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Abstract

The cerebellum plays an important role in motor control and cognitive functions.
Cerebellar dysfunction can lead to a wide range of movement disorders. Despite the
significant impact on the lives of patients, the current standard of diagnosis, progno-
sis, and treatment for cerebellar disease is limited. Magnetic resonance (MR) imaging
based morphometric analysis of the cerebellum, which studies the brain structural
pattern associated with disease and functional decline, is of great interest and im-
portance. It sets the stage for developing disease-modifying therapies, monitoring
individual patient progress, and designing efficient therapeutic trials. Compared to
the cerebrum, morphometric analysis in the cerebellum has been limited. Automated
and accurate volumetric analysis techniques are lacking. Methods using MR based
morphometric biomarkers to predict disease type and functional decline have been
lacking or inconclusive. The work presented in this thesis is motivated by the need
for better cerebellar structure segmentation and effective structure-function correla-
tion and prediction methods in cerebellar disease.

The thesis makes four major contributions. First, we proposed an automated
method for segmenting cerebellar lobules from MR images. The proposed method
achieved better performance than two state-of-the-art segmentation methods when
validated on a cohort of 15 subjects including both healthy controls and patients with
various degrees of cerebellar atrophy. Second, we presented two highly-informative
shape representations to characterize cerebellar structures: a landmark shape repre-
sentation of the collection of cerebellar lobules and a level set based whole cerebellar
shape representation. Third, we developed an analysis pipeline to classify healthy
controls and different ataxia types and to visualize disease specific cerebellar atrophy
patterns based on the proposed shape representations and high-dimensional pattern
classification methods. The classification performance is evaluated on a cohort con-
sisting of healthy controls and different cerebellar ataxia types. The visualized cere-
bellar atrophy patterns are consistent with the regional volume decreases observed
in previous studies in cerebellar ataxia. Compared to existing analysis methods, the
proposed method provides intuitive and detailed visualization of the differences of
overall size and shape of the cerebellum, as well as that of individual lobules. Fourth
and the last, we developed and tested a similar analysis pipeline for functional score
prediction and function specific cerebellar atrophy pattern visualization.

The thesis was prepared under the direction of Dr. Jerry L. Prince.
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Chapter 1

Introduction

1.1 Motivation

The cerebellum plays an important role in motor control [1,2] and is also involved in

regulation of cognition and emotion [3, 4]. Cerebellar dysfunction can lead to a wide

range of movement disorders including a lack of coordination, reduced manual dex-

terity, postural instability, and gait disturbances [5]. Despite the significant impact

on the lives of patients, the current standard of diagnosis, prognosis, and treatment is

inadequate [6,7]. Magnetic resonance (MR) imaging provides the potential to improve

our understanding of cerebellar neurodegeneration by revealing structural changes in

the cerebellum. Figure 1.1 shows example coronal sections of the cerebellum from a

healthy control and subjects with spinocerebellar ataxia type 2 (SCA2), spinocerebel-

lar ataxia type 6 (SCA6), and ataxia-telangiectasia (AT). We can see that all of the

three ataxia types show cerebellar atrophy relative to the healthy control. However,

SCA2 shows significant atrophy of the corpus medullare (central white matter of the

cerebellum and the deep cerebellar nuclei) while SCA6 shows more atrophy in the

posterior-inferior regions of the cerebellum. It is of great interest to study the cere-

bellar structural pattern associated with specific disease type and functional decline,

and to quantify the correlation between cerebellar structural change with functional

decline. On the scientific side, it helps researchers further understand the localized

function map of the cerebellum. On the clinical side, it sets the stage for developing

1



disease-modifying therapies, monitoring individual patient progress, and designing

efficient therapeutic trials.

Healthy control SCA2 SCA6 AT

Figure 1.1: Example coronal sections of the cerebellum from HC and three ataxia
types.

MR image based brain morphometric analysis has been successfully established as

a tool for the differential diagnosis and for disease progression prediction of Alzheimer’s

disease [8–10], Huntington’s disease [11–13], and several other neurodegenerative dis-

eases, with most of the studies done on cerebrum structures. Compared to the cere-

brum, literature on the morphometric analysis in the cerebellum is much more limited

due to the relatively smaller population affected.

In this work, we focus on morphometric analysis of the cerebellum in cerebel-

lar ataxia, with special focus on: 1) developing an automated and accurate method

for segmenting fine anatomical divisions of the cerebellum; 2) exploring highly in-

formative representation of the cerebellar structures; 3) predicting ataxia types and

functional declines based on the highly informative representations, and 4) identifying

disease and function specific cerebellar atrophy patterns.

1.2 Anatomy and function of the cerebellum

The cerebellum is located at the back of the brain, below the posterior part of the

cerebrum and behind the top part of the brain stem (see Figure 1.2(a)). The cere-

bellum is divided into two hemispheres connected by a narrow midline zone (see

Figure 1.2(b)). The cerebellum consists of a tightly folded layer of gray matter cor-

tex and a central mass of white matter, called the corpus medullare. Fissures divide

the cortex into small branches called lobules, numbered from I to X [14]. The most

2



prominent fissures define the boundaries of the lobes of the cerebellum. Lobules I–V

form the anterior lobe, VI–VII form the middle lobe, and VIII–X form the caudal

lobe. Figure 1.3 shows MR image of the cerebellum and manually labeled regions

with their names overlaid on MR images. Figure 1.4 shows a surface rendering of the

cerebellar lobules, lobes, and primary fissures.

Brain stem

Primary fissure

Anterior lobe

Vermis

Posterior lobe

Left hemisphere Right hemisphere

(a) (b)

Cerebrum

Cerebellum
Brain stem

Figure 1.2: The cerebellum. (a) Location of the cerebellum; (b) Gross anatomy of the
cerebellum. Image courtesy of James Knierim Neuroscience Online Section 3 Chapter
5: Cerebellum (http://neuroscience.uth.tmc.edu/s3/chapter05.html).

The cerebellum is most understood in terms of its contributions to motor control,

including maintenance of balance and posture, coordination of voluntary movements,

and motor learning. It is also involved in certain cognitive functions, such as language

and emotion regularization. The cerebellar motor and cognitive functions are topo-

graphically organized, as revealed by functional magnetic resonance imaging (fMRI)

studies [15–20]. These studies suggest that the anterior lobe and intermediate parts

of posterior lobe are related to motor and somatosensory functions, whereas the lat-

eral posterior cerebellum is related to cognitive functions. Whether similar regional

structural atrophy pattern correlates with specific function loss in cerebellar diseases

remains unknown.
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Axial Sagittal Coronal

CM
VI
CRUS I

CRUS II

I-V VI vermis

VII vermis

VIII vermis

X vermis

IX vermis

CM

I-V
VI

CRUS I
CRUS II
VII B

VIII
IXVII vermis

X vermis
IX vermis
VIII vermis

Figure 1.3: Annotated examples of the cerebellar lobules in three different views. The
top and bottom rows are MR images overlaid with expert delineated lobules from a
healthy control and an ataxia patient, respectively.

1.3 Cerebellar ataxia

Ataxia typically refers to the lack of coordinated movements. It describes symptoms

without reference to specific diseases. Cerebellar ataxia is a form of ataxia originating

in the cerebellum [6,7]. Cerebellar ataxia can occur as a result of many diseases and

has symptoms of an inability to coordinate balance, gait, and eye movements. The

cause of cerebellar ataxia can be: 1) inherited, which means they are caused by a

defect in a certain gene that is present from the start of a person’s life; 2) acquired,

Corpus medullare

Lobule I-V

Lobule VI

CRUS I

CRUS II

Lobule VII B
Lobule VIII Lobule IX

Middle Lobe

Anterior Lobe

Lobule X

Caudal Lobe

Lobule I-V

Lobule VI

CRUS I
CRUS II

Lobule VII B

VII Vermis
VI Vermis

VIII Vermis

Lobule IX

Lobule VIII

IX Vermis
X Vermis

Primary fissure

Horizontal fissure

(a) (b)

Figure 1.4: Surface rendering of cerebellar lobules and lobes. (a) Anterior view;
(b) Posterior view.
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e.g., from injury, diseases and toxic; 3) idiopathic, e.g., cerebellar form of multiple

system atrophy.

The diagnostic approaches to cerebellar ataxia include checking medical history,

family history of neurological problems, neurological examinations, blood tests to rule

out other diseases and toxins, MR scan of the brain, and other tests [21]. Genetic

blood tests are available for some types of hereditary ataxia to determine if some-

one has inherited an ataxia gene that affected other family members. For clinical

assessment of the severity of ataxia, the International Cooperative Ataxia Rating

Scale (ICARS) [22] and the Scale for the Assessment of Ataxia (SARA) [23] have

been validated.

Although scientific and clinical studies on cerebellar ataxia have made significant

progress, the research has not yet led to new effective therapies. Etiological treatment

approaches are available only for some rare forms of ataxia with known biochemical

defects. For most other types of hereditary and non-hereditary ataxia, only supportive

treatment is possible.

The major disease types being studied in this work are spinocerebellar ataxia (SCA).

SCA is a progressive, degenerative, genetic disease with multiple types, each of which

could be considered a disease in its own right. An estimated 150,000 people in the

United States are diagnosed with SCA. There is no known effective treatment or cure.

Since SCA has multiple genetic versions, each with a characteristic pattern of anatom-

ical degeneration that yields distinctive motor and cognitive problems, it provides a

rich source to study the relationships between cerebellar structure and function.

1.4 Brain morphometric analysis review

Region of interest (ROI) volumetric analysis has been traditionally used to investi-

gate the structural changes of the brain and is still now one of the most intuitive

and reliable methods for structural analysis [8,24–36]. In ROI volumetric analysis, a

number of well-defined ROIs are delineated, and the volumes of these ROIs are sta-

tistically analyzed. Manual ROI delineation remains the gold standard, but it is very
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time-consuming and requires specialized anatomical expertise and training to ensure

accuracy and to prevent rater-dependent bias. These limitations might be overcome

by automated methods to identify ROIs [37–39]. Another limitation of ROI-based

analysis is that the ROI must be defined in advance, while in practice it is often the

case that the regions affected by the disease are not known. Moreover, the disease

might affect only part of a well-characterized anatomical region.

Voxel-based morphometry (VBM) gained popularity in the last two decades [9,

40–50]. VBM methods are based on a spatial transformation that map the sub-

ject images into a standard space, followed by a voxel-wise statistical analysis of the

spatial distribution of different tissue types [40, 45], of the properties of the spatial

transformation itself [51,52], or of combined measurements of the residual image and

the spatial transformation [43]. VBM can identify regions in which two groups differ

(e.g., patients and healthy controls) or regions in which other variables (e.g., age, gen-

der, disease severity) correlate with image based measurements. Compared with ROI

volumetric analysis, VBM avoids pre-defining and delineating of ROIs and provide

more localized morphometric information. However, VBM depends on the artificial

deformation field between two subjects obtained by the registration algorithm, differ-

ent registration algorithms give different results. Also, the amount of smoothing used

to compensate for the registration error and increase statistical power of the analysis

also affects the result. Both ROI volumetry and VBM employ mass univariate anal-

ysis. They have limited ability in identifying complex population differences because

they do not take into account the multivariate relationships in the data [53]. Regions

showing significant group difference are not necessarily good discriminatory factors

at the individual level in prediction tasks.

With the development of machine learning algorithms capable of dealing with

high-dimensional data, pattern classification methods have been recently proposed

for morphological analysis [10,54–62]. These methods typically take as input features

the voxel-wise measurement as that used in VBM. They aim to capture multivariate

relationships in the data and can achieve high classification accuracy on individual

subjects. A challenge for these methods is that the training samples in medical
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research are often insufficient compared to the high dimensionality of the data, di-

mension reduction like principal component analysis (PCA) [63–65], and nonlinear

manifold learning [66–70] is carried out before any analysis. Then machine learning

algorithms like linear discriminant analysis (LDA) [71], logistic regression [72, 73],

support vector machine (SVM) [74], decision trees [75, 76], and ensemble learning

methods [77, 78] are used to perform classification (e.g., predict disease type) or re-

gression tasks (predict functional loss).

Statistical shape analysis also plays an important role in brain morphological anal-

ysis [79–95], where geometric outline of the anatomical structure is encoded in a vector

and statistical learning methods are designed to study the population distribution in

high-dimensional shape space. A very widely used representation is that of homol-

ogous landmarks located on the boundary (a closed contour in 2D case and closed

surface in 3D case) of the object. Since shape representations try to capture all the

geometrical information that remains after removing location, scale, and rotational

effects [96], they provide more morphological information than local volume changes

as in ROI and VBM analysis. For example, VBM cannot reflect the bending of an

elongated shape. Since shape representation form a linear space, it can synthesize

and visualize plausible instances in shape space. One challenge in applying shape

analysis to the brain is to establish corresponding geometry across subjects in a pop-

ulation, which is difficult due to the complex geometry of anatomical structures and

the large inter-subject variability. Current shape analysis methods are often applied

to structures with simple geometry, e.g., brain sub-cortical structures.

Compared to the cerebrum, literature on the morphometric analysis in the cerebel-

lum is much more limited due to the relatively smaller population affected. ROI volu-

metric analysis have been applied [31,33,97–104], but they were only performed with

low numbers of affected individuals or evaluated on gross anatomical divisions (due

to the lack of accurate volumetric analysis techniques for finer ROIs). VBM analysis

have been applied [105–109], but methods using MR based morphometric biomarkers

to predict clinical dysfunction or disease progression have been lacking or inconclusive.
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1.5 Thesis contributions

The major contributions of this thesis are summarized as follows:

1. We propose an automated method for segmenting cerebellar lobules from MR

images (see Chapter 2). There are few works on segmenting fine sub-structures

of the cerebellum, especially ones validated on both healthy and diseased sub-

jects. The method described in this thesis combines multi-atlas label fusion

result and tissue/boundary classification in a graph cut segmentation frame-

work. The multi-atlas component ensures the correct localization of different

lobules, and tissue/boundary classification promotes accurate delineation of lob-

ule boundaries. The proposed method is assessed on a cohort of 15 subjects,

including both healthy controls and patients with various degrees of cerebel-

lar atrophy, for which expert manual labels are also available. The method

was further validated on a larger cohort containing both normal controls and

patients experiencing cerebellar ataxia. Quantitative analysis of the lobule vol-

umes show distinct patterns of volume changes associated with different SCA

subtypes consistent with known patterns of atrophy in these genetic subtypes.

2. We propose two shape representations to characterize cerebellar structures (see

Chapter 3). First, we propose a landmark shape representation of the collection

of cerebellar lobules. This highly informative feature representation of the cere-

bellar structure is constructed by extracting dense homologous landmarks on

the boundary surfaces of cerebellar sub-structures. We addressed the difficulty

in establishing dense corresponding points on multiple 3D objects across sub-

jects by a two-step non-rigid point set registration. Second, we propose a level

set based shape representation. This representation is easy to generate (only

a cerebellar tissue segmentation is needed, followed by a signed distance trans-

form) and unique (no artificial non-rigid alignment involved as in VBM and

landmark shape representation). We demonstrated the representational power

of the proposed shape representations by studying the shape variations of dif-

ferent populations. We also compared the proposed shape representations with
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existing morphometric measures like ROI volumes and RAVENS maps in dis-

ease classification and functional score regression to evaluate their discriminant

power (see Chapters 4 and 5).

3. We present a shape analysis pipeline to classify healthy controls and differ-

ent ataxia types and to visualize the characteristic cerebellar atrophy patterns

for different ataxia types. Linear dimension reduction is applied to reduce the

high-dimensional shape representation to a low-dimensional feature vector. A

classifier is built in the dimension-reduced space to predict disease types. Char-

acteristic atrophy pattern for an ataxia type is visualized by sampling along the

discriminant direction between healthy controls and the ataxia type. Experi-

mental results show that the proposed method can successfully classify healthy

controls and different ataxia types. The visualized cerebellar atrophy patterns

were consistent with the regional volume decreases observed in previous stud-

ies in cerebellar ataxia. Compared to existing analysis method, the proposed

method provides an intuitive and detailed understanding about changes of over-

all size and shape of the cerebellum as well as that of individual lobules.

4. We present a shape analysis pipeline to predict functional scores and to visualize

the function specific atrophy patterns. Similar to discriminant analysis, linear

dimension reduction is applied to generate a low-dimensional feature vector. A

regressor is built in the dimension-reduced space to predict functional scores.

Functional specific atrophy patterns are visualized by sampling along the re-

gression line. The visualized function specific atrophy patterns partially agree

with a previous study on the topological organization of cerebellar functions.

We note that parts of this thesis have been previously published or submitted as

conference and journal papers [110–112].

1.6 Thesis organization

The remainder of the thesis is organized as follows:
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In Chapter 2, we review the literature on cerebellar structure segmentation and

describe the proposed automated cerebellar lobule segmentation method. We tested

the method on 15 subjects with expert labels and compared the performance with

two state-of-the-art segmentation methods. We further validated the method on a

larger cohort containing both normal controls and patients experiencing cerebellar

ataxia.

In Chapter 3, we first review the background on shape modeling and then present

two shape representations to characterize cerebellar structures: a landmark shape

representation of the collection of cerebellar lobules and a level set based whole cere-

bellar shape representation. We study the cerebellar shape variations of different

populations using the two shape representations.

In Chapter 4, we present the shape analysis pipeline to classify healthy controls

and different ataxia types, and to visualize the characteristic cerebellar atrophy pat-

tern. We tested the classifer on a data set with healthy controls, four spinocerebellar

ataxia subtypes and ataxia-telangiectasia, and compared the performance of different

cerebellar structural representations. We also compared the visualized cerebellar atro-

phy patterns with regional volume decreases observed in previous studies in cerebellar

ataxia.

In Chapter 5, we present a shape analysis pipeline to predict functional scores and

to visualize the function specific atrophy patterns. We tested the classifer on a data set

with healthy controls, four spinocerebellar ataxia subtypes and ataxia-telangiectasia,

and compared the performance of different cerebellar structural representations. We

also compared the visualized function specific atrophy patterns with previous studies

on the topological organization of cerebellar functions.

In Chapter 6, we summarize the work in this thesis and point out some future

research directions.
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Chapter 2

Cerebellar Lobule Segmentation

In this chapter, we present a new method for segmenting and labeling the cerebellar

lobules from MR images. Pronounced regional cerebellar atrophy is known to occur in

the spinocerebellar ataxias (SCAs) [97,101,104], while more subtle regional cerebellar

atrophy has been observed in several other neurological diseases such as Parkinson’s

disease [113,114], Huntington’s disease [115,116], Alzheimer’s disease [117], and mul-

tiple sclerosis [118]. Accurate delineation of the cerebellum as a whole as well as

further parcellation into lobes and lobules can be used to better understand cere-

bellar structural change and to diagnose and monitor disease. The purpose of the

proposed method in this thesis is two-fold. First, it will be used for ROI volumetric

analysis in differentiating different SCA types in Section 2.4.3; Second, it will be used

for constructing a highly informative structural representation of the cerebellum in

Chapter 3.

The remainder of this chapter is organized as follows: in Section 2.1, we review the

literature on cerebellar structure segmentation and bring forward the idea behind the

proposed algorithm; in Section 2.3, we describe the proposed automated cerebellar

lobule segmentation method; in Section 2.4.2, we describe our testing of the method

on 15 subjects with expert labels and we show a comparison of the performance

with two state-of-the-art segmentation methods; in Section 2.4.3, we show results of

applying the method on a larger cohort containing both normal controls and patients

experiencing cerebellar ataxia.

11



2.1 Related works

Although the cerebellum has a fairly regular structure [14]—known, in particular,

to be less variable than the cerebrum [119]—it nevertheless remains challenging for

both manual raters and automatic algorithms to consistently and reliably label the

parts of the cerebellum from magnetic resonance (MR) images. For example, experts

(requiring thousands of hours of training), take 50–60 hours to label the whole cere-

bellum, its lobes, and its lobules [120]. Although time and cost can both be reduced

by using multiple inexpert raters [120], the time and effort still remains considerable,

and consistency of the results across different sets of raters may be poor.

Various automated methods such as FreeSurfer [121], TOADS [122], and oth-

ers [123] provide a cerebellum segmentation result as part of their whole-brain seg-

mentation method. These methods typically provide a whole cerebellum segmentation

and also segment its gray matter (GM) and white matter (WM). Several specialized

methods for segmenting just the cerebellum itself have also been developed; one

method uses atlas registration and local image descriptors [124] and another uses an

active contour model with a shape prior [125].

For a parcellation of the cerebellum into lobes and lobules, atlas based methods are

typically used. In these methods one or more atlas brains are registered to the subject

to be segmented and the atlas labels are transferred to the subject brain. Diedrich-

sen et al. (2006) [126] developed a spatially unbiased atlas template of the human

cerebellum (SUIT) and later revised it with a probabilistic atlas [127]. Multi-atlas

methods reduce the bias towards a specific atlas, and have been shown to be effective

when combined with various label fusion strategies [128–130]. However, the accuracy

of multi-atlas methods are limited by the quality of the registration result, which

is in turn affected by the difference in cerebellar geometry of the atlas and subject.

