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Abstract 

Ubiquitous exposure to environmental chemicals has come to define contemporary life, 

although the role of these exposures has only recently been appreciated in the etiology of 

neurodevelopmental diseases. Organophosphate flame retardants are one such implicated 

group of chemicals, and as such have faced renewed regulatory scrutiny over the 

magnitude of risk they pose to the developing human brain. Large epidemiological studies of 

maternal exposure as well as direct exposures in school-aged children have consistently 

associated organophosphate flame retardants with clinical indicators of abnormal 

neurodevelopment. However, the dual challenges of incomplete understanding of these 

disorders and discordant data in conventional toxicological research has complicated efforts 

to determine a causal role for flame retardants in the etiology of neurodevelopmental 

disease. 

 

This investigation aims to determine whether organophosphate flame retardants classified 

by shared functional, structural, physicochemical, and biological properties exhibit sufficient 

concordance across a battery of developmental neurotoxicity (DNT) assays in the human 

induced Pluripotent Stem Cell (iPSC)-derived microphysiological brain model 

(BrainSpheres) to justify a single assessment of human neurodevelopmental hazards for the 

entire subclass. The subclass-based approach recommended by the National Academies of 

Sciences, Engineering, and Medicine was used to design the exposure experiments. At 4 

weeks of differentiation, BrainSpheres were exposed for 7 days to three flame retardants in 

the Polyhalogenated Organophosphate subclass (tris(2-chloroethyl) phosphate—TCEP, 

tris(1,3-dichloro-2-propyl)phosphate—TDCPP, and tris(2-chloropropyl) phosphate—Tris) 

and one phased out brominated flame retardant (2,2',4,4'-Tetrabromodiphenyl ether—BDE-
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47) at concentrations found in human serum (10 and 20 μM). The results indicate that these 

compounds impair neurite quality and show a tendency toward minor upregulation in gene 

expression of microtubule-associated (TUBB3, MAP2) and functional (PSD-95, GRIN1, 

GRIN2a). At 10 and 20 μM exposure, polyhalogenated organophosphate flame retardants 

do not appear to elicit as strong a toxic effect as BDE-47, the primary congener of 

polybrominated diphenyl ether (PBDE), which has been removed from the market mainly 

due to its toxicity to the developing brain. 

 

While these findings should still be considered preliminary, evidence suggests that 

constituents of the PHOP subclass are both capable of perturbing key events in 

neurodevelopment and do so with a sufficiently similar magnitude and directionality to justify 

regulatory consideration of co-exposures in a cumulative human risk assessment. 
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Chapter 1 

Introduction 

Over the last half-century, the role of chemical exposure in the etiology of human diseases, 

including neurodevelopmental disorders, has become increasingly clear (Landrigan et al. 

2017). The developing human brain is remarkably vulnerable to environmental perturbation 

in utero and throughout childhood and adolescence, with windows of elevated susceptibility 

occurring at different times, in different cell types, and across different regions of the brain 

(Grandjean and Landrigan 2014; Lanphear 2015). Perturbations to the proper sequence of 

neurodevelopmental events can permanently alter neurobehavioral, neurocognitive, and 

neuromotor outcomes for the affected individual (Landrigan et al. 2017). This is especially 

relevant because epidemiological studies have identified an increasing prevalence of 

developmental disabilities, with worrisome consequences for individual and public health 

(Zablotsky et al. 2019).  

 

Evidence implicates exposure to industrial chemicals, pesticides, and additives in consumer 

goods as risk factors for neurodevelopmental disorders including autism spectrum diseases, 

attention deficit/hyperactivity disorder, intellectual disability, communication disorders, 

learning disorders, and motor disorders (Landrigan et al. 2017). Organophosphate flame 

retardants are one such implicated class of chemicals. Initial concerns about potential 

hazards have been raised due to similarities between the compounds' molecular structure 

and that of organophosphate insecticides, which are known developmental neurotoxins 

(Hogberg et al. 2021). Organophosphate flame retardant metabolites have also been 

associated with reductions in intelligence and working memory in large cohort studies 

(Castorina et al. 2017). Epidemiological data indicates near universal human exposure in 
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developed countries (NASEM 2019). However, the dual challenges of incomplete 

understanding of neurodevelopmental disorders and discordant data in toxicological 

research complicates efforts to determine a causal role of flame retardants in elevating 

neurodevelopmental disorders (Ibid).  

 

Conventional methods of assessing human neurodevelopmental toxicity are particularly 

limited in their ability to predict adverse human health effects at a corresponding dose, due 

in part to limitations in modeling the complexity of higher-order cognition and behavior 

(Smirnova et al. 2014). Animal testing also tends to be prohibitively expensive in terms of 

time, resources, and animals sacrificed in a single study, which has contributed to 

developmental neurotoxicity’s position as one of the least-evaluated human health 

endpoints (Ibid). Consequently, fewer than 1% of chemicals have been assessed for DNT 

(EPA 2018). Thus, there is a demonstrated need to modernize the assessment of 

commercially important chemicals for potential hazards to human health, including 

neurodevelopmental health (NASEM 2019; Landrigan et al. 2017). 

 

New Approach Methodologies (NAMs), including in silico modeling and human stem cell-

based microphysiological systems, may help advance scientific understanding around the 

potential neurodevelopmental hazards of flame retardants and other chemicals (Smirnova et 

al. 2014). Utilizing a class-based approach is one valid method of evaluating human health 

hazards across structurally, biologically, and functionally related chemicals, and may be a 

particularly useful way to assess the thousands of chemicals on the market with yet-

uncharacterized toxicity (NASEM 2019). Specifically, the National Academies of Science, 

Engineering, and Medicine has proposed fourteen subclasses of related organohalogen 

flame retardants, including the polyhalogenated organophosphate subclass, which may be 

reliably evaluated for shared human health hazards (Ibid). Employing 21st century 
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toxicological tools that are directly relevant to human health outcomes will aid in determining 

whether data supports regulating the 22-member PHOP subclass on the basis of 

developmental neurotoxicity. 
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Chapter 2  

Developmental Neurotoxicity 

NEURODEVELOPMENTAL DISORDERS 

The fifth edition of the American Psychiatric Association’s Diagnostic and Statistical Manual 

of Mental Disorders classifies neurodevelopmental disorders as a group of related 

conditions in which delayed or insufficient achievement of neurobehavioral, neurocognitive 

and neuromotor milestones impair functionality in personal, social, academic, or workplace 

settings (American Psychiatric Association, 2013). 

 

These deficits can range in severity from mild, isolated delays in acquiring specific skills to 

profound, gross functional impairments (Ibid). Importantly, diagnostic criteria require 

symptom onset during the early developmental years, most often before the child reaches 

school-age (Ibid). DSM-V recognizes six broad families of conditions that fall under the 

umbrella of neurodevelopmental disorders: Autism spectrum disorder (ASD), attention-

deficit/hyperactivity disorder (ADHD), communication disorders, intellectual disorders, motor 

disorders, and specific learning disorder (Ibid). The clinical signs and symptoms of these 

disorders are detailed in Table 1. Evidence in support of the relatedness of the 

neurodevelopmental cluster of disorders points to the collective occurrence of disorder-

specific genetic risk factors, a similar clinical phenotype of abnormal neurodevelopment with 

early onset and limited remission, and a high co-occurrence of within-cluster diagnoses 

(Ibid). 
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Table 1: General signs and symptoms of neurodevelopmental diseases. a CDC 2019; b American Psychiatric 
Association 2013. 

 
Neurodevelopmental Disorder Signs and Symptoms 

Autism Spectrum Disorder • Persistent deficiencies in social, emotional, and 
communication skills,a which impede the individual’s 
capacity for nonverbal communication, social reciprocity, 
relationship building, and other vital social interactions, 
accompanied by restrictive, repetitive behaviors, an 
elevated preference for maintaining routine, and sensory 
sensitivity.b 

Attention-Deficit/Hyperactivity Disorder 
Attention-Deficit/Hyperactivity Disorder 
Other Specified Attention-
Deficit/Hyperactivity Disorder 
Unspecified Attention-Deficit/ Hyperactivity 
Disorder 

• A degree of inattention, disorganization, hyperactivity and 
impulsivity that is inappropriate for the individual’s age, 
complicating efforts to stay on task, keep track of items, 
and exercise patience. b 

Communication Disorders 
Language Disorder 
Speech Sound Disorder 
Childhood-Onset Fluency Disorder 
(Stuttering) 
Social (Pragmatic) Communication 
Disorder 
Unspecified Communication Disorder 

• Persistent and significant linguistic challenges, including 
a limited vocabulary, reduced ability to apply proper 
grammar and sentence structure or connect sentences to 
convey meaning. b 

• Cannot be explained by a co-occurring neurological, 
intellectual, or sensory disability or environmental deficit, 
such as the absence of age-appropriate education. b 

Intellectual Disabilities 
Intellectual Disability 
Global Developmental Delay 
Unspecified Intellectual Disability 

• Impaired intellectual and adaptive functioning, which can 
include difficulty with abstract reasoning, learning, 
planning, judgement, social competency, and self-
management. b 

• Scoring two or more standard deviations below the 
population mean on a standardized intelligence test, 
equating to an IQ of roughly 65 to 75 or below. b 

Motor Disorders 
Developmental Coordination Disorder 
Stereotypic Movement Disorder 
Tic Disorders 

• Persistent and significant challenges acquiring and 
performing acts of coordination and fine motor 
movements, b or; 

• Repetitive, purposeless movement, such as rocking or 
hand waving, b or; 

• Persistent random movement or vocalizations which 
cannot be explained by a co-occurring disease, such as 
Parkinson’s Disease, or substance use or abuse. b 

• Cannot be explained by a co-occurring neurological, 
intellectual, or sensory disability. b 

Specific Learning Disorder • Persistent and significant challenges acquiring and 
applying academic skills, such as reading, spelling, 
grammar, or mathematics. b 

• Cannot be explained by a co-occurring neurological, 
intellectual, or sensory disability or environmental deficit, 
such as the absence of age-appropriate education. b 

 

While the etiology of many neurodevelopmental disorders is poorly understood, studies 

indicate a strong genetic component for ASD and ADHD. Several hundred candidate genes 

and chromosomal regions have been identified as contributing to the risk of ASD (Landrigan 

et al. 2012; Rylaarsdam and Guemez-Gamboa 2019) and are largely involved in 
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metabolism, chromatin remodeling, mRNA regulation, protein synthesis, and synapse 

formation and function (Gilbert and Man 2017). However, individuals with similar pathogenic 

variants can have drastically different symptom presentation and degree of functionality, and 

no genetic factor has been consistently observed in all autistic individuals (Rylaarsdam and 

Guemez-Gamboa 2019). It has been estimated that a combination of genetic factors 

accounts for 30% to 40% of ASD risk (Landrigan et al. 2012). Similarly, genome-wide 

association studies indicate that numerous genetic variants have a marginal contribution to 

ADHD risk, although only one third of the observed heritability can be attributed to genetics 

alone (Faraone and Larsson 2019). More generally, 3% of developmental disorders can be 

attributed to environmental exposures, while a further 25% may be attributable to the 

interaction of genetic and environmental risk factors (National Research Council 2000). 

 

The prevalence of these disorders, particularly ASD and ADHD, is increasing at a rate that 

suggests expanded diagnostic criteria and increased disease awareness cannot account for 

the surge in case numbers (Tran and Miyake 2017). The U.S. Environmental Protection 

Agency (EPA) reports that 6.3% of children had an ADHD diagnosis in 1997, compared to 

10.7% in 2017, amounting to a 70% increase over two decades (EPA 2019a). This trend is 

more pronounced for children with ASD diagnoses, which increased more than twenty-fold 

over the same timeframe, from 0.1% in 1997 to 2.3% in 2017 (EPA 2019a). Together, ASD 

and ADHD now account for 64% of childhood developmental disabilities in the United States 

(Zablotsky et al. 2019). 

 

The precise source of this increase remains elusive. A Danish study estimated that changes 

in diagnostic criteria and reporting together account for 60% of the observed increase in 

ASD diagnoses (Hansen et al. 2015). The remaining fraction likely constitutes a true 

increase in prevalence. Hypothesized sources for this remaining increase include complex 
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interactions between genetics or epigenetics and environmental, cultural, and 

socioeconomic factors such as advancing paternal age and greater survival of premature 

infants (Tran and Miyake 2017; Bishop 2014; Hultman et al. 2011; Leavey et al. 2013). 

 

CLINICAL AND EPIDEMIOLOGICAL INDICATORS OF TOXICITY 

While numerous genetic, nutritional, infectious, and chemical teratogens were described by 

the nineteenth or mid-twentieth century, the impact of environmental toxicants on cognitive 

and behavioral functionality remained relatively unstudied until the 1970s (National 

Research Council 2000). Often, early discoveries of developmental toxicity followed 

environmental disasters involving acute high-dose maternal exposure (Lanphear 2015; 

Grandjean and Landrigan 2014). 

