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Abstract

A better understanding of the plastic deformation of metallic materials and their

failure can greatly accelerate future material development. However, attaining such

an understanding is difficult through only experimental investigations and/or simple

analytical models. Recent advances in coarse grained simulations using large scale

discrete dislocation dynamics (DDD) simulations provide detailed spatio-temporal

descriptions of the evolution of complex dislocation networks in crystals having ar-

bitrary microstructures and initial defect distributions, and under different loading

conditions. In this thesis, a DDD framework has been developed and utilized to in-

vestigate the evolution of dislocation microstructures and surface roughness in single

and multi-phase metal microcrystals.

First, three atomistically identified cross-slip mechanisms, namely, bulk, inter-

section and surface cross-slip, have been implemented in the DDD framework and

utilized to study monotonic axial deformation in single crystal Nickel microcrystals

of different sizes and initial dislocation densities. It is concluded that cross-slip leads

to significant dislocation density multiplication, strain hardening, the formation of

dislocation cell-like structures in larger crystals and the formation and thickening of

slip bands on the crystal surface. Surface cross-slip was found to be the most frequent,

followed by intersection and then bulk cross-slip. These simulations are also shown

to be in agreement with recent microcompression experimental observations in both

Nickel and Aluminium microcrystals.
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Second, the evolution of dislocation microstructure and surface roughness dur-

ing cyclic mechanical loading was investigated. The cyclic response was divided into

two separate stages: the early stage response starting from a random dislocation mi-

crostructure, and the response of crystals having well-developed Persistent Slip Band

(PSB). In random dislocation microstructure simulations, crystals having sizes larger

that 5 μm showed cyclic hardening, significant dislocation density multiplication and

the formation of dislocation cell-like structures. The evolution of surface roughness

due to dislocations escape has been quantified. The atomic concentration of point

defects generated from dislocation annihilation in PSB walls was quantified and was

found to agree with experimental estimates.

Finally, the DDD framework was extended to model the interaction of disloca-

tions with an arbitrary distribution of precipitates that have an L12 crystal structure

by explicitly tracking the creation and destruction of Anti-Phase Boundary (APB)

regions. This framework was then utilized to perform the first DDD simulations of

single crystal superalloy micropillars with different precipitate microstructures. The

micropillar strength was found to vary linearly, follow a square-root relationship and

an inverse square-root relationship with the precipitate volume fraction, APB energy

and size respectively while the crystal size has no effect on its strength. The width of

the inter-precipitate channels was found to be the main strength determining factor.

The results were validated with detailed comparisons with recent microcompression

experiments on single crystal Nickel-based superalloys.

Thesis Readers: Prof. Jaafar A. El-Awady (advisor), Prof. Kevin J. Hemker and

Dr. Christopher F. Woodward
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Chapter 1

Introduction

1.1 The Development of Metallic Materials

Besides the discovery of fire, the knowledge of how to extract, process and use metals

probably had the most profound effect on mankind. Technological strides, qualitative

transformations in the social order, the emergence of new economic patterns and the

rise and fall of empires, all stemmed from the power acquired by societies and peoples

upon learning how to form metals into tools, arms, armor, structures and machinery.

It is of no surprise that archaeologists and physical anthropologists named two out

of the three ages of human prehistory and early history, the stone age, the bronze

age, and the iron age [1], after the most common metals used in making tools during

each age. In the modern age, the use of metals defines heavy industry, of which the

progress demarcates the developed from the developing nations. In areas critical for

sustaining and advancing the quality of life and social prosperity, such as energy and

national security, there is an undeniable profuse usage of metallic alloys. Thus, the

development of new metallic systems and processing methods is an essential effort

that has to be undertaken by the research community.

Like in most development efforts, economics plays a major role in providing the
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need to pursue further research in metallic materials in three different ways. First,

failure of metallic systems has significant direct and indirect costs which can be re-

duced or avoided with more advanced alloys or processing methods. The direct costs

include the costs of replacing the failed components and the associated production

downtime. This is most pronounced in heavy industries such as the military, petro-

chemicals and oil and gas industries. The indirect costs are usually more severe and

include the loss of lives, injuries or extreme environmental damage. Second, the oper-

ational costs of vehicles and machinery are continuously increasing due to the increase

in energy costs. Since metallic systems dominate the construction of vehicles and in-

dustrial machinery, the development of lighter alloys with similar or better strength,

thermal and corrosion properties would cut the operational costs appreciably at a

time when energy sources are becoming increasingly scarce. Third, the cost of lost

business resulting from the product development delays or failures due to the lack

of appropriate alloys is increasing due to the intense business challenges in a world

of knowledge democratization. This last one is difficult to quantify but the opposite

case, that is, the profits resulting from developing a product that relies on a novel

alloy, can provide some measures.

The open challenges in the development of metallic materials include, but not

limited to, preventing or delaying failure under certain operational conditions, in-

creasing ductility, stiffness and strength at room or higher temperatures or enhancing

the metal’s corrosion resistance and phase stability. This boils down to characterizing

how materials respond, at the atomic level, to the various loading and environmental

conditions. A perfect characterization of a material system would be the identification

of the position of each atom in the system at any time. However, this is not feasible

with current technologies and the amount of data one would get from such a charac-

terization, if it exists, is even more difficult to analyze and to extract useful material

evolution and deformation pathways from. Fortunately, metallic systems are crys-
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talline and a great deal of abstraction can be achieved by only characterizing their

crystal structure and the dynamics of their localized deviations from crystallinity,

known as material defects. It turns out that many of the diverse and interesting

material behavior relies mainly on how the defects evolve in time under the applied

loads, as Sir Charles Frank once said, “Crystals are like people: it is the defects in

them that make them interesting.”

This thesis presents an attempt to characterize the defect mechanisms and their

evolution in structural materials through computational simulations. The focus will

be on modeling the behavior of metallic systems subject to monotonic and cyclic me-

chanical loads under various operational temperatures. A perfect example for such

loading conditions is what happens inside gas turbines used for power generation or

inside jet engines. The use of gas turbines started in the mid 1930s for small power

stations and military aircraft. Over the years, significant improvements in the system

design and engine materials were introduced to increase its operational limits and

efficiency. A major factor in the efficiency of any gas turbine is the turbine entry

temperature (TET). The higher the TET is, the more efficient the turbine becomes.

At the same time, the turbine blades are subject to high cyclic inertial loads due

to their rotation speeds that can reach 100, 000 rpm [2]. The materials from which

turbine blades and disks are constructed should both be strong enough to sustain this

cyclic load and maintain their strength as the temperature increases. Computational

simulations are chosen because they can provide the full spatio-temporal evolution

of the physical quantities of interest. This can greatly facilitate explaining the main

deformation and failure mechanisms that take place in the components under consid-

eration. In addition, computational simulations can be used to artificially activate or

shut-off certain physical mechanisms in order to study the effect of other mechanisms

in isolation. Besides, simulating the material’s behavior at loading or thermal regimes

that are experimentally challenging, expensive, unsafe to run or inaccurate to measure
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can assist in exploring the full spectrum of materials behavior and direct experimen-

tal efforts to the potentially most useful research directions. With this knowledge in

hand, the materials development process can be accelerated and its costs cut down.

1.2 Computational Simulations of Deformation and

Failure

For any system of moderate to high complexity subject to thermomechanical loads,

the finite element method (FEM) [3, 4] became a standard approach to simulating

its behavior. At the heart of any FEM simulation lies a mathematical model that

mimics the material’s behavior, the constitutive model. It is the degree of accuracy

and robustness of this model that mainly dictates the quality of FEM results. For

brittle metallic materials and ceramics, damage models [5, 6] are used to model the

progressive loss of strength leading to complete failure. On the other hand, metals

that show some ductility prior to failure are modeled using plasticity models [7, 8]

that account for metal flow and different types of hardening. Most typical plasticity

models however are phenomenological in nature, that is, they are based on empirical

fits that model how the material of interest behaves under laboratory tests. While

this approach in constitutive model development is suitable for simulating large scale

heterogeneous systems with multiple interacting components, it does not say anything

about the physics of deformation or failure. These models can be used to simulate

the dynamics of complex engineering systems but they cannot be used to develop an

understanding of how materials behave.

Plasticity models based on the actual material structure and physics are called

crystal plasticity (CP) models [9]. Since metal’s plasticity is mainly controlled by

dislocation motion and interactions, CP models are dislocation density based. That

is, they have the dislocation density as a state variable that controls the yield strength
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and hardening rates at each point in the simulation. They are based on parametrized

functional forms for the dislocation density evolution. CP models can operate, in the-

ory, on the same length and time scales of the phenomenological models. Hence, they

are qualitatively different from phenomenological models in that they reflect actual

material physics. However, the material deformation process occurs at various length

and time scales and CP is designed to capture the defect microstructure evolution at

the length scale of dislocation ensembles (tens to hundreds of micrometers) and the

time scale appropriate for significant defect density variations (a few milliseconds). A

deeper understanding requires resolving the deformation mechanisms at length and

time scales lower than those accessible by CP. Plus, the model parameters of CP can

only be obtained from simulations and experiments at lower scales.

An appropriate lower scale is that of dislocation dynamics. This ranges from

about 100 nm to 50 μm in length and up to 1 ms in time. This is the range suitable

for resolving the motion and interactions of individual dislocations. Two types of

computational simulations are typically used at this scale, Continuum Dislocation

Dynamics (CDD) [10] and Discrete Dislocation Dynamics (DDD) [11–16]. Similar

to CP, the main variable in CDD is the dislocation density but no density evolution

laws are assumed or fitted. The change in the dislocation density in a CDD control

volume is due to the density flux into that volume or the generation (or annihilation)

of dislocations in it. The long range dislocations interactions are usually neglected in

CDD and the short range ones are statistically approximated [10]. Also the dislocation

velocities in CDD are often assumed to be independent of the local stress[10, 17]. DDD

captures the density evolution with fewer assumptions compared to CDD, hence, it

can be used to fit the parameters of CP models. Also certain dislocation patterns,

such as dislocation cell structure formation, have been successfully captured by CDD

[17, 18]. The main assumption in CDD simulations is the dislocation velocity which

can only be captured using a lower length scale method.
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On the other hand, DDD discretely resolves the individual dislocations and all

the short and long range dislocations interactions are accounted for. The long range

interactions are modeled using the exact solution from the theory of elasticity [14, 16],

which does not break down for long range interactions. Short range interactions, such

as dislocation collisions, annihilation and dislocation core changes leading to cross-

slip, are explicitly modeled so that they fit the results of lower length scale methods or

experimental findings. DDD is also explicit in terms of modeling the effects of two and

three dimensional defects, such as grain boundaries [19, 20], twin boundaries [21] and

precipitates [22, 23] on the movement of dislocations. Explicit dislocation network

formation and density and plastic strain evolution can be directly obtained from DDD

simulations under general spatially and temporally varying stress fields and arbitrary

crystal geometries. Thermally activated mechanisms can be individually modeled in

DDD to faithfully reflect their occurrence in the real metal. Unlike CP and CDD,

DDD is truly discrete and it does not rely on any kind of mesh or grid to run its

calculations on. The only assumption used in DDD is the mobility law, which is a

constitutive model that links the velocity of a dislocation point to its local stress.

Like CDD, this is typically obtained from a lower scale simulation method such as

molecular dynamics simulations, or by fitting experimental results.

Molecular Dynamics (MD) simulations [24] can model systems ranging in size

from few nanometers to hundreds of nanometers over time intervals up to a few mi-

croseconds. MD simulations are sophisticated n-body simulations that can trace the

motion of every single molecule or atom in the simulation and extract useful system

information such as temperature, pressure and energy based on this data. The scale

of MD simulations separates the scales where classical mechanics are valid from those

which cannot be treated without resorting to quantum mechanics. In MD simula-

tions, crystal structures emerge naturally as the minimum energy configurations for

the atomic locations. Similarly, any crystal defects they contain, such as dislocations,
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are introduced, or they arise, as spatially extended perturbations of the minimum

energy configuration. Dislocations can be introduced into MD simulations and their

mobility under various stress and temperature levels can be calculated [25]. MD

simulations are also used to study individual defect mechanisms such as dislocation

cross-slip [26–30], climb [31], grain boundary migration [32], and twin formation [33].

However, they suffer from severe length and time scale limitations due to their high

computational costs. The only assumption made in MD simulations is in the force of

interactions between different atoms. Parametrized interatomic potentials, or force

fields, are required in order to properly capture the atomic interactions and the sys-

tem’s energy. These interatomic potentials are usually developed and fit using lower

scales simulation method such as the density Functional Theory.

At the very bottom of the length and time scales lies the most basic, first principles,

simulation method, the Density Functional Theory (DFT) [34]. DFT calculation

are direct solutions to Schrodinger’s equation that yield the electronic structure of

matter. The Born-Oppenheimer [34] approximation is used to separate the slow

motion of the heavier atomic nuclei from the faster, almost instantaneous, motion of

the lighter electrons. Then, the Hohenberg-Kohn theory [35] provides the justification

for approximating the electronic configuration by a spatially varying electron density.

The main outcome of DFT calculations is the system’s ground state and energy. DFT

calculations are used to develop interatomic potentials suitable for different kinds of

metals to be used in MD simulations [36]. The length scale of DFT calculations is

typically that of a few atoms (a few Angstroms).

The methods discussed above span all the relevant length and time scales. Figure

1.1 summarizes the various length and time scales discussed above along with the

appropriate simulation methods for each scale. These scales are usually connected

together in a hierarchical manner where the lower length scales feed the higher length

scales with the parameters they need. An alternative approach, which is beyond the
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scope of this thesis, is the concurrent simulations [37] where different spatial regions

are modeled using different methods at the same time with a way to bridge the state

variables from one region to the other. This is typically used when certain regions

of the simulation need to be resolved at a finer level such as modeling the region

surrounding a crack tip using MD and the rest of the system using FEM to capture the

crack propagation more accurately [38]. In the following chapters, DDD simulations

will be utilized to quantify the mechanical behavior and the deformation mechanisms

in both pure and multiphase metallic systems. DDD was chosen because it covers

a larger gap in both length and time scales and it is an appropriate method that

can connect the physical mechanisms active at the atomic scales to the engineering

applications of interest.

Figure 1.1: Different computational methods and their appropriate length and time
scales for modeling the behavior of metallic systems. The CDD image is from Xia
et. al. (DOI:10.1088/0965-0393/23/5/055009) “©IOP Publishing. Reproduced with
permission. All rights reserved”.
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1.3 The Gas Turbine : A Case Study

A full characterization for the active deformation mechanisms in the turbine blade

and disk materials during the typical operation of a gas turbine is far from complete.

The effects of a number of well known deformation mechanisms on the overall response

need to be identified. The complexity of the loading patterns and the material con-

struction make this task more challenging. Turbine materials are subject to various

operating temperatures, high frequency cyclic loading, and they are constructed from

advanced alloys that have complicated microstructures.

Materials in high temperature environments typically experience frequent ther-

mally activated deformation mechanisms [39] such as dislocation cross-slip and climb.

Dislocation cross-slip is the process by which screw-dislocations glide conservatively

from a low stress to a higher stress glide plane [40]. This mechanism is thermally

activated because the dislocation core needs to change shape from a lower energy

configuration into a higher energy configuration and this is usually not spontaneous

especially in the absence of other defects. On the other hand, climb is the nonconser-

vative motion of a dislocation in a direction normal to its slip plane [41]. It takes place

mainly by the diffusion of point defects into or from the dislocation core. At higher

temperature, the diffusion coefficient of point defects increases and consequently the

dislocation climb rate. Cross-slip is more frequent than climb at moderate temper-

atures and it is one of the most important mechanisms responsible for dislocation

cell structure formation and strain hardening [42–47]. Cross-slip has been studied ex-

tensively through experiments [48–50], MD [26–30, 51, 52] and DDD [11, 13, 53–55]

simulations, however, physics based cross-slip mechanisms have not yet been fully im-

plemented in DDD simulations to date. This has lead to far from accurate predictions

of dislocation microstructure evolutions, and the lack of any significant dislocation

patterning observations in DDD simulations. As will be shown in the following chap-

ters, the correct mechanical response and microstructure evolution from DDD simu-
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lations is critically correlated to physically-based cross-slip under monotonic loading

in FCC metals.

It is well documented that cyclic loading is the main cause of failure in mechan-

ical components [56, 57]. Failure is preceded by the nucleation of cracks, usually on

the surface of the component [57, 58] or at internal interfaces, these cracks typically

propagate until a critical crack size is reached, after which unstable crack propagation

takes place. To date there are no physics-based theories capable of accounting for

crack nucleation in these environments. Nevertheless, it is agreed that the interaction

of plastic flow and the breaking of atomic bonds in regions of high local stresses both

play a major role. Surface extrusions and intrusions forming due to the escape of

dislocations gliding on a number of active slip planes increases the stress concentra-

tion around these sharp surface features and facilitates bond breaking. Dislocations

arrange themselves in high and low dislocation density regions inside the material,

such as dislocation cells [59–62] and persistent slip bands [63], which explains why

dislocation escape can be localized. The interaction of dislocations during the loading

and unloading stages of the cyclic loading results in the formation of these structures.

In addition, cyclic strain hardening or softening takes place as more loading cycles

are applied on the material. It is thus necessary to understand how the dislocations

arrange themselves into dislocation patterns and how this alters the material prop-

erties, to be able to develop better fatigue resistant materials. From an operational

point of view, a better understanding of fatigue failure mechanisms can help provide

better and less conservative estimates for the life time of the components in question

and reduce the amount of inspection and maintenance work needed for their safe

operation.

Finally, modern gas turbine blades are typically made from nickel-base superalloys

[64] because they maintain their strength at high temperatures. These alloys have a

large number of alloying elements and usually have at least two distinct phases, termed
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the γ and γ′ phases respectively, with some alloys having a third γ′′ phase. The γ

phase, (the matrix) is FCC nickel with of solute atoms dispersed throughout. The

γ′ phase is Ni3Al or Ni3Ti, which usually forms large precipitates that get dispersed

in the matrix phase. The movement of dislocations in the γ′ phase is different than

that in the γ phase because the γ′ phase is an ordered phase where the glide of one

dislocation disrupts the local chemistry of the precipitate structure resulting in a high

energy configuration, hence, the precipitates resist the glide of dislocations through

them. On the other hand, if a dislocation glides through a region of the slip plane that

has already been disrupted by another dislocation, the minimum energy configuration

is restored, and hence, the system attracts this second dislocation. This asymmetry

in how the γ′ phase responds to the dislocations gliding through it gives rise to

different dislocation patterning behavior and strength properties. If the dislocation

shearing through precipitates is too difficult, dislocations can cross-slip, climb or

loop around the precipitate to bypass it. To date, no full DDD simulations have been

capable of capturing the interaction of general dislocation distributions with arbitrary

precipitate microstructures. A simulation of that type can give deep insights into the

role of precipitate volume fractions, sizes and types on the strength of the alloy at

various temperatures and provide guidance to alloy developers on which alloys are

promising for certain application areas.

1.4 Thesis Objectives and Organization

The objective of this thesis is to develop an extensible DDD framework capable of

modeling the different deformation mechanisms discussed in section 1.3 and utilize

it to study the mechanical response and the evolution of dislocation microstructures

for different materials under different loading conditions. In particular, the following

research efforts have been undertaken:
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• The proper implementation of atomistically informed physics-based cross-slip

mechanisms in DDD simulations.

• Quantify the effect of cross-slip on the response and the microstructure evolution

of pure nickel.

• Quantify the evolution of dislocation microstructure and the hardening and

softening behavior in nickel single crystals during cyclic loading.

• Quantify the surface roughness evolution due to dislocation escape from the

crystal surface in nickel single crystals during cyclic loading.

• Model the dislocation microstructure evolution in persistent slip bands (PSB)

and quantify the generation of point defects due to dipole annihilation.

• Extend the DDD framework to account for general precipitate microstructures

and their interactions with dislocations.

• Quantify the mechanical response and the dislocation microstructure evolution

in nickel-base superalloy microcrystals under monotonic loading.

These efforts aim to provide a link between what is known about the dynamics

of individual dislocations and the macroscopic deformation behavior observed in ex-

periments and application for materials used in gas turbines. The DDD method is

probably the most suitable for the large scale modeling of the effect of these phenom-

ena on the material response.

The thesis is organized as follows. In Chapter 2, the mathematics and com-

putational details of the DDD methods are discussed in detail. In Chapter 3 the

incorporation of physics-based cross-slip mechanisms for FCC metals in DDD are

presented, and results from a parametric study on the effects in cross-slip on the

strength and dislocation microstructure evolution of single crystal nickel micropillars
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of different sizes and initial dislocation densities are discussed. Chapter 4 presents

the application of the DDD method in studying the behavior of metals under cyclic

loading. The evolution of the dislocation microstructure and the effect of dislocation

activities on the evolution of surface roughness on the crystal surface is quantified for

crystals of different sizes and initial dislocation densities. Finally, a number of DDD

simulations of persistent slip bands (PSB) under cyclic loading are presented and the

generation of point defects due to the annihilation of dislocation dipoles in the PSB

walls and channels is quantified. In Chapter 5, the DDD framework is extended to

account for dislocation interactions with general precipitate microstructures. A num-

ber of DDD simulations on single crystal nickel superalloy microcrystals of different

precipitate microstructures are discussed. Finally, in Chapter 6, a summary of the

work is presented and a number of suggested future research directions that build

on the current work are presented. It is worth noting that some of the passages in

Chapters 3, 4 and 5 have been quoted verbatim from a publication [65], a number of

submitted manuscripts by the author [66–70].
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Chapter 2

Mathematical and Computational

Foundations

2.1 Mathematical Models for Dislocations and their

Elastic Fields

A distinct feature of dislocation theory is that it was entirely conceived before any

actual observation of dislocations. Dislocations were proposed to explain why metals

flow at stress levels that are significantly lower than their theoretical values, which

are on the order of the shear modulus. The actual flow strength for metals is in

fact three orders of magnitude lower than the theoretical strength [40, 41]. The

theoretical development of dislocations took place in two different directions. First,

and before proposing their existence in materials, Volterra [71] in 1915 developed

the mathematical theory that describes the elastic fields due to line defects in an

otherwise compatible continuum. This mathematical development forms the basis

for calculating the interaction stress between calculations. Second, the existence

of dislocations was theoretically proposed independently by Orowan [72–74], Taylor

[75, 76] and Polanyi [77] in 1934 to explain less-than-theoretical flow stress observed
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crystals. A concise but excellent review of the developments in the dislocation theory

is given by Hirth [78]. In this section, the basic models for dislocations will be reviewed

and expressions for the dislocations’ elastic fields will be derived.

2.1.1 The Somigliana Dislocation

Although it is not the first model to be conceived, the Somigliana dislocation model

[79, 80] is the most general mathematical model for a linear material defect because

it imposes the least number of specifications on that defect. The Somigliana model

starts by the thought process of making a cut of general shape inside the material

of an infinite continuum. The separated surfaces on both sides of the cut are then

displaced relative to each other according to a non-uniform displacement field. The

surfaces are then weld back together to restore the continuity of the medium. At

the points on the cut surface where the displacement vector lies within the surface’s

tangent plane, the process can proceed conservatively, that is, without the insertion

or removal of any material, while material insertion and removal is required for all

other points. The resulting deformed structure of the continuum develops an elastic

strain field. After welding, the displacement field is continuous everywhere except

along the boundary curve of the cut surface. This boundary curve represents the

dislocation, and due to the displacement discontinuity along the dislocation line, the

strain and the stress fields are singular along it.

When dealing with Somigliana dislocations, it is difficult to reduce the features of

the dislocation generation process described above to those of the dislocation curve

because the imposed displacement field, which is the only restriction imposed, is

spatially varying and unless there is a clever mathematical transformation that would

uniquely map the two dimensional field to the one dimensional dislocation curve, the

displacement information would be lost. This is only possible in the simple cases such

as linearly varying displacement fields [81]. Following Eshelby [82], the displacement
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at the medium point r due to the presence of a Somigliana dislocation is given by

ui(r) =

∫
S

bj(r
′)pijk(r, r

′)nk(r
′)dS (2.1)

where ui is the i
th displacement component, bj(r

′) is the displacement imposed on the

cut surface at point r′, pijk(r
′) is the jk stress field component at the surface point r′

due to a unit force at point r in the direction of the xi axis, nk(r
′) is the normal to the

cut surface at point (r′) and S is the cut surface. The vector bj(r
′) is defined to be the

displacement of the cut surface in the direction of nk(r
′) minus that of the surface in

the direction opposite to nk(r
′). The reasoning behind this equation comes primarily

from the Betti’s Reciprocity theorem [83]. Imagine an unstressed solid in which the

dislocation is to be introduced and let fi be a unit force in the direction of the xi axis

applied at the point r at which the displacement ui(r) is desired. If one introduces

the dislocation and then the force fi, the total stored energy in the solid would be

ED + EF where ED is the energy due to the dislocation’s introduction and EF is

that due to the force application. Because the force deforms the medium in the same

way regardless of the dislocation’s presence, there is no work done by the dislocation

when the force is introduced later on. However, if the force was applied and then

the dislocation was introduced, the total stored energy would be ED +EF + TD + TF

where TD is the work done by the dislocation to displace the two surfaces of its cut

against the traction caused by the force’s presence and TF is the work done by the

force when the dislocation displaces its point of application as it gets introduced. In

linear elasticity, the order of the load application is irrelevant and the final state of

the system, including its stored energy, should be the same either way. This means

that TD = −TF which is the statement of Equation 2.1. The left hand side is TF

(notice that the magnitude of fi is unity) and on the other hand is TD which is equal

to the integral
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TD = −
∫
S

bj(r
′)tj(r′)dS (2.2)

where tj(r
′) is the traction on the cut surface at point r′ due to the applied force.

This traction can be written as

tj(r
′) = pijk(r, r

′)nk(r
′) (2.3)

Somigliana dislocations have not been studied heavily as separate theoretical en-

tities due to their complex elastic fields. However, they found some applications in

geophysics [82], the modeling two dimensional crystalline defects such as the interface

of coherent prismatic precipitates, phase boundary sliding during high temperature

deformation and tilt grain boundaries [81] and the shear of martensitic transforma-

tions [84] which is better dealt with using disclinations [85], which are special cases

of Somigliana dislocations.

2.1.2 The Volterra Dislocation

The Volterra dislocation model [71] was developed before the Somigliana model and

it is the most widely used dislocation model for theoretical and computational treat-

ments [85, 86]. It is a special case of the Somigliana model in that the imposed dis-

placement field is constant (bj(r
′) = bj) which simplifies the elastic fields expressions

and allows the reduction of the dislocation surface to its bounding curve. Moreover,

it is consistent with the physical theories of dislocations put forth by Orowan [72–

74], Taylor [75, 76] and Polanyi [77] in that the slip around the dislocation loop is

constant. A direct consequence of the constancy of imposed displacement is that the

divergence of the Burgers vector must be zero everywhere in the medium which is an

essential condition in continuum dislocation dynamics [87]. The displacement field

of the Volterra dislocation can be obtained from that of the Somigliana dislocation
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(Equation 2.1) by imposing a constant displacement

ui(x) = bj

∫
S

pijk(x, x
′)nk(x

′)dS (2.4)

The function pijk(r, r
′) can be obtained from the displacement’s Green’s function

Uk
i , which, for isotropic elasticity, is [85]

Uk
i (x) =

1

4πμ

(
δik
r
− r,ik

4(1− ν)

)
(2.5)

where μ and ν are the material’s shear modulus and Poisson’s ratio respectively, δij is

the Kronecker delta, the comma denotes differentiation and r is the magnitude of the

vector connecting the field point x to the source point x′. This is the displacement at

point x in the ith direction due to a unit force at point x′ in the kth direction. A full

derivation for Green’s function is given in Appendix A. The strain field Ek
ij(x) due

to the same force is

Ek
ij(x) =

1

2

(
Uk
i,j + Uk

j,i

)
(2.6)

which upon substituting Equation 2.5 in 2.6 gives

Ek
ij(x) =

−1
16πμ(1− ν)r2

(
3rirjrk

r3
− δijrk

r
+

1− 2ν

r
(δikrj + δjkri)

)
(2.7)

The stress field σij for isotropic elasticity is given by

σij = λδijεkk + 2μεij (2.8)

where λ = 2μν
1−2ν , by substituting Equation 2.7 in 2.8, one gets an expression for pkij
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pkij(x) =
−1

8πμ(1− ν)r2

(
3rirjrk

r3
+

1− 2ν

r
(δikrj + δjkri − δijrk)

)
(2.9)

Substituting Equation 2.9 in 2.10 gives an expression for the Volterra dislocation’s

displacement field which, after rearranging, is

ui(x) =
1

8π

∫
S

bir,ppjdSj+
1

8π

∫
S

(bkr,ppkdSi−bjr,ppidSj)+
1

8π(1− ν)

∫
S

(bjr,ppi−bkr,ijk)dSj

(2.10)

where dSi = nidS, this expression can be rewritten in the following form

ui(x) =
1

8π

∫
S

bir,ppjdSj+
1

8π

∫
S

(δjtδiq−δitδjq)bjr,pptdSq+
1

8π(1− ν)

∫
S

(δqpδjt−δqjδpt)btr,pqidSj

(2.11)

Using the Levi-civita - Kronecker delta connection

εijkεilm = δjlδkm − δjmδkl (2.12)

one can rewrite Equation 2.11

ui(x) =
1

8π

∫
S

bir,ppjdSj +
1

8π

∫
S

εljiεltqbjr,pptdSq +
1

8π(1− ν)

∫
S

εlqjεlptbtr,pqidSj

(2.13)

and from Stokes theorem

∫
S

εijkTαβ.....i,jdSk =

∫
C

Tαβ.....idli (2.14)

for any tensor Tαβ.....i. Applying this theorem on the last two terms in Equation 2.13,

one gets
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ui(x) =
1

8π

∫
S

bir,ppjdSj +
1

8π

∮
C

εikjbjr,ppdlk +
1

8π(1− ν)

∮
C

εkpjbjr,pidlk (2.15)

where C is the curve bounding the surface. The first term in expression 2.15 can

be transformed from a surface integral to a line integral using the surface integral

expression for solid angles. A solid angle Ω subtended by an object at a point is

defined to be the area of the object’s radial projection on a unit sphere centered at

the point. The projection of an area element dS on the surface S bounded by the

dislocation loop on the unit sphere is equal to

dSp =
r,ini

r2
dS (2.16)

where r,i is the unit vector starting at the angle calculation point and pointing at the

area element, ni is the normal to the area element and r is the distance between the

calculation point and the area element. The solid angle then becomes

Ω =

∫
Sp

dSp =

∫
S

rini

r3
dS =

∫
S

rj
r3
dSj (2.17)

this expression has the same form as the first integral in Equation 2.15 after multi-

plying it by a factor of −2 (because r,ppj = −2 rj
r3
). This gives the final expression for

the displacement field of a dislocation loop in an infinite isotropic medium

ui(x) =
−biΩ
4π

+
1

8π

∮
C

εikjbjr,ppdlk +
1

8π(1− ν)

∮
C

εkpjbjr,pidlk (2.18)

This expression depends only on the dislocation loop and not on the cut surface that

formed the dislocation. The first term is the solid angle subtended by the dislocation

at the point x at which the displacement field is required. The strain field of a

dislocation loop can be directly calculated from the stress field
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εij(x) =
−1
8π

(biΩ,j+bjΩ,i)+
1

16π

∮
C

bm(εikmr,ppj+εjkmr,ppi)dlk+
1

8π(1− ν)

∮
C

εkpmbmr,pijdlk

(2.19)

The derivative of the solid angle Ω,jcan be obtained from its surface integral

expression

Ω,j =
∂

∂xj

(
−1

2

∫
S

r,ppldSl

)
= −1

2

∫
S

r,ppljdSl (2.20)

Since r,ppll = 0 for all cases, one can rewrite the previous expression

Ω,j =
1

2

(∫
S

r,pplldSj −
∫
S

r,ppljdSl

)
=

1

2

∫
S

(δtlδqj − δqlδtj) r,ppltdSq (2.21)

Using the Levi-Civita Kronecker delta connection one more time then applying Stoke’s

theorem

Ω,j =
1

2

∫
S

εktqεkljr,ppltdSq =
1

2

∮
C

εkljr,ppldlk (2.22)

Substituting back into Equation 2.19

εij(x) =
1

16π

∮
C

(biεkjqr,q + bjεkiqr,q + bmεikmr,j + bmεjkmr,i),pp +
2εkpmbm
(1− ν)

r,pijdlk

(2.23)

Finally, using equations 2.8 and 2.23, one can obtain the stress field of a dislocation

loop after some rearrangement

21



σij(x) =
μbm
8π

[∮
C

r,ppα (εαmidlj + εαmjdli) +
2

(1− ν)

∮
C

εαmk (r,ijα − δijr,ppα) dlk

]

(2.24)

This equation is valid only for infinite isotropic media. To handle anisotropic

solids, a different Green’s function (Equation 2.5) is required. A series solution for

anisotropic elasticity Green’s function that uses Fourier transforms was given by Mura

[88]. For materials with cubic crystal structures, the anisotropy is minimal (equal

axial, shear and shear strain-axial stress coupling stiffness moduli) and the number

of stiffness constants reduce to 3. This justifies the use of isotropic media dislocation

stress fields in most DDD simulations because the computational cost of using the

anisotropic elasticity stress fields is huge compared to using the isotropic ones. On the

other hand, the anisotropy due to dislocations’ glide on energetically favorable slip

planes is perfectly accounted for in DDD simulations without any approximations.

2.1.3 The Non-Singular Dislocation Model

A Volterra dislocation is a curve that separates the displaced region from the undis-

placed region according to the Somigliana construction explained in Section 2.1.1.

Since the transition between the two regions takes place abruptly, all the elastic fields

derived in Section 2.1.2 are singular. This results in numerical inaccuracies when

calculating the stress fields from a dislocation loop at a point which is very close

to, or on, the loop. A nonsingular dislocation theory was developed by Cai et. al.

