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Abstract

The thesis consists of 7 self-contained chapters. Following the introductory Chapter

1, in Chapter 2, I analyze the enhancement of radiation in HMMs by going beyond

usual “effective medium” model and discovering many interesting phenomena that

augment and, in some cases, contradict the established results. I discover that Purcell

enhancement of radiation is always present in metal dielectric structures and that it

results from the direct coupling of the energy into the free electron motion in the metal

that leads to quenching of the radiative lifetime. In Chapter 3, I study the so-called

hyperlensing purportedly capable of imaging sub-wavelength objects. I analyze the

imaging properties of HMMs by using newly developed Eigen-mode approach as well

as by transfer matrix method. In Chapter 4, I study arrays of subwavelength resonant

features made form metals and dielectrics. In this array mid-infrared fields get greatly

enhanced which is extremely important for applications in sensing. I establish that

to achieve the strongest enhancement, one still needs to use metals, due to high

free carrier density in them. That makes the metals preferred in fluorescence or

Raman sensing. The subject of Chapter 5 is also related to the mid-infrared region

where I explore the light manipulation with metasurface consisting of metal-isolator

metal (MIM) resonators. Based on theoretical analysis and simulation performed

by me, a metasurface was designed and fabricated using nanoimprint method and

later analyzed using Fourier Transform Infrared Spectrometry. Chapter 6 is dedicated

to a new material that can be greatly broaden the range of features attainable in

metal dielectric structure – a two-dimensional MoS2. An origami-inspired self-folding
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approach is used to reversibly transform MoS2 into functional 3D optoelectronic

devices. We demonstrated that the 3D self-folded MoS2 structures show enhanced

light interaction and are capable of angle-resolved photodetection. Chapter 7 deals

with periodically poled lithium niobate for frequency conversion for a novel application

– development of non-magnetic optical isolator – a key component for application in

optical communications and especially in integrated optics. The nonmagnetic isolator

based on frequency converter was proposed, designed, fabricated and tested showing

excellent performance characteristics in terms of isolation ratio exceeding 20dB.
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Chapter 1

Introduction to Artificial Optical
Structures: Metamaterials &
Metasurfaces

1.1 Introduction to Metamaterials & Metasurfaces

Performance of all photonic devices is based on controlling the interaction between

electromagnetic wave and materials. Hence, by manipulating the light-matter interac-

tion in a desired manner through engineered structures and geometries using available

materials, one can achieve control over the electromagnetic functionality.

Therefore, the ultimate performance of electronic and photonic devices is limited

by the range of available materials used to build them. To realize a novel electromag-

netic property macroscopically amounts to creating artifically structured composites

consisting of well-arranged functional inclusions of subwvaelength dimensions. Even

though their dimensions are several orders of magnitude above the atomic or molecular

level of a conventional material, the scale of these inclusions is still small compared

to the wavelength of interest, hence, their electromagnetic response is homogeneous.

Such kind of artificial material by which one can achieve new optical properties and

phenomena, is usually called ”metamaterials”.

Usually the definition and the basic characteristic of metamaterials is given as
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[1]: “A metamaterial is an artificially structured material which attains its properties

form the unit structure rather than the constituent materials. A metamaterial has

an inhomogeneity scale that is much smaller that the wavelength of interest, and its

electromagnetic response is expressed in terms of homogenized material parameters."

All the electromagnetic phenomena are governed by Maxwell’s equations, which

are a set of equations describing the interrelationship between fields, sources, and

materials properties. The electromagnetic properties of a material are determined

by two material parameters: the permittivity ϵ and permeability µ, describing the

coupling of a material to the electric and magnetic components of an electromagnetic

wave, respectively. Since the response of a material to external fields is largely

Figure 1-1. Parameter spaces of permittivity ϵ and permeability µ. The two axes
correspond to the real parts of permittivity and permeability, respectively [1]

determined only by these two material parameters, we can use an electromagnetic

parameter space to classify materials based on the two values, as shown by Fig. 1-1.

The real part of permittivity ϵr is plotted to the horizontal axis of the parameter

space, while the vertical axis corresponds to the real part of permeability µr, therefore,

materials with all possible combinations of ϵr and µr can be placed in the parameter
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space. In the first quadrant is the conventional materials known as transparent, with

positive values of ϵr and µr. The negative values of ϵ or µ indicate that the direction

of the electric or magnetic field induced inside the material, i.e displacement D and

magnetization B respectively is opposite to the direction of the field. Noble metals at

optical frequencies are good examples for materials with negative ϵ and negative µ

can be found in ferromagnetic media near a resonance. No propagating waves can

be supported in materials represented by the second and fourth quadrants, where

one of the two parameters is negative and the index of refraction becomes purely

imaginary. In the third quadrant, no material whose permittivity and permeability

are both negative have been found in nature. According to Maxwell’s plural equation,

when the real part of permittivity and permeability are both negative, then the index

is negative. With a negative index, novel and interesting optical phenomena can be

anticipated, such as backward wave propagation, reversed Cherenkov radiation [2] and

the inverse Doppler effect [3].

Essentially, the research of metamaterial is related to the innovative of exploitation

of the electromagnetic parameter space. The major focus of the on going research

effort in metamaterial community is to create artificial materials that enter region

of the parameters space that are not forbidden by Maxwell’s equations but are not

observed in any conventional media and to take advantage of this expanded parameter

space for better control of electromagnetic waves.

1.2 Surface Plasmon Polaritons (SPPs)

Surface plasmon polaritons (SPPs) are electromagnetic excitations propagating at

the interface between a dielectric and a conductor (metal, semiconductor), and SPPs

are confined at the interface and evanescent both in the propagation direction and

the direction perpendicular to the interface. SPPs are induced by the coupling of

the electromagnetic fields to the oscillation of the free electrons in conductor [4]. To
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better see the properties of SPPs, let’s take the wave equation as a starting point.

Equation 1.1 is the general form of wave equation,

∇2E − ε

c

∂2E

∂t2 = 0 (1.1)

where E is the electric field, c is the speed of light, ϵ is the permittivity of material

that the light propagating in. This equation has to be solved separately in different

regions of ϵ, moreover, boundary conditions have to been rigorously matched. For

simplicity, here we assume in a homogeneous material, there is a harmonic time

dependent electromagnetic wave, the the electric field is E(r, t) = E(r)e−iωt, insert into

Eq. 1.1, yields

∇2E+k2
0εE = 0 (1.2)

where k0 = ω/c is the wave vector of the propagating wave. Equation 1.2 is also

known as the Helmholtz equation.

Figure 1-2 shows the geometry we are using here, for simplicity we assume here a

one-direction problem, the permittivity ϵ changes only along z direction, ϵ = ϵ(z) and

the SPPs propagate along the x direction, and there is no spatial variation in the y

direction. At the interface z = 0, the confined propagating wave can be described as

E(x, y, z) = E(z)eiβx, the complex parameter β = kx is called the propagating constant

of the traveling wave and it’s the x component of the wave vector in the direction of

propagation. Substitute the confined waves into Eq. 1.2 we get

∂2E(z)
∂z2 +

(︂
k2

0ε − β2
)︂

E = 0 (1.3)

of course, there is a similar equation for the magnetic field H.

To better determine the spatial field profile and dispersion of propagation waves,

we find the explicit expressions for the different field components of E and H, and then

for the harmonic time dependence ( ∂
∂t = −iω), we get the following set of coupled
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Figure 1-2. Definition of a planar plasmonic waveguide. The waves propagate along the
x direction.

equations:
∂Ez

∂y
− ∂Ey

∂z
= iωµ0Hx

∂Hz

∂y
− ∂Hy

∂z
= −iωµ0Ex

∂Ex

∂z
− ∂Ez

∂x
= iωµ0Hy

∂Hx

∂z
− ∂Hz

∂x
= −iωµ0Ey

∂Ey

∂x
− ∂Ex

∂y
= iωµ0Hz

∂Hy

∂x
− ∂Hx

∂y
= −iωµ0Ez

(1.4)

Due to the propagation along x direction ( ∂
∂x = iβ) and the homogeneity in the y

direction ( ∂
∂y = 0), the above equations can be simplified as:

∂Ey

∂z
= −iωµ0Hx

∂Hy

∂z
= iωµ0Ex

∂Ex

∂z
− iβEz = iωµ0Hy

∂Hx

∂z
− iβHz = −iωµ0Ey

iβEy = iωµ0Hz iβHy = −iωµ0Ez

(1.5)

Then these equations can be split into two sets, each one has its self-consistent

Figure 1-3. Geometry for SPPs propagation at a single interface between a metal and a
dielectric.

solutions with different polarization properties of propagating waves. The first set
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is the transverse magnetic (TM) mode, it contains Ex, Ez and Hy components; the

other set is the transverse electric (TE) mode, it contains Hx, Hz and Ey components.

Finally, the coupling equations of TM mode reduce to{︄
Ex = −i 1

ωε0ε
∂Hy

∂z

Ez = − β
ωε0ε

Hy
(1.6)

and the wave equation for TM mode is

∂2Hy

∂z2 +
(︂
k2

0ε − β2
)︂

Hy = 0 (1.7)

and the coupling equations of TE mode reduce to⎧⎨⎩ Hx = i 1
ωµ0

∂Ey

∂z

Hz = β
ωµ0

Ey
, (1.8)

and the wave equation for TE mode is

∂2Ey

∂z2 +
(︂
k2

0ε − β2
)︂

Ey = 0. (1.9)

Let’s first look at TM solutions. Using Eq. 1.6 set in upper (z > 0) half space we

get ⎧⎪⎨⎪⎩
Hy (z) = A2e

iβxe−k2z

Ex (z) = iA2
1

ωε0ε2
k2e

iβxe−k2z

Ez(z) = −A2
β

ωε0ε2
k2e

iβxe−k2z

(1.10)

in the lower half space (z < 0) we get⎧⎪⎨⎪⎩
Hy(z) = A1e

iβxek1z

Ex(z) = −iA1
1

ωε0ε1
eiβxek1z

Ez(z) = −A1
β

ωε0ε1
eiβxek1z

(1.11)

ki = kz,i(i = 1, 2) is the component of the wave vector perpendicular to the interface

in the two media, hence its reciprocal value 1/ | kz | is the evanescent decay length of

the fields perpendicular to the interface, which quantifies the confinement of the wave.

By using the boundary condition at the interface, we can get A1 = A2 and

k2

k1
= −ε2

ε1
(1.12)
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here we notice that the surface waves can only exit at the interface between two media

whose real part of permittivities have opposite signs. Through the TM mode wave

equation Eq. 1.7, we get {︄
k2

1 = β2 − k2
0ε1

k2
2 = β2 − k2

0ε2
(1.13)

Finally, the dispersion relation of the surface, which is the Surface Plasmon Polaritons

(SPPs), can be obtained by combining Eqs. 1.12 and 1.13

β=k0

√︄
ε1ε2

ε1 + ε2
(1.14)

By following the similar analysis progress for TE mode, we couldn’t find a valid

solution for it. Hence the surface plasmon polaritons only exist for TM polarization.

Figure 1-4. Dispersion relation of SPPs at the interface between a Drude metal with
negligible collision frequency and air and silica.

An example of SPPs dispersion relations are shown in Fig. 1-4, the SPPs is confined

at the interfaces between the real Drude model metal and air, fused silica. And the

frequency ω is normalized to the plasma frequency ωp. We can see that the dispersion

curves lay to the right of the respective light lines of air and silica. Hence, compared to

the normal propagating wave, SPPs have larger wave vector (propagation constant) and

shorter wavelength. For practical situation the materials with negative permittivity
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are usually metal and semiconductors, and their permittivities are complex. Hence the

propagation constant β of SPPs is also complex, and propagating SPPs are damped

with an energy attenuation length, as shown in Fig. 1-3, which is known as propagation

length, is L = (2Im[β])−1, typically between 10 and 100µm in the visible regime.

As a conclusion, the SPPs is the result of the coupling of electromagnetic wave

to the free electrons in metal or doped semiconductors. It exits only at the interface

formed by the materials whose permittivities have opposite signs. And due to the

existence of the loss of the material whose permittivity is negative, the propagation

length of SPPs is limited, moreover, in the perpendicular direction it is also evanescent.

• Long-range and Short-range SPPs

Figure 1-5. Long-range and short-range SPPs

As we have shown above, the SPPs supported by a metal-dielectric interface

dissipate exponentially both along and perpendicular to the interface due to the

complex refractive index of metal and the loss introduced by the medium bounding

the metal. SPPs exhibit interesting properties and useful potential applications.

