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Abstract 
 

 Two research topics at the interface of physics, materials science, and biology are presented in 

this dissertation, (1) blinking in quantum dots, and (2) endothelial cells under curvature and shear 

stress. 

 Quantum dot (QD) blinking is characterized by switching between an “on” and an “off” state, 

and power-law distributions of on and off times with exponents from 1.0 to 2.0.  The origin of 

blinking behavior in QDs, however, has remained a mystery.  We report an energy-band model 

for QDs that captures the full range of blinking behavior reported in the literature and provides new 

insight into features such as the gray state, power-law distributions of on and off times, and the 

power-law exponents. 

 The highly specialized endothelial cells in brain capillaries are a key component of the 

blood-brain barrier, forming a network of tight junctions that almost completely block paracellular 

transport.  In contrast to vascular endothelial cells in other organs, we show that brain 

microvascular endothelial cells resist elongation in response to curvature and shear stress.  Since 

the tight junction network is defined by endothelial cell morphology, these results suggest that 

there may be an evolutionary advantage to resisting elongation by minimizing the total length of 

cell-cell junctions per unit length of vessel. 
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Chapter 1 Overview 

 This dissertation presents two research topics at the interface of physics, materials science, 

and biology.  It is organized as follows: Chapter 1 will provide the overview; Chapter 2 will 

present the model implementation, results and discussion for blinking in quantum dots; Chapter 3 

will present the methodology, results and discussion for the influence of curvature and shear 

stress on endothelial cells; Chapter 4 will summarize the two topics and provide future 

directions. 

 

1.1 Blinking in Quantum Dots 

 Quantum dots (QDs) are semiconductor nanoparticles with diameter typically between 1 to 

20 nm (Trindade, O'Brien et al. 2001).  They have received considerable attention due to their 

size dependent properties (Figure 1) (Ekimov and Onushchenko 1981, Alivisatos 1996) and 

applications in fields such as solar cells (Huynh, Peng et al. 1999, Kramer and Sargent 2013), 

light emitting diodes (Mattoussi, Radzilowski et al. 1998), and biological imaging (Gao, Cui et al. 

2004, Kairdolf, Smith et al. 2013).  For biological imaging, quantum dots can be used to detect 

molecular biomarkers and tumor cells at high sensitivity and specificity when they are 

conjugated with biomolecular affinity ligands, such as antibodies, peptides, or small molecules 

(Lee, Na et al. 2003, Weissleder, Kelly et al. 2005, Liu, Cai et al. 2007).  In single-molecule 

imaging, QDs exhibit on and off emission (blinking) when observed individually under a 

fluorescence microscope (Nirmal, Dabbousi et al. 1996).  Blinking, also known as fluorescence 

intermittency, has been considered a mixed blessing in using QDs for single-molecule imaging 

as: (1) it results in loss of signal from the molecule being monitored; (2) it indicates the behavior 

of a single particle rather than aggregates (Kairdolf, Smith et al. 2013).  For other technical 
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applications, blinking is a major obstacle when high yields of photon emission are desirable 

(Krauss and Peterson 2010).  Therefore, there has been strong motivation to understand, and 

even eliminate blinking of QDs since reported in 1996 (Figure 2) (Nirmal, Dabbousi et al. 

1996). 

 

 

Figure 1.  Size-dependent photoluminescence colors of semiconductor QDs.   

Left: QDs exhibit more blue color when diameter decreases. 

Right: Band gaps of QDs increases when diameter decreases. 

 

 

Figure 2.  Schematic illustration of fluorescence intermittency in quantum dots.  

Typically a threshold is defined to separate the on and off intensities from intensity-time curves. 

 

1.1.1 Quantum jumps in single ions 
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 In 1915, Niels Bohr proposed his now famous model of an atom or molecule in which 

electrons occupy discrete energy levels (Bohr 1915, Frantsuzov, Kuno et al. 2008, Stefani, 

Hoogenboom et al. 2009).  Although this model is not completely correct, it suggests the 

existence of energy levels (or orbits) of electrons and explains the Rydberg formula for the 

hydrogen atom 

2 2

1 2

1 1 1

vac

R
n n

 
  

 

  Equation 1 

where λvac is the wavelength of electromagnetic radiation emitted in vacuum, R is the Rydberg 

constant (approximately 1.097 x 107 m-1), and n1 (n2) are integers ≥ 1 such that n1 < n2.  The 

quantum jumps of electrons between discrete energy levels are often studied in samples 

containing a large number of atoms.  Direct experimental observation of quantum jumps 

(fluorescence intermittency, or blinking) of a single atom (or ion) became feasible in the 

mid-1980s when individual ions could be trapped and addressed optically (Neuhauser, 

Hohenstatt et al. 1978, Nagourney, Janik et al. 1983, Cook and Kimble 1985). 

 A three-state model was proposed to explain the blinking in single ions, including ground 

state 0, excited state 1 with highly probable transition, and excited state 2 with much less 

frequent transition (Cook and Kimble 1985, Stefani, Hoogenboom et al. 2009).  In this 

three-state model, an ion can absorb a photon and jump to excited state 1.  After an emission of 

a photon, the ion can return to its ground state (Figure 3).  Oscillation between ground state 0 

and excited state 1 (strong transitions) will yield continuous stream of photons (on state).  

Occasionally, the ion may jump to excited state 2 with relatively longer de-excitation times 

(weak transitions) with no emitting photons (off state).  Quantum jumps of weak transitions 

were claimed to be observed when switching between on and off states occurs.  Exponential 
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distributions of on and off times were obtained experimentally, in perfect agreement with the 

prediction of “quantum jump theory” (Cook and Kimble 1985, Sauter, Neuhauser et al. 1986). 

 

 

Figure 3.  Energy levels for single-ion fluorescence intermittency experiment. 

 

1.1.2 Blinking features in quantum dots 

 The breakthrough of single-molecule detection led to observations of blinking in various 

other fluorophores since the early 1990s, including semiconductor quantum dots (Nirmal, 

Dabbousi et al. 1996, Kuno, Fromm et al. 2000, Neuhauser, Shimizu et al. 2000, Kuno, Fromm 

et al. 2001, Shimizu, Neuhauser et al. 2001, Schlegel, Bohnenberger et al. 2002, Fisher, Eisler et 

al. 2003, Chung and Bawendi 2004, Pelton, Grier et al. 2004, Zhang, Chang et al. 2006), 

nanorods (Wang, Querner et al. 2006, Knappenberger, Wong et al. 2008, Roy, Aguirre et al. 

2011), nanowires (Protasenko, Hull et al. 2005, Glennon, Tang et al. 2007, Protasenko, 

Gordeyev et al. 2007), single molecules (Haase, Hübner et al. 2004, Hoogenboom, van Dijk et al. 

2005, Yeow, Melnikov et al. 2006, Hoogenboom, Hernando et al. 2007, Wustholz, Bott et al. 

2007), fluorescent proteins (Dickson, Cubitt et al. 1997), and polymer segments (Bout, Yip et al. 

1997). 
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 In 1996, Nirmal et al. reported for the first time of blinking in individual quantum dots 

(Nirmal, Dabbousi et al. 1996).  Individual CdSe QDs were embedded in a thin 

polyvinylbutyral film at room temperature, and fluorescence intensity-time curves were recorded 

under continuous illumination.  The distributions of on and off times for four different samples 

were “strongly non-exponential”, as opposed to the prediction of exponential distributions by the 

“quantum jump theory”.  It was soon discovered by Kuno et al. that the distributions of on and 

off times can be described by power-laws (Kuno, Fromm et al. 2000).  The power-law behavior 

(f = Bτ-α) extends over 5 orders of magnitudes in time (< 1 ms to > 100 s) with exponents (α) 

between 1.5 and 1.7.  Later on, various experiments were performed on studying the blinking 

behavior of quantum dots.  Several key facts are summarized as follows:  (1) the power-law 

exponents (α) are mostly found between 1.0 and 2.0 (Cichos, von Borczyskowski et al. 2007, 

Frantsuzov, Kuno et al. 2008, Krauss and Peterson 2010), (2) on and off time are generally 

uncorrelated, or at most weakly uncorrelated (Fernando, Xinhua et al. 2005), (3) off intensities 

can be significantly above the background (gray state) (Gómez, van Embden et al. 2009, 

Spinicelli, Buil et al. 2009), and (4) photoluminescence decay appears to be much faster for 

quantum dots with multiple carriers compared to single e-h pair (Klimov, Mikhailovsky et al. 

2000, Jha and Guyot-Sionnest 2009). 

 

1.1.3 Theoretical models on blinking in quantum dots 

 In 1997, Efros and Rosen (Efros and Rosen 1997) proposed the most cited model for QD 

blinking (Figure 4).  In this four state model based on semiconductor physics, a QD (state 1) 

can absorb a photon generating an electron-hole pair (state 2).  Radiative band-to-band 

recombination results in emission of a photon (and return to state 1), whereas absorption of a 
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second photon, before recombination of the electron-hole pair, leads to the creation of two 

electron-hole pairs (state 3).  There are two possible pathways from this state: (1) radiative 

band-to-band recombination (return to state 2), and (2) non-radiative Auger recombination with 

simultaneous excitation of an electron to a trap state, resulting in a valence band hole and a 

trapped electron (state 4).  The trapped electron is assumed to have very slow detrapping 

kinetics resulting in the off state.  Auger recombination is an intra-QD energy transfer 

interaction in which the excess energy from a band-to-band recombination event is transferred to 

a spectator charge carrier rather than emitted as a photon.  Efros-Rosen model provided an 

intuitive picture for blinking based on semiconductor physics; however, it is inconsistent with the 

“non-exponential” distributions of on and off times for blinking in quantum dots. 

 

 

Figure 4.  Energy-band diagrams for the Efros & Rosen Model.   

g - generation rate, kr - recombination rate constant, kAtr - Auger-assisted trapping rate constant, 

kd - detrapping rate constant.  Absorption of a photon results in the generation of an 

electron-hole pair (n = 1 and p = 1).  Radiative band-to-band recombination returns the system 

to the initial state with the emission of a photon.  When there are more than 2 electron-hole 

pairs, Auger-assisted trapping will operate in parallel with radiative recombination.  The on 

state is recovered only by detrapping.  While this model can generate intensity-time curves 

similar to experimental data, it cannot explain features such as the power law distribution of on 

and off times, the gray state, or the generation of multiple electron-hole pairs. 
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 Various modifications to the Efros-Rosen model have been suggested to explain the 

power-law behavior (Frantsuzov, Kuno et al. 2008).  They include the following: 

 Fluctuating barrier model.  Kuno et al. (Kuno, Fromm et al. 2003) suggested a model 

where the fluctuations in the height or width of a tunneling barrier between an electron and an 

external trap state leads to varying trapping and detrapping rates (Figure 5a).  Power-law 

distributions of on and off times were obtained. 

 Spectral diffusion model.  Shimizu et al. (Shimizu, Neuhauser et al. 2001) hypothesized a 

resonant tunneling mechanism where diffusion of acceptor energy levels in phase space (Figure 

5b) leads to varying trapping and detrapping rates.  Tau and Marcus (Tang and Marcus 2005) 

further developed this model and obtained power-law distributions of on and off times.  

 Multiple-trap model.  Verberk et al. (Verberk, van Oijen et al. 2002) assumed a static 

distribution of trapping and detrapping rates, owing to the existence of multiple electron traps 

near the quantum dot (Figure 5c), and obtained power-law distributions of off times.  The 

probability density to tunnel at distance r from the quantum dot surface is assumed to be p(r) = 

ae-ar, and the detrapping rate is assumed to vary exponentially with distance e-br.  The 

power-law exponent (α) is equal to 1 + a/b. 

 Spatial diffusion model.  Margolin et al. (Margolin and Barkai 2004) suggested a 3D 

diffusion in space of an ejected electron before its return (Figure 5d).  This model predicts the 

power-law exponent (α) to be 1.5, and deviations from 1.5 results from anomalous diffusion 

processes. 

 Fluctuating detrapping model.  Frantsuzov and Marcus (Frantsuzov and Marcus 2005) 

suggested a model where the fluctuations of detrapping (Figure 5e) lead to power-law 

distributions of on and off times with exponent 1.5. 
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Figure 5.  Schematic diagrams of various blinking models.   

(a) Fluctuating barrier model: the tunneling barrier varies during the electron jumps. 

(b) Spectral diffusion model: the electron jumps to/from the trap when it is in resonance with the 

excited state. 

(c) Multiple trap model: the electron jumps between excited state and one of the multiple traps.  

(d) Spatial diffusion model: the electron diffuses around in 3D space and returns. 

(e) Fluctuating detrapping model: The non-radiative recombination rate of the excited state 

varies. 

 

 While these models provided useful insight into the power-law behavior by varying the 

on-to-off and off-to-on rates, the physics of the blinking behavior remains unresolved (Verberk, 

van Oijen et al. 2002, Kuno, Fromm et al. 2003, Margolin and Barkai 2004, Frantsuzov, Kuno et 

al. 2008). 

 

1.2 Endothelial Cells under Curvature and Shear Stress 

 The diameter of blood vessels in humans ranges from about 8 µm in capillaries to more than 

1 cm in large elastic arteries, a range of more than four orders of magnitude (Aird 2005).  In 
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larger vessels there are hundreds of cells around the perimeter, whereas in a capillary a single 

endothelial cell may wrap around to form a junction with itself as well as its upstream and 

downstream neighbors (Reese and Karnovsky 1967, Brightman 1977, Abbott, Ronnback et al. 

2006, Daneman 2012, Wong, Ye et al. 2013). 

 

1.2.1 Structure and function of the blood-brain barrier 

 The blood brain barrier (BBB) is the interface between the vascular system and the brain.  

Historically, the blood brain barrier has been defined by the layer of endothelial cells that form 

the vessel/capillary walls.  More recently, the concept of the neurovascular unit has been 

introduced to recognize that brain health depends on functional interactions between neurons and 

non-neuronal cells such as vascular cells (endothelial cells and pericytes) and glia (astrocytes, 

microglia, and oligodendroglia; Figure 6) (Hawkins and Davis 2005, Abbott, Patabendige et al. 

2010, Wong, Ye et al. 2013).  This is a highly dynamic system in which cells transduce 

biochemical and biomechanical signals in complex microenvironments involving basement 

membrane and extracellular matrix.  These non-neuronal cells are responsible for the physical, 

biochemical, and immune barriers of the central nervous system (CNS) that regulate the 

microenvironment of neurons which is key for signal transduction, remodeling, angiogenesis, 

and neurogenesis (Wong, Ye et al. 2013). 
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Figure 6.  The neurovascular unit of the blood-brain barrier. 

