
ROBUST DEEP LEARNING FRAMEWORKS FOR RECOGNIZING
AND LOCALIZING OBJECTS ACCURATELY AND RELIABLY

by
Zhishuai Zhang

A dissertation submitted to Johns Hopkins University in conformity with the
requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
August, 2020

© 2020 Zhishuai Zhang
All Rights Reserved

Abstract

Detection is an important task in computer vision. It requires to recognize targets

inside images, and localize them. The images can be 2D or 3D, and can be represented

by dense pixels or sparse point clouds. With recent emergence and development of deep

neural networks, many deep learning based detection frameworks have been proposed.

They provide promising performance for many targets, e.g. natural objects, object

parts, pedestrians and faces, thus are widely used in many applications, including

surveillance, autonomous driving and medical image analysis. However, robust object

detection is still challenging. Ideal detectors should be able to handle objects with

unknown occluders, different scales/movements, long-tailed difficult objects, and

low-contrast radiology inputs. Recent detectors are not designed with deliberate

consideration of those challenges, and may have degraded performance. In this

dissertation, we investigate those challenges, and propose novel detection frameworks

to mitigate them.

The aforementioned challenges are addressed in different aspects. (i) We address

occlusion by proposing end-to-end voting mechanisms for vehicle part detection. It

detects targets by accumulating cues relevant to the target. Occlusions eliminate some

of the cues, but remaining cues are still able to detect the targets. (ii) We combine

semantic segmentation with object detection, to enrich the detection features in multi-

layer single-stage detectors. The enriched features capture both low-level details and

high-level semantics, thus the quality of detection is significantly improved for both

small and large objects due to stronger detection features. (iii) We investigate the issue

ii

of long-tailed hard examples and propose a hard image mining strategy. It dynamically

identifies hard images and puts more training efforts during the training phase. This

leads to models robust to long-tailed hard examples. (iv) For low-contrast multi-slice

medical images, we design hybrid detectors to combine 2D and 3D information. Based

on a stack of 2D CNNs for each image slice, we design 3D fusion modules to bridge

context information from different 2D CNNs. (v) For objects moving in sequences, we

design temporal region proposals to model the movements and interactions of them.

We model the moving objects with spatial-temporal-interactive features for detecting

them through past, current and future.

Thesis Readers

Dr. Alan L. Yuille (Primary Advisor)
Bloomberg Distinguished Professor
Department of Computer Science
Johns Hopkins University

Dr. Vishal M. Patel
Assistant Professor
Department of Electrical and Computer Engineering
Johns Hopkins University

Dr. Wei Shen
Research Assistant Professor
Department of Computer Science
Johns Hopkins University

iii

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Alan L. Yuille at the Johns

Hopkins University, whom I first met in Shanghai when I was a senior undergraduate

student. He is a mathematician and computer scientist with great devotion, dedication

and love to researching, mentoring and teaching. He always gives us insightful guidance

and prompt supports to our research, and teaches us a lot about conducting research,

i.e., how to build a big picture of research ideas, how to appreciate long-term bold

thoughts and how to set up short-term achievable goals which compose the bigger

project. He also helps a lot on our personal and career development especially in this

special moment with the pandemic. Alan has also been working hard to enrich and

organize the research collaboration and computation resources inside our lab, which

greatly expedite our projects. As a result, our group is growing prosperously and has

become a great place for learning and researching.

Next, I would like to thank Prof. Wei Shen, who is a great researcher in computer

vision. He helps a lot in many aspects of my study and research, e.g., proposing

problems and ideas, designing experiments and writing papers. His insights and

understanding of researches and literatures have always been an inspiration to me.

Besides, I would like to thank Prof. Amitabh Basu, Prof. Alexander S. Szalay, Prof.

Vishal M. Patel, Prof. Gregory D. Hager, Prof. Xin Jin for participating in my

GBO exam and providing invaluable suggestions regarding my research. In addition

to those who directly interact with me on research, I also took several high quality

courses during my study at the Johns Hopkins, from Prof. Rene Vidal, Prof. Sanjeev

iv

Khudanpur, Prof. Randal Burns and Prof. David Yarowsky. Thanks to their devotion

to teaching, I learnt a lot on topics directly or indirectly related to my research, and

those topics and knowledge play an important role in my career. I also want to thank

Prof. Haider Ali who provided me an invaluable opportunity as a teaching assistant,

which enables me to learn how to convey knowledge in a clear way and teach others.

I am lucky enough to work with a group of talented, hard-working and easy-going

collaborators throughout my study, including Adam, Bo, Cihang, Jianyu, Jun, Huiyu,

Lingxi, Qing, Siyuan, Song, Vittal, Yan, Yingwei, Yuyin and Zhou. I am also grateful

to be able to interact and communicate with and learn from many smart lab mates,

including Yongyi, Weichao, Chenxi, Zhuotun, Chenxu, Qi, Fengze, Yi, Hongru, Yingda,

Jieru, Qihang, Yixiao, Zhuowan, Zihao, Chenglin, Yutong, Angtian and Chen. The

interaction and discussion between us sometimes inspire me of new ideas and thoughts

for my research.

During my Ph.D. study, I am fortunate enough to have two great internships in

Facebook Applied Machine Learning team and Waymo Perception team respectively.

I received mentorship from Xianjie Chen, Yan Zhu and Long Jin at Facebook, and

Junhua Mao, Jiyang Gao and Yukai Liu at Waymo. During the internships, they

provided invaluable helps on my project, and spent time on discussing the projects,

answering my questions, reviewing my codes and designs and proofreading my papers

and reports. I learnt from them how to conduct research which involves industrial

needs and impacts. I also want to thank Liang Xiong and Congcong Li for hosting

my internships in Facebook and Waymo respectively, and my internships would not

be possible without their supports.

At last, I would like to thank all the administrative stuffs in the computer science

and the Johns Hopkins University. They provide lots of helps on administrations like

enrolling courses, organizing GBOs and outlining Ph.D. program guidelines. Their

helps make my life and study here much easier as an international student. I would

v

like to thank Zachary Burwell for monitoring my Ph.D. progress, providing assistants

for my out-of-campus internships. I also want to thank Kim Franklin for scheduling

my GBOs and answering many questions about Ph.D. requirements. I would like

to thank Anthony E. Kolasny and Tony Placilla for organizing computers for our

lab. They spend a lot of time on purchasing computers, setting up operating systems

and carrying out maintenance. Their support ensures my research and experiments

smooth and productive.

vi

To my family and parents for their unreserved and unconditional support.

vii

Contents

Abstract . ii

Acknowledgements . iv

Dedication . vii

Contents . viii

List of Tables . xiv

List of Figures . xix

Chapter 1 Introduction . 1

1.1 Challenges and Our Contributions . 5

1.1.1 Occlusion with Unknown Occluders 5

1.1.2 Scale Variance . 7

1.1.3 Long-tailed Hard Examples 8

1.1.4 Low Contrast Computed Tomography 3D Scan Images 9

1.1.5 Dynamic Objects with Different Moving Patterns 10

1.2 Thesis Statement . 11

1.3 Outline . 12

1.4 Relevant Publications . 12

Chapter 2 Related Work . 15

viii

2.1 General Object Detection . 15

2.2 Face Detection . 20

2.3 Lesion Detection in Medical Images 20

2.4 Detection from Sparse Point Clouds 21

Chapter 3 DeepVoting for Semantic Part Detection under Partial

Occlusion . 23

3.1 Motivation and Overview . 24

3.2 Related Works . 27

3.3 DeepVoting Framework . 27

3.3.1 Formulation . 29

3.3.2 Visual Concept Extraction via the VC Layer 29

3.3.3 Semantic Part Detection via the Voting Layer 30

3.4 Training and Inference . 31

3.4.1 The Scale Prediction Network 33

3.5 Experiments Results for Part Detection 34

3.5.1 Dataset and Baseline . 34

3.5.2 Semantic Part Detection without Occlusion 35

3.5.3 Semantic Part Detection under Occlusion 36

3.5.4 Scale Prediction Accuracy . 39

3.6 Visualization and Explanation . 40

3.6.1 Visualizing Visual Concepts and Heat-maps 40

3.6.2 Explaining the Detection Results 41

3.6.3 Detection under Natural Occlusions 42

3.7 Conclusion and Future Works . 43

Chapter 4 Enriching Semantics for Multi-layer Scale-invariant De-

tectors . 45

ix

4.1 Motivation and Overview . 46

4.2 Related Work . 51

4.3 Methodology . 52

4.3.1 Semantic Enrichment at Low-level Layer 53

4.3.2 Semantic Enrichment at Higher-level Layers 56

4.3.3 Multi-task Training . 57

4.4 Experiments . 58

4.4.1 Experiment on VOC . 58

4.4.2 Experiment on COCO . 62

4.5 Discussion and Ablation . 64

4.5.1 Architecture Ablation and Diagnosis 64

4.5.2 Inference Speed . 66

4.5.3 Qualitative Examples . 67

4.6 Conclusion and Future Works . 69

Chapter 5 Online Hard Image Mining for Long-tailed Hard Cases 70

5.1 Motivation and Overview . 71

5.2 Related Work . 75

5.2.1 Hard Example Mining . 75

5.2.2 Face Detection Architecture 75

5.2.3 Anchor Design and Matching 76

5.3 Proposed Method . 77

5.3.1 Single-level Small Face Detection Framework 77

5.3.2 Hard Image Mining . 79

5.3.3 Training Strategy . 81

5.3.3.1 Multi-scale Training and Anchor Matching 81

5.3.3.2 Anchor-level Hard Example Mining 82

5.3.3.3 Data Augmentation 82

x

5.4 Experiments . 83

5.4.1 Experiment Settings . 83

5.4.2 Experiment Results . 84

5.4.2.1 WIDER FACE . 84

5.4.2.2 FDDB . 86

5.4.2.3 Pascal Faces . 88

5.4.2.4 AFW . 88

5.5 Ablation Study and Diagnosis . 89

5.5.1 Ablation Experiments . 89

5.5.2 Diagnosis of Hyperparameters 90

5.5.3 Diagnosis of OHEM as Hard Face Mining 90

5.5.4 Diagnosis of Data Augmentation 91

5.5.5 Diagnosis of Multi-scale Testing 92

5.5.6 Analysis of Accuracy/Speed Trade-off 92

5.5.7 Qualitative Examples . 94

5.6 Conclusion and Future Works . 95

Chapter 6 Efficiently Bridging 3D Context For Lesion Detection in

CT Images . 96

6.1 Motivation and Overview . 97

6.2 Methodology . 99

6.2.1 Overview Pipeline . 99

6.2.2 3D Fusion Module . 100

6.3 Experiments . 102

6.3.1 Implementation Details . 102

6.3.2 Experiment Results . 103

6.4 Ablation Studies . 105

6.4.1 Inference Speed and Memory Overhead 105

xi

6.4.2 Architecture of 3DFM . 105

6.4.3 Number of 3DFM Instances 107

6.4.4 Analysis on Different Lesion Types 107

6.5 Conclusion and Future Works . 109

Chapter 7 Spatio-Temporal-Interactive Network for Pedestrian De-

tection and Trajectory Prediction 110

7.1 Motivation and Overview . 111

7.2 Related Work . 114

7.2.1 Temporal Proposals . 114

7.2.2 Relational Reasoning . 115

7.2.3 Trajectory Prediction . 115

7.3 Methodology . 115

7.3.1 Backbone Network . 116

7.3.2 Temporal Proposal Generation 117

7.3.3 Proposal Prediction . 120

7.3.3.1 Spatio-Temporal-Interactive Feature Extraction . . . 120

7.3.3.2 Proposal Classification and Regression 123

7.4 Experiment . 123

7.4.1 Experiment Settings . 123

7.4.2 Results on Waymo Open Dataset 125

7.4.3 Results on Lyft Dataset . 127

7.4.4 Ablation Studies . 127

7.4.5 Model Inference Speed . 129

7.4.6 Qualitative Results . 130

7.5 Conclusion and Future Works . 132

Chapter 8 Conclusion . 134

xii

References . 136

Vita . 145

xiii

List of Tables

Table 3.1 Comparison of detection accuracy (mean AP, %) of KVC,

DVC, VT, FR, DV and DV+ on non-occluded testing images.

Note that DV+ is DeepVoting trained with context outside

object bounding boxes. 36

Table 3.2 Comparison of detection accuracy (mean AP, %) of VT, FR,

DV and DV+ when the object is occluded at three different

levels. Note that DV+ is DeepVoting trained with context

outside object bounding boxes. 37

Table 3.3 Left 4 columns: the recall rates (%) of the proposal network

at different occlusion levels. Middle 3 and right 3 columns:

detection mAPs (%) of Faster-RCNN with ground-truth bound-

ing boxes added as additional proposals and DeepVoting+ at

different occlusion levels. 38

Table 4.1 Results on VOC2007 test. The first section contains some

representative baselines [8], [20], [26], [28], [66], the second

section contains other detectors exploiting segmentation infor-

mation [64], [65], the third section contains low resolution SSD

and DES, and the last section contains high resolution SSD

and DES. Note that all these methods are trained on VOC2007

trainval and VOC2012 trainval. 60

xiv

Table 4.2 Results on VOC2012 test. Note that all methods in this

table are trained on VOC2007 trainvaltest and VOC2012

trainval, except Gidaris [64] is trained on VOC2007 trainval

and VOC2012 trainval. 61

Table 4.3 Results on VOC2007 test and VOC2012 test when detectors

are fine-tuned from models pre-trained on COCO. 62

Table 4.4 Results of average precision (AP) on COCO test-dev. ‘APs’,

‘APm’ and ‘APr’ stand for the AP for small, medium and

large objects respectively, and ‘mAP’, ‘AP50’ and ‘AP75’ mean

average precision of IOU=0.5:0.95, IOU=0.5 and IOU=0.75

respectively. trainval35k is obtained by removing the 5k

minival set from trainval. 63

Table 4.5 Results of average recall (AR) on COCO test-dev. ‘ARs’,

‘ARm’ and ‘ARl’ stand for the AR for small, medium and large

objects respectively . 63

Table 4.6 Ablation result evaluated on VOC2007 test dataset. G stands

for the global activation module and S stands for the seg-

mentation branch. α is the hyper-parameter controlling the

tradeoff between segmentation loss and detection loss discussed

in Subsection 4.3.3. 65

Table 4.7 Inference Speed of two-shot baseline R-FCN and single-stage

SSD and DES under different input resolutions. Here we report

the mAP on VOC2007 test dataset in the mAP column, the

time spent for inferring a single image in milliseconds in the

time column, as well as the number images processed within

one second in the FPS column. 67

xv

Table 5.1 Ablation experiments. Baseline-Three is a face detector similar

to SSH with three detection feature maps trained with the same

hyperparameters. Baseline-Single is our proposed detector with

single detection feature map shown in Figure 5.3. HIM and DH

represents hard image mining and dilated head architecture

(Figure 5.4). The same testing strategy is used for all entries. 89

Table 5.2 Hyper-parameter ablation study. All experiments are conducted

for the Baseline-Single+HIM version described in 5.5.1. When

diagnosing the effect of th and p, the other hyperparameter p

and th are fixed to the best values (i.e., 0.7 and 0.85) respectively. 90

Table 5.3 Diagnose of using OHEM to mine hard faces. All entries are

based on the Baseline-Single+HIM version described in 5.5.1. 91

Table 5.4 Diagnosis of data augmentation. PD indicates photometric

distortion. All entries are based on our Baseline-SingleLevel

configuration without HIM and DH. 91

Table 5.5 Diagnosis of multi-scale testing. All results are evaluated with

the same model with HIM and DH. 92

Table 5.6 Diagnosis of inference speed. MS and HF indicate multi-scale

testing and horizontal flip; Time is the inference time (in sec-

ond) for a single image; G-Mem is the GPU memory usage

in gigabyte; AP-h is the average precision on the hard subset

of WIDER FACE val set. Ours∗ indicates our detector with-

out extra small scales. All entries are evaluated with a single

nVIDIA Titan X Maxwell. 93

Table 6.1 Performance (%) on the test split for DeepLesion dataset.

0.125, · · · , 16 represent the number of FPs per image. 103

Table 6.2 Performance on the official test split for DeepLesion dataset. 105

xvi

Table 6.3 Ablation of 3DFM architecture and the number of 3DFM

Instances. See details in Subsection 6.4.2 and 6.4.3. 106

Table 6.4 Sensitivities of different types of lesion at 4 false positive per

image. Our detector outperforms baseline on all 8 types. . . . 107

Table 7.1 Detection performance for different methods on WOD. MF in-

dicates whether the corresponding model takes multiple frames

as input. TS indicates whether the model has a two-stage

framework. BEV AP is computed with an IoU threshold of 0.5.

↑ indicates the higher numbers are better for the corresponding

metric. 125

Table 7.2 Trajectory prediction performance for different models on WOD.

MF indicates whether the corresponding model takes multiple

frames as input. TS indicates whether the model has a two-

stage framework. ↑ and ↓ indicate the higher/lower numbers

are better for the corresponding metric. DE and ADE are

in centimeters. For models implemented by us, we train and

evaluate the model for five times and compute the average and

standard deviation shown around ± in the table. 126

Table 7.3 Bird-eyes-view average precision (BEV-AP) breakdown com-

parison of MF-FRCNN and STINet on WOD. Objects are split

into five bins base on the future trajectory length with a bin

size of 2.5m. Last row is the relative improvement of STINet. 126

Table 7.4 Average displacement error (ADE, in centimeters) breakdown

comparison of MF-FRCNN and STINet on WOD. Objects are

split into five bins base on the future trajectory length with a

bin size of 2.5m. Last row is the relative improvement of STINet.127

xvii

Table 7.5 Detection and trajectory prediction performance on Lyft. The

same metrics are used to evaluate detection and trajectory

prediction performance. 127

Table 7.6 Ablation studies on local geometry and local dynamic features

(noted as LG and LD in the table respectively). All entries are

trained without History Path and Interactive features. 128

Table 7.7 Ablation studies on history path feature. † indicates the corre-

sponding feature is used only for detection and ignored while

prediction the trajectory. 128

Table 7.8 Ablation studies on interaction features. ‘I’ indicates whether

the proposal interaction modeling is adopted. “All" and “Group"

correspond to evaluation on all pedestrians and pedestrians

belonging to a group with at least 5 pedestrians respectively. 128

xviii

List of Figures

Figure 1.1 An example of a driving scenario provided in Kitti dataset [2].

Self-driving car needs to identify and locate the traffic signs (in

yellow boxes) and other road users (in blue boxes) in order to

proceed safely. Further processes, including text recognition,

vehicle intent prediction, etc., take object detection as their

backbones. 2

Figure 1.2 Examples of five different detection tasks. From upper-left to

lower-right in row-major order: A) natural object detection

from a 2D image (MS COCO dataset [3]); B) car detection

from 3D point clouds (Lyft dataset [4]); C) face detection from

a 2D image (WiderFace dataset [5]); D) car part detection

from a 2D image (VehicleSemanticPart dataset [6]); E) car

detection from a sequence of 3D point clouds with 3 frames

(Lyft dataset [4]). Object types are annotated in red text and

object locations are annotated in yellow 2D or 3D bounding-

boxes. 3

xix

Figure 1.3 Examples of images in the VehicleSemanticPart dataset (first

4 pictures) and performance of a traditional detector (Faster-

RCNN) in a line chart. The first image (L0) of a bus is

unoccluded. The next three images (L1, L2 and L3) are the

same scene with different occlusions. There are 2, 3 and 4

occluders, and the occluded ratios of object, computed by

pixels, are 0.2–0.4, 0.4–0.6 and 0.6–0.8, respectively. The line

chart shows the detection performance of Faster-RCNN on

the whole test subset with different occlusion levels, and the

performance drops drastically by 69%. 6

Figure 1.4 An illustration of the scale variance among objects. The cyclist

closer to the camera is much larger (around 120 times larger

in terms of the number of pixels) than the two pedestrians in

the background far away from the camera. 7

Figure 1.5 Examples of CT scan images for lesion detection in the DeepLe-

sion dataset [15]. The inputs are composed of 2D image slices

and the bounding-boxes are labeled on the key slices (marked

in red), and the neighboring slices (marked in yellow) are used

to provide 3D context. 10

Figure 2.1 General detectors, which take images as input. The feature

encoders (also know as backbones) process the input image and

generate features for detection queries. The detection decoders

(i.e. detection heads) compute the final prediction output based

on the query and the feature vector. Detection queries are the

prior locations to check whether any object exists, and they

can be proposals [19], [20], pre-defined anchors [17], grids [21]

or corner point pairs [22]. 16

xx

Figure 2.2 Overall framework of SSD [17]. The encoder is a multi-layer

convolutional neural network, and generates a pyramid of

detection feature maps, with different resolutions and receptive

field sizes. Detection queries are pre-defined anchors assigned

to grid positions of one of the feature maps. The decoder

takes the anchor as prior and use the anchor feature vector

to conduct classification and regression to generate the final

detection tuple results. 17

Figure 2.3 Overall framework of Faster-RCNN [26]. The framework is

composed of one feature encoder and two sets of query genera-

tors and decoders. The feature encoder is a fully-convolutional

neural network and generates two feature map, one for each set

of query generator and decoder respectively. The first set of

query generator and decoder is also known as region proposal

network, which takes pre-defined anchors as input and gener-

ate class-agnostic bounding-box candidates as proposals. The

second set of query generator and decoder takes the proposals

as input, extract proposal features from the backbone feature

map and compute final detection outputs. 18

Figure 2.4 Feature encoder of 3DCE. It takes multiple slices as inputs,

and separate 2D CNNs are used to extract feature maps, which

are later aggregated for final prediction. 21

Figure 3.1 Typical semantic parts on six types of rigid objects from the

VehicleSemanticPart dataset [6]. Some semantic parts (e.g.,

wheel) can appear in different object classes, while some others

(e.g., chimney) only appear in one class (train). 25

xxi

Figure 3.2 The overall framework of DeepVoting (best viewed in color).

A car image with two wheels (marked by red bounding-boxes,

and one of them is occluded) is fed into VGGNet [48], and the

intermediate (i.e. pool-4 layer) outputs are passed through

a visual concept extraction layer and a voting layer. We ag-

gregate local visual cues from the visual concept map (darker

blue indicates more significant cues, in the lower right sub-

figure), and consider their spatial relationship to the target

semantic parts via voting, and obtain a low-resolution con-

fidence heat-map for semantic parts (darker red or a larger

number indicates higher confidence). Based on this map, we

perform bounding-box regression followed by non-maximum

suppression to obtain the final detection results. 28

Figure 3.3 The accuracy of scale prediction. The x-axis is the ratio

of predicted scale to the ground-truth scale, and a ratio of 1

indicates perfect scale prediction while ratios differ from 1 with

a large gap indicate incorrect scale estimations. The y-axis is

the frequency of the corresponding prediction/ground-truth

ratio over the testing set. 39

xxii

Figure 3.4 Visualization of visual concepts and spatial heat-maps (best

viewed in color). For each visual concept, we show 10 patches

with the highest responses. Each spatial heat-map illustrates

the cues to support detecting a semantic part at different

relative spatial locations, in which yellow, cyan and dark blue

indicate positive, neutral and negative cues, respectively. For

example, VC #073 (windshield) often appears above SP #20

(license plate), and VC #170 (car side bottom) often appears

below SP #12 (side window). 40

Figure 3.5 DeepVoting allows us to explain the detection results. In the

example of heavy occlusion (the third column), the target

semantic part, i.e., the license plate on a car, is fully occluded

by a bird. With the help of several supporting visual concepts

(illustrated in blue dots), especially the 73-rd VC (also visual-

ized in Figure 3.4), we can infer the position of the occluded

semantic part (marked in the red bounding-box). Note that

we only plot the top 3 VC’s with the highest scores, regardless

the number of supporting VC’s can be much larger. 41

Figure 3.6 Input image from MS COCO 2014val and the corresponding

semantic part detection heat-map. From top to bottom and

left to right, in row major order: detecting wheels of cars;

detecting wheels of a bike; detecting license plates of a car;

detecting side windows of a car; detecting headlights of a car;

detecting wheels of a motorbike. 42

xxiii

Figure 4.1 This figure is a compilation of two figures drawn in [18]. The

upper subfigure shows the receptive fields and the top acti-

vating patches for three neurons at different layers of the two

CNNs proposed in [18]. We can see the conv4 layer (which

is the penultimate convolution layer) only corresponds to ba-

sic low-level elements. Even for the pool5 layer, the neurons

sometimes fire at different objects with similar appearance.

The lower subfigure provides quantitative analysis about the

semantic types captures by all the neurons in each layer. For

a ImageNet-trained CNN, there are still around 20% neurons

captures simple elements and colors in conv4 and pool5. . . . 47

Figure 4.2 Pipeline for DES: the upper half is the object detection branch

for DES which has six detection feature maps from conv4_3 up

to conv9_2; the lower half illustrates the segmentation branch

and the global activation module. The segmentation branch

is employed at the first detection feature map i.e. conv4_3.

The global activation module consists of six global activation

blocks. Those global activation blocks are added at each of

the detection feature maps. The black arrows pointed to those

modules are the input flow, and the red arrows pointed out

from those modules are the output flow to replace the original

feature map. 48

xxiv

Figure 4.3 low-level features augmented with semantic meaningful fea-

tures from the segmentation branch. A: original image fed

into our detection network. B: original low-level detection

features (X) for the input image. C: semantic meaningful

features (Z) from the segmentation branch. D: augmented

low-level features (X ′ = X ⊙ Z) which is then used in the

later stages for our detection network. We can see that X ′

can capture both basic visual pattern and high level semantic

information. 49

Figure 4.4 The architecture of the semantic segmentation branch. It takes

an intermediate feature map from object detection branch (e.g.

conv4_3 for SSD300) as input (as shown in the grey cube on

the upper left corner), and generates a semantically meaningful

feature map Z (as shown in the tan cube in the center) to

enrich the input X to X ′ (as shown in the grey cube on the

lower left corner). X ′ is then used in the detection branch, to

replace the original feature map X. 54

Figure 4.5 Example of weak (pseudo) segmentation ground-truth. Left:

Input image with a size of 300 × 300 pixels, with a person and

a horse on the image. Right: Weak segmentation ground-truth

for the left image, with a size of 38 × 38; the pixels locate

inside both the person and the horse bounding-boxes will be

assigned to person class since its bounding-box is smaller. . . 56

xxv

Figure 4.6 Examples of detection results. Left: Results of SSD300. Right:

Results of DES300. All detected objects with confidence scores

higher than or equal to 0.3 are highlighted in yellow bounding-

boxes, and the corresponding confidence scores are printed at

the upper-right side of the bounding-boxes. 68

Figure 5.1 AP of each training image computed based on official SSH

model, the x-axis is index of the training image, the y-axis is

the AP for the corresponding image. The images are sorted

in descending order of APs. 72

Figure 5.2 Upper half: two hard training images. Lower half: two easy

training images. 73

Figure 5.3 The framework of our face detector. We take VGG16 as

our backbone CNN, and we fuse two layers (conv4_3 and

conv5_3) after dimension reduction and bilinear upsampling,

to generate the final detection feature map. Based on that,

we add a detection head for classification and bounding-box

regression. 77

Figure 5.4 The framework of our dilated detection head for classification

and regression. Based on the detection feature map from

the backbone CNN, we first perform dimension reduction to

reduce the number of channels from 512 to 128. Then we put

three convolution layers with the shared weight and different

dilation rates, to generate final detection and classification

features. 78

Figure 5.5 Precision-recall curve on the easy subset of WIDER FACE

val dataset. 84

xxvi

Figure 5.6 Precision-recall curve on the medium subset of WIDER FACE

val dataset. 85

Figure 5.7 Precision-recall curve on the hard subset of WIDER FACE

val dataset. 85

Figure 5.8 Precision-recall curve on the hard subset of WIDER FACE

test dataset. 86

Figure 5.9 Receiver operating characteristic curve on the FDDB dataset. 87

Figure 5.10 Precision-recall curve on the Pascal Faces dataset. 87

Figure 5.11 Precision-recall curve on the AFW dataset. 88

Figure 5.12 Qualitative example. Left-upper: baseline. Right-upper:

+DH. Left-lower: +DH+HIM. The first three subfigures are

the results on the same image, and the differences are high-

lighted by red arrows. Right-lower: Large face detected by

our final model. Detected boxes with scores greater than 0.5

are plotted. 94

Figure 6.1 Backbone of our hybrid lesion detector. Different rows illus-

trate different 2D CNNs for the corresponding images. The

ground-truth boxes are labelled in the central image (with red

boundary) and other 3-channel images (with yellow boundary)

are served as 3D context. The central conv5_3 feature (marked

in green) is used in RPN and the fused feature (marked in

blue) is used in RCN. Best view in color. 99

Figure 6.2 RPN (in the top row) and RCN (in the bottom row) sub-

networks. 100

Figure 6.3 3D Fusion Module. K is 5 in this example. 101

Figure 6.4 FROCs of Baseline and Baseline+3DFM (Hybrid). Best view

in color. 104

xxvii

Figure 6.5 Detection examples of eight types. Yellow and blue boxes

are for ground-truth and detection result. All examples are

detected by our hybrid detector while missed by our baseline

detector. 108

Figure 7.1 Given a sequence of current and past point clouds, our task

is to detect pedestrians in the current frame, and predict the

future trajectory of them. In this figure, white points are input

point cloud sequence (stacked for visualization), yellow boxes

are detected objects, and the cyan lines are predicted future

trajectory. 112

Figure 7.2 The overview of the proposed method. It takes a sequence of

point clouds as input, detects pedestrians and predicts their

future trajectories simultaneously. The point clouds are pro-

cessed by Pillar Feature Encoding [41], [43] to generate Pillar

Features. Then each Pillar Feature is fed into a backbone

ResUNet [131] to get backbone features. A Temporal Region

Proposal Network (T-RPN) takes backbone features and gen-

erated temporal proposal with past and current boxes for each

object. Spatio-Temporal-Interactive (STI) Feature Extractor

learns features for each temporal proposal which are used for

final detection and trajectory prediction. 116

Figure 7.3 Backbone of proposed network. Upper: overview of the back-

bone. The input point cloud sequence is fed to Voxelization

and Point net to generate pseudo images, which are then pro-

cessed by ResNet U-Net to generate final backbone feature

sequence. Lower: detailed design of ResNet U-Net. 117

xxviii

Figure 7.4 Spatial-Temporal-Interactive Feature Extractor (STI-FE): Lo-

cal geometry, local dynamic and history path features are

extracted given a temporal proposal. For local geometry and

local dynamics features, the yellow areas are used for feature

extraction. Relational reasoning is performed across proposals’

local features to generate interactive features. 121

Figure 7.5 Qualitative examples of STINet. The blue box are detected

pedestrians. The cyan and yellow lines are predicted future

and history trajectories of STINet respectively. 130

Figure 7.6 Comparison between MF-FRCNN and STINet. The yellow line

is the ground-truth future trajectory for pedestrians. The pink

and cyan lines are the predicted future trajectory from MF-

FRCNN and STINet respectively. It is clear that our proposed

method gives a much better prediction compared with the

baseline, for all three pedestrians. Upper: the overview of

three pedestrians. Lower: zoom-in visualization for three

pedestrians. 131

xxix

Chapter 1

Introduction

Computer vision is about reasoning the world from low-level raw sensor inputs. The

inputs could be in 2D or 3D, in static images or sequential videos, and in dense pixels

or sparse point clouds. The outputs are the understanding of the scene demonstrated

by the inputs. As summarized by David Marr in a famous quote, the computer vision

is about knowing “what is where” 1. One of the most intuitive and important outputs

of the reasoning is the detection of objects, which is to recognize and localize objects

in the scene, and describes what and where any pre-defined semantically meaningful

objects exist in the scene.