To better utilize SPPs and achieve practical applications, it is necessary to reduce

the SPPs attenuation. A common method of reducing SPPs attenuation is to use

a thin metal film bounded on two sides by the same dielectric. By doing this the

exited SPPs on two sides of metal film will couple to each other, hence coupling
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SPPs modes or “super modes” can be obtained. Generally, two super modes can

be supported, symmetric and antisymmetric modes, as shown in Fig. 1-5. In Fig.

1-5, only the transverse magnetic field is plotted, and the longitudinal electric field

has opposite symmetry, hence as shown in the figure, for the antisymmetric mode,

the charge density on two sides of metal film has a symmetric distribution, whereas

for the symmetric mode, the charge density distribution is antisymmetric. For

the symmetric mode, the attenuation and effective index decrease as t is reduced,

and the mode fields increasingly expelled from the metal film and penetrating

more deeply into the dielectric, hence the propagation length increases, and the

symmetric mode is called “Long-range SPPs mode”. For the antisymmetric mode,

it exhibits increasing confinement and penetration into the metal with decreasing

t, consequently, increasing attenuation and shorter propagation length, so the

antisymmetric mode is call “Short-range SPPs mode”.

1.3 New Optical Properties of Metamaterials &
Metasurfaces

Since the early 2000s, metamaterials have emerged as a rapidly growing inter- disci-

plinary area, involving physics, electrical engineering, materials science, optics and

nanoscience. As we mentioned in the previous section, the properties of metamaterials

are tailored by manipulating their internal physical structure, this makes them remark-

ably different from natural materials, whose properties are mainly decided by their

chemical constituents and bonds. Metamaterials consist of periodically or randomly

distributed artificial structures that have a size and spacing much smaller than the

wavelength of electromagnetic wave. Hence, entirely new properties can emerge, some

of which are listed below.

• Negative Index and Superlens
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As is well known, the refractive index is a complex number n = n′ + in′′, where

the imaginary part characterizes light extinction (losses). The real part gives by

which the phase velocity of light is decreased in a material as compared to vacuum.

Negative index materials (NIM) , whose index is negative, their phase velocity is

opposite the energy flow, and this is unusual form the standpoint of traditional

optics. Moreover, at the interface between a positive and negative index materials,

the refracted light is bent in the counterintuitive way with respect to the normal.

The vectors E, H and k form a left-hand coordinate system , hence NIM are also

called left-handed materials. As early as 1904, the negative phase velocity and its

consequences were studied by Sir Arthur Schuster [5] and H. Lamb [6]. Later the

optical properties of NIM were studied by L. I. Mandelstam [7], D. V. Sivukhin

[8] and V. G. Veselago [9]. V. G. Veselago provided the modern prescription

of ‘negative permittivity and negative permeability’ for negative refraction. The

recent boom of NIM comes from John Pendry [10, 11] who made a number of

contribution to the field including his groundbraking prediction of the NIM-based

superlens with resolution beyond the diffraction limit [10]. The first NIM was

achieved experimentally in 2000 in the microwave range, and the first experimental

demonstrations of negative refractive index in optical range were accomplished by

using pairs of metal rods and pairs of dielectric voids in metal [13]. After that, many

NIM based on metamaterials have be achieved in different range using different

structures and methods.

The realization of superlens or perfect lens are based on the achievement of NIM. A

possible way to reach a negative refractive index in a passive medium is to design a

material whose permittivity ϵ = ϵ′ + iϵ′′, and the permeability µ = µ′ + iµ′′ obey the

equation ϵ′|µ| + µ′|ϵ| < 0, this leads to a negative real part of the refractive index

n = n′ + in′′ = √
ϵµ. The inequality is always satisfied if both ϵ′ < 0 and µ′ < 0.

But it is not a necessary condition, there may be magnetically active media (µ ̸= 1)

10



Figure 1-6. Schematic of normal refraction in (a) normal medium and (b) negative
refraction in metamaterials with negative effective index. (c) The first demonstrated
metamaterial with negative effective index. (d) Comparison of refraction between normal
material and metamaterial with negative effective index.[12]

with a positive real part µ′ for which the inequality is fulfilled and which therefore

show a negative real part of the refractive index n′. Pendry pointed out that a slab

with refractive index n = −1 surrounded by air allows the imaging of objects with

subwavelength precision. Provided that all of the dimensions of a system are much

smaller than the wavelength, the electric and magnetic fields can be referred as

quasi-static and independent, then the requirement for superlensing is reduced to

only ϵ = −ϵh, and ϵh is the permittivity of the hose medium interfacing the lens.

Based on this condition, scientists found that a slab of silver is a good candidate for

such superlens at its surface-plasmon resonance frequency (where ϵ = −ϵh). Such

a superlens was achieved experimentally in 2005, as shown in Fig. 1-7. However,

this kind of superlens can be operated only at a single frequency satisfying the

lens condition ϵ(ω) = −ϵh, which is a significant drawback for superlens based on

bulk metals. Further research has shown that by using metal-dielectric composites

instead of bulk metals, people can develop superlens operating at any desired visible
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or near-infrared wavelength, with the frequency controlled by the metal fill ratio.

Figure 1-7. (a)Schematic of the superlens. The embedded objects are inscribed onto
50nm-thick Cr; at left is an array of 60-nm-wide slots of 120nm pitch, separated from the
35nm-thick silver film by a 40-nm PMMA spacer layer, the image of the object is recorded
by the photoresist on the other side of the silver superlens. (b) A is the FIB image of the
object, the linewidth of the “NONA” object was 40nm, the scale in A to C is 2um; B is
the AFM of the developed image in photoresist with a silver superlens; C is the AFM of
the developed image on photoresist when the 35-nm-thick layer of silver was replaced by
PMMA. (c) The averaged cross-section of letter “A” shows an exposed line width of 89nm
(blue line), whereas in the control experiment, and the measured diffraction-limited full
width at half-maximum line width of 321 (red line).[14]

• Metamaterial Cloaking

An electromagnetic cloak is a structure making an object “invisible” for electro-

magnetic radiation in a certain frequency range. An object can be regarded as

an invisible if it does not reflect waves back to the source, does not scatter waves

into other directions and does not generate shadow. That means this kind of

objects do not absorb any power and do not make an impact on the fields existing

outside the object. Matematerials have simulated another research field- trans-

mission optics. To achieve the cloaking, the total scattering cross section (SCS)
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Figure 1-8. Illustration of the coordinate transformation technique: the rays of elec-
tromagnetic field are guided inside the cloak device around the volume enclosed by the
cloak.The distribution of the electric field at different times: (a) t=2:28T ; (b) t=3.60T ;
(c) t=4.92T ; (d) t=7.20T ; (e) t=9.00T ; (f) Stable state. T is the period of the incident
wave. [15]
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has to be reduced to zero. Several theories and methods have been developed to

achieve metamaterial cloaking, such as scattering cancellation method, coordinate

transformation technique, transmission-line technique. The first cloaking device

was first experimentally demonstrated in 2006 at the frequencies in the microwave

radiation band based on the coordinate transformation technique [16], as shown

in Fig. 1-8. This device’s height was less than 13 mm and its diameter is 125mm,

it successfully diverted microwaves around itself and made the SCS zero. The

object (a small cylinder) was placed in the center of the device, and the cloak

deflected microwave and make the microwave flow around the cylinder with only

minor distortion, making it appear almost as if nothing were there. The reflection

from the object was reduced by surrounding the object with a shell which is able

to affect the passage of light near it. Unlike homogeneous natural material, the

metamaterial cloak has to be designed with different properties vary from point to

point, and each point should be designed for specific electromagnetic interactions

and different directions. Despite the successful demonstration of metamaterial

cloak, there are three notable limitations: first of all, the cloak works only in the

microwave spectrum and the invisibility has not been realized for visible range.

Second, only small objects can made to "disappear" as the surrounding air, for the

first metamaterial cloak, a copper cylinder was used, to achieve, the cylinder has to

be less than five inches in diameter and less than one half inch in tall. Third, the

first achieved cloak can only occur over a narrow frequency band due to the disper-

sive nature of present-day metamaterials. Because the coordinate transformation

requires extraordinary material parameters that are only approachable through

the use of resonant elements, the cloaking can be achieved only in very narrow

frequency band.

After the first cloak, scientists have developed many others using different methods

and metamaterial structures with better performance and at different frequency
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ranges. But it still has a long way to go to achieve real cloak that has practical

applications.

• Anomalous reflection and refraction

Figure 1-9. (a)An illustration of generalized law of refraction. (b) SEM image of a
mid-infrared metasurface consisting of an array of V-shaped gold optical antennas patterned
on a silicon wafer, with the unit cell highlighted and Γ = 11µm. It creates a constant
gradient of phase jump along the metasurface for the control of the propagation direction
of light transmitted through or reflected from the metasurface. (c) Schematic of unit
cell of the plasmonic interface for demonstrating the generalized laws of reflection and
refraction(d) FDTD simulation of the scattered field for the individual antennas composing
the metasurface array. The tilted red line is the envelope of the projections of the spherical
waves scattered by the antennas.[17]

As we all know, traditional optical devices, such as lenses and holograms, shape

the wavefronts over a distance larger than the operating wavelength [18]. Lenses

reshape the light by gradually varying the phase of the incident wave by using

their shape and refractive index, holograms generate images in the far-field through

interference [19]. Similar to its 3D counterpart—metamaterials, metasurfaces

also have the ability to tailor both the electric and magnetic field component of

the electromagnetic waves. By carefully design the metasurface, phase jump can
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be generated for the electromagnetic wave that passing the metasurface, then

the phase is discontinuous, hence the phase can be gradually tempered over a

distance. This is helpful to decrease the reliance on wave propagation and allows

the shaping of wavefronts and focusing of energy over sub-wavelength distance.

Hence, metasurfaces can potentially replace the bulky and heavy devices used

traditionally for such purposes. The phase discontinuity or jump comes from the

resonant behavior of the miniaturized metasurface building blocks. A surface

electromagnetic wave will be induced when an electromagnetic wave incident on

individual element of a metasurface, and the surface electromagnetic wave causes

the charge to oscillate, which is also known as surface plasmon. The interaction

of the impinging electromagnetic wave and the surface plasmon leads to the

phase discontinuity across the metasurface and because of this phase jump and

discontinuity, the Snell’s law is replaced by a “generalized law” for the metasurface

[17]. The generalized law is derived based on Fermat’s principle of the least time

as stationary phase [17]. Fermat’s principle states that when light travels between

two points, it takes the path which takes the least amount of time. As shown in

Fig. 1-9, when a plane wave incident on a metasurface with an incident angle θ,

two possible paths that the wave take are shown, because the metasurface causes

an abrupt change in the phase, this change at point A is shown by ϕ, while on

A′ is it represented by ϕ + dϕ. The distance between A and A′ is assumed to be

dx, it is also assumed that ϕ is a continuous function of x. It is assumed that the

two paths are infinitesimally close such that the phase difference between them to

reach point A is zero. This leads to the generalized refraction law given by the

following Equation [17]

nsin(θ) − n′sin(θ′) = λ0

2πn

dx

dϕ
, (1.15)

Where λ0 is the wavelength in vacuum, n and n′ are the refractive indices of medium

1 and 2. Similarly the generalized law of reflection for metasurfaces is given by

16



Equation:

sin(θ) − sin(θrefl) = λ0

2πn
|dx

dϕ
|, (1.16)

where θrefl is the angle of reflection. The non-linear relation between the incident

and reflection is worth noting since the angle of incidence and reflection are no

longer equal for a metasurface. Equations (1) and (2) can be easily reduced to the

original Snell’s lay of refraction and reflection if there is no phase jump (dϕ/dx = 0).

The generalized laws of reflection and refraction have been demonstrated by reflect

arrays and v-shaped antennas, respectively [17, 20, 21].

