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Abstract 

 Non-healing craniofacial bone defects are a major clinical problem. Tissue 

engineering has the potential to provide a next-generation solution, but specific focus on 

clinical translatable technologies is needed. A translatable approach combining using 

enhanced bone marrow and decellularized trabecular bone scaffolds is first investigated. 

The drawbacks of this approach, including difficulty of scaffold production and invasive 

cell harvesting, prompted the development of a new approach in which 3D printing of 

scaffolds is combined with adipose-derived stem cells signaled with platelet-derived 

growth factor BB. 3D printing was successfully used to create porous, anatomically 

shaped scaffolds with polycaprolactone. The lack of osteoinductive properties of 

polycaprolactone was addressed by development of a hybrid material consisting of bone 

extracellular matrix particles embedded in polycaprolactone and this material was 

demonstrated to be both printable and bioactive. Platelet-derived growth factor BB was 

examined as a suitable biomolecule for bone engineering by investigation of its 

osteoinductive effects on both marrow-derived and adipose-derived mesenchymal stem 

cells. Platelet-derived growth factor BB was found to be osteoinductive to adipose-

derived but not to marrow-derived mesenchymal stem cells with both correlative and 

loss-of-function evidence, the latter of which made use of a reducible delivery vehicle 

developed specifically for siRNA delivery. Finally, the fate of transplanted cells is 

addressed by investigation of chemical exchange saturation transfer magnetic resonance 

imaging, found to be suitable for non-invasive and longitudinal in vivo monitoring. 
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Chapter 1: introduction 

 This chapter draws from the following publications: (1) Nyberg EL, Farris AL, 

Hung BP, Dias M, Garcia JR, Dorafshar AH, and Grayson WL. 2016. “3D-printing 

technologies for craniofacial rehabilitation, reconstruction, and regeneration.” (under 

review); (2) Hung BP, Salter EK, Temple JP, Mundinger GS, Brown EN, Brazio P, 

Rodriguez ED, and Grayson WL. 2013. “Engineering bone grafts with enhanced bone 

marrow and native scaffolds.” Cells Tissues Organs 198: 87-98.  

 

1.1. Craniofacial bone defects 

 Craniofacial defects arise as a direct result of trauma [1, 2], oncological resection, 

or congenital differences (e.g. cleft lip [3]). They result in soft tissue or bone deficits, or 

as a combination of both leading to composite tissue defects. For bone specifically, a 

critically sized defect is defined as 2 cm or larger in humans; a defect 6 cm or larger 

requires a vascularized implant [4-6]. Such defects significantly impact the patient’s 

quality of life. Non-healing defects in the calvarial region compromise the ability of the 

skull to protect the brain and mandibular defects compromise the patient’s ability to 

speak and eat. Craniofacial bones also give the face its shape and structure; therefore, 

craniofacial bone defects lead to compromised facial aesthetics and negatively impact the 

individual’s psychosocial well-being. Approximately one million fractures requiring bone 

transplantation occur annually in the United States, with more than 200000 of these in the 

craniofacial region [7]. These incur an annual economic burden in excess of $3 billion 

[7]. As such, there is a large need for a treatment modality for such defects. 
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1.2. Current treatments for craniofacial bone defects 

 Several methods and strategies have emerged currently to treat critically sized 

craniofacial bone defects; however, each has its own limitations. For small cases, local 

tissue rearrangement may be used [8]. This method is generally insufficient, however, for 

the large defects discussed here. Another technique that can be used for reconstruction of 

defects in the craniofacial region is grafting: transferring a particular tissue type from one 

area of the body to another without a blood supply. The lack of blood supply causes 

increased susceptibility to infection and resorption and necessitates a well-vascularized 

recipient region. In cases of even larger defects, microsurgical transfer of tissue 

containing its own vascular supply is the technique of choice [9, 10]. The advantage of 

this technique is that an adequate supply of well-vascularized tissue can be transferred, 

which can better withstand infection and resorption especially in the more hostile 

recipient bed. The disadvantages of these techniques are that they do not exactly match 

the recipient structures. For example, the current gold standard in surgical reconstruction, 

the transfer of a fibula bone as a vascularized bone flap [11, 12], never matches exactly to 

a maxilla or mandible to retain normal structure and function.  

 Prosthetic materials, such as titanium [13], bioglasses [14-17], and bio-inert 

plastics [18], may be used in cases where successful surgical reconstruction is not a 

viable option. These materials generally feature biocompatibility, appropriate mechanical 

properties, and the ability to be 3D-printed into anatomical shapes to fit the craniofacial 

skeleton. Despite these myriad prosthetics, however, this strategy also has several key 

drawbacks. The synthesis of some bio-inert plastics, such as poly[methyl methacrylate] 

(PMMA), occurs under highly exothermic conditions, which may lead to tissue necrosis 
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around the area of implantation [19]. The use of metals, such as titanium, carries with it 

high costs and low osseous integration [20]. In general, prosthetic implants have also 

been associated with soft tissue necrosis adjacent to the implantation site. Additionally, 

the use of prosthetic implants in younger patients, whose bones continue to grow, 

necessitates multiple surgeries over time. These considerations prompt the development 

of a next-generation method for treating critically sized craniofacial bone defects. 

 

1.3. Tissue engineering for craniofacial defects 

 Tissue engineering holds the potential to overcome the various challenges 

associated with surgical reconstruction and use of prosthetics. In the classical tissue 

engineering paradigm, cells are housed in a scaffold and signaled with bioactive factors 

[21]. The cells regenerate tissue as signaled by the bioactive factors, while the scaffold 

provides structural and geometric support. This would result in the rebuilding of native 

tissue without the use of autografts, greatly reducing donor-site morbidity. An 

appropriately shaped scaffold would match the required geometry of the defect rather 

than restrict the clinician to the geometry of other, non-matching anatomical sites such as 

the fibula. Finally, a successful tissue engineered construct is biologically active and 

would grow and adapt with the patient, a feat metal and plastic prosthetics cannot 

achieve.  

 For bone engineering, several components have been widely studied. For 

scaffolds, this is the decellularized trabecular bone (DCB) scaffold. The most widely 

studied cell type is the marrow-derived mesenchymal stem cell (MSC). Finally, the most 

osteoinductive biomolecule known is bone morphogenetic protein 2 (BMP2). 
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1.3.1. Decellularized trabecular bone scaffolds 

 DCB scaffolds have been widely investigated for bone engineering applications 

due to osteoinductive cues present within the matrix, namely BMP2 [22, 23], as well as 

its mechanical properties [24]. Decellularized and demineralized bone scaffolds have also 

been used in conjunction with MSCs to great effect in creating bone [25, 26] and 

osteochondral [27-29] constructs. These scaffolds can also be milled into customized, 

patient-specific geometries, making them useful for complex bone defects such as those 

found in the craniofacial skeleton [30]. 

 

1.3.2. Marrow-derived mesenchymal stem cells 

 While primary osteoblasts are the main bone-forming cell type in bone, obtaining 

clinically relevant numbers of osteoblasts to populate and grow replacement tissue is a 

challenge. This is why investigators have studied progenitor populations, especially the 

MSC, in detail. It was shown in a well-known study by Pittenger et al. [31] that MSCs 

can (1) differentiate into bone-forming cells, staining positive for mineral formation via 

Alizarin Red S; and (2) be expanded clonally without loss of potency to a greater extent 

than can primary mature cell types, allowing for the population of large constructs as 

would be found clinically.  

 MSCs are isolated from bone marrow aspirate and are characterized by positive 

CD44 (receptor for a variety of ligands, such as hyaluronic acid and collagen), CD73 

(enzyme that converts nucleotides to nucleosides), CD90 (marker for thymocytes), and 

CD105 (part of the transforming growth factor (TGF) β1) expression; at the same time 
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they are negative for CD34 (hematopoietic marker involved in cell-cell adhesion), CD45 

(hematopoietic marker involved in lymphocyte receptor signaling), and the major 

histocompatibility complex class II [32-35]. One drawback to MSC use is the fairly rare 

occurrence of MSCs in bone marrow; MSCs comprise less than 0.01% of the nucleated 

population. As such, there is interest in developing new methods of concentrating the 

MSC population in harvested tissue. One method of accomplishing this is discussed in 

Chapter 2. 

 

1.3.3. Bone morphogenetic proteins 

 BMPs were first discovered by characterization of the osteoinductive properties of 

demineralized bone extract [22, 23, 36], prompted by the observation that demineralized 

bone matrix promoted ectopic bone formation when implanted intramuscularly in rabbits. 

Since then, they have been widely investigated in experimental models. MSCs 

engineered to express BMP2 in conjunction with vascular progenitors were able to induce 

vascularized bone regeneration in a critically sized rat calvarial defect [37]. In another 

study, BMP2 incorporated into electrospun nanofibers enhanced scaffold osteoinductivity 

in terms of regenerated bone within 8 weeks post-implantation, also in rat calvarial 

defects [38]. Importantly, BMP2 and BMP7 have undergone clinical trials [39] and been 

approved for clinical use [40, 41]; however, their use necessitates injection of 

supraphysiological doses, on the order of milligrams per milliliter [39, 42]. This has led 

to several safety concerns as well as high costs of therapy [43]. 
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1.4. Thesis goal: development of a clinically relevant bone engineering strategy 

 Bone engineering relies on, but is not limited to, the synergetic combination of 

scaffolds, cells, and bioactive factors as discussed thus far. For instance, it is important to 

develop a bone engineering strategy conducive to clinical translation. While there have 

been many successes in engineering bone (and other tissues) in vitro, in vitro cultivation 

protocols are not ideal for the clinic as (1) in vitro culture leads to safety concerns as it is 

unknown how culture conditions may affect the patient post-implantation or the 

biological and chromosomal properties of the cells being cultivated and (2) tissue 

engineering protocols often require a long culture period, contributing to high costs. It is 

estimated that a fully in vitro bioengineered bone construct utilizing bioreactor 

technology would cost more than $10000 per construct [44]. In addition, there is 

significantly less known about how tissue engineered constructs develop and integrate in 

vivo. This is important for clinical translation as the fate of implanted constructs must be 

well-understood. For example, the in vivo action of MSCs is a subject of some 

controversy. The classical thought, and the intended use of MSCs, is that they will 

differentiate into osteoblasts, thereby producing new bone to fill the defect. It has been 

proposed, however, that MSCs may have an indirect, paracrine signaling effect [45]. As 

such, another consideration for translation of bone engineering technologies is the 

development of an in vivo monitoring approach to ascertain the behavior of engineered 

constructs post-implantation. 

 With these considerations in mind, the goal of this dissertation is to develop a 

clinically relevant bone engineering approach in which autologous cells are implanted in 

a bioactive scaffold and the resulting construct is implanted immediately. The bioactive 
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scaffold will thus signal the cells to form bone post-implantation, bypassing the need for 

in vitro culture. To determine the validity of this hypothesis of the construct’s 

mechanism, an in vivo imaging modality will also be explored. 

 In Chapter 2, the tools discussed here are combined to develop a bone engineering 

construct in an attempt to achieve this thesis goal. The results and potential improvements 

will be discussed. Chapters 3 and 4 will explore these improvements in further detail. 

Chapter 5 will address the in vivo imaging component. Finally, Chapter 6 will outline 

future directions after the completion of this thesis. 
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Chapter 2: enhanced bone marrow and decellularized 

trabecular bone   

 This chapter draws from the following publication: Hung BP, Salter EK, Temple 

JP, Mundinger GS, Brown EN, Brazio P, Rodriguez ED, and Grayson WL. 2013. 

“Engineering bone grafts with enhanced bone marrow and native scaffolds.” Cells 

Tissues Organs 198: 87-98. 

 

2.1. Introduction 

 The current standard for treating long-bone non-unions involves intramedullary 

reaming and nailing [46]. Many years ago it was hypothesized that the debris from this 

reaming process could contain various osteoinductive factors, including cells and matrix 

components that could aid in bone healing [47]. This hypothesis was further supported 

when it was shown that debris is deposited into bone defects during surgery [48] and may 

aid in the healing of fractures; furthermore, a high density of cells resembling MSCs were 

found in reaming debris [46]. The development of a new system, the reamer-irrigator-

aspirator (RIA; Synthes, West Chester, PA), allowed surgeons to avoid the elevated 

temperatures and pressures traditionally associated with intramedullary reaming, thereby 

decreasing necrosis in both the patient’s bone and in the reaming debris [49]. 

 Clinical case studies using RIA debris, also termed eBM due to its origin in the 

marrow cavity and the presence of minute bone chips, showed its high potential for bone 

repair even in cases where both intramedullary nailing and iliac crest bone autografting 

failed [50]. As such, eBM has attracted much interest in bone engineering as a potentially 
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abundant source of osteoprogenitor or stem cells. Recent research into the cells present in 

eBM has shown that there are indeed MSC or MSC-like cells within eBM [51]. 

Additionally, many more stem cells can be isolated from eBM compared to similar 

volumes of iliac crest bone marrow aspirate [51]. 

 We hypothesized that DCB scaffolds, discussed in section 1.3.1, could provide 

osteoinductive factors and mechanical support for seeded eBM, further enhancing the 

potential of eBM to regenerate bone de novo in non-healing defects. In this chapter, we 

characterized the eBM tissue extracted from the femurs of Yorkshire pigs and 

investigated its potential for engineering bone grafts by combining the eBM with DCB 

scaffolds. We focused on developing techniques for effectively seeding eBM into 

channels drilled into the scaffolds and utilized collagen gel coatings to direct cell 

migration into the trabecular pore spaces. Following cultivation in osteogenic conditions, 

we evaluated cell viability and proliferation, as well as the ability to induce uniform 

tissue development. 

 

2.2. Materials and methods 

2.2.1. Experimental design (Figure 2.1) 

 The eBM was harvested via intramedullary reaming of porcine femurs as 

described below. Collected eBM was assessed to determine its tissue and stem cell 

composition, as well as its potential for use in conjunction with scaffolds to engineer 

bone grafts. Tissue composition was determined using micro-computed-tomography 

(micro-CT) imaging of the whole tissue followed by paraffin embedding and sectioning 

for histological analysis. In a second experiment, cells present in the eBM were released 
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by collagenase digestion and assessed for colony-forming unit potential as well as 

multilineage differentiation capabilities. Finally, in the third experiment, eBM was 

seeded into DCB scaffolds and cultured under osteogenic conditions in vitro to create 

bone grafts. Bone scaffolds were 9 mm in diameter and 4 mm in height, with central 

channels 3 mm in diameter within which the eBM was initially seeded (Figure 2.1, B). 

Two groups were evaluated: scaffolds were either untreated or, in the second group, 

scaffold pores were coated with a thin film of collagen to promote cell migration. After 4 

weeks, both groups were evaluated for cell distribution, viability, proliferation, and new 

bone formation. 

 

2.2.2. Surgery and harvesting of eBM 

 An RIA device was used to extract eBM from the medullary canals of porcine 

femurs of 3 pigs immediately post-euthanasia (Figure 2.2). Pigs were euthanized with 

intravenous injection of potassium chloride at a minimum concentration of 1 mmol/kg. 

After sterile preparation of the surgical site, the distal femur was exposed via an incision 

lateral to the patella. A burr was used to access the femoral medullary canal through the 

articular surface of the distal femur, and the RIA device was inserted into the femoral 

canal under fluoroscopic guidance following assembly of the device and selection of an 

appropriately sized drill head according to the manufacturer’s instructions. The medullary 

contents were then aspirated from the femoral canal while continuously irrigating the 

canal with sterile normal saline. The aspirated bone and bone marrow were collected and 

isolated from the irrigation solution using a 500 µm mesh filter under sterile conditions. 
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2.2.3. Micro-CT scanning of eBM 

 Fresh whole eBM was scanned using micro-CT to determine the presence of bone 

within the tissue. Each sample was placed in a polystyrene foam tube and mounted 

vertically in the Skyscan 1172 (Skyscan, Kontich, Belgium) scanner sample chamber. 

Micro-CT imaging was done at 50 kV and 200 µA at medium camera resolution (2000-

1000 pixel field width). The scanner was set to distinguish spatial resolution at 10 µm. 

Data was analyzed using Skyscan CTAn software with the bone window set to a fixed 

threshold. 

 

2.2.4. Histological assessment of eBM 

 After micro-CT scanning, eBM was fixed with 3.7% formalin, embedded in 

paraffin, and sliced into 5 µm sections for histology. Sections were stained with 

haematoxylin & eosin and Masson’s Trichrome stain (all reagents from Sigma Aldrich, 

St. Louis, MO). Safranin O (ScholAR Chemistry, West Henrietta, NY) was used to 

confirm the presence of cartilage. 

 

2.2.5. eBM digestion and cell isolation 

 After harvesting, 1 g of eBM was digested in a 0.2% w/v collagenase 

(Worthington Biochemicals, Lakewood, NJ) solution prepared in high-glucose 

Dulbecco’s Modified Eagle’s Medium (DMEM; Invitrogen, Carlsbad, CA) supplemented 

with 100 U/mL penicillin and 100 µg/mL streptomycin (Cellgro, Manassas, VA) and 

10% v/v fetal bovine serum (FBS; Atlanta Biologicals, Flowery Branch, GA). The tissue 

was digested for 1 h at 37 °C while being continuously agitated. The medium was then 
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collected and cells were isolated by first passing supernatant through a 100 µm cell 

strainer and then centrifuging the filtered isolate at 300 RCF for 5 min. The cells were 

resuspended in growth medium (DMEM with high glucose, 100 U/mL penicillin and 100 

µg/mL streptomycin, 10% v/v FBS, and 1 ng/mL basic fibroblast growth factor; 

PeproTech, Rocky Hill, NJ) and expanded for 1 passage before using for the colony-

forming unit fibroblast assay and multilineage differentiation. 

 

2.2.6. Colony-forming unit fibroblast assay 

 Previously expanded cells were plated in 100 mm Petri dishes at 15/cm2 as 

previously described [52]. By 9 days, large colonies were evident throughout the dish and 

the culture was fixed with 3.7% formalin. 0.05% v/v crystal violet solution (Sigma 

Aldrich) was applied to the fixed culture for 30 min to visualize colonies. The crystal 

violet was washed off with tap water and colonies were manually quantified. 

 

2.2.7. Multilineage differentiation 

 Differentiation of extracted cells along osteogenic, chondrogenic, adipogenic, and 

vasculogenic lineages were performed using passage 2 cells following published 

protocols. Osteogenic differentiation was achieved by seeding cells at an initial density of 

5000 /cm2 and culturing for 4 weeks in osteogenic medium, which was comprised of low-

glucose DMEM supplemented with 10% v/v FBS, 100 U/mL penicillin and 100 µg/mL 

streptomycin, 10 mM β-glycerophosphate (Sigma Aldrich), 100 nM dexamethasone 

(Sigma Aldrich) and 50 µM ascorbic acid (Sigma Aldrich) [30]. Cultures were assayed 
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for osteogenic differentiation by staining protein-associated calcification with Alizarin 

Red S (Sigma Aldrich). 

 Chondrogenic differentiation was achieved by growing cells in pellet culture 

(500000 cells per pellet) in high-glucose DMEM supplemented with 100 U/mL penicillin 

and 100 µg/mL streptomycin, 1 µM dexamethasone, 10 ng/mL transforming growth 

factor β3 (PeproTech), 50 µM ascorbic acid, 110 µg/mL sodium pyruvate (Sigma 

Aldrich), 40 µg/mL L-proline (Sigma Aldrich), and ITS (10 µg/mL bovine insulin, 5.5 

µg/mL human transferrin, 6.7 ng/mL selenium; Sigma Aldrich) [29]. At the end of 4 

weeks, pellets were embedded in paraffin, sectioned with a microtome, and assayed for 

chondrogenic differentiation by staining glycosaminoglycans with Safranin O. 

 Adipogenic differentiation was performed by seeding the cells at 10000 /cm2 in 

tissue culture flasks and culturing for 4 weeks in high-glucose DMEM supplemented with 

10% v/v FBS, 100 U/mL penicillin and 100 µg/mL streptomycin, 5 µg/mL recombinant 

human insulin (Invitrogen), 1 µM dexamethasone (Sigma Aldrich), 200 µM 

indomethacin (Sigma Aldrich), and 500 µM 3-isobutyl-1-methylxanthine (Sigma 

Aldrich) [31]. Cultured were assayed for adipogenic differentiation by staining lipid 

droplets with Oil Red O (Sigma Aldrich). 