Cerebellar parcellation of subjects with extreme atrophy can therefore be expected to

be poor when using these approaches, which is undesirable for quantitative analysis

of group structural differences or studying structural-functional correlations. Various

label fusion strategies have been proposed to solve these problems in different seg-

12



mentation tasks [131–134] including segmenting cerebellar sub-structures [135]. There

has been few studies containing both healthy controls and patients with cerebellar

atrophy. Bogovic et al. proposed ACCLAIM (Automatic Classification of Cerebel-

lar Lobules Algorithm using Implicit Multi-boundary evolution) [136], which used a

multi-object geometry deformable model driven by random forest boundary classifi-

cation. The method demonstrated superior performance in comparison to the SUIT

atlas-based labeling method and a multi-atlas label fusion approach [128], and was

shown to perform well on both healthy controls and cerebellar ataxia patients.

The new method described here combines multi-atlas label fusion result and tis-

sue/boundary classification in a graph cut segmentation framework. In particular, the

multi-atlas and tissue classification results together determine the region terms in the

graph cut energy function while the boundary classifier determines a boundary term

in the energy function. The multi-atlas component ensures the correct localization of

different lobules, and tissue/boundary classification promotes accurate delineation of

lobule boundaries.

2.2 Atlases and image preprocessing

The method use a set of subjects as atlases (or training subjects). This set of sub-

jects was manually delineated by an expert with over 5000 hours of training using

the protocol described in Bogovic et al. (2013) [120]. The MR images of both the

atlas subjects and the subject to be segmented are preprocessed using FreeSurfer

version 5.3.0 [121]. As part of this procedure, each MR scan is transformed into

MNI (Montreal Neurological Institute) space [137, 138] and a skull-stripped and in-

tensity normalized image 𝐼𝑠 is generated along with an initial tissue classification

of the cerebellum into gray matter (GM) and white matter (WM). 𝐼𝑠 is cropped to

contain only the cerebellum, and the cropped image 𝐼 was used in all subsequent

processing. For the atlas subjects with manually delineated labels, the labels are

transformed from the native image space into the same space as the preprocessed

images so that the images and their corresponding manual labels are aligned.
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2.3 Graph cut segmentation framework

Let x ∈ Ω be a voxel location in a set of discrete voxel locations Ω in the image domain.

An image segmentation is a label assignment 𝐴(x) that maps each voxel location x to

an integer label 𝑘 ∈ {0, 1, 2, . . . , 𝐾}. In our formulation, 0 represents background and

each non-zero integer represents a finest-grain anatomical structure (see Section 1.2).

The number of structures to be segmented is 26 (i.e., 𝐾 = 26).

Graph cut methods [139,140] are widely used in various image segmentation tasks

for their robustness and accuracy. It casts the energy-based image segmentation

problem in a graph structure and finds the optimal solution by efficient min-cut

algorithms. A typical graph cut energy function 𝐸(𝐴) includes a region term (unary

potential) and a boundary term (pairwise potential), both of which are evaluated a

given the label assignment 𝐴(x). In our approach, the graph cut energy function is

formulated as

𝐸(𝐴) = 𝜆𝑙

Lobule region term⏞  ⏟  ∑︁
x∈Ω

𝑅𝑙(x, 𝐴(x)) + 𝜆𝑐

Cerebellum region term⏞  ⏟  ∑︁
x∈Ω

𝑅𝑐(x, 𝐴(x)) +

Boundary term⏞  ⏟  ∑︁
(x,y) ∈ Γ

𝐴(x) ̸= 𝐴(y)

𝐵(x,y) , (2.1)

where the constants 𝜆𝑙 and 𝜆𝑐 weight the two region terms relative to the boundary

term. Γ is the set of all unordered 26-connected neighborhood voxel pairs. The lobule

region term 𝑅𝑙(x, 𝐴(x)) specifies the cost of assigning a lobule label 𝐴(x) to a voxel x.

It is computed based on the multi-atlas labeling result, and controls the overall shape

of the final segmentation. The cerebellum region term 𝑅𝑐(x, 𝐴(x)) specifies the cost of

assigning cerebellar (𝐴(x) ̸= 0) or non-cerebellar label (𝐴(x) = 0), i.e., background,

to a voxel x. It is computed based on a cerebellar tissue classification result and

aims to refine the lobule-background boundary. The boundary term 𝐵(x,y) specifies

the cost of assigning a pair of neighboring voxels (x,y) with different lobule labels.

It is computed using a boundary voxel classification result and it refines both the

lobule-lobule and the lobule-background boundaries. The definition of these energy

terms, which we will describe in detail in the following sections, is the key to a good
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segmentation.

For this multiple label assignment problem, we use the 𝛼-expansion optimization

strategy [139,140] which successively segments all 𝛼 and non-𝛼 voxels (where 𝛼 rep-

resents a particular label) using the max-flow/min-cut algorithm and then iterates

over each label (assigned as the 𝛼 label) until the label assignments converge.

Figure 2.1 shows the diagram of the method. First the MR image is preprocessed

as described in Section 2.2. Then, multi-atlas registration and label fusion is carried

out to obtain both an initial segmentation of the cerebellum and the lobule region

term. Tissue classification is performed to obtain the cerebellum region term and

boundary classification is performed to obtain the boundary term. Finally, the graph

cut energy function is minimized to produce the final segmentation result. In the

following subsections, we describe in detail the specification and computation of each

energy term in our graph cut formulation.

Masking & 
intensity 

normalization

Multi-atlas 
labeling

Boundary 
classification

Graph cuts

Tissue 
classification

Input MR image

Lobule segmentation

Region terms

Boundary term

Figure 2.1: Diagram of the proposed algorithm.

2.3.1 Lobule region term

In this section, we define an energy term 𝑅𝑙(x, 𝐴(x)), which ideally yields a smaller

cost when voxel x is assigned the correct label 𝐴(x). We derive the necessary infor-

mation to define this energy term from a multi-atlas labeling result that is carried out

as another preprocessing step. Multi-atlas labeling methods register a set of labeled
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images to the test subject, transfer their labels, and then decide on a single label at

each voxel given the set of transferred labels. Various approaches have been proposed

for label fusion—e.g., majority voting [141], similarity weighted voting [130,142,143],

and statistical fusion [128, 144, 145]. Statistical methods like STAPLE [128] and its

variants [144, 145] integrate a model of rater behavior, and are among the very best

performers in the label fusion task. In this work, we use the non-local STAPLE (NL-

STAPLE) algorithm proposed by Asman et al. (2013) [133]. NL-STAPLE models

the registered atlases as collections of volumetric patches containing both intensity

and label information. It uses the non-local criteria [143,146] to improve results that

are otherwise flawed by imperfect registration results.

Each atlas is made up of a preprocessed image 𝐼 together with a registered ex-

pert delineation. To carry out multi-atlas labeling, each of the atlas images is de-

formably registered to the subject image using the symmetric image normalization

method (SyN) [147] implemented in the Advanced Normalization Tools (ANTS) [148].

We use mean square intensity difference as the similarity term in registration. The

optimization in registration is performed over two resolutions with a maximum of 10

iterations at the coarse level and 10 at the full resolution. The atlas label is trans-

formed to the subject space using the corresponding deformation field. The trans-

formed labels from all atlases are then fused using NL-STAPLE to produce 𝐴𝑚(x), a

multi-atlas subject label.

This multi-atlas labeling result represents a state-of-the-art cerebellar segmenta-

tion result by itself, but here we use it as a preprocessing step to help specify the

lobule region term in our graph cut energy. In particular, given the multi-atlas label

result 𝐴𝑚(x) we define the lobule region term as

𝑅𝑙(x, 𝐴(x)) = min
y∈Φ𝐴(x)

‖x− y‖ , (2.2)

where Φ𝑙 = {y ∈ Ω |𝐴𝑚(y) = 𝑙} is the region labeled 𝑙 in the multi-atlas labeling

result. Evaluated at each voxel x, the term 𝑅𝑙(x, 𝐴(x)) yields the distance to region

Φ𝐴(x), the region with the same label as that of x in the multi-atlas labeling result. If
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the label at x actually agrees with the multi-atlas label at x, then the cost 𝑅𝑙(x, 𝐴(x))

is zero. The cost grows larger as x grows farther away from Φ𝐴(x). Consequently,

this lobule region term encourages the final segmentation result to agree with the

multi-atlas labeling result.

2.3.2 Cerebellum region term

Neither FreeSurfer nor multi-atlas labeling provides accurate boundary between the

cerebellar and non-cerebellar region. FreeSurfer consistently underestimates the cere-

bellum region, i.e., it labels cerebellar lobule voxels as background. Multi-atlas la-

beling, on the other hand, tends to over-estimate the cerebellum region, i.e., it labels

background voxels as cerebellar lobule voxel, especially when the cerebellum has ex-

perienced atrophy, such as that which occurs in spinocerebellar ataxia. This occurs

even when atrophied cerebella are included among the atlases used to provide the

multi-atlas segmentation result. A better result can be achieved by directly carry-

ing out a cerebellum segmentation step. Several approaches for whole cerebellum

segmentation have been proposed [123, 125]. To differentiate cerebellum from non-

cerebellum, these methods typically use intensity and texture information together

with prior information about the position and shape of the cerebellum. In our work,

both image and spatial information are used to train a voxelwise cerebellar tissue

classifier. This result is then used to define the cerebellum region term in our graph

cut energy function.

Two types of features are used to distinguish cerebellar voxels from non-cerebellar

voxels in a preprocessed image 𝐼. The first type of features are image features includ-

ing the intensity, the magnitude of the image gradient, and the trace and determinant

of the Hessian matrix of the intensity. The second type of features are spatial fea-

tures including the spatial coordinates relative to the centroid of the estimated corpus

medullare (CM) and the signed distance of the voxel to the boundary of the estimated

CM. The estimated CM is obtained by applying a morphological opening operation

(using a circular structuring element of diameter 5 pixels) to the cerebellar WM mask

obtained from the FreeSurfer segmentation result. This opening operation removes
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WM branches inside the lobules, yielding a better estimate of the CM. A feature

vector u(x) comprising the values of these eight features is constructed for each voxel

x.

We use random forests [149] to perform the classification of cerebellar and non-

cerebellar voxels given the feature vector u(x). Random forests have been shown to

achieve robust and accurate classification while avoiding over-fitting [149]. To form

the training samples, voxels were sampled from the two classes, cerebellar and non-

cerebellar tissue, among the images of the training subjects (which are the same set of

labeled subjects used in the multi-atlas segmentation step described in Section 2.3.1).

To generate the training samples, 1000 voxels were randomly sampled from each class

of each subject. For the random forest configuration, an ensemble of 500 decision

trees were constructed, and each decision node within a decision tree used a random

subset of two of the eight input features.

Let 𝐴𝑐(x) be the class output by the random forest classifier at voxel x where

𝐴𝑐(x) = 1 represents a cerebellar voxel and 𝐴𝑐(x) = 0 represents a non-cerebellar

(background) voxel. We use this to define the cerebellum region term used in our

graph cut energy as follows

𝑅𝑐(x, 𝐴(x)) =

⎧⎨⎩miny∈Ψ0 ‖x− y‖, if 𝐴(x) = 0

miny∈Ψ1 ‖x− y‖, if 𝐴(x) ̸= 0
, (2.3)

where Ψ0 = {y ∈ Ω |𝐴𝑐(y) = 0} is the region classified as non-cerebellum by the

random forest classifier and Ψ1 = {y ∈ Ω |𝐴𝑐(y) = 1} is the region classified as cere-

bellum. The cerebellum region term 𝑅𝑐(x, 𝐴(x)) acts in a fashion very similar to

the lobule region term 𝑅𝑙(x, 𝐴(x)) in that it penalizes labels that disagree with the

preliminarily estimated labels (in this case by the random forest classifier) by the

distance from the region with an agreeing label. For example, if the label 𝐴(x) is a

cerebellar lobule label (i.e., 𝐴(x) ̸= 0) and the random forest classifies x as cerebellar

voxel (i.e., 𝐴𝑐(x) = 1) then the cost for x is zero. However, if 𝐴(x) is a cerebellar lob-

ule label but the random forest classifies x as a non-cerebellar voxel (i.e., 𝐴𝑐(x) = 0),

the cost is non-zero and increases with its distance to Ψ1, the region classified as
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cerebellum by the random forest classifier. In this way, when this cost is included in

the graph cut energy, as in Equation (2.1), the final labeling is encouraged to agree

with the random forest classification of cerebellar and non-cerebellar tissue.

2.3.3 Boundary term

A boundary term is used to further refine the lobule boundaries. Lobule boundaries

are typically characterized by high image gradients (at boundaries between lobule and

non-cerebellar tissue) or high second order directional derivatives (at boundaries be-

tween different lobules). In order to encourage our graph cut segmentation algorithm

to make cuts that favor such boundaries between labels, we trained another random

forest classifier to identify boundary voxels, including both lobule-background and

lobule-lobule boundaries.

The same input feature vector u(x) as in Section 2.3.2 is used, and the same

set of atlas images as the multi-atlas segmentation algorithm was used in training. A

multiclass classifier was trained to output the class label 𝑘 ∈ {1, 2, 3}. 𝑘 = 1 indicates

a boundary voxel, defined as any voxel having any neighboring voxel (within a 26-

voxel neighborhood) with a different label. So a boundary voxel can lie between any

pair of lobules or between a lobule and the background. 𝑘 = 2 indicates a lobule

voxel, which is a cerebellar (non-background) voxel that is not a boundary voxel, and

𝑘 = 3 indicates a non-cerebellar (background) voxel that is not a boundary voxel. A

random forest classifier with the same configuration as in Section 2.3.2 was trained.

The training samples were formed by sampling 1000 voxels from each class on each

training subject. As before, 500 decision trees were used and each decision node

considered a random subset of two of the eight input features.

Rather than combining all decision trees in the random forest to yield a hard

classification (of 𝑘 = 1, 2, or 3), we used the outputs of the decision trees to generate

a probability of class assignment. Let ℎ𝑖(u(x)) be the class prediction made by the

𝑖-th decision tree given the feature vector u(x). Then the probability that the voxel
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with feature u(x) belongs to class 𝑘 can be computed as

𝑝(𝑘|u(x)) =
1

500

500∑︁
𝑖=1

𝛿[ℎ𝑖(u(x)) − 𝑘], 𝑘 ∈ {1, 2, 3} , (2.4)

where 𝛿[𝑘] is the delta function. Figure 2.2 shows a training image and its 3-class

labeling (derived from a manual labeling result) and a test image with the probability

of its boundary class output from the trained random forest.

We then define the boundary term as

𝐵(x,y) = 1 − max {𝑝(1|u(x)), 𝑝(1|u(y))} , (2.5)

which yields a small value when either one of the two neighboring voxels has high

boundary class probability and a large value when neither voxel is likely to be a

boundary voxel. When this boundary term is used in Equation (2.1), the optimal cut

is encouraged to be positioned along highly probable boundary voxels.

2.3.4 Energy Minimization

After the energy terms described in Sections 2.3.1, 2.3.2, and 2.3.3 are computed,

the graph cut energy function in Equation (2.1) is minimized using the 𝛼-expansion

algorithm [139]. We used the multi-label energy optimization library available online

at http://vision.csd.uwo.ca/code/. We chose 𝜆𝑙 = 𝜆𝑐 = 1.0 in Equation (2.1)

empirically according to experimental observations. The algorithm produces highly

similar results when 𝜆𝑙 and 𝜆𝑐 are selected in the range [0.5, 5].

2.4 Results

2.4.1 Data

T1-weighted magnetization prepared rapid gradient echo (MPRAGE) images of 92

subjects were acquired on a 3.0T MR scanner (Intera, Phillips Medical Systems,
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Figure 2.2: Example training and prediction result of the boundary classifier. (a) Pre-
processed MR image of a subject used for training. (b) Voxel class overlaid with the
image in (a), where yellow indicates boundary voxels, blue indicates lobule voxels
and otherwise non-cerebellar voxels. (c) Preprocessed MR image of a test subject.
(d) Boundary probability output from the random forest classifier overlaid with the
image in (c).

Netherlands). The parameters of the MPRAGE are: 132 slices, axial orientation,

1.1mm slice thickness, 8∘ flip angle, TE = 3.9ms, TR = 8.43ms, FOV 21.2 × 21.2cm,

matrix 256 × 256 (resolution: 0.828125 × 0.828125 ×1.1mm). 15 of the 92 sub-

jects (containing both HC and patients) were manually delineated by an expert with

over 5000 hours of training, using the protocol described in Bogovic et al. (2013) [120].

Table 2.1 summarizes the demographic information of each diagnosis group, in the

expert delineated subject set and in the set with no expert delineation.
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Table 2.1: Demographic information on both the set of 15 subjects with expert delin-

eation and the set of 77 subjects without expert delineation. Key: 𝑁 is the number

of subjects; m/f is the male/female ratio; Age is the mean age; SD is the standard

deviation of the age; healthy controls (HC); people who have symptoms of cerebel-

lar dysfunction but no genetic diagnosis (CB); spinocerebellar ataxia type 2 (SCA2),

type 3 (SCA3), and type 6 (SCA6).

Expert delineated No expert delineation

𝑁 (m/f) Age (SD) 𝑁 (m/f) Age (SD)

HC 6 (2/4) 54.3 (14.7) 44 (19/25) 56.5 (12.9)

CB 3 (1/2) 54.3 (8.0) - (-/-) - (-)

SCA2 - (-/-) - (-) 4 (3/1) 48.8 (8.8)

SCA3 - (-/-) - (-) 7 (2/5) 51.7 (9.3)

SCA6 6 (2/4) 55.3 (12.6) 22 (6/16) 58.8 (8.4)

2.4.2 Accuracy evaluation

In this experiment, 15 subjects with expert delineated labels were used to perform

a leave-one-out validation study. Each subject was used as a test subject while the

remaining 14 subjects were used in the multi-atlas labeling phase and also as training

data for both the cerebellum tissue and boundary classifiers. In this way, results

were computed for each of the 15 subjects and statistical performance measures were

computed across these 15 subjects. See Table 2.1 for a summary of the diagnosis

and demographic information on the 15 subjects. Three segmentation approaches

were compared: ACCLAIM [136], NL-STAPLE (as described in Section 2.3.1), and

the proposed method. To quantitatively evaluate the segmentation results, we first

examined the overlap between the true and automatically obtained labels for each

lobule using the Dice similarity coefficient (DSC). The DSC of a segmented region 𝑅

against its manual delineation 𝑇 is computed as

DSC =
2 |𝑅 ∩ 𝑇 |
|𝑅| + |𝑇 |

,
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where |·| represents the volume of a region.

Figure 2.3 shows the statistics of the DSC between the manual and automatic

labels. For the proposed method, most of the lobules have mean DSC above 0.70,

and many are above 0.80 (CM, lobule I-IV, lobule VI, sub-structures of lobule VII,

VIII vermis, and lobule IX). The worst mean DSC values are still above 0.60, and

these occurred in lobules with relative small volumes such as lobules V and X. These

structures also have a larger variation in DSC. Comparing the three segmentation al-

gorithms, NL-STAPLE and the proposed method outperformed ACCLAIM in most

of the lobules, with higher mean DSC for all the lobules and smaller DSC variance

for almost all the lobules. The proposed method outperformed NL-STAPLE in most

of the lobules, especially the lobules in the middle and caudal portions of the cere-

bellum (lobules XII, IX, and X). In order to evaluate the overall performance of

segmentation on a subject, we computed the average volume weighted DSC (ADSC)

over all lobules for each subject. The ADSC is computed as

ADSC =

∑︀𝑁
𝑖=1 |𝑇𝑖|DSC𝑖∑︀𝑁

𝑖=1 |𝑇𝑖|

where DSC𝑖 is the DSC of the 𝑖-th lobule, and |𝑇𝑖| is the volume of the 𝑖-th lobule

computed from the manual delineation. 𝑁 is the total number of lobules.

Table 2.2 lists the ADSC of each subject in the leave-one-out experiment, grouped

into three groups: 1) HCs, which have no cerebellar atrophy; 2) SCA6 patients, with

atrophy varying from mild to severe; 3) CBs, which are patients with symptoms of

cerebellar dysfunction but no genetic diagnosis or other diagnosis. In this particular 15

subject cohort, all the CBs happened to have severe cerebellar atrophy. The Wilcoxon

two-sided signed rank test was carried out to compare the ADSCs of the 15 subjects

produced by the proposed method and the other two, at a 5% confidence interval. The

test results indicated that the proposed method improved the segmentation results

over the other two methods significantly in terms of ADSC, with a p-value of 1.2×10−4

when compared with ACCLAIM and 3.3 × 10−3 when compared with NL-STAPLE.

The mean and standard deviation (std) of ADSC for each group were also computed,
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Figure 2.3: Box plots of Dice similarity coefficient comparing ACCLAIM, NL-
STAPLE, and the proposed method.
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as listed in Table 2.2. The proposed method has the highest mean ADSC among the

three algorithms in each group. The ADSCs of the proposed method and NL-STAPLE

are similar in the HC group. The ADSCs of the proposed method are higher than

NL-STAPLE for all the subjects in both SCA6 and CB groups. The improvements

are most prominent in the CB group where subjects have large cerebellar atrophy.

Figure 2.4 shows example segmentation results generated by the three algorithms. We

can see that NL-STAPLE and the proposed method outperformed ACCLAIM for both

lobule location and boundary accuracy. The proposed method shows improvements

over NL-STAPLE at the lobule boundaries, being able to capture the deep sulci and

fissures.