[89] where the transition between the displaced and undisplaced regions takes place

gradually over a width a which is defined to be the dislocation’s core width. The

theory does not assume a certain shape for the dislocation core. In terms of Volterra

dislocations, the nonsingular dislocation can be thought of as a continuous distribu-

tion of Volterra dislocations each of an infinitesimal Burgers vector. The dislocation’s

22



core distribution is chosen so as to facilitate the calculation of the interaction force

between two dislocations, which is the most expensive and error-prone step in DDD

simulations. In particular, the Burgers vector of the nonsingular dislocation can be

written as

b =

∫
Λ

g(x)dΛ (2.25)

where Λ is a planar region in the plane normal to the dislocation’s tangent vector at

the point at which the Burgers vector is required. The dislocation’s core is spread

out in that plane. The function g(x) is the shape of the dislocation’s core which is to

be solved for. When calculating the force from one dislocation loop on another, the

stress σij from the source loop Cs is integrated over the target loop Ct according to

Peach-Koehler relationship as follows

fk =

∮
Ct

εijkσipbpdlj =
μ

8π

∮
Ct

εijk

∮
Cs

bsmAipmqb
t
pdlqdlj (2.26)

where bsi and bti are the Burgers vectors of the source and target dislocations respec-

tively and Aipmq is a 4th-order tensor equivalent to the integration kernel of Equation

2.24. The core distribution g(x) is chosen such that its convolution w(x) = g(x)∗g(x)
when convoluted with r(x) gives ra(x) which has the form

ra(x) = r(x) ∗ w(x) =
√
riri + a2 (2.27)

Since the expansion of Aipmq consists of terms of the form r,ijk ∗ w(x), replacing
all r,ijk with ra,ijk results in an expression which cannot be singular even for zero r.

The function w(x) was found to be

w(x) =
15

8πa3
(
r2

a2
+ 1

)7/2 (2.28)
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However, a closed form solution for g(x) cannot be found and a numerically fit so-

lution for it was given in [89]. g(x) is essential for calculating the stress field from a

nonsingular dislocation at a point while w(x) is all that is required to calculate the

force of interaction between two dislocations.

2.2 The Discrete Dislocation Dynamics Method

The DDD method is a computational method by which dislocation networks can be

introduced into a thermomechanically loaded medium and subsequently evolved in

time [11–15, 54]. The dislocations move under the effects of the applied and interac-

tion stresses. Other factors that can affect their motion is shearing of precipitates or

collisions with other dislocations. The DDD system iterates, indefinitely, over a fixed

sequence of computations resulting in the proper modeling of the evolution physics

and the estimation of the overall mechanical response. In the sections below, the basic

DDD loop will be described along with the details of each step. The DDD simulation

system used in this work is a heavily modified and extended version of ParaDis, a

DDD system developed in Lawrence Livermore National Laboratory [16].

2.2.1 Basic DDD Loop

The main DDD loop is qualitatively similar to the main molecular dynamics (MD)

loop [24]. Initially, the dislocation microstructure is represented as a network as

explained in Section 2.2.2 and is input along with the crystal geometry and all the

boundary conditions. Each time step begins by calculating the applied loads as

described in sections 2.2.3 and 2.2.4. This is followed by calculating the forces on

the different dislocation segments which is the most computationally intensive step

in the entire DDD loop. Section 2.2.5 gives the details of these calculations and

Section 2.3 describes some of the methods used to accelerate this part. With the
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segment and nodal forces in hand, the velocities of the dislocation nodes can then be

calculated using the chosen mobility functions. All the crystallographic constraints,

including the proper handling of dislocation nodes moving on the crystal surfaces,

are imposed in this step as detailed in Section 2.2.6. Similar to MD, time integration

then follows as described in Section 2.2.7. In the case of using periodic boundary

conditions (PBC), the integrator is responsible for handling where the dislocation

nodes should end up in case they exit the boundary in any direction and maintaining

the connectivity with other dislocation nodes. This step terminates the main part of

the loop and all the mechanical properties can be calculated and output at this point

as described in Section 2.2.8.

The rest of the DDD loop handles the topological changes in the dislocation net-

work and the dynamic load balance which is necessary for efficiently simulating larger

systems. First, an extensive search for all the dislocation reactions is undertaken and

all the reactions are handled. Section 2.2.9 describes the 3 types of dislocation reac-

tions and how the system modifies the dislocation network in each case. Second, the

dislocation network is adaptively remeshed, which is another topological modification

in the network and. The final step is presented in Section 2.2.10 and it is the dynamic

balancing of the computational load over the computational resources available for

the simulation. A flowchart that represents the overall DDD loop is given in Figure

2.1.

2.2.2 Dislocation Network Representation

There are numerous ways by which dislocation microstructures can be computation-

ally represented for DDD simulations. Ghoniem et. al. [14] represented dislocations

as parametric curves lying on planes in 3D whose shapes are controlled by their end

nodes in case of linear splines, end nodes and tangent vectors in case of cubic splines

and end nodes, tangents and curvatures in case of quintic splines. On the other hand,
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Figure 2.1: The basic input, output and DDD loop steps

Kubin et. al. [11] used a simpler representation where dislocation segments can either

be edge or screw segments or make an angle of 60 degrees with the screw orienta-

tion [90]. The representation of dislocations in this work however is based on the way

dislocations represented in the original ParaDis code [16]. The dislocation microstruc-

ture is represented by a set of three-dimensional nodes which are interconnected by

linear dislocation segments. The segments can have any orientation and they are not

constrained to lie in a particular plane. The dislocation nodes define the shape of

the dislocation network while the dislocation segments that connect them carry the

actual dislocation information such as its slip plane and Burgers vector. Dislocation

nodes are allowed to have any number of neighbours and the overall topology of the

system is time varying. This way, the dislocation microstructure is represented truly

as a graph structure [91] with the vertices being the dislocation nodes and the edges

being the dislocation segments. This proved to be useful in handling some necessary

search and processing operations such as the efficient implementation of cross-slip

event detection.
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The different representations presented vary in terms of the accuracy of repre-

senting the dislocation microstructure and the computational load required for their

simulation. The parametric representation has the advantage of requiring a fewer

number of nodes which reduces the overall number of degrees of freedom. Besides,

it guarantees a certain degree of continuity depending on the order of the employed

spline. Finally, it guarantees that the dislocations will always remain planar which is

preferred especially when modeling FCC crystallographic systems where dislocation

off-plane motion is less likely. However, to maintain the higher order continuity, the

nodes, tangents and curvatures of the splines have to be evolved in a consistent man-

ner because they are coupled through the spline equation. This results in a system of

linear equations that has to be solved during the time integration. This is a serious

drawback especially for larger simulations where the number of degrees of freedom

can be quite large. On the other hand, the edge-screw representation is the simplest,

does not require solving linear systems for evolution as it depends only on the nodal

positions, but it results in a lower representation accuracy for mixed-type dislocation

unless a huge number of nodes is used. The graph representation relaxes the orien-

tational constraints imposed in the edge-screw representation and does not require

solving linear systems for integration since nodes can move independently, however,

it still needs more degrees of freedom for a better microstructure representation com-

pared to the parametric case.

A dislocation node can have one of three types, pinned, free or surface. Pinned

nodes cannot move at all and they are used to model the ends of Frank-Read sources.

Free nodes are free to move under constraints imposed by the slip planes of their

connected segments. That is, a free node connected to two segments on the same

plane can move on that plane while a free node connected to two segments on different

planes can only move along the line of intersection of the two planes. Surface nodes

are free nodes with an extra constraint that they have to move tangent to the crystal
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surface at all times. Hence, a surface node connected to one segment moves along the

curve of intersection of the crystal surface with the slip plane of that segment. Free

nodes cannot be connected to only one segment because this violates the Burgers

vector continuity. The sum of the Burgers vectors of the segments connected to any

free node should be zero. Given the previous constraints, one can see that free nodes

connected to more than 2 segments are likely to be pinned if at least 3 segments are

on different slip planes. Plus, surface nodes cannot be connected to anything different

than 1 segment or 2 segments on the same plane or else they cannot move at all.

2.2.3 Applied Load Calculations

The calculation of the applied loads is a central part of the DDD loop because it is

the way by which the flow stress can be calculated. DDD systems are flexible in terms

of the kind of loading scenarios that can be implemented. The applied load can be

either a stress controlled or a strain controlled load. For stress controlled cases, time

varying stress tensor is imposed on the crystal while for the strain controlled cases,

a time varying strain tensor is imposed from which the corresponding stress tensor is

calculated. The strain controlled loading cases can be further subdivided into total

strain controlled and plastic strain controlled loading.

Depending on the problem geometry and the applied load, the stress field can be

specified analytically or obtained numerically. For the simple geometries and loading

cases where the full stress distribution can be solved analytically, it is preferred to

input the stress distribution to the DDD system so as to reduce the computational

load required to solve for the stress field at every time step. For more complicated

boundary value problems, the Finite Element Method (FEM) can be used to solve

for the stress field distribution accurately at the expense of the simulation runtime.

The simplest load case is that of the constant applied stress which is usually used

to model creep deformation. The stress tensor is given as an input and it is constant
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in space and time such that all dislocations move under the effect of the same applied

stress. The load case used for most of the work described in this dissertation is the

total strain rate controlled loading where an imposed strain rate is given and the

system is loaded in a way such that this total strain rate is achieved at all times. In

DDD simulations, infinitesimal strains are always assumed and hence, the additive

decomposition of the total strain tensor ε [7] holds

εij = εije + εpij (2.29)

where εeij and εpij are the elastic and plastic strain tensors respectively. The stress

σij corresponding to a given elastic strain state can be calculated given the material

stiffness constants Cijkl

σij = Cijklε
ij
e = Cijkl(εij − εpij) (2.30)

Rewriting this equation in the rate form

σ̇ij = Cijkl(ε̇ij − ε̇pij) (2.31)

and multiplying by the time step duration Δt

σ̇ijΔt = Δσij = Cijkl(ε̇ijΔt− ε̇pijΔt) = Cijkl(ε̇ijΔt−Δεpij) (2.32)

gives a general formula for updating the stress increment

σij(t+Δt) = σij(t) + Δσij = σij(t) + Cijkl(ε̇ijΔt−Δεpij) (2.33)

From the previous expression, it is obvious that the plastic strain increment during

the time interval Δt needs to be calculated. The details of this calculation will be

presented in Section 2.2.8.
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In order to calculate the stress tensor as described above, two assumptions need to

be made. First, the stress is uniform or the stress gradients are small and negligible.

This assumption is needed to justify the uniform stress field imposed throughout

the sample. Second, the crystal is small enough so that the plastic strain tensor is

uniform or has low gradients. Without this assumption, a plastic strain field has to

be calculated, with corresponding elastic strain and stress fields. The assumption

of small simulation volume amounts to modeling the representative volume element

surrounding a single Gauss point in an FEM simulation.

Relaxing the first assumption, especially for the cases where high stress accuracy

is required near the simulation volume boundaries where the stress gradients are high,

can be achieved using an FEM solver coupled to the DDD simulation system. The

plastic strain increment can be passed to the FEM solver and an accurate stress field

can be solved for. Notice however that still the second assumption of uniform plastic

strain field is imposed in this case. In the work presented in this dissertation, no

effort was undertaken to relax the second assumption and compute localized plastic

strain fields from DDD simulations and passing them to the FEM solver. It is also

worth mentioning that the imposed total strain rate can be time varying so that cyclic

loading problems can be modeled as well as simple axial loading cases. In the case of

using FEM to solve for the stress field, a fully dynamic 3D FEM was used to account

for the inertia effects of time varying loads.

2.2.4 Image Stresses

In deriving the dislocation stress field presented in Section 2.1.2, the crystal was

assumed to be infinite in size. This assumption is valid when the problem has PBCs.

However, for finite sized crystals, the stress field needs to be corrected to account for

the presence of surfaces bounding the simulation volume.

Mathematically, the difference between a finite sized crystal and an infinite crys-
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Figure 2.2: The decomposition of the finite size crystal problem into two problems.
The first is for an infinite crystal with the dislocation microstructure and no boundary
conditions. The tractions t̂i and the displacements ûi on the surface of the crystals
due to the dislocation network are calculated. The second is for a dislocation free
finite sized crystal with the boundary conditions in addition to the negative of t̂i and
ûi applied. The solution of the second problem gives a stress field σ̃ij which is the
correct stress field for the finite sized crystal with the dislocations present.

tal is that for the finite sized crystal, extra kinematic and kinetic constraints are

imposed. For instance, for a finite sized crystal with free surfaces, the traction has to

vanish everywhere on the surface. For a finite sized crystal with an imposed traction

distribution, the traction due to the overall stress field must match the imposed trac-

tion. In general, for a finite sized crystal with any distribution of imposed boundary

conditions (on the displacement or traction), the deformation fields must satisfy that

distribution. This view, along with the linearity assumption, provide a method to

correct for the dislocation stress fields [12, 54, 55] by breaking down the linear elas-

ticity problem into two problems as schematically shown in Figure 2.2. The first is

that of an infinite crystal with the dislocation network, the second is that of a finite

dislocation free crystal. Let the imposed displacement field on the surface point xj be

ui(xj) and the imposed traction distribution be ti(xj). Also let the dislocation dis-

placement and stress fields from the first problem be ûi(xj) and σ̂ij(xk). The tractions

due to the dislocation stress field are given by
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t̂i(xj) = σ̂ip(xj)np(xj) (2.34)

where np(xj) is the surface normal at xj. The image displacement ũi(xj) and stress

σ̃ij(xk) fields are then

ũi(xj) = ui(xj)− ûi(xj) (2.35)

and

t̃i(xj) = ti(xj)− t̂i(xj) (2.36)

The image fields ũi(xj) and t̃i(xj) have no closed form solution and hence, they

are always passed to an FEM solver in order to solve for the corresponding stress

field σ̃ij, termed the image stress. The image stress is then added to the stress due

to the applied loads calculated using the methods described in Section 2.2.3 and the

total stress is used as the applied stress. Notice that the FEM solver is optionally

used for the applied load stress calculation but it has to be used for the image stress

calculations.

Since one needs the dislocation displacement and traction distributions on the

surface of the crystal only, a triangular mesh is used to represent the surface and

the tractions are directly calculated from the dislocation network at the mesh points.

The surface displacements due to individual dislocations are in the order of 1 Burg-

ers vector magnitude, which is significantly smaller than the typical simulation size

( 1000 to 10000 times the Burgers vector magnitude), the surface displacements due

to dislocations ûi(xj) were neglected which significantly reduces the computational

load given that this calculation has to be performed before every FEM calculation.

In order to reduce the computational load further, updating the image stress is per-

formed only every k DDD time steps where k is around 1000 to 10000. Finally, for
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bigger crystals, the image forces can be safely neglected since their contribution on

the dislocation stress can be as low as 1% of the contribution of the interaction stress

[92, 93].

2.2.5 Force Calculations

The force calculation is the heart of the DDD system as it is the most computationally

intensive step. As far as this work is concerned, there are two main forces acting

on dislocation segments; the forces due to the applied stresses and those due to

interaction stresses. Sections 2.2.3 and 2.2.4 describe how the former is calculated

while the calculation of the latter is the subject of this Section. The force per unit

length fk acting on a dislocation can is related to the overall stress (applied and

interaction) acting on it through the famous Peach-Koehler formula [41]

fk = εijkσipbptj (2.37)

where σij are the components of the total stress tensor at a dislocation segment point,

bp are the components of the dislocation Burgers vector, tj are the components of the

vector tangent to the dislocation at the point at which the force is required and εijk

is the permutation symbol.

A naive way for calculating the interaction stresses between the dislocation seg-

ments would be to iterate over all the dislocation segments and calculate the stresses

they induce on a particular target segment and repeat this for all the target seg-

ments. This is an O(N2) which becomes increasingly limiting as the problem size

grows larger.

Approximate methods can be used to speed up the force calculation part by divid-

ing the dislocation segments interacting with a particular segments into groups based

on the interaction strength. The dislocation stress field is inversely proportional with
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the distance from the dislocation, hence, further dislocations do not have the same

effect on the dislocation in question and it is more justifiable to approximate their

stress fields. A generic approach to categorize dislocations is to divide the simula-

tion volume into equally sized subvolumes, sometimes called cells, and classifying the

dislocation segments according to the cell that contains them. The cells are labeled

with three indices (i, j, k) according to their order in each of the three directions.

For a dislocation segment in cell (i, j, k), the full N2 interactions are calculated

with the dislocation segments that are in the same cell and those that are in a neigh-

bouring cell, that is, all cells with labeled (i+ l, j+m, k+n) where l, m and n range

from −1 to 1. The interaction with the dislocation segments external to these 27

cells can be neglected if the overall dislocation density is low or handled using one

of the methods described in Section 2.3 if a more accurate calculation is required.

The overall calculation complexity is still O(N2) but with N being the number of the

dislocation segments in the surrounding cells instead of all the dislocation segments

in the system. As the number of cells is increased, the calculation speed increases at

the expense of its accuracy.

2.2.6 Dislocation Mobility

Dislocations move under the actions of applied and interaction stresses and their

velocities are in general nonuniform. The equation of motion of a dislocation point is

given by [92, 94]

meff (ẋ)ẍ+B(ẋ)ẋ = f(x)− τf (x)b (2.38)

where meff and B are the dislocation’s effective mass and the viscous drag coeffi-

cient respectively, f and τf are the force per unit length and the glide friction stress

acting on the dislocation and b is the magnitude of the dislocation’s Burgers vector
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[94]. The effective mass and the drag coefficient are nonlinear and they depend on

the dislocation’s velocity. In most cases, especially when the dislocation speeds are

significantly lower than the speed of sound in the material, the effective mass is about

11 orders of magnitude less than the drag coefficient [94] and hence, the acceleration

term is usually neglected and the dislocation motion is considered to be overdamped.

These observations have been confirmed experimentally as well [95] by studying the

dislocation displacements in response to applied stress pulses of known time dura-

tions. In the light of these observations, one can rewrite the nonlinear force-velocity

relationship in the following form

vi = M(fj, τf , tk, bl, T ) (2.39)

which will be termed the dislocation mobility relationship. In this equation, vi is the

velocity vector at a dislocation point and fj,tk and bl are the total force acting at

this point per unit length, the tangent to the dislocation curve and the dislocation’s

Burgers vector respectively and T is the system’s temperature. The dislocation mo-

bility is the relationship between the stress experienced by a dislocation segment and

its glide velocity and it is one of the few steps where material specific properties are

required in DDD simulations. The mechanisms by which dislocations move have been

the subject of several investigations [92, 94, 96] and a full review of them is beyond

the scope of this dissertation. These mobility functions serve as the ”constitutive

laws” for DDD simulations.

Because dislocations are line defects, the motion of a dislocation point in the di-

rection of the dislocation curve tangent at this point is meaningless, hence, dislocation

points move in a plane normal to their tangents and the velocities defined by the mo-

bility functions are two-dimensional in nature. The crystallographic systems studied

in this dissertation are mainly FCC systems and their derivatives, such as the L12

system. The dislocations in these systems dissociate into two Shockley partials on the
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same glide plane as the perfect dislocation [40]. The planar dislocation core restricts

its motion on the glide plane which means that the velocity vector cannot have an

off-plane component. This reduces the mobility function from a three-dimensional

vector function to a scalar function with the scalar velocity component vn being the

velocity in the glide plane normal to the dislocation curve tangent. In addition to the

dislocation core being planar in FCC materials, the glide resistance stress for close-

packed metals is on the order of 10−4μ where μ is the elastic shear modulus of the

material and this number increases to about 10−2μ for diamond cubic semiconductors

[92] which makes the resistance stress less than 10 MPa for metals which is signifi-

cantly less than the typical flow stresses of the materials of interest. For this reason,

the resistance stress dependence will be dropped in the mobility functions used in the

studies discussed in this dissertation. The mobility function then becomes

vn = M(fj, tk, bl, T ) (2.40)

A further restriction that can help simplifying the functional form is the glide

plane isotropy. The mobility of a certain dislocation segment does not depend on

the absolute orientation of that segment in the glide plane, it depends only on the

segment’s orientation relative to the dislocation’s Burgers vector. Thus, the two

vectors tk and bl can be replaced by the angle θ between them, which carries the

dislocation character information. A final assumption is the linearity of the velocity-

force relationship [13, 95, 96] which holds true when the dislocation speed is less than

the speed of sound [94]. In the simulations to be discussed later in this dissertation,

the mean dislocation speed is on the order of tens of meters per second while the

speed of sound in the metals of interest are on the order of thousands of meters per

second. Also the linearity in the relationship holds at room and lower temperatures

[94]. This gives the form of the mobility function used in this work
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vn = Md(θ, T )f
n (2.41)

where fn is the force component in the direction of vn and Md(θ, T ) is the viscous

drag term, the dependence of which on the dislocation character θ is given by [97]

Md(θ, T ) = Me(T )cos
2(θ) +Ms(T )cos

2(θ) (2.42)

where Me(T ) and Ms(T ) are the mobilities of the edge and screw dislocations respec-

tively. These mobilities can be calculated from molecular dynamics simulations by

applying a constant stress field on a crystal containing a single edge or screw disloca-

tion at a fixed temperature and measuring the time taken by the dislocation to travel

a certain distance. A detailed example of such studies can be found in [98].

2.2.7 Time Integration

The evolution of the dislocation microstructure takes place during the time integration

step. Each dislocation node advances in space according to its velocity, calculated as

described in Section 2.2.6 and the time step duration. There are several integrators

available for DDD simulations but in this work, simple Forward Euler integration

was used where the nodal position xn+1
i at the time step n + 1 is obtained from the

previous nodal position at time n according to

xn+1
i = xn

i + viΔtn (2.43)

where vni is the nodal velocity at time step n and Δtn is the duration of the nth time

step. Because the Forward Euler integrator is conditionally stable [99], an adaptive

time stepping technique is employed to make sure that the time step is small enough

in order to capture the correct evolution dynamics. The time step is computed such

that the fastest moving dislocation node cannot move a distance bigger than rmax at
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any time step.

Δtn =
rmax

max(||vi||) (2.44)

where the maximization takes place over all the nodes in the system. The maximum

distance rmax is always chosen to be less than 5% of the average dislocation segment

length so that the segment shape does not change significantly during time stepping.

The rate controlling nodes are usually the ones in high density regions. Thus, limiting

how far they can travel in one step helps making the simulation more accurate because

the interaction forces get repeatedly updated as they move and interact with the

nearby dislocation segments.

A particular problem which causes the time step to drop significantly and eventu-

ally slows down the simulations is the dislocation node oscillations. In high density

regions, nodes connected to shorter dislocation segments tend to oscillate over their

equilibrium position at a high frequency which makes these nodes the fastest moving

nodes and the system gets locked in this oscillatory mode where most of the disloca-

tion microstructure is at rest and the few oscillating nodes are the only active ones.

A damping algorithm was developed in order to solve this problem. At time step

n+ 1, and before updating the nodal velocity, the old nodal velocity vni and the new

one vn+1
i are compared to see whether the node is oscillating. A node is considered

oscillatory if the velocity vector fully reverses its direction over one time step such

that the quantity

vn+1
i vni

||vn+1
i ||||vni ||

< −s (2.45)

where s is taken to be 0.7 ≈ 0.9. If the condition is satisfied, the node is switched

to the damping mode and it is given an integer k which is taken to be 5 in all the

simulations. The velocity of the node is then damped according to
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vn+1
i ← 10−(k−(m−n−1)vn+1

i (2.46)

where m is the current time step and n+ 1 is the step at which the damping began.

Once the factor (k − (m− n+ 1) reaches zero, the node is taken out of the damping

mode and its time integration proceeds normally. Thus, the node damping does not

continue for more than k time steps in all cases and the damping degree decreases as

time proceeds until it vanishes completely. It was found that this method helps several

simulations from being stuck in an everlasting oscillatory mode which is problematic

especially for controlled total strain rate simulations such as the ones described in

Section 2.2.3.

2.2.8 Mechanical Properties Calculation

The mechanical response is the primary output of DDD systems. Several load and

deformation variables can be obtained from the dislocation configuration and history

including the plastic strain and its rate, the dislocation velocity distribution and

the dislocation density. The last two can be directly calculated knowing the nodal

velocities and the segments’ lengths. The former however requires a more involved

calculation.

With no loss of generality, consider a planar Volterra dislocation loop as shown in

Figure 2.3. The displacement at any point due to the dislocation introduction only is

given by the curve in the Figure where y = (xi−pi)ni is the normal distance between

the point in question xi and any point on the dislocation’s plane pi and ni is the

normal to the slip plane. The green rectangle in the Figure represents the region in

which the displacement due to the dislocation varies and it has a thickness h which

can be arbitrarily chosen but it is typically on the order of 1 to 2 atomic spacings.

The variation is drawn to be linear but it can follow any other nonlinear form. The

39



Figure 2.3: A schematic showing the displacement field variation due to a dislocation
loop. The blue line is an edge-on view for the slip plane, the height of the green
rectangle h is equal to the dislocation core with. The displacement variation is given
on the u axis as a function of the distance from the dislocation cut surface on the y
axis. n is the vector normal to the slip plane

displacement vector up
i at any point can be written as

up
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−bi/2 if y < h/2

ybi/h if |y| ≤ h/2

bi/2 if y > h/2

(2.47)

where bi is the Burgers vector of the dislocation loop. Notice that the cut surface does

not have to be planar and the equation applies as long as the local cut surface normal

is taken instead of the slip plane normal in this case. The displacement gradient in

this case becomes

up
i,j =

⎧⎪⎨
⎪⎩

0 if |y| > h/2

njbi/h if |y| ≤ h/2
(2.48)

from which the plastic strain can be obtained
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εpij =
1

2
(up

i,j + up
j,i)

⎧⎪⎨
⎪⎩

0 if |y| > h/2

(njbi + njbi)/2h if |y| ≤ h/2
(2.49)

This is the case for a single dislocation. All the points that are outside the influence

region are unstrained. As the dislocation loop moves (expands or shrinks), points

move in or out of the influence region, hence, they become strained (unstrained).

The average plastic strain in the sample can then be calculated from

〈εpij〉 =
1

V

∫
V

εpijI(x)dV =
1

V

∫
A

(njbi + njbi)/2hhdA =
1

2V

∫
A

(njbi+njbi)dA (2.50)

where V is the simulation volume, I(x) is an indicator function which is equal to 1

when the point x lies inside a dislocation’s influence region and zero otherwise, A is

the area of the dislocation loop on its slip plane.

The change in the average plastic strain in the system at a given time step is then

equal to the change in the area swept by the dislocation at this time step

Δ〈εpij〉 =
1

2V
(njbi + njbi)Δ

∫
A

dA =
ΔA

2V
(njbi + njbi) (2.51)

In the case of multiple dislocations acting at the same time, the change in the

average plastic strain ΔEp is the sum of the changes resulting from each one inde-

pendently.

ΔEp
ij =

1

2V
ΣkΔAk(nk

j b
k
i + nk

j b
k
i ) (2.52)

where k denotes the kth dislocation.
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2.2.9 Dislocation Reactions, Mesh Coarsening and Refine-

ment

Dislocation reactions are the events that take place when two dislocations get very

close to each other so that their cores, which are finite sized, start overlapping. De-

pending on the dislocations nature (edge, screw or mixed), their relative orientations

and slip planes, different processes can take place. Handling dislocation core reac-

tions is important for two reasons, to capture the correct physics and to reduce the

computational load. For instance, when the configuration of the dislocation network

is such that two dislocations can and should annihilate, not annihilating them results

in a number of problems. First, the accuracy of the interaction stress calculations

between them decrease because they are stuck in a configuration where each dislo-

cation is bordering the region in which the linear theory breaks down for the other.

The stress field expression derived in Section 2.1.2 cannot be applied when they are

that close incorrect forces get applied on the two dislocations. Second, annihilating

the two dislocations effectively removes their nodes and segments from the system

which reduces the computational load. A third, but latent, effect for not annihilating

them is the reduction in the simulation time step is described in Section 2.2.7. This

section describes the basic dislocation reactions and how they are handled in DDD

simulations.

Before any dislocation reaction events are detected, the entire dislocation network

is spatially categorized into virtual cells that decompose the space into equal regions.

These cells have no computational use and they do not affect the dynamic in any

way, unlike the force calculation cells described in Section 2.2.5. The reactions are

then handled on a per-cell basis such that dislocation segments react with other seg-

ments in the same and surrounding cells only. This guarantees that every potential

dislocation reaction gets handled properly. One restriction on dislocation reactions

is that dislocations cannot undergo two different reactions in the same time step.
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That is, a dislocation cannot annihilate and then collide with another dislocation.

The first allowable detected reaction takes place regardless of all other potential re-

actions. Because the simulation system is distributed, the dislocation segments are

distributed over different processors such that each segment gets handled exclusively

by one processor. A sophisticated event data communication process takes place af-

ter the reactions handling so as to inform the rest of the dislocation network with

the reactions that took place to maintain the accuracy of future dislocation network

evolution.

The first and simplest dislocation reaction is that of dislocation annihilation. An-

nihilation takes place when two dislocations of the same Burgers vector but opposite

line directions come close to each other within a few atomic spacings. An essential

requirement for annihilation is that the two dislocations must be gliding on either the

same slip plane or on two parallel slip planes. In the used DDD system, if they glide

on parallel slip planes, an annihilation event takes place while if they are gliding on

the same slip plane, the more general dislocation collision event, which is described

below, takes place. They both lead to the same configuration but the collision event

can handle more general cases. When two dislocation segments annihilate, their end

points are converted from free nodes, that can move freely on the glide plane, to

pinned nodes, that cannot move at all, and the segments themselves are removed.

Usually, annihilation takes place over dislocation chains of more than one segment

but the process remains the same. The resulting structure is that of completely

removed chains with pinned points at their two ends. All the pinned points that

were generated intermediately get removed once the two segments on their sides are

removed. For two segments to annihilate, in addition to the previous requirements,

their lengths have to be in the same range and they should be either perfectly parallel

or make an angle of less than 15o with each other. If they satisfy all the requirements

except for the length similarity, the longer dislocation gets split into a number of
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segments with the one of them matching the length of the shorter segment and then

it annihilates with the shorter dislocation segment.

A more general reaction takes place when two dislocations, moving on the same

plane or non-parallel planes, collide. For the case of dislocation segments moving on

non-parallel planes, which is the most common case, when two of them get sufficiently

close to each other within a distance of no more than 5b where b is the Burgers vector

magnitude, an out-of-plane collision event takes place. In this case, each segment is

split at the point closest to the other segments at the two splitting nodes get merged

at a common collision point. This results in a 4-node connected to 2 pairs of arms

with each pair lying on one slip plane. The collision node location is chosen to be

on the common line of intersection of the two non-parallel planes and it minimizes

the sum of the squared distance between the two splitting nodes. This guarantees

that the dislocation segments remain on their correct slip planes. The new node can

then only move on the line of intersection of the two planes to maintain the segments

planarity. In the case of dislocation segments on the same exact plane, the same

conditions apply but the segments get split at their midpoints instead and the newly

created node is placed at the midpoint of the line connecting the two splitting nodes.

This node moves on the common slip plane and no planarity violation is possible in

this case. An essential condition for both types of dislocation collisions is that the

two segments have to be attracting each other for the collision to take place. This

helps avoiding unnecessary locking of naturally repelling dislocations. Hence, a force

and velocity calculations take place before handling any collision events to determine

the interaction type. An important feature of collision events in general is that they

do not add or remove any dislocation segments from the system.

A special case of the collision reaction happens when the two colliding segments

share a common node. This is called the zipping reaction and depending on the

Burgers vectors of the colliding segments, the zipping reaction can result in dislocation
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merging or annihilation. The latter is the main mechanism by which dislocation defeat

of forest dislocations is modeled. The same conditions of collision reactions apply for

zipping reactions, however, splitting takes place only for the longer segment. Because

the two segments are not necessarily moving on the same plane, the common collision

point is the point on the line parallel to the common intersection line of the two

planes and passing by the common node of the dislocation segments that minimizes

the distance between the two dislocation nodes. If the lengths of the two colliding

segments are nearly the same (within 10% difference), no splitting takes place and the

end nodes get merged at the collision point. Right after collision, the two colliding

segments are replaced by one segment whose Burgers vector is the sum of the two

Burgers vector of the colliding segments. If the resultant Burgers vector is zero, that

means that the collision reaction is in fact an annihilation reaction and the segment

is removed completely from the system. Otherwise, it is a merging reaction and a

new slip plane, needs to be assigned for the new dislocation segment. The normal

vector n of the new slip plane is calculated from n = b × t where t is the segment’s

line direction and b is its new Burgers vector. If the segment is a screw dislocation

(such that b× t = 0), a random {111} slip plane gets assigned for FCC simulations.

Besides being the basis of most energy minimization reactions in DDD simulations,

the zipping reaction also prevents the dislocation’s curvature to increase to unrealistic

values by zipping the segments neighbouring the high curvature nodes.

A final core reaction is that of triangular loop elimination. This takes place when

exactly 3 non-planar dislocation segments form a loop. The 3 nodes of this loop

become highly immobile because each node would move along a straight line that

cannot accommodate the motion of the other two nodes which results in an increase in

the dislocations lengths, something that linearly raises the system’s energy and hence,

is highly unlikely to happen. The triangular loop represents a dead computational

load so once they are detected, they are removed immediately.
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Dislocation segment remeshing is necessary to maintain the accuracy of the dis-

location network representation and evolution. A very coarse mesh can lead to skip-

ping otherwise occurring dislocation motions such as squeezing between obstacles. A

very fine mesh greatly increases the computational load. In the current simulations,

remeshing is adaptive, that is, in every time step, all the segments get checked for

remeshing and those who need refinement or coarsening are handled accordingly. A

segment gets refined by splitting it at its midpoint if it is longer than the maximum

segment length allowed in the simulation and two neighbouring segments get merged

if they are too short such that the distance between their opposite ends is less than

the maximum segment length. Merging segments have to lie on the same slip plane

and have the same Burgers vector which means that the common node cannot be

anything other than a 2-node.

All the dislocation reactions and remeshing operations are algorithmically per-

formed using 2 operations, namely, SplitNode and MergeNode, which have been ex-

tensively described in [16].

2.2.10 Dynamic Load Balancing

The final step in the DDD loop is the dynamic load balancing where the problem

space gets decomposed into regions, called domains, each of which is assigned to a

certain processor. After decomposition, the dislocation nodes are migrated from one

processor to another as necessary so that they end up in the memory of the processor

handling the domain to which they belong. The decomposition can be a node count

based or force calculation based. In the former, the problem space is decomposed

so that each domain has nearly an equal number of nodes while in the latter, each

domain has nearly an equal number of force calculation operations. The difference

between the two is because some nodes, such as pinned nodes, do not need any

force calculations. In either case, the domain decomposition is three dimensional and
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hierarchical where the domain gets decomposed along the X direction first, then each

subdomain gets decomposed along the Y direction and finally each sub-subdomain

gets decomposed along the Z direction.

Following the decomposition process, all the nodes get scanned and new domains

get assigned to them. Then, an extensive communications operation takes place

where all the data for the nodes is moved around the distributed system to end up

in their proper locations and the nodes get renamed based on their new domains.

This is followed by a connectivity check where all the connections between the nodes

(through segments) are updated to reflect the new node locations and names and

all necessary remote data gets communicated. Necessary remote data is the data

of the nodes in a certain domain that is required by a different domain to perform

the force calculations. A typical example is when a domain node is connected to an

out-of-domain node.

