGF/insulin Morris 200645  CRC IGF-2  3 1685 0 1.95 (1.26-3.00) 11 117 NA 1.95 (1.26-3.00) 11 NA 
IGF/insulin Pisani 200844  Endometrial CA C-peptide  4 862 69 1.09 (0.74-1.62) NA NA 141 1.18 (0.57-2.43) NA 642 
IGF/insulin Chen 200947  Lung CA IGF-1  6 12515 41 1.05 (0.80-1.37) NA NA 361 0.98 (0.68-1.41) NA 21602 
IGF/insulin Chen 200947  Lung CA IGFBP-3  6 12515 67 0.89 (0.68-1.15) NA NA 54 0.96 (0.59-1.56) NA 10376 
IGF/insulin Pisani 200844  Pancreas CA C-peptide  2 692 0 1.70 (1.11-2.61) 4 68 NA 1.70 (1.11-2.61) 4 NA 
IGF/insulin Pisani 200844  Pancreas CA Glucose  5 1334539 0 1.98 (1.67-2.35) 152 198 NA 1.98 (1.67-2.35) 152 NA 
IGF/insulin Rowlands 200948  PrCA IGFBP-1  3 1553 92 0.93 (0.80-1.09) NA NA 72 1.20 (0.65-2.22) NA 251 
IGF/insulin Rowlands 200948  PrCA IGFBP-2  5 2670 78 1.07 (0.95-1.21) NA NA 36 1.18 (0.90-1.54) NA 56 
IGF/insulin Rowlands 200948  PrCA IGFBP-3  29 17160 81 0.97 (0.93-1.01) NA NA 80 0.88 (0.79-0.98) 57 NA 
IGF/insulin Rowlands 200948  PrCA IGF-1  42 19347 88 1.18 (1.14-1.23) 1497 974 NA 1.21 (1.07-1.36) 159 NA 
IGF/insulin Rowlands 200948  PrCA IGF-1/BP-3  11 9677 80 1.07 (1.02-1.13) 30 230 NA 1.10 (0.97-1.24) NA 46 
IGF/insulin Rowlands 200948  PrCA IGF-2  10 2797 77 1.24 (1.12-1.36) 81 242 NA 1.17 (0.93-1.47) NA 75 
IGF/insulin Key 201049  postmenopausal BrCA IGF-1  15 8185 0 1.30 (1.13-1.49) 92 385 NA 1.30 (1.13-1.49) 92 NA 
IGF/insulin Key 201049  postmenopausal BrCA IGFBP-3  15 8012 31 1.21 (1.04-1.41) 32 357 NA 1.22 (1.01-1.49) 16 NA 
IGF/insulin Key 201049  premenopausal BrCA IGFBP-3  11 5927 0 0.99 (0.83-1.19) NA NA 7367 0.99 (0.83-1.19) NA 50352 
IGF/insulin Key 201049  premenopausal BrCA IGF-1  11 6033 29 1.18 (1.00-1.40) 10 255 NA 1.21 (0.98-1.49) NA 12 
Infection Gutierrez 200650  Bladder CA HPV (DNA)  13 657 6 2.29 (1.37-3.84) 53 597 NA 2.30 (1.33-4.00) 45 NA 
Infection Gutierrez 200650  Bladder CA HPV (no DNA)  3 379 0 2.98 (1.65-5.40) 18 180 NA 2.98 (1.65-5.40) 18 NA 
Infection Zhao 200851  CRC H. pylori  14 3581 58 1.41 (1.22-1.65) 127 391 NA 1.49 (1.16-1.90) 57 NA 
Infection Mandelblatt 199952  Cervical CA HPV  12 3657 27 8.07 (6.49-10.0) 2338 1978 NA 8.08 (6.04-10.8) 1249 NA 
Infection Zhang 199453  Cervical CA T. vaginalis  2 65764 0 1.88 (1.29-2.74) 9 75 NA 1.88 (1.29-2.74) 9 NA 
Infection Islami 200854  ESCC H. pylori  9 3664 73 1.08 (0.92-1.27) NA NA 73 1.10 (0.78-1.55) NA 1356 
Infection Islami 200854  ESCC cagA  4 2327 0 1.01 (0.79-1.27) NA NA NA 1.01 (0.79-1.27) NA NA 
Infection Islami 200854  Esophageal adeno CA H. pylori  13 3730 15 0.56 (0.48-0.67) 275 136 NA 0.57 (0.47-0.69) 207 NA 
Infection Islami 200854  Esophageal adeno CA cagA  5 1472 17 0.41 (0.29-0.59) 54 37 NA 0.41 (0.28-0.62) 42 NA 
Infection Huang 200317  Gastric CA H. pylori  15 5054 76 2.05 (1.79-2.35) 805 615 NA 2.29 (1.71-3.05) 224 NA 
Infection Huang 200317  Gastric CA cagA  10 3831 85 2.65 (2.29-3.05) 888 531 NA 2.87 (1.95-4.22) 137 NA 
Infection Zhuo 200855  Laryngeal CA H. pylori  3 357 0 2.02 (1.27-3.23) 10 121 NA 2.02 (1.27-3.23) 10 NA 
Infection Hobbs 200656  Larynx CA HPV  8 1133 50 1.71 (1.11-2.64) 17 281 NA 2.01 (0.96-4.22) NA 6 
Infection Donato 199857  Liver CA HBV (HCV-)  28 9199 86 17.9 (15.7-20.5) 24939 10279 NA 21.9 (14.9-32.3) 3464 NA 
Infection Donato 199857  Liver CA HBV + HCV  9 2437 37 65.0 (35.0-121) 784 12315 NA 61.2 (27.0-139) 440 NA 
Infection Donato 199857  Liver CA HCV (HBV-)  26 7694 86 16.8 (14.1-20.0) 13151 9822 NA 20.3 (12.2-33.7) 1924 NA 
Infection Zhuo 200958  Lung CA H. pylori  4 430 79 2.31 (1.46-3.65) 22 185 NA 3.24 (1.11-9.41) 6 NA 
Infection Hobbs 200656  Oral CA HPV  8 3976 62 1.68 (1.36-2.08) 76 274 NA 1.99 (1.17-3.38) 17 NA 
Infection Hobbs 200656  Oropharynx CA HPV  5 2199 56 3.01 (2.11-4.30) 93 300 NA 4.31 (2.07-8.95) 35 NA 
Infection Taylor 200559  PrCA HPV  9 4864 35 1.37 (1.11-1.69) 31 246 NA 1.52 (1.12-2.06) 23 NA 
Infection Hobbs 200656  Tonsil CA HPV  8 380 0 15.1 (6.78-33.4) 173 2471 NA 15.1 (6.78-33.4) 173 NA 
Infection Wang 200760  early Gastric CA H. pylori  15 16698 83 4.83 (4.27-5.48) 4639 1467 NA 3.38 (2.15-5.32) 197 NA 
Inflammation Heikkila 200961  CA Interleukin-6  4 6785 21 1.01 (0.92-1.11) NA NA 718 1.01 (0.90-1.12) NA 3321 
Inflammation Heikkila 200961  CA C-reactive protein  14 74545 73 1.09 (1.05-1.13) 150 299 NA 1.10 (1.02-1.18) 35 NA 
Inflammation Tsilidis 200862  CRC C-reactive protein  8 39145 51 1.10 (1.02-1.18) 20 172 NA 1.12 (1.01-1.25) 12 NA 
Sex hormones Barba 200963  PrCA 2OHE1  2 536 0 0.76 (0.45-1.28) NA NA 13 0.76 (0.45-1.28) NA 15 
Sex hormones Roddam 200824  PrCA A-diol G  8 5488 24 1.12 (0.96-1.31) NA NA 17 1.15 (0.95-1.38) NA 28 
Sex hormones Roddam 200824  PrCA D4  6 4211 0 1.02 (0.85-1.21) NA NA 994 1.02 (0.85-1.21) NA 3995 
Sex hormones Roddam 200824  PrCA DHES-S  7 3024 17 1.22 (0.98-1.53) NA NA 8 1.29 (0.99-1.68) NA 5 



 73 

Sex hormones Roddam 200824  PrCA DHT  7 2455 0 0.88 (0.69-1.11) NA NA 41 0.88 (0.69-1.11) NA 80 
Sex hormones Roddam 200824  PrCA E2  9 5225 0 0.92 (0.78-1.09) NA NA 62 0.92 (0.78-1.09) NA 162 
Sex hormones Roddam 200824  PrCA Free E2  8 4778 0 0.97 (0.82-1.16) NA NA 1173 0.97 (0.82-1.16) NA 5279 
Sex hormones Roddam 200824  PrCA Free T  14 9365 0 1.12 (0.98-1.27) NA NA 18 1.12 (0.98-1.27) NA 20 
Sex hormones Roddam 200824  PrCA T  17 10324 0 0.98 (0.87-1.10) NA NA 502 0.98 (0.87-1.10) NA 3602 
Sex hormones Barba 200963  PrCA 16a-OHE1  2 536 0 1.82 (1.08-3.05) 3 73 NA 1.82 (1.08-3.05) 3 NA 

Sex hormones Barba 200963  PrCA 2OHE1/16a-OHE1  2 536 0 0.52 (0.31-0.89) 4 19 NA 0.52 (0.31-0.89) 4 NA 

Sex hormones Roddam 200824  PrCA SHBG  15 9702 0 0.86 (0.76-0.97) 32 249 NA 0.86 (0.76-0.97) 32 NA 
Sex hormones Key 200264  postmenopausal BrCA E2  9 2365 42 1.29 (1.14-1.45) 72 227 NA 1.26 (1.07-1.49) 27 NA 

IGF, insulin-like growth factor; CRC, colorectal cancer; IGFBP, insulin-like growth factor binding protein; CA, cancer; BrCA, breast cancer; PrCA, prostate cancer; ESCC, esophageal squamous cell 
carcinoma; T, testosterone; E2, estradiol; DHT, dihydrotestosterone; A-diol g, androstanediol glucuronide; DHES-S, dehydroepiandrosterone sulfate; D4, androstenedione; SHBG, sex hormone binding 
globulin; E1, estrone; SFA, total saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; H. pylori, helicobacter pylori; HPV, human papillomavirus; HBV, hepatitis B 
virus; HCV, hepatitis C virus; T. vaginalis, trichomonas vaginalis; DDT, dichlorodiphenyltrichloroethane; Cur, current; For, former; Nev, never; NA, non-statically significant meta-analyses not applicable to 
the FSN, and statically significant meta-analyses not applicable to the conditional power analysis.  