Although the proposed method outperformed the other two methods in identifying

cerebellar atrophy, the segmentation results were still biased towards the majority of

the training data, which in our case comprises subjects with zero to moderate atrophy.

The segmentation tended to over-estimate cerebellum tissue in subjects with large

atrophy, resulting in a lower dice in the CB group.

Table 2.2: The average volume weighted dice similarity coefficient (ADSC) for each
subject in the leave-one-out experiment, grouped by diagnosis. See Table 2.1 for a
key of the diagnoses.

Method Healthy control

1 2 3 4 5 6 mean ± std.

ACCLAIM 70.9 77.0 66.0 73.9 79.1 77.2 74.2 ± 4.9
NL-STAPLE 82.4 82.6 83.2 76.0 84.3 82.5 81.8 ± 2.9
Proposed 82.1 82.5 83.8 76.2 84.2 83.0 82.0 ± 2.9

Method SCA6

1 2 3 4 5 6 mean ± std.

ACCLAIM 77.2 79.0 73.9 73.2 76.5 73.6 75.6 ± 2.3
NL-STAPLE 82.2 82.6 80.4 80.1 74.4 79.0 79.8 ± 3.0
Proposed 83.1 82.7 80.5 81.9 75.5 79.4 80.5 ± 2.8

Method CB

1 2 3 mean ± std.

ACCLAIM 71.5 67.9 72.5 70.6 ± 2.4
NL-STAPLE 72.9 73.1 80.3 75.4 ± 4.2
Proposed 77.2 77.5 81.2 78.6 ± 2.2

25



P
re

p
ro

ce
ss

ed
M

R
 im

ag
e

A
C

C
LA

IM
N

L-
ST

A
P

LE
P

ro
p

o
se

d
Ex

p
er

t
d

el
in

e
at

io
n

Figure 2.4: Example lobule segmentation results. Each column contains the prepro-
cessed MR image (coronal slice), the segmentation results and the expert delineation
of a subject. From the top to the bottom row are in turn the preprocessed MR im-
ages, the segmentation results obtained by ACCLAIM, NL-STAPLE, the proposed
method, and the expert delineations.
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2.4.3 Volumetric analysis in SCA

In this experiment, we applied the proposed segmentation method to 77 subjects (with

no expert delineation) to study the region-specific cerebellar atrophy patterns in

ataxia patients and to further validate the proposed method. The 15 expert labeled

subjects were used for training. We studied three sub-types of SCA based on the vol-

umetric measurements of the parcellated regions of interest (ROIs) from our method.

The demographic information of the different groups is summarized in Table 2.1. In

order to compare the degree of atrophy across different ROIs, we evaluated a relative

ROI volume computed as follows. Let 𝑣𝑟,𝑠 be the volume of ROI 𝑟 in subject 𝑠. Let

𝑣𝑟,HC be the average volume of ROI 𝑟 over all healthy subjects. The relative ROI

volume of ROI 𝑟 for subject 𝑠 is computed as

𝑣𝑟,𝑠 =
𝑣𝑟,𝑠
𝑣𝑟,HC

.

Figure 2.5 shows the statistics of the relative ROI volumes of gross anatomical

divisions, while Figure 2.6 shows the statistics of relative ROI volumes of cerebellar

lobules. A two-sided Wilcoxon rank sum test was carried out between the relative

ROI volumes of each ataxia type and the HCs for each ROI, at a 5% confidence

interval. The Wilcoxon rank sum test had a null hypothesis that the ROI volumes

of the two groups have equal medians, against the alternative that they do not. The

test results are marked at the bottom of the box-plots in Figures 2.5 and 2.6, where

one star (p-value between 0.01 and 0.05) indicates the volume difference between the

patient and healthy group is statistically significant, and two stars (p-value less than

0.01) indicates the difference has strong statistical significance.

As shown in Figures 2.5 and 2.6, SCA6 exhibits a global atrophy in comparison

to the HCs, with significant atrophy across all lobules. The average relative ROI

volumes against HCs were between 0.6 and 0.8 for CM, lobules in anterior and middle

lobe, and between 0.7 and 0.9 for lobules in posterior lobes. SCA2 shows significant

atrophy of the CM, middle lobe, and superior vermis with relative sparing of the

posterior-inferior regions of the cerebellum. The above results are consistent with
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the observations reported in [103, 104]. For SCA3, significant atrophy was found in

the CM region and near significant atrophy was found in the anterior lobes. The fact

that no significant volume decrease was found in other ROIs partially agrees with [97],

which reported significant volume decrease in SCA3 against HCs in cerebellar vermis,

and no significant volume change in cerebellar hemisphere.
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Figure 2.5: Box plots of relative lobe volumes for healthy controls and three SCA
subtypes.

2.4.4 Discussion

The run time of the algorithm for one subject is ∼7 hours on a computer with 48GB

Ram and 12 cores each with a 2.7Ghz Intel processor. It includes ∼6 hours of

FreeSurfer processing, ∼40 mins for multi-atlas registration and label fusion, and

∼20 mins for computing the graph cut energy terms and optimization. One way to

reduce the algorithm runtime is to replace the FreeSurfer processing part by other

brain MR image analysis software that provides cerebellar tissue segmentation, e.g.,

TOADS [122], which take ∼3 hours to produce a whole brain segmentation. Since

it can take 50–60 hours for an expert rater to label the cerebellar lobules, the pro-

posed method has potential for MRI based volumetric studies involving large num-
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bers of subjects. Due to the data-driven nature of multi-atlas methods and learned

tissue/boundary classifiers, the proposed method can be applied to any cerebellar

parcellation protocol and any image modality, providing manually labeled training

data with the same protocol and image modality.

2.5 Summary

In this chapter, we proposed a fully automated cerebellar lobule segmentation method

that combines a multi-atlas result and tissue/boundary classification in a graph cut

framework. The method was validated using a leave-one-out study on 15 expert de-

lineated subjects including both healthy controls and patients with various degrees of

cerebellar atrophy. The proposed method outperformed two state-of-the-art cerebel-

lum segmentation methods, especially on subjects with moderate to large cerebellar

atrophy. The proposed method was then applied to label the cerebellar lobules of

a larger cohort consisting of healthy controls and patients with different SCA sub-

types. Quantitative analysis of the ROI volumes showed significant regional volume

decreases in all SCA sub-types and distinct patterns of atrophy for each subtypes. The

observed atrophy patterns for different SCA sub-types are consistent with previous

findings, in which cerebellar lobules were manually labeled by experts.

As mentioned at the beginning of the chapter, the purpose of the proposed seg-

mentation method in this thesis is two-fold. In this chapter we have demonstrated the

effectiveness of the proposed method for ROI volumetric analysis of the cerebellum

on large population. In Chapter 3, we will use the lobule segmentation to construct

a highly informative shape representation of the cerebellum.
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Chapter 3

Cerebellar Shape Representation

In this chapter, we present two shape representations for cerebellar structures: a

landmark shape representation of the collection of cerebellar lobules and a level set

based whole cerebellum shape representation. The landmark representation is more

informative as it contains shape information for each lobule, while the level set rep-

resentation is simple to obtain (no cerebellar lobule parcellation and correspondence

point finding needed) and thus free from errors due to this process. Both represen-

tations encode rich morphological information of the cerebellum and they lay the

foundation for studying group difference, predicting disease/function, and identifying

disease/function specific atrophy pattern.

In Section 3.1, we review the literature on shape analysis and the basics of the

landmark and level set representations. In Sections 3.2 and 3.3 we use these shape

representations to describe the shape of the cerebellum. In Section 3.4, we use the

proposed cerebellar shape representations to study the cerebellar shape variation of

different populations.

3.1 Statistical shape analysis

Shape analysis is an area of study arising from a wide variety of applications. For

example, shape provides useful information for tasks like object recognition [150,151]

and segmentation [152,153]. The well accepted definition of shape by Kendall (1984) [154]
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is that “shape is all the geometrical information that remains when location, scale, and

rotational effects are removed”. Statistical shape analysis is an analysis of the geomet-

rical properties of some given set of shapes by statistical methods [96]. The statistical

model learned from a population of shapes is called statistical shape model (SSM).

The application of statistical shape analysis in biomedical image analysis lies in the

following two aspects: 1) SSMs serve as shape priors in segmenting anatomical struc-

tures from images [153]; 2) SSMs can model group differences of anatomical structures

and further used for predicting disease and functional decline [94, 155].

Statistical shape analysis have two main components: 1) Shape representation,

which encodes the shape information into a set of homologous geometric primitives

or basis functions across different subjects in a population; 2) Analysis method, which

may involve modeling the distribution of shapes from a group of training subjects,

defining a probability measure to identify abnormal shapes, or defining shape distance

or metrics to quantify group differences. In the following section, we review different

approaches in statistical shape analysis with a focus on these two components.

3.1.1 Literature review

An intuitive and widely used way to represent shape is to locate a finite number

of landmarks on the object. A 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘, as defined in Kendall (1984) [154], is a

point of correspondence on each object that matches between and within populations.

Kendall (1984) [154], Kendall (1989) [156], Bookstein (1986) [157], Goodall (1991) [158],

and Dryden and Mardia (1991) [159] established the theoretical foundation and

methodology for analyzing shape using landmark representation. As for the analysis

method, Goodall and Mardia (1993) [160], Dryden and Mardia (1991) [159], and Dry-

den and Mardia (1993) [161] used perturbation models. Cootes et al. (1992) [162,163]

used principal components models. Although the principal component model is a spe-

cial case of the perturbation model, it models the shape variation with more specificity,

and thus has gained great popularity in various applications, e.g., object segmenta-

tion.

Medial models or skeletons are also commonly used to represent shapes [164].
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They represent objects by their centerlines and corresponding radii, which result in a

more compact description than landmarks. Pizer et al. (1999) [165,166] presented me-

dial model named M-Reps consisting of a set of points on the centerlines and vectors

pointing from the points toward the boundary. Styner built M-Reps on a spheri-

cal harmonic (SPHARM) approximated surface to incorporate object variability and

to reduce the branching topology sensitivity of pure medial models [167–169]. Then

statistical analysis can be carried out separately on the two medial shape properties—

local position and thickness [89]—or directly on each point of the approximated sur-

face [91]. Fletcher et al. [170] proposed principal geodesic analysis, a generalization

of principal component analysis to the manifold setting, for analyzing the variation

of a population of objects described by M-Reps.

A large number of other approaches to represent shapes by parameterizing the

surfaces exist [153]: Fourier surfaces [171, 172], elastic models [173], extension of

spherical harmonics [174, 175], wavelet transformation [176], spherical wavelets [177,

178], B-splines [179]. Most of them use principal component analysis (assume multi-

variate Gaussian distribution) to model the variation of a population.

The level set shape representation was introduced as a tool for numerical analysis

of surfaces and shapes [180]. It is used widely for curve or surface evolution in image

segmentation [181–183] and it has also proven to be useful for modeling shape statis-

tics [184, 185]. It can represent arbitrary shapes and it inherently supports topology

changes during deformation. Since it does not require establishing correspondence on

an object surface (which often requires deformable registration), it is easy to compute

and less prone to errors in computing the representation.

In the next two sections, we focus on two shape representations—the landmark

representation and the level set representation. We describe in detail the standard

steps for computing the two shape representations and building SSMs based on these

representations.
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3.1.2 Landmark based SSM

Landmark generation

A landmark shape representation describes a shape by locating a finite number of

points on the outline. A landmark is a point of correspondence on each object that

matches between and within populations (Dryden and Mardia (1998) [96]). Land-

marks can be points that have anatomical meanings, or have a special geometrical

property like high curvature, or are just points that are densely distributed on the

object’s boundary. Landmarks are also called homologous points, vertices, anchor

points, fiducial markers, model points, markers, key points, etc. One way to assign

landmarks across a set of training shapes is to manually designate corresponding

points on each shape, which is time consuming and impracticable for 3D shapes. Au-

tomatic and semi-automatic methods for identifying corresponding points have been

developed, mostly based on image or point set registration techniques [153]. Once

the landmarks are assigned, a shape is represented by the ordered list of landmarks.

A shape represented by 𝑀 landmarks in 𝐷 dimension is represented by an 𝑀𝐷-

dimensional column vector x formed by concatenating the spatial coordinates of the

ordered landmarks (we assign 𝐷 = 3 in the following context for simplicity)

x = [𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, . . . , 𝑥𝑀 , 𝑦𝑀 , 𝑧𝑀 ]𝑇 . (3.1)

Shape alignment

According to the definition [154], shape is invariant under Euclidean similarity trans-

formations. To obtain a true shape representation, location, scale, and rotational

effects must be filtered out. This is carried out by establishing a coordinate ref-

erence—with respect to position, scale, and rotation, commonly known as 𝑝𝑜𝑠𝑒—to

which all shapes are aligned. This is solved by Procrustes alignment [80,158,163,186].

First we describe the alignment of two shapes. Let x1 and x2 be the shape repre-

sentations of two shapes defined in Equation 3.1. Aligning x1 to x2 is realized by

finding the Euclidean similar transformation 𝑇 that minimizes the least-square error
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between the spatial coordinates of the two shapes, i.e., ‖𝑇 (x1) − x2‖22, where ‖·‖2 is

the 𝑙2 norm. The transformation 𝑇 can be solved analytically [80, 96, 187]. To align

a set of shapes, an iterative approach with the following procedures is carried out:

1. Choose an initial estimate of the mean shape (often the first shape in the set).

2. Align all the remaining shapes to the mean shape.

3. Recalculate the estimate of the mean from the aligned shapes.

4. If the estimated mean has changed, return to step 2.

Convergence is thus declared when the mean shape does not change significantly

within an iteration. Bookstein [80] notes that two iterations of the above should be

sufficient in most cases. To obtain an estimate of the mean shape, the most frequently

used is the Procrustes mean shape or just the Procrustes mean,

x̄ =
1

𝑁

𝑁∑︁
𝑖=1

x𝑖, (3.2)

where 𝑁 is the number of shapes.

Statistical Analysis

Consider a set of 𝑁 aligned shapes with 𝑀 landmarks. Each shape instance can be

represented by a 3𝑀 -dimensional vector, or a point in a 3𝑀 -dimensional space. The

set of 𝑁 shapes gives a cloud of 𝑁 points in the 3𝑀 -dimensional space. Principal

Component Analysis (PCA) is an efficient way to model the distribution in high-

dimensional space, assuming multivariate Gaussian distribution. Let x𝑖 be the vector

representation of the 𝑖th shape instance. Then the mean shape x̄ is computed as

x̄ =
1

𝑁

𝑁∑︁
𝑖=1

𝑥𝑖. (3.3)

The principal axes of the point cloud are described by {e𝑘}, 𝑘 = 1, . . . , 3𝑀 , the

unit eigenvectors of the sample covariance matrix S, ordered by the corresponding
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eigenvalues {𝜆𝑘|𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆3𝑀}. The eigenvectors are called principal shape

modes. A shape x in the training set can be approximated by the mean shape and a

linear combination of the first 𝑡 shape modes:

x = x̄ + Eb, (3.4)

where P = [e1, e1, . . . , e𝑡] and b is a column vector of weights. Equation 3.4 allows

us to generate new examples of shapes by specifying the coeffcients b within suitable

ranges, so that the synthetic shape will be similar to the training shapes. The suitable

limits are typically

−3
√︀

𝜆𝑘 ≤ 𝑏𝑘 ≤ 3
√︀

𝜆𝑘. (3.5)

Equations 3.4 and 3.5 together provide an allowable shape domain [163]. It can be

used as constraints in segmentation tasks. It can also generate new shapes in a

systematic way, which is appealing for visualization purposes.

3.1.3 Level set based SSM

Level set function

A level set function 𝜙 can be used to represent the shape or region Ω ⊂ R3 as follows

𝜙 (x)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0, x ∈ Ω ∖ 𝜕Ω

= 0, x ∈ 𝜕Ω

< 0, x ∈ R3 ∖ Ω

. (3.6)

Often a special form of level set function, the signed distance function (SDF), which

satisfies |∇𝜙| = 1, is used. Given a closed and bounded shape Ω ∈ R3, there is a

unique solution to the above constraints

𝜙 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝑑 (x) , x ∈ Ω ∖ 𝜕Ω

0, x ∈ 𝜕Ω

𝑑 (x) , x ∈ R3 ∖ Ω

, (3.7)
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where

𝑑 (x) = min
x𝑏∈𝜕Ω

(|x− x𝑏|) (3.8)

is the distance from a point x to the boundary 𝜕Ω. Any shape yields a unique SDF,

and vice versa. SDF on a discrete grid can be efficiently computed with the fast

marching method [180]. In order to reduce the impact of large distance values far

from the object boundary, the SDF can be truncated by a threshold value 𝑑max

𝜙 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max (−𝑑 (x) ,−𝑑max) , x ∈ Ω ∖ 𝜕Ω

0, x ∈ 𝜕Ω

min (𝑑 (x) , 𝑑max) , x ∈ R3 ∖ Ω

, (3.9)

resulting in a truncated SDF (TSDF). Suppose the TSDF is computed on an 𝐿×𝐿×𝐿

grid; then the shape can be represented by a vector v ∈ 𝑅𝐿3 .

Shape alignment

Similar to landmark based SSM, Procrustes alignment can be applied to align a set of

shapes. Instead of aligning the landmark points, the alignment of two shapes Ω1 and

Ω2 is often realized by aligning their corresponding level set functions 𝜙1 and 𝜙2. First,

a Euclidean similar transformation 𝑇 is obtained by minimizing ‖𝜙1(𝑇 (x)) − 𝜙2(x)‖22,

where ‖·‖2 is the 𝑙2 norm. 𝑇 is then applied to Ω1, resulting in the aligned shape

𝑇 (Ω1) = {x ∈ R3|𝑇 (x) ∈ Ω1}. The set of all shapes are aligned by Procrustes align-

ment, as described in Section 3.1.2. After alignment, the level set functions are

recomputed for each aligned shape.

Statistical Analysis

Consider a set of 𝑁 3D shapes, with each shape, after alignment, represented by a

level set function on a 𝐿×𝐿×𝐿 grid, or a 𝐿3-dimensional vector v. As in landmark

based SSM, PCA is used to model the shape variation.
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3.2 Cerebellar lobule landmark representation

In this section, we present a landmark based shape representation for cerebellar struc-

tures. We treat the cerebellum with its lobule parcellation as a multi-object shape,

and we describe the cerebellum by the collection of dense landmarks on the boundaries

of all lobules. A challenge of using the landmark representation to model anatomical

structures, especially 3D structures, is establishing dense corresponding landmarks

across different subjects. Multi-object shapes (as in the collection of lobules com-

prising a cerebellum) add another level of complexity [188]. We address the corre-

spondence building problem for multiple structures by applying a two-step non-rigid

point set registration between the template point set and the subject point set, with

the first step registering all lobules as a whole and the second step registering each

lobule separately. The deformed template point set is then used as the landmarks of

the subject. The steps for generating landmark representation is described in detail

next.

The cerebellum was segmented from the MR image and parcellated into 𝐾 cere-

bellar lobules, using the method described in Chapter 2. A dense triangulation of the

boundary surface of each lobule was generated by the marching cubes algorithm [189].

Figure 3.1 shows the input MR image, the lobule segmentation, and the generated

triangular meshes of lobules.

Figure 3.1: From MR image to lobule meshes: a) MR image of the cerebellum;

b) Lobule segmentation; c) Triangular meshes of all lobules; d) Vertices of the lobule

meshes.

Let {𝑚1,𝑚2, . . . ,𝑚𝐾} be the set of lobule meshes generated from a subject, where
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𝐾 is the number of lobules. Let 𝑝𝑘,𝑖 be the 𝑖th vertex of 𝑚𝑘. The set of points from

𝑚𝑘 is represented by 𝑃𝑘 = {𝑝𝑘,1, 𝑝𝑘,2, . . . , 𝑝𝑘,𝑀𝑘
}, where 𝑀𝑘 is the number of vertices

from 𝑚𝑘. The set of points from all lobules is then 𝑃 =
⋃︀𝐾

𝑘=1 𝑃𝑘, which can be called

the point set of a subject or subject point set. An arbitrary subject is selected as the

template, and the template point set is denoted by 𝑃 0. The landmark representation

of a subject is obtained through two steps of non-rigid registration:

1. The template point set 𝑃 0 is registered to the subject point set 𝑃 through a

non-rigid transformation, resulting in 𝑃 1. Coherent point drift (CPD) [190] is

used to implement the non-rigid point set registration.

2. For each lobule 𝑘, 𝑃 1
𝑘 (the set of points in 𝑃 1 that belongs to lobule 𝑘) is

registered to 𝑃 𝑟
𝑘 (the set of points in 𝑃 𝑟 that belongs to lobule 𝑘) through

a non-rigid transformation, resulting in 𝑃 2
𝑘 . 𝑃 2 =

⋃︀𝐾
𝑘=1 𝑃

2
𝑘 then denotes the

template point set after two steps of non-rigid registration.

𝑃 2 is assigned as the landmarks of the subject, since it has the shape of the subject

point set 𝑃 , and the corresponded point order to the template point set 𝑃 0. Figure 3.2

shows the initial template point set 𝑃 0, and the template point set after each step of

non-rigid registration, i.e., 𝑃 1 and 𝑃 2, overlaid with subject point set 𝑃 .