• Metasurface lenses

By designing and fabricating the metasurfaces, ultrathin lenses with high resolution

can also be achieved. To focus the electromagnetic wave at a distance d, a

metasurface needs to have a phase profile given by the following equation [22],

ϕL(x, y) = 2π

λ

(︃√︂
x2 + y2 + d2 − d

)︃
, (1.17)

This profile can alter the shape of the wavefront from planar to spherical, a condition

necessary for focusing. When the electromagnetic wave normally incident on the

surface, one can get high numerical aperture efficiency, but when the incident

angle is not 90 degree, then according to the aberration theory, an aberration

called ‘coma’ occurs, which can cause significant degradation in the numerical

aperture efficiency. The coma aberration can be reduced by placing the surface on

a curved piece of dielectric. The above v-shape antennas metasurface has shown

its ability to focus energy at telecom frequencies [23], another metasurface lens

based on reflect-arrays is presented in [24]. This lens was designed based on a

metal-insulator-metal structure and work near infrared region. Gold bricks were

deposited on silicon dioxide and the individual elements were optimized in order

to engineer the desired reflection response. Theoretical efficiency of 78% can be

achieved. Another metasurface lens based on rectangular dielectric resonators has
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been shown to focus energy at a single focus for three different frequencies. This

was made possible by making the sum of the phase transversed by the wave and

the phase jump imparted by the metasurface constant at three distinct frequencies,

and the resulting metasurface ended up being completely aperiodic [25]. Figure

1-10 shows a thin metalens made of aperiodic dielectric resonators, this metallens

have achieve diffraction-limited focusing and sub-wavelength imaging in visible

light range. As shown in Fig. 1-10, its resolution is higher than the state-of-art

commercial objective for the designed wavelength, the efficiency can be higher than

80%.

1.4 The Future of Metamaterials & Metasurfaces

Metamaterials and metasurfaces are hot and blooming research fields, more and more

novel phenomena and applications have been achieved. New research topics have been

opened up, such as flat optics and transmission optics. The typical structures described

above represent but a small subset of all the opportunities offered by metamaterials

and metasurfaces. In the following Chapters I address a few of these opportunities

and present a balanced and rigorous assessment of what can be achieved and what

are the limitations of metamaterials.
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Figure 1-10. (a) and (b) are schematic of the metalens and its building block, the
TiO2 nanofin; (c) Measured focal spot intensity profile of the metalens designed at
λ = 532nm;(d) Corresponding vertical cuts of the metalenses’ focal spots at λ = 532nm;
(e) Measured focal spot intensity profiles of the objective (100× Nikon CFI 60, NA = 0.8)
at wavelength of λ = 532nm; (f) Corresponding vertical cuts of the focal spots of the
objective, at wavelength λ = 532nm [26].
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Chapter 2

Hyperbolic metamaterials: beyond
the effective medium theory

2.1 Introduction to Hyperbolic metamaterials

Nowadays, numerous artificial metamaterials with unusual optical properties have

been developed and they are becoming more and more important for controlling the

propagation of light. In recent years, the focus of research of metamaterials has gradu-

ally changed from passive to active and tunable metamaterials, as well as simplifying

structures while keep many of their novel optical properties and functionalities. Among

different kinds of metamaterials, one class who are highly anisotropic media and have

hyperbolic dispersion, have attracted researches’ special attention. Such metamaterials

are called hyperbolic metamaterials (HMMs), and they represent the ultra-anisotropic

limit of traditional uniaxial crystals and one of the principal components of either

permittivity ϵ or permeability µ tensors is opposite in sign to the other two principal

components [27–29].

∧
ε =

⎛⎜⎝ε⊥ 0 0
0 ε⊥ 0
0 0 ε∥

⎞⎟⎠ ∧
µ =

⎛⎜⎝µ⊥ 0 0
0 µ⊥ 0
0 0 µ∥

⎞⎟⎠ (2.1)

The subscripts ∥ and ⊥ indicate the components parallel and perpendicular to the

anisotropy axis, respectively. Most of the properties of HMM can be obtained from

the iso-frequency surface of extraordinary waves, the for the HMM, whose permittivity
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Figure 2-1. Isofrequency surfaces of extraordinary waves in hyperbolic metamaterials.

Figure 2-2. (a) Layered metal–dielectric hyperbolic metamaterial; (b) Nanorod-array
hyperbolic metamaterial.

tensor elements have opposite signs, its iso-frequency is given by

k2
x + k2

y

ε∥
+ k2

z

ε⊥
=
(︃

ω

c

)︃2
, (2.2)

where kx ky and kz are the x, y and z components of the wavevector, and ω is the

frequency, c is the light speed.

The first HMM was experimentally demonstrated as early as 1969 [30] in a

magnetic plasma. Some natural, such as bismuth and graphite, also exhibit hyperbolic

properties in certain spectral ranges [31]. Recently, HMM have become a hot research

area [32]. Research topics include spontaneous emission enhancement and engineering,

realizing large Purcell factor [33], applications in heat transport [34] and acoustics [35]

and analogue cosmology [36–38]. Some very practical metamaterial structures have
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been fabricated by using HMM, for example, layered metal-dielectric structures and

nanowire arrays with hyperbolic dispersion have been experimentally realized across

the optical spectrum and various interesting effects have been demonstrated, such as

sub-wavelength high-resolution imaging [39–41], focusing [42] and lifetime engineering

[43, 44].

For metals, their real part of the dielectric function is negative below the plasma

frequency because the polarization response of free moving electrons in the opposite

direction to the electric field. For the hyperbolic regime, the components of dielectric

tensor are negative in only one or two spatial directions. This can be achieved

by restricting free electron motion to these directions. Hence, the most common

realization of hyperbolic metamaterials is layered metal-dielectric structures. Figure

2-2, shows an example of a layered metal-dielectric HMM. The components of the

effective dielectric tensor parallel (ϵ∥) and perpendicular (ϵ⊥) to the anisotropy axis

are given by [45],

ε⊥=εmdm + εddd

dm + dd

,
1
ε∥

= dm/εm + dd/εd

dm + dd

(2.3)

where dm(dd) is the thickness and ϵm(ϵd) is the dielectric constant of the metallic

(dielectric) component. We can reach the hyperbolic regime by tuning the parameters,

such that ϵ∥ϵ⊥ < 0. Equation 2.3, which comes from the effective medium approx-

imation under the long-wavelength limit, gives the elements of permittivity tensor.

However, despite that the vacuum wavelength is much larger than the period, the

excitation of surface plasmon polaritons at the metal-dielectric interface causes the

field to vary significantly on the scale of one period. So the approximation given

by Eq. 2.3 may not be valid in certain spectral ranges. The Plasmonics modes

may have more complex shaped iso-frequency contours that are neither elliptic nor

hyperbolic. This leads to both negatively and positively refracted beams being pro-

duced by light scattered at the metamaterial interface [46]. The first experimentally

demonstration of a layered hyperbolic metamaterial was a hyperlens [39]. Negative
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refraction and hyperbolic dispersion were demonstrated in the mid-infrared region

using a structure consisting of doped InGaAs and intrinsic AlInAs layers. After that,

numerous HMM have been demonstrated that consist of different metal/dielectric

pairs, including Ag/AlO3, Ag/polymethyl methacrylate, Ag/LiF, Ag/TiO2, Ag/Ge,

Au/Al2O3, Ag/MgF2 and Ag/Ti3O5. Meanwhile, different theories and methods have

been developed to analyze the dispersion, refraction and wave propagation in layered

HMM [46, 47].

Hyperbolic wire metamaterials are formed by embedding arrays of parallel metallic

wires in a dielectric matrix, as shown in Fig. 2-2 [48]. In the model of thin wires in

vacuum, the components of the effective dielectric tensor of the wire medium have the

form [49],

ε⊥=1 ε∥ (kz) = 1 −
Ω2

p

ω2 − δ2 − c2k2
z

(2.4)

where Ωp ≈ c/a [ln (a/2πR ) / (2π) + 1/12 ]−1/2 is the effective plasma frequency,

δ=Ωpa[πR2 (1 − εwire)]−1/2 , R is the wire radius, a is the period and ϵwire is the

dielectric constant of the wire. For perfectly conducting wires (ϵwire → ∞) and

in-plane propagation, Eq. 2.4 reduces to the Drude formula, ε∥=1-Ω2
p/ω2 , which

suggests that the wire metamaterial could attain the hyperbolic regime below the

plasma frequency.

The most widely used method to fabricate a nanostructured wire metamaterial

is electrochemical deposition of a metal on a porous alumina membrane created

by anodization [50]. This is a very efficient approach, allowing samples as large as

1cm × 1cm × 50µm to be created [51]. The first demonstrated hyperbolic property

of such metamaterials was negative refraction at λ = 780nm, after that, the wire

metamaterials have been extensively studied in experimental studies of biosensing

and Purcell factor enhancement [52, 53]. The nanorod structure has a key advantage

of being pretty sensitive to the refractive index of the matrix, having a sensitivity

exceeding 3 × 104nm per refractive index unit. Hence, nanorod-based metamaterials
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outperform surface-plasmon-enhanced sensors based on smooth metallic films.

2.2 The Kronig-Penney (KP) Model

When it comes to theoretical analysis of HMMs to date, the well-tried effective medium

theory (EMT) has been relied upon the most [54–56], as well as more complex transfer

matrix [33, 47, 57] and Green’s function methods [58, 59], which predict Purcell

factors (PFs) reaching values exceeding 105 [58], and conversely, as mentioned above,

experimentally reported values that do not exceed 80 [60–63]. Numerical FDTD

simulation [63, 64] has also been applied to HMMs, showing, once again, the predicted

PE far exceeding the observed values. Besides being computationally cumbersome,

neither one of these aforementioned “beyond the EMT” methods directly produce IFS

in k-space, while the FDTD method fails to offer any physical insight into the picture.

Based on the analysis of the rich body of theoretical HMMs work, there are still several

questions waiting to be answered. (1) According to the EMT, hyperbolic IFSs exist

only for certain relations of layer permittivities and thicknesses. While this prediction

must be correct in the limit of infinitely thin layers, it has already been shown in [47]

that the elliptical and hyperbolic dispersion regions can overlap. (2) While the giant

enhancement of emission rates into the HMMs has been predicted, the enhancement of

the rate of radiation coming out of HMMs, i.e., external rather than internal efficiency,

has not been thoroughly investigated. (3) Spatial dependence of the PE, critical from

a practical point of view, has not been given proper attention. (4) Finally, as any

plasmonic (metal/dielectric) structure exhibits the same features as HMMs, namely,

strong field confinement and the ability to support large wavevectors and the PE, it is

crucial to define the connection between HMMs and the more conventional slab and

gap SPPs. To address these questions, we shall use an analytical model that combines

simplicity with precision, letting us investigate all the relevant properties of HMMs

in great detail and compare them with SPPs. Recently, there has appeared [65] a
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study indicating that the density of states in HMMs is similar to that in slab SPPs,

and in our work we expand this treatment to gap SPPs. While the results of our

work can be used in the evaluation of HMMs in any potential application, we focus

mainly on the enhancement of spontaneous emission. Furthermore, while our focus is

on the man-made HMMs that comprise metal/dielectric layers, in the end we show

that many of our conclusions also hold for natural HMs [66].

2.2.1 The Kronig-Penney (KP) Model in HMM

The KP model was developed in the 1930s [67] to provide a simple explanation of

the formation of the band structure in a periodic lattice. Obviously, any attempt

to approximate the real crystal potential by a periodic sequence of one-dimensional

wells and barriers is bound to lack precision. Thus the KP model has been largely

relegated to condensed matter textbooks, until it enjoyed a brief renaissance in 1980s,

when it was successfully applied to semiconductor superlattices [68, 69], where the

KP potential bears a much closer resemblance to the actual superlattice potential.

While the KP model is always an approximation in condensed matter physics, in

periodic photonic structures, the KP model is an exact one. Changes in the dielectric

permittivity are perfectly well described by the square wave function. The KP model

has been successfully used in one-dimensional photonic crystals [70] and it appears

to be a good choice for the study of HMMs. The KP model is not computationally

heavy and readily provides physical characteristics, such as IFS, dispersion curves,

and field shapes. Given these attractive features of the KP model, it appears to be

perfectly suited to our task of providing insight into the physics of HMMs.