 Endothelial growth was induced by seeding cells at an initial density of 20000 

/cm2 and culturing for 4 weeks in EGM-2 (Lonza, Walkersville, MD) [53]. Cultures were 

assayed for the presence of endothelial markers by RT-PCR on CD31, von Willebrand 

factor (vWF), and vascular endothelial growth factor receptor 2 (VEGFR). Primer 

sequences are shown in Table 2.1. 
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2.2.8. Decellularization of bovine trabecular bone 

 DCB scaffolds were prepared as described previously [53]. Trabecular bone cores 

9 mm in diameter and 4 mm in height were taken from the subchondral region in the ling 

bones of 0.5- to 4-month-old calves. Cellular material was first removed by washing with 

a high velocity jet of water. The remaining cellular material was removed through 

sequential detergent washes. Briefly, the scaffolds were washed for 1 h in phosphate-

buffered saline (PBS; Cellgro) containing 0.1% w/v ethylenediaminetetraacetic acid 

(EDTA; Sigma Aldrich) at room temperature. Following that, they were washed 

overnight at 4 °C in PBS containing 0.1% w/v EDTA and 10 mM Tris (Sigma Aldrich). 

Scaffolds were washed in PBS forma another hour before being washed with PBS 

containing 10 mM Tris and 0.5 w/v sodium dodecyl sulfate (Sigma Aldrich) for 24 h at 

room temperature. After removing the sodium dodecyl sulfate with PBS washes, the 

scaffolds were washed with PBS containing 10 mM Tris, 50 U/mL DNAse (Roche 

Applied Science, Indianapolis, IN), and 1 I/mL RNAse (Roche Applied Science) for 5 h. 

Enzyme solutions were removed by extensive washes with water. Scaffolds were the 

sterilized with an overnight wash in 70% ethanol and rinsed with PBS before use. 

 

2.2.9. Implantation of eBM into DCB scaffolds 

 Channels with a diameter of 3 mm were drilled axially through the scaffolds and 

eBM was packed into these channels. In half of the scaffolds, the trabecular pore spaces 

were coated with collagen to enhance cell migration and distribution throughout the 

scaffold. Rat-tail collagen (Sigma Aldrich) was mixed with sodium hydroxide and PBS to 

dilute the mixture to 2.5 mg/mL and raise the pH such that the collage would form a gel. 
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Before gelation, 20 µL of collagen solution was pipetted into and out of the trabecular 

pores several times to ensure the scaffold walls were completely coated with collagen. 

Excess gel was lightly aspirated so that the pore spaces were not clogged. The collagen 

coating was allowed to solidify for 10 min at room temperature before seeding with eBM. 

 

2.2.10. Evaluation of bone constructs 

 Constructs were cultured in osteogenic medium for 28 days. At this time point, 

three constructs from each group (control vs. collagen coated) were stained with a live-

dead kit (Invitrogen) to assess cell viability and distribution. Live/dead imaging was done 

using confocal microscopy. After imaging, constructs were fixed in a 3.7% formalin 

solution overnight. Fixed constructs were scanned using micro-CT as described above to 

assess new mineralization. After micro-CT scanning, constructs were demineralized in 

10% EDTA in Tris buffer for 1 week before dehydration and embedding for 

haematoxylin/eosin staining. Three scaffolds from each group were also assayed for 

DNA content using the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen) to determine 

the extent of cell proliferation over the culture time. 

 

2.2.11. Statistics 

 Unless otherwise noted, statistical analyses consisted of Student’s t-tests with 

post-hoc Bonferroni correction. Statistical significance was determined at p<0.05. 
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2.3. Results 

2.3.1. Cell and tissue characterization 

 The reaming procedure produced up to 25 mL of eBM per pig. Whole tissue 

analysis revealed evidence of fat, cartilage, bone, and vascular tissues in various regions 

of the eBM (Figure 2.3). Digestion of 1 g of eBM in collagenase yielded approximately 

62 million cells, most of which morphologically resembled non-adherent erythrocytes. 

After plating in monolayer for expansion, the adherent cells were grossly examined and 

showed heterogeneity throughout the population, with at least four distinct apparent 

morphologies (Figure 2.4, A-D). The population became morphologically homogenous 

after two additional passages (Figure 2.4, E-F). The colony-forming unit fibroblast assay 

revealed large colonies throughout the dish, which were readily apparent through crystal 

violet staining after 9 days of culture. There was an average of 95 colonies per dish. 

Passage 2 cells could be readily differentiated along osteogenic, chondrogenic, and 

adipogenic lineages as determined by Alizarin Red S, Safranin O, and Oil Red O 

staining, respectively. In response to treatment with angiogenic factors, cells showed 

upregulation in expression of endothelial genes CD31, vWF, and VEGFR (Figure 2.5). 

 

2.3.2. Cell distribution and osteogenesis in DCB scaffolds 

 Scaffolds seeded with eBM were cultured under osteogenic conditions for 4 

weeks and the harvested. To investigate whether the collagen coating had an effect on 

cell proliferation and distribution throughout the bone scaffolds, DNA content was 

quantified, cell distribution was asses using histologic sectioning, and live/dead imaging 

was performed. Cell numbers in collagen-coated scaffolds were statistically higher than 
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they were in control scaffolds. In control scaffolds, the cell numbers increased 1.28 ± 

0.06 fold relative to day 0 values, while cells in collagen-coated scaffolds increased 1.66 

± 0.1 fold. Live/dead imaging (Figure 2.6) and histological analysis (Figure 2.7) 

indicated that besides having more cells, the number of cells that migrated out of the 

central channels and into the pore spaces was also higher in response to collagen coating. 

 Finally, we assayed the mineral content within the seeded scaffolds via micro-CT 

analysis (Figure 2.8). Qualitative and quantitative assessments indicated that collagen-

coated scaffolds had increased mineral content in the scaffold periphery as compared to 

both day 0 and to non-coated scaffolds, though differences between coated and non-

coated scaffolds were not statistically significant. For quantitative analysis, percent bone 

volume, trabecular number, and trabecular spacing were calculated in both the scaffold 

periphery and in the central channel. In the periphery, collagen-coated scaffolds showed 

statistically higher percent bone volume and trabecular number and statistically lower 

trabecular spacing relative to day 0 scaffolds after 4 weeks of osteogenic culture. Control 

scaffolds did not have significantly more bone content than did scaffolds at day 0. No 

statistically significant differences were found in the above three parameters within the 

central channel between groups. 

 

2.4. Discussion: investigation of eBM and DCB scaffolds 

 One of the major obstacles limiting the translation of tissue engineering 

approaches to the clinic is the availability of a suitable source of multipotent cells, and 

the low incidence of MSCs in bone marrow aspirates has inspired searches for alternative 

cell sources. eBM tissue has significant potential to address this challenge by providing a 
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large quantity of tissue to fill the defect site. Additionally, eBM contains high 

concentrations of osteoprogenitor cells. In this study, we analyzed both the cellular and 

whole tissue characteristics of eBM in vitro to provide further insight into the clinical 

potential of this tissue for regenerating bone without the complicating factors of an in 

vivo study. 

 Whole-tissue analysis of eBM revealed the presence of various tissue types, 

including fragments of fat, cartilage, bone, and intact pieces of vasculature. During the 

reaming process, the reamer head passes through the articular surface of the distal femur, 

through subchondral bone, and then into the marrow cavity. Consequently, it is not 

surprising that these four tissue types would be aggregated within the debris. While it is 

unclear how the presence of these various tissues influences the stem cell populations, 

eBM has been successfully used for bone regeneration [50] and so we speculate that the 

environment is at least conducive to osteogenic differentiation of the stem cells. 

 We investigated the use of eBM in DCB scaffolds in an in vitro model of bone 

engineering, which to our knowledge has not been previously investigated. In contrast to 

the single-cell suspensions studied previously, in order to implant the solid eBM putty 

into the bone scaffolds, it was necessary to drill channels into the scaffolds. This seeding 

method intrinsically resulted in tissue inhomogeneities since the peripheral trabecular 

regions are initially acellular. Hence, it was essential to stimulate cell outgrowth into the 

scaffold pore spaces to enable the development of uniform bone tissues. We investigated 

methods to enhance cell migration throughout the scaffold, hypothesizing that collagen 

coating would provide cells with more attachment sites for migration throughout the 

scaffold. Type I collagen is a predominant constituent of bone [54] as well as the most 
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abundant extracellular matrix protein in the body. Due to its ability to enhance cell 

attachment and influence differentiation, collagen gels have been widely used for 

enhancing bone engineering, though their low mechanical strength requires them to be 

combined with other materials, such as calcium phosphate [55] or hydroxyapatite [56] 

scaffolds. We found that coating the scaffold pores with collagen did indeed enhance cell 

migration and proliferation in the scaffolds, resulting in more uniform tissue distribution 

in the grafts after 4 weeks of culture. This correlated with quantitatively higher mineral 

deposition in the trabecular regions of the collagen-coated scaffolds compared to control 

scaffolds after 4 weeks of osteogenic culture. It is unlikely that the collagen coating itself 

promoted osteogenesis, as previous work into MSC differentiation in collagen gels 

suggests the collagen itself cannot induce osteogenesis without other osteogenic cues 

[57]. A more reasonable explanation is that the increased osteogenic outcome may simple 

be the result of having a greater number of cells.  

 Interestingly, no differences were observed between initial and final timepoints or 

different experimental groups in levels of mineral deposition in the central channels 

where the eBM was originally seeded. There is a high mineral content in this original 

tissue due to the bone chips reamed from the endosteal surface of the long bone. The 

apparent inability of stem cells or osteoprogenitors to deposit more mineral throughout 

the culture period may be due to the limitations in mass transport through the densely 

packed eBM within the scaffold center. Such limitations would restrict the exposure of 

cells to both nutrients as well as to osteoinductive supplements in the medium. This 

limitation does not initially exist in the scaffold periphery where the open pore spaces 

facilitate infusion of culture medium. Improving cell outgrowth into the surrounding 
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scaffold by encapsulation of pro-migratory cytokines into the hydrogel may alleviate this 

inhibitory effect in the construct center. 

 Our study also investigated the characteristics and capabilities of cells present 

within the eBM in order to gain some mechanistic insight into the regenerative potential 

of the tissues. We extracted cells from eBM to compare their multilineage capabilities 

with findings presented in the literature, which have mostly focused on characterizing 

MSC or MSC-like cells within eBM [46, 51, 58]. The distinct morphologies of extracted 

cells suggested significant phenotypic heterogeneity. This correlated with the observation 

of a variety of tissue types present within eBM. A portion of extracted cells exhibited the 

potential to form colonies, suggesting that naïve populations are present. We found large 

colonies present by 9 days post-seeding, which is considerably earlier than the traditional 

assessment timepoint of 14 days post-seeding [59, 60]. Previous work has shown that 

eBM contains a higher density of stem cells than traditional bone marrow aspirate does 

[51], so some colonies may have merged in our assay making them visible earlier. 

 We speculate that these colony-forming cells were the subpopulations that 

maintained the potential to differentiate down the three classic mesenchymal lineages. 

Our cells showed robust differentiation along the osteogenic and chondrogenic lineages, 

but very weak adipogenic potential. A key observation was the upregulation of three 

different endothelial markers in response to angiogenic factors compared to cells grown 

under expansion conditions. It is not clear if this indicated “differentiation” of a stem cell 

population or “selective expansion” of a pre-existing endothelial progenitor 

subpopulation in response to VEGF and basic fibroblast growth factor. To our 

knowledge, this potential for endothelial capacity has not been previously demonstrated, 
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but raises exciting possibilities about the potential of engineering pre-vascularized bone 

grafts using eBM.  

 The eBM can be harvested in large amounts and used intraoperatively. It has 

significant clinical utility, which can be further enhanced by combining it with 

osteoinductive scaffolds capable of immediately providing mechanical integrity to the 

defect site. As we have demonstrated, eBM contains relatively high concentrations of 

stem cells, which can be guided to work in tandem with existing cell populations to 

develop complex tissue grafts. While we focused on in vitro cultivation of eBM for our 

study, eBM can in fact be implanted in situ during surgery, as its high concentration of 

stem cells allows it to be used without in vitro expansion. Scaffolds can also be prepared 

beforehand, making this system very relevant clinically. Compared to current approaches 

involving autologous bone grafts, this approach results in lower donor-site morbidity. 

 

2.5. Discussion: limitations and potential improvements 

 With the method developed in the current study using components more widely 

studied, DCB scaffolds would be prepared and milled into patient-specific geometries. 

eBM would then be packed into the scaffolds, creating a bone graft that can be implanted. 

While this system has its strengths as discussed, it suffers from key limitations that will 

be addressed in upcoming chapters. 

 First, the preparation of DCB scaffolds, as outlined in section 2.2.8, is difficult 

and labor-intensive. A continuous block of trabecular bone larger than the defect must be 

obtained for scaffold preparation, and for the critically sized defects discussed in Chapter 

1, section 1.1, this may not always be possible. Even if it were, this block of bone must 
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be subject to the decellularization protocol, which requires transport of water and 

detergents into the tissue center as well as transport of cellular material out. For large 

blocks of bone, this becomes difficult without specialized equipment. Finally, assuming 

decellularization is successful, CNC milling of the bone must be used to produce 

anatomical geometries, which is a challenging step, especially if the shape has overhangs 

that cannot be easily reached with the machine’s cutting tool. 

 Second, eBM harvesting, as outlined in section 2.2.2 and depicted in Figure 2.2, 

is an extremely invasive procedure despite invoking less donor-site morbidity compared 

to autologous bone grafting. The patient runs the risk of fracture during reaming and, in 

particular, the articular cartilage is severely damaged. The inability of cartilage to heal is 

well-documented in the literature; as such, a procedure to repair bone that results in 

cartilaginous damage is not ideal. 

 Potential improvements to scaffold fabrication involve the use of 3D printing 

technologies, while adipose-derived stem cells (ASCs) may provide an alternative cell 

source that is less invasively harvested than is bone marrow. The advantages of these 

methods are discussed here before they are implemented to overcome the limitations with 

the current approach outlined above. 

 

2.5.1. 3D printing of synthetic scaffolds 

 3D printing, though a term encompassing a wide variety of methods, generally 

consists of building up a structure layer-by-layer. 3D printing technology has evolved to 

where just about any 3D geometry can be fabricated, including craniofacial scaffolds. 3D 

printing is thus a method which can build shapes that would be very challenging to 
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produce using a CNC mill; furthermore, high-resolution printers can achieve finely 

controlled pore architecture and porosity, factors known to affect resident cells and which 

cannot be controlled using naturally derived scaffolds. 

 One early method of 3D printing was the inkjet/binder system, in which a nozzle 

dispenses a binder solution onto a powder bed. Powder that contacts the binding solution 

is bound together, while the remaining powder remains free and serves as support. For 

bone, the powder is generally the mineral β-tricalcium phosphate to mimic the mineral 

phase of bone. The binder is generally some type of acid, such as citric acid [61] or 

phosphoric acid [62]. While this method does not require support structures, allowing 

easy printing of overhangs, the low viscosity of the acid binder solutions results in low 

resolution and residual acid trapped within large scaffolds can compromise cell viability. 

The mechanical integrity of scaffolds printed by this method also depends highly on the 

interaction between the binder and the powder; in general, the resulting properties fall on 

the brittle side. One key advantage of the inkjet/binder method, however, is the ability to 

print structures at room temperature, allowing for the direct incorporation of cells or 

growth factors. 

 A somewhat similar technique is selective laser sintering (SLS), which retains the 

powder bed but uses a laser to sinter the particles together. The resolution is much better 

than with the binder solution, as there are no problems associated with viscosity and flow. 

In SLS, the resolution depends on the diameter of the laser, which is usually on the order 

of hundreds of micrometers [63, 64], enough to produce struts and pores of comparable 

sizes to that found in native trabecular bone. SLS, like its inkjet/binder counterpart, does 

not require support structures as the un-sintered powder acts as support; however, the 
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high temperatures required to sinter particles preclude the addition of bioactive molecules 

or living cells. 

 3D printing has also been performed using extrusion of a viscous liquid from a 

nozzle and allowing that liquid to solidify, thereby building a structure up layer-by-layer. 

Extrusion-based methods require support structures, unlike with powder-based methods. 

One such method uses a special class of materials with the thixotropy property, in which 

the material has low viscosity when under shear (i.e. while being pressure-extruded out 

the nozzle) but becomes much more resistant to flow under static conditions. 3D printing 

of thixotropic materials has the benefit of not requiring high temperatures, as the flow 

properties of the materials are only shear-dependent; however, materials with this 

property are uncommon and are restricted to certain types of porous glass [16, 65] or 

mixtures of polymers with organic solvents [66]. Also, the compressive stress the 

scaffold may experience while in the body may be problematic if the scaffold begins to 

deform due to the thixotropy property. 

 Another extrusion method uses a molten thermoplastic. Once extruded, the 

thermoplastic cools and solidifies. This technique is known as melt extrusion and is 

commonly used for poly[ε-caprolactone] (PCL) [67], which has a low melting point of 60 

°C [68]. This property is important because the polymer must cool and solidify quickly 

once it has been extruded; otherwise, it will be impossible to stack the printed layers on 

top of each other. Consequently, polymers with melting points closer to room 

temperature work best for melt extrusion. The resolution of this method depends on both 

the thermoplastic’s thermal properties (e.g. viscosity at print temperature) and the 

diameter of the nozzle. Generally, the resolution of melt extrusion allows the production 
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of pores and struts on the order of 0.5 – 1 mm, comparable to that of native trabecular 

bone. Melt extrusion is very versatile, as any material that can be melted and extruded is 

suitable to this method. As such, melt extrusion 3D printing was selected to produce 

scaffolds to overcome the limitations of DCB scaffolds; this is outlined in Chapter 3. 

 

2.5.2. Adipose-derived stem cells 

 ASCs are harvested from lipoaspirate and represent a larger population than do 

the MSCs within bone marrow; ASCs make up approximately 5% of nucleated cells in 

the stromal vascular fraction obtained from lipoaspirate [69, 70]. As such, ASCs alleviate 

the problem of MSC rarity, similar to eBM. Additionally, it has been shown that ASCs 

can undergo differentiation to the three classical mesenchymal lineages [71], similar to 

MSCs. Finally, more recent studies have indicated that the ASC population contains a 

mature endothelial population, allowing for heterotypic interactions that can lead to 

vascularized tissue formation [72]. Given that liposuction is a less invasive procedure 

than is intramedullary reaming, combined with these considerations, ASCs were 

investigated further in subsequent studies in this thesis. 

 In utilizing ASCs as the stem cell population of interest, a recent study asked the 

question of what biomolecule could promote both the bone-differentiating ability of 

ASCs as well as the innate vascular-forming population within ASCs [73]. This study 

focused on platelet-derived growth factor BB (PDGF-BB), a biomolecule known to 

enhance bone regeneration when injected in a bone defect [74] and to promote the 

stability of nascent vasculature via attraction of pericytes [75, 76]. It was shown that, 

interestingly, PDGF-BB did enhance both bone-forming and vascular-forming 
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capabilities of ASCs. In particular, it was able to do so at 20 ng/mL, a physiologically 

relevant concentration. In contrast, BMP2 was unable to elicit a vascular-stabilizing 

effect, nor was it able to elicit more bone formation, at this concentration. With this 

observation and the potential for a biomolecule that can elicit bioactive effects at low 

concentrations, PDGF-BB was investigated further in terms of its osteoinductive effects 

on ASCs in Chapter 4. 

 

2.6. Overview of new approach 

 The first attempt at developing a clinically relevant bone engineering method, as 

outlined at the beginning of this chapter, utilized eBM and DCB scaffolds. With the 

considerations outlined subsequently, the new approach will utilize ASCs and 3D printed 

scaffolds with incorporation of PDGF-BB. The investigation of these components will be 

the topic of the following two chapters. 
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Tables: Chapter 2 

 

Table 2.1: Primer sequences for endothelial real-time polymerase chain reaction on 

isolated enhanced bone marrow. 
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Figures: Chapter 2 

 

Figure 2.1: Experimental design for characterization of enhanced bone marrow and 

decellularized trabecular bone scaffolds (A). eBM was studied as a whole tissue and cells 

were extracted from eBM for characterization. eBM was also seeded into decellularized 

trabecular bone scaffolds with the dimensions depicted in (B). 
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Figure 2.2: eBM harvest. (A) The RIA system, including the reamer head (#) and 

collecting filter (*). (B) Insertion of the reaming guide through the exposed femoral 

condyle. (C) Representative fluoroscopic image illustrating the drill head in the femoral 

canal and associated radiolucent areas of extracted canal marrow. (D) Harvested porcine 

eBM putty. 
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Figure 2.3: Histological tissue characterization. (A) Fat “ghosts” are evident via 

haematoxylin/eosin staining. (B) Safranin O (red) staining showed presence of 

glycosaminoglycan around chondrocyte lacunae indicating the presence of cartilage 

tissue. (C) Micro-CT image of the eBM immediately after implantation into the central 

channel of the DCB scaffold. The numerous bone particulates (grey) in the eBM are 

evident. (D) Masson’s Trichrome staining of a section through the eBM shows the 

presence of vascular structures. Scale bars: 100 µm (A, B, D) and 1 mm (C). 
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Figure 2.4: Phase contrast images of extracted cells. (A-D) Monolayer culture of passage 

0 cells extracted from collagenase-digested eBM appeared morphologically 

heterogeneous. (E, F) After two passages, cell morphology became more homogeneous 

and spindle shaped. Scale bars: 100 µm. 