 

For example, after industrial wastewater was released into Minamata Bay, Japan between 

1932 and 1968, contaminated seafood exposed pregnant mothers to high levels of 

methylmercury and children in the region were born with severe intellectual impairment and 

motor disfunction (Lanphear 2015). In separate incidents in Japan and Taiwan in 1968 and 

1979, children exposed in utero to cooking oil contaminated by polychlorinated biphenyls 

(PCBs) exhibited hyperpigmentation, nail and dental abnormalities, and poor cognitive 

development, as measured by 5 point score reductions on both the Stanford-Binet test and 

the revised Wechsler Intelligence Scale for Children (Lanphear 2015; Cheng et al. 1992; 

Miller 2004). Clinicians had long described learning and behavioral disorders in children who 

survived acute lead poisoning (Byers and Lord 1943), but studies in the 1970s and 1980s 

began identifying behavioral, cognitive, concentration, and memory deficits in children with 

elevated blood-lead levels that did not reach contemporary definitions for acute poisoning 
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(Gorini et al. 2014). It is now understood that no lower threshold for a safe level of lead 

exposure exists for children (Grandjean and Landrigan 2014). 

 

More recently, information arising from large prospective birth cohort studies have enabled 

epidemiologists to detect neurotoxicants that elicit more subtle impacts (Grandjean and 

Landrigan 2014; Luo et al. 2010). Although the breadth of these findings cannot be 

completely explored within this paper, the following examples provide a brief overview of 

recent advancements in scientific understanding of the link between early life environmental 

exposure and neurodevelopmental disease. 

 

A 2014 review of epidemiological and experimental literature conclusively identified eleven 

human developmental neurotoxins: lead, methylmercury, polychlorinated biphenyls, arsenic, 

toluene, manganese, fluoride, chlorpyrifos, tetrachloroethylene, 

dichlorodiphenyltrichloroethane, and polybrominated diphenyl ethers (PBDEs) (Grandjean 

and Landrigan 2014). More suspected developmental neurotoxins have been investigated in 

the years since.  

 

A longitudinal study of 265 children found associations between prenatal exposure to the 

organophosphate (OP) pesticide chlorpyrifos, as measured through umbilical cord blood 

concentrations at delivery, and reductions in IQ, and working memory (Rauh et al. 2011). 

Subsequent investigations using cohorts from the United States and Europe have 

corroborated these findings (Grandjean and Landrigan 2014). 

 

A systematic review of the association between early-life exposure to environmental 

toxicants and ASD found strong evidence for general air pollution and pesticides as ASD 

risk factors, and moderate evidence for phthalates, PCBs, solvents, and toxic waste sites as 
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ASD risk factors (Rossignol et al. 2014). However, the authors note that the conclusions of 

many of these studies may be biased by limited sample size and retrospective design (Ibid). 

 

A recent review of 19 large prospective cohort studies indicates that prenatal and childhood 

exposure to PBDEs is associated with hyperactivity and misconduct, inattention, and 

impaired executive function (Vuong et al. 2018). Evidence supporting an association with 

ASD, impaired social behavior, adaptive skills, and internalizing disorders was inconclusive 

(Ibid). An editorial co-authored by Dr. Linda Birnbaum, former Director of the National 

Institute for Environmental Health Sciences, notes that prospective studies have indicated 

associations between IQ reduction, dyslexia, and ADHD and lead, methylmercury, OP 

insecticides, organochlorine insecticides, polycyclic aromatic hydrocarbons, bisphenol A 

(BPA), brominated flame retardants, and perfluorinated compounds (Landrigan et al. 2012). 

 

Even in spite of mounting evidence of environmental risk factors for neurodevelopmental 

disorders, epidemiological studies alone are insufficient to establish a causal role in 

disordered development (Smirnova et al. 2014). 

 

EARLY LIFE SUSCEPTIBILITY  

It is well established that the developing brain is exceptionally sensitive to environmental 

perturbation, including perturbation due to exogenous exposures (Landrigan et al. 2012; 

Grandjean and Landrigan 2014). Fetuses and young children are at greatest risk of harm 

from exposure to exogenous chemicals due to several factors, including permeability of 

anatomical barriers, immature metabolism and excretion, small body weight relative to 

exposure dose, and unique windows of susceptibility that accompany early development 

(Smirnova et al. 2014; Landrigan et al. 2012; Grandjean and Landrigan 2014). 
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The placenta does not prevent toxic compounds from reaching the developing fetus, despite 

earlier hypotheses to the contrary (Lanphear 2015; National Research Council 2000). All 

lipid-soluble compounds are believed to be capable of crossing the placenta, while other 

physicochemical properties including molecular weight below 500 g/mol, relationships 

between blood pH and chemical dissociation, and a low degree of protein binding facilitate 

movement across the placenta (National Research Council 2000; EPA 2015a; Griffiths and 

Campbell 2014). Additionally, some compounds have been observed to accumulate in fetal 

blood (Griffiths and Campbell 2014) and the fetal portion of the placenta (Ruis et al. 2019) in 

concentrations greater than those observed in the mother. 

 

Formation of tight junctions in the endothelial layer of cerebral vasculature, which impart 

functionality to the blood-brain barrier, occurs contemporaneously with angiogenesis 

(Moretti et al. 2015; Malaeb et al. 2012; Møllgård and Saunders 1986) as early as 

gestational week 8 in humans (Moretti et al. 2015). However, either neuroblast, pericyte, or 

astrocyte differentiation is believed to induce blood-brain barrier formation, so early 

molecular events preceding this induction may occur in absence of protection (Ibid). 

Additionally, the blood-brain barrier exhibits increased permeability through gestation, likely 

due to enhanced protein- and receptor-mediated transportation across cells (Møllgård and 

Saunders 1986; Moretti et al. 2015; Lanphear 2015). 

 

Given similar exposure scenarios, reduced metabolic capacity and small body size equates 

to a larger internal dose reaching molecular targets. Biotransformation enzymes including 

cytochrome P450s are differentially expressed in the fetus compared to the adult, and 

enzymes involved in glucuronidation are absent before birth (Blumenfeld et al. 2009). 

Studies also indicate that infants have limited activity of the enzyme paraoxonase-1 (PON1), 

which plays a role in the breakdown of OPs (Chen et al. 2003). 
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Together, these factors may render the developing brain particularly susceptible to 

neurotoxic metabolites and exogenous chemicals during key growth and developmental 

processes, including neuronal proliferation, migration, differentiation, neurite outgrowth, 

synaptogenesis, myelination, network formation, brain structure formation, and synaptic 

pruning (Fritsche et al. 2018; Lanphear 2015). As neurodevelopmental disorders are 

currently understood, disability arises through disruption to one or more of these molecular 

processes (Andrews et al. 2009; Fritsche et al. 2018). These key events occur during 

different times, in different cell types, and in different regions of the brain, yielding distinct 

windows of susceptibility to environmental insult (Lanphear 2015). 

 

ENVIRONMENTAL DYSREGULATION OF EARLY BRAIN 

DEVELOPMENT 

No single molecular mechanism is responsible for developmental neurotoxicity, and in fact a 

single toxicant can produce toxicity through numerous pathways. Lead is a classic example 

of such a compound. Lead increases the spontaneous release of neurotransmitters and 

blocks the induced release of depolarization-induced neurotransmitters by inhibiting and 

mimicking calcium (Bressler and Goldstein 1991). This can have deleterious effects on 

synaptogenesis and synaptic pruning, the latter of which is heavily dependent on neural 

activity patterns and may alter cognitive ability and behavior (Ibid). Calcium mimicry also 

disrupts intracellular signaling cascades controlling proliferation, differentiation, and the 

apical endpoints of memory and learning (Ibid). Lead has also been shown to reduce 

myelination by interfering with 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase), an 

essential enzyme for myelin synthesis, and causing gross morphological abnormalities in 

oligodendroglia, which produce myelin in the central nervous system (Lidsky and Schneider 

2003). Lead can accumulate in neuronal mitochondria, inducing apoptosis or making cells 
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more susceptible to excitotoxicity from overstimulation (Ibid). Moreover, as described in 

adverse outcome pathway (AOP) 13 in the AOP-Wiki, lead can act as an antagonist for the 

glutamatergic NMDA-receptor and can lead to decreased synaptogenesis, decreased 

neuronal network formation and ultimately impairment of learning and memory (Sachana et 

al. 2018).  

 

There is evidence that ASD pathogenesis may involve changes in neural network 

functionality that are attributable to alterations in pre-or postsynaptic proteins and receptors 

in both excitatory and inhibitory neurons (Gilbert and Man 2017). Both macrocephaly and 

microcephaly have been observed in substantial portions of ASD patients, which may be 

due to increased neurite outgrowth, deficient neurite pruning, increased neuronal 

proliferation or reduced apoptosis (Ibid). Abnormal lamination of cortical projection neurons 

has also been observed. Both lamination and neuronal proliferation are dependent on 

proper neural progenitor proliferation and pruning, which begin in utero and continue 

through early childhood (Ibid). Finally, cerebral dysplasia observed in multiple brain regions 

of ASD patients implicates abnormal neurogenesis, neuronal migration, and neuronal 

interaction with radial glia (Ibid). 

 

Disruption of dopaminergic neuron activity and dysregulation of catecholamine signaling in 

the prefrontal cortex have both been hypothesized as contributing factors to impaired 

attention and behavior in ADHD (Brennan and Arnsten 2010). Brain imaging studies have 

also identified a reduction in white matter volume and alterations to certain brain structures, 

which may be attributable to some of the same cellular and molecular processes 

hypothesized to increase ASD risk (Curatolo et al. 2010). 
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Developmental neurotoxicants can also elicit toxicity by disrupting estrogenic and thyroid 

hormone signaling, which can have consequences for the developing fetus (Lanphear 

2015). Dichlorodiphenyl trichloroethane (DDT), PCBs, PBDEs, phthalates, and BPA have 

been found to act in this way (Ibid). It is well established that maternal thyroid dysregulation, 

whether through hypothyroxinemia, hypothyroidism, thyroid autoimmunity, or iodine 

deficiency, can have negative impacts on child health, including reduced IQ, slowed reaction 

time, and verbal communication delays (Moog et al. 2015). Environmental exposures that 

interfere with the fetal or maternal hypothalamic-pituitary-thyroid (HPT) axis are anticipated 

to have similar outcomes (Ibid). For instance, environmental inhibition of the 

thyroperoxidase enzyme activity impairs the synthesis of thyroid hormone T4, which is 

essential to normal development of the hippocampus (Crofton et al. 2019). Reductions in 

TH-dependent gene expression leads to abnormal neuronal activity, synaptic integrity, 

neuronal plasticity in the hippocampal region, which plays a major role in memory and 

learning (Ibid). 

 

Several exogenous compounds have also been observed to induce epigenetic modification 

through the alteration of methylation patterns, as is the case for air pollution, arsenic, lead, 

diethylstilbestrol, tobacco, and BPA (Lanphear 2015). These changes are heritable when 

they occur in the germline, which may pose generational effects if an inappropriately 

methylated gene is silenced, or a temporally expressed gene is persistently demethylated 

(Tran and Miyake 2017). Consequently, a compound that does not directly act as a 

neurotoxicant itself may still be capable of indirectly altering key developmental processes in 

offspring or grandchildren. However, few studies have explored the transgenerational effects 

of environmental chemicals on neurodevelopmental disorders and more remains to be 

learned (Ibid). 
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PUBLIC HEALTH CONSEQUENCES 

Neurodevelopmental disorders are enduring morbidities that can severely limit quality of life 

and have profound societal effects. While a mild reduction in IQ on the order of that 

described for early life exposure to lead (Gilbert and Weiss 2006) or PBDEs (Lam et al. 

2017) may be indiscernible on the individual level, population-wide effects are profound. A 

5-point reduction in IQ as a result of a ubiquitous environmental contaminant results in a 

57% increase in the number of individuals incapable of independently functioning in society 

(Gilbert and Weiss 2006). 

 

Individuals with impaired cognitive ability have reduced academic achievement and 

truncated lifetime earning potential, which is not confined to those who fall below the 70 IQ 

point threshold for intellectual disability (Lanphear 2015). After adjusting for years of 

schooling, loss of one IQ point has been estimated to reduce lifetime earnings by 2.1% for 

males and 3.6% for females (Salkever 1995). In the United States, the annual economic 

burden of ASD alone is estimated to reach $461 billion in medical costs, special education 

and care, and lost parental productivity by 2025 (Leigh and Du 2015). A recent study 

estimates a $124.5 billion annual economic burden for ADHD (Zhao et al. 2019). Costs 

increase for individuals with co-occurrence of intellectual disability (Buescher et al. 2014). 

 

The U.S Centers for Disease Control and Prevention’s (CDC) Autism and Developmental 

Disabilities Monitoring (ADDM) Network reports that white children are 10% to 20% more 

likely to receive an ASD diagnosis by age 8 than black or Hispanic children, although 

targeted outreach in minority communities and school-centric policies for universal screening 

for ASD have narrowed this disparity in recent years (Baio et al. 2018). Socioeconomic 

status likely plays a role in access to diagnostic tools. Children from households in the 
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highest tertile of socioeconomic factors – comprised by regional educational attainment, 

income, and low poverty indication – were diagnosed with ASD 70% more frequently than 

children from households in the lowest tertile of socioeconomic factors (Durkin et al. 2017). 