In this section, we applied the KP model to description the propagation and prop-

erties of SPPs inside HMMs. Here the changes of the layered structure’s permittivity

can be perfectly described by the square wave function, hence for the HMMs, the

KP model is no longer an approximation, we can expect that it can provides physical

25



characteristics of HMMs. The following figure Fig. 2-3 shows an example of a Type I

HMM, consisting of Al2O3 layers with thickness a and Ag layers with thickness b. The

permittivity of Al2O3 is constant in the visible range ϵd = 3.61, while the permittivity

of Ag in the visible range can be fitted into the Drude mode [71]

εm (ω) = 1 −
ω2

p

ω2 + iωγ (ω) , (2.5)

where ωp = 1.36 × 1016s−1 is the bulk plasma frequency and the scattering rate γm is

frequency dependent and is γm = 8.475 × 1013s−1 when the wavelength is λ = 500nm

[71]. For the calculation convenience, we first normalize distance and wave vectors

to the wave vector in dielectric (Al2O3) kd = ϵ
1/2
d ω/c, as x′ = xkd, so the spatial

derivation becomes ▽′ = k−1
d ▽. The magnetic field is normalized to the impedance in

dielectric ηd =
√︂

µ0/(ϵ0ϵd), as H′
y = Hyηd, then the normalized magnetic field has the

same unit with electric field (V/m). Here we also define the relative impedance as

η′(z) = E(z)/H′(z), as will be shown later, the relative impedance defines most of the

characteristics of the modes in HMMs, such as the degree of confinement, propagation

velocity, PE and propagation distance. By substituting the normalized terms into

the first two Maxwell’s equation and assuming that all the field are harmonic with

frequency ω, we obtain

Figure 2-3. The configuration of HMMs comprising layered Ag and Al2O3
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{︄
∇′ × H ′= − iε′ (z) E

∇′ × E = iH ′

}︄
(2.6)

where ϵ′(z) = ϵ/ϵd is the normalized permittivity. Then as shown in Fig. 2-3, following

the KP model, the normalized magnetic field of the TM mode in one period can be

expressed as

H ′
y =

⎧⎨⎩
(︂
AeK′z′ + Be−K′z′

)︂
eik′

xx, 0 < z < a′(︂
CeQ′z′ + De−Q′z′

)︂
eik′

xx, −b′ < z < 0
(2.7)

where k′
x is the lateral wave wave vector normalized to kd, K′ and Q′ are the normalized

decay constants in the dielectric and metal respectively. A to D are the amplitudes

will be calculated by using the boundary condition Hy(z′ + a′ + b′) = Hy(z′)e[ik′
z(a′+b′)].

By substituting Eq. 2.7 into the wave equation one can get the relation between the

lateral wave vector and the decay constants{︄
k

′2
x − K ′2 = 1

k
′2
x − Q′2 = − |ε′

m| (2.8)

where ϵ′
m = ϵm/ϵd is the normalized dielectric constant of the metal. Summing the

two above equations

Q′2 − K ′2=1+ |ε′
m| (2.9)

We can figure out the relations between the different components of TM mode

inside the dielectric layers {︄
∂H′

y

∂z
= iEx

k′
xH ′

y = −Ez
(2.10)

and inside metal layers {︄
∂H′

y

∂z′ = −i |ε′
m| Ex

k′
xH ′

y = |ε′
m| Ez

(2.11)

Form Eqs. 2.9 and 2.10 we can see that larger wave vector results in larger ratio

of magnetic to electric field, and smaller local impedance η′(z), this has important

consequence when I consider the energy balance and propagation velocity. Also,

through Eqs. 2.9 and 2.10 one can find the electric field component in dielectric and

metal layers

Ex =

⎧⎨⎩ −iK ′
(︂
AeK′z′ − Be−K′z ′)︂

eik′
xx, 0 < z′ < a′

iQ′

|ε′
m|

(︂
CeQ′z′ − De−Q′z′

)︂
eik′

xx, −b′ < z′ < 0
(2.12)
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Ez =

⎧⎨⎩ −k′
x

(︂
AeK′z′ + Be−K′z′

)︂
eik′

xx′
, 0 < z′ < a′

k′
x

|ε′
m|

(︂
CeQ′z′ + De−ik′

xx
)︂

, −b′ < z′ < 0
(2.13)

Next, via the boundary condition at z = 0 interface for normalized magnetic and

tangential electric field we can get{︄
A+B = C + D

K ′ (A − B) = Q
|ε′

m| (D − C) (2.14)

Similarly, at the z = a interface we can get⎧⎨⎩ AeK′a′ + Be−K′a′ =
(︂
Ce−Q′b′ + DeQ′b′

)︂
eik′

z(a′+b′)

K ′
(︂
AeK′a′ − Be−K′a′

)︂
= Q

|ε′
m|

(︂
DeQ′b′ − Ce−Q′b′

)︂
eik′

z(a′+b′) (2.15)

then combining these above four equations in the matrix form⎛⎜⎜⎜⎜⎝
1 1 −1 −1

K ′ −K ′ Q′

|ε′
m| − Q′

|ε′
m|

eK′a′
e−K′a′ −e−Q′b′

eik′
z(a′+b′) −eQ′b′

eik′
z(a′+b′)

K ′eK′a′ −K ′eK′a′ Q′

|ε′
m|e

−Q′b′
eik′

z(a′+b′) − Q′

|ε′
m|e

−Q′b′
eik′

z(a′+b′)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A
B
C
D

⎞⎟⎟⎟⎠=0

(2.16)

This homogeneous equation has a nontrivial solution only if the determinant of the

matrix is equal to zero which readily leads us to the characteristic equation of the

propagating modes in HMMs

cos (k′
z (a′ + b′)) = −1

2

(︄
Q′

K ′ |ε′
m|

+ K ′ |ε′
m|

Q′

)︄
sinh (K ′a′) sinh (Q′b′)+cosh (K ′a′) cosh (Q′b′)

(2.17)

Actually, the characteristic equation Eq. 2.25 can also be achieved through the

transfer-matrix method. Each solution of the characteristic equation yields the value

of transverse wave vector k′
z for each lateral wave vector k′

x, then the iso-frequency

surface (IFS) can achieved as shown in Figs. 2-4(b)and (c) for wavelength λ = 500nm

for different values of thickness ratio TR=a/b, corresponding to four different classes

of the effective medium.

As shown in Fig. 2-4(a), large TR results in both lateral and transverse effective

dielectric constants are positive, and the effective medium is a conventional (elliptical)
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Figure 2-4. (a) Dielectric constants for different TR from EMT; (b, c) IFS for different
TR according to Kronig-Penney model, in case B, the elliptical IFS obtained from EMT
and KP model are nearly overlapping each other.

dielectric. With the decrease of TR, the lateral dielectric constant ϵxy changes sign

first, which indicates that the medium becomes hyperbolic, and then the transverse

dielectric constant ϵz also becomes negative, indicating that the material effectively

reaches the metallic stage. Figures 2-4(b) and (c) show the IFS in the four regions,

we are going to get more details by analyzing different IFS.

For case A, the TR is one, and the permittivity components predicted by EMT

are ϵxy = −4.20, ϵz = 10.32, which places the structure in the hyperbolic region with

dotted red line A IFS. The solid red line A is the IFS calculated using KP model, it

also shows hyperbolic dispersion, but we can see the two results match each other

only when the wave vector is very small, below 10% of the Brillouin zone (BZ), for

the KP model dispersion, the slop gradually decreases to zero at the edge of the BZ,

which result from the consequence of the reflection.

For case B, the TR is chosen as 5, the EMT predicted permittivities are ϵxy =

1, ϵz = 4.61, which means that there should be elliptical IFS, as shown by the blue
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dotted line in Fig. 2-4(b). However, the KP solution (blue solid line) demonstrates

that the hyperbolic and elliptical IFS co-exist, and the elliptical part of the KP model

matches the EMT very well.

Next, for the case C, the TR is chosen as 3.33, which makes one of the EMT

predicted permittivity component close to zero, ϵxy = −7.9×10−4, ϵz = 5.20, this makes

the structure agrees with the definition of the epsilon-near-zaro (ENZ) metamaterials

[72, 73]. According to EMT, the transverse wave vector kz can become arbitrarily

small, indicating the constant phase extending along z axis. This observation is

confirmed by the EMT IFS rendered by the nearly vertical dotted red solid line in

Fig. 2-4(c). However, the KP model, shown as a red solid line, which takes into

account granularity results in an IFS that is quite different from EMT predictions.

The IFS has both hyperbolic and elliptical regions, which nearly touch each other and

obviously, all the transverse wave vectors within BZ are allowed, as one would expect

from the Floquet-Bloch theorem [74]. Clearly, to achieve “true” ENZ, one must either

use much thinner layers or revert to bulk highly doped materials with tunable plasma

frequency, such as AlZnO [75].

Finally, for case D, TR=0.2, comprising very thin dielectric “gaps” sandwiched

between thick metal layers. The EMT predicts two negative effective premittivities

ϵxy = −9.41, ϵz = −43.11, which makes the HMMs an effective metal that cannot

support propagating waves in any direction. However, the KP model still agrees with

Floquet-Bloch theorem, hyperbolic-like solutions still exist with the IFS becoming

more and more horizontal as TR decreases. Actually, the IFS for the nominally

elliptical case B and for nominally metallic case D look very similar to each other.

They both move “higher” and become more “horizontal” as TR goes to either o or

infinity. This means that for either very large or very small TR, I am dealing with

waves that propagate mostly in only the lateral direction. This corresponds to the

behavior of “weakly coupled” modes in the arrays of dielectric waveguides [76]. Clearly,
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the modes of HMMs can be thought of as coupled modes of plasmonic waveguides.

In metallic region D of small TR, those modes are the coupled gap SPPs modes. In

elliptic region B with large TR, they are coupled slab SPPs modes [77]. To further

investigate this analogy, we must first explore HMM characteristics beyond IFS curves.

2.2.2 Fields, Energy Density and Poynting Vector in HMM

Now let’s look at the spatial distribution of the field components and the energy

and Poynting vectors in HMMs. By using the normalized fields and parameters, the

magnetic and electric field energy density can be expresses as{︄
UH=1

4u0|Hy|2 = 1
4ε0εd|H ′

y|2

UE = 1
4ε0

∂ωε(z)
∂ω

E2 = 1
4ε0εdε′

g (z) |E|2
(2.18)

where ε′
g (z) = ε−1

d ∂
(︂
ωεm(d) (z)

)︂
/∂ω is the normalized frequency dependent “group”

permittivity. For metal ε′
g =

(︂
1 + ω2

p/ω2
)︂

/εd, while for dielectric it is obvious that

ϵ′
g = 1. The total energy density normalized to the energy of the plane wave in the

dielectric (UPW = 1
2ε0εdE2)is then

U ′
T =1

2
(︂
ε′

g (z) + |H ′
y|2/|E|2

)︂
= 1

2
(︂
ε′

g (z) + η′−2 (z)
)︂

(2.19)

For the plane wave propagating in the unconstrained lossless dielectric, ϵ′
g = η′ = 1

and U′
H(z) = U′

E(z), hence η′ shows important facts about the energy balance in

HMMs, and according to [78] when magnetic energy is much less than electric energy,

a significant portion of the energy gets stored in the kinetic motion of free electrons in

the metal, which leads to ohmic loss. Therefore, large η′ is associated with large loss.

The Poynting vector components are also normalized to the plane wave in dielectric.

They are calculated as

Sx(z) (z) = −1
2Re

(︂
Ez(x)H

∗
y

)︂
= − 1

2ηd

Re
(︂
Ez(x)H

′∗
y

)︂
(2.20)

and then normalized to the Poynting vector of the plane wave in the dielectric
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(SPM = 1
2ηd

| E |2) to obtain

S ′
x(z) (z) = Re

(︂
Ez(x)H

′∗
y

)︂
/|E|2 ∼ ez(x)/η′ (z) (2.21)

where ex(z) = Ex(z)/ | E | is the projection of the unit vector ẽ indicating the field

polarization. It is clear that when magnetic field decreases (and hence effective

impedance increases) the power flow gets reduced. This can be better expressed by

introducing local energy velocity νex(z) = Sx(z)/UT(z) and then normalizing it to

νd = c/ϵ
1/2
d obtaining

v′
ex(z) (z) = 2ez(x)

η′ (z)
1

ε′
g + η′−2 (z) (2.22)

It is clear that the velocity gets reduced with the effective local impedance. When

this observation is combined with the one made above regarding the increase of loss,

it is clear that the increase in the effective impedance always indicates a reduction in

the propagation distance.