 

 

 

 

 



32 
 

 

Figure 2.5: Multilineage differentiation potential of passage 2 cells. (A) Oil Red O 

staining showing the presence of adipocytes. (B) Safranin O staining of cell pellets 

indicates robust chondrogenesis. (C) Alizarin Red S stains indicate osteogenesis. (Insets) 

Negative (undifferentiated) controls. Scale bars: 100 µm. (D) Endothelial gene 

expression levels of cells cultured with angiogenic supplements. Expression was 

normalized to control cultures. 
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Figure 2.6: Live/dead maximum intensity projections. These were used to assess the 

presence of viable cells in the construct. On day 0 there were cells in the central channel 

(A) but negligible quantities of cells in the construct periphery (B). At 4 weeks, there 

were considerably fewer cells in the periphery of control scaffolds (D) relative to the 

collagen-coated scaffolds (F). Scale bar: 500 µm. 
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Figure 2.7: Cell migration into trabecular construct periphery. Haematoxylin/eosin 

staining indicated that cells were present in dense tissues in the central channel at day 0 

(A) and at week 4 in both groups (B, C). There are almost no cells in the periphery at day 

0 (D). There were significantly fewer cells in the periphery of control scaffolds (E) 

relative to collagen-coated scaffolds (F) after 4 weeks. Scale bar: 100 µm. 
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Figure 2.8: Micro-CT of bone constructs. Micro-CT analysis of constructs after 4 weeks 

of osteogenic culture demonstrate that in the scaffold periphery collagen-coated scaffolds 

showed higher normalized bone volume (i.e. bone volume/tissue volume; (A)) and 

trabecular number (B), and lower trabecular spacing (C). (D) Qualitative 3D 

reconstructions corroborate these findings (n = 3; *p<0.05 from day 0). No statistical 

differences were found for mineral content or structural parameters in the central 

channels. 
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Chapter 3: 3D printing of scaffolds for bone engineering 

 This chapter draws from the following publications: (1) Temple JP*, Hutton DL*, 

Hung BP, Yilgor PY, Cook CA, Kondragunta R, Jia X, and Grayson WL. 2014. 

“Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed 

scaffolds.” J Biomed Mater Res A 102: 4317-4325; (2) Hung BP, Naved BA, Nyberg EL, 

Dias M, Holmes CA, Elisseeff JH, Dorafshar AH, and Grayson WL. 2016. “Three-

dimensional printing of bone extracellular matrix for craniofacial regeneration.” (under 

review). 

 

3.1. Development of a 3D printer 

 In the first part of this chapter, we present a method for 3D printing anatomically 

shaped PCL scaffolds with varying internal pore structures using a custom-designed 3D 

printer. PCL has emerged as a favorable polymer for scaffold fabrication; besides the 

advantage of low melting point as discussed in Chapter 2, section 2.5.1., it is 

biocompatible and safely breaks down in the body [77]. As such, PCL was chosen as the 

biomaterial to engineer porous, 3D printed scaffolds. 

 

3.1.1. Construction of the custom 3D printer 

 To construct the 3D printer, we converted a Syil X4 CNC mill (Syil America, 

Coos Bay, OR) into a 3D printer by attaching a custom hot-melt pressure extruder to the 

spindle of the mill. An Ultimus V (Nordson EFD, Providence, RI) regulator controlled 

the extruder pressure and a nozzle heater maintained the melt temperature at a set value. 

The printer was run at a linear speed of 2.7 mm/s (determined through optimization 
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studies). PCL (Capa 6400; Perstorp, Perstorp, Sweden) was used in pellet form for 

printing. The printer dispensed PCL through a 460 µm diameter nozzle onto a heated bed. 

The temperature of the bed was maintained at roughly 40 °C to ensure that the bottom 

layer of PCL remained attached to the printed surface and did not warp as the print 

cooled. A 120 mm fan was used to cool the scaffold during printing. Initially, cuboidal 

scaffolds (15 by 15 by 5 mm) were generated as computer-aided design models, exported 

as stereolithography (STL) files, and imported into Slic3r, an open-source program used 

to generate machine g-code. We varied the infill density from 20% to 80% to generate 

scaffold with varying pore sizes. 

 

3.1.2. Analysis of scaffold micro-architecture 

 Pores were analyzed using scanning electron microscopy (SEM). Samples were 

sputter-coated with platinum and imaged at 25X and 55X magnifications on a JEOL 

6700F microscope (JEOL USA, Peabody, MA). The 25X magnification images were 

used to measure the pore size. 

 

3.1.3. 3D printing of anatomical shapes 

 A computerized tomography (CT) head scan of a child was imported into Mimics 

(Materialise, Leuven, Belgium) and 3D models of the maxilla and mandible were 

segmented by hand using the default bone thresholding setting. Models were smoothed 

and wrapped to fill any large holes, while ensuring that important surface details were not 

lost. The models were exported as STL files and g-code was generated in Slic3r using an 

infill density of 40%. Both models were printed with automatically generated support 
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structure. All support structure was printed with the same PCL material. The support 

structures were trimmed away after the completion of the print. 

 

3.2. Results: 3D printing of PCL scaffolds 

3.2.1. Scaffold characterization 

 Scaffolds at all porosities were rectangular, although higher infill densities 

yielded more geometrically accurate scaffolds (Figure 3.1). At low infill densities, the 

fiber being printed had fewer attachment points to the layer beneath it, meaning it could 

easily be displaced when the printer made rapid movements. This can be observed in the 

top left corner of the 20% scaffold. 

 

3.2.2. Anatomically shaped scaffolds 

 After trimming away the support structures, the anatomically shaped scaffolds 

closely resembled the 3D models from which they were printed (Figure 3.2). All gross 

anatomical features were replicated in the scaffolds, with consistent, regular pores 

maintained throughout. 

 

3.3. Discussion: 3D printing of PCL scaffolds 

 The 3D printing technology was applied to clinically relevant geometries for 

craniofacial bone. In particular, we explored the potential to generate porous scaffolds 

that replicated the incredibly complex anatomies of the mandible and maxilla. These 

scaffolds faithfully replicated complicated geometric features on each of these bones such 

as the temporomandibular joint (TMJ) condyle and the maxillary opening to the nasal 



39 
 

cavity observed in the 3D models; furthermore, the anatomically shaped scaffolds 

maintained the same level of porosity observed in the rectangular scaffolds, allowing for 

potential cell seeding. 

 The fabrication of these scaffolds demonstrates the advantages of 3D printing 

technology over DCB scaffold production. In particular, the structures printed are much 

larger than are structures that can be obtained from trabecular bone; furthermore, the 

generation of 3D printer g-code is far easier than is the generation of CNC milling g-code 

for these geometries. The drawback of this approach is the lack of osteoinductivity of 

PCL, as compared to the bioactivity of DCB scaffolds. This limitation is shared among 

all synthetic polymers used in 3D printing of scaffolds, such as poly[lactic acid] or 

poly[glycolic acid] [78]. 

 Functionalizing synthetic scaffolds to impart bioactivity, such as by incorporating 

appropriate osteoinductive growth factors [79] or incorporation of mineral phases [80-

83], have had some success in overcoming this challenge; however, despite often 

requiring supraphysiological doses of factors, these approaches do not recapitulate the 

full bioactivity of bone. Namely, they do not include the collagenous phase of bone, 

which has been shown to enhance osteogenesis in dogs when combined with tricalcium 

phosphate implants compared with tricalcium phosphate alone [84]. The eBM/DCB study 

outlined in Chapter 2 using collagen resulted in increased cell migration throughout the 

scaffold [85]. In this next part of the chapter, we hypothesized that by incorporating DCB 

particles into PCL, we could create a hybrid DCB:PCL material that incorporates both 

mineral and collagenous bioactive phases of bone, maintains the osteoinductive and 

osteoconductive properties of DCB, and is readily manufactured by 3D printing. The 
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objectives of this study were to (1) evaluate print quality of 3D printed hybrid scaffolds at 

different DCB:PCL ratios, (2) determine the mechanical properties of hybrid scaffolds, 

(3) characterize the ability of human ASCs to adhere to the DCB:PCL hybrid material, 

(4) assess the ability of DCB:PCL scaffolds to differentiate resident ASCs to bone, and 

(5) assess the ability of the DCB:PCL material to regenerate bone in an orthotopic cranial 

defect. 

 

3.4. Materials and methods: hybrid material studies 

3.4.1. Creation of hybrid material 

 Trabecular bone was obtained from the subchondral region of 0.5- to 4-month-old 

calves. Decellularization proceeded as previously described [53, 85]. Bone was first 

subject to a high-pressure water jet to wash out the marrow. Then, bones were washed 

with phosphate-buffered saline (PBS; Cellgro, Manassas, VA) containing 0.1% w/v 

ethylenediaminetetraacetic acid (EDTA; Sigma Aldrich, St. Louis, MO) for one hour at 

room temperature and them overnight with PBS containing 0.1% w/v EDTA and 10 mM 

Tris (Sigma Aldrich) at 4 °C. Bones were then washed for another hour in PBS before 

being subjected to a wash consisting of PBS with 10 mM Tris and 0.5% sodium dodecyl 

sulfate (SDS; Sigma Aldrich) for 1 day at room temperature. The SDS was removed with 

extensive PBS washes and then the bones were washed with PBS containing 10 mM Tris, 

50 U/mL DNAse (Roche Applied Science, Indianapolis, IN), and 1 U/mL RNAse (Roche 

Applied Science) for 5 hours at room temperature. Enzymes were removed with 

extensive PBS and water washes before storage via lyophilization. 
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 Decellularized trabecular bone was pulverized using a SPEX SamplePrep 6770 

cryo-mill (SPEX SamplePrep, Metuchen, NJ) at a frequency of 10 cycles per second for 

15 minutes to obtain bone particles. The particles were then run through a 40 µm cell 

strainer to confine maximum particle size to 40 µm, a step performed to minimize risk of 

particle aggregation and clogging of the printer nozzle. This size of particles was 

confirmed via scanning electron microscopy (SEM; Figure 3.3). Resulting bone particles 

were mixed with PCL powder with molar mass 43000 – 50000 g/mol (Polysciences 

Incorporated, Warrington, PA) for printing. 

 

3.4.2. Scaffold fabrication and evaluation of print quality 

 Hybrid mixtures consisting of 0%, 5%, 30%, 70%, and 85% bone by mass were 

created and printed at 80 °C into 0.644-mm height (2-layer), 4-mm diameter scaffolds of 

60% porosity using our custom 3D printer [86]. These parameters resulted in strut 

diameters of 460 µm and pore sizes were approximately 800 µm. This geometry was 

chosen to be consistent with the geometry required for the in vivo studies outlined below. 

Scaffold pore size was selected due to optimizations performed in a previous study in 

which 60% porosity was shown to yield the most uniform cell distribution during seeding 

[86]. Scaffolds were stained with Alizarin Red S (Sigma Aldrich) to confirm the presence 

of mineralized particles and imaged under brightfield and SEM. Low-magnification 

brightfield images of scaffolds were compared pixel-by-pixel to a computer-generated 

ideal lattice. The percentage of pixels that matched between the two images was 

normalized to 50% to account for random matching and this numerical score, ranging 

from 0 to 100, was taken as a measure of print quality. 
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3.4.3. Raman spectroscopy 

 To determine the molecular constituents of the hybrid material and confirm the 

presence of both the mineral and collagen phases of the DCB particles, Raman 

spectroscopy was utilized as previously described [87]. Briefly, a 830 nm laser (Process 

Instruments, Salt Lake City, UT) was used to deliver light to a sheet consisting of 30% 

bone by mass. Background subtraction and normalization was performed using a barium 

sulfate spectrum and wavenumber assignment was performed using a Tylenol spectrum. 

As controls, the spectra of pure PCL and a block of DCB were also obtained. 

 

3.4.4. Atomic force microscopy 

 To determine the surface roughness of the hybrid material, atomic force 

microscopy (AFM) was performed on printed sheets of 0%, 30%, and 70% bone by mass 

using a Dimension 3100 AFM (Bruker Nano, Santa Barbara, CA) in tapping mode with 

Bruker Nano probe model RTESPW. The root mean square roughness of nine 2 µm by 2 

µm square regions on each sample surface was measured at 15 Hz and averaged to 

determine the roughness of that sample. 

 

3.4.5. Mechanical testing 

 Solid cubes of 0%, 30%, and 70% bone by mass, 1.25 cm on all sides, were 

printed and subjected to unconfined compression using an EnduraTEC ELF 3200 system 

(Bose Corporation, Framingham, MA). As the specimens were solid, mechanical 

properties were assumed to be isotropic and compression of up to 5% static strain was 
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applied along the print axis, termed the z-axis, to determine compressive modulus of the 

bulk material. Resulting expansion along the perpendicular x-axis was also measured to 

determine Poisson’s ratio. 

 To measure scaffold properties, porous cubes of 60% porosity and 1.25 cm on all 

sides were also printed. Due to the print layers, the properties along the z-axis differ from 

that of the other two axes; thus, the mechanical properties were assumed to be 

transversely isotropic. As such, compressive moduli were measured in both the z- and x-

directions. Shear moduli were also measured with respect to the x-face along the z-

direction. 

 

3.4.6. Measurement of cell adhesion strength 

 As a measure of cell interaction with the hybrid material, the strength of cell 

adhesion to the hybrid material was quantified by a modification of a centrifugation assay 

described previously [88, 89]. Briefly, fluorescently-labeled cells were allowed to adhere 

to printed sheets of 0%, 30%, and 70% bone by mass for 24 hours. Sheets were affixed 

onto a glass microscope slide using cyanoacrylate glue with the cells facing away from 

the slide. Slides were then immersed in PBS and subject to centrifugation at different 

speeds. The position of the sheet on the slide relative to the centrifuge rotor as well as the 

centrifugation speed determined the shear stress applied to the cells [88]: 

 

𝜎 = ‖𝜔⃗⃗ ‖2𝑦𝑟𝑟(∆𝜌)          (3.1) 
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where 𝜎 is shear stress, 𝜔⃗⃗  is angular velocity of the centrifuge where double bars denote 

vector magnitude, y is the average height of adhered cells as determined by microscopy, 

𝑟𝑟 is the distance from the rotor of the centrifuge, and ∆𝜌 is the difference in density 

between a cell and the surrounding PBS. The fraction of remaining cells after each spin 

was plotted against the shear stress applied during that spin and this data was fit to a 

variable-slope concentration response model (VSCR; Eqn. (3.2), [88, 90, 91]) to obtain a 

value for σ50, the shear required for 50% of the cells on the sheet to detach: 

 

𝑓 =
𝜎𝑎

𝜎𝑎+𝜎50
𝑎            (3.2) 

 

where f is the fraction of cells adhered and a is a cooperativity coefficient of detachment. 

Sheets composed of each DCB concentration (n = 4) were tested and the 4 values of σ50 

were averaged for each material composition. 

 

3.4.7. Measurement of osteoinductivity 

 To measure the ability of hybrid scaffolds to induce resident cells to undergo 

osteogenesis, human ASCs of passage 2 were seeded into fibrin gels at 20 million cells 

per milliliter and 5 µL gels were implanted into scaffolds of 0%, 30%, and 70% DCB by 

mass. Seeding proceeded as previously described with fibrinogen concentration 10 

mg/mL, thrombin concentration 10 U/mL, and volume ratio 4:1 fibrinogen : thrombin for 

a final fibrinogen concentration of 8 mg/mL and a final thrombin concentration of 2 

U/mL. Scaffolds were 0.644 mm in height, 4 mm in diameter, and had 60% porosity. 

Scaffolds were sterilized by ethanol wash for 1 hour at room temperature. ASCs were 
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obtained as described previously [92, 93]. All lipoaspirate obtained to isolate ASCs were 

obtained under Institutional Review Board approved protocols with patient consent. 

Briefly, lipoaspirate was digested with 1 mg/mL collagenase I (Worthington Biochemical 

Corporation, Lakewood, NJ) for 1 hour at 37 °C. The released cells were centrifuged to 

obtain the stromal vascular fraction pellet and plated. Adherent cells were termed ASCs 

and expanded for the current study. Expansion conditions consisted of Dulbecco’s 

Modified Eagle Medium (DMEM; Life Technologies, Frederick, MD) with 4.5 g/L 

glucose, 10% v/v fetal bovine serum (FBS; Atlanta Biologicals, Flowery Branch, GA), 

100 U/mL penicillin and 100 µg/mL streptomycin (Cellgro), and 1 ng/mL basic fibroblast 

growth factor (PeproTech, Rocky Hill, NJ). 

 After seeding the scaffolds of 0%, 30%, and 70% DCB by mass, constructs were 

cultured for 1 and 3 weeks under control conditions: DMEM with 1 g/L glucose, 100 

U/mL penicillin and 100 µg streptomycin, and 6% v/v FBS. The absence of 

osteoinductive factors ensured that only the scaffold could induce osteogenesis within 

resident cells. After the culture periods, cells were digested with TRIzol (Life 

Technologies) and isolated mRNA was used to produce cDNA. cDNA was subject to 

real-time polymerase chain reaction (RT-PCR) for osteogenic genes Runx2, osteocalcin 

(OCN), and osteonectin (ON). For analysis, the delta-delta Ct method was used in which 

β-actin served as the housekeeping gene and gene expression under pure PCL scaffolds 

served as the control group. 

 As an additional measure of osteoinductivity, constructs were also cultured for 3 

weeks under osteogenic conditions, which consisted of control conditions supplemented 

with 10 mM β-glycerophosphate (Sigma Aldrich) and 50 µM ascorbic acid (Sigma 
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Aldrich). These constructs were subject to the Quant-iT PicoGreen dsDNA assay 

(Invitrogen, Carlsbad, CA) and the Stanbio LiquiColor calcium assay (Stanbio, Boerne, 

TX) to determine calcium content normalized to cell number. 

 

3.4.8. In vivo assessment of bone regeneration 

 To determine the effect of the hybrid scaffolds in vivo, the critically sized murine 

calvarial defect model was used as previously described [94, 95]. All procedures were 

reviewed and approved by the Johns Hopkins Animal Care and Use Committee. Briefly, 

a 4-mm circular knife (Medicon, Tuttiligen, Germany) was used to excise a 4-mm disk of 

calvaria between the coronal and lambdoid sutures and 1 mm lateral to the sagittal suture 

with care taken to preserve the underlying dura mater. This size has been shown 

previously to be non-healing [94, 95]. Constructs consisting of ASCs seeded in fibrin 

inside scaffolds of 0%, 30%, and 70% bone by mass created as in the previous section 

were immediately implanted into the resulting defect. A total of 12 mice were operated 

on with n = 4 for each concentration of bone. The contralateral side served as unoperated 

controls. Mice were imaged under computed tomography (CT) using a Gamma Medica 

X-SPECT small animal system (Gamma Medica, Salem, NH) at 6 and 12 weeks post-

implantation. Imaging was performed at 80 kV peak voltage and 600 µA current. 

Reconstruction was done with voxel size 100 µm. At 12 weeks post-implantation, 

scaffolds were excised and fixed under 3.7% formalin overnight for histological analysis. 

Histological analysis consisted of a haematoxylin/eosin (H&E) stain for cellularity 

(Sigma Aldrich) and a von Kossa/van Gieson stain for bone formation (Sigma Aldrich). 
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3.5. Results: hybrid material studies 

3.5.1. Print quality 

 DCB:PCL scaffolds of 0%, 5%, 30%, 70%, and 85% bone by mass were printed 

and stained with Alizarin Red S. We observed staining in all scaffolds except in the 0% 

scaffold where no mineral was present, confirming the presence of bone particles within 

the hybrid scaffolds. The intensity of the red stain increased with increasing DCB 

concentration (Figure 3.4). When compared to a computer-generated ideal lattice, the 

print quality decreased as the concentration of bone increased from a score of roughly 89 

for 0% and 5% DCB scaffolds to 77.6 for 70% DCB scaffolds; however, a dramatic drop 

in score (50) was observed at 85% DCB (Table 3.1). As such, for all subsequent studies 

70% bone by mass was chosen as the maximum concentration of bone. 0% bone by mass 

was chosen as a pure PCL control, whereas 30% bone by mass was chosen as an 

intermediate group. 