The microvascular endothelial cells that form the lumen of brain capillary are partially covered 

by pericytes and basement membrane, and almost completely surrounded by the end feet of 

astrocytes.  Functional interactions between BMECs, astrocytes, pericytes, other glial cells, and 

neurons are key to regulating brain homeostasis. 

 

 The endothelial cells that line the microvasculature in the brain define the interface between 

the vascular system and the brain.  These cells function as adaptive non-linear input/output 

devices where input from biochemical and biomechanical forces in the local microenvironment 

of the neurovascular unit influences cell phenotype as manifested by cell morphology, protein 

expression, gene expression, proliferation, transport, etc (Dejana 2004, Aird 2005, Aird 2007, 

Aird 2007).  In addition to biochemical and biomechanical input from the vascular system, 

numerous paracrine signaling pathways between microvascular endothelial cells, astrocytes and 

pericytes are responsible for maintenance of the blood-brain barrier (Aird 2007, Aird 2007, 

Abbott, Patabendige et al. 2010). 

 In the brain microvasculature, cell-cell junctions are key to maintaining the integrity of the 

brain microvasculature and regulating paracellular transport.  Cell-cell adhesion is achieved 
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through the formation of adherens junctions and tight junctions (Bazzoni and Dejana 2004, 

Dejana 2004, Aird 2007).  Both adherens junctions and tight junctions involve homophilic 

interactions between the extracellular domains of membrane proteins and are linked to the actin 

cytoskeleton via intracellular partners.  Endothelial adherens junctions are formed by the 

extracellular domains of vascular endothelial cadherin (VE-cadherin) and are linked to the actin 

cytoskeleton inside the cell via proteins such as α-catenin, β-catenin, and vinculin (Bazzoni and 

Dejana 2004, Dejana 2004).  The tight junctions in the brain microvasculature prevent 

paracellular transport of most molecules and severely restrict transport of small ions.  Therefore, 

transcellular transport is responsible for most molecular trafficking between the vascular system 

and the brain.  Various methods for transient disruption of tight junctions have been explored 

for drug delivery, and local disruption of tight junctions is associated with many diseases of the 

central nervous system.  Tight junctions are formed between claudins (Nitta, Hata et al. 2003), 

although other proteins such as occludin are also present (Hawkins and Davis 2005, Furuse and 

Tsukita 2006).  These tight junction membrane proteins are connected to the actin cytoskeleton 

via zona occludin (ZO) adaptor molecules (ZO-1 and ZO-2) (Hawkins and Davis 2005). 

 It is responsible for maintaining the homeostasis of the brain by regulating the chemical 

environment, immune cell transport, and entry of xenobiotics.  The concentrations of water, 

ions, amino acids, hormones, and neurotransmitters in the blood undergo fluctuations, 

particularly after eating or exercise.  If such fluctuations were allowed to occur in the brain it 

would lead to local disruption of signal propagation and uncontrolled neural activity.  Therefore, 

transport from the capillary lumen to the brain parenchyma must be tightly regulated. 
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 The morphology of microvascular endothelial cells is dependent in part on biomechanical 

input from the vascular system.  Key studies of the influence of curvature and shear stress on 

endothelial cells are summarized below. 

 

1.2.2 Studies of endothelial cells under curvature 

 Curvature is a fundamental physical property that influences a wide range of everyday 

processes.  For endothelial cells in vessels (Figure 7), if curvature is energetically unfavorable, 

then its effects can be minimized by elongating along the length of the vessel to avoid wrapping 

around in the radial direction.  Conversely, if curvature is energetically favorable then cells may 

elongate in the radial direction to wrap around the vessel and contract in the axial direction 

(Figure 8).  Since tight junctions in brain capillaries are responsible for preventing paracellular 

transport, we hypothesize that cell morphology may play an important role in the structure and 

function of the blood-brain barrier. 

 

Figure 7.  Curvature in confluent monolayers of endothelial cells. 

In 2D monolayers the curvature is zero.  In large vessels the curvature is relatively low.  In 

capillaries, cells may wrap around to form tight junctions with themselves as well as their 

neighbors.  The small capillary diameter results in high curvature. 
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Figure 8.  Schematic illustration showing different energy states for axial and radial alignment.   

We consider the energy associated with axial and radial alignment of an endothelial cell on a 

cylindrical surface.  When the energy difference (∆E) between the two states (axial and radial) 

is less than the thermal energy (kT, where k is the Boltzmann constant and T is temperature), 

there is no driving force for preferential alignment.  In contrast, when the energy for radial 

orientation is larger than for axial alignment, radial alignment is energetically unfavorable. 

 

 Previous studies of the influence of curvature on cell behavior have focused on the motility 

of isolated cells in the context of tumor cell invasion (Curtis and Varde 1964, Dunn and Heath 

1976, Nerem, Levesque et al. 1981, Rovensky and Samoilov 1994, Svitkina, Rovensky et al. 

1995, Levina, Domnina et al. 1996).  Isolated fibroblasts seeded on small diameter glass rods (< 

200 µm) were shown to exhibit preferential elongation and alignment (Curtis and Varde 1964, 

Dunn and Heath 1976, Fisher and Tickle 1981), and preferential migration along the cylinder 

axis, leading to the concept of contact guidance as a possible mechanism for tumor cell invasion.  

These studies suggest that curvature may play a role in regulating the morphology and function 

of endothelial cells in confluent monolayers. 

 

1.2.3 Studies of endothelial cells under shear stress 
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 Blood pressure exerts a force normal to a vessel wall that imposes a circumferential stress on 

the vessel, whereas blood flow results in a frictional drag, or shear stress, parallel to the 

endothelium in the direction of blood flow (Figure 9).  These stresses play an important role in 

regulating endothelial cell morphology and function, and in mediating a wide range of signaling 

and transport processes between the vascular system and surrounding tissue (Chien 2007, Hahn 

and Schwartz 2009, Johnson, Mather et al. 2011, Daniel and Martin 2012).  These stresses are 

also thought to play an important role in regulation of the blood-brain barrier (Krizanac-Bengez, 

Mayberg et al. 2004, Neuwelt, Abbott et al. 2008, Tarbell 2010, Cucullo, Hossain et al. 2011, 

Neuwelt, Bauer et al. 2011). 

 For an ideal Newtonian fluid (incompressible), the shear stress τ in a straight cylindrical 

vessel under constant laminar flow is given by the Poiseuille equation: τ = 4μQ/πr3 where μ is 

the dynamic viscosity, Q is the volumetric flow rate, and r is the radius of the lumen.  Therefore, 

the magnitude of the shear stress on the endothelium is proportional to the flow rate and viscosity, 

and inversely proportional to r3.  Consequently, endothelial cells in vessels with high flow rate 

and small diameter are exposed to large shear stress. 

 The viscosity of blood is about 4 cP (0.004 Pa·s), significantly larger than the viscosity of 

water of 0.7 cP (0.0007 Pa·s) at 37°C, primarily due to the presence of red blood cells.  Typical 

time averaged values of shear stress are 4 – 30 dynes cm−2 in the arterial circulation and 1 – 4 

dynes cm−2 in the venous circulation (Turitto 1982, Kamiya, Bukhari et al. 1984, Papaioannou 

and Stefanadis 2005, Koutsiaris, Tachmitzi et al. 2007, Dolan, Kolega et al. 2013).  The flow 

rate in capillaries is typically from 6 to 12 nL min−1 corresponding to a shear stress of 10 – 20 

dynes cm−2 for a capillary 10 μm in diameter (taking μ = 1 cP or 0.001 Pa s) (Kamiya, Bukhari et 

al. 1984). 
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Figure 9.  Flow velocity profile of blood flow in axial cross-section of a blood vessel. 

 

 While the influence of curvature has been relatively unexplored, the role of shear stress on 

endothelial cell morphology and function has been more widely studied.  Endothelial cells in 

blood vessels in sections away from branch points show elongation and axial alignment (Reidy 

and Lowell Langille 1980, Nerem, Levesque et al. 1981).  In cell culture, a physiological shear 

stress results in a transition from a cobblestone-like morphology to an elongated spindle-like 

morphology and alignment in the direction of flow (Eskin, Ives et al. 1984, Levesque and Nerem 

1985, Davies 1995, Malek and Izumo 1996, Simmers, Pryor et al. 2007), very similar to the 

morphology observed in large resected vessels. 
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Chapter 2 Blinking in Quantum Dots 

 In this chapter, I will describe our energy-band model for QDs that captures the range of 

blinking behavior reported in the literature and provides insight into features such as the gray 

state, the power-law distribution of on and off times, and the power-law exponents. 

 

2.1 Model Implementation 

2.1.1 Intensity-time curves 

 Figure 10 shows energy-band diagrams for the various states in our model, along with the 

associated rate constants.  Our model is implemented using standard kinetic Monte Carlo 

methods (KMC) (Fichthorn and Weinberg 1991) and is based on the physics of QDs (Brus 1986, 

Nozik, Beard et al. 2010) combined with descriptions for recombination and trapping processes 

widely used in device physics (Table 1).  We denote each state in the QD as (ij), where i is the 

total number of free electrons (holes) in the QD, and j is the number of trapped charge carriers.  

Without loss of generality, we assume that only electrons can be trapped.  From examination of 

Figure 10 it is evident that p = i, n = i - j, and s- = j, where n is the number of free electrons, p is 

the number of holes, and s- is the number of occupied trap states. 
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Figure 10.  Energy band diagrams illustrating the dynamics of electron-hole pairs in blinking 

quantum dots. 

(a) Physical processes in quantum dot blinking. g - generation rate, kr - recombination rate 

constant, kA - rate constant for Auger recombination, kt - trapping rate constant, kd - detrapping 

rate constant, knrt - rate constant for non-radiative recombination. 

(b) Auger recombination in quantum dots.  Band-to-band recombination is coupled with 

excitation of a charge carrier (in this case a hole) that quickly relaxes (on the order of 

picoseconds) back to the band edge. 
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Process Rate equation  

Radiative recombination rr = krnp kr: rate constant for radiative recombination 

  n: number of electrons 

  p: number of holes 

Auger recombination rA = kAnp2 kA: rate constant for Auger recombination 

Trapping  kt: rate constant for trapping 

  s: total number of trap states (s = s0 + s-) 

  s-: number of occupied trap states 

  Note: we arbitrarily choose s = s0 + s- = 10 

Detrapping rd = kds- kd: rate constant for detrapping 

Nonradiative recombination  knrt: rate constant for nonradiative recombination 

Table 1.  Summary of processes included in the model and the corresponding rate equations.   

 

 For each state (ij) there are several possible transitions to adjacent states, and these 

transitions have corresponding rates r1, r2, … rn.  The time that a QD will remain in a certain 

state is given by ∆t = -lnR/∑ri, where R is a random number between 0 and 1.  The probability 

that a QD will move to a particular state is given by ri/∑ri.  A QD with no electrons or holes is 

designated as in the (00) state (n = 0, p = 0, s- = 0).  Absorption of a photon and the generation 

of an e-h pair results in a transition to the (10) state (n = 1, p = 1, s- = 0).  From the (10) state, 

there are three possible transitions, indicated by the arrows in Figure 10:  (1) radiative 

recombination (kr) returns the QD to the (00) state with the emission of a photon, (2) trapping of 

the electron (kt) results in a transition to the (11) state (n = 0, p = 1, s- = 1), and (3) absorption of 

another photon (g) results in a transition to the (20) state (n = 2, p = 2, s- = 0).  
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 The transition from the (10) state is determined from the sum of all possible rates (rr + rt + g), 

as described above.  For the (10) state, the residence time is given by ∆t = -lnR/(rr + rt + g).  

We then subdivide the range from 0 to 1 into three parts, each with a length the same as the 

probability of each transition.  For example, the probability of the transition from the (10) state 

to the (00) state is determined by rr/(rr + rt + g).  The transition is then selected by generating 

another random number between 0 and 1.  Since kr is typically much larger than g and kt, there 

is a high probability that the QD will relax from the (10) state to the (00) state.  Oscillation 

between the (00) and (10) states represents sequential absorption and emission in the QD.  

Population of the (20) state gives rise to the possibility of Auger recombination, which is usually 

considered to be faster than radiative recombination.  For all transitions between (i0) states, the 

QD is considered to be in the on state and no blinking is observed.  Even though Auger 

recombination (kA) may dominate in (i0) states with i ≥ 2, we consider these configurations as on 

states as they return to the (00) state with high probability. 

 The population of states with trapped carriers (j ≥ 1) results in off states.  For example, 

consider the (21) state (n = 1, p = 2, s- = 1) for which there are six possible transitions: (1) return 

to the (20) state by detrapping (kd), (2) transition to the (10) state by non-radiative recombination 

involving the trap state (knrt), (3) transition to the (31) state by absorption of a photon and 

generation of an e-h pair (g), (4) transition to the (11) state by radiative recombination and 

generation of a photon (kr), (5) transition to the (11) state by Auger recombination (kA), and (6) 

transition to the (22) state by trapping the conduction band electron (kt).    

 From Figure 10 it is evident that if kA > kr (and kA > kt, kd, knrt) then the QD will remain in 

the off state since e-h pair generation will most likely be followed by a return to the same state 

through non-radiative Auger recombination (kA).  Detrapping (kd) and non-radiative 
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recombination via trap states (knrt) both return the QD to the on state.  Switching between the on 

and off states that leads to blinking is controlled by kt, kd, and knrt which are generally much 

slower than g, kr, and kA.  The intensity-time curves are obtained by counting the number of 

photons emitted in each bin (integration) time (In). 

2.1.2 On-time fraction 

 To characterize the blinking behavior for a given set of rate constants, we first write the 

system of rate equations corresponding to the processes indicated in Figure 10.  We denote the 

probability of finding a QD in a given state by Pij.  For example, the (00) state can be accessed 

from the (10) state by radiative recombination (kr), or from the (11) state by non-radiative 

recombination via trap states (knrt).  In addition, the (00) state can transition to the (11) state by 

generation of an e-h pair (g) which would decrease the probability of finding a QD in the (00) 

state.  Thus, the time dependent probability for the (00) state is given by: 

00
10 11 00r nrt

dP
k P k P gP

dt
     Equation 2 

 As an example, the system of equations for a maximum of 2 e-h pairs is 

 00
10 11 00r nrt

dP
k P k P gP

dt
     Equation 3 
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 The equations can be solved for different values of the rate constants by recognizing that in 

steady state dPij/dt = 0 and that ∑Pij = 1. The on-time fraction Pon is given by 

 on 0iP P    Equation 9 

 The off-time fraction Poff is given by 

 
off

1
ij

j

P P


    Equation 10 

 Experimentally, Pon is usually obtained by defining a threshold (Ith) between the on and off 

intensities (Ion and Ioff). This procedure may introduce artifacts; however, as long as the on and 

off intensities are well separated then Pon is the same for both methods. 