1. Rosenberg’s FSN – the number of future studies averaging null effect and average weight to reduce the summary OR to null 
2. Owin’s FSN – the number of future studies averaging null effect to reduce the summary OR to 1.05 
3. Number of future studies of average weight and no between-study heterogeneity needed to be included in the combined meta-analysis to achieve 80% power to detect the observed fixed-effect 

summary OR 
4. Number of future studies of average weight and average between-study heterogeneity need to be included in the combined meta-analysis to achieve 80% power to detect the observed random 

effects summary OR 
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Table 3.2 Results of conditional power analysis for 9 meta-analyses comparing androgens and prostate cancer reported by Roddam 
200824 

Comparison 
No. included 

studies 
No. cases/ 
controls 

I2 Fixed-effect  Random effects 

Odds ratio 95% CI Future studies1  Odds ratio 95% CI Future studies2 

SHGB 15 9702 0 0.86 0.76 – 0.97 1  0.86 0.76 – 0.97 1 
Free T 14 9365 0 1.12 0.98 – 1.27 18  1.12 0.98 – 1.27 20 

DHT 7 2455 0 0.88 0.69 – 1.11 41  0.88 0.69 – 1.11 80 
E2 9 5225 0 0.92 0.78 – 1.09 62  0.92 0.78 – 1.09 162 

T 17 10324 0 0.98 0.87 – 1.10 502  0.98 0.87 – 1.10 3602 
D4 6 4211 0 1.02 0.85 – 1.21 994  1.02 0.85 – 1.21 3995 

Free E2 8 4778 0 0.97 0.82 – 1.16 1173  0.97 0.82 – 1.16 5279 
DHES-S 7 3024 17 1.22 0.98 – 1.53 8  1.29 0.99 – 1.68 5 
A-diol G 8 5488 24 1.12 0.96 – 1.31 17  1.15 0.95 – 1.38 28 

T, testosterone; E2, estradiol; DHT, dihydrotestosterone; A-diol g, androstanediol glucuronide; DHES-S, dehydroepiandrosterone sulfate; D4, 
androstenedione; SHBG, sex hormone binding globulin.  
1. Number of future studies of average weight as studies included in observed meta-analysis needed to achieve 80% in combined meta-analysis 

determined by conditional power analysis assuming no between-study heterogeneity 
2. Number of future studies of average weight and equivalent between-study heterogeneity as studies included in observed meta-analysis needed 

to achieve 80% power in combined meta-analysis determined by conditional power analysis assuming equivalent between-study heterogeneity 
in combined meta-analysis  
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Figure 3.1. Rosenberg’s Fail-Safe Number (FSN) for statically significant fixed and random effects meta-analyses with 
summary odds ratios between 1.00 and 4.00 by increasing level of between-study heterogeneity (I2).  

  

 Random effects OR & 95% CI  Fixed effect OR & 95% CI  FSN 

I2: 0% I2: 1 to 29% 

 
I2: 30 to 59% I2: 60 to 80% I2: >80% 

Figure 3.1 Rosenberg’s Fail-Safe Number (FSN) for statistically significant fixed and 

random effects meta-analyses with summary odds ratios between 1.00 and 4.00 by 

increasing level of between-study heterogeneity (I2) 
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Figure 3.2 Rosenberg’s Fail-Safe Number (FSN) for statically significant fixed and random effects meta-analyses 
with summary odds ratios between 1.00 and 4.00 by number of studies included in each meta-analysis within strata 
of between-study heterogeneity (I2). 

  

 Random effects OR & 95% CI  Fixed effect OR & 95% CI  FSN 

I2: 0% I2: 1 to 29% 

 
I2: 30 to 59% I2: 60 to 80% I2: >80% 

Figure 3.2 Rosenberg’s Fail-Safe Number (FSN) for statistically significant fixed and 

random effects meta-analyses with summary odds ratios between 1.00 and 4.00 by 

number of studies included in each meta-analysis within strata of between-study 

heterogeneity (I2) 
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Figure 3.3 Rosenberg’s Fail-Safe Number (FSN) for statically significant fixed and random effects meta-analyses with 
summary odds ratios between 1.00 and 4.00 by total number of cases and controls within levels of summary effect 
estimates.  

 
 

 Random effects OR & 95% CI  Fixed effect OR & 95% CI  FSN 

Summary OR: 
1.05 to 1.10 

Summary OR: 
1.11 to 1.25 

Summary OR: 
1.16 to 1.50

Summary OR: 
1.51 to 2.00

Summary OR:  > 
2.00

Figure 3.3 Rosenberg’s Fail-Safe Number (FSN) for statistically significant fixed and 

random effects meta-analyses with summary odds ratios between 1.00 and 4.00 by 

total number of cases and controls within levels of summary effect estimates. 
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Figure3.4. Orwin’s Fail-safe number (FSN) for an average null effect (OR = 1) in future studies reducing the combined fixed 
effect meta-analysis to an odds ratio of 1.05; 1.10; 1.25; 1.50; and 2.00 in 28 fixed effect meta-analyses with an observed 
effect size >= 1.00.  

 

 FSN for Combined OR = 1.05  FSN for Combined OR = 1.10  FSN for Combined OR = 1.25 
      

 FSN for Combined OR = 1.50  FSN for Combined OR = 2.00  Fixed effect OR & 95% CI 

 
 

 
 

 
 

Summary OR: 
1.05 to 1.10 

Summary OR: 
1.11 to 1.25 

Summary OR: 
1.16 to 1.50

Summary OR: 
1.51 to 2.00

Summary OR:  > 
2.00

Figure 3.4 Orwin’s Fail-Safe Number (FSN) for an average null effect (OR = 1) in 

future studies reducing the combined fixed effect summary odds ratio of 1.10; 1.25; 

1.50; and 2.00 in 28 fixed effect meta-analyses with an observed summary OR ≥ 

1.05 



 79 

 

 

 

 
 

Figure 3.5 Number of future studies required to achieve 80% power to detect the observed summary odds ratio 
based on 2 approaches to conditional power analysis for statistically non-significant fixed and random effects meta-
analyses with summary odds ratios between 1.01 and 4.00. 

 
  

 Random effects OR & 95% CI  Fixed effect OR & 95% CI  No. of future studies 

Summary OR: 
1.01 to 1.05 

Summary OR: 
1.06 to 1.10 

Summary OR: 
1.11 to 1.25

Summary OR: 
 > 1.25 

Figure 3.5 Number of future studies required to achieve 80% power to detect the 

observed summary odds ratio based on 2 approaches to conditional power analysis 

for statistically non-significant fixed and random effects meta-analyses with summary 

odds ratios between 1.01 and 4.00 
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4.1 Abstract 

Background: Diabetes is associated with a decreased prostate cancer risk, but may 

increase prostate cancer mortality among men with this cancer. The association of 

diabetes or earlier hyperglycemic states (i.e. prediabetes) on the most clinically relevant 

outcome, prostate cancer mortality in men without this cancer at baseline, has not been 

well studied and whether associations are similar across race is unknown. Thus, we 

evaluated the association between hyperglycemia, classified by three different 

biomarkers (fasting glucose, HbA1c, and glycated albumin) individually and then jointly, 

and prostate cancer mortality. We hypothesized that the association between 

hyperglycemia and prostate cancer mortality would be the strongest when participants 

classified as hyperglycemic on all three biomarkers were compared to participants 

classified as normal on all three biomarkers (e.g., where there was maximum agreement 

across biomarkers). Methods: We conducted a prospective study of 5,276 cancer-free 

white and black men attending visit 2 (1990-1992) of the Atherosclerosis Risk in 

Communities (ARIC) Study and who were followed through 2012. Death from prostate 

cancer as the underlying cause was ascertained from death certificates. We identified 69 

prostate cancer deaths in 96,617 person-years. Men were categorized as having 

diagnosed diabetes or jointly categorized using clinical or research-based cut points of 

the 3 biomarkers: low (fasting glucose <3.1 mmol/L, HbA1c <5.0% or glycated albumin 

<11.0%); normal on all 3 biomarkers (reference: <5.6 mmol/L, 5.0 to <5.7%; and 11.0 to 

<16.0% respectively); and high on any 1; on any 2; or on all 3 biomarkers. No men in the 

analytic study population had low fasting glucose. We used Cox proportional hazards 

regression to estimate the relative hazards (HR) of prostate cancer death and 95% 

confidence intervals jointly for the markers of glycemia and for diagnosed diabetes 

adjusting for age, education, body mass index (BMI), waist circumference, smoking, and 

race and field center, overall and by race. Results: At visit 2, mean age was 57 years 
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and mean BMI was 27.7 kg/m2; 19% of men were African American. Compared to men 

without diabetes who were normal on all 3 biomarkers of glycemia, greater than 2-fold 

increased risk of prostate cancer mortality was observed among men high on any 1 

biomarker (HR: 3.66; 95% CI: 1.42 to 9.48), any 2 biomarkers (HR: 2.58; 95% CI: 0.92 to 

7.22), all 3 biomarkers (HR: 4.8; 95% CI: 1.10 to 20.95), and among men with diagnosed 

diabetes (HR: 3.18; 95% CI 0.94 to 10.73).  Men without diagnosed diabetes with low 

glycemia also had an elevated risk of prostate cancer mortality (HR: 2.98; 95% CI: 0.98 

to 8.90).  Associations were similar in white and black men. Conclusions: When using 3 

biomarkers to classify glycemia and reducing the potential for non-differential 

misclassification of a single biomarker, men without diagnosed diabetes who have 

hyperglycemia and men with low glycemia have an increased risk of death from prostate 

cancer compared to men who have normal glycemia levels, independent of BMI and 

other factors. Also, compared to men without diagnosed diabetes with normal glycemia, 

men with diagnosed diabetes have an increased risk of prostate cancer death. Our 

findings did not appear to be influenced by racial differences in hyperglycemia.  
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4.2 Introduction 

In contrast to several other types of cancer,1 diabetes is inversely associated with 

prostate cancer incidence,1,2 and this association is stronger with a longer duration of 

diabetes.3 Genetic association studies have also observed an inverse association 

between diabetes susceptibility genes and prostate cancer risk.4,5 A number of 

hypothesized mechanisms driving the inverse relationship include decreased circulating 

androgens associated with long term diabetes;6,7 pharmacological effects of diabetes 

medications; and microvascular effects of diabetes on the prostate.8 With respect to 

prostate cancer mortality, some studies reported that diabetes is inversely associated,9-11 

while more recent studies reported a positive association.12,13 However, the exact 

mechanism(s) driving these diabetes associations are unclear. A joint consensus 

statement between the American Diabetes Association and the American Cancer 

Society highlighted the need to better understand the biologic mechanisms underlying 

the association between diabetes and cancer.1 The rise in the prevalence of diabetes in 

the US over the past two decades – with 1.5% US adults with undiagnosed diabetes 

(calibrated HbA1c  6.5%) between 2005 and 2010 up from 1.1% in 1988 to 1994; 