Interestingly, this trend does not appear to hold in European countries where universal 

access to healthcare eliminates barriers to ASD diagnosis and care (Ibid). In the U.S., these 

factors may limit the opportunity for early intervention, including speech, behavioral, and 

physical therapies, which have been proven to improve long-term social, academic, and 

economic functionality (Reichow and Wolery 2009). 

 

At its core, the environmental contribution to neurodevelopmental disorder burden 

represents a preventable risk factor for a permanent disability. As data mounts in favor of 

one or several causal relationships between exogenous chemicals and disordered 

development, evidence-based prevention programs will be imperative to protecting public 

health. 

 

CONVENTIONAL DNT ASSESSMENTS 

The field of toxicological sciences is in the midst of a paradigm shift away from empirically 

based animal testing, and towards mechanistically based in vivo, in vitro, and in silico 

approaches that more directly predict human relevance in less time and with fewer resource 

demands (Smirnova et al. 2014; Bal-Price et al. 2012). This shift is particularly relevant to 

assessing developmental neurotoxicity. 

 

For regulatory harmonization, DNT testing traditionally followed three guidance studies from 

the Organisation for Economic Co-operation and Development (OECD) and EPA. The 

Developmental Neurotoxicity Study guidelines (OECD TG 426) recommend a rat study that 
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evaluates the effect of chemical exposure in utero and through the postnatal period on brain 

histopathology, neuropathology, sexual maturation, cognition, behavior, and motor function, 

none of which provide clear mechanistic evidence (OECD 2018a). The Extended One-

Generation Reproductive Toxicity Study (OECD TG 443) considers a neurodevelopmental 

cohort of pups under similar exposure conditions and evaluated for changes in behavior and 

motor function, response to auditory stimulus, and brain histopathology (OECD 2018b). The 

protocol for the EPA Developmental Neurotoxicity Study (OPPTS 8706300, EPA 712-C-98-

239) was adopted in 1998 and has not been updated in subsequent years (EPA 1998). It 

similarly considers pre- and post-natal maternal exposure and the observed effect on pup 

sexual maturation, motor activity, response to auditory stimulus, learning and memory, 

neuropathology, and brain morphometry (Ibid). It is estimated that each completed DNT test 

requires at minimum 1,000 rat pups and 140 mated females, takes 3 months to conduct, 

and costs approximately $1.4 million (OECD 2018a; Smirnova et al. 2014). In the absence 

of regulatory requirements for developmental neurotoxicity testing, discretionary evaluation 

becomes prohibitively costly and developmental neurotoxicity testing is routinely foregone 

(Smirnova et al. 2014; Bal-Price et al. 2012). 

 

Even when guideline animal tests are performed, they have limited human relevance. 

Characterization of behavioral endpoints are subjective and can vary from observer to 

observer even when operating under the same protocol (EPA 1998; Smirnova et al. 2014). 

Consequently, reproducibility of in vivo developmental neurotoxicity assays is low, even 

among control groups (Smirnova et al. 2014). Dosing is routinely done at high 

concentrations not representative of the low-dose chronic exposure scenarios by which 

most of the population comes in contact with environmental chemicals (Ibid). Additionally, in 

the absence of mechanistic data generation, the biological plausibility of any observed 

toxicity remains unknown (Ibid). Measuring so many endpoints in a single study also 
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presents a problem for inferential statistical analyses, which must be corrected to account 

for multiple testing scenarios (Ibid). Thus, economics and applicability have driven new 

enthusiasm for alternative means of assessing toxicity. 

 

NEW APPROACH METHODOLOGIES 

Several NAMs have been developed in the past 15 years that facilitate the paradigm shift 

toward a faster, more human-relevant understanding of toxicity. These methods prioritize 

the assessment of biological perturbations occurring further upstream, such as altered 

transcriptional or translational output, protein modifications or cell signaling, allowing 

researchers to evaluate the toxic effects of chemicals that act on multiple targets or through 

multiple modes of action (Aschner et al. 2017). Importantly, the resultant advancements in 

cell culture technology and computational modeling have the dual advantage of reducing 

dependence on animal models with poor translatability to the human population, and 

capturing toxicity across levels of biological complexity as it occurs in the target species 

(Ibid). 

 

The AOP approach has recently gained favor as a simplified organizational framework 

through which a molecular initiating event is linked to an adverse organism-level or 

population-level response through a series of causal key events at increasing levels of 

biological organization (Bal-Price and Meek 2017). Key events in neurodevelopment include 

cell proliferation, differentiation, maturation, myelination, migration, neurite outgrowth, 

apoptosis, synaptogenesis, synaptic pruning, signal transduction, and neuronal network 

formation (Smirnova et al. 2014; Fritsche et al. 2018). In accordance with OECD guidelines, 

AOPs are not toxicant-specific, but rather describe the plausible biological progression to a 

pathological state (OECD 2018c). Due to the complexity of neurodevelopmental diseases, 
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this pathological endpoint is symptom-specific, rather than encompassing the full range of 

diagnostic criteria of a disease (Bal-Price and Meek 2017). Of the 15 AOPs so far reviewed 

and endorsed by OECD, six cover perturbed neurodevelopment (OECD 2019). 

For example, Sachana and colleagues describe how inhibition of the neuronal N-methyl-D-

aspartate (NMDAR) glutamate receptor during synaptogenesis in the hippocampus can yield 

reduced intracellular calcium levels (Sachana et al. 2016). This impairs the release of brain 

derived neurotrophic factor (BDNF), which subsequently reduces the presynaptic release of 

glutamate, promotes cell death, and yields abnormal dendritic morphology (Ibid). Together, 

these actions reduce synaptogenesis, which impairs synaptic strength, plasticity and 

ultimately learning and memory formation (Ibid). 

 

Other strategies, including the Pathway of Toxicity model proposed by the Johns Hopkins 

Center for Alternatives to Animal Testing (CAAT) emphasize a systems approach to hazard 

identification (Kleesang et al. 2014). The PoT approach abandons the linearity of an AOP in 

favor of a granular description of cellular and molecular perturbation in the context of whole 

molecular networks, with the ultimate goal of characterizing an integrated pathway that is 

both necessary and sufficient to the development of an adverse outcome (Ibid). 

 

Among the in silico tools, read-across methodologies utilize data from well-characterized 

chemicals to predict the activity of metabolically or structural similar chemicals that lack 

toxicity data (Berggren 2014). Similarity is often established using the Tanimoto coefficient, 

which evaluates chemical structure’s similarity based on the presence or absence in both 

molecular species to be compared (Chung et al. 2019). The principle that similar chemicals 

have similar toxicological properties supports calls for class-based chemical regulation, 

whereby chemicals with similar use scenarios that are anticipated to act on the same 

molecular targets are treated as interchangeable for risk assessment purposes (NASEM 
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2019). Several tools exist in the public domain to enable reproducibility and systematic read-

across, including the OCED QSAR Toolbox, which draws information about the 

physicochemical properties, environmental fate and transport, ecotoxicity, and human health 

hazards of more than 92,000 chemicals from 57 chemical databases (OECD 2020). 

 

Quantitative structure-activity relationship (QSAR) models are computational tools that 

predict biological effect based on a chemical’s structural properties (Heo et al. 2019). Unlike 

traditional toxicology testing, a QSAR has the benefit of being cost effective, consuming 

fewer resources, and being high-throughput so many chemicals can be tested against a 

particular biological endpoint (Heo et al. 2019). The models are based on quantitative 

output, and so are less susceptible to reporter bias than in vivo tests of rodent behavior and 

cognition, and less susceptible to variability in expert opinion, which complicates read-

across (Maertens 2019). QSARs may play an integral role in identifying existing chemicals 

for further screening in in vivo or in vitro models, or facilitating the development of less 

harmful alternatives with Green Chemistry (Maertens 2019; Maertens et. Al 2014). 

 

A novel approach called a read-across-based structure activity relationship (RASAR) that 

integrates human health hazard endpoints with structural descriptors and nearest chemical 

analog recently demonstrated a superior ability to predict human toxicity for the nine most 

common toxicological endpoints than OECD guideline animal testing (Luechtefeld et al. 

2018). Efforts are underway to expand such models to other human health endpoints, 

although more must be understood about neurodevelopmental disease pathology before 

RASAR models can contribute to this field. (Maertens 2019). 

 

Human cell models have also shown promise as a means of detecting developmental 

neurotoxicity AOP perturbation (Smirnova et al. 2014; Leist 2017). For example, the UKN1 
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and UNK2 assays identify early changes in neurodevelopment by gauging altered gene 

expression that occurs during the maturation of human neuroectodermal progenitor (NEP) 

cells and neural crest cells, respectively (Leist 2017). The NeuriTox assay uses 

dopaminergic Lund Human Mesencephalic (LUHMES) cells to characterize altered neurite 

outgrowth, and the test has the advantage of being employed as a medium- or high-

throughput screen (Delp et al. 2018).  

 

Utilizing human cell-based systems has the advantage of eliminating species barriers in 

developmental timing, toxicokinetics, and toxicodynamics (Fritsche et al. 2018). Obtaining 

cells from donors with neurodevelopmental disorders additionally creates the possibility of 

modeling gene-environment interactions in individuals with different genetic makeup 

(Smirnova et al. 2014). 

 

Of particular relevance to neurodevelopment is the application of organotypic three-

dimensional cell cultures, which can be comprised of numerous different cell types and 

directly model cellular progression through key molecular events in brain development 

(Zhong et al. 2020; Pamies et al. 2017). For example, the BrainSphere iPSC-derived 

microphysiological system developed by researchers at Johns Hopkins University includes 

populations of neurons, astrocytes and oligodendrocytes and is capable of modeling 

complex processes involved in neuronal differentiation, proliferation, synaptogenesis, 

spontaneous electrical activity, and neuronal-glial interactions including myelination (Pamies 

et al. 2017). Using both primary rat cultures and human iPSCs, this model has been used to 

demonstrate the developmental neurotoxicity of the pesticide rotenone (Pamies et al. 2018), 

antidepressant paroxetine (Zhong et al. 2020), and most recently, organophosphorus flame 

retardants (Hogberg et al. 2021). 
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As a product of the National Toxicology Program’s (NTP’s) involvement in Tox21, the 

agency orchestrated the assessment of 91 chemicals with known, suspected, or negative 

developmental neurotoxicity activity in a battery of in vitro and lower-order animal assays 

(Behl et al. 2019). The data, made publicly available in the Developmental NeuroToxicity 

Data Integration and Visualization Enabling Resource (DNT-DIVER) tool, facilitates easy 

comparison across different NAMs evaluating neurodevelopmental endpoints at varying 

levels of biological complexity (Behl et al. 2019; NTP 2018).  

 

Though federal regulatory agencies have played a major role in both the development and 

adoption of human health-relevant tools for predictive toxicology and identifying pathways of 

toxicity through the Toxicology in the 21st Century (Tox21) collaboration, (Behl et al. 2019), 

the march toward a 21st century understanding of toxicology is dependent upon input from 

academia, industry, clinicians, and regulatory bodies (Bal-Price et al. 2012). Ultimately, 

understanding of developmental neurotoxicity will require the strategic integration of in silico, 

in vitro, and in vivo methods that capture the breadth of molecular, cellular, organ, and 

organism-level perturbations that precede neurodevelopmental disorder manifestation.
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Chapter 3 

Flame Retardants 

OVERVIEW 

Flame retardants are a diverse category of chemicals that slow or prevent the spread of fire 

by interfering with one or more components in the combustion process (Camino et al. 1991). 

Flame retardant compounds are united by this common functionality rather than by a single 

shared chemical structure or molecular composition (NASEM 2019).  

 

The heterogeneity of flame retardant compounds arises from the need to mitigate fire 

hazards posed by synthetic polymers with distinct chemical and physical properties that 

operate under dissimilar use scenarios (Levchik 2007; Yang et al. 2019). Thus, regulatory 

and voluntary industry standards implemented to safeguard life and property against the 

inherent risks posed by flammable polymers have catalyzed the near ubiquitous use of 

flame retardants in upholstered furniture, textiles, electronics, building components, 

vehicles, and many other goods and materials (Lyon and Janssens 2005; NASEM 2019). 

 

Despite their variability, flame retardants are still beholden to the maxim that structure 

begets function. This disparate group of chemicals can be categorized and subcategorized 

by their role within the flammable material, mode of achieving flame retardancy, and general 

chemistry in a manner that makes groupings successively less distinct (NASEM 2019). 
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GENERAL MECHANISM OF ACTION 

At the most general level, flame retardants can be classified as either additive or reactive. In 

additive form, flame retardants are physically integrated into a product’s polymer matrix 

during or after its manufacture (Morgan 2015). They are not chemically bound to the 

product, which can pose challenges such as modifying polymer strength, manipulability (Lu 

and Hamerton 2002) and viscosity (Matzen et al. 2015). Substantial evidence indicates that 

additive flame retardants of lower molecular weight can escape the product matrix, settling 

on dust in the indoor environment (Meeker and Stapleton 2010; Yang et al. 2019) and 

polluting the outdoor environment (Iqbal et al. 2017). In contrast, non-additive, or reactive, 

flame retardants tend to remain confined within the material matrix for the duration of the 

product’s life (Lu and Hamerton 2002; Morgan 2015). Reactive flame retardants involve 

either covalently attaching the flame retardant unit to the material it is designed to protect, or 

engineering wholly new, inherently flame resistant polymers (Lu and Hamerton 2002). As a 

function of their permanency, both of these means of achieving reactive fire retardancy 

result in reduced human exposure to the flame retardant chemical and heightened fire-

resistant capacity as compared to additive varieties (Morgan 2015). However, inherently 

flame-resistant polymers also tend to be one to three orders of magnitude more expensive 

than their flammable counterparts (Lyon and Janssens 2005) and are thus less favored than 

either the additive or grafted reactive approach (Lu and Hamerton 2002). 