 

2.1.3 Computing distributions of on and off times 

 Intensity distributions were obtained from intensity-time curves.  To obtain the on and off 

times, we first determined the threshold intensity Ith from the intensity distribution.  Gaussians 

were fit to the on and off peaks and Ith was obtained from intersection point between the two 

peaks.  The QD was considered to be “on” when In ≥ Ith, and “off” when In < Ith.  If In remains 

above or below Ith for n sequential time bins, then τi,on/off = iτbin.  The intensity-time curve is thus 

converted to a sequence of on and off times.  We then create a histogram describing the number 

of occurrences Ni of each duration τi (1 ≤ i ≤ M).  The shortest duration (τ1) is limited by the bin 

time (τbin), while the longest duration (τM) is limited by the total time (τtotal).  Total number of 

occurrences of on or off times is 

 total

1
i

i M

N N
 

    Equation 11 

 The distribution of on and off times, or formally, the probability density fi, is given by 
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  Equation 12  
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where 2 ≤ i ≤ M – 1.  At the limits (i = 1 and i = M) we set τ0 = τ1 and τM+1 = τM.  The 

power-law exponents (αon/off) or exponential times (τ0,on/off) are determined from a least-squares 

fit of the log(fi,on/off) versus log(τi,on/off) curves. 

 

2.1.4 Quantum yield 

 The on and off quantum yields were calculated by averaging all the intensities above or 

below the threshold over time divided by the number of photogenerated electron-hole pairs: 

 th

onQY nI I n

n

I

g





  Equation 13 

 th

offQY nI I n

n

I

g





  Equation 14 

 Experimentally, evaluation of QYon and QYoff requires careful analysis of the distribution of 

intensities from intensity-time curves.  If the intensities associated with the on and off states are 

well separated then it is trivial to set an appropriate threshold.  However, if the distributions of 

on and off intensities overlap, then distinguishing between on and off states is more difficult.  

This can often be accomplished by fitting two Gaussians to the distribution, one representing the 

on state and one representing the off state.  

 

2.1.5 Generation 

 The generation rate g (ms-1) in a spherical QD with absorption coefficient α (cm-1) is given 

by: 
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  Equation 15 
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where I0 is the incident power density (W cm-2), h is the photon energy, and d is the QD 

diameter.  We assume that the absorption coefficient for a nanoparticle is the same as for a bulk 

material. 

 Absorption can also be defined in terms of the absorption cross-section :  
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 
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
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  

 
  Equation 16 

such that g = I0/h. 

 For a 5 nm diameter CdSe QD, taking an absorption coefficient  = 105 cm-1 at  = 400 nm 

(Gupta and Doh 1992) and an incident power density of 0.1 – 1000 W cm-2 (Peterson and Nesbitt 

2008, Goushi, Yamada et al. 2009, Spinicelli, Buil et al. 2009) the generation rate g is typically 

in the range 1 – 104 ms-1.   

 The generation rate is linearly dependent on incident power density, QD volume, and 

absorption coefficient (Figure 11).  The bulk absorption coefficient for most semiconductors of 

interest is in the range from 105 – 106 cm-1.  The QD diameter is typically 3 – 10 nm, 

corresponding to an order of magnitude range of volume.  Although the range of power density 

may be quite large, experimentally, the power density is adjusted so that the emission from the 

QD does not saturate the detector using an exposure time of around 10 ms. 
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Figure 11.  The dependence of generation rate on different parameters. 

(a) Generation rate versus incident power density for d = 3, 5, and 10 nm taking α = 105 cm-1 at λ 

= 400 nm.  (b) Generation rate versus incident power density for α = 106 cm-1, 105 cm-1, and 104 

cm-1 taking d = 3 nm. (c) Generation rate versus QD diameter for incident power densities of 0.1, 

1, 10, 100, and 1000 W cm-2 taking α = 105 cm-1 at λ = 400 nm. 

 

2.1.6 Trapping and detrapping 

 Radiative band-to-band recombination is expected to be fast with a rate constant kr = 103 – 

106 ms-1 (Table 2) (Landsberg 1970, Michler, Imamoglu et al. 2000, Crooker, Hollingsworth et 
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al. 2002, Fomenko and Nesbitt 2007, Mahler, Spinicelli et al. 2008, Wang, Ren et al. 2009).  If 

there are more than two free carriers in a QD, Auger recombination (Figure 10b) is expected to 

be dominant with a rate constant kA = 105 – 108 ms-1 (Haug 1983, Klimov, Mikhailovsky et al. 

2000, Wang, Califano et al. 2003, Kraus, Lagoudakis et al. 2005, Jha and Guyot-Sionnest 2009).  

For convenience we refer to the different configurations in Figure 10 as (ij) where i represents 

the number of e-h pairs and j represents the number of trapped electrons.  

 

Parameter Typical values (ms-1) 

kr 103 – 106 

kA 105 – 108 

g 1 – 103 

Constant trapping and detrapping rates  

kt 10-4 – 102 

kd + knrt 10-3 – 10-2 

Variable trapping and detrapping rates  

kt 10-2 – 102 

kd + knrt 10-5 – 10-1 

rt,eff 10-5 – 10-1 

rd,eff 10-5 – 10-1 

Table 2.  Typical values of parameters used in the energy-band model.   

 

 It is evident from examination of an energy-band diagram (Figure 10) that trapping, 

detrapping and Auger recombination are essential to create configurations where blinking is 

observed.  In configurations where trap states are occupied (j ≥ 1), electron - hole pairs are 
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eliminated primarily by Auger recombination (kA > kr) and the QD is predominantly in an off 

state.  Conversely, configurations where j = 0 can easily reach the (10) state where radiative 

recombination dominates.   Thus configurations in the top row (j = 0) represent the on state of a 

QD, and configurations below the top row (j ≥ 1) correspond to the off state. 

 The rate of trapping is given by rt = ktns0 where n is the number of electrons in the QD and s0 

is the number of empty trap states. The detrapping rate is given by rd = kds- where s- is the 

number of occupied trap states.  For all results reported here, we arbitrarily choose 10 trap 

states (s = 10), although as we show later, the steady state number of trapped electrons is 

typically < 3.   

 Blinking requires switching between an on state (i0) and an off state (ij) where j ≥ 1.  The 

overall trapping and detrapping rates for a single QD, taking into account all configurations, can 

be described in terms of effective trapping and detrapping rates: 

 
, 0 0 0

,eff

0 0

t i i t i
t

i i

r P sk P
r

P P

 
 

 
  Equation 17 

 
, 1 , 1 1 1 1

,eff

1 1

(r r ) Pd i nrt i i d i nrt i
d

j ij j ij

k P k iP
r

P P 

    
 

 
  Equation 18 

Where Pij is the probability of state (ij).  The blinking behavior can then be described in terms 

of the on-time fraction Pon, as a function of rt,eff and rd,eff: 
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r r
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  Equation 19 

where Pon = 1 for a QD that is always on and Pon < 1 for blinking.  To achieve the on and off 

times observed experimentally, typically in the range from 1 ms to 100 s, the effective trapping 

and detrapping rates should be on the order of 10-5 – 100 ms-1. 
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2.2 Results and Discussion 

 Intensity-time curves from the model are able to reproduce the full range of behavior 

observed experimentally.  Figure 12a shows a typical non-blinking luminescence curve.  For 

an integration (bin) time of 10 ms, the distribution of on intensities shows a peak at around 100 

photons, corresponding to a quantum yield of 1.0.  Increasing rt,eff/rd,eff to 10-1 by changing kt, 

results in blinking with Pon = 0.91 (Figure 12b).  The average on intensity (Ion) remains 100 

photons per bin (QYon = 1.0) with a maximum frequency of 91% of the value for the 

corresponding non-blinking curve (Figure 12a).  The off-intensity distribution is much 

narrower than the on-intensity distribution, and would only be observed experimentally if the 

fluctuations are larger than the noise of the photodetector.  Increasing rt,eff/rd,eff to 100 decreases 

Pon to 0.5 (Figure 12c), and increasing rt,eff/rd,eff further to 101, decreases Pon to 0.09 (Figure 

12d).  These results show that the blinking behavior is controlled by rt,eff/rd,eff. 

 Figure 12e shows that the blinking regime occurs over a range of rt,eff/rd,eff from 10-2 to 102.  

To illustrate the relative importance of the parameters in the model, we consider a simple case 

involving the (00), (10), (11), (21) states.  These are the four states most frequently occupied at 

low generation rates.  Taking into account the relevant rate constants, it is straightforward to 

show that: 
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 In most cases of experimental interest, kr > g and hence rt,eff  sktg/kr.  Similarly, it is also 

expected that kr + 2kA > g, so that rd,eff  kd + knrt and hence Pon is independent of kA (at constant 



28 

 

s, kt, and kd + knrt).  Deviations from these approximations are observed at higher generation 

rates. 

 

 

Figure 12.  Simulated intensity-time curves, and intensity distributions as a function of 

effective trapping/detrapping ratio rt,eff/rd,eff. 

Here kd = 10-3 ms-1, knrt = 0 ms-1, s = 10, kr = 105 ms-1, kA = 107 ms-1, g = 10 ms-1.  (a) rt,eff/rd,eff = 

10-4 (kt = 10-4 ms-1), (b) rt,eff/rd,eff = 10-1 (kt = 10-1 ms-1), (c) rt,eff/rd,eff = 100 (kt = 100 ms-1), and (d) 

rt,eff/rd,eff = 10 (kt = 10 ms-1).  In all cases the integration (bin) time was 10 ms.  (e) 



29 

 

Dependence of Pon on the effective trapping/detrapping ratio rt,eff/rd,eff showing that blinking 

occurs over a range of rt,eff/rd,eff from 10-2 to 102. 

 

 From Equation 19 it is seen that increasing the generation rate results in an increase in rt,eff 

and hence is expected to decrease Pon.  The generation rate is dependent on several parameters, 

however, for a given system it is very difficult to vary the generation rate over a wide range: the 

generation rate must be high enough so that the signal on the detector allows the on and off states 

to be clearly distinguished, but not too high to result in saturation.  

 The trapping and detrapping processes are controlled by kt and kd + knrt.  kt and kd can be 

described by two possible mechanisms (Shockley and Read 1952).  (1) Trapping and detrapping 

involve delocalized electrons and states at the core/shell interface.  Energetically, the trap states 

are expected to be located in the band gap so that trapping is downhill and detrapping is 

thermally activated.  (2) Trapping and detrapping occur by tunneling between delocalized 

electrons in the core to states in the shell or at the surface of the shell if it is sufficiently thin.  

Non-radiative recombination via trap states knrt contributes to blinking in the same way as kd 

even though they represent different physical processes.  The expressions for kt, kd and knrt are 

dependent on the mechanism but do not influence the results reported here. 

 

2.2.1 Binning time and total time 

 The binning time, which is usually set by the minimum camera exposure time necessary to 

distinguish the QD from the background (typically in the range from 200 μs to 100 ms, but 

usually around 10 ms) (Kuno, Fromm et al. 2001, Peterson and Nesbitt 2008, Crouch, Sauter et 

al. 2010), plays a key role in determining the blinking characteristics.  If the effective trapping 

and detrapping rates, rt,eff and rd,eff are faster than 1/bin, then switching is likely to occur in each 

frame and the QD will appear always on with an average intensity Iav = Imax·Pon, where Imax = 
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gbin.  Conversely, if rt,eff and rd,eff are slower than 1/total (where total is typically up to 1000 s), 

then there will be very few switching events in intensity-time curves.  Thus for blinking to 

occur, rt,eff and rd,eff must be > 1/bin and < 1/total.  Practically, this corresponds to a range from 

about 10 ms to ~ 100 s.   

 

2.2.2 Gray state 

 Experimentally, intensity-time curves for QDs sometimes show an off-state that is above the 

background signal of the detector, the so-called gray state (Jha and Guyot-Sionnest 2009, 

Spinicelli, Buil et al. 2009, Zhao, Nair et al. 2010).  Figure 13a shows an intensity-time curve 

where the parameters are the same as for Figure 12c except that kA is decreased from 107 ms-1 to 

106 ms-1.  The intensity distribution (Figure 13a) shows the emergence of a gray state where 

the off-state distribution is shifted above zero. 
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Figure 13.  Influence of important rate constants on on and off intensities. 

(a) Intensity-time curve (photons / 10 ms) and intensity distribution illustrating the gray state.  

The parameters are the same as for Figure 12c except that except that kA is decreased from 107 

ms-1 to 106 ms-1.  Other parameters are: kr = 105 ms-1, g = 10 ms-1, kt = 100 ms-1, kd = 10-3 ms-1, 

knrt = 0 ms-1, and s = 10 with rt,eff/rd,eff = 1.  (b) On and off intensities and their fluctuations 

versus kA/kr (1 – 103).  Other parameters are the same as (a).  (c) Quantum yield for on and off 

states versus generation rate g (1 – 103 ms-1) at different radiative recombination rates (kr = 103 – 
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106 ms-1) with kA/kr = 10.  Other parameters are: s = 10, kd = 10-3 ms-1, knrt = 0 ms-1, kt chosen 

such that rt,eff/rd,eff = 100 and Pon = 0.5.  (d) Probability of the steady state number of 

electron-hole pairs versus generation rate (g = 1 – 103 ms-1), with other parameters the same as in 

(a). 

 

 The gray state is dependent primarily on kA, kr, and g.  Figure 13b shows the magnitude of 

on and off intensities, as well as the amplitude of their fluctuations, plotted versus kA/kr (kr = 105 

ms-1).  For a bin time of 10 ms, the on intensity is ~ 100 photons/bin with fluctuations of ~ 10 

photons/bin, independent of kA/kr.  In the off state, the radiative and Auger recombination 

pathways operate in parallel, and hence we have: 

 off

1
QY

1 2 /A rk k



  Equation 22 

 Thus as kA  kr, the QYoff increases and reaches a value of 0.33 when kA = kr.  Also note 

that when QYon = 1 then QYoff = Ioff/Ion. 

 When kA/kr is large, Ioff/Ion  0, and the off state in an experiment would coincide with the 

background signal of the detector.  In contrast, as kA  kr, Ioff/Ion becomes significant so that the 

off state can be resolved above the background signal of the detector.  In all cases, the on and 

off intensities and their fluctuations are not significantly influenced by the trapping and 

detrapping rate constants. 