12.4% with prediabetes (calibrated HbA1c 5.7-6.4%) between 2005 and 2010 up from 

5.8% from 1988 to 1994; and 9.9% with diagnosed diabetes or calibrated HbA1c  6.5% 

between 2005 and 2010 up from 6.2% between 1998 and 199414 points to the 

importance of understanding the relationship between the natural history of diabetes and 

the etiology of prostate cancer. In addition to the diagnosis of diabetes, biomarkers of 

hyperglycemia, which characterize states both early (e.g., prediabetes) and later (e.g., 

undiagnosed diabetes) in the natural history of diabetes, provide an opportunity to 

investigate this relationship. 
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Several prospective epidemiologic studies have evaluated the association 

between glycemic biomarkers, most commonly fasting glucose, 2-hour glucose, and 

glycated hemoglobin (HbA1c), and prostate cancer risk. In a pooled analysis of six 

prospective cohorts, increased blood glucose (non-fasting glucose in four of the cohorts) 

was not significantly associated with prostate cancer incidence or mortality.15 In contrast, 

a meta-analysis of three prospective cohort studies indicated a positive association 

between prediabetes, defined by fasting glucose 5.6 to 6.9 mmol/L or 6.1–6.9 mmol/l, 

depending on the study, or 2-hour glucose tolerance test value of 7.8 to 11.1 mmol/L, 

and risk of prostate cancer.16 More recently, a population-based study of over 40,000 

men without diabetes found an inverse association between higher levels of glucose (p-

trend 0.04)  following serum glucose 1 h after a 75-g oral glucose challenge test.17 

However, a recent study with repeated measures of glycemia also reported prostate 

cancer incidence was not associated with the standardized log mean of glucose, but was 

inversely associated with the standardized log mean of fructosamine, after mutual 

adjustment and adjustment for fasting status.18  Fewer population-based epidemiologic 

studies have investigated the association between HbA1c and prostate cancer incidence 

and mortality. In the Atherosclerosis Risk in Communities (ARIC) Study with follow-up 

through 2006, we previously reported that compared with normal HbA1c neither elevated 

HbA1c or low HbA1c was significantly associated with prostate cancer incidence, but 

both had a suggestive positive association with prostate cancer mortality in men without 

a diabetes diagnosis.9 In that study,  diagnosed diabetes had a suggestive inverse 

association with prostate cancer incidence, but there were too few cases for a stable 

estimate for prostate cancer mortality.9 A meta-analysis of four studies, which included 

the ARIC study, reported an inverse, dose-response association between elevated 

HbA1c and prostate cancer incidence.19 Collectively, the evidence base in men without a 

diabetes diagnosis for the association between elevated glycemia, measured with 
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several different biomarkers, and prostate cancer incidence is inconsistent, and there is 

a dearth of information on the association between hyperglycemia and prostate cancer 

mortality.  

 

 Many factors may contribute to the inconsistent findings reported by these 

studies, including differences in biomarkers and analytic decisions. Studies use different 

biomarkers to capture glycemia. Although each of these biomarkers may be used to 

diagnose diabetes (fasting glucose: ≥ 7.0 mmol/L; or HbA1c: ≥ 6.7%) and/or monitor 

glycemic control in people diagnosed with diabetes, there is imperfect agreement in the 

classification of hyperglycemia across biomarkers. This may be, in part, because these 

biomarkers measure different aspects of glycemia and are susceptible to the influence of 

different, yet complementary, non-glycemic factors. Fasting glucose captures the lowest 

glycemia value, and can fluctuate throughout the day owing to moderate within-person 

variability.20 HbA1c, which is formed through the bonding of glucose to hemoglobin in 

circulating red blood cells, captures glucose exposure over the previous two to three 

months. It is a non-fasting test that is susceptible to relatively rare conditions that affect 

the lifespan of red cells in circulation including hemoglobin variants, recent blood 

transfusions, hemolytic anemia and renal failure.20,21 Glycated albumin, which has not 

been evaluated for its association with prostate cancer risk or mortality, is not used 

clinically in the US, but is used to monitor glycemic control in persons with diabetes in 

China, Japan, and South Korea.22 Glycated albumin, which forms through the non-

enzymatic bonding of glucose to serum albumin, captures average glycemia over the 

previous two to three weeks. It is a non-fasted test that may increase under conditions of 

decreased albumin metabolism, such as liver cirrhosis and hypothyroidism, and 

decrease under conditions of increased albumin metabolism, such as thyroid disease, 

glucocorticoid administration, and nephrotic syndrome.23 Glycated albumin has also 
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been found to be lower in smokers and decreases with increasing adiposity.23 In addition 

to differences in biomarkers, studies are also inconsistent in the classification of 

glycemia values. Some studies use clinical cut points, while others use study-specific 

quantiles. The use of clinical cut points, where possible, improves comparisons across 

study populations. Collectively, these differences in biomarkers and classification of the 

biomarkers could contribute to inconsistent findings across studies.  

 

 To further explore the association between hyperglycemia and prostate 

carcinogenesis, we capitalized on the unique features of the ARIC, a diverse, 

prospective cohort study that has measured multiple biomarkers of glycemia at the same 

time point and now has cancer follow-up through 2012. We evaluated the association 

between hyperglycemia, classified by three different biomarkers (fasting glucose, 

HbA1c, and glycated albumin) individually and then jointly, and prostate cancer mortality. 

We used clinical cut points for the biomarkers, where possible, to maximize 

comparability to prior and future studies. We hypothesized that the association between 

hyperglycemia and prostate cancer mortality would be the strongest when participants 

classified as hyperglycemic on all three biomarkers were compared to participants 

classified as normal on all three biomarkers (e.g., where there was maximum agreement 

across biomarkers). We also evaluated the association between diagnosed diabetes and 

prostate cancer mortality. We focused on prostate cancer mortality because in the PSA 

era, it is the most clinically relevant outcome and it is understudied with respect to 

glycemia. 

 

4.3 Methods 

Study Population ARIC is a prospective epidemiologic cohort that began in 1987 with 

the recruitment of 15,792 participants aged 45-64 years across four field centers: 
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Forsyth County., NC; Jackson, MS; Minneapolis, MN; and Washington County, MD that 

included high representation of African-Americans (27%).24 A wealth of measured 

anthropometric, lifestyle, and medical data, biospecimens and biomarkers pertinent to 

cancer have been collected during five in-person clinical visits spanning 30 years of 

follow-up with greater than 90% response rate from annual phone calls. Fasting glucose, 

HbA1c, and glycated albumin are all available at the second study visit (1990-1992). The 

analytic study population for the current analysis is composed of 5,276 African American 

and Caucasian men without a cancer diagnosis by visit 2 (1990-1992) who were fasting 

for at least 8 hours, and who had complete information on fasting glucose, HbA1c, and 

glycated albumin. Men were followed from their visit 2 date until the date of death from 

any cause, loss-to-follow-up, or December 31, 2012, whichever came first. 

 

Assessment and Categorization of Glycemia Participants were asked to fast for 12 

hours, defined as nothing by mouth except for water, prior to venous blood draw at visit 

2. Participants fasting for less than 8 hours were excluded from the current analysis. 

Fasting serum glucose was measured by a modified hexokinase/glucose-6-phosphate 

dehydrogenase procedure. HbA1c was measured in frozen whole blood collected during 

the visit 2 using high-performance liquid chromatography.25 Glycated albumin measured 

in serum using a Roche Modular P800 system was reported as percent of total albumin. 

The inter-assay coefficients of variation for glycated albumin were previously reported, 

and were 2.3% at a concentration of 1.579 g/dL and 2.8% at a concentration of 0.426 

g/dL.26 

 

In the main analysis, men were classified as having a diagnosis of diabetes if 

they self-reported a doctor's diagnosis of diabetes and/or were taking diabetes 

medication at visit 2. Among men without a diagnosis of diabetes, clinical and research-



 88 

based cut points were used for each glycemia biomarker to classify the men. Clinical cut 

points were used 1) because we hypothesize clinically elevated glycemia is associated 

with prostate cancer mortality and 2) to yield findings more comparable to past and 

future studies using common cut points. Clinical cut points were used to define low 

glucose as <3.1 mmol/L; normal glucose as 3.1 to 5.6 mmol/L; and high glucose as >5.6 

mmol/L, which includes men with pre-diabetes and diabetes.27 No men in our analytic 

study population had low fasting glucose based on this clinical cut point, therefore we did 

not include a category for low glucose in the analyses. Because low HbA1c has been 

associated with an increased risk of all cause and cancer mortality,9,28-30 in ARIC, we 

used these same research-based cut points to distinguished between low, defined as 

<5.0%, and normal, defined as 5.0 to 5.6% HbA1c. We used a clinical cut point to define 

high HbA1c as >5.6%, which includes men with pre-diabetes and undiagnosed 

diabetes.27 We used assay manufacturer cut points to define low glycated albumin as < 

11%; normal glycated albumin as 11 to 16%; and high glycated albumin as >16% (Asahi 

Kasei Lucica GA-L, Tokyo, Japan). The median values and 25th-75th percentile ranges of 

fasting glucose, HbA1c, and glycated albumin within each biomarker category are shown 

in Table S4.1. The cross classification of men within each category of each biomarker is 

shown in Table S4.2. Men without a diagnosis of diabetes were also jointly categorized 

using all three biomarkers. Men were first classified as low if they were low on any one 

of the three biomarkers (low HbA1c or low glycated albumin; no low fasting glucose in 

our study population); and then classified as normal if they were in the normal range on 

all three biomarkers. The remaining men were classified as high on any 1 biomarker; 

high on any 2 biomarkers; or as high on all three biomarkers.  

 

Outcome Ascertainment Cancer incidence was ascertained from 1987 through 2012 

via linkage with the four state cancer registries in which the majority of ARIC participants 
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live, abstraction of medical records collected following a cancer-specific telephone call, 

abstraction of archived hospital discharge summaries and medical records, and death 

certificates. Cancer mortality was ascertained from death certificates. Prostate cancer 

mortality was defined as death from prostate cancer as the underlying causes among 

men without a diagnosis of cancer at baseline.  

 

Covariate assessment Participants self-reported their highest level of education (less 

than high school, high school or equivalent, college or above) and smoking status 

(never, current, former). Body weight (kg) and height (cm), from which body mass index 

(BMI, kg/m2) was calculated, and waist circumference (cm) were measured by trained 

study personnel. 

 

Statistical Analysis We calculated unadjusted and age and race adjusted means and 

proportions of demographic characteristics at baseline by fasting glucose level, HbA1c 

level, glycated albumin level, and the joint categories using regression models. We used 

Cox proportional hazards regression, with visit 2 as baseline, to estimate the relative 

hazard (HR) and 95% confidence interval (CI) of prostate cancer mortality for 1) high 

fasting glucose (>5.6 mmol/L) in men without diagnosed diabetes, and diagnosed 

diabetes both compared with normal fasting glucose (3.1 to 5.6 mmol/L) in men without 

diagnosed diabetes, 2) low (<5.0%) and high (>5.6%) HbA1c in men without diabetes, 

and diagnosed diabetes all compared with normal HbA1c (5.0 to 5.6%), 3) low (<11%) 

and high (>16%) glycated albumin in men without diagnosed diabetes, and diagnosed 

diabetes all compared with normal glycated albumin (11 to 16%) in men without 

diagnosed diabetes, and 4) joint classification of glycemia in men without diagnosed 

diabetes (low on any one marker; high on any 1 marker; high on any 2; and high on all 3 

markers), and diagnosed diabetes all compared with men normal on all 3 markers 
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without diagnosed diabetes.  To test for trend in the HR across categories of fasting 

glucose, HbA1c, and glycated albumin, we assigned men without diagnosed diabetes (1) 

the continuous value of each biomarker, expressed as a per one standard deviation 

change, (2) the median value for their category of glycemia, and (3) an ordinal value for 

each category of glycemia. These values were modeled as continuous variable, and a 

term for diagnosed diabetes was included. To test for trend for the joint glycemia 

categories, we assigned men without diagnosed diabetes an ordinal variable for normal 

(0), high on 1 marker (1), high on 2 (2), and high on all 3 (3) markers, modeled the 

variable as continuous and included a term for diagnosed diabetes. We adjusted all 

models for visit 2 age (continuous), joint categories for race and field center (Caucasian 

participants from Minnesota; Caucasian participants from Maryland and North Carolina; 

African American participants from Mississippi; African American participants from 

Maryland and North Carolina), visit 2 BMI (kg/m2, continuous), waist circumference (cm, 

continuous), level of education (less than high school, high school or equivalent, more 

than high school), and cigarette smoking status (current, former, never). We conducted 

all analyses in the overall population and stratified by race, and tested for interaction 

between race and each biomarker category or between race and diagnosed diabetes 

using the likelihood ratio test. We confirmed the proportional hazards assumption was 

met in all models using a global test for the adjusted model. Statistical analyses were 

conducted using Stata 13.1 (StataCorp, College Station, TX). All tests were two-sided 

with p<0.05 indicating statistical significance. 