 

Flame retardants are often further classified by one of several general modes of action 

through which they inhibit the combustion process (Camino et al. 1991). Briefly, under 

sufficient heat from an ignition source, flammable polymers will degrade into combustible 

gasses and charred byproducts (Camino et al. 1991; Matzen et al. 2015). If thermal 

degradation is sustained long enough for the gasses to reach a critical concentration at a 
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temperature exceeding their ignition temperature, the combustible products will undergo 

rapid oxidation, resulting in flame, heat, and smoke (Camino et al. 1991). A fire becomes 

self-sustaining when the thermal oxidation of the polymer and its volatile combustion 

products produces enough heat to sustain the continued degradation of the flammable 

material, and thus feed additional fuel to the flame (Ibid). Flame retardants inhibit this 

process through one or a combination of chemical or physical actions: 

1. Free Radical Scavenging: Reaction with the flame retardant creates reducing agents 

that bind hydrogen and hydroxyl radicals in lower-energy reactions, interrupting the 

thermal oxidation process (Camino et al. 1991; Levchik 2007). 

2. Cooling: The flame retardant undergoes endothermic decomposition, which cools the 

flammable material enough to interrupt the combustion process (Camino et al. 1991; 

Morgan 2015). 

3. Dilution: The flame retardant releases inert gasses, which dilute oxygen and fuel 

availability (Levchik 2007; Salmeia et al. 2015). 

4. Barrier-Forming: The flame retardant reacts to form a protective barrier – either a 

carbon-based solid, or an inert gas – which physically prevents the polymer from 

volatilizing and provides insulation from the heat source or propagation (Levchik 

2007; Morgan 2015). 

5. Melting: The flame retardant increases the ease with which polymers can flow past 

one another, removing potential fuel and dispersing heat away from the ignition 

source (Camino et al. 1991; Matzen et al. 2015). 

 

For example, flame retardants containing the halogens chlorine and bromine act as free 

radical scavengers in the vapor phase (Chen and Wang 2009). Although halogenated 

compounds are often used in additive form, they tend to readily mix with the host polymer 

without significantly altering its physical or mechanical functionality and have the added 
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benefit of being inexpensive (Ibid). Thus, many common flame retardants contain halogens 

even though the general structure of the compound may differ (Ibid). 

 

HISTORIC EXPOSURE AND IMPACTS ON HUMAN HEALTH 

Concern over human exposure to flame retardants emerged in the 1960s with the discovery 

of polychlorinated biphenyls (PCBs) in human biosamples (NOAA 2020; Eriksson et al. 

2006). PCBs are a class of organic chemicals that had widespread applications as industrial 

coolants, lubricants, plasticizers and flame retardants between 1929 and 1979 (ATSDR 

2014; Eriksson et al. 2006; Oregon DEQ 2003). They are composed of a biphenyl backbone 

saturated with between one and ten chlorine and hydrogen atoms in 209 possible 

congeners (Mongillo et al. 2016). While the physical and toxicological properties of each 

PCB is dependent on its number and position of chlorines (Ibid), PCBs were sold 

commercially as complex mixtures of all congeners to a varying degree (EPA 2019b; Schulz 

et al. 1989). Thus, human exposure to PCBs involved exposure to numerous congeners at 

once (EPA 2019b).  

 

A robust body of evidence has linked PCBs exposure with adverse impacts to the 

neurodevelopmental, reproductive, endocrine, and immune systems (Korrick and Sagiv 

2014; EPA 2019b). In humans and other primates, PCBs have been associated with 

reductions in immune responses to infection, a smaller thymus gland, a reduction in the rate 

of conception and live births, lower birthweight, thyroid hormone dysregulation, and impaired 

visual recognition, memory, and learning (EPA 2019b). Planar PCBs, or those without an 

ortho-chlorine substitution (Mongillo et al. 2016), are capable of eliciting aryl hydrocarbon 

receptor-mediated toxicity (Siddiqi et al. 2003). Additionally, the NTP classifies PCBs as 

“reasonably anticipated to be human carcinogens” (NTP 2016).  
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Prior to the 1979 ban on manufacturing PCBs in the U.S. (EPA 2019b), the most important 

routes of exposure were occupational and dietary, with consumers of contaminated wild 

game and nursing infants exposed to PCBs in breastmilk comprising some of the most 

heavily exposed populations (EPA 1996). Due to their longevity in the environment and 

tendency to bioaccumulate, PCBs were later designated as persistent organic pollutants 

under the 2001 Stockholm Convention (UNEP 2018). 

 

As PCB usage first began to fall out of favor in the 1970s, PBDEs began to dominate the 

flame retardant market (Eriksson et al. 2006). Statewide furniture flammability standards 

adopted in California in 1975 helped catalyze the widespread incorporation of additive 

PBDEs into polyurethane foam found in upholstered furniture (Ibid), although PBDE 

mixtures were also routinely used in electronics, including televisions and personal 

computers, building materials, airplanes, vehicles, paints, and plastics (ATSDR 2017; Siddiqi 

et al. 2003). Studies have found that PBDEs alone comprise 5 to 30% of the final weight of 

some of these products (Siddiqi et al. 2003). Ingestion of PBDE-contaminated dust in the 

home and workplace became the primary route of exposure for the general population, 

accounting for 80 to 90% of total PDBE exposure, while contaminated food comprised the 

remainder of exposure (ATSDR 2017). 

 

The chemical structure of PBDEs is similar to that of PCBs, with the exception of a single 

ester bond linking the two phenol groups (Mongillo et al. 2016; Siddiqi et al. 2003) and 

substitution with bromine instead of chlorine, and so the substances were assumed early on 

to exhibit similar toxicological effects in humans and the environment (Hardy 2002; Madia et 

al. 2004). Indeed, rodent studies have found associations between PBDEs and 

neurodevelopmental harm (ATSDR 2017) including impaired memory and learning (Eriksson 
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et al. 2006), and endocrine disruption including thyroid and estrogen hormone dysregulation 

(Siddiqi et al. 2003). Although PBDEs and PCBs are associated with many of the same 

neurodevelopmental endpoints, in vitro studies of human astroglial cells indicate that these 

two classes of compounds may elicit developmental neurotoxicity through different 

biochemical pathways (Madia et al. 2004). In the mid-2000s, growing concern over adverse 

human health effects prompted manufacturers and importers to voluntarily phase the three 

most widely used PBDE mixtures, penta-, octa- and decaBDE, out of commercial use in the 

United States (ATSDR 2017; Mongillo et al. 2016). 

 

OPFR use was common by 1940, but market share surged as the class became a common 

substitute for pentaBDE (Yang et al. 2019). By 2011, global market share reached 15%, and 

relative production has remained stable over the past decade (Ibid). Studies now indicate 

that OPFRs are found in indoor environments in higher concentrations than their 

predecessors, due to the chemical class’ preferred use in construction, insulation, 

refrigeration, electronics, mattresses, furniture and fabrics (Ibid). 

 

Unlike PCBs and PBDEs, OPFRs take the general structure of a phosphoric acid bound to 

three variable alkyl chains or aryl groups (Blum et al. 2019; Quin 2000). However, like the 

earlier flame retardants, some of these variable groups can contain halogens (Blum et al. 

2019). OPFRs share this structural similarity with OP insecticides, which are known to elicit 

acute toxicity by irreversibly binding acetylcholinesterase (AChE) and preventing the 

breakdown of acetylcholine in nerve synapses (Yang et al. 2019). During vulnerable periods 

early in life, low-dose exposure to OPs, including those used as flame retardants, can 

permanently alter brain chemistry and behavior (Glazer et al. 2018), although 

neurodevelopmental toxicity likely acts through a different mechanism than acute AChE 

toxicity (Yang et al. 2019; Castorina et al. 2017). Human epidemiologic data has thus far tied 
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OPFR metabolites in prenatal urine with reduced cognition, fine motor skills, expressive 

language, working memory, and IQ (NASEM 2019). 

 

Clearly, the flame retardant market has been characterized by a history of regrettable 

substitution in which relatively unstudied materials are substituted for those with known 

capability of harming human health. The substitutes perform a similar function, often adopt a 

similar chemical structure, and are later discovered to carry similar risks (Blum et al. 2019). 

This pattern is not unique to the flame retardant market, and its prevalence has catalyzed 

support for regulating chemicals on the basis of class and similar use, rather than as 

individual substances (Ibid). 

 

POLYHALOGENATED ORGANOPHOSPHATE FLAME 

RETARDANTS 

In 2015, roughly a dozen public interest groups petitioned the U.S. Consumer Product 

Safety Commission (CPSC) to utilize the authority granted to it under the Federal Hazardous 

Substances Act to prohibit the use of “any non‐polymeric, additive organohalogen flame 

retardant” in four categories of consumer products anticipated to contribute substantially to 

exposure in the indoor environment: children’s products, residential upholstered furniture, 

mattresses, and electronics (American Academy of Pediatrics et al. 2015). In 2017, CPSC 

granted the petition and solicited the advice of the National Academies of Sciences, 

Engineering, and Medicine (the National Academies) in assessing the validity of a class-

based hazard assessment (NASEM 2019). The National Academies committee endorsed a 

subclass approach in which human health hazard assessments could be reliably performed 

for 14 organohalogen flame retardant subclasses categorized by similar structural, 
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physicochemical, and biological properties (Ibid). The 22 polyhalogenated 

organophosphates (PHOPs), listed in Table 2, comprise one such subclass (Ibid). 

 

At present, limited public knowledge exists to inform a risk assessment of the subclass. As 

part of the mock scoping plan illustrated in the National Academies report, an unrestricted 

query of the PubChem Database returned no results for 9 PHOPs and 10 or fewer results 

for 5 PHOPs, though these records were not specifically related to developmental 

neurotoxicity (NASEM 2019). As part of the present investigation into developmental 

neurotoxicity, a PubMed query utilizing a search strategy that included chemical name, CAS 

Registry Number, validated synonyms from ToxCast, and key words specific to 

developmental neurotoxicity returned no results for 14 PHOPS and 10 or fewer results for 3 

PHOPs. The most well-characterized members of this subclass are TDCPP, TCEP, TCPP, 

and TDBPP (NASEM 2019). All PHOPs except TNP1 and TNP2 were accounted for in the 

latest version of the OECD QSAR toolbox, but data on physicochemical properties, 

environmental fate and transport, and human health hazards are absent for roughly three 

fourths of the subclass members (QSAR Toolbox 2020). Only two PHOPs, TCPP and 

TCEP, have been evaluated as a part of the DNT-DIVER programming (NTP 2018). As 

demonstrated in Figure 1, the pair exhibited concordant results in 10 of the 16 assays in 

which both chemicals were tested (Ibid). Both TCPP and TCEP were positive in two 

independent dechorionated zebrafish embryo behavioral assays measuring larval 

movement patterns, and negative in eight assays measuring protein accumulation, reduced 

viability, increased mortality, and gross structural malformations (Ibid). Subsequently, most 

of the scientific understanding around the human exposure to and health risks of all PHOPs 

stem from these four chemicals (Figure 1). 
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Figure 1: Polyhalogenated Organophosphate Flame Retardants Evaluated in DNT-DIVER exhibit concordance 
across 10 of 16 assays. Adapted from NTP 2018. 

 

CURRENT PATTERNS OF HUMAN EXPOSURE 

PHOPs are incorporated as additive flame retardants and are thus capable of escaping the 

product matrix (Abou-Donia et al. 2016). EPA’s most recent update to the Chemical Data 

Reporting database identifies eight PHOPs with a diversity of commercial applications, 

including in construction materials, plastics and rubbers, wood, fabric, textile, leather, 

adhesive, sealant, foam seating and bedding (EPA 2016). PHOP subclass members have 

also been identified in smartphone screens (Zhang et al. 2019), and baby products such as 

changing table pads, nursing pillows, and car seats (EPA 2015b). Notably, several 

manufacturers declined to provide anticipated use scenarios, even when competitors 

provided them for the same chemical (EPA 2016). Studies also show that three chlorinated 

subclass members, TCEP, TCPP, and TDCPP, have been present in wastewater at 

concentrations over 6,000 μg/L and drinking water in concentrations up to 0.72 μg/L (EPA 

2015b). 
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Several members of the subclass are semi-volatile, and environmental monitoring indicates 

that PHOPs are present in substantial quantities in household, office, school, and vehicle 

dust and ambient air samples (EPA 2015b). However, exposure in the indoor environment 

can vary dramatically. A 2017 study in the United States reported median TCEP, TCPP, and 

TDCPP concentrations in indoor air at 6.81, 26.3, and 0.372 ng/m3, respectively, although 

the total range of exposure sometimes differed by three orders of magnitude (Vykoukalová 

et al. 2017). A Swedish ambient air study measured TCIPP concentrations as high as 2.2 

ng/m3 in offices and TCEP concentrations up to 0.26 ng m-3 in homes, with total airborne 

OPFR concentrations similar to those found throughout Europe and Asia (Sha et al. 2018). 