An important aspect of parsing and reasoning the scene demonstrated by the inputs

is to perceive what types of objects exist in the scene and where are the instances

of the objects of interest. It serves as a prerequisites for many higher level vision

tasks, like object tracking, face alignment, etc., and it is also important for many

vision applications. For example, in an autonomous driving scenario, the self-driving

car (SDC) needs to understand whether and where other road users or traffic signs

exist. SDC makes driving control decisions based on traffic signs, and reacts to other

road users like pedestrian, cars and cyclists. For this goal, detecting them (both

traffic signs and other road users) would be a critical step, as illustrated in Figure
1What does it mean, to see? The plain man’s answer (and Aristotle’s, too) would be, to know

what is where by looking. In other words, vision is the process of discovering from images what is
present in the world, and where it is. – David Marr [1]

1

Figure 1.1. An example of a driving scenario provided in Kitti dataset [2]. Self-driving
car needs to identify and locate the traffic signs (in yellow boxes) and other road users
(in blue boxes) in order to proceed safely. Further processes, including text recognition,
vehicle intent prediction, etc ., take object detection as their backbones.

1.1. Detection provides the SDC information about types and positions of objects

around it to make decisions, and also enables further detailed analysis of detected

objects (e.g. pose, gesture, speed and text recognition/estimation). Another use case

of object detection is for taking photos or videos with a camera. As humans are one

of the most important subjects in photographies, face-priority auto focus has been

developed to build better photos with human faces, by locating faces and providing

appropriate focus and exposure. Recently, on powerful cell phones, more complicated

face beautifying mechanisms can be applied after detecting the faces.

Detection is about identifying and locating objects of interest in a scene, and it can

have different input/output forms for each specific application. The types of objects

of interest can be one specific category (e.g. face detection or pedestrian detection) or

can be a broad range of categories (e.g. 20 or 80 pre-defined object categories in Pascal

VOC [7] and MS COCO [3] dataset respectively). The location of objects of interest is

described by bounding-boxes in most cases due to the simplicity of this representation.

Depending on the task, the bounding-boxes could be in 2D or 3D, and they could

be without rotation (i.e. axis-aligned boxes) or with rotations (i.e., boxes with yaw,

roll and pitch). In Figure 1.2, we show some examples of detection tasks based on

2

aeroplane

aeroplane
truck

car

car
car

car

car

face

face
face

face face

wheel

wheel

side window

car car car

A B

C D

E

Figure 1.2. Examples of five different detection tasks. From upper-left to lower-right in
row-major order: A) natural object detection from a 2D image (MS COCO dataset [3]); B)
car detection from 3D point clouds (Lyft dataset [4]); C) face detection from a 2D image
(WiderFace dataset [5]); D) car part detection from a 2D image (VehicleSemanticPart
dataset [6]); E) car detection from a sequence of 3D point clouds with 3 frames (Lyft
dataset [4]). Object types are annotated in red text and object locations are annotated in
yellow 2D or 3D bounding-boxes.

different inputs/outputs specifications. Regarding types of inputs, examples A, C and

D take static camera image as input, example B takes static point clouds as input

3

and example E takes a sequence of point clouds with 3 frames as input. Regarding

types of objects of interest, example A and D consider a broad range of categories

(i.e. natural objects and car parts respectively) and example B, C and E consider a

specific category (i.e. car, face and car respectively).

Given the recent emergence and rapid development of deep learning and con-

volutional neural networks, as well as the accessibility of large scale datasets and

powerful GPU accelerators, the ability of parsing and understanding images and

videos has been greatly boosted. Many fundamental vision tasks, including image

classification [8]–[11] and image segmentation [12]–[14], have been shown able to get

tackled by deep learning. Detection is also largely improved by deep neural networks

and modern detection frameworks, for numerous applications. We will discuss some

important research literatures about detection in Chapter 2.

Although object detection has achieved promising performance recently with rapid

development, there is still a gap towards human-level performance. Detection is a

challenging task with many difficulties, and can be improved in many aspects, which

will be addressed in this dissertation. The difficulties lie in the diversity of object

appearances and properties, challenging image patch qualities (e.g. small scale, blurred

image and poor lighting conditions), as well as complex contexts and occlusions.

In this dissertation, we focus on improving the robustness of object detection with

those challenges. We explore object detection on a broad range of domains, including

detecting object semantic parts [6], general objects [3], [7], faces [5], lesions [15] and

pedestrians [4], [16]. These domains are important applications of object detection.

They have different types of sensor inputs (e.g. camera, computed tomography and

lidar) and different dimensions (e.g. 2D, 3D and 3D+time), and there are different

types of challenges associated with them. We will demonstrate that by carefully

designing the architectures and the training mechanisms, these tasks can be addressed

with good efficacy and efficiency.

4

1.1 Challenges and Our Contributions

1.1.1 Occlusion with Unknown Occluders

For real-world applications, objects are frequently occluded, either partially or fully,

which make the detection much harder. Detection under occlusion is an important

yet under-examined task. Traditional object detectors are shown to be vulnerable

to occlusions, as the occluder and occlusion patterns may not be seen during the

training and may confuse the detectors if they are simply ‘memorizing’ what are seen

during the training. There are a few research efforts addressing this issue. Wang et al.

proposed VehicleSemanticPart [6], for the task of semantic part detection. It is one of

the few datasets systematically providing objects occluded by irrelevant occluders at

different pre-defined occlusion ratios. As illustrated in Figure 1.3, a bus presents in

the image, and it is occluded by a few irrelevant occluders (e.g. cat). From upper-left

to lower-right in row-major order, the bus is occluded in four different configurations

(L0 to L3) by 0, 2, 3 and 4 occluders, and the occlusion ratios of the object, computed

by pixels are 0.0, 0.2–0.4, 0.4–0.6 and 0.6–0.8, respectively. A traditional detector

shows significant performance drop with more occlusions, with an AP of 73.6 dropped

to 23.0 (a 69% drop) under occlusions.

An ideal detector should be able to recognize and locate the pre-defined objects

of interest regardless of the irrelevant occluders, because the occlusion problem is

inevitable and frequent in the real-world applications. A detector is less useful if it

cannot handle the occlusion. As we cannot know what and where the occluders will

be before actually seeing them during the testing, we believe that the deep learning

models trained with images without occlusion should be able to transfer to occlusion

cases during the inference. It avoids exhaustively collecting every possible occlusion

patterns for the training, which is almost infeasible. In this dissertation, we propose a

novel object detection framework which could transfer to occluded testing examples

5

73.6

48.3
35.0

23.0
20

40

60

80

L0 L1 L2 L3

AP for Faster-RCNN

L0 L1

L2 L3

Figure 1.3. Examples of images in the VehicleSemanticPart dataset (first 4 pictures)
and performance of a traditional detector (Faster-RCNN) in a line chart. The first image
(L0) of a bus is unoccluded. The next three images (L1, L2 and L3) are the same scene
with different occlusions. There are 2, 3 and 4 occluders, and the occluded ratios of
object, computed by pixels, are 0.2–0.4, 0.4–0.6 and 0.6–0.8, respectively. The line chart
shows the detection performance of Faster-RCNN on the whole test subset with different
occlusion levels, and the performance drops drastically by 69%.

while being trained on unoccluded images, by learning mid-level visual cues as well as

their relationships to the detection targets. During the inference, the the visible cues

can be accumulated to detect targets under occlusion.

6

Figure 1.4. An illustration of the scale variance among objects. The cyclist closer to the
camera is much larger (around 120 times larger in terms of the number of pixels) than the
two pedestrians in the background far away from the camera.

1.1.2 Scale Variance

General object detection requires detectors to be capable of dealing with objects with

different scales (i.e. sizes), which mainly come from the object size difference and the

object-camera distance difference. We illustrate an example in Figure 1.4, where the

cyclist closer to the camera is approximately 120 times larger than the pedestrians far

away from the camera sitting on the side of the road. The detectors are supposed to

detect both small and large objects accurately, and preferably simultaneously. One

natural way to achieve that is to resize the input image multiple times with different

resizing factors to build an image pyramid and to conduct scale-specific detection on

each image of the image pyramid, but this method requires more computation costs

7

and takes longer time.

On the other hand, a multi-layer design has been proposed with a feature pyramid,

where low-level features are used for small object detection and high-level features are

responsible for large object detection, and it is becoming more and more prevalent [17].

However, this strategy leads to an imbalance of the capability of detecting objects

with different scales, as different features have different semantic types. As pointed

out by [18], “activation regions (of CNN neurons/units) tended to become more

semantically meaningful with increasing depth of layers”. The low-level features have

smaller receptive field size, and usually only capture basic visual patterns without

strong semantic information. This may cause two problems: small objects may not be

detected well, and the quality of high-level features is also damaged by the imperfect

low-level features. In this dissertation, we follow the multi-layer design and propose a

novel mechanism to address the aforementioned issue. We combine object detection

with semantic segmentation by exploiting a segmentation branch in parallel, to improve

the quality of the backbone features by enriching the segmentation information into

the detection features. The enriched detection features contain strong semantics

relating to what objects may exist, in addition to low-level knowledge about colors,

shapes and textures. Our novel mechanism improves the detection for objects with all

scales with a large margin, especially for small scales.

1.1.3 Long-tailed Hard Examples

Comparing with general objects, detections of objects with a specific type (e.g. face)

are less complex and achieving better performance. But there is still a performance

gap between the machine learning algorithms and human’s ability, and detectors

may still fail on some hard examples, especially when those hard examples are less

frequently happening in the training dataset. The failure on those hard examples make

the detectors less reliable for practical use. In this dissertation, we focus on the task

8

of face detection, which is very crucial and popular in both academia and industry.

Recently deep learning based face detectors can achieve very high performance even

on the most challenging dataset WiderFace [5]. However, an evident performance

gap still exists especially for those hard images which contain small, blurred and

partially occluded faces. We realize that these long-tailed hard images have become

the main barriers for face detectors to achieve human-level performance, and are not

paid enough attention during the training, as most training images are less challenging.

To this end, we propose a novel training mechanism to encourage the deep neural

network to focus more on those long-tailed hard images while keeping the general

detection performance unaffected. During the training, each training image is assigned

a difficulty score which determines how well it is detected by the current model

snapshot. During the remaining epochs of the training phase, the images will be

re-weighted according to their difficulty scores, and some images will receive more

training attentions if the network finds difficult of detecting them image. Thus the

training process automatically adjusts itself by learning more on the hard examples,

and the long-tailed hard examples can have higher frequency/weight of being trained.

Our proposed detector is shown to detect hard testing images well and is faster

compared with other state-of-the-arts.

1.1.4 Low Contrast Computed Tomography 3D Scan Images

Unlike natural images, computed tomography scan images have their own challenges of

low contrast of soft tissues and similar appearance between foreground and background,

as well as their own opportunities with 3D context slices available, as shown in one

example of the DeepLesion dataset illustrated in Figure 1.5. Exploiting 3D context

information has been shown to improve detection accuracy, and in this dissertation,

we investigate and propose a novel and efficient way to fuse 3D context information

from neighboring slices with small computation and memory overhead. Directly using

9

■: Key slice

■: Context slice

Figure 1.5. Examples of CT scan images for lesion detection in the DeepLesion dataset [15].
The inputs are composed of 2D image slices and the bounding-boxes are labeled on the key
slices (marked in red), and the neighboring slices (marked in yellow) are used to provide
3D context.

fully 3D-connected CNNs could not take use of ImageNet pre-trained weights, and

also leads to more parameters and computations. On the other hand, we use 2D CNNs

initialized with pre-trained weights as our backbones, and design lightweight 3D fusion

modules to connect the 2D backbone CNNs and fuse the 3D context knowledge. The

3D fusion modules are inserted at middle and high levels of the backbone CNNs, so

that the 3D information is exploited and learnt gradually throughout our backbone

CNNs. The proposed method introduces few extra parameters and small computation

overhead, while greatly improve the detection accuracy.

1.1.5 Dynamic Objects with Different Moving Patterns

Detecting what are there in static images may not be enough, since everything comes

in continuous sequences for the real-world problems. Autonomous driving is such

an application with sequence of inputs naturally, as the self-driving car continuously

captures its surroundings for analysis. In order to get a richer understanding of the

scene and drive safely, it is important to model objects in a sequence (e.g. a video),

10

and detect them in the sequence. In addition to detecting object in the current/newest

frame, it is crucial to detect them in the future frames, i.e., trajectory prediction, for

these safety critical applications. In this dissertation, we aim at tackling the problem

of detecting pedestrians throughout the past, the present and the future frames. The

inputs are sequences of point clouds collected from self-driving vehicles, and the output

is the bounding-boxes of pedestrians at the current frame, as well as their positions

for the next few frames in the future, which are predicted based on their history and

current locations.

We observed that there are two major challenges that are critical for the proposed

task. Firstly, fine-grained and flexible temporal information for each object is necessary

to better model objects with different moving patterns (e.g. stationary and fast-

moving), and a traditional neural network is not capable of modeling the complex

dynamics. Secondly, interactions among objects are also useful since the location

and trajectory of an object could be influenced by the other objects. To this end,

we propose an end-to-end Spatio-Temporal-Interactive network (STINet) to model

pedestrians’ static, temporal and interactive information jointly, by first predicting

temporal proposal with multiple bounding-boxes covering the past and current frames,

and then extracting comprehensive proposal features capturing spatio, temporal and

interactive knowledge for final prediction. Experiments on two autonomous driving

datasets demonstrate the effectiveness of our method.

1.2 Thesis Statement

Ideal detectors should be able to handle different challenges existing in different tasks.

By carefully designing network architectures and training strategies, we can build

robust and reliable object detectors for a board range of applications.

11

1.3 Outline

The outline of this dissertation is illustrated as the following:

In Chapter 1 (this chapter), we introduce the topic of this dissertation, including

definition and justification. We discuss the challenges and our contributions regarding

our dissertation topic.

In Chapter 2, we discuss previous works on object detection for different targets and

applications.

In Chapter 3, we propose a novel voting detection mechanism for robust detection

under unknown occlusions.

In Chapter 4, we discuss detection with enriched semantic by combining multi-layer

scale-invariant detectors with semantic segmentation.

In Chapter 5, we propose an online hard image mining training strategy for detecting

long-tailed hard examples.

In Chapter 6, we build a 2D/3D hybrid network for exploiting 3D context in low

contrast computed tomography scan images.

In Chapter 7, we design a spatio-temporal-interactive network to model and detect

moving pedestrian in point cloud sequences.

1.4 Relevant Publications

The following publications compose the ideas in this dissertation. ∗ indicates equal

contribution.

1. Z. Zhang∗, C. Xie∗, J. Wang∗, L. Xie, A. Yuille, DeepVoting: A Robust and

Explainable Deep Network for Semantic Part Detection under Partial Occlusion,

CVPR 2018

2. Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang, A. Yuille, Single-Shot Object

12

Detection with Enriched Semantics, CVPR 2018

3. Z. Zhang, W. Shen, S. Qiao, Y. Wang, B. Wang, A. Yuille, Robust Face

Detection via Learning Small Faces on Hard Images, WACV 2020

4. Z. Zhang, Y. Zhou, W. Shen, E. Fishman, A. Yuille, Lesion Detection by

Efficiently Bridging 3D Context, MLMI 2019

5. Z. Zhang, J. Gao, J. Mao, Y. Liu, D. Anguelov, C. Li, STINet: Spatio-Temporal-

Interactive Network for Pedestrian Detection and Trajectory Prediction, CVPR

2020

The following publications indirectly contribute to, or provide contexts and back-

grounds for the ideas in this dissertation. ∗ indicates equal contribution.

1. J. Wang∗, C. Xie∗, Z. Zhang∗, J. Zhu, L. Xie, A. Yuille, Detecting Semantic

Parts on Partially Occluded Objects, BMVC 2017

2. J. Wang, Z. Zhang, C. Xie, Y. Zhou, V. Premachandran, J. Zhu, L. Xie,

A. Yuille, Visual concepts and compositional voting, Annals of Mathematical

Sciences and Applications

3. A. Kortylewski, Q. Liu, H. Wang, Z. Zhang, A. Yuille, Localizing Occluders

with Compositional Convolutional Networks, ICCVW 2019

4. A. Kortylewski, Q. Liu, H. Wang, Z. Zhang, A. Yuille, Compositional Convo-

lutional Networks For Robust Object Classification under Occlusion, WACV

2020

Below lists other publications and researches I involved in during my Ph.D. study. ∗

indicates equal contribution.

1. C. Xie∗, J. Wang∗, Z. Zhang∗, J. Zhu, L. Xie, A. Yuille, Adversarial Examples

for Semantic Segmentation and Object Detection, ICCV 2017

13

2. C. Xie, J. Wang, Z. Zhang, Z. Ren, A. Yuille, Mitigating Adversarial Effects

Through Randomization, ICLR 2018

3. S. Qiao, Z. Zhang, W. Shen, B. Wang, A. Yuille, Gradually Updated Neural

Networks for Large-Scale Image Recognition, ICML 2018

4. S. Qiao, W. Shen, Z. Zhang, B. Wang, A. Yuille, Deep Co-Training for Semi-

Supervised Image Recognition, ECCV 2018

5. C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, A. Yuille, Improving

Transferability of Adversarial Examples with Input Diversity, CVPR 2019

6. Y. Zhou, Y. Li, Z. Zhang, Y. Wang, A. Wang, E. Fishman, A. Yuille, S. Park,

Hyper-pairing Network for Multi-phase Pancreatic Ductal Adenocarcinoma

Segmentation, MICCAI 2019

7. Y. Zhou, D. Dreizin, Y. Li, Z. Zhang, Y. Wang, A. Yuille, Multi-Scale Attentional

Network for Multi-focal Segmentation of Active Bleed after Pelvic Fractures,

MLMI 2019

8. Y. Li, S. Bai, Y. Zhou, C. Xie, Z. Zhang, A. Yuille, Learning Transferable

Adversarial Examples via Ghost Networks, AAAI 2020

14

Chapter 2

Related Work

In this chapter, we discuss research literatures related to this dissertation. We first

discuss general approaches for object detection in Section 2.1. Then we will discuss

more specific detection tasks for face detection (Section 2.2), lesion detection in medical

images (Section 2.3), as well as object detection in point cloud sequences (Section 2.4).

2.1 General Object Detection

General object detection is to detect a broad range of natural objects, and some

representative 2D image datasets include Pascal VOC [7] (20 classes) and MS COCO [3]

(80 classes). The outputs of detection are 2D axis-aligned bounding-boxes with

their labels and confidence scores. To be more specific, an output is a tuple of

(xmin, xmax, ymin, ymax, label, score), where the first four elements define the location

of the output bounding-box, label indicates the category of the object in the bounding-

box and score represents the confidence score of the prediction. The evaluation is

usually carried out for each category separately by computing the average precision

(AP) of each category, and the overall performance is measured by the mean of average

precisions on different categories, noted as mAP. Considering a category, given a score

threshold, a prediction tuple is regarded as a true positive if all the requirements are

met: 1) its confidence score is higher than the score threshold; 2) it can be matched

15

Encoder
(backbone)

Detection Query Feature Detection Result

…

Decoder
(head)

Detection
Query

Generator

Detection Query Feature

Detection Query Feature

Detection Query Feature

Detection Result

Detection Result

Detection Result

…

Figure 2.1. General detectors, which take images as input. The feature encoders (also
know as backbones) process the input image and generate features for detection queries.
The detection decoders (i.e. detection heads) compute the final prediction output based
on the query and the feature vector. Detection queries are the prior locations to check
whether any object exists, and they can be proposals [19], [20], pre-defined anchors [17],
grids [21] or corner point pairs [22].

to a ground-truth object, with an Intersection over Union larger than a threshold; 3)

the matched ground-truth object is not matched by any prediction tuple with higher

confidence scores (otherwise the current prediction tuple is regarded as a duplicated

detection). The precision is the ratio of true positive prediction tuples among all

prediction tuples with confidence scores above the score threshold. The average

precision is defined to be the mean precision on different recall rates, controlled by

varying the score threshold.

General object detection is a fundamental task in computer vision and has received

extensive research attention [23]–[25]. With the development of deep neural network,

almost all the recent object detectors are CNN based. Generally, in an abstract

sense, typical object detectors are composed by three components: feature encoders,

detection queries and detection decoders as illustrated in Figure 2.1. Feature encoders

(i.e. detection backbones) take the image as input and generate feature vectors for

each of the detection query, and detection decoders (i.e. detection heads) generate

output tuples by decoding the feature vector for the corresponding detection query.

16

(x_min, x_max, y_min, y_max, label, score)

…
CNNs

Anchors

…

Classification
and

Regression
(x_min, x_max, y_min, y_max, label, score)

(x_min, x_max, y_min, y_max, label, score)

(x_min, x_max, y_min, y_max, label, score)

…

Figure 2.2. Overall framework of SSD [17]. The encoder is a multi-layer convolutional
neural network, and generates a pyramid of detection feature maps, with different resolutions
and receptive field sizes. Detection queries are pre-defined anchors assigned to grid positions
of one of the feature maps. The decoder takes the anchor as prior and use the anchor
feature vector to conduct classification and regression to generate the final detection tuple
results.

Detection queries are a set of queries with prior locations to check whether any object

of interest exists around the given locations. They can be formulated by different

forms, e.g., ad-hoc rectangular proposals [26], pre-defined anchor boxes [17], or corner

point pairs [22].

One prevalent series of detectors is the single-stage detectors, such as OverFeat [27],

SSD [17] and YOLO [21]. These detectors detect objects by classifying and regressing

pre-defined detection queries in a dense manner. Among them, SSD is a prevalent

work which is both fast and scale invariant. As shown in Figure 2.2, it deploys a

multi-layer backbone feature encoder, to built a sequence of detection feature maps in

a bottom-up manner. Those feature maps have decreasing resolutions, and increasing

receptive field sizes. The detection queries are drawn from a set of pre-defined dense

anchors with different scales, aspect ratios and locations, and each of them is attached

to a point to one of the encoder feature maps. Smaller anchors are attached to the

lower-level feature maps while larger anchors are attached to the higher-level feature

maps, in order to align with the increasing receptive field size. The query (i.e. anchor)

17

(x_min, x_max, y_min, y_max, score)

…

Anchors

…

Binary
Classification

and
Regression

(x_min, x_max, y_min, y_max, score)

(x_min, x_max, y_min, y_max, score)

(x_min, x_max, y_min, y_max, score)

…

CNNs

(x_min, x_max, y_min, y_max, label, score)

…

Proposals
Classification

and
Regression

(x_min, x_max, y_min, y_max, label, score)

(x_min, x_max, y_min, y_max, label, score)

(x_min, x_max, y_min, y_max, label, score)

…

Region
Proposal
Network

Figure 2.3. Overall framework of Faster-RCNN [26]. The framework is composed of one
feature encoder and two sets of query generators and decoders. The feature encoder is
a fully-convolutional neural network and generates two feature map, one for each set of
query generator and decoder respectively. The first set of query generator and decoder
is also known as region proposal network, which takes pre-defined anchors as input and
generate class-agnostic bounding-box candidates as proposals. The second set of query
generator and decoder takes the proposals as input, extract proposal features from the
backbone feature map and compute final detection outputs.

feature vectors are simply extracted from the corresponding locations at the attached

feature map. Finally, decoders take the prior anchors as well as the query feature

vectors to conduct classification and regression, generating the final detection outputs.

Another slightly more complicated series of detectors is the two-stage detectors.

Some representative works are R-CNN [19], Fast-RCNN [20], Faster-RCNN [26]

and R-FCN [28]. These methods first generate a pool of object candidates, named

object proposals, by a separate proposal generator such as Selective Search [29], Edge

Boxes [30] or Region Proposal Network (RPN), and then they conduct per-proposal

18

classification and bounding box regression. We show the architecture of Faster-RCNN

in Figure 2.3 as an example of these works. A convolutional neural network is used

as the feature encoder, which outputs two feature maps for region proposal network

and final detection network respectively. There are two sets of query generators

and decoders. The first set is also known as region proposal network, which takes

pre-defined anchors as queries and retrieves feature vectors for every anchor from

the first encoder feature map. A set of class-agnostic bounding-box candidates are

computed by the first decoder via foreground/background classification and bounding-

box regression. The second query generator takes these bounding-box candidates as

input, and generates proposals as new queries after thresholding and non-maximum

suppression. The feature vectors for these proposals are cropped from the second

encoder feature map by a pooling operation. The second decoder carries out label

classification and bounding-box regression to generate the final detection outputs.

More recently, a new kind of detectors without pre-defined anchors or proposals are

proposed, of which CornerNet [22] is a representative work. CornerNet also deploys

a fully-convolutional feature encoder to build a feature map for the input image.

However, instead of generating anchors as detection queries, it generates point pairs

as detection queries, by regrading each point pair to be the upper-left and lower-right

corner point of a bounding-box. The decoder computes the label and confidence score

of each point pair by computing the cornerness score of the upper-left and lower-right

corner point, as well as comparing the feature vector embedding similarity between

the two corner points. As a follow-up, CenterNet [31] is proposed, and it detects

objects by point triplets instead of point pairs, by also considering the center points

of bounding-boxes.

19

2.2 Face Detection

With the huge development on object detection for general objects on natural images,

the detection for specialized objects with deep neural networks has raised lots of

interests. Among them, face detection is a well-defined problem and has important

real-world applications. SSH [32] and S3FD [33] are two representative works for face

detection, and both of them are adapted from general object detection frameworks

(i.e. SSD and the region proposal network of Faster-RCNN). SSH builds a feature

encoder with three detection feature maps as output, and takes pre-defined anchors

as the detection queries. In order to increase the effective receptive field size of the

detection feature maps, a simple context module is proposed in the feature encoder.

The anchors have aspect ratio of 1:1 and have six different scales. The three feature

maps correspond to anchors with scale {1, 2}, {4, 8} and {16, 32} respectively where

the base anchor size is 16 × 16 pixels. S3FD [33] has a similar design as SSH. It differs

in the feature encoder by having six detection feature maps. It also improves face

detection by introducing a scale compensation anchor matching strategy and a max-out

background label strategy for the training phase. More recently, PyramidBox [34]

utilizes better contextual information by introducing new anchor matching mechanism,

feature pyramid for backbone encoders and context-sensitive modules. [35] introduces

a two-step classification and regression pipeline by conducting easy negative example

filtering and anchor adjustment before generating final predictions.

2.3 Lesion Detection in Medical Images

Applying machine learning and computer vision methods on medical images has been

attracting more and more research interests, and lesion detection is an important

application in computer-aided medical diagnosis. Similar detection frameworks are ap-

plied on computed tomography images, which have some distinct properties compared

20

CNNs

CNNs

CNNs

CNNs

CNNs

Encoder

Concatenate

Figure 2.4. Feature encoder of 3DCE. It takes multiple slices as inputs, and separate 2D
CNNs are used to extract feature maps, which are later aggregated for final prediction.

with natural 2D camera images, such as low contrast and 3D context. Exploiting 3D

information for better detection has been tried in related researches. 3DCE [36], as

a follow-up of R-FCN [28], takes a two-stage design. It deploys a Region Proposal

Network (RPN) to predict suspicious lesion regions as proposals and a Region Classi-

fication Network (RCN) to further classify and regress those suspicious lesion regions.

In order to take 3D context information into consideration, [36] proposes 3D context

enhanced region-based CNNs. As illustrated in Figure 2.4, the encoder takes multiple

neighboring slices as inputs, and 2D backbone CNNs generate feature maps separately

for each input slice. Then the feature maps are aggregated by concatenation, for

extracting proposal features and making final predictions.

2.4 Detection from Sparse Point Clouds

As a direct application of object detection, autonomous driving is a topic with extensive

academic and industrial attentions. In addition to traditional camera images, point

clouds obtained from LiDARs have been an important component of the perception

systems, with the ability to accurately measure depth. However, point clouds cannot

directly be processed by CNNs due to its sparsity and irregularity. PointNet [37]

21

proposes a novel mechanism to handle point clouds without voxelization by adopting

symmetric functions (e.g. max pooling) over the point features learnt by multi-layer

perceptions. Based on this direction, VoteNet [38] is proposed to detect objects from

point clouds in a Hough Voting manner, and ImVoteNet [39] proposes to combine

image information with point clouds for detection. StarNet [40] uses sparsely sampled

locations to extract a small set of points for object detection via a PointNet-style

network.

Another direction is based on voxelization. VoxelNet [41] proposes to divide a

point cloud scene into equally spaced 3D voxels, and learn the voxel feature with small

PointNet-style networks. The point cloud scene is transferred to a 3D pseudo-image

in this way, and thus traditional object detection methods can be directly applied.

SECOND [42] provides a series of improvements based on VoxelNet, including sparse

convolution, angle loss regression and new data augmentation approaches. PointPillars

[43] divides the point cloud scene into 2D pillars instead of 3D voxels, and transfers the

point clouds into a 2D pseudo-image to achieve a faster speed. MVF [44] synergizes

the birds-eye view and the perspective view representation of point clouds together to

learn better feature encoder with complementary information from both views.

It is natural to exploit the temporal information for autonomous driving where

inputs are captured in a sequence. Temporal context is not only helpful for detecting

objects, but also critical for forecasting their trajectories, i.e., detecting objects in

the future. StarNet explores to use the outputs of previous frames to improve the

detection. FaF [45] performs 3D convolutions on multi-frame inputs for joint detection,

tracking and trajectory forecasting. IntentNet [46] further considers high level behavior

intents, in addition to future trajectories, as model supervision and outputs.

22

Chapter 3

DeepVoting for Semantic Part
Detection under Partial Occlusion

In this chapter, we study the task of detection under partial occlusion, which is

challenging and inevitable for real-world applications. We focus on the VehicleSe-

manticPart dataset and its occluded counterpart (we call it VehicleOcclusion dataset)

proposed in [6]. They are built for systematically analyzing the occlusion issue, and

with a goal of detecting semantic parts of vehicle objects, e.g., a wheel of a car, under

partial occlusion. We argue that all detection models should be trained without seeing

occlusions while still being able to transfer the learned knowledge to deal with testing

cases with occlusions. This setting avoids the difficulty of collecting an exponentially

large dataset to cover arbitrary occlusion patterns, which is infeasible. In this scenario,

the proposal-based deep networks, like RCNN-series, often produce unsatisfactory

results, because both the proposal extraction and classification stages may be confused

by the irrelevant occluders which are unseen during the training phase. To address this,

Wang et al. [6] proposed a voting mechanism that combines multiple local visual cues

to detect semantic parts. The semantic parts can still be detected even though some

visual cues are missing due to occlusions. However, this method is manually-designed,

thus is hard to be optimized in an end-to-end manner. In this chapter, we present

DeepVoting, which incorporates the robustness shown by Wang et al. [6] into a deep

23

network, so that the whole pipeline can be jointly optimized. Specifically, it adds

two layers after the intermediate features of a deep network, e.g., the pool-4 layer of

VGGNet. The first layer extracts the evidence of local visual cues, and the second

layer performs a voting mechanism by learning and utilizing the spatial relationship

between semantic parts and their supporting visual cues. We also propose an improved

version named DeepVoting+, by adding visual cues from context outside objects.

Shown by the experiments, DeepVoting achieves significantly better performance than

several baseline methods, including Faster-RCNN, for semantic part detection under

occlusion. In addition, DeepVoting enjoys explainability as the detection results can

be diagnosed via looking up the voting cues.

3.1 Motivation and Overview

Deep networks have been successfully applied to a wide range of vision tasks, in

particular object detection [17], [20], [21], [26]. Recently, object detection is dominated

by a family of proposal-based approaches [20], [26], [28], which first generate a set of

object proposals for an input image, followed by a classifier to predict object’s score

for each proposal. However, semantic part detection, despite its importance, has been

much less studied. A semantic part is a fraction of an object which has semantic

meaning and can be verbally described, such as a wheel of a car or a chimney of a

train. Detecting semantic parts is a human ability, which enables us to recognize or

parse an object at a finer scale.