 The influence of g and kr on the on and off quantum yields for a typical grey state is shown in 

Figure 13c.  The ratio kA/kr is maintained constant and the trapping rate constant is tuned so 

that the on-time fraction is always around 0.5 (Figure 12).  As previously described, kt, kd and 

knrt only affect the on-time fraction.  As the generation rate increases, QYoff remains 

approximately constant at around 0.05.  In contrast, QYon decreases above a characteristic value 

of g due to the presence of multiple e-h pairs (Figure 13c) and the increasing contribution of 
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Auger recombination (Klimov, Mikhailovsky et al. 2000, Kraus, Lagoudakis et al. 2005, Htoon, 

Malko et al. 2010).  When g  kr, the probability of creating more than one e-h pairs increases 

(Figure 13d), and hence the contribution from Auger recombination results in a decrease in 

QYon.  For example, for g = 103 ms-1, QYon decreases from 0.98 when kr = 105 ms-1, to 0.5 when 

kr = 103 ms-1.  

 We next analyzed the number of e-h pairs in a QD under steady state conditions.  Figure 

13d shows the probability of finding single or multiple e-h pairs for different generation rates.  

For low generation rates (≤ 1 ms-1), radiative recombination is dominant and the probability of 

finding an e-h pair is low.  As the generation rate increases, the probability of finding multiple 

e-h pairs increases progressively and QYon decreases (Figure 13c).  This effect was reported by 

Kraus et al. (Kraus, Lagoudakis et al. 2005) who showed that the PL intensity did not increase 

proportionally with increasing generation rate for CdSe/ZnS QDs.  

 

2.2.3 Pulsed laser excitation 

 Experimentally, intensity-time curves are usually obtained under continuous excitation where 

kr > g.  However, in some cases pulsed laser excitation is used to study blinking (Kraus, 

Lagoudakis et al. 2005, Peterson and Nesbitt 2008, Goushi, Yamada et al. 2009).  In these 

experiments, the laser pulse is typically on the order of picoseconds or less, much faster than 

other processes such as radiative recombination and Auger recombination, and the repetition 

time is typically on the order of microseconds.  In these experiments, multiple e-h pairs can be 

generated in each pulse before any relaxation process can occur.  The generation of multiple e-h 

pairs in a single pulse (Np ≥ 2) results in the instantaneous population of states where Auger 

recombination is significant.  As long as kA > kr, all additional electron-hole pairs in a pulse will 
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recombine very quickly, and the quantum yield in the on state is decreased; however, the 

blinking behavior is unchanged.  When kA ≈ kr, the additional e-h pairs can undergo radiative 

recombination and hence the on intensity will be higher than for continuous excitation with the 

same repetition time, even though the quantum yield for the pulsed experiment will be lower. 

 

2.2.4 Power-law distributions of on and off times 

 With fixed values of kt and kd, the distributions of on and off times are exponential (f = 

Aexp(-/0)).  For example, Figure 14b shows an intensity-time curve and the distributions of 

on and off times for kt = 100 ms-1 and kd = 10-3 ms-1(knrt = 0).  The distributions are exponential 

with 0,on = 1.14 ± 0.04 s and 0,off =1.17 ± 0.08 s (Pon =0.49 ± 0.01).  

 An exponential distribution of on and off times is expected for constant trapping and 

detrapping rates (Cook and Kimble 1985) as pointed out by Efros and Rosen (Efros and Rosen 

1997), and has been observed experimentally for quantum jumps in atomic systems (Blatt and 

Zoller 1988).  In practice, the distribution of on and off times obtained from analysis of 

intensity-time curves for QDs, usually exhibit power law behavior (f = Bτ-α) with exponents  

typically between 1.0 and 2.0 (Kuno, Fromm et al. 2000, Kuno, Fromm et al. 2001, Hohng and 

Ha 2004, Crouch, Sauter et al. 2010). 

 Figure 14c shows the distribution of on and off times for a linear distribution of kt and kd 

(Figure 14a and Table 3), where kt varies from 10-2 to 102 ms-1 and kd varies from 10-5 to 10-1 

ms-1.  For each trapping (detrapping) event the trapping (detrapping) rate constant is selected 

randomly over the given range, where all rate constants have equal probability.  The 

distributions show power law behavior with on = 1.86 ± 0.06 and off = 1.86 ± 0.03 (Pon = 0.52 

± 0.05). 
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Figure 14.  Simulated intensity-time curves, intensity distributions, and distributions of on and 

off times for QD excitation for constant and variable trapping and detrapping rate constants (kt 

and kd). 

Here knrt = 0 ms-1, s = 10, kr = 105 ms-1, kA = 107 ms-1, and g = 10 ms-1.  (a) The range and 

distribution of trapping and detrapping rate constants.  (b) Constant trapping/detrapping rate 

constants: kt = 100 ms-1, kd = 10-3 ms-1.  (c) Linear distribution of trapping and detrapping rate 

constants: kt = 10-2 – 102 ms-1, kd = 10-5 – 10-1 ms-1.  (d) Parabolic distribution of trapping and 
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detrapping rate constants: kt = 10-2 - 102 ms-1, kd = 10-5 – 10-1 ms-1.  (e) Exponential distribution 

of trapping and detrapping rate constants:  kt = 10-2 – 102 ms-1, kd = 10-5 – 10-1 ms-1. 

 

Function Equation a b 

Linear k = a(1-y) + b kmax – kmin kmin 

Parabola k = a(1-y)2+b kmax – kmin kmin 

Exponential k = a∙exp(-by) kmax ln(kmax/kmin) 

Table 3.  Variable trapping and detrapping rate constants. 

Variations are defined by the range (kmax and kmin) and the function (linear, parabola, 

exponential), with respect to a stochastic variable y that varies from 0 to 1.0.  Here y represents 

either distance or energy. 

 

 The power-law exponent is dependent on the function that describes the distribution of 

trapping and detrapping rate constants.  For example, a parabolic distribution (Figure 14d) of kt 

and kdover the same range), results in power-law distributions with on = 1.37 ± 0.06 and off = 

1.35 ± 0.06 (Pon = 0.42 ± 0.14).  An exponential distribution (Figure 14e) of kt and kd results in 

power-law distributions with on = 0.98 ± 0.06 and off = 1.02 ± 0.06 (Pon = 0.52 ± 0.15).    

 To describe the influence of variable trapping and detrapping rate constants on the 

distribution of on and off times, it is convenient to refer to the effective trapping and detrapping 

rates (rt,eff and rd,eff).  The range of trapping and detrapping rate constants gives rise to a range 

of rt,eff and rd,eff.  Power-law behavior is only observed when there is a distribution of effective 

trapping and detrapping rates where t,eff (1/rt,eff) and d,eff (1/rd,eff) span a range from bin to about 

0.1total.  For a typical bin time of 10 ms and a typical total time of 1000 s, this corresponds to a 

range of about 4 orders of magnitude.  The influence of the distribution of trapping and 

detrapping rate constants on the power law exponent is simply related to the distribution of 
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trapping events.  For example, a parabolic distribution has more events at longer times than a 

linear distribution which results in more probability density at longer times and hence a smaller 

slope.  Thus the range of power-law exponents observed experimentally can be obtained simply 

by tuning the function that described the range of trapping and detrapping rate constants. 

 

2.2.5 Influence of trapping and detrapping times shorter than the binning time 

 A power law distribution of on and off times is obtained with a distribution of trapping and 

detrapping rates.  If the range of τt,eff and τd,eff extends to times shorter than τbin then we see the 

emergence of a third feature in the intensity distribution.  The trapping events at times faster 

than τbin give rise to an average on-intensity Iav due to switching within the binning time.  

Three-state blinking with an on state, an off state, and an average on state has been observed 

experimentally.  Figure 15 shows intensity-time curves and the corresponding intensity 

distributions for simulations where we take a linear distribution of τt,eff (1/rt,eff) and τd,eff (1/rd,eff) 

but vary the range (kmin and kmax).  All other parameters are the same as in Figure 14c. 
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Figure 15.  Simulated intensity-time curves, and intensity distributions as a function of trapping 

and detrapping times (τt,eff and τd,eff).  

Here g = 10 ms-1, kr = 105 ms-1, kA = 107 ms-1, s = 10, knrt = 0 ms-1 for linear distributions of kt 

and kd.  (a) kt = 10-5 to 10-1 ms-1, kd = 10-2 to 102 ms-1, (b) kt = 10-5 to 100 ms-1, kd = 10-2 to 103 

ms-1, (c) kt = 10-5 to 101 ms-1, kd = 10-2 to 104 ms-1, (d) kt = 10-5 to 102 ms-1, kd = 10-2 to 105 ms-1, 

(e) kt = 10-5 to 103 ms-1, kd = 10-2 to 106 ms-1.  In all cases the integration (bin) time was 10 ms. 

 

 Physically, a distribution in values of kt and kd is easily justified.  For example, if trapping 

involves tunneling to trap states in the shell, then a distribution of distances from the QD core 

would be expected to give rise to a distribution in trapping and detrapping rates.  Similarly, a 
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distribution in the energy of traps at the core/shell interface would be expected to give a 

distribution of trapping and detrapping rates.   

 

2.3 Summary 

Blinking (kA > kr) 

 kA >> kr Ioff/Ion ≈ 0 no gray state 

 kA  kr Ioff/Ion  0.33 gray state 

 

 QYoff = 1 / (1 + 2kA/kr) 

 QYon ≈ 1  (kr > g) (decreases when kr  kA at high g)  

 

Suppress blinking   

  kt and/or kd  (kt/kd  1  or kt > kd)  

  knrt  (knrt > kd) 

  kr  (kA > kr)  
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Distribution of on and off times 

 Constant kt, kd  f = Aexp(-/0)    

  Varying kt, kd f = B- 

   

  Power law exponent  dependent on distribution of kt, kd (knrt) 

  

Table 4.  Summary of QD blinking behavior influenced by different processes. 
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Chapter 3 Endothelial Cells under Curvature and Shear Stress 

 To test the hypothesis that curvature and shear stress regulate endothelial cell morphology we 

developed the rod assay to mimic the cylindrical geometry of a blood vessel (Figure 16).  

While the rod assay is “inside out” in that the luminal sides of the cells are in contact with 

basement membrane on the rod, and the abluminal side is in contact with media, it is a 

convenient method to study the role of curvature on cell morphology over a wide range of 

diameters, from small capillaries to larger vessels.  Using this assay we show quantitatively that 

brain microvascular endothelial cells, in contrast to endothelial cells in other organs, do not 

elongate in response to curvature and shear stress.  

 

 

 

Figure 16.  Rod assay for studying the influence of curvature and shear stress on endothelial 

cells. 

(a) In the rod assay, cells are seeded onto glass rods with different diameters and cell 

morphology determined from quantitative analysis of confocal microscope images.  (b) 

Schematic illustration of the microfluidic device incorporating an array of glass rods seeded with 

confluent monolayer of endothelial cells. 

 

3.1 Materials and Methods 
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3.1.1 Rod assay 

 Glass rods 0.125 inches in diameter (Fisher Scientific, 11-380A) were pulled to a diameter in 

the range of 10 – 750 µm in a flame.  The rods were cut into 2 cm lengths, selected for a 

particular diameter and uniformity under an optical microscope, and then mounted across two 

polydimethylsiloxane (PDMS) supports (Dow Corning, Sylgard 184) on a 22 mm x 22 mm glass 

slide (Fischer Scientific, 12542B).  The rods were then immobilized with an additional drop of 

PDMS on top of the supports and cured at 80 ˚C for about 15 minutes.  Prior to seeding cells, 

the rod assemblies were oxygen plasma cleaned for 30 seconds, and incubated in 150 µg ml-1 

type I collagen (BD, 354236) solution in 0.02 M acetic acid (Fisher Scientific, A38-500) at room 

temperature for 1 to 2 hours, and then washed 3 times in PBS buffer (Corning Cellgro, 21-031- 

CV), followed by a final wash in cell culture medium. 

 

3.1.2 Seeding cells 

 Human brain microvascular endothelial cells (HBMECs) were isolated from an adult brain 

and immortalized by transfection with SV40 (Nizet, Kim et al. 1997, Stins, Prasadarao et al. 

1997, Eigenmann, Xue et al. 2013).  HBMEC cell culture medium was prepared by dissolving 

HEPES-modified M199 powder (Sigma Aldrich, M2520) in 1 liter distilled water and adding 10 

vol% FBS (Life Technologies, 16140071), 1 vol% penicillin-streptomycin (Life Technologies, 

15140122), and 2.2 g l-1 sodium bicarbonate (Sigma Aldrich, S5761).   Human umbilical vein 

endothelial cells (HUVECs, Lonza, CC-2517A) were suspended in the recommended cell culture 

medium (basal media with growth factors, Lonza, CC-3162).  Human dermal microvascular 

endothelial cells (HMVECs, Life Technologies, C-011-5C) were cultured in medium prepared 

by dissolving 10 vol% FBS (Life Technologies, 16140071), 1 µg ml-1 hydrocortisone (Sigma 
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Aldrich, H0888), 2 U ml-1 heparin (porcine intestinal mucosa, sodium salt, Sigma Aldrich, 

H3149), 25 µg ml-1  endothelial cell growth supplement (Biomedical Technologies, BT-203), 

0.2 mM L-ascorbic acid 2-phosphate (Sigma Aldrich, A8960), 1 vol% 

glutamine-penicillin-streptomycin (Life Technologies, 10378-016) in MCDB 131 (Caisson Labs, 

MBL02).  All endothelial cells were routinely passaged at a 1:4 ratio, and were discarded after 

passage 5. 

 Approximately 106 cells in 2 ml of medium were introduced into each dish containing a set 

of collagen-coated rods.  The cell culture medium was changed every day by adding 2 - 3 ml of 

fresh medium into the petri dish, mixing it well, removing the same amount, and repeating at 

least 3 times. The cells generally began to spread on the rods after one day and if the coverage 

was about 60 %, and reached confluence after 3 – 4 days.  For control experiments in 2D, glass 

bottom petri dishes (BD, FD35PDL-100) were plasma treated for 30 seconds, coated with 150 

µg ml-1 type I collagen (BD, 354236) solution in 0.02 M acetic acid for 1 – 2 hours, and washed 

3 times with PBS and once in cell culture medium prior to seeding with cells. 

 

3.1.3 Shear stress 

 To study the effects of shear stress and curvature, a set of 200 µm rods was located parallel to 

the flow direction in a custom microfluidic device 40 mm long, 10 mm wide, and 2 mm high.  