In this work, I consider spontaneous emission to be simply a stimulated emission

caused by the presence of “vacuum” polaritons in the mode. The energy of the

polariton is then

h̄ω=1
4ε0εd

∫︂ [︂
ε′

gE2 (z) + H ′2 (z)
]︂
dV (2.23)

by defining E(z) = Emaxq(z), H′(z) = Emaxh(z) and taking out E2
max, then we can

obtain

h̄ω=1
4ε0εdE2

max

a∫︂
−b

[︂
ε′

gq2 (z) + h2 (z)
]︂
dV = 1

4ε0εdE2
maxF̄

2
V (2.24)

where V is the quantization volume, and

F̄
2 =

a∫︂
−b

[︂
ε′

gq2(z) + h2(z)
]︂
dz

V

a + b
(2.25)

is the averaged mode energy. From Eq. 2.24 we obtain E2
max = 4h̄ω/

(︂
ε0εdF̄2V

)︂
. The

square of the matrix element of the interaction Hamiltonian is then

⃓⃓⃓
Mx(z)

⃓⃓⃓2
= e2Z2E2

x(z)(z) = 2e2Z

ε0εg

q2
x(z)(z)
F̄

2
h̄ω

V
(2.26)
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where Z is the dipole moment of the transition. Now the factor q2
x(z)(z)

F̄2 = q2
x(z)(z)

⟨ε′gq2+h2⟩ ≡
E2

x(z)(z)

⟨ε′gE2+H′2⟩ is simply the ratio of the local to average field and therefore describes the

degree of localization of the electric field. The density of states in HMMs can be

calculated by evaluating the volume of the IFS shell for frequency interval ∆ω through

integration over kz

ρHMM=2 × 1
8π3

kz,max∫︂
0

2πkx
dkx

dω
dkz = 1

2π2

kz,max∫︂
0

kx
dkx

dω
dkz = k3

d

2π2

kz,max∫︂
0

k′
x
dk′

x

dω
dk′

z

(2.27)

where the factor of 2 in the front comes from the fact that the volume of IFS shell

extends over both positive and negative z, +z and −z space, respectively. Then

according to Fermi’s golden rule, the lifetime of energy level of emitter in HMMs can

be expressed as

ΓHMM (z) = 2π
h̄

∑︁
k

|M |2δ (h̄ω − h̄ωk)

= 2π
h̄

e2Z
2ε0εd

E2(z)
⟨ε′

gE2+H′2⟩
h̄ω
V

∑︁
δ (h̄ω − h̄ωk)

= 2π
h̄

2e2Z
ε0εd

h̄ω
V

V
h̄

kz,max∫︁
0

E2(z)
⟨ε′

gE2+H′2⟩dk3δ (h̄ω − h̄ωk)

= 2π
h̄

2e2Z
ε0εd

h̄ω
V

V
h̄

1
2π2

kz,max∫︁
0

E2(z)
⟨ε′

gE2+H′2⟩kx
dkx

dω
dkz

= 2
h̄π

e2Z2ω
ε0εd

k3
d

kz,max∫︁
0

E2(z)
⟨ε′

gE2+H′2⟩k′
x

dk′
x

dω
dk′

z

(2.28)

In free space (dielectric) the energy of each mode is h̄ω=1/2ε0εdE2V, where v is

the quantization volume. Then for the Hamiltonian we have |M| = e2z2E2 =

2h̄ωe2Z2/ (ε0εdV), and the density of states in free space can be calculated as

ρfree = 2 × 1
8π3 × 4πk2

d × dkd

dω
= kd

π2
dkd

dω
(2.29)

So the radiative decay rate in unrestricted dielectric is

Γfree = 2π
h̄

∑︁
k

|M |2δ (h̄ω − h̄ωk)

= 2π
h̄

2h̄ωe2Z2

ε0εdV

∑︁
k

δ (h̄ω − h̄ωk)

= 2π
h̄

2h̄ωe2Z2

ε0εdV
V
h̄

k∫︁
0

dk3δ (ω − ωk)

= 2π
h̄

2h̄ωe2Z2

ε0εdV
V
h̄

1
π
k2

d
dkd

dω

= 4
h̄π

ωe2Z2

ε0εd
k2

d
dkd

dω

(2.30)
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Hence the Purcell factor can be achieved by the ratio of the above two lifetimes in

HMMs and free space

PFx(z) (z) = ΓHMM (z)
Γfree

=
2

h̄π
e2Z2ω
ε0εd

k3
d

kz,max∫︁
0

E2
x(z)(z)

⟨ε′gE2+H′2⟩k′
x

dk′
x

dω
dk′

z

4
h̄π

ωe2Z2
ε0εd

k2
d

dkd
dω

= kdvd

2

kz,max∫︁
0

E2
x(z)(z)

⟨ε′
gE2+H′2⟩k′

x
dk′

x

dω
dk′

z

= 1
2

kz,max∫︁
0

E2
x(z)(z)

⟨ε′
gE2+H′2⟩k′ 1

v′
g
dk′

z

=
kz,max∫︁

0
PF ′

x(z)dk′
z

(2.31)

where I have neglected the small difference between the group and phase velocities in

the dielectric and introduced the differential Purcell factor

PF ′
x(z) (z) = 1

2
E2

x(z) (z)⟨︂
ε′

gE2 + H ′2
⟩︂k′

x

1
v′

g

dk′
z (2.32)

This factor lets us see which states contributes the most to the Purcell factor. If both

Figure 2-5. (a) IFS at λ = 500nm for TR=1. (b) PF as a function of the position of
the emitter in the dielectric for two polarizations. (c) Fields and (d) energies and Poynting
vector for the minimum value of the transverse wavevector and (e),(f) the same for the
maximum value of the transverse wavevector.

hyperbolic and elliptic IFSs are present, the total PF is obtained by the summation of
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the two. Obliviously, the contribution of the elliptical branch is of the order of unity

and is, thus, negligibly small relative to the hyperbolic one. The energy averaging

in the denominator is over one period of HMMs, and ν ′
gx = ω−1∂ω/∂k′

x is the lateral

group velocity normalized to the speed of the light in dielectric. From Eq. 2.32

there are three factors contribute to the PE: the field enhancement, wave vector and,

most importantly, low group velocity. Fig. 2-5(a) shows the IFS when the metal and

dielectric have the same thickness (TR = 1). Fig. 2-5(c) shows the spatial dependence

of the PF, which reaches 25 for this configuration. To better observe the behavior of

SPPs in HMMs, I choose two points on IFS. The first point is chosen with transverse

wave vector kz = 0, the fields and energy are shown in Figs. 2-5(c) and (d). We can see

that magnetic field is symmetric inside the metal (similar to the so called “long-range”

SPP mode in a slab waveguide [79, 80]), the energy is contained mostly inside the

dielectric and the magnetic energy is about a factor of 2 less than electric energy.

Meanwhile, we can see that the energy propagates in opposite directions in the metal

and dielectric. The second point is chosen near the edge of BZ, the field and energy are

shown by Figs. 2-5(d) and (f), the magnetic field now becomes antisymmetric inside

the metal. It is known that, in slab waveguide this mode referred to as “short-range

plasmon” [77], can extend to large lateral wave vectors but also suffers from large

loss. We can see from Fig. 2-5(f) that nearly 50% of the energy is contained inside

the metal, hence the loss is expected to be high [78]. Moreover, I also notice that

UH ≪ UE, which means that the energy balance in the mode is now maintained in

a different way as the energy oscillates between the “capacitance” of the dielectric

and the “kinetic inductance” of the moving free electrons in the metal. Naturally, the

moving electrons always dissipate energy hand high loss ensues. Finally, note that in

the virtual absence of a magnetic field, the Poynting vector is small and so should be

the group velocity. Then according to Eq. 1.14, the modes with large k are expected

to contribute disproportionally to the density of states and the PE. However, they are
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also are expected to have higher loss and shorter propagation distances

2.2.3 Effective and Mean Parameters in HMM

In addition to the energy density and Poynting vector, for better insight into the

physics of HMMs, it is helpful to define a number of the additional effective parameters.

Here I define a number of k-vector dependent parameters, such as the effective mode

loss

γeff (k′
z) = fm (k′

z) γm (k′
z) (2.33)

where fm =
0∫︁

−b
U′

Tdz′/
a∫︁
0

U′
Tdz′ is the fraction of energy contained inside the metal;

the effective impedance is defined as

ηeff =
a′∫︂

−b′

|E (z′)|dz/

a′∫︂
−b′

|H ′ (z′)|dz′ (2.34)

We can also use a different definition of the effective impedance

ηeff =

⎡⎢⎣ a′∫︂
−b′

|E (z′)|2dz/

a′∫︂
−b′

|H ′ (z′)|
2

dz′

⎤⎥⎦
1/2

(2.35)

but our calculation shows that the difference between them is insignificant as I only

use effective impedance as a qualitative measure of the mode properties. Finally, the

effective energy velocity is defined as

v′
ex(z) =

a′∫︂
−b′

S ′
x(z) (z′) dz′/

a′∫︂
−b′

U ′
T dz′ (2.36)

and the effective propagation length

Lx(z) = v′
ex(z)/γeff (2.37)

can also be defined and the used to estimate the propagation of the coupled modes in

HMMs. In addition to the effective parameters, I also reintroduce the differential PF,

Eq. 2.32, it describes the relative contribution of the states, with a given transverse

wave vector, to the density of states and the PE. Figure 2-6(a) shows the two
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Figure 2-6. Change of (a) differential PF, and (b) effective parameters with wavevector
at TR=1.

components of differential PF increase with the increase of the wave vector, especially

when the emitting dipole is polarized along the z axis (which is no wonder given the

TM character of the waves in HMMs). Figure 2-6(b) shows the change the defined

effective parameters with wave vector. We can see that the effective loss and impedance

increase with the wave vector, while the effective energy velocity and propagation

length decrease with wave vector. Hence, most of the “additional” radiation caused by

the PE actually couples into the lossy modes that do not propagate far, and, moreover,

get reflected at the HMM surface due to their large effective impedance.

The effective parameters defined above provide us the information about each

particular mode. However, according to Eq. 2.31, it is the modes with large wave

vector that play the paramount role in the Purcell enhancement, most of the energy

couples into those modes. So it is convenient to define a new set of parameters which

would provide a measure of the properties of the average mode that gets excited in

the HMMs by the emitter. Thus here I define the mean parameters by weighing

the effective parameters over the Purcell enhancement, hence, the mean loss, mean
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impedance, mean energy velocity, mean propagation length are defined as

⟨γeff⟩ =
∫︂

γeffPF ′dkz/
∫︂

PF ′dkz (2.38)

⟨ηeff⟩ =
∫︂

ηeffPF ′dkz/
∫︂

PF ′dkz (2.39)

⟨︂
v′

ex(z)
⟩︂

=
∫︂

v′
ex(z)PF ′dkz/

∫︂
PF ′dkz (2.40)

⟨︂
Lx(z)

⟩︂
=
∫︂

Lx(z)PF ′dkz/
∫︂

PF ′dkz (2.41)

Figure 2-7(a) shows the change of the PF calculated from EMT and KP model with

TR. We can see that in the hyperbolic region the PF calculated by KP model in less

than the PF predicted by the EMT. This is the result of derivation of the KP IFS

from the perfect hyperbola. What’s more interesting is that strong PF exists not

only outside of the hyperbolic region, but is substantially higher there than in the

hyperbolic region. Hence, PE appears to have very little to do with the nature of

dispersion. Apparently, all the enhancement occurs “locally” and can be treated as

enhancement by weakly coupled gap (metallic region) or slab (dielectric region) SPPs.

The change of the mean parameters with TR is shown in Figs. 2-7(b) and (c), we

can see that larger PF is always accompanied by higher loss and impedance, shorter

propagation length and smaller velocity. The reason here is that the energy simply

couples into the large k-vector waveguide modes traveling along the plane and that

these modes are no different from the short-range modes in gap and slab SPPs. The

emitter energy gets coupled into the kinetic motion of electrons in the metal and then

dissipated. In essence, what is observed is simply a quenching of radiative lifetime of

the emitter [81].
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Figure 2-7. (a) Comparison of EMT PF with the results of the KP model. (b) Change
of the mean loss and energy velocity with TR. (c) Change of the mean impedance and
propagation length with TR.
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2.2.4 Impact of Granularity

As mentioned in [47], the EMT does offer a good guidance for HMMs properties, yet

fails to take their granularity into account. Figure 2-8(a) shows the IFS of HMMs for

different periods when TR=1, and the granularity is defined as G = (a+b)/λd. Here we

can see that the IFS is strongly dependent on the granularity. For smaller granularity,

the IFS get closer to the IFS of EMT, but for large k wave vector, the difference

persists. Figure 2-8 shows the relation between the maximum in the dielectric and the

granularity for the same TR as in Fig. 2-8. As expected, extension of the BZ increase

the density of states and PF. But as discussed above, the “new” large wave vector

states are the ones with larger loss. Hence, while the radiative lifetime is expected

to shorten even further with a decrease in period, the external efficiency would also

decrease. In essence, shortening the period will only increase the quenching.