In the real world, semantic parts of an object are frequently occluded, which

make detection much harder. In this chapter, we investigate semantic part detection

especially when these semantic parts are partially or fully occluded. We use the same

datasets as proposed in [6], i.e., the VehicleSemanticPart dataset and the extended

occlusion counterpart VehicleOcclusion dataset. Some typical semantic part examples

are shown in Figure 3.1. Note that, the VehicleOcclusion dataset is a synthetic

24

nosetip jet engine

v. stablizer side tail

airplane

wheel seat

pedal headset

bicycle

wheel side body

headlight disp. screen

bus

wheel side window

headlight side mirror

car

wheel seat

engine gas tank

motorbike

nosetip round nose

chimney smoke box

train

Figure 3.1. Typical semantic parts on six types of rigid objects from the VehicleSemantic-
Part dataset [6]. Some semantic parts (e.g ., wheel) can appear in different object classes,
while some others (e.g ., chimney) only appear in one class (train).

occlusion dataset, where the target object is randomly superimposed with two, three

or four irrelevant objects (named occluders) and the occlusion ratios of the target

object is constrained. To the best of our knowledge, VehicleOcclusion is the only

public occlusion dataset that provides accurate occlusion annotations of semantic

parts like the occlusion ratio and number of occluders. This allows us to evaluate

different methods under different occlusion difficulty levels.

One intuitive solution of dealing with occlusion is to train a model on the dataset

that covers different occlusion cases. However, it is extremely difficult yet computa-

tionally intractable to collect a dataset that covers occlusion patterns of arbitrarily

different numbers, appearances and positions. To overcome this difficulty, we suggest

a more essential solution, i.e., training detectors only on occlusion-free images, but

allowing the learned knowledge (e.g., the appearance template of semantic parts or the

spatial relationship between semantic parts, etc.) to be transferred from non-occlusion

training image to occlusion testing images. This motivates us to design models that

are inherently robust to occlusions. A related work is [6], which points out that

proposal-based deep networks are less robust to occlusion, and further proposes a

voting mechanism that accumulates evidences from multiple local visual cues, and

locates the semantic parts with the help of geometric constraints (i.e., the spatial

relationship between the visual cues and the target semantic part). However, this

manually-designed framework is broken down into several stages, and thus it is difficult

25

to optimize it in an end-to-end manner. This motivates us to see if the robustness

shown in [6] can be incorporated into a deep network which enables end-to-end training

naturally.

In this chapter, we propose DeepVoting which incorporates the robustness shown

by [6] into a deep network. Following [47], the visual concepts are learned when the

objects appear at a fixed scale since each neuron on the intermediate layer, e.g., the

pool-4 layer of VGGNet, has a fixed receptive field size [48]. Therefore, we assume

that the object scale is approximately the same in both training and testing stages.

In the training stage, we use the ground-truth bounding-box to resize the object for

the DeepVoting, and compute the object-to-image ratio to train a standalone network,

i.e. ScaleNet [49], for scale prediction. In the testing stage, the trained ScaleNet is

used to predict the resizing ratio, and then we resize the testing image according to

the predicted ratio. We further show that visual concepts and spatial heat-maps can

also exploit context information by using the whole image to train our model and

achieve better performance, and we call this improved version DeepVoting+.

We investigate both DeepVoting and DeepVoting+ in our experiments. The first

version, in which contexts are excluded (i.e. objects are cropped out for training),

significantly outperforms [6] with the same settings, arguably because the end-to-

end training manner provides a stronger method for joint optimization. The second

version, which allows contextual cues to be incorporated, learns the training data

better and consequently produces even higher detection accuracies. In comparison to

the state-of-the-art object detectors such as Faster-RCNN [26], DeepVoting enjoys a

consistent advantage, and the advantage becomes more significant as the occlusion

level goes up. DeepVoting brings two additional benefits apart from being robust to

occlusion: (i) DeepVoting enjoys much lower model complexity, i.e., the number of

parameters is one order of magnitude smaller, and the average testing speed is 2.5×

faster; and (ii) DeepVoting provides the possibility to interpret the detection results

26

via looking up the voting cues.

3.2 Related Works

Semantic parts or objects are important elements in computer vision. There are some

previous works using semantic parts to assist object detection [50], [51]. Graphical

model is used to assemble parts into an object. Also, parts can be used for fine-

grained object recognition [52], [53], be applied as auxiliary cues to understand

classification [54], or be trained for action and attribute classification [55]. Besides,

[56] investigated the transferability of semantic parts across a large target set of

visually dissimilar classes in image understanding.

Detecting semantic parts under partial or full occlusion is an important problem

but is less studied before. [6] combined multiple visual concepts via the geometric

constraints, i.e., the spatial distribution of the visual concepts related to the target

semantic parts, to obtain a strong detector. Different from [6], DeepVoting implements

visual concept extraction and the geometric relationships as two differentiable layers,

and attaches them directly to the intermediate outputs of a deep neural network

(e.g., VGGNet) to perform an end-to-end training. This design yields much better

performances compared with [6].

3.3 DeepVoting Framework

In this section, we describe the DeepVoting, an end-to-end framework for semantic part

detection under partial occlusion. The overall framework is illustrated in Figure 3.2.

Specifically, we add two convolutional layers after the intermediate features of a deep

neural network, e.g., the neural responses at the pool-4 layer of VGGNet. The first

convolutional layer performs local template matching and outputs local visual cues

named visual concepts, which are verified to be capable of corresponding to or weakly

27

Input Image

W×H×3

VGGNet

pool-4 Features

W’×H’×512

Visual Concept Map

W’×H’×K

VC
layer

Semantic Part Map

W’×H’×|𝒮|

Voting
layer

0.9 0.4 0.7 0.2

Figure 3.2. The overall framework of DeepVoting (best viewed in color). A car image
with two wheels (marked by red bounding-boxes, and one of them is occluded) is fed into
VGGNet [48], and the intermediate (i.e. pool-4 layer) outputs are passed through a visual
concept extraction layer and a voting layer. We aggregate local visual cues from the visual
concept map (darker blue indicates more significant cues, in the lower right subfigure),
and consider their spatial relationship to the target semantic parts via voting, and obtain
a low-resolution confidence heat-map for semantic parts (darker red or a larger number
indicates higher confidence). Based on this map, we perform bounding-box regression
followed by non-maximum suppression to obtain the final detection results.

detecting semantic parts as in [47]. This layer is equipped with a ReLU activation [57],

which sets a threshold of zero for filtering the matched patterns, as well as a dropout

layer [58] as Faster-RCNN does. After that, the second convolution layer is added to

perform a voting mechanism by learning and utilizing the spatial relationship between

the local visual cues and the semantic parts. The spatial/geometric relations are stored

28

as convolutional weights and visualized as spatial heat-maps. The visual concepts and

spatial heat-maps can be learned either on cropped foreground objects only or on

the whole image with background context. We first follow [6] to train our model on

foreground objects only by cropping the object bounding boxes. We further show that

visual concepts and spatial heat-maps can also exploit context information by using

the whole image to train our model, and we call this improved version DeepVoting+.

3.3.1 Formulation

Let I denote an input image with a shape of W × H × 3. Following [6], we feed

this image into a 16-layer VGGNet [48], and extract the pool-4 features as a set of

intermediate neural outputs. Denote the output of the pool-4 layer as X, which is a

W ′ × H ′ × D tensor, where W ′ and H ′ are the down-sampled scales of W and H, and

D is 512 for VGGNet. These features can be considered as W ′ × H ′ high-dimensional

vectors, and each of them captures the appearance of a local region determined by

its index. Denote each D-dimensional feature vector as xi where i is an index at the

W ′ × H ′ lattice. These feature vectors are ℓ2-normalized so that ∥xi∥2 = 1.

3.3.2 Visual Concept Extraction via the VC Layer

In [6], a set of visual concepts (VCs) V = {v1, . . . , vK} are obtained via k-means

clustering over the pool-4 features, and each visual concept is considered intuitively

as a template to capture the mid-level visual cues from these intermediate features.

Specifically, the response of the visual concept vk at the pool-4 feature vector xi is

measured by the ℓ2-distance, i.e., ∥vk − xi∥2
2.

We note that the vector xi has unit ℓ2 length, and so ∥vk∥2 ≈ 1 as it is averaged

over a set of neighboring xi’s, thus we have ∥vk − xi∥2
2 ≈ 2 − 2 ⟨vk, xi⟩ where ⟨·, ·⟩ is

the dot product operator. Then the log-likelihood ratio tests are applied to eliminate

negative responses. This is driven by the idea that the presence of a visual concept

29

can provide positive cues for the existence of a semantic part, but the absence of a

visual concept shall not give the opposite information.

Different from [6], DeepVoting implements this module as a convolutional layer,

namely visual concept layer, and attaches it directly after the normalized intermediate

outputs of a deep neural network. The kernel size of this convolutional layer is set

to be 1 × 1, i.e., each xi is considered individually. The ReLU activation [57] follows

to set the negative responses as 0’s and thus avoids them from providing negative

cues. We append a dropout layer [58] with a drop ratio 0.5, so that a random subset

of the visual concept responses are discarded in the training process. This strategy

facilitates the model to perform detection robustly using incomplete information and,

consequently, improves the testing accuracy when occlusion is present.

The output of the visual concept layer is a map Y of size W ′ × H ′ × |V|, where

V is the set of visual concepts. We set |V| = 256, though a larger set may lead to

slightly better performance. Although these visual concepts are trained from scratch

rather than obtained from k-means clustering [47], we find that they are also capable

of capturing repeatable visual patterns and semantically meaningful. Some example

outputs of the visual concept layer are visualized in Figure 3.4.

3.3.3 Semantic Part Detection via the Voting Layer

After the previous stage, we can find some fired visual concepts, i.e., those local visual

cues with positive response values. In [6], the fired visual concepts are determined via

log-likelihood ratio tests. These fired visual concepts are then accumulated together for

semantic part detection by incorporating the spatial constraints between each pair of

visual concept and semantic part. It is motivated by the nature that a visual concept

can, at least weakly, suggest the existence of a semantic part, at specific locations.

For example, as shown in Figure 3.2, in a car image, finding a headlight implies that

there is a wheel nearby, and the distance and direction from the headlight to the wheel

30

are approximately the same under a fixed scale.

Different from [6], DeepVoting implements the spatial constraints between visual

concepts and the semantic parts as another convolutional layer, named the voting

layer, in which we set the receptive field of each convolutional kernel to be large, e.g.,

15 × 15, so that a visual concept can vote for the presence of a semantic part at a

relatively long distance. This strategy helps particularly when the object is partially

occluded, as effective visual cues often emerge outside the occluder and may be far

from the target.

Though the spatial constraints are learned from scratch and only semantic part

level supervision is imposed during training, they can still represent the frequency

that visual concepts appear at different relative positions. We refer to each learned

convolutional kernel at this layer as a spatial heat-map, and some of them are visualized

in Figure 3.4.

Denote the output of the voting layer, i.e., the semantic part map, as Z. It is a

W ′ × H ′ × |S| tensor where S is the set of semantic parts. Each local maximum at

the semantic part map corresponds to a region on the image lattice according to their

receptive filed. To generate a bounding-box for semantic part detection, we first set an

anchor box, of size 100 × 100 and centered at this region, and then learn the spatial

rescaling and translation to regress the anchor box (following the same regression

procedure in [20]) from the training data. The anchor size 100 × 100 is the average

semantic part scale over the entire training dataset [6].

3.4 Training and Inference

We train the network on an occlusion-free image corpus. This helps us to obtain a

clear relationship between the visual concepts and the semantic parts. We discard the

background region by cropping the object according to the ground-truth bounding

31

box, to be consistent with [6]. Then, we rescale the cropped image so that the object

short edge has 224 pixels, which is motivated by [47] to capture the visual concepts at

a fixed scale. The image is fed into the 16-layer VGGNet, and we obtain the feature

vectors at the pool-4 layer.

These feature vectors are ℓ2-normalized and passed through two layers for visual

concept extraction and semantic part voting. We compare the output semantic part

map Z with the ground-truth annotation tensor L by computing dice coefficient

between prediction and ground-truth [59]. To generate the ground-truth annotation

tensor in the output heat-map lattice, we find the nearest grid point at the W ′ × H ′

grid (down-sampled from the original image by a factor of 16) based on the center pixel

of each annotated semantic part bounding-box, and set the labels of these positions

as 1 and others as 0. Then we apply Gaussian smoothing on the binary ground-truth

annotation, to generate the smoothed ground-truth annotation L. The ground-truth

annotation tensor L is also of shape W ′ × H ′ × |S|. The similarity between Z and L

is defined as:

D(Z, L) = 1
|S|

|S|∑︂
s=1

2 × ∑︁W ′,H′

w=1,h=1zw,h,s × lw,h,s∑︁W ′,H′

w=1,h=1

(︂
z2

w,h,s + l2
w,h,s

)︂ ,

It is straightforward to compute the gradients based on the loss function L(X, L) =

1 − D(Z, L).

During the testing phase, we first use an independently trained ScaleNet [49] to

obtain the object scale. Then, we rescale the image so that the short edge of the object

roughly contains 224 pixels. We do not crop the object because we do not know its

location during the testing. Then, the image is passed through the VGGNet followed

by both visual concept extraction layer and semantic part voting layer, and finally we

apply the spatial rescaling and translation (i.e. bound-box regression) to the anchor box

(100 × 100) towards more accurate localization. A standard non-maximum suppression

is performed to finalize the detection results by pruning redundant detections.

32

DeepVoting is trained on the images cropped with respect to the object bounding-

boxes to be consistent with [6]. However, visual concepts and spatial heat-maps

can also exploit context outside object bounding boxes. To verify this, we train an

improved version, named DeepVoting+, without cropping the bounding boxes. We

also resize the image so that the object short edge contains 224 pixels in the training

stage, and the testing stage is the same as DeepVoting. Experiments show that

DeepVoting+ achieves better performance compared with DeepVoting.

3.4.1 The Scale Prediction Network

The above framework is based on an important assumption, that the objects appear in

approximately the same scale. This is due to two reasons. First, as shown in [47], the

visual concepts emerge when the object is rescaled to the same scale, i.e., the short

edge of the object bounding box contains 224 pixels. Second, we expect the voting

layer to learn fixed spatial offsets which relate semantic parts to their supporting

visual concepts. As an example, the heat-map delivers the knowledge that in the side

view of a car, the headlight often appears at the upper-left direction of a wheel, and

the spatial offset on x and y axes are about 64 and 48 pixels (4 and 3 at the pool-4

grid), respectively. Such information is not scale-invariant.

To deal with the aforementioned issues, we introduce an individual network, namely

the ScaleNet [49], to predict the object scale in each image. The main idea is to feed

an input image to a 16-layer VGGNet for a regression task (the fc-8 layer is replaced

by a 1-dimensional output), and the regression target is the ground-truth object size.

In order to learn the scale of objects on a uniform canvas, each input image is rescaled,

so that the long edge contains 224 pixels. Then the rescaled image is placed at the

center of a canvas with a shape of 224 × 224 pixels and the remaining pixels on the

canvas are filled up with the averaged intensity. During the training, we consider the

short edge of the object as the target, and ask the deep network to predict the ratio

33

of the object short edge to the image long edge (224 pixels). In the testing phase, an

image is prepared and fed into the network in the same flowchart, and the predicted

rescaling ratio is used to normalize the object to the desired size, i.e., its short edge

contains 224 pixels. We conduct experiments to verify the effectiveness of the proposed

ScaleNet (in Subsection 3.5.4), which show that this method works very well on our

dataset and task.

3.5 Experiments Results for Part Detection

3.5.1 Dataset and Baseline

We use the VehicleSemanticPart dataset and the VehicleOcclusion dataset proposed

in [6] for experiments. The VehicleSemanticPart dataset contains 4549 training images

and 4507 testing images covering six types of vehicles, i.e., airplane, bicycle, bus,

car, motorbike and train. In total, 133 types of semantic parts are annotated. The

VehicleOcclusion dataset is an extension of the VehicleSemanticPart dataset. For

each testing image in VehicleOcclusion dataset, some randomly-positioned occluders

(irrelevant to the target object) are placed onto the target object, and make sure that

the occlusion ratio of the target object is constrained at different levels.

We train six models, one for each vehicle class. All the models are trained on an

occlusion-free dataset, but evaluated on either non-occluded images, or the images

with different levels of occlusions added. In the later case, we vary the difficulty level

by using images with different occlusion fractions of the vehicle object. We evaluate

all the competitors following a popular criterion [7], which computes the mean average

precision (mAP) based on the list of detected semantic parts. A detected box may

be considered to be true-positive if its IoU rate with a ground-truth box is not lower

than 0.5. Each semantic part is evaluated individually, and the mAP of each object

class is the average mAP over all the semantic parts.

34

DeepVoting and DeepVoting+ are denoted as DV and DV+ respectively, and

they are compared with the following four baselines:

• KVC: These visual concepts are obtained by running k-means clustering on

a set of pool-4 features[47]. The ScaleNet is used to tackle scale issue and the

extracted visual concepts are directly used to detect the semantic parts.

• DVC: These visual concepts are obtained from DeepVoting internally, i.e., the

weights of the 1 × 1 visual concept extraction layer. The ScaleNet is used to

tackle scale issue and the extracted visual concepts are directly used to detect

the semantic parts.

• VT: The voting method first finds fired visual concepts via log-likelihood ratio

tests, and then utilizes spatial constraints to combine these local visual cues, as

described in [6].

• FR: We train Faster-RCNN [26] models for each vehicle category independently.

Each semantic part of a vehicle category is considered as a separate class during

the training, i.e., for each category, we train a model with |S| + 1 classes,

corresponding to |S| semantic parts and the background. Different from other

baselines, Faster-RCNN here is trained on full images, i.e., object cropping is

not performed. This enables Faster-RCNN to use context for semantic parts

detection and handle scale issue naturally since semantic parts with various

scales are used in training.

3.5.2 Semantic Part Detection without Occlusion

As a simplified task, we evaluate our algorithm in detecting semantic parts on non-

occluded objects. This is also a baseline for later comparison. In Table 3.1, we list the

detection accuracy produced by different methods. The average detection accuracies by

both voting and DeepVoting are significantly higher than using single visual concept for

35

Category KVC DVC VT FR DV DV+
airplane 15.8 26.6 30.6 56.9 59.0 60.2
bicycle 58.0 52.3 77.8 90.6 89.8 90.8
bus 23.8 25.1 58.1 86.3 78.4 81.3
car 25.2 36.5 63.4 83.9 80.4 80.6
motorbike 32.7 29.2 53.4 63.7 65.2 69.7
train 12.3 12.8 35.5 59.9 59.4 61.2
mean 28.0 30.4 53.1 73.6 72.0 74.0

Table 3.1. Comparison of detection accuracy (mean AP, %) of KVC, DVC, VT, FR,
DV and DV+ on non-occluded testing images. Note that DV+ is DeepVoting trained
with context outside object bounding boxes.

detection, regardless whether the visual concepts are obtained from k-means clustering

or the DeepVoting visual concept layer. This indicates the advantage of the approach

which aggregates multiple visual cues for detection, compared with the approaches

which use single visual concept for semantic part detection. Meanwhile, DeepVoting

is much better than voting due to the better scale prediction and the end-to-end

training manner. Even the right scale is provided for voting (oracle scale results in

[6]), DeepVoting still outperforms it by more than 20% in terms of averaged mAP

over 6 objects, which indicates the benefit brought by the joint optimization of both

weights for visual concept extraction layer and voting layer in an end-to-end manner.

On the other hand, DeepVoting produces slightly lower detection accuracy com-

pared to Faster-RCNN. We argue that Faster-RCNN benefits from the context outside

object bounding-boxes, as we can see, if we improve DeepVoting by adding context dur-

ing the training (i.e. DeepVoting+), Faster-RCNN will be less competitive compared

with our method. Meanwhile, DeepVoting enjoys lower computational overheads, i.e.,

it runs 2.5× faster.

3.5.3 Semantic Part Detection under Occlusion

We further detect semantic parts when the objects are occluded at three different

occlusion levels. Since the baselines KVC and DVC perform much worse than

36

Occlusion Category VT FR DV DV+

L1

airplane 23.2 35.4 40.6 40.6
bicycle 71.7 77.0 83.5 85.2
bus 31.3 55.5 56.9 65.8
car 35.9 48.8 56.1 57.3
motorbike 44.1 42.2 51.7 55.5
train 21.7 30.6 33.6 43.7
mean 38.0 48.3 53.7 58.0

L2

airplane 19.3 27.0 31.4 32.3
bicycle 66.3 62.0 78.7 79.6
bus 19.3 40.1 44.1 54.6
car 23.6 30.9 40.0 41.7
motorbike 34.7 32.4 41.4 43.4
train 8.4 17.7 19.8 29.8
mean 28.6 35.0 42.6 46.9

L3

airplane 15.1 20.1 25.9 25.4
bicycle 54.3 41.1 63.0 62.5
bus 9.5 25.8 30.8 40.5
car 13.8 19.8 27.3 29.4
motorbike 24.1 20.1 29.4 31.2
train 3.7 10.9 13.3 22.2
mean 20.1 23.0 31.6 35.2

Table 3.2. Comparison of detection accuracy (mean AP, %) of VT, FR, DV and DV+
when the object is occluded at three different levels. Note that DV+ is DeepVoting
trained with context outside object bounding boxes.

other methods even when occlusion is not present, we ignore these two baselines when

performing semantic part detection under occlusion. In the first level (i.e. L1), we place

2 occluders on each vehicle object, and the occluded ratio r of the object, computed

by pixels, satisfying 0.2 ⩽ r < 0.4. For L2 and L3, we have 3 and 4 occluders, and

0.4 ⩽ r < 0.6 and 0.6 ⩽ r < 0.8, respectively. The original occlusion-free testing set

is denoted as L0. The detection results are summarized in Table 3.2. One can see

that DeepVoting outperforms the voting and the Faster-RCNN significantly in the

occlusion cases. Compared with the Faster-RCNN, the accuracy gain increases as the

occlusion level goes up, suggesting the advantage of DeepVoting in detecting occluded

semantic parts. As a side evidence and ablation study, we investigate the impact of

37

Recall mAP + Prop. mAP by DV+
Category L0 L1 L2 L3 L1 L2 L3 L1 L2 L3
airplane 99.3 98.1 97.4 96.7 36.2 27.7 20.7 40.6 32.3 25.4
bicycle 99.5 99.0 98.0 96.5 77.9 64.0 44.7 85.2 79.6 62.5
bus 99.8 96.3 93.8 91.5 57.1 42.4 28.3 65.8 54.6 40.5
car 99.8 96.0 94.4 92.7 48.2 30.2 19.4 57.3 41.7 29.4
motorbike 99.0 96.5 95.7 93.3 43.6 33.1 21.3 55.5 43.4 31.2
train 98.3 93.5 90.6 85.6 32.0 19.4 11.3 43.7 29.8 22.2
mean 99.3 96.6 95.0 92.7 49.2 36.1 24.2 58.0 46.9 35.2

Table 3.3. Left 4 columns: the recall rates (%) of the proposal network at different
occlusion levels. Middle 3 and right 3 columns: detection mAPs (%) of Faster-RCNN with
ground-truth bounding boxes added as additional proposals and DeepVoting+ at different
occlusion levels.

the size of spatial heat-map (the kernel of the voting layer). At the heaviest occlusion

level (i.e. L3), when we reduce the shape of the heat-map from the default 15 × 15 to

a smaller 11 × 11, the mean detection accuracy drops from 31.6% to 30.6%, suggesting

the usefulness of long-distance voting in detecting occluded semantic parts. When

the heat-map size is increased to 19 × 19, the accuracy is slightly improved to 31.8%.

Therefore, we keep the kernel size to be 15 × 15 for a better computation tradeoff.

To verify our motivation that Faster-RCNN suffers downgraded performance in

both the proposal network and the classifier, we investigate both the recall of the

proposals and the accuracy of the classifier. Results are summarized in Table 3.3. First,

we can see that the recall of the proposals goes down significantly as the occlusion

level goes up, since the objectiveness of the semantic part region may become weaker

due to the randomly placed occluders. Thus the second stage, i.e., classification, has

to start with a relatively low-quality set of candidates. In the second part, we add

the ground-truth bounding-boxes to the existing proposals so that the recall is 100%,

feed these candidates to the classifier, and evaluate the detection performance on the

occluded images. Even with such benefits, Faster-RCNN still produces unsatisfying

detection accuracy. For example, in detecting the semantic parts of a bicycle at the

highest occlusion level (L3), making use of the additional proposals from ground-truth

38

Figure 3.3. The accuracy of scale prediction. The x-axis is the ratio of predicted scale to
the ground-truth scale, and a ratio of 1 indicates perfect scale prediction while ratios differ
from 1 with a large gap indicate incorrect scale estimations. The y-axis is the frequency of
the corresponding prediction/ground-truth ratio over the testing set.

bounding boxes merely improves the detection accuracy from 41.1% to 44.7%, which

is still much lower than the number 62.5% achieved by DeepVoting+. This implies

that the classifier may be confused since the occluder changes the appearance of the

proposals.

3.5.4 Scale Prediction Accuracy

We investigate the accuracy of ScaleNet, which is essential for scale normalization. For

each testing image, we compute the ratio of the predicted object scale to the actual

scale, and plot the distribution of this ratio over the entire testing set in Figure 3.3.

One can see that in more than 75% cases, the relative error of the predicted scale does

not exceed 10%. Actually, these prediction results are accurate enough for DeepVoting.

We also conduct an ablation experiment to test DeepVoting on the images without

39

VC #027: license plate

VC #073: windshield, right side

VC #029: car wheel, left side

VC #170: car side

SP #20:
license
plate

SP #23:
rear
window

SP #1:
car
wheel

SP #12:
side
window

Object class: car Object class: car

Figure 3.4. Visualization of visual concepts and spatial heat-maps (best viewed in color).
For each visual concept, we show 10 patches with the highest responses. Each spatial
heat-map illustrates the cues to support detecting a semantic part at different relative
spatial locations, in which yellow, cyan and dark blue indicate positive, neutral and negative
cues, respectively. For example, VC #073 (windshield) often appears above SP #20 (license
plate), and VC #170 (car side bottom) often appears below SP #12 (side window).

occlusion, while providing the ground-truth scales of the objects instead of using

ScaleNet to predict the scales. Even in this oracle setting, the detection accuracy is

only slightly improved from 72.0% to 74.5%. It shows that our ScaleNet provides

good enough estimations of object scales for semantic part detection.

3.6 Visualization and Explanation

3.6.1 Visualizing Visual Concepts and Heat-maps

In Figure 3.4, we show some typical examples of the learned visual concepts and

spatial heat-maps. The visualization of visual concepts follows the approach used

in [47], which finds 10 most significant responses on each convolutional filter, i.e., the

matching template, traces back to the original image lattice, and crops out the region

corresponding to the receptive field of the neuron at the pool-4 layer. We can see the

visual concepts can learn local visual patterns with meaningful semantics, for example,

VC #027, VC #029, VC #073 and VC #170 correspond to license plates, left side of car

wheels, right side of windshields and car side respectively. We also visualize spatial

heat-maps for several relevant pairs of visual concept and semantic part, and plot the

40

Object: car; SP #17: headlight

1
2

3

List of voted VC’s:
1. #160: score = 0.393

∆𝑥, ∆𝑦 = 0,0
2. #245: score = 0.091

∆𝑥, ∆𝑦 = +5,+1
3. #091: score = 0.053

∆𝑥, ∆𝑦 = +6,+3

Object: car; SP #20: licence plate

List of voted VC’s:
1. #073: score = 0.020

∆𝑥, ∆𝑦 = 0,−6
2. #235: score = 0.012

∆𝑥, ∆𝑦 = 0,+4
3. #232: score = 0.007

∆𝑥, ∆𝑦 = −5,−3

1

2

3

Object: car; SP #13: side window

List of voted VC’s:
1. #076: score = 0.023

∆𝑥, ∆𝑦 = +1,+2
2. #038: score = 0.015

∆𝑥, ∆𝑦 = +3,−2
3. #101: score = 0.013

∆𝑥, ∆𝑦 = +3,+6

1

2

3VC #091

VC #245

VC #160 VC #076

VC #038

VC #101

VC #073

VC #235

VC #232

Figure 3.5. DeepVoting allows us to explain the detection results. In the example of
heavy occlusion (the third column), the target semantic part, i.e., the license plate on a car,
is fully occluded by a bird. With the help of several supporting visual concepts (illustrated
in blue dots), especially the 73-rd VC (also visualized in Figure 3.4), we can infer the
position of the occluded semantic part (marked in the red bounding-box). Note that we
only plot the top 3 VC’s with the highest scores, regardless the number of supporting VC’s
can be much larger.

convolutional weights of the voting layer. As the visualization shows, the heat-maps

can capture the correspondence between visual concepts and semantic parts, i.e.,

whether a visual concept can support a semantic part, as well as the relative spatial

location between the visual concept and the semantic part. For example, VC #073

(windshield) can suggest the existence of SP #20 (license plate), which may appear in

a region below the VC #073.

3.6.2 Explaining the Detection Results

Finally, we show an intriguing benefit of our approach, which allows us to explain

the detection results. In Figure 3.5, we visualize three examples, in which the target

semantic parts are not occluded, partially occluded and fully occluded, respectively.

DeepVoting can detect the occluded semantic parts, and is also capable of looking up

the voting (supporting) visual concepts for explaining and diagnosing the detection,

to dig into errors and understand the working mechanism of our approach.

41

Figure 3.6. Input image from MS COCO 2014val and the corresponding semantic part
detection heat-map. From top to bottom and left to right, in row major order: detecting
wheels of cars; detecting wheels of a bike; detecting license plates of a car; detecting side
windows of a car; detecting headlights of a car; detecting wheels of a motorbike.

3.6.3 Detection under Natural Occlusions

Our proposed methods are evaluated on the VehicleOcclusion dataset, in which the

occluders are superimposed on the natural images. In this section we demonstrate the

effectiveness of our method on real-world occlusions. Since there are no real-world

semantic part datasets with different occlusion levels, we randomly choose several

images with partial occlusion and/or truncation from MS COCO [3] 2014val. We

run DeepVoting on these images and plot the detection heat-map (yellow for high

confidence scores and blue for low confidence scores) in Figure 3.6. We can see that

although some parts are occluded (e.g. The left rear wheel of the left car is partially

42

occluded by a chair in the top left subfigure), DeepVoting can still detect the semantic

parts in good quality. Note that no ground-truth semantic part annotations are

available for these images.

3.7 Conclusion and Future Works

In this chapter, we address an important yet less-studied task, i.e., detection under

arbitrary and unknown occlusions, which could not be covered in the training dataset.

To this end, we propose a robust and explainable deep learning detection framework,

named DeepVoting, for semantic part detection with possible occlusions. In the

proposed network, the intermediate visual representations, named visual concepts,

are extracted and used to vote for semantic parts via two convolutional layers. The

spatial relationship between visual concepts and semantic parts is learned from an

occlusion-free dataset and then transferred to the occluded testing images. DeepVoting

is evaluated on both the VehicleSemanticPart dataset and the VehicleOcclusion dataset,

and shows comparable performance as Faster-RCNN in the non-occlusion scenario, and

superior performance in the occlusion scenario. If context outside objects is utilized

during the training, this framework (i.e. DeepVoting+) outperforms both DeepVoting

and Faster-RCNN significantly under all scenarios. Moreover, our approach enjoys

the advantage of being explainable, which allows us to diagnose the semantic parts

detection results by checking the contribution of each voting visual concepts.