The rods were typically 100 µm from the bottom of the channel.  The device was placed in an 

incubator maintained at 37 ˚C and 5% CO2.  Experiments were performed at a constant flow 

rate of 640 ml min-1 using a peristaltic pump (Cole Parmer, WU-07523-80).  The wall shear 

stress for a Newtonian fluid is given by τ = 6μQ/(wh2), where µ is the viscosity (0.001 Pa s), Q is 

the flow rate, w is the channel width, and h is the channel height.  From COMSOL simulations 
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(Figure 17) we determined that the shear stress on the upper quadrant of the rods was 50 dyne 

cm-2, decreasing to about 25 dyne cm-2 at the sides.  Quantitative analysis of morphology was 

performed for cells on the upper quadrant.  After seeding cells on the rods and allowing them to 

reach confluence, the flow rate was set to about 40 ml min-1 for 1 hour, and then gradually 

increased to 640 ml min-1 over 6 hours, and then maintained at this value for 24 hours prior to 

removing the rods for analysis. 

 

 

Figure 17.  Cross-section velocity profile in a microfluidic channel.   

Cross-section velocity profile (m/s) around 200 µm diameter glass rods located 100 µm above 

the bottom of a microfluidic channel. 

 

3.1.4 Imaging 

 Cells on collagen-coated rods were fixed and stained for ZO-1 (BD, 610967) or VE-cadherin 

(Life Technologies, 61-7300) and DAPI (Sigma Aldrich, D9542-1MG).  Cell monolayers on 

rods were imaged using a confocal microscope (Zeiss LSM 510 META).  Before imaging, the 

glass rods were removed from the assembly and placed on a 170 µm thick glass bottomed petri 

dish (World Precision Instruments, FD5040-100), and incubated in 2, 2´ – thioldiethanol (Sigma 

Aldrich, 166782).  All images were obtained using a 40X oil-immersion objective (40X 1.3 NA 

Plan Neofluar (oil)) in immersion oil (Zeiss, 444963-0000-000).  Matching the refractive index 

of the rods is important to minimize distortion of the images.  Z-stack images (512 x 512 pixel) 

were taken at 0.3 – 1.2 µm steps depending on the rod diameter. 
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3.1.5 Image analysis 

 For quantitative analysis of cell morphology the cylindrical immunofluorescence images of 

the cell monolayers were converted to a 2D plane using UNWRAP a custom application 

developed in our lab (Figure 18).   Morphological analysis was performed on the unwrapped 

2D images using ImageJ (National Institute of Health, Bethesda, MD).  After identification of 

the cell-cell boundaries, we determined projected cell area (µm2), perimeter (µm), inverse aspect 

ratio (IAR) (length of short axis / length of long axis), and the orientation angle (θ), i.e. the angle 

between the cell long axis and the rod axis (0 to 90 degrees).  The number of cells around the 

perimeter of the cylinder was determined by selecting a line perpendicular to the rod direction 

and counting the number of cells on the line.  The line was then moved along the image in the 

direction of the rod axis until there were no previously counted cells along the line.  For a given 

unwrapped image corresponding to a rod segment, we can usually extract about 3 – 4 

measurements from each image.  For HBMECs we made 14 – 62 measurements for each rod 

diameter (total = 303) and for HUVECs we made 18 – 117 measurements (total = 531). 

 The distribution of actin stress fibers was analyzed by performing 2D FFTs on the images. 

FFTs were performed using the FFT2 routine in MATLAB.  The resulting intensity 

distributions in the frequency domain were converted to radial intensity distributions at 10˚ 

increments.  For images on larger rods and 2D images were cropped to be 141 x 141 µm the 

resolution fixed at 0.44 µm per pixel.  For images on smaller rods, images were cropped to be 

93 x 93 µm with the resolution fixed at 0.44 µm per pixel. 

 Welch two sample t-tests were performed in MATLAB.  Significant levels were determined 

between samples examined and were set at * P < 0.05, ** P < 0.01, and *** P < 0.001. 
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Figure 18.  Workflow of UNWRAP. 

The immunofluorescence images are transposed onto a 2D plane using custom software – 

UNWRAP. 

 

3.2 Results and Discussion 

 Human brain microvascular endothelial cells (HBMECs) were seeded onto glass rods with 

diameters from 10 – 500 µm, spanning the range from brain capillaries to larger vessels, and 

allowed to reach confluence.  For comparison, experiments were also performed with HUVECs, 

widely used in cell culture studies of endothelial cells.  Typical confocal microscope images of 

cells seeded onto rods with different diameters are shown in Figure 19a-f.  To visualize the cell 

boundaries we stained for the tight junction protein ZO-1 in HBMECs and VE-cadherin in 

HUVECs.  The junctional markers reveal the morphology of the cells on the surface of the rods.  

At the smallest rod diameters, the HBMECs wrap around to form junctions with themselves 

(Figure 19c and Figure 19i), whereas the HUVEC cells do not (Figure 19f and Figure 19l). 
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Figure 19.  Influence of curvature on morphology of HBMEC and HUVEC confluent 

monolayers. 

(a-f) Confocal microscope images of confluent monolayers of HBMECs and HUVECs on rods 

with different diameters.  (a-c) HBMECs: (a) d = 498 µm, (b) d = 87 µm, (c) d = 13 µm. ZO-1 

(red), DAPI (blue).  (d-f) HUVECs: (d) d = 372 µm, (e) d = 90 µm, (f) d = 13.7 µm.  

VE-Cadherin (red), DAPI (blue).  Scaling in xy direction 0.44 µm/pixel, scaling in z direction 

0.8 µm/pixel.   

(g-l) Unwrapped confocal microscope images of confluent monolayers of HBMECs and 

HUVECs on rods with different diameters. 

(m-o) Cell morphology for confluent monolayers of HBMECs and HUVECs on rods with 

different diameter.  Data for 2D confluent monolayers are shown for comparison.  Inverse 

aspect ratio is the length of the short axis divided by the length of the long axis, circularity, C = 

4πA/P2, and the angular orientation is with respect to the rod axis.  The total number of cells 

analyzed was 666 (HBMEC) and 1018 (HUVEC).  Error bars represent SE. 

(p) Average number of cells around the rod perimeter for HBMECs and HUVECs.  The solid 

lines show fits to a power law where Ncell  dα.  For HBMECs α = 0.86 and the intercept where 

Ncell = 1 is at d = 9.8 µm.  For HUVECs, α = 0.80 and the intercept where Ncell = 1 is at d = 4.4 

µm.  The dotted line shows α = 1.0.  Error bars represent SE. 
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 The immunofluorescence images are transposed onto a 2D plane (Figure 19g-l) using 

UNWRAP.  Image analysis software (e.g. ImageJ) is then used for quantitative analysis of cell 

morphology on the “unwrapped” images.  Using this  approach we can quantitatively 

determine parameters associated with cell morphology such as the projected cell area (A), 

perimeter (P), circularity (C = 4πA/P2), inverse aspect ratio (IAR, length of short axis divided by 

length of long axis), and the orientation angle of the cell long axis with respect to the rod axis (θ).  

We also used these unwrapped images for quantitative analysis of actin filament orientation 

using Fourier transformation. 

 

3.2.1 Elongation and alignment 

 The dependence of morphological parameters on rod diameter for immortalized HBMECs 

and HUVECs is summarized in Figure 19m-p.  Data for 2D monolayers are provided for 

comparison (Figure 20) and additional data on cell area and perimeter are provided in Figure 21.  

For HBMECs, the inverse aspect ratio (IAR), a measure of cell elongation, is only weakly 

dependent on curvature (Figure 19m).  For rod diameters larger than 25 µm, the IAR is about 

0.7, independent of diameter, whereas for rod diameters less than 25 µm, the IAR decreases 

slightly to about 0.65 at a diameter of about 10 µm.  In contrast, the IAR for HUEVCs is 

strongly dependent on curvature, decreasing from about 0.6 at the largest diameter (d > 400 µm) 

to about 0.2 at the smallest rod diameter (d ≈ 10 µm) (Figure 19m).  Similar trends are 

observed for the cell circularity, a parameter commonly used in measuring cell morphology 

(Figure 19n).  The small changes in IAR and circularity of HBMECs indicate that they are not 

sensitive to curvature and elongate only slightly as the rod diameter decreases below 25 µm. 
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Figure 20.  Fluorescence images of confluent monolayers of HBMECs and HUVECs in 2D. 

HBMECs: (a) ZO-1 (red), DAPI (blue); (b) actin (green), DAPI (blue).  HUVECs: (c) 

VE-cadherin (red), DAPI (blue); (d) actin (green), DAPI (blue). 

 

 
Figure 21.  Cell area and perimeter for HBMECs and HUVECs on rods with different diameter 

and in 2D. 

 

 The average orientation angle of HBMECs is a measure of the axial alignment of cells 

(Figure 19o).  On large diameter rods and in 2D monolayers, the average orientation angle is 

45˚, characteristic of a random distribution between 0 – 90˚ across all cells.  The orientation 

remains random for rod diameters down to about 25 µm, further supporting the conclusion that 

the HBMECs are relatively insensitive to curvature.  For rod diameters less than 25 µm, the 
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average orientation angle decreases very rapidly to around 15˚ as the diameter approaches 10 

µm. 

 In contrast, the average orientation angle of HUVECs decreases very quickly, reaching a 

value of less than 15˚ at a rod diameter of about 200 µm, and approaching 0˚ for the smallest 

diameter (11 µm).   Even on the largest diameter rods, the curvature is sufficient to cause 

significant cell alignment.  In summary, HUVECs are extremely sensitive to curvature, and 

begin to elongate and align even at the largest rod diameters.  At the smallest diameters, the 

IAR decreases to about 0.2 corresponding to an elongation of five times, and the average 

orientation angle approaches zero corresponding to almost complete alignment. 

 The effect of curvature on endothelial cell morphology can be compared to the effect of shear 

stress.  Analysis of endothelial cells in aortic vessels of dogs and rabbits reveals an IAR ≈ 0.2 

(C ≈ 0.3) and an average orientation angle of 5 – 15˚ (Silkworth, Stehbens et al. 1975, Nerem, 

Levesque et al. 1981, Levesque and Nerem 1985).  These values for IAR and orientation angle 

are similar to those reported here for HUVECs on rod diameters of about 10 µm suggesting that 

curvature has a similar effect to shear stress in vivo.   In 2D cell culture, bovine aortic 

endothelial cells and HUVECs are characterized by IAR ≈ 0.7 (C ≈ 0.8) and  ≈ 45˚ (Levesque 

and Nerem 1985, Malek and Izumo 1996).  However, under a shear stress of 20 – 85 dynes cm-2 

for 24 h, the IAR decreases to about 0.25 (C ≈ 0.4) and  to about 15˚ (Malek and Izumo 1996), 

further suggesting that curvature and physiological shear stress have a similar effect on cell 

morphology. 

  

3.2.2 Scaling 
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 In brain capillaries, HBMECs wrap around the capillary perimeter to form tight junctions 

with themselves as well as their neighbors.  To investigate how endothelial cells arrange 

themselves as the rod diameter decreases, we analyzed the number of cells around the perimeter 

of the rods (Figure 19p).   For HBMECs, the number of cells around the perimeter (Ncell) of 

the rod decreases with decreasing radius, following a power law (Ncell  dα) with an exponent α = 

0.86, down to the smallest diameter where cells wrap around the rod to form junctions with 

themselves and their neighbors as in brain capillaries.  The x-axis intercept at Ncell = 1 (i.e. a 

single cell wrapping around to form a junction with itself) corresponds to a rod diameter of 9.8 

µm, very close to typical human brain capillary dimensions.  For a fixed IAR and projected cell 

area, the number of cells around the perimeter of a rod is expected to decrease linearly with 

diameter with an exponent α = 1.0.  The exponent of 0.86 is consistent with the small 

elongation. 

 The number of HUVEC cells around the perimeter also follows a power law down to about 

30 µm in diameter with an exponent of 0.80.  The decrease in IAR (Figure 19m) and projected 

cell area both contribute to the smaller exponent compared to HBMECs.  For rod diameters less 

than about 30 µm, the number of cells around the perimeter does not decrease below 3, 

indicating that there is a larger energy barrier for HUVECs to spread in regions of very high 

curvature compared to HBMECs (Figure 30).  Furthermore, the x-axis intercept at Ncell = 1 

corresponds to a rod diameter of 4.4 µm, below the typical human capillary diameter of around 8 

µm, suggesting that HUVECS would not be able to wrap around and form junctions with 

themselves in capillaries, even without the deviation from power law behavior. 

 

3.2.3 Finite size effects in orientation angle 
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 The orientation angle of a cell is defined as the angle between the cell long axis () and the 

rod axis (Figure 22).  On large rods where the perimeter is much larger than the long axis of the 

cell (πd >> ), the cell can adopt any orientation angle between 0˚ and 90˚.  For a uniform 

distribution of orientation angles, the average value is 45˚.  If there is an energy barrier (Figure 

8) to wrapping around the perimeter of the vessel then the cells will be preferentially aligned 

along the vessel axis and the average orientation angle will be less than 45˚.  However, when 

the rod perimeter is less than the long axis of the cell (πd ≤ ), then large angles are prohibited 

and the maximum allowed orientation angle is less than 90˚, and hence the average angle is also 

less than 45˚. 

 

 

Figure 22.  Schematic illustration showing how the finite size of a rod can limit the distribution 

of orientation angles of an endothelial cell. 

On large rods where the perimeter is much larger than the long axis of the cell (πd >> ), the cell 

can adopt any orientation angle between 0˚ and 90˚.  When the rod perimeter is less than the 

long axis of the cell (πd ≤ ), large angles are prohibited. 

 

 The influence of curvature and finite size effects on the average orientation angle can be seen 

in scatter plots of cell length and orientation angle for individual cells on a given rod diameter 
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(Figure 23).  HBMEC cells span the full range of allowed angles on large diameter (499 µm) 

glass rods.  For the range of cell lengths, approximately 40 – 80 µm, all orientation angles are 

allowed and the average angle is about 45˚.  On small diameter (18 µm) rods, the HBMECs 

span the full range of allowed angles, however, for the longer cells higher orientation angles are 

prohibited.  HUVEC cells on large diameter (530 µm) rods exhibit the full range of orientation 

angles, although the frequency at smaller angles is significantly higher due to curvature driven 

alignment.  On small diameter rods (13 µm) the HUVECs exhibit orientation angles 

considerably lower than the allowed range, illustrating the effect of curvature on cell alignment.  

In summary, the decrease in average orientation angle for HBMECs at small diameters is due to 

a finite size effect and not due to the influence of curvature.  In contrast, the decrease in angle 

for HUVECs is due to curvature. 