2.3 Accelerating Dislocation Force Calculations

The force calculation is the most time consuming step in the DDD loop. In this

section, two methods that help accelerate this step are described briefly.

2.3.1 The Cell Charge Method

A first order approximation for the stress field due to a number of dislocations at

a point far away from them can be obtained by the cell charge method. In this

method, the simulation volume is uniformly divided into a number of cells and the

dislocations segments are distributed over the cells. A superdislocation is created in

each cell which accounts for all the segments in this cell by forming the 3 × 3 cell

charge tensor Cij such that
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Cij = ΣN
k=0b

k
i t

k
j (2.53)

where bki and tki are the ith components of the kth segment Burgers and line vectors

respectively and N is the number of dislocation segments in the cell. For field points

far away from a certain cell, the stress field due to dislocation segments inside that

cell can be approximated by the sum of the stress fields due to 9 dislocations each

with a Burgers vector and line direction corresponding to 1 element in the Cij tensor

passing by the center of the cell. This approximates the stress field when the distance

between the field point and the cell center is much larger than the cell size because

as the field point moves away, the spatial differences between different dislocations

become insignificant.

2.3.2 The Fast Multipole Method

The Fast Multipole Method (FMM), introduced by Greengard et. al. [100], is a

general method for summing the contribution of a number of spatially distributed

sources at a number of locations, usually coinciding with the source locations. It

reduces the computational cost from O(n2) to O(n) by evaluating an approximation

for the field in question to an arbitrary level of accuracy rather than the exact field.

In DDD simulations, the stress field from the dislocations reasonably far away from a

point in question is approximated using the FMM method to reduce the overall com-

putational cost. In the DDD framework used in this dissertation, the FMM reduces

the simulation runtime further by allowing the stress field due to dislocations stored

on memories of different processors be accounted for locally without transferring all

the dislocation segment data between processors, a process which can at times be

a performance bottleneck. Instead, the FMM expansion coefficients, which form a

significantly smaller data set, are moved from one memory space to another. In this
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section, a description for the FMM used in these simulations will be briefly presented.

Let x be the point at which the stress field from all the dislocations in the simula-

tion is required. The direct evaluation of the stress field by summing up expressions

of the form given in Equation 2.24 is an O(N) operation where N is the number of

dislocation segments in the system. In reality, the stress field needs to be calculated

on each dislocation segment, which makes the overall cost of stress (force) evaluations

an O(N2) operation. The main idea behind the FMM is to derive a static expression

for the stress field at x due to a subset of the dislocation segments in the problem

subvolume Ωq which is well separated from x. By a static expression, it is meant that

the expression parameters are independent of x, thus, they can be evaluated once and

the stress field at all x far away from Ωq can be evaluated using the same expression

by passing x to it. This reduces the computational cost to the sum of the expression

parameters determination plus M < N expression evaluation operations. In order

to derive the stress field approximation, two analytical results are required. Starting

from Equation 2.24, one can rewrite this integral as the sum of integrals acting on the

dislocation segments used to discretize the dislocation loops as discussed in Section

2.2.2.

σij(x) =
μ

8π
ΣN

n=1b
n
m

[∫
n

r,ppα
(
εαmidl

n
j + εαmjdl

n
i

)
+

2

(1− ν)

∫
n

εαmk (r,ijα − δijr,ppα) dl
n
k

]

(2.54)

where n denotes the nth dislocation segment in the system. One can then notice that

the expression boils down to the evaluation of the integral

Iijkm(x) = ΣN
n=1

∫
n

r,ijkdl
n
m (2.55)

Following Wang et. al. [101], r,ijk can be expanded in Taylor series about the

point O to be
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r,ijk = RO
,ijk +RO

,ijkprp +
1

2!
RO

,ijkpqrprq +
1

3!
RO

,ijkpqsrprqrs + ... (2.56)

where RO
,ijkpqs... is a higher order derivative of ri = xi − Oi. Oi is the center point

of a volume ΩO containing the NO dislocations for which the stress contributions are

required. By substituting in Equation 2.55, one gets

Iijkm(x) = ΣNO
n=1

∫
n

(
RO

,ijk +RO
,ijkprp +

1

2!
RO

,ijkpqrprq +
1

3!
RO

,ijkpqsrprqrs + ...

)
dlnm

(2.57)

Noticing that RO
,ijkpqs... is a constant under the integration sign (it only depends on x

and O but not on the dislocation segment point), the expression can be recast in the

following form

Iijkm(x) = RO
,ijkαm +RO

,ijkpβmp +
1

2!
RO

,ijkpqγmpq +
1

3!
RO

,ijkpqsηmpqs + ... (2.58)

where

αm = ΣNO
n=1t

n
m

∫
n

dl

βmp = ΣNO
n=1t

n
m

∫
n

rpdl

γmpq = ΣNO
n=1t

n
m

∫
n

rprqdl

ηmpqs = ΣNO
n=1t

n
m

∫
n

rprqrsdl

(2.59)

and tnm is the mth component of the tangent vector for the nth dislocation segment.

Expression 2.58 is all what is required to evaluate the stress field at x due to all the

dislocations in ΩO. In order to exploit the full power of the FMM however, another

expression is required. That is, the expansion coefficients (αP
m, β

P
mp, γ

P
mpq, η

P
mpqs, ...) at
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point P from those at point O (αO
m, β

O
mp, γ

O
mpq, η

O
mpqs, ...). Consider the vector di =

Oi − Pi, the coefficients at P are

αP
m = ΣNO

n=1t
n
m

∫
n

dl = αO
m

βP
mp = ΣNO

n=1t
n
m

∫
n

rPp dl = ΣNO
n=1t

n
m

∫
n

(dp + rp)dl = dpα
O
m + βO

mp

γP
mpq = ΣNO

n=1t
n
m

∫
n

(dp + rp)(dq + rq)dl = dpdqα
O
m + dpβ

O
mq + dqβ

O
mp + γO

mpq

ηmpqs = dpdqqsα
O
m + dpdqβ

O
ms + dqdsβ

O
mp + dpdsβ

O
mq + dpγ

O
mqs + dqγ

O
mps + dsγ

O
mpq + ηOmpqs

(2.60)

Expressions 2.59 and 2.59 converge only when the evaluation (field) point is far

away from the source dislocation. A careful subdivision of space is required to guar-

antee that these expressions will be used only if they will converge. L subdivision

levels are required for the FMM algorithm. In each level l = 0...L − 1, the problem

space is subdivided into 8l FMM cells as follows. In the first level l = 0, the problem

space is not divided at all and only one cell is present. For l = 1, the unique cell at

l = 0 is uniformly divided into 8 subcells by bisecting the parent cell along the X, Y

and Z directions. For each subsequent level l = 2...L − 1, each cell in level l − 1 is

uniformly divided into 8 cells int the same way. This results in a tree structure where

each cell at level l has exactly 8 children cells at level l + 1. The two-dimensional

version of the subdivision is given in Figure 2.4. The cells form relationships between

each other according to the following definitions. For cell i, a neighbour cell is a cell

j that is on the same level as i and shares at least one point with it. This means that

i is neighbour to itself. A well separated cell is a cell j that is on the same level as

i but they are not neighbours. An interacting cell is a well separated cell j that is

a child of ith parent neighbours. The three cell relationship types are shown in Fig-

ure 2.4. Notice that all the neighbourhood, separation and interaction relations are

symmetric, that is, if i interacts with j then j interacts with i. In three-dimensions,
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each cell has at most 27 neighbours and 189 interacting cells. If cells i and j interact,

then the expression 2.59 due to all the dislocations in the volume of cell j converges

for all points inside cell i and vice versa. The sets of interaction cells of a cell and its

parent are disjoint.

Figure 2.4: The recursive division of the problem space into FMM cells of different
sizes. The first 6 levels (0 through 5) are shown here. The well neighbours of the
black cell in each level are shown in green, the interacting cells in blue and the well
separated cells in white. Notice that the cells of the first two levels have no well
separated or interacting cells.

The FMM method proceeds in the four steps, initialization, upward pass, local-

ization and downward pass. In the initialization step, the space is divided in the

manner described above and the dislocations are assigned to the cells of the finest

level l = L− 1. For each cell in level L− 1, the multipole expansion coefficients are

calculated for the dislocations inside the volume of that cell according to the expres-

sion 2.59. For the upward pass, the multipole expansion at the parent cells at level

L − 2 is obtained from the expansions at the L − 1 cells by summing up the trans-

lation expression 2.60 from all the children cells. This process is recursively repeated

all the way up to level 2. At this point, the multipole expansion at each cell in each
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level has been obtained and stored. In the localization step, expression 2.60 is used

to translate the multipole expansion of cell i to all cells j that interact with i for all

cells i in level l for all levels l = 2...L− 1. When a multipole expansion is translated

from an interacting cell to this cell, its coefficients are added to the coefficients from

all the other interacting cells. This process is local to the subdivision level and no

parent-child translations take place. At the end of this stage, each cell will have 1

local multipole expansion that can be used to evaluate the stress at any point inside

that cell due to the sources in the cell’s interaction list. In the final downward pass

step, starting from the coarsest level l = 2, the obtained local multipole expansions

in the localization step are translated to the center of each child cell and passed to it.

The child cell adds the expansion coefficients to the coefficients of its local expansion.

This way, the local expansion in the child cell accounts for all the sources in the child’s

interaction list as well as its parent. This process proceeds recursively down the tree

hierarchy until the finest level is reached. When done, the finest level cells will have a

local multipole expansion that accounts for the dislocations everywhere in the system

except for its neighbour cells. A cell’s local multipole expansion converges for all x

in it.

Finally, when the stress field at point x is desired, the finest level cell i contain-

ing x is determined and the local multipole expansion at i is evaluated at x. Then,

the resulting stress field is added to the stress field calculated from the dislocation

segments in the neighbours of i. The last operation is still O(N2) but with N signif-

icantly lower than the number of the dislocation segments in the system. The FMM

method was successfully implemented in DDD simulation systems and its accuracy

and performance have been reported in [101] and [16].
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Chapter 3

The Effect of Cross-Slip on the

Deformation Response of FCC

Microcrystals

Cross-slip is a thermally activated deformation mechanism by which screw disloca-

tions can conservatively change their glide plane from one plane to another that

contains their Burgers vector [40]. Cross-slip is thought to influence the multiplica-

tion of dislocations [102, 103], work-hardening [43–47], the onset of stage III in the

work hardening of single crystal FCC materials [104–106], and the formation of dislo-

cation patterns [42]. Moreover, dislocations can avoid unshearable obstacles, such as

precipitates, by cross-slip [107, 108]. Unlike dislocation interactions with solute atoms

or stacking fault tetrahedra where the interactions are localized in space, cross-slip

is an extended mechanism which affects the glide of longer segments of dislocations

[41]. Thus, it has a significant effect on how the dislocation microstructure evolves.

As Puschl [109] puts it, ”It [cross-Slip] is the most important single process under-

lying complex spatio-temporal developments in microstructure leading to hardening,

pattern formation, and dynamic recovery”. An understanding of how cross-slip takes
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place and how it affects the mechanical behavior of metals is an essential step in

demystifying the complexity of material defects interactions. This chapter presents

some of the efforts undertaken to computationally model the phenomena of cross-slip

in FCC metals along with some relevant findings and physical insights.

In FCC, dislocations glide on on the {111} planes and have Burgers vectors of the

1
2
〈110〉 type. Any screw dislocation can be contained in exactly 2 crystallographic

slip planes. In BCC metals however, the dislocations have Burgers vectors of the type

1
2
〈111〉 direction but they do not have very well defined slip planes [110, 111]. There

are 12 slip planes, three {110}, three {112} and six {123}, that contain the Burgers

direction and screw dislocations can belong to any of them. Thus, screw dislocations

can switch from one slip plane to the other frequently, which results in wavy slip as

reported experimentally [112]. In this chapter, only FCC cross-slip will be considered

because the theories and experiments describing the involved mechanisms are more

mature and amenable to numerical implementation [109, 113, 114].

3.1 Preliminaries: Cross-Slip in FCC Metals

In close-packed crystal structures, the tangent vector for a dislocation and its Burgers

vector of a dislocation define a slip plane, whose normal is the cross-product, on which

the dislocation glides conservatively. Screw dislocations, by definition, have their

Burgers vectors in the same direction of their tangents, which means that a unique slip

plane cannot be determined and the dislocation can theoretically glide on any plane.

In real crystal structures, it is energetically more favorable for dislocations to glide on

close-packed planes, which limits the number of planes on which screw dislocations

can glide to a small and finite set of planes. Cross-slipping from one of these slip

planes to another is relatively easy and takes place under various combinations of

stresses and temperatures [109].
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An important feature of the discreteness of crystal lattices is that the system

attains an overall lower strain energy when dislocations dissociate into Shockley par-

tials with a stacking fault in between which results in a more complex dislocation

core structure [40]. The partials spacing is inversely proportional to the stacking

fault energy. A typical in dislocation dissociation reaction in FCC metals is given by

1

2
[1̄10](111)→ 1

6
[2̄11](111) +

1

6
[1̄21̄](111) (3.1)

For a dislocation to cross-slip, the stacking fault ribbon has to be compressed along

the length of the cross-slipping part of the dislocation to form a perfect dislocation,

momentarily, and then to expand again but on the cross-slip plane. This mechanism

can be broken down to four main steps. First, a constriction forms on the stacking

fault ribbon which brings the two Shockley partials together at a point. Second,

the two partials start zipping, starting from the constriction point, in one or two

directions. Third, The, now perfect, dislocation dissociates on the cross-slip plane.

Finally, the dislocation bows out on the cross-slip plane. These steps are schematically

given in Figure 3.1.

Following Puschl [109], a simple calculation for the energy required for cross-slip

is given in Equation 3.2. Neglecting the energy associated with the dislocation’s

dissociation on the cross-slip plane, the overall energy ΔG required for a cross-slip

even to take place can be written as

ΔG = Ec +ΔEL+ TΔs− τbΔA (3.2)

where Ec is the energy required to form the initial constriction, ΔE is the energy

per unit length required to zip the two partials, L is the zipped length, T is the line

tension that resists the increase in the dislocation’s length, Δs is the increase in the

dislocation’s length on the cross-slip plane due to bowing, τ is the local resolved shear
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Figure 3.1: The steps leading to a cross-slip event. The red plane is the glide plane
and the green plane is the cross-slip plane. The two partials (black and blue) start in
configuration (a) parallel to each other and bounding a stacking fault in between. In
configuration (b), the two partials form a constriction. In (c), they zip together and
finally, in (d), they dissociate and bow out on the cross-slip plane.

stress on the glide plane, b is the magnitude of the dislocation’s Burgers vector and

ΔA is the stacking fault ribbon area. The first two terms can be together termed

the recombination energy, the fourth term is negative because the stress assists in the

recombination process.

In an analogy with chemical reactions, the cross-slip reaction will absorb, or re-

lease, an amount of energy ΔG, which is the Gibbs free energy. This analogy becomes

exact for the cases when the crystal is kept at a constant temperature and pressure

(a constant applied stress), such as in creep loading conditions. The transition state

theory [115] can then be used to predict the rate of cross-slip events f according to

57



the exponential expression given in Equation 3.3.

f = fo exp

(
−ΔG

kBT

)
(3.3)

where fo is a pre-exponential factor to be determined from the specifics of the cross-

slip model, kB is Boltzmann constant and T is the temperature of the system. Because

the local stresses on the glide and cross-slip planes play an important role in the

process, it is usually preferred to explicitly model their effect in the cross-slip rate

Equation so that it becomes

f = fo exp

(
−Ea − τV

kBT

)
(3.4)

where Ea is the energy required for cross-slip to take place at zero local stresses, and

it is called the activation energy, τ is a resolved shear stress component where the

resolution plane depends on the cross-slip model used, and V is the rate of change

of the cross-slip energy with stress (also known as the activation volume since it has

the dimensions of volume). A final point to make from this analysis is that cross-slip

is easier for materials with higher stacking fault energies such as nickel [116] because

less energy is required for the recombination of their partials.

3.2 The Friedel-Escaig Cross-Slip Model

A number of theoretical models for cross-slip can be found in the literature. The

first theoretical work on cross-slip was undertaken by Schoeck and Seeger [117] and

Wolf [118], where they assumed that the screw dislocation partials recombine over an

extended portion on the glide plane before bowing out, without dissociation, on the

cross-slip plane. The activation energy obtained from their calculations is too high

which explains why this model did not become popular for FCC metals [114]. A model
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by Friedel [119] came out next where the constriction and recombination took place

over a shorter length of the dislocation on the glide plane and then the dislocation

was allowed to dissociate on the cross-slip plane. The activation energy was found to

be significantly lower such that purely thermally activated cross-slip can take place

without any stress assistance. On the other hand, Fleischer [120] hypothesized that

cross-slip can take place without the formation of any constrictions or recombination.

In this model, the stacking fault ribbon folds over from the glide to the cross-slip plane

and forms a leading Shockley partial on the cross-slip plane, stair-rod dislocation at

the intersection of the glide and cross-slip planes and a trailing Shockley partial on

the glide plane. This process requires a higher activation energy because there is

no energy recovery associated with the recombination compared to the case where

recombination occurs, however, atomistic simulations confirmed that this mechanism

takes place at high stresses and low temperatures [121, 122]. Washburn [123] was the

first to suggest that cross-slip can happen due to interactions with forest dislocations

threading the glide plane. Similar to the Friedel model, the Friedel-Escaig model

[107] uses the line tension model to estimate the activation energy of cross-slip events.

The model has been experimentally confirmed for higher temperature and low stress

loading conditions [48, 49]. The implementation of the various cross-slip mechanisms

to be described in this chapter are all based on the Friedel-Escaig model.

The Friedel-Escaig model follows the basic cross-slip event sequence described in

Section 3.1. Escaig [107] developed a mathematical theory to estimate the recombi-

nation energy based on the constriction energy formation calculations by Stroh [124].

An essential feature for the model is that dislocation cross-slip is stress assisted. The

resolved shear stress on the glide plane can be decomposed into two components, one

in the direction of the dislocation line (and hence, the Burgers vector), termed the

Schmidt stress, and the other in a direction normal to it, termed the Escaig stress.

The same decomposition applies for the resolved shear stress on the cross-slip plane.
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The two partials of a screw dislocations have opposite edge components, hence, the

Escaig stress, which is the resolved shear stress for the edge components of the two

partials, works on bringing the partials together, thus, reducing the overall energy

required for the cross-slip event activation, or separate them further, thus, increasing

the cross-slip event activation energy. The Escaig stress has the same effect on the

screw components of the partials (moving them in the same direction). On the cross-

slip plane, the Escaig stress plays the same role. The difference between the Escaig

stress on the glide plane and that on the cross-slip plane is taken in this work to be

the stress assisting cross-slip. When this difference is positive, the energy required

for cross-slip drops, because the partials are now closer to each other and when the

difference is negative, the energy required increases because cross-slipping from the

cross-slip plane to the glide plane (the reverse process) is now easier. Equation 3.4

can now be written as

f = fo exp

(
−Ea −ΔτEV

kBT

)
(3.5)

where ΔτE = τGE − τCS
E is the Escaig stress difference. It is to be noted that the

Escaig model only gives an estimate for the energy required for cross-slip but it does

not describe the conditions that trigger cross-slip events. From a thermodynamic

point of view, cross-slip can take place spontaneously and it is more likely at higher

temperatures. However, the cross-slip rate calculated from Equation 3.5 is too low in

the absence of stress for cross-slip to be of any significance. Usually, a high stress field

local to the dislocation due to a forest dislocation, a precipitate or any other source

can help initiate the cross-slip sequence, hence, increasing the cross-slip rate. The

dislocation would only cross-slip if the cross-slip plane has a higher resolved shear

stress. This is an important distinction to make, a positive Escaig stress difference,

meaning that the glide plane has a higher Escaig stress than the cross-slip plane,

helps with cross-slip because it lowers the chances of the reverse cross-slip process
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from taking place. However, it is energetically more favorable for the dislocation to

glide on the higher shear stress plane. This fact forms the basis of the experimental

technique by which the Escaig mechanism was confirmed [48] and it has to be properly

implemented in all DDD codes incorporating cross-slip.

3.3 Characterization of Cross-Slip Mechanisms

Experiments and Molecular Dynamics (MD) simulations can be used to determine the

conditions that trigger a cross-slip event, the exact path taken by a dislocation during

cross-slip and the cross-slip process parameters such as the activation energy and vol-

ume. MD simulations allow the exploration of the various deformation mechanisms

and the relevant parameters. Although experiments are generally limited in terms of

what can be measured or observed, some experimental studies have been successful

in estimating the cross-slip activation parameters. Bonneville and Escaig [48, 49]

designed an experimental technique by which a number of cross-slip events can be in-

duced at the yield point so that the deformation of the crystal gets dominated by the

cross-slip effects and the activation volume and energies were estimated. Couteau et.

al [50] repeated the same experiment and obtained significantly lower activation vol-

umes and energies suggesting some inaccuracies in the experimental technique mainly

related to controlling the active deformation mechanism. For this and similar rea-

sons, the majority of cross-slip studies have been computational in nature. Compared

to theoretical models, computational studies help avoid the simplified assumptions

employed by theoretical models such as the zero width constriction and the infinitely

long, parallel and straight dislocation partials [124]. A summary of previous studies,

especially utilizing MD simulations, is presented in the following paragraphs to shed

light on the cross-slip mechanisms and their characteristics.

MD simulations of the screw dislocation core structure and the activation energy
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for cross-slip in pure copper showed that the equilibrium stacking fault width at

zero stress is about do = 1.5 ± 0.2 nm and the core width of the two partials is

about 0.9 nm [51, 52]. An important finding in these simulations is that cross-slip

takes place according to the Friedel-Escaig mechanism, however, after the initial

constriction is formed and the dislocation dissociates on the cross-slip plane, two

twisted constrictions (shown as points A and B in Figure 3.2) are formed at both

ends of the cross-slipped segment of the dislocation, which move in opposite directions

leading to an increase in the length of the cross-slipped dislocation segment, as shown

in Figure 3.2. The constriction at A has an “edge-like” character while that at B

has a “screw-like” character. The actual constriction points are always pure screw

dislocations but the distribution of the dislocation partials’ Burgers vectors around

them gives rise to the difference in their characters. The energy of a constriction is

defined to be the difference between the energy of the system with the constricted

partials and the energy of that with straight partials. It was found that the edge-like

constriction has a positive energy while the screw-like constriction has a negative

energy, which does not necessarily mean that the system spontaneously forms screw-

like constrictions, however, it is energetically more favorable compared to the edge-like

one because there is an energy barrier that needs to be overcome before forming screw-

like constrictions. Another important finding in the same study is that the partials

of a screw dislocation terminating on a free surface will tend to recombine with a low

or no energy barrier if their Burgers vectors were pointing away from each other, and

they would subsequently dissociate forming a screw-like constriction on the cross-slip

plane. For a screw dislocation intersecting two free surfaces on both of its ends, the

dislocation partials recombine on one surface and split further apart on the other,

depending on the orientation of the surface with respect to their Burgers vectors.

These findings show that cross-slip of surface dislocations (termed hereafter surface

cross-slip) could be easier than that of in-crystal dislocations (termed hereafter bulk
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cross-slip).

Figure 3.2: The dissociation of the constriction on the cross-slip plane according to
the Friedel-Escaig model (a) The formation of the initial constriction on the glide
plane, (b) The dissociation of the constriction on the cross-slip plane, two twisted
constrictions A and B are formed at the ends of the dissociated length, (c) the sep-
aration of the two constrictions. The arrows represent the Burgers vectors of the
dislocation partials. From the distribution of the Burgers vectors around the two
constrictions A and B, it is apparent that they are of different types. Schematic
is taken from Rasmussen et. al. (http://dx.doi.org/10.1103/PhysRevLett.79.3676)
with permission from APS.

Vegge et. al. [125] conducted some MD simulations of bulk cross-slip to determine

the effect of the presence of jogs and kinks on the cross-slip activation energy. They

reported an activation energy of Ea = 3.4 eV for jog free dislocations and Ea = 0.8 ≈
1.0 eV for dislocations with jogs or kinks. They concluded that jogs act as pre-existing

constrictions at which the partials can dissociate and unzip in the cross-slip plane,

hence, reducing the energy required for the constriction formation.

Building on the work of Rasmussen [52], Rao et. al. [30] further explored the

phenomenon of surface cross-slip through MD simulations. For surface-surface dislo-

cations making a right angle with a (111) surface, dislocations were found to reside

either fully on the glide plane or partially on the glide plane and partially on the

cross-slip plane with a screw-like constriction in between. If the surface is a cube

(001) plane, dislocations were found to reside either fully on the glide plane, fully
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on the cross-slip plane or partially on both with the same type of constriction. For

dislocations that are inclined to (001) surfaces, dislocations were only found on the

glide plane or partially cross-slipped and the entire dislocation rotates to minimize

the total energy of the system. The dislocation line direction controls whether the

dislocation will reside on the glide plane or if it will partially cross-slip. These results

confirm that cross-slip can easily nucleate on the surface. An estimate for the activa-

tion energy for surface cross-slip was calculated to be around Ea = 0.05 eV for nickel

and Ea = 0.09 eV for copper.

In a different work, Rao et. al. [26] investigated the possibility of cross-slip nucle-

ation at the sites of the intersection of a screw dislocation with a forest dislocation,

termed intersection cross-slip. Depending on the Burgers vectors of the intersecting

dislocations, different core structures were observed in the simulations. Dislocations

can either fully reside on the glide plane, the cross-slip plane or in a partially cross-

slipped state. In some cases, the partially cross-slipped state has a lower energy com-

pared to the other configurations. The activation energies for intersection cross-slip

were calculated from MD simulations and they were found to be between Ea = 0.65

eV and Ea = 1.13 eV for copper [27]. In a different MD study [29], athermal cross-

slip scenarios where the dislocations cross-slip without the need of any activation

energy were characterized. This takes place when the intersecting dislocation repels

the screw dislocation, hence, its name, repulsive intersection cross-slip. The name

attractive intersection cross-slip is reserved for the thermally activated intersection

cross-slip cases with nonzero activation energies. Unlike bulk and surface cross-slip,

intersection cross-slip can explain a great deal of the flow phenomena in FCC metals

because its rate scales up with the dislocation density [26].

From the previous discussion, it is apparent how the theoretical models based

on elasticity are limited in their detail level and accuracy. The fact that different

configurations result in different core structures and activation energies can be very
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challenging to capture using analytical models. The same applies for experiments

where the core structure is difficult to observe let alone an isolated cross-slip event.

It was shown that there are numerous pathways for cross-slip in FCC metals, such

as surface and intersection cross-slip, that have lower activation energies compared

to the more understood bulk cross-slip. This means that they are likely to dominate

the cross-slip activity in any loading scenario. Most previous DDD implementations

of cross-slip incorporated bulk cross-slip only [11, 13, 53–55]. For this work, the three

discussed types of cross-slip were implemented in a DDD framework according to the

observations and parameters obtained from MD simulations.

3.4 Computational Method

The incorporation of cross-slip mechanisms in DDD simulation codes requires a num-

ber of carefully designed extensions to the existing framework. The open source dis-

location dynamics simulation code, ParaDis [16], was the starting point upon which

all the modifications and extensions were built. Since cross-slip involves the change

of the slip plane of gliding dislocations, a fundamental requirement for any DDD code

is the definition of a slip plane for each dislocation segment to begin with. ParaDis

was modified in house to guarantee that all of the dislocation segments lie and move

on their correct slip planes at all times for FCC simulations. Also the movement

of dislocations terminating on the surface of the crystal was implemented so that

surface dislocation nodes are guaranteed to move on the surface and the slip plane

at the same time for arbitrarily complex surface geometries. A third situation where

dislocation nodes can go off-plane is the collision of non-coplanar dislocations where

the dynamically created dislocation nodes can be slightly off-plane. Any deviation

from planarity means that all the intersection cross-slip calculations will be flawed in

some way.
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As it will be shown next, the cross-slip calculations are computationally expensive.

Since cross-slip events will be checked for in every DDD simulation time step, an

efficient algorithm is required to guarantee that the minimum number of cross-slip

checks will be performed every time step, and at the same time, that no potential

cross-slip event goes undetected. In order to make the discussion easier to follow, the

following terminology will be used. A p-node is a dislocation node that is connected to

p segments. A dislocation segment is a straight line connecting exactly two dislocation

nodes. A dislocation chain is a connected sequence of dislocation segments that is

topologically equivalent to R, the one dimensional Euclidean space, that is, with the

exception of the end nodes of the chain, all the other nodes are 2-nodes. The end nodes

can be connected to any number of segments. A dislocation chain can be entirely or

partially screw in character. The entire dislocation microstructure can be cast in the

form of an undirected graph structure [91] where the graph nodes are the dislocation

nodes and the graph edges are the dislocation segments. A dislocation chain is a path

on the graph between two nodes that has the property that every node along the path

is visible to any node not on the path only through the path end nodes. Two types

of nodes can be identified in this graph structure, physical nodes, which are p-nodes

where p 	= 2, and computational nodes, which are 2-nodes. Physical nodes define the

topology of the dislocation microstructure and computational nodes refine the shape

of the dislocation chains.

The main task of this algorithm is to detect all the screw character dislocation

chains in the simulation and discard any other non-screw chains. In order to be

computationally efficient, the longest screw type chain should be detected rather

than dealing with small connected screw chains. Moreover, the probability of cross-

slipping increase linearly with the dislocation length, hence, handling smaller screw

chains could result in reducing the probability of cross-slip. The starting point of

the algorithm is to break down the dislocation graph structure into a number of
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dislocation chains. A sophisticated procedure that uses graph algorithms operating

on two levels is described in details in Appendix B. Next the generated chains are

split based on their slip planes and node types. Any abrupt change in the slip plane

of the chain indicates that this chain lies on two or more slip planes. This can be

due to the topology of the initial microstructure or a past cross-slip event. Cross-slip

rules for chains depend on their slip planes so the chain needs to be broken down into

a number of subchains such that each chain lies entirely on one slip plane. A similar

chain refinement takes place based on the node type such that pinned dislocation

nodes can only exist and the ends of the chain. The reason for that latter condition

is because the cross-slip process moves the dislocation nodes slightly before cross-slip

in order to maintain their slip planes and a pinned dislocation node is not allowed to

move.

The refined list of dislocation chains gets distributed next over two sublists, one is

for screw type chains and the other is for everything else. It is important to keep a list

of non-screw chains because they will be used later to provide information necessary

for intersection cross-slip event prediction. Because it is practically unrealistic to

expect to find a dislocation chain that is perfectly aligned in the screw direction,

a more relaxed procedure is used to decide whether a chain is a screw chain. The

procedure runs over the chain segments and it keeps two states, one of them is whether

the chain was initially screw, meaning, the first segment is in the screw direction, and

the second is whether the chain is currently screw, meaning that the line connecting

the current chain node to the initial chain node is in the screw direction. To determine

whether this connecting line is in the screw direction, the line is tested to see if it lies

within the virtual cone whose apex angle is 15 degrees, and whose vertex is the initial

chain node. The choice of 15 degrees allows the segments which are not perfectly in

the screw direction to be considered for cross-slip. For each node on the chain, the

procedure checks to see if the chain is currently in the screw direction. Four cases can
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result from this check at each node. First, if the chain is both initially and currently

screw, the procedure moves on to the next node in the chain. Second, if the chain is

initially not a screw and currently became a screw the chain gets split into two chains

at this node. Third, if the chain was initially in the screw direction but broke out

of this orientation at this node, the procedure looks ahead for up to 3 nodes, if the

deviation from the screw orientation continues, the chain gets split, otherwise, the

chain is considered to be a screw chain even though portions of it (of length of less

than 3 nodes) are not in the screw direction. Practically, there cannot be many of

these non-screw portions within the same chain because this will gradually cause the

chain to deviate from the screw orientation and get split. Fourth, if the chain was

not in the screw direction initially and continues to be out of the screw direction at

this node, the procedure moves on to the next node and keeps looping until it reaches

the second case described earlier or the end of the chain.

As a result of the observation of constriction formation from MD simulations in the

intersection and surface cross-slip scenarios as presented in Section 3.3, a final chain

refinement step is required. Any screw chain spanning the crystal from one surface to

another (a surface to surface chain) forms a constriction somewhere along its length

and it partially cross-slips. Hence, the entire chain cannot cross-slip in the same time

step. A surface to surface chain gets split into two surface chains and a condition is

implemented such that at most one of them cross-slips in a given time step. Currently,

a simplifying assumption is made such that the chain gets split right at its midpoint.

The same refinement applies to chains that connect two p-nodes where p > 2 so as

to prevent a chain intersecting two forest dislocations from cross-slipping entirely in

one time step for the same reason.

Now with all the screw chains identified, the type of the potential cross-slip event

can be assigned for each chain according to the following rules. First, no two cross-

slip types can take place for the same chain in the same time step. Surface cross-slip,
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since it has the lowest activation energy, has the highest priority. Thus, a chain

terminating on the surface from one end and intersecting a forest dislocation from

the other end will be treated as a candidate for surface cross-slip only. If the chain is

entirely contained within the crystal and it intersects a dislocation which is not on its

glide or cross-slip plane, the chain becomes a candidate for intersection cross-slip. If

none of the two conditions is satisfied then the chain is considered to be a candidate

for bulk cross-slip. The case where jogs and kinks form to facilitate bulk cross-slip

is not explicitly handled in this implementation. However, it can be modeled by

modifying the pre-exponential factors and/or the activation energy in the cross-slip

rate Equation 3.5.

Intersection cross-slip has several different configurations that depend on the Burg-

ers vectors of the intersecting dislocations and they are all tabulated in [26]. To deter-

mine which intersection cross-slip event can happen, the Burgers vectors of the screw

dislocation chain and the intersecting dislocation chain are summed. If the sum is a

vector of the 〈112〉 type, a repulsive intersection cross-slip can take place. If the sum

is of the 〈100〉 type, the intersection forms a Hirth-lock and the required activation

energy will be that of Hirth-lock intersection cross-slip. If the sum is of the 〈110〉
type and the intersecting dislocations lie on either the {110} or {100} planes, then

the possible cross-slip type is that of the attractive intersection Lomer-Cottrel (LC)

type. If the sum is of the 〈110〉 type and both dislocations lie on {111} type planes,

the cross-slip is a attractive intersection glide-lock cross-slip. The previous rules are

all encoded in a flowchart given in Figure 3.3.