As future works, DeepVoting can be further improved in several aspects. First,

the current framework is designed for rigid objects (i.e. vehicles), as the spatial

relationship between visual concepts and semantic parts are modeled in convolution

kernels. Better representation of this information with more flexible models can help to

extend the current method to detect semantic parts of non-rigid and articulated objects

like animals. Second, the proposed method can be extend to perform object-level

detection under occlusion, by either directly modeling the correspondence between

43

the visual concepts and object bounding-boxes, or designing a two-level hierarchy

which models the correspondence between visual concepts and semantic parts, and

between the semantic parts and the object bounding-boxes in a bottom-up manner.

Also, viewpoints are important for object-level detection with our approach since

the semantic parts may appear at totally different locations for different viewpoints.

It would be necessary to learn a mixture of templates which models the spatial

relationship between visual cues and object bounding-boxes for various viewpoints, as

designed in [60].

44

Chapter 4

Enriching Semantics for
Multi-layer Scale-invariant
Detectors

In this chapter, we move our focus from semantic part detection to a more popular

and fundamental vision task, i.e. general object detection. Unlike the previous task,

in which there is usually only one vehicle object in an image and all parts of vehicle

objects are learned on objects with similar sizes (i.e. with a short edge of 224 pixels

for the vehicle bound-boxes), detecting general objects in the wild involves a more

complicated issue, i.e., different objects in a single image may have largely different

scales/sizes. This requires us to build detectors with feature maps which 1) have

strong object-level semantics and 2) cover objects with different sizes. To this end,

we propose a novel single-stage object detection network named Detection with

Enriched Semantics (DES). DES is a multi-layer detection network with increasing

receptive field sizes from lower to higher layers, to detect objects with different sizes.

The key innovation of our method is to enrich the semantics of object detection feature

maps at different layers, by a semantic segmentation branch and a global activation

module. Thus the detection feature maps, especially those in the lower layers, contain

stronger semantics of object-level knowledge compared with traditional multi-layer

detectors, of which the lower layer feature maps are learning low-level visual patterns

45

like color, texture, etc. The segmentation branch is supervised by weak (i.e. pseudo)

segmentation ground-truth, with no expensive pixel-wise annotation required. In

conjunction with that, we employ a global activation module which learns relationship

between channels and object classes in a self-supervised manner. Comprehensive

experiment results on both PASCAL VOC [7] and MS COCO [3] detection datasets

demonstrate the effectiveness of the proposed method. In particular, with a 16-layer

VGGNet (VGG16) based DES, we achieve an mAP of 81.7 on VOC2007 test and an

mAP of 32.8 on MS COCO test-dev with an inference speed of 31.5 milliseconds per

image on a single Titan Xp GPU. With a faster version which takes lower resolution

input images, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0

milliseconds per image.

4.1 Motivation and Overview

With the emergence and rapid development of deep neural networks, computer vision

has been improved significantly in many aspects such as image classification [8]–[11],

[61], object detection [17], [21], [26], [28], [62], and segmentation [12]–[14]. Among

them, object detection is a fundamental task which has already been extensively

studied, especially for detecting general objects in the wild [3], [7]. Currently, popular

object detection frameworks lie in two directions: the two-stage frameworks such as

Faster-RCNN [26] and R-FCN [28] which extract proposals, followed by per-proposal

classification and regression; and the one-stage frameworks such as YOLO [21] and

SSD [17], which apply object classifiers and regressors in a dense manner directly on

the backbone feature maps without objectiveness-based pruning. Both of them do

classification and regression on a set of pre-computed anchors.

A fundamental challenge for general object detection is the various scales for

different objects in a scene, which are inevitable since different types of objects can

have largely different 3D shape in the world coordinate, and objects can have different

46

!""#$!""#%!""#& '"()*

+
#,

'
-
.
/0

1
1

23
,
4
-
1
-
5/
0
1
1

0

10

20

30

40

50

p
e

rc
e

n
t
u

n
its

 (
p

e
rf

>
7

5
%

)

0

2

4

6

8

10

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

5

10

15

20

0

2

4

6

8

10

places-CNN

imagenet-CNN

po
ol
1

po
ol
2

co
nv

4

po
ol
5

co
nv

3

Simple elements & colors Texture materials Object partRegion or surface Object Scene

po
ol
1

po
ol
2

co
nv

4

po
ol
5

co
nv

3

po
ol
1

po
ol
2

co
nv

4

po
ol
5

co
nv

3

po
ol
1

po
ol
2

co
nv

4

po
ol
5

co
nv

3

po
ol
1

po
ol
2

co
nv

4

po
ol
5

co
nv

3

po
ol
1

po
ol
2

co
nv

4

po
ol
5

co
nv

3

Figure 4.1. This figure is a compilation of two figures drawn in [18]. The upper subfigure
shows the receptive fields and the top activating patches for three neurons at different
layers of the two CNNs proposed in [18]. We can see the conv4 layer (which is the
penultimate convolution layer) only corresponds to basic low-level elements. Even for the
pool5 layer, the neurons sometimes fire at different objects with similar appearance. The
lower subfigure provides quantitative analysis about the semantic types captures by all the
neurons in each layer. For a ImageNet-trained CNN, there are still around 20% neurons
captures simple elements and colors in conv4 and pool5.

magnifications controlled by their relative distances to the camera lens. To detect

general objects in natural images with different scales/sizes (i.e. scale-invariant),

conventional single-stage object detectors, such as SSD [17], use multiple convolutional

layers (in the form of a feature pyramid) to detect objects with different sizes and

aspect ratios. SSD uses a backbone network (e.g., VGG16) to generate a low-level

detection feature map. Based on that, several layers of object detection feature maps

are built, learning semantic information in a hierarchal manner. Smaller objects are

detected by lower layers while larger objects are detected by higher layers. However,

due to the hierarchy in the feature pyramid, the semantics are learned in a bottom-up

47

M
ul

tib
ox

D
et

ec
tio

n

Segmentation
Module

Global
Activation

Block

Global
Activation

Block

Global
Activation

Block

Global
Activation

Block

Global
Activation

Block

Global
Activation

Block

D
E

S3
00

conv4_3 fc7 conv6_2 conv7_2 conv8_2 conv9_2

Global Activation
Module

Figure 4.2. Pipeline for DES: the upper half is the object detection branch for DES which
has six detection feature maps from conv4_3 up to conv9_2; the lower half illustrates
the segmentation branch and the global activation module. The segmentation branch is
employed at the first detection feature map i.e. conv4_3. The global activation module
consists of six global activation blocks. Those global activation blocks are added at each
of the detection feature maps. The black arrows pointed to those modules are the input
flow, and the red arrows pointed out from those modules are the output flow to replace
the original feature map.

manner gradually. The low-level features usually only capture basic visual patterns

without strong semantic information. This phenomenon has been pointed out in [18],

and demonstrated in Figure 4.1 (a compilation of two figures borrowed from [18]). This

may cause two problems: small objects may not be detected well by low-level feature

maps, and the quality of high-level feature maps is also damaged by the imperfect

low-level features.

In this chapter, we aim to address the problem discussed above, by designing a

novel single-stage detection network, named Detection with Enriched Semantics

(DES), which consists of two branches – a detection branch and a segmentation branch.

The overall pipeline is illustrated in Figure 4.2. The detection branch is a typical

single-stage detector, which takes the conv4_3 layer from VGG16 as its backbone

48

A B C D

Figure 4.3. low-level features augmented with semantic meaningful features from the
segmentation branch. A: original image fed into our detection network. B: original low-level
detection features (X) for the input image. C: semantic meaningful features (Z) from the
segmentation branch. D: augmented low-level features (X ′ = X ⊙ Z) which is then used
in the later stages for our detection network. We can see that X ′ can capture both basic
visual pattern and high level semantic information.

feature map. Based on that, it builds a series of feature maps (i.e., from conv4_3 to

conv9_2) to detect objects of small to large sizes, by attaching anchors with different

sizes and aspect ratios on these feature maps. This is shown in the upper part of

Figure 4.2.

An auxiliary segmentation branch is used to enrich the low-level detection feature

map with strong semantic information. It takes the low-level detection feature

map as input, and learns semantic segmentation supervised by bounding-box level

segmentation ground-truth, as a side branch. Then it augments the low-level detection

feature map with its semantically meaningful feature map, as shown in the left lower

part of Figure 4.2.

Figure 4.3 gives an illustration of this semantic enrichment process. The original

low-level detection feature map (in column B) is activated by the segmentation feature

49

map (in column C), to generate an augmented low-level feature map (in column D),

which can capture both the basic low-level visual pattern as well as the semantic

information of the object. This enrichment can also be considered as an attention

process, in which each channel of the original low-level feature map is activated

by a semantically meaningful attention map, to magnify the firing neurons at the

semantically related locations.

In addition to the segmentation branch attached to the low-level detection feature

map, we also employ a global activation module for higher level detection feature

maps. It consists of several global activation blocks, as shown in the right lower corner

of Figure 4.2. The global activation block can prune out the location information,

and learn the correspondence between feature channels and object classes in a self-

supervised manner, which increases the semantic information of the object detection

feature maps at higher layers.

We summarize our contributions of this chapter as the follows:

• We improve the typical deep single-stage detectors by enriching semantics, with

a semantic segmentation branch to enhance low-level detection features, and a

global activation module to learn the semantic correspondence between detection

feature map channels and object classes for higher-level object detection features.

• We significantly improve the performance compared with popular single-stage

detectors. DES achieves an mAP of 81.7 on VOC2007 test and mAP of 32.8

on COCO test-dev.

• DES is time efficient. With a single Titan Xp GPU, it achieves 31.7 FPS, and is

much faster than competitors like R-FCN and ResNet-based SSD.

50

4.2 Related Work

In addition to object detection, semantic segmentation is another important computer

vision task, which requires each pixel of the input image to be classified/assigned to one

of the class labels. Traditional semantic segmentation methods such as DeepLab [12]

and fully convolutional network (FCN) [14] need pixel-wise annotations for the training.

On the other hand, it has been shown that weakly annotated training data such as

bounding-boxes or image-level classification labels can also be utilized for semantic

segmentation in [63].

We are not the first one to show segmentation information can be leveraged to help

object detection [13], [64], [65]. Gidaris and Komodakis [64] use semantic segmentation-

aware CNN features to augment detection features by concatenation at the highest

level, but our work differs in a way that we put the segmentation information at

the lowest detection feature map, and we use activation instead of concatenation to

combine object detection features and segmentation features. He et al. [13] shows that

multi-task training of object detection and instance segmentation can help to improve

the object detection task with extra instance segmentation annotation, however, we

do not consider extra annotation in our work, which could take much more time to

label. Another difference is how the segmentation branch in used. He et al. [13] train

detection and segmentation in parallel, but our method uses segmentation features to

activate the detection features.

Other work such as [66] has been done to improve object detectors by using

top-down architecture to increase the semantic information. Our work achieves this in

a simpler way, which does not involve reverse connections.

51

4.3 Methodology

In this section we present the detailed design of our framework. We will first go over

our framework, and then discuss three key components in Subsections 4.3.1, 4.3.2

and 4.3.3 respectively.

Detection with Enriched Semantics (DES) is a single-stage object detection network

with three components: a single-stage detection branch, a segmentation branch to

enrich semantics at low-level detection layer, and a global activation module to enrich

semantics at higher-level detection layers. We use SSD [17] as our single-stage detection

branch. SSD is built on top of a CNN backbone which generates a low-level detection

feature map for object detection (conv4_3 for VGG16). Based on that, SSD builds

a series of feature maps (i.e., from conv4_3 to conv9_2) to detect objects of small

to large sizes, in a hierarchical manner, by applying anchors with different sizes and

aspect ratios on these feature maps.

In order to deal with the problems discussed in the previous sections, we employ

a segmentation branch to enrich the low-level detection feature maps with semantic

information. This segmentation branch is added at the first detection feature map layer

conv4_3. Traditional segmentation algorithms require pixel-wise label annotation,

but this is not feasible in the object detection task. Instead, we use bounding-box

level weak segmentation labels to perform supervision for segmentation task. As

shown in the left lower part in Figure 4.2, our segmentation branch takes conv4_3 as

input, represented by the black arrow pointed from conv4_3 to segmentation branch.

Then it generates a semantically augmented low-level feature map conv4_3’, which

will be used for detection, represented by the red arrow pointed from segmentation

module to conv4_3. By employing segmentation branch, our network becomes a

multi-task learning problem with both detection and segmentation losses. The feature

map generated by the segmentation branch captures object-level semantic information

52

for each local area since the segmentation supervision pushes each local area to be

assigned to one of the classes. The detailed design of the segmentation branch is

illustrated in Subsection 4.3.1.

At higher-level detection layers, the semantic information is already learned from

previous layers; so it is not necessary to employ the segmentation branch for them.

Further, since the resolution is smaller in higher levels, it will become harder to do

the segmentation task based on them. Due to these reasons, we employ simple global

activation blocks, on conv4_3 through conv9_2, to enrich their semantic information

in a self-supervised manner. The details are illustrated in Subsection 4.3.2.

4.3.1 Semantic Enrichment at Low-level Layer

Semantic enrichment at low-level detection feature maps is achieved by a segmentation

branch, which performs weakly supervised semantic segmentation. It takes the low-

level detection layer from the detection branch (e.g. conv4_3 for VGG16) as inputs,

and generates a semantically meaningful feature map with the same dimension. Then

this feature map is used to activate the input low-level detection layer from the

detection branch by element-wise multiplication.

Mathematically, let X ∈ RC×H×W be the low-level detection feature map retrieved

from the detection branch (e.g. conv4_3), and G ∈ {0, 1, 2, · · · , N}H×W be the

segmentation ground-truth where N is the number of classes (20 for Pascal VOC

and 80 for MS COCO). The segmentation branch computes Y ∈ R(N+1)×H×W as the

prediction of pixel-wise segmentation where

Y = F(G(X))

satisfying

Yc,h,w ∈ [0, 1], and
N∑︂

c=0
Yc,h,w = 1.

G(X) ∈ RC′×H×W is the intermediate result which will be further used to generate

53

Segmentation
Branch

Input main
branch

feature !

Output local activation
feature " = $(& !)Output main

branch feature
!(

Weak
annotation)

Cr
os

s-
en

tro
py

 lo
ss

&(
!)

*(
&
!
)

A.convolution convolution softmaxpooling

Figure 4.4. The architecture of the semantic segmentation branch. It takes an intermedi-
ate feature map from object detection branch (e.g . conv4_3 for SSD300) as input (as
shown in the grey cube on the upper left corner), and generates a semantically meaningful
feature map Z (as shown in the tan cube in the center) to enrich the input X to X ′ (as
shown in the grey cube on the lower left corner). X ′ is then used in the detection branch,
to replace the original feature map X.

semantic meaningful feature map:

Z = H(G(X)) ∈ RC×H×W .

The semantic meaningful feature map Z is then used to activate the original low-level

detection feature map X by element-wise multiplication: X ′ = X ⊙ Z, where X ′

is the semantically activated low-level detection feature map which conveys both

basic visual patterns and high level semantic information. X ′ will replace the original

X in the detection branch for object detection, as represented by the left-most red

arrow in Figure 4.2. Figure 4.4 gives an detailed illustration of the architecture of the

segmentation branch.

For the segmentation branch, we design a simple network architecture mainly

composed of atrous convolutional layers [12]. We add four atrous convolutional layers

(noted as ‘A. convolution’ in Figure 4.4) with 3 × 3 kernel size after the input feature

map X. The first three atrous convolutional layers have a dilation rate of 2 and the

last atrous convolutional layer has a dilation rate of 4. After that we deploy another

54

1 × 1 convolutional layer to generate the aforementioned feature map G(X). This

intermediate feature map is used in two ways: to generate semantic segmentation

prediction Y = F(G(X)) and to provide strong semantic information to activate the

input feature map X ′ = X ⊙H(G(X)). Towards this end, there are two paths attached

to G(X). The first path (F path) takes a 1 × 1 convolution layer with N + 1 output

channels and a softmax layer to generate the segmentation prediction Y . The second

path (H path) takes another 1 × 1 convolution layer whose output channel number

equals to the channel number of X, to generate a semantically meaningful feature

map Z in order to activate the feature map in the detection branch by element-wise

multiplication. We show an example of this activation process in Figure 4.3. Column

A is the input image and column B shows two slices of the original low-level object

detection feature map X. We can notice that the semantic meaningful feature map Z

generated by our segmentation branch can capture very high level semantic information

(the dog or human information). The final activated feature map X ′ conveys both

basic visual pattern and high level semantic information. All these layers keep the

size of feature maps unchanged.

The final issue is how to generate pseudo semantic segmentation ground-truth

annotations given only the object bounding-boxes. The segmentation ground-truth G

should have the same resolution as the input layer of segmentation branch (conv4_3

for SSD300). We take a simple strategy to generate it: if a pixel Ghw locates within

a bounding-box on the image lattice I, we assign the label of that bounding-box to

Ghw; if it locates within more than one bounding-boxes, we choose the label of the

bounding-box with the smallest size; and if it does not locate inside any bounding-box,

we assign it to the background class. This simple strategy guarantees that there is

only one class to be assigned to each pixel in G. We show an example of such weak

segmentation ground-truth labels in Figure 4.5.

55

Figure 4.5. Example of weak (pseudo) segmentation ground-truth. Left: Input image
with a size of 300 × 300 pixels, with a person and a horse on the image. Right: Weak
segmentation ground-truth for the left image, with a size of 38 × 38; the pixels locate
inside both the person and the horse bounding-boxes will be assigned to person class since
its bounding-box is smaller.

4.3.2 Semantic Enrichment at Higher-level Layers

In conjunction with our segmentation branch, we propose another module named

global activation module at higher layers. It contains several global activation blocks,

attached at each object detection feature map in the detection branch. Global

activation blocks can learn the correspondence between feature channels and object

classes, after eliminating the spatial information, in a self-supervised manner.

Each global activation block consists of three stages: spatial average pooling,

channel-wise learning and broadcasted multiplying. Mathematically, given the input

feature map X ∈ RC×H×W , the spatial average pooling stage will produce Z ∈ RC by

Zi = 1
HW

∑︂
h,w

Xihw

and the channel-wise learning stage will generate the activation feature

S = Sigmoid(W2 · ReLU(W1Z)) ∈ RC×1×1

56

where W2 ∈ RC×C′
, W1 ∈ RC′×C , used to magnify the channels which deemed useful for

detection. The W1 and W2 are learnable weights of two fully-connected layers. Finally,

in the broadcasted multiplying stage, S is used to activate X to get X ′ ∈ RC×H×W by

X ′
ihw = Xihw · Si

The activated feature map X ′ will replace the original X in the detection branch. In

our experiments, we keep C ′ = 1
4C for all global activation blocks. This architecture

was originally designed for image classification in [67], and here we extend it for object

detection.

4.3.3 Multi-task Training

In the training phase, two losses are combined for computing gradients. The first

loss is the original detection loss, Ldet(I, B) where I is the input image and B is the

bounding-box annotations. As defined in [17], it is computed on all matched anchor

boxes, and considers both the classification and regression of anchor boxes. The second

loss is an extra cross-entropy loss function for the semantic segmentation task. It is

formulated as:

Lseg(I, G) = − 1
HW

∑︂
h,w

log(YGh,w,h,w)

where Y ∈ [0, 1](N+1)×H×W is the semantic segmentation predictions, and G ∈

{0, 1, 2, · · · , N}H×W is the semantic segmentation ground-truth generated by bounding-

box annotation. N is the number of classes excluding background class (20 for Pascal

VOC and 80 for MS COCO). The detailed definition of Y and G could be found in

the Subsection 4.3.1.

By summing up the new segmentation loss function and the original detection loss

function, the final objective function we are optimizing is:

L(I, B, G) = Ldet(I, B) + αLseg(I, G)

where α is a parameter to balance those two tasks.

57

4.4 Experiments

We present comprehensive experiment results on two major object detection datasets:

Pascal VOC [7] and MS COCO [3]. For the Pascal VOC, we follow the conventional

split, which uses the union of VOC2007 trainval and VOC2012 trainval as the

training data, and uses VOC2007 test as the testing data. We also show the

experiment result on VOC2012 test with the model trained on the union of VOC2007

trainvaltest and VOC2012 trainval. For MS COCO, we use a popular split which

takes trainval35k [68] for training, minival for validation, and we show results on

test-dev2017 which is evaluated on the official evaluation server.

For the backbone object detection framework, we choose VGG16-based SSD300

[17] and SSD512 as our single-stage detection branch. Note that SSD has been updated

with new data augmentation strategies which boost the performance by a huge margin,

and we follow the latest version of SSD with all those improvements. The semantic

segmentation branch is inserted at the first detection feature map layer, i.e. conv4_3

for both SSD300 and SSD512. The global activation module consists of several global

activation blocks, 6 for SSD300 and 7 for SSD512, and all of those blocks are added

at each detection feature map. For the first detection feature map, the segmentation

branch is inserted before the global activation block. We follow the original SSD

training strategy throughout our experiments, and set the trade-off hyperparameter α

(introduced in Subsection 4.3.3) to be 0.1.

We will use the terminologies ‘DES300’ and ‘DES512’ to represent our Detec-

tion with Enriched Semantics network built on VGG16-based SSD300 and SSD512

respectively in the rest of this chapter for simplicity.

4.4.1 Experiment on VOC

58

mAP aero bike bird boat bottle bus
method backbone car cat chair cow table dog horse

mbike persn plant sheep sofa train tv
70.0 77.0 78.1 69.3 59.4 38.3 81.6

Fast-RCNN [20] VGG16 78.6 86.7 42.8 78.8 68.9 84.7 82.0
76.6 69.9 31.8 70.1 74.8 80.4 70.4
73.2 76.5 79.0 70.9 65.5 52.1 83.1

Faster-RCNN [26] VGG16 84.7 86.4 52.0 81.9 65.7 84.8 84.6
77.5 76.7 38.8 73.6 73.9 83.0 72.6
76.4 79.8 80.7 76.2 68.3 55.9 85.1

Faster-RCNN [8] ResNet101 85.3 89.8 56.7 87.8 69.4 88.3 88.9
80.9 78.4 41.7 78.6 79.8 85.3 72.0
80.5 79.9 87.2 81.5 72.0 69.8 86.8

R-FCN [28] ResNet101 88.5 89.8 67.0 88.1 74.5 89.8 90.6
79.9 81.2 53.7 81.8 81.5 85.9 79.9
77.6 86.0 82.5 76.9 69.1 59.2 86.2

RON384++ [66] VGG16 85.5 87.2 59.9 81.4 73.3 85.9 86.8
82.2 79.6 52.4 78.2 76.0 86.2 78.0
78.2 80.3 84.1 78.5 70.8 68.5 88.0

Gidaris[64] VGG16 85.9 87.8 60.3 85.2 73.7 87.2 86.5
85.0 76.4 48.5 76.3 75.5 85.0 81.0
76.4 79.3 80.5 76.8 72.0 58.2 85.1

Shrivastava[65] VGG16 86.5 89.3 60.6 82.2 69.2 87.0 87.2
81.6 78.2 44.6 77.9 76.7 82.4 71.9
77.5 79.5 83.9 76.0 69.6 50.5 87.0

SSD300 [17] VGG16 85.7 88.1 60.3 81.5 77.0 86.1 87.5
84.0 79.4 52.3 77.9 79.5 87.6 76.8
77.1 76.3 84.6 79.3 64.6 47.2 85.4

SSD321 [17] ResNet101 84.0 88.8 60.1 82.6 76.9 86.7 87.2
85.4 79.1 50.8 77.2 82.6 87.3 76.6
79.7 83.5 86.0 78.1 74.8 53.4 87.9

DES300 (Ours) VGG16 87.3 88.6 64.0 83.8 77.2 85.9 88.6
87.5 80.8 57.3 80.2 80.4 88.5 79.5
79.5 84.8 85.1 81.5 73.0 57.8 87.8

SSD512 [17] VGG16 88.3 87.4 63.5 85.4 73.2 86.2 86.7
83.9 82.5 55.6 81.7 79.0 86.6 80.0
80.6 84.3 87.6 82.6 71.6 59.0 88.2

SSD513 [17] ResNet101 88.1 89.3 64.4 85.6 76.2 88.5 88.9
87.5 83.0 53.6 83.9 82.2 87.2 81.3
81.7 87.7 86.7 85.2 76.3 60.6 88.7

DES512 (Ours) VGG16 89.0 88.0 67.0 86.9 78.0 87.2 87.9
87.4 84.4 59.2 86.1 79.2 88.1 80.5

59

Table 4.1. Results on VOC2007 test. The first section contains some representative
baselines [8], [20], [26], [28], [66], the second section contains other detectors exploiting
segmentation information [64], [65], the third section contains low resolution SSD and
DES, and the last section contains high resolution SSD and DES. Note that all these
methods are trained on VOC2007 trainval and VOC2012 trainval.

For the Pascal VOC dataset, we run the training on a machine with 2 Titan

Xp GPUs. In order to focus on the effectiveness of our DES network, we keep the

training settings unchanged as used in SSD. We first train the model with a learning

rate of 10−3 for 80k iterations, and then continue the training with a learning rate

of 10−4 for 20k iterations and 10−5 for another 20k iterations. The momentum is

fixed to be 0.9 and the weight decay is set to be 0.0005. Those hyperparameters are

aligned with the original SSD experiments. We use pre-trained SSD model on Pascal

VOC to initialize our model, and initialize the parameters in the first five layers of

segmentation branch with the parameters of conv5_1, conv5_2, conv5_3, fc_6 and

fc_7 in the detection branch. The rest two convolutional layers of the segmentation

branch are initialized by Xavier initialization [69]. We also do another experiment by

resetting all the parameters after conv6_1 layer in the detection branch with Xavier

initialization. This will lead to similar results compared with the current setting.

The results on VOC2007 test are shown in Table 4.1. We can see DES outperforms

original SSD on both resolution settings, and it improves the mAP from 77.5 to 79.7

and from 79.5 to 81.7 for the low (300) and the high (512) resolution inputs respectively.

Our VGG16-based detectors can even significantly outperform ResNet101-based SSD

detectors, which are much deeper and more complex compared with VGG16 backbones,

and this comparison highlights the effectiveness of our method. Compared with other

baselines such as popular two-stage methods and other detector combined with

segmentation, our DES also shows a significant performance improvement. We show

60

the results on VOC2012 test in Table 4.2, and the same tendency remains. DES

outperforms all the competitors with a large gap.

mAP aero bike bird boat bottle bus
method backbone car cat chair cow table dog horse

mbike persn plant sheep sofa train tv
73.8 86.5 81.6 77.2 58.0 51.0 78.6

Faster-RCNN [8] ResNet101 76.6 93.2 48.6 80.4 59.0 92.1 85.3
84.8 80.7 48.1 77.3 66.5 84.7 65.6
77.6 86.9 83.4 81.5 63.8 62.4 81.6

R-FCN [28] ResNet101 81.1 93.1 58.0 83.8 60.8 92.7 86.0
84.6 84.4 59.0 80.8 68.6 86.1 72.9
75.4 86.5 82.9 76.6 60.9 55.8 81.7

RON384++ [66] VGG16 80.2 91.1 57.3 81.1 60.4 87.2 84.8
84.9 81.7 51.9 79.1 68.6 84.1 70.3
73.9 85.5 82.9 76.6 57.8 62.7 79.4

Gidaris [64] VGG16 77.2 86.6 55.0 79.1 62.2 87.0 83.4
84.7 78.9 45.3 73.4 65.8 80.3 74.0
72.6 84.0 81.2 75.9 60.4 51.8 81.2

Shrivastava [65] VGG16 77.4 90.9 50.2 77.6 58.7 88.4 83.6
82.0 80.4 41.5 75.0 64.2 82.9 65.1
75.8 88.1 82.9 74.4 61.9 47.6 82.7

SSD300 [17] VGG16 78.8 91.5 58.1 80.0 64.1 89.4 85.7
85.5 82.6 50.2 79.8 73.6 86.6 72.1
75.4 87.9 82.9 73.7 61.5 45.3 81.4

SSD321 [17] ResNet101 75.6 92.6 57.4 78.3 65.0 90.8 86.8
85.8 81.5 50.3 78.1 75.3 85.2 72.5
77.1 88.5 84.4 76.0 65.0 50.1 83.1

DES300 (Ours)1 VGG16 79.7 92.1 61.3 81.4 65.8 89.6 85.9
86.2 83.2 51.2 81.4 76.0 88.4 73.3
78.5 90.0 85.3 77.7 64.3 58.5 85.1

SSD512 [17] VGG16 84.3 92.6 61.3 83.4 65.1 89.9 88.5
88.2 85.5 54.4 82.4 70.7 87.1 75.6
79.4 90.7 87.3 78.3 66.3 56.5 84.1

SSD513 [17] ResNet101 83.7 94.2 62.9 84.5 66.3 92.9 88.6
87.9 85.7 55.1 83.6 74.3 88.2 76.8
80.3 91.1 87.7 81.3 66.5 58.9 84.8

DES512 (Ours)2 VGG16 85.8 92.3 64.7 84.3 67.8 91.6 89.6
88.7 86.4 57.7 85.5 74.4 89.2 77.6

Table 4.2. Results on VOC2012 test. Note that all methods in this table are trained
on VOC2007 trainvaltest and VOC2012 trainval, except Gidaris [64] is trained on
VOC2007 trainval and VOC2012 trainval.

61

method backbone 07 test 12 test
SSD300 [17] VGG16 79.8 78.5
DES300 VGG16 82.7 81.03

SSD512 [17] VGG16 83.2 82.2
DES512 VGG16 84.3 83.74

Table 4.3. Results on VOC2007 test and VOC2012 test when detectors are fine-tuned
from models pre-trained on COCO.

Table 4.3 summarizes the results when SSD and DES are fine-tuned from models

trained on MS COCO, which is a much larger dataset. DES outperforms SSD on all

experiment settings with a large margin. It suggests our method can also get benefit

from extra training data like the MS COCO dataset.

4.4.2 Experiment on COCO

We use the similar strategy for the MS COCO dataset. The DES is implemented

based on the original SSD detectors which have slightly different anchor box settings

to fit the MS COCO dataset. The training is conducted on the trainvel35k subset

generated from MS COCO trainval2014 dataset. We first train the network with a

learning rate of 10−3 for 280k iterations, followed by training it with a learning rate of

10−4 for 80k iteration and 10−5 for another 40k iteration. The momentum is set to be

0.9 and the weight decay is set to be 0.0005, which are consistent with the original

SSD settings.

Similar to our methods used for Pascal VOC, we use the pre-trained SSD model

on MS COCO to initialize our parameters, and use weights in conv5_1, conv5_2,

conv5_3, fc_6 and fc_7 to initialize the first five layers in the segmentation branch.
1http://host.robots.ox.ac.uk:8080/anonymous/RCMS6B.html
2http://host.robots.ox.ac.uk:8080/anonymous/OBE3UF.html
3http://host.robots.ox.ac.uk:8080/anonymous/IRJJ5L.html
4http://host.robots.ox.ac.uk:8080/anonymous/MURP2C.html

62

method backbone data mAP AP50 AP75 APs APm APl
Faster [26] VGG16 trainval 21.9 42.7 - - - -
Faster+++ [8] ResNet101 trainval 34.9 55.7 - - - -
R-FCN [28] ResNet101 trainval 29.9 51.9 - 10.8 32.8 45.0
RON384++ [66] VGG16 trainval 27.4 49.5 27.1 - - -
Shrivastava [65] VGG16 trainval35k 27.5 49.2 27.8 8.9 29.5 41.5
SSD300 [17] VGG16 trainval35k 25.1 43.1 25.8 6.6 25.9 41.4
SSD321 [17] ResNet101 trainval35k 28.0 45.4 29.3 6.2 28.3 49.3
DES300 (Ours) VGG16 trainval35k 28.3 47.3 29.4 8.5 29.9 45.2
SSD512 [17] VGG16 trainval35k 28.8 48.5 30.3 10.9 31.8 43.5
SSD513 [17] ResNet101 trainval35k 31.2 50.4 33.3 10.2 34.5 49.8
DES512 (Ours)5 VGG16 trainval35k 32.8 53.2 34.6 13.9 36.0 47.6

Table 4.4. Results of average precision (AP) on COCO test-dev. ‘APs’, ‘APm’ and
‘APr’ stand for the AP for small, medium and large objects respectively, and ‘mAP’, ‘AP50’
and ‘AP75’ mean average precision of IOU=0.5:0.95, IOU=0.5 and IOU=0.75 respectively.
trainval35k is obtained by removing the 5k minival set from trainval.