Figure 3.2: Two-step non-rigid point set registration: a) Template point set and

subject point set before non-rigid registration; b) after whole cerebellum non-rigid

registration; c) after individual lobule non-rigid registration.

Let {𝑥𝑖, 𝑦𝑖, 𝑧𝑖} be the spatial coordinates of the 𝑖th landmark; the landmark shape
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representation of the subject is the vector

s = [𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, . . . , 𝑥𝑀 , 𝑦𝑀 , 𝑧𝑀 ]𝑇 , (3.10)

where 𝑀 =
∑︀𝐾

𝑘=1 𝑀𝐾 is the number of landmarks from all lobules. In our case

𝑀 ≈ 15, 000.

In this work, we modify the shape definition by including scale effects in the

shape. In our definition, a shape is all the geometrical information that remains

when translation and rotation are filtered out from an object. We include scale

in shape because, cerebellar atrophy in ataxia patients will result in a global scale

change of the cerebellum, especially those with severe cerebellar atrophy. This global

scale change is not captured if scale is filtered out. In the Procrustes alignment,

the transformation applied to align the landmarks is rigid transformation (only allow

translation and rotation).

3.3 Whole cerebellum level set representation

In this section, we present an alternative cerebellar shape representation based on

the level set function of the whole cerebellum shape. The advantage of this repre-

sentation over the representation presented in Section 3.2 is that it is much easier

to compute and less prone to segmentation and registration errors. The whole cere-

bellum can be obtained by many available brain image analysis software packages

such as FreeSurfer [121], TOADS [122], BrainSuite [191], and Caret [192,193]. In this

work, we use FreeSurfer version 5.3.0 [121] for the whole cerebellum segmentation.

The steps for generating the level set representation is described in detail next.

As part of FreeSurfer processing, each MR scan is transformed into MNI space,

and a whole brain parcellation is performed, including a segmentation of the whole

cerebellum and its gray matter (GM) and white matter (WM). Let Ω𝐺𝑀 ⊂ R3 and

Ω𝑊𝑀 ⊂ R3 denote the cerebellar GM and WM region, respectively. TSDF is com-

puted from the whole cerebellar region Ω𝐶 = Ω𝐺𝑀 ∪ Ω𝑊𝑀 . Figure 3.3 shows an
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example of this process from MR images to TSDF level set representation. As in

Section 3.2, Procrustes alignment is carried out with a rigid transformation (no scale

adjustment) as the alignment transformation.

(a) (b) (c)

Figure 3.3: From MR image to level set shape representation. (a) MR image (coro-
nal slice); (b) Cerebellar GM and WM region obtained from FreeSurfer processing;
(c) Truncated signed distance function (TSDF) of the whole cerebellum.

3.4 Results

In this section, we demonstrate the effectiveness of the two cerebellar shape represen-

tations presented in Sections 3.2 and 3.3 by building SSMs using the two representa-

tions and studying the cerebellar shape variations for different groups of subjects. See

Sections 3.1.2 and 3.1.3 for the details of building SSMs using the two types of shape

representations. The set of subjects to be studied include 65 healthy controls and 58

patients with five types of cerebellar ataxia. Demographic information is summarized

in Table 3.1.

Table 3.1: Demographic information of the 123 subjects being studied. Key: 𝑁 num-
ber of subjects; m/f is the male/female ratio; Age is the mean age; SD is the standard
deviation of the age; healthy controls (HC); spinocerebellar ataxia type 2 (SCA2),
type 3 (SCA3), type 6 (SCA6) and type 8 (SCA8); ataxia-telangiectasia (AT).

𝑁 (m/f) Age (SD)

HC 65 (28/37) 50.7 (17.7)
SCA2 4 (3/1) 48.8 (8.8)
SCA3 7 (2/5) 51.7 (9.3)
SCA6 27 (7/20) 58.4 (9.3)
SCA8 2 (2/0) 43.5 (16.3)
AT 18 (12/6) 18.3 (6.2)
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Figures 3.4 and 3.5 show the cerebellum of five representative healthy controls,

rendered from the two shape representations. Figures 3.6 and 3.7 show the cerebellum

of five representative SCA6 subjects, rendered from the two shape representations.

SSMs were built using the two shape representations and principal modes of vari-

ation are visualized for different groups of subjects. Figures 3.8–3.11 show the first

and second principal modes of variation for the whole dataset (including healthy con-

trols and patients of all ataxia types) computed using the two shape representations,

respectively. Figures 3.12 and 3.13 show the first principal modes of variation for

healthy control group computed using the two shape representations respectively.

Figures 3.14 and 3.15 show the first principal modes of variation for SCA6 group

using the two shape representations, respectively.

As shown in Figures 3.4–3.7, the cerebellar lobule shapes are much more smooth

and regular than the whole cerebellum shapes. This is because the graph cuts based

lobule segmentation locates a smoothed lobule boundary with high precision, while

FreeSurfer cerebellar tissue segmentation tends to under-estimate the cerebellum re-

gion, resulting in branch like shapes. See Section 2.3 for more details.

For the whole dataset SSM, the first mode of variation computed using the two

representations are similar, capturing overall size change of the cerebellum and vol-

ume change of individual lobules in the posterior lobes (Figures 3.8 and 3.9). Level

set representation shows a significant change in the medial part of the anterior lobe

(see the top of the cerebellum in Figure 3.9), which is not observed in landmark rep-

resentation. The cerebellar lobule landmark representation reveals relative changes of

different lobules. As shown in Figure 3.8, the lobules in the posterior lobes, especially

CRUS I and II, undergo much larger shape changes than lobules I–V and corpus

medullare. For the second mode of variation, landmark representation captures a

combined change of lobule volumes and the aspect ratio (width versus height) of the

whole cerebellum (Figures 3.10 and 3.11). The level set representation captures a

more apparent aspect ratio change of the whole cerebellum (see Figure 3.11).

For the SSM of the healthy control group, the first mode of variation computed

using the two representations are similar, capturing the elongation in the transverse
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direction and a mild overall size change (Figures 3.12 and 3.13). An interesting ob-

servation from the landmark representation is that with the decreasing of cerebellum

width, the medial part of the two hemispheres become closer (see bottom row in

Figure 3.12).

For the SSM of SCA6 patient group, the mean shapes have smaller size than the

mean shapes of the healthy, and also wider fissures in the posterior lobes (see middle

columns in Figures 3.14 and 3.15). The first mode of variation computed using the two

representations are similar, also capturing an overall size change of the cerebellum and

volume change of individual lobules in the posterior lobes (Figures 3.14 and 3.15).

This variation reflects the different degrees of cerebellar atrophy within the SCA6

group. SCA6 patients with a short disease duration can have very mild atrophy

and their cerebella look very much like that of healthy subjects (see SCA subject 1

in Figure 3.6). Again the cerebellar lobule landmark representation reveals relative

changes of different lobules. As shown in Figure 3.14, the lobules in the posterior

lobes, especially CRUS I and II, undergo much larger shape changes than lobules I–V

and corpus medullare.

Healthy #1 Healthy #2 Healthy #3 Healthy #4 Healthy #5

Figure 3.4: Cerebellar lobule shapes of five representative healthy controls. The top

row is the anterior view and the bottom row the posterior view.
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Healthy #1 Healthy #2 Healthy #3 Healthy #4 Healthy #5

Figure 3.5: Whole cerebellum shapes of five representative healthy controls (the same

five subjects as in Figure 3.4). The top row is the anterior view and the bottom row

is the posterior view.

SCA6 #1 SCA6 #2 SCA6 #3 SCA6 #4 SCA6 #5

Figure 3.6: Cerebellar lobule shapes of five representative SCA6 subjects. The top

row is the anterior view and the bottom row is the posterior view.

SCA6 #1 SCA6 #2 SCA6 #3 SCA6 #4 SCA6 #5

Figure 3.7: Whole cerebellum shapes of five representative SCA6 subjects (the same

five subjects as in Figure 3.6). The top row is the anterior view and the bottom row

the posterior view.
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3 𝜆1−3 𝜆1 𝑏1

Figure 3.8: The first mode of variation of the whole population. The top row is the

anterior view and the bottom row is the posterior view.

3 𝜆1−3 𝜆1 𝑏1

Figure 3.9: The first mode of variation of the whole population. The top row is the

anterior view and the bottom row is the posterior view.

3 𝜆2−3 𝜆2 𝑏2

Figure 3.10: The second mode of variation of the whole population. The top row is

the anterior view and the bottom row is the posterior view.
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3 𝜆2−3 𝜆2 𝑏2

Figure 3.11: The second mode of variation of the whole population. The top row is

the anterior view and the bottom row is the posterior view.

3 𝜆1−3 𝜆1 𝑏1

Figure 3.12: The first mode of variation of the healthy control group. The top row is

the anterior view and the bottom row is the posterior view.

3 𝜆1−3 𝜆1 𝑏1

Figure 3.13: Cerebellar shape variation along the first principal direction of healthy

control group. The top row is the anterior view and the bottom row is the posterior

view.
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3 𝜆1−3 𝜆1 𝑏1

Figure 3.14: The first mode of variation of SCA6 group. The top row is the anterior

view and the bottom row is the posterior view.

3 𝜆1−3 𝜆1 𝑏1

Figure 3.15: The first mode of variation of SCA6 group. The top row is the anterior

view and the bottom row is the posterior view.

3.5 Summary

In this chapter, we presented two highly informative cerebellar shape representations:

a landmark shape representation of the collection of cerebellar lobules and a level

set based whole cerebellum shape representation. Based on the two shape repre-

sentations, we studied the cerebellar shape variation of different populations. The

two shape representations yield similar and realistic shape variations for each group,

demonstrating the effectiveness of the shape representations. In Chapters 4 and 5, we

use the proposed cerebellar shape representations for disease classification, functional

score regression, and identifying disease or function specific atrophy patterns.
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Chapter 4

Disease classification and atrophy

pattern visualization

As mentioned in Section 1.1, it is of great interest to study the cerebellar atrophy

pattern associated with specific disease types and to correlate the structural change

with specific functional degeneration. In this chapter, we develop a classifier to classify

healthy and different disease types and to identify characteristic cerebellar atrophy

patterns associated with different cerebellar ataxia types based on the cerebellar shape

representations presented in Chapter 3.

The remainder of this chapter is organized as follows. In Section 4.1, we re-

view background on classification methods and dimension reduction techniques. In

Section 4.2, we design a diagnosis classifier to classify healthy controls and different

ataxia types. In Section 4.3, we present a method to visualize characteristic cerebellar

atrophy pattern associated with different cerebellar ataxia types. In Section 4.4, we

first test the diagnosis classifier using leave-one-out cross-validation with an extensive

comparison of different combinations of cerebellar structural representations, classi-

fiers, and dimension reduction techniques; then we study the characteristic cerebellar

atrophy pattern of four ataxia types and to previous findings in the literature.

48



4.1 High-dimensional classification

Classification has many applications in various fields like computer vision, speech

recognition, disease classification, drug development, etc. Various classification meth-

ods have been developed and widely used in the last several decades. Supervised

classification learns from training data consisting of observations with known class a

decision rule that can predict the class of a new observation. An observation can be a

collection of variables represented as a feature vector. When the dimension of the in-

put feature vector is high, as in our case, it poses difficulties to classification methods.

Difficulties include unreliable parameter estimation for classification models and poor

generalization ability. In this section, we first present some background on popular

classification methods and the classifiers that we will use later in this chapter. We

then discuss the impact of high-dimensional input on classification, and finally we

discuss dimension reduction techniques to which can be used address the problem.

4.1.1 Classification

Linear classifiers

Linear classifiers, which base their classification on the linear combination of the

input variables, are among the earliest classification methods developed. A linear

classifier a classification decision based on the linear combination of the input vari-

ables. Popular linear classifiers include linear discriminant analysis (or Fisher’s lin-

ear discriminant) [71], logistic regression [194, 195], naive Bayes classifier [196], and

perceptrons [197]. Linear classifiers work well for many problems, reaching accuracy

levels comparable to non-linear classifiers while taking less time to train and use [198].

However, when the boundaries between classes are nonlinear, linear classifiers might

not work very well.

We use linear discriminant analysis (LDA) [71] as one of our classifiers to to classify

diseases and to identify disease specific atrophy patterns. LDA models conditional

density functions for different classes as Gaussian distributions with common covari-

ances and assigns the class of a new observation to the one maximizes the posterior
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probability.

Support vector machine (SVM)

SVM was first introduced in Boser et al. (1992) [199] and became popular because

of its success in handwritten digit recognition [200, 201]. Consider a two-class clas-

sification problem. SVM constructs a hyperplane in a high-dimensional space that

optimally separates the samples from two classes. When the two-class are linearly

separable, i.e., there exists at least one hyperplane with all of the samples from class

1 on one side of the hyperplane and all the samples from class 2 on the other side,

an optimal separation is defined as the hyperplane that produces the largest distance

to the nearest training samples of any class, called a margin, since in general the

larger margin means lower generalization error. The nearest training samples to the

hyperplane are called support vectors.

Soft Margin and kernel tricks were introduced in SVM to deal with data that

are not linearly separable. Soft Margin introduces non-negative “slack variables” that

measures the degree of misclassification, and the resulting hyperplane optimizes a

trade off between a large margin and a small error penalty of the misclassification [74].

The kernel trick [202] implicitly maps the input space to a higher dimensional space

where the data is linearly separable, thus creating nonlinear classification [199]. SVM

is very flexible since different kernel functions can be specified for the decision func-

tion. SVM is also effective with high-dimensional input. But if the input dimension

is much greater than the number of samples, the method is still likely to give poor

performance.

Decision trees

A decision tree classifies an observation by submitting it to a series of tests that deter-

mine the class. The tests are organized in a tree structure. The training samples are

used for choosing the tests in the decision tree. A decision tree is often constructed

from top to bottom, choosing the tests that best splits the set of samples first. The

best split is often measured by information gain. Pruning procedures are often neces-
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sary to avoid over-fitting problem of decision trees. The advantages of decision trees

are that they are simple to understand and interpret, relatively easy to construct,

and perform well on large datasets. One big disadvantage of decision trees is that

they can be sensitive to small variations in the data, which can be mitigated by using

decision trees within an ensemble.

Random forests, which we use as one of our classifiers, is an ensemble of decision

trees [149]. It builds a set of decision trees at training time and outputs the class

that is the mode of the classes output from the individual trees. Random forests

combines the “bagging” idea, wherein each decision tree is constructed by using a

random subset of the training data, with a random selection of features to build the

test at each tree node. Random forests largely correct the over-fitting problem of

single decision trees. It is one of the most accurate classification methods and it is

quite robust to redundant variables. It can run efficiently on large datasets and it can

provide a measure of the importance of each feature in forming the classifier, which

can be useful in feature selection.

4.1.2 The curse of dimensionality

It can be proved that any set of two-class samples in general position with the num-

ber of samples equal or less than the dimensionality of its feature space is linearly

separable [203]. The classifier learns the appearance of instances and exceptions that

are specific to the training data and do not generalize well to the new data. This

phenomenon is called over-fitting and is a direct result of the curse of dimensionality.

Various approaches have been proposed and successfully applied to avoid the over-

fitting that comes with high-dimensional input. On the data side, dimension reduc-

tion and feature selection methods have been applied. On the algorithm side, model

regularization (SVM), and bootstrap aggregating, or bagging (random forest) have

been applied. And the two types of approaches are often combined in analyzing

high-dimensional input data. Popular classification methods, like SVM and random

forests, incorporate regularization or bagging to best avoid over-fitting, but dimen-

sion reduction is still necessary when dealing with high-dimensional input. Choosing
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appropriate dimension reduction methods can improve the classification result.

4.1.3 Dimension reduction

Dimension reduction transforms the data in the high-dimensional space to a space

with fewer dimensions. Dimension reduction methods can be categorized into un-

supervised (not using class labels) and supervised (using class labels). One of the

most widely used unsupervised dimension reduction methods is principal component

analysis (PCA) [64, 204, 205]. It performs a linear mapping of the data to a lower-

dimensional space in such a way that the variance of the data in the low-dimensional

representation is maximized. Sparse coding [206–208], which finds the set of basis

in which the signal has a sparse representation, is another effective linear dimen-

sion reduction technique. Nonlinear dimension-reduction techniques include mani-

fold learning techniques such as kernel PCA [209, 210], Isomap [211], locally linear

embedding (LLE) [68], Hessian LLE [212], Laplacian eigenmaps [213], local tangent

space alignment (LTSA) [70] and neural network methods like autoencoders [214,215].

These techniques construct a low-dimensional data representation using a cost func-

tion that retains local properties of the data.

For supervised dimension reduction, Fisher linear discriminant (FDA) or linear

discriminant analysis (LDA) is widely used [71]. LDA tries to find a good linear

projection to the subspace so that samples from the same class are projected close to

each other and the projected means of different classes are as father apart as possible.

Nonlinear supervised dimension reduction methods include kernel methods [216,217],

neural network methods with class label as hidden layers.

Supervised methods can extract features that are more discriminating with re-

spect to the output class labels, thus has the potential to improve classification per-

formance. However, like classification algorithms, supervised methods suffer from

over-fitting with increasing input dimension and limited training samples. Therefore

unsupervised and supervised methods are often combined either as a two-step pro-

cess (often supervised learning after unsupervised) or into one model that is built to

serve both purposes [218–220]. Partial least squares (PLS) is such example. PLS is a
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supervised linear dimension reduction method [221] that tries to explain variance in

both the input data and output class labels. PLS is closely related to PCA. PCA finds

combinations of the predictors with large variance, while PLS finds combinations of

the predictors that have a large covariance with the response values. PLS therefore

combines information about the variances of both the predictors and the responses

while also considering the correlations among them.

4.2 Cerebellar ataxia classification

In this section, we build a multi-class classifier with cerebellar shape representation

as input and diagnosis (healthy or a specific cerebellar ataxia type) as output. The

classifier uses dimension reduction as a preprocessing step followed by a standard clas-

sifier. For dimension reduction, we explore two linear dimension reduction methods

PCA and PLS. There are three reasons for using linear methods. First, linear map-

pings are easy to compute. Second, linear mappings have very few parameters(often

only the number of target dimensions), and are therefore less prone to over-fitting

than nonlinear mappings. This is important since we are analyzing high-dimensional

shape representations with few training samples. Third, linear mappings can be in-

verted easily. Although the analysis is carried out in the dimension reduced space, we

can reconstruct and visualize the discriminant pattern in original high-dimensional

shape space.

For the classifier, we explore three classifiers—linear discriminant analysis (LDA),

support vector machine (SVM), and random forests. We use the shrunken centroids

regularized discriminant analysis (SCRDA) [222], a modified version of LDA. We

describe in detail principals of LDA and the modification, since it will be used in

both disease classification and disease specific pattern visualization in Section 4.3.

Let x denote the feature vector of a sample in the dimension-reduced space as-

sociated with a class label 𝑦 ∈ {0, 1, . . . , 𝐶}. LDA assumes that the conditional

probability density functions 𝑝(x|𝑦 = 𝑐), 𝑐 = 0, 1, . . . , 𝐶, are normally distributed

with common covariance Σ and different mean vectors 𝜇𝑐, 𝑐 = 0, 1, . . . , 𝐶. The class
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prediction problem is solved by maximizing the posterior probability, 𝑝(𝑦|x), that

the observation belongs to a particular class. In the case of two classes, the decision

criterion becomes a threshold on the dot product

𝜔 · x > ℎ, (4.1)

for some threshold constant ℎ, where

𝜔 = Σ−1 (𝜇1 − 𝜇2) . (4.2)

𝜔, called discriminant direction, is the direction that the data from two classes are

most separated when projected on a line in this direction.

Instead of using the sample covariance matrix estimation Σ̂ in the discriminant

function, Guo et al.(2007) [222] use a shrunken version of the sample covariance

matrix

Σ̃ = 𝛼Σ̂ + (1 − 𝛼) I𝑝, (4.3)

where I𝑝 is the 𝑝× 𝑝 identity matrix and 0 ≤ 𝛼 ≤ 1. By introducing a slightly biased

covariance matrix, it stabilizes the sample covariance estimates. It also stabilizes the

variance and reduces the bias of the discriminant function, leading to an improved

prediction accuracy [222].

4.3 Disease specific atrophy pattern visualization

Visualization of the anatomical shapes and shape differences between different di-

agnosis groups are key elements in the exploration of data and in formulating and

testing of hypotheses. In this section, we aim to visualize the characteristic cerebel-

lar atrophy patterns as they change from healthy to a particular ataxia type. We

consider the discriminant direction 𝜔 between the two classes—healthy control and

the ataxia type of interest—as computed in Section 4.2, since it represents a feature

direction that can best differentiate the two classes. The atrophy pattern is visualized
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as a series of synthetic shapes sampled along a line in the discriminant direction 𝜔.