 

3.5.2. Raman spectroscopy 

 To confirm whether mineral and collagen were presented on the surfaces of 3D 

printed DCB:PCL, we employed Raman spectroscopy (Figure 3.5). Raman spectroscopy 

of a printed sheet of 30% bone by mass showed a peak at 960 cm-1 corresponding to the 

phosphate component of bone and a peak at 1650 cm-1 corresponding to the amide I 

signal from collagen [96]. These peaks appear in the Raman spectrum of trabecular bone 

but not in the spectrum for pure PCL (Figure 3.5), matching observations reported 

previously [97]. The contributions from the PCL phase include the triple peak centered 

around 1450 cm-1 for δCH2 (fourth carbon from the carbonyl), the double peak at 1300 
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cm-1 for ωCH2 (furthest carbon from the carbonyl), and the skeletal stretching peak at 

1110 cm-1 [97, 98], signals appearing in both the spectrum for pure PCL (Figure 3.5, top) 

and in the spectrum for the 30% bone by mass sample (Figure 3.5, bottom). 

 

3.5.3. Atomic force microscopy 

 SEM had revealed that the surfaces of 30% and 70% scaffolds displayed more 

features than did the 0% scaffolds, whose surfaces were mostly smooth (Figure 3.4). To 

quantify the surface roughness of scaffolds, which is known to affect cell-biomaterial 

interactions [99-101], AFM was performed and the root mean square roughness of 0%, 

30%, and 70% scaffolds were computed. At the length scale of AFM, we found no 

significant difference between 30% and 70% scaffolds: both had roughness values around 

50 nm. Both 30% and 70% scaffolds were significantly rougher than were 0% scaffolds, 

which showed a surface roughness of 4.83 nm (Figure 3.6), confirming observations 

under SEM. 

 

3.5.4. Mechanical properties 

 To determine how the bone particles affected the mechanical properties of the 

hybrid material, we first tested the compressive properties of bulk material. 0% and 30% 

blocks had similar compressive moduli of around 30 MPa, whereas 70% blocks showed a 

significant drop in modulus to around 10 MPa. The Poisson’s ratio of approximately 0.3 

did not differ significantly between the three groups (Figure 3.7, top). The same trend 

held for the compressive and shear moduli of 60% porous scaffolds. The compressive 

modulus in the x-direction was similar for both 0% and 30% scaffolds at around 15 MPa, 
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while the modulus for 70% scaffolds was around 7 MPa. In the z-direction, 0% and 30% 

scaffolds had moduli approaching 10 MPa, whereas 70% scaffolds had moduli 

approaching 5 MPa (Figure 3.7, bottom). 

 

3.5.5. Cell-biomaterial adhesion 

 We next characterized cell adhesion to the hybrid material as an indicator of cell-

material interactions. The centrifuge-applied shear successfully detached cells in a force-

dependent manner and the VSCR model fit the data well (Figure 3.8, top). The shear for 

half-detachment, σ50, was significantly different between all three groups (Figure 3.8, 

bottom), increasing in a concentration-dependent manner from 87.2 mPa for pure PCL 

adhesion to 28.2 Pa for adhesion to 70% bone by mass. This observation is well-

supported by the surface biomolecular data (Figure 3.5) and the surface roughness data 

(Figure 3.4 and Figure 3.6). 

  

3.5.6. In vitro osteoinductivity 

 Since the goal of this study was to enhance bone regeneration, we next examined 

the ability of hybrid scaffolds to induce resident cells to form bone. By 3 weeks of 

culture, Runx2 expression increased by more than 3 orders of magnitude while OCN and 

ON expression increased by about 5 orders of magnitude compared to PCL alone despite 

the absence of soluble osteoinductive factors in the culture medium (Figure 3.9). Since 

no phosphate source was present, this increase in gene expression did not yield calcium 

production; however, when a phosphate source was added with ascorbic acid and 

constructs culture for 3 weeks, the hybrid scaffolds displayed higher calcium production 
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per cell relative to pure PCL controls, with 70% scaffolds yielding 88.0 ng/cell and 30% 

scaffolds yielding 48.1 ng/cell compared to 35.3 ng/cell from pure PCL scaffolds (Figure 

3.9). Since little to no calcium was detected in samples under no phosphate, it can be 

surmised that the calcium content innately present in the hybrid scaffolds was not being 

detected by the assay. 

 

3.5.7. In vivo osteoinductivity 

 As a final assessment of the osteoinductive properties of hybrid scaffolds in 

comparison to pure PCL scaffolds, scaffolds of 0%, 30%, and 70% bone by mass were 

fabricated and seeded with ASCs as was done in the in vitro experiment. Resulting 

constructs were implanted in 4-mm murine calvarial defects. CT scans at both 6 and 12 

weeks post-implantation revealed that hybrid scaffolds invoked nearly twice the volume 

of regenerated bone compared to pure PCL scaffolds (Figure 3.10), with hybrid scaffolds 

approaching 4 mm3 of regenerated bone compared to 2.07 mm3 regenerated bone with 

pure PCL scaffolds. The pattern of signal detected by CT within the defect suggested that 

the system was not picking up the mineral innately present within the hybrid scaffolds, as 

the detected bone was punctate and isolated rather than ubiquitously present within the 

scaffolds struts (which were not visible under CT). CT scans also revealed that 

regenerated bone was appearing both in the scaffold centers as well as from the edges, 

suggesting that both implanted cells within the scaffold and invading cells from the host 

were contributing to repair. Histological analysis (Figure 3.11) revealed both non-

mineralized osteoid and mineralized tissue, visualized by the van Gieson and von Kossa 
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stains, respectively, indicating that bone regeneration was actively occurring within the 

defect. 

 

3.5.8. 3D printing of anatomical geometry 

 To demonstrate the ability of the approach described here to create anatomical 

shapes, the geometry of the human temporomandibular joint condyle was extracted and 

printed using pure PCL as well as 30% bone by mass. The scaffolds printed successfully 

and were subject to Alizarin Red S staining to confirm the presence of bone mineral 

(Figure 3.12). While the pure PCL condyle did not stain, as expected, robust staining was 

observed in the 30% bone by mass condyle, demonstrating that 3D printing of hybrid 

material can be used to fabricate complex craniofacial geometries. 

 

3.6. Discussion: hybrid material studies 

 In this study, hybrid scaffolds consisting of bone particles embedded in a greater 

PCL phase were printed using a custom 3D printer. To our knowledge, this is the first 

time a bone engineering hybrid scaffold has been fabricated by 3D printing of naturally 

derived matrix. While being readily printable, hybrid scaffolds are more amenable to cell 

adhesion compared to pure PCL scaffolds and are osteoinductive both in vitro and in 

vivo. As such, the hybrid material developed here mitigates the lack of osteoinductivity 

and osteoconductivity in pure PCL while simultaneously overcoming the manufacturing 

challenges associated with producing a pure DCB scaffold. 

 We considered mechanics as a potential limiting factor in the use of this hybrid 

material, as mechanical properties for bone engineering scaffolds are crucial due to the 
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role of bone as a load-bearing tissue. The choice of PCL as a biomaterial partly arises 

from this consideration, as its mechanical properties (stiffness on the order of 107 Pa) fall 

within the range reported for trabecular bone, 0.5 to 14.6 MPa [68, 102]. Even with the 

drop in properties at 70% DCB by mass, the stiffness values reported for DCB:PCL 

scaffolds still approach the values of trabecular bone and are within the range reported in 

the literature for pure PCL 3D printed scaffolds [103, 104]. Composite collagen/calcium 

phosphate printed scaffolds were reported to have a modulus of approximately 15 MPa, 

comparable to the values in the present study [62]; however, it should be noted that the 

porosity in the present study – an important property for highly osteoconductive scaffolds 

– is much greater in comparison while retaining appropriate moduli. Taken together, this 

data suggests that mechanics are not a limiting factor in the use of these hybrid scaffolds 

in bone engineering. 

 Next, we examined the interactions between human stem cells and the hybrid 

material. We investigated two important aspects of cell-biomaterial interactions: cell 

adhesion to biomaterials has extensively been studied and affects many aspects of cell 

behavior, while cell migration through a biomaterial scaffold is crucial for a uniformly-

seeded graft as well as for recruitment of host cells to the implant. The SEM and AFM 

data on surface roughness indicated that this was a feature of the printed hybrid material 

that could enhance cell adhesion at different length scales – the micrometer scale as 

shown under SEM and the nanometer scale as shown under AFM. Meanwhile, the 

presence of collagen as confirmed by Raman spectroscopy suggested that an increased 

number of binding sites could be a second mode by which the hybrid material could 

enhance cell adhesion. The data demonstrates increasing cell adhesion strength with 
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higher concentrations of bone in the scaffolds. In comparison, the shear forces required 

for half-detachment of ASCs seeded on scaffolds containing 70% bone by mass (~30 Pa) 

agrees well with previous studies on cell adhesion to hydroxyapatite [105]. While it 

should be noted that the values reported here for initial cell numbers reflect a 

combination of initial adhesion and proliferation after 1 day, the trend that higher 

concentration of DCB leads to increased σ50, an effect of surface roughness, the presence 

of collagen, or both, remains true. 

 The RT-PCR data are derived from ASCs grown in scaffolds in vitro and provide 

evidence that hybrid scaffolds are innately osteoinductive. The RQ values reported are 

normalized to expression in pure PCL scaffolds, where no osteoinductive cues were 

present and little expression of osteogenic genes is expected. Interestingly, the osteogenic 

gene expression in hybrid DCB-PCL scaffolds increased compared to pure PCL scaffolds 

despite the absence of soluble osteoinductive factors in the culture medium. The 

observation that calcium per cell increases in hybrid scaffolds relative to that in pure PCL 

scaffolds demonstrates the ability of the hybrid scaffold to enhance the osteogenic 

capability of resident ASCs. The changes in bone volume following transplantation of 

ASC-seeded scaffolds into orthotopic defects also supported the hypothesis that hybrid 

scaffolds are osteoinductive compared to pure PCL scaffolds. Note that in that particular 

experiment, the cells were not provided any soluble osteoinductive cues prior to 

implantation. Consequently, differentiation cues were provided solely by the DCB-PCL 

hybrid scaffolds. The percent of bone regenerated in the current study is also comparable 

to previous studies where PCL/tricalcium phosphate/collagen scaffolds were implanted 

into rat calvariae [106]. 
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 In examining the spatial profile of the bone formed, bone is visible both in the 

scaffold pore spaces and in the scaffold edges. As such it is possible to speculate that two 

factors are at play: bone being regenerated from the implanted human cells as well as 

bone regenerated from endogenous murine cells. While it is outside the scope of this 

study to distinguish between these two sources of regeneration, future studies may 

examine this further. It is worth noting that the hybrid scaffold potentially enhances both 

these avenues of regeneration due to both mineral and collagenous phases enhancing 

osteoinductivity and osteoconductivity. 

 While we have demonstrated here a printable, bioactive scaffold, future 

optimizations may be performed. First, the particle size of DCB was chosen at a 

maximum of 40 µm in the current study to reduce the chance of particle aggregation 

blocking flow from the print nozzle, which has a diameter an order of magnitude above 

this size. In the current study, this particle size resulted in successful prints of bioactive 

scaffolds; however, it is possible that smaller particle sizes may further increase the 

amount of bone that can be printed as nozzle clogging becomes less of an issue and 

smaller particles may have lower impact on the rheological properties of PCL. Another 

effect of particle size is the nanotopography of the scaffold, which we have shown here is 

affected at the nanoscale despite the microscale of the particles. Nanoscale changes in 

topography have been shown to affect the expression of osteocalcin in MSCs [99], while 

the use of nanotopography to control cell shape was shown to modulate BMP-dependent 

osteogenesis [107]. Another effect of particle-mediated nanotopography is the potential 

for the particles to serve as nucleation sites for the deposition of mineral, leading to 



55 
 

enhanced bone formation [108]. Taken together, this suggests that the DCB particle size 

alone may also play a role in enhancing the osteogenesis of seeded stem cells. 

 Second, the method of printing chosen here, melt extrusion, was selected due to 

its ease of use. Effectively, PCL was used as a “binder” to hold the DCB together. Other 

methods that have fabricated composite scaffolds, such as with synthetic ceramics, have 

used acidic binders that unfortunately result in decreased cell viability as well as smaller 

pore size due to the increased flow of acidic binders away from the target print location 

[62]. It has been shown that smaller pore size inhibits the migration and proliferation of 

seeded and infiltrating cells [109]. As such, another advantage of the method used here is 

that PCL as the “binder” is readily printable, with minimal flow away from the target 

print location doe to high viscosity, and is not cytotoxic. One potential short-coming of 

this approach is the DCB is subject to 80 °C printing temperatures that destroy 

osteoinductive growth factors, such as BMP, that are known to reside in bone matrix [22, 

23, 36]; however, many other methods of printing feature temperatures above this value, 

such as 1300 °C for sintering techniques [110]. Despite the elevated temperatures used in 

this study, the hybrid scaffolds produced in this study were still shown to be 

osteoinductive, likely due to the presence of the mineral phase; furthermore, the 

collagenous phase of bone was retained as shown by Raman spectroscopy. As such, the 

hybrid scaffold still represents an increase in bioactivity from pure PCL scaffolds while 

retaining printability. For the first time, bone matrix can be 3D printed into any of the 

complex shapes in the human skeleton, representing a potentially storable, patient-

specific component to tissue engineered bone grafts. 
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Tables: Chapter 3 

 

Table 3.1: Print quality of pure and hybrid scaffolds. 
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Figures: Chapter 3 

 

Figure 3.1: Scanning electron microscopy. Upper row: stereomicroscope images of 15 

by 15 by 5 mm scaffolds with infill densities ranging from 20% to 80%. Middle row: 

SEM images taken at 25X magnification demonstrate the uniformity of the pores and 

fiber widths. Scale bar: 1 mm. Bottom row: SEM images at 55X magnification illustrate 

surfaces of fibers. Scale bar: 200 µm. 
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Figure 3.2: Anatomically shaped scaffolds. Left: Isolated 3D geometries of the maxilla 

(top) and mandible (bottom). Right: 3D printed, porous PCL scaffolds at 40% infill 

density. 
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Figure 3.3: Scanning electron microscopy of cryo-milled bone particles that had been run 

through a 40 µm filter. Sizes of particles above 40 µm are absent. Colored boxes show 

images of increased magnification. 
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Figure 3.4: Imaging of 3D printed hybrid scaffolds. Top: Scaffolds stained positively for 

Alizarin Red S in all cases except for the pure polycaprolactone case. Middle: Magnified 

images of stained scaffold struts, delineating the punctate stain of the mineralized 

particles within the PCL. Bottom: Scanning electron microscopy of strut surfaces 

revealed rougher surface topographies in the more concentrated hybrid scaffolds. 
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Figure 3.5: Raman spectroscopy of pure and hybrid material. Top: Raman spectra of 

pure polycaprolactone, revealing peaks at 1450 cm-1 for δCH2, 1300 cm-1 for ωCH2, and 

1110 cm-1 for skeletal stretching. Middle: Raman spectra of decellularized trabecular 

bone, showing peaks at 960 cm-1 for phosphate (a) and 1650 cm-1 for collagen amide I 

(b). Bottom: Raman spectra of 30% DCB:PCL. The bone-only peaks as well as the peaks 

corresponding to contributions from both bone and polycaprolactone appear. 
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Figure 3.6: Atomic force microscopy of pure and hybrid material. Top left: The atomic 

force micrograph of pure polycaprolactone is mostly featureless, while surface features 

are rougher for 30% bone by mass (top right) and 70% bone by mass (bottom left). 

Quantification of root mean square roughness (bottom right) confirms these 

observations. *p<0.05 by one-way ANOVA with post-hoc Tukey test. 
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Figure 3.7: Mechanical testing of pure and hybrid material/scaffolds. Top: The Poisson’s 

ratio of all groups were not significantly different from each other, while compressive 

modulus was significantly lower in the 70% group compared to both 30% and pure 

groups. Bottom: The same trend held for all directions in transversely isotropic porous 

scaffolds. *p<0.05 compared to pure polycaprolactone by one-way ANOVA with post-

hoc Tukey test. 
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Figure 3.8: Cell adhesion to pure and hybrid material. Top: Representative graph of 

adhered cells plotted against shear with a variable-slope concentration response model fit 

to determine the shear for half-detachment, σ50. Bottom: σ50 increased in a dose-

dependent manner with increasing bone concentration. *p<0.05 by one-way ANOVA 

with post-hoc Tukey test. 
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Figure 3.9: In vitro osteogenic gene expression. Gene expression of Runx2, osteocalcin, 

and osteonectin increased in cells cultured in hybrid scaffolds despite the absence of 

exogenous osteoinductive factors. Bottom right: With the addition of a phosphate 

source, calcium per cell production displayed the same trend. *p<0.05 compared to cells 

cultured in pure polycaprolactone scaffolds by one-way ANOVA with post-hoc Tukey 

test. 
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Figure 3.10: In vivo regeneration of murine calvarial defect. White dotted lines show 

boundaries of original defect. Top: Computed tomography scans at 6 and 12 weeks 

revealed increased bone regeneration in hybrid scaffolds compared to the pure 

polycaprolactone group. Bottom: Quantification of computed tomography scans showed 

a significant difference between hybrid groups and pure PCL groups, but no significant 

difference between the 30% and 70% groups. *p<0.05 by one-way ANOVA with post-

hoc Tukey test. 
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Figure 3.11: Histological analysis of excised constructs. Cellularity under 

haematoxylin/eosin staining (left) as well as bone and osteoid formation under the von 

Kossa/van Gieson stain (right) is evident. 
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Figure 3.12: Anatomical shape printing of pure and hybrid scaffolds. A human 

temporomandibular joint condyle was isolated and printed into anatomically shaped, 

porous scaffolds. Scaffolds were subject to Alizarin Red S staining and micro-computed-

tomography to confirm and visualize the presence of mineralized particles in the hybrid 

scaffold. As expected, mineralized particles were absent in the pure PCL scaffold. 
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Chapter 4: adipose-derived stem cells and platelet-

derived growth factor BB 

 This chapter draws from the following publications: (1) Tzeng SY, Hung BP, 

Grayson WL, and Green JJ. 2012. “Cystamine-terminated poly(beta-amino ester)s for 

siRNA delivery to human mesenchymal stem cells and enhancement of osteogenic 

differentiation.” Biomaterials 33: 8142-8151; (2) Hung BP, Hutton DL, Kozielski KL, 

Bishop CJ, Naved BA, Green JJ, Caplan AI, Gimble JM, Dorafshar AH, and Grayson 

WL. 2015. “Platelet-derived growth factor BB enhances osteogenesis of adipose-derived 

but not bone marrow-derived mesenchymal stromal/stem cells.” Stem Cells 33: 2773-

2784. 

 

4.1. Conflicting reports on PDGF-BB-mediated osteogenesis 

 As discussed in Chapter 2, section 2.5.2., the use of PDGF-BB to enhance ASC 

osteogenesis shows some promise. Previous studies into the osteoinductive potential of 

PDGF-BB were prompted by the observation of heightened PDGF-BB levels within bone 

fracture microenvironments [111, 112]; however, these studies have largely determined 

that PDGF-BB is not osteoinductive when signaling MSCs. In fact, PDGF-BB was 

shown to inhibit mineralization [113-116] and when the beta receptor for PDGF, 

PDGFRβ, was deleted using Cre-LoxP recombination, mineralization of MSCs was 

restored even in the presence of PDGF-BB [117]. In contrast, more recent studies showed 

a dose-dependent increase in calcification per cell in ASCs with signaled with PDGF-BB 

[73]. Consequently, ASCs have recently been used in fibrin matrices incorporating 
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PDGF-BB to exploit this finding [118]; however, to date, no direct comparison of MSCs 

and ASCs in their osteogenic response to PDGF-BB has been performed to resolve the 

apparent contradiction. 

 A potential difference between MSCs and ASCs is of high importance in the use 

of tissue engineering approaches to treat bone defects. PDGF-BB is a known mitogen 

[119] and chemoattractant [75] and it has been observed that injection of PDGF-BB into 

fracture sites accelerates bone healing [74]. Given the in vitro observations that PDGF-

BB does not directly promote osteogenesis in MSCs, it is thought that PDGF-BB in this 

case is largely acting through recruitment of endogenous repair cells. The notion that 

PDGF-BB can directly enhance ASC mineralization, however, presents toe possibility 

that the use of ASCs in conjunction with PDGF-BB for bone repair can more efficiently 

make use of both the cellular and biomolecular components. 