However, different from VOC, we find that resetting weights after conv6_1 is crucial

for good performance, and we can only get a small improvement around 0.2 for AP@0.5

if we keep those weights after conv6_1 same as the SSD pre-trained model.

method backbone data AR1 AR10 AR100 ARs ARm ARl
Faster [26] VGG16 trainval - - - - - -
Faster+++ [8] ResNet101 trainval - - - - - -
R-FCN [28] ResNet101 trainval - - - - - -
RON384++ [66] VGG16 trainval - - - - - -
Shrivastava [65] VGG16 trainval35k 25.5 37.4 38.3 14.6 42.5 57.4
SSD300 [17] VGG16 trainval35k 23.7 35.1 37.2 11.2 40.4 58.4
SSD321 [17] ResNet101 trainval35k 25.9 37.8 39.9 11.5 43.3 64.9
DES300 (Ours) VGG16 trainval35k 25.6 38.3 40.7 14.1 44.7 62.0
SSD512 [17] VGG16 trainval35k 26.1 39.5 42.0 16.5 46.6 60.8
SSD513 [17] ResNet101 trainval35k 28.3 42.1 44.4 17.6 49.2 65.8
DES512 (Ours) VGG16 trainval35k 28.4 43.5 46.2 21.6 50.7 64.6

Table 4.5. Results of average recall (AR) on COCO test-dev. ‘ARs’, ‘ARm’ and ‘ARl’
stand for the AR for small, medium and large objects respectively

We report results on COCO test-dev2017 which contains 20288 images and eval-

uated on the official evaluation server deployed on CodaLab in Table 4.4 and Table 4.5.
5https://competitions.codalab.org/competitions/5181#results

63

Compared with baseline SSD detectors, our DES can provide huge improvement on

all of the evaluation metrics. For the low (300) resolution version (the third block in

the table), we can achieve a relative improvement of 12.7% for mAP compared with

baseline SSD300, from 25.1 to 28.3, and a significant relative improvement of 28.8%

for small objects. For the high resolution version (the fourth block in the table), DES

can improve the baseline from 28.8 to 32.8. Our DES can also outperform SSD based

on ResNet101, which is deeper and much slower.

We can find that DES performs much better on small objects, outperforms at least

27.5% relatively compared with all other competitors which report performance on

small objects. Although DES512 outperforms SSD512 based on VGG16 for detecting

large objects, it is slightly worse than SSD513 based on ResNet101 for detecting large

objects. We argue that SSD513 can benefit from a better backbone ResNet101 which

is much deeper, to detect large objects.

4.5 Discussion and Ablation

4.5.1 Architecture Ablation and Diagnosis

To further understand the effectiveness of our two extra modules (i.e., semantic seg-

mentation branch and the global activation module), we conduct ablation experiments

with different settings and report the results in Table 4.6 on the VOC2007 test

dataset based on DES300.

As can be seen from Table 4.6, the global activation module (G) can improve

the performance by 0.6, which confirms the effectiveness of the global activation

with global activation features. With the segmentation branch (S) introduces, the

performance can be further improved by a large margin, which confirms our intuition

that segmentation can be used to help object detection, and introducing high-level

semantic knowledge to the early stage of the detection network can contribute to a

64

method mAP
SSD300 77.5
SSD300+G 78.1
SSD300+G+S (α = 0.0) 79.4
SSD300+G+S (α = 0.1) 79.7
SSD300+G+S (α = 1.0) 78.6
SSD300+G+S (in parallel) 78.2
SSD300+G+DeeperVGG16 77.6

Table 4.6. Ablation result evaluated on VOC2007 test dataset. G stands for the
global activation module and S stands for the segmentation branch. α is the hyper-
parameter controlling the tradeoff between segmentation loss and detection loss discussed
in Subsection 4.3.3.

stronger object detector.

Another ablation study conducted is the weight of the segmentation loss. To do

this, we train our DES network for VOC2007 test task with different α’s, i.e., 0, 0.1

and 1. This hyperparameter plays an important role for balancing the object detection

loss and the semantic segmentation loss. Experiments shows that α = 0.1 yields the

best performance, 0.3 better than α = 0 (eliminating segmentation loss) and 1.1 better

than α = 1 (taking the tasks of object detection and segmentation equally important).

This means the supervision over the segmentation task is useful in our segmentation

branch. But it should take less weight than the detection loss since the main task is

object detection instead of segmentation, otherwise the backbone features would lean

towards the segmentation task too much and hurt the detection performance.

To further justify the effectiveness of our segmentation branch architecture, we

conduct another two experiments. In the first experiment, we mimic Mask-RCNN

[13] by training segmentation and detection branches in parallel, in stead of using

segmentation features to activate low-level detection features. The improvement is

very small (mAP of 78.2 as shown in the 6th row in Table 4.6) and we believe the

low-level feature activation process is very important to improve detection features,

and since our weak segmentation ground-truth does not contain extra information, it

65

will not improve the backbone feature quality and the detection accuracy significantly

if trained in parallel. As a side evidence, we train a modified version of Mask-RCNN,

with only pseudo (weak) segmentation supervision, and the performance only goes up

by a small amount of 0.6 on COCO minival. This result indicates that Mask-RCNN

cannot get a huge benefit from the weak segmentation supervision trained in parallel,

and confirms our observations on DES.

The second justification experiment we do is removing the segmentation loss and

the low-level feature activation process, while keeping the extra weights and layers

involved in the semantic segmentation branch. Then the feature map Z = H(G(X)) is

directly used by the object detection branch. This modification keeps the number of

parameters introduced by our segmentation branch, and can be regraded as a ‘deeper

VGG16’ with more parameters as the backbone. This architecture achieves an mAP

of 77.6, which is much lower compared with our proposed method. This confirms the

architecture design and the feature enrichment process of our segmentation branch is

crucial, and the performance cannot be improved by naively adding more layers and

parameters.

4.5.2 Inference Speed

To quantitatively evaluate the inference speed, we compile and run DES, SSD, as well

as R-FCN, on our machine with an nVIDIA Titan Xp GPU to compare the speed

fairly.

All results are summarized in Table 4.7. Note that to make comparison fair, we

keep the batch-size to be the same in each comparison group (i.e. low resolution group

based on SSD300 and the high resolution group based on SSD512). For ResNet101

based SSD321 and SSD513, we remove the batch normalization layer at the test time

to reduce the run time and memory consumption following [70].

Our method is a bit slower compared with original VGG16-based SSD due to our

66

method backbone mAP time (ms/img) FPS batch-size
R-FCN [28] ResNet101 80.5 89.6 11.2 1
SSD300 [17] VGG16 77.5 9.2 109.3 8
SSD321 [17] ResNet101 77.1 33.2 30.2 8
DES300 VGG16 79.7 13.0 76.8 8
SSD512 [17] VGG16 79.5 18.6 53.8 8
SSD513 [17] ResNet101 80.6 61.6 16.2 8
DES512 VGG16 81.7 31.5 31.7 8

Table 4.7. Inference Speed of two-shot baseline R-FCN and single-stage SSD and DES
under different input resolutions. Here we report the mAP on VOC2007 test dataset in
the mAP column, the time spent for inferring a single image in milliseconds in the time
column, as well as the number images processed within one second in the FPS column.

extra modules, however, DES is faster than ResNet101-based SSD by a large margin,

and outperforms it in terms of accuracy at the same time. DES300 has an FPS of

76.8 with an mAP of 79.7, while DES512 achieves higher mAP with a lower FPS (i.e.,

81.7 and 31.7 respectively).

4.5.3 Qualitative Examples

We show some detection examples in Figure 4.6. The left column shows the results of

original SSD300, and the right column shows the results of our DES300. We show

‘aeroplane’ in the first two rows, and ‘pottedplant’ in the last row, for all detection

results with a score higher than or equal to 0.3. The detected objects are highlighted

with yellow bounding-boxes and the corresponding confidence scores are shown on the

upper-right side of the bounding-boxes. From these examples, we can see that our

method is good at detecting small objects like small aeroplanes and pottedplants, and

it can also prune out some false positives which are incorrectly detected as aeroplane

shown in the first row.

67

Figure 4.6. Examples of detection results. Left: Results of SSD300. Right: Results
of DES300. All detected objects with confidence scores higher than or equal to 0.3 are
highlighted in yellow bounding-boxes, and the corresponding confidence scores are printed
at the upper-right side of the bounding-boxes.

68

4.6 Conclusion and Future Works

In this chapter, we propose a novel single-stage object detector named Detection with

Enriched Semantics (DES). Following previous works, it builds a detection feature

pyramid for detection objects with different scales in an image. To address the problem

that low-level detection feature map does not contain high-level semantic information,

we introduce a semantic segmentation side branch, which utilizes the idea of weakly

supervised semantic segmentation, to provide high semantically meaningful and class-

aware features to activate and enrich feature map used for the object detection. We also

utilize a global activation module to provide global information and learn channel-wise

attention. Our method is flexible and simple, and does not require a huge redesign

of the original popular single-stage detection frameworks. Quantitative evaluation

on both Pascal VOC and MS COCO shows our method excels in both accuracy and

speed, compared with several baseline detectors. Our method can also be applied

to other two-stage or single-stage object detectors, with stronger backbone, and we

remain this as future work.

The current design introduces some computation overheads (although small) during

the inference. Thus one direction of future improvement is to learn semantically strong

detection feature maps without extra neural network layers and computation overheads.

There are some later works (e.g. [71]) exploit the semantics enriching for training only

and keep the inference unchanged without compromising the speed. Another direction

of future works is to learn detection and segmentation simultaneously, rather than

making use of pseudo segmentation. Object detection and semantic segmentation are

highly related, and they are potentially mutually beneficial. This direction is partially

addressed by [72].

69

Chapter 5

Online Hard Image Mining for
Long-tailed Hard Cases

Among all the detection tasks, face detection is one of the most important task.

Analyzing faces is an important application and detecting the them is the first step

towards this direction, and it is also a backbone for many down-streaming face-related

tasks. In this chapter, we move our focus from general object detection to face

detection, which could have different accuracy requirements and different challenges.

Recently anchor-based deep face detectors have achieved promising performance, but

they are still struggling to detect hard faces, such as small, blurred and partially

occluded faces. One reason is that their training treats all images and faces equally,

and ignores the imbalance between easy images and hard images; however large

amounts of training images only contain easy faces, which are less helpful to learn

robust detectors for hard faces. Thus, we propose that the robustness of a face detector

against hard faces can be improved by learning small faces on hard images. Our

intuitions are (1) hard images are the images which contain at least one hard face,

thus they facilitate training robust face detectors; (2) most hard faces are small faces

and other types of hard faces can be easily shrunk to small faces. To this end, we

build an anchor-based deep face detector, which only outputs a single high-resolution

feature map with small anchors, to specifically learn small faces and train it by a

70

novel hard image mining strategy which automatically adjusts training weights on

images according to their difficulties. Extensive experiments have been conducted on

WIDER FACE [5], FDDB [73], Pascal Faces [74], and AFW [75] datasets and our

method achieves APs of 95.7, 94.9 and 89.7 on easy, medium and hard WIDER FACE

val subsets respectively, which verify the effectiveness of our methods, especially on

detecting hard faces. Our detector is also lightweight and enjoys a fast inference speed.

Code and model are available at https://github.com/bairdzhang/smallhardface.

5.1 Motivation and Overview

Face detection is a fundamental and important computer vision problem, which is

critical for many face-related tasks, such as face alignment [76], [77], tracking [78] and

recognition [79], [80]. Stem from the recent success of deep neural networks, massive

CNN-based face detection approaches [32], [81]–[85] have been proposed and achieved

state-of-the-art performance. However, face detection remains a challenging task due

to occlusion, illumination, makeup, as well as pose and scale variance, as shown in the

benchmark dataset WIDER FACE [5].

Current state-of-the-art CNN-based face detectors attempt to address these chal-

lenges by employing more powerful backbone models [86], exploiting feature pyramid-

style architectures to combine features from multiple detection feature maps [82],

designing denser anchors [85] and utilizing larger contextual information [82]. These

methods and techniques have been shown to be successful to build a robust face

detector, and improve the performance towards human-level for most images.

In spite of their success for most images, an evident performance gap still exists

especially for those hard images which contain small, blurred and partially occluded

faces. We realize that these hard images have become the main barriers for face

detectors to achieve human-level performance. In Figure 5.1, we show that, even on

71

https://github.com/bairdzhang/smallhardface

0 2000 4000 6000 8000 10000 12000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1. AP of each training image computed based on official SSH model, the x-axis
is index of the training image, the y-axis is the AP for the corresponding image. The
images are sorted in descending order of APs.

the train set of WIDER FACE, the official SSH model1 still fails on some of the

images with extremely hard faces. We show two such hard training images in the

upper side in Figure 5.2.

On the contrary, most training images with easy faces can be almost perfectly

detected (see the illustration in the lower right corner of Figure 5.2). As shown in

Figure 5.1, over two-thirds of the training images already obtained perfect detection

accuracy, and we believe that those easy images are less useful towards training a

robust face detector. To address this issue, in this paper, we propose a robust face

detector by putting more training efforts on those hard images.

This problem is mostly related to anchor-level hard example mining discussed in

OHEM [87]. OHEM aims at mining hard anchors/proposals in each image during

the training phase. However, when the majority of the training set are easy images
1https://github.com/mahyarnajibi/SSH

72

Figure 5.2. Upper half: two hard training images. Lower half: two easy training images.

with no hard anchors/proposals (see Figure 5.1), OHEM will exhibit less effectiveness

since less useful information can be exploited towards a more robust model. Also, due

to the sparsity of faces, OHEM mainly focuses on mining hard negative anchors and

takes all faces equally into training. To this end, we propose to mine hard positive

examples at image level (i.e. hard image mining, HIM) in conjunction with anchor level

OHEM. More specifically, we propose to dynamically assign difficulty scores to training

images during the learning process, which can determine whether an image is already

well-detected or still useful for further training. This allows us to fully utilize the

images which were not perfectly detected to better facilitate the subsequent learning

process. We show that this strategy can make our detector more robust towards

hard faces, without involving more complex network architecture and computation

overhead for the inference. The main difference between our HIM and OHEM is that

ours takes an image as a basic unit for mining while OHEM takes an anchor/proposal

73

as a basic unit for mining. Our proposed HIM is complementary to OHEM and our

face detector uses both OHEM and HIM since they aim to solve different issues.

Apart from mining the hard images, we also propose to improve the detection

quality and efficiency by exclusively exploiting small faces. Small faces are typically

hard and have attracted extensive research attention [81], [85], [86]. Existing methods

aim at building a scale-invariant face detector to learn and infer on both small and

big faces, with multiple levels of detection features and anchors of different sizes.

Compared with these methods, our detector is more efficient since it is specially

designed to aggressively leverage the small faces during training. More specifically,

large faces are automatically ignored during training due to the design of putting only

small anchors on a single high-resolution feature map, so that the model can fully

focus on the small hard faces. Experimental results also demonstrate the effectiveness

of our design.

To conclude, in this chapter, we propose a novel face detector with the following

contributions:

• We propose a hard image mining strategy, to improve the robustness of our

detector to those extremely hard faces. This is done without any extra modules,

parameters or computation overhead added on the existing detectors.

• We design a single shot detector with only one detection feature map, which

focuses on small faces with a specific range of sizes. This allows our model to be

simple and focus on difficult small faces without struggling with scale variance.

• Our face detector achieves state-of-the-art level performance on all popular

face detection benchmarks, including WIDER FACE, FDDB, Pascal Faces, and

AFW. We achieve 95.7, 94.9 and 89.7 on easy, medium and hard WIDER FACE

val dataset. Our method also achieves APs of 99.00 and 99.60 on Pascal Faces

and AFW respectively, as well as a TPR of 98.7 on FDDB.

74

5.2 Related Work

5.2.1 Hard Example Mining

Hard example mining is an important strategy to improve model quality, and has been

studied extensively in image classification [88] and general object detection [87], [89].

The main idea is to find some hard positive and hard negative examples at each training

step, and put more effort into training on those hard examples [90], [91]. Recently,

with modern detection frameworks proposed to boost the performance, OHEM [87]

and Focal Loss [89] have been proposed to select hard examples. OHEM computes the

gradients of the networks by selecting the proposals with highest losses in every mini-

batch; while Focal Loss aims at naturally putting more focus on hard and misclassified

examples by adding a factor to the standard cross entropy criterion. However, these

algorithms mainly focus on anchor-level or proposal-level mining, and they will exhibit

less effectiveness on easy images where there are no hard anchors/proposals. In face

detection, most training images are easy as shown in Figure 5.1, while some extremely

hard images drag the final performance down. To this end, we propose to exploit hard

example mining on image level, i.e. hard image mining, to improve the quality of face

detector on extremely hard faces. Our hard image mining can be used in conjunction

with OHEM, to put more training efforts on hard images and make OHEM more

effective on the selected hard images.

5.2.2 Face Detection Architecture

Recent state-of-the-art face detectors are generally built based on Faster-RCNN [26],

R-FCN [28] or SSD [17]. SSH [32] exploits the RPN (Region Proposal Network) from

Faster-RCNN to detect faces, by building three detection feature maps and designing

six anchors with different sizes attached to the detection feature maps. S3FD [84] and

PyramidBox [82], on the other hand, adopt SSD as their detection architecture with

75

six different detection feature maps. Different from S3FD, PyramidBox exploits a

feature pyramid-style structure to combine features from different detection feature

maps. Our proposed method, on the other hand, only builds single level detection

feature map, based on VGG16, for classification and bounding-box regression, which

is both simple and effective.

5.2.3 Anchor Design and Matching

Usually, anchors are designed to have different sizes to detect objects with different

scales, in order to build a scale-invariant detector. SSD as well as its follow-up detectors

S3FD and PyramidBox, have six sets of anchors with different sizes, ranging from

(16 × 16) to (512 × 512), and their network architectures have six levels of detection

feature maps, with resolutions ranging from 1
4 to 1

128 , respectively. Similarly, SSH has

the same anchor setting, and those anchors are attached to three levels of detection

feature maps with resolutions ranging from 1
8 to 1

32 . The difference between SSH and

S3DF is that in SSH, anchors with two neighboring sizes share the same detection

feature map, while in S3DF, anchors with different sizes are attached to different

detection feature maps.

SNIP [92] discussed an alternative approach to handle scales. It showed that CNNs

are not robust to changes in scale, so training and testing on a limit range of scales

of an image pyramid can be a more optimal strategy. In this chapter, we exploit a

similar idea by limiting the anchor sizes to be (16 × 16), (32 × 32) and (64 × 64), which

correspond to only small faces. Then those faces with either too small or too big sizes

will not be matched to any of the anchors, thus will be ignored during the training

and testing. By removing those large anchors with sizes larger than (64 × 64), our

network focuses more on small faces which are potentially more difficult. To process

large faces, we use multi-scale training and testing to resize them to match our small

anchors. Experimental results show this design performs well on both small and big

76

conv4_3

conv5_3

1x1 conv
N=256

1x1 conv
N=256

Bilinear
upsample

Concat
3x3 conv
N=512

VGG16
Anchor

Classification
Head

Anchor
Regression

Head

detection feature

Figure 5.3. The framework of our face detector. We take VGG16 as our backbone CNN,
and we fuse two layers (conv4_3 and conv5_3) after dimension reduction and bilinear
upsampling, to generate the final detection feature map. Based on that, we add a detection
head for classification and bounding-box regression.

faces, although it has fewer detection feature maps and anchor sizes.

5.3 Proposed Method

In this section, we introduce our proposed method for effective face detection. We

first discuss the architecture of our detector in Subsection 5.3.1, then we elaborate our

hard image mining strategy in Subsection 5.3.2, as well as some other useful training

techniques in Subsection 5.3.3.

5.3.1 Single-level Small Face Detection Framework

The framework of our face detector is illustrated in Figure 5.3. We use VGG16

network as our backbone CNN, and combine conv4_3 and conv5_3 features, to build

the detection feature map with both low-level and high-level semantic information.

Similar to SSH [32], we apply 1×1 convolution layers on the conv4_3 and conv5_3

feature maps to reduce dimension, and then apply a 3×3 convolution layer on the

concatenation of these two dimension reduced feature maps. The output feature of

the 3×3 convolution layer is the final detection feature map, which will be fed into

the detection head for classification and bounding-box regression.

The detection feature map has a resolution of 1
8 of the original image (of size

77

low-dim
feature

Sharing w
eight

detection
feature

Anchor = 16x16

Classification

Regression

Anchor = 32x32

Classification

Regression

Anchor = 64x64

Classification

Regression

3x3 conv
N=128

3x3 conv
N=128
D=1

feature
A1

3x3 conv
N=128
D=2

feature
A2

3x3 conv
N=128
D=4

feature
A4

Figure 5.4. The framework of our dilated detection head for classification and regression.
Based on the detection feature map from the backbone CNN, we first perform dimension
reduction to reduce the number of channels from 512 to 128. Then we put three convolution
layers with the shared weight and different dilation rates, to generate final detection and
classification features.

H × W). We attach three anchors at each point in the feature map grid as the default

face detection boxes. Then we do classification and bounding-box regression on those

3 × H
8 × W

8 anchors. Unlike many other face detectors which build multiple feature

maps to detect faces with a variant range of scales, inspired by SNIP [92], faces

are trained and inferred with roughly the same scales. We only have one detection

feature map, with three sets of anchors attached to it. The anchors have sizes of

(16 × 16), (32 × 32) and (64 × 64), and the aspect ratio is set to be 1. By making

this configuration, our network only trains and infers on faces with small and medium

78

sizes; and we propose to handle large faces by shrinking the images in both training

and testing phases. We argue that there is no speed or accuracy degradation for large

faces, since inferring on the shrunken images (with the short side containing 100 or

300 pixels) is very fast, and the shrunken large faces will still have enough information

to be recognized.

To compensate for the difference of anchor sizes attached to the same detection

feature map, we propose a detection head which uses different dilation rates for anchors

with different sizes, as shown in Figure 5.4. The intuition is that in order to detect

faces with different sizes, different effective receptive field sizes are required. This

naturally requires the backbone feature map to be invariant to scales. To this end, we

adopt different dilation rates for anchors with different sizes. For anchors with size

(16 × 16), (32 × 32) and (64 × 64), we use convolution layers with a kernel size of 3

and dilation rates of 1, 2 and 4 respectively to gather input features at different scales.

These three convolution layers share the weights to reduce the model complexity. With

this design, the input of the 3 × 3 convolution, will be aligned to the same location

of faces, regardless of the size of faces and anchors. Subsection 5.5.1 will show the

effectiveness of this multi-dilation design.

5.3.2 Hard Image Mining

Different from OHEM, which selects proposals or anchors with the highest losses

within a single image, we propose a novel hard image mining strategy at the image

level within a dataset. The intuition is that most images in the dataset are very easy,

and we can achieve a very high accuracy even on the hard subset of the WIDER FACE

val dataset with our baseline model, while there are still some extremely challenging

images with occlusion, illumination, makeup and pose/scale variance. We believe not

all training images should be treated equally, and well-recognized images will not help

towards training a more robust face detector. To put more attention on training hard

79

images instead of easy ones, we use a subset D′ of all training images D, to contain

hard ones for training. At the beginning of each training epoch, we build D′ based on

the difficulty scores obtained in previous epochs.

We initially use all training images to train our model (i.e. D′ = D) for the first

epoch. This is very straightforward since our initial ImageNet pre-trained model will

only give random guess towards face detection. In this case, there is no easy image

and, every image is considered as hard image and fed to the network for training

at the first epoch. During the training procedure, we dynamically assign different

difficulty scores to each of the training images, which is defined by the metric Worst

Positive Anchor Score (WPAS):

WPAS(I; Θ) = min
a∈A(I)+

exp(l(I; Θ)a,1)
exp(l(I; Θ)a,1) + exp(l(I; Θ)a,0)

where A(I)+ is the set of positive anchors for image I, with an IoU over 0.5 against at

least one of the ground-truth boxes, l is the classification logit before the softmax layer

and l(I; Θ)a,1, l(I; Θ)a,0 are the logits of anchor a for the image I to be foreground face

and background respectively. All images are initially marked as hard, and any image

with WPAS greater than a threshold th will be regarded as easy, since all positive

anchors have been correctly recognized.

At the beginning of each epoch, we first randomly shuffle the training dataset to

generate the complete training list D = [Ii1 , Ii2 , · · · , Iin] for the following epoch of

training, where i1, · · · , in is a random permutation of 1, · · · , n. Then given an image

marked as easy, we remove it from D with a probability of p. The remaining training

list D′ = [Iiji
, Iij2

, · · · , Iijk
] (a sublist of D), which focuses more on hard images, will

be used for training at this epoch. Note that for multi-GPU training, each GPU

will maintain its own training list D′ independently. In our experiments, we set the

probability p to 0.7, and the threshold th to 0.85. We test with different p and th and

find out that the model performs consistently well when th falls between 0.3 and 0.85

80

and p falls between 0.5 and 0.7.

5.3.3 Training Strategy

5.3.3.1 Multi-scale Training and Anchor Matching

Since we only have anchors covering a limited range of face scales, we train our model

by varying the sizes of training images. During the training phase, we resize the

training images so that the short side of the image contains s pixels, where s is

randomly selected from {400, 800, 1200}. We also set an upper bound of 2000 pixels

to the long side of the image considering the GPU memory limitation.

For each anchor, we assign a label {+1, 0, −1} based on how well it matches with

any ground-truth face bounding box. If an anchor has an IoU (Intersection over Union)

over 0.5 against a ground-truth face bounding box, we assign +1 to that anchor. On

the other hand, if the IoU against any ground-truth face bounding box is lower than

0.3, we assign 0 to that anchor. All other anchors will be given −1 as the label, and

thus will be ignored in the classification loss. By doing so, we only train on faces with

designated scales. Those faces with no anchor matching will be simply ignored, since

we do not assign the anchor with largest IoU to it (thus assign the corresponding

anchor label +1) as Faster-RCNN does. This anchor matching strategy will ignore the

large faces, and our model can put more capacity on learning different face patterns

on hard small faces instead of memorizing the change in scales.

For the regression loss, all anchors with IoU greater than 0.3 against ground-truth

faces will be taken into account and contribute to the smooth ℓ1 loss. We use a smaller

threshold (i.e. 0.3) because (1) this will allow imperfectly matched anchors to be able

to localize the face, which may be useful during the testing and (2) the regression

task has less supervision since unlike classification, there are no negative anchors for

computing loss and the positive anchors are usually sparse.

81

5.3.3.2 Anchor-level Hard Example Mining

OHEM has been proven to be useful for object detection and face detection in [17],

[32], [87]. During our training, in conjunction with our newly proposed hard image

mining, we also use the traditional hard anchor mining method to focus more on the

hard and misclassified anchors. Given a training image with size H × W , there are

3× H
8 × W

8 anchors at the detection head, and we only select 256 of them to be involved

in computing the classification loss. For all positive anchors with IoU greater than 0.5

against ground-truth boxes, we select the top 64 of them with lowest confidences to be

recognized as faces. After selecting positive anchors, (256 − #pos_anchor) negative

anchors with highest face confidences are selected to compute the classification loss as

hard negative anchors. Note that we only perform OHEM for classification loss, and

we keep all anchors with IoU greater than 0.3 for computing regression loss, without

selecting a subset based on either classification loss or bounding-box regression loss.

5.3.3.3 Data Augmentation

Data augmentation is extremely useful to make the model robust to light, scale

changes and small shifts [17], [82]. In our proposed method, we exploit cropping and

photometric distortion as data augmentation. Given a training image after resizing,

we crop a patch of it with a probability of 0.5. The patch has a height of H ′ and

a width of W ′ which are independently drawn from U(0.6H, H) and U(0.6W, W),

where U is the uniform distribution and H, W are the height and width of the resized

training image. All ground-truth boxes whose centers are located inside the patch

are kept. After the random cropping, we apply photometric distortion following SSD

by randomly modifying the brightness, contrast, saturation and hue of the cropped

images.

82

5.4 Experiments

To verify the effectiveness of our model and proposed method, we conduct extensive

experiments on popular face detection benchmarks, including WIDER FACE [5],

FDDB [93], Pascal Faces [74] and AFW [75]. It is worth noting that the training is

only performed on the train set of WIDER FACE, and we use the same model for

the evaluation on all these datasets without further fine-tuning.

5.4.1 Experiment Settings

We train our model on the train subset of WIDER FACE, which has 12880 images

with 159k faces annotated. We flip all images horizontally, to double the size of the

training dataset to 25760. For each training image, we first randomly resize it, and

then we use the cropping and photometric distortion data augmentation methods

discussed in the previous section to pre-process the resized image. We use an ImageNet

pre-trained VGG16 [10] model to initialize our network backbone, and our newly

introduced layers are randomly initialized with Gaussian initialization. We train the

model with the iter-size to be 2, for 46k iterations, with a learning rate of 0.004, and

then for another 14k iterations with a smaller learning rate of 0.0004. For the training,

we use 4 GPUs to simultaneously to compute the gradient and update the weight by

synchronized SGD with Momentum [94]. The first two blocks of the VGG16 backbone

are frozen during the training, and the rest layers of VGG16 are set to have a doubled

learning rate.

Since our model is designed for and trained on only small faces, we build a multi-

scale image pyramid for testing in order to deal with faces larger than our anchors.

Specifically, we resize the testing image so that the short side contains 100, 300, 600,

1000 and 1400 pixels for the evaluation on WIDER FACE dataset. We also follow

some testing-time strategies such as horizontal flip and bounding-box voting [64] as

83

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

PyramidBox-0.961

FDNet-0.959

Ours-0.957

Zhu et al.-0.949

Face R-FCN-0.947

SFD-0.937

Face R-CNN-0.937

SSH-0.931

HR-0.925

MSCNN-0.916

CMS-RCNN-0.899

ScaleFace-0.868

Multitask Cascade CNN-0.848

LDCF+-0.790

Faceness-WIDER-0.713

Multiscale Cascade CNN-0.691

Two-stage CNN-0.681

ACF-WIDER-0.659

Figure 5.5. Precision-recall curve on the easy subset of WIDER FACE val dataset.

used in PyramidBox 2 [82].