 

To determine whether classification of diabetes influenced our findings, we 

conducted sensitivity analyses for each of the biomarkers in which (1) men with 

undiagnosed diabetes based on their biomarker value (fasting glucose ≥ 7.0 mmol/L and 

HbA1c ≥ 6.5%) where included in the category with men diagnosed with diabetes, and 
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(2) all men were categorized based on their biomarker value, irrespective of a prior 

diagnosis of diabetes, including a term for diagnosed diabetes in the model. To 

determine whether the presence of prostate cancer was influencing glycemia values, we 

conducted sensitivity analyses for all models in which we censored prostate cancer 

deaths occurring within the first three years of the visit 2 blood collection as their date of 

date of death and considered these as non-events. 

 

4.4 Results 

From 1990 to 2012, 69 deaths from prostate cancer were ascertained among 

5,276 men contributing 96,617 person-years of follow-up. At visit 2, mean age was 57 

years, mean BMI was 27.8 kg/m2, and 19% of me were African American. At baseline, 

419 (8%) men had diagnosed diabetes. We observed similar means and percentages of 

participants according to baseline demographic characteristics across categories of 

fasting glucose, HbA1c, glycated albumin after adjusting for age and race (Table 4.1) as 

well as across joint categories of all three biomarkers (Table 4.2). We observed 

consistent patterns in participant characteristics across unadjusted categories of fasting 

glucose, HbA1c, glycated albumin, and the joint categories with a higher percentage of 

African American men with elevated glycemia and diagnosed diabetes, higher BMI and 

larger waist circumference in categories of elevated glycemia and diagnosed diabetes 

(Tables S4.3 and S4.4). Among men without a diagnosis of diabetes, mean values of 

each biomarker appeared to increase with the number of biomarkers classified as high 

(Tables S4.4). 

 

Fasting glucose and prostate cancer mortality Among men without diagnosed 

diabetes, men with high fasting glucose had twice the risk of dying from prostate cancer 

(HR: 1.99; 95% CI 1.09 to 3.63) compared to men with normal fasting glucose (Table 
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4.3). Men with diagnosed diabetes appeared to have 1.9 times the risk of prostate 

cancer mortality compared to men without diagnosed diabetes and normal fasting 

glucose. Race-specific HRs are shown in Table 4.3; interaction terms between race and 

high fasting glucose or diabetes were not statistically significant. When modeled as a 

continuous variable expressed as a 1-standard deviation increase in fasting glucose, the 

association was not statistically significant overall or in African American men, but was 

statistically significant in Caucasian men (Table 4.3). The p-value comparing categories 

of fasting glucose in men without diagnosed diabetes was statistically significant overall 

(p=0.03) and in Caucasian men (p=0.02), but not in African American men (Table 4.3).  

 

HbA1c and prostate cancer mortality Among men without diagnosed diabetes, those 

with high HbA1c had a non-statistically significant 32% increase risk of prostate cancer 

mortality (HR: 1.32; 95% CI: 0.75 to 2.31) compared to those with normal HbA1c. 

Among men without diagnosed diabetes, those with low HbA1c had a non-statistically 

significant 68% increase in risk of dying from prostate cancer (HR: 1.68; 95% CI: 0.73 to 

3.86) compared to those with normal HbA1c. Men with diagnosed diabetes had a non-

statistically significant 36% increase in prostate cancer mortality (HR: 1.36; 95% CI: 0.55 

to 3.38) compared to men with men without diagnosed diabetes and normal HbA1c. 

Race-specific hazard ratios are shown in Table 4.3; interaction terms between race and 

levels of HbA1c or diagnosed diabetes were not statistically significant. An increase in 1-

standard deviation in HbA1c was not statistically significant overall or in Caucasian men, 

but was statistically significant in African American men (Table 4.3). The test for trend 

across categories of HbA1c in men without diagnosed diabetes was not statistically 

significant overall or by race (Table 4.3).   
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Glycated albumin and prostate cancer mortality Among men without diagnosed 

diabetes, those with high glycated albumin had a non-statistically significant 53% 

increase in risk of dying from prostate cancer (HR: 1.53; 95% CI: 0.47 to 5.00). Among 

men without diagnosed diabetes, those with low glycated albumin had a non-statistically 

significant 51% lower risk of dying from prostate cancer (HR: 0.49; 95% CI: 0.12 to 2.05) 

compared to those with normal glycated albumin. Men with diagnosed diabetes had a 

non-statistically significant 13% increase in risk of dying from prostate cancer (HR: 1.13; 

95% CI: 0.48 to 2.65) compared to men without diagnosed diabetes and normal glycated 

albumin. Race-specific HRs are shown in Table 4.3; interaction terms between race and 

glycated albumin or diagnosed diabetes were not statistically significant. An increase in 

1-standard deviation of glycated albumin was not statically significant overall or by race 

(Table 4.3). The test for trend across categories of glycated albumin in men without 

diagnosed diabetes was statistically significant in Caucasian men only (p=0.05) (Table 

4.3). 

 

Joint classification based on 3 biomarkers of glycemia and prostate cancer 

mortality When men without diagnosed diabetes were jointly classified using all 3 

biomarkers, those high on any one biomarker had greater than 3-fold increase in risk of 

dying from prostate cancer compared to those normal on all three biomarkers (HR: 3.66; 

95% CI: 1.42 to 9.48). Men high on any two biomarkers appeared to have greater than a 

2-fold increase in risk of dying from prostate cancer, which was not statistically 

significant. Men high on all three biomarkers had close to a 5-fold increase in risk (HR: 

4.80; 95% CI: 1.11 to 20.95). This association appeared to be similar in African 

American men, though not statistically significant, and was possibly stronger in 

Caucasian men (HR: 6.78; 95% CI: 1.21 to 38.02). Men low on any 1 of the 3 

biomarkers had close to a 3-fold increase in risk of dying from prostate cancer (HR: 2.95; 
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95% CI: 0.98 to 8.90) compared to men in the normal range on all 3 biomarkers, 

although not statistically significant. When compared to men without diagnosed diabetes 

with normal glycemia on all three biomarkers, men with diagnosed diabetes had greater 

than a 3-fold increase in risk (HR: 3.18; 95% CI: 0.94 to 10.73). Race-specific HRs are 

shown in Table 4.3; interaction terms between race and the joint categories of glycemia 

or diagnosed diabetes were not statistically significant. The test for trend across the joint 

categories of glycemia was not statistically significant overall or by race (Table 4.3). 

 

Sensitivity analysis In sensitivity analyses in which men with undiagnosed diabetes 

based on their biomarker value were included in the diabetes category, and in which all 

men were categorized based on their biomarker value, irrespective of a prior diagnosis 

of diabetes, inferences did not change overall or by race for fasting glucose, glycated 

hemoglobin, or glycated albumin (data not shown). To address the concern of possible 

reverse causation, when prostate cancer deaths occurring within the first three years of 

visit 2 blood collection were censored at date of death and considered non-events, 

inferences did not change in overall or by race for the individual biomarkers or the joint 

categories (data not shown). 

 

4.5 Discussion 

In this prospective investigation of the association between biomarkers of 

glycemia and prostate cancer mortality in over 5,000 men free from a cancer diagnosis 

at baseline at the time of blood collection, we found that men without diagnosed diabetes 

who had high fasting glucose had a significantly increased risk of prostate cancer 

mortality. High HbA1c and glycated albumin were not statistically significantly associated 

with prostate cancer mortality compared with normal levels of each biomarker. When 

better classifying hyperglycemia and normoglycemia by using all 3 glycemia biomarkers 
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simultaneously, men without diagnosed diabetes with hyperglycemia had a statistically 

significant 4.8 times higher risk of dying from prostate cancer as compared with men 

without diagnosed diabetes who had normal glycemia. This association was similar in 

African American and Caucasian men. Men with diagnosed diabetes had a non-

statistically significant increased risk of prostate cancer mortality as compared with men 

without diagnosed diabetes with normal levels of each biomarker. However, when better 

classifying normoglycemia using all three biomarkers, this association was stronger. The 

attenuated associations for fasting glucose, HbA1c, and glycated albumin compared to 

the associations for the joint categories is suggestive of potential non-differential 

misclassification. To our knowledge, this is the first investigation to use this combination 

of glycemia biomarkers to jointly classify glycemia in relation to prostate cancer mortality. 

While the three biomarkers we used in our joint classification strategy are 

complementary measures of glycemia, each marker is susceptible to different sources of 

measurement error, which is evident when comparing the distributions of each 

biomarker (Table S4.3). HbA1c and glycated albumin together classified 62% men with 

normal fasting glucose as normal (Table S4.4), and together classified 3% of men with 

high fasting glucose as high (Table S4.4). Thus, in our joint classification strategy using 

all three markers we were able to better classify individuals as having normal or high 

glycemia with less error than using any one of these biomarkers. 