Figure 2-8. (a) IFS for different periods. (b) Change of maximum PF for the two
components of the emitting dipole in the dielectric with granularity.

2.2.5 Comparison With Slab and Gap SPPs

As I pointed above, the SPP modes in HMMs sometime are similar to the SPP

modes in dielectric gap and metal slab waveguide. Here I compare the HMMs with
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dielectric gap and metal slab plasmonic waveguide, referred to as gap and slab SPP

waveguide,respectively. This issue was first addressed recently in [65], where it has been

shown that one can always obtain a density of states that is as large as that of HMMs

using just a single metallic layer. Here I expand on this treatment and demonstrate

that depending on the TR, the HMMs can be shown to be nothing but coupled gap and

slab SPPs and that not just the density of states bit virtually all the characteristics of

HMMs are no different from SPPs. Unlike [65], our model does not rely on numerical

calculation. Figure 2-9(a) shows the comparison of the fields (left) and PF (right) of

the HMM (top) and the gap SPP waveguides (bottom). We can see that the fields

are quite similar, with the normal electric field confined strongly inside the dielectric

gap, leading to strong PE. The only difference is that, for the gap SPP waveguide, a

smaller thickness is required to achieve the same PF with HMMs. The comparison

between HMM (top) and slab SPP waveguide (bottom) in Fig. 2-9(b) follows the

same story line, except that the resemblance is ever stronger. It is important to notice

that the magnetic field inside that metal slab changes sign, indicating that the mode

is antisymmetric or so-called short-range SPPs [77]. Therefore, one can say that as

TR increases and layered material changes its character from metallic to hyperbolic to

elliptical (dielectric), the nature of the “hyperbolic” or “large-k-vector” mode gradually

changes from the symmetric mode of the gap SPPs to the antisymmetric mode of the

slab SPPs. We can also see that the elliptical (small k-vectors) mode corresponds to

the long-range or symmetric slab SPP mode.

Figure 2-10 shows the calculation of the PF and effective parameters of short-range

slab (Figs. 2-10(a)-(c)) and long-range gap SPPs (Figs. 2-10(d)-(f)). As expected, as

the thickness of the metal layer in the slab SPPs decreases the PF increases, because

the mode gets more confined and the group velocity decrease. It is easy to see that, by

reducing thickness, we can always match and surpass the PF in HMMs, which is similar

to the main conclusion of [65]. Similarly, PF of the gap SPP mode increases with the
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Figure 2-9. Comparison of HMMs with (a) a dielectric gap waveguide (b) and a metal
slab waveguide.

Figure 2-10. Change of PF and effective parameters of a metal slab and a dielectric gap
with thickness of the middle layer. (a), (d) PF; (b), (e) propagation length and effective
loss; (c), (f ) energy velocity and effective impedance.
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decrease of the thickness of the dielectric spacer. Just as in HMMs, this increase of PF

is always accompanied by rapid decrease in propagation length and increase of effective

impedance, indicating that what appears to be a genuine enhancement of the emission

is in reality just a quenching. Going beyond the conclusion of [65] and to further

confirm the similarity between HMM and SPP waveguides, I have also calculated and

compared their dispersion curves. In Fig. 2-11, the IFS at λ = 500nm for the 24nm

Al2O3/6nm Ag layered structure is shown with both elliptic and hyperbolic branches

present at this wavelength, By fixing the normal component of the wave vector at

k′
z = 0.4 (vertical dashed line in Fig. 2-11), we can find that values of the lateral wave

vector for the range of frequencies from 0 to 1.25ωsp, where ωsp = ωp/
√

1 + ϵd is the

surface plasma frequency, and produce the lateral dispersion curves Fig. 2-11, which

look remarkably similar to the dispersion curves of slab SPPs shown in Fig. 2-11(c).

The upper branch, which, depending on wavevector, can correspond to elliptical or

hyperbolic IFS, obviously originates from the coupled long-range (symmetric) slab SPP

modes. The lower branch, always hyperbolic in nature, corresponds to the short-range

(antisymmetric) mode. On the other hand, by fixing the lateral component of the

wave vector at k′
x = 0.8 (horizontal dashed line in Fig. 2-11), I obtain the dispersion

curves in the normal direction, as in Fig. 2-11, which looks precisely how one would

expect to see weakly coupled modes of slab SPPs waveguides. Using a condensed

matter analogy, in this tight binding approximation, the elliptical curve looks like a

“conduction band” and the hyperbolic curve like a “valence band”. The curvature of

the hyperbolic band is much smaller than that of the elliptical band, indicating low

velocity of propagation and larger PE.

2.2.6 Bandwidth of PE

One of the purported advantage of HMMs is that strong PE can be achieved over

a wide range of frequency [33, 58], unlike the enhancement s near the single met-
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Figure 2-11. (a) IFS at λ = 500nm nm when the thickness of the dielectric and metal are
24 and 6 nm, respectively. (b) Lateral dispersion relation for HMMs in (a). (c) Dispersion
relation of a metal slab waveguide when the thickness of the metal is 6 nm. (d) Normal
dispersion relation of HMMs in (a).
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al/semiconductor interface that are attainable only in the vicinity of surface plasmon

resonance. Figure 2-12 shows the change of PF of HMMs (red solid line), slab SPP

waveguide (blue dotted line) and gap SPP waveguide (green dashed line) with fre-

quency. We can see that wide range and strong PE can also be achieve by gap

SPP and metal SPP waveguide. Hence, we can easily engineer the PF over a broad

wavelength range by simply varying the thickness of slab and gap SPP waveguides

without resorting to fabrication of a multilayer structure. Here I stress the fact that

most of the enhancement amounts to the quenching of radiative lifetime. Note also

that in both HMMs and SPPs, we can increase out coupling of the high impedance

modes with high k to some degree by using a grating or simply a rough surface with

virtually identical results [82].

It is also interesting to see how many alternating metal/dielectric layers are required

to fully achieve HMM behavior. I have performed the analysis using the transfer

matrix method (TMM) and found that, after about eight periods, the characteristics

of the structure no longer change, as shown in Fig. 2-13. But, as shown above, the

same characteristics can also be obtained with just alternating layers in either a gap

SPP or short-range slab SPP configuration.

2.2.7 Physical origin of PE

Extensive discussion of the characteristics of HMMs has led us to an unavoidable

conclusion: the large wavevectors and, consequently, large density of states in these

materials are all accompanied by large loss in the metal. In that respect, HMMs

are no different from simple slab and gap SPPs, and, furthermore, the densities of

states get larger only in the regions where the metamaterial is nominally “metallic” or

“elliptical”, i.e., they have very little to do with the “hyperbolicity”. This conclusion

is, of course, only logical as long as one accepts the obvious fact that the quantum

“states” do not appear out of nowhere and their density can be altered only by coupling
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Figure 2-12. Change of PF with frequency for HMMs (a = 24nm; b = 6nm) (red
solid line), metal slab (dm = 6nm) SPP waveguide (blue dotted line), and dielectric gap
waveguide (dd = 6nm) (green dashed line).

Figure 2-13. (a), (b) PF calculated using the transfer-matrix-method for different periods.
(c) Change of PF with the increase of periods. (d) PF obtained with a metal slab with
smaller thickness can be the same as HMMs in Fig. 2-9(b) (top).
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between the different states. In this respect, the density of photons always remains the

same and it changes inside the dielectric medium only because the photons couple with

the polarization oscillations of atoms or molecules forming polaritons. This essentially

adds the “degrees of freedom”. In plasmonic structures, including HMMs, the photons

couple with the collective oscillations of free carriers in the metal.

Figure 2-14. Comparison of (a) IFS and (b) PF of the HMMs with real metal and
hypothetical dispersionless metal indicates that most of the density of states and PE
originate from the metal dispersion.

The density of states for free electrons near the Fermi energy is roughly 8 orders

of magnitude higher than the density of photons, mostly because the electron velocity

is much slower than the speed of light. As a result, new coupled plasmon–polariton

modes have a much larger density of states. In other words, the giant PF in any

plasmonic structure including HMMs is simply the consequence of having large density

of free carriers. To check this conjecture, I first note that the presence of a large

number of moving free carriers is manifested by the large “normalized group dielectric

constant” ϵ′
g = ϵ−1

d ∂(ωϵm)/∂ω ≈ ϵ−1
d ω2

p/ω2. It is this large derivative that causes

plasmon polaritons to propagate slowly, which, in turn, leads to large density of states

and PF. What if one considers a hypothetical material with negative permittivity

equal to that of actual metal (ϵm = −12) but dispersionless in the region of interest
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(such material of course cannot exist because the electric field energy in it would

be negative)? I plot two IFSs separated by small frequency interval δω = 0.9%ωsp

of this HMM made up of “dispersionless metal” in Fig. 2-14(a), next to the IFS of

the HMMs made up of real Ag, whose permittivity has dispersion. The difference

is dramatic—for real Ag the two curves diverge at large wavevectors, while for the

dispersionless metal the IFS converges. This is expected even in EMT, where without

dispersion, hyperbolic IFSs of all frequencies converge to the same asymptote. As a

result, the density of states without dispersion decreases dramatically, and, as shown

in Fig. 2-14(b), so does the PF. One can see that about 90% of the giant PE comes

simply from coupling of the emitter’s energy into the kinetic motion of free electrons

and owes preciously little to exactly how the layers are arranged. Needless to say,

once the energy is coupled into the collective motion of free carriers, it dissipates at

the femtosecond rate and, thus, giant PF usually indicates a quenching of radiative

lifetime. This discussion of the origin of giant PE in layered HMMs is also relevant to

the natural HMs, such as hexagonal BN [83], where the modes with large wavevectors

are, of course, nothing but phonon polaritons in which the energy is contained mostly

not in the form of an electromagnetic field but in the form of ionic vibrations (optical

phonons). In other words, the energy of the emitter placed inside natural HMs is

coupled directly into ionic vibrations. The ionic vibrations are of course damped,

albeit not as strongly as free electrons (picoseconds versus tens of femtoseconds),

but then the density of states of these vibrations is also less than the density of free

electrons at the Fermi level. Hence, the basic trade-off between the large density of

states and low loss is maintained in this material, as well.

2.3 Conclusions

In this work I have investigated the optical properties of sub-wavelength layered

metal/dielectric structures, also known as hyperbolic metamaterials, using an exact,
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straightforward, and fully analytical KP model. On the one hand, I have revealed a

number of important features that have not been previously given proper attention.

First of all, not only, as previously noted in [47], can hyperbolic and elliptical IFSs

co-exist, but hyperbolic IFSs can exist for all combinations of layer permittivities and

thicknesses. Most importantly, the largest PE of spontaneous radiation is achieved

away from the hyperbolic region. Second, I demonstrate that large wavevectors and

PE in layered plasmonic structures are inextricably tied to the loss, slow group velocity,

small propagation distances, and large impedances. This indicates that the much

heralded PE in the HMMs is actually direct coupling of the energy into the free

electron motion in the metal, commonly known as quenching of radiative lifetime.

There are far easier and well proven ways to modify the luminescence time, such

as adding defects and using low-temperature-grown materials [84]. Third, looking

deeper into the physics of PE in HMMs shows that it has very little to do with the

hyperbolicity per se and everything to do with the large dispersion of permittivity in

the metals or polar dielectrics, as our conclusions are relevant also for the naturally

infrared HMs occurring in nature. Finally, by offering detailed analysis and comparison

of field distribution, dispersion, PF, bandwidth of the PE, and the guide mode in

metal/dielectric SPP waveguides, I not only demonstrate that HMMs are nothing but

weakly coupled SPPs modes, but that the PE in HMMs can be achieved by using

simple dielectric gap and metal slab SPP waveguides, and their bandwidths are equally

broad.
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Chapter 3

The limits of imaging with
multi-layer hyperbolic
metamaterials

3.1 Introduction

In this chapter, I study the metal-dielectric layered hyperbolic metamaterial’s ability

to get high-resolution image. From the previous chapter, we know that hyperbolic

metamaterial can support very large propagating wave vector due to their special

iso-frequency surface. Hence, hyperbolic metamaterial is a good candidate to break

the diffraction limit and obtain high-resolution image. For the conventional imaging

process based on traditional optical devices, such as lenses, the resolution limited

by the diffraction limit due to the loss of fine details, the fine details are carried by

evanescent waves with large vector. For hyperbolic metamaterial, suppose a point

source is placed near it, the emitted evanescent waves with large in-plane wave vector

can excite propagating modes inside hyperbolic metamaterial, and final, the modes

will transfer the near-field information to the other side of hyperbolic metamaterial,

which is the image space.