5.4.2 Experiment Results

5.4.2.1 WIDER FACE

WIDER FACE dataset includes 3226 images and 39708 faces labelled in the val

dataset, with three subsets – easy, medium and hard. In Figure 5.5, 5.6 and 5.7,

we show the precision-recall (PR) curve and average precision (AP) for our model

compared with many other state-of-the-arts [5], [6], [32], [82], [84]–[86], [95]–[105] on

these three subsets. As we can see, our method achieves the state-of-the-art level

accuracy on the hard subset. Since the hard subset is a superset of the small and

medium subsets, and contains all faces taller than 10 pixels, the performance on hard

set can represent the performance on the full testing dataset more accurately. Our

performance on the medium subset is comparable to the most recent state-of-the-art
2https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/face_detection/widerface

_eval.py

84

https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/face_detection/widerface_eval.py
https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/face_detection/widerface_eval.py

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

PyramidBox-0.95

Ours-0.949

FDNet-0.945

Face R-FCN-0.935

Zhu et al.-0.933

SFD-0.925

Face R-CNN-0.921

SSH-0.921

HR-0.910

MSCNN-0.903

CMS-RCNN-0.874

ScaleFace-0.867

Multitask Cascade CNN-0.825

LDCF+-0.769

Multiscale Cascade CNN-0.664

Faceness-WIDER-0.634

Two-stage CNN-0.618

ACF-WIDER-0.541

Figure 5.6. Precision-recall curve on the medium subset of WIDER FACE val dataset.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

Ours-0.897

PyramidBox-0.889

FDNet-0.879

Face R-FCN-0.874

Zhu et al.-0.861

SFD-0.859

SSH-0.845

Face R-CNN-0.831

HR-0.806

MSCNN-0.802

ScaleFace-0.772

CMS-RCNN-0.624

Multitask Cascade CNN-0.598

LDCF+-0.522

Multiscale Cascade CNN-0.424

Faceness-WIDER-0.345

Two-stage CNN-0.323

ACF-WIDER-0.273

Figure 5.7. Precision-recall curve on the hard subset of WIDER FACE val dataset.

and the performance on the easy subset is a bit worse since our method focuses on

learning hard faces, and the architecture of our model is simpler compared with other

85

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

Ours-0.889

PyramidBox-0.887

FDNet-0.878

Face R-FCN-0.876

Zhu et al.-0.865

SFD-0.858

SSH-0.844

Face R-CNN-0.827

HR-0.819

MSCNN-0.809

ScaleFace-0.764

CMS-RCNN-0.643

Multitask Cascade CNN-0.607

LDCF+-0.564

Multiscale Cascade CNN-0.400

Faceness-WIDER-0.315

Two-stage CNN-0.304

ACF-WIDER-0.290

Figure 5.8. Precision-recall curve on the hard subset of WIDER FACE test dataset.

state-of-the-arts.

In addition to the val dataset, there is also a WIDER FACE test dataset with

no annotations provided publicly. It contains 16097 images, and is evaluated by the

official WIDER FACE author team. We report the performance of our method at

Figure 5.8 for the hard subset.

5.4.2.2 FDDB

FDDB dataset includes 5171 faces annotated on a set of 2845 images, and we use our

model trained on WIDER FACE train subset to conduct the inference and evaluation

for the FDDB dataset. We use the raw rectangular bounding-box result without fitting

it into ellipse to compute ROC. We show the discontinuous ROC curve at Figure 5.9

compared with other state-of-the-arts [74], [75], [82], [84], [103], [106]–[109], and our

method achieves a very strong performance with a TPR of 98.7% under the constraint

of having 1000 false positive predictions.

86

0 250 500 750 1000 1250 1500 1750 2000
False positives

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Ours (0.987)
PyramidBox (0.987)
SFD (0.983)
FD-CNN (0.926)
HeadHunter (0.871)
DPM (0.864)
SquaresChnFtrs-5 (0.858)
Structured Models (0.846)
Olaworks (0.843)
Face++ (0.839)
SURF Cascade multiview (0.837)

PEP-Adapt (0.809)
XZJY (0.786)
Shen et al. (0.777)
TSM (0.766)
Segui et al (0.761)
Li et al (0.760)
Illuxtech (0.718)
Jain et al (0.677)
Subburaman et al (0.630)
Viola Jones (0.597)
Mikolajczyk et al (0.548)

Figure 5.9. Receiver operating characteristic curve on the FDDB dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Ours (AP 99.00)
SFD (AP 98.49)
DPM (AP 90.29)
Headhunter (AP 89.63)
SquaresChnFtrs-5 (AP 85.57)
Face++

Figure 5.10. Precision-recall curve on the Pascal Faces dataset.

87

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SFD (AP 99.85)
Ours (AP 99.60)
DPM (AP 97.21)
Headhunter (AP 97.14)
SquaresChnFtrs-5 (AP 95.24)
Shen et al. (AP 89.03)
TSM (AP 87.99)
Face.com
Face++
Picasa

Figure 5.11. Precision-recall curve on the AFW dataset.

5.4.2.3 Pascal Faces

Pascal Faces dataset includes 1335 labeled faces on a set of 851 images extracted

from the Pascal VOC dataset. We show the PR curve at Figure 5.10 compared

with [84], [107], and our method achieves a new state-of-the-art performance of 99.0.

5.4.2.4 AFW

AFW dataset includes 473 faces labelled in a set of 205 images. As shown in Figure 5.11

compared with [75], [84], [107], [108], our method achieves state-of-the-art and almost

perfect performance, with an AP of 99.60.

88

Method easy medium hard
Baseline-Three 95.0 93.8 88.5
+ HIM 95.5 94.5 89.0
Baseline-Single 95.1 94.2 89.1
+ HIM 95.4 94.8 89.6
+ DH 95.4 94.5 89.3
+ DH + HIM 95.7 94.9 89.7

Table 5.1. Ablation experiments. Baseline-Three is a face detector similar to SSH with
three detection feature maps trained with the same hyperparameters. Baseline-Single is
our proposed detector with single detection feature map shown in Figure 5.3. HIM and
DH represents hard image mining and dilated head architecture (Figure 5.4). The same
testing strategy is used for all entries.

5.5 Ablation Study and Diagnosis

5.5.1 Ablation Experiments

In order to verify the performance of our single level face detector, as well as the

effectiveness of our proposed hard image mining, the dilated-head architecture for

anchor box classification and regression, we conduct various ablation experiments on the

WIDER FACE val dataset. All results are summarized in Table 5.1. From Table 5.1,

we can see that our single level baseline model can already achieve performance

comparable to the current state-of-the-art face detector, especially on the hard subset.

Our model with single detection feature map performs better than the one with three

detection feature maps, despite its shallower structure, fewer parameters and anchors.

This confirms the effectiveness of our simple face detector with single detection feature

map focusing on small faces.

We also separately verify our newly proposed hard image mining (HIM) and

dilated head architecture (DH). HIM can improve the performance on the hard subset

significantly without involving more complex network architecture nor computation

overhead, and this benefit holds for both our three-level baseline and single-level

baseline. DH itself can also boost the performance, which shows the effectiveness

89

th 0.0 0.3 0.5 0.85 0.95 1.0
AP@hard 89.0 89.4 89.4 89.6 89.1 89.1
p 0.0 0.3 0.5 0.7 0.9 1.0
AP@hard 89.1 89.2 89.4 89.6 89.2 87.6

Table 5.2. Hyper-parameter ablation study. All experiments are conducted for the
Baseline-Single+HIM version described in 5.5.1. When diagnosing the effect of th and
p, the other hyperparameter p and th are fixed to the best values (i.e., 0.7 and 0.85)
respectively.

of designing larger receptive field sizes for larger anchors. Combining HIM and DH

together can achieve the best performance, as shown in the last row.

5.5.2 Diagnosis of Hyperparameters

In this subsection we diagnose how the hyperparameters affect the model quality.

Our method is not sensitive to the hyperparameters in a certain range, as shown in

the ablation study (Table 5.2). When 0.3 ≤ th ≤ 0.85, our method yields a large

performance gain consistently, except for when th is too high or too low, since th

with extreme values (i.e., close to 0 or 1) makes all images are considered as easy or

hard equally regardless of their actual difficulties. For the hyperparameter p, a similar

tendency remains. Only when p = 1.0, the performance goes down drastically since

those easy images will no longer be trained and the training images are limited to the

hard ones, otherwise our method produces consistent performance gain.

5.5.3 Diagnosis of OHEM as Hard Face Mining

In this subsection we investigate the possibility of modifying online hard example

mining (OHEM) [87], by deliberately ignoring easy faces in each training image and

keeping only hard positive proposals/anchors in the training, to make the network

focus more on hard faces. Note that in our original implementation of OHEM as

described in Subsection 5.3.3, we select the top 64 hardest positive anchors for each

training image, which cover all ground-truth faces regardless of their difficulties in

90

Method easy medium hard
Baseline-Single 95.1 94.2 89.1
+ HIM 95.4 94.8 89.6
+ OHEM_HARD_FACE 95.0 94.2 89.1

Table 5.3. Diagnose of using OHEM to mine hard faces. All entries are based on the
Baseline-Single+HIM version described in 5.5.1.

PD Crop easy medium hard
No No 94.5 93.9 88.4
Yes No 94.5 94.1 88.8
Yes Yes 95.1 94.2 89.1

Table 5.4. Diagnosis of data augmentation. PD indicates photometric distortion. All
entries are based on our Baseline-SingleLevel configuration without HIM and DH.

most cases. In this ablation, we modify the OHEM to mimic the settings used for

HIM (see 5.3.2), and disable a positive anchor with a probability of p if the score of

that positive anchor is greater than th, where p is 0.7 and th is 0.85. All other settings

are kept the same and we do not use the dilated head architecture (DH) here. The

results are summarized in Table 5.3, and the performance of using OHEM to mine

hard faces (listed as OHEM_HARD_FACE in the table) is inferior compared with

our HIM. It confirms our intuition that most images are easy without hard faces, and

mining hard faces on those easy images is not helpful to train a more robust detector,

so it is important to select and focus on hard images.

5.5.4 Diagnosis of Data Augmentation

We investigate the effectiveness of the photometric distortion as well as the cropping

mechanisms as discussed in Subsection 5.3.3.3. The ablation results evaluated on

WIDER FACE val dataset are shown in Table 5.4. Both photometric distortion and

cropping can contribute to a more robust face detector.

91

Testing Scales (x100) easy medium hard
[6, 10, 14] 78.2 85.7 86.1
[3, 6, 10, 14] 91.3 92.6 88.8
[1, 3, 6, 10, 14] 95.7 94.9 89.7

Table 5.5. Diagnosis of multi-scale testing. All results are evaluated with the same model
with HIM and DH.

5.5.5 Diagnosis of Multi-scale Testing

Our face detector with one detection feature map is designed for small face detection,

and our anchors are only capable of capturing faces with sizes ranging from (16 × 16)

to (64 × 64). As a result, it is critical to adopt multi-scale testing to deal with

large faces. Different from SSH, S3FD and PyramidBox, our testing image pyramid

includes some extremely small scales (i.e. short side contains only 100 or 300 pixels).

In Table 5.5, we show the effectiveness of these extremely small scales to deal with

easy and large images. Our full-size version evaluation resizes the image so that the

short side contains 100, 300, 600, 1000 and 1400 pixels respectively, to build an image

pyramid. We diagnose the impact of the extra small scales (i.e. 100 and 300) by

removing them from the image pyramid.

As shown in Table 5.5, the extra small scales are crucial to detect easy faces.

Without resizing the short side to contain 100 and 300 pixels, the performance on

easy subset is only 78.2, which is even lower than the performance on medium and

hard which contain much harder faces. We will show in the next subsection that these

extra small scales (100 and 300) lead to negligible computation overhead, due to the

lower resolution.

5.5.6 Analysis of Accuracy/Speed Trade-off

We evaluate the speed of our method as well as some other popular face detectors

in Table 5.6. For fair comparison, we run all methods on the same machine, with a

92

Method MS HF Time G-Mem AP-h
SSH Yes No 1.00 6.1 84.5
S3FD Yes Yes 1.34 6.2 85.2
PyramidBox Yes Yes 2.24 11.9 88.9
Ours∗ Yes∗ Yes 1.59 5.3 86.1
Ours Yes No 0.84 5.3 89.3
Ours Yes Yes 1.70 5.3 89.7

Table 5.6. Diagnosis of inference speed. MS and HF indicate multi-scale testing and
horizontal flip; Time is the inference time (in second) for a single image; G-Mem is the
GPU memory usage in gigabyte; AP-h is the average precision on the hard subset of
WIDER FACE val set. Ours∗ indicates our detector without extra small scales. All entries
are evaluated with a single nVIDIA Titan X Maxwell.

single Titan X Maxwell GPU, and Intel Core i7-4770K 3.50GHz. All methods except

for PyramidBox are based on Caffe1 implementation, which is compiled with CUDA

9.0 and CUDNN 7. For PyramidBox, we follow the official fluid code and the default

configurations3. We use the official PaddlePaddle with CUDA 9.0 and CUDNN 74.

For SSH, S3FD and Pyramid, we use the official inference code and configurations.

For SSH, we use multi-scale testing with the short side containing 500, 800, 1200 and

1600 pixels, and for S3FD, we execute the official evaluation code with both multi-scale

testing and horizontal flip. PyramidBox takes a similar testing configuration as S3FD.

As shown in Table 5.6, our detector can outperform SSH, S3FD and PyramidBox

significantly with a smaller inference time. Based on that, using horizontal flip can

further improve the performance slightly. In terms of GPU memory usage, our method

uses only a half of what PyramidBox occupies, while achieving better performance.

Ours∗ in Table 5.6 indicates our method without extra small scales in inference,

i.e., evaluated with scales [600, 1000, 1400]. It is only 6.5% faster than evaluation with

[100, 300, 600, 1000, 1400] (1.59 compared with 1.70). This confirms that although

our face detector is only trained on small faces, it can perform well on large faces, by
3https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/face_detection/widerface

_eval.py
4pip install paddlepaddle-gpu

93

https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/face_detection/widerface_eval.py
https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/face_detection/widerface_eval.py

Figure 5.12. Qualitative example. Left-upper: baseline. Right-upper: +DH. Left-
lower: +DH+HIM. The first three subfigures are the results on the same image, and the
differences are highlighted by red arrows. Right-lower: Large face detected by our final
model. Detected boxes with scores greater than 0.5 are plotted.

simply shrinking the testing image with negligible computation overhead.

5.5.7 Qualitative Examples

We show qualitative examples in Fig 5.12. It is observed from the first three subfigures

(with differences highlighted by red arrows) that both DH and HIM can improve

detection quality especially for hard faces. In the lower-right subfigure, we also show

an example of detecting large face. As we explained, the image will be shrunk and

then the faces will be successfully detected.

94

5.6 Conclusion and Future Works

To conclude, we propose a novel face detector to focus on learning small faces on hard

images, which achieves superior performance on all popular face detection benchmarks.

We identify that there are many easy training images with no hard faces which are less

useful to build a robust detector, and traditional online hard example mining (OHEM)

is unable to handle this imbalance between images. Based on this, we propose a hard

image mining strategy by dynamically assigning difficulty scores to training images,

and re-sampling subsets with more hard images and fewer easy images for training

at each epoch. We also design a single-stage face detector with only one detection

feature map, to train and test on small faces. With these designs, our model can put

more attention on learning small hard faces instead of memorizing change of scales.

Extensive experiments and ablations have been carried out to show the effectiveness

of our method, and our face detector achieves the state-of-the-art performance on all

popular face detection benchmarks, including WIDER FACE, FDDB, Pascal Faces

and AFW. Our face detector also enjoys a fast multi-scale inference speed and less

GPU memory usage. Our proposed method is flexible and can be applied to other

backbones and tasks, which we remain as future work.

The proposed method improves the training strategy for more focuses on the hard

images, but it does not improve its capability of dealing with hard images, since the

model architecture remains unchanged. I.e., for the extremely hard faces, the model

may be inherently incapable of learning to detect them. So in addition to putting more

attentions on hard faces, we also need to improve the network architecture designs

for learning them. Possible extension directions could be recovering/reconstructing

clearer/larger faces for the hard ones our algorithm identified [110], and redesigning

the detection anchors for the hard faces [85].

95

Chapter 6

Efficiently Bridging 3D Context
For Lesion Detection in CT Images

Except for face detection, another important application of object detection lies in

computer-aided medical diagnosis, which can help to reduce the workload of doctors

and conduct medical examinations for more people. In this chapter, we put our

focus on this direction, and investigate some unique properties and challenges for

it. To be specific, we investigate how to efficiently and effectively incorporating 3D

context information for object detections in medical images, of which 3D information

are prevalent. Lesion detection in CT (computed tomography) scan images is an

important yet challenging task due to the low contrast of soft tissues and similar

appearance between lesion and the background. Exploiting 3D context information

from neighboring slices has been studied extensively to improve detection accuracy.

However, previous methods either use a pure 3D CNN which is less computationally

efficient and cannot take use of pre-trained 2D weights; or simply concatenate feature

maps of independent 2D CNNs to obtain 3D context information, which is less effective

to capture 3D knowledge. To address these issues, we design a hybrid detector to

combine benefits from both of the above methods. We propose to build several

light-weighted 3D CNNs as subnets to bridge 2D CNNs’ intermediate features, so

that 2D CNNs are connected with each other and interchange 3D context information

96

while running the feed-forwarding pass. Comprehensive experiments in the publicly

available DeepLesion dataset show that our method can combine 3D knowledge

effectively and provide higher quality backbone features. Our detector surpasses the

current state-of-the-art by a large margin with comparable speed and GPU memory

consumption.

6.1 Motivation and Overview

Lesion detection is an essential task for clinical applications such as computer-aided

diagnosis. With the emergence of modern CNNs, object detection in 2D natural

images has been developed quickly and achieves promising performance [17], [21],

[26], [28]. However, it is still unclear how to adapt these algorithms into CT scans

effectively. The main gap is how to efficiently involve 3D context information into

these detectors. This problem has attracted many research attentions [36], [111], [112],

due to its importance for the success of lesion detection.

Current solutions come in two folds. One uses fully 3D-connected CNNs, which can

directly exploit 3D knowledge, for classification and regression. However, this method

conducts 3D convolution throughout the network and is less computational efficient. It

is also unable to make use of ImageNet pre-trained weights, thus only achieves inferior

lesion detection accuracy as discussed in [36]. To alleviate the issues of 3D CNNs, other

studies are exploring how to combine 2D CNN features from consecutive CT slices

for classification and regression, so as to better utilize the 3D context information.

Yan et al. [36] follows R-FCN [28] which uses a Region Proposal Network (RPN) to

predict suspicious regions (i.e. proposals) and a Region Classification Network (RCN)

to further classify and regress those suspicious regions. [36] proposes to concatenate

backbone feature maps from neighboring CT slices to feed into RCN, in order to

gather 3D information in the RCN subnet. Under this pipeline, a backbone network

can take the whole CT scans as the input and can be trained in an end-to-end

97

manner, from ImageNet pre-trained weights. However, the backbone networks are

still independent 2D CNNs, and no 3D information can be aggregated until the final

backbone features are computed. Another possible deficiency is that the central CT

slice and the contextual CT slices share symmetric architectures and weights, which

may be less optimal since we expect to distill different and complementary knowledge

from those different slices.

We propose a hybrid detector combining advantages of fully 3D-connected CNN

detectors (strong knowledge of 3D context) [111], [112] and 2D CNN concatenated

detectors (efficiency and ability to use ImageNet pre-trained weights) [36]. Similar

to [36], we use 2D CNNs for CT slices at different axial locations as our backbone.

However, as discussed before, this is less optimal since these isolated 2D CNNs cannot

extract and exploit 3D context information. To address this problem, we propose

light-weighted 3D CNN subnets named 3D Fusion Modules (3DFMs) to bridge those

2D CNNs, allowing information to flow in-between different slices. These subnets

connect the internal layers of 2D CNNs, so that each 2D CNN can distill knowledge

from its neighbor 2D CNNs, to exploit 3D information and focus on different knowledge.

The main difference between [36] and our method is that in [36], the 3D context

information is not exploited in the layers before the RCN, and the RCN cannot fully

utilize 3D context since the its input features only have high-level semantics without

low-level details, and the RCN has a very shallow structure which is incapable of

learning rich 3D information; on the contrary, in our method, the 3D information is

exploited gradually throughout our backbone CNNs, and 3DFMs learn 3D information

at low-level, mid-level and high-level layers. Our design breaks the isolation among

2D CNNs, and enables them to distill different knowledge from different input slices,

thus the backbone provides stronger features with richer 3D context encoded.

3DFMs introduce only a few parameters and a small computation overhead, while

greatly improve the detection accuracy. Experiments on DeepLesion [15] show our

98

pool1 pool2 pool3 conv4_3 conv5_3

3DFM

3D-enhanced
pool3

3DFM

3D-enhanced
conv4_3

concated
conv5_3

conv

backbone
feature

3-channel
images

Figure 6.1. Backbone of our hybrid lesion detector. Different rows illustrate different 2D
CNNs for the corresponding images. The ground-truth boxes are labelled in the central
image (with red boundary) and other 3-channel images (with yellow boundary) are served
as 3D context. The central conv5_3 feature (marked in green) is used in RPN and the
fused feature (marked in blue) is used in RCN. Best view in color.

hybrid detector significantly improves the sensitivities at every false positive (FP) rate

and on every lesion type. With 27 CT scan slices as input, hybrid detector improves

the average sensitivities by 1.4 and the sensitivity at 1
8 FP per image by 2.7. Our

method surpasses [36] and achieves a new state-of-the-art.

6.2 Methodology

6.2.1 Overview Pipeline

The backbone of our detector is shown in Figure 6.1. Following [36], to make use

of ImageNet pre-trained weights, we combine 3 adjacent CT slices into a 3-channel

input like a natural image, to feed to VGG16 [11], which serves as the backbone 2D

CNN of our detector. When considering more 3D context, we combine context slices

into 3-channel images and feed them to different VGG16 branches. Each VGG16

branch takes a 3-channel image as input, and generates a conv5_3 feature map as

output. The conv5_3 feature from the central slice (marked in green) is used in the

Region Proposal Network (RPN) to generate proposals, and the concatenation of

conv5_3 features from all slices (marked in blue) is used in the Region Classification

Network (RCN) to classify and regress proposals. However, unlike [36], where 2D

99

conv
conv

conv

Proposal
Classification

Proposal
Regression

ROI
Align …

fc

fc

Lesion
Classification

Lesion
Regression

conv5_3

backbone
feature

Figure 6.2. RPN (in the top row) and RCN (in the bottom row) sub-networks.

CNNs feed-forward isolatedly, we use a novel and efficient 3D Fusion Module (3DFM)

to bridge internal features from different 2D CNNs to build a hybrid backbone. The

hybrid detector backbone can better exploit 3D context and make different 2D CNNs

to learn different patterns, while utilizing ImageNet pre-trained weights. Details of

3DFM are discussed in Subsection 6.2.2.

Given the backbone of our hybrid lesion detector, we follow [26] to employ an

RPN and an RCN to generate and classify proposals. As Figure 6.2 shows, we use

the conv5_3 feature of the central branch (marked in green) to generate proposals,

by performing anchor classification and regression on each feature grid, and use

ROIAlign [13] to generate features from the concatenated feature of different branches

(marked in blue), for each proposal. Finally, those features are used to classify and

regress the proposals by the detection head, and generate lesion detection results.

6.2.2 3D Fusion Module

3D context has been shown to be extremely important to detect objects in CT scan

images [36], [111], [112]. However, existing methods to utilize 3D information are either

computationally expensive and cannot make use of ImageNet pre-trained weights, or

inefficient which naively concatenate features from different slices. In this chapter, we

100

⨁

⨁

⨁
⨁

⨁

A:KCHW B:CKHW

…

C:CKHW

…

D:KCHW E:KCHW

Transpose 3D Conv Transpose Skip-connection

Figure 6.3. 3D Fusion Module. K is 5 in this example.

propose an efficient and computationally cheap 3D Fusion Module (3DFM), as shown

in Figure 6.3, to combine 3D context information in the backbone 2D CNNs.

3DFM takes internal features (Ai ∈ RC×H×W , where C, H and W are the channel,

height and width of the feature map) from the backbone CNNs as inputs, as shown in

the first column in Figure 6.3. Given K 2D backbones, there will be K intermediate

features for the input, and each of them is generated from a 3-channel CT image as

shown in Figure 6.1. We first concatenate them to build a 4D tensor A ∈ RK×C×H×W ,

and transpose it make the channel to be the first dimension (B ∈ RC×K×H×W), as

shown in the second column in Figure 6.3. A 3D convolution is used to gather 3D

context information to generate a 3D fused feature map C ∈ RC×K×H×W . The kernel

size is 3 × 1 × 1 corresponding to the K, H and W dimensions, so we are utilizing

the context along the axial direction by convolving across neighbor slices. We use

3 × 1 × 1 instead of 3 × 3 × 3 because the context along the other two directions is

already considered in the 2D convolutions in the backbone CNN, and thus we only

need to consider the axial direction to reduce computation/memory overhead. Finally

C is transposed backed to K × C × H × W as D, and the sum of A and D (noted as

E) is split to K feature maps with shape C × H × W , which are used in the backbone

101

2D CNNs for future processing.

3DFM is flexible and can be inserted anywhere in the backbone CNNs to fuse the

3D information. In our detector, we insert 3DFMs in a sparse manner: only at the

pool3 and conv4_3 layers in VGG16, as in Figure 6.1. These 3DFMs will combine

those independent 2D VGG16 branches into a sparsely bridged 3D CNN, which will

serve as the backbone CNN of our detector. Extensive experiments show our design is

light-weighted and takes very little computation/memory overhead, while effectively

exploiting 3D context knowledge and improving the accuracy significantly.

6.3 Experiments

6.3.1 Implementation Details

Our hybrid detector is implemented with Tensorflow [113]. We use VGG16 as our

backbone CNN, and remove the pool4 layer to keep the output resolution to be 1
8 of

the input image. We take the same CT scan image preprocessing as in [36], which

rescales the CT intensity to 0-255, resizes the images and clips the black border. We

use the horizontal flip data augmentation which is very common for object detection.

For each input example, we take adjacent 3, 9, 15, 21 or 27 CT slices to generate

1, 3, 5, 7 or 9 input images with 3 channels each, to evaluate the efficacy of hybrid

detector at different 3D context richness levels, and to make a fair comparison with

the current state-of-the-art 3DCE [36]. For the training, we take a batch size of 2, and

train the hybrid detector for 120k iterations. The initial learning rate is 10−3 and is

reduced to 10−4 after the first 90k iterations. We take the official train/test subset

split to train and report accuracy. Comprehensive experiments and ablation studies

are reported in the following subsections.

102

Settings 0.125 0.25 0.5 1 AVG@0.125:82 4 8 16

Baseline - 3 slices 31.52 43.95 57.19 68.51 64.2877.47 83.59 87.77 90.66

3DCE [36] - 9 slices - - 59.32 70.68 -79.09 84.34 87.81 89.62

Baseline - 9 slices 35.48 48.84 62.42 73.06 67.9480.73 85.82 89.22 91.21

Hybrid - 9 slices 38.25 50.66 62.97 73.20 68.6580.66 85.80 89.04 91.21

Baseline - 15 slices 37.53 51.23 63.97 74.53 69.1781.39 86.15 89.37 91.28

Hybrid - 15 slices 40.33 53.01 65.26 75.78 70.4982.44 86.84 89.76 91.69

Baseline - 21 slices 38.81 52.32 64.93 75.25 69.9382.19 86.61 89.44 91.25

Hybrid - 21 slices 40.74 53.80 66.06 75.66 70.7982.60 86.88 89.79 91.62

3DCE [36] - 27 slices - - 62.48 73.37 -80.70 85.65 89.09 91.06

Baseline - 27 slices 38.43 52.09 65.03 75.10 69.6781.88 86.05 89.10 91.05

Hybrid - 27 slices 41.12 53.83 66.32 76.27 71.0482.89 87.01 89.84 91.69

Table 6.1. Performance (%) on the test split for DeepLesion dataset. 0.125, · · · , 16
represent the number of FPs per image.

6.3.2 Experiment Results

To evaluate the efficacy of our method, we conduct extensive experiments on DeepLe-

sion [15]. Following the metric used in LUNA challenge [114], we compute the

sensitivity at 7 pre-defined false positive (FP) per image rates: 1
8 , 1

4 , 1
2 , 1, 2, 4 and 8

FPs per input example, as well as the average sensitivity at these 7 pre-defined FP

rates. We also compute the sensitivity at the FP per image rate of 16, to compare

with the 3DCE [36]. For all our baselines and hybrid detectors, we train and evaluate

for four times, and report the average performance, to alleviate the randomness caused

by initialization and training data shuffling.

103

0.125 0.25 0.5 1 2 4 8 16
Number of FPs

0.3

0.4

0.5

0.6

0.7

0.8

0.9
S

en
si

ti
vi

ty

Baseline - 15 slices
Hybrid - 15 slices
Baseline - 21 slices
Hybrid - 21 slices
Baseline - 27 slices
Hybrid - 27 slices

Figure 6.4. FROCs of Baseline and Baseline+3DFM (Hybrid). Best view in color.

The results on the official test set are shown in Table 6.1. We compare our method

with our Faster-RCNN [26] based baseline, as well as 3DCE which is the current

state-of-the-art and already surpasses fully 3D-connected detectors. ‘Baseline’ in the

table is a Faster-RCNN based detector with feature concatenation after the backbone

CNN, and ‘Hybrid’ is ‘Baseline’ equipped with 3DFMs illustrated in Figure 6.3. We

also plot the free-response receiver operating characteristic (FROC) curves for our

baseline and hybrid detectors in Figure 6.4. In the table and figure, we find that our

hybrid detector with 3DFM is very effective in improving the detection quality. The

sensitivity consistently goes up at all FP rate levels significantly with 27 slices as

input, especially in the high precision case (i.e. fewer FPs per image). For example,

our method outperforms the baseline by a relative improvement of 7% (38.43 vs 41.12)

when the number of false positives is limited to 0.125 in average per input example

104

Settings AVG@0.125:8 Runtime (s) FPS GPU memory (GB)
Baseline - 9 slices 67.94 246 19.58 0.455
Hybrid - 9 slices 68.65 256 18.82 0.459

Baseline - 15 slices 69.17 345 13.96 0.693
Hybrid - 15 slices 70.49 369 13.05 0.696
Baseline - 21 slices 69.93 452 10.66 0.930
Hybrid - 21 slices 70.79 479 10.06 0.934
Baseline - 27 slices 69.67 564 8.54 1.167
Hybrid - 27 slices 71.04 608 7.92 1.171

Table 6.2. Performance on the official test split for DeepLesion dataset.

with 27 slices. Our hybrid detector surpasses 3DCE greatly with the same train/test

sets and achieves a new state-of-the-art.

6.4 Ablation Studies

6.4.1 Inference Speed and Memory Overhead

Our 3D Fusion Modules (3DFMs) efficiently combine 3D context information in the

backbone 2D CNNs. To quantitatively evaluate the computation/memory overhead,

we run all our baselines and detectors on a machine with a single nVIDIA Titan Xp

GPU. We report the total runtime for the official test set (4817 samples) and the

max GPU memory consumed for inference. Results are shown in Table 6.2. It can

be found that our 3DFMs introduce very small computation overhead and negligible

GPU memory overhead. ‘Hybrid - 15 slices’ can even surpass ‘Baseline - 27 slices’ with

much fewer input slices and faster speed. This verifies the efficiency of our method,

which enables our method to be applied to larger and more complex datasets.

6.4.2 Architecture of 3DFM

In this subsection, we compare our 3D Fusion Module with some other potential

architectures combining 3D context information:

• 3DFM Without Skip Connection: the 3D context information bridging module

105

Settings 0.125 0.25 0.5 1 AVG@0.125:82 4 8 16

Baseline 38.43 52.09 65.03 75.10 69.6781.88 86.06 89.10 91.05

Hybrid (Ours) 41.12 53.83 66.32 76.27 71.0482.89 87.01 89.84 91.69

W/O Skip Connection 42.10 54.22 66.29 75.15 70.6681.79 86.11 88.93 90.78

W/O 3D Conv 39.96 53.46 65.66 75.36 70.4081.96 86.72 89.71 91.56

3DFM@4 40.56 53.37 65.62 75.91 70.6282.49 86.77 89.56 91.57

3DFM@234 40.87 54.27 66.45 76.35 71.1782.90 87.18 90.15 92.00

Table 6.3. Ablation of 3DFM architecture and the number of 3DFM Instances. See
details in Subsection 6.4.2 and 6.4.3.

is the same as 3DFM (see Figure 6.3), but does not have the skip connection to

combine the original backbone features with the 3D fused features.