 

Though no prior studies have investigated the relationship between glycated 

albumin and prostate cancer mortality, both glucose and HbA1c have been evaluated in 

association with prostate cancer mortality. A pooled analysis of six cohorts from Norway, 

Austria, and Sweden investigating the relationship between glucose (combining fasting 

and non-fasting participants) and cancer mortality, reported a non-statistically significant 

increased risk of a dying from prostate cancer in the 2nd (mean: 4.7 mmol/L) and 3rd 
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(mean: 5.1 mmol/L) quintiles of glucose compared with the 1st quintile (mean: 4.1 

mmol/L), but an inverse association was reported for the 4th (mean: 5.5 mmol/L) and 5th 

(mean: 6.9 mmol/L) quintiles of glucose.15 Our findings differ from these in that we found 

men without diagnosed diabetes had an increased risk of prostate cancer mortality for 

elevated fasting glucose (> 5.6 mmol/L) compared to men without diabetes with glucose 

in the normal range (3.1 to 5.6 mmol/L). The difference in findings could be due to the 

use of different reference groups and differences in the extent of fasting (pooled 

analysis: fasting times ranged from < 1 hour to at least 8 hours, ARIC: fasting time at 

least 8 hours). Thus, it is difficult to compare values between studies, though the 

reference group in the current study includes individuals in the 1st through 4th quintiles of 

the pooled analysis. With respect to HbA1c, the results of the current analysis revealed a 

non-statically significant increase in risk of dying from prostate cancer in men without a 

diagnosis of diabetes with low HbA1c (< 5.0%) and in men with elevated HbA1c ( 5.7%) 

compared to men without a diagnosis of diabetes with HbA1c in the normal range (5.0 to 

5.6%). These results are consistent, although attenuated, with the non-statically 

significant increase in risk of dying from prostate cancer we observed in prior analyses 

(with deaths through 2006) comparing men without a diagnosis of diabetes with low 

HbA1c and elevated HbA1c.9  

 

We observed a suggestive increased risk of dying from prostate cancer among 

men with diagnosed diabetes compared to men without diagnosed diabetes who had 

normal levels of each of the three biomarkers individually, and to men without diagnosed 

diabetes who had normal levels of all three biomarkers simultaneously in our joint 

classification. The rationale for including men with diagnosed diabetes in a separate 

category compared to men without diagnosed diabetes is based on the overall objective 

to use glycemia biomarkers to define states early in the natural history of diabetes. 
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Comparing men with diagnosed diabetes to men with normoglycemia without diagnosed 

diabetes allowed us to determine the relationship between advanced states in the 

natural history of diabetes with normal states. Our findings are consistent with a pooled 

analysis of Asian cohorts that reported slightly positive association between self-reported 

diagnosed diabetes and prostate cancer mortality when compared with men without 

diabetes.12 In our prior ARIC analysis, we observed no statistically significant association 

between diagnosed diabetes and prostate cancer mortality when compared with men 

who had HbA1c values in the normal range.9 However, this finding was based on follow-

up through 2006; the current analysis includes follow-up through 2012. In the Cancer 

Prevention Study-II, there was a statistically significant inverse association between self-

reported diabetes and dying from prostate cancer compared to those without a 

diagnosis.11 In a pooled analysis that included ARIC participants, men who had diabetes 

had a non-statistically significant lower risk of prostate cancer mortality.10 In two of the 

prior analyses showing an inverse association between diabetes and prostate cancer 

men with and without diabetes were not classified in the same way, which may help 

explain the differences in the observed associations. In the large pooled analysis 

including ARIC, men with diabetes, ascertained by self-report, medication use, or fasting 

glucose ≥126 mg/dL (≥7.0 mmol/L), were compared to men without diabetes.10 Diabetes 

was ascertained based on self-report, and compared to men not self-reporting they had 

diabetes in the Cancer Prevention Study-II.11 In contrast, our approach included a 

reference group based on the normal range of each biomarker in men without diabetes 

while also classifying men without diabetes as either low, or high leading presumably to 

less non-differential misclassification of the reference group.  

 

Compared with men with normal levels, men with low HbA1c and men who were 

low on any one biomarker had non-statistically significant increased risk of prostate 
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cancer mortality, whereas low glycated albumin was associated with a non-statistically 

significant decreased risk of prostate cancer mortality. Our findings suggest that men 

who have elevated glycemia and potentially men who have a diagnosis of diabetes are 

at an increased risk for prostate cancer mortality. Previous research has suggested 

HbA1c < 5.0% in individuals without diabetes may be indicative of ill health in general,31 

with several studies showing increased risks of all-cause mortality, liver hospitalization, 

and cancer death in this group.28-32 Our results revealed an increased risk of prostate 

cancer mortality in individuals without diabetes with glycemia levels below the normal the 

range based on our joint categories and with low HbA1c suggesting heterogeneity may 

be present in the reference groups of other studies that do not account for low glycemia 

levels.  

 

Elevated glycemia could influence prostate carcinogenesis through the Warburg 

effect, which has established that non-differentiated proliferating cancer cells utilize the 

less efficient process of aerobic glycolysis for energy metabolism.33 This creates a high 

dependency on glucose which is advantageous when abundant extracellular glucose is 

available. Although the exact reason for this preference of aerobic glycolysis by cancer 

cells still remains unclear, oncogenic activation in metabolic pathways may play a role, 

including the PI3K/Akt/mTOR pathway.33,34 There is growing evidence that PI3K/Akt 

activation is associated with increased glycolysis.33,34 Furthermore, metformin, a drug 

used commonly to treat type 2 diabetes activates AMPK, which regulates glucose 

metabolism and blocks the PI3K/Akt/ mTOR pathway,33,35 has been inversely associated 

with prostate cancer-specific mortality and biochemical recurrence in men with prostate 

cancer.36 However, metformin also stimulates the uptake of glucose by skeletal muscle 

leading to decreased circulating glucose. Nonetheless, the inverse relationship between 

metformin and prostate cancer-specific mortality and biochemical recurrence36 provides 
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some insight into the potential biological mechanism underlying the relationship between 

elevated glycemia and prostate cancer mortality.  

 

The significance of our findings of a positive relationship between elevated levels 

of glycemia and prostate cancer mortality are particularly relevant in the context of the 

relationship between obesity and prostate cancer mortality. Previous research has 

demonstrated obesity to be associated with an increased risk of prostate cancer 

mortality.37 Measuring biomarkers of glycemia provides an opportunity to examine a 

direct link between the metabolic perturbations downstream of obesity. Serving as a 

potential mediator of this relationship, the strong positive relationship between elevated 

levels of glycemia captured in our joint classification strategy provides evidence to help 

explain the obesity-prostate cancer relationship. Given the multiple metabolic and 

hormonal pathways connecting obesity with increased risk of prostate cancer, which 

have been thoroughly reviewed previously,38-40 additional phenotypes of obese 

metabolically normal individuals may be relevant to further characterize the obesity 

prostate cancer relationship. A strength of the current analyses is our ability to adjust for 

both BMI and waist circumference. This further supports the role of hyperglycemia in the 

complex relationship between obesity and prostate cancer mortality.  

 

The ability to define a low category composed of men with glycemia levels below 

the normal range is an important strength of this analysis, which provides an opportunity 

to comprehensively characterize the relationship between glycemia and prostate cancer 

mortality. Further investigation is needed to determine whether non-glycemic factors are 

driving the J-shaped association between HbA1c and prostate cancer mortality in our 

results. We were unable to evaluate the association between low fasting glucose and 

prostate cancer mortality because no men in our study population had low values. 
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Another strength of our analysis includes the prospective design with measurement of 

glycemia biomarkers prior to prostate cancer diagnosis and mortality. This allows us to 

demonstrate the temporal relationship between states early in the natural history of 

diabetes (e.g., hyperglycemia in men without diabetes) and prostate cancer mortality. All 

ARIC participants included in the present analysis reporting having fasted for at least 8 

hours prior to blood collection during visit 2, allowing us to evaluate fasting glucose. The 

advantage of having multiple biomarkers of glycemia in fasted individuals precludes the 

influence of non-glycemic factors on these values, which have been shown to contribute 

the observed racial differences in glycemia.41 Diabetes was classified based on self-

report and medication use, reducing the potential of misclassification.42 Due to the small 

number of prostate cancer deaths (n=69), we observed wide confidence intervals around 

our estimates showing elevated risk of dying from prostate cancer. Our analyses also 

relied on biomarkers of glycemia measured at a single study visit preventing us from 

conducting analyses with updated values of each biomarker throughout follow-up.  

 

Our findings using multiple markers of glycemia to reduce misclassification of 

both hyperglycemia and normoglycemia support that elevated glycemia and diabetes 

increase the risk for prostate cancer mortality. In the current investigation, we observed 

greater than a 4-fold increase in risk of dying from prostate cancer in men without 

diabetes who had elevated levels of glycemia compared to men with glycemia in the 

normal range based on a joint classification strategy incorporating three independent 

biomarkers of glycemia. Men diagnosed with diabetes appeared to have a 3-fold 

increase in risk of dying from prostate cancer compared to men without diabetes with 

glycemia in the normal range. Men with glycemia below the normal range also 

experienced what appears to be close to a 3-fold increase in risk of dying from prostate 

cancer that was not statistically significant. These findings are consistent in both African 
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American men and Caucasian men. These findings support abnormal glycemia in the 

etiology of the development of prostate cancer with a lethal phenotype, and point to yet 

another reason to prevent and intervene on the development of pre-diabetes and 

diabetes. 
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Table 4.1 Baseline (visit 2) characteristics of participants without diabetes by categories of age and race adjusted biomarkers of glycemia and participants 
with diagnosed diabetes in the Atherosclerosis Risk in Communities Study, 1990-1992. 

 Fasting Glucose mmol/L HbA1c % Glycated Albumin % 

  Normal High Diagnosed 
diabetes 

Low Normal High Diagnosed 
diabetes 

Low Normal High Diagnosed 
diabetes  < 5.6mmol/L 5.6mmol/L < 5.0% 5.0 - 5.6%  5.7% < 11% 11 -16%  17%  

(n=1,768) (n=3,090) (n=418) (n=443) (n=2,896) (n=1,519) (n=418) (n=396) (n=4,345) (n=117) (n=418) 

Mean Age, yr (SE)^ 57.2 57.1 57 57.12 57.23 56.9 57 57.3 57.1 56.9 57 
 (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) 0.09 (0.08) 
            
Mean BMI, kg/m2 (SE) 27.8 27.8 27.7 27.8 27.8 27.8 27.7 27.8 27.8 27.8 27.7 
 (0.060) (0.060) (0.060) (0.060) (0.06) (0.06) (0.06) (0.06) (0.06) (0.07) (0.06) 
            
African American, % (SE)^ 20 20 19 20 20 19 19 20 20 19 19 
 (0.005) (0.005) 0.007 (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 
            
Mean Waist circumference, 
cm (SE) 

100.4 100.3 100.1 100.4 100.5 100 100 100.7 100.4 99.9 100.1 

 (0.15) (0.15) (0.16) (0.15) (0.15) (0.16) (0.16) (0.16) (0.15) 0.17 (0.16) 
            
Smoking status            
Never, % (SE) 27 27 26 27 27 26 26 27 27 27 26 
 (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) (0.006) 
             
Current, % (SE) 23 23 24 23 23 24 24 22 23 25 24 
 (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.006) 
             
Former, % (SE) 50 50 50 49 50 49 50 51 50 48 50 
 (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 0.008 (0.007) 
             
Education            
Less than high school, % (SE) 20 20 25 19 18 25 25 17 21 27 25 
 (0.005) (0.005) (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.005) (0.006) (0.006) 
             
High school/equivalent, % (SE) 37 37 35 38 38 35 35 39 37 34 35 
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 (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 
             
College or above, % (SE) 43 42 40 43 43 40 40 44 42 40 40 
 (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 0.008 (0.007) 

Fasting glucose: Normal <5.6mmol/L; High >5.6 mmol/L 
HbA1c: Low <5.0%; Normal 5.0 to 5.6%; High > 5.6% 
Glycated albumin: Low < 11%; Normal 11% to 16%; High > 16% 
*Means and proportions adjusted for age and race.  ^Mutually adjusted for age and race. 
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Table 4.2 Baseline (visit 2) characteristics of participants without diagnosed diabetes by age and race 
adjusted joint category of glycemia, and for participants with diagnosed diabetes in the Atherosclerosis 
Risk in Communities Study, 1990-1992.  