Given the discriminant direction 𝜔 in the dimension-reduced space, the corre-

sponding direction in high-dimensional shape space can be computed as

w = V𝜔, (4.4)

where V = [v1,v2, . . . ,v𝑑] and v𝑖 is the 𝑖th component produced by PCA or PLS

dimension reduction. In order to be representative of the data, we select the line

trajectory in the direction w that passes through the point 𝜇, the mean of all subjects,

and we call it the discriminant line. The parametric representation of the discriminant

line s𝑙 can then be written as

s𝑙(𝑡) = 𝜇 + 𝑡w, 𝑡 ∈ R. (4.5)

To visualize the line trajectory, we sample five equidistant points s𝑙(𝑡0 + 𝑘∆𝑡), 𝑘 =

0, 1, . . . , 4 on the line, and reconstruct the cerebellar shapes from the points. Fig-

ure 4.1 shows an illustration of the discriminant line and sampled shapes in the first

two dimensions of the dimension-reduced space. The points are sampled so that first

and third ones are the projection of the HC mean, 𝜇𝐻𝐶 , and mean of the ataxia type

of interest, 𝜇𝐴𝑡𝑎𝑥𝑖𝑎, respectively. The shape corresponding to the 5th point s𝑙(𝑡0+4∆𝑡)

will depicting a conjectured subject with an extreme case of a particular ataxia type,

so that the structural change pattern for different ataxia types can be observed more

evidently.
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Table 4.1: Demographic information of the 123 subjects being studied. Key: 𝑁 num-
ber of subjects; m/f is the male/female ratio; Age is the mean age; SD is the standard
deviation of the age; healthy controls (HC); spinocerebellar ataxia type 2 (SCA2),
type 3 (SCA3), type 6 (SCA6) and type 8 (SCA8); ataxia-telangiectasia (AT).

𝑁 (m/f) Age (SD)

HC 65 (28/37) 50.7 (17.7)
SCA2 4 (3/1) 48.8 (8.8)
SCA3 7 (2/5) 51.7 (9.3)
SCA6 27 (7/20) 58.4 (9.3)
SCA8 2 (2/0) 43.5 (16.3)
AT 18 (12/6) 18.3 (6.2)

∙ RAVENS maps: RAVENS maps for cerebellar GM and WM. The cerebellar

GM/WM are obtained using FreeSurfer and the RAVENS maps are computed

using the DRAMMS software [223].

∙ Landmark: the cerebellar lobule landmark representation, as described in Sec-

tion 3.1.2.

∙ Level set: the level set representation of the whole cerebellum, as described in

Section 3.1.3, combined with the level set of the cerebellar WM.

The dimension reduction methods are PCA and PLS. The classifiers are SCRDA,

SVM, and random forests (RF).

Table 4.2 shows the leave-one-out classification success rate for each combination.

Leave-one-out classification success rate is computed as the number of correct di-

agnosis predictions divided by 𝑁 , the number of subjects used in the leave-one-out

experiment. Among all combinations, the combination of level set representation,

PCA and SCRDA obtains the highest success rate, 0.87. Regarding the cerebellar

structural representations, the RAVENS maps and the level set shape representation

gave the best classification performance. The RAVENS maps produces success rate

above 0.8 with any combination of dimension reduction and classification method;

the level set representation achieves high performance when using SCRDA as the

classifier. Overall, high-dimensional representations, e.g., the RAVENS maps and the

level set representation perform better than low-dimensional representation, i.e., ROI
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volumes, because of the rich structural information they encode. However, the lobule

landmark representation, which encodes the richest structural information, does not

perform well. This may due to the error and variance introduced in the many process-

ing steps (segmentation and correspondence finding) to compute the representation.

Regarding different dimension reduction methods, PCA is slightly better than PLS.

Regarding different classification methods, SCRDA performs the best.

Table 4.2: Leave-one-out classification successful rate.

PCA PLS

LDA SVM RF SCRDA SVM RF

ROI Volumes 0.797± 0.036 0.528± 0.045 0.724± 0.044 0.805± 0.036 0.528± 0.045 0.748± 0.039

RAVENS maps 0.829± 0.034 0.837± 0.033 0.821± 0.035 0.821± 0.035 0.821± 0.035 0.805± 0.036

Landmark 0.797± 0.036 0.772± 0.038 0.780± 0.037 0.813± 0.035 0.724± 0.040 0.764± 0.038

Level set 0.870± 0.030 0.830± 0.034 0.772± 0.038 0.854± 0.032 0.780± 0.037 0.748± 0.039

Table 4.3 is an example confusion matrix between the true diagnosis and pre-

dicted diagnosis produced by the classifier with the combination of lobule landmark

representation, PLS and SCRDA. We can see that the classifier predicts the majority

diagnosis groups (healthy, SCA6 and AT) well. The classifier did not predict SCA2,

SCA3, and SCA8 well, however. This may be due to the limited training samples that

are available for these classes. A major source of error is the mistake of classifying

ataxia types as healthy controls. This may because the cerebellum of patients with

a short disease duration has mild atrophy, and it is therefore difficult to distinguish

their cerebella from healthy subjects.

Table 4.3: Example confusion matrix.
True \Predicted Healthy SCA2 SCA3 SCA6 SCA8 AT

Healthy 63 0 0 2 0 0

SCA2 1 1 1 1 0 0

SCA3 4 0 3 0 0 0

SCA6 4 0 0 23 0 0

SCA8 0 0 0 0 0 2

AT 1 0 0 4 1 12
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4.4.2 Disease specific atrophy pattern visualization

In this section, we show the characteristic cerebellar atrophy patterns associated with

each cerebellar ataxia type. To do this we visualize the synthetic cerebellar lobule

shapes sampled along the discriminant line pointing from healthy control to the ataxia

type, as described in Section 4.3. Figures 4.2–4.5 show the atrophy patterns for SCA2,

SCA3, SCA6, and AT computed from the two shape representations. We can see that

noticeable cerebellar atrophy is observed for all ataxia types, but different ataxia types

have different patterns of shape changes. In the following paragraphs we discuss the

observed cerebellar atrophy pattern for the four ataxia types computed from the two

shape representations.

SCA2/landmark: SCA2 has the biggest atrophy in the corpus medullare among

the four ataxia types (see the shrinking corpus medullare in Figure 4.2), indicating

large white matter atrophy. There is substantial atrophy in the anterior and middle

lobes (see Lobules I–V in Figure 4.2 and Lobule CRUS I and II in Figure 4.4) while the

caudal lobes do not change as much (see Lobules VIII, IX, and X in Figure 4.2). These

observations agree with the observations in Jung et al. (2012) [103] that the volume

of corpus medullare, the anterior lobe, middle lobe of SCA2 patients were reduced

compared to controls while the caudal lobes are relatively preserved. The visualization

also suggests that although there is atrophy in many parts of the cerebellum the overall

size of the cerebellum does not change too much.

SCA2/levelset: In agreement with the observations made using the landmark

representation, SCA2 has the most white matter atrophy among the four ataxia

types (Figures 4.3 and 4.5). The primary and horizontal fissure become wider (Fig-

ure 4.5), indicating atrophies in anterior and middle lobes. Again the overall size of

the cerebellum does not change too much.

SCA3/landmark: SCA3 has the mildest overall cerebellar atrophy among the four

ataxia types, with no substantial change of the size. Evidence of lobule atrophy

in SCA3 is still apparent, however. There is noticeable atrophy in Lobule CRUS

I (Figure 4.4) and Lobule IX (Figure 4.2); but the degree of atrophy is much less than
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that in the other three types. SCA3 has larger corpus medullare atrophy than that

in SCA6 and AT, but not as large as that in SCA2. These observations agree with

the observations in Burk et al. (1996) [97] and Lukas et al. (2006) [105].

SCA3/levelset: In agreement with the observations made using the landmark

representation, SCA3 has the mildest whole cerebellum volume change among the

four ataxia types, with no substantial size change of the whole cerebellum. The

horizontal fissure becomes wider (Figure 4.5), indicating there is still atrophy in the

posterior lobes, but the atrophy is much less than the other three types.

SCA6/landmark: SCA6 has substantial atrophy in almost all parts of the cerebel-

lum and a decrease in the overall size of the cerebellum (Figures 4.2 and 4.4). SCA6

has less atrophy in corpus medullare than that of SCA2 and SCA3 (Figure 4.2). These

observations agree with the observations in Jung et al. (2012) [104] that in compari-

son to SCA2, SCA6 has larger atrophy in posterior-inferior regions of the cerebellum

but less atrophy in the corpus medullare. These results also agree with the voxel-

based morphometry study on SCA3 and SCA6 in Lukas et al. (2006) [105] in which

significant grey matter loss was found in SCA6 in hemispheric lobules bilaterally as

well as in the vermis, and white matter analysis revealed significant changes in SCA3

whereas no significant white matter reduction was found in SCA6 patients.

SCA6/levelset: As also observed in the results from the landmark representation,

there is substantial decrease in the overall size of the cerebellum (Figures 4.3 and

4.5). Again, SCA6 has less amount of cerebellar white matter atrophy than that of

SCA2 and SCA3 (Figures 4.3 and 4.5).

AT/landmark: AT has the most apparent whole cerebellum atrophy (Figures 4.2

and 4.4). The size of the cerebellum decreases rapidly when moving from healthy to

AT. All lobules shrink, especially the middle lobes (Figure 4.4). These observations

agree with the observations in Tavani et al. (2003) [100] that all parts of the cerebellar

hemispheres and vermis undergo moderate to severe atrophy in AT patients with ages

between 9 and 40, and the lateral part of cerebellar hemispheres has the most severe

atrophy.

AT/levelset: As also observed in the results from the landmark representation,
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AT has the most significant whole cerebellum atrophy (Figures 4.3 and 4.5). The

size of the cerebellum decreases rapidly when moving from healthy to AT along the

discriminant direction. All lobules shrink, especially the lateral parts of the cerebellar

hemispheres and the superior vermis at the top of the cerebellum.
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Figure 4.2: Cerebellar lobule shape changes from healthy controls to four different
ataxia types viewing from the front of the cerebellum. Each column shows in order one
of the five equidistant points sampled on the discriminant line, with the first column
being the projection of the HC mean and the third column being the projection of
the mean of a ataxia type.

4.5 Summary

In this chapter, we presented a cerebellar shape analysis pipeline to classify healthy

and different disease types and to identify characteristic cerebellar atrophy pattern

associated with different cerebellar ataxia types. A leave-one-out classification exper-

iment demonstrated the effectiveness of the proposed classification method. Charac-

teristic cerebellar atrophy pattern for different ataxia types were visualized by sam-

pling along the discriminant direction between healthy controls and the ataxia types.

The observed shape change patterns are consistent with known patterns of atrophy in

these ataxia types. It provides intuitive and visual understanding about the changes

of overall size and shape change of the cerebellum, as well as the details of individual

sub-structures.
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Figure 4.3: Cerebellar lobule shape changes from healthy controls to four different
ataxia types viewing from the front of the cerebellum. Each column shows in order one
of the five equidistant points sampled on the discriminant line, with the first column
being the projection of the HC mean and the third column being the projection of
the mean of a ataxia type.
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Figure 4.4: Cerebellar lobule shape changes from healthy controls to four different
ataxia types viewing from the back of the cerebellum. Each column shows in order one
of the five equidistant points sampled on the discriminant line, with the first column
being the projection of the HC mean and the third column being the projection of
the mean of a ataxia type.
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Figure 4.5: Cerebellar lobule shape changes from healthy controls to four different
ataxia types viewing from the back of the cerebellum. Each column shows in order one
of the five equidistant points sampled on the discriminant line, with the first column
being the projection of the HC mean and the third column being the projection of
the mean of a ataxia type.
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Chapter 5

Functional score regression and

atrophy pattern visualization

In the previous chapter, we developed classifiers for classifying ataxia types and stud-

ied the cerebellar atrophy patterns for different disease types. In this chapter, we

develop regressors to predict functional scores and to identify function specific atro-

phy patterns.

The remainder of the chapter is organized as follows. In Section 5.1, we present

background on regression methods. In Section 5.2 we build regressors to predict

functional scores. The regressors are tested in Section 5.4.1 using leave-one-out cross

validation with an extensive comparison of combinations using different cerebellar

structural representations, different classifiers, and dimension reduction techniques.

In Section 5.3, we present a method to visualize cerebellar atrophy pattern associated

with different functional scores. In Section 5.4.2, we study the cerebellar atrophy

pattern of representative scores related to motor and cognitive function.

5.1 Regression

Regression is the process of estimating the relationship between one or more depen-

dent variables and one or more independent variables, or predictor variables. The

relationship is often used to predict the dependent variables given new observations
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of predictor variables. Regression is a supervised learning technique. Classification

learns from training data a function that predicts categorical variable from input pre-

dictor variables, while regression learns a function that predicts continuous variables.

Next we briefly introduce the two regression techniques that we use in our approach:

ridge regression and random forest regression. Here we only discuss the case of one

dependent variable.

Ridge regression is one of the linear regression methods. A linear regression model

assumes that the dependent variable is a linear combination of the predictor variables

and a constant. Among the many estimation methods for linear regression model,

the least square estimator is the simplest and most widely used one. The least square

estimator, called ordinary least squares (OLS), minimizes the sum of squared residu-

als, and leads to a closed form solution for the linear coefficients. OLS is an unbiased

estimator but suffers from high variance. A bias-variance tradeoff can be made by

adding a penalty term in the least square objective function. When the penalty term

is the 𝑙2 norm of the regression coefficients, the resulting approach is called ridge

regression. Ridge regression reduces the variance of the estimate by introducing a

limited amount of bias and generally yields better predictions than the OLS solution.

Random forests can be used for regression by replacing the decision tree with a

regression tree and averaging the predictions from all of the regression trees [149].

A regression tree is similar to a decision tree except that the output variable takes

ordered values and often a regression model is fitted to each node to give the prediction

of the output variable. Like random forest classification, random forest regression is

accurate and robust. It can model complex nonlinear relationships between the input

feature vector and output variable and at the same time largely avoid over-fitting.

5.2 Functional score prediction

In this section, we build a regressor with a cerebellar shape representation as input

and a functional score as output. As in classification, linear dimension reduction

(PCA or PLS) is performed on the high-dimensional input feature vector. For the
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regressor, we explore two methods: ridge regression and random forest regression.

We describe in detail the principals of ridge regression since it will be used in both

functional score prediction and function specific pattern visualization in Section 5.3.

Let x𝑖 ∈ ℛ𝑝×1 denote the feature vector of the 𝑖th training sample in the dimension-

reduced space associated with a functional score 𝑦𝑖 ∈ ℛ. In matrix form, X =

[x1,x2, . . . ,x𝑛]𝑇 and y = [𝑦1, 𝑦2, . . . , 𝑦𝑛]𝑇 . Ridge regression finds the regression coef-

ficients 𝛽 ∈ ℛ𝑝×1 that minimizes the objective function

𝑓(𝛽) =
𝑛∑︁

𝑖=1

(︀
𝑦𝑖 − x𝑇

𝑖 𝛽
)︀2

+ 𝜆

𝑝∑︁
𝑗=1

𝛽2
𝑗 = ‖y −X𝛽‖22 + 𝜆 ‖𝛽‖22 , (5.1)

where 𝜆 ≥ 0 is the weight of the penalty term, often empirically determined.

When the intercept term is included in the regression, the intercept estimate ends

up just being 𝜇𝑦. Often X and y are centered before regression and then the intercept

term can be ignored.

The geometric interpretation of regression coefficients is that vector 𝛽 ∈ ℛ𝑝×1 is

a direction in 𝑝-dimensional space that when the input observations x are projected

to this direction, i.e. 𝛽𝑇x, they have the biggest correlation with output variable 𝑦.

We call 𝛽 the regression direction.

The functional score of a new observation x, centered, can then be predicted as

𝑦(x) = 𝛽𝑇x + 𝜇𝑦.

5.3 Function specific atrophy pattern visualization

In this section, we aim to visualize the characteristic cerebellar atrophy patterns as

a functional score changes from normal to increasing disability. We consider the

regression direction 𝛽 of the functional score, as computed in Section 5.2, since it

represents the direction in feature space that correlates most with the functional

score. As in Section 4.3, we visualize the atrophy pattern of a functional score as a

series of synthetic shapes sampled along a line in the discriminant direction 𝛽.

Given the regression direction 𝛽 in the dimension-reduced space, the correspond-
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ing direction in high-dimensional shape space can be computed as

b = V𝛽, (5.2)

where V = [v1,v2, . . . ,v𝑑] and v𝑖 is the 𝑖th component produced by PLS dimension

reduction. In order to be representative of the data, we select the line trajectory in

the direction b that passes through the point 𝜇, the mean of all subjects, and we call

it the regression line. The parametric representation of the regression line s𝑙 can then

be written as

s𝑙(𝑡) = 𝜇 + 𝑡b, 𝑡 ∈ R. (5.3)

To visualize the line trajectory, we sample five equidistant points s𝑙(𝑡0 + 𝑘∆𝑡), 𝑘 =

0, 1, . . . , 4 on the line, and reconstruct the cerebellar shapes from the points. The

points are sampled so that the first and fifth points predict (by regression function

𝑦) the lowest and highest functional score in the training data.

5.4 Results

5.4.1 Functional score prediction

In this experiment, we tested the proposed method on predicting functional stag-

ing score for ataxia (FSFA). FSFA is a subset of the unified ataxia disorders rating

scale [224]. FSFA rates a subject from 0 to 6, where a higher FSFA value indicates

more functional losses. 122 subjects with FSFA scores were used for the study. The

122 subjects include 30 healthy controls and 92 patients with different types of cere-

bellar ataxia. See Table 5.1 for the number and demographic information for the

healthy controls and patients. A leave-one-out experiment was used to evaluate the

regression performance, where each of the 122 subjects was used as a test subject while

the remaining 121 were used to learn the linear mapping for dimension reduction and

train the regressor.

We compared the combinations of different cerebellar structure representations,
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Table 5.1: Demographic information of the 122 subjects used in the study. Key: 𝑁
number of subjects; m/f is the male/female ratio; Age is the mean age; SD is the
standard deviation of the age.

𝑁 (m/f) Age (SD)

Healthy 30 (14/16) 56.3 (14.2)
Patients 92 (45/47) 51.2 (16.3)

dimension reduction methods, and regression methods. The cerebellar structure rep-

resentations are the same four representations used in Section 4.4.1: ROI volumes,

GM+WM RAVENS maps, lobule landmark representation and CB+WM level set

representation. The dimension reduction methods are PCA and PLS. The regression

methods are ridge regression (RR) and random forest regressor (RF).

Table 5.2 shows the leave-one-out root mean square prediction error (RMSE)

for each combination. Comparing different structural representations, the RAVENS

map has the best performance. Unlike in classification, ROI volumes have compat-

ible performance as high-dimensional representations. Again, the lobule landmark

representation, which encodes the richest structural information, does not perform

well. This may be due to the errors introduced in the many processing steps (seg-

mentation and correspondence finding) to compute the representation. Regarding

different dimension reduction methods, PCA is slightly better than PLS. Regarding

different regression methods, random forest regression has better performance than

ridge regression. Figure 5.1 shows the predicted FSFA verses the true FSFA from

all the test subjects in the leave-one-out experiment (combination of landmark shape

representation, PCA and ridge regression).
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Table 5.2: FSFA root mean square prediction error (RMSE) of the leave-one-out

experiments.

PCA PLS

RR RF RR RF

ROI Volumes 1.22 1.27 1.34 1.24

RAVENS maps 1.21 1.15 1.23 1.14

Landmark 1.26 1.25 1.63 1.28

Level set 1.26 1.24 1.34 1.24

Figure 5.1: Predicted FSFA vs. true FSFA in the leave-one-out experiment for the
combination of landmark shape representation, PCA dimension reduction and ridge
regression.

5.4.2 Function specific atrophy pattern visualization

In this section, we use the cerebellar lobule landmark presentation and show the

cerebellar atrophy patterns associated with a specific functional score. We visualize

the synthetic cerebellum lobule shapes sampled along the regression line computed

69



from the regression analysis of the functional score, as described in Section 5.3. We

chose 65 subjects with all functional scores evaluated. The 65 subjects include 18

healthy controls and 37 patients with different types of cerebellar ataxia. See Table 5.3

for the number and demographic information for the healthy controls and patients.

Table 5.3: Demographic information of the 65 subjects used in the study. Key: 𝑁
number of subjects; m/f is the male/female ratio; Age is the mean age; SD is the
standard deviation of the age.

𝑁 (m/f) Age (SD)

Healthy 18 (7/11) 53.9 (14.9)
Patients 37 (19/28) 53.6 (12.8)

Figures 5.2 and 5.3 show the atrophy pattern for FSFA and the Hooper test

scores, respectively. As introduced in Section 5.4.1, FSFA is a rating score quantifying

motor function. The Hooper test evaluates the individual’s ability to organize visual

stimuli [225], thus focusing more on the cognitive function. We can see that there

is substantial global atrophy and overall size change of the cerebellum as the FSFA

moves from normal to disease. For the Hooper test score, there is no apparent size

change of the cerebellum as the score moves from normal to disease. There is almost

no shape changes in lobules I–V and lobules VI. CRUS I and CRUS II have the most

atrophy. This partially agrees with Imamizu et al. (2003) [15] that “anterior lobe and

intermediate parts of posterior lobe are related to motor and somatosensory functions,

whereas lateral posterior cerebellum is related to cognitive functions”.

FSFAHealthy Disease

Figure 5.2: Cerebellar atrophy pattern associated with FSFA score.
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HooperHealthy Disease

Figure 5.3: Cerebellar atrophy pattern associated with Hooper test score.