• 3DFM Without 3D Conv: the 3D context information bridging module con-

catenates the K backbone features with size of C × H × W to a thicker tensor

KC × H × W , and takes a 1 × 1 2D Conv to fuse information from different

slices. Note that in this implementation, the 3D information is also learnt, but

in a different and fuzzier way.

All experiments are conducted on the 27-slice inputs, and results are summarized in

Table 6.3. Both architectures described above achieve inferior performance compare

with our proposed method: without skip connection, it has lower sensitivities at high

FP levels (i.e. with more than 2 false positives per input example) even compared

with our baseline detector; and using 2D Conv on a concatenated feature map leads

to inferior sensitivities for all FP levels.

106

Type BN AB ME LV LU KD ST PV
Baseline 72.69 84.07 87.27 90.04 89.70 85.73 76.99 83.50

Hybrid (Ours) 73.84 84.63 88.43 91.14 90.50 86.16 77.91 85.64

Table 6.4. Sensitivities of different types of lesion at 4 false positive per image. Our
detector outperforms baseline on all 8 types.

6.4.3 Number of 3DFM Instances

3DFMs can bridge the 3D context information in the 2D CNN backbones, and can be

inserted anywhere in the 2D CNNs. In our final detector, we insert 3DFMs at the

pool3 and conv4_3 layers in VGG16 as in Figure 6.1. We also conduct diagnostic

experiments by 1) inserting 3DFM at only conv4_3 layer and 2) inserting 3DFMs at

pool2, pool3 and conv4_3 layers. Results are listed as ‘3DFM@4’ and ‘3DFM@234’ in

Table 6.3. Compared with ‘3DFM@4’, adding another 3DFM at pool3 significantly

improve the performance from 70.62 to 71.04. However, adding an extra 3DFM at

pool2 will only give a marginal performance gain. For simplicity, we use only two

3DFMs in our final detector.

6.4.4 Analysis on Different Lesion Types

We test our hybrid detector on different lesion types in DeepLesion [15]. There are 8

types of lesion labelled in the dataset, and the abbreviations are in the parentheses:

bone (BN), abdomen (AB), mediastinum (ME), liver (LV), lung (LU), kidney (KD),

soft tissue (ST) and pelvis (PV). In Table 6.4, we evaluate the sensitivities of our

baseline detector and our hybrid detector equipped with 3DFM, at the threshold of

4 FPs per image (given input examples of 27 slices). The results further confirm

that our hybrid detector can improve the detection quality under all 8 lesion types,

thus it is very general with consistent gains. We also show some qualitative results

in Figure 6.5, where our baseline detector fails to detect the lesion, but the 3DFM

equipped hybrid detector detects them with scores greater than 0.9 at 4 FP per image

107

Figure 6.5. Detection examples of eight types. Yellow and blue boxes are for ground-truth
and detection result. All examples are detected by our hybrid detector while missed by our
baseline detector.

threshold. We observe that our detector is able to find difficult lesions such as small

or low-contrast lesions.

108

6.5 Conclusion and Future Works

In this chapter, we focus on applying object detection for medical image analysis,

especially for lesion detection given CT scan images. In order to make better use of

the 3D context information existing in the CT scans, we propose a hybrid detector

which bridges 3D context information in 2D CNN backbones. Based on a baseline

detector which takes adjacent CT scan images independently with the same 2D CNN,

we enhance the backbone feature quality by fusing 3D context knowledge via 3DFMs,

which are designed and built to be lightweight and effective. Extensive experiments

have been conducted on the DeepLesion dataset to show the efficacy of our hybrid

detector, which improves the sensitivity at all false positive levels. The improvement

is consistent under different settings (e.g., number of input slices and lesion types).

Qualitative analysis also suggests that our method outperforms the baseline method

even for some extremely difficult cases. Our approach surpasses existing methods and

thus establishes a new state-of-the-art. The superior performance demonstrates its

potential usage for different clinical applications.

Future works could lie in automatically searching the architecture which has the

strongest ability of exploiting 3D information among the input slices. This currently

proposed method is manually designed and hand-crafted. It could not be guaranteed

to be optimal, and different datasets may require different designs. A better and more

universal strategy could be neural architecture search [115], which can determine 2D,

3D or pseudo 3D convolutions at each layer automatically.

109

Chapter 7

Spatio-Temporal-Interactive
Network for Pedestrian Detection
and Trajectory Prediction

Recently, more and more research attention has been attracted by autonomous driving,

in which object detection plays an important role. One of the fundamental differences

for detection in autonomous driving is the temporal information, as the inputs come in

as sequences naturally. On the one hand, we have access to both the past and current

information which is much richer than the tasks discussed in the previous chapters;

on the other hand, we need to detect objects for both current and future frames, and

it could be a much harder task. In this chapter, we focus on the aforementioned issue

by investigating object detection in a sequence of frames and extend the detection

from observed (i.e. current) frames into future frames, i.e., predicting objects’ future

trajectory. Specifically, we tackle the problem of detecting pedestrians and predicting

future trajectories for them. It is a critical task for numerous applications, including

but not limited to autonomous driving. Previous methods either treat the detection

and prediction as separate tasks which are not end-to-end trainable, or simply add a

trajectory regression head on top of a detector which could not capture the detailed

information before making predictions. In this work, we present a novel end-to-end

two-stage network: Spatio-Temporal-Interactive Network (STINet). In addition to 3D

110

geometry modeling of pedestrians, we model the temporal information for each of the

pedestrians. To do so, our method predicts both current and past locations in the

first stage, so that each pedestrian can be linked across frames and the comprehensive

spatio-temporal information can be captured in the second stage. Also, we model

the interaction among objects with an interaction graph, to gather the information

among the neighboring objects. Comprehensive experiments on the Lyft Dataset and

the recently released large-scale Waymo Open Dataset for both object detection and

future trajectory prediction validate the effectiveness of the proposed method. For the

Waymo Open Dataset, we achieve a bird-eyes-view (BEV) detection AP of 80.73 and

trajectory prediction average displacement error (ADE) of 33.67cm for pedestrians,

which establish the state-of-the-art for both tasks.

7.1 Motivation and Overview

To drive safely and smoothly, self-driving cars (SDC) not only need to detect where

the objects are at the current frame (i.e. object detection), but also need to predict

where they will be in the future (i.e. trajectory prediction). Among different objects,

pedestrian is an important and difficult type. The difficulty comes from the compli-

cated properties of pedestrian appearance and behavior, e.g. articulate shape and

interpersonal relations [116]. In this chapter, we tackle the problem of joint pedestrian

detection and trajectory prediction from a sequence of point clouds, as illustrated in

Figure 7.1.

Traditionally, this problem is tackled by dividing the perception pipeline into mul-

tiple modules: object detection [17], [20], [21], [26], [41], [43], [44], [89], tracking [117]

and trajectory prediction [116], [118], [119]; latter modules take the outputs from the

former modules. Although such strategy makes each sub-module easy to design and

implement, it sacrifices the potential advantage of joint optimization. Latter modules

can lose critical information bottle-necked by the interfaces between sub-modules, e.g.

111

Figure 7.1. Given a sequence of current and past point clouds, our task is to detect
pedestrians in the current frame, and predict the future trajectory of them. In this figure,
white points are input point cloud sequence (stacked for visualization), yellow boxes are
detected objects, and the cyan lines are predicted future trajectory.

a pedestrian’s future trajectory depends on many useful geometry features from the

raw sensor data, which may be abstracted away in the detection/tracking stage. To

this end, researchers recently have proposed several end-to-end neural networks to

detect objects and predict trajectories simultaneously. FaF [45] and IntentNet [46] are

two of the representative methods, which are designed based on single stage detectors

(SSD) [17]; in addition to original anchor classification and regression of SSD, they

also regress a future trajectory for each anchor.

We observed that there are two major issues that are critical for joint detection

and trajectory prediction, but are not addressed by previous end-to-end methods: 1)

Temporal modeling on object level: existence and future trajectory of an object are

embedded in both current and past frames. Current methods simply reuse single-stage

detector and fuse the temporal information in the backbone CNN in an object-agnostic

manner either via feature concatenation or 3D CNN [45], [46]. Such coarse level fusion

can loss fine-grained temporal information for each object, which is critical for both

112

tasks. 2) Interaction modeling among objects: the future trajectory of an object could

be influenced by the other objects. E.g., a pedestrian walking inside a group may

tend to follow others. Existing methods [45], [46] do not explicitly model interactions

among objects.

To address the aforementioned issues, we propose an end-to-end Spatio-Temporal-

Interactive network (STINet) to model pedestrians’ temporal and interactive informa-

tion jointly. The proposed network takes a sequence of point clouds as input, detects

current location and predicts future trajectory for pedestrians. Specifically, there are

three sub-components in STINet: backbone network, temporal proposal generation

network, and proposal prediction network. In the backbone net, we adopt a similar

structure as PointPillars [43], and apply it on each frame of the point cloud, the output

feature maps from multi-frames are then combined. The temporal proposal generation

network takes feature maps from the backbone net and generates potential pedestrian

instances with both their current and past locations (i.e. temporal proposals); such

temporal proposals allow us to link the same object across different frames. In the

third module (i.e. prediction network), we use the temporal proposals to explicitly

gather the geometry appearance and temporal dynamics for each object. To reason

the interaction among pedestrians, we build a graph layer to gather the information

from surrounding pedestrians. After extracting the above spatial-temporal-interactive

features for each proposal, the detection and prediction head uses the feature to regress

current detection bounding box and future trajectory.

Comprehensive experiments are conducted on Waymo Open Dataset [120] and Lyft

Dataset [4] to demonstrate the effectiveness of the STINet. Specifically, it achieves

an average precision of 80.73 for bird-eyes-view pedestrian detection, and an average

displacement error of 33.67 cm for trajectory prediction on Waymo Open Dataset. It

achieves real-time inference speeds and takes only 74.6 ms for inference on a range of

100m by 100m.

113

The main contributions of our work come in four folds:

• We build an end-to-end network tailored to model pedestrian past, current and

future simultaneously.

• We propose to generate temporal proposals with both current and past boxes.

This enables learning a comprehensive spatio-temporal representation for pedes-

trians with their geometry, dynamic movement and history path in an end-to-end

manner without explicitly associating object across frames.

• We propose to build a graph among pedestrians to reason the interactions to

further improve trajectory prediction quality.

• We establish the state-of-the-art performance for both detection and trajectory

prediction on the Lyft Dataset and the recent large-scale challenging Waymo

Open Dataset.

7.2 Related Work

7.2.1 Temporal Proposals

Temporal proposals have been shown beneficial in action localization in [121], [122].

They show that associating temporal proposals from different video clips can help to

leverage the temporal continuity of video frames. Tang et al. [123] proposes to link

temporal proposals throughout the video to improve video object detection. In our

work, we also exploit temporal proposals and step further to investigate and propose

how to build comprehensive spatio-temporal representations of proposals to improve

future trajectory prediction. This is a hard task since there are no inputs available for

the future. Also we investigate to learn interactions between proposals via a graph.

We show that these spatio-temporal features can effectively model objects’ dynamics

and provide accurate detection and prediction of their future trajectory.

114

7.2.2 Relational Reasoning

An agent’s behavior could be influenced by other agents and it is naturally connected

to relational reasoning [124], [125]. Graph neural networks have shown its strong

capability in relational modeling in recent years. Wang et al. [126] formulates the video

as a space-time graph, show the effectiveness on the video classification task. Sun et

al. [127] designs a relational recurrent network for action detection and anticipation.

Yang et al. [128] proposes to build an object relationship graph for the task of scene

graph generation.

7.2.3 Trajectory Prediction

Predicting the future trajectory of objects is an important task, especially for au-

tonomous driving. Previous research has been conducted based on perception objects

as inputs [116], [118], [119], [129], [130]. Recently FaF [45] and IntentNet [46] focus

on end-to-end trajectory prediction from raw point clouds as input. However, they

simply re-use single-stage detection framework and add new regression heads on

it. In our work, we exploit temporal region proposal network and explicitly model

Spatio-Temporal-Interaction (STI) representations of pedestrians, and our experiments

show that the proposed STI modeling is superior on both detection and trajectory

prediction for pedestrians.

7.3 Methodology

In this section, we discuss our proposed network in details. The overview of our

proposed method is shown in Figure 7.2, which can be divided into three steps. For

each of these steps, we discuss in the following subsections.

115

x
y

z

Backbone
Featuresx

y
z

x
y

z

Pillar
Features

ResUNet
Pillar Feature

Encoding

T=-2
...

T=-1

T=0

Temporal
Proposals

T-RPN

STI Feature
Extractor

Object
Detection

Head

Trajectory
Prediction

Head
Proposal

STI Feature

Figure 7.2. The overview of the proposed method. It takes a sequence of point clouds
as input, detects pedestrians and predicts their future trajectories simultaneously. The
point clouds are processed by Pillar Feature Encoding [41], [43] to generate Pillar Features.
Then each Pillar Feature is fed into a backbone ResUNet [131] to get backbone features.
A Temporal Region Proposal Network (T-RPN) takes backbone features and generated
temporal proposal with past and current boxes for each object. Spatio-Temporal-Interactive
(STI) Feature Extractor learns features for each temporal proposal which are used for final
detection and trajectory prediction.

7.3.1 Backbone Network

The backbone of our network is illustrated in Figure 7.3. The input is a sequence of

point clouds with t′ frames noted as [PC−(t′−1), PC−(t′−2), · · · , PC0], which corresponds

to the lidar sensor input from the past t′ − 1 frames as well as the current frame.

All point clouds are calibrated to SDC’s pose at the current frame so that the ego-

motion is discarded. To build rich pillar features while keeping a feasible memory

usage, we generate t pillar features from the t′ input frames. Consecutive t′/t point

clouds PC−(j+1)t′/t+1, · · · , PC−jt′/t are processed with Voxelization [41], [43] and then

concatenated to generate a pseudo image Ij (i.e. Pillar Features) with shape H × W ×

Cin. Thus the output of Pillar Feature Encoding is a sequence of t Pillar Features

[I−(t−1), I−(t−2), · · · , I0].

Next we adopt a similar backbone CNN network proposed in [131], as shown in the

lower part of Figure 7.3. Each of the Pillar Features Ij is first processed by three ResNet-

style blocks to generate intermediate features with shape RH×W ×C0 ,R 1
2 H× 1

2 W ×C1 and

116

ResBlock

ResBlock

1x Upsample

2x Upsample

4x Upsample

Concat

x

y

z

Pillar
Features

ResUNetPillar Feature
Encoding

Backbone
Features

Figure 7.3. Backbone of proposed network. Upper: overview of the backbone. The
input point cloud sequence is fed to Voxelization and Point net to generate pseudo images,
which are then processed by ResNet U-Net to generate final backbone feature sequence.
Lower: detailed design of ResNet U-Net.

R 1
4 H× 1

4 W ×C2 . Then we use deconvolution layers to upsample them to the same spatial

shape with Ij. The concatenation of the upsampled features serve as the backbone

feature of Ij, noted as Bj.

7.3.2 Temporal Proposal Generation

In order to explicitly model objects’ current and past knowledge, we propose a

temporal region proposal network (T-RPN) to generate object proposals with both

current and past boxes (i.e., temporal proposals). T-RPN takes the backbone feature

sequence [B−(t−1), B−(t−2), · · · , B0] as the input, concatenates them in the channel

117

dimension and applies a 1 × 1 convolution to generate a temporal-aware feature map.

Classification, current frame regression and past frames regression are generated by

applying 1 × 1 convolutional layers over the temporal-aware feature map, to classify

and regress the pre-defined anchors.

The temporal region proposal network is supervised by the ground-truth objects’

current and past locations. For each anchor a = (xa, ya, wa, la, ha) (x, y, w, l, h

correspond to x coordinate of box center, y coordinate of box center, width of box,

length of box and heading/yaw of box respectively, and we keep this notation for the

rest of this chapter), it is assigned to a ground-truth object with largest IoU of the

current frame box gt = (xgt
0 , ygt

0 , wgt, lgt, hgt
0). Similar to SECOND [42], we compute

the regression target in order to learn the difference between the pre-defined anchors

and the corresponding ground-truth boxes. For the current frame, we generate a 5-d

regression target da
0 = (dxa

0, dya
0 , dwa, dla, dha

0) for each anchor/ground-truth pair:

dxa
0 = (xgt

0 − xa)/
√︂

(xa)2 + (ya)2 (7.1)

dya
0 = (ygt

0 − ya)/
√︂

(xa)2 + (ya)2 (7.2)

dwa = log wgt

wa
(7.3)

dla = log lgt

la
(7.4)

dha
0 = sin hgt

0 − ha

2 (7.5)

With similar equations, we also compute t − 1 past regression targets for anchor a

against the same ground-truth object: da
j = (dxa

j , dya
j , dha

j) for j ∈ {−1, −2, · · · , −(t−

1)}. Width and length are not considered for the past regression since we assume

118

the object size does not change across different frames. For each anchor a, the

classification target sa is assigned as 1 if the assigned ground-truth object has an

IoU greater than th+ at the current frame. If the IoU is smaller than th− (where

th+ >= th−), classification target is assigned as 0. Otherwise the classification target

is −1 and the anchor is ignored for computing losses and gradients.

For each anchor a, T-RPN predicts a classification score ŝa, a current frame

regression vector d̂
a

0 = (dx̂
a

0, dŷ
a

0, dŵ
a
, dl̂

a
, dĥ

a

0) and t − 1 past frame regression vectors

d̂
a

j = (dx̂
a

j , dŷ
a

j , dĥ
a

j) from the aforementioned 1 × 1 convolutional layers. The objective

of T-RPN is the weighted sum of classification loss, current frame regression loss

and past frame regression losses as defined in the equations below, where 1(x) is the

indicator function and returns 1 if x is true otherwise 0.

LT-RPN = λclsLcls + λcur_regLcur_reg + λpast_regLpast_reg (7.6)

Lcls =
∑︁

a CrossEntropy(sa, ŝa)1(sa ≥ 0)∑︁
a 1(sa ≥ 0) (7.7)

Lcur_reg =
∑︁

a SmoothL1(da
0, d̂

a

0)1(sa ≥ 1)∑︁
a 1(sa ≥ 1) (7.8)

Lpast_reg =
t−1∑︂
j=1

∑︁
a SmoothL1(da

−j, d̂
a

−j)1(sa ≥ 1)∑︁
a 1(sa ≥ 1) (7.9)

For proposal generation, predicted classification scores and bounding-box regression

vectors are applied on pre-defined anchors to generate temporal proposals, by reversing

Equations 7.1-7.5 (i.e., as the following equations). Thus each temporal proposal has

a confidence score as well as the regressed boxes for the current and past frames. After

that, non-maximum suppression is applied on the current frame boxes of temporal

proposals to remove redundancy.

x̂j = xa + dx̂
a

j ·
√︂

(xa)2 + (ya)2 (7.10)

119

ŷj = ya + dŷ
a

j ·
√︂

(xa)2 + (ya)2 (7.11)

ŵ = wa · exp{dŵ
a
} (7.12)

l̂ = la · exp{dl̂
a
} (7.13)

ĥj = ha + arcsin(2dĥ
a

j) (7.14)

7.3.3 Proposal Prediction

7.3.3.1 Spatio-Temporal-Interactive Feature Extraction

Given the backbone features [B−(t−1), · · · , B0] and the temporal proposals, spatio-

temporal-interactive features are learned for each temporal proposal to capture the

comprehensive information for detection and trajectory prediction. Different ways for

modeling objects are combined to achieve this.

Local geometry feature: To extract object geometry knowledge, we use the proposal

boxes at j-th frame (i.e., xj , yj , w, l, and hj) to crop features from Bj , as shown in the

lower left part of Figure 7.4. This is an extension of traditional proposal feature crop-

ping used in Faster-RCNN [26], to gather position-discarded local geometry features

from each frame. To simplify the implementation on TPU, we rotate the 5-DoF box

(xj, yj, w, l, hj) to the closest standing (axis-aligned) box (xmin,j, ymin,j, xmax,j, ymax,j)

for ROIAlign [13].

Local dynamic feature: As illustrated in the lower middle part of Figure 7.4, we

use a meta box (drawn in yellow) which covers the whole movement of the pedestrian

across all past and current frames to crop features from all Bj’s. The meta box is

the smallest box which contains all current and past proposal boxes. Formally, after

120

STI-FE

Backbone
Features

T=-2
...

T=-1

T=0

T-RPN

STI-FE
Proposal

STI Feature

Proposal-local Feature

Local
Geometry

Local
Dynamics

History Path

Relational
Reasoning

Figure 7.4. Spatial-Temporal-Interactive Feature Extractor (STI-FE): Local geometry,
local dynamic and history path features are extracted given a temporal proposal. For local
geometry and local dynamics features, the yellow areas are used for feature extraction.
Relational reasoning is performed across proposals’ local features to generate interactive
features.

transferring all rotated proposal boxes (xj, yj, w, l, hj) to the closest standing boxes

(xmin,j, ymin,j, xmax,j, ymax,j), the meta box is computed with the following equations:

xmin = min
j

(xmin,j); ymin = min
j

(ymin,j)

xmax = max
j

(xmax,j); ymax = max
j

(ymax,j)
(7.15)

This feature captures the direction, curvature and speed of the object, which are useful

121

for future trajectory prediction.

History path feature: In order to directly encode objects’ past movement, we exploit

the location displacement across different history frames as the history path feature. To

be specific, given a temporal proposal with xj , yj as the box centers, the history path

feature is MLP([x0 − x−1, y0 − y−1, x0 − x−2, y0 − y−2, · · · , x0 − x−(t−1), y0 − y−(t−1)]).

To aggregate spatial and temporal knowledge for each proposal, the concatenation

of local geometry feature and the local dynamic feature is fed into a ResNet block

followed by a global average pooling. The pooled feature is then concatenated with

the history path feature, and serves as the proposal-local feature, noted as fi for the

i-th temporal proposal.

As discussed before, the future trajectory of a pedestrian could be influenced by

the surrounding pedestrians’ behaviors. In order to model such interactions among

pedestrians, we design an interaction layer which uses a graph to propagate information

among objects, as shown in the middle part of Figure 7.4. Specifically, we represent

each temporal proposal as a graph node i; the embedding of node i is noted as

fi, which is the corresponding proposal-local feature. The edge vij represents the

interaction score between node i and node j. vij is learned from fi and fj, which can

be represented as below.

vij = α([ϕ1(fi); ϕ2(fj)]) (7.16)

where α and ϕ’s can be any learnable functions. In our implementation, we use

fully-connected layer for α and ϕ’s.

Given the interaction scores among all pairs of nodes, we can gather the information

for each node from the neighboring nodes. Specifically, the interaction embedding gi

gathered for node i is calculated as follows:

gi =
∑︂

j

exp {vij}
Vi

γ([fi; fj]) (7.17)

where Vi = ∑︁
j exp {vij} is the normalization constant, and γ is a mapping function (a

122

fully-connected layer is adopted in our implementation).

7.3.3.2 Proposal Classification and Regression

Given proposal-local features fi for each temporal proposals, two fully-connected layers

are applied to do classification and regression respectively for the current frame. To be

aligned with our intuitions, the proposal-local feature fi combined with the interaction

feature gi is used to predict future frame boxes, by one fully-connected layer with 3t

output channels where t is the number of future frames to predict and 3 stands for

x coordinate, y coordinate and heading respectively. During the training, temporal

proposals are assigned classification and regression targets with the same strategy

discussed in Subsection 7.3.2 and the objective is the weighted sum of classification loss,

current frame regression loss and future frames regression loss similar to Equations

7.6-7.9. During inference, each proposal is predicted with a classification score and

current/future boxes. Non-maximum suppression is applied on them based on the

IoU between their current boxes, to remove redundancy.

7.4 Experiment

7.4.1 Experiment Settings

Dataset: We conduct experiments on the Waymo Open Dataset (WOD) [120] and

the Lyft Dataset (Lyft) [4]. WOD contains lidar data from 5 sensors as well as the

bounding-box labels for 1000 segments. Each segment contains roughly 200 frames and

has a length of 20 seconds. Train and validation subsets have 798 and 202 segments

respectively. To model the history and predict the future, we take 1-second history

frames and 3-second future frames for each example and extract examples from the

center 16 seconds (i.e., 1s∼17s) from each segment. Thus 126,437 train examples and

31,998 validation examples are extracted, and each of them contains history frames

of 1 second and future frames of 3 seconds. We sample 6 frames including 5 history

123

frames and the current frame, with tinput = {−1.0, −0.8, −0.6, −0.4, −0.2, 0}, and the

point clouds from those frames are fed into the network as inputs. In order to build

richer voxel features while saving computation and memory, every two frames are

combined by concatenating the voxelization output features thus we have three pillar

features as discussed in Subsection 7.3.1. For the future trajectory prediction, we

predict trajectory for 6 future frames with tfuture = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The

range is 150m by 150m around the self-driving car, and we use a pillar size of 31.25cm

by 31.25cm to generate pillar features of shape 480 × 480. Lyft contains lidar data

from 1 sensor and labels for only 180 segments, with 140 and 40 segments for train

and validation respectively. With the same settings, 14,840 and 4,240 examples are

extracted for train and validation. Each example has 1-second history and 3-second

future. We have tfuture = {0.6, 1.2, 1.8, 2.4, 3.0} for Lyft due to its 5Hz sampling rate.

Evaluation metric: The evaluation metric for the detection task is BEV AP (Bird-

Eyes-View Average Precision) with the IoU threshold set to 0.5. Objects with fewer

than 5 points inside the bounding-boxes are considered difficult and thus excluded

during the evaluation. For trajectory prediction, we employ the metrics used in [46],

[119]. For t ∈ tfuture, we compute the DE@t (Displacement Error) and the HR@t

(Hit Rate) with a displacement error threshold of 0.5m. We also compute the ADE

(Average Displacement Error) which equals to 1
|tfuture|

∑︁
t∈tfuture DE@t.

Implementation: Our models are implemented in TensorFlow and we train the

model with Adam optimizer on TPUv3 for 140k and 70k iterations for Waymo Open

Dataset and Lyft Dataset respectively. The learning rate is 4×10−4 and the batch-size

is 1 per TPU. We use 32 TPU cores together for the training, thus the effective batch-

size is 32. We also implement IntentNet [46] and Faster-RCNN [26] in TensorFlow as

the baselines, which are noted as “IntentNet” and “MF-FRCNN”. Our implemented

IntentNet (1) takes multiple frames as input and share the same backbone net as

STINet; (2) removes the intent classification part, and only regresses a future trajectory.

124

Model MF TS BEV AP ↑
PointPillar [44] 68.57

MVF [44] 74.38
StarNet [40] 72.50

IntentNet [46]1 ✓ 79.43±0.10

MF-FRCNN ✓ ✓ 79.69±0.19

STINet ✓ ✓ 80.73±0.26

Table 7.1. Detection performance for different methods on WOD. MF indicates whether
the corresponding model takes multiple frames as input. TS indicates whether the model
has a two-stage framework. BEV AP is computed with an IoU threshold of 0.5. ↑ indicates
the higher numbers are better for the corresponding metric.

MF-FRCNN refers to a Faster-RCNN [26] model with several changes: (1) It uses

the same backbone net as STINet, please refer to Section 7.3.1; (2) for each object

proposal, in addition to the bounding box, we also regress future trajectories and

headings. Note that the difference between proposals from MF-FRCNN and our

method is that MF-FRCNN only predicts the current box of objects, while our method

exploits a novel Temporal RPN which also generates the corresponding history boxes

associated to each current box.

7.4.2 Results on Waymo Open Dataset

The main results on Waymo Open Dataset of pedestrian detection and trajectory

prediction are summarized in Table 7.1 and Table 7.2. For detection we compare

our proposed method (in the last row) with the current state-of-the-art detectors

[40], [44] and our method surpasses the off-the-shelf baselines by a very large margin,

improving the BEV AP from 74.38 to 80.73. To analyze the contributions other than

multi-frame inputs and different implementation details, we also compare STINet with

our own implementation of IntentNet [46] and multi-frame Faster RCNN [26], which

are noted as “IntentNet” and “MF-FRCNN” in the relevant tables. Our proposed

method outperforms all baselines, and it confirms the effectiveness of our T-RPN and
1IntentNet without intent prediction head implemented by us.

125

Model MF TS DE@1 ↓ DE@2 ↓ DE@3 ↓ ADE ↓
IntentNet ✓ 21.17±0.02 39.74±0.07 61.60±0.12 36.04±0.12

MF-FRCNN ✓ ✓ 20.87±0.08 39.23±0.14 60.59±0.22 35.57±0.13

STINet ✓ ✓ 19.63±0.03 37.07±0.08 57.60±0.14 33.67±0.07

Model MF TS HR@1 ↑ HR@2 ↑ HR@3 ↑
IntentNet ✓ 93.18±0.03 76.50±0.08 61.60±0.12

MF-FRCNN ✓ ✓ 93.45±0.05 76.69±0.18 61.57±0.21

STINet ✓ ✓ 94.36±0.05 78.91±0.06 64.43±0.15

Table 7.2. Trajectory prediction performance for different models on WOD. MF indicates
whether the corresponding model takes multiple frames as input. TS indicates whether the
model has a two-stage framework. ↑ and ↓ indicate the higher/lower numbers are better
for the corresponding metric. DE and ADE are in centimeters. For models implemented by
us, we train and evaluate the model for five times and compute the average and standard
deviation shown around ± in the table.

Model 0∼2.5 2.5∼5 5∼7.5 7.5∼10 10∼ ∞
MF-FRCNN 63.07 90.44 93.27 88.00 77.15

STINet 64.23 91.15 94.46 88.97 80.50
∆% 1.8% 0.8% 1.3% 1.1% 4.3%

Table 7.3. Bird-eyes-view average precision (BEV-AP) breakdown comparison of MF-
FRCNN and STINet on WOD. Objects are split into five bins base on the future trajectory
length with a bin size of 2.5m. Last row is the relative improvement of STINet.

the STI modeling of proposals.

In Table 7.2 we compare the trajectory prediction performance among our proposed

method, IntentNet and MF-FRCNN. Our proposed method surpasses all competitors

by a large margin, and the improvement is larger than the improvement on detection.

It aligns with our intuition since T-RPN and STI modeling are designed to better

model objects’ movement and more useful to forecast their trajectory.

For a detailed comparison of STINet and MF-FRCNN, we evaluate the detection

and trajectory prediction by breaking down the objects into five bins based on the

future trajectory length in 3s. The five bins are 0∼2.5m, 2.5∼5m, 5∼7.5m, 7.5∼10m

and 10m∼ ∞ respectively. We report BEV AP, ADE and the relative improvement in

Table 7.3 and 7.4. The STINet is consistently better than MF-FRCNN for both tasks.

126

Model 0∼2.5 2.5∼5 5∼7.5 7.5∼10 10∼ ∞
MF-FRCNN 26.90 37.56 46.39 104.60 173.50

STINet 26.73 35.42 41.18 89.74 137.17
∆% 0.6% 6.0% 11.2% 14.2% 20.9%

Table 7.4. Average displacement error (ADE, in centimeters) breakdown comparison
of MF-FRCNN and STINet on WOD. Objects are split into five bins base on the future
trajectory length with a bin size of 2.5m. Last row is the relative improvement of STINet.