Based on this point, the realization of such a configuration using hyperbolic

metamaterials has been suggested to achieve a “hyperlens”. Hyperlens designed to
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enhance its imaging abilities have been investigated in several studies [35, 40, 85, 86].

A hyperlens works for terahertz frequencies that is based on a fan-like arrangement of

graphene sheets has been proposed, and other hyperlenses have been experimentally

realized for acoustic waves and in the microwave, optical and near-ultraviolet regions.

The hyperlens consists of a curved stack of alternating Al2O3 and Ag layers that

are 35nm thick. To create a subwavelength object, the word “ON” was inscribed

on a 50nm thick chrome layer deposited on the inner surface of the hyperlens. The

object was illuminated with a laser beam (central wavelength is 365nm with linewidth

10nm). The far-field image was focused onto the image plane by a conventional lens.

Based on this experimental configuration, a subwavelength resolution of 130nm was

achieved. From that on, many similar hyperlenses have been achieved. Meanwhile,

hyperlenses were also modeled extensively, but most of the models are numerical and

failed to reveal the physical reasons that eventually limit the resolution. This work

Figure 3-1. (a) Hyperlensing experiment configuration; (b) Schematic of a spherical
hyperlens comprised of nine pairs of silver and titanium oxide layers [40]. (c) multi-layered
spherical hyperlens structure. Metal and dielectric thin films are deposited on a spherical
shape of substrate [87].

is based on our previously developed “eigen-mode” model for superlens in which the
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whole phenomenon of “superlensing” was explained as the coupling of light scattered

(or emitted) by the sub-wavelength features of the object into the surface plasmon

polaritons modes of the metal slab and their subsequent combining into the image

on the other side of the slab. The destructive interference between symmetric and

antisymmetric modes was shown to suppress the optical transfer function (OTF) at

large spatial frequencies and thus limiting the resolution of superlens. More recently,

I have studied hyperbolic materials and shown that their eigen-modes are nothing

but coupled SPPs modes which exist in any multi-layer metal-dielectric structure,

irrespective of their classification as hyperbolic or non-hyperbolic as per the effective

medium approximation.

Armed with this knowledge, we can now extend our eigen-mode model to the

image-forming multi-layer structures, which for the sake of generality we shall refer

to as “plasmonic lenses” and explore their limitations. Although in this work I only

consider the flat structures, the main conclusions can also be applied to the cylindrical

hyperlens. While the eigen-mode approach is indispensable for revealing the physics

behind performance of the plasmonic lens, the same outcomes can be essentially

achieved using several numerical methods. One such technique is the Transition

Matrix Method (TMM) that we have employed in numerous examples later explained

using the eigen-mode theory.

3.2 The Eigen-mode Approach

In this work, I estimate the quality and resolution of image obtained through a

multi-layer hyperlens, by applying the “eigen-mode” model, which was developed in

our group for hyperlens consists of only one metal layer, to the hyperlens consists

of multi-layers. Through the “eigen-mode” model, we know that the phenomenon

of “superlensing” can be explained as the coupling of light scattered (or emitted) by

the sub-wavelength features of the object into the surface plasmon polaritons (SPPs)
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modes of the metal slab and their subsequent combining into the image on the other

side of the slab. The destructive interference between symmetric and antisymmetric

modes was shown to suppress the optical transfer function (OTF) at large spatial

frequencies and thus limiting the resolution of superlens. In the last chapter, I have

studied hyperbolic metamaterials and showed their eigen-modes are nothing but

coupled SPPs, which exist in any multi-layer metal-dielectric structure, irrespective

of their classification as hyperbolic or non-hyperbolic as per the effective medium

approximation.

In this section, based on the previously developed “eigen-mode” model and our

study about HMMs, I extend our eigen-mode model to the image-forming multi-layer

structures, which for the sake of generality we shall refer to as “plasmonic lens” and

explore their limitations. Although in this work we only consider the flat structures,

the main conclusions can also be applied to the cylindrical hyperlens. While the

eigen-mode approach is indispensable for revealing the physics behind performance

of the plasmonic lens, the same outcomes can be essentially achieved using several

numerical methods. One of such technique is the Transition Matrix Method (TMM)

that we have employed in numerous examples later explained using the eigen-mode

theory.

The eigen-mode approach is built based on a simple principle: the energy of

the object, when treated here as a superposition of oscillation dipoles, can only be

coupled into the physical eigen-modes of the system. Hence, if the system is capable

of supporting the “sub-wavelength” modes with wave vectors (spatial frequencies) k

exceeding the diffraction limit 2πn/λ, then a subwavelength image can be formed

by superposition of these modes. The The structures incorporating metal layers are

obviously capable of supporting such large k-vector modes, called surface plasmon

polaritons (SPPs). In the multi-layer structures, such as one shown in Fig. 3-2, these

modes couple with each other to give rise to the so-called supermodes extending
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throughout the entire structure.

Figure 3-2. Symmetric and antisymmetric eigen modes in multi-layers hyperbolic metama-
terials contain N metal layers with thickness tm and separated by dielectric with distances
td. do and di are the distance between object, image and hyperbolic metamaterials.

Figure 3-2 shows an example of plasmonic lens containing N metal layers with

complex permittivity ϵm = ϵ′
m + iϵ′′

m, where ϵ′
m and ϵ′′

m are the real and imaginary

parts respectively, and thickness tm separated by dielectric with permittivity ϵd

and thickness td, and is capable of supporting N + 1 coupled SPPs eigen-modes

fn
k (z)exp(ik · r − ωnt)(n = 1, 2, 3 · · · N + 1) where k is the in-plane wave vector. Each

eigen-mode contains in-plane and and out of plane contributions and has a dispersion

relation ω̃n(k) = ωn(k) + iγn(k) which connects the complex eigen-mode resonant

frequency ω̃n with the real in-plane wave vector f; and the imaginary part frequency

γn(k) is the effective loss rate estimated via the ratio of energy in metal to the total

energy in the multi-layer structure. Each of the eigen-modes is a solution of the

homogeneous wave equation.[︄
∂2

∂z2 − k2 + ϵ(z, ω)ϵ0
(˜︁ωn)2

c2

]︄
f n

k(z) = 0, (3.1)

For the convenience of calculation, the eigen-modes are normalized as
∞∫︁

−∞
f n

k(z)∗f m
k (z) =

δmn. For the most general case, the object can be treated as an amplitude mask, phase

mask or fluorescence object, all of which can be represented as a superposition of the

oscillating electric dipoles p(r , z, t) in the object plane, which can be expressed as a

54



Fourier series,

p(r , z, t) = eiωtδ(z0 − z)
∫︂
k

pkeik·rdk, (3.2)

where z0 is the object distance and pk is the polarization of dipoles, hence the wave

equation of the system is,

∇2E(r , z, t) − ϵ(z, ω)ϵ0µ0
∂2

∂t2 E(r , z, t) = ω2µ0p(r , z, t), (3.3)

The electric field can be represented as a superposition of all the eigen-modes at

different in-plane wave vectors

E(r , z, t) = eiωt

∞∫︂
0

N+1∑︂
n=1

Cn
k (ω)f n

k(z)eik·rdk, (3.4)

Then by substituting Eqs. 3.2 and 3.4 into Eq. 3.3 one obtain the time-independent

set of equations for each lateral wave vector k,

N+1∑︂
n=1

Cn
k

[︄
∂2

∂z2 − k2 + ϵ(z, ω)ϵ0
ω2

c2

]︄
f n

k(z) = ω2µ0pkδ(z − z0). (3.5)

By substituting Eq. 3.1 into Eq. 3.5 one can now obtain,

N+1∑︂
n=1

Cn
k

[︂
ϵ(z, ω)ϵ0ω

2/c2 − ϵ(z, ω)ϵ0(˜︁ωn)2/c2
]︂

f n
k(z) = ω2µ0pkδ(z − z0), (3.6)

and then, by multiplying fm
k (z)∗, integrating over z-axis, and using orthogonality

condition, the amplitudes of each mode can be founds as,

Cn
k = ω2

ω2 − ˜︁ω2
n

pk

ϵ0
fn

k (z0). (3.7)

So, the total field in the image space with distance zi from the system can be collected

by detector is,

E(zi) =
∫︂

|k|>k0,n

[︄
ω2

ω2 − ˜︁ω2
n

pk

ϵ0
f n

k(z0)∗
]︄

f n
k(zi)e−ik·rdk +

∫︂
|k|<k0

eik·rEk(zi)dk. (3.8)

And the OTF for the sub-wavelength spatial frequencies becomes,

OTF (k, z0, zi) =
N+1∑︂
n=1

ω2

ω2 − ˜︁ω2
n(k)f n

k(k, z0)∗ · f n
k(k, zi). (3.9)
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Since the two dimensional OTF does not depend on the choice of in-plane coordinate

axes x and y, it can be always be found as a product of two one-dimensional OTF,

OTF(k, z) = OTF(kx, z) × OTF(ky, z). In the following discussion, I shall describe

one-dimensional OTF(k, z0, zi), where k can be either kx or ky.

A dimensionless point object’s image, which can describe the resonance of the

imaging system is called point spread function (PSF) and can be easily calculated by

using OTF,

PSF (x) =
∫︂
k

eikxEk,imagdk ∼
∫︂
k

eikxOTFdk. (3.10)

The eigen-mode approach outlined there presents a clear picture of the sub-wavelength

image formation and the expression Eq. 3.6 elucidates the two most important features

responsible for the image quality. The first feature is the resonant character of energy

transfer from the object into the image highlighted by the denominator of Eq. 3.9.

One should expect to see some peaks in OTF whenever the resonant coupling in one

of the eigen-mode takes place. The second feature is the fact that the terms in Eq. 3.9

tend to change sign depending on the parity of the eigen-modes hence a fair amount

of cancellation (destructive interference) takes place in the image space causing the

suppression of the OTF and resulting in image deterioration.

3.3 Transfer-Matrix-Method Derivation

Figure 3-3. Configuration of multilayer metal/dielectric superlens.
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Despite the fact that we have developed the eigen-mode approach, it is easier to

calculate the OTF by a more direct transfer matrix method (TMM) which can be

easily calculated for any spatial frequency, including the small ones corresponding to

propagating (rather than evanescent) waves and thus not easily describable by the

eigenmode model. Therefore, we can use TMM to calculate OTF and the eigenmode

model to explain its feature. The following is a concise description of the TMM

applied to the multilayer structure that contains M total layers (N metal layers and

M-N dielectric layers) as shown in Fig. 3-3, it has 2N metal/dielectric interfaces.

Due to the existence of reflection at every interfaces, there are both right and left

going waves inside the multilayer superlens, indicated by ′+′ and ′−′ respectively. For

transverse magnetic (TM) mode, we use the magnetic field component Hy , whose

polarization is along the interface and is continuous inside the structure, to help us

build the matrices. As shown in Fig. 3-3, the subscripts show the layer number and

the interface in the present layer, the superscripts show the direction of the wave. For

example, H+
21 indicates the right going wave at the first interface in the second layer.

Inside each layer, the tangential magnetic fields are the superposition of the right and

left going plane waves, i.e. H = H+ + H−. The propagating waves inside every layer

and at each interface are connected by 2 × 2 matrices. The defined dynamic matrix D

relates the fields on two sides of each interface. The dynamic matrices for propagating

wave from dielectric to metal (Dd!m) and from metal to dielectric (Dm→d) are shown

in Eq. 3.11 and Eq. 3.12:

Dd→m =
⎡⎣(1

2 + ϵm(f)K(k,f)
2ϵdQ(k,f) ) (1

2 − ϵm(f)K(k,f)
2ϵdQ(k,f) )

(1
2 − ϵm(f)K(k,f)

2ϵdQ(k,f) ) (1
2 + ϵm(f)K(k,f)

2ϵdQ(k,f) )

⎤⎦ (3.11)

Dm→d =
⎡⎣(1

2 + ϵdQ(k,f)
2ϵm(f)K(k,f)) (1

2 − ϵdQ(k,f)
2ϵm(f)K(k,f))

(1
2 − ϵdQ(k,f)

2ϵm(f)K(k,f)) (1
2 + ϵdQ(k,f)

2ϵm(f)K(k,f))

⎤⎦ (3.12)

where ϵm and ϵd are the permittivities of metal and dielectric; K = (k2 − ϵ0k2
0)1/2

and Q = (k2 − ϵmk2
0)1/2 are the decay constants in dielectric and metal, respectively.
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k0 is the wavevector in vacuum.