 In this chapter, we hypothesize that the osteogenic response of MSCs and ASCs 

to PDGF-BB is different at a fundamental genetic level. To test this hypothesis, the 

objectives of this study are (a) to investigate the differences in osteogenic response of 

MSCs and ASCs at a cellular and genetic level, (b) to use siRNA-mediated knockdown 

of PDGFRβ for loss-of-function evidence that specifically PDGF-BB leads to enhanced 

mineralization of ASCs but not of MSCs, and (c) to demonstrate the application of this 

finding using ASCs overexpressing PDGFB in an in vivo murine calvarial defect model. 

 

4.2. Development of an siRNA delivery vehicle 

 To accomplish objective (b), an siRNA delivery vehicle must be first developed. 

In finding a suitable approach, lipid-based materials are an option. Such materials 
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generally form liposome-like vehicles within which siRNA can be encapsulated and then 

carried [120]. Several groups have capitalized on this property of cationic lipid 

formulations for siRNA delivery [121, 122], using both natural and synthetic lipids to 

facilitate cellular entry via endocytosis or membrane fusion [123]. Because of the 

prevalence of their use in the field of siRNA delivery, although lipids are not a focus of 

this report, a lipidic product is used as a control in these studies. In particular, we 

compare our results here against results from Lipofectamine™ 2000, which has been 

widely used in the gene delivery literature as a leading commercial transfection agent. 

Many lipid-based materials, however, can be prohibitively cytotoxic [124] and unstable, 

especially in the presence of salts or serum [125]. The commonly used cationic polymer 

polyethyleneimine (PEI) must be chemically modified to avoid cytotoxicity [126] and, 

along with other methods like gold nanoparticle immobilization, also requires high 

siRNA doses of up to 200 nM [127, 128], even when using easier-to-transfect cell types 

such as CHO-K1 or HeLa cells. 

 Poly(β-amino ester)s (PBAEs) are an attractive non-viral method of gene 

delivery, as they are simple to synthesize, easily chemically modified, and hydrolytically 

degradable under physiological conditions [129-131]. Success in DNA delivery to MSCs 

has previously been shown [132], but the ability to deliver other biomolecules such as 

siRNA would expand the flexibility of the cationic polymer delivery system by allowing 

gene knockdown as well as upregulation. Other researchers have previously been 

unsuccessful in transfecting cells with PBAE-siRNA nanoparticles without the use of 

gold nanoparticles as a substrate [133]. Researchers using similar systems have used high 

siRNA doses of up to 125 nM, usually in the absence of serum in the transfection media, 
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to achieve moderate knockdown [134, 135]. Earlier studies of siRNA delivery to another 

hard-to-transfect primary human cell type have shown that polymers ideal for DNA 

delivery may not be the same as those necessary for siRNA delivery [131], likely due to 

differences in chemical and physical properties of the two types of nucleic acids as well 

as differences in their mechanisms of action [136]. As such, PBAEs optimized 

specifically for siRNA delivery must be identified. In the first part of the chapter, we 

synthesize, characterize, and evaluate an array of PBAEs for effective siRNA delivery to 

primary human MSCs. The ability to screen many PBAE formulations in a high-

throughput manner provides a powerful tool not only to identify top formulations quickly 

but also to see trends in the relationship between polymer structure and function, thereby 

helping to refine results further and to direct studies in similar systems. This 

nanobiotechnology for siRNA delivery can be an enabling tool for control-based 

approaches to engineer biological systems [137]. 

 As a model for knockdown, we transduced MSCs with lentivirus to overexpress 

enhanced green fluorescence protein (eGFP). We then transfected these cells with siRNA 

against eGFP (siGFP) using PBAEs, and monitored eGFP expression over time as a 

measure of knockdown efficiency. We ensured the transduced MSCs had not lost their 

potency by evaluating multilineage differentiation to ensure their suitability for future 

biological applications. Finally, to demonstrate the potential applications of our approach, 

we identified the leading nanoparticle formulation among those we developed and tested, 

utilized this formulation to deliver siRNA against an inhibitor of osteogenesis, B-cell 

lymphoma (Bcl)-like protein 2 (BCL2L2), and examined the effect on MSC osteogenic 

differentiation. 
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4.3. Materials and methods: development of an siRNA delivery vehicle 

4.3.1. Materials 

 Monomers used for polymer synthesis (Figure 4.1) include 1,3-propanediol 

diacrylate (B3; Monomer-Polymer and Dajac Labs, Trevose, PA); 1,4-butanediol 

diacrylate (B4; Alfa Aesar, Ward Hill, MA); 1,5-pentanediol diacrylate (B5; Monomer-

Polymer and Dajac Labs); 1,6-hexanediol diacrylate (B6; Alfa Aesar); 3-amino-1-

propanol (S3; Alfa Aesar); 4-amino-1-butanol (S4; Alfa Aesar); 5-amino-1-pentanol (S5; 

Alfa Aesar); 6-amino-1-hexanol (S6; Sigma Aldrich, St. Louis, MO); 1,3-

diaminopropane (E1; Sigma Aldrich); 1,3-diaminopentane (E3; TCI America, Portland, 

OR); 2-methyl-1,5-diaminopentane (E4; TCI America); 2-(3-aminopropylamino)ethanol 

(E6; Sigma Aldrich); 1-(3-aminopropyl)-4-methylpiperazine (E7; Alfa Aesar); 1-(3-

aminopropyl)pyrrolidine (E8; TCI America); and cystamine dihydrochloride (E10; Alfa 

Aesar). siGFP with 5’-CAAGCUGACCCUGAAGUUCTT (sense) and 3’-

GAACUUCAGGGUCAGCUUGCC (antisense) (Silencer ® positive control) and a 

scrambled siRNA sequence (scrRNA) with 5’-AGUACUGCUUACGAUACGGTT 

(sense) and 3’-CCGUAUCGUAAGCAGUACUTT (antisense) (Silencer ® negative 

control #1) were designed by and purchased from Ambion, Inc., (Carlsbad, CA). For viral 

transduction, lentivirus containing pPPT-eGFP plasmid was received from Dr. David Yue 

(Johns Hopkins University). Lipofectamine™ 2000 and Opti-MEM I were from 

Invitrogen (Carlsbad, CA) and used according to manufacturer instructions. For gel 

electrophoresis, UltraPure™ agarose was purchased from Invitrogen. All other materials 

used were reagent grade. 
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4.3.2. eGFP-lentiviral transduction of MSCs 

 Lentivirus containing pPPT-eGFP plasmids (cytomegalovirus promoter) were 

diluted in serum-free medium (Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen) 

with high glucose supplemented with 100 U/mL penicillin and 100 µg/mL streptomycin 

(Cellgro, Manassas, VA)) and added to passage 1 MSCs (Lonza (formerly Cambrex), 

Walkersville, MD) at 10% confluency. Complete expansion medium (the above mixture 

supplemented with 10% v/v fetal bovine serum (FBS; Atlanta Biologicals, Flowery 

Branch, GA)) was added 4 h after transduction to dilute viral titer, and medium was 

replaced with fresh medium complete medium after 48 h. Fluorescence microscopy and 

flow cytometry were used to confirm the overexpression of eGFP; we obtained an 

efficiency of >99% (Figure 4.2). 

 

4.3.3. MSC pre-differentiation and pre-transfection expansion 

 MSCs were grown at 37 °C, 5% CO2, and 21% O2. All differentiation studies 

were done at passage 5. MSCs were expanded in monolayer at passage 4 with high 

glucose DMEM, 10% v/v FBS, 100 U/mL penicillin and 100 µg/mL streptomycin, and 1 

ng/mL basic fibroblast growth factor 2 (bFGF-2; PeproTech, Rocky Hill, NJ). At 80% 

confluency, cells were released from monolayer via trypsin and placed under 

differentiation conditions. 
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4.3.4. MSC adipogenic differentiation 

 Previously expanded MSCs were plated at a density of 10000 /cm2 and cultured 

for 4 weeks with high glucose DMEM, 10% v/v FBS, 100 U/mL penicillin and 100 

µg/mL streptomycin, 5 µg/mL recombinant human insulin (Invitrogen), 1 µM 

dexamethasone (Sigma Aldrich), 200 µM indomethacin (Sigma Aldrich), and 500 µM 3-

isobutyl-1-methylxanthine (IBMX; Sigma Aldrich) [31]. Cultures were assayed for 

adipogenesis by staining lipid droplets with Oil Red O (Sigma Aldrich). 

 

4.3.5. MSC osteogenic differentiation 

 Previously expanded MSCs were plated at a density of 5000 /cm2 and cultured for 

4 weeks with low glucose DMEM, 10% v/v FBS, 100 U/mL penicillin and 100 µg/mL 

streptomycin, 10 mM β-glycerophosphate (Sigma Aldrich), 100 nM dexamethasone 

(Sigma Aldrich), and 50 µM ascorbic acid (Sigma Aldrich) [30]. Cultures were assayed 

for osteogenesis by staining protein-associated calcification with Alizarin Red S (Sigma 

Aldrich). 

 

4.3.6. Polymer synthesis 

 Polymers were synthesized using previously reported protocols and are referred to 

following the reported nomenclature, with a polymer’s name referring directly to its 

constituent monomers [130, 138, 139]. The number following the “B” title refers to the 

number of carbons between acrylate groups in the backbone monomer and the number 

following the “S” title refers to the number of carbons between the amine group and the 

alcohol group in the sidechain. One backbone diacrylate monomer (B3, B4, B5, or B6) 
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was mixed with one sidechain monomer (S3, S4, S5, or S6) at a 1.2:1 molar ratio of B:S. 

The reaction was carried out with stirring for 24 h at 90 °C to allow formation of the base 

polymer (B-S). The resulting base polymer was dissolved in dimethyl sulfoxide (DMSO) 

at 167 mg/mL. 480 µL of B-S in DMSO was mixed with 320 µL of a 0.5 M solution of 

one end-capping monomer (E1, E3, E4, E6, E7, E8, or E10) and vortexed for 1 h at room 

temperature. For E10-capped polymers, the resulting B-S-E polymer was incubated at 

room temperature for 1 day to ensure completion of the reaction before storage at –20 °C. 

All other polymers were immediately stored at –20 °C after end-capping. For the 

remainder of this report, polymers will be referred to by their composition (e.g. B4-S3-

E10 or 4310). 

 All synthesized polymers used in this study were dissolved in BHT-stabilized 

tetrahydrofuran with 5% DMSO and 1% piperidine, filtered through a 0.2-µm filter, and 

measured with gel permeation chromatography (GPC; Waters, Milford, MA) to 

determine molecular weight. Representative polymers were diluted with deuterated 

DMSO and also analyzed by nuclear magnetic resonance (400 MHz, Bruker, Billerica, 

MA) using TopSpin 2 software (Bruker) for spectrum acquisition and ACD/NMR 

Processor (Advanced Chemistry Development, Inc., Toronto, Ontario, Canada) to verify 

the completion of both steps of the reaction. 

 

4.3.7. Nanoparticle characterization: nanoparticle tracking analysis (NTA) 

 siRNA was diluted to 10 µg/mL in 25 mM sodium acetate buffer (pH 5). Polymer 

was diluted in the same sodium acetate buffer and added to the siRNA solution in a 1:1 

volume ratio, for a final polymer-to-siRNA weight ratio (w/w) of 100-200 (500-200 
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µg/mL final polymer concentration). This solution was mixed by pipetting and then 

incubated at room temperature for 1 min to allow self-assembly to occur. The resulting 

nanoparticle suspension was diluted 1:100 in phosphate-buffered saline (PBS), then 

measured using a NanoSight NS500 (NanoSight Ltd., United Kingdom( and analyzed 

with NanoSight NTA 2.2 software as previously described [140]. Reported values for 

size are number-weighted hydrodynamic diameters of the particles. 

 

4.3.8. Polymer-siRNA binding assay: gel electrophoresis 

 Gel retardation assays were carried out by adding polymer of varying 

concentrations in sodium acetate buffer to a constant concentration of siRNA in sodium 

acetate, as with normal particle preparation protocols (above). After 10 min of 

incubation, a solution of 30% v/v glycerol in water was added at a 1:5 v/v ratio as a 

loading buffer. Dyes were not added to the loading buffer, as they were found to interfere 

with binding. Samples were loaded into a 1% agarose gel with 1 µg/mL ethidium 

bromide at 125 ng siRNA per well. Samples were run for 15 min under 100 V, then 

visualized using UV exposure. Lack of a visible band at the location corresponding to 

siRNA alone (0 w/w polymer) was considered complete complexation of the nucleic acid 

by polymer. 

 To test the effect of a reducing agent, after 10 min of complexation, PBS buffer 

alone or PBS with L-glutathione (GSH) was added to each tube of particles, with a final 

GSH concentration of 5 mM to match approximate intracellular concentration of 1-10 

mM [141]. Samples were immediately loaded into a 1% agarose gel and run for 15 min 

under 100 V before visualization under UV. 
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4.3.9. Transfection of MSCs with siRNA against eGFP 

 GFP+ MSCs were seeded in clear-bottom, opaque-sided 96-well-plates at a 

density of 10000 /cm2 and allowed to adhere overnight. All experiments were carried out 

on passage 3-6 MSCs. Before transfection, the GFP signal from each well was measured 

using a fluorescence multiplate reader (Synergy 2, Biotek, VT). Background signal was 

subtracted using GFP– MSCs seeded alongside the GFP+ cells in complete expansion 

medium as described above. siGFP was diluted in 25 mM sodium acetate buffer (pH 5). 

 Polymer was diluted in sodium acetate and added to the siRNA solution at 1:1 

volume ratio, for a final polymer-to-siRNA weight ratio of 100-200 w/w. This solution 

was mixed by pipetting and then incubated at room temperature for 10 min to allow self-

assembly to occur. The resulting nanoparticles were added to cells in complete expansion 

medium for a final siRNA dose of 60 nM (0.9 µg/mL) and final polymer dose of 90-180 

µg/mL. Studies were done in triplicate. Cells were incubated with the particles for 2 h 

before the media was changed and replaced with fresh, complete medium. For each 

polymer tested, one group was treated with siGFP and another with scrRNA complexed 

with the same polymer as a paired control. A replicate set of wells was prepared for each 

group for viability measurements. 

 After 24 h, viability was measured using an MTS assay (CellTiter Aqueous One, 

Promega, Madison, WI) according to the manufacturer’s instructions. On the remaining 

plates, medium was changed every 3-4 days and fluorescence measurements were taken 

daily. At each timepoint, knockdown was calculated by subtracting background signal, 

then calculating the ratio of signal in the siGFP group to that in the scrRNA group and 
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subtracting this ratio from 1. For particles with the highest activity, cells were trypsinized 

after 12 days, resuspended in PBS with 2% FBS, and analyzed by flow cytometry (Accuri 

C6, Accuri Cytometers, MI) to confirm readings taken using the plate reader. The media 

of the FL1 signal (emission 530/30 nm) was calculated for each group of cells using 

FlowJo 7 (Treestar Inc., Ashland, OR). Background fluorescence, or the median of GFP– 

cells, was subtracted from all values, and the ratio of signal from scrRNA- and siGFP-

treated cells was calculated as above to determine knockdown. 

 

4.3.10. Transfection of MSCs with siRNA against BCL2L2 

 Passage 3 untransduced MSCs were seeded in 12-well-plates at a density of 

10000 /cm2 in complete expansion medium and allowed to adhere overnight. 

Transfection was carried out as described above, with the top polymer from the siGFP 

screenings used at a 150 w/w ratio to complex with siRNA against BCL2L2 (siBCL2L2). 

A control with polymer at 150 w/w and scrRNA was also prepared. After 10 min of 

incubation for nanoparticle self-assembly, the resulting nanoparticles were added to cells 

incomplete expansion medium for a final siRNA dose of 60 nM in each well and allowed 

to incubate at 37 °C for 4 h. The media and nanoparticles were then removed and 

replaced with osteogenic medium. We also included one group of cells that were not 

transfected but were cultured under osteogenic conditions and another group of cells 

cultured under growth conditions as negative controls. The medium was replaced every 

3-4 days and the cells were analyzed after 4 weeks by Alizarin Red S staining, calcium 

assay (Calcium LiquiColor Kit, Stanbio, Boerne, TX), and DNA assay (Quant-iT 

PicoGreen dsDNA Assay Kit, Invitrogen) to ensure the results of the calcium assay were 
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not due to differences in cell number between groups. Wells were transfected at n = 9, 

with n = 3 for each of the analyses. 

 

4.3.11. Statistics 

 Unless otherwise stated, all results are presented as mean ± standard error of the 

mean. Statistical significance compared to the controls was assessed with a one-way 

ANOVA with post-hoc Dunnett test, with p<0.05 considered significant. 

 

4.4. Results and discussion: development of an siRNA delivery vehicle 

4.4.1. MSC multilineage differentiation 

 Both GFP-transduced and untransduced MSCs were subjected to osteogenic and 

adipogenic conditions for 4 weeks. Osteogenic and adipogenic groups were then stained 

with Alizarin Red S and Oil Red O, respectively. Transduced MSCs retained the ability 

to differentiate down both osteogenic and adipogenic lineages at levels comparable to 

that of untransduced MSCs (Figure 4.3). Hence, GFP+ MSCs were deemed a valid model 

to assess the characteristics of non-viral transfection of MSCs over the course of this 

experiment. 

 

4.4.2. Polymer synthesis 

 The number-averaged (Mn) and weight-averaged (Mw) molecular weights of all 

synthesized polymers are summarized in Table 4.1. The numbers of subunits per polymer 

chain was calculated using the Mn, with an average of 14-15 subunits. NMR analysis 

clearly showed the presence of acrylate peaks in the base polymer, which are no longer 
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detectable after 1 h end-capping reaction at room temperature (Figure 4.4). The reaction 

of E10 with the base polymer did not go to completion after only 1 h, so further 

incubation at room temperature was required. This additional incubation time could lead 

to a side reaction (amide formation due to nucleophilic attack by the free end-capping 

amine on the base polymer’s ester linkages), indicated by any additional peaks in the 

product around 3-3.5 ppm [139]. Since this amide peak was not apparent in the spectrum, 

our product was not contaminated by this side product. 

 

4.4.3. Nanoparticle tracking analysis 

 Using NTA, individual nanoparticles suspended in a buffer of physiological 

salinity and pH were measured to calculate number-weighted average size and 

concentration (Figure 4.5). As has been reported in previous studies [130, 131, 140], 

most nucleic acid particles formed with PBAEs are between 80 and 150 nm in diameter, a 

size range found to be amenable for cellular uptake [140]. By using NTA rather than 

dynamic light scattering (DLS), we were able to measure individual particles, including 

number-weighted size distributions and absolute particle concentration [142]. Increased 

polymer content tended to increase the number of particles formed with the same amount 

of siRNA, indicating that complexation of siRNA into nanoparticles was more efficient 

with more polymer. Interestingly, 4310-based particles tend to be larger in size compared 

to 437- and 433-based particles; these also showed significant differences in transfection 

efficiency (see below). We therefore concluded that the representative end-modified 

PBAEs measured by NTA (453, 447, 4410, 433, 437, and 4310) are good candidate 

materials for packaging siRNA. 
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4.4.4. siGFP transfection 

 We evaluated degradable polymers to choose an optimal polymer for siRNA 

delivery to MSCs, assaying delivery efficacy by looking at GFP knockdown over time 

(Figure 4.6). Based on previous results in another cell type [131], we included many 

cystamine (E10) terminated polymers in our study, along with polymers that have 

previously been seen to be effective in DNA delivery [129, 132, 143, 144]. Although 

RNAi has been found to be an important potential tool in directing stem cell 

differentiation and MSCs are one of the most commonly studied cell types in 

differentiation studies [145], MSCs have generally been found to be much harder to 

transfect than are other cells, such as human umbilical vein endothelial cells (HUVECs). 

This trend has been seen in DNA delivery studies [132], especially when the transfection 

is performed in the presence of serum proteins, as we have done here (10% v/v serum). 

 Through our polymer library approach, we were able to discover several polymers 

that caused effective knockdown. This research reveals several trends; many types of 

PBAEs induced knockdown, but only a few were significantly better than the leading 

commercially available controls (Figure 4.6). Interestingly, the subset of E10-terminated 

polymers examined here tended to cause relatively high knockdown compared to non-

E10- or cystamine-terminated polymers. A major exception to this trend is 447 at high 

w/w ratios, which has been previously identified as one of the top-performing PBAEs and 

which can be used for nucleic acid delivery to HUVECs [131]. The other exception is 

546, which, while very effective at high w/w, was also very toxic. The top E10 polymers, 

on the other hand, tended to be less toxic and were also effective at lower w/w. Certain 
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base polymers, like B4-S3, showed little or no delivery efficacy with most end-capping 

amines, but were particularly effective when end-capped with E10, suggesting that the 

cystamine moiety itself may play an important role in siRNA delivery. 