Model BEV AP ↑ DE@3 ↓ ADE ↓ HR@3 ↑
MF-FRCNN 33.90 82.61 51.11 49.74

STINet 37.15 76.17 46.09 50.73

Table 7.5. Detection and trajectory prediction performance on Lyft. The same metrics
are used to evaluate detection and trajectory prediction performance.

For trajectory prediction on objects moving more than 5m, the relative improvements

are significant and consistently more than 10%. It confirms that the proposed method

can leverage the details of history information and provide much better trajectory

predictions, especially for pedestrians with a larger movement.

7.4.3 Results on Lyft Dataset

The detection and trajectory prediction results on the Lyft Dataset are summarized

in Table 7.5. The performances on both tasks are improved largely and the results

confirm the effectiveness of proposed method a smaller-scale dataset.

7.4.4 Ablation Studies

In this subsection we conduct ablation experiments to analyze the contribution of each

component and compare our model with potential alternative methods on the Waymo

Open Dataset. The results are summarized below. For clarity, we only show DE@3,

ADE and HR@3 for trajectory prediction. The other metrics have the same tendency.

Effect of local geometry and local dynamic features: The local geometry

and local dynamic features are important component of STI modeling of temporal

proposals, as introduced in Subsection 7.3.3.1. We conduct experiments to analyze

127

LG LD BEV AP ↑ DE@3 ↓ ADE ↓ HR@3 ↑
✓ 80.38 64.15 37.67 58.46

✓ 79.69 59.71 34.96 62.22
✓ ✓ 80.53 58.95 34.49 62.99

Table 7.6. Ablation studies on local geometry and local dynamic features (noted as
LG and LD in the table respectively). All entries are trained without History Path and
Interactive features.

L+G Path DE@3 ↓ ADE ↓ HR@3 ↑
✓ 58.95 34.49 62.99
✓ ✓ 58.04 33.92 63.87
† ✓ 67.80 39.86 52.25

Table 7.7. Ablation studies on history path feature. † indicates the corresponding feature
is used only for detection and ignored while prediction the trajectory.

Breakdown I DE@3 ↓ ADE ↓ HR@3 ↑

All 58.04 33.92 63.87
✓ 57.60 33.67 64.43

∆% 0.76% 0.74% 0.88%

Group 49.67 30.85 64.87
✓ 48.89 30.40 65.55

∆% 1.57% 1.46% 1.05%

Table 7.8. Ablation studies on interaction features. ‘I’ indicates whether the proposal
interaction modeling is adopted. “All" and “Group" correspond to evaluation on all
pedestrians and pedestrians belonging to a group with at least 5 pedestrians respectively.

the effect of local geometry and local dynamic features, summarized in Table 7.6. As

showed in the table, the local geometry feature is good at detection and the local

dynamic feature is good at trajectory prediction. Geometry feature itself does not

work well for trajectory prediction since it ignores dynamics for better detection. By

combining both of the features, the benefits in detection and trajectory prediction can

be obtained simultaneously.

Effect of history path: Although objects’ geometry and movement are already

represented by local geometry dynamic features, taking history path as an extra

feature can give another performance gain by improving the DE@3 from 58.95 to 58.04

128

and the HR@3 from 62.99 to 63.87 (as shown in the first two row of Table 7.7). This

suggests the history path, as the easiest and most direct representation of objects’

movement, can still help based on the rich representations. However history path itself

is far from enough to give accurate trajectory prediction. We conduct an experiment

to use only history feature for trajectory prediction, and the results are much worse

compared with other baselines which take detailed features for trajectory prediction,

as shown in the last row of Table 7.7.

Effect of proposal interaction modeling: To demonstrate the effectiveness of

the proposed pedestrian interaction modeling, we measure the performance for all

pedestrians as well as pedestrians in a group. Specifically, we design a heuristic

rule (based on locations and speeds) to discover pedestrian groups and assign each

pedestrian a group label on the evaluation set. We evaluate the trajectory prediction

performance on all pedestrians and the pedestrians belonging to a group with at

least 5 pedestrians, shown in Table 7.8. The interaction modeling improves trajectory

prediction performance on “all pedestrians" and achieve a larger boost for pedestrians

that belong to groups (e.g., DE@3 improved from 49.67 to 48.89 by 1.57%).

7.4.5 Model Inference Speed

We measure the inference speed of our proposed model as well as baseline models on

context range of 100m by 100m as well as 150m by 150m. All models are implemented

in TensorFlow and the inference is executed on a single nVIDIA Tesla V100 GPU. For

the context range of 100m by 100m, IntentNet, MF-FRCNN and STINet have inference

time of 60.9, 69.4 and 74.6ms respectively. Both two-stage models (MF-FRCNN and

STINet) are slower than the single-stage model, and STINet is slightly slower than

MF-FRCNN. However, all three models can achieve a real-time inference speed higher

than 10Hz. For the maximum range of Waymo Open Dataset, i.e., 150m by 150m,

three models have inference time of 122.9, 132.1 and 144.7ms respectively.

129

Figure 7.5. Qualitative examples of STINet. The blue box are detected pedestrians. The
cyan and yellow lines are predicted future and history trajectories of STINet respectively.

7.4.6 Qualitative Results

The visualization for the predictions of STINet is shown in Figure 7.5. The blue boxes

are the detected pedestrians. The cyan and yellow lines are the predicted future and

history trajectory for each detected pedestrian respectively. We show two scenarios

130

Figure 7.6. Comparison between MF-FRCNN and STINet. The yellow line is the ground-
truth future trajectory for pedestrians. The pink and cyan lines are the predicted future
trajectory from MF-FRCNN and STINet respectively. It is clear that our proposed method
gives a much better prediction compared with the baseline, for all three pedestrians. Upper:
the overview of three pedestrians. Lower: zoom-in visualization for three pedestrians.

where the SDC is stationary in the upper sub-figure and the SDC is moving fast in the

lower sub-figure. It demonstrates that our model detects and predicts very accurately

in both cases.

Figure 7.6 shows a detailed comparison between STINet and MF-FRCNN against

the ground-truth for trajectory prediction. Green boxes are the ground-truth boxes.

Yellow, pink and cyan lines are the ground-truth future trajectory as well as the

predicted future trajectories from MF-FRCNN and STINet respectively. For the left

two pedestrians who are walking in a straight line, both MF-FRCNN and STINet

predict future trajectory reasonably well but the MF-FRCNN still has a small error

131

compared with the ground-truth; for the right-most pedestrian who is making a

slight left turn, MF-FRCNN fails to capture the details of its movement and gives an

unsatisfactory prediction, while STINet gives a much better trajectory prediction.

7.5 Conclusion and Future Works

In this chapter, we investigate object detection for autonomous driving, which involves

temporal information heavily. The temporal information comes in two directions: 1)

we have access to the past frames which provide more details and contexts; 2) we need

to detect the objects in the future (i.e., trajectory prediction), which requires stronger

modeling of objects. To this end, we propose a novel two-stage end-to-end framework

named STINet, to perform joint detection and trajectory prediction with raw lidar

point clouds as the input. We propose to build temporal proposals with pedestrians’

both current and past boxes and learn a rich representation for each temporal proposal,

with local geometry, dynamic movement, history path and interaction features. This

design allows us to make full use of the history context and model the objects with

better details. We conduct comprehensive experiments on the Waymo Open dataset

and the Lyft dataset, and demonstrate that by explicitly modeling the spatio-temporal-

interaction features, both detection and trajectory prediction quality can be drastically

improved compared with single-stage and two-stage baselines. This also makes us

to re-think the importance of introducing second-stage and proposals in detection

frameworks, especially for the joint detection and trajectory prediction task. The

proposed method is also computationally efficient and achieves the real-time inference

speed which makes our model practical to be used in real-world applications.

There are a few direction on which our method can be further improved. The first

direction is to combine camera/map data which provide extra features/contexts to

help understanding the scene. For example, camera inputs can provide detailed facial

expressions and gestures which could indicate pedestrians’ intent; and the map data

132

can give contexts about where the pedestrians are, which can serve as priors of their

possible actions. Another direction is to utilize longer history information with LSTMs,

which can provide more context than the current 1-second history. Some actions and

movements can take a longer time and the current setting may be ineffective in those

cases. Finally, the computation cost may be improved by re-using the feature maps

computed in the previous iterations. This enables us to model the objects with great

detail and context with trivial computation overhead, as the history information and

features are readily available from the previous iterations. This requires the network

to be able to offset the ego-motion of the SDC and adjust the previous feature maps

accordingly.

133

Chapter 8

Conclusion

In this dissertation, we focus on topics and projects regarding object detection, which

is a fundamental task in computer vision. The challenges of this topic reside in many

aspects. In Chapter 3 and Chapter 4 we discuss and propose novel network architectures

to detection objects under occlusion and with various sizes. We demonstrate that

accumulating mid-level visual cues in a Hough Voting manner can improve the

robustness towards occlusion, and enriching the detection feature pyramid with high-

level semantically strong segmentation features can help detecting objects with different

scales especially for small objects. In Chapter 5 we design a novel training mechanism

for long-tailed hard images. We propose to dynamically assign difficulty scores to

training images and re-weight the images to address those hard ones on which the

network does not work well. Both quantitative and qualitative experiments show

our proposed method improves the robustness of hard cases, without introducing

any computation overhead. In Chapter 6 and Chapter 7, we investigate how to

modify detectors in order to take use of context information. For CT scan images

with multiple slices, we propose a hybrid detector to combine 2D backbones and 3D

context information for lesion detection and demonstrate large performance gain with

comparable speed and GPU memory consumption. In the case of having sequential

temporal inputs and making current and future predictions for pedestrians, we propose

a spatial-temporal-interactive network with temporal proposals to effectively model

134

moving pedestrians with possibly different speeds and patterns. Comprehensive

modeling with local geometry, dynamic movement, history path and interaction

features is possible and efficient with our proposed network. Both detection and

trajectory prediction performance are improved comparing with strong baselines with

the same inputs.

We demonstrate that, with carefully designed architectures and learning mech-

anisms, object detection generally works well on a board rage of applications with

different challenges and opportunities. Further improvements could lie in many direc-

tions. Better backbone design with feature pyramids and feature fusions can provide

stronger backbones for detection, and this can possibly be achieved via automatic

architectures search over a large detection architecture search space. Combining

inputs from different sensors is helpful to improve detection. For example, camera and

LIDAR have different properties and capture complementary information, thus fusing

them may lead to a more robust detection quality. Better training strategies can also

benefit the robustness of detectors. Possible strategies include, but are not limit to,

introducing uncertainty term in the loss, mining hard examples, overcoming category

imbalance for infrequent ones, adaptively sampling positive and negative examples

during the training, etc.

On the other hand, in addition to improving object detection with normal settings,

object detections with scarce training data (few-shot learning), with image-level annota-

tion (weakly supervised learning), with fine-grained annotation (instance segmentation)

and with a mixture of labelled and unlabelled data (semi-supervised learning) are also

important directions for future research, which have already attracted many research

attentions. As in the real-world applications, the amount of data and the level of

annotation can vary a lot, these directions make the object detection more versatile

and applicable towards more real-world tasks.

135

References

[1] D. Marr, “Vision: A computational investigation into the human representation and
processing of visual information, henry holt and co,” Inc., New York, NY, vol. 2,
no. 4.2, 1982.

[2] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” International Journal of Robotics Research (IJRR), 2013.

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European Conference
on Computer Vision, Springer, 2014, pp. 740–755.

[4] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira, M.
Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni, A. Kaza-
kova, C. Tao, L. Platinsky, W. Jiang, and V. Shet, Lyft level 5 av dataset 2019,
urlhttps://level5.lyft.com/dataset/, 2019.

[5] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection benchmark,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 5525–5533.

[6] J. Wang, C. Xie, Z. Zhang, J. Zhu, L. Xie, and A. Yuille, “Detecting semantic parts
on partially occluded objects,” arXiv preprint arXiv:1707.07819, 2017.

[7] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International journal of computer vision,
vol. 88, no. 2, pp. 303–338, 2010.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[9] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

136

[12] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017.

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440.

[15] K. Yan, X. Wang, L. Lu, L. Zhang, A. P. Harrison, M. Bagheri, and R. M. Summers,
“Deep lesion graphs in the wild: Relationship learning and organization of significant
radiology image findings in a diverse large-scale lesion database,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9261–9270.

[16] Waymo open dataset: An autonomous driving dataset, 2019.
[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:

Single shot multibox detector,” in European Conference on Computer Vision, 2016,
pp. 21–37.

[18] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object detectors
emerge in deep scene cnns,” arXiv preprint arXiv:1412.6856, 2014.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[20] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 1440–1448.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 779–788.

[22] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 734–
750.

[23] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection
with discriminatively trained part-based models,” IEEE transactions on pattern
analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2009.

[24] S. Fidler, R. Mottaghi, A. Yuille, and R. Urtasun, “Bottom-up segmentation for
top-down detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2013, pp. 3294–3301.

[25] X. Wang, M. Yang, S. Zhu, and Y. Lin, “Regionlets for generic object detection,” in
Proceedings of the IEEE international conference on computer vision, 2013, pp. 17–24.

[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 91–99.

137

[27] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,”
arXiv preprint arXiv:1312.6229, 2013.

[28] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully
convolutional networks,” in Advances in Neural Information Processing Systems,
2016, pp. 379–387.

[29] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International journal of computer vision, vol. 104,
no. 2, pp. 154–171, 2013.

[30] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from edges,” in
European Conference on Computer Vision, Springer, 2014, pp. 391–405.

[31] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint
triplets for object detection,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 6569–6578.

[32] M. Najibi, P. Samangouei, R. Chellappa, and L. S. Davis, “Ssh: Single stage headless
face detector,” in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 4875–4884.

[33] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “S3fd: Single shot scale-
invariant face detector,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 192–201.

[34] X. Tang, D. K. Du, Z. He, and J. Liu, “Pyramidbox: A context-assisted single
shot face detector,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 797–813.

[35] C. Chi, S. Zhang, J. Xing, Z. Lei, S. Z. Li, and X. Zou, “Selective refinement network
for high performance face detection,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 8231–8238.

[36] K. Yan, M. Bagheri, and R. M. Summers, “3d context enhanced region-based convo-
lutional neural network for end-to-end lesion detection,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention, Springer, 2018,
pp. 511–519.

[37] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 652–660.

[38] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for 3d object
detection in point clouds,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 9277–9286.

[39] C. R. Qi, X. Chen, O. Litany, and L. J. Guibas, “Imvotenet: Boosting 3d object
detection in point clouds with image votes,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 4404–4413.

[40] J. Ngiam, B. Caine, W. Han, B. Yang, Y. Chai, P. Sun, Y. Zhou, X. Yi, O. Alsharif, P.
Nguyen, et al., “Starnet: Targeted computation for object detection in point clouds,”
arXiv preprint arXiv:1908.11069, 2019.

138

[41] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d
object detection,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4490–4499.

[42] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,”
Sensors, vol. 18, no. 10, p. 3337, 2018.

[43] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars:
Fast encoders for object detection from point clouds,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 12 697–12 705.

[44] Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo, J. Ngiam, and
V. Vasudevan, “End-to-end multi-view fusion for 3d object detection in lidar point
clouds,” arXiv preprint arXiv:1910.06528, 2019.

[45] W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time end-to-end 3d
detection, tracking and motion forecasting with a single convolutional net,” in
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
2018, pp. 3569–3577.

[46] S. Casas, W. Luo, and R. Urtasun, “Intentnet: Learning to predict intention from
raw sensor data,” in Conference on Robot Learning, 2018, pp. 947–956.

[47] J. Wang, Z. Zhang, C. Xie, Y. Zhou, V. Premachandran, J. Zhu, L. Xie, and A. Yuille,
“Visual concepts and compositional voting,” arXiv preprint arXiv:1711.04451, 2017.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in International Conference on Learning Representations, 2015.

[49] S. Qiao, W. Shen, W. Qiu, C. Liu, and A. Yuille, “Scalenet: Guiding object proposal
generation in supermarkets and beyond,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1791–1800.

[50] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille, “Detect what
you can: Detecting and representing objects using holistic models and body parts,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2014.

[51] J. Zhu, X. Chen, and A. L. Yuille, “Deepm: A deep part-based model for object
detection and semantic part localization,” arXiv preprint arXiv:1511.07131, 2015.

[52] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based r-cnns for fine-grained
category detection,” in European Conference on Computer Vision, Springer, 2014.

[53] H. Zhang, T. Xu, M. Elhoseiny, X. Huang, S. Zhang, A. Elgammal, and D. Metaxas,
“Spda-cnn: Unifying semantic part detection and abstraction for fine-grained recogni-
tion,” in Computer Vision and Pattern Recognition, IEEE, 2016.

[54] S. Huang, Z. Xu, D. Tao, and Y. Zhang, “Part-stacked cnn for fine-grained visual
categorization,” in Computer Vision and Pattern Recognition, IEEE, 2016.

[55] G. Gkioxari, R. Girshick, and J. Malik, “Actions and attributes from wholes and
parts,” in International Conference on Computer Vision, IEEE, 2015.

[56] D. Novotný, D. Larlus, and A. Vedaldi, “I have seen enough: Transferring parts
across categories,” in British Machine Vision Conference, 2016.

139

[57] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in International Conference on Machine Learning, 2010.

[58] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting.,” Journal of
machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[59] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks
for volumetric medical image segmentation,” in International Conference on 3D
Vision, IEEE, 2016.

[60] A. Kortylewski, Q. Liu, H. Wang, Z. Zhang, and A. Yuille, “Combining compositional
models and deep networks for robust object classification under occlusion,” in The
IEEE Winter Conference on Applications of Computer Vision, 2020, pp. 1333–1341.

[61] Y. Wang, L. Xie, C. Liu, S. Qiao, Y. Zhang, W. Zhang, Q. Tian, and A. Yuille, “Sort:
Second-order response transform for visual recognition,” in The IEEE International
Conference on Computer Vision (ICCV), Oct. 2017.

[62] P. Tang, X. Wang, X. Bai, and W. Liu, “Multiple instance detection network with
online instance classifier refinement,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 2843–2851.

[63] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly-and semi-
supervised learning of a deep convolutional network for semantic image segmentation,”
in Proceedings of the IEEE International Conference on Computer Vision, 2015,
pp. 1742–1750.

[64] S. Gidaris and N. Komodakis, “Object detection via a multi-region and semantic
segmentation-aware cnn model,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 1134–1142.

[65] A. Shrivastava and A. Gupta, “Contextual priming and feedback for faster r-cnn,” in
European Conference on Computer Vision, 2016, pp. 330–348.

[66] T. Kong, F. Sun, A. Yao, H. Liu, M. Lu, and Y. Chen, “Ron: Reverse connection with
objectness prior networks for object detection,” in IEEE Conference on Computer
Vision and Pattern Recognition, vol. 1, 2017, p. 2.

[67] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” arXiv preprint
arXiv:1709.01507, 2017.

[68] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick, “Inside-outside net: Detecting
objects in context with skip pooling and recurrent neural networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2874–
2883.

[69] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010, pp. 249–256.

[70] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd: Deconvolutional single
shot detector,” arXiv preprint arXiv:1701.06659, 2017.

140

[71] M. M. Derakhshani, S. Masoudnia, A. H. Shaker, O. Mersa, M. A. Sadeghi, M.
Rastegari, and B. N. Araabi, “Assisted excitation of activations: A learning technique
to improve object detectors,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9201–9210.

[72] J. Cao, Y. Pang, and X. Li, “Triply supervised decoder networks for joint detection
and segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 7392–7401.

[73] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection in uncon-
strained settings,” Tech. Rep.

[74] J. Yan, X. Zhang, Z. Lei, and S. Z. Li, “Face detection by structural models,” Image
and Vision Computing, vol. 32, no. 10, pp. 790–799, 2014.

[75] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark localization
in the wild,” in 2012 IEEE conference on computer vision and pattern recognition,
IEEE, 2012, pp. 2879–2886.

[76] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit shape regression,”
International Journal of Computer Vision, vol. 107, no. 2, pp. 177–190, 2014.

[77] X. Xiong and F. De la Torre, “Supervised descent method and its applications to face
alignment,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2013, pp. 532–539.

[78] M. Kim, S. Kumar, V. Pavlovic, and H. Rowley, “Face tracking and recognition with
visual constraints in real-world videos,” in CVPR, 2008, pp. 1–8.

[79] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in BMVC,
2015, pp. 41.1–41.12.

[80] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in CVPR, 2015, pp. 815–823.

[81] P. Hu and D. Ramanan, “Finding tiny faces,” in CVPR, 2017, pp. 1522–1530.
[82] X. Tang, D. K. Du, Z. He, and J. Liu, “Pyramidbox: A context-assisted single shot

face detector,” in ECCV, 2018, pp. 812–828.
[83] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang, “Unitbox: An advanced object

detection network,” in ACMMM, 2016, pp. 516–520.
[84] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “S3̂fd: Single shot scale-

invariant face detector,” in ICCV, 2017, pp. 192–201.
[85] C. Zhu, R. Tao, K. Luu, and M. Savvides, “Seeing small faces from robust anchor’s

perspective,” in CVPR, 2018, pp. 5127–5136.
[86] Y. Bai, Y. Zhang, M. Ding, and B. Ghanem, “Finding tiny faces in the wild with

generative adversarial network,” in CVPR, 2018, pp. 21–30.
[87] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object detectors

with online hard example mining,” in CVPR, 2016, pp. 761–769.
[88] I. Loshchilov and F. Hutter, “Online batch selection for faster training of neural

networks,” arXiv preprint arXiv:1511.06343, 2015.
[89] T.-Y. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense object

detection,” in ICCV, 2017, pp. 2999–3007.

141

[90] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,”
PAMI, pp. 23–38, 1998.

[91] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” in CVPR, 2001, pp. 511–518.

[92] B. Singh and L. S. Davis, “An analysis of scale invariance in object detection–snip,”
in CVPR, 2018, pp. 3578–3587.

[93] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection in uncon-
strained settings,” Tech. Rep., 2010.

[94] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
networks, pp. 145–151, 1999.

[95] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale deep convolu-
tional neural network for fast object detection,” in ECCV, 2016, pp. 354–370.

[96] E. Ohn-Bar and M. M. Trivedi, “To boost or not to boost? on the limits of boosted
trees for object detection,” in ICPR, 2016.

[97] H. Wang, Z. Li, X. Ji, and Y. Wang, “Face r-cnn,” arXiv preprint arXiv:1706.01061,
2017.

[98] J. Wang, Y. Yuan, and G. Yu, “Face attention network: An effective face detector
for the occluded faces,” arXiv preprint arXiv:1711.07246, 2017.

[99] Y. Wang, X. Ji, Z. Zhou, H. Wang, and Z. Li, “Detecting faces using region-based
fully convolutional networks,” arXiv preprint arXiv:1709.05256, 2017.

[100] B. Yang, J. Yan, Z. Lei, and S. Z. Li, “Aggregate channel features for multi-view face
detection,” in IJCB, 2014, pp. 1–8.

[101] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “From facial parts responses to face
detection: A deep learning approach,” in ICCV, 2015, pp. 3676–3684.

[102] S. Yang, Y. Xiong, C. C. Loy, and X. Tang, “Face detection through scale-friendly
deep convolutional networks,” arXiv preprint arXiv:1706.02863, 2017.

[103] C. Zhang, X. Xu, and D. Tu, “Face detection using improved faster rcnn,” arXiv
preprint arXiv:1802.02142, 2018.

[104] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using
multitask cascaded convolutional networks,” IEEE Signal Processing Letters, pp. 1499–
1503, 2016.

[105] C. Zhu, Y. Zheng, K. Luu, and M. Savvides, “Cms-rcnn: Contextual multi-scale
region-based cnn for unconstrained face detection,” in Deep Learning for Biometrics,
2017, pp. 57–79.

[106] J. Li and Y. Zhang, “Learning surf cascade for fast and accurate object detection,”
in CVPR, 2013, pp. 3468–3475.

[107] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool, “Face detection without
bells and whistles,” in ECCV, 2014, pp. 720–735.

[108] X. Shen, Z. Lin, J. Brandt, and Y. Wu, “Detecting and aligning faces by image
retrieval,” in CVPR, 2013, pp. 3460–3467.

142

[109] P. Viola and M. J. Jones, “Robust real-time face detection,” IJCV, pp. 137–154,
2004.

[110] Y. Bai, Y. Zhang, M. Ding, and B. Ghanem, “Finding tiny faces in the wild with
generative adversarial network,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 21–30.

[111] J. Ding, A. Li, Z. Hu, and L. Wang, “Accurate pulmonary nodule detection in
computed tomography images using deep convolutional neural networks,” in MICCAI,
Springer, 2017, pp. 559–567.

[112] F. Liao, M. Liang, Z. Li, X. Hu, and S. Song, “Evaluate the malignancy of pulmonary
nodules using the 3d deep leaky noisy-or network,” arXiv preprint arXiv:1711.08324,
2017.

[113] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: A system for large-scale machine learning,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.

[114] A. A. A. Setio, A. Traverso, T. De Bel, M. S. Berens, C. van den Bogaard, P. Cerello,
H. Chen, Q. Dou, M. E. Fantacci, B. Geurts, et al., “Validation, comparison, and
combination of algorithms for automatic detection of pulmonary nodules in computed
tomography images: The luna16 challenge,” Medical image analysis, vol. 42, pp. 1–13,
2017.

[115] Z. Zhu, C. Liu, D. Yang, A. Yuille, and D. Xu, “V-nas: Neural architecture search
for volumetric medical image segmentation,” in 2019 International Conference on
3D Vision (3DV), IEEE, 2019, pp. 240–248.

[116] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially
acceptable trajectories with generative adversarial networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2255–2264.

[117] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “Online multi-target
tracking using recurrent neural networks,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[118] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social
lstm: Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 961–971.

[119] J. Hong, B. Sapp, and J. Philbin, “Rules of the road: Predicting driving behavior
with a convolutional model of semantic interactions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 8454–8462.

[120] Waymo open dataset: An autonomous driving dataset, 2019.
[121] R. Hou, C. Chen, and M. Shah, “Tube convolutional neural network (t-cnn) for

action detection in videos,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 5822–5831.

[122] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid, “Action tubelet detector
for spatio-temporal action localization,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 4405–4413.

143

[123] P. Tang, C. Wang, X. Wang, W. Liu, W. Zeng, and J. Wang, “Object detection in
videos by high quality object linking,” IEEE transactions on pattern analysis and
machine intelligence, 2019.

[124] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M.
Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Relational
inductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261,
2018.

[125] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and
T. Lillicrap, “A simple neural network module for relational reasoning,” in Advances
in neural information processing systems, 2017, pp. 4967–4976.

[126] X. Wang and A. Gupta, “Videos as space-time region graphs,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 399–417.

[127] C. Sun, A. Shrivastava, C. Vondrick, R. Sukthankar, K. Murphy, and C. Schmid,
“Relational action forecasting,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 273–283.

[128] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh, “Graph r-cnn for scene graph
generation,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 670–685.

[129] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang,
P. Carr, S. Lucey, D. Ramanan, et al., “Argoverse: 3d tracking and forecasting with
rich maps,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8748–8757.

[130] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker, “Desire:
Distant future prediction in dynamic scenes with interacting agents,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 336–
345.

[131] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in International Conference on Medical image computing
and computer-assisted intervention, Springer, 2015, pp. 234–241.

144

Vita

Zhishuai Zhang is completing his Ph.D. degree of Computer Science at the Johns

Hopkins University, under the supervision of Bloomberg Distinguished Professor

Alan L. Yuille. He has been working on computer vision, machine learning and

object recognition during his Ph.D. study. Before that, he obtained the Bachelor

of Engineering degree of Computer Science and Engineering from the University

of Science and Technology of China in 2016. During his undergraduate study, he

became interested in computer vision and visited the Johns Hopkins University to

get involved in research on that area. As a Ph.D. student, he mainly works on object

recognition and detection on large-scale datasets with deep learning based methods.

Particularly, he is interested in how to detect object robustly, with possible challenges

like occlusion or scale variance, and incorporating 3D or temporal contexts. He also

worked on adversarial attack and defense, content recommendation and personalization.

He interned in Facebook and Waymo and obtained industrial experience and the

knowledge of combining academic works with industry problems and requirements.

145

	Abstract
	Acknowledgements
	Dedication
	Contents
	List of Tables
	List of Figures
	Introduction
	Challenges and Our Contributions
	Occlusion with Unknown Occluders
	Scale Variance
	Long-tailed Hard Examples
	Low Contrast Computed Tomography 3D Scan Images
	Dynamic Objects with Different Moving Patterns

	Thesis Statement
	Outline
	Relevant Publications

	Related Work
	General Object Detection
	Face Detection
	Lesion Detection in Medical Images
	Detection from Sparse Point Clouds

	DeepVoting for Semantic Part Detection under Partial Occlusion
	Motivation and Overview
	Related Works
	DeepVoting Framework
	Formulation
	Visual Concept Extraction via the VC Layer
	Semantic Part Detection via the Voting Layer

	Training and Inference
	The Scale Prediction Network

	Experiments Results for Part Detection
	Dataset and Baseline
	Semantic Part Detection without Occlusion
	Semantic Part Detection under Occlusion
	Scale Prediction Accuracy

	Visualization and Explanation
	Visualizing Visual Concepts and Heat-maps
	Explaining the Detection Results
	Detection under Natural Occlusions

	Conclusion and Future Works

	Enriching Semantics for Multi-layer Scale-invariant Detectors
	Motivation and Overview
	Related Work
	Methodology
	Semantic Enrichment at Low-level Layer
	Semantic Enrichment at Higher-level Layers
	Multi-task Training

	Experiments
	Experiment on VOC
	Experiment on COCO

	Discussion and Ablation
	Architecture Ablation and Diagnosis
	Inference Speed
	Qualitative Examples

	Conclusion and Future Works

	Online Hard Image Mining for Long-tailed Hard Cases
	Motivation and Overview
	Related Work
	Hard Example Mining
	Face Detection Architecture
	Anchor Design and Matching

	Proposed Method
	Single-level Small Face Detection Framework
	Hard Image Mining
	Training Strategy
	Multi-scale Training and Anchor Matching
	Anchor-level Hard Example Mining
	Data Augmentation

	Experiments
	Experiment Settings
	Experiment Results
	WIDER FACE
	FDDB
	Pascal Faces
	AFW

	Ablation Study and Diagnosis
	Ablation Experiments
	Diagnosis of Hyperparameters
	Diagnosis of OHEM as Hard Face Mining
	Diagnosis of Data Augmentation
	Diagnosis of Multi-scale Testing
	Analysis of Accuracy/Speed Trade-off
	Qualitative Examples

	Conclusion and Future Works

	Efficiently Bridging 3D Context For Lesion Detection in CT Images
	Motivation and Overview
	Methodology
	Overview Pipeline
	3D Fusion Module

	Experiments
	Implementation Details
	Experiment Results

	Ablation Studies
	Inference Speed and Memory Overhead
	Architecture of 3DFM
	Number of 3DFM Instances
	Analysis on Different Lesion Types

	Conclusion and Future Works

	Spatio-Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction
	Motivation and Overview
	Related Work
	Temporal Proposals
	Relational Reasoning
	Trajectory Prediction

	Methodology
	Backbone Network
	Temporal Proposal Generation
	Proposal Prediction
	Spatio-Temporal-Interactive Feature Extraction
	Proposal Classification and Regression

	Experiment
	Experiment Settings
	Results on Waymo Open Dataset
	Results on Lyft Dataset
	Ablation Studies
	Model Inference Speed
	Qualitative Results

	Conclusion and Future Works

	Conclusion
	References
	Vita