 
Joint categories of glycemia among men without diagnosed 

diabetes Diagnosed 

 Low Normal High 1 High 2 High 3 diabetes 
 

(n=780) (n=1,089) (n=1,828) (n=1,059) (n=102) (n=418) 

Mean Age, yr (SE)^ 57.2 57.2 57.2 57 57 57 

 (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) 

       
African American, % 
(SE)^ 20 20 20 19 19 19 
 

(0.006) (0.005) (0.005) (0.006) (0.006) (0.006) 

        

Mean BMI, kg/m2 (SE) 27.8 27.8 27.8 27.8 27.8 27.8 
 

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) 

        
Mean Waist 
circumference, cm (SE) 100.5 100.5 100.5 100 99.9 100.1 

 (0.16) (0.15) (0.15) (0.16) (0.17) (0.16) 

       

Smoking status       

Never, % (SE) 27 27 27 26 27 26 
 

(0.006) (0.006) (0.006) (0.007) (0.007) (0.006) 

        

Current, % (SE) 23 23 23 24 25 24 
 

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 

        

Former, % (SE) 50 50 50 49 48 50 
 

(0.007) (0.007) (0.007) (0.007) (0.008) (0.007) 

        

Education       
Less than high school, 
% (SE) 18 19 20 25 26 26 
 

(0.006) 0.005 0.005 (0.006) (0.006) (0.006) 

        
High school/equivalent, 
% (SE) 38 38 38 35 34 35 
 

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 

        
College or above, % 
(SE) 44 43 43 40 40 40 

  (0.007) (0.007) (0.007) (0.007) (0.008) (0.007) 
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Joint category classification for men without diabetes: low – low on any one biomarker (HbA1c, fasting glucose, 
glycated albumin); normal – normal on all 3 biomarkers; High 1 – high on any 1 biomarker; High 2 – high on any 
2 biomarkers; High 3 – high on all 3 biomarkers. *Means and proportions adjusted for age and race.  ^Mutually 
adjusted for age and race. 
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Table 4.3 Association between biomarkers of glycemia and prostate cancer mortality in the Atherosclerosis Risk in Communities Study 
(ARIC) 1990-2012. 

 Overall African American men Caucasian men 

 
No. cases/ 
Person yrs 

  HR1 95% CI 
 No. cases / 

Person yrs 
HR2 95% CI 

 No. cases/ 
Person yrs 

HR2 95% CI 
 

Fasting Glucose             

Normal  14/33,247 1 Ref  7/5,401 1 Ref  7/27,846 1 Ref  

High  49/57,058 1.99 1.09 to 3.63  16/11,216 1.10 0.43 to 2.77  33/45,842 2.69 1.18 to 6.13  

Diabetes   6/6,563 1.91 0.72 to 5.10  2/1,945 0.77 0.15 to 3.89  4/4,618 2.98 0.85 to 10.46  

Per 1-SD increase  1.24 0.87 to 1.78   0.64 0.14 to 2.93   1.40 1.02 to 1.93  

Wald p-value3     0.03    0.85    0.02 

Wald p-value4    0.03    0.43    0.02 

HbA1c                      

Low 7/8,474 1.68 0.73 to 3.86  2/1,341 1.26 0.25 to 6.36  5/7,134 1.83 0.69 to 4.84  

Normal 29/55,201 1 Ref  6/6,324 1 Ref  23/48,876 1 Ref  

High 27/26,797 1.32 0.75 to 2.31  15/8,981 1.42 0.54 to 3.78  12/17,815 1.19 0.58 to 2.42  

Diabetes 6/6,563 1.36 0.55 to 3.38  2/1,945 0.93 0.18 to 4.81  4/4,618 1.55 0.52 to 4.59  

Per 1-SD increase  1.25 0.90 to 1.73   1.65 1.07 to 2.55   0.88 0.48 to 1.64  

p-trend5     0.86    0.59    0.80 

p-trend6    0.93    0.61    0.73 

Glycated Albumin                    

Low 2/7,138 0.49 0.12 to 2.05  1/393 3.23 0.40 to 26.30  1/6,745 0.27 0.04 to 2.02  

Normal  58/80,888 1 Ref  21/15,264 1 Ref  37/65,624 1 Ref  

High  3/2,048 1.53 0.47 to 5.00  1/841 0.98 0.13 to 7.55  2/1,207 2.56 0.61 to 10.82  

Diabetes 6/6563 1.13 0.48 to 2.65  2/1,925 0.74 0.17 to 3.22  4/4,618 1.34 0.47 to 3.38  

Per 1-SD increase  1.04 0.64 to1.68   0.55 0.14 to 2.18   1.21 0.77 to 1.90  

p-trend5     0.26    0.77    0.05 

p-trend6    0.21    0.53    0.05 

Joint Classification             

Low on any 1 marker 9/14,471 2.95 0.98 to 8.9  3/1,673 4.80 0.48 to 47.52  6/12,798 2.30 0.64 to 8.23  

Normal on all 3 markers 4/20,654 1 Ref  1/1,638 1 Ref  4/20,434 1 Ref  
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High on 1 marker 30/34,410 3.66 1.42 to 9.48  8/5,196 4.50 0.56 to 36.45  22/31,744 3.25 1.12 to 9.49  

High on 2 markers 16/18,748 2.58 0.92 to 7.22  10/6,302 3.90 0.48 to 31.53  5/12,091 1.78 0.5 to 6.42  

High on 3 markers 3/1,791 4.80 1.11 to 20.95  1/690 4.21 0.25 to 71.76  4/2,269 6.78 1.21 to 38.02  

Diabetes 6/6,453 3.18 0.94 to 10.73  2/1,925 2.74 0.24 to 31.80  4/4,618 3.32 0.81 to 13.65  

p-trend6    0.09    0.34    0.18 

HbA1c: Low <5.0%; Normal 5.0 to 5.6%; High > 5.6%; Fasting glucose: Normal <5.6mmol/L; High >5.6 mmol/L; Glycated albumin: Low < 
11%; Normal 11% to 16%; High > 16% 
1Model adjusted for age (visit 2, continuous), race by ARIC field center, education (less than high school, high school and college; graduate 
school), BMI (Visit 2, continuous), and smoking status (never; former; current). 
2Model adjusted for age (visit 2, continuous), education (less than high school, high school and college; graduate school), BMI (Visit 2, 
continuous), and smoking status (never; former; current). 
3 Wald p-value comparing median biomarker value between categories among men without diagnosed diabetes 
4 Wald p-value comparing change in biomarker category among men without diagnosed diabetes 
5 trend for change in median value of biomarker category among men without diagnosed diabetes 
6 trend for change biomarker category among men without diagnosed diabetes 
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Table S4.1 Biomarker distribution (median and 25th – 75th percentile) across categories of 
individual biomarkers in men without diagnosed diabetes in the Atherosclerosis Risk in 
Communities Study, 1990-1992. 

  Fasting glucose  

 Low Normal High 

 < 3.1 mmol/L 3.1 to 5.6 mmol/L  5.7 mmol/L 

Fasting glucose (mmol/L) NA 5.3 (5.1 – 5.4) 6.1 (5.8 – 6.5) 

HbA1c (%) NA 5.3 (5.0 – 5.5) 5.5 (5.3 – 5.8) 

Glycated albumin (%) NA 12.3 (11.6 – 13.1) 12.6 (11.8 – 13.6) 

  HbA1c  

 < 5.0% 5.0 to 5.6%  5.7% 

Fasting glucose (mmol/L) 5.6 (5.2 – 4.9)  5.7  (5.4 – 6.1) 6.1 (5.7 – 6.8) 
HbA1c (%) 4.8 (4.7 – 4.9) 5.3 (5.2 – 5.5) 5.9 (5.8 – 6.1) 
Glycated albumin (%) 12.1 (11.5 – 12.8) 12.3 (11.6 – 13.1) 13.1 (12.1 – 14.2) 

  Glycated albumin  
 < 11% 11 to 16%  17% 

Fasting glucose (mmol/L) 5.7 (5.3 – 6.1) 5.8  (5.4 – 6.1) 8.3 (7.1 – 11.3) 

HbA1c (%) 5.3 (5.1 – 5.6) 5.4 (5.2 – 5.7) 7.0 (6.2 – 8.2) 

Glycated albumin (%) 10.6 (10.3 – 10.8) 12.6 (11.9 – 13.4) 17.6 (16.5 -21.7) 

NA – not applicable; no men in the analytic population had low fasting glucose (< 3.1 mmol/L) 
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Table S4.2 Cross tabulation of number of men (%) by category of HbA1c and glycated 
albumin within strata of fasting glucose (normal and high) in men without diagnosed 
diabetes in the Atherosclerosis Risk in Communities Study, 1990-1992. 

  Normal fasting glucose 
(3.1 – 5.6 mmol/L) 

Glycated 
albumin 
 

  HbA1c  
 Low Normal High 
 (< 5.0%) (5.0 to 5.6%) ( 5.7%) 

Low (< 11%)  31 (1.8) 131 (7.4) 18 (1.0) 

Normal (11 – 16%)  207 (11.7) 1,089* (61.6) 286 (16.2) 

High ( 16%) 0 (0.0) 4 (0.2) 2 (0.1) 

       
 High fasting glucose 

( 5.6 mmol/L) 

  HbA1c  
 Low Normal High 
 (< 5.0%) (5.0 to 5.6%) ( 5.7%) 

Low (< 11%)  28 (0.9) 125 (4.1) 63 (2.0) 
Normal (11 – 16%)  177 (5.7) 177 (49.8) 1,048 (33.9) 

High ( 16%) 0 (0.0) 9 (0.3) 102** (3.3)  

*Number of men without a diagnosis of diabetes classified as within the normal glycemia range 
on all three biomarkers. ** Number of men without a diagnosis of diabetes classified as within the 
high glycemia range on all three biomarkers. 
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Table S4.3 Baseline (visit 2) characteristics of participants without diabetes by category of biomarkers of glycemia and participants with diagnosed 
diabetes in the Atherosclerosis Risk in Communities Study, 1990-1992. 