 

A negative linear relationship exists between flame retardant log kow values and skin 

penetration, with TCEP and TCPP being the most readily absorbed OPFRs (Frederiksen et 

al. 2018; Abou-Elwafa Abdallah et al. 2016) and dermal absorption ranging from 28% for 

TCEP to 16% for TDCPP applied to human skin (Abou-Elwafa Abdallah et al. 2016). 

Unintentional exposure to flame retardants via inhalation, ingestion, and dermal absorption 

is ubiquitous in the general population (EPA 2015a).  

 

Large biomonitoring studies, including a 2018 evaluation from nationally representative 

National Health and Nutrition Examination Survey (NHANES) data, have detected OPFR 

metabolite exposure in the majority of the population (Ospina et al. 2018). Bis(1,3-dichloro-

2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP) were detected in 

approximately 92% of urine samples, bis-2-chloroethyl phosphate (BCEP) was detected in 

89% of samples, di-n-butyl phosphate (DNBP) in 81%, bis-(1-chloro-2-propyl) phosphate 

(BCIPP) in 61%, and di-p-cresylphosphate (DpCP) in 13% of samples, with concentrations 

ranging up to 4 orders of magnitude (Ibid). Research of exposure in the general population 
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over the past decade has produced similar findings, with BDCIPP and DPHP as the most 

ubiquitous metabolites (Ibid). 

 

Of particular concern for neurodevelopmental outcomes is the observation of PHOPs in 

breast milk (Ma et al. 2019; He et al. 2018; EPA 2015a) and urine samples of pregnant 

women (Hoffman et al. 2014). Ma and colleagues detected TCEP and TCPP in the 

breastmilk of U.S. mothers at an average concentration of 0.036 and 0.221 ng/ml, though 

concentrations reached as high as 0.800 ng/ml TCEP, and 2.51 ng/ml TCPP (Ma et al. 

2019). A study of exposure in Australian infants estimated the daily intake of TCEP as 4.6 

ng/kg/day from breastmilk (He et al. 2018). A recent investigation into internal exposure of 

several organophosphate ester flame retardants, including PHOP members TCEP and 

TDCPP, found plasma concentrations range from below 10-6 μM to as high as 31.9 μM 

(Blum et al. 2019). 

 

No public physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model yet 

exists for any PHOP subclass member, although in vitro studies have indicated that TCEP is 

resistant to metabolism in an in vivo salmon model (Arukwe et al. 2018), and that food 

intake limits oral bioavailability of TCEP and TCPP in an in vitro human gastrointestinal tract 

model (Quintana et al. 2017). 

 

HUMAN HEALTH HAZARD OF PHOPs 

The National Academies committee notes that as a subclass, PHOP hazard data is 

discordant both within and across species when evaluating chronic toxicity, reproductive and 

developmental toxicity, mutagenicity, and cancer. While there appears to be a higher degree 
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of concordance when it comes to neurodevelopmental endpoints alone, data is not entirely 

in agreement (NASEM 2019). 

 

An increase in degenerative brain lesions after exposure to TCEP was observed in a rat 

study from the NTP, but not replicated in a subsequent study of TDCPP exposure (EPA 

2015a). Reduced cell number and altered differentiation has been found following in vitro 

exposure of rat neuronal cells to all four of the well-characterized PHOP subclass members, 

while TDCPP was also found to inhibit DNA synthesis and promote oxidative stress (Dishaw 

et al. 2011). A similar study found that DCIPP and TCEP reduced cell growth, increased 

apoptosis, reduced neurite outgrowth, and altered both gene expression and production of 

proteins involved in neuronal development, signal transduction and cytoskeleton formation 

(Ta et al. 2014). Out of nineteen independent studies reviewed in the National Academies 

report which evaluated developmental neurotoxicity or altered locomotion in zebrafish 

exposed to TDCPP, TCEP, TCPP, or TDBPP, only one reported negative results (NASEM 

2019). 

 

A battery of in vivo and in vitro analyses found evidence of reduced neuron firing in rat 

cortical cell cultures, reduced neurite outgrowth in human hN2 cells but not rat cortical cells, 

reduced motor activity in larval zebrafish, and no behavioral changes in rat pups exposed to 

TDCPP (Moser et al. 2014). These conflicting results may be due to poorly conserved 

developmental biology, inadequate methods of capturing higher cognitive or behavioral 

function in animals, or differing timing or duration of exposure. EPA does conclusively 

consider TCEP, TCPP, and TDCPP to be weak AChE inhibitors, a characteristic they share 

with organophosphate pesticides (EPA 2015a). 
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Obtaining internal dose-dependent human health data specific to the PHOP subclass is 

complicated by the fact that PHOPs are hydrolyzed to some of the same diester metabolites 

as nonhalogenated OPFRs (NASEM 2019). One cross-sectional study instead used silicone 

passive sampling bracelets to measure 72 preschoolers’ exposure to TDCPP, TCPP, TCEP, 

and one non-PHOP, triphenylphosphate (TPP), and found that cumulative weekly exposure 

to these compounds was associated with aggression, defiance, hyperactivity, inattention, 

bullying, and poor responsibility (Lipscomb et al. 2017). Remarkably, the effect size of this 

association mirrored the effect size of well-established predictors of behavioral problems, 

such as gender and family context (Ibid). Only early adverse experience, such as parental 

substance abuse, was a better predictor of behavior than PHOP exposure (Ibid). 

 

A separate EPA assessment of flame retardants designed to replace pentaBDA in furniture 

foam evaluated the hazard profile of TCEP, TDBPP, TCPP and its isomer, and 2,2-

Bis(chloromethyl)-1,3-propanediyl bis(bis(2-chloroethyl) phosphate), and found that for the 

four human health endpoints relevant to neurodevelopmental outcomes (neurological, 

developmental, reproductive, and repeated dose toxicity), all PHOPs were classified as a 

“high” or “moderate” hazard in every endpoint, with the exception of TDCPP and 2,2-

Bis(chloromethyl)-1,3-propanediyl bis(bis(2-chloroethyl) phosphate), which were classified 

as a “low” hazard for neurological toxicity only (EPA 2015a). Subsequently, the 2015 EPA 

TSCA Work Plan Chemical Problem Formulation and Initial Assessment for TCEP, TCPP, 

and TDCPP named neurotoxicity and developmental toxicity among “the most significant 

hazards” from exposure to these flame retardants (EPA 2015b). 

 

In August 2019, EPA designated TCEP as a high-priority substance for hazard assessment, 

along with two other halogenated flame retardants outside the PHOP subclass (EPA 2019c). 

As part of the agency’s justification for this action, EPA identified 7 reviews from global 
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health and regulatory authorities, including the World Health Organization (WHO) and the 

European Chemicals Agency (ECHA), that contained convincing evidence of TCEP 

neurotoxicity (EPA 2019d). 

 

An underexplored aspect of reconciling discordant human health hazard data is the potential 

influence of financial interest. Allegations of scientific misconduct have dogged flame 

retardant industry stakeholders in recent years, following evidence of falsified clinical reports 

and financial conflicts of interests uncovered during the unravelling of the sector’s “Citizens 

for Fire Safety” campaign (Callahan et al. 2012). The continued potential for bias is not 

imagined. An analysis of 373 environmental and occupational health studies found that 

research funded by entities with an interest in the manufacturing, use, or disposal of the 

compound under study were 4.31 times more likely to report negative findings, and studies 

funded or undertaken by the military were 9.15 times more likely to report negative findings 

(Friedman and Friedman 2016). These findings complicate the risk assessment process, 

which is often reliant on industry-sponsored research as the only available data to inform 

early appraisal of chemical safety (Hardy et al. 2003). 

 

Ultimately, a comprehensive subclass-based assessment of PHOP hazards to the general 

public should include evaluations of numerous endpoints relevant to human health, 

conducted by a variety of stakeholders. It is critical that developmental neurotoxicity data be 

characterized adequately enough to be considered. 
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Chapter 4 

Modeling PHOP toxicity in human BrainSpheres 

Human neurodevelopment begins at gestational week 3 with differentiation of epiblast cells 

into neural progenitor cells (NPCs), and extends through infancy, childhood, and 

adolescence (Stiles and Jernigan 2010). Each key point in neurodevelopment – 

proliferation, differentiation, migration, maturation, myelination, neurite outgrowth, apoptosis, 

synaptogenesis, synaptic pruning, signal transduction, and neuronal network formation – is 

governed by a complex array of signal cascades that involve different cell types, occur at 

different times, and in different regions throughout the developing brain (Stiles and Jernigan 

2010; Smirnova et al. 2014; Fritsche et al. 2018). This complexity generates windows of 

susceptibility throughout the developmental period, which, if perturbed, can result in 

permanent alterations in brain morphology and physiology (Landrigan et al. 2017). 

 

In vitro studies show that the two most studied members of the PHOP subclass, TCEP and 

TDCPP have been associated with diminished neurite outgrowth, neuronal differentiation, 

signal transduction, and increased apoptosis (Dishaw et al. 2011; Moser et al. 2014; Ta et 

al. 2014). Both are believed to be weak acetylcholinesterase inhibitors (EPA 2015a). Little, if 

any, public data explores the neurotoxicological profile of the remaining subclass members 

in any capacity (NASEM 2019). Similarly, few studies have evaluated the association 

between PHOP subclass members or their metabolites and apical manifestations of 

neurobehavioral, neurocognitive and neuromotor impairment in humans, but those that 

have, link subclass members to externalizing behaviors such as aggression and defiance as 

well as inattention and hyperactivity (Lipscomb et al. 2017). As additional indication of 

potential neurodevelopmental harm, the subclass shares structural similarity with 
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organophosphate pesticides, which are neurotoxic at high concentrations and believed to 

impair neurodevelopment at low concentrations (EPA 2015a). 

 

In light of the permanence and potential severity of poor neurodevelopmental outcomes on 

both the individual and population levels, it is critical that the scientific community better 

understand the role that PHOPs may play in the etiology of neurodevelopmental diseases. 

The extraordinary investment of money, time, and animal life that would be required to 

perform guideline developmental neurotoxicity studies on each of these poorly described 

compounds necessitates both the establishment and validation of high-throughput 

alternative methods to elucidate potential human health hazards, and more confidence in 

regulating structurally, functionally, and toxicologically related compounds as a group. 

 

The goal of this investigation is to determine whether PHOPs classified by shared functional, 

structural, physicochemical, and biological properties exhibit sufficient concordance across a 

battery of developmental neurotoxicity assays to justify a single assessment of human 

neurodevelopmental hazards for the entire subclass. It was hypothesized that chronic 

exposure to PHOPs at concentrations currently found in human biosamples is sufficient to 

perturb neurodevelopment in a human BrainSphere model, and that shared properties 

among subclass members will result in similar patterns of perturbation of key events in the 

neurodevelopmental process. 

 

SIGNIFICANCE 

The National Academies Committee to Develop a Scoping Plan to Assess the Hazards of 

Organohalogen Flame Retardants already identified the 22-member polyhalogenated 

organophosphate subclass as close analogues based on the integration of predicted 
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structure-activity relationships, cheminformatics, and predicted biological targets (NASEM 

2019). As specified in the Committee’s report, this subclass is intended to serve as the 

starting point for subclass-based human health hazard assessments (Ibid). In its 2019 

report, the committee did not perform a comprehensive literature review of endpoints 

specific to human developmental neurotoxicity (Ibid). Additionally, the mode of action by 

which even the most commonly studied subclass members perturb neurodevelopment 

remains uncertain. Little, if any, public data explores the developmental neurotoxicity profile 

of the remaining eighteen subclass members (Ibid). In light of evidence that highly 

vulnerable populations are chronically and ubiquitously exposed to the PHOPs that have 

been measured in the environment, and that these exposures may be linked to poor 

neurodevelopmental outcomes, it is critical that the regulatory community have access to 

sound scientific data that facilitates a thorough assessment of the human health risks posed 

by these chemicals. 