 In particular, polymer 4310 formed successful nanoparticles, able to knock GFP 

levels down by 74% ± 6% at 200 w/w and 72% ± 5% at 150 w/w according to flow 

cytometry 12 days after transfection (Figure 4.7). Both of these were significantly 

superior to Lipofectamine™ 2000 (p<0.01). It should be noted that the flow cytometry 

data shown here are expected to be a slight underestimate. As seen in Figure 4.2, the 

GFP+ MSCs used were so brightly fluorescent that they were at the upper limit of 

sensitivity for the flow cytometer, even when using a 90% attenuation filter; therefore, 

small levels of GFP fluorescence knockdown in the brightest population of GFP+ cells 

could be underreported. 

 We examined the influence of cystamine further by directly comparing 4310 with 

433 and 437 to test our hypothesis that the cystamine end-cap was the reason for 4310’s 

efficacy. We also compared transfection with Lipofectamine™ 2000 and with naked 

siRNA as a baseline control (Figure 4.8). 4310 outperformed Lipofectamine™ 2000, 

433, and 437 in both magnitude and duration of knockdown, achieving knockdown of 

~91% at 20 days pot-transfection compared to ~50% using Lipofectamine™ 2000. This 

is in contrast to other work in siRNA-mediated knockdown using other delivery methods, 

including naked siRNA and lipid-based vehicles, in which knockdown duration was 

reported as 15 days or less [146-149]. Even after 20 days, 4310-mediated siRNA 

knockdown was only beginning to decline. Based on knockdown data from flow 
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cytometry and the plate reader, 4310 at 150 w/w, which was not significantly different 

from 200 w/w, was used for later differentiation studies. 

 

4.4.5. E10 (cystamine)-mediated siRNA release 

 The base polymer B4-S3 shows great difference in siRNA binding ability 

depending on its end-capping amine group (Figure 4.9). 4310 is able to bind more tightly 

than is 433 at lower weight ratios upon initial complexation, which may explain why it is 

effective at lower w/w compared to other PBAEs in our study. The addition of reducing 

agent GSH, however, has no apparent effect on 433-siRNA complexes, while 4310-

siRNA complexes show complete release immediately after addition of GSH. Because 

intracellular GSH concentration is approximately three orders of magnitude higher than 

extracellular GSH concentration is [150], this polymer’s sensitivity to GSH could prove 

very useful for quick and efficient environmentally-triggered intracellular siRNA 

delivery once the polymeric nanoparticles enter the cytoplasm. 

 It is known that PBAEs are able to facilitate high cellular uptake (due to their net 

positive charge) as well as endosomal escape via the proton sponge mechanism because 

of titratable tertiary amines in the polymer backbone [151]. Just as insufficient release of 

DNA plasmids can have an inhibitory effect on their transcription and function [152, 

153], we also expect that efficient release is important for optimal delivery of siRNA. As 

such, polymers like 4310 and other E10-terminated polymers may serve the dual purpose 

of strengthening the initial binding interaction between polymer and siRNA due to the 

presence of additional terminal primary amines as well as facilitating triggered release in 
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the cytoplasm after cellular uptake due to the presence of disulfide linkages adjacent to 

these terminal primary amines. 

 

4.4.6. siBCL2L2 transfection and its effect on osteogenesis 

 To ensure that the knockdown of GFP as a reporter would translate to successful 

knockdown when using functional genes, we tested our delivery system on MSC 

osteogenic differentiation. siBCL2L2 was delivered to MSCs and, after 4 weeks of 

cultivation under osteogenic conditions, osteogenesis was evaluated. Alizarin Red S 

staining (Figure 4.10, A-D) revealed that cells transfected with siBCL2L2 stained more 

intensely than did both cells transfected with scrRNA and untreated cells, demonstrating 

increased osteogenic differentiation. As expected, cells cultured under standard growth 

conditions, rather than differentiation conditions, did not stain under Alizarin Red S. We 

also assayed the calcium content in each group to evaluate osteogenesis further to 

discover that the Alizarin Red S findings correlated with quantitative analysis of calcium 

content. Cells transfected with siBCL2L2 showed statistically higher calcium relative to 

all other groups (Figure 4.10, E). These results were not due to differences in cell 

number, as indicated by the results of the DNA assay, which revealed no significant 

differences in cell number between groups (Figure 4.10, F). 

 Our results indicate that 4310-mediated knockdown of BCL2L2 is capable of 

inducing a functional outcome in MSCs, enhancing osteogenesis over the course of 4 

weeks. This study demonstrates a proof-of-principle using our environmentally-triggered 

bioreducible nanoparticle siRNA-delivery system. Critically, we have shown that 

cystamine-terminated poly(β-amino ester)s are effective for siRNA delivery to MSCs, 
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especially when used at a high weight ratio of polymer to siRNA. This result is supported 

by studies in the literature that report the use of reducible polymers for siRNA delivery, 

albeit in the absence of serum [154] or at a higher dosage and with lower efficacy [155, 

156]. Here, we were not only able to deliver siRNA-loaded nanoparticles in medium with 

10% serum and induce high knockdown (>70%), but also isolate the effects of the 

cystamine end-group from other effects due to the rest of the polymer. That the polymer’s 

terminal group has such a dominant effect on the properties of PBAEs, which are linear 

polymers with 10-20 subunits along the base polymer chain, is unexpected but 

emphasizes the importance of small changes to the molecular structure of PBAEs, a 

feature that our library-based approach is well-suited to address. 

 In conclusion for the first part of the chapter, a polymer screen of PBAEs resulted 

in the finding that bioreducible polymer vehicles, such as 4310, efficiently deliver siRNA 

to MSCs, resulting in knockdown that can have an effect on stem cell differentiation. 

With this finding, the investigation into PDGF-BB follows. 

 

4.5. Materials and methods: effect of PDGF-BB on osteogenesis 

4.5.1. Isolation and source of cells 

 A tissues obtained for this study were obtained under Institutional Review Board 

approved protocols with patient consent. To ensure the observed phenomena are cell-type 

specific rather than donor-dependent, the initial characterization study was performed 

using three donors for MSCs, denoted M1, M2, and M3; and three donors for ASCs, 

denoted A1, A2, and A3. Donor M1 (late 20s, male) was commercially obtained from 

Lonza (Basel, Switzerland), while donors M2 (32-year-old male) and M3 (27-year-old 
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male) were isolated at Case Western Reserve University following established marrow 

isolation procedures [88, 157, 158]. Briefly, aspirated iliac crest bone marrow was mixed 

with culture medium and centrifuged to remove adipocytes. MSCs were isolated from the 

resulting cell pellet via centrifugation in a Percoll gradient and the MSC-enriched fraction 

was plated. Donors A1 (54-year-old female) and A2 (50-year-old female) were isolated 

from lipoaspirate using established protocols [92, 93] at Johns Hopkins Medical 

Institutions, while donor A3 (47-year-old female) was isolated at Tulane University 

School of Medicine. Briefly, harvested lipoaspirate tissue was digested in 1 mg/mL 

collagenase type I (Worthington Biochemical Corporation, Lakewood, NJ) for 1 hour at 

37 °C. The released cells were then centrifuged to obtain the stromal vascular fraction 

pellet; the pellet was then resuspended and plated to obtain passage 0 ASCs. Cells from 

all six donors were characterized via flow cytometry for surface expression of CD31, 

CD34, CD73, CD90, and PDGFRβ as previously described [93]. In this study, PDGFRβ 

was studied specifically as it preferentially binds PDGF-BB. 

 

4.5.2. Culture conditions 

 For all experiments, cells were expanded for use at passage 2. Expansion medium 

consisted of Dulbecco’s Modified Eagle Medium (DMEM) with 4.5 g/L glucose (Life 

Technologies, Frederick, MD) supplemented with 10% v/v fetal bovine serum (FBS; 

Atlanta Biologicals, Flowery Branch, GA), 100 U/mL penicillin and 100 µg/mL 

streptomycin (Cellgro, Manassas, VA), and 1 ng/mL basic fibroblast growth factor 

(PeproTech, Rocky Hill, NJ). Subsequent to expansion, cells were cultured in one of four 

conditions: namely, the control (-), control (+), osteogenic (-), and osteogenic (+) 
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conditions. The control (-) medium consisted of DMEM with 1 g/L glucose, 100 U/mL 

penicillin and 100 µg/mL streptomycin, and 6% v/v FBS. Control (+) medium consisted 

of control (-) medium with the addition of 20 ng/mL recombinant human PDGF-BB 

(PeproTech), a concentration determined based on the work outlined in Chapter 2, section 

2.5.2 [73]. The osteogenic (-) medium consisted of control (-) medium with 10 mM β-

glycerophosphate (Sigma Aldrich, St. Louis, MO) and 50 µM ascorbic acid (Sigma 

Aldrich). Finally, osteogenic (+) medium consisted of osteogenic (-) medium with 20 

ng/mL PDGF-BB. For all conditions, PDGF-BB was replenished twice a week. Unless 

otherwise noted, all osteogenic cultured were carried out for 3 weeks. 

 

4.5.3. Characterization of mineralization response to PDGF-BB 

 MSCs and ASCs were cultured under control (-), control (+), osteogenic (-), and 

osteogenic (+) conditions for 3 weeks and then subjected to Alizarin Red S (Sigma 

Aldrich) or von Kossa (silver nitrate and sodium thiosulfate both from Sigma Aldrich) 

staining for qualitative assessments. Quantitatively, samples were subject to the Quant-iT 

PicoGreen dsDNA assay (Invitrogen, Carlsbad, CA) and the Stanbio LiquiColor calcium 

assay (Stanbio, Boerne, TX) to determine calcium content normalized to cell number. 

DNA content was converted to cell number using 6.24 pg/MSC and 7.23 pg/ASC, 

determined by performing the DNA assay on known numbers of the cells specifically 

used in this study (data not shown). 
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4.5.4. Real-time polymerase chain reaction 

 To investigate the genetic expression of MSCs and ASCs under the four 

conditions, RT-PCR was performed at 1, 2, and 3 weeks of culture for β-actin (BA), 

Runx2, osteocalcin (OCN), osteonectin (OSN), and collagen I (Col-I). Cells were 

digested using TRIzol reagent (Life Technologies) and the mRNA isolated with 

chloroform washes. The mRNA was further purified and concentrated using isopropanol 

and ethanol washes and used to produce cDNA using the iScript cDNA Synthesis Kit 

(Bio-Rad Laboratories, Hercules, CA). cDNA was then subject to RT-PCR using custom-

designed primers (Table 4.2). For all analysis, the delta-delta Ct method was used in 

which the housekeeping gene (BA) and the appropriate (-) group were subtracted from all 

other Ct readings. 

 

4.5.5. Monomer and polymer synthesis 

 Using the principle that bioreducible structures can effectively deliver siRNA as 

outlined in the first part of this chapter, bioreducible monomers and polymers were 

developed and synthesized for the current study. Bioreducible monomer 2,2’-

disulfanediylbis(ethane-2,1-diyl) (BR6) was synthesized as previously described [159, 

160]. Briefly, bis(2-hydroxyethyl) disulfide (10 mmol) was acrylated with acryloyl 

chloride (300 mmol) in the presence of trimethylamine (TEA; 300 mmol) in anhydrous 

tetrahydrofuran (THF) for 24 hours. TEA HCl precipitate was removed via filtration, and 

THF was removed via rotary evaporation. The product was further purified by dissolving 

it in dichloromethane (DCM) and washing five times with a 0.2 M solution of Na2CO3 

and three times with water. The organic phase was dried with Na2SO4 and DCM was 
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removed via rotary evaporation. BR6 structure and purity were verified by 1H NMR 

[159]. 

 Bioreducible PBAEs were synthesized in a method similar to Kozielski et al. 

[159]. Base monomer BR6 was polymerized with side chain monomer 4-amino-1-butanol 

(S4) at a ratio of 1.05:1 at 500 mg/mL in anhydrous THF at 60 °C for 24 hours while 

stirring. Polymers were end-capped at a concentration of 100 mg/mL in THF with 2-(3-

(aminopropyl)amino)methanol (E6) at 0.2 M for 1 hour at room temperature while 

stirring. Polymers were precipitated in diethyl ether to remove uncreated monomer and 

THF. The precipitate was recovered by centrifugation and solvent decanting. The 

polymer was washed and isolated a second time, and residual ether was removed under 

vacuum for 48 hours. The resulting polymer BR6-S4-E6 was stored in dimethyl sulfoxide 

at 100 mg/mL at –20 °C. 

 

4.5.6. Knockdown of PDGFRβ 

 siRNA against PDGFRβ (siPDGFRβ) was delivered to both MSCs and ASCs as 

follows. Nanoparticles were formed by dissolving siRNA and polymer separately in 25 

mM sodium acetate, mixing the siRNA and polymer solutions, and allowing 

nanoparticles to self-assemble for 1 minutes. The cell culture medium was removed and 

replaced with serum-free medium, then nanoparticle solutions were added directly to the 

cell culture media. Polymer was used at a final concentration of 180 µg/mL and siRNA 

concentration at 40 nM. Following a 2-hour incubation with cells, the nanoparticle-

containing media were removed and replaced with fresh, complete cell culture medium. 
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 At 1, 2, and 3 weeks, knockdown of PDGFRβ was quantified using both RT-PCR 

and flow cytometry via an antibody against the receptor (Santa Cruz, Santa Cruz, CA). 

Separately, siPDGFRβ was delivered to MSCs and ASCs and cells were cultured under 

control (-), osteogenic (-), and osteogenic (+) conditions for 3 weeks. After the culture 

period, calcium and DNA content were quantified as outlined above. 

 

4.5.7. Murine critically sized calvarial defect model 

 For the final portion of the study, two different cell groups were created by 

lentiviral transduction: (a) ASCs transduced with PDGFB (DNASU plasmid 

HsCD00437330 [161]) and (b) ASCs transduced with the fluorescent protein mCherry 

(plasmid kindly provided by Don Zack’s laboratory). Lentiviral production was produced 

using 293T cells and the ViraSafe Lentiviral Packaging System (Cell Biolabs, San Diego, 

CA). ASCs were seeded at 6000 /cm2, allowed to adhere overnight, and given virus at 8 × 

107 viral particles per milliliter for 4 hours (an approximate multiplicity of infection of 

80) under serum-free conditions. Expansion medium was added after the viral incubation 

step and transduction was allowed to continue for 72 more hours, after which medium 

was changed to clean expansion medium and the cells were allowed to proliferate to 

confluence. PDGFB-transduced ASCs were verified by RT-PCR and enzyme-linked 

immunosorbent assay (ELISA, PeproTech). In addition, cells were cultured under control 

(-) and osteogenic (-) conditions for 3 weeks and the subject to DNA and calcium assays 

as outlined above to determine whether the overexpressed PDGF-BB was having a 

mitogenic and mineralization effect. 
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 For the in vivo study, ASCs were encapsulated at 2 × 107 /mL in fibrin gels 

containing final concentrations of 8 mg/mL fibrinogen and 2 U/mL thrombin. Cells in 

fibrin were seeded into porous PCL scaffolds (diameter: 4 mm, height: 644 µm, porosity 

60%) mixed with DCB particles printed with our custom 3D printer as outlined in 

Chapter 3. The scaffold geometry was chosen to match the geometry of the murine 

calvarial defect described below. In addition, a third group was produced with the same 

scaffolds and fibrin, but containing no cells. For seeding, cells were suspended in 

fibrinogen and thrombin was added at the proper ratio. Prior to gelation, the mixture was 

pipetted into the pore spaces of the scaffold and subsequent gelation held the cells in 

place within the pore spaces. 

 Eight 8-week-old male FOXN1-knockout mice (Jackson Laboratories, Bar 

Harbor, ME) were operated on, resulting in 16 sites with n = 4 for ASCs overexpressing 

PDGFB, n = 4 for ASCs transduced with mCherry, n = 4 for acellular controls, and n = 4 

unoperated controls. In all cases, IACUC-approved procedures were followed. For 

creation of the defect, previously established methods were adapted [94, 95]. Briefly, a 4-

mm circular knife (Medicon, Tuttlingen, Germany) was used to excise 4-mm pieces of 

calvaria, with special care made to avoid damaging the underlying dura mater. The 

location of the defect was kept consistent from animal to animal by placement between 

the coronal and lambdoid sutures and approximately 1 mm lateral to the sagittal suture. 

 Mice were imaged using computed tomography (CT) at 8 weeks post-

implantation, sacrificed, and calvariae were excised for histological analysis. Imaging 

was performed on a Gamma Medica X-SPECT small animal system (Gamma Medica, 

Salem, NH) with 80 kV peak voltage and 600 µA current. Reconstruction was performed 
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with voxel size 100 µm and threshold 15300/65535. For sectioning, samples were fixed 

in 3.7% formalin overnight and fixed samples were infiltrated with 30% sucrose, frozen 

in Tissue Tek OCT medium, and cut into 10 µm thick sections. Cryosections were 

mounted and dried on Superfrost Plus slides, followed by rehydration in water before 

staining with von Kossa/van Gieson, haematoxylin/eosin (H&E; Sigma Aldrich), or 

immunohistochemistry. Immunohistochemistry was performed by blocking for 30 

minutes (10% normal serum/0.2% Triton X), followed by overnight incubation with 

primary antibody (0.5 µg/mL mouse anti-human Lamin A/C; Abcam, Cambridge, 

Britain) at 4 °C, 1 hours incubation with Cy3-conjugated donkey anti-mouse (Jackson 

ImmunoResearch, West Grove, PA) at room temperature, and nuclear counterstain with 

4’-6-diamidino-2-phenylindole (DAPI; Sigma Aldrich). Cryosections were imaged using 

an inverted Zeiss Axio Observer microscope. 

 

4.5.8. Statistics 

 Unless otherwise noted, statistical comparisons used the two-tailed Student’s t-

test at α level 0.05. 

 

4.6. Results: effect of PDGF-BB on osteogenesis 

4.6.1. Cell characterization 

 Surface marker characterization marched well-documented profiles for 

MSCs/ASCs: all cells were negative for CD31, the MSCs negative for CD34, the ASCs 

weakly positive for CD34, and all cells were positive for both CD73 and CD90 (Figure 

4.11). 
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4.6.2. Osteogenic response of MSCs and ASCs to PDGF-BB 

 After 3 weeks of culture, MSCs and ASCs were stained with Alizarin Red S and 

von Kossa for a qualitative assessment of mineralization. MSCs and ASCs stained 

negatively under both control (-) and control (+) conditions (Figure 4.12, A-H), as no 

calcium phosphate source was present in these conditions. Under osteogenic (-) 

conditions, both cell types stained positively for mineralization (Figure 4.12, I-L); the 

ASC group stained more intensely positive under osteogenic (+) conditions (Figure 4.12, 

O-P). MSCs under osteogenic (+) conditions stained with similar intensity to MSCs 

under osteogenic (-) conditions (Figure 4.12, M-N). Because PDGF-BB is a mitogen, we 

considered the possibility that the more intense staining with ASCs was simply due to the 

presence of more cells. To address this, calcium content was quantified and normalized to 

cell counts. ASCs under osteogenic (+) conditions displayed significantly higher calcium 

per cell than did ASCs under osteogenic (-) conditions, an observation that did not hold 

for MSCs; there was no difference in calcium per cell between MSCs under osteogenic 

(-) conditions versus MSCs under osteogenic (+) conditions (Figure 4.12, bottom). In 

particular, this held for cells across all donors examined. Also of note, in all cases PDGF-

BB acted as a mitogen, with osteogenic (+) groups displaying higher cell counts at the 

end of 3 weeks compared to cells under osteogenic (-) conditions; this held regardless of 

cell type and donor (Figure 4.11, top), confirming that the MSCs were able to respond to 

the PDGF-BB, just not in an osteogenic manner. 

 To determine whether there was a genetic mechanism underlying this data, RT-

PCR was performed at 1, 2, and 3 weeks of culture. Cells cultured under control (+) 
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conditions, despite being unable to form mineral, displayed a genetic response: MSCs 

generally downregulated osteogenic genes compared to MSCs under control (-) 

conditions, whereas ASCs generally upregulated those genes (Figure 4.13, left). With the 

addition of osteogenic factors, the same trend held, with ASC expression of the same 

genes upregulated under osteogenic (+) conditions compared to expression levels under 

osteogenic (-) conditions and the opposite true for MSCs (Figure 4.13, right). 

 

4.6.3. Loss-of-function  

 R646 knocked down PDGFRβ well, achieving a peak knockdown approaching 

100% at 1 week post-transfection and declining afterward to ~30% at 3 weeks post-

transfection (Figure 4.14, top). After 3 weeks of culture under control (-), osteogenic (-), 

and osteogenic (+) conditions (the control (+) group was omitted in this experiment since 

no mineralization occurred in the absence of osteogenic medium ), cells were subjected to 

calcium per cell quantification to determine the effect of knocking down the receptor. 