 Fasting Glucose HbA1c Glycated Albumin 

  Normal High Diagnosed 
diabetes 

Low Normal High Diagnosed 
diabetes 

Low Normal High Diagnosed 
diabetes  < 5.6mmol/L 5.7mmol/L < 5.0% 5.0-5.6%  5.7% < 11% 11-16%  17% 

 (n=1,768) (n=3,090) 
(n=418) 

(n=443) (n=2,896) 
(n=1,51
9) 

(n=418) (n=396) (n=4,345) (n=117) 
(n=418) 

Mean biomarker (SD) 5.26 6.32 10.44 4.75 5.32 6.10 7.97 10.46 12.72 20.23 20.57 
 (0.25) (1.10) (3.92) (0.21) (0.18) (0.76) (2.13) (0.57) (1.06) (5.64) (7.58) 
            
Mean Age (SD) 56.78 57.15 58.44 56.11 56.70 57.80 58.44 56.34 57.06 57.77 58.44 
 (5.79) (5.65) (5.96) (5.63) (5.67) (5.69) (5.96) (5.61) (5.70) (5.90) (5.96) 
             

 
       

African American - No. (%) 297 622 128 77 338 504 128 25 847 47 128 
 (16.80) (20.13) (30.62) (17.4) (11.7) (33.20) (30.62) (6.31) (19.49) (40.17) (30.62) 
             

 
       

Mean BMI (SD) 26.60 28.19 29.76 27.00 27.13 28.72 29.76 29.04 27.42 29.83 29.76 
 (3.76) (4.23) (4.67) (3.92) (3.74) (4.66) (4.67) (4.49) (4.03) (5.11) (4.67) 
             

 
       

Mean Waist circumference, 
cm (SD) 97.25 101.45 105.34 98.43 98.75 102.58 105.34 104.48 99.38 104.46 105.34 
 (10.10) (10.92) (12.04) (10.27) (9.93) (12.06) (12.04) (10.80) (10.62) (13.23) (12.04) 
Smoking status     

  
 

    
Never – No. (%) 513 788 112 148 832 321 112 77 1,191 33 112 
 (29.02) (25.50) (26.79) (33.41) (28.73) (21.13) (26.79) (19.44) (27.41) (28.21) (26.79) 
             

 
       

Current – No. (%) 438 700 88 59 612 467 88 127 981 30 88 
 (24.77) (22.65) (21.05) (13.32) (21.13) (30.74) (21.05) (32.07) (22.58) (25.64) (21.05) 
             

 
       

Former – No. (%) 817 1,602 218 236 1,452 731 218 192 2,173 54 218 
 (46.21) (51.84) (52.15) (53.30) (50.10) (48.12) (52.15) (48.48) (50.01) (46.15) (52.15) 
             

 
       

Education     
  

 
    

Less than high school – No. 
(%) 319 659 121 63 490 425 121 69 884 25 121 
 (18.07) (21.38) (29.02) (14.25) (16.95) (28.05) (29.02) (17.56) (20.38) (21.37) (29.02) 
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High school/equivalent– No. 
(%) 

653 1,132 
156 

156 1,105 524 
156 

161 1,586 38 
156 

 (37.00) (36.72) (37.41) (35.29) (38.22) (34.59) (37.41) (40.97) (36.56) (46.15) (37.41) 
             

 
       

College or above – No. (%) 793 1,292 140 223 1,296 566 140 163 1,868 54 140 
  (44.93) (41.91) (33.57) (50.45) (44.83) (37.36) (33.57) (41.48) (43.06) (46.15) (33.57) 
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Table S4.4 Baseline (visit 2) characteristics of participants without diagnosed diabetes by joint category 
of glycemia, and for participants with diagnosed diabetes in the Atherosclerosis Risk in Communities 
Study,  
1990-1992.  

 
Joint categories of glycemia among men without diagnosed 

diabetes 
Diagnosed 
Diabetes 

 Low Normal High 1 High 2 High 3 
 (n=780) (n=1,089) (n=1,828) (n=1,059) (n=102) (n=418) 

Mean fasting glucose 
(mmol/L) (SD) 5.65 5.26 5.94 6.44 10.08 10.44 

 (0.59) (0.25) (0.49) (0.72) (3.49) (3.92) 

       

Mean HbA1c (%) (SD) 5.04 5.29 5.43 6.00 7.86 7.97 

 (0.41) (0.18) (0.32) (0.35) (1.86) (2.13) 

       

Mean glycated albumin (%) 
(SD) 11.45 

12.51 
12.62 

13.25 
20.72 

20.57 

 (1.25) (0.93) (0.99) (1.26) (5.87) (7.58) 

       

Mean Age (SD) 56.30 56.68 56.93 57.95 57.73 58.44 
 (5.61) (5.71) (5.69) (5.64) (5.91) (5.96) 

              

African American - No. (%) 101 143 283 353 39 128 
 (12.95) (13.13) (15.48) (33.33) (38.24) (30.62) 

              

Mean BMI (SD) 27.92 26.37 27.32 28.89 30.40 29.76 
 

(4.46) (4.10) (4.37) (4.67) (5.06) (4.67) 

              
Mean Waist circumference, 
cm (SD)  101.12 96.56   99.30  102.95  106.12 105.34  
 

(10.96) (9.71) (9.97) (11.75) (12.93) (12.04) 
 

      

Smoking status       

Never – No. (%) 208 340 503 223 27 112 
 (26.67) (31.22) (27.52) (21.06) (26.47) (21.05) 

              

Current – No. (%) 175 233 417 286 27 88 

 (22.44) (21.4) (22.81) (27.01) (26.47) (21.05) 

              

Former – No. (%) 397 516 908 550 48 218 

 (50.90) (47.38) (49.67) (51.94) (47.06) (52.15) 

              

Education       
Less than high school – 
No. (%) 

128 168 360 300 22 121 

 (6.49) (15.44) (19.70) (28.44) (21.57) (29.02) 
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High school/equivalent– 
No. (%) 

289 415 676 372 33 156 

 (37.24) (38.14) (37.00) (35.26) (32.35) (37.41) 

              

College or above – No. (%) 359 505 791 383 47 140 

  (46.26) (46.42) (43.30) (36.30) (46.07) (33.57) 

Joint category classification for men without diabetes: low – low on any one biomarker (HbA1c, fasting glucose, 
glycated albumin); normal – normal on all 3 biomarkers; High 1 – high on any 1 biomarker; High 2 – high on any 2 
biomarkers; High 3 – high on all 3 biomarkers. 
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Chapter 5.  
 

 
Discussion  
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5.1  Summary and explanation of findings 

Within the cancer research enterprise, the discovery of a novel biomarker 

generates much excitement and enthusiasm for new applications to improve clinical and 

population health. The discovery phase of translational research, referred to by some as 

“T0”, links the current understanding of a biological process, in the form of a biomarker 

with a specific health outcome.1 Despite the remarkable advances in high-throughput 

technologies, exponential increase in knowledge of basic cancer biology and investment 

in biomedical research the current landscape of etiologic cancer biomarker discoveries is 

riddled with failed attempts at producing viable applications targeting cancer prevention 

and control.2-4 Threats to validity (e.g., systematic measurement error and bias) and 

redundant uninformative research (e.g., Me too science) represent two barriers in the 

practice of T1 translational epidemiology. Such barriers have been cited as factors 

leading to promising application of biomarkers of cancer risk, prognosis, and treatment 

prediction (throughout called “cancer biomarkers”) getting lost in translation.1,5-8 A more 

efficient process of translating T1 cancer biomarkers, overcoming each of these barriers 

would save time and allow researchers and funders to concentrate resources on 

promising biomarkers with the potential of improving population health outcomes.  

 

For this dissertation, we conducted a series of interrelated aims applying meta-

research methods9 to empirically examine approaches to overcome two barriers 

mentioned above in the practice of T1 translational epidemiology for etiologic cancer 

biomarkers. We incorporated these strategies to investigate the natural history of 

diabetes in the etiology of the development of fatal prostate cancer. We adopted a team 

science approach to incorporate multiple biomarkers of glycemia to better classify the 

relationship between glycemia and prostate cancer mortality, the outcome of most 

importance in public health.  
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In the first aim of this dissertation, we conducted a case study to document 

improvements in the validity of results and the inferential benefit of multidisciplinary team 

science, including epidemiology, in tissue biomarker evaluation. Through the 

implementation of multidisciplinary team science in the practice of T1 translational 

research, the team was able to identify and overcome threats to internal validity. 

Sources of measurement error in the pre-analytic phase of each scenario of the case 

study included temporal decay of the biomarker associated with tissue block storage 

time, and batch effects introduced with maintenance of laboratory equipment. Once the 

threat to validity was identified, the team was able to overcome the threat to validity in 

the data analysis phase by implementing calendar-time specific cut points based on 

distribution in controls and batch-specific cut points based on controls.  

 

The team participating in this case study is able to thrive in an atmosphere where 

multiple research perspectives are cultivated through an interactive and iterative process 

resulting in a team highly expert on multiple aspects of the team’s research topic. The 

highly collaborative spirit allows researchers to accomplish tasks that could not be done 

individually to create a synergy whereby the total is greater than the sum of the parts. 

The diffusion of core information from the array of disciplines and unique perspectives 

has been instrumental in overcoming unavoidable inherent biases ingrained in their 

formal training and later experiences. This has allowed the team to be successful at 

coming up with creative solutions to solving problems and to develop novel questions 

that are more translational in nature, which would not have been considered prior to the 

team’s interaction. The successful integration of diverse research perspectives into the 

experimental design, execution, interpretation, and presentation of results is necessary 

to meet the current challenges in cancer prevention and control. The team has been 
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able to tackle larger scale questions that are more translational in nature requiring more 

sophisticated methods compared to traditional single-investigator driven research 

questions that are more limited in scope. 

The second aim of this dissertation was designed to overcome the practice of 

redundant uninformative observational epidemiologic research, we introduced a 

systematic process to quantify the impact of continued investigation on the current 

evidence base summarized in a meta-analysis. We adapted the fail-safe number to 

quantify the number of future studies that would need to be included in the current meta-

analysis to change a statistically significant summary estimate to null (p  0.05). We also 

adapted conditional power analysis to determine the number of future studies that would 

need to be included in the current meta-analysis to reach 80% power to detect the 

observed summary estimate in the combined meta-analysis. Applying each of these 

metrics to 98 meta-analyses of prospective studies addressing non-genomic biomarkers 

and cancer risk, we observed patterns between the characteristics of the existing 

evidence and the values of each of these metrics including the size of the summary 

estimate, the number of studies included in the observed meta-analysis, and the 

between-study heterogeneity.  

 

We identified two biomarker-cancer outcome associations to illustrate how each 

of these metrics could be used to inform future research and to describe additional 

conditions when planning future research. In the context of an established biomarker-

cancer association (e.g., H. pylori and gastric cancer) the fail-safe number suggested the 

number of future studies needed to change the current inference is out of reach of 

existing resource. However, further investigation of this association in populations with 

different prevalence of gastric cancer contributed additional evidence of effect 

modification through dietary salt intake which led to improved biologic understanding of 
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this association. We then described the results from the conditional power analyses for 

the meta-analyses comparing different circulating androgens and prostate cancer. The 

uncertainty in the meta-analysis of dehydroepiandrosterone sulfate suggested additional 

research may provide an inferential benefit (i.e., reasonable number of future studies 

needed to change the current inference is within reach of existing resources). While this 

result points to a potential area where future research might be needed, methodologic 

limitations in measuring circulating androgens points to additional considerations in the 

method to measure the biomarker when planning future investigations.10 In both of these 

examples, the planning of future studies should be done in the context of the existing 

evidence with additional consideration of the method used to measure the index 

biomarker; populations or subpopulations not previously studied or in population-based 

studies with design characteristics that improve ability to make temporal comparisons 

and/or protect against certain types of bias (e.g., detection bias); outcomes of most 

public health significance with respect to cancer prevention and control. 