The detection of the appropriate cross-slip types helps identifying the correct

cross-slip activation parameters for the event prediction. However, there are two

more checks that need to be made before a cross-slip event is triggered. First, as

noted in Section 3.2, dislocations cross-slip only if the resolved shear stress on the

cross-slip plane is higher than that on the glide plane. This condition should be
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Figure 3.3: Flowchart of the proposed rules for cross-slip mechanisms as incorporated
into the DDD framework

satisfied regardless of the potential cross-slip event type. Second, the resolved shear

stress on the cross-slip plane should be at least at least μb
10L

where μ is the material

shear modulus, b is the dislocation’s Burgers vector magnitude, and L is the length of

the screw chain. This ensures that the dislocation will glide away from the cross-slip

event location after cross-slip. This prevents any repeated cross-slip events from one

plane to the other at the same location multiple times, which is not physical and

increases the computational load.

With the exception of repulsive intersection cross-slip, a final check needs to be

made in order to guarantee that the cross-slip rate is physical and consistent with
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the theory, experiments and MD simulations. The candidate chain cannot undergo

cross-slip unless the frequency of cross-slip multiplied by the time interval of the DDD

time step is greater than 1. The cross-slip rate given in Equation 3.4 can be rewritten

as [11]

f = ωa
L

Lo

exp

(
−(Ea − VΔτE)

kBT

)
(3.6)

where ωa = ηωD is the attempt frequency, that is, the number of times a dislocation of

length Lo would attempt to form a constriction somewhere along its length second and

ωD is the material’s Debye frequency. The scaling factor η is the ratio of the applied

strain in the simulations to that of the experiment, and it is used to match the number

of constriction formation attempts in both simulations and experiments over the same

time interval. The Debye frequency is estimated from experiments performed at low

strain rate or quasistatic loading conditions (such as creep loading). The reference

length Lo is the dislocation chain length at which bulk cross-slip events occur with a

frequency of 1 event per second at room temperature given identical Escaig stresses

on the glide and cross-slip planes (ΔτE = 0) and an attempt frequency equal to the

Debye frequency (a low strain rate simulation). The number of constrictions formed

scales linearly with the length of the dislocation because constriction formation events

are considered to be independent, thus, the expression is scaled by the ratio L
Lo

where

L is the actual constriction forming length of the dislocation chain.

The Escaig stress on a plane (either the glide or the cross-slip plane) can be ob-

tained by constructing a local 3D coordinate system whose Z-axis is the slip plane

normal vector and X-axis is the Burgers vector direction. The origin of the coordi-

nate system is irrelevant. A 3D transformation for the stress tensor from the global

coordinate system to the local coordinate system gives the Escaig stress as the τyz

component of the stress tensor. In this local view, the τyz stress acts on the edge com-

ponents of the partial dislocation and brings them together for a positive τyz stress,
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or a pushes them apart for a negative τyz stress. This is what is defined to be the

Escaig stress and hence, this choice of a stress resolution is justified. A final note on

Equation 3.6 is that the cross-slip activation energy is the term Ea−VaΔτE while the

constriction formation energy is Ea. Cross-slip takes place if the frequency calculated

from Equation 3.6 is greater than unity. Otherwise, a random number in the interval

[0, 1] is uniformly generated and cross-slip only occurs if this number is less than the

calculated frequency. This guarantees that cross-slip will take place at the same rate

dictated by the thermal activation condition.

For bulk cross-slip, the constriction forming length of the dislocation is taken to

be the actual length of the dislocation chain. On the other hand, for intersection and

surface cross-slip, the constriction forms near the intersection point or the surface.

In the simulations presented here, the intersection and surface cross-slip lengths are

taken to be 2.5 and 1.25 nm respectively. These lengths were chosen such that the

cross-slip rate matches the experimentally and computationally estimated rates.

The activation energies and volumes used in the current simulations depend on the

cross-slip type in question and they were obtained from MD simulations of nickel [26–

30], and are summarized in Table 3.1. The scaling factor η for the attempt frequency

is 50000 since the experimental strain rate is on the order of 10−3 s−1 while the

simulation strain rate is on the order of 50 s−1. In order to further reduce numerical

oscillations, cross-slip of chains of less than four segments was not accounted for to

prevent the cross-slip of small chains. If all the above conditions are satisfied, the

cross-slip event proceeds by picking a dislocation node on the chain to be the pivot

node, constructing a straight line that passes by the pivot node and in the direction

of the dislocation’s Burgers vector, and moving all the chains nodes so as to fall on

that line. This guarantees that all of the chain nodes lie on the line of intersection of

the glide and cross-slip planes. The glide plane of the cross-slipped chain segments

are then switched to the cross-slip plane, thus, these segments would subsequently
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glide on the cross-slip plane.

Cross-Slip Type Activation Energy, Ea (eV) Activation Volume, Va

Bulk 0.8 20b3

Surface 0.2 20b3

Hirth-lock 0.2 20b3

LC-Lock 0.6 20b3

Glide Lock 0.5 20b3

Table 3.1: Nickel Cross-slip parameters as obtained from atomistic simulations (Rao

et. al. 2009, 2010, 2011, 2012, 2013)

3.5 Numerical Simulations

In all the current simulations the simulation cell is of a right parallelepiped with

square cross sections of side length D that varies between 0.5 and 10 μm. Smaller

simulation volumes with D ≤ 5 μm have a height-to-edge ratio of 3 to avoid any

buckling effects. Larger crystals are cuboidal in shape (height-to-edge ratio of 1)

to reduce the computational load. A tension load with a constant strain rate of 50

sec−1 and the stress field was assumed to be uniform. The load was oriented in the

multislip [001] direction which activates 8 FCC slip systems simultaneously. The

material properties used were those of nickel single crystals. The initial dislocation

densities were varied between 5× 1010 m−2 to 1013 m−2.

Frank-Read sources of normally distributed mean lengths that scales with the

crystal size and a standard deviation of 10% of the mean length were uniformly

randomly generated on all of the {111} family of planes. Their line directions make

arbitrary angles with their Burgers vectors to obtain a distribution of dislocation

sources of all types. No error is introduced by generating artificial pinning points in

the simulation (due to the pinning at the ends of the Frank-Read sources) since they
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give the same quantitative response in terms of size-scale effects as the same relaxed

dislocation density simulations that do not have any pinning points initially [126].

3.6 Results

The effect of cross-slip on the engineering stress-strain response and the evolution of

the dislocation density are shown in Figure 3.4 for four representative crystal sizes of

D = 0.5, 1.0, 5.0, and 10.0 μm, respectively. For each size, the results from simulations

accounting for all cross-slip types as well as simulations without cross-slip are shown.

For crystal sizes D = 0.5 and 1.0 μm, no clear effect of cross-slip on the flow stress is

observed as can be seen in Figure 3.4-(a). Both simulations with and without cross-

slip show no strain hardening up to 0.8% strain. In addition, the average dislocation

density is weakly affected by cross-slip and remains relatively constant throughout the

simulations, as shown in Figure 3.4-(b). Nevertheless, it is clear that more significant

dislocation bursts are observed in simulations with cross-slip as evident by the larger

stress drops and accompanying dislocation density spikes.

On the other hand, significant early stage strain hardening can be observed for

the D = 5.0 μm case and a lower hardening rate can be observed for the D = 10.0 μm

case as shown in Figure 3.4-(c). In addition, as shown in Figure 3.4-(d) the dislocation

density increases rapidly for both crystal sizes in the presence of cross-slip. At 0.5%

strain, the dislocation density in both crystal sizes is observed to increase by an order

of magnitude from the initial dislocation density, while simulations without cross-slip

show a steady state dislocation density throughout the simulation.

Figure 3.5 shows the number of junctions as a function of engineering strain from

the simulations of the four crystal sizes reported in Figure 3.4. Both simulations with

all types of cross-slip and without any cross-slip are shown. Two observations can be

made here. First, the number of junctions increases more significantly in the presence

74



Figure 3.4: (a) and (b) engineering stress and dislocation density versus engineering
strain, respectively, for D = 0.5 and 1.0 μm simulation cells. (c) and (d) engineering
stress and dislocation density versus engineering strain, respectively for D = 5.0 and
10.0 μm. simulation cells

of cross-slip as compared to simulations without cross-slip. Second, the number of

junctions increases more rapidly for the D = 5.0 and 10.0 μm crystals as compared

to the two smaller crystals.

Figure 3.6 shows the initial and final dislocation microstrucutres from simulations

with and without cross-slip for the cases reported in Figure 3.4. It is clear that

while the initial dislocation density in the smaller two samples is double that in the

larger samples, no clear dislocation density build up is observed in the smaller crystals

either with or without cross-slip. Similarly, for the two larger simulations without
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Figure 3.5: Number of junctions versus engineering strain for theD = 1.0, 5.0 and 10.0
μm microcrystals discussed in Figure 3.4 with and without cross-slip. No junctions
were found in the D = 0.5 μm microcrystal in simulations with or without cross-slip.

cross-slip, no clear dislocation build-up is observed although multiple sources have

been activated throughout the simulations. On the other hand, in the same two

larger samples when all cross-slip types are accounted for a dislocation build-up is

clearly observed showing an early stage self-organization in high dislocation density

walls and lower dislocation density channels. The dislocation walls form mainly at

the center of the crystal creating partial dislocation-cell structures that intersect the

crystal surfaces. Animations of the 3D microstructres showing the dislocation pattern

formation in the D = 5.0 and 10.0 μm crystals are shown in the supplementary

movie1.avi, and movie2.avi, respectively.

In order to investigate the effect of the different cross-slip types on the evolu-

tion of the dislocation microstructure, the simulations have been repeated with the

same initial dislocation network but with only one cross-slip mechanism enabled at a

time. The initial dislocation density in these simulations was 5 × 1011 m−2 and the

crystal size was D = 5.0 μm. Figure 3.7 shows the predicted microstructures from

these simulations at 0.25% strain. Figure 3.7-(a) shows the predicted dislocation mi-

76



crostructure from simulations taking into account only bulk cross-slip, while all other

cross-slip types being disabled. Similarly, the dislocation microstructure from simu-

lations accounting only for intersection cross-slip, and surface cross-slip are shown in

Figure 3.7-(b), and (c), respectively. It is clear from these results than no distinct

dislocation pattern emerges from any of these simulation cases up to 0.25% strain.

On the other hand, when all cross-slip types are accounted for in the simulations,

the microstructure shows a clear pattern formation starting even at such a relatively

low strain level, as shown in 3.7-(d). It should be noted it might be possible to de-

velop dislocation patterns in simulations accounting only for one cross-slip type at

much higher strains. However, with all cross-slip types accounted for it is clear that

the dislocation pattern is predicted to emerge at much lower strain levels. Recent

experimental observations on FCC metals [60–62] have confirmed the emergence of

dislocation patterns at strain levels close to the ones predicted by these simulations.

Cross-slip was also found to influence the formation of surface slip traces on the

crystal surface. Figure 3.8 shows the dislocation microstructure and the corresponding

surface slip traces at different strain magnitudes from DDD simulations of a D =

20.0 μm simulation cell initialized with a single Frank-Read source of length 8.0

μm, which corresponds to an initial dislocation density of 109 m−2. A strong shear

localization is first observed on the slip plane of the original Frank-Read source.

However, as plasticity evolves, multiple secondary localized slip bands are observed

on two specific slip systems, one parallel to the original Frank-Read source plane,

and the other parallel to its cross-slip slip plane. The density of these slip bands and

their heights increase with increasing strain. It is clear that the slip band thickening

is accommodated by an increase in dislocation density in the crystal on multiple

slip systems. It should be noted that the slip activity is not simultaneous, but rather

intermittent with slip occurring on different planes for a limited time, then suppressed

while slip commences on other planes. Slip band patterns similar to the one presented
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here have been experimentally observed in FCC single crystals [127, 128]. Figure 3.8

shows slip band patterns from a Ni microcrystal having a 20.0 μm diameter after

12.7% strain [127] qualitatively showing similar patterns to the current simulations.
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Figure 3.6: The initial and final dislocation configurations in the four microcrystals
discussed in Figure 3.4 with and without cross-slip. The final configurations are
reported at 1.0% strain for the D = 0.5 μm and D = 1.0 μm crystals and at 0.5%
strain for D = 5.0 μm and D = 10.0 μm crystals
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Figure 3.7: Dislocation microstructure at 0.25 % strain for simulations starting with
the same initial dislocation network while accounting for (a) only bulk cross-slip; (b)
only intersection cross-slip; (c) only surface cross-slip; and (d) all cross-slip types. The
simulation cell had size D = 5.0 μm and the initial dislocation density was 5 × 1011

m−2. Dislocations are colored based on slip system.
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Figure 3.8: Dislocation microstructure at (a) 0.15%; and (b) 0.3% strain. The corre-
sponding 3D surface slip traces are shown in (c), and (d), while a top view is shown in
(e), and (f), respectively. The simulation cell is D = 20.0 μm and a single Frank-Read
source of length 8.0 μm was introduced in the cell, which corresponds to an initial
dislocation density of 109 m−2. Dislocations are colored based on slip system and the
initial dislocation corresponds to the blue slip system. (g) Slip band patterns from
a 20.0 μ diameter Ni microcrystal after 12.7% strain qualitatively showing similar
patterns to the current simulations from El-Awady et. al. 2013
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3.7 Discussion

3.7.1 Cross-slip Effects on Dislocation Microstructure Pat-

tern Formation

Dislocation pattern formation is a self organizing phenomenon occurring at the grain

length scale, which is typically in the micron and sub-micron ranges. The formation

and evolution of dislocation patterns during the deformation of FCC single crystals

has been well characterized experimentally in large crystals. Dislocation-cell struc-

tures have been routinely observed in all stages of deformation, with the dislocation-

cell size decreasing with increasing strain [129]. Furthermore, in situ transmission

electron microscopy (TEM) tensile tests of pre-strained single crystals Al thin films

also show the accumulation of dislocations within a cell boundary at stage-III of strain

hardening in double slip conditions [130]. More recently, in situ scanning electron mi-

croscope (SEM) compression experiments of aluminum (Al) microcrystals oriented for

multislip have shown that the formation of dislocation cells is observed when the crys-

tal size is D > 2.5 μm, however no dislocation cells were observed in smaller crystals

[59]. In the current DDD simulations, when accounting for all cross-slip types, dis-

location microstructure pattern formation is clearly observed during the deformation

of microcrystals having sizes D = 5.0 and 10.0 μm, as observed in Figure 3.6. On the

other hand, for microcrystals having sizes D = 0.5 and 1.0 μm no dislocation patterns

were evident. These results qualitatively agree with the experimental observations,

and suggest that dislocation cell structures are suppressed due to the geometric lim-

itations of the crystal when the crystal size is D ≤ 5.0 μm with initial dislocation

densities in the range of 5× 1011 to 5× 1012. It should be noted that this critical size

could be strongly dependent on the initial dislocation density since bulk-like response

can be expected for any crystal size if the dislocation density is above a critical value

[131, 132].
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As it was shown in Section 4.6, there is an increase in the number of junctions

formed when cross-slip was active, and that the number of junctions increases more

rapidly for the larger D = 5.0 μm and D = 10.0 μm crystals. This is mainly due to

the much shorter distance a dislocation can travel in the smaller crystals before exit-

ing the crystal, and thus reducing the probability of intersecting other dislocations,

even with cross-slip fully accounted for. The dislocation pattern formation is observed

to be associated with an enhanced dislocation junction formation. A junction in the

current simulations is identified as any dislocation node where three or more dislo-

cation segments, usually belonging to different slip systems, intersect. Junctions are

typically difficult to move since they must satisfy glide restrictions of all intersecting

dislocations slip systems simultaneously. If the intersecting dislocation segments lie

on three or more different slip planes, then the junction will remain immobile. In our

current simulations, once the junction forms, in most cases, it is difficult to break.

Thus, junctions typically serve as sites at which high dislocation densities build-up

are observed, which subsequently promotes dislocation patterning.

Cross-slip, in general, helps redirect dislocations around obstacles that block their

glide. These obstacles are forest dislocations in the current study. It can also aid in

propagating dislocations to glide on a different slip planes where the resolved shear

stress is higher. As dislocations cross-slip, the probability of them interacting with

other dislocations on other slip systems increases and subsequently the number of

junctions increases. Thus, cross-slip acts as a mechanism by which the substructure

evolves throughout the crystal. This is in contrast with the no cross-slip case where

the dislocations remain on their original planes without the potential of multiplying

on other slip planes and thus limiting the number of junction sites. On the other

hand, the crystal size plays an important role in the formation of dislocation patterns

as well. If the crystal size is small, dislocations have a higher probability of escaping

the crystal before interacting with other dislocations and forming strong junctions.
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This is evident in the D = 0.5 and 1.0 μm microcrystals showing only a modest

increase of junctions in the presence of cross-slip. As previously stated, an increasing

dislocation density would lead to increasing the number of strong junctions in smaller

crystals which could subsequently lead to pattern formation in these crystals. How-

ever, the dislocation densities modeled here in the two smaller crystals are 1-2 orders

of magnitude smaller than the typical dislocation density at which bulk response is

expected to be recovered [131].

Previously published DDD simulations accounting for only bulk cross-slip, as im-

plemented using equation (3.4), have also suggested the formation of dislocation “cell-

like” structures in large simulation cells (≈ 10.0 μm3) with periodic boundary condi-

tions imposed [42]. However, in the presence of free surfaces similar structures were

only reported in much larger simulation cells (15.0 μm3) [133]. From the individual

cross-slip type simulations, it is clear that the local dislocation density buildup in the

crystal is not strong enough to form a well defined pattern at the strain levels reached

here. On the other hand, when all cross-slip mechanisms are accounted for, a much

clearer dislocation structure is observed. Further anaylsis on the rate of new disloca-

tion source generation from these individual cross-slip type simulations are discussed

in Section 3.7.3.

3.7.2 Surface Slip Band Thickening

Formation of surface slip traces and steps is a natural consequence of dislocation

interactions with crystal surfaces. It is generally common to observe these slip traces

distributed randomly on the crystal surface in bulk [134, 135] and microcrystals [136,

137], with the slip trace density and step height depending on strain. Slip typically

concentrates on few planes with rather strong shear in addition to the formation of

localized slip bands along the length of the deforming crystal length. The formation

of localized slip bands might be surprising especially for microcrystals containing few
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initial dislocation sources (equivalently at dislocation densities on the order of 1012

m−2).

In the absence of cross-slip, DDD simulations typically show localized strong shear

on a limited number of slip planes with no clear slip band formation [55]. However, in

our current simulations with cross-slip, localized slip bands are commonly observed

in all simulated crystal sizes. In the following we examine surface cross-slip as a

potential mechanism that can be responsible for the formation of localized slip bands

in microcrystals. Upon taking a closer look at the microstructure evolution, a specific

repeating mechanism was observed to take place. When a bulk dislocation intersects a

free surface, the dislocation splits into a surface step of height b, and two single-ended

dislocation segments that continue to glide away, extending the surface step. If either

the two single-ended dislocations reaches a screw orientation as they continue to glide,

and given the low surface cross-slip activation energy, they can subsequently cross-slip

on the surface and glide on a new glide plane. Similarly, after the dislocation cross-

slips it can further double cross-slip on the surface and start glide on a third plane,

which is parallel to its original plane. Because surface cross-slip activation energy is

relatively low, these dislocations can keep cross-slipping in this manner till an array

of dislocations, all gliding on parallel planes, are created. All these dislocations have

originated from the same initial source and subsequently their interaction with the

free surface will result in a localized slip band. Figure 3.9 shows schematically the 4

steps of this process.

At the beginning of the slip band formation, the dislocation traverse distance is

almost purely stochastic and the second cross-slip event can occur anywhere. How-

ever, as the dislocation array gets denser, the stresses from the dislocations gliding

on parallel planes can reduce the surface cross-slip activation energy further. Thus,

the local stress field can become the influencing factor in cross-slip probability, and

dislocations would preferentially cross-slip on unoccupied parallel planes where the
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Figure 3.9: A schematic showing the surface slip localization mechanism. The blue
and green dislocations lie inside the crystal on slip planes P1, and P2, respectively,
while the red surface segments represent dislocation segments that exited the crystal.
In (a) a dislocation approaches the surface on P1. In (b) the dislocation intersects
the surface forming a surface step represented by the red line. In (c) one of the
surface intersecting dislocation segments cross-slips and glides onto P2 as shown by
the green segment. This results in a new surface step on P2. In (d) the newly formed
segment on P2 cross-slips back to a plane parallel to P1 and subsequently forming
another surface step on that plane parallel to the first surface step on P1. The two
blue dislocations in (d) glide on two parallel planes.

back stresses are relatively lower, rather than a plane occupied by other dislocations

on which the back stresses are relatively higher.

3.7.3 Cross-Slip Statistics

It is of interest to quantify the influence of each cross-slip type on the evolution of

dislocations in the crystal. It is particularly important to identify the effect of each

cross-slip type on the rate of generation of new dislocation sources in an effort towards

developing dislocation density evolution continuum models [138]. Towards that goal,

Figure 3.10 shows the number of new sources formed, after 0.5 % strain, due to each

cross-slip type as a function of initial dislocation density and crystal size from all the

simulations. The crystal sizes were varied between D = 0.5, 1.0, 5.0, and 10.0 μm and
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the initial dislocation density was varied between 5× 1010 to 1013 m−2.

As seen in Figure 3.10, there is a positive correlation between the source genera-

tion and the crystal size. While bulk cross-slip source generation is not that sensitive

to crystal size, surface and intersection cross-slip source generation show a signifi-

cant sensitivity. Smaller crystals, especially at low dislocation densities, do not show

significant source generation by cross-slip compared to larger crystals in general. Fur-

thermore, for a given initial dislocation density, the larger the crystal size the more

dislocation sources it will contain, and consequently, the higher the number of sources

being generated. A possible explanation is that for larger crystals the probability of

dislocation collisions and subsequent junction formation is higher than that for dis-

locations to escape from the free surface, which enhances the chances of intersection

cross-slip.

Initially, as bulk dislocations evolve and intersect the surface, surface dislocations

are created, which alters the actual number of sources of each type responsible for

cross-slip. Based on the physics of each cross-slip type, as a first order approximation

it can be expected that the number of sources generated due to bulk or surface cross-

slip must be proportional to the number of dislocation sources in the microcrystal.

On the other hand, since the frequency of junction formation can be expected to

be proportional to the square of the number of the available sources, the number

of newly generated sources due to intersection cross-slip should also be expected to

scale with the square of the number of dislocation sources in the microcrystal. By

examining Figure 3.10, and noting that the initial dislocation density is a measure

of the number of sources in the system, it is observed that the slope of the curves is

roughly equal to 1.0 for surface cross-slip, and 2.0 for intersection cross-slip. This is

consistent with the aforementioned phenomenological discussion. However, the slope

of the curves for the bulk cross-slip cases are significantly smaller (≈ 0.1−0.3), which

deviates considerably from the expected linear dependence as discussed above. This

87



can be explained by taking into account that the activation energy of bulk cross-slip

is much higher than surface or intersection cross-slip. Furthermore, given the short

mean free path for bulk dislocations in microcrystals, most bulk segments, especially

at low densities, will intersect the surface before they get a chance to cross-slip in the

bulk, thus, further reducing the rate at which bulk cross-slip generates new sources.

Finally, from the simulations performed with a single cross-slip type enabled at a

time (see Figure 3.7) it is possible to determine the synergistic effects of the different

cross-slip types. In the simulation with only bulk cross-slip, 19 new sources have

been created at 0.25% strain. In the simulation with intersection cross-slip only, the

number of new sources was 308 at this strain level. Finally, in the simulation with

only surface cross-slip accounted for, the number of new sources was 1128. However,

when all cross-slip types were accounted for the number of events from each cross-slip

type has almost doubled with 38, 708, and 1830 bulk, intersection, and surface cross-

slip events recorded after 0.25% strain. This is due to the synergistic effects resulting

from the activity of all cross-slip types simultaneously. For instance, as surface cross-

slip is induced, the probability of junction formation increases, which subsequently

increases the probability of intersection cross-slip. Furthermore, a higher density of

screw dislocations are expected to traverse the crystal, which subsequently increases

the probability of bulk cross-slip, and vice versa. This is consistent with the idea of

source generation rate dependence on the existing number of sources. As more cross-

slip types are activated, more sources are generated, which further induces source

generation.
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Figure 3.10: Number of new dislocation sources as a function of initial dislocation
density and crystal sizes due to: (a) bulk cross-slip; (b) surface cross-slip; c) intersec-
tion cross-slip and d) number of new dislocation sources as a function of the crystal
size for a given initial dislocation density of 1012 m−2 due to bulk cross-slip, surface
cross-slip and intersection cross-slip.
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3.8 Summary and Conclusions

In this chapter, three new mechanisms of cross-slip in FCC crystals that were recently

identified from MD simulations were implemented into discrete dislocation dynamics

simulations to study the evolution of dislocation microstructures of various crystal

sizes and dislocation densities. A summary of the findings are listed below.

• Early stages of strain hardening was observed in larger crystals (D ≥ 5 μm)

which was correlated with significant cross-slip activities. On the other hand,

no significant strain hardening was observed in smaller crystals.

• The dislocation density was observed to increase significantly in larger crystals,

which was facilitated by cross-slip.

• The number of fixed points generated in a crystal increases significantly when

cross-slip is accounted for.

• Clear dislocation cell structures were observed in larger crystals (D ≥ 5 μm)

starting at strain levels as low as 0.5% only when all cross-slip types are ac-

counted for in the simulations. When only individual types of cross-slip are

accounted for, these dislocation cell structures are absent or significantly de-

layed.

• The formation of surface slip bands were observed to be correlated with the

activation of surface cross-slip.

• Bulk cross-slip events are the least frequent, followed by intersection cross-slip

and then surface cross-slip.

The results are in good agreement with experimental observations of uniaxial com-

pression experiments on Ni and Al microcrystals. Overall, the observations suggest
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that surface and intersection cross-slip are more influential in microstructure evolu-

tion and early strain hardening and emphasis should be placed on further exploration

of those mechanisms. It should be noted that the pre-exponential factor in the cross-

slip rate equation should be adjusted through further simulations and experiments so

as to match the strain-hardening rates with the ones observed experimentally.
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Chapter 4

Microstructure and Surface

Roughness Evolution during

Mechanical Cyclic loading in

Nickel Micro-Crystals

This chapter presents DDD simulation results and physical insights of the mechanical

cyclic deformation mechanisms of FCC microcrystals as investigated through DDD

simulations.

4.1 Introduction

Failure under cyclic loading is one of the most common ways by which mechanical

and structural components fail [56, 57]. According to one estimate, the annual cost of

mechanical components failure due to fatigue is about 4% of the U.S. gross national

product [56]. Historically, fatigue failure was one of the earliest failure mechanisms

to be studied [58, 139]. However, after about 150 years of research, a complete un-
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derstanding of the mechanisms that lead to fatigue failure is still elusive [139]. On

one hand, the fatigue failure process is sensitive to the component geometry, loading

type, pre-straining, inclusions, previously existing cracks, material heterogeneity, and

environmental conditions among other factors [140]. On the other hand, the mecha-

nisms responsible for fatigue crack initiation and propagation take place over multiple

length and time scales [141]. These two reasons explain the complexity of the fatigue

failure process.

The fatigue failure process is usually divided into two stages, fatigue crack initia-

tion (nucleation) and fatigue crack propagation [58, 140]. There is no clear boundary

between the two stages. For designers and practitioners, fatigue crack initiation ends

when the crack first reaches a length that is detectable by a non-destructive testing

method [142], hence, it is a definition that is largely based on the current crack detec-

tion technologies. From a more physical point of view, fatigue crack initiation can be

defined as the stage during which an initially uncracked component develops a crack

of the same length as the microstructural features of the material such as grains and

inclusions [142]. The total number of loading cycles to failure can be broken down

into [143]

NT = Nint +Nmsc +Npsc +Nlc (4.1)

where Nint is the number of cycles for crack initiation, and Nmsc is the number of cy-

cles, beyond crack initiation, required to form a microstructurally small crack, which

is a newly nucleated crack that has propagated through the first few barriers to its

motion such as inclusions and grain boundaries. Npsc is the number of cycles, be-

yond microstructurally small crack nucleation, required to nucleate a physically small

crack, which is a crack that is long enough to propagate through the microstructural

features but still short for a linear elastic fracture mechanics treatment due to the

surrounding plastic zone. This is typically a crack of about several hundred microns
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in length [144]. Finally, Nlc is the number of cycles, beyond physically small crack

nucleation, taken by a long crack to propagate through the component until it fails.

This last part can be safely studied using linear elastic fracture mechanics. The point

at which to draw the line between crack nucleation and its propagation is unclear,

however, one possible demarcation would be that the nucleation number of cycles

is Nnuc = Nint + Nmsc and the propagation number of cycles is Nprp = Npsc + Nlc.

The crack nucleation stage is the least understood of the two. At the same time,

understanding crack nucleation is the first step to extend the lifespan of components

through an appropriate design of microstructure. According to Suresh [58], “devel-

oping a quantitative understanding of crack initiation processes must be regarded as

one of the most important tasks”.

Current fatigue failure prediction theories employed in design methodologies, such

as stress-life, strain life and damage tolerant approaches [58], are mostly based on ex-

perimental observations and continuum mechanics, which breaks down near the crack

front. Thus, a number of statistically justified safety factors need to be employed,

which renders the designs overly conservative. The need of lighter and stronger com-

ponents, especially for the aerospace industry, calls for a physics based understanding

of how cracks nucleate and how to stop or slow down their propagation so as to extend

their lifespan. To this end, the aim here is to provide a physical understanding for the

micromechanical processes that take place during of cyclic loading, prior to any fail-

ure. These processes are heavily controlled by dislocation activity [58]. While several

models of dislocation interactions with grain boundaries and twin boundaries have

been recently implemented in DDD [21, 145], the current simulations are limited to

FCC free standing single crystal simulations to reduce the complexities introduced by

dislocation grain/twin boundary interactions. Grain boundaries were found to either

slow down or completely stop the propagation of cracks under cyclic loading depend-

ing on the grain boundary type and the crack front geometry [146]. FCC metals were
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chosen because of their heavy use in mission critical components subject to extreme

environmental conditions such as gas turbine engine blades where they get cyclically

thermomechanically loaded [147]. The mechanisms identified can supplement the the-

ories based on experimental observations by providing more spatio-temporal details

about the plastic flow and they can be later incorporated into computational meth-

ods that are typically used for higher length and time scale analyses, such as crystal

plasticity [144], so as to connect them to the macroscopic failure process.

4.2 Background: Fatigue Crack Nucleation

Fatigue cracks have been observed to nucleate at interfaces such as grain bound-

aries [148], near or at the surface of an inclusion [149], or from the crystal surface

[140, 141, 150]. Grain boundary fatigue crack nucleation typically takes place at

higher temperatures and strain amplitudes [150]. This makes the free surfaces of crys-

tals the most common sites for fatigue crack nucleation, and for pure single crystals,

the only interface at which cracks nucleate. One of the first experimental observations

of what was understood later as a sign of fatigue crack nucleation was made by Ewing

et. al. [151] where they observed sharp slip lines on the surface of polycrystalline iron

specimens, called slip bands. These slip bands are higher, or lower, than the original

specimen surface and their heights (depths) increase with the number of cycles. Even-

tually, some of these bands will turn into cracks. The presence of bands is a sign of

something more fundamental, that is, strain localization where the dislocation activ-

ity gets concentrated in a small region in the crystal. As the crystal is stressed in each

loading cycle, dislocations move back and forth and interact in the process. Because

the motion is not fully reversible, the dislocation density builds up over time. This

has been experimentally verified through electrical resistivity measurements [152].

The increase in dislocation density in turn increases the strain energy of the crystal,
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which drives dislocations to form structures like dislocation dipoles or persistent slip

bands (PSB) so as to minimize the overall strain energy of the crystal [63].

Mughrabi et. al. studied the evolution of dislocation patterns, in fatigued single

crystal FCC copper oriented for single slip at room temperature under total plastic

strain control [153]. When the crystal is loaded in fully reversed cyclic loading at a

constant plastic strain amplitude, the peak shear stress was found to increase with the

cumulative plastic strain γT
pl up to a certain point where the shear stress saturates over

a long range of γT
pl, then it finally increases again until the sample fails. These three

regions are shown in Figure 4.1 and are termed regions A, B and C. The cumulative

plastic strain γT
pl is defined to be the total imposed shear strain throughout the cycling

process [58]

γT
pl = 4Σi=N

i=0 γ
i
pl (4.2)

where γi
pl is the plastic shear strain imposed in one loading or unloading motion in

the ith cycle. If the stress required to maintain the imposed plastic strain amplitude

is below the saturation stress, the system will never reach region B and it would be

possible to load it indefinitely without failure. This corresponds to cycling below the

failure limit in a typical S-N curve.

In region A, called the pre-saturation stage, fine straight slip traces start forming

on the surface [154]. These slip traces are not persistent and they disappear upon pol-

ishing the surface. Further cycling causes more of them to appear and they are almost

spatially uniformly distributed. Inside the crystals, dislocations arrange themselves

in cell-like structures very early [154] with dense dislocation walls surrounding nearly

perfect material. These cells are mostly on the primary glide plane with a vein like

structure developing on the cross glide plane that contains the shared Burgers vector

with the primary plane. The size of the cells decreases with increasing the cumulative

plastic strain. This microstructure is similar to that found in stage-I deformation in
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Figure 4.1: A schematic for a typical cyclic stress strain curve. γT
pl is the accumulative

plastic strain and τ is the stress required to maintain the imposed plastic strain. τ
varies as the accumulative plastic strain γT

pl increases as shown.

tension [154].

As γT
pl approaches a certain threshold value (about 8 × 10−5 for copper [153]),

transitioning to region B, or the saturation stage, takes place. On the crystal surface,

similar slip traces, like those observed in the pre-saturation stage, appear, however,

upon polishing, these slip traces do not go away and that is why they are termed

persistent slip bands (PSB) [63] and shown in Figure 4.2. The persistence of PSBs

indicates that they are features rooted in the bulk of the crystal not just on the surface.

Inside the crystal, PSBs have a ladder like structure of high dislocation density walls

spaced out by low density channels. The walls are formed mainly of edge dipoles with

a density of ρw = 5×1015 m−2 [155], and their planes are normal to the Burgers vector

of the dipoles with a wall spacing of about 1.4 μm at room temperature. The channels

contain mainly screw dislocations with a lower density of about ρw = 1.5× 1013 m−2.

PSBs span entire grains and end on either crystal surfaces or the grain boundaries

[58]. They are the main carriers of plasticity in the saturation region and as the

97



number of cycles increases, more PSBs form, preferentially near other existing PSBs

[156]. The volume fraction of PSBs keeps increasing until it reaches 100% by the

end of the saturation stage. A similar behavior was found in nickel and silver single

crystals [157].