 

Figure 23.  Cell length and orientation angle for HBMECs and HUVECs on small and large 

diameter rods. 
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(a) HBMECs on 18 ± 0 µm (SE) glass rods (N = 66), (b) HBMECs on 499 ± 0 µm (SE) rods (N 

= 76), (c) HUVECs on 13 ± 0 µm (SE) rods (N = 39), and (d) HUVECs on 530 ±1 µm (SE) rods 

(N = 92).  The solid lines represent sin = πd where d is the average rod diameter.  A cell of 

length  can adopt any orientation angle on a rod of diameter d as long as sin ≤ πd. When 

the cell length is larger than πd then all orientation angles are allowed, however, when  ≤ πd 

then some angles are prohibited.  This finite size effect leads to a change in the distribution of 

orientation angles and a decrease in the average orientation angle.  SE is the standard error. 

 

3.2.4 Shear stress 

 To assess the influence of curvature and shear stress on cell morphology, we subjected 

approximately 250 µm diameter rods with confluent monolayers of HBMECs and HUVECs to a 

shear stress of about 50 dyne cm-2 for 24 hours (Figure 24).  Analysis of cell morphology 

revealed no significant change in IAR, circularity, or alignment for HBMECs.  In contrast, 

HUVEC cells showed a significant increase in elongation and alignment under shear stress 

compared to static conditions.  However, these changes were smaller than induced by curvature, 

further highlighting the important role for curvature in regulating cell morphology.  For 

example, the IAR of HUVECs on 228 µm rods decreased from 0.53 under static conditions to 

0.36 under shear stress (Figure 24e).  In contrast, the IAR decreased from 0.58 in 2D confluent 

monolayers to 0.27 on 12 µm diameter rods under static conditions (Figure 24m). 

 The distribution of actin stress fibers in the cells also shows significant differences between 

HBMECs and HUVECs.  In HBMECs, the stress fibers are oriented in all directions but with 

noticeably more fibers aligned perpendicular to the rod axis.  In contrast, the stress fibers in 

HUVECs are predominantly aligned along the rod axis.  In 2D experiments with bovine aortic 

endothelial cells and HUVECs, shear stress results in a reversible transition from a cobblestone 

morphology to a spindle morphology with the long axis aligned in the direction of flow.  At the 

same time there is a reorganization in the actin cytoskeleton resulting in the formation of bundles 
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of stress fibers aligned in the direction of flow (Franke, Grafe et al. 1984, Malek and Izumo 

1996).  The different alignment of stress fibers suggests that curvature influences cytoskeleton 

organization.  This may be similar to the way that mechano-transduction of shear stress 

associated with blood flow plays a role in the regulation of physical, biochemical, and gene 

expression responses in arterial circulation (Davies 1995, Chien 2007, Hahn and Schwartz 2009). 

 

 

Figure 24.  Influence of shear stress and curvature on cell morphology. 

Cells were seeded on rods with average diameter of 217  0 µm (HBMEC) and 228  1 µm 

(HUVEC) and subjected to a shear stress of 50 dyne cm-2 for 24 hours.  (a, c) HBMEC, (b, d) 

HUVEC, (e) IAR, (f) circularity, and (g) average orientation angle.  HBMEC static (N = 72), 

HBMEC shear stress (N = 45), HUVEC static (N = 46), HUVEC shear stress (N = 92).  *** P < 

0.001.  For HUVEC: P = 1.2 x 10-7 (IAR), P = 2.4 x 10-7 (C), P = 3.9 x 10-3 (). Error bars 

represent SE. 

 

3.2.5 Alignment of actin filaments 

 The differences in cell morphology between HBMECs and HUVECs are associated with 

differences in the actin cytoskeleton (Figure 25).  In HBMECs, actin stress fibers in the cell 

appear preferentially oriented perpendicular to the rod axis around the circumference (Figure 
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25b and Figure 25d).  This is particularly striking for the smallest rod diameters (Figure 25f 

and Figure 25h).   In contrast, the stress fibers in HUVECs appear preferentially oriented in 

the axial direction (Figure 25k and Figure 25m), and this is particularly evident at small rod 

diameters (Figure 25o and Figure 25q). 
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Figure 25.  Confocal microscope images of HBMECs and HUVECs on large and small 

diameter glass rods. 

HBMECs on a 170 µm diameter rod:  (a) ZO-1 (red), DAPI (blue); (b) actin (green), DAPI 

(blue); (c, d) corresponding unwrapped images.  HBMECs on an 11 µm diameter rod: (e) ZO-1 

(red), DAPI (blue); (f) actin (green), DAPI (blue); (g, h) corresponding unwrapped images; (i) 

cross-section ZO-1 (red), actin (green), DAPI (blue). 

HUVECs on a 228 µm diameter rod:  (j) VE-cadherin (red), DAPI (blue); (k) actin (green), 

DAPI (blue); (l, m) corresponding unwrapped images.  HUVEC on a 13 µm diameter rod: (n) 

VE-cadherin (red), DAPI (blue); (o) actin (green), DAPI (blue); (p, q) corresponding unwrapped 

images; (r) cross-section VE-cadherin (red), actin (green), DAPI (blue). 

 To quantitatively analyze actin filament alignment, we determined the radial intensity 

distribution from fluorescence images using fast-Fourier transforms.  We compared HBMEC 

and HUVEC cells in 2D confluent monolayers and on rods under static and flow conditions.  

Fluorescence images of cells in 2D and on larger rods (d ≈ 200 µm) were cropped to be 141 x 

141 µm with a resolution of 0.44 µm per pixel.  Images of cells on smaller rods (d ≈ 10 µm) 

were cropped to be 41 x 41 µm with a resolution of 0.44 µm per pixel.  The input images were 

cropped to be square to ensure equal contributions from vertical and horizontal axes.   

 We obtained the largest square image for each experimental condition, resulting in 5 cropped 

images for HUVEC and HBMEC cells in 2D, and 4 cropped images for HUVEC and HBMEC 

cells on large diameter rods (d ≈ 200 µm), and 5 cropped images for HUVEC and HBMEC cells 

on small diameter rods (d ≈ 10 µm).   

 Control experiments.  To study how image area influences the radial distribution in the 

frequency domain, we cropped the image of HUVEC cells in 2D into 4 small squares, and 

compared the radial distribution in the frequency domain, and found that the relative change is 

less than 20%, smaller than the relative difference between cells in different conditions (e.g. 

HUVEC cells on large diameter rods under static conditions compared to small diameter rods 

under static condition).  To study how the resolution influences the radial distribution in the 
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frequency domain, we compared the images of HUVEC cells in 2D at resolutions of 0.36 and 

0.44 µm per pixel.  The relative change in radial distribution in the frequency domain was less 

than 15%.   

 The square images, f(x, y) (0 ≤ x, y ≤ N-1, N is the number of pixels for the image square) 

were transformed into the frequency domain using fft2 in MATLAB.  The FFT image was 

produced by shifting F(0, 0) to the middle using fftshift, and calculating the magnitude of F(u, v) 

- |F(u, v)| using the abs routine in MATLAB.   

 The actin stress fibers in the fluorescence images can be considered as a superimposition of 

2D intensity waves, whereas each pixel in the frequency domain (|F(u, v)|) can be considered as a 

single wave of intensities in frequency domain.  The intensity for each pixel in the frequency 

domain, |F(u, v)|, represents the strength of each single wave.  To characterize the directionality 

of the actin stress fibers in the fluorescence image, we divided the FFT image into 18 bins, each 

with an angular range of 10˚, and the intensities in each bin were added together, and divided by 

the total intensities of all bins (the center pixel or pixels excluded).  The intensity fraction of all 

bins was plotted as a bar graph.  If the actin stress fibers were uniformly distributed in the 

fluorescence image, each bin is expected to have an intensity fraction of about 5.6% (≈ 100/18) 

(see dotted line in bar graphs in Figure 26). 

 The actin fiber alignment is determined from the parallel and perpendicular indices.  The 

parallel index represents the degree of alignment of actin fibers along the rod axis (vertical) and 

is defined by the sum of the intensities at 0 ± 10˚ (i.e. the sum of the intensities in the 0 – 10˚ and 

170 – 180˚ bins). The perpendicular index represents the degree of alignment perpendicular to 

the rod axis (horizontal) and is defined by the sum of the intensities at 90 ± 10˚ (i.e. the sum of 

the intensities in the 80 – 90˚ and 90 – 100˚ bins). 
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 For HBMEC and HUVEC cells in 2D the radial distributions show no preferential alignment 

– the parallel and perpendicular indices are about 11%, characteristic of a uniform distribution 

(100%/9).  For HBMECs on rods, both the parallel and perpendicular indices increase with 

decreasing diameter, indicating both parallel and perpendicular alignment of the actin filaments.  

In contrast, for HUVECs on rods, the parallel index increases significantly with decreasing 

diameter, showing strong axial alignment.  For HBMEC cells on large diameter rods (d ≈ 200 

µm), shear stress results a small decrease in the perpendicular index and a larger increase in the 

parallel index.  Similar results are observed for HUVECs. 
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Figure 26.  Quantitative analysis of actin fiber alignment. 

Fluorescence images of confluent monolayers of HBMEC and HUVEC cells in 2D, and on large 

(d ≈ 200 µm) and small (d ≈ 10 µm) diameter rods under static conditions.  Also shown are 

fluorescence images of HBMECs and HUVECs on large diameter rods under shear stress (d ≈ 
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200 µm).  All images were saved at a resolution of 0.44 µm per pixel.  The FFT images show 

the distribution of intensity in reciprocal space, with the zero-frequency pixel in the center.  The 

bar graphs show the radial intensity distributions. 

 

  

Figure 27.  Parallel and perpendicular indices for actin fiber distribution. 

Data obtained from analysis of the radial intensity distributions for confluent monolayers of 

HBMEC and HUVEC cells in 2D, on large and small diameter rods under static conditions, and 

on large diameter rods under shear stress (SS).  The average index for no preferential 

orientation is 11.1 (100%/9). HBMECs: (2D static) image number = 5; (211 µm static) d = 211 ± 

14 µm (SE), image number = 4; (11 µm static) d = 11 ± 0 µm (SE), image number = 5; (251 µm 

SS) 251 ± 2 µm (SE), image number = 3.  HUVECs: (2D static) image number = 5; (197 µm 

static) d = 197 ± 14 µm (SE), µm (SE), image number = 3. 

 

3.2.6 Non-brain vessels 

 Assuming that HBMECs and HUVECs are representative of endothelial cells in brain 

microvessels and non-brain large vessels, respectively, then the cell morphology and distribution 

of actin stress fibers suggest that endothelial cells in brain microvessels may be programmed to 

respond to curvature differently than endothelial cells in larger vessels.  To compare the 

behavior of endothelial cells in brain and non-brain microvessels, we studied the morphology of 

human dermal microvascular endothelial cells (HMVECs) in 2D and on glass rods with 

diameters around 20 and 200 µm (Figure 28 and Figure 29).  These results show that 

HMVECs behave similarly to HUVECs in all conditions, with morphological parameters (i.e. 

IAR, circularity, and orientation angle) significantly different from HBMECs in response to 
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curvature (P < 0.001).  This suggests it is the organ (brain or non-brain) rather than the vessel 

size that dictates the endothelial cell phenotype. 

 

 

Figure 28.  Fluorescence images of confluent monolayers of human dermal microvascular 

endothelial cells (HMVECs) in 2D and on a 24 µm diameter rod. 

(a) HMVECs in 2D.  (b) HMVECs on a 24 µm diameter rod.  (c) Corresponding unwrapped 

image for (b).  VE-cadherin (red), DAPI (blue). 
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Figure 29.  Cell morphological parameters for confluent monolayers of HBMEC, HUVEC and 

HMVECs in 2D and on large (~ 200 µm) and small (~ 20 µm) diameter glass rods. 

Parameters include: inverse aspect ratio (IAR), circularity, and average orientation angle. 

HBMECs: 2D (N = 238), d = 216 ± 3 µm (SE) (N = 32), d = 25 ± 0 µm (N = 48).  HUVECs: 

2D (N = 242), d = 228 ± 0 µm (N = 46), d = 28 ± 0 µm (N = 75).  HMVECs: 2D (N = 64), d = 

213 ± 5 µm (N = 60), d = 26 ± 0 µm (N = 110).  *** P < 0.001.  Error bars represent standard 

error (SE). 

 

3.3 Summary 

3.3.1 Energy and cell morphology for HBMECs and HUVECs 

 For HBMECs the energy difference (∆E) between the two states (axial and radial) is less than 

the thermal energy (kT, where k is the Boltzmann constant and T is temperature) and hence there 
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is no driving force for preferential alignment.  In contrast, the energy for radial orientation is 

larger than for axial alignment, resulting in an energy barrier for radial alignment.  As a result 

of this energy barrier, cells tend to align along the axial direction of the rod resulting in 

elongation and decreased circularity, as well as a small average orientation angle.  The results 

shown in Figure 19 suggest that the energy barrier is dependent on curvature or rod diameter, 

with the energy barrier increasing with decreasing diameter. 

 

 

Figure 30.  Schematic illustration showing the different energy states for axial and radial 

alignment of HBMECs, HUVECs, and HMVECs. 

 

3.3.2 BBB permeability and junction network 

 There are 600 km of capillaries in brain that supply essential fuels and prevent entry of 

harmful chemicals, pathogens, and immune cells into the brain.  The highly specialized 

endothelial cells that form brain capillaries are a key component of the blood-brain barrier (BBB) 

forming a network of tight junctions that almost completely block paracellular transport (Abbott, 

Patabendige et al. 2010, Daneman 2012, Wong, Ye et al. 2013).  Spatially, the tight junction 

network that contributes to maintaining homeostasis in the brain is defined by the morphology of 

the endothelial cells that form the capillaries.  Therefore, factors that affect cell morphology, 
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such as blood flow and curvature, directly influence the tight junction network.  To illustrate the 

relationship between cell morphology and the tight junction network, we consider a simple 

model (Figure 31) where cells of fixed area are tiled onto a cylinder of fixed vessel diameter.  

Cells are assumed to be hexagonal in shape and aligned in the axial direction. This model 

illustrates that the length of tight junctions per unit length of vessel decreases with decreasing 

elongation (IAR). 