5.5 Summary

In this chapter, we presented cerebellar shape analysis method to predict functional

scores and visualize the cerebellar atrophy pattern associated a functional score. A

leave-one-out experiment demonstrated the effectiveness of the proposed regression

method. We visualized cerebellar atrophy patterns associated with two functional

scores: FSFA and the Hooper test score. The observed atrophy patterns partially

agree with a previous study on the topological organization of functions in the cere-

bellum. It provides intuitive and visual understanding about the changes of overall

size and shape change of the cerebellum, as well as the details of individual sub-

structures.
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Chapter 6

Conclusion and future work

This thesis focus on shape analysis of the cerebellum in cerebellar ataxia, with special

focus on: 1) developing automated and accurate method for segmenting fine anatom-

ical divisions of the cerebellum; 2) exploring highly informative representation of the

cerebellar structures; 3) predicting ataxia types and functional decline based on the

highly informative representations; and 4) identifying disease and function specific

cerebellar atrophy patterns. In this chapter, we summarize the contributions and

propose directions for future research.

6.1 Cerebellar Lobule Segmentation

In Chapter 2, we proposed an automated method for segmenting cerebellar lobules

from MR images. The proposed method combines multi-atlas label fusion result

and tissue/boundary classification in a graph cut segmentation framework. The

multi-atlas component ensures the correct localization of different lobules, and tis-

sue/boundary classification promotes accurate delineation of lobule boundaries.

6.1.1 Results

∙ The proposed method was assessed on a cohort of 15 subjects, including both

healthy controls and patients with various degrees of cerebellar atrophy, for
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which expert manual labels are also available. The Wilcoxon two-sided signed

rank test on the 15 subjects indicated that the proposed method improved the

segmentation results over the other two state-of-the-art segmentation methods

significantly in terms of average area weighted Dice similarity coefficients, with a

p-value of 1.2×10−4 when compared with ACCLAIM and 3.3×10−3 when com-

pared with NL-STAPLE. The improvements are most substantial on subjects

with moderate to large cerebellar atrophy.

∙ The method was further validated on a larger cohort containing both normal

controls and patients experiencing cerebellar ataxia. Quantitative analysis of

the lobule volumes show distinct patterns of volume changes associated with

different SCA subtypes; the result is consistent with previous findings in which

cerebellar lobules were manually labeled by experts.

6.1.2 Future directions

∙ There is a bias towards smooth boundaries in the graph cuts segmentation

framework; this is undesirable for segmenting anatomical structures with com-

plex boundaries. There have been works on eliminating this bias in graph cuts

segmentation, which can be incorporated in the algorithm to improve the seg-

mentation accuracy.

∙ The result of the algorithm depends (moderately) on the atlases used in the

multi-atlas labeling and tissue / boundary training process, which might bias

the segmentation result towards the majority diagnosis of the atlases. Some data

driven atlas selection methods could be incorporated to improve the accuracy.

6.2 Cerebellar shape representations

In Chapter 3, we proposed two shape representations to characterize cerebellar struc-

tures. First, we proposed a landmark shape representation of the collection of cere-

bellar lobules. It is constructed by extracting dense homologous landmarks on the
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boundary surfaces of cerebellar sub-structures. We addressed the difficulty in es-

tablishing dense corresponding points on multiple 3D objects across subjects by a

two-step non-rigid point set registration. The second representation we proposed is a

level set based whole cerebellar shape representation. This representation is relatively

easy to compute and thus less prone to algorithm errors.

6.2.1 Results

∙ We demonstrated the representational power of the two shape representation

by studying the cerebellar shape variations of specific groups of subjects. The

principal shape modes computed by the two representations are consistent with

each other. However, the cerebellar lobule landmark representation provides

much more details on individual structures within the cerebellum.

∙ In Chapters 4 and 5, we compared the proposed shape representations with ex-

isting cerebellar structure representations like ROI volumes and RAVENS maps

in disease classification and functional score prediction. Overall, the level set

shape representation performed better or comparable to other representations

while the landmark representation performed worse in most cases. This may due

to the error and variance introduced in the many processing steps (segmentation

and correspondence finding) to compute the representation.

∙ In Chapters 4 and 5, we visualized the disease/function specific cerebellar at-

rophy patterns using the two representations. Again they provided consistent

results, and the cerebellar lobule landmark representation was able to provide

more details on individual structures.

6.2.2 Future directions

The bad performance of lobule landmark representation in disease / function pre-

diction results indicates that the landmark generation process, mainly the two-step

non-rigid point set registration, introduces errors or unintended shape variations.
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The correspondence finding process could be improved, for example, by imposing

constraints and regularization on the non-rigid point set registration.

6.3 Disease classification and atrophy pattern visu-

alization

In Chapter 4, we presented a shape analysis pipeline to classify healthy control and

different ataxia types, and to visualize the characteristic cerebellar atrophy patterns

for different ataxia types. Linear dimension reduction is first applied to reduce the

data dimension. The classifier is built in a dimension-reduced space to predict disease

types. The characteristic atrophy pattern for each ataxia type was visualized by

sampling along the discriminant direction between healthy controls and the ataxia

type.

6.3.1 Results

∙ Experimental results show that the proposed method can successfully classify

healthy controls and different ataxia types. Different combinations of cerebel-

lar structure representations, dimension reduction, and classification methods

were compared. Among all combinations, the combination of level set repre-

sentation, PCA and SCRDA obtains the highest success rate, 0.87. Regarding

the cerebellar structural representations, the RAVENS maps and the level set

shape representation achieve the best classification performance. The RAVENS

maps obtains success rate above 0.80 with any combination of dimension reduc-

tion and classification method; the level set representation obtains success rate

above 0.85 when using SCRDA as the classifier. Regarding different dimension

reduction methods, PCA is slightly better than PLS. Regarding different classi-

fication methods, a regularized modification of linear discriminant analysis gave

the best performance.

∙ We visualized cerebellar atrophy patterns associated with two functional scores:
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FSFA and the Hooper test score. The visualized cerebellar atrophy patterns

were consistent with the regional volume decreases observed in previous studies

in cerebellar ataxia. Compared to existing analysis method, the proposed shape

analysis pipeline provides an intuitive and detailed visualization of differences

of the overall size and shape of the cerebellum, as well as that of individual

lobules.

6.3.2 Future directions

∙ Although the current linear dimension reduction and discriminant analysis pro-

duce satisfying results, other dimension reduction and discriminant analysis

methods like sparse representation, manifold learning and deep neural networks

could be explored, but with careful handling of the high-dimensionality of the

data.

6.4 Functional score regression and atrophy pattern

visualization

In Chapter 5, we presented a shape analysis pipeline to predict functional scores, and

to visualize the function specific atrophy patterns. As in discriminant analysis, linear

dimension reduction was applied to generate the low-dimensional feature vector that

are both representative of the input data and correlates with output functional scores.

The regressor is built in the dimension-reduced space to predict functional scores.

Functional specific atrophy pattern is visualized by sampling along the regression

line.

∙ We demonstrated the effectiveness of the regression on predicting one of the

functional scores—functional staging score for ataxia (FSFA). We compared

the combinations of different cerebellar structure representations, different di-

mension reduction, and regression methods. Regarding the cerebellar structural
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representations, the RAVENS maps gave the best prediction performance. Re-

garding different dimension reduction methods, PCA is slightly better than

PLS. Regarding different regression methods, random forest regression has bet-

ter performance than ridge regression.

∙ The visualized function specific cerebellar atrophy patterns partially agrees with

a previous study on the topological organization of cerebellar functions. Com-

pared to existing analysis method, the proposed method provides an intuitive

and detailed visualization of changes of overall size and shape of the cerebel-

lum, as well as that of individual lobules, associated with the degeneration of a

specific function.

6.4.1 Future directions

∙ As pointed out in Section 6.3, nonlinear dimension reduction and regression

methods like manifold learning and deep neural networks could be explored,

but with careful handling of the high-dimensionality of the data.

∙ Since ataxia patients often have functional loss in different aspects, the different

functional scores are correlated. Future work include decorrelating the effects

of different functional scores, and identifying more specific atrophy patterns for

a functional score.

∙ Function specific pattern might vary with other variables like disease type, age,

gender. With enough samples, these variables should be included in the regres-

sion analysis.

6.5 Overall perspective

The main goal of the work presented in this thesis was to contribute to the morpho-

metric analysis of the cerebellum, where currently relatively limited works have been

done compared to the study of the cerebrum. This work contributes in many ways
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from the ROI segmentation and shape representations to shape based prediction and

visualization methods. It is hoped that this research has provided new tools and

insights in the morphometric analysis of the cerebellum, and will help to promote

future developments in the general fields of brain image analysis.
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[2] M. Itō, The cerebellum and neural control. Raven Press, 1984.

[3] H. C. Leiner, A. L. Leiner, and R. S. Dow, “Does the cerebellum contribute to
mental skills?,” Behavioral Neuroscience, vol. 100, no. 4, p. 443, 1986.

[4] J. D. Schmahmann, “An emerging concept: the cerebellar contribution to higher
function,” Archives of Neurology, vol. 48, no. 11, pp. 1178–1187, 1991.

[5] M. Manto, “The cerebellum, cerebellar disorders, and cerebellar researchâĂŤtwo
centuries of discoveries,” The Cerebellum, vol. 7, no. 4, pp. 505–516, 2008.

[6] D. Marmolino and M. Manto, “Past, present and future therapeutics for cere-
bellar ataxias,” Current Neuropharmacology, vol. 8, no. 1, p. 41, 2010.

[7] T. Klockgether and H. Paulson, “Milestones in ataxia,” Movement Disorders,
vol. 26, no. 6, pp. 1134–1141, 2011.

[8] M. P. Laakso, G. B. Frisoni, M. Könönen, M. Mikkonen, A. Beltramello,
C. Geroldi, A. Bianchetti, M. Trabucchi, H. Soininen, and H. J. Aronen, “Hip-
pocampus and entorhinal cortex in frontotemporal dementia and Alzheimer’s
disease: a morphometric MRI study,” Biological Psychiatry, vol. 47, no. 12,
pp. 1056–1063, 2000.

[9] G. Karas, E. Burton, S. Rombouts, R. Van Schijndel, J. OâĂŹBrien, P. Schel-
tens, I. McKeith, D. Williams, C. Ballard, and F. Barkhof, “A comprehensive
study of gray matter loss in patients with alzheimer’s disease using optimized
voxel-based morphometry,” NeuroImage, vol. 18, no. 4, pp. 895–907, 2003.

[10] S. Klöppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill, J. D. Rohrer,
N. C. Fox, C. R. Jack, J. Ashburner, and R. S. Frackowiak, “Automatic classifi-
cation of MR scans in Alzheimer’s disease,” Brain, vol. 131, no. 3, pp. 681–689,
2008.

[11] J. Kassubek, F. D. Juengling, T. Kioschies, K. Henkel, J. Karitzky, B. Kramer,
D. Ecker, J. Andrich, C. Saft, P. Kraus, A. J. Aschoff, A. C. Ludolph, and G. B.
Landwehrmeyer, “Topography of cerebral atrophy in early Huntington’s disease:

79



a voxel based morphometric MRI study,” Journal of Neurology, Neurosurgery
& Psychiatry, vol. 75, no. 2, pp. 213–220, 2004.

[12] G. Douaud, V. Gaura, M.-J. Ribeiro, F. Lethimonnier, R. Maroy, C. Verny,
P. Krystkowiak, P. Damier, A.-C. Bachoud-Levi, and P. Hantraye, “Distribution
of grey matter atrophy in Huntington’s disease patients: a combined ROI-based
and voxel-based morphometric study,” NeuroImage, vol. 32, no. 4, pp. 1562–
1575, 2006.

[13] E. H. Aylward, “Change in MRI striatal volumes as a biomarker in preclinical
Huntington’s disease,” Brain Research Bulletin, vol. 72, no. 2, pp. 152–158,
2007.

[14] J. D. Schmahmann, J. Doyon, D. McDonald, C. Holmes, K. Lavoie, A. S. Hur-
witz, N. Kabani, A. Toga, A. Evans, and M. Petrides, “Three-dimensional MRI
atlas of the human cerebellum in proportional stereotaxic space,” NeuroImage,
vol. 10, no. 3, pp. 233–260, 1999.

[15] H. Imamizu, T. Kuroda, S. Miyauchi, T. Yoshioka, and M. Kawato, “Modular
organization of internal models of tools in the human cerebellum,” Proceedings
of the National Academy of Sciences, vol. 100, no. 9, pp. 5461–5466, 2003.

[16] J. X. O’Reilly, C. F. Beckmann, V. Tomassini, N. Ramnani, and H. Johansen-
Berg, “Distinct and overlapping functional zones in the cerebellum defined by
resting state functional connectivity,” Cerebral Cortex, vol. 20, no. 4, pp. 953–
965, 2010.

[17] C. J. Stoodley and J. D. Schmahmann, “Functional topography in the human
cerebellum: a meta-analysis of neuroimaging studies,” NeuroImage, vol. 44,
no. 2, pp. 489–501, 2009.

[18] C. J. Stoodley and J. D. Schmahmann, “Evidence for topographic organization
in the cerebellum of motor control versus cognitive and affective processing,”
Cortex, vol. 46, no. 7, pp. 831–844, 2010.

[19] C. J. Stoodley, E. M. Valera, and J. D. Schmahmann, “Functional topography
of the cerebellum for motor and cognitive tasks: an fMRI study,” NeuroImage,
vol. 59, no. 2, pp. 1560–1570, 2012.

[20] R. L. Buckner, F. M. Krienen, A. Castellanos, J. C. Diaz, and B. T. Yeo,
“The organization of the human cerebellum estimated by intrinsic functional
connectivity,” Journal of Neurophysiology, vol. 106, no. 5, pp. 2322–2345, 2011.

[21] J. H. S. of Medicine Ataxia Center, “Diagnosing ataxia.” Available at http:
//www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/
movement_disorders/ataxia/conditions/ataxia_diagnosis.html.

80



[22] T. Schmitz-Hübsch, S. Tezenas du Montcel, L. Baliko, S. Boesch, S. Bonato,
R. Fancellu, P. Giunti, C. Globas, J.-S. Kang, B. Kremer, et al., “Reliability
and validity of the international cooperative ataxia rating scale: a study in 156
spinocerebellar ataxia patients,” Movement Disorders, vol. 21, no. 5, pp. 699–
704, 2006.

[23] T. Schmitz-Hübsch, S. T. Du Montcel, L. Baliko, J. Berciano, S. Boesch, C. De-
pondt, P. Giunti, C. Globas, J. Infante, J.-S. Kang, et al., “Scale for the assess-
ment and rating of ataxia – development of a new clinical scale,” Neurology,
vol. 66, no. 11, pp. 1717–1720, 2006.

[24] D. D. Blatter, E. D. Bigler, S. D. Gale, S. C. Johnson, C. V. Anderson, B. M.
Burnett, N. Parker, S. Kurth, and S. D. Horn, “Quantitative volumetric analysis
of brain MR: normative database spanning 5 decades of life.,” American Journal
of Neuroradiology, vol. 16, no. 2, pp. 241–251, 1995.

[25] A. Convit, M. De Leon, C. Tarshish, S. De Santi, W. Tsui, H. Rusinek, and
A. George, “Specific hippocampal volume reductions in individuals at risk for
Alzheimer’s disease,” Neurobiology of Aging, vol. 18, no. 2, pp. 131–138, 1997.

[26] R. Insausti, K. Juottonen, H. Soininen, A. M. Insausti, K. Partanen, P. Vainio,
M. P. Laakso, and A. Pitkänen, “MR volumetric analysis of the human entorhi-
nal, perirhinal, and temporopolar cortices.,” American Journal of Neuroradiol-
ogy, vol. 19, no. 4, pp. 659–671, 1998.

[27] A. Convit, J. De Asis, M. De Leon, C. Tarshish, S. De Santi, and H. Rusinek,
“Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in
non-demented elderly predict decline to Alzheimer’s disease,” Neurobiology of
Aging, vol. 21, no. 1, pp. 19–26, 2000.

[28] C. R. Jack, R. C. Petersen, Y. C. Xu, S. C. Waring, P. C. O’Brien, E. G.
Tangalos, G. E. Smith, R. J. Ivnik, and E. Kokmen, “Medial temporal atrophy
on MRI in normal aging and very mild Alzheimer’s disease,” Neurology, vol. 49,
no. 3, pp. 786–794, 1997.

[29] C. Jack, R. C. Petersen, Y. Xu, P. C. O’Brien, G. E. Smith, R. J. Ivnik, E. G.
Tangalos, and E. Kokmen, “Rate of medial temporal lobe atrophy in typical
aging and Alzheimer’s disease,” Neurology, vol. 51, no. 4, pp. 993–999, 1998.

[30] K. Juottonen, M. Laakso, R. Insausti, M. Lehtovirta, A. Pitkänen, K. Par-
tanen, and H. Soininen, “Volumes of the entorhinal and perirhinal cortices in
Alzheimer’s disease,” Neurobiology of Aging, vol. 19, no. 1, pp. 15–22, 1998.

[31] M. P. DelBello, S. M. Strakowski, M. E. Zimmerman, J. M. Hawkins, and
K. W. Sax, “MRI analysis of the cerebellum in bipolar disorder: a pilot study,”
Neuropsychopharmacology, vol. 21, no. 1, pp. 63–68, 1999.

81



[32] Y. Xu, C. Jack, P. OâĂŹbrien, E. Kokmen, G. Smith, R. Ivnik, B. Boeve,
R. Tangalos, and R. Petersen, “Usefulness of MRI measures of entorhinal cortex
versus hippocampus in AD,” Neurology, vol. 54, no. 9, pp. 1760–1767, 2000.

[33] T. Ichimiya, Y. Okubo, T. Suhara, and Y. Sudo, “Reduced volume of the cere-
bellar vermis in neuroleptic-naive schizophrenia,” Biological Psychiatry, vol. 49,
no. 1, pp. 20–27, 2001.

[34] D. H. Mathalon, E. V. Sullivan, K. O. Lim, and A. Pfefferbaum, “Progressive
brain volume changes and the clinical course of schizophrenia in men: a lon-
gitudinal magnetic resonance imaging study,” Archives of General Psychiatry,
vol. 58, no. 2, pp. 148–157, 2001.

[35] G. Chetelat and J.-C. Baron, “Early diagnosis of Alzheimer’s disease: contri-
bution of structural neuroimaging,” NeuroImage, vol. 18, no. 2, pp. 525–541,
2003.

[36] N. Raz, U. Lindenberger, K. M. Rodrigue, K. M. Kennedy, D. Head,
A. Williamson, C. Dahle, D. Gerstorf, and J. D. Acker, “Regional brain changes
in aging healthy adults: general trends, individual differences and modifiers,”
Cerebral Cortex, vol. 15, no. 11, pp. 1676–1689, 2005.

[37] L. Clarke, R. Velthuizen, M. Camacho, J. Heine, M. Vaidyanathan, L. Hall,
R. Thatcher, and M. Silbiger, “MRI segmentation: methods and applications,”
Magnetic Resonance Imaging, vol. 13, no. 3, pp. 343–368, 1995.

[38] D. L. Pham, C. Xu, and J. L. Prince, “Current methods in medical image
segmentation,” Annual Review of Biomedical Engineering, vol. 2, no. 1, pp. 315–
337, 2000.

[39] M. A. Balafar, A. R. Ramli, M. I. Saripan, and S. Mashohor, “Review of brain
MRI image segmentation methods,” Artificial Intelligence Review, vol. 33, no. 3,
pp. 261–274, 2010.

[40] J. Ashburner and K. J. Friston, “Voxel-based morphometry–the methods,” Neu-
roImage, vol. 11, no. 6, pp. 805–821, 2000.

[41] J. Ashburner and K. J. Friston, “Why voxel-based morphometry should be
used,” NeuroImage, vol. 14, no. 6, pp. 1238–1243, 2001.

[42] C. J. Mummery, K. Patterson, C. J. Price, J. Ashburner, R. S. J. Frackowiak,
and J. R. Hodges, “A voxel-based morphometry study of semantic dementia:
relationship between temporal lobe atrophy and semantic memory,” Annals of
Neurology, vol. 47, no. 1, pp. 36–45, 2000.

[43] C. Davatzikos, A. Genc, D. Xu, and S. M. Resnick, “Voxel-based morphometry
using the RAVENS maps: methods and validation using simulated longitudinal
atrophy,” NeuroImage, vol. 14, no. 6, pp. 1361–1369, 2001.

82



[44] C. D. Good, I. Johnsrude, J. Ashburner, R. N. Henson, K. J. Friston, and
R. S. Frackowiak, “Cerebral asymmetry and the effects of sex and handedness
on brain structure: a voxel-based morphometric analysis of 465 normal adult
human brains,” NeuroImage, vol. 14, no. 3, pp. 685–700, 2001.

[45] C. D. Good, R. I. Scahill, N. C. Fox, J. Ashburner, K. J. Friston, D. Chan,
W. R. Crum, M. N. Rossor, and R. S. Frackowiak, “Automatic differentiation of
anatomical patterns in the human brain: validation with studies of degenerative
dementias,” NeuroImage, vol. 17, no. 1, pp. 29–46, 2002.