Figure 4.2: A micrograph showing a PSB embedded in a matrix structure af-
ter a cumulative plastic strain of 2.2 × 10−3 taken from Holzwarth et. al.
(DOI:10.1007/BF00331434) with kind permission from Springer Science and Busi-
ness Media.

Since the PSBs are dislocation dense, they are generally softer than the surround-

ing matrix. The intersection of the soft-hard interface with the crystal surface is the

first location at which cracks can nucleate [63]. The Essmann, Gosele and Mughrabi

(EGM) developed a model to explain how dislocations inside PSBs interact, annihilate

and deposit dislocations along that interface, a process during which the PSB dislo-

cations escape from the surface gives rise to surface roughness while the generation of
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point defects alters the volume of the PSB [158]. This increase in volume manifests

itself on the surface in the form of an extrusion. A schematic for the configuration of

the PSBs and surface extrusions is shown in Figure 4.3 after [158].

Figure 4.3: A schematic of the distribution of PSBs (green) in a matrix (white). The
resulting surface extrusions and intrusions are shown.

The corners of the extrusions act as stress concentrators and when the local stress

is high enough, local atomic bonds can break, an event which constitutes the formation

of a small crack. The stress at the crack tip, due to its sharpness, is higher than the

far field stress, which leads to more bond breaking, resulting in the propagation of

the crack into the material. A micrograph of cracks nucleating near such extrusions
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are shown in Figure 4.4.

Figure 4.4: A micrograph of two PSBs intersecting the specimen surface. The surface
steps due to dislocations escape are clear. Cracks nucleating at the PSB-matrix
interface can also been seen. Reprinted from Publication by Basinski and Basinski
(DOI:10.1016/0079-6425(92)90006-S) with permission from Elsevier

From the previous discussion, it can concluded that dislocation activity leads to

surface roughness evolution, which is subsequently responsible for surface crack nu-

cleation. A number of theoretical and computational studies attempted to explain

the formation of the observed dislocation structures and surface topographies. Start-

ing from a simple force balance calculations on two dimensional distributions of edge

dislocations, Neumann showed that several stable structures can form under various

levels of applied stress such as a diamond and ladder geometries (similar to PSBs)

[159]. One drawback of this work is that it lacks any sort of short range dislocation

interactions such as annihilation and that it is restricted in terms of the disloca-

tion type. A series of studies by Walgraef, Aifantis and co-workers [160–164] used

the nonlinear reaction-diffusion equation to model the evolution of dislocation den-

sities in space and showed that for a certain choice of model parameters, periodic

sharp rises in the density, similar to PSB walls, naturally evolve. Their approach is

based on continuous dislocation density fields rather than discrete dislocations and
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the connection between the model parameters and the physical mechanisms active

during cyclic loading are difficult to establish. Repetto and Ortiz [165] developed a

crystal plasticity model that takes into account dislocation activity, annihilation and

vacancy generation in particular, within PSBs and the resulting surface motion that

amounts to a small groove after a number of loading cycles. The model does not

explicitly predict the generation of PSBs. In their model, the surface deformation

depends mainly on the outward flux of vacancies. The model however suffers, like

most crystal plasticity models, from the problem of parameter estimation. On the

surface roughness side, the EGM model [158] is based on the production of vacancies

due to the annihilation of PSB dislocations and their subsequent migration to the

surface of the crystal or to the matrix. Polak et. al. [166] extended the EGM model

and calculated the profiles of extrusions and intrusions.

Besides theoretical and crystal plasticity models, discrete dislocation dynamics

(DDD) simulations are capable of providing more details on the distribution of dislo-

cations, how it evolves in time, accurate vacancy production distributions and surface

roughness development based on the interaction of dislocations with the surface, all

while accounting for the complex three dimensional dislocation far-field and short

range interactions. Deshpande et. al. [167–170] used 2D DDD simulations to model

the interaction of dislocations with an already existing crack under mode-I monotonic

and cyclic loading and the resulting crack growth. Excessive dislocation slip activity

takes place around the crack tip due to the locally higher stress field. The cracks were

found to suddenly burst at the beginning of the cyclic loading and then, depending

on the stress intensity factor, they grow smoothly. Brinckmann et. al. [171] stud-

ied the accumulation of dislocation density and stresses in a surface grain cyclically

loaded. They also modeled the generation of dislocation dipoles from Frank-Read

sources when the local stress exceeds a predefined source strength. This is particu-

larly important for problems containing either predefined or nucleated cracks since

101



the stress around the crack tip should be high enough for dislocations generation.

Unfortunately, dislocation generation is challenging and very restrictive for 3D DDD

simulations. After a few number of loading cycles, stress concentrations were visible

along high dislocation density bands running parallel to the primary slip plane. A

huge increase in the dislocation density on the same slip planes was also reported

in this work. However, the concentrated stresses were still well below the limit for

fatigue failure because they only simulated a few number of loading cycles. While

these DDD simulations remove many of the assumptions usually used in theoretical

models, they are limited to only edge dislocations moving in two dimensions. Both

the geometric features (such as cell structures and PSBs) and the kinetic ones (such

as the stress distribution) found in fatigued crystals are three-dimensional in nature

which calls for a more accurate description of the defect dynamics.

Depres et. al. presented an extensive 3D DDD study on the evolution of mi-

crostructure and surface roughness in early cycle fatigue [172]. Starting with a sin-

gle Frank-Read source inside a surface grains of different sizes where all the grain

boundaries are impenetrable by dislocations except for one, the system was cycled

at a constant plastic strain amplitude with bulk cross-slip enabled (see Section 3.3).

Their simulations showed the formation of a cell-like structures after a very few num-

ber of cycles (N ≤ 20), especially for crystals loaded in multislip orientation. They

proposed a mechanism for the formation of the cell structures that is based on double

cross-slip and the interactions between dislocations on parallel planes. One interest-

ing finding from that study was that the thickness of the cell walls is proportional to

the square of the grain diameter while the spacing between the walls is proportional

to the grain diameter which shows that there is a size effect on the characteristics of

the cell structure. In a later work [93], the same authors analyzed the surface slip

markings associated with the dislocation activity and they found that the height of

the surface steps increases with the number of cycles and the imposed plastic strain
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amplitude. They also quantified the stored strain energy due to dislocation structures

and they concluded that the regions within the dislocation channels store the highest

elastic strain energy and consequently, cracks are more likely to nucleate there. Two

major drawbacks of this work is that they used the simplified edge-screw dislocation

model that does not allow dislocations of mixed types to exist and they started their

simulations with only a single Frank-Read source, which gives an unrealistically low

initial dislocation densities for the volumes they simulated (D = 10 to 22 μm). In

a different study [173] by the same group, the crack propagation was studied in 3D

DDD by explicitly introducing a crack surface and allowing the dislocations to escape

from the two faces of the crack. Dislocation nucleation ahead of the crack tip was

modeled by distributing dislocations sources on all of the possible slip systems near

the crack tip. This is one example of successful dislocation nucleation in 3D DDD

simulations. El-Awady et. al. utilized 3D DDD simulations to study the effect of

the long range stresses resulting from the dipolar dislocation walls on the dynamics

of screw dislocations in PSB channels as well as the interactions of screw dislocations

on parallel slip planes and how they affect the PSB flow strength [174].

The effect of stress field heterogeneity was addressed by Kiener et. al. [175]

through both experiments and 3D DDD simulations of single crystal copper mi-

crobeams subject to a fully reversed bending load. They reported that dislocations

accumulate near the neutral plane, however, their simulations did not show any signs

of cyclic hardening or irreversible dislocation microstructure buildup since they only

were able to simulate one loading cycle and the dimensions of the microbeams were

smaller than the characteristic dimensions of dislocation cell structures. Likewise,

Senger et. al. [176] performed 3D DDD simulations on monotonically and cyclically

loaded pillars in torsion and found that dislocations accumulate near the axis of the

pillar and that stable irreversible structures develop after a few number of cycles

(N ≈ 4) with cross-slip playing a major role in their formation.
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Fatigue in complex material systems had their share of DDD studies as well.

Shin et. al. [177] studied the interaction of dislocations with shearable precipitates

of different sizes in nickel-base superalloys under cyclic loading. They concluded

that with larger precipitates, surface slip markings similar to those developing on the

surfaces of pure crystals are found. With smaller precipitate sizes, PSB like structures

develop inside the crystal and a pronounced cyclic softening follows. Huang et. al.

[178] modeled the dislocation interaction with a transgranular crack in a cyclically

loaded polycrystalline nickel-base superalloy using 2D DDD. Their model accounts

for both dislocation climb and dislocation-grain boundary (GB) penetration. High

rate dislocation density multiplication and activation of multiple slip systems were

observed in grains surrounding the crack tip as opposed to single slip activity in farther

grains. Also dislocation climb was found to contribute more than GB penetration at

elevated temperatures.

While these previous studies of the early fatigue behavior using DDD simulations

show the capabilities of the method and the level of detail it can provide, there are

many open questions that need to be addressed. Here, realistic large scale 3D DDD

simulations of pure nickel single crystals having various sizes are performed to gain a

better understanding of the active deformation mechanisms and their contributions

to the overall microstructure evolution, surface roughness and mechanical response.

By realistic, it is meant that minimal non-physics based restrictions are imposed on

the initial dislocation microstructures and the governing dynamics. For instance,

dislocations can be of any type, the initial microstructure is not limited to a single

Frank-Read source, cross-slip, is accurately modeled according to an atomistically

informed implementation in a DDD framework as discussed in Chapter 2 [65], and

proper analyses are performed in order to validate the obtained results with experi-

ments and enrich the future development of fatigue crack initiation models.
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4.3 Computational Method

The DDD simulation framework used for the current simulations is the same as the

one described in Section 3.4. Cross-slip is active for all the simulations using the

parameters given in Table 3.1. While the accurate handling of the motion of surface

dislocation nodes was important for surface cross-slip calculations, in the current sim-

ulations, it is more important because the surface displacements, from which surface

roughness will be calculated, depend entirely on how the dislocations move and escape

the surface. Moreover, because the current simulations are large, an efficient way to

calculate surface displacement is not a matter of luxury. The number of expensive

computations required to reconstruct the deformed surfaces grows rapidly with the

number of cycles and the crystal size, and it may become prohibitively difficult to

handle in certain cases. To that end, the following procedure is used in order to

minimize the number of surface roughness calculations. It is worth noting that the

surface displacements are calculated only from dislocations that escape the crystal

and not from the entire dislocation microstructure. This is an approximation that

significantly reduces the computational load and has an insignificant effect on the

predicted surface roughness since bulk dislocations induce a smoothly varying dis-

placement fields on the surface of the crystal while the surface dislocations produce

sharp steps which are more significant from the surface roughness’ point of view.

For every interaction between a dislocation segment and the crystal surface, a

surface event (SE) is created. A SE is a record for the dislocation-surface interaction

(DSI) that stores the location of the interaction, its time, the Burgers vector, and the

slip plane normal of the dislocation intersecting the surface. These SEs are then post-

processed to reconstruct the DSI distribution and history. A DSI can take two forms.

First, when a dislocation node that lies initially inside the simulation volume moves

outside it in the next simulation time step, thus, the dislocation segments connected

to it get split at the points of their intersection with the surface and a number of
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SEs are created to record the lengths of the initial segments lost by splitting the

segments. The lost segments are physically removed from the simulation to reduce

the computational load, since no further interactions between them and the rest of the

system. Second, when a surface node (representing the node at which a dislocation

intersects the surface) moves on the surface, an SE is created to record the end points

of the node’s motion.

At the end of any one simulation, an enormous number of SEs get accumulated

and a clever way of processing this amount of data is required. The first processing

step is to filter out the SEs irrelevant to the time step at which the surface roughness

is desired. Because the surface roughness is cumulative in nature, if the surface rough-

ness is required at the time to, all the SEs that were created after to are discarded

and the processing works only for those with time stamps t such that t ≤ to. Because

the evolution of surface reconstructions is required as well, a divide-and-conquer ap-

proach is followed where the SEs are grouped into time slices where all the SEs with

ti−1 < t ≤ ti+1 are grouped into the ith SE time slice. This way the surface recon-

struction at to can be directly calculated as the sum of all the surface displacement

fields at time slices before to. Another advantage of this approach is that the O(n2)

reduction process, described next, operates on a smaller number of SEs which lowers

the overall processing time.

In the reduction step, a certain time slice SEs are processed to reduce them to the

minimum number of SEs that contain exactly the same amount of data. A common

situation where reduction is possible is when there are two SEs that resulted from

two successive displacements of a surface node, the first from point A to B and the

second from point B to C. Since the two SEs have the same Burgers vector and slip

plane normal, a new SE describing the motion between points A and C can replace

the two original SEs. The only piece of information that is lost is the time step of

the SE which becomes the time step of the latter event. However, since the SEs are
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reduced within the same time slice, no harm is done because the displacement field

resulting from a time slice is approximately the one that is present at the end of

the time slice. An even better situation exists when the two SEs move from A to

B and from B to A respectively where the two SEs annihilate. Given the number

of simulation steps and the oscillatory behavior of many of the surface nodes, the

reduction process results in an average of 85% compression ratio for the SE data.

Reduction however does work when SEs have different slip plane normals, Burgers

vectors or are non-touching. Naively, the reduction is an O(n2) process where n is the

number of SEs in a time slice because every SE has to be checked against every other

SE. However, an algorithm was developed that automatically breaks down the time

slice SEs into smaller spatially localized SEs where reduction can operate on a smaller

input size and then the algorithm recursively merges the subgroups and reduces them

so that any further reductions are properly handled. Reduction stops when there is

absolutely no further possible SE merging in the entire time slice SE group. It turns

out that the reduction is not only important to reduce the computational load, it is

also necessary for numerical accuracy so that the numerical error due to summing

multiple displacement fields from tiny nodal vibrations does not build up as it has

been shown to happen [179–181]. The SEs resulting from the reduction step are used

in the surface displacement field calculations.

Besides the surface roughness calculations, some post-processing methods were

employed in this work to quantify the degree to which the microstructure is patterned,

quantify the dislocation microstructure cell sizes and quantify the surface roughness.

In the following sections, these analysis methods will be presented.

4.3.1 Displacement Field Calculation

In the mathematical formulation of dislocations, a dislocation is defined as a curve

bounding an open surface embedded in a crystal where the two sides of the surface
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are relatively displaced by one Burgers vector [86]. This description has the advan-

tage of defining exactly where the strain incompatibility due to a dislocation is. This

definition however can be replaced by the simpler concept of a dislocation loop, which

is the boundary of that surface. However, with this simpler representation, the infor-

mation about the strain incompatibility is lost, because the surface bounded by the

dislocation loop is not unique. While this does not affect the interactions between

the dislocations and their evolution, it does affect the calculation of the displacement

field of a dislocation loop. From isotropic elasticity, a closed form solution for the

displacement field of a dislocation loop can be written in the form of a line integral

over the dislocation loop [86]:

ui = −biΩ

4π
+

1

8π

∮
C

εiklblr,pp +
1

1− ν
εkmnbnr,midlk (4.3)

where ui is the ith displacement component, Ω is the solid angle subtended by the

dislocation loop at the field point at which the displacement is to be calculated, b is the

dislocation’s Burgers vector, C is the dislocation loop curve, εijk is the permutation

symbol, ν is the material’s Poisson’s ratio and r is the distance between a point on

the dislocation curve and the field point of interest.

In most DDD simulation systems, especially in ParaDiS, the loops to which the

dislocation segments belong are not explicitly stored. Moreover, an approximation

that is common in the DDD community [20, 182, 183] is to model the dislocation

networks as Frank-Read sources, especially when modeling high aspect ratio disloca-

tion dipoles or dislocations that frequently undergo cross-slip. The end result is that

the dislocation segments deposited on the surface are seldom part of a well defined

dislocation loop in the simulation.

In order to compute the displacement fields for these dislocations, a virtual dis-

location loop is created for each segment in question. As shown in Figure 4.5, for

each surface dislocation segment (AB), an equivalent 5-segment loop (OACDB) is
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generated. The generation begins by choosing an anchor point inside the simulation

volume, which has to have a surface that is geometrically convex for this method to

robustly work. This anchor point (O) can be chosen arbitrarily but in the current

simulations, it is chosen to be the point of intersection of the segment’s slip plane

with the z-axis. The first segment in the five-segment loop is the segment (OA) con-

necting the anchor point to the starting point of the dislocation segment, and the

last segment (BO) in the equivalent loop connects the end point of the dislocation

segment back to the anchor point. A copy (CD) of the dislocation segment (AB) is

created parallel to it on the same slip plane at a distance d such that both vectors

(AC) and (BD) are normal to the crystal surface and lie on the same slip plane. The

remaining segments (AC), (CD) and (DB) are created accordingly. The distance

d determines the accuracy of the displacement calculation; the larger it is the more

accurate the calculation will be as shown in [54].

Figure 4.5: A sketch showing the original surface dislocation (AB) in red and the
equivalent dislocation loop anchored at point O in black
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The equivalent loop has an important property; it is planar and it lies on the

slip plane of the dislocation segment. Consequently, when generating the equivalent

loops for all the surface dislocation segments, the displacement fields from the seg-

ments (OA) of one loop and (BO) of the adjacent loop cancel out. A similar situation

happens for the segments (AC) and (DB). Hence, the end result of the displacement

calculation is the displacement due to the actual surface dislocations without any

contribution from the added equivalent dislocation loop segments. This makes the

process of calculating the displacement fields of planar and non-planar loops straight-

forward and no further special handling is required, unlike what has been previously

proposed [184].

Another difficulty that arises in these calculations is computing the solid angle

term. The solid angle term can be written as an equivalent closed loop integration

[185]. This formulation uses an arbitrary vector which results in non-unique displace-

ments in certain cases. The solid angle of a geometric object subtended at a point P

is defined as the area of the projection of the object on a unit sphere centered at P .

This gives rise to an alternative approach in which the now planar dislocation loops

are easily triangulated and the individual triangles are then projected on a unit sphere

centered at the field point. The area of the projected triangles can be calculated and

summed giving the exact value for the solid angle.

4.3.2 Dislocation Microstructure Metric

A simple and familiar metric for the evolution of the dislocation microstructure with

time is the information theoretic entropy [186], also known as the Shannon entropy,

of the dislocation density distribution. For a discrete non-negative distribution, fi,

that sums to unity, Shannon entropy is a positive real number defined as

S = −ΣN
i filn(fi) (4.4)
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where fi is the value of the distribution at the ith point, and N is the total number

of points. Here, the simulation cell is uniformly meshed into l × m × n elements

and the total dislocation length inside each element is computed from the dislocation

microstructure in that element. The distribution fi is then defined at the center

of each element, and the entropy can be calculated using Equation (4.4). Before

calculating the entropy, the values of the distribution fi are normalized by the total

dislocation length so that ΣN
i fi = 1.

From Equation (4.4), it can be shown that the entropy of a uniform distribution

is maximum, while that of a singleton is zero. In terms of dislocation distributions,

a crystal with all dislocations concentrated at a single point will have a zero entropy,

while that where the dislocations are uniformly distributed will have a maximum en-

tropy, which in this case will equal Smax = ln (l×m×n). The simulations start with

a number of Frank-Read sources, which mimic the case of a singleton, although not

perfectly, and it evolves over time into bigger regions that have a uniform dislocation

density. By calculating the relative entropy, defined to be the ratio of the disloca-

tion density distribution entropy to the maximum possible entropy, it is possible to

measure how far the system has evolved in terms of forming dislocation structures.

Simulations which show no relative entropy change maintain their initial configura-

tion of random dislocation distributions, while those that show an increase in their

relative entropy develop dislocation structures.

4.3.3 Quantifying the Dislocation Microstructure Size

As will be discussed in Section 4.6, in the current simulations dislocation cell-like

structures evolve and it is important to quantify their average size. Since these

cells are not geometrically ideal, a simple method, such as fitting ellipsoids to the low

dislocation density cell interior, will be sensitive to the irregularities of the dislocation

structure and is not expected to give good accuracy.
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Alternatively, the method used here builds on the work of Zaiser et. al. [187],

which was based on image analysis of 2D transmission electron microscopy (TEM)

micrographs of dislocation cell structures to estimate a number of fractal dimensions,

and subsequently quantify dislocation cell sizes. In the 3D setting of DDD, at any

particular time the simulation cell is meshed into elements and the dislocation den-

sity is calculated in each element. All elements with a dislocation density less than

a threshold value of ρth = 1014 m−2 are neglected. Subsequently, the remaining el-

ements, that correspond to the interior of a dislocation wall are represented as a

number of points, pi, and their distribution gives the general shape of the dislocation

walls. A box-counting procedure is performed over the points pi. The simulation

cell is then divided one more time into cubes ci of edge length ε. The total number

of points, pi, that are contained within each cube are added and then the number

of cubes, n, that have at least one point is recorded. The process is repeated for

cubes of different edge lengths, ε, to get the final distribution n(ε). A 2D schematic

representation of the cube counting process is shown in Figure 4.6(a).

The distribution, n(ε), is then used to estimate the dislocation cell size, εc, and

dislocation wall thickness, εw [187]. By plotting n(ε) versus ε, the distribution is

usually constant at low and high ε values and decreases for intermediate values of

ε, as shown in Figure 4.6(b). For small values of ε, increasing ε does not result in

a significant change in n(ε) because the cube edge length is not yet equal to the

dislocation wall thickness. When ε is equal to the dislocation wall thickness, εw,

there is one cube that spans the entire wall thickness. Any further increase in the

cube’s edge length will cause the cubes at the cell corners to cover more dislocation

wall regions, which consequently reduces the number of the cubes needed to cover

the entire dislocation wall (i.e. ε > εw, n(ε) decreases). As ε is increased further,

each cube covers increasingly growing regions of the dislocation wall structure and

fewer cubes are needed, which maintains the decreasing monotonicity of n(ε). When ε
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Figure 4.6: (a) A 2D schematic of the box-counting process. The black circles are the
centers of the cells having a dislocation density higher than the threshold dislocation
density. The squares (cubes in 3D) are equal in size with a side length ε. The green
squares contain at least one high dislocation density point. In this example n(ε) = 9.
(b) A typical plot of n(ε) versus ε showing the transitions at which the wall thickness,
εw, and the cell size, εc, can be quantified.

becomes large enough that one cube spans an entire dislocation cell, (i.e. ε = εc), any

further increase in ε will not result in any change in n(ε), since each cube now covers

about one dislocation cell and its surrounding dislocation walls. The dislocation wall

thickness and dislocation cell size determined by this method are approximate values

and they are sensitive to several factors such as the threshold dislocation density

and how uniform the dislocation structure is. Nevertheless, this gives a first order

approximation for the characteristic length scales of the dislocation microstructure.

4.3.4 Surface Roughness Quantification

The surface roughness is typically quantified using displacement amplitude features

such as the maximum peak height, the minimum peak depth and the first few statis-

tical moments of the amplitude distributions [188]. These parameters are suitable for
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correlating surface roughness to crack nucleation and failure events [140]. However,

in order to correlate the surface roughness to the dislocation microstructure activity

and be able to compare the roughness on different surfaces, a roughness measure that

takes into account the displacement amplitudes as well as their spatial distribution

is required since the dislocation distribution inside the crystal is usually heteroge-

neous which makes the distribution of the dislocation surface escape events spatially

non-uniform.

One of these measures is the Hausdorff dimension [189, 190] which ranges between

2 for perfectly smooth surfaces and 3 for infinitely rough surfaces. To calculate the

Hausdorff dimension, the undeformed surface is uniformly discretized into square cells

of size length ε and the surface displacement field is interpolated at the corners of

these cells to get the deformed cell geometry. The areas of the deformed cells are then

summed up to get an approximation for total surface area of the deformed surface

A. This approximation becomes more accurate as ε decreases. Several values of ε are

used and the approximate area is obtained for each value and then the ε − A pairs

are fit into a power law of the form

A(ε) = Aoε
2−D (4.5)

where Ao is the area of the undeformed surface and D is the Hausdorff dimension.

Hausdorff dimension can be directly related to slope of the power spectral density

(PSD) distribution curve [191, 192] which can also be used as a roughness measure

itself. The PSD distribution gives the power in the normal displacement signal as a

function of the normal displacement wavelength (or frequency). The surface roughness

increases when higher powers are associated with higher frequencies and vice versa.

The advantage of using the Hausdorff dimension over the PSD is that the Hausdorff

dimension is a single scalar that quantifies the roughness distribution over the surface

while the PSD is a one dimensional distribution.
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4.4 Numerical Simulations

In the current simulations, the cyclic loading response of pure single crystal nickel

(Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.31) during the early stages

of loading as well as after developing PSBs are investigated. In all simulations, fully

reversed loading at a constant strain rate of 200 sec−1 and a total strain amplitude

of 0.4% is imposed. All cross-slip types are allowed in all of the simulations.

In the early fatigue simulations, the simulations cells are cubic crystals having side

length ranging from 0.5 μm to 7.5 μm, and the initial dislocation density is varied

in the range of 1011 m−2 to 1014 m−2. The load is applied in the multislip crystallo-

graphic [001] direction. The dislocations are allowed to escape from all six surfaces of

the simulation cell mimicking the experimental case of a single crystal axially loaded

with soft grips at both ends to avoid any external influences on dislocation activities.

The initial dislocation microstructure consists of Frank-Read sources randomly dis-

tributed over the twelve FCC slip systems with uniform probability. The lengths of

the sources are normally distributed with a mean that is 60% of the simulation cell

side length and a standard deviation of 20% of the mean for all crystal sizes and initial

dislocation densities. The system is loaded for a number of cycles that depends on

the computational load with the less computationally expensive simulations (smaller

crystals and low initial dislocation densities) loaded up to eighty cycles, while the

more computationally expensive ones loaded up to two cycles. The effect of the im-

age forces in these simulations is neglected since they do not have a significant effect

on the results as was reported previously [93].

In the simulations having well developed PSBs, the simulation cell size is 2 μm

×2.2 μm ×3 μm with periodic boundary conditions imposed in all three-directions.

The PSB is introduced in the middle of the simulation cell, thus these simulations

mimic the case of an array of parallel PSBs. The purpose of these simulations is

to investigate how the dislocations move and interact within PSBs and to study the
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generation of vacancies due to dislocation annihilation. The PSB is composed of

parallel edge dislocation dipolar walls, with the wall normal in the burgers vector

direction. The height of the walls is 1 μm, the wall thickness is 0.1 μm, and the

channel spacing is 1 μm. Due to the imposed PBCs, the spacing between parallel PSBs

is 1 μm from each other. The PSB walls consist of edge dipoles with a dislocation

density of 1.5×1015 m−2 and Burgers vector [101̄] while the channels consist mainly of

screw dislocations spanning the channel between the walls with a dislocation density

of 3 × 1013 m−2. The plane of the walls is normal to the [12̄1] direction and all

the dislocations glide on the {111} plane. A typical initial PSB microstructure is

shown in Figure 4.7. The simulations are for one full loading cycle, which mimics

experiments of a one half cycle or one full cycle of a crystal containing well developed

PSBs [157]. Although dislocation climb is not explicitly allowed in these simulations,

dislocation annihilation through climb is modeled in these simulations such that any

two dislocations gliding on parallel slip planes, aligned in the same direction, with

a tolerance angle of 15o and having opposite Burgers vectors can annihilate if the

spacing between the glide planes is less than 6 A, which lies in the range of annihilation

distances predicted from experiments [193] and atomistic simulations [194].
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Figure 4.7: A typical initial PSB structure. Two PSB walls can be seen with screw
dislocations running between them in the channels. The input is periodic in all three
directions which simulates the case of a infinite number of parallel spaced out PSBs
of an infinite width and number of walls.

4.5 Mechanical Behavior and Microstructure Evo-

lution During the Early Stages of Cyclic Load-

ing

4.6 Results

The engineering stress versus engineering strain curves under cyclic loading are shown

in Figure 4.8 from representative simulations having different crystal sizes and initial

dislocation densities. For smaller crystal sizes, the overall strength is higher and it

decreases as the crystal size increases. The successive drops in the stress after yield

correspond to plastic strain bursts, which are less pronounced at higher dislocation
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densities or larger crystal sizes. At lower dislocation densities and smaller crystal

sizes, a larger scatter in the flow stress is observed from one loading cycle to another,

and this scatter decreases with increasing dislocation density. Furthermore, for the

smallest crystals having size D = 0.5 μm and initial dislocation density of ρo = 1014

m−2 display no sharp yield points, and the stress-strain curve transitions smoothly in

a nonlinear manner from elastic loading to plastic flow. This is due to plastic activity

initiating early, leading to continuous softening. This is also observed for the D = 2.0

μm crystals having an initial dislocation density of ρo = 1013 m−2.

(a) (b)

(c) (d)
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Figure 4.8: The engineering stress-strain curves from representative simulations hav-
ing different crystal sizes and grouped by the initial dislocation density: (a) ρo = 1011

m−2; (b) ρo = 1012 m−2; (c) ρo = 1013 m−2; and (d) ρo = 1014 m−2.

Figure 4.9 shows the crystal strength and dislocation density versus simulation

time from representative simulations of each crystal size, all having an initial dislo-
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cation density of ρ0 = 1 × 1012 m−2. Three observations can be made here. First,

the strength decreases with increasing crystal size. Second, for the number of cycles

simulated, the dislocation density in the crystals having sizes D ≤ 1.0 μm remains

constant even with increasing number of cycles. The almost regular spikes in the

dislocation density evolution, which coincide with the stress drops, correspond to

the activation of one, or at most a few, dislocation sources and their subsequent es-

cape from the crystal surface. On the other hand, the density multiplies significantly

faster in crystals having sizes D ≥ 2.0 μm, even after just a few cycles. These re-

sults indicate that the dislocation density multiplication factor is size dependent, with

the dislocation density multiplication increasing with increasing crystal size. Finally,

strong cyclic hardening is also observed in crystals having sizes D ≥ 5.0 μm, and

almost none are observed for smaller crystals for the number of cycles simulated.

In addition to the effect of the crystal size, the initial dislocation density plays

an important role in controlling both the overall response as well as the evolution of

the dislocation microstructure. Figure 4.10 shows representative engineering stress

and dislocation density curves as a function of the simulation time for two different

crystal sizes starting with three initial dislocation densities each. In both crystal

sizes, the overall strength decreases with increasing initial dislocation density, which

agrees with the predictions of the generalized size-dependent Taylor-strengthening

law [131]. It is also observed that for D = 0.75 μm, the dislocation density does not

change much, for the number of cycles simulated, irrespective of the initial dislocation

density. This indicates that the dislocation multiplication and escape rates are equal

in smaller crystals. For the D = 2.0 μm, the dislocation density is observed to

significantly increase for simulations with higher initial dislocation densities, while it

remains mostly constant for simulations with lower initial dislocation densities.

The initial and final dislocation microstructures for crystals of different sizes and

an initial dislocation density of ρo = 1012 m−2 are shown in Figure 4.11. Further-
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more, the evolution of the dislocation microstructure in a D = 2.0 μm having an

initial dislocation density of ρo = 1013 m−2, is shown in supplementary movie I, while

the 3D view of the dislocation microstructure in a D = 5.0 μm crystal having an ini-

tial dislocation density of ρo = 1012 m−2 is shown in supplementary movie II. Smaller

crystals having D < 2.0 μm do not exhibit any microstructure buildup, even after 80

cycles, and the final microstructure has the same random distribution features as the

initial microstructure. Larger crystals having D ≥ 5.0 μm, however, show the for-

mation of regions of high dislocation densities surrounding regions of low dislocation

densities, starting after only two cycles. These emerging dislocation microstructures

resemble the experimentally observed dislocation cells with dislocation dense walls

and less dislocation dense interiors [195, 196]. The high dislocation density regions

are dominated by immobile dislocations, which act as forest dislocations that pin

mobile dislocations. It is also observed that many dislocations in the wall regions

originate from the multiplication of a few sources from the initial dislocation net-

work due to successive intersection cross-slip events. The high local stresses resulting

from the high dislocation densities around the walls reduces the activation barrier for

cross-slip further, which subsequently leads to increasing the dislocation wall’s local

dislocation density.

Figure 4.12 shows the initial and final microstructure forD = 2 μm crystals having

different initial dislocation densities. For low initial dislocation densities (ρo ≤ 1011

m−2), no dislocation buildup is observed. As the initial dislocation density increases,

dislocations start to form dislocation rich regions through dislocation pinning and

multiplication. These dislocation rich regions, however, do not have the same geo-

metric features as dislocation cell structures.

It is clear from Figures 4.11 and 4.12 that both the crystal size and the initial

dislocation density play an important role in the subsequent evolution of the disloca-

tion microstructure. For the same initial dislocation density, simulations of smaller
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crystals show no dislocation cell structure formation, while clear dislocation cell struc-

tures are observed for simulations of larger crystals. On the other hand, for the same

crystal size, simulations with low initial dislocation densities show negligible dislo-

cation cell structure formation even after 80 loading cycles, while simulations with

higher initial dislocation densities show the formation of dislocation cell structures

even after a few cycles. Nevertheless, it could be expected that a similar dislocation

buildup would take place for smaller crystals with higher initial dislocation density,

or larger crystals with lower initial dislocation densities, after a considerably larger

number of cycles. This is however not attainable in the current simulations since the

number of degrees of freedom involved makes simulations of higher number of cycles

unachievable with the currently available computational power.

The dislocation density relative entropy (DDRE) versus time for crystals of dif-

ferent sizes an initial dislocation densities is shown in Figure 4.13. Larger crystals

having D ≥ 5 μm and a low initial dislocation density of ρo = 1011 m−2 show a

continuous increase in DDRE, indicating the formation of a dislocation cell structure.

This is opposed to smaller crystals having sizes D ≤ 2.0 μm and the same initial

dislocation density, even though they are simulated for a higher number of cycles.

For simulations with a higher initial dislocation density of ρo = 1012 m−2, the larger

crystals, having sizes D ≥ 5.0 μm show an earlier increase in DDRE, which indicates

that dislocation cell structure formation starts even sooner. In addition, crystals hav-

ing sizes D = 2.0 μm and the same initial dislocation density show an increase in

DDRE and dislocation cell structure buildup only after a larger number of cycles.