 

Biomonitoring data from developed nations consistently indicates that BDCPP and BCEP 

are among the most ubiquitous OPFR metabolites found in human biosamples (Ospina et 

al. 2018). While these metabolites can originate from a number of polyhalogenated and 

unhalogenated parent compounds, they are also the respective products of TDCPP and 

TCEP metabolism (Abdallah et al. 2015). Moreover, air, dust, and surface samples indicate 

that TDCPP and TCEP are commonly found in indoor environments and on consumer 

products where the likelihood of exposure to neonates and pregnant and lactating women is 

high (EPA 2015b). Robust toxicological and biomonitoring data does not exist for Tris(2-

chloropropyl) phosphate (CAS RN 6145-73-9) (TOXCAST 2020; QSAR Toolbox 2020). The 

predicted LogP octanol-water partition coefficient and water solubility properties falls 

between the upper and lower bounds of TCEP and TDCPP, enabling the interpolation of 

related biological behavior (Schultz et al. 2015). This chlorinates Tris also has an average 
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molecular weight below 500 g/mol (TOXCAST 2020). These physicochemical factors all 

increase the likelihood that these chemicals can cross the placenta, lending biological 

plausibility to any observed perturbation of neurodevelopment (Griffiths and Campbell 

2014). Thus, this compound was selected as a representative member of the poorly-

characterized PHOP members. 

 

INNOVATION 

The mechanisms by which PHOPs elicit developmental neurotoxicity remain poorly 

understood. While this deficiency is detrimental to regulatory efforts to protect the health of 

vulnerable populations, it also presents an opportunity to employ the NAMs that are 

facilitating the paradigm shift of toxicology into the 21st century. 

 

This research will focus specifically on toxicological data with immediate human relevance, 

namely through a human iPSC-derived microphysiological brain model (BrainSpheres). 

Briefly, the BrainSphere model captures the differentiation of iPSCs into mature 

glutamatergic, dopaminergic, and GABAergic neurons, astrocytes, and oligodendrocytes in 

a 3-dimensional environment (Pamies et al. 2017). Developing organoids are capable of 

recapitulating functional endpoints including axonal myelination, cell-cell interactions, and 

spontaneous electrical activity that have been largely absent from prior in vitro models of 

human brain development (Ibid). 

 

Although recently published research supported by the Center for Alternatives for Animal 

Testing (CAAT) laboratory has explored flame retardant toxicity in a rat BrainSphere model, 

to date, none of the PHOP compounds have been evaluated using the human BrainSphere 

model (Hogberg et al. 2021). Morphological and functional analysis of BrainSpheres 

exposed to each of the four PHOP compounds may identify novel evidence in support of a 
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consistent neurodevelopmental hazard posed by structurally, functionally, and biologically 

related PHOPs. 

 

METHODS 

NPC Culture and Expansion 

The BrainSpheres were derived from the NIBSC8-iPSC (N8)-derived neuroprogenitor cells 

(NPCs). NPCs were cultured and expanded according to a modified Gibco protocol (Gibco 

2013). Briefly, cryopreserved NPC stocks were thawed in a 37 °C water bath, resuspended 

in KnockOut™ DMEM/F-12 (Gibco), and centrifuged for 3 minutes at 3000 x g. Supernatant 

was discarded and cells were resuspended in complete neural expansion medium (49 mL 

Neurobasal® Medium (Gibco), 49 mL Advanced™ DMDM/F-12 (Gibco), 2 mL Neural 

Induction Supplement (Gibco) before being seeded into a 25 cm2 flask (Thermo Fisher 

Scientific) coated with Matrigel (Corning) and maintained at 37 °C in 5% CO2. Culture 

medium was exchanged every 2 to 3 days. 

 

At 80-100% confluence, NPCs were washed with PBS and treated with Gentle Cell 

Dissociation Solution (GCDS) (STEMCELL Technologies) for 5 min at room temperature. 

Before visible detachment of the cells, GCDS was aspirated and replaced with fresh 

complete neural expansion medium and cells were mechanically detached by scraping and 

clumps separated by gentle pipetting. NPCs were split into Matrigel-coated 75 cm2 or 125 

cm2 flasks (Thermo Fisher Scientific) at a 1:3 to 1:5 ratio. Cell number was determined using 

one-to-one 0.4% Trypan Blue stain (Invitrogen) and a Countess™ Automated Cell Counter. 

Culture medium continued to be exchanged every 2 to 3 days after splitting. 
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Differentiation and BrainSphere Formation 

Neural differentiation followed the protocol set forth in Pamies et al. 2017. Briefly, at 

passage 8, NPCs were detached as previously described and plated as a single cell 

suspension in 3 mL complete neural expansion medium in clear TC-treated 6 well plates 

(Falcon) at a density of 2.0x106 cells per well. Cells were maintained at 37 °C in 5% CO2 

under constant gyratory shaking (88 rpm, 50 mm orbit diameter) to allow for aggregate 

formation. After 48 hours, medium was changed to differentiation medium (Neurobasal™ 

Electro (Gibco), 1x Penicillin-Streptomycin-Glutamine (Thermo Fisher), 1x GlutaMAX 

Supplement (Thermo Fisher), 1x B-27 Electro Supplement (Gibco), 5 μg GDNF (GeminiBio), 

5 μg BDNF (GeminiBio). Half of the culture medium was exchanged every 2 to 3 days, 

taking care not to expose spheres to air. Each experimental run is comprised of 

BrainSpheres differentiated at the same time, from the same passage of NPCs. The data 

presented here are derived from assays performed on runs 21 and 23 (R21 and R23). 

 

Exposure 

Stock solutions of experimental compounds were prepared in 0.1% DMSO, a concentration 

known to be nontoxic in the human BrainSphere model. In the initial range finding 

experiment, flame retardant concentrations of 5, 10, or 20 μM were selected for evaluation 

based on recent estimates of PHOP plasma concentrations in the general population 

reaching as high as 31.9 μM (Blum et al. 2019). As anticipated, no internal exposure 

estimates could be located for the poorly characterized PHOP, Tris. BDE-47, the most 

abundant congener of the flame retardant pentaBDE – which has been banned under the 

Stockholm Convention for bioaccumulation and evidence of neurodevelopmental toxicity – 

was used as a comparator (UNEP 2006). Following the results of a range-finding 
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experiment, two non-cytotoxic concentrations, 10 μM  and 20 μM, were selected for the 

main experiment. 

 

At two weeks (range finding) or four weeks (main experiment) after induction of 

differentiation, healthy aggregates were distributed across 6-well plates, to generate 4 

biological replicates per experimental condition with roughly 100 BrainSpheres in 2 mL 

differentiation medium containing the chemical of interest at 0, 5, 10, or 20 μM. By two 

weeks post differentiation, markers for GABAergic, dopaminergic, and glutamatergic 

neurons are positive in the model, and neurons show indications of synaptic activity (Pamies 

et al. 2017). By four weeks, unpublished CAAT laboratory investigations into receptor 

kinetics indicate the presence of the glutamate NMDA receptor subunits GRIN1, GRIN2A. 

 

Exposure medium was completely exchanged every 2 to 3 days until collection, and 

BrainSpheres were gently pipette up and down in new medium to ensure no BrainSpheres 

fused together while briefly exposed to air. BrainSpheres were collected following one week 

of exposure (Figure 2). 

 

 

Figure 2: Experimental timeline depicting NPC expansion, BrainSphere aggregate formation, differentiation of 
neural and glial cells, exposure to experimental compounds, and sample collection. 
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Viability 

The resazurin assay was performed for the range finding experiment only (R21, 2 week of 

differentiation). On exposure day 7, 10 ± 4 spheres were transferred to a clear, untreated 96 

well plate (Corning) in 100 μL exposure medium, with 3 replicate wells per condition. 10 μL 

of 1 mg/mL Resazurin dye (Signa-Aldrich) was added to each well. The plate was incubated 

in the dark for 3 hours at 37 °C in 5% CO2. Fluorescence was measured at 590 nm with a 

CytoFluor® Series 4000 Multi-Well fluorescence microplate reader (PerSeptive Biosystems) 

and adjusted based on the number of aggregates in each well. Data was analyzed using 

Prism 9.0.0 (GraphPad). Data are presented as percentage of mean condition fluorescence 

versus control. One-way ANOVA test with Bonferroni's multiple comparisons test was 

performed to determine statistical significance (p ≤ 0.05). 

 

Acetylcholinesterase Inhibition Assay 

On day 7 of exposure, half of the BrainSpheres from each well were collected in labelled 1.5 

ml tubes and lysed in lysis buffer (0.3 g NaCl, 1 mL of 1 M Tris, PH 7.5, 1 mL 10% NP-40, 

0.2 mL of 0.5 M EDTA at pH 8.0, 17.8 mL ddH2O (standard reagents from Thermo Fisher 

and Sigma-Aldrich)) for 30 min at room temperature, then centrifuged at 600 g for 5 min. 

Positive control aggregates exposed for 24 hours to 100 μM chlorpyrifos oxon (CPO), a 

known AChE inhibitor, were processed in the same manner. The acetylcholinesterase 

(AChE) assay (Abcam) was performed in a 96 well plate according to manufacturer protocol. 

Briefly, 50 μL of AChE assay mixture was added to each well containing either 50 μL of 

lysate, AChE standards, or blank controls. The plate was covered with foil to protect from 

light and incubated for 20 minutes at room temperature. Fluorescence was measured with 

an Epoch Microplate Spectrophotometer at ex/em 540/590 nm. Data was analyzed using 

Prism 9.0.0. AChE activity was calculated from a simple linear regression of the standard 
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curve and adjusted against sample protein content. Data are presented as the fold change 

of mean RFU ± SEM. One-way ANOVA test with Bonferroni's multiple comparisons test was 

performed to determine statistical significance (p ≤ 0.05). Data presented are from R21. 

 

Total Protein Quantification 

The total protein Pierce™ BCA Protein assay (ThermoFisher) was performed according to 

manufacturer protocol. Briefly, 200 μL of working reagent was added to 10 μL of lysed 

samples or bovine serum albumin (BSA) standard in a clear 96 well plate (Corning). All 

samples and standards were measured in duplicate wells. The plate was covered with foil to 

protect from light and placed on a shaker for 30 seconds before incubating for 30 minutes at 

37 °C. Fluorescence was measured with an Epoch Microplate Spectrophotometer at 560 

nm. Duplicate sample fluorescence was averaged, and protein concentration was calculated 

from the standard curve. Data presented are from R21. 

 

Immunocytochemistry 

All washing and staining steps were performed in 24 well plates. On day 7 of exposure, 

BrainSpheres were collected and washed once with cold PBS, fixed in 4% 

paraformaldehyde for 45 minutes, and washed twice with washing solution I (1% bovine 

serum albumin (BSA, Sigma-Aldrich) in PBS) before incubating for 1 hour in blocking 

solution (10% normal goat serum (Rockland), 1% BSA, 0.15% saponin (Millipore) in PBS) 

on a shaker. BrainSpheres were stained for 48 hours at 4 °C (or 4 hours at room 

temperature for neurite outgrowth experiment) with primary antibodies diluted in blocking 

solution. BrainSpheres were washed three times with washing solution II (1% BSA, 0.15% 

saponin in PBS) for 15 to 30 minutes on a shaker at room temperature before staining with 

secondary antibodies and 1:10,000 Hoechst 33342 (Thermo Fisher) diluted in blocking 
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solution for 4 to 6 hours at room temperature (1 hour at room temperature for neurite 

outgrowth experiment) on a shaker in the dark. Table 3 depicts the combination of primary 

and secondary antibodies utilized in this investigation. Following incubation, spheres were 

washed three times with washing solution II for 15 to 30 minutes on a shaker at room 

temperature, once with washing solution I, and once with PBS. Roughly 5 BrainSpheres per 

condition were mounted on glass slides with coverslips using Shandon Immu-mount 

(Thermo Scientific) and stored at 4 °C until imaging. 

Table 3: Primary and secondary antibodies used for immunocytochemistry. β-Tubulin Isotype III was utilized in 
neurite outgrowth experiment, while all other primary antibodies were used to visualize synaptogenesis in 
aggregates.  

Primary Antibodies 

Antigen 
Target 

Species 
Host 

Species 
Clonality Conjugation Manufacturer Dilution 

β-Tubulin III Human Mouse Monoclonal None Sigma-Aldrich 1:1,500 

Synaptophysin Human Mouse Monoclonal None EMD Millipore 1:200 

PSD-95 Human Rabbit Monoclonal None Invitrogen 1:500 

MAP2 Human Mouse Monoclonal None Sigma-Aldrich 1:200 

Secondary Antibodies 

Antigen 
Target 

Species 
Host 

Species 
Clonality Conjugation Vendor Dilution 

IgG(H+L) Mouse Goat Polyclonal AF 488 (G) Invitrogen 1:500 

IgG(H+L) Rabbit Goat Polyclonal AF 568 (R) Invitrogen 1:500 

 

Synaptic Quantification 

Biological replicates were pooled and stained for dendritic (MAP2) and postsynaptic (PSD-

95) markers and imaged as described above. Images were taken using a Zeiss LSM700 

confocal microscope at 63x magnification with oil immersion. Three organoids per condition 

were imaged on the leftmost edge in order to reduce bias. Within each image, Z stacks were 

converted to a maximum intensity projection (MIP) using the open-source ImageJ2 
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Software. Synaptic puncta density per dendritic unit length was automatically calculated 

using the SynQuant 1.2.8 plugin (Wang et al. 2020). One-way ANOVA test with Bonferroni's 

multiple comparisons test was performed to determine statistical significance (p ≤ 0.05). 

Data are presented as mean ± SEM.  