 

For the third aim of this dissertation, we employed a team-science approach by 

bringing together experts in the etiology and prostate cancer, and experts in the clinical 

evaluation of biomarkers of glycemia. Building on the strengths and experience of this 

team, we developed a strategy to incorporate multiple biomarkers of glycemia (e.g., 

glycated hemoglobin, fasting glucose, and glycated albumin), each measuring 

complementary aspects of glycemia, but with different sensitivities to non-glycemic facts, 

to investigate the association between states early in the natural history of diabetes 

(e.g., pre-diabetes) and diagnosed diabetes with prostate cancer mortality. Through this 

approach using normal glycemia as the reference category defined as being normal on 

all three biomarkers, men classified as high on all three markers, had close to a 5-fold 

increase in risk of dying from prostate cancer (HR: 4.80; 95% CI: 1.11 to 20.95). Men 
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with diabetes appeared to have greater than a 3-fold increase in risk of dying from 

prostate cancer, although not statistically significant (HR: 3.18; 95% CI: 0.94 to 10.73). 

For the low category, defined as low on any one of the three biomarkers, we observed 

what appeared to be close to a 3-fold increase in risk of dying from prostate cancer, 

although not statistically significant (HR: 2.98; 95% CI: 0.98 to 9.80). The pattern in 

these associations was consistent with both African American men and Caucasian men 

with the interaction between race not statistically significant. Using this approach to 

define our reference group as normal on all three biomarkers, we observed an elevated 

risk of prostate cancer death among men with diagnosed diabetes, which is inconsistent 

with prior research.11,12 This finding is biologically plausible in that cancer cells utilize 

glycolysis for energy metabolism that has a high dependency on available extracellular 

glucose, which is associated with the activation of the oncogenic PI3K/Akt/mTOR 

pathway.13,14 Our findings also provide evidence of the direct association between 

glycemia and prostate cancer mortality, and points to glycemia as a potential mediator of 

the relationship between obesity and prostate cancer mortality which could be 

investigated in the future. Overall, in this aim, we employed strategies to overcome two 

barriers in the practice of translational epidemiology, and in doing so, we gained new 

insights into the relationship between a modifiable risk factor and prostate cancer 

mortality.  

 

5.2 Strengths and limitations  

A strength of the team science case study is the ability to examine empirically the 

real (not simulated) impact of multidisciplinary team science in the translation of T1 

biomarkers. The sources of analytic measurement error identified (tissue storage time 

and batch-effects) pose important threats to analytic validity relevant to modern 

pathoepidemiology15 using tissue samples to characterize exposure and outcomes. This 
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increases the generalizability of the application of team science across topic-areas 

engaged in T1 tissue biomarker research (i.e., neuroscience and environmental and 

occupational health). We limited this case study to one multidisciplinary team, which may 

not be generalizable to other teams, and covered only three scenarios of the 

implementation of team science. Our small sample and choice of scenarios limits the 

ability to capture variation in the sources of measurement error across the analytic 

pipeline (e.g., pre-analytic, analytic, and post-analytic). Lack of variability in the source of 

the analytic measurement error limited our ability to quantify the full impact of team 

science on identifying and correcting the error if the sources of measurement error in our 

sample have minimal effect on the biomarker measurements. Our sample is also limited 

to examples of tissue biomarkers with different analytic pipelines and methodological 

concerns compared to non-tissue biomarkers. 

 

Utilizing the fully characterized 98 meta-analyses16 provides several strengths to 

the proposed aim. Tsilidis et al. applied a robust search strategy to identify potentially 

eligible biomarker-cancer meta-analyses of prospective studies reflecting a 

comprehensive range of biomarkers and cancer types. The investigators also employed 

a process of double-data extraction enhancing the reliability of the corresponding study-

level data. The full complement of meta-analytic metrics describing the 98 meta-

analyses enhanced our ability to implement the proposed fail-safe number and 

conditional power analysis. For this work we adapted approaches, previously developed 

in for use in clinical trials and research synthesis,17-19 as novel solutions to overcome 

practice-based barriers in the translation of cancer biomarkers. The prior development 

and use in other areas of biomedical research for similar purposes to quantity the 

influence of additional null studies and improve the usefulness of future research speaks 

to the utility of using these metrics for related purposes in other areas of research.  
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One limitation of applying our approach to the 98 meta-analyses is absence of 

duplicate biomarker-cancer meta-analyses. During the selection process, 16 meta-

analyses were excluded that evaluated the same biomarker-cancer association as 

another meta-analysis. The investigators retained the larger meta-analysis. A 

comparison of the redundant meta-analysis including the magnitude and direction of the 

odds ratios and the included studies would provide an opportunity to explore the impact 

of updating an existing meta-analysis with recent studies that may contribute little to the 

current meta-analysis. Our approach utilizing the fail-safe number to quantify the impact 

of continued investigation of specific exposure-outcome association is not without 

limitations. As discussed in the previous chapter of this dissertation, the fail-safe number 

initially was developed as a metric to assess publication bias in the field of clinical trials. 

The Cochrane Collaboration does not recommend the use of the fail-safe number as a 

means to quantify the effect of publication bias on the findings of a systematic review 

and meta-analysis.20 This critique stems from the reliance on statistical significance 

rather than on clinical significance of an observed effect. However, the fail-safe number 

does provide utility in putting the general issue of public bias into perspective by 

quantifying the number of unpublished studies necessary to change the overall 

significance level of a meta-analysis. With respect to the conditional power analysis, one 

limitation stems from setting the alternative hypothesis conditioned on as well as the 

degree of heterogeneity introduced by additional of the new studies. A number of 

iterative approaches can be used to test different alternative hypotheses and different 

degrees of heterogeneity in the observed meta-analysis as well as in the new studies. 

Our intention is not to characterize the full array of conditions that can influence the 

conditional power of a future study.  
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The major strength of the third aim is in the approach where we integrated the 

strategies for overcoming barriers in the translation of etiologic cancer biomarkers 

evaluated in aims 1 and 2. We cultivated a multidisciplinary team of experts in both 

prostate cancer etiology and glycemia biomarkers to develop a strategy to incorporate 

multiple glycemia biomarkers to better classify glycemia in the analysis of prostate 

cancer mortality, the outcome of most public health importance in a racially diverse 

cohort. Using this approach, we were able to fill existing evidence gaps using alternative 

methods for measuring glycemia biomarkers to better understand the relationship 

between states early in the natural history of diabetes and prostate cancer mortality. 

Additional strengths of this work are in the longitudinal design of the Atherosclerosis Risk 

in Communities (ARIC) study with prospectively collected biomarkers of glycemia. This 

is the ideal design for investigating the natural history of diabetes in relation to prostate 

cancer mortality. It is not possible to identify the same biomarker-outcome relationship in 

cross-sectional or case-control designs, which are often vulnerable to certain types of 

biases and confounding, and certainly do not provide the temporality to compare 

exposure prior to onset of the outcome. The availability of multiple glycemia biomarkers 

not available in other cohort studies was the foundation of our joint classification 

strategy, which is another strength of ARIC. Furthermore, ARIC is racially diverse with 

25% African American participants, which allowed use to investigate the associations 

between glycemia and prostate cancer mortality in African American men and 

Caucasian men. One limitation in using ARIC to conduct molecular epidemiologic 

investigations of biomarkers of glycemia is the majority of the glycemia markers were 

measured only once, thus limiting our ability to examine the time-vary effects of each 

biomarker. Another limitation is the relatively small sample size in ARIC with only 69 

prostate cancer deaths, which is apparent in the wide confidence intervals around our 

estimates.  
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5.3 Public health implications 

Both aims one and two have immediate relevance in that they each provide 

empirical evidence of strategies to improve research practices in an effort to overcome 

barriers in translational research. The adoption of such practices by the translational 

research community will contribute towards more efficient and reliable research with the 

ultimate goal of translating promising discoveries into improved population health. To 

this end, multidisciplinary team science plays an important role in translational cancer 

research, which has been endorsed by the National Cancer Institute through a number 

of funding mechanisms, and by the American Association of Cancer Research’s Team 

Science Award. Team science has also been cited as a driver of translational research.21 

Our work demonstrating the quantitative and inferential benefit achieved through the 

practice of multidisciplinary team science provides direct evidence of how the practice of 

team science can overcome barriers in translational research, further supporting such 

initiatives promoting and rewarding the practice of multidisciplinary team science.  

 

Through the application of both the fail-safe number and conditional power 

analysis to meta-analyses of observational studies of biomarkers and cancer risk, we 

described an approach that stakeholders engaged in translational research including 

researchers, journal editors, grant reviewers, and funding agencies can use to assess 

the impact of continued study of a specific biomarker-outcome relationship. This 

approach can be easily implemented into journal’s instructions to authors for submitting 

meta-analyses to include these metrics in their report. This will also provide a method for 

journal editors to evaluate the impact of a primary analysis of biomarker-cancer outcome 

association against the current evidence base. Our work further highlights additional 

considerations when planning future studies, and we showed how such considerations 
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can lead to improved biological understanding. Overall this process is designed to inform 

more efficient and productive use of resources in prioritizing research that fills important 

evidence gaps.  

 

The public health impact of the third aim, revealing a strong association between 

elevated levels of glycemia and prostate cancer mortality speaks to the overall 

importance of preventing pre-diabetes and diabetes. With the rising prevalence of 

obesity, pre-diabetes, and type 2 diabetes in the US,22-24 our work provides important 

evidence of the relationship between metabolic perturbations related to obesity with 

other important health outcomes. Furthermore, this work revealed a modifiable risk 

factor for prostate cancer – elevated glycemia, which could be a target for cancer 

prevention efforts.   

 

5.4 Directions for future research 

 Based on the results of aims 1 and 2, two areas emerged regarding directions for 

future research. The first relates to evaluating if the strategies we discussed in aims 1 

and 2, that improve research practices to overcome specific barriers in the T1 stage of 

the translational continuum, can be used to catalyze the progress of a promising 

discovery through the subsequent stages of translational continuum (e.g., T2 – T4). For 

example, the practice of multidisciplinary team science, including representation of both 

individuals and disciplines, including epidemiology, participating in earlier stages of 

translation may provide a valuable contribution in the subsequent stages of translation. 

Similar meta-research based approaches could be developed to test the impact of the 

practice of multidisciplinary team science on the trajectory of promising discoveries in 

the translational continuum. Similarly, the application of the fail-safe number and 

conditional power analysis could be developed into an approach for constructing an 
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evidence map across the spectrum of types of biomarker and cancer types, with 

consideration of the full complement of important outcomes and populations, as a way to 

prioritize the deployment of resources to move promising discoveries through the next 

phases of translation.  

  

With respect to the third aim, the primary outcome was prostate cancer mortality 

and further research is needed to evaluate our joint classification strategy with additional 

outcomes including prostate cancer incidence and incidence of lethal prostate cancer 

(e.g., an incident prostate cancer that was metastatic or dying from prostate cancer). A 

formal mediation analysis of elevated glycemia as a mediator of between obesity and 

prostate cancer would further clarify the link obesity and prostate cancer.  
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