However, smaller crystals having sizes D < 2.0 μm and this same initial dislocation

density do not show any dislocation cell structure formation and the DDRE oscillates

around a low value even for a higher number of cycles. For simulations with an initial

dislocation density of ρo = 1013 m−2, crystals having sizes as small as D = 1.0 μm

show some slow DDRE increase, which indicates that a more pronounceable dislo-
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cation cell structure formation might develop if the simulations are continued for a

higher number of cycles. In addition, crystals having size D = 2 μm now show a

significant DDRE increase and a corresponding dislocation cell structure formation

much earlier in the simulations. Finally, for simulations with an initial dislocation

density of ρo = 1014 m−2, no dislocation cell structure formation or increase in DDRE

are observed for simulated crystals having D < 1.0 μm up to the number of simulated

cycles. However, at this high density, the DDRE oscillates in a manner similar to

the oscillations observed for larger crystals at lower densities before they showed any

dislocation cell structure formation (e.g. D ≤ 2.0 μm and ρo < 1012 m−2), which

suggests that dislocation cell structure formation could take place if these crystals

were simulated for a higher number of cycles or if the initial dislocation density was

higher. These observations suggest the existence of a size-dependent critical dislo-

cation density beyond which dislocation cell structure formation takes place. It also

should be noted that the monotonic increase in the DDRE observed for simulations

of larger crystals indicates that the load reversal does not break the dislocation cell

structures that have formed.
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Figure 4.9: The engineering stress and dislocation density as a function of simulation
time for simulations with an initial dislocation density of ρo = 1012 m−2 and crystal
sizes: (a) 0.5 μm; (b) 0.75 μm; (c) 1.0 μm; (d) 2.0 μm; (e) 5.0 μm; and (f) 7.5 μm.
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Figure 4.10: The engineering stress and dislocation density as a function of simulation
time for crystals having size D = 07.5 μm and: (a) ρo = 1012 m−2, (b) ρo = 1013 m−2,
(c) ρo = 1014 m−2; and crystals having size D = 2 μm and: (d) ρo = 1011 m−2, (e)
ρo = 1012 m−2 and (f) ρo = 1013 m−2.
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Figure 4.11: The initial and final dislocation microstructures for simulations having
an initial dislocation density of ρo = 1012 m−2 and sizes: (a) D = 1.0 μm; (b) D = 2.0
μm; and (c) D = 5.0 μm.

125



(a)

(b)

(c) Initial

Initial

Initial

After 5 loading cycles

After 5 loading cycles

After 36 loading cycles

Figure 4.12: The initial and final dislocation microstructures for simulations of crys-
tals having sizes D = 2.0 μm and: (a) ρo = 1011 m−2; (b) ρo = 1012 m−2; and (c)
ρo = 1013 m−2.
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Figure 4.13: The dislocation density relative entropy (DDRE) versus simulation time
for different crystal sizes and: (a) ρo = 1011 m−2; (b) ρo = 1012 m−2; (c) ρo = 1013

m−2; and (d) ρo = 1014 m−2.
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4.7 Discussion

4.7.1 Dislocation Density Evolution

Figure 4.14(a) shows the ratio of the dislocation density at the end of each cycle to

the initial dislocation density versus the number of loading cycles for different crystal

sizes and initial dislocation densities. Each data point is an average of three different

simulations with varying initial random dislocation distributions. It is observed that

larger crystals show a high rate of dislocation density multiplication, which is a direct

result of significant dislocation cross-slip events, and in particular intersection cross-

slip at the collision points of dislocations on non-parallel planes, as shown in Figure

4.14(b). Dislocations glide, collide, then cross-slip in a repeated manner, which leads

to storing more dislocations within the crystal rather than their escape. The dislo-

cation density multiplication can reach up to 75 times after only two loading cycles

for the larger crystals. This is the main reason these simulations are computationally

challenging to run for a larger number of loading cycles. The increase in the number

of degrees of freedom over time makes the simulation computationally demanding

and it becomes impractical to continue the simulations further.

A similar mechanism was suggested by Déprés et. al. [172] to explain the for-

mation of dislocation microstructures, however, they had only accounted for the tra-

ditional bulk cross-slip mechanism. In an earlier study, the current authors showed

that the number of new dislocation sources generated during monotonic loading due

to intersection cross-slip increases considerably with increasing crystal size [65]. On

the other hand, when bulk cross-slip is only accounted for the dislocation multiplica-

tion is significantly slower and no considerable dislocation buildup is expected during

early stages of the deformation. This latter case is in contradiction with experimental

observations showing dislocation cell structure formation starting even at low strain

levels [60–62].
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The dislocation density evolution per slip system versus time is shown in Figure

4.15 for some representative simulations. As shown in Figure 4.15(a), in smaller crys-

tals having D ≤ 2.0 μm, the dislocation density remains relatively constant, with

some fluctuations on all slip systems. This is typical for all crystals in Figure 4.14(a)

that show little or no density multiplication. When significant dislocation density

multiplication is observed (i.e. for larger crystals or higher initial dislocation densi-

ties), two dislocation density evolution trends can be identified. In particular, one

pair (Figure 4.15(c)), or multiple pairs (Figure 4.15(b) and (d)) of slip systems show a

significant density increase, while other slip systems show negligible dislocation den-

sity buildup. The slip systems of each pair share a common Burgers vector, which

indicate that the increase in dislocation density on these slip systems is due to con-

tinuous cross-slip of dislocations back and forth from one slip plane to the other. The

number of slip system pairs that are active depends on the number of sources that

have the potential to multiply and cross-slip. This number increases with increasing

crystal size and/or the initial dislocation density. Hence, for larger crystals (Figure

4.15(d)) or crystals with a higher initial dislocation density (Figure 4.15(b)), multi-

ple pairs activate, in contrast with lower initial dislocation density crystals (Figure

4.15(c)) where only one pair is active. Smaller crystals (Figure 4.15(a)) do not show

such a behavior because dislocations can escape from the crystal surface shortly af-

ter becoming active and before getting a chance to be engaged in any intersection

cross-slip activity.

4.7.2 Flow Strength and Cyclic Hardening

Early cyclic strain hardening has been experimentally studied in pure copper and

nickel [153, 197, 198]. Morrison et. al. [198] observed that cyclic hardening rates are

higher for crystals oriented for multislip due to the interactions of dislocations on dif-

ferent slip systems. They also showed that the buildup of dislocation microstructures,
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particularly dislocation cell structures, goes hand in hand with cyclic hardening. In

the current DDD simulations, larger crystals showed early cyclic hardening, which

is attributed to the buildup of large immobile dislocation assemblies as discussed in

Section 4.7.3. These dislocation walls reduce the mean free path of mobile disloca-

tions in the crystal. The relative strength at the end of different loading cycles to

the strength at the end of the first quarter cycle for all the simulated cases is shown

in Figure 4.14(c). Each data point is the average of three simulations with the same

configuration but different random initial dislocation distributions. Smaller crystals

that do not form any dislocation cell structures do not show any cyclic hardening

even up to 80 cycles. On the other hand, larger crystals that show the development

of dislocation cell structures show up to 40% increase in the yield strength after only

two loading cycles. Experimental observations of copper single crystals fatigued in

a multislip orientation suggest that cross-slip may play an important role in early

cyclic hardening [199]. Those experimental suggestions along with the results in Fig-

ure 4.14(b), which indicate that cross-slip is frequent in larger crystals that show

cyclic hardening, show the agreement between the current DDD simulations and the

experimental observations when it comes to predicting cyclic hardening response.

On the other hand, recent DDD simulations of size effects during monotonic load-

ing of microcrystals [131] have lead to the development of a generalized Taylor-law,

which takes into account the effects of crystal size and initial dislocation density on

its strength, such that

τ

μ
=

β

D
√
ρ
+ αb

√
ρ (4.6)

where τ is the crystal strength, b is the Burgers vector magnitude, and α = 0.57 and

β = 1.76×10−3 are two dimensionless constants [131]. Figure 4.16 shows τ
μ

√
D versus

Dρ from all the simulations at the end of each quarter cycle, as well as the predictions

from Equation (4.6) for comparison. While, as expected, there is a high scatter in the
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simulation results, the simulations agree on average with the predictions of Equation

(4.6). The predictions from Equation (4.6) are slightly lower than the simulation

data, which is mainly because the constants α and β in [131] were computed based

on the initial dislocation density, while the simulation results in Figure 4.16 are the

instantaneous strength and dislocation density at the end of each quarter cycle. For

larger crystal sizes or higher initial dislocation densities, the slope of the simulation

data in Figure 4.16 agrees well with the slope predicted from Equation (4.6) for

the same range of ρD. For smaller crystals or at low initial dislocation densities,

the simulation data mostly oscillates around a constant value since no dislocation

multiplication or cyclic hardening is observed. These results show the correlation

between the flow strength, cyclic hardening, and the dislocation density evolution.

4.7.3 Microstructure Evolution

As discussed earlier, an interesting observation from the current simulations is the

formation of dislocation cell structures in larger crystals. These dislocation cell struc-

tures have been previously observed experimentally in larger crystals [59] and at low

strains [60–62]. Furthermore, recent continuum dislocation dynamics studies have

also shown the emergence of self organized cell like dislocation structures [17]. The

current simulations show that the dislocation density buildup is irreversible. This is

also clear from the relative entropy plots shown in Figure 4.13, where the relative

entropy is monotonically increasing. One measure for the strength of a dislocation

network is the number of pinning points present in the system at any instance of

time. Here, a pinning point is a dislocation node that is connected to at least three

dislocation segments that lie on three different slip planes. This point is effectively

incapable of moving due to the glide constraints associated with its dislocation arms.

Figure 4.14(d) shows the number of pinning points versus the number of cycles for

the first few cycles of different crystal sizes and initial dislocation densities. It can
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be observed that larger crystals develop a significant number of pinning points even

after a few cycles, while smaller crystals, especially at lower densities, do not, even

after 80 cycles.

The mechanisms discussed in Section 4.7.1, by which the dislocation density in-

creases in larger crystals, partially explain the significant increase in the number of

pinning points in larger crystals. As dislocations collide, they form pinning points,

become less mobile and act as barriers for subsequent dislocation activity. In addi-

tion, intersection cross-slip, which takes place when a screw dislocation collides with a

forest dislocation, becomes more frequent [26, 27, 65]. Intersection cross-slip requires

less activation energy and it is more likely to take place than bulk cross-slip, which re-

quires a high activation energy [65]. Cross-slip changes the glide plane of dislocations

making them subject to further collisions with less mobile dislocations threading dif-

ferent glide planes, which subsequently results in further cross-slip and pinning point

creation. Cross-slip, which is a thermally activated and a stress assisted process, is

further promoted by the high local stresses in high dislocation density regions. By

comparing Figures 4.14(b) and 4.14(d), there is an obvious one-to-one correlation

between the number of pinning points and the number of cross-slip events.

Finally, the cell size quantification method discussed in Section 4.3.3 is utilized

to analyze the dislocation cell structures emerging in the current DDD simulations.

Figure 4.17 shows the box-count plots for crystals of different sizes, initial dislocation

densities and number of cycles from a representative number of simulations that

showed dislocation cell structure formation. The dislocation cell wall thicknesses are

0.03 μm, 0.1 μm, and 0.15 μm, while the dislocation cell sizes are 0.6 μm, 1.6 μm,

and 2.5 μm, for the 2.0 μm, 5.0 μm, and 7.5 μm crystals, respectively. Both the

dislocation wall thickness and the dislocation cell size do not change with increasing

number of cycles for the number of cycles simulated, which suggests that they could

be intrinsic length scales that depend on the crystal size, and possibly the initial
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dislocation density.

The box-count of small and medium sized boxes increases with increasing the

number of cycles while that of bigger boxes remains the same. This indicates that

the number of dislocation walls increases, but their thickness and the dislocation cell

size remain constant. For this to happen, the previously formed dislocation cells are

not refined by developing new dislocation walls that run across them. Alternatively,

new dislocation walls develop external to the fully developed cells. Indeed, an inspec-

tion of the dislocation microstructure reveals that the complexity of the dislocation

structure grows over time as can be seen in the supplementary movie II. Experiments

on prestrained copper single crystals cyclically loaded in multislip orientation showed

the formation of dislocation cell structures after about 50 loading cycles with dislo-

cation cell sizes in the range of 0.7 μm after prestraining up to εprestrain = 0.4 for

larger crystals [200] . In addition, the cell size decreases with increasing prestraining

level and the mean dislocation wall thickness is in the range of 0.05 to 0.1 μm. These

observations agree with the current simulation results. The discrepancy in the dislo-

cation cell size could be due to prestraining effects, which are absent in the current

simulations, or due to the mismatch between the crystal sizes in the simulations and

experiments.
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Figure 4.14: (a) Dislocation density multiplication factor; (b) number of cross-slip
events; (c) relative flow strength; and (d) number of dislocation pinning points, as
a function of the number of loading cycle for different simulation conditions. Each
data point is an average of three different simulations with varying initial random
dislocation distributions.
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n = [111] B = 1/2[011]

non-FCC slip system

(a) (b)

(d)(c)

Figure 4.15: The evolution of dislocation density per slip system as a function of
simulation time for different crystal sizes and initial dislocation densities: (a) D =
0.75 μm and ρo = 1014 m−2; (b) D = 2.0 μm and ρo = 1013 m−2; (c) D = 5.0 μm and
ρo = 1012 m−2; and (d) D = 7.5 μm and ρo = 1012 m−2.
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Equation (2)

o=1012 m-2

o=1013 m-2

o=1014 m-2

D = 0.5 m:

o=1013 m-2
o=1011 m-2
o=1012 m-2

D = 2.0 m:

o=1012 m-2
o=1011 m-2

D = 5.0 m:
o=1012 m-2
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o=1013 m-2

D = 0.75 m:

o=1012 m-2
o=1011 m-2

D = 7.5 m:

o=1013 m-2
o=1012 m-2

D = 1.0 m:

Figure 4.16: The flow strength normalized by the shear modulus and multiplied by
the square root of the crystal size versus the dislocation density multiplied by the
crystal size at the end of each quarter loading cycle from all the simulations.
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(c)
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w c

Figure 4.17: The box-counting method applied to representative dislocation mi-
crostructures from the current DDD simulations: (a) D = 2.0 μm and ρo = 1013

m−2; (b) D = 5.0 μm and ρo = 1012 m−2; and (a) D = 7.5 μm and ρo = 1012 m−2.
The blue arrows indicate the wall thickness and the red ones indicate the cell size.
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4.8 Surface Roughness Evolution During the Early

Stages of Cyclic Loading

Active dislocations near the free surface of the crystal can escape leaving behind sur-

face steps in the direction of the dislocation’s Burgers vector having heights equal to

the Burgers vector magnitude. As deformation progresses, the surface steps increase

and the surface topography continuously evolves from a flat planar initial surface to

a rough one with features similar to valleys and ridges. In Figure 4.18, represen-

tative deformed surfaces from four crystals having different edge lengths and initial

dislocation densities are shown after a varying number of loading cycles. Two main

modes of roughness evolution can be generally observed. First, the case when most

of the roughness is localized to a few deformation bands (Figure 4.18(a)). In this

case, surface steps are formed and they evolve contiguously within these bands with

the rest of the surface being mostly smooth. The crystals showing this behavior are

generally smaller in size and/or have a low initial dislocation density. Second, the

case when the roughness is distributed uniformly over the entire surface of the crystal

(Figure 4.18(d)). This usually takes place in larger crystals with higher density where

more dislocations become active and the surface escape activity gets spread out. In

addition, distinct steps that are higher than their surroundings are also observed. It

can also be argued that the uniform roughness distribution takes place at the very

early cycles while localization in slip bands takes place later. This has been observed

by Dépres et. al. [93]. The major discontinuities on the surface correspond to slip

planes where the dislocation activity is the highest. The minor steps parallel to the

major ones form as a result of double cross-slip events that introduce dislocations on

parallel slip planes. On some surfaces, especially for smaller crystals when few dislo-

cations are active, major surface steps make an angle of π
4
with each other. This is a

sign of a single cross-slip event introducing dislocations on the cross-slip planes of the
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planes containing the initial Frank-Read sources since FCC slip planes intersect the

surface {001} planes at lines making an angle of π
4
with the principal axes. In some

cases (such as in Figure 4.18(c)), severe surface deformation and large slip bands exist

right next to almost flat surfaces. This happens when there is a family of dislocations

originating from the same source due to cross-slip and interacting with the surface

forming surface steps that grow into deep and wide surface slip bands. On surfaces

whose planes contain the Burgers vector of this family of dislocation, no observable

surface roughening takes place although the surface atoms are still displaced within

their plane. In other cases (such as in Figure 4.18(a)), it can be seen that the major

roughening is due to one family of dislocations that grows in one direction, possibly

due to the non-uniform stress field resulting from the complex dislocation network.

This is why the surface shows varying degrees of roughness on one side of the most

active slip plane and it sharply transitions to a rather smooth surface on the other

side.

In an attempt to explain the deformed surface topography in terms of the evolv-

ing dislocation microstructure described in Section 4.5, Figure 4.19 shows both the

surface roughness as well as the subsurface dislocation microstructure after different

loading cycles. Near the center of the simulation cell a higher dislocation density is

observed while the regions closer to the surfaces have significantly lower dislocation

densities since the dislocation density flux is unidirectional on the surface in the cur-

rent simulations, that is, dislocations can escape from the surface but they cannot

nucleate and glide back into the crystal. In all of the simulations, surface step re-

versal is rare. A formed step usually persists even with the load reversal. For a step

to be erased, a dislocation with a Burgers vector opposite to that of the step has to

be deposited in the exact location of the original step. The load reversal guarantees

that these dislocations exist even in the cases of very low densities (in fact, a single

Frank-Read source loaded cyclically would deposit both positive and negative steps
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Figure 4.18: Reconstructions for the crystal surfaces after being deformed due to
dislocation activity. The surface displacement is magnified 10 times (a) D = 0.75
μm, ρo = 1014 m−2 after 5 cycles, (b) D = 1.0 μm, ρo = 1012 m−2 after 50 cycles, (c)
D = 2.0 μm, ρo = 1013 m−2 after 5 cycles and (d) D = 5.0 μm, ρo = 1011 m−2 after
2 cycles

on the surface), however, cross-slip usually takes the erasing dislocations to parallel

planes before they get a chance to be deposited over the already formed steps because

the time-scale at which cross-slip operates is much smaller than that of one half of a

loading period. This explains the emergence of high displacement frequency regions

on the surface formed of positive and negative steps right next to each other but on

parallel planes.

The first few statistical moments of the surface height distribution can be used to
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Figure 4.19: The dislocation microstructure and surface roughness evolution in a
D = 2.0 μm crystal having an initial dislocation density of ρo = 1013 m−2 after (a) 2,
(b) 3 and (c) 5 loading cycles. The surfaces are color coded according to the normal
displacement field and the dislocations according to their slip system.

describe the deformed surface topography and its evolution over time. Surface height

maps were calculated from the normal surface displacement over a grid covering the

undeformed surface from which the first two statistical moments, the mean and the

standard deviation, of the height maps were calculated. The mean height is propor-

tional to the number of surface steps and their lengths, while the height standard

deviation can be used as a basic measure of surface roughness with lower standard

deviation values corresponding to rougher surfaces. Figures 4.20 and 4.21 show the

variation of the first two moments with the number of cycles for a number of crystals

having different sizes and initial dislocation densities.

In all simulated cases, there is a persistent surface step growth as previously pre-

dicted from the deformed surface visualizations. Although step reversal that can be

observed as drops in the mean height curves, the overall trend of all curves is of a

continuous increase. No clear correlation between the initial dislocation density and

the mean height growth rate can be deduced from the current results. Nevertheless,

the mean height growth rate is higher in larger crystals compared to the smaller ones.

The step reversal is more pronounced in bigger crystals as well. The height growth

follows a staircase pattern in some cases (Figure 4.20(c)), where there is a burst in
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step formation followed by a longer time interval with no new steps forming. The

bursts take place slightly after the beginning of the cycle which corresponds to the

end of the elastic loading. This is the time when the applied stress reaches its peak

value right before yielding. This shows that the applied stress is the main driver for

surface features development rather than the interaction stresses which is consistent

with the observation of surface roughening far from the regions of dislocation struc-

ture formation. Given the low number of cycles reached in these simulations, the

growth rate is higher at the first few loading cycles and decreases for most cases at

later loading cycles. The average height growth rate ranges between 0.01 nm/cycle

and 0.45 nm/cycle. These numbers match the experimental values reported by Man.

et. al. [201] who also report a continuous surface topography growth in the first few

cycles and a lower growth rate at higher cycles as predicted by the current simula-

tions. Similar to the mean height, the height standard deviation (HSDEV) grows

continuously but with fewer and weaker fluctuations. Larger crystals have a higher

HSDEV, which suggests that the surface steps are more uniformly distributed over

their surfaces compared to smaller crystals.

The first statistical moments are reasonable choices for describing the general fea-

tures of the deformed surface. In fatigue life studies, the maximum surface height

is typically used [140] because it can be correlated to the stress concentrations de-

veloping near the surface steps. As it was discussed in Section 4.3.4, the maximum

height correlates well with the Hausdorff dimension (HSD), however, the latter has

the advantage of taking into account not only the maximum height amplitudes, but

also their location over the surface. The Hausdorff dimensions for the cases discussed

earlier are shown in Figure 4.22 against the number of cycles. Certain features are

similar to those observed from the statistical moments evolution curves such as the

continuous increase and the direct relationship between the roughening rate and the

crystal size. This relationship however does not hold for HSD as strictly as it holds
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Figure 4.20: The mean surface height vs the cycle number for a number of simulated
cases. For visual clarity, the curves are grouped based on the maximum number of
cycles reached in the simulation.

for the mean height and its standard deviation because in some cases smaller crys-

tals at higher initial dislocation densities show a faster HSD increase in the first few

cycles. In addition, the drops in the HSD curves are almost non existent in the HSD

curves. This is because the partial removal of a surface step by a dislocation of the

opposite sign, an event that would reduce the mean surface height, does not affect

the surface roughness. The only way by which the surface roughness, and hence,

the HSD, decrease is by the complete removal of a surface step such that the sur-

face can return locally to its undeformed configuration. Practically, this should be

an extremely rare event because it requires the exact number of oppositely signed

dislocations depositing right on the surface step causing it to recede (or advance for
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Figure 4.21: The surface height standard deviation vs the cycle number for a number
of simulated cases. For visual clarity, the curves are grouped based on the maximum
number of cycles reached in the simulation.

intrusions) and vanish.
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Figure 4.22: The variation of the Hausdorff dimension with the number of cycles for
a number of simulated cases. For visual clarity, the curves are grouped based on the
maximum number of cycles reached in the simulation.

4.9 Deformation Evolution in Persistent Slip Bands

Figure 4.23 shows a close-up of the dislocation microstructure near one of the PSB

walls after one quarter of a loading cycle from a representative PSB simulation. Few

edge dipoles move into the channels while the majority remain inside the PSB wall.

The motion of the edge dipoles appears to be sensitive to the local stress, rather than

the applied stress. This is because the applied stress works to expand the two edge

dislocations of the dipolar loops in opposite directions resulting in zero net motion

while the local stress acting on the two segments is different, which results in the

observed loop drift. The shorter edge dipoles move rigidly without any expansion
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while the longer ones expand slightly because the shear stress required for the dislo-

cation expansion decreases with increasing its length. On the other hand, the screw

dislocations in the channels move laterally much faster than the edge dipoles and

they carry almost all of the plastic strain. It is also commonly observed that larger

dislocation dipoles in the walls can expand in the channels leading to the formation

of new screw dislocations.

Figure 4.23: A close-up near one PSB wall during deformation after one quarter of a
loading cycle. A number of edge dipoles that have expanded and moved out of the
PSB wall can be observed in the green shaded region. The screw dislocations in the
channel form screw dipoles as they move. Two screw dipoles are highlighted in red.

Snapshots from the dislocation microstructure evolution are given in Figure 4.25

for one of the PSB simulations. Initially, all the screw dislocations in the channels are

straight. As the stress is applied, they start bowing out and their curvatures increase
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with increasing the applied stress. Most of the screw dislocations show the same

degree of curvature simultaneously, as shown in Figure 4.26, which means that the

applied stress is the stress that controls their shapes not the interaction stress with the

PSB walls or other screw dislocations. The stress from the PSB walls has a minimal

effect because the walls are made of small dipolar dislocation loops whose stress fields

vanish as one moves further away from the dipole center. An exact analysis for the

stress field of the PSB wall in the channel builds upon Equation 2.24 for the stress

field of a dislocation loop. From Equation 2.24, one can see that the integration

kernel depends mainly on the third derivative of the position vector r,ijk. For the

case of two parallel dislocations of finite length l, placed at a distance h apart and

having opposite Burgers vectors, the entire integration in Equation 2.24 boils down

to evaluating the integral Iijk given by

Iijkl(x) =

∫
r1,ijk − r2,ijkdll (4.7)

where r1 and r2 are the distances between the point x and a general point on the two

dislocation segments of the dipole as shown in figure 4.24. The difference is taken

rather than the sum because the two dislocations are identical in everything except

for their Burgers vector which are exactly opposite to each other. The vectors ri, r
1
i

and r2i can be written as

Figure 4.24: A schematic showing the distances r, r2 and r1 between the dislocations
forming the dipole and a general point x. The point x is in blue while the center of
the dipole is in red.
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ri = xi − tiηl

r1i = xi − tiηl − h
2
mi

r2i = xi − tiηl +
h
2
mi

(4.8)

where η ∈ [−1
2
, 1
2
], ti is a unit vector in the dislocation’s line direction and mi is a

unit vector connecting the dipole’s center with the midpoint of one of the dipole’s

dislocations. The ratios of the magnitudes of r1 and r2 to r are

||r1||2
||r||2 = 1 + h2

4||r||2 +
hmi

||r||2 (tiηl − xi)

||r2||2
||r||2 = 1 + h2

4||r||2 − hmi

||r||2 (tiηl − xi)
(4.9)

In the current PSB simulations, the PSB wall thickness is 0.1 μm and the dipole

height h is about 4.5 nm which gives an average spacing between the dipole center

and any point in the PSB channel of about 0.5 μm. The ratio h
||r|| in this case becomes

h
||r|| ≈ 1

100
. Hence, the second and third terms in equations 4.9 can be safely neglected

as they are on the order of 10−4 and 10−2 respectively, resulting in ||r|| ≈ ||r1|| ≈ ||r2||.
The expression for r,ijk is given by

r,ijk =
−1
r3

(δijrk + δikrj + δjkri) +
3rirjrk

r5
(4.10)

Substituting back in Equation 4.11 knowing that ||r|| ≈ ||r1|| ≈ ||r2|| and r1i − r2i =

−hmi

Iijkl(x) =

∫
h

r3
(δijmk + δikmj + δjkmi)− 3h3mimjmk

r5
dll (4.11)

where the first term is also on the order of 10−2 and the second term on the order

of 10−4. This analysis explains why the deformation of the screw dislocations in the

channels does not depend on the dislocation density in the PSB walls except in the

regions very close to the walls whose thickness is on the order of the wall’s thickness.
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Because the channels are 10 times thicker than the wall, the dynamics of the screw

dislocations in the channels are not affected by the presence of the PSB walls for

all practical purposes which is in agreement with both the experimental results and

analytical models presented by Mughrabi [202]. The analysis also suggests a method

by which PSB simulations can be sped up. Because the wall dipoles do not carry any

of the plastic strain and their stress fields rapidly die off, one can precompute and

store the stress field due to the PSB wall dipoles in the walls and the channel layers in

contact with the PSB wall and use it instead of performing the expensive O(N2) stress

field calculation every time step over the wall dislocation segments, especially that

their count is huge. At the same time, the PSB dipoles can still be explicitly modeled

within the walls and their dynamics tracked to study the point defect generation

process. In this case, the dipoles will move under the influence of the precomputed

stress but their stress field will not be calculated. A similar approach was used in

[174, 203] where the PSB walls were replaced with a fixed rigid infinite edge dipoles

placed on the wall surface.

As the applied stress increases further, the curved screw dislocations in the chan-

nels lose their stability and start gliding laterally across the PSB channel once their

curvatures reach a certain threshold that depends on the channel width. During their

glide, the move in an intermittent fashion where they glide and then get locked in a

screw dipole configuration, shown in Figure 4.23, when passing over another screw

dislocation on a different slip plane. This lock remains as long as the local stress is

below the passing stress. As the local stress increases, they unlock and glide again

until another similar lock gets formed. When the glide planes of the two locked screw

dislocations are closely spaced, the screw dislocations cross-slip and annihilate, re-

ducing the dislocation density in the channel. As the screw dislocations glide along

the channel, they deposit edge dislocations on the PSB walls. The formation of screw

dipoles in the PSB channels has been shown to be the controlling factor for the flow
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Figure 4.25: A top view of the evolution of the dislocation microstructure in the first
loading cycle: (a) the initial microstructure; (b) after the tensile loading at the end of
the first quarter-cycle; (c) after unloading, at the end of the first half cycle; (d) after
the compressive loading at the end of the third quarter-cycle; (e) after unloading, at
the end of the first cycle and (f) at the end of the first quarter cycle of the second
loading cycle.

stress of the PSB [203–205]. The flow stress τf for a PSB can be shown to be given

by [205]
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Figure 4.26: The expansion of screw dislocations in the PSB channel.

τf =
μb

2π

(
1

(1− ν)d
ln

(
d

ao

)
+

1

2y

)
(4.12)

where d is the channel spacing, ao is the dislocation core radius and y is the distance

between two locked screw dislocation. This model assumes that flow takes place

when the screw dislocations are mobilized, which in turn requires: (1) the screw

dislocations to start bowing out; and (2) they pass each other when they get into a

lock configuration. The stresses required for (1) and (2) are expressed by the first and

second terms of Equation 4.12, respectively. Plugging in the values for the parameters

used in the current simulations and taking ao = b

τf ≈ 38.3 +
1.6× 10−6

y
MPa (4.13)

The average spacing between the dislocations can be assumed to equal the mean

free spacing, λ, between the dislocations, which can be obtained from the dislocation

density in the channel ρc according to

y ≈ λ =
1√
ρc

(4.14)

Plugging back into Equation 4.13 gives
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τf ≈ 38.3 + 1.6× 10−6
√
ρc = 38.3 + 1.6× 10−6

√
1013 = 43.36MPa (4.15)

Figure 4.27 shows the variation of the applied stress and dislocation density with

simulation time for two different PSB simulations. The engineering stress in these

results ranges between 80 and 100 MPa. Since the loading orientation is the [1̄23]

direction, the screw dislocations slip plane is the {111} plane and their Burgers vector

is in the [101̄] direction, the Schmidt factor in this case is m = 0.467. Hence, the shear

stress on the screw dislocation that corresponds to the applied engineering stress is

in the range of 37.33 MPa ≤ τf ≤ 46.66 MPa which agrees with the estimate given

by Equation 4.15. The discrepancy can be due to the approximation employed in

[205] and the fact that the actual flow stress that would be reported in the DDD

simulations is the strength of the weakest screw dislocation lock, the one with highest

plane spacing, y, not the average lock spacing that is used in this calculation. A close

value, τf = 50MPa, was found by Tippelt et. al. [206] in their experiments on PSBs

in nickel at room temperature.

Figure 4.27: The engineering stress and dislocation density versus time for two dif-
ferent PSB simulations.

The increase in the dislocation density, as observed in Figure 4.27, corresponds to

152



the bowing out of the screw dislocations in the channels before their glide. On the

other hand, the decrease in the dislocation density is associated with the annihilation

of dislocation segments through collisions, cross-slip or climb because periodic bound-

ary conditions are employed in the current simulations. After one loading cycle, an

average of 45 bulk cross-slip and 75 intersection cross-slip events were detected. Anni-

hilation by cross-slip does not leave behind any point defects. Annihilation by climb

however results in the generation of point defects when the annihilating dislocations

have a non-zero edge component. Point defects, once generated, they diffuse through

the crystal and might end up around the PSB-matrix interface or on the crystal sur-

face. The accumulation of vacancy-type point defects results in the formation of voids,

which, depending on their location, can cause a change in the volume of the PSB or

the nucleation of cracks if they are close to the intersection of the PSB-matrix inter-

face with the crystal surface [158]. Here, the atomic point defect concentrations were

calculated from the DDD simulations and the increase in the atomic concentration of

vacancy-type and interstitial-type point defects with simulation time is given in Fig-

ure 4.28. The atomic point defect concentrations after 1 loading cycle are 2.2× 10−4

and 1.76× 10−4 for the two simulations, respectively. This also agrees well with the

predictions of the analytical model presented in [207] where it was predicted that the

generated atomic point defect concentration per loading cycle is about 2 × 10−4. It

should be noted that point defect diffusion was not accounted for these calculations.
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Figure 4.28: The evolution of point defect atomic concentration with simulation time
for the two PSB simulations.

4.10 Summary and Conclusions

In this chapter, DDD simulations of nickel single crystals subject to cyclic loading

were presented and discussed. The initial dislocation microstructure in these simu-

lations was either a random distribution of FR sources or a well developed PSB mi-

crostructure. The mechanical response, dislocation microstructure evolution, surface

roughness evolution, and the concentration of point defect generation were studied

and compared with experimental results and analytical models. A metric to measure

the extent to which a dislocation microstructure is patterned has been proposed and

used to study the formation of cell-like dislocation structures in crystals of different

sizes and initial dislocation densities during the early stages of cyclic loading. Disloca-

tion cell sizes have been quantified using a box-counting method. A number of surface

roughness measures were also used to study the evolution of the surface roughness

as a function of number of loading cycles. The change in the atomic concentration

of the generated point defects with time in the PSB simulations was also predicted.

The following observations were made and explained in terms of the active dislocation

mechanisms.
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• Larger crystals exhibit cyclic hardening, rapid dislocation density multiplication

and the evolution of dislocation cell-like structures.

• Dislocation cell-like structure formation relies on the formation of pinning points,

which in turn depends on the frequency of cross-slip.

• Larger crystals show dislocation patterning earlier than smaller crystals and

at lower initial dislocation densities. It has been hypothesized that there is

a size dependent critical initial dislocation density after which dislocation cell

structures form under fatigue loading.

• The dislocation cell size and the thicknesses of their walls change with crystal

size but not with the number of loading cycles. Over time, the system develops

more cells external to the already formed ones. Cell refinement has not been

observed up to the number of loading cycles simulated.

• The surface roughness in smaller crystals is localized to narrow bands of severe

surface deformation while in larger crystals they are more uniformly distributed

over the surface of the crystal.

• The growth of surface steps is persistent, that is, it is rare for a surface step to

be removed by the deposition of an oppositely signed dislocation on the surface

during the load reversal.

• The screw dislocations in the PSB channels carry most of the plastic strain

while the edge dipolar loops in the PSB walls show minimal to no movement.

• Larger edge dipoles can expand in the channels leading to the formation of new

screw dislocations in the channels.

• The strength of the PSB depends on the stress required to activate the screw

dislocations in the channels which in turn depends on the channel width and
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the average spacing between the screw dislocations.

• The annihilation of edge dipoles leads to the development of point defects with

an atomic concentration of about 2× 10−4 per cycle.

• The results are in good agreement with experimental observations and analytical

model predictions.