 

Neurite Outgrowth 

On day 6 of exposure, 5 to 10 spheres in 4 replicate wells per condition were seeded onto a 

poly-L-ornithine and laminin-coated 24-well black plate in 450 ml fresh exposure medium 

and incubated for 48 hours without shaking to allow the aggregates to attach and neurites to 

grow out from the spheres. Samples were fixed with 4% PFA and neurites were visualized 

by immunostaining against β-III-Tubulin as described above and imaged with an Echo 

Revolve G-124 fluorescence microscope. Every spheroid with intact neurites that could be 

visualized without interference from neighboring neural projections was imaged. Sholl 

analysis was performed ImageJ2 as described previously (Harris et al. 2018). Neurite length 

and density was quantified as the number of intersections per distance from BrainSphere 

edge and presented as area under the curve (AUC). The Shapiro-Wilk test was performed 

to confirm normality of the distribution and one-way ANOVA test with Bonferroni's multiple 

comparisons test was performed to determine statistical significance (p ≤ 0.05).  

 

RNA Extraction and cDNA Synthesis 

On day 7 of exposure, samples of 10 to 15 spherers per well were washed once with PBS, 

snap frozen in liquid nitrogen, and stored at -80 °C until ready for RNA extraction.  

Total RNA extraction and DNAse I treatment was performed using the Quick-RNA Micro 

Prep Kit (Zymo Research) according to manufacturer protocol. RNA concentration and 

quality was measured using a NanoDrop 2000c (Thermo Scientific). For cDNA synthesis, 
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labelled 0.2 mL PCR tubes (Eppendorf), Master Mix 1 (RHEX primers (Promega), 10 mM 

dNTP (Promega), M-MLV 5xbuffer (Promega), RNAse inhibitor (40 U/ul)(Thermo Fisher), 

ddH2O) was added to 150 ng RNA diluted in ddH2O. The reaction was incubated for 5 

minutes at 70 °C, 15 minutes at 4 °C, 90 minutes at 37 °C, and 5 minutes at 85 °C. Master 

Mix 2 (M-MLV reverse transcriptase, RNAse inhibitor (40 U/ul)) was added during the 15 

minute 4 °C cooling cycle. RNA was reverse transcribed in a 2720 ThermoCycler (Applied 

Biosystems). cDNA was stored at -20 °C until ready to be used for RT-qPCR.  

 

Quantitative RT-PCR 

Gene expression was evaluated with the fast Taqman™ Gene Expression Assay (Applied 

Biosystems) using a 7500 Fast Real-Time PCR System (Applied Biosystems). Briefly, 

Master Mix (5 μL Taqman™ Fast Advanced Master Mix, 0.5 μL specific primer, 3.5 μL 

ddH2O) was added to 1 μL cDNA sample in a MicroAmp® Fast Optical 96-Well Reaction 

Plate (Applied Biosystems). Primers for all genes of interest (GAPDH, TUBB3, MAP2, PSD-

95, SYN1, AChE, GRIN1, and GRIN2a) were purchased from Applied Biosystems. Gene 

expression fold change was calculated using the 2−ΔΔCt method with GAPDH used as a 

housekeeping gene (Livak and Schmittgen 2001). Data presented are from R23. 

 

RESULTS 

Estimated serum concentrations of selected PHOP compounds are not cytotoxic. 

PHOP compounds have not been previously evaluated in the human BrainSphere model. In 

order to determine an appropriate experimental concentration that coincided with plausible 

human PHOP serum estimates, 5, 10, and 20 μM flame retardant compounds and vehicle 

control were evaluated for evidence of cytotoxicity two weeks after initiating differentiation. 

One way ANOVA with Bonferroni correction for multiple comparisons indicated that no 
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compound elicited a statistically significant reduction in viability (Table 4 and Figure 3). Of 

note, BrainSpheres treated with 10 μM BDE-47 showed a 110% increase in resaruzin 

reduction capacity (adjusted p-value 0.0071) compared to control samples, but significance 

was not sustained in the 20 μM dose group. This observation is addressed in greater detail 

in the discussion. Due to the absence of clear cytotoxic effects, the two highest 

concentrations (10 and 20 μM) were selected for further study. 

 

Table 4: Percent of cell viability of BrainSpheres exposed selected flame retardant compounds for one week 
compared to control. Exposure occurred two weeks after differentiation of NPCs was initiated. n = 3 biological 
replicates (wells) for all conditions. Data is presented as mean ± SEM. Data is from R21 only. * indicates p < 
0.05; ** indicates p < 0.01 compared to the vehicle control. 

Condition Concentration (μM) Percent Viability vs. control 

Control 0 100 ± 0.0 

TCEP 

5 61.7 ± 12.2 

10 91.0 ± 21.9 

20 66.3 ± 25.1 

TDCPP 

5 76.0 ± 13.6 

10 85.3 ± 34.4 

20 83.0 ± 23.6 

Tris 

5 128.0 ± 37.0 

10 121.3 ± 33.1 

20 135.7 ± 28.8 

BDE-47 

5 163.0 ± 27.0 

10 210.0 ± 18.8 ** 

20 180.0 ± 9.5 
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Figure 3: Percent of cell viability of BrainSpheres exposed to 5, 10, or 20 μM flame retardant compounds for one 
week compared to control. Exposure occurred two weeks after differentiation of NPCs was initiated. n = 3 
biological replicates (wells) for all conditions. Data is presented as mean ± SEM. Data is from R21 only.  ** 
indicates p < 0.01 compared to the vehicle control. 

 

Selected PHOP compounds do not inhibit AChE activity. 

The AChE assay was performed in order to establish that any potential indices of selected 

PHOP toxicity occur at concentrations below that which inhibit AChE activity in the human 

BrainSphere model. In the AChE assay, fluorescence intensity is proportional to AChE 

activity (mU/mL). Prior unpublished work in the CAAT laboratory has shown that exposure to 

100 μM CPO for 24 hours inhibits AChE activity in the human BrainSphere model, thus this 

concentration and duration of exposure were selected as a positive control (Modafferi et al., 

revised). As expected, AChE activity in 4-week old BrainSpheres exposed to 10 or 20 μM 

PHOP compounds for one week was not inhibited (Figure 4). A small but insignificant dose-

dependent increase in enzymatic activity was observed for TCEP and Tris- exposed 

BrainSpheres, while the observed 41% increase in AChE activity in BrainSpheres exposed  
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Figure 4: Fold change of AChE activity in 4 week old BrainSpheres. Exposure to 10 or 20 μM flame retardant 
compounds for one week or 100 μM CPO for 24 hours. Exposure occurred four weeks after differentiation of 
NPCs was initiated. Mean RFU of triplicate wells from each condition were averaged and AChE activity (mU/mL) 
calculated from linear regression of the standard curve. Data is presented as fold change of total protein adjusted 
AChE activity compared to vehicle control ± SEM. Data is from R21 only. * indicates p < 0.05; ** indicates p < 
0.01 compared to the vehicle control. 

 

to 20 μM TDCPP did reach statistical significance compared to the control (adjusted p-value 

= 0.0063) (Table 5). This increase is likely an anomaly, because OP compounds are known 

inhibitors of AChE (COT 2019; Boublik et al. 2002). The same effect was observed in 

BrainSpheres exposed to BDE-47, which is not an organophosphate ester and thus not 

expected to inhibit AChE activity. The CPO positive control group exhibited a statistically 

significant 62% reduction in AChE activity (adjusted p-value = 0.0021). Furthermore, the 

relative expression of AChE was evaluated with RT-PCR. No significant altered expression 

was observed by flame retardant exposure, although a trend towards upregulation in 

samples exposed to both concentrations of Tris was noted (Tris 10 μM = 0.399, p = 0.3638; 

Tris 20 μM = 0.358, p = 0.5650) (Figure 7). 
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Table 5: AChE enzyme activity in 4 weeks old BrainSpheres after exposure to  flame retardants  for one week or 
100 μM CPO for 24 hours. Mean RFU of triplicate wells from each condition were averaged and AChE activity 
(mU/mL) calculated from linear regression of the standard curve. Data is presented as mean total protein-
adjusted AChE activity ± SEM. Data is from R21. n = 1-3 biological replicates (wells) per condition. ** indicates 
compared to the vehicle control. 

Condition Concentration (μM) mU/mL 

Control 0 2.87 ± 0.06 

TCEP 

10 2.89 ± 0.21 

20 3.22 ± 0.05 

TDCPP 

10 3.01 ± 0.26 

20 4.05 ± 0.28 ** 

Tris 

10 2.95 ± 0.11 

20 3.37 ± 0.21 

BDE-47 

10 2.98 ± 0.12 

20 3.20 ± 0.11 

CPO 100 1.09 ** 

 

 

PHOP exposure impairs neurite quality and induces compensatory outgrowth 

The neurite outgrowth assay is a functional evaluation of neurons capacity to extend 

projections from the cell body (Harris et al. 2018). Four-week old BrainSpheres exposed to 

10 or 20 μM PHOP compounds for 7 days and plated on a Matrigel®-coated well for 48 

hours all exhibited a slight reduction in neurite coverage compared to vehicle control, though 

no single condition reached statistical significance (percent reduction from control: TCEP 10 

μM = 9.5%, p > 0.9999; TCEP 20 μM = 11.3%, p > 0.9999; TDCPP 10 μM = 28.1%, p = 

0.3131; TDCPP 20 μM = 11.5%, p > 0.9999; Tris 10 μM = 35.7%, p = 0.1270; Tris 20 μM = 

10.2%, p > 0.9999;) (Figure 5B, C).  
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Figure 5: Neurite outgrowth in 4 week old BrainSpheres exposed to 10 or 20 μM flame retardant compounds for 
one week. Data is from R21 only. (A) Representative images of β-Tubulin III staining of neural projections at 4x 
magnification indicates that individual neurite morphology appears less robust in PHOP exposure groups 
compared to vehicle control. (B) Plot of average number of BrainSphere intersections from the outer edge of 
each aggregate. (C) Area under the curve (AUC) analysis of neurite density.  

 

The absence of statistical significance in AUC analysis may be a consequence of having 

few experimental units. Twenty to forty BrainSpheres per condition were plated for the 

neurite outgrowth experiment, but substantial exclusion is expected through the normal 

course of the assay. Spheres with neural projections in close proximity to surrounding 

neurites are excluded from analysis because it has been observed in the BrainSphere 

model that neighboring projections promote neurite growth independent of experimental 

condition. BrainSpheres adhering adjacent to the edge of the well were also excluded from 

analysis, because the physical barrier impedes radial outgrowth. Floating BrainSpheres and 
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BrainSpheres with neurites that have partially detached as a result of washing steps during 

immunostaining are also excluded (Table 6). 

 

Due to the low numbers of aggregates retained for analysis, a post hoc one-tailed binomial 

test with Bonferroni correction was performed comparing the observed number of floating 

BrainSpheres with the expected count based on what was seen in the control. Spheroids 

with interrupted neurites were not included in the analysis, because positioning near another 

aggregate or near the well wall occurs as a matter of chance, and mechanical disturbance of 

neurites may have been a reflection of repeated wash steps rather than a reflection of 

neurite health. The analysis revealed that fluctuations in the number of floating neurites did 

not progress in a dose-dependent manner or reached statistical significance for any of the 

three PHOP compounds. However, the 10 and 20 μM BDE-47 groups significantly deviated 

from the control samples (adjusted p-values = <0.0001). Indeed, BDE-47 has been shown to 

reduce axonal length in primary rat neuron-glia cocultures (Chen et al. 2016) and is widely 

accepted as neurotoxic in the developing fetus (COT 2019). While the 48 hour collection 

timepoint precedes the maturation of the dominant neurite into a single axon, BDE-47 was 

clearly toxic in this assay, with neurite outgrowth quantification not possible due to only a 

single viable BrainSphere remaining in the 10 μM BDE-47 group. 

 

Visually, PHOP exposure appears to impact neurite morphology (Figure 5A). Projections, 

visualized by anti β-III-tubulin immunostaining, are generally thinner and display erratic 

directionality in PHOP exposed groups. In addition, Moreover, the relative expression of 

genes involved in neurite morphology were evaluated. One-way ANOVA with Bonferroni 

correction for multiple comparisons of relative TUBB3 gene expression showed a very slight 

statistically insignificant upregulation in both concentrations of TCEP and Tris and the lowest  
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Table 6: Floating, interrupted, and viable BrainSpheres imaged in neurite outgrowth assay. Data is presented as 
counts and proportion of the total number of imaged organoids. Data is from R21 only. ** indicates p < 0.01 
compared to the vehicle control. 