 The paracellular flux of a solute (per unit length of capillary) into the brain is determined by 

the permeability (per unit length of tight junction) and the length of tight junctions (per unit 

length of capillary).  Therefore to minimize brain penetration there is an advantage to 

minimizing the permeability and/or the length of tight junctions per unit length of capillary.  In 

the brain, the permeability term is minimized by forming specialized tight junctions.  To 

minimize the length of tight junctions (per unit length of capillary), brain microvascular 

endothelial cells should not elongate in response to the high curvature associated with small 

capillaries or shear stress associated with blood flow.  The results from our rod assay suggest 

that brain microvascular endothelial cells are programmed to resist elongation in response to 

curvature and shear stress, and provide support for the hypothesis that this phenotype may have 

evolved to minimize the length of tight junctions per unit length of capillary and hence minimize 

paracellular transport into the brain. 

 



65 

 

 

Figure 31.  Relationship between cell morphology and tight junction length. 

(a-c) Illustrations of junction networks for 1, 2, and 3 cells around the perimeter of a cylinder 

with fixed diameter.  The cell shape is assumed to be hexagonal (regular or irregular) with 

constant area and aligned in the axial direction.  (d) Normalized junction length per unit length 

of cylinder versus number of cells around the perimeter.  (e) Normalized junction length versus 

the inverse aspect ratio (assuming all cells are aligned in the axial direction).  Note that the 

inverse aspect ratio for a regular hexagon is 0.87. 
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Chapter 4 Conclusions and Future Directions 

 Modern life sciences have been revolutionized by large scale, quantitative experiments and 

sophisticated theoretical analyses.  Numerous emerging scientific problems from fundamental 

research to public health are so complex that they require experts from different fields.  This 

dissertation mainly focuses on two topics at the interface of physical and biological sciences.  

 

4.1 Blinking in Quantum Dots 

 Quantum dots have attracted researchers from a broad range of interests ranging from 

fundamental mechanisms to various applications.  Achieving a detailed understanding of 

fundamental mechanisms is crucial in realizing various applications.  By utilizing a kinetic 

Monte Carlo method, this research work builds a physics framework that explains various kinds 

of optical behaviors of QDs.  Within this framework, ensemble average parameters such as 

quantum yield, absorption and emission spectra can be described in a consistent way with 

individual parameters such as on-time fraction, power-law statistics.  This research work 

suggests that incoming excitation light (generation rate g) can play an important role in blinking 

behavior, which is consistent with later experimental observations (Saba, Aresti et al. 2012).  

 

4.2 Endothelial Cells under Curvature and Shear Stress 

 Cell culture is an essential tool in modern life sciences including drug discovery, tissue 

engineering, and stem cell research.  In conventional tissue culture procedures, cells have been 

grown on a 2D plane.  2D cell growth may produce different gene expression, signaling and 

morphology from in vivo conditions, and therefore may compromise its clinical relevance 

(Cukierman, Pankov et al. 2001, Abbott 2003, Griffith and Swartz 2006, Atala 2007, Pampaloni, 
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Reynaud et al. 2007).  This research work reports a 3D tissue culture based on growing 

endothelial cells on the surface of glass rods.  By developing novel fluorescence microscopy 

techniques and image processing tools, our work enables us to quantify cell morphology on 3D 

cylindrical surfaces and study the curvature dependence.  By approximating the cell shapes with 

hexagons, we used a simple model to describe the relationship between cell morphology and 

junctional network.  We advocate that resistance to elongation of brain microvascular 

endothelial cells can yield an evolutionary advantage that helps maintain the barrier property. 

 Future directions include the influence of curvature and shear stress on other cell behaviors 

such as permeability and cell signaling, and the response of cell morphology to curvature in vivo. 
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Appendix I UNWRAP User Document 

 This MATLAB application takes a set of confocal microscope z-stack images of 

fluorescently labeled cells in a 3D cylindrical geometry and creates an unwrapped 2D image 

from the “tube” surface (Figure 18).  The application works best for a confluent monolayer of 

cells on a cylindrical surface.  The application can accommodate up to three channels (e.g. R, 

G, B), for example a junctional protein, a cytoskeleton protein, and a nuclear stain.  This code 

has been tested for MATLAB R2013b in Windows 7. 

 To make best use of this tutorial, download the folder “UNWRAP” from the Searson Group 

website (http://www.jhu.edu/searson/).  In the working folder “UNWRAP”, there are two 

sample image folders (“images1” and “images2”) and the application MATLAB file 

(UNWRAP.m), see Figure A1.  The MATLAB script (UNWRAP.m) can also be generated by 

copying the code from this document (see MATLAB Code).  The sample images include a 

confocal z-stack image of cells on a complete cylinder (“images1”) and on a partial cylinder 

(“images2”). 

 

Figure A1.  Contents in the working folder “UNWRAP”. 

 

Instructions 

Step 1.  For the purpose of the tutorial, the sample image folder “images1” is used as the input 

for “UNWRAP”.  To analyze your own images, create your own image folder (e.g. “imagesX”) 

inside the working folder, then create a sub-folder (e.g. “z_stack”) inside your image folder, 

transfer the z-stack images for your cylindrical structure from the software associated with the 

confocal microscope into your sub-folder (e.g. “z_stack”).  The z-stack images should be stored 

properly according to the following specifications (see Step 4):  (1) the z-stack images should 

be named sequentially as “common filename” + “numbers” + “.format” (e.g. “all_” + “001” + 

“.tif”, the numbers should have the same number of digits), (2) the cylindrical structure should be 

vertically oriented on the screen (important for the program to handle images properly).  An 

example of a z-stack image near the middle of the cylinder from the folder “images1” is shown 

in Figure A2. 

 

http://www.jhu.edu/searson/
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Figure A2.  An example of a z-stack image near the middle of the cylinder oriented vertically 

on the screen. 

 

Step 2.  In windows, use Notepad to create a text file (.txt) inside your image folder (e.g. 

“imagesX”) with name “scale.txt” and enter two numbers (separated by a carriage return): the 

first is the xy resolution (in units of µm/pixel) of each z-stack image, and second one is the 

spacing (in units of µm) between z-stack images (Figure A3).  Make sure the resolution 

information is saved correctly, otherwise you may get a distorted 3-D image in the following 

steps.  The hierarchy of your folder and files should be similar to the sample image folder 

“images1” or “images2” (i.e. a “scale.txt” file and a sub-folder of the image sequence inside your 

image folder). 

 

 

Figure A3.  The resolution information stored in file “scale.txt”. 

In this example, 0.41 represents the xy resolution (0.41 µm/pixel), and 0.2 represents the spacing 

between z-stack images (0.2 µm). 

 

Step 3.  Open UNWRAP.m in MATLB (can simply double click the file, or open it through the 

MATLAB “file” tab in the top left corner), then left click run .  After running UNWRAP.m, 

a series of prompts will appear in the command window (Figure A4).  Enter the relevant 

information after each prompt and press enter.  Caution: you should type names that match 

exactly with your folder and file names; otherwise, program will fail.  Figure A5 shows an 

example of the screen for the sample image folder “images1”.  In case of a problem, press 

“Ctrl” + “C” in the Command Window and restart the program by clicking . 
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Figure A4.  Prompts appeared in the command window for sample image folder “images1”.  

Names that need to be typed in for sample image folder “images1” are in red boxes. 

 

Step 4.  A sequence of numbers will appear in the Command Window while the program is 

reading all the input z-stack images and scale information from your image folder (“images1”). 

In about 30 seconds, a cross-section image will be displayed for the user to locate the 

user-defined focal plane.  This is the first of two cross-section images (one at each end of the 

cylinder) that are used to define the focal plane of the cylinder for unwrapping.  The second 

cross-section image will appear in Step 7.  If your resolution information is correct and the 

z-stack images are stored properly (see Step 1 and Step 2), you will get a circular cross-section 

image (Figure A5). 

 

Figure A5.  A cross section image of the cylindrical structure is shown on the screen. 

 

Step 5.  Create a rectangular region of interest (ROI) around the cross-section by moving your 

cursor to the top-left side of your circular cross-section image and holding your mouse and 

dragging to the bottom-right (Figure A6).  The rectangular region of interest (ROI) MUST 

include the image circle.  If you are not satisfied with your initial ROI, adjust the rectangle by 

clicking the edge of it and dragging such that it contains the whole cross section of interest with 
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an additional margin.  Double left click inside the rectangle and a zoomed-in image will be 

generated (Figure A6 and Figure A7). 

 

 

Figure A6.  A region of interest (ROI) of the cross section is created for the cylindrical 

structure. 
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Figure A7.  A zoomed-in figure of the cross section image is generated according to a user 

selected region of interest. 

 

Step 6.  Maximize the zoomed-in image (Figure A8) and left click 10-20 points uniformly 

distributed on the circular cross-section (Figure A9).  After each click, you will see a green 

cross “x” in the clicked position in the image.  If you want to change points, simply start over 

from Step 3.  After finishing selecting points, right click on the image.  A yellow fitted circle 

will be generated based on the input points you selected (Figure A10). This circle will be used as 

the first reference for unwrapping the cylindrical structure. 

 

Figure A8.  The zoomed-in figure is maximized for convenient point-clicking. 

 

 

Figure A9.  Input positions from user in defining the cross section.  (a) Green “x” markers 

represent the positions the user should click to identify the cross section.  (b)  Green “+” 

markers are displayed on the screen as the user is clicking positions. 
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Figure A10.  A yellow fitted circle is shown as an overlay. 

 

Step 7.  Repeat Step 6 for the second cross section image. 

Step 8.  An unwrapped image of all channels (i.e. R, G, B) will appear on the screen as your 

result (Figure A11).  In the meantime, a sub-folder called “unwrapped_images” (Figure A12) 

and an “info.txt” file ( 

Figure A13) will be generated inside your image folder (e.g. “images1”). Inside the 

“unwrapped_images” folder, the unwrapped images are separated into different combinations of 

channels (RGB, RB, GB, B with 1 image alone, and 2 images side-by-side).  The “info.txt” file 

will provide information regarding your cylinder including resolution (µm/pixel), cylinder 

diameter (µm), and cylinder length (µm). 

 

Figure A11.  An unwrapped image of the cylindrical structure is shown on the screen. This 

image is also saved in the output folder “unwrapped_images”. 
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Figure A12.  All unwrapped images are stored in the “unwrapped_images” folder. 

 

 

Figure A13.  Information for your input cylindrical structure, including the resolution (0.41 

µm/pixel), cylinder diameter (92.4 µm), the length of the cylinder in axial direction (209.9 µm). 

General Instructions 

 To apply this program to another image set, simply create a folder with the image sequence 

and “scale.txt” file in the same structure as described above, into the working folder (folder 

names can be different).   For example, a practice image folder named “images2” is provided 

in the working folder.  In the example in the “images2” folder, the z-stack represents only part 

of the cross section of a cylinder.  In this case, the points selected to define the cross section 

should only be located on the section of the cylinder that is imaged.  The information you need 

for this input folder is provided below (Figure A14). 

 

Figure A14.  Prompts in the command window for the sample image folder “images2”.  Input 

data is indicated by the red boxes. 

 For sample images, if something goes wrong, simply start over to Step 3 by clicking .  

For your own input images, if something goes wrong, check your folder carefully according to 

Step 1 and Step 2. 
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Appendix II MATLAB Code for UNWRAP 

% UNWRAP 
%   
% Mao Ye, Zhen Yang, and Peter C. Searson 
% Johns Hopkins University 
%   
% UNWRAP takes a series of z-stack images of a cylindrical object and unwraps  
% the image to create a set of 2D images for quantitative analysis.   
% The original images can contain up to three separate channels.  This  
% application is useful for unwrapping images of cylindrical objects such  
% as small blood vessels. 
%   
% The main steps in the applications are: 
% • Specify data folder, image format and scale info 
% • Input a series of z-stack images (up to three channels) 
% • Isotropic resample of the 3D volume 
% • Crop the volume to focus on the cylinder 
% • Fit to a cylinder 
% • Unwrap the image on the surface of the cylinder to obtain a set of 2D images 
% • Save unwrapped images and info 

  
function UNWRAP() 
%% Specify data folder, image format and scale info 
s1 = input('input the folder name (e.g. images1): ','s'); 
SubjFolder = [s1, '/']; 

  
s2 = input('input the sub-folder name for z_stack images (e.g. z_stack): ','s'); 
ImgFolder = [SubjFolder s2, '/']; 

  
s3 = input('input the format for z_stack images (e.g. tif): ','s'); 
ImgFmt = s3; % format of input z-stack images 

  
s4 = input('input the common filename of z_stack images (e.g. all_): ','s'); 
filename = s4; % common name of input images, CHANGE if filename is different! 

  
s6 = input('input the number of digits in the name of each z_stack image (e.g. 

3 for all_000.tif, 2 for all_00.tif): ','s'); 
digit = ['%0', s6, 'd'];% number of digits contained in names of input images, 

CHANGE if number of digits is different! 

  
s7 = input('input the start number for the image sequence (e.g. 0 for all_000.tif, 

1 for all_001.tif): ','s'); 
start = 1; % if 0, name starts from "all_000.tif"; if 1, start from "all_001.tif", 

CHANGE if the start number is different! 