MSCs produced similar levels of calcium per cell irrespective of the presence of PDGF-

BB or whether cells were treated with siRNA, reinforcing the notion that PDGF-BB did 

not directly affect MSC mineralization (Figure 4.14, bottom). In contrast, while the 

silenced ASCs show no statistically significant difference between osteogenic (-) and 

osteogenic (+) groups, untreated ASCs and ASCs given scrRNA retained a statistically 

higher calcium per cell reading in the osteogenic (+) groups as compared to the 

osteogenic (-) groups via a two=way ANOVA with p<0.05 (Figure 4.14, bottom) despite 

the knockdown being less pronounced in ASCs at the mRNA level at later time points. 
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This loss-of-function data further supports the observations that ASCs upregulate calcium 

production on a per-cell basis when signaled with PDGF-BB, whereas MSCs do not. 

 

4.6.4. Transduction of PDGFB into ASCs  

 Both RT-PCR and PDGF-BB ELISA confirmed the efficacy of transduction, with 

the PDGFB mRNA and protein greatly upregulated compared to cells transduced with 

mCherry by 2 weeks post-transduction (Figure 4.15, top). PDGFB-transduced cells also 

proliferated more under osteogenic conditions (Figure 4.15, bottom left) and produced 

more calcium per cell (Figure 4.15, bottom right) compared to mCherry-transduced 

cells, indicating the overexpressed PDGFB gene was having a functional effect on ASCs. 

PDGFB-transduced MSCs displayed similar increases in proliferation (Figure 4.16, 

bottom left), but the transduction did not have an effect on MSC calcium per cell 

(Figure 4.16, bottom right). 

 Transduced cells were encapsulated into fibrin gels and seeded into custom-

printed scaffolds and implanted for 8 weeks within the murine calvarial defect. CT 

imaging of murine calvariae at 8 weeks post-implantation (Figure 4.17, A-B) showed a 

significantly higher volume of regenerated bone within the PDGFB-transduced groups 

compared to both other groups via one-way ANOVA both when considering absolute 

bone volume (Figure 4.17, C) or when normalizing bone volume to unoperated 

contralateral controls (Figure 4.17, D). In particular, the higher mineral content was 

observed throughout the scaffolds (both outer and inner regions), strongly suggesting that 

transplanted ASCs themselves were being signaled by the elevated PDGF-BB 

concentrations to undergo osteogenesis. 
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 To investigate this further, we tested whether human ASCs remained at the defect 

site. Excised scaffolds were sectioned and stained with human-specific Lamin A/C with 

DAPI counterstain for retention of human cells (Figure 4.18, left), H&E for general 

scaffold cellularity and tissue formation (Figure 4.18, middle), and von Kossa/van 

Gieson for bone formation (Figure 4.18, right). All scaffolds were populated with cells 

and matrix as evidenced by DAPI and H&E stains. While a small amount of von Kossa 

staining occurred in the mCherry-transduced group with some surrounding osteoid, there 

was much more mineralized tissue in the PDGFB-transduced group. Of particular note, 

positive human-specific staining was apparent in both mCherry-transduced and PDGFB-

transduced groups, indicating the human cells were still present 8 weeks post-

implantation and were potentially contributing to the tissue formation within the scaffold. 

As a control, the acellular scaffolds, while showing DAPI staining, had no human-

specific staining, indicating the resident cells were of murine origin. 

 

4.7. Discussion: effect of PDGF-BB on osteogenesis 

 In this study, MSCs and ASCs were compared directly in their osteogenic 

response to PDGF-BB. The findings reported in this study simultaneously confirm 

previous research showing that PDGF-BB is not directly osteoinductive on MSCs [113-

117] while also confirming more recent findings that PDGF-BB can directly enhance 

ASC osteogenesis [73, 93]. Both correlative (Figure 4.12) and loss-of-function (Figure 

4.14) evidence support the observations that the divergent mineralization responses to 

PDGF-BB are marked. Since it has been previously shown [73] that dexamethasone is 

not essential for mineralization of ASCs, we omitted it from this study; however, due to 
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the prevalence of dexamethasone in MSC osteogenic culture, we also compared the 

mineralization response of MSCs and ASCs to PDGF-BB in the presence of 100 nM 

dexamethasone. While the addition of dexamethasone resulted in a two-fold increase of 

calcium per cell for MSCs and three-fold increase of calcium per cell for ASCs (Figure 

4.19), the mineralization of MSCs was still unaffected by the addition of PDGF-BB, 

while it was enhanced in ASCs. In particular, a key finding in this study is the differential 

response between MSCs and ASCs when examining the gene expression of osteogenic 

genes Runx2, OCN, and OSN (Figure 4.13), indicating that the observed difference in 

mineralization arise from fundamental genetic differences in these two cell populations. 

Indeed, ASC expression of Runx2 and OCN was enhanced in the presence of PDGF-BB 

even in the absence of osteogenic factors, indicating that PDGF-BB itself is 

osteoinductive to ASCs but not to MSCs. 

 The impetus for hypothesizing a fundamental difference between MSCs and 

ASCs is not new and arises from subtleties observed in the literature. For example, the 

generally accepted surface marker profile for ASCs includes a weakly positive CD34 

population [162, 163], while MSCs are traditionally reported to be negative for CD34 

[31, 162], an observation supported by this study (Figure 4.11, bottom). In addition, 

ASCs possess more proliferative potential than do MSCs [164]. Most importantly, there 

have been several studies demonstrating a difference in potency between MSCs and 

ASCs, with some groups suggesting an increased capacity for osteogenic differentiation 

of MSCs [165, 166] and a penchant for adipogenic differentiation in ASCs [166, 167]. 

Despite these observations, other studies have shown that by changing culture conditions 

(e.g. by the addition or subtraction of growth factors), differentiation potential can be 
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modulated between the cell types [168], thus suggesting the innate biochemistries of 

MSCs and ASCs are different. 

 While differences in potency are not generally a subject of controversy, the 

mechanisms underlying these differences are still poorly understood. It has been shown 

that MSCs express a higher preponderance of genes associated with osteogenesis [165], 

while ASCs display higher expression of adipogenic genes [169]. The possibility of 

epigenetic mechanisms underlying differences in lineage-specific gene expression has 

been investigated, albeit not as extensively. For instance, osteo-specific genes such as 

osteoglycin and osteopontin have been shown to feature different levels of methylation in 

MSCs and ASCs [170, 171]. While delineating genetic and epigenetic mechanisms is 

outside the scope of this study, the finding that gene expression of Runx2, OCN, and 

OSN differed between MSCs and ASCs with respect to the presence of PDGF-BB may 

be well-supported in this context. Taken together, previous studies into MSC and ASC 

stem cell biology and lineage potency provide ample motivation for rigorously 

delineating differences in response to growth factors. 

 The original impetus for investigating the role of PDGF-BB specifically in bone 

repair arises from its native presence in the fracture site [111, 112] and the clinical 

observation that injection of PDGF-BB accelerates bone regeneration [74]. Given 

previous results with MSCs, confirmed by the results of this study, the idea that PDGF-

BB in a fracture site enhances repair in an indirect fashion is well-supported. For 

instance, the role of PDGF-BB in recruiting vascular-stabilizing cells is well-studied: 

endothelial cells invading a region secrete PDGF-BB to attract pericytes that then wrap 

around the nascent vasculature, stabilizing the network [75, 76]. Given the observation 
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that bone forms around a vascular template [112, 172-174], the vascular stabilization of 

PDGF-BB in a fracture site may be a possible mechanism for indirect enhancement of 

bone repair. Such indirect mechanisms would be the sole mechanisms in a tissue 

engineering approach using MSCs in conjunction with PDGF-BB; however, a tissue 

engineering approach using ASCs instead may take advantage of a second mechanism – 

that the PDGF-BB may directly enhance the osteogenesis of implanted ASCs while 

retaining the establishes vascular-stabilizing properties. The potential for this additional 

mechanism underscores the importance of critically defining differences between cell 

populations such that a tissue engineered graft can take full advantage of both cellular 

and biomolecular components. 

 The clinical advantages of PDGF-BB itself are underscored when comparing to 

the current gold standard for growth factor-based bone regenerative therapies, BMP2. 

The drawback of BMP2 use, the requirement for supraphysiological doses, was discussed 

in Chapter 2, section 2.5.2. As shown before [73] and in the current study, a robust 

enhancement of ASC mineralization in response to PDGF-BB occurred at a concentration 

of 20 ng/mL, a concentration comparable to physiological levels within a fracture site 

[111, 175]. In particular, while ASCs cultured under osteogenic (-) conditions tended to 

produce less calcium per cell than did identically cultured MSCs, ASCs cultured under 

osteogenic (+) conditions not only produced more calcium per cell than did ASCs 

cultured under osteogenic (-) conditions, but also produced calcium levels at or above 

levels from MSCs cultured under osteogenic (-) conditions (Figures 4.12 and 4.14, 

bottom). This observation held across the six donors investigated in this study, indicating 

a donor-independent phenomenon. Taken together, these considerations suggest that the 
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use of PDGF-BB in clinical bone regenerative therapy in conjunction with ASCs may be 

an attractive option alongside more traditional approaches. 

 To illustrate the in vivo regenerative potential of tissue engineered constructs 

using both ASCs and PDGF-BB, the murine calvarial defect model showed a marked 

difference in implanted ASCs overexpressing PDGFB compared to implanted ASCs 

without PDGF-BB. CT quantification of newly mineralized tissue was evidently higher 

from ASCs with PDGF-BB (Figure 4.17) and positive von Kossa staining in the 

PDGFB-transduced groups confirmed this observation (Figure 4.18). We considered the 

possibility that the regenerated bone was solely due to invading murine cells; however, 

the presence of human-specific staining within both PDGFB-transduced and mCherry-

transduced groups (Figure 4.18, left), the stark contrast of mineralized volume between 

the two, and the presence of mineralized tissue in the PDGFB-transduced scaffold center 

(Figure 4.17, B and Figure 4.18, right) suggests the implanted human cells directly 

contributed to increased bone regeneration. While there is previous data suggesting this 

[176], we have shown here that the contribution of implanted ASCs is greatly enhanced 

by the presence of PDGF-BB signaling. A more rigorous investigation on the exact 

contribution of implanted ASCs within an in vivo bone defect will be the subject of a 

future study. 
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Tables: Chapter 4 

 

Table 4.1: Polymer molecular weight and polydispersity index measured by gel 

permeation chromatography. 
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Table 4.2: Primer sequences used for real-time polymerase chain reaction to study the 

osteogenic effect of PDGF-BB. 
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Figures: Chapter 4 

 

Figure 4.1: Polymer synthesis reaction and monomer structures. One backbone (B) and 

one sidechain (S) monomer are mixed to form an alternating copolymer via Michael 

addition. The resulting acrylate-terminated base polymer is functionalized with one end-

cap (E) monomer. 
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Figure 4.2: Flow cytometry (A and B) and fluorescence/brightfield imaging (C and D) 

confirmed the success of eGFP transduction of MSCs. 
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Figure 4.3: Transduced (top) and untransduced (bottom) MSCs were exposed to 

adipogenic (B and F) and osteogenic (D and H) cues. A corresponding set of cells was 

given expansion medium as a control (A, C, E, and G). Transduced cells underwent 

adipogenesis and osteogenesis comparable to untransduced controls as shown by Oil Red 

O staining of fat vacuoles and Alizarin Red S staining of calcification. Scale bar: 200 µm. 
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Figure 4.4: NMR spectra show the presence of expected peaks, including those 

corresponding to acrylate protons in the base polymer B4-S3 (top left), which are no 

longer present after end-capping is complete (right). 
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Figure 4.5: Nanoparticle tracking analysis. Number-averaged mean and mode particle 

size for all tested polymers was between 80 and 150 nm. Nanoparticle concentration was 

0.5-2 × 109 /mL. 
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Figure 4.6: Nanoparticle induced knockdown and relative metabolic activity. (A) eGFP 

signal from cells transfected with siRNA was normalized to the signal from cells 

transfected with scrRNA and subtracted from 100% to calculate knockdown. Knockdown 

data are from 12 days post-transfection and *p<0.01. (B) Relative metabolic activity of 

nanoparticle-treated samples compared to untreated control. Metabolic activity 

measurements are from 24 h post-transfection. 
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Figure 4.7: Median GFP intensity per cell, measured by flow cytometry 12 days after 

transfection with 4310, showed knockdown significantly superior to Lipofectamine™ 

2000 transfection (**p<0.01). 
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Figure 4.8: Comparison between 4310 and other vehicles of siRNA delivery. (A) At a 

weight ratio of 150 w/w, 433, 437, and naked siRNA induced little to no knockdown in 

contrast to Lipofectamine™ 2000 and 4310. 4310, in turn, outperformed 

Lipofectamine™ 2000, with robust knockdown still evident 20 days post-transfection. 

Fluorescence microscopy (B-I) supported observations from the plate reader. Scale bar: 

200 µm. 
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Figure 4.9: PBAE/siRNA binding evaluation. PBAE was added to siRNA at varying 

weight ratios, mixed with wither PBS alone or PBS with GSH (final 5 mM GSH 

concentration) and then added to the lanes of agarose gels. There is a progressively 

tighter binding and greater retardation of siRNA in the gel with greater weight ratios. 

4310-based nanoparticles release siRNA in the presence of GSH, whereas 433-based 

nanoparticles do not release siRNA in the presence of GSH. 
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Figure 4.10: Quantification of osteogenesis and cell number. Alizarin Red S staining 

showed noticeably denser staining from cells given (A) siBCL2L2 + OM compared to 

cells given (B) scrRNA + OM and (C) cells given only OM. (D) Cells given EM only did 

not stain under Alizarin Red S. (E) Quantitatively, the siBCL2L2 + OM group produced 

more calcium than did the scrRNA + OM group and the OM-only group. No significant 

difference was found in calcium content between the scrRNA + OM and OM-only 

groups. (F) A DNA assay on replicate samples showed no difference in cell number 

between groups (one-way ANOVA (p>0.05), ruling out increased cell density as a cause 

for the increased calcium content. OM = osteogenic medium, EM = expansion medium. 

Scale bar: 200 µm. 

 



114 
 

 

Figure 4.11: Characterization of cells used in this study. To ascertain that all cells could 

respond to exogenous PDGF-BB, cell proliferation was quantified by DNA assay at three 

weeks of culture under osteogenic (+) conditions (top). Indeed, all six cell populations 

irrespective of type and donor showed increased cell numbers relative to osteogenic (-) 

controls. Surface marker characterization of all six donors revealed profiles in good 

agreement with established features of mesenchymal stem cells (bottom; data reported as 

mean and standard error of mean computed from all three donors for a given cell type). 
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Figure 4.12: MSC and ASC mineralization under the effects of exogenous platelet-

derived growth factor BB (PDGF-BB). MSCs and ASCs were cultured under control (-), 

control (+), osteogenic (-), and osteogenic (+) conditions for 3 weeks. Staining after 3 

weeks of culture revealed no mineralization under either control condition (A-H) and an 

enhancement of mineralization under the presence of PDGF-BB in ASCs (O, P v. K, L) 

but not in MSCs (M, N v. I, J). Quantitative calcium per cell analysis revealed the 

increased mineralization was on a per-cell basis and the ASC-specific phenomenon was a 

donor-independent effect over six donors (bottom). Scale bar: 100 µm. *p<0.05. 
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Figure 4.13: Gene expression of MSCs and ASCs under the effect of exogenous PDGF-

BB. Gene expression analysis of osteogenic genes via RT-PCR showed that exogenous 

PDGF-BB under control (+) conditions tended to downregulate genes in MSCs while 

upregulating them in ASCs (left; normalized to expression under control (-) conditions, 

variation shown by dotted lines). The same observations held when considering 

osteogenic conditions (right; normalized to expression under osteogenic (-) conditions, 

variation shown by dotted lines). All expression quantities are relative to β-actin as 

housekeeping gene. Red asterisk denotes downregulation while green asterisk denotes 

upregulation compared to (-) conditions, p<0.05. 
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Figure 4.14: Loss-of-function experiment for the effect of exogenous PDGF-BB. 

siPDGFRβ was delivered to MSCs and ASCs using a reducible poly(β-amino ester) 

vehicle. Knockdown of receptor relative to a scrambled control was evident for more than 

3 weeks via both RT-PCR and antibody-based flow cytometry (top). While MSC 

mineralization at 3 weeks post-transfection was unaffected irrespective of treatment or 

the presence of PDGF-BB, silenced ASCs lost the enhancement of mineralization under 

osteogenic (+) conditions in contrast to untreated ASCs or ASCs given the scrambled 

control. *p<0.05 compared to corresponding osteogenic (-) quantities via two-way 

ANOVA. 
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Figure 4.15: Verification of lentiviral transduction. Lentivirus containing the gene 

PDGFB or mCherry was used to transduce ASCs. PDGFB-transduced ASCs 

overexpressed the gene and produced more protein compared to mCherry-transduced 

controls as determined by RT-PCR and ELISA (top). The produced protein had a 

functional effect, increasing cell proliferation and calcium-per-cell content as evidenced 

by DNA and calcium assays (bottom). *p<0.05. 
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Figure 4.16: Lentiviral transduction on MSCs. Similar to studies with ASCs (shown in 

Figure 4.15), MSCs were transduced with PDGFB or mCherry. Transduction was 

verified by increased mRNA and protein expression (top) as well as by a mitogenic 

response (bottom left); however, the transduction had no effect on MSC calcium 

production per cell (bottom right). *p<0.05. 
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Figure 4.17: Computed tomography analysis of in vivo regeneration. Scaffolds seeded 

with mCherry-transduced ASCs (A, right defect), PDGFB-transduced ASCs (B, right 

defect), or empty fibrin (A-B, left defects) were implanted in critically sized 4-mm-

diameter murine calvarial defects for 8 weeks. Computed tomography reconstructions 

(A-B) were used for quantification of bone volume within the defect. In terms of both 

absolute bone volume (C) and bone volume normalized to unoperated values (D), the 

PDGFB-transduced ASCs produced significantly more bone volume beginning at a 2-mm 

radius within the defect compared to both other groups. *p<0.05 via one-way ANOVA. 
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Figure 4.18: Histological analysis of in vivo regeneration. Eight weeks post-

implantation, mice were sacrificed and scaffolds excised. Immunohistochemistry for 

human-specific Lamin A/C (left), H&E (middle), and von Kossa/van Gieson (right) was 

performed to assess retention of human cells, scaffold cellularity, and bone formation, 

respectively. The majority of mineralization (von Kossa staining, black) occurred in the 

PDGFB-transduced group. The implanted human cells (human Lamin A/C, green) were 

retained within all scaffolds, with positive staining evident in all groups except for the 

acellular group, where no human cells were implanted. Scale bar: 200 µm. 
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Figure 4.19: Effect of dexamethasone on MSC and ASC osteogenesis. To confirm that 

PDGF-BB enhances ASC, but not MSC, osteogenesis regardless of the presence of 

dexamethasone, 100 nM dexamethasone was added to all osteogenic medium conditions 

for both cell types and the calcium/cell experiment repeated for three weeks. 

Dexamethasone greatly increased calcium per cell for both MSCs and ASCs, but the 

PDGF-BB-dependent enhancement of mineralization remained specific to ASCs. 
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Chapter 5: in vivo imaging of implanted stem cells 

 This chapter may be adapted into a future publication. 

 

5.1. Introduction 

 The use of stem cells in tissue engineered constructs is prevalent and is motivated 

by evidence that stem cells have beneficial effects on healing of defects. For instance, 

cellular constructs implanted into critically sized rat femoral defects resulted in 

significantly higher regenerated bone volume, maximum torque, and torsional stiffness 

compared to acellular controls [177]. In another study, histological analysis of an 

implanted construct in a human mandibular defect revealed dramatically higher amounts 

of new bone in bioprinted cellular constructs compared to scaffold-only implants [178]. 

As such, while it is evident that stem cells can greatly augment tissue engineered 

methods, the action of implanted stem cells within tissue engineering constructs remains 

a poorly understood subject as discussed in Chapter 1, section 1.4. The classical 

paradigm, that implanted stem cells directly differentiate into replacement tissue, was 

called into question from studies that found widely varying levels of implanted stem cell 

retention. A study performing histology on constructs excised 3 weeks post-implantation 

in a murine calvarial defect found that only ~5% of the area fraction consisted of retained 

implanted cells [179]. A different study, also using the murine calvarial defect model, 

visualized implanted stem cells by bioluminescence imaging (BLI) and reported little loss 

of signal 3 weeks post-implantation [118], suggesting high cell retention. Still other 

studies have been wholly unable to find implanted stem cells post-implantation [177]. 