[46] G. F. Busatto, G. E. Garrido, O. P. Almeida, C. C. Castro, C. H. Camargo,
C. G. Cid, C. A. Buchpiguel, S. Furuie, and C. M. Bottino, “A voxel-based
morphometry study of temporal lobe gray matter reductions in alzheimer’s
disease,” Neurobiology of Aging, vol. 24, no. 2, pp. 221–231, 2003.

[47] G. Karas, P. Scheltens, S. Rombouts, P. Visser, R. Van Schijndel, N. Fox, and
F. Barkhof, “Global and local gray matter loss in mild cognitive impairment
and Alzheimer’s disease,” NeuroImage, vol. 23, no. 2, pp. 708–716, 2004.

[48] G. M. McAlonan, V. Cheung, C. Cheung, J. Suckling, G. Y. Lam, K. Tai, L. Yip,
D. G. Murphy, and S. E. Chua, “Mapping the brain in autism. A voxel-based
MRI study of volumetric differences and intercorrelations in autism,” Brain,
vol. 128, no. 2, pp. 268–276, 2005.

[49] A. Mechelli, C. J. Price, K. J. Friston, and J. Ashburner, “Voxel-based mor-
phometry of the human brain: methods and applications,” Current Medical
Imaging Reviews, vol. 1, no. 2, pp. 105–113, 2005.

[50] R. Honea, T. J. Crow, D. Passingham, and C. E. Mackay, “Regional deficits
in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry
studies,” American Journal of Psychiatry, 2014.

[51] C. Davatzikos, M. Vaillant, S. M. Resnick, J. L. Prince, S. Letovsky, and R. N.
Bryan, “A computerized approach for morphological analysis of the corpus cal-
losum,” Journal of Computer Assisted Tomography, vol. 20, no. 1, pp. 88–97,
1996.

[52] M. Miller, A. Banerjee, G. Christensen, S. Joshi, N. Khaneja, U. Grenander, and
L. Matejic, “Statistical methods in computational anatomy,” Statistical Methods
in Medical Research, vol. 6, no. 3, pp. 267–299, 1997.

[53] C. Davatzikos, “Why voxel-based morphometric analysis should be used with
great caution when characterizing group differences,” NeuroImage, vol. 23, no. 1,
pp. 17–20, 2004.

[54] Z. Lao, D. Shen, Z. Xue, B. Karacali, S. M. Resnick, and C. Davatzikos, “Mor-
phological classification of brains via high-dimensional shape transformations
and machine learning methods,” NeuroImage, vol. 21, no. 1, pp. 46–57, 2004.

83



[55] Y. Fan, D. Shen, R. C. Gur, R. E. Gur, and C. Davatzikos, “COMPARE:
classification of morphological patterns using adaptive regional elements,” IEEE
Transactions on Medical Imaging, vol. 26, no. 1, pp. 93–105, 2007.

[56] Y. Fan, N. Batmanghelich, C. M. Clark, C. Davatzikos, and A. D. N. Initia-
tive, “Spatial patterns of brain atrophy in MCI patients, identified via high-
dimensional pattern classification, predict subsequent cognitive decline,” Neu-
roImage, vol. 39, no. 4, pp. 1731–1743, 2008.

[57] Y. Fan, S. M. Resnick, X. Wu, and C. Davatzikos, “Structural and functional
biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern clas-
sification study,” NeuroImage, vol. 41, no. 2, pp. 277–285, 2008.

[58] C. Davatzikos, Y. Fan, X. Wu, D. Shen, and S. M. Resnick, “Detection of
prodromal Alzheimer’s disease via pattern classification of magnetic resonance
imaging,” Neurobiology of Aging, vol. 29, no. 4, pp. 514–523, 2008.

[59] C. Davatzikos, S. M. Resnick, X. Wu, P. Parmpi, and C. M. Clark, “Individual
patient diagnosis of AD and FTD via high-dimensional pattern classification of
MRI,” NeuroImage, vol. 41, no. 4, pp. 1220–1227, 2008.

[60] P. Vemuri, J. L. Gunter, M. L. Senjem, J. L. Whitwell, K. Kantarci, D. S.
Knopman, B. F. Boeve, R. C. Petersen, and C. R. Jack, “Alzheimer’s disease
diagnosis in individual subjects using structural MR images: validation studies,”
NeuroImage, vol. 39, no. 3, pp. 1186–1197, 2008.

[61] C. Misra, Y. Fan, and C. Davatzikos, “Baseline and longitudinal patterns of
brain atrophy in MCI patients, and their use in prediction of short-term con-
version to AD: results from ADNI,” NeuroImage, vol. 44, no. 4, pp. 1415–1422,
2009.

[62] N. K. Batmanghelich, B. Taskar, and C. Davatzikos, “Generative-discriminative
basis learning for medical imaging,” IEEE Transactions on Medical Imaging,
vol. 31, no. 1, pp. 51–69, 2012.

[63] S. Wold, K. Esbensen, and P. Geladi, “Principal Component Analysis,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 2, no. 1, pp. 37–52, 1987.

[64] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[65] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisci-
plinary Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010.

[66] J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Trans-
actions on Computers, no. 5, pp. 401–409, 1969.

[67] M. A. Kramer, “Nonlinear principal component analysis using autoassociative
neural networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243, 1991.

84



[68] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[69] L. K. Saul and S. T. Roweis, “Think globally, fit locally: unsupervised learning of
low dimensional manifolds,” The Journal of Machine Learning Research, vol. 4,
pp. 119–155, 2003.

[70] Z.-y. Zhang and H.-y. Zha, “Principal manifolds and nonlinear dimensionality
reduction via tangent space alignment,” Journal of Shanghai University (English
Edition), vol. 8, no. 4, pp. 406–424, 2004.

[71] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” An-
nals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[72] D. W. Hosmer Jr and S. Lemeshow, Applied Logistic Regression. John Wiley &
Sons, 2004.

[73] D. A. Freedman, Statistical Models: Theory and Practice. Cambridge, UK:
Cambridge University Press, 2009.

[74] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995.

[75] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1,
pp. 81–106, 1986.

[76] J. R. Quinlan, “Simplifying decision trees,” International Journal of Man-
machine Studies, vol. 27, no. 3, pp. 221–234, 1987.

[77] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,”
Journal of Artificial Intelligence Research, pp. 169–198, 1999.

[78] R. Polikar, “Ensemble based systems in decision making,” Circuits and Systems
Magazine, IEEE, vol. 6, no. 3, pp. 21–45, 2006.

[79] F. L. Bookstein, “Shape and the information in medical images: A decade of
the morphometric synthesis,” in Mathematical Methods in Biomedical Image
Analysis, 1996., Proceedings of the Workshop on, pp. 2–12, IEEE, 1996.

[80] F. L. Bookstein, “Landmark methods for forms without landmarks: morpho-
metrics of group differences in outline shape,” Medical Image Analysis, vol. 1,
no. 3, pp. 225–243, 1997.

[81] F. L. Bookstein, Morphometric tools for landmark data: geometry and biology.
Cambridge University Press, 1997.

[82] T. F. Cootes and C. J. Taylor, “A mixture model for representing shape varia-
tion,” Image and Vision Computing, vol. 17, no. 8, pp. 567–573, 1999.

85



[83] X. Tao, X. Han, M. E. Rettmann, J. L. Prince, and C. Davatzikos, “Statistical
study on cortical sulci of human brains,” in Information Processing in Medical
Imaging, pp. 475–487, Springer, 2001.

[84] X. Tao, J. L. Prince, and C. Davatzikos, “Using a statistical shape model to ex-
tract sulcal curves on the outer cortex of the human brain,” IEEE Transactions
on Medical Imaging, vol. 21, no. 5, pp. 513–524, 2002.

[85] D. Shen, E. H. Herskovits, and C. Davatzikos, “An adaptive-focus statistical
shape model for segmentation and shape modeling of 3-D brain structures,”
IEEE Transactions on Medical Imaging, vol. 20, no. 4, pp. 257–270, 2001.

[86] G. Gerig, M. Styner, D. Jones, D. Weinberger, and J. Lieberman, “Shape anal-
ysis of brain ventricles using spharm,” in Mathematical Methods in Biomedical
Image Analysis, 2001. MMBIA 2001. IEEE Workshop on, pp. 171–178, IEEE,
2001.

[87] G. Gerig, M. Styner, M. E. Shenton, and J. A. Lieberman, “Shape versus size:
Improved understanding of the morphology of brain structures,” in Medical
Image Computing and Computer-Assisted Intervention–MICCAI 2001, pp. 24–
32, Springer, 2001.

[88] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor,
“3D statistical shape models using direct optimisation of description length,” in
ECCV 2002, pp. 3–20, Springer, 2002.

[89] M. Styner, G. Gerig, J. Lieberman, D. Jones, and D. Weinberger, “Statistical
shape analysis of neuroanatomical structures based on medial models,” Medical
Image Analysis, vol. 7, no. 3, pp. 207–220, 2003.

[90] M. Styner, J. A. Lieberman, D. Pantazis, and G. Gerig, “Boundary and medial
shape analysis of the hippocampus in schizophrenia,” Medical Image Analysis,
vol. 8, no. 3, pp. 197–203, 2004.

[91] M. Styner, I. Oguz, S. Xu, C. Brechbühler, D. Pantazis, J. J. Levitt, M. E.
Shenton, and G. Gerig, “Framework for the statistical shape analysis of brain
structures using SPHARM-PDM,” The Insight Journal, no. 1071, p. 242, 2006.

[92] J. Ma, M. I. Miller, A. Trouvé, and L. Younes, “Bayesian template estimation
in computational anatomy,” NeuroImage, vol. 42, no. 1, pp. 252–261, 2008.

[93] A. Qiu, C. Fennema-Notestine, A. M. Dale, M. I. Miller, and A. D. N. Initiative,
“Regional shape abnormalities in mild cognitive impairment and Alzheimer’s
disease,” NeuroImage, vol. 45, no. 3, pp. 656–661, 2009.

[94] L. Younes, J. T. Ratnanather, T. Brown, E. Aylward, P. Nopoulos, H. Johnson,
V. A. Magnotta, J. S. Paulsen, R. L. Margolis, R. L. Albin, M. L. Miller, C. A.
Ross, and PREDICT-HD Investigators and Coordinators of the Huntington

86



Study Group, “Regionally selective atrophy of subcortical structures in pro-
dromal HD as revealed by statistical shape analysis,” Human Brain Mapping,
vol. 35, no. 3, pp. 792–809, 2014.

[95] B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, “A bayesian
model of shape and appearance for subcortical brain segmentation,” NeuroIm-
age, vol. 56, no. 3, pp. 907–922, 2011.

[96] I. L. Dryden and K. V. Mardia, Statistical Shape Analysis, vol. 4. Wiley Chich-
ester, 1998.

[97] K. Bürk, M. Abele, M. Fetter, J. Dichgans, M. Skalej, F. Laccone, O. Didierjean,
A. Brice, and T. Klockgether, “Autosomal dominant cerebellar ataxia type I
clinical features and MRI in families with SCA1, SCA2 and SCA3,” Brain,
vol. 119, no. 5, pp. 1497–1505, 1996.

[98] T. H. Wassink, N. C. Andreasen, P. Nopoulos, and M. Flaum, “Cerebellar mor-
phology as a predictor of symptom and psychosocial outcome in schizophrenia,”
Biological Psychiatry, vol. 45, no. 1, pp. 41–48, 1999.

[99] E. V. Sullivan, A. Deshmukh, J. E. Desmond, K. O. Lim, and A. Pfefferbaum,
“Cerebellar volume decline in normal aging, alcoholism, and Korsakoff’s syn-
drome: relation to ataxia.,” Neuropsychology, vol. 14, no. 3, p. 341, 2000.

[100] F. Tavani, R. Zimmerman, G. Berry, K. Sullivan, R. Gatti, and P. Bingham,
“Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI,” Neuroradi-
ology, vol. 45, no. 5, pp. 315–319, 2003.

[101] S. Ying, S. Choi, S. Perlman, R. Baloh, D. Zee, and A. Toga, “Pontine and
cerebellar atrophy correlate with clinical disability in SCA2,” Neurology, vol. 66,
no. 3, pp. 424–426, 2006.

[102] H. Tiemeier, R. K. Lenroot, D. K. Greenstein, L. Tran, R. Pierson, and J. N.
Giedd, “Cerebellum development during childhood and adolescence: a longitu-
dinal morphometric MRI study,” NeuroImage, vol. 49, no. 1, pp. 63–70, 2010.

[103] B. C. Jung, S. I. Choi, A. X. Du, J. L. Cuzzocreo, H. S. Ying, B. A. Landman,
S. L. Perlman, R. W. Baloh, D. S. Zee, A. W. Toga, J. L. Prince, and S. H.
Ying, “MRI shows a region-specific pattern of atrophy in spinocerebellar ataxia
type 2,” The Cerebellum, vol. 11, no. 1, pp. 272–279, 2012.

[104] B. C. Jung, S. I. Choi, A. X. Du, J. L. Cuzzocreo, Z. Z. Geng, H. S. Ying,
S. L. Perlman, A. W. Toga, J. L. Prince, and S. H. Ying, “Principal component
analysis of cerebellar shape on MRI separates SCA types 2 and 6 into two
archetypal modes of degeneration,” The Cerebellum, vol. 11, no. 4, pp. 887–895,
2012.

87



[105] C. Lukas, L. Schöls, B. Bellenberg, U. Rüb, H. Przuntek, G. Schmid, O. Köster,
and B. Suchan, “Dissociation of grey and white matter reduction in spinocere-
bellar ataxia type 3 and 6: a voxel-based morphometry study,” Neuroscience
Letters, vol. 408, no. 3, pp. 230–235, 2006.

[106] S. G. Mueller, K. D. Laxer, N. Cashdollar, S. Buckley, C. Paul, and M. W.
Weiner, “Voxel-based Optimized Morphometry (VBM) of Gray and White Mat-
ter in Temporal Lobe Epilepsy (TLE) with and without Mesial Temporal Scle-
rosis,” Epilepsia, vol. 47, no. 5, pp. 900–907, 2006.

[107] M. E. Sim, I. K. Lyoo, C. C. Streeter, J. Covell, O. Sarid-Segal, D. A. Ciraulo,
M. J. Kim, M. J. Kaufman, D. A. Yurgelun-Todd, and P. F. Renshaw, “Cere-
bellar gray matter volume correlates with duration of cocaine use in cocaine-
dependent subjects,” Neuropsychopharmacology, vol. 32, no. 10, pp. 2229–2237,
2007.

[108] J. B. Schulz, J. Borkert, S. Wolf, T. Schmitz-Hübsch, M. Rakowicz, C. Mariotti,
L. Schoels, D. Timmann, B. van de Warrenburg, A. Dürr, et al., “Visualiza-
tion, quantification and correlation of brain atrophy with clinical symptoms in
spinocerebellar ataxia types 1, 3 and 6,” NeuroImage, vol. 49, no. 1, pp. 158–168,
2010.

[109] J. Peng, J. Liu, B. Nie, Y. Li, B. Shan, G. Wang, and K. Li, “Cerebral and
cerebellar gray matter reduction in first-episode patients with major depressive
disorder: a voxel-based morphometry study,” European Journal of Radiology,
vol. 80, no. 2, pp. 395–399, 2011.

[110] Z. Yang, J. A. Bogovic, C. Ye, A. Carass, S. H. Ying, and J. L. Prince, “Au-
tomated cerebellar lobule segmentation using graph cuts,” MICCAI Challenge
Workshop on Segmentation: Algorithms, Theory and Applications, 2013.

[111] Z. Yang, C. Ye, J. A. Bogovic, A. Carass, B. M. Jedynake, S. H. Ying, and
J. L. Prince, “Automated cerebellar lobule segmentation with application to
cerebellar structural analysis in cerebellar disease,” NeuroImage. accepted.

[112] Z. Yang, S. M. Abulnaga, A. Carass, K. Kansal, B. M. Jedynak, C. Onyike,
S. H. Ying, and J. L. Prince, “Landmark based shape analysis for cerebellar
ataxia classification and cerebellar atrophy pattern visualization,” SPIE Medical
Imaging, 2016. submitted.

[113] K. Bhattacharya, D. Saadia, B. Eisenkraft, M. Yahr, W. Olanow, B. Drayer, and
H. Kaufmann, “Brain magnetic resonance imaging in multiple-system atrophy
and Parkinson disease: a diagnostic algorithm,” Archives of Neurology, vol. 59,
no. 5, pp. 835–842, 2002.

[114] T. Wu and M. Hallett, “Reply: The cerebellum in parkinsonâĂŹs disease and
parkinsonism in cerebellar disorders,” Brain, vol. 136, no. 9, pp. e249–e249,
2013.

88



[115] R. Rodda, “Cerebellar atrophy in Huntington’s disease,” Journal of the Neuro-
logical Sciences, vol. 50, no. 1, pp. 147–157, 1981.

[116] U. Rüb, F. Hoche, E. R. Brunt, H. Heinsen, K. Seidel, D. Del Turco, H. L.
Paulson, J. Bohl, C. Gall, J.-P. Vonsattel, H.-W. Korf, and W. F. den Dunnen,
“Degeneration of the cerebellum in Huntington’s disease (HD): possible rele-
vance for the clinical picture and potential gateway to pathological mechanisms
of the disease process,” Brain Pathology, vol. 23, no. 2, pp. 165–177, 2013.

[117] M. Sjöbeck and E. Englund, “Alzheimer’s disease and the cerebellum: a morpho-
logic study on neuronal and glial changes,” Dementia and Geriatric Cognitive
Disorders, vol. 12, no. 3, pp. 211–218, 2001.

[118] A. Kutzelnigg, J. C. Faber-Rod, J. Bauer, C. F. Lucchinetti, P. S. Sorensen,
H. Laursen, C. Stadelmann, W. Brück, H. Rauschka, M. Schmidbauer, and
H. Lassmann, “Widespread demyelination in the cerebellar cortex in multiple
sclerosis,” Brain Pathology, vol. 17, no. 1, pp. 38–44, 2007.

[119] J. L. Lancaster, M. G. Woldorff, L. M. Parsons, M. Liotti, C. S. Freitas,
L. Rainey, P. V. Kochunov, D. Nickerson, S. A. Mikiten, and P. T. Fox, “Au-
tomated Talairach atlas labels for functional brain mapping,” Human Brain
Mapping, vol. 10, no. 3, pp. 120–131, 2000.

[120] J. A. Bogovic, B. Jedynak, R. Rigg, A. Du, B. A. Landman, J. L. Prince,
and S. H. Ying, “Approaching expert results using a hierarchical cerebellum
parcellation protocol for multiple inexpert human raters,” NeuroImage, vol. 64,
no. 1, pp. 616–629, 2013.

[121] B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. Van
Der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris,
B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labeling
of neuroanatomical structures in the human brain,” Neuron, vol. 33, no. 3,
pp. 341–355, 2002.

[122] N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, and D. L.
Pham, “A topology-preserving approach to the segmentation of brain images
with multiple sclerosis lesions,” NeuroImage, vol. 49, no. 2, pp. 1524–1535,
2010.

[123] C. Ciofolo and C. Barillot, “Atlas-based segmentation of 3D cerebral structures
with competitive level sets and fuzzy control.,” Medical Image Analysis, vol. 13,
no. 3, p. 456, 2009.

[124] F. van der Lijn, M. de Bruijne, Y. Y. Hoogendam, S. Klein, R. Hameeteman,
M. M. Breteler, and W. J. Niessen, “Cerebellum segmentation in MRI using
atlas registration and local multi-scale image descriptors,” in Biomedical Imag-
ing: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on,
pp. 221–224, IEEE, 2009.

89



[125] J. Hwang, J. Kim, Y. Han, and H. Park, “An automatic cerebellum extraction
method in T1-weighted brain MR images using an active contour model with a
shape prior,” Magnetic Resonance Imaging, vol. 29, no. 7, pp. 1014–1022, 2011.

[126] J. Diedrichsen, “A spatially unbiased atlas template of the human cerebellum,”
NeuroImage, vol. 33, no. 1, pp. 127–138, 2006.

[127] J. Diedrichsen, J. H. Balsters, J. Flavell, E. Cussans, and N. Ramnani, “A
probabilistic MR atlas of the human cerebellum,” NeuroImage, vol. 46, no. 1,
pp. 39–46, 2009.

[128] S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and per-
formance level estimation (STAPLE): an algorithm for the validation of image
segmentation,” IEEE Transactions on Medical Imaging, vol. 23, no. 7, pp. 903–
921, 2004.

[129] R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers,
“Automatic anatomical brain MRI segmentation combining label propagation
and decision fusion,” NeuroImage, vol. 33, no. 1, pp. 115–126, 2006.

[130] X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz-de Solórzano, “Combina-
tion strategies in multi-atlas image segmentation: Application to brain MR
data,” IEEE Transactions on Medical Imaging, vol. 28, no. 8, pp. 1266–1277,
2009.

[131] P. Aljabar, R. A. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert,
“Multi-atlas based segmentation of brain images: atlas selection and its effect
on accuracy,” NeuroImage, vol. 46, no. 3, pp. 726–738, 2009.

[132] A. J. Asman and B. Landman, “Formulating spatially varying performance
in the statistical fusion framework,” IEEE Transactions on Medical Imaging,
vol. 31, no. 6, pp. 1326–1336, 2012.