Condition 
Total 

BrainSpheres 
Imaged 

Floating 
(No Neurites) 

Interrupted 
(Detached or Well 

Wall Adjacent) 
Used in Analysis 

Control 11 1 0.09 4 0.36 6 0.55 

TCEP 10 μM 17 2 0.12 10 0.59 5 0.29 

TCEP 20 μM 17 2 0.12 9 0.53 6 0.35 

TDCPP 10 μM 14 1 0.07 8 0.57 5 0.36 

TDCPP 20 μM 11 2 0.18 4 0.36 5 0.45 

Tris 10 μM 10 4 0.40 2 0.20 4 0.40 

Tris 20 μM 10 3 0.30 3 0.30 4 0.40 

BDE-47 10 μM 9 7** 0.78 1 0.00 1 0.22 

BDE-47 20 μM 7 7** 1.00 0 0.00 0 0.00 

 

concentration of TDCPP compared to control (TCEP 10 μM = 0.341, p = 0.6660; TCEP 20 

μM = 0.161, p > 0.9999; TDCPP 10 μM = 0.264, p = >0.9999; Tris 10 μM = 0.408, p = 

0.3258; Tris 20 μM = 0.377, p = 0.4545) (Figure 7). In mammals, β-III-tubulin functions in 

microtubule organization, and plays a role in extending neural projections out from the cell 

body (NCBI 2021a). This pattern was also present for MAP2 expression in all PHOPs 

(TCEP 10 μM = 0.371, p > 0.9999; TCEP 20 μM = 0.440, p > 0.9999; TDCPP 10 μM = 

0.453, p > 0.9999; TDCPP 20 μM = 0.462, p > 0.9999; Tris 10 μM = 0.349, p > 0.9999; Tris 

20 μM = 0.110, p > 0.9999) (Figure 7). The MAP2 gene family is involved in stabilizing 

microtubules and are essential to proper neurogenesis (NCBI 2021b). Together, poor 

neurite quality and upregulated TUBB3 and MAP2 indicate that PHOP exposed 

BrainSpheres may be compensating for poor neurite quality by producing additional 

neurites.  
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PHOP compounds do not alter synaptic morphology but may alter the expression of genes 

involved in synaptic function 

In order to investigate the impacts of PHOP exposure on synaptogenesis, BrainSpheres 

were stained for postsynaptic (PSD-95) and dendritic (MAP2) markers. Synaptic features 

were quantified using the automated SynQuant plugin for ImageJ2 (Wang et al. 2020). 

Flame retardant exposure did not appreciably alter the density of postsynaptic puncta 

(Figure 6B). 

 

 

Figure 6:.PHOP exposure does not alter synaptic features. A) Representative images of postsynaptic staining 

for dendrites (MAP2, red), postsynaptic puncta (PSD-95, green), and nuclei (Hoechst staining, blue). Images are 

taken from R21. B) Postsynaptic puncta density. Data is presented as mean number of puncta per μm dendrite ± 

SEM. Data obtained from 4-week BrainSpheres from R21 and R23. 
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As discussed previously, MAP2 gene expression was slightly but not significantly 

upregulated by exposure to PHOPs and BDE-47 (Figure 7). In contrast to the synaptic 

quantification, relative gene expression of PSD-95 was consistently higher in flame 

retardant-exposed BrainSpheres, although this upregulation again did not reach statistical 

significance after analyzing with One-way ANOVA with Bonferroni correction (TCEP 10 μM 

= 0.108, p > 0.9999; TCEP 20 μM = 0.243, p > 0.9999; TDCPP 10 μM = 0.448, p > 0.9999; 

TDCPP 20 μM = 0.596, p > 0.9999; Tris 10 μM = 0.680, p = 0.8079; Tris 20 μM = 0.459, p > 

0.9999). PHOP exposure did not alter presynaptic SYN1 expression. 

 

 

Figure 7: Relative gene expression of selected structural and synaptic proteins. 4 week old BrainSpheres 
exposed to 10 or 20 μM flame retardant compounds for one week. Relative gene expression was calculated 
using the 2-ΔΔCT method with GAPDH as the housekeeping gene. Heat map was constructed in Prism version 
9.1.0.221 using mean log2 fold change compared to untreated controls. Data presented are from R23. 
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Prior investigations in the CAAT laboratory found that non-PHOP organophosphate flame 

retardants downregulate the expression of glutamate NDMA receptor subunits GRIN1 and 

GRIN2a following a two week exposure in a primary rat BrainSphere model (Hogberg et al. 

2021). Moreover, it is well documented that the NMDA receptor is a potential toxicant target 

during brain development. Therefore, these genes were selected to determine whether the 

observed pattern of alterations persists in PHOP-exposed human BrainSpheres. To the 

contrary, relative expression of GRIN2a appeared slightly but insignificantly upregulated 

across all PHOP exposure groups (Figure 7). To a lesser degree, relative expression of 

GRIN1 was also slightly but insignificantly upregulated in both TDCPP and Tris samples. 

 

DISCUSSION 

The class-based assessment of structurally related compounds has a promising application 

in regulatory toxicology. Among the closely related PHOP flame retardant subclass – which 

is currently under consideration for collective evaluation of human health risk by CPSC– 

only seven of twenty two compounds have been evaluated for developmental neurotoxicity. 

Metabolites of OPFRs in pregnant women have been associated with reduced IQ and 

working memory in their offspring, while direct exposure in children has been associated 

with dose-dependent reductions in responsible behavior and increases in aggressive or 

disruptive behavior (Castorina et al. 2017; Lipscomb et al. 2017). In vitro assays indicate 

that like their polybrominated predecessors, OP esters like TCEP and TDCPP exhibit toxicity 

in neuronal proliferation, neurite outgrowth, synaptogenesis, and the establishment of 

neuronal circuitry (Blum et al. 2019). In vivo assessments in zebrafish, c. elegans, and 

flatworms have also linked these compounds with altered development and motor activity 

(Blum et al. 2019). 
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This investigation aimed to provide novel evidence about whether PHOP flame retardants 

so classified by their shared functional, structural, physicochemical, and biological properties 

would exhibit sufficient concordance across a battery of assays performed in a human iPSC-

derived brain microphysiological model to support their consideration as a single group. 

 

Three-dimensional BrainSphere models have been used to investigate the effects of 

prenatal exposure to pharmaceuticals and environmental contaminants including pesticides 

and non-PHOP organophosphorus flame retardants (Zhong et al. 2020; Pamies et al. 2018; 

Hogberg et al. 2021). At 8 week maturity, the model contains a co-culture of functional 

neuronal and glial cell populations, and is capable of recapitulating several key events and 

functional milestones that occur in the developing brain (Pamies et al. 2014). By week 2 

post-differentiation, the organoids stain positively for GABAergic, dopaminergic, and 

glutamatergic neuronal populations and are capable of spontaneous electrical activity, and 

synaptic receptor architecture is observed by 4 weeks (Pamies et al. 2017). In this study, 

BrainSpheres were used to investigate morphological and functional endpoints including 

cytotoxicity, AChE activity, synaptogenesis, and gene expression. 

 

A benefit of the BrainSphere model is its resistance to variability in size, cell composition, 

functional output between differentiation runs (Pamies et al. 2017). Early attempts to 

generate reproducible iPSC-derived microphysiological brain systems have widely 

documented necrotic centers in large organoids as a consequence of poor oxygen and 

nutrient diffusion (Pamies et al. 2017). Although uncharacteristically large aggregates were 

removed prior to distributing the organoids among experimental groups, size heterogeneity 

persisted among small aggregates as well. Whether size acted as a confounding variable in 

R21 is unknown, and additional runs are necessary to determine the reproducibility of the 

results presented here. 
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While resorufin fluorescence was adjusted for the number of BrainSpheres per well, 

fluorescence was not adjusted for total protein. This transformation likely would have 

provided a better proxy for cell mass within the aggregates and may have accounted for the 

large, dose independent fluctuations in viability compared to the vehicle control. Since the 

resazurin assay correlates the reduction of resazurin by NADH or NADPH with viable cell 

count, it is also possible that cell death accompanied by a compensatory increase in 

metabolic activity in living cells could have interfered with viability estimates (Hall et al. 2016; 

Riss et al. 2013). 

 

Like OP insecticides, the studied PHOPs contain an ester of phosphoric acid that confers an 

affinity for the AChE active site (COT 2019). The common mechanism and shared 

cholinergic toxicity of OP insecticides provided the basis for EPA's decision to conduct a 

cumulative risk assessment for these chemicals, although they are also known to exhibit 

non-cholinergic toxicity including cognitive deficits following prenatal exposure (EPA 2006; 

Burke et al. 2017). In contrast, industry and regulatory stakeholders have historically 

resisted calls for a cumulative OPFR risk assessment over the presumption of safety 

stemming from the group's weak cholinergic response (COT 2019). In this investigation, the 

AChE assay was performed in order to establish that any potential toxicity indeed occurs at 

concentrations lower than that which inhibit AChE activity. As anticipated, neither the PHOP 

subclass members nor negative flame retardant control BDE-47 inhibited AChE activity at 

the 10 or 20 μM exposure, while positive control CPO did inhibit the enzyme at 100 μM. The 

anomalous enzyme activity increase in the TDCPP 20 μM group is likely an artifact of the 

previously mentioned obstacle in BrainSphere differentiation. 

 

Neurite outgrowth is the preeminent process allowing for neuronal migration and the 

establishment of circuitry essential for neuron-neuron communication (Khodosevich and 
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Monyer 2010; Smit et al. 2003). The extension of neuronal processes from the cell body is 

governed by the complex integration of positive and negative signaling from neurotrophins 

and neurite growth inhibitors, which differ by brain region and neuron subtype (Ibid). 

Dysregulation of proper neurite outgrowth and maturation can have wide reaching impacts 

on synaptogenesis, synaptic pruning, plasticity, and other key processes in CNS 

development (Ibid). Thus, neurite outgrowth assays have emerged as a common means of 

assessing developmental neurotoxicity in vitro. 

 

PHOP exposure may impair the quality of neurite outgrowth and is coupled with slight but 

statistically insignificant upregulated gene expression of microtubule associated structural 

proteins TUBB3 and MAP2. These findings align with the results of an NTP in vitro 

alternatives testing battery, in which low concentrations (1 to 10 μM) of TCEP did not alter 

neurite outgrowth in human neuroprogenitor nor rat cells nor rat primary cortical cultures 

above a prespecified 15% background noise threshold (Behl et al. 2015). TDCPP also 

appears not to alter neurite outgrowth in the rat PC12 cell line (Dishaw et al. 2012). 

 

Similarly, PHOP flame retardants elicited menial upregulation in gene expression of 

postsynaptic marker PSD-95 and NMDA receptor subunits GRIN1 and GRIN2a, but did not 

impair overall neurite length or density of postsynaptic puncta. These findings are at odds 

with earlier investigations of OPFR toxicity in the rat BrainSphere model, but underscore 

NASEM recommendations for subclass-based hazard assessments (Hogberg et al. 2021). 

As members of the PHOP subclass, TCEP, TDCPP, and Tris are more closely related to 

one another than they are to OPFRs more generally, and thus evidence of specific toxicity 

should not be considered emblematic for all OPFRs.
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Chapter 5 

CONCLUSION 

At estimated human serum concentrations, TCEP, TDCPP, and Tris may impair neurite 

quality and elicit a slight upregulation of microtubule-associated and synaptic proteins. 

Though these findings should still be considered preliminary, evidence suggests that 

constituents of the PHOP subclass are both capable of perturbing key events in 

neurodevelopment and do so with a sufficiently similar magnitude and directionality to justify 

regulatory consideration of co-exposures in a cumulative human risk assessment. 

Importantly, the effects of TCEP and TDCPP exposure seemed to predict that of Tris, a 

poorly characterized compound for which developmental neurotoxicity data is not widely 

available. This promising relationship lends additional support for ongoing efforts to regulate 

chemicals with shared structural, functional, and biological properties as one group, even 

under scenarios where the toxic profile of individual subclass members is unknown. 

 

EPA has historically declined to regulate chemicals as a group without both a common use 

scenario and substantial evidence that the group's constituent members produce an adverse 

effect through a shared mechanism of action (i.e. OP insecticides exhibiting cholinergic 

toxicity). While the preliminary data presented here do not yet rise to that second standard 

of proof, the consistent directionality and magnitude of effect in the in vitro human 

BrainSphere model provide positive evidence that such a mechanistic relationship may 

exist. The brain dysregulation behind poor emotional self-regulation and social behavior is 

incredibly complex, and adverse outcome pathways charting the relationship between 

chemical exposure to altered neurodevelopmental phenotype are unknown. 
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Additionally, epidemiological investigations point to a clear association between OPFR 

exposure in utero and throughout early childhood and poorer executive function. Given the 

disparate relationships between molecular and epidemiological data, it is entirely possible 

that cumulative exposure to PHOP flame retardants is a better predictor of DNT than any 

single compound. Such a scenario further justifies the need to consider exposure to all 

PHOP subclass members in order to accurately characterize the risks and hazards posed to 

millions of individuals who are inadvertently exposed to these compounds on a daily basis.  

 

Understanding the burden of environmental chemicals on the developing human brain is an 

evolving challenge. Ultimately, the unavoidable early life exposure to flame retardant 

compounds represents a preventable risk factor for a permanent disability. As data mounts 

in favor of one or several causal relationships between PHOP compounds and disordered 

development, evidence-based prevention will be imperative to protecting public health. In 

order for these efforts to be successful, human hazard assessments must consider the 

effect of cumulative exposure to these closely related compounds, rather than continuing the 

trend of regulatory whack-a-mole.  
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