156



Chapter 5

The Deformation Response of

Nickel-Base Superalloy

Microcrystals under Monotonic

Loading

5.1 Introduction

Structural materials need to display a relatively high yield and ultimate strength,

ductility and fracture toughness. More stringent requirements are placed on the

structural materials used in higher temperature applications, such as jet engines and

gas generation power turbines. Materials for high temperature applications should

be capable of withstanding the applied stresses, have a relatively low creep strain

rate, and resist mechanical degradation and life reduction due to oxidation effects

and chemical attacks usually associated with high temperature environments. Over

the past few decades, material scientists have produced Ni-base alloys that provide

this combination of characteristics and thus, they were called Ni-base superalloys [64].
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Ni-base superalloys are the state of the art materials used in jet engines and

power turbines [64]. Thanks to their unique balance of structural, thermodynamic

and kinetic properties, they are heavily used in the most demanding temperature and

stress sections of turbine engines. These alloys contain secondary phases, and unlike

most other materials that show a reduction in the yield stress with the temperature

increase, they exhibit an anomalous dependence of their yield strength on the tem-

perature where the yield strength increases with temperature up to a temperature of

about 750oC to 850oC [208–210]. The extended exposure to applied stresses in a high

temperature environment triggers a number of thermally activated mechanisms [39]

that need to be characterized in order to fully understand their deformation behav-

ior. Nickel superalloys show a number of unique deformation mechanisms including

Kear-Wilsdorf lock formation [211, 212], solid solution strengthening [64], precipi-

tate shearing, as well as creep mechanisms such as climb bypass [213] and microtwin

formation [214], have not been introduced in large scale computational simulations.

Superalloy development started in the 1940s with the development of the Nimonic

and Waspaloy series [64, 215]. These alloys could withstand 1000 hours of creep life

under an applied stress of about 140 MPa and a temperature ranging from 750oC to

950oC. The turbine blades were typically manufactured in wrought form but when

vacuum induction casting was developed in the mid 1950s, the blades manufacturing

switched to casting and new superalloys such as the Inconel series and Rene 80, which

can operate at temperatures around 1000oC, were developed [215]. A significant

improvement in superalloys properties took place when directional solidification was

invented. This allowed the alloy developers to remove the transverse grain boundaries

completely. The creep temperature under the same stress increased to 1100oC. In the

early 1980s, single crystal superalloys, such as Rene N5 and N6 were introduced and

grain boundary strengthening elements, such as Boron and Carbon, were completely

removed. These alloys pushed the creep temperature limit to about 1050oC to 1100oC
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[64, 215], or a homologous temperature of about 0.8.

The future of superalloy development can greatly benefit from a sound under-

standing of the collective dynamics of dislocations inside the crystal and how it is

affected by the superalloy microstructural features, alloying elements and composi-

tion. The rapid elimination of suboptimal combinations of alloying elements from the

search space through large scale computer simulations of dislocation motion and in-

teractions in superalloys can reduce the cost, time, and effort required to bring a new

alloy to the market by directing the research and experiments to the most promising

candidates for the next generation alloys. This chapter describes a study undertaken

to extend the DDD simulations framework to simulate the dislocation motion inside

a superalloy and the results of simulating the monotonic loading of a number of su-

peralloy microstructures. The developed framework, can be extended to incorporate

more physics relevant to the deformation mechanisms active in superalloys in the

future.

5.2 The Structure of Nickel-Base Superalloys

About fourteen elements typically enter the composition of superalloys including

chromium, cobalt, molybdenum, tungsten, aluminum and titanium. The early single

crystal superalloys (e.g. PWA1480 and Rene N4) contained higher amounts of Al,

Ti and Ta, while increasing amounts of Re (3 ≈ 6 % wt.) appeared in alloys that

were introduced later (e.g. PWA1484, CMSX-4, CMSX-10, Rene N5 and Rene N6).

Ruthenium, which was not a typical alloying element, entered in the composition of

the more modern alloys (e.g. MC-NG and TMS-162). Since they have excellent creep

resistance properties, the base materials for all superalloys are either nickel or cobalt,

although they do not have the highest melting temperatures among metals, with Ni

being more common [64].
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The alloying elements that enter the mix of superalloys end up residing in different

phases. Ni reacts with Al, Ti and Ta to form the intermetallic Ni3(Al,Ti,Ta) which

has the L12 crystal structure shown in Figure 5.1 forming a distinct phase called the

γ′ phase. This phase takes the form of precipitates dispersed in the alloy matrix

[213]. The matrix is a continuous phase, called the γ phase which consists mainly of

FCC Ni with small concentrations of solute atoms of Co, Cr, Mo, Ru and Re. When

Fe and Nb are present, other phases can form such as the γ′′ phase which has the

D022 crystal structure [216]. The interaction of dislocation with γ′′ phases is beyond

the scope of this work. There are no phase boundaries between the γ and γ′ phases

because they have the same orientations when the γ-γ′ misfit is small. The misfit is

measured by the misfit parameter δ defined as

δ = 2
aγ′ − aγ
aγ′ + aγ

(5.1)

where aγ′ and aγ are the lattice constants for the γ′ and γ phases, respectively. The

shape of the γ′ precipitates depends on the heat treatment process used and it was

found that the precipitates coarsen and change morphology as they age. At low

aging times, the γ′ precipitates take the form of spheres, as the aging continues,

they transform into cuboids, then arrange themselves in cuboidal arrays, then finally

they start forming a dendritic structure [217]. The misfit parameter was found to

control the size at which the transition from spherical to cuboidal precipitates takes

place. The γ-γ′ misfit also introduces a stress field in both phases which affects the

dislocations motion near their common interface. Figure 5.2 is a micrograph showing

the aged microstructure of CMSX-3 where cuboidal precipitates can be observed. The

γ′ precipitates have been found to remain stable up to a temperature of 1375oC [218],

which is very close to the melting point of Ni (1455oC).
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Figure 5.1: The L12 crystal structure. The (Al,Ti) atoms are in blue while the Ni
atoms are in red.

Figure 5.2: The microstructure of aged CMSX-3 superalloy. The cuboidal precipitates
can be seen along with some interfacial dislocations. Figure taken from Pollock et.
al. (DOI:10.1016/0956-7151(92)90195-K) with permission from Elsevier.

5.3 Dislocations in Nickel-Base Superalloys

Figure 5.3 shows the unit cell and the distribution of atoms on the highest packed

plane (the {111} plane) for both pure FCC crystals (e.g. Ni) and L12 intermetallics

(e.g. Ni3Al) along with two out of the three glissile Burgers vectors on this plane. Be-

cause the two phases have the same orientations, dislocations can glide from one phase
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to another with no interface resistance. When a typical FCC dislocation (1
2
〈110〉)

glides over such a plane, all the atoms swept by the dislocation are shifted in the

direction of the Burgers vector. For Ni, this takes a Ni atom and places it in a loca-

tion that was occupied by another Ni atom which does not change the overall energy

of the system. On the other hand, for Ni3Al, a similar dislocation glide would place

a Ni atom in a location that was occupied by an Al atom. This disturbs the local

chemistry of the system and puts it in a higher energy state. The region of distorted

local atomic arrangements on the slip plane is called an Anti-Phase Boundary (APB)

region, the creation of which is resisted by the crystal structure so as to maintain

the minimum energy state. The force per unit length exerted on a dislocation line

resisting its creation of an APB is equal to the energy per unit APB area, called

the APB energy ΓAPB. When a dislocation glides over an APB region, which was

created by another dislocation of the same or opposite Burgers vector, the atoms get

shifted again so as to end up in locations that were occupied by similar type atoms,

leading to the reduction of the energy of the crystal and the destroying the existing

APB region. The destruction of the APB regions is energetically preferred, hence,

the dislocations that would destroy an APB are attracted towards the APB region

by a force per unit length equal to ΓAPB [219]. ΓAPB is a material property and it

typically lies in the range of 0.12 to 0.4 J/m2 [220, 221].

A dislocation with twice the typical FCC Burgers vector (i.e. 〈110〉) would pen-

etrate the precipitate and glide smoothly without creating or destroying any APB

regions, since it does not disturb the local crystal structure. Such a dislocation is

called a superdislocation and it is energetically more favorable for it to dissociate

into two similar identical superpartials of 1
2
〈110〉 Burgers vector bounding an APB

region in between. Because 1
2
〈110〉 dislocations naturally dissociate into two Shockley

partials bounding a complex stacking fault (SF) in between, the dislocation core in

intermetallics is more complicated than in FCC. Pollock et. al. [213] argued that
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Figure 5.3: The unit cell of Ni and Ni3Al (top) and the arrangement of atoms on the
highest packing plane {111} in both cases (bottom). The Ni atoms are in red while
the Al atoms are in blue. The black arrows indicate the directions of 2 out of the 3
glissile Burgers vectors on that plane.

precipitate penetration by superdislocations requires that the precipitate blocks the

motion of the leading dislocation pressing on it until the formation of a two-dislocation

pile-up, which requires a local stress close to 950 MPa, which is higher than the stress

required for a single superpartial to defeat the precipitate when ΓAPB ≤ 0.23 J/m2.

When ΓAPB is too high and the formation of superdislocations is difficult, disloca-

tions can glide in the narrower γ channels, given sufficient stress, and form loops

around the precipitate. Alternatively, at higher temperatures, dislocation cross-slip

and climb [222] take place to avoid the obstacle introduced by the precipitate.

Screw-oriented superdislocations gliding inside an intermetallic can form locks
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when the leading superpartial cross-slips from an octahedral {111} plane to a cubic

{100} plane. Because dislocations cannot easily dissociate on the low atomic den-

sity {100} plane, the superpartial immediately dissociates on one of the two {111}
planes containing its Burgers vector after cross-slip [212, 223], which prevents it from

gliding on the {100} plane. Both the leading and the trailing superpartials can-

not glide further because their glide would create an extended APB region with no

other dislocation to destroy it. The height of the APB region on the {100} plane

due to cross-slip is about one atomic spacing. This locked configuration is called a

Kear-Wilsdorf (KW) lock [211, 212] and it occurs more frequently at higher temper-

atures, which can help explaining the anomalous increase in the strength of Ni3Al

with temperature. When a portion of the superdislocation forms a KW lock, the rest

of the superdislocation glides until another portion locks and a superkink is formed

in between [210, 224]. The lateral motion of superkinks, their multiplication, and an-

nihilation are believed to affect the crystal strength by immobilizing the remobilizing

screw oriented superdislocations [225]. Dislocation glide on the cube plane takes place

at higher temperatures as it has been confirmed by the surface slip-trace analysis for

Ni3(Al,Nb) single crystals loaded at temperatures ranging from 77 to 910 K, where it

was found that below the peak stress temperature (850oC) the primary slip plane is

the octahedral plane, while at higher temperatures it switches to the cube plane [226].

Other sources reported wavy slip traces at temperatures (T > 850oC) suggesting that

the dislocations alternate, through successive cross-slip events, between gliding on the

cube and octahedral planes such that the resultant glide is along the maximum shear

plane [227].

Besides their stress anomaly, Ni3Al shows both tension/compression asymmetry

and load orientation dependence of the flow stress [223, 228]. The core dissociation

of the {111}1
2
〈110〉 superpartials into two Shockley partials was proposed by Lall

et. al. to be the source of this asymmetry [229]. According to the Escaig cross-slip
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model [107], the local stress alters the dissociation width of the screw dislocation core,

which in turn alters the activation energy required for cross-slip. If tensile stresses

result in an increase in the core width, making it harder for cross-slip to take place,

compressive stresses will result in the opposite situation. The increase/decrease in

cross-slip rate controls the frequency of KW lock formation and consequently controls

the flow stress. Takeuchi et. al. [227] used cross-slip as well to explain the flow stress

orientation dependence by suggesting that the different components of the local stress

tensor modify the core width in different ways giving rise to variations in the cross-

slip rates between the different slip planes. The pinning of the two superpartials

after cross-slip was found to be stronger when the crystal’s anisotropy was taken into

account [230] since the anisotropy results in the creation of a torque between the

two superpartials, in addition to the interaction force between them that makes their

further glide more difficult.

From the previous discussion, it is obvious that there is a large number of in-

teracting mechanisms that result in a number of interesting flow phenomena in Ni

based superalloys. The complexity of the deformation behavior calls for the use of

computational simulations to identify and characterize the active mechanisms and the

parameters that influence them the most. In the following sections the past efforts

undertaken to simulate the behavior of Ni based superalloys, the newly developed

DDD simulation method, and the results of the current simulations are discussed in

more details.

5.4 Previous DDD Simulations of Nickel-Base Su-

peralloys

Foreman et. al. [231] conducted the first simulation on the strength of precipitate

hardened materials where they treated the precipitates as point obstacles facing a
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single gliding dislocation. Because no precipitate shearing can take place in this case,

the strength of different precipitates was modeled using the breakaway angle at which

the dislocation can bypass the point obstacle. This was not a DDD simulation in the

typical sense because the dislocations experienced sudden circular expansions to ei-

ther the equilibrium radius under the applied stress or to the next nearest obstacle.

The first true DDD simulations of Ni based superalloys strength was performed by

Devincre et. al. [232] who studied the glide of a superdislocation in L12 on an oc-

tahedral plane and the formation and destruction of KW locks. Their simulations

confirmed the important role of superkinks in carrying the plastic strain at lower

temperatures, where KW locks are difficult to unlock. The dynamics of multiple

interacting dislocations in L12 was investigated later using a 2D end-on simulation

[233] and both the stress anomaly and high strain hardening rates were reproduced by

these simulations. The strength of precipitate hardened materials was investigated by

Mohels et. al. [234, 235] for a single dislocation interacting with an array of randomly

dispersed coherent spherical particles of different aging conditions at low volume frac-

tions. The effect of incoherent particles, which are unshearable, on the strength was

studied later for a range of particle sizes and volume fractions [236, 237]. The in-

teraction of up to four dislocations and superdislocations with arrays of precipitates

of varying coherency, size, and ΓAPB was discussed in [238]. High volume fraction

precipitate hardening was studied in superalloys [221], and inverse superalloys [239]

(superalloys with γ precipitates dispersed in a γ′ matrix) for a superdislocation shear-

ing through precipitates of different shapes, sizes, and APB energies. The strength

was found to vary linearly with the APB energy for small precipitate sizes, while it

follows a square-root relationship for larger precipitates. A more realistic dislocation

microstructure was modeled in [240] where a number of FR superdislocation sources

glide, bow and shear through the precipitate array.

One of the first 3D DDD simulations of superalloys was presented by Shin et. al.
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[241] where a dislocation loop was placed surrounding a precipitate under no applied

loads. The loop moved under the effect of line tension but did not shrink all the way

to the precipitate. It was suggested that the image stress resulting from the mismatch

in the elastic properties between the γ and γ′ phases blocked the loop’s motion and

this could be one of the precipitate hardening mechanisms in superalloys. The effects

of precipitate size and spacing on the superalloy strength were studied by Shin et.

al. [242], where they simulated a screw dislocation moving with two impenetrable

spherical precipitates in its way. Yashiro et. al. [243] simulated the nucleation and

motion of superdislocations due to a single FR source inside a single cubic precipi-

tate and the superdislocation’s interaction with a network of interfacial dislocations.

The gradual loss of precipitate penetration strength in cyclically loaded crystals was

modeled by assuming an initial strength that decreases linearly with every dislocation

shear [177, 244]. Vattré et. al. studied the effects of precipitate volume fractions,

APB energy and channel width on superalloy strength by simulating the interaction of

a pair of identical dislocations with a periodic array of cubic precipitates [245]. They

also studied the effect of load orientation on crystal strength for superalloys with im-

penetrable precipitates [22]. It was found that significant hardening takes place when

the load is oriented in the multislip direction. The effect of precipitate shape was con-

sidered by Huang et. al. through simulating the interaction of superdislocations with

shearable precipitates [246]. Yang et. al. studied the effect of the transition from

superdislocations bounding APBs to those bounding superlattice intrinsic stacking

faults (SISF) that takes place at low temperatures on the superdislocation shearing

of precipitates, and they concluded that lower stresses are obtained when the transi-

tion takes place [247]. The effect of dislocation climb on the superalloy strength was

also investigated through simulating the motion of superpartial dislocations around

an unshearable precipitate [248]. Yang. et. al. made an extensive study that takes

into account the effects of KW locking and unlocking on superalloy strength and they
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were able to match the tension/compression asymmetry found in experiments [23].

The motion of networks of interfacial dislocation in the channels between unshearable

precipitates was studied by Liu et. al. where they were able to characterize the effects

of the applied, misfit, and interaction stresses on the dislocation activity, especially

the formation of Lomer and Hirth junctions [249]. Finally, the effect of the misfit

strain on the glide of superdislocations in the channels of an infinite periodic array of

crystals was carefully considered by Gao et. al. [183].

Most of the DDD studies described above have used simplified precipitate geome-

tries (cubic or spherical), arrangements (a single precipitate or a regular array of

precipitates), and simple precipitate shearing rules where the precipitate can either

be unshearable or shearable only by superdislocations. However, a realistic super-

alloy simulation requires the capability of handling precipitates of geometries and

distributions similar to those found in experiments. In addition, the formation of

superdislocations in the simulation should take place only if the local stresses and

precipitate resistance allow it to happen. This has been challenging for the DDD

community in the past due to the geometric complexity of the problem. The tar-

get of the study described in this chapter is to extend the DDD framework to take

in an experimentally captured precipitate microstructure and simulate the motion

of random 3D dislocation distributions of arbitrary Burgers vectors in microcrystals.

Dislocations are allowed to shear through the precipitate, loop around them, or cross-

slip to avoid them. Superdislocation formation is naturally accounted for when two

dislocations with the same Burgers vector pile up on the surface of the precipitate on

the same slip plane. The DDD framework has been extended to handle the more com-

plex flow dynamics in superalloys. The necessary extensions to the DDD framework

described in Chapter 2 are discussed in the next section.

168



5.5 Computational Method

The main difficulty that arises when modeling general microstructure superalloys

(GMS) (a superalloy crystal that has arbitrarily distributed precipitates of arbitrary

geometries with a general dislocation microstructure spanning the matrix phase, the

precipitates or both) that is not found in pure single phase (PSP) metals is that the

forces acting on the dislocations depend on the history of the dislocation activity in

the region local to the dislocation segment. In PSP metals, the forces acting on a

dislocation segment are those due to the applied stress, interaction stress, and the

lattice resistance stress (Peierls stress). These stresses do not depend on the history of

the dislocation activity in the region where the dislocation of interest is or anywhere

else in the crystal. In GMSs, a fourth force needs to be considered, that is, the

APB force. This can be zero, if the dislocation is gliding in the matrix, −ΓAPB

b
if

the dislocation is gliding on an undistorted plane in the γ′ phase, or ΓAPB

b
if it is

gliding on a distorted plane in the γ phase. Moreover, the mere act of dislocation

glide inside the γ′ phase changes the distortion state of the planar region swept

by the dislocation during its motion. In the case of unshearable precipitate this

scenario is avoided by blocking the dislocations off any precipitates, and in the case

of superdislocations the extra APB force does not act on the dislocation. Either

of these two assumptions can greatly simplify the simulation. In more advanced

simulations [245], the superdislocation is forced to nucleate by starting with one or

two sources and preventing the leading dislocation from penetrating the precipitate

until the trailing dislocation gets sufficiently close. Once they penetrate, they move

as a pair of dislocations with the appropriate APB force applied on each since their

ordering (leading or trailing) is known in advance. After the pair exits the precipitate,

no net distortion effect remains so the future glide activity is independent of the pair

glide. The handling of the most general case requires explicitly storing and updating

the distortion state of every point in the simulation volume. This process amounts to
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tracking the APB regions as they get created or destroyed. The APB representation

and updating will be discussed next, however, an important prerequisite for APB

tacking is a flexible precipitate geometry representation.

5.5.1 Precipitate Geometry Representation

Because APB regions exist only inside precipitates, a proper representation of the

precipitate geometry is the starting step for any APB tracking implementation. The

target representation needs to be flexible so that it can represent all the geometries

of interest, be robust in determining whether a point is inside or outside the pre-

cipitate, have a low memory footprint so that crystals with hundreds to thousands

of precipitates can be efficiently simulated, and have a fast point containment check

routine because containment checks will run for all the dislocation nodes in every

DDD time step to capture all dislocation penetration and exiting events and handle

them properly.

A good candidate representation is the convex hull of a number of 3D points.

The convex hull of a set of points is defined to be the smallest convex geometry that

contains all the points in the set. A convex geometry is a region H in R
n such that

for all x, y ∈ H, the set x+(y−x)η ∈ H for 0 ≤ η ≤ 1. That is, any two points inside

a convex geometry can be connected by a line segment that lies entirely inside the

convex geometry. Any convex geometry is also the intersection of a number of infinite

half spaces in R
n. This latter property guarantees the representation robustness

because the point containment check reduces to checking the signs of a number of

vector dot products. An infinite half space Lj is the set of all Rn points x such that

Lj = x : (xi − pji )n
j
i ≤ 0 (5.2)

where pj is any point on the boundary of the half space and nj is the vector normal
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to the half space boundary in the outward direction. A convex geometry H is then

the set defined by

H = ∩N
j=1L

j = ∩N
j=1(xi − pji )n

j
i ≤ 0 (5.3)

where N is the number of intersecting half spaces that make up the convex geometry.

The point x is outside H unless it is contained in every single half space Lj forming

H. This also satisfies the last two requirements of the representation. The represen-

tation’s memory footprint is low as only 6N floating point numbers are required to

represent the entire precipitate (3 numbers for each pi and another 3 for each ni).

The point containment check is fast because it is linear in the number of half spaces

and the complexity of the half space containment check is constant and low.

In terms of the flexibility, the convex hull can represent any convex geometry

exactly. For concave geometries, the accuracy of the representation depends on the

degree of concavity. Extremely concave and self intersecting geometries are the least

accurately represented geometries using convex hulls. According to [213, 217], the

precipitates in superalloys usually have spherical or cuboidal geometries, which are

both convex. In the current simulations, a concave precipitate will be replaced with

its closest convex geometry.

It is of interest to model precipitate geometries obtained from TEM micrographs

of superalloy crystals. Through basic thresholding techniques, the precipitate mi-

crostructure in a TEM micrograph can be represented as a set of binary pixels as

shown in Figure 5.4. Serial sectioning can then be used to represent the entire pre-

cipitate microstructure in the form of a number of pixelated layers. The convex hull

of the precipitate can be calculated based on the layer pixels if the number of layers

is at least two. Points are placed at the pixel locations and used to generate a trian-

gular mesh that represents the convex hull face. Each triangle in the mesh lies on the

boundary of one of the half spaces defining the convex geometry. The incremental
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convex hull generation algorithm, discussed in [250], is used to generate the convex

hull from the pixel locations.

Figure 5.4: A precipitate microstructure after thresholding. The black regions are
precipitates while the continuous white region is the matrix

5.5.2 APB Tracking

An APB can be represented by its geometry on the slip plane and its shearing Burgers

vector. The boundary of an APB region is either a 1
2
〈110〉 dislocation that separates

the sheared from the unsheared regions, the intersection curve of the precipitate that

contains the APB region with the slip plane that the APB region is on, or a mixture

of both. The most accurate and memory efficient representation for APBs is the one

that uses its bounding curves. However, because the bounding dislocations move and

interact, tracking how the APB changes shape over time becomes challenging.

An alternative static representation can be realized by using a planar grid of cells

on the “APB plane” that coincides with the slip plane of the shearing dislocation and

spans the entire crystal, as shown in Figure 5.5(a). Each cell on this grid is either

unshearable or shearable depending on whether it lies outside or inside any precipi-
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tates. Initially, the system is free of any APB planes, however once a dislocation tries

to shear into a precipitate, an APB plane coinciding with the dislocation slip plane is

created, and its cells initialized to shearable or unshearable. The APB plane resides

in memory for as long as the simulation is running so that if the same dislocation

whose motion necessitated its creation, or any other dislocation gliding on the same

slip plane, shears all the way through a precipitate, exits, and shears through another,

no need for a new APB plane to be added to the system. Each cell stores a shearing

vector, vi, which is initially zero. For simulations running on multiple processors, the

creation of an APB plane is an event that gets communicated to all the other pro-

cessors so as to avoid multiplicity (different processors creating the same plane). An

increase in the resolution of the APB cells allows for a more precise representation of

the APB geometry at the expense of the memory required. Although it is possible to

create all the APB planes and distribute them initially based on the slip planes of the

initial dislocation microstructure, the dynamic creation and distribution described

earlier is necessary to handle more complex mechanisms such a cross-slip where the

location of the cross-slip event is not known in advance.

As the dislocations shear through the precipitate, each dislocation segment is

tested at every time step to see whether it has swept the midpoint of an APB cell.

If no sweeping takes place or if the cell is unshearable the APB state remains the

same. If, however, the dislocation swept the midpoint of a shearable cell, the Burgers

vector of the dislocation is added to the shearing vector vi stored for the cell. A cell

is considered unsheared if there is an integer k that satisfies the equation

vi − k〈110〉 =

⎧⎪⎨
⎪⎩
〈000〉
〈100〉

(5.4)

which states that with successive dislocation shears, vi, sum up to an even integer

multiple of a 1
2
〈110〉 shifted by at most one 〈100〉 vector, the cell is unsheared. This
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Figure 5.5: A sequence showing A dislocation (red) penetrating a precipitate (grey)
and the resulting APB creation process: (a) the APB plane (blue) is initially un-
sheared; (b) the dislocation penetrates the precipitate and an APB region (red) is
created behind it; (c) the dislocation shears a larger area creating a larger APB region
behind it and (d) the dislocation exits the precipitate and the entire sheared area in
the precipitate is now an APB region.

corresponds to the case of two identical 1
2
〈110〉 or three mutually different 1

2
〈110〉

dislocations gliding in succession. If an integer k is found, the cell’s shearing vector

vi is reset to zero.

The detection of segment-cell midpoint sweep requires a great deal of precision

because any sweeping events that pass undetected would render the APB cell state

wrong. For this reason, the 3D configuration is projected onto a 2D configuration

where the sweeping detection depends on the sign of a dot product. Figure 5.5 shows

the sequence of events associated with the creation of the APB region during the

shearing of a precipitate with a gliding dislocation.
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5.5.3 APB Force Calculation

In order to apply the correct APB forces on dislocations, each dislocation node is

tested at every time step whether it is inside a precipitate or not. This justifies the

requirement for a fast point containment check discussed in Section 5.5.1. If the

initial position of the node is inside a precipitate, a hash search [251] for the APB

plane is performed and the dislocation node coordinates are used to determine the

APB cell in which this node lies. Because the system would try to minimize the APB

sheared area, if the APB cell containing the node is sheared, a force per unit length

of magnitude ΓAPB

b
and directed towards the APB cell midpoint (the APB region is

attracting the dislocation) is added to the node while the force is directed away from

the midpoint (the APB region is repelling the dislocation) when the cell is unsheared.

This process is shown schematically in Figure 5.6.

5.5.4 Method Validation

The implementation of the APB tracking algorithm described above been validated

through a number of planar simulations where a pair of identical 1
2
〈110〉 dislocations

are placed outside a single cubic precipitate and a constant stress is applied as shown

in Figure 5.7. The same configuration is loaded at different stress levels and the yield

stress is considered the lowest stress that would cause the dislocation pair to move.

Periodic boundary conditions are used to eliminate any strength effects associated

with the dislocation length.

In this configuration, the leading dislocation needs a shear stress of ΓAPB

b
to pene-

trate the precipitate. This stress comes from two sources, the applied shear stress τa

and the interaction shear stress τi with the trailing dislocation (which is repulsive).

The latter is given by [41]
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Figure 5.6: A schematic showing the calculation of the APB force direction for a
dislocation that is moving upwards. The red APB cells are sheared and the blue ones
are unsheared. The black arrow in each case shows the force direction. The APB
force direction on the green dislocation node depends on the APB cell it resides in,
such that the force is towards the cell’s midpoint if the cell is sheared and away from
it if it is unsheared because the system tries to minimize the APB region. Hence, in
cases (a) and (b) where the APB region is growing, the APB force is resisting the
dislocation’s motion while in cases (c) and (d) where the dislocation’s motion would
reduce the APB region, the dislocation is attracted.

τi =
μb

d
(5.5)

where α is a factor that depends on the dislocations orientation and d is the distance

between the two dislocations. At the same time, the distance d depends on the
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Figure 5.7: A pair of dislocations (black) shearing through a cubic precipitate (grey):
(a) the pair is outside the precipitate; (b) the dislocations automatically squeeze
into a superdislocation configuration because the leading dislocation is blocked at the
surface of the precipitate; (c) the formed superdislocation breaks into the precipitate
and (d) glides through it such that the pair are bounding an APB region

applied shear stress τa. At zero applied stress, the leading dislocation is blocked by the

precipitate surface, as the applied stress increases the trailing dislocation is brought

closer to the leading dislocation. Under any applied stress, the trailing dislocation is

under static equilibrium between the repulsion from the leading dislocation and the

forcing of the applied stress, thus, the equilibrium distance deq is given by

deq =
αμb

τa
(5.6)
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where α is a geometric factor. At the applied stress when the leading dislocation

penetrates the precipitate, the force equilibrium on the leading dislocation is the

balance of the APB resistance on one hand and the applied and interaction stresses

on the other

ΓAPB

b
= τi + τa =

αμb

deq
+ τa =

αμb
αμb
τa

+ τa = 2τa (5.7)

Hence, the condition for yield is τa =
ΓAPB

2b
. Figure 5.8 shows the variation of the

yield strength with the APB energy for all the simulated cases. A linear variation can

be observed as predicted from Equation 5.7. Extrapolating this curve to zero APB

energy gives a zero applied stress for yield which is true and has been simulated. A

negligible shear stress, on the order of 0.3 MPa was found to be required for yield.
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Figure 5.8: The flow stress for the case of a superdislocation shearing through a single
precipitate spanning the entire crystal volume versus the precipitate’s APB energy.

5.6 Numerical Simulations

In this work, Ni based superalloy micropillars with square cross-sections are popu-

lated with precipitates of varying sizes, APB energies at different volume fractions

and loaded with a constant total strain rate of 500 sec−1 in the [001] multislip direc-

tion. The aspect ratio of the micropillar is 3 in all cases and the initial dislocation

microstructure consists of FR sources uniformly distributed on the twelve FCC slip

systems in the γ phase with a total dislocation density of 1013 m−2. Dislocation

cross-slip is allowed in the matrix only. In these simulations, the effects of three mi-

crostructural features, namely, the precipitate volume fraction, the APB energy, the
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precipitate size, as well as one geometric feature, the crystal size, on the micropillar

strength and dislocation microstructure evolution were investigated. In each study,

only one parameter was varied at a time. For the APB energy study, the same initial

dislocation microstructure was used for all the tested energies. Three different random

configurations were simulated to ensure that the results are statistically significant.

The nominal values for the volume fraction, APB energy, average precipitate size and

crystal size are 0.7, 0.2 J/m2, 0.3 μm and 1 μm, respectively. For the precipitate

volume fraction effects study, the volume fraction was varied as 0.25, 0.5, and 0.7.

For the APB energy effects study, the APB energy was varied as, 0.1 J/m2, 0.3 J/m2,

and 0.5 J/m2. For the precipitate size effect study, the precipitate size was varied as

0.2 μm, 0.3 μm, and 0.5 μm. For the crystal size study, two crystal sizes of 0.75 μm

and 1 μm crystal size were simulated. A baseline simulation of a pure Ni micropillar

having the same dimensions as the simulated Ni based superalloy crystals as well as

a similar initial dislocation density was used as the case having a zero precipitate

volume fraction, APB energy and precipitate size for comparison purposes. In all

cases, the precipitates are cuboidal or near cuboidal with sides facing the matrix

{100} planes, similar to that reported experimentally [213]. The shear modulus and

Poisson’s ratio are taken to be 80 GPa and 0.31, respectively, for both the γ and γ′

phases.

5.7 Results and Discussion

5.7.1 The Effect of Precipitate Volume Fraction

The evolution of the dislocation density with strain for different volume fractions

is shown in Figure 5.9. The dislocation density multiplication rate decreases with

increasing precipitate volume fraction. The dislocation density evolution follows a

pattern of sudden jumps followed low multiplication rate intervals. The jumps cor-
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respond to the times when dislocations move across inter-precipitate channels where

they can expand at no resistance while the low rate dislocation density multiplication

corresponds to the situations when the active dislocations are stuck at a matrix-

precipitate interface or are slowly working their way into a precipitate. The disloca-

tion microstructure before loading the crystal and after yielding for different volume

fractions is shown in Figure 5.10. In all cases, and due to the lack of initial superdis-

locations, dislocations avoid shearing the precipitates whenever possible. For low

volume fraction cases, no shearing takes place at all because dislocations can avoid

precipitate shearing by forming dislocation loops in the wider channels surrounding

them, or cross-slipping on planes to avoid the interaction with the precipitate. As the

volume fraction increases, dislocations either squeeze into the now narrow channels

or they penetrate the high resistance precipitates depending on the channel width

and the APB energy. Precipitate shearing in the high volume fraction cases is usually

bowing assisted such that a dislocation stuck at the matrix-precipitate interface would

start bowing around the precipitate creating a high attractive stress region between

the nearby segments of the dislocation. The attractive stress brings the two segments

together by shearing through the precipitate until they annihilate. The dislocation

then advances through the precipitate and a similar bowed out configuration is recre-

ated resulting in further advancements until the dislocation exits the precipitate from

the other end. The bowing assisted shearing process is shown schematically in Figure

5.11.

The engineering stress vs engineering strain curves for single crystal superalloys of

varying volume fractions are shown in Figure 5.12. As the volume fraction increases,

the flow stress increases. The variation of the yield stress with the volume fraction is

linear, which is in agreement with [245], with a slope of about 1800 MPa. The zero

volume fraction however does not yield at zero stress because there is an activation

stress associated with a FR source that depends on its length. The FR sources used
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Figure 5.9: The dislocation density-strain curves for crystals of different precipitate
volume fractions.

in these simulations have the same length distribution for all volume fractions, hence,

the effect of the source length is a constant shift in the flow strength for all cases. The

stress-strain curve for the baseline case is also shown in Figure 5.12 for comparison and

it shows a baseline strength of 152 MPa, which highlights the strong strengthening

effect of precipitates even for low precipitate volume fractions. No strain hardening

has been observed in all volume fractions up to the simulated strain level which is in

agreement with [23, 245, 252]. It should be noted that the predicted flow stresses are

slightly lower than the experimentally reported ones for the same volume fractions

[252]. This could be a result of differences in the initial dislocation densities in the

simulation and experiments.