[133] A. J. Asman and B. A. Landman, “Non-local statistical label fusion for multi-
atlas segmentation,” Medical Image Analysis, vol. 17, no. 2, pp. 194–208, 2013.

[134] X. Tang, K. Oishi, A. V. Faria, A. E. Hillis, M. S. Albert, S. Mori, and M. I.
Miller, “Bayesian parameter estimation and segmentation in the multi-atlas
random orbit model,” PloS ONE, vol. 8, no. 6, p. e65591, 2013.

[135] K. Weier, V. Fonov, K. Lavoie, J. Doyon, and D. L. Collins, “Rapid
automatic segmentation of the human cerebellum and its lobules (ras-
cal)âĂŤimplementation and application of the patch-based label-fusion tech-
nique with a template library to segment the human cerebellum,” Human brain
mapping, vol. 35, no. 10, pp. 5026–5039, 2014.

[136] J. A. Bogovic, P.-L. Bazin, S. H. Ying, and J. L. Prince, “Automated seg-
mentation of the cerebellar lobules using boundary specific classification and

90



evolution,” in Information Processing in Medical Imaging (J. C. Gee, S. Joshi,
K. M. Pohl, W. M. Wells, and L. Zöllei, eds.), vol. 7917 of Lecture Notes in
Computer Science, pp. 62–73, Springer, 2013.

[137] A. C. Evans, S. Marrett, P. Neelin, L. Collins, K. Worsley, W. Dai, S. Milot,
E. Meyer, and D. Bub, “Anatomical mapping of functional activation in stereo-
tactic coordinate space,” NeuroImage, vol. 1, no. 1, pp. 43–53, 1992.

[138] A. C. Evans, D. L. Collins, S. Mills, E. Brown, R. Kelly, and T. M. Peters, “3D
statistical neuroanatomical models from 305 MRI volumes,” in Nuclear Science
Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference
Record., pp. 1813–1817, IEEE, 1993.

[139] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization
via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 23, no. 11, pp. 1222–1239, 2001.

[140] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient ND image segmenta-
tion,” International Journal of Computer Vision, vol. 70, no. 2, pp. 109–131,
2006.

[141] T. Rohlfing, R. Brandt, C. R. Maurer Jr, and R. Menzel, “Bee brains, B-
splines and computational democracy: Generating an average shape atlas,”
in Mathematical Methods in Biomedical Image Analysis, 2001. MMBIA 2001.
IEEE Workshop on, pp. 187–194, IEEE, 2001.

[142] I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Gin-
neken, “Multi-atlas-based segmentation with local decision fusion—Application
to cardiac and aortic segmentation in CT scans,” IEEE Transactions on Medical
Imaging, vol. 28, no. 7, pp. 1000–1010, 2009.

[143] P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles, and D. L. Collins,
“Patch-based segmentation using expert priors: Application to hippocampus
and ventricle segmentation,” NeuroImage, vol. 54, no. 2, pp. 940–954, 2011.

[144] A. J. Asman and B. A. Landman, “Robust statistical label fusion through con-
sensus level, labeler accuracy, and truth estimation (COLLATE),” IEEE Trans-
actions on Medical Imaging, vol. 30, no. 10, pp. 1779–1794, 2011.

[145] B. A. Landman, A. J. Asman, A. G. Scoggins, J. A. Bogovic, F. Xing, and
J. L. Prince, “Robust statistical fusion of image labels,” IEEE Transactions on
Medical Imaging, vol. 31, no. 2, pp. 512–522, 2012.

[146] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denois-
ing,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 2, pp. 60–65, IEEE, 2005.

91



[147] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomor-
phic image registration with cross-correlation: evaluating automated labeling
of elderly and neurodegenerative brain,” Medical Image Analysis, vol. 12, no. 1,
pp. 26–41, 2008.

[148] B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee,
“A reproducible evaluation of ants similarity metric performance in brain image
registration,” NeuroImage, vol. 54, no. 3, pp. 2033–2044, 2011.

[149] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[150] D. Marr and H. K. Nishihara, “Representation and recognition of the spatial
organization of three-dimensional shapes,” Proceedings of the Royal Society of
London B: Biological Sciences, vol. 200, no. 1140, pp. 269–294, 1978.

[151] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition
using shape contexts,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 4, pp. 509–522, 2002.

[152] B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization and
segmentation with an implicit shape model,” in Workshop on Statistical Learn-
ing in Computer Vision, ECCV, vol. 2, p. 7, 2004.

[153] T. Heimann and H.-P. Meinzer, “Statistical shape models for 3D medical image
segmentation: a review,” Medical Image Analysis, vol. 13, no. 4, pp. 543–563,
2009.

[154] D. G. Kendall, “Shape manifolds, procrustean metrics, and complex projective
spaces,” Bulletin of the London Mathematical Society, vol. 16, no. 2, pp. 81–121,
1984.

[155] J. Csernansky, L. Wang, J. Swank, J. Miller, M. Gado, D. McKeel, M. Miller,
and J. Morris, “Preclinical detection of Alzheimer’s disease: hippocampal shape
and volume predict dementia onset in the elderly,” NeuroImage, vol. 25, no. 3,
pp. 783–792, 2005.

[156] D. G. Kendall, “A survey of the statistical theory of shape,” Statistical Science,
pp. 87–99, 1989.

[157] F. L. Bookstein, “Size and shape spaces for landmark data in two dimensions,”
Statistical Science, pp. 181–222, 1986.

[158] C. Goodall, “Procrustes methods in the statistical analysis of shape,” Journal
of the Royal Statistical Society. Series B (Methodological), pp. 285–339, 1991.

[159] I. Dryden and K. V. Mardia, “General shape distributions in a plane,” Advances
in Applied Probability, pp. 259–276, 1991.

92



[160] C. R. Goodall and K. V. Mardia, “Multivariate aspects of shape theory,” The
Annals of Statistics, pp. 848–866, 1993.

[161] I. Dryden and K. Mardia, “Multivariate shape analysis,” Sankhyā: The Indian
Journal of Statistics, Series A, pp. 460–480, 1993.

[162] T. F. Cootes and C. J. Taylor, “Active shape models—’smart snakes’,” in
BMVC92, pp. 266–275, Springer, 1992.

[163] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models-
their training and application,” Computer Vision and Image Understanding,
vol. 61, no. 1, pp. 38–59, 1995.

[164] H. Blum, “Biological shape and visual science (Part I),” Journal of Theoretical
Biology, vol. 38, no. 2, pp. 205–287, 1973.

[165] S. M. Pizer, D. S. Fritsch, P. Yushkevich, V. E. Johnson, and E. L. Chaney, “Seg-
mentation, registration, and measurement of shape variation via image object
shape,” IEEE Transactions on Medical Imaging, vol. 18, no. 10, pp. 851–865,
1999.

[166] S. M. Pizer, P. T. Fletcher, S. Joshi, A. Thall, J. Z. Chen, Y. Fridman, D. S.
Fritsch, A. G. Gash, J. M. Glotzer, M. R. Jiroutek, C. Lu, K. E. Muller, G. Trac-
ton, P. Yushkevich, and E. L. Chaney, “Deformable M-Reps for 3D medical im-
age segmentation,” International Journal of Computer Vision, vol. 55, no. 2-3,
pp. 85–106, 2003.

[167] M. Styner and G. Gerig, “Hybrid boundary-medial shape description for biolog-
ically variable shapes,” in Mathematical Methods in Biomedical Image Analysis,
2000. Proceedings. IEEE Workshop on, pp. 235–242, IEEE, 2000.

[168] M. Styner and G. Gerig, “Medial models incorporating object variability for 3D
shape analysis,” in Information Processing in Medical Imaging, pp. 502–516,
Springer, 2001.

[169] M. Styner, G. Gerig, S. Joshi, and S. Pizer, “Automatic and robust computation
of 3D medial models incorporating object variability,” International Journal of
Computer Vision, vol. 55, no. 2-3, pp. 107–122, 2003.

[170] P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi, “Principal geodesic analysis
for the study of nonlinear statistics of shape,” IEEE Transactions on Medical
Imaging, vol. 23, no. 8, pp. 995–1005, 2004.

[171] L. H. Staib and J. S. Duncan, “Model-based deformable surface finding for
medical images,” IEEE Transactions on Medical Imaging, vol. 15, no. 5, pp. 720–
731, 1996.

93



[172] G. Székely, A. Kelemen, C. Brechbühler, and G. Gerig, “Segmentation of 2-D
and 3-D objects from MRI volume data using constrained elastic deformations
of flexible Fourier contour and surface models,” Medical Image Analysis, vol. 1,
no. 1, pp. 19–34, 1996.

[173] A. Kelemen, G. Székely, and G. Gerig, “Elastic model-based segmentation of 3-
D neuroradiological data sets,” IEEE Transactions on Medical Imaging, vol. 18,
no. 10, pp. 828–839, 1999.

[174] A. Matheny and D. B. Goldgof, “The use of three-and four-dimensional surface
harmonics for rigid and nonrigid shape recovery and representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 10,
pp. 967–981, 1995.

[175] C. Nikou, G. Bueno, F. Heitz, and J.-P. Armspach, “A joint physics-based sta-
tistical deformable model for multimodal brain image analysis,” IEEE Trans-
actions on Medical Imaging, vol. 20, no. 10, pp. 1026–1037, 2001.

[176] C. Davatzikos, X. Tao, and D. Shen, “Hierarchical active shape models, using
the wavelet transform,” IEEE Transactions on Medical Imaging, vol. 22, no. 3,
pp. 414–423, 2003.

[177] D. Nain, S. Haker, A. Bobick, and A. Tannenbaum, “Multiscale 3-D shape
representation and segmentation using spherical wavelets,” IEEE Transactions
on Medical Imaging, vol. 26, no. 4, pp. 598–618, 2007.

[178] P. Yu, P. E. Grant, Y. Qi, X. Han, F. Ségonne, R. Pienaar, E. Busa, J. Pacheco,
N. Makris, R. L. Buckner, P. Golland, and F. Bruce, “Cortical surface shape
analysis based on spherical wavelets,” IEEE Transactions on Medical Imaging,
vol. 26, no. 4, pp. 582–597, 2007.

[179] B. Tsagaan, A. Shimizu, H. Kobatake, and K. Miyakawa, “An automated seg-
mentation method of kidney using statistical information,” in Medical Image
Computing and Computer-Assisted InterventionâĂŤMICCAI 2002, pp. 556–
563, Springer, 2002.

[180] J. A. Sethian, Level set methods and fast marching methods: evolving interfaces
in computational geometry, fluid mechanics, computer vision, and materials
science, vol. 3. Cambridge university press, 1999.

[181] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton-Jacobi formulations,” Journal of Com-
putational Physics, vol. 79, no. 1, pp. 12–49, 1988.

[182] R. Malladi, J. Sethian, and B. C. Vemuri, “Shape modeling with front propa-
gation: A level set approach,” IEEE Transactions on Medical Imaging, vol. 17,
no. 2, pp. 158–175, 1995.

94



[183] T. F. Chan and L. Vese, “Active contours without edges,” IEEE Transactions
on Image Processing, vol. 10, no. 2, pp. 266–277, 2001.

[184] Y. Chen, H. D. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. S.
Gopinath, R. W. Briggs, and E. A. Geiser, “Using prior shapes in geometric
active contours in a variational framework,” International Journal of Computer
Vision, vol. 50, no. 3, pp. 315–328, 2002.

[185] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical approaches
to level set segmentation: integrating color, texture, motion and shape,” Inter-
national Journal of Computer Vision, vol. 72, no. 2, pp. 195–215, 2007.

[186] J. C. Gower, “Generalized procrustes analysis,” Psychometrika, vol. 40, no. 1,
pp. 33–51, 1975.

[187] B. K. Horn, “Closed-form solution of absolute orientation using unit quater-
nions,” Journal of the Optical Society of America A, vol. 4, no. 4, pp. 629–642,
1987.

[188] A. F. Frangi, D. Rueckert, J. Schnabel, and W. J. Niessen, “Automatic construc-
tion of multiple-object three-dimensional statistical shape models: Application
to cardiac modeling,” IEEE Transactions on Medical Imaging, vol. 21, no. 9,
pp. 1151–1166, 2002.

[189] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface
construction algorithm,” ACM Siggraph Computer Graphics, vol. 21, no. 4,
pp. 163–169, 1987.

[190] A. Myronenko and X. Song, “Point set registration: Coherent point drift,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12,
pp. 2262–2275, 2010.

[191] D. W. Shattuck and R. M. Leahy, “BrainSuite: an automated cortical surface
identification tool,” Medical Image Analysis, vol. 6, no. 2, pp. 129–142, 2002.

[192] D. C. Van Essen, H. A. Drury, J. Dickson, J. Harwell, D. Hanlon, and C. H.
Anderson, “An integrated software suite for surface-based analyses of cerebral
cortex,” Journal of the American Medical Informatics Association, vol. 8, no. 5,
pp. 443–459, 2001.

[193] D. C. Van Essen, “Windows on the brain: the emerging role of atlases and
databases in neuroscience,” Current Opinion in Neurobiology, vol. 12, no. 5,
pp. 574–579, 2002.

[194] D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 215–242, 1958.

95



[195] S. H. Walker and D. B. Duncan, “Estimation of the probability of an event
as a function of several independent variables,” Biometrika, vol. 54, no. 1-2,
pp. 167–179, 1967.

[196] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,” 1995.

[197] Y. Freund and R. E. Schapire, “Large margin classification using the perceptron
algorithm,” Machine Learning, vol. 37, no. 3, pp. 277–296, 1999.

[198] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “Recent advances of large-scale linear
classification,” Proceedings of the IEEE, vol. 100, no. 9, pp. 2584–2603, 2012.

[199] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proceedings of the Fifth Annual Workshop on Computa-
tional Learning Theory, pp. 144–152, ACM, 1992.

[200] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. Le-
Cun, U. A. Muller, E. Sackinger, P. Simard, et al., “Comparison of classifier
methods: a case study in handwritten digit recognition,” in International Con-
ference on Pattern Recognition, pp. 77–77, IEEE Computer Society Press, 1994.

[201] V. Vapnik, The nature of statistical learning theory. Berlin, DE: Springer Sci-
ence & Business Media, 2013.

[202] A. Aizerman, E. M. Braverman, and L. Rozoner, “Theoretical foundations of
the potential function method in pattern recognition learning,” Automation and
Remote Control, vol. 25, pp. 821–837, 1964.

[203] T. M. Cover, “Geometrical and statistical properties of systems of linear inequal-
ities with applications in pattern recognition,” IEEE Transactions on Electronic
Computers, no. 3, pp. 326–334, 1965.

[204] K. Pearson, “On lines and planes of closest fit to system of points in space.
philiosophical magazine, 2, 559-572,” 1901.

[205] H. Hotelling, “Analysis of a complex of statistical variables into principal com-
ponents.,” Journal of Educational Psychology, vol. 24, no. 6, p. 417, 1933.

[206] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set:
A strategy employed by v1?,” Vision research, vol. 37, no. 23, pp. 3311–3325,
1997.

[207] D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions
on, vol. 52, no. 4, pp. 1289–1306, 2006.

[208] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recog-
nition via sparse representation,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 31, no. 2, pp. 210–227, 2009.

96



[209] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural Computation, vol. 10, no. 5, pp. 1299–1319,
1998.

[210] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch,
“Kernel PCA and de-noising in feature spaces.,” in Advances in Neural Infor-
mation Processing Systems, vol. 4, p. 7, Citeseer, 1998.

[211] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500,
pp. 2319–2323, 2000.

[212] D. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data,” Proceedings of the National Academy of
Sciences, vol. 100, no. 10, pp. 5591–5596, 2003.

[213] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction
and data representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396,
2003.

[214] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in
Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[215] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[216] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel
approach,” Neural Computation, vol. 12, no. 10, pp. 2385–2404, 2000.

[217] K. Fukumizu, F. R. Bach, and M. I. Jordan, “Dimensionality reduction for
supervised learning with reproducing kernel Hilbert spaces,” The Journal of
Machine Learning Research, vol. 5, pp. 73–99, 2004.

[218] R. Raina, Y. Shen, A. Mccallum, and A. Y. Ng, “Classification with hybrid gen-
erative/discriminative models,” in Advances in Neural Information Processing
Systems, p. None, 2003.

[219] J. Lasserre, C. M. Bishop, T. P. Minka, et al., “Principled hybrids of generative
and discriminative models,” in Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, vol. 1, pp. 87–94, IEEE, 2006.

[220] A. Bosch, A. Zisserman, and X. Muoz, “Scene classification using a hybrid
generative/discriminative approach,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 30, no. 4, pp. 712–727, 2008.

[221] H. Abdi, “Partial least square regression (PLS regression),” Encyclopedia for
Research Methods For the Social Sciences, pp. 792–795, 2003.

97



[222] Y. Guo, T. Hastie, and R. Tibshirani, “Regularized linear discriminant analysis
and its application in microarrays,” Biostatistics, vol. 8, no. 1, pp. 86–100, 2007.

[223] Y. Ou, A. Sotiras, N. Paragios, and C. Davatzikos, “DRAMMS: Deformable
registration via attribute matching and mutual-saliency weighting,” Medical
Image Analysis, vol. 15, no. 4, pp. 622–639, 2011.

[224] S. Subramony, W. May, D. Lynch, C. Gomez, K. Fischbeck, M. Hallett, P. Tay-
lor, R. Wilson, T. Ashizawa, and for the Cooperative Ataxia Group, “Measuring
friedreich ataxia: interrater reliability of a neurologic rating scale,” Neurology,
vol. 64, no. 7, pp. 1261–1262, 2005.

[225] H. E. Hooper, “The Hooper Visual Organization Test,” Western Psychological
Services: Beverley Hills, CA, 1963.

98



List of Publications

∙ Journal articles

1. Zhen Yang, Chuyang Ye, John A. Bogovic, Aaron Carass, Bruno M. Je-

dynake, Sarah H. Ying, Jerry L. Prince. Automated Cerebellar Lobule

Segmentation with Application to Cerebellar Structural Analysis in Cere-

bellar Disease. Neuroimage, accepted.

2. Mao Ye, Henry M. Sanchez, Margot Hultz, Zhen Yang, Max Bogorad,

Andrew D. Wong, and Peter C. Searson. Brain microvascular endothelial

cells resist elongation due to curvature and shear stress. Scientific reports

4 (2014).

3. Chuyang Ye, Zhen Yang, Sarah H. Ying, and Jerry L. Prince. Segmen-

tation of the Cerebellar Peduncles Using a Random Forest Classifier and a

Multi-object Geometric Deformable Model: Application to Spinocerebellar

Ataxia Type 6. Neuroinformatics (2015): 1-15.

4. Bennett A. Landman, John A. Bogovic, Aaron Carass, Min Chen, Sne-

hashis Roy, Navid Shiee, Zhen Yang et al. "System for integrated neu-

roimaging analysis and processing of structure." Neuroinformatics 11, no.

1 (2013): 91-103.

∙ Conference and workshop papers

1. Zhen Yang, S. Mazdak Abulnaga, Aaron Carass, Kalyani Kansal, Bruno

M. Jedynak, Chiadi Onyike, Sarah H. Ying and Jerry L. Prince. Landmark

Based Shape Analysis for Cerebellar Ataxia Classification and Cerebellar

Atrophy Pattern Visualization. SPIE medical imaging, International So-

ciety for Optics and Photonics, 2016, submitted.

2. Zhen Yang, Shenghua Zhong, Aaron Carass, Sarah H. Ying, and Jerry L.

Prince. Deep Learning for Cerebellar Ataxia Classification and Functional

99



Score Regression. In Machine Learning in Medical Imaging, pp. 68-76.

Springer International Publishing, 2014.

3. Zhen Yang, John A. Bogovic, Chuyang Ye, Aaron Carass, Bruno M.

Jedynake, Sarah H. Ying, Jerry L. Prince. Automated cerebellar lobule

segmentation using graph cuts, MICCAI Challenge Workshop on Segmen-

tation: Algorithms, Theory and Applications, 2013.

4. Zhen Yang, John A. Bogovic, Aaron Carass, Mao Ye, Peter C. Searson,

and Jerry L. Prince. Automatic cell segmentation in fluorescence images of

confluent cell monolayers using multi-object geometric deformable model.

In SPIE Medical Imaging, pp. 866904-866904. International Society for

Optics and Photonics, 2013.

5. Zhen Yang, Aaron Carass, and Jerry L. Prince. Covariance shrinking

in active shape models with application to gyral labeling of the cerebral

cortex. In Biomedical Imaging (ISBI), 2013 IEEE 10th International Sym-

posium on, pp. 1018-1021. IEEE, 2013.

6. Zhen Yang, Aaron Carass, Chen Chen, and Jerry L. Prince. Simultane-

ous cortical surface labeling and sulcal curve extraction. In SPIE Medical

Imaging, pp. 831414-831414. International Society for Optics and Pho-

tonics, 2012.

100



Vita

Zhen Yang was born in Wuhan, Hubei, China. She received the B.S. degree

in Optoelectronics Information Engineering and M.S. degree in Optical Engineering

both from Beijing University of Aeronautics and Astronautics, Beijing, China. She

is currently pursuing the Ph.D. degree in Electrical and Computer Engineering at

The Johns Hopkins University. Her research interests include computer vision and

medical image analysis.

101