  

  
imageNames = dir(fullfile(ImgFolder,'images','*.tif')); 
imageNames = {imageNames.name}'; 

  

  
% information for picking two slices in y-direction (perpendicular to cylinder) 
slice_show1 = 100; % slice numberfrom one end (no need to change) 
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slice_show2 = 100; % slice number from the other end (no need to change) 

  
% create a result folder if there's none 
RsltFolder = [SubjFolder 'unwrapped_images/']; 
if ~exist(RsltFolder); mkdir(SubjFolder, 'unwrapped_images'); end 

  

  
ImgName = [ImgFolder '*.' ImgFmt]; 
d = dir(ImgName); 
SliceNos = 1 : (length(d));  
SliceNum = length(SliceNos); 

  
%image scale information 
A = load([SubjFolder 'scale.txt']); % first row: xy resolution (µm/px); second 

row: z-spacing between z-stack images (µm) 
yScale = A(1); 
zScale = A(2); 
zRatio = zScale/yScale;  % z resolution / xy resolution um/px 

  
%% Input a series of z-stack images (up to three channels) 
% read one z-stack image to get the image size 
s = 1; 
FileName = [ImgFolder filename sprintf(digit, s) '.' ImgFmt];  
Img = imread(FileName); 
[Ny,Nx,Nc] = size(Img); 

  
% prepare 3D volume for 3 channels (RGB) 
RVol = zeros(Ny,Nx,SliceNum); 
GVol = zeros(Ny,Nx,SliceNum); 
BVol = zeros(Ny,Nx,SliceNum); 

  
% load z-stack images of a cylindrical 3D object 
display('read in slices. z = : ') 
for i = 1: SliceNum 
    s = start + SliceNos(i) - 1; 
    fprintf('%d\t', s) 
    if mod(s,5)==4 
        fprintf('\r') 
    end 
    FileName = [ImgFolder filename sprintf(digit, s) '.' ImgFmt]; 
    %display(s); 
    RGBImg = imread(FileName); 
    RVol(:,:,i) = RGBImg(:,:,1); 
    GVol(:,:,i) = RGBImg(:,:,2); 
    BVol(:,:,i) = RGBImg(:,:,3); 
end 
fprintf('\r\r') 

  
% normalize the image intensity to [0 1] 
RVol = double(RVol)/256; 
GVol = double(GVol)/256; 
BVol = double(BVol)/256; 
[Ny, Nx, Nz0] = size(RVol); 

  
%% Isotropic resample of the 3D volume 
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Nz = round(Nz0*zRatio); % target dimension in z-direction after isotropic 

resampling 
% prepare empty isotropic 3D volumes  
IsoRVol = zeros(Ny,Nx,Nz); 
IsoGVol = zeros(Ny,Nx,Nz); 
IsoBVol = zeros(Ny,Nx,Nz); 

  
% resize slice by slice in y direction 
display('generate isotropic volume. y = : ') 
for i = 1 : Ny 
    fprintf('%d\t', i) 
    if mod(i,5)==4 
        fprintf('\r') 
    end 
    % R channel 
    I = squeeze(RVol(i,:,:)); 
    I = imresize(I,[Nx,Nz], 'bicubic'); 
    IsoRVol(i,:,:) = I; 
    % G channel 
    I = squeeze(GVol(i,:,:)); 
    I = imresize(I,[Nx,Nz], 'bicubic'); 
    IsoGVol(i,:,:) = I; 
    % B channel 
    I = squeeze(BVol(i,:,:)); 
    I = imresize(I,[Nx,Nz], 'bicubic'); 
    IsoBVol(i,:,:) = I; 
end 
fprintf('\r\r') 

  
%% Crop the volume to focus on the cylinder 
display('crop image') 
y = slice_show1; % pick a slice in y-direction 

  
hf = figure;  
% create the color image for the slice for better visualization 
I = cat(3, squeeze(IsoRVol(y,:,:)), ... 
           squeeze(IsoGVol(y,:,:)), ... 
           squeeze(IsoBVol(y,:,:))); 
[X,Y,I2,rect] = imcrop(I); 

  
% record the cropped rectangle 
zmin = rect(1); 
zmax = rect(1) + rect(3); 
xmin = rect(2); 
xmax = rect(2) + rect(4); 

  
% convert to positive integer 
zmin = max(1, floor(zmin)); 
zmax = min(Nz, ceil(zmax)); 
xmin = max(1, floor(xmin)); 
xmax = min(Nx, ceil(xmax)); 

  
% crop the 3d volume according to the rectangle 
IsoRVol = IsoRVol(:, xmin:xmax, zmin:zmax); 
IsoGVol = IsoGVol(:, xmin:xmax, zmin:zmax); 
IsoBVol = IsoBVol(:, xmin:xmax, zmin:zmax); 
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[Ny,Nx,Nz] = size(IsoRVol); 

  
%% Fit to a cylinder 

  
LEFT = 1; MIDDLE = 2; RIGHT = 3; 
t = 0:pi/360:2*pi; 

  
display('fit circle on one end') 
y = slice_show1; % pick a slice near one end of the cylinder 

  
hf = figure;  
% create the color image for the slice for better visualization 
I = cat(3, squeeze(IsoRVol(y,:,:)), ... 
           squeeze(IsoGVol(y,:,:)), ... 
           squeeze(IsoBVol(y,:,:))); 
imshow(I, 'initialmagnification',50) 
title(['slice y = ' num2str(y)]) 
hold on 
P = []; 
% pick points 
[x,y,Button] = ginput(1); 
while(Button == LEFT) 
    P = [P; [x y]]; 
    plot(x, y, 'g+'); 
    [x,y,Button] = ginput(1); 
end 
% fit circle 
% call the Circle Fit (Taubin method) from MatLab File Exchange   
CirPar = FUN_CircleFitByTaubin(P); 
% plot fitted circle 
X = CirPar(1) + CirPar(3)*cos(t); 
Y = CirPar(2) + CirPar(3)*sin(t); 
plot(X,Y,'y') 
hold off 
% record the parameters for the first circle 
CirPar1 = CirPar; 

  

  
display('fit circle on the other end') 
y = Ny-slice_show2; % pick a slice near the other end of the cylinder 

  
figure;  
% create the color image for the slice for better visualization 
I = cat(3, squeeze(IsoRVol(y,:,:)), ... 
           squeeze(IsoGVol(y,:,:)), ... 
           squeeze(IsoBVol(y,:,:))); 
imshow(I) 
title(['slice y = ' num2str(y)]) 
hold on 
P = []; 
% pick points 
[x,y,Button] = ginput(1); 
while(Button == LEFT) 
    P = [P; [x y]]; 
    plot(x, y, 'g+'); 
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    [x,y,Button] = ginput(1); 
end 
% fit circle 
CirPar = FUN_CircleFitByTaubin(P); 
% plot fitted circle 
X = CirPar(1) + CirPar(3)*cos(t); 
Y = CirPar(2) + CirPar(3)*sin(t); 
plot(X,Y,'y') 
hold off 
% record the parameters for the second circle 
CirPar2 = CirPar; 

  
% average the parameters of the two circles 
CirPar = (CirPar1 + CirPar2)/2; 

  
%% Unwrap the image on the surface of the cylinder to obtain a set of 2D images 

  
Rc = CirPar(3); % radius of the cylinder in the image 
% number of angles to sample around the cylinder axis 
dTheta = 1/Rc;  
MinTheta = 0; 
MaxTheta = 2*pi-dTheta; 
Theta = MinTheta : dTheta : MaxTheta; 
ThetaNum = length(Theta); 

  
% number of sample points along cylinder axis 
dHeight = dTheta*Rc; 
MinHeight = 1; 
MaxHeight = Ny; 
Height = MinHeight : dHeight : MaxHeight; 
HeightNum = length(Height); 

  
Rot = eye(3); 
t0 = [CirPar(2)  0  CirPar(1)]'; 

  
% smoothing parameter 
r = 2; %2 
s = (2*r+1)^3; 
sigma = 1; 

  
% prepare empty unwrap images for three channels 
IsoRGrid = zeros(HeightNum, ThetaNum); 
IsoGGrid = zeros(HeightNum, ThetaNum); 
IsoBGrid = zeros(HeightNum, ThetaNum); 

  
XX = zeros(HeightNum, ThetaNum); 
YY = zeros(HeightNum, ThetaNum); 
ZZ = zeros(HeightNum, ThetaNum); 

  
for it = 1 : ThetaNum % sample around cylinder axis 
    theta = Theta(it); 
    for ih = 1 : HeightNum % sample along cylinder axis 
        % compute the spatial coordinate of sample point p0 
        height = Height(ih); 
        p0 = [Rc*sin(theta) 
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             height 
             Rc*cos(theta)]; 
        p0 = Rot*p0 + t0; 
        p0 = round(p0); 
        x0 = p0(1); y0 = p0(2); z0 = p0(3); 

         
        XX(ih,it) = x0; 
        YY(ih,it) = y0; 
        ZZ(ih,it) = z0; 

         
        % coordinate span of p0's neighborhood 
        xspan = max(x0-r,1):min(x0+r,Nx); 
        yspan = max(y0-r,1):min(y0+r,Ny); 
        zspan = max(z0-r,1):min(z0+r,Nz); 

         
        if isempty(xspan)||isempty(yspan)||isempty(zspan) 
            IsoRGrid(ih,it) = 0; 
            IsoGGrid(ih,it) = 0; 
            IsoBGrid(ih,it) = 0; 
        end 

         
        % average pixel intensity in p0's neighborhood and assign to the 
        % correponding pixel in the unswrapped image 
        I = IsoRVol(yspan, xspan, zspan); 
        IsoRGrid(ih,it) = sum(I(:))/s; 
        I = IsoGVol(yspan, xspan, zspan); 
        IsoGGrid(ih,it) = sum(I(:))/s; 
        I = IsoBVol(yspan, xspan, zspan); 
        IsoBGrid(ih,it) = sum(I(:))/s; 
    end 
end 

  
%% Save unwrapped images and info 
RGBGrid1 = cat(3,IsoRGrid, IsoGGrid, IsoBGrid); 
RGBGrid2 = cat(3,repmat(IsoRGrid,1,2), ... 
    repmat(IsoGGrid,1,2), ... 
    repmat(IsoBGrid,1,2)); 

  
RGBGrid3 = cat(3,zeros(size(IsoRGrid)), zeros(size(IsoGGrid)), IsoBGrid); 
RGBGrid4 = cat(3,repmat(zeros(size(IsoRGrid)),1,2), ... 
    repmat(zeros(size(IsoGGrid)),1,2), ... 
    repmat(IsoBGrid,1,2)); 

  
RGBGrid5 = cat(3,IsoRGrid, zeros(size(IsoRGrid)), IsoBGrid); 
RGBGrid6 = cat(3,repmat(IsoRGrid,1,2), ... 
    repmat(zeros(size(IsoRGrid)),1,2), ... 
    repmat(IsoBGrid,1,2)); 

  
RGBGrid7 = cat(3,zeros(size(IsoRGrid)), IsoGGrid, IsoBGrid); 
RGBGrid8 = cat(3,repmat(zeros(size(IsoRGrid)),1,2), ... 
    repmat(IsoGGrid,1,2), ... 
    repmat(IsoBGrid,1,2)); 

  
figure 
imshow(RGBGrid1) 
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axis image 

  
% save unwrapped images 
imwrite(RGBGrid1, [RsltFolder 'unwrap1.png'], 'png'); 
imwrite(RGBGrid2, [RsltFolder 'unwrap2.png'], 'png'); 
imwrite(RGBGrid3, [RsltFolder 'unwrap_blue1.png'], 'png'); 
imwrite(RGBGrid4, [RsltFolder 'unwrap_blue2.png'], 'png'); 

  
imwrite(RGBGrid5, [RsltFolder 'unwrap_rb1.png'], 'png'); 
imwrite(RGBGrid6, [RsltFolder 'unwrap_rb2.png'], 'png'); 
imwrite(RGBGrid7, [RsltFolder 'unwrap_gb1.png'], 'png'); 
imwrite(RGBGrid8, [RsltFolder 'unwrap_gb2.png'], 'png'); 

  
% save unwrap info 
fid = fopen([SubjFolder 'info.txt'], 'w'); 
fprintf(fid, 'um per pixel: %f \n', yScale); 
fprintf(fid, 'cylinder diameter: %f \n', 2*Rc*yScale); 
fprintf(fid, 'cyliner length: %f \n', Ny*yScale); 
fclose(fid); 

  

  
end 

  

  

  
% The following session is obtained from MATLAB file exchange. 
% 

http://www.mathworks.com/matlabcentral/fileexchange/22678-circle-fit-taubin-m

ethod 

  
function Par = FUN_CircleFitByTaubin(XY) 

  
%-------------------------------------------------------------------------- 
%   
%     Circle fit by Taubin 
%      G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar 
%                  Space Curves Defined By Implicit Equations, With  
%                  Applications To Edge And Range Image Segmentation", 
%      IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991) 
% 
%     Input:  XY(n,2) is the array of coordinates of n points x(i)=XY(i,1), 

y(i)=XY(i,2) 
% 
%     Output: Par = [a b R] is the fitting circle: 
%                           center (a,b) and radius R 
% 
%     Note: this fit does not use built-in matrix functions (except "mean"), 
%           so it can be easily programmed in any programming language 
% 
%-------------------------------------------------------------------------- 

  
n = size(XY,1);      % number of data points 

  
centroid = mean(XY);   % the centroid of the data set 
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%     computing moments (note: all moments will be normed, i.e. divided by n) 

  
Mxx = 0; Myy = 0; Mxy = 0; Mxz = 0; Myz = 0; Mzz = 0; 

  
for i=1:n 
    Xi = XY(i,1) - centroid(1);  %  centering data 
    Yi = XY(i,2) - centroid(2);  %  centering data 
    Zi = Xi*Xi + Yi*Yi; 
    Mxy = Mxy + Xi*Yi; 
    Mxx = Mxx + Xi*Xi; 
    Myy = Myy + Yi*Yi; 
    Mxz = Mxz + Xi*Zi; 
    Myz = Myz + Yi*Zi; 
    Mzz = Mzz + Zi*Zi; 
end 

  
Mxx = Mxx/n; 
Myy = Myy/n; 
Mxy = Mxy/n; 
Mxz = Mxz/n; 
Myz = Myz/n; 
Mzz = Mzz/n; 

  
%    computing the coefficients of the characteristic polynomial 

  
Mz = Mxx + Myy; 
Cov_xy = Mxx*Myy - Mxy*Mxy; 
A3 = 4*Mz; 
A2 = -3*Mz*Mz - Mzz; 
A1 = Mzz*Mz + 4*Cov_xy*Mz - Mxz*Mxz - Myz*Myz - Mz*Mz*Mz; 
A0 = Mxz*Mxz*Myy + Myz*Myz*Mxx - Mzz*Cov_xy - 2*Mxz*Myz*Mxy + Mz*Mz*Cov_xy; 
A22 = A2 + A2; 
A33 = A3 + A3 + A3; 

  
xnew = 0; 
ynew = 1e+20; 
epsilon = 1e-12; 
IterMax = 20; 

  
% Newton's method starting at x=0 

  
for iter=1:IterMax 
    yold = ynew; 
    ynew = A0 + xnew*(A1 + xnew*(A2 + xnew*A3)); 
    if abs(ynew) > abs(yold) 
       disp('Newton-Taubin goes wrong direction: |ynew| > |yold|'); 
       xnew = 0; 
       break; 
    end 
    Dy = A1 + xnew*(A22 + xnew*A33); 
    xold = xnew; 
    xnew = xold - ynew/Dy; 
    if (abs((xnew-xold)/xnew) < epsilon), break, end 
    if (iter >= IterMax) 
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        disp('Newton-Taubin will not converge'); 
        xnew = 0; 
    end 
    if (xnew<0.) 
        fprintf(1,'Newton-Taubin negative root:  x=%f\n',xnew); 
        xnew = 0; 
    end 
end 

  
%  computing the circle parameters 

  
DET = xnew*xnew - xnew*Mz + Cov_xy; 
Center = [Mxz*(Myy-xnew)-Myz*Mxy , Myz*(Mxx-xnew)-Mxz*Mxy]/DET/2; 

  
Par = [Center+centroid , sqrt(Center*Center'+Mz)]; 

  
end    %    CircleFitByTaubin 
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