Flow occurs when the plastic strain rate reaches the imposed strain rate. For low
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Figure 5.10: The precipitate (grey) and dislocation microstructure after yielding for
three different precipitate volume fractions: (a) f = 0.25, (b) f = 0.5 and (c) f = 0.7.
The dislocations are color coded according to their slip systems.

volume fraction, the imposed strain rate can be sustained by the dislocation activity

in the channels alone because there is a larger area for dislocation expansion, thus,

the crystal yields without any precipitate shearing and the strength is determined in

this case by the stress required to move the dislocations in the channels, which is in

turn dependent on the channel width. As the volume fraction increases, the dislo-

cation activity in the channels drops, increasing the yield strength, for two reasons.

First, the stress required to activate the dislocations in the channels increases due to

the decrease in the channel width, which is also associated with the increase in the

precipitate volume fraction. Second, even when the stress is high enough for channel

flow, sustaining the imposed strain rate by channel flow only is more difficult because

there is no room for dislocations to expand as required. These observations can be

quantified using the dislocation source activation strength expression [41]
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Figure 5.11: A schematic of the bowing assisted cutting process: (a) a straight dis-
location segment approaches a precipitate and gets stuck at the γ-γ′ interface; (b)
the dislocation bows into the channels surrounding the precipitate creating high local
self stresses in the regions indicated by the red circles due to the high curvature of
the dislocation in that region; (c) the high attractive self stress pulls the blocked
dislocation segment into the precipitate; and (d) the dislocation progresses into the
precipitate using the same mechanism.

τ =
μb

l
(5.8)

where τ is the activation shear stress, μ = 80 GPa is the material’s shear modulus,

b = 0.25 × 10−9 m is the magnitude of the dislocation’s Burgers vector, and l is the

source length. In the case of channel flow, the active glide length is the channel width

l = w, where w is the channel width. The reported stresses are the applied (axial)

stresses, hence, dividing by the Schmidt factor m = 0.408 gives a flow stress

σf =
μb

mw
≈ 49

w
(5.9)
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The channel width in the current simulations is not constant but the average

width can be estimated. For cubic precipitates, which is the case in the current

simulations, the average crystal volume, d3, that contains only one precipitate, can

be approximated as the unit precipitate cube. From the definition of the volume

fraction

f =
r3

d3
(5.10)

where r is the precipitate’s side length. The average channel width w̄ is equal to the

difference between the unit precipitate cube side length and that of the precipitate.

w̄ = d− r = d− d 3
√

f = d(1− 3
√
f) (5.11)

In the current simulations, there are about 192 cubic precipitates in a 1 × 1 × 3

μm3 crystal, thus d = 0.25. Substituting back in equations 5.11 and 5.9

σf ≈ 196

1− 3
√
f

(5.12)

Equation 5.12 gives a flow strength of 530 MPa, 950 MPa and 1748 MPa for 0.25,

0.5 and 0.7 volume fractions, respectively. The first two estimates match the ones

obtained from the simulations while the third is 34.5% higher. Because dislocations

shear through the precipitates in the high volume fraction cases, the strength deter-

mining factor becomes the precipitate resistance, which depends on the APB energy,

rather than the channel width, and thus, Equation 5.12 cannot be used.

The average number of cross-slip events before plastic flow was 112, 61 and 12

for the cases of 0.25, 0.5 and 0.7 volume fractions, respectively. The decrease in

the cross-slip frequency with volume fraction, even though the applied stress reaches

higher levels, is because the probability of a dislocation orienting itself near the screw-

orientation in a channel decreases with decreasing channel width. Unlike what was
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discussed in Section 3.6, the cross-slip activity did not result in strain hardening in

all cases because of the qualitative difference between the dislocation microstructures

developed in the superalloys and the single phase crystals. In the former, no dislo-

cation patterns or entanglements were observed in contrast with thick localized and

highly interconnected dislocation networks observed in the latter, especially for bigger

crystals.

Figure 5.12: The engineering stress-strain curves for crystals of different precipitate
volume fractions.

5.7.2 The Effect of the APB Energy

The engineering stress versus engineering strain curves for crystals of the same size,

dislocation density and precipitate microstructure but having different APB energies
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are shown in Figure 5.13. The strength-APB energy relation approximately follows a

power-law of the form

σf ≈ 2000(ΓAPB)
0.4014 + 150 (5.13)

where σf is in MPa and ΓAPB is in J/m2. It should be noted that previous simplified

DDD simulations predicted a square-root dependence on the APB energy for planar

[221] and 3D single precipitate [245] simulations, respectively, while in the current

simulations the dependence is slightly weaker than a square-root dependence (power-

law exponent is 0.4). As the APB energy increases, the precipitate resistance increases

and it becomes more difficult for the dislocations to penetrate and glide through the

precipitates. For the case of an infinitely long dislocation penetrating an infinitely

large precipitate, the shear stress required is τ = ΓAPB

b
which gives an ideal flow

strength of

σid
f =

ΓAPB

mb
≈ 9.8ΓAPB (5.14)

This gives an ideal flow strength of 0.98 GPa, 1.96 GPa and 4.9 GPa for the simulated

0.1 J/m2, 0.2 J/m2 and 0.5 J/m2 APB energies, respectively. For the lowest APB

energy, the predicted flow strength from the current DDD simulations is close to the

ideal strength, while for the two higher energies, the strength deviates significantly.

This is because in the ideal case, the dislocation has to directly penetrate the precip-

itate for yielding, in the current simulations, however, dislocation glide through the

channels provides some plastic strain rate carrying capacity. According to Equation

5.12, the maximum flow strength for this volume fraction (if no precipitate penetra-

tion takes place) is about 1.75 GPa. In addition, dislocation penetration is bowing

assisted so an overall lower applied stress is required for penetration. However, bow-

ing assisted cutting is still sensitive to the APB energy as the bowing angle should
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increase before cutting takes place to provide enough attractive interaction stress for

the shearing dislocation segments. As the APB energy increases, the yield strength

is expected to plateau at 1.75 GPa when the APB energy becomes too high for any

shearing to take place.

Figure 5.13: The engineering stress-strain curves for crystals of different precipitate
APB energies.

The dislocation density evolution with strain for the different APB energies is

shown in Figure 5.14. The density multiplication rate increases with increasing the

APB energy because more dislocations favor channel glide, which results in an increase

in their lengths. The final microstructure after yielding at different APB energies is

shown in Figure 5.15 (the three cases have the same initial dislocation microstruc-

ture). The final microstructure consists primarily of dislocation loops surrounding
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the precipitates in the high energy case, with fewer loops in the intermediate energy

case and none for the lowest energy case. These loops form when dislocations bow

around a precipitate, fail to shear through it, and end up looping around the precip-

itate. These loops become immobile, which also partially explains the high strength

observed. With fewer mobile dislocations, higher stresses are required to move the

dislocation at a rate at which they can sustain the imposed plastic strain. Precipi-

tate shearing takes place, even for the higher energies, when the area of intersection

between the precipitate and the dislocation’s slip plane is small. The flow in the low

energy case was found to be rather smooth in contrast to a more intermittent flow

in the high energy case. For low APB energies, the precipitate penetration stress is

lower than the channel flow stress, so channel flow never occurs. The dislocations

glide through both the precipitate and the channel without any bowing or squeezing

into the channels and the flow is smooth. As the APB energy increases, dislocations

get stuck at channel entrances until the stress builds up to a high enough value for

their bowing into the channels. After which they bow, squeeze, and glide at a high

speed, due to the high stress, until they get stuck on the surface of another precipi-

tate and another channel flow gets activated, which explains the flow intermittency.

The accumulation of dislocation loops on the precipitate surfaces in the high energy

case indicates the possibility of strain hardening at higher strain levels because the

channels in which the loops accumulate would resist further dislocation flow in them

through mutual repulsion.

No significant cross-slip activity was observed for all APB energies. In particular,

the average number of cross-slip events before yielding is 12 for the lowest two APB

energies and 19 for the highest energy. The weak dependence of the cross-slip fre-

quency on the APB energy can be indirect where the flow stress increases with APB

energy and, because cross-slip is stress assisted, it increases the cross-slip potential in

turn. The majority of the cross-slip events in the high energy case were of the surface
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cross-slip type. No dislocation patterns developed for all APB energies for the strain

levels simulated here.

Figure 5.14: The dislocation density-strain curves for crystals of different precipitate
APB energies.

5.7.3 The Effect of the Precipitate Size

A dislocation forming a loop around a smaller precipitate would require less applied

stress to shear through it compared to another looping around a bigger precipitate.

This is because the attractive stress between the dislocation segments on either side

of the precipitate is the main driver for the shearing, and for smaller precipitates, the

segments are closer to each other. The whole, however, is not the sum of its parts when

it comes to the effect of the precipitate size on the overall micropillar strength. Figure
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Figure 5.15: The precipitate (grey) and dislocation microstructure at yield for pre-
cipitates with different APB energies: (a) ΓAPB = 0.1 J/m2, (b) ΓAPB = 0.2 J/m2

and (c) ΓAPB = 0.5 J/m2. The dislocations are color coded according to their slip
systems.

5.16 shows the engineering stress-strain curves for same sized micropillars, having the

same precipitate volume fraction, and APB energy, but different precipitate sizes.

The flow strength decreases with increasing precipitate size and the relationship can

be described by a power-law

σf ≈ 568

r0.5832
+ 150 (5.15)

where σf is in MPa and r is the precipitate side length in microns. A similar trend

was reported in [221] from planar simulations of superdislocations. The analytical

expression by Reppich [253] for the shear strength required for defeating a regular

array of precipitates has an inverse square-root relationship between the strength
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and the precipitate size, although the expression is more complicated than Equation

5.15. The large precipitate size cases show mild strain hardening but it cannot be

confirmed whether it is consistent hardening or just a temporary stress build-up for

the low strain levels modeled here.

Figure 5.16: The engineering stress-strain curves for crystals of different precipitate
sizes.

Bowing assisted cutting is easier for smaller precipitates, as explained above, which

lowers the applied stress required for yielding, however, as the precipitate size de-

creases, the channel size decreases for the same volume fraction. From Equation 5.10,

one can rewrite Equation 5.11 for w̄ as

w̄ = d− r =
r
3
√
f
− r = r(

1
3
√
f
− 1) (5.16)
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substituting in Equation 5.9 and setting f = 0.7

σf ≈ 49

r( 1
3√f
− 1)

=
388.12

r
MPa (5.17)

which is different than Equation 5.15 in that it has a different precipitate size expo-

nent. The values are off by 21%, 0.4% and −22% from the ones reported from the

current DDD simulations because Equation 5.17 does not take into account the effects

of the dislocation interaction stresses. From these results, it is clear that the effect of

the channel width on the flow strength is stronger than that of the interaction stress

that causes the bowing assisted cutting. Huang et. al. [246] studied the effect of

different precipitate sizes but the same channel width (through changing the crystal

size) and they concluded that larger precipitate crystals are stronger. This prediction

is similar to the current one although the result is seemingly contradictory. This can

be explained by that in [246] both the effects of the crystal size and precipitate size

were considered while in the current simulations, it is the effects of the precipitate

size and channel width that are considered. In all cases, one can only isolate the

effects of one geometric parameter out of the three (precipitate size, channel width

and crystal size).

The dislocation density multiplication increases with increasing the precipitate

size as shown in Figure 5.17. An intermittent dislocation activity, similar to the one

observed for high APB energy precipitate microstructures, is observed for the cases

with larger precipitates. From the final dislocation microstructures shown in Figure

5.18, one can observe a large number of dislocation loops in the 0.5 μm precipitate

size cases compared to more straight dislocations for smaller precipitates. This means

that although the large precipitate microstructure crystal is weaker, the main flow

mechanism is channel flow not precipitate shearing, while the opposite is true for

smaller precipitate crystals that experience precipitate shearing but in a more dif-

ficult manner due to the narrower channels. The dislocations in small precipitate
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crystals, r = 0.2 μm, form complete or near complete loops surrounding a group of

precipitates, rather than individual precipitates, as shown in Figure 5.19 before they

shear and collapse within the crystal, which explains the low density multiplication

rate observed in smaller precipitate crystals. This occurs because the channels are not

wide enough for the dislocations to squeeze into them under the applied stress and the

interaction stress between the different segments of the dislocation is weaker because

the dislocation loop is larger in radius as it surrounds a number of precipitates. A

weakest-link like mechanism takes place in this case when two dislocation segments on

the same loop approach each other by gliding in the widest channel until they collide

and pinch off, spawning a number of smaller loops that can collapse independently.

This corresponds to a spike in the dislocation density where the total length increases

instantaneously and then drops immediately after the loop collapse. The average

number of cross-slip events for the 0.2, 0.3, and 0.5 μm cases after yielding are 8, 12

and 55, respectively. Similar to the different volume fraction cases, the change in the

channel width allows for more cross-slip to take place.

5.7.4 The Effect of the Crystal Size

From the previous three discussions regarding the effects of volume fraction, APB

energy, and precipitate size, it is apparent that the most important factor determining

the superalloy strength at room temperature is the inter-precipitate channel width.

Similar conclusions were presented in [245, 246]. On the other hand, the effects of

crystal size on its strength in pure metals have been well established [131, 254]. In

[131], the size effect was explained in terms of the probability of finding a dislocation

(FR source, single arm source or a dislocation segment in a dislocation network) in a

crystal of a particular size and how this probability decreases with crystal size. For

superalloys however, the intrinsic length scale that controls the strength is the channel

width. The engineering stress-strain curves for crystals of different sizes but the same

194



Figure 5.17: The dislocation density-strain curves for crystals of different precipitate
sizes.

precipitate volume fraction, APB energy, and size (hence, same channel width) are

shown in Figure 5.20. It is apparent that the crystal size weakly affects the crystal

strength for the two crystal sizes modeled here. More, and longer, dislocation sources

are expected in larger crystals and their plastic strain carrying capacity makes larger

crystals weaker. However, in the case of superalloys, the strength slightly decreases

because there is a higher probability of finding a dislocation that is highly stressed

to squeeze into a channel or bow and induce precipitate cutting. The experiments

conducted by Shade et. al. [255] on Rene N5 microcrystals showed that the strength

is independent of the crystal size where the exponent in the strength size relationship

was estimated to be as low as 0.05. The dislocation density multiplication rate is

more or less the same for both crystal sizes as shown in Figure 5.21. The average
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Figure 5.18: The precipitate (grey) and dislocation microstructure at yield for pre-
cipitates of different sizes: (a) r = 0.2 μm; (b) r = 0.3 μm; and (c) r = 0.5 μm. The
dislocations are color coded according to their slip systems.

Figure 5.19: A cross-section in two crystals with different precipitate sizes: (a) r = 0.2
μm and (b) r = 0.5 μm. The dislocation line is in red and the precipitates are in
black.

cross-slip events counts before yield were 5 and 12 for the 0.75 μm and 1 μm crystal

sizes, respectively, which is in agreement with the trends of the cross-slip event counts

with size discussed in Section 3.7.3.
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Figure 5.20: The engineering stress-strain curves for crystals of different sizes.
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Figure 5.21: The dislocation density-strain curves for crystals of different sizes.
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5.8 Summary and Conclusions

In this chapter, the DDD framework described in Chapter 2 has been extended to

model the interaction of general dislocation microstructures residing initially in the γ

phase with an arbitrary distribution of γ′ precipitates with focus on experimentally

observed precipitate microstructures. The implementation was validated through

calculating the flow strength of an ideal configuration where an infinitely long su-

perdislocation interacts with a cubic precipitate. Excellent agreement between the

predicted flow strength from the current simulations and the analytical predictions

was found. A number of Ni based superalloy micropillars with different precipitate mi-

crostructure were loaded monotonically in order to study the effects of the precipitate

volume fraction, APB energy, precipitate size, and crystal size on the strength and

the dislocation microstructure evolution. The following summarizes key observations.

• The crystal’s strength varies linearly with the precipitate volume fraction.

• At low volume fractions, the dislocation density multiplication is faster and

cross-slip in the γ phase is more frequent.

• The strength-APB energy relationship follows a power law with an exponent of

0.4014, close to the square-root dependence previously predicted in other planar

DDD simulations.

• The strength-precipitate size relationship follows an inverse square-root law in

agreement with the analytical model by Reppich [253].

• The crystal size does not influence the micropillar strength.

• The most influential factor on the crystal’s strength is the channel width.

• As the volume fraction increases or the APB energy decreases, the dislocation

glide shifts from channel flow to precipitate shearing.
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• No strain hardening has been observed in all cases up to the simulated strain

level.
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Chapter 6

Conclusions and Suggested Future

Directions

6.1 Summary and Conclusions

In this work, the DDD method was utilized to study a number of phenomena related

to the deformation and failure of metallic material systems. The details of the DDD

framework, the necessary extensions and a number of post-processing methods were

fully described. The problems presented in this dissertation focused on materials,

loading, and environmental conditions usually found in aerospace applications. The

target was to provide more details and a better physical understanding of the active

dislocation mechanisms during plastic flow and failure. The results of the current

simulations can be hierarchically incorporated into higher length scale simulations

for a more physics-based predictions of a component/structure life.

Three cross-slip mechanisms, bulk, surface and intersection cross-slip, which have

been recently identified from atomistic simulations, have been implemented for the

first time into the DDD framework and a number of simulations were performed

to study the effects of cross-slip types on the mechanical response and dislocation
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microstructure evolution on nickel single crystals under monotonic loading. Strain

hardening has been observed in larger crystals (D ≥ 5 μm) at low strains (ε ≤ 0.5%)

when cross-slip was enabled. No similar hardening takes place in smaller crystals

or when cross-slip is inactive. Cross-slip was also found to greatly facilitate the dis-

location density multiplication irrespective of the crystal size. A precursor to the

formation of dislocation cell like structure is the increase in the number of disloca-

tion fixed points, which result from excessive local dislocation collisions, a behavior

which was found to increase when the cross-slip is active. Consequently, dislocation

patterning has been observed in larger crystals (D ≥ 5 μm) when all cross-slip mech-

anisms were active. These simulations were in excellent agreement with experimental

observations. When only one mechanism is active, dislocation patterning did not

emerge up to the simulated strain level. The formation and thickening of surface slip

bands has also been observed when surface cross-slip was active as opposed to the

no cross-slip case where surface slip was more localized on certain slip planes. This

explains the observed slip band thickening observed during micropillar compression

experiments. Bulk cross-slip was found to be the least frequent cross-slip type, fol-

lowed by intersection cross-slip and then surface cross-slip. In most DDD simulations

to date, only bulk cross-slip has been taken into account, which led to erroneously

not predicting dislocation patterning. The current frequency results emphasize the

importance of considering all the different cross-slip types.

With the cross-slip mechanisms implemented, the behavior of nickel single crystals

under cyclic loading was studied through two types of DDD simulations. First, free

standing single crystals of different sizes and initial dislocation densities with an

initial dislocation microstructure consisting of randomly distributed FR sources were

loaded in fully reversed constant strain rate cyclic loading. Larger crystals showed

early cyclic hardening, rapid dislocation density multiplication and the evolution of

dislocation cell like structures after a few number of loading cycles. Similar to the
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case of monotonic loading, the formation of dislocation cell structures was found to

rely on the generation of fixed dislocation points which in turn depends on the cross-

slip frequency. Larger crystals show dislocation cell structure formation at a lower

number of cycles compared to smaller crystals even when the initial dislocation density

is lower. It is possible that there is a size dependent initial dislocation density beyond

which dislocation cell structures form. However, this has not been confirmed in the

current simulations due to the limitations on the number of loading cycles imposed by

the computational requirements. The dislocation cell structures have sizes and wall

thicknesses that depend on the crystal size but not on the number of cycles. As the

loading continues, more cells develop external to the already developed cells and cell

refinement does not take place. The surface roughness of the simulated crystals has

been quantified as well and it was found that in smaller crystals, the surface roughness

is localized to thick bands where most of the plastic activity takes place, while in larger

crystals they are spread out over the entire surface of the crystal. The surface step

growth rate was quantified and it was found that the step growth is rarely reversed

even though the loading is fully reversed. Second, crystals initially containing a well

developed PSB structure with periodic boundary conditions in all three directions

were loaded cyclically in the same fashion as the free standing crystals. The PSB

walls did not move at all during the simulations and the edge dipolar loop forming

them showed minimal to no motion. The screw dislocations in the PSB channels on

the other hand were very active and they carried almost all of the plastic strain. The

flow strength of the PSB was shown to depend on two factors; the stress required to

activate a screw dislocation in the channels, which depends on the channel width, and

the passing stress required for two oppositely signed screw dislocations to pass each

other without forming a lock, which depends on the density of screw dislocations in

the channel. The generation of interstitial-type and vacancy-type point defects was

also quantified and the evolution of their atomic concentrations with time was given.
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The DDD framework was extended to model the interaction of dislocations with

precipitates that have an L12 crystal structure. The system can handle an arbitrary

distributions of precipitates and an initially general dislocation microstructure. The

creation and destruction of APB regions inside the precipitates is fully tracked in time

and the correct APB forces can now be applied on the dislocations gliding inside pre-

cipitates. A number of single superalloy single crystals (Ni3Al precipitates embedded

in a Ni matrix), having different sizes, precipitate sizes, volume fractions and APB

energies, were monotonically loaded to study the effects of the various microstruc-

tural features on the crystal’s strength. The strength was found to vary linearly with

the volume fraction with rapid dislocation density multiplication and frequent matrix

cross-slip taking place in low volume fraction cases. A power law relationship was

found between the strength and the APB energy with an exponent of 0.4014, which is

close to the square-root dependence predicted by analytical models and simple planar

DDD simulations. On the other hand, an inverse square root relationship was found

between the crystal’s strength and the precipitate size. The crystal size was found

to have no effects on its strength in the case of superalloys because the strength con-

trolling length scale is associated with the precipitate microstructure not the crystal

size which agrees with the experimental findings. The width of the inter-precipitate

channels was found to have the biggest effects on the crystal strength. A change

in the dislocation glide pattern takes place as the APB energy decreases or the vol-

ume fraction increases where the dislocations stop gliding in the channels and start

shearing through the precipitates. In all of the simulated superalloy cases, no strain

hardening was observed.
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6.2 Suggested Future Directions

The research described in this dissertation is only a humble step in the direction

towards developing a complete, physically accurate, meaningful description of the

dynamics of defects in pure metals and alloys. There is a huge number of idealizations,

simplifications, approximations and neglected mechanisms that need to be addressed.

An equal emphasis should also be placed on improving the computational tools used in

these simulations. In this section, a number of these problems will be briefly described.

This is by no means an extensive list of the issues that need to be addressed in the

future.

First and foremost, the DDD method suffers from an intrinsic performance bot-

tleneck that seriously limits its applicability. Because dislocations in particular and

material defects in general do not follow conservation laws like masses or electric

charges found in most physics problems, explicitly tracking them requires an ever in-

creasing computational power because as dislocations multiply, the number of degrees

of freedom handled by the DDD system increases. Hence, large scale DDD simulations

reach a saturation-like state where clock time required for pushing the simulations

further grows exponentially. In contrast, MD and FEM simulations, while in some

cases they could be more demanding than DDD simulations, they have a constant

clock time requirement per simulation time step. Since this problem arises from the

nature of defect dynamics and has nothing to do with the design of DDD frameworks,

any solution effort should be based on the fact that the number of degrees of free-

dom is constantly growing. Most of the clock time in a DDD simulation is spent on

calculating the interaction forces between dislocations, which is an O(N2) operation

that can be sped up in different ways as described in Section 2.3. One way to re-

duce the computational cost of this operation is by selective integration. The time

step in DDD simulations is adaptively chosen so as to accurately capture the finest

dislocation interactions as described in Section 2.2.7. For a system consisting of thou-
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sands of dislocation segments, these finest interactions usually take place between a

few number of dislocation at any one time but the drop in the time step is global.

Selective integration is a time-step splitting technique where more than one time step

can be simultaneously used in the simulation such that a larger time step is used to

integrate the slowly moving dislocation segments that experience weak interactions

while a finer time step can be used for the segments that strongly interact with each

other. This way, the force calculation is reduced from calculating the forces on all

the segments every fine time step to calculating it for a few number of segments. The

full force calculation then takes place every large time step only. The criteria for

strong versus weak dislocation interactions and the robust automatic detection of the

strongly interacting systems are not well defined and it is expected that a number

of heuristic measures need to be implemented, tested and compared. A second way

that can help with the time cost associated with the force calculation is the increased

parallelism. Since the force calculation is a static operation where the calculation of

the forces between a pair of segments is independent of the force calculation between

any other pair, implementing the force calculation part on faster computer architec-

tures, such as Graphics Processing Units (GPUs), can potentially cut the calculation

clock time. A combination of these two methods is worth experimenting with as well

in order to achieve the best possible performance.

A fundamental approximation that is used in most DDD systems is elastic isotropy.

At the crystal level, most metals are anisotropic. Cubic crystals show a mild degree of

anisotropy where three, instead of two, elastic constants are required to fully describe

their elastic behavior. The extra elastic constant however greatly complicates the cal-

culation of Green’s function. For anisotropic solids, there is no closed form expression

for Green’s function [88] which subsequently complicates the expressions for the dis-

location’s displacement, strain and stress fields. Anisotropic DDD frameworks have

been developed for 2D simulations [256] but they are yet to be addressed in 3D set-
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tings where the main problem is still the computational cost of the force calculations

using the expressions for a dislocation stress field in an anisotropic medium.

As described in Section 4.8, the surface roughness grows almost monotonically

during fatigue loading. The change in the surface geometry alters the stress field

distribution in the crystal and the subsequent dislocation-surface interactions. The

current DDD system assumes that the surface deformation is negligible and that the

stress field can be calculated based on the reference crystal configuration. While this

approximation is valid when only a few number of dislocations escape from the surface,

it breaks down as significant surface extrusions and intrusions start forming. To

handle this problem, the surface deformation has to be calculated in real time during

the simulation and the new volume has to be remeshed automatically. Each of these

problems is computationally expensive in itself but with the proper parallelization the

overall cost can be brought down. For instance, by allocating few processing units to

the surface displacement calculations and connecting them and the DDD simulation

processors to a common data store, the surface development can be tracked as the

DDD simulation is running at a relatively small extra computational cost.

The Ni based superalloy simulations described in Chapter 5 are based on an

approximation similar to the one described above; the precipitate geometries are

static. The successive shearing of precipitates with dislocations and superdislocations

results in a gradual change in their geometries which has to be accounted for because

eventually, the precipitate microstructure changes shape entirely and the precipitates

start losing their strength. At the simulated strain levels (about 1% strain), the

approximation is justifiable because the shearing is only a few Burgers vectors wide

but this is not the case when the strain levels increase. An approach similar to the

one suggested above for surface roughness tracking can be used to track the current

precipitate geometries.

The future development of physics-based large-scale material mechanics simula-
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tion frameworks rests on experimental and theoretical advances as well. Experimental

findings provide modelers with the accurate defect microstructures needed to initialize

their simulations as well as the data required for validating the computational tools

especially in their development phase. As finer length and time scales become ex-

perimentally accessible, the predictions from computational simulations will converge

with the experimental results which will increase the confidence in the explanations

provided by simulations, which are experimentally difficult to construct. On the other

hand, the progress in theoretical models, mathematical technology and algorithms will

extend the application area of computational simulations to length scales, time scales

and simulation conditions that are traditionally challenging.
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Appendix A

Green’s Function for Isotropic

Media

Green’s function for a linear differential operator L is defined to be the response of

an infinite domain due to a loading concentrated at one point of that domain. This

can be a concentrated force in solid mechanics, a concentrated heat source in heat

transfer problems or a point charge in electromagnetics. In general, consider the

linear differential equation

Lu = b (A.1)

where L is a linear differential operator, u is, in general, a tensor for which the solution

is sought and b is the forcing in the medium. Green’s function U for the operator L

is then the solution to the differential equation when the forcing b becomes

LU = δ (A.2)

where δ is Dirac delta function. The importance of Green’s function stems from

the fact that for linear differential operators, the solution under a certain forcing
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distribution can be broken down to the sum of the solutions under subsets of that

forcing. Hence, the full solution can be given through a convolution operator with

the forcing distribution such that

u(x) =

∫
Ω

U(x, y)b(y)dΩ(y) (A.3)

where Ω is the solution domain.

In solid mechanics, the differential equation describing the displacement field dis-

tribution under a given domain forcing b and static conditions is given by [83, 85]

Cijkluj,kl + bi = 0 (A.4)

where Cijkl is the tensor of stiffness moduli. For isotropic materials, Cijkl can be

written as [41]

Cijkl = λδijδkl + μ(δikδjl + δilδjk) (A.5)

by plugging this back into equation A.4

(λ+ μ)uj,ji + μui,jj + bi = [(λ+ μ)DiDj + μ∇2δij]uj + bi = 0 (A.6)

The differential operator Lij in this case becomes

Lij = (λ+ μ)DiDj + μ∇2δij (A.7)

and the equation for Green’s function then becomes

LijUjp(x, y) = (λ+ μ)DiDj + μ∇2δijUjp(x, y) = −δδip (A.8)

where Ujp is Green’s function, defined to be the displacement in the jth direction at
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point x due to a unit concentrated force in the pth direction at point y.

In order to solve this differential equation, the following transformation can be

used. Write Ujp as

Ujp = MjpΦ (A.9)

where Φ is an unknown scalar function to be solved for and Mjp is the transpose of

the adjoint operator of L

Mjp = L̃T
jp (A.10)

with tilde denoting the adoint operator. By definition, the inverse operator is equal

to the transpose of the adoint operator multiplied by the inverse of the determinant

of the operator, similar to matrices

L−1jp = L̃T
jpD

−1 = MjpD
−1 (A.11)

where D = det(L). Hence, the operator M is known and can be directly derived from

L, the differential equation A.8 can now be rewritten

LijUjp(x, y) = LijMjpΦ = LijL
−1
jp DΦ = δipDΦ = −δδip (A.12)

which gives

DΦ = −δ (A.13)

This transformation allows us to solve for a scalar function Φ instead of the ma-

trix function Ujp and then obtain Ujp directly from Φ. This comes at the cost of

complicating the differential operator which is now
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D = εijkL1iL2jL3k = μ2(λ+ 2μ)∇6 (A.14)

Plugging this back into equation A.13 gives

μ2(λ+ 2μ)
(∇2

)3
Φ = −δ (A.15)

Noting that the Laplacian operator acting on the function 1
4πr

gives

∇2

(
1

4πr

)
=

1

4π

3riri − r2δii
r5

(A.16)

which is zero if r 	= 0. At the origin however, its value is unspecified but can be solved

for using the following integral defined over a sphere centered at the space origin with

radius R

∫
Ω

∇2

(
1

4πr

)
dΩ =

1

4π

∫
Γ

−r,i
r2

nidΓ =
−1
4πR2

∫
Γ

dΓ = 1 =

∫
Ω

δ(x)dΩ (A.17)

where Ω is the spherical volume and Γ is the spherical surface. Gauss theorem was

used to obtain the second expression from the first and the fact that r,ini = 1 for

all spheres was used to obtain the third integral. By taking the limit as the sphere

radius approaches zero, the equality still holds, which means that

∇2

(
1

4πr

)
= −δ (A.18)

then equation A.15 can be recast in the form

μ2(λ+ 2μ)
(∇2

)3
Φ = ∇2

(
1

4πr

)
(A.19)

which can be simplified to be
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(∇2
)2

Φ =
1

4πμ2(λ+ 2μ)r
(A.20)

but we know that

∇2r =
2

r
(A.21)

thus, the equation can be further simplified to give

∇2Φ =
r

8πμ2(λ+ 2μ)
(A.22)

A closer look at the Mjp operator reveals that it can be written as

Mjp =
(
μ(λ+ 2μ)∇2δij − μ(λ+ μ)DiDj

)∇2 (A.23)

which means that Green’s function are

Ujp = MjpΦ =
(
μ(λ+ 2μ)∇2δij − μ(λ+ μ)DiDj

)∇2Φ (A.24)

Hence, there is no need to actually solve for Φ since ∇2Φ is the required factor in the

previous equation. Substituting with equation A.22 in the previous equation gives

Ujp

Ujp =
1

4πμ

(
δjp
r
− r,jp

4(1− ν)

)
(A.25)
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Appendix B

Graph Search Algorithms for

Cross-Slip Event Predictions

The graph search algorithms required for the isolation of dislocation chains in the

cross-slip event prediction calculations are presented here. The generation of the

dislocation graph chains takes place at two levels. First, on the level of the graph, the

procedure GenerateGraphChains described in algorithm 1 loops over all the graph

nodes and tries to generate only one chain containing each node as long as no chains

containing that node have been generated already. In doing so, it uses the lower level

procedure GenerateNodeChain described in algorithm 2. When done, the generation

of the stub chains, defined to be chains consisting of exactly two nodes and one

segment, begins. The stub chains are necessary, although they are less likely to cross-

slip, because they provide all the information required to predict interection cross-slip

events.
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Algorithm 1 The algorithm to generate all the chains in a given graph

1: procedure GenerateGraphChains(graph)
2: for node in graph.nodes do
3: node.visited← false

4: for node in graph.nodes do
5: if node.visited = false then
6: chain← GenerateNodeChain(node)
7: if chain.length < 2 then
8: continue
9: for node in chain.nodes do
10: node.visited← true
11: AllChains← chain
12: for node in graph.nodes do
13: node.visited← false

14: for node in graph.nodes do
15: if node.visited = false then
16: if node.neighbours > 2 then
17: for neighbourinnode.neighbours do
18: if neighbour.neighbours > 2 then
19: if neighbour.visited = false then
20: StubChain← node
21: StubChain← neighbour
22: AllChains← StubChain
23: node.visited← true

return AllChains
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Algorithm 2 The algorithm to generate the chain containing a given node

1: procedure GenerateNodeChain(node)
2: NewChain← node
3: if node.neighbours > 2 or node.neighbours < 1 then return NewChain

4: NodeBeforeLast← node
5: LastNode← node.RightNeighbour
6: NewChain← LastNode
7: Proceed← true
8: IsLoop← false
9: while Proceed do
10: TempNode← LastNode.GetOtherNeighbour(NodeBeforeLast)
11: if TempNode = NULL then
12: Proceed← false
13: else
14: NewChain← TempNode
15: NodeBeforeLast← LastNode
16: LastNode← TempNode
17: if TempNode = node then
18: Proceed← false
19: IsLoop← true

20: if node.neighbours = 2 and not IsLoop then
21: NodeBeforeLast← node
22: LastNode← node.LeftNeighbour
23: NewChain← LastNode
24: Proceed← true
25: while Proceed do
26: TempNode← LastNode.GetOtherNeighbour(NodeBeforeLast)
27: if TempNode = NULL or TempNode = node then
28: Proceed← false
29: else
30: NewChain← TempNode
31: NodeBeforeLast← LastNode
32: LastNode← TempNode
33: if TempNode = node then
34: Proceed← false
35: IsLoop← true

return NewChain
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