Given that stem cells take around 3 weeks to differentiate into bone in vitro, the 
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inconsistency of their long-term presence in implant sites provides ample motivation for 

further investigation on whether direct differentiation is actually occurring in vivo. 

 To perform such an investigation requires an in vivo stem cell imaging modality 

with specific capabilities. First, the modality should allow for longitudinal tracking – a 

given stem cell population implanted in a given animal should be monitored over a period 

of time rather than taking timepoints from different populations in different animals 

[180]. This consideration is due to the heterogeneity between cells and animals: a process 

occurring in one animal may not necessarily be reflective of the process occurring in 

another. Second, the resolution of the modality should be high enough such that the 

spatiotemporal profile of implanted cells can be well-defined. Another consideration for 

resolution is the ability to correlate the spatiotemporal profile of implanted cells with 

high-resolution tissue imaging modalities, such as computed tomography as has been 

used previously in this dissertation. As a benchmark for resolution, previous studies have 

shown that high-resolution computed tomography methods can visualize trabecular 

architecture with a voxel size of ~80 µm3 [181]. Third, the imaging modality should be 

non-invasive to both the animal and to the cells [180]. Imaging should observe rather 

than interfere, and a modality that alters the course of stem cell behavior in vivo would 

give altered information about in vivo regenerative processes. Finally, the modality 

should feature depth-independence for scalability to large-animal models. Small-animal 

models do not always recapitulate in vivo processes in larger organisms, such as humans. 

For instance, mass transport considerations that are absent in a murine critically sized 

defect (~mm) are major challenges in human critically sized defects (~cm) [182]. As 

such, imaging modalities must be able to visualize implants in large animals without 
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attenuation of signal due to depth within the body for a clear understanding of how 

implanted stem cells behave in models that can recapitulate the situation in patients. 

 Several imaging modalities have emerged to monitor implanted stem cells; 

however, each has key drawbacks related to one or more of the above requirements. For 

instance, the simplest and perhaps the most widely used method of detecting implanted 

cells is to sacrifice the animal, excise the implant, and perform histology, as was shown 

in Figure 4.18. This method is invasive and not longitudinal, meaning it is impossible to 

visualize whether the implanted ASCs formed bone over the course of the study. It is 

only possible to extract a correlation between the presence of human cells and the 

presence of mineral at the final timepoint of the study. 

 Another class of methods that has been used can be referred to as particle-based 

methods, in which particles detectable under an imaging modality, such as MRI, are 

inserted into implanted cells. For MRI, the particles are generally magnetic iron-based, 

such as superparamagnetic iron oxide (SPIO) or bionized nanoferrite (BNF) nanoparticles 

[183-186]. MRI fits the requirements that have been outlined; however, the particle-based 

methods of labeling cells have two distinct drawbacks. First, it has been shown that 

labeling MSCs with SPIO nanoparticles negatively affects their differentiation capability 

down the three classical mesenchymal lineages [187]. In addition, our own studies into 

the effect of BNF labeling of ASCs has shown that it negatively inhibits cell viability as 

determined by MTS. At the concentrations used in literature (600 µg/mL [185]), ASCs 

experienced a decrease in viability of around 40% (Figure 5.1). A second drawback is 

the ability of macrophages to uptake the nanoparticles after implanted cell death. Since 

the particles are intact and detectable, MRI will still visualize them, despite the loss of 
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implanted cells [188]. Data also suggests this occurs with other particle-based imaging 

modalities, such as with quantum dots [177]. 

 To overcome this drawback, live-cell imaging reporters have been used. The main 

modality in this category is luciferase-based bioluminescence, which has been widely 

used for visualizing processes in vivo [180]. Implanted stem cells expressing the 

luciferase gene would be exposed to luciferin, which would be converted to 

bioluminescence-emitting oxyluciferin only if living cells are actively expressing 

luciferase. As such, dead cells cannot be inadvertently detected under BLI. BLI is easy to 

use and is amenable for non-invasive, longitudinal, in vivo imaging of implanted stem 

cells. Despite this, BLI is a low-resolution method, generally used for whole-body 

imaging, and the attenuation of bioluminescence through tissue limits the method to 

small animals. It is estimated that for each centimeter of tissue bioluminescence must 

pass through, there is a 10-fold attenuation in signal [189]. 

 A new imaging modality was developed that takes advantage of chemical 

exchange saturation transfer (CEST), a process in which a proton on a biomolecule is 

saturated by a magnetic pulse and transfers to surrounding water protons, thus enhancing 

the contrast of the original biomolecule [190, 191]. To exploit this property, biomolecules 

containing CEST-compatible protons are aggregated in cells, thereby rendering the cells 

visible under CEST-MRI. For example, it has been shown that a chain of lysine residues 

contains a CEST-compatible amine proton that has a resonant saturation frequency of 

3.76 ppm, compared to water at 0 ppm [192]. As such, if cells are transfected/transduced 

with a gene encoding long lysine chains, the cells will be visible under CEST-MRI at 

3.76 ppm. A newer but similar method instead overexpresses a thymidine kinase – 
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specifically, herpes simplex virus type 1 thymidine kinase (HSV1-tk) – that then traps a 

modified thymidine (containing a CEST-compatible proton) inside the cell, thereby 

allowing for visibility under CEST-MRI at approximately 5 ppm [193, 194]. This method 

relies on MRI and is therefore high-resolution and depth-independent. It requires the 

labeled cells to be alive and expressing the CEST agent (or thymidine kinase to entrap 

and concentrate the CEST agent), so it is similar to the live-cell tracking properties of 

BLI. MRI also allows for longitudinal and non-invasive imaging. These considerations 

suggest CEST-MRI may be an attractive imaging modality to monitor implanted stem 

cells, satisfying the required capabilities outlined above. 

 In this study, CEST-MRI is investigated in its potential to monitor implanted 

ASCs in the murine calvarial defect. ASCs were labeled and assessed for their 

proliferation as well as for tri-lineage differentiation potential. Following that, they were 

implanted in the murine calvarial defect and imaged under CEST-MRI. 

 

5.2. Materials and methods 

5.2.1. Labeling of ASCs 

 P2 ASCs were transduced to express HSV1-tk, the intended use of which is to 

entrap 5-methyl-5,6-dihydrothymidine (5-MDHT), a modified thymidine kinase that was 

synthesized for compatibility with CEST-MRI [193]. HSV1-tk traps 5-MDHT within 

ASCs by phosphorylation of the 5’ hydroxyl. The –NH hydrogen is then able to exchange 

with nearby water hydrogens for CEST. Because 5-MDHT is trapped and concentrated 

within ASCs, the ASCs are visible under CEST-MRI. 
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 To transduce ASCs with HSV1-tk, lentiviral transduction was performed as 

described previously [195, 196]. Briefly, a lentiviral vector containing the gene for 

HSV1-tk under the cytomegalovirus (CMV) promoter was packaged into lentivirus using 

the ViraSafe Lentiviral Packaging System (Cell Biolabs, San Diego, CA) with 293T cells 

as a sacrificial cell type. Virus was applied to ASCs the day after plating at 6000 /cm2 and 

transduction was allowed to continue for 72 hours, at which point virus was removed and 

ASCs were allowed to grow to confluence. Transduction success was verified by Western 

blot and blasticidin selection. As a control for the experiments outlined below, ASCs 

were also transduced with green fluorescence protein (GFP) using the same procedure 

outlined above. 

 

5.2.2. Tri-lineage differentiation and proliferation of labeled ASCs 

 Osteogenic differentiation proceeded as previously described [85, 195, 196]. 

ASCs were plated at 5000 /cm2 and cultured for 3 weeks under Dulbecco’s Modified 

Eagle Medium (DMEM) with 1 g/L glucose, 6% v/v fetal bovine serum (FBS), 100 

U/mL penicillin and 100 µg/mL streptomycin (Cellgro, Manassas, VA), 10 mM β-

glycerophosphate (Sigma Aldrich, St. Louis, MO), and 50 µM ascorbic acid (Sigma 

Aldrich). Monolayers were assessed for osteogenic differentiation by Alizarin Red S 

(Sigma Aldrich) staining and calcium per cell assay. Calcium assay was performed with 

the Stanbio LiquiColor calcium assay (Stanbio, Boerne, TX) and cell number was 

determined with the Quant-iT PicoGreen dsDNA assay (Invitrogen, Carlsbad, CA). 

 Adipogenic differentiation proceeded as previously described [85, 195]. ASCs 

were plated at 10000 /cm2 and cultured for 3 weeks under DMEM with 4.5 g/L glucose, 
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10% v/v FBS, 100 U/mL penicillin and 100 µg/mL streptomycin, 5 µg/mL recombinant 

human insulin (Invitrogen), 1 µM dexamethasone (Sigma Aldrich), 200 µM 

indomethacin (Sigma Aldrich), and 500 µM 3-isobutyl-1-methylxanthine (Sigma 

Aldrich). Monolayers were assessed for adipogenic differentiation by Oil Red O (Sigma 

Aldrich) staining and triglyceride per cell assay. The triglyceride assay was performed 

with the Serum Triglyceride Determination Kit (Sigma Aldrich) and cell number was 

determined with the Quant-iT PicoGreen dsDNA assay. 

 Chondrogenic differentiation proceeded as previously described [85]. ASCs were 

pelleted at 250000 cells per pellet and cultured for 3 weeks under DMEM with 4.5 g/L 

glucose, 100 U/mL penicillin and 100 µg/mL streptomycin, 1 µM dexamethasone, 10 

ng/mL transforming growth factor β3 (PeproTech, Rocky Hill, NJ), 50 µM ascorbic acid, 

110 µg/mL sodium pyruvate (Sigma Aldrich), 40 µg/mL L-proline (Sigma Aldrich), and 

ITS (10 µg/mL bovine insulin, 5.5 µg/mL human transferrin, 6.7 ng/mL selenium; Sigma 

Aldrich). Pellets were cryo-sectioned and stained with Safranin O (ScholAR Chemistry, 

West Henrietta, NY) for qualitative assessment of chondrogenesis. For sectioning, 

samples were fixed in 3.7% formalin overnight and fixed samples were infiltrated with 

30% sucrose, frozen in Tissue Tek OCT medium, and cut into 10 µm thick sections. 

Cryosections were mounted and dried on Superfrost Plus slides, followed by rehydration 

in water before staining. Quantitatively, pellets were subject to glycosaminoglycan 

(GAG) per cell assessments using the 1,9-dimethylmethylene blue (DMMB) assay as 

follows. Pellets were first digested in papainase III buffer overnight at 60 °C. Buffer was 

prepared by creating PBE buffer consisting of 14.2 mg/mL Na2HPO4 (Sigma Aldrich) 

and 3.72 mg/mL ethylenediaminetetraacetic acid (EDTA; Sigma Aldrich), then 
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dissolving L-cysteine (Sigma Aldrich) at 1.75 mg/mL PBE buffer and adding papain 

(Worthington Biochemicals, Lakewood, NJ) at 6.64 U/mL. Supernatant from the digest 

was combined with a DMMB solution consisting of 3.36 mg/mL glycine (Sigma 

Aldrich), 2.62 mg/mL NaCl (Sigma Aldrich), and 17.68 mg/mL DMMB for 

quantification of GAG content. A separate set of pellets were subject to the Quant-iT 

PicoGreen dsDNA assay to determine cell number. 

 For proliferation, ASCs were plated at 5000 /cm2 and cultured for 3 weeks under 

DMEM with 4.5 g/L glucose, 10% v/v FBS, 100 U/mL penicillin and 100 µg/mL 

streptomycin, and 1 ng/mL basic fibroblast growth factor (bFGF; PeproTech). 

Monolayers were assessed with the Quant-iT PicoGreen dsDNA assay. 

 

5.2.3. In vivo imaging 

 ASCs were seeded into 3D-printed polycaprolactone (PCL) scaffolds [86] as 

described previously [196]. Briefly, ASCs were suspended in fibrinogen and combined 

with thrombin to create fibrin gels consisting of final concentrations 8 mg/mL fibrinogen, 

2 U/mL thrombin, and 2 × 107 ASCs/mL. Before gelation, fibrin solutions were pipetted 

into the pore spaces of 3D-printed scaffolds of dimensions 0.644 mm height, 4 mm 

diameter, and 60% porosity. 

 Resulting constructs were implanted into 4-mm critically sized murine calvarial 

defects as previously described [196]. All procedures were reviewed and approved by the 

Johns Hopkins Animal Care and Use Committee. 8-week-old male FOXN1-knockout 

mice (Jackson Laboratories, Bar Harbor, ME) were anesthetized and a 4-mm circular 

knife (Medicon, Tuttiligen, Germany) was used to excise a 4-mm disk of calvaria 
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between the coronal and lambdoid sutures and 1 mm lateral to the sagittal suture with 

care taken to preserve the underlying dura mater. Constructs were implanted in the 

resulting defects and 10 µL of fibrin was pipetted over them to hold them in place. For 

each mouse, two defects were created. On the right side, constructs containing ASCs 

transduced with HSV1-tk were implanted while constructs containing GFP-transduced 

ASCs were implanted in the contralateral side as a control.  

 Immediately post-implantation, mice were injected through the tail vein with 150 

mg/kg 5-MDHT. Mice were allowed to remain awake and mobile for three hours before 

imaging, a timepoint that was determined in previous studies [194]. 

 

5.3. Results 

5.3.1. Effect of transduction on ASCs 

 The lentiviral transduction was successful, with transduced cultures surviving 

under blasticidin treatment 2 weeks post-transduction. In addition, Western blot 

assessments on transduced ASCs revealed a positive band, in contrast to no band from 

untransduced ASCs (Figure 5.2). 

 Both qualitative (Figure 5.3) and quantitative (Figure 5.4) assessments showed 

no effect of transduction, both with HSV1-tk and GFP, on ASC osteogenic and 

adipogenic differentiation; however, chondrogenic differentiation was significantly 

inhibited by both HSV1-tk and GFP transduction. ASC proliferation as determined by 

cell numbers after 3 weeks of culture was unaffected by transduction. Because ASC 

osteogenic capability was unaffected by HSV1-tk labeling, the method was deemed 

suitable for further investigation into bone engineering models. 
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5.3.2. In vivo imaging of murine calvarial defect 

 CEST-MRI of the murine calvarial defects (Figure 5.5) three hours post-injection 

of 5-MDHT revealed higher CEST contrast in the animal’s right defect, where ASCs 

transduced with HSV1-tk had been implanted. GFP-transduced ASCs on the left side 

showed minimal signal. 

 

5.4. Discussion 

 In this study, the suitability of CEST-MRI for in vivo tracking of implanted ASCs 

was investigated. Specifically, the effect of labeling on ASCs was determined and a pilot 

imaging experiment was performed to determine whether labeled ASCs would be visible 

under CEST-MRI. 

 A key observation in this early-stage study is the negative effect of transduction 

on ASC chondrogenic capability. GAG content in transduced ASCs was notably reduced 

as evidenced by both Safranin O staining and DMMB assay. This occurred regardless of 

gene transduced – GFP or HSV1-tk – suggesting the effect is due to transduction and not 

due specifically to HSV1-tk. Given the ability of other studies to achieve chondrogenesis 

of stem cells post-transduction (e.g. [197]), this observation is likely due to the specific 

transduction protocol used here rather than a biological phenomenon. As such, potential 

future applications involving cartilage repair models would require more careful 

investigation of the effects of lentiviral labeling. Despite this, the data shows no effect on 

other aspects of ASC potency, most notably osteogenic capacity, so the method was 

further investigated. 
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 Labeled ASCs were distinguishable from GFP-transduced ASCs under CEST-

MRI, with a maximum contrast level approximately three times higher. This is 

comparable to previous studies using 5-MDHT as a contrast agent to visualize brain 

tumors in the rat, which reported a contrast approximately two-fold higher in labeled 

versus wild-type cells [194]. Notably, the injection of 5-MDHT in this experiment 

occurred immediately after implantation of the constructs, meaning host vasculature had 

not yet invaded into the construct during the incubation period. As such, the contrast 

observed in this experiment is solely due to ASC uptake of 5-MDHT that diffused into 

the region rather than directly delivered by vasculature. It is possible that, as vasculature 

develops into the construct, that CEST contrast would be enhanced. Ongoing long-term 

imaging studies will elucidate such effects further. 

 In conclusion, this study presents a proof-of-concept that CEST-MRI can be used 

to visualize ASCs in bone engineering constructs. Future studies will utilize CEST-MRI 

to investigate the long-term retention and viability of implanted ASCs as well as their in 

vivo osteogenesis. 
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Figures: Chapter 5 

 

Figure 5.1: Effect of BNF labeling on ASC viability. Using MTS, readings from ASCs 

labeled with varying concentrations of BNF nanoparticles were normalized to untreated 

ASCs. Viability of labeled ASCs drops with increasing concentration of BNF. 
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Figure 5.2: Western blot of transduced ASCs 2 weeks post-transduction. A protein band 

is visible in transduced (right) but not in untransduced (left) cells. 
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Figure 5.3: Qualitative assessments of ASC differentiation post-transduction. Regardless 

of transduction, ASCs were able to undergo osteogenic and adipogenic differentiation at 

levels comparable to that of untreated ASCs. Transduction of both GFP and HSV1-tk 

resulted in decreased ability of ASCs to undergo chondrogenic differentiation. 
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Figure 5.4: Quantitative assessments of ASC proliferation and differentiation post-

transduction. Transduced ASCs displayed similar cell numbers, calcium per cell, and 

triglyceride per cell as untreated ASCs, but displayed significantly reduced 

glycosaminoglycan content per cell compared to untreated ASCs. *p<0.05 compared to 

untreated ASCs. 
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Figure 5.5: In vivo CEST-MRI of ASC constructs in murine calvarial defects. The 

capillary in the image was placed on the mouse’s left side. The mouse’s right side had 

ASCs transduced with HSV1-tk, while the mouse’s left side had ASCs transduced with 

GFP. The CEST contrast is quantifiably higher with ASCs transduced with HSV1-tk. 
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Chapter 6: future directions 

6.1. Summary of thesis accomplishments 

 The goal of this dissertation was to develop a bone engineering approach 

translatable to the clinic. The first iteration of this approach utilized “gold standards” of 

the field, marrow-derived bone progenitors and scaffolds derived from native bone. The 

drawbacks of DCB scaffolds led to the use of 3D printing to create anatomically shaped 

bioactive hybrid scaffolds composed of DCB within PCL. The drawbacks of eBM and 

MSCs led to the investigation of ASCs as a cell source and it was shown that PDGF-BB 

could enhance ASC osteogenesis while not enhancing MSC osteogenesis. This next 

iteration of the approach – 3D printed scaffolds populated with ASCs – served as a 

promising new platform for bone regeneration. The CEST-MRI modality was then found 

suitable for exploring the performance and behavior of this platform post-implantation. 

 

6.2. Future directions 

 The 3D printed hybrid scaffold outlined in Chapter 3 was used in this dissertation 

to repair a craniofacial defect, but the approach is amenable to other bone defects as well 

due to the ability of 3D printing to create any anatomical shape and the osteoinductive 

properties of the hybrid scaffold. For instance, spinal fusion cages and long bone non-

unions are other bone defects for which ideal repair solutions do not exist and have 

clinical trials investigating cell-based approaches [198, 199]. Expanding further, other 

tissues could be cryo-milled and printed with modified but similar approaches to that 

outlined in this dissertation. 
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 In Chapter 4, the in vivo effects of PDGF-BB on ASCs were investigated using a 

transduction model. This model is instructive, but not clinically relevant with current 

safety concerns. As such, one direction for exploiting the benefits of PDGF-BB on ASCs 

is developing an in vivo growth factor delivery system. It may be possible to tether 

PDGF-BB onto the DCB in the scaffold. Alternatively, fibrin-binding fibronectin 

fragments could be incorporated into the fibrin phase of the construct to bind growth 

factors, as has been shown previously [200]. 

 Finally, Chapter 5 developed a framework for harnessing the capabilities of 

CEST-MRI to monitor implanted ASCs. Several directions can come out of the pilot 

information shown. First, ASCs transduced with HSV1-tk under the CMV promoter, as 

was done here, can simply be observed under CEST-MRI over a period of time to 

determine their retention and viability post-implantation. Next, if retention is long enough 

to allow for direct osteogenic differentiation of ASCs (on the order of a month), a 

construct where HSV1-tk is under control of an osteogenic promoter, such as osteocalcin, 

can be transduced into ASCs such that they are only visible under CEST-MRI if they are 

directly differentiating in vivo. Finally, the spatiotemporal profile of ASCs visualized 

under CEST-MRI can be correlated with CT, a correlation that can be performed since 

these two imaging modalities are of similar resolution. If retention is insufficient, it is 

possible with this imaging modality to determine what strategies may be effective in vivo 

in bolstering retention to maximize the chance for ASC-mediated osteogenesis. 
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