For the fields inside each layer, we write the propagation matrices for dielectric

(Pd) and metal (Pm) respectively, as shown in Eq. 3.13 and Eq. 3.14,

Pd =
[︄
exp(K(k, f)td) 0

0 exp(−K(k, f)td)

]︄
(3.13)

Pm =
[︄
exp(Q(k, f)tm) 0

0 exp(−Q(k, f)tm)

]︄
(3.14)

where tm and td are the thickness of metal and dielectric. With the dynamic and

propagation matrices, we can connect the electric field in the object and image space:[︄
E+

xn

E−
xn

]︄
=

Nmetallayers

Dm→d(k, f)Pm(k, f) · · · Pm(k, f)Dd→m(k, f)
[︄
E+

x1
E−

x1

]︄

=
[︄
M11(k, f) M12(k, f)
M21(k, f) M22(k, f)

]︄ [︄
E+

x1
E−

x1

]︄ (3.15)

One can obtain the eigen-solutions fk
n from Eq. 3.15 by imposing the condition of no

input wave (E+
xn = E−

x1 = 0, ϵ′′
m = 0), i.e. M11(k; f) = 0 to find the dispersion relations

and then eigenfunctions themselves for using these solutions to explore the physics of

imaging in the multilayer structure as described in the main text. At the same time,

one can obtain OTF directly as (ϵ′′
m ̸= 0),

OTF (k, f) = Eimg

Eobj

= 1
M11(k, f) , (3.16)

Figure 3-4 demonstrates that the two approaches do give similar results which only

start deviating from each other at large wave-vectors where the SPPs are highly

damped.

3.4 Results and discussion

3.4.1 Effect of Number of Metal Layers and Metal Loss

First, I solve numerically using TMM to obtain the SPP eigen-mode profiles and

the dispersion as shown in Fig. 3-5. I use an example of the standard hyperbolic
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Figure 3-4. Comparison of the calculated OTF with eigenmode model and TMM.

metamaterial consisting of alternating 15nm layers of silver and aluminum oxide,

which means the metal fill ratio (FR = tm/(tm + td)) is 50%, and the length of one

period is 30nm (P = 30nm). The permittivity of Ag, is described by the Drude model

ϵm = 1 − f2
p/(f2 + iγf), where the plasma frequency is fp = 2.166 × 1015s−1, and the

damping is γ = 2.02 × 1013s−1. Al2O3 is assumed to have a constant permittivity

ϵd = 3.61 within the spectral region of interest. Figure 3-5(a) shows the dispersion

curves for a N = 5 period metamaterial, while in Fig. 3-5(b) are the profile of the

in-plane component of electric field (real part) for the six eigen modes. Note that the

first two modes, labeled as “1” and “2” are the “surface” (in the sense of the surface

of whole metamaterial as first introduced in [88]) SPP modes peak at the interfaces

between the metamaterial and surrounding dielectric, extending significantly into the

latter. Since the absolute values of f n
k(z0)∗ · f n

k(zi) for these modes are larger, these

two modes are expected to have larger contribution to the OTF. However, from Fig.
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Figure 3-5. (a) The dispersion curves of the eigen modes when the superlens contains
five metal slabs; (b) The profile of electric in-plane component of each eigen modes inside
the superlens; (c) The absolute value of OTF when N=1, 5, 9, 13, 17, respectively; (d)
The cut-off lateral wavevectors versus the number of metal layers for three different object
and image distances.
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3-5(b) we can also see that one of them is symmetric and the other is antisymmetric,

which means that their contributions to the OTF have opposite signs. As the number

of layers increases, the dispersion curves of the two eigen modes get closer and become

degenerate which according to [88] the other modes (“3”-“6”) are the “bulk” (in the

sense of being inside the whole metamaterial) plasmon polariton (BPP) modes, and

compared to the first two modes, they have stronger field confinement, which means

that the BPP modes have smaller contribution to the process of imaging. Actually, half

of the N+1 eigen modes are symmetric and the other half are antisymmetric, so due to

the opposite symmetry, their contribution to the OTF tends to cancel each other. The

only factor preventing complete cancellation is the difference of resonant frequencies,

so as N increases, the resonant frequencies get closer and the cancellation between

symmetric and antisymmetric eigen modes gets progressively stronger, especially at

the large wavevector k, and resolution is expected to decrease. The absolute value

of the OTF for the imaging using the multi-layer structure (calculated using TMM)

is shown in Fig. 3-5(c) at the wavelength λ ≈ 600nm (which corresponds to half of

surface plasmon frequency) for N increasing from 1 to 17. The OTF goes through some

peaks and valleys for small spatial frequencies due to resonances with eigen-modes

and then decays steadily. The key feature of Fig. 3-5(c) is the fact that as N increases,

the OTF curves not only shift downward (this is simply the result of absorption

by larger number of layers) but also experience progressive rapid fall-off at large

spatial frequencies, shifting leftward. This a the clear manifestation of the increased

cancellation in the structures with large N.

This cancellation effect can be further gauged by first normalizing the OTF curve

to its value at the second (broadest) peak and introducing the cut-off spatial frequency

kcut−off such that |OTF(kcut−off)| = 0.1, which can be construed as an admittedly

arbitrary yet reasonably appropriate resolution limit. The plot of kcut−off as a function

of N is shown in Fig. 3-5(d) for different values of object and image distances. After a
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sharp jump for N = 3 associated with the “merging” of the dispersion curves of the

first two modes (and hence their nearly complete cancellation), the resolution of the

“lens” experiences a steady decrease with an increasing number of metal layers. This

is an important result, relevant for any multi-layered imaging contraption, including

the hyperlens as the number of layers increases not only does the overall amount of

light getting to the image is reduce (this can be mitigated in principle using optical

amplifiers and/or more sensitive low noise detectors), but the resolution of the scheme

also decreases which cannot be undone by any amplification or post-processing.

Figure 3-6. (a) Comparison of PSF with different metal loss when the superlens contains
four metal slabs; (b) Comparison of PSF when the superlens contain four and five metal
slabs respectively; (c) Change of OTF with different metal loss, when N = 5, FR = 50%,
P = 30nm, di = do = 30nm. λ0 is the wavelength of signal.

In addition to the OTF, I also calculated the point spread function (PSF) to

estimate the specific resolution of the multi-layer superlens. As shown in Fig. 3-6(a),

an increase in the loss from γ2 = 1.01 × 1014s−1 to γ1 = 2.02 × 1014s−1 causes not only

a decrease in the height of the PSF but also its spread, i.e. the resolution of the “lens”.

This effect is similar to the changes in the PSF with the number of layers as shown in

Fig. 3-6(b). Figure 3-6(c) demonstrates the impact of the loss in metal on the OTF-at
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small (admittedly unrealistic) values of loss, the OTF shows multiple peaks associated

with excitation of the individual SPP modes, but as the loss increases to realistic

values the peaks disappear and the whole OTF gets reduced by different values of

metal loss.

3.4.2 The Cancellation effect

Figure 3-7. (a) Dispersion relations of the eigen modes when N=10; (b, c) The “OTF
oscillations” as a function of the number of layers in the sum Eq. 3.9 for two values of
special frequencies k = 5k0 and k = 10k0.

Before proceeding further, I want to present an illustration of how an increase in

the number of layers suppresses the OTF at large spatial frequencies, thus reducing

resolution, and the different contributions of modes to image. In Figs. 3-7(b) and

3-7(c) I show the evolution of the OTF for the N = 10 layered structure at two

different values of k as keep adding the individual terms in Eq. 3.9. As one can see,

the sum shows large swings with addition of each SPP mode since each two adjacent

modes have different parities, until the sum converges. Moreover, from Figs. 3-7(b)

and 3-7(c), we can see that the contribution of each eigen mode to the OTF are

different; higher order modes have smaller contributions because of their stronger field

confinement. Hence, the total OTF will not converge to zero, even though it contains

a large number of metal/dielectric layers, the real main limit of OTF or resolution is

metal loss.
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One can also see how the cancellation gets stronger with increasing spatial frequency

k from the dispersion curves shown in Fig. 3-7(a). As spatial frequency increases, the

dispersion curves practically merge and the resonant denominators in the coupling

coefficients in Eq. 3.7 become equal, ensuring more complete cancellation. Indeed,

the oscillations in Fig. 3-7(c) converge much faster and to a lower steady value. It

is important to note that this steady value is low yet not zero because cancellation

is never complete when one of the modes is in resonance, or, when the frequency is

between the eigen frequencies of two adjacent modes of different parities. Indeed,

according to Eq. 3.9, these two modes get added with opposite signs which means

that the fields in the image space will actually add up.

3.4.3 Impact of Granularity

Besides the number of layers and metal loss, the performance of the multi-layer lens

gets affected by the geometrical parameters, such as the size of one metal/dielectric

period and its composition, i.e. the fill ratio of metal (FR = tm/(tm +td)). The effect of

different periods for the FR=1/2 is shown in Fig. 3-8. The first three (a)-(c) panels in

this figure display the dispersion relations of eigen modes when the period is increased

from P = 10nm to 30nm and 50nm. Rather naturally, as the period is increased and

the separation between the interfaces grows, the individual surface plasmon polaritons

becomes less and less coupled to each other and the eigen modes dispersion curves

become denser, with the first two dispersion curves merging. As explained in the

section 3.2 above, the cancellation gets stronger and the OTF gets drastically reduced

with increase of the period as evidenced from Fig. 3-8(d). The impact on the resolution

is even more pronounced as seen from Fig. 3-8(e) where cut-off spatial frequency

kcut−off is displayed. Reducing granularity clearly benefits imaging but using metal

structures in the visible range reducing the period beyond λ/10 is difficult. Better

results may be attained with the semiconductor based multi-layers operating in the
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Figure 3-8. (a)-(c) The dispersion relations of eigen modes when the period P =
10nm, 30nm, 50nm respectively; (d) Change of the OTF with increase in period when the
metal fill ratio is set at 50%; (e) Change of the cut-off wavevector with different period
when the fill ratio is set at 50%.
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mid-IR region, although the loss in them can be quite large.

3.4.4 Impact of Metal Fill Ratio

Figure 3-9. (a)-(c) are the dispersion relation of eigen modes with metal fill ratio
10%, 50%, 80% respectively; (d) The absolute value of OTF for different metal fill ratios;
(e) The cut-off wavevector for different fill ratios.

The fill ratio can also play an important role in determining the “lens” performance.

I have calculated the OTF for different metal fill ratios ranging from 10% to 80% for

the fixed period P = 30nm, and N = 5. Figs. 3-9(a)-(c) display dispersion curves

for the filling ratio of 10%, 50% and 80% respectively. One can see that the curves

for small fill ratio of 10% (Fig. 3-9(a)) are those of coupled slab SPPs with the first

mode being a “long range SPPs” and the rest are closely spaced short range SPPs.

In the opposite extreme of 80% fill ratio (Fig. 3-9(c)), the closely spaced dispersion

curves correspond to weakly coupled “gap SPPs”. For 50% fill ratio (Fig. 3-9(b)),
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the distribution of dispersion is more uniform. From Fig. 3-9(d), we can see that

even though 10% fill ratio has smaller metal loss, due to the denser dispersion curves

and larger resonance spatial frequency, the OTF is still smaller than other fill ratios.

For 80% fill ratio, due to both larger metal loss and denser dispersion curves, the

OTF is much smaller. Fig. 3-9(e) shows the change of cut-off spatial wavevector

with the number of period for different metal fill ratios. Due to larger resonance

spatial frequency, after I normalized the OTF to its second peak to obtain the cut-off

wavevector, extra small and large fill ratios have a large cut-off spatial frequency;

practically however, from Fig. 3-9(d), we can tell that a large OTF (better resolution)

can be obtained with a metal fill ratio around 33%.

3.4.5 multi-layered imaging at the extreme

Figure 3-10. (a)-(c) The OTF of hyperlens contains 100 metal/dielectric period for
different metal loss when the thickness of meta and dielectric are tm = td = 5nm; (d) The
averaged OTF of hyperlens contains 100 metal/dielectric period for different metal loss
when the thickness of meta and dielectric are tm = td = 5nm.

Next, I explore the limitation of imaging with multi-layered structures that contains

large number of metal layers with different granularity. As the number of metal/dielec-

tric periods increases and granularity decreases the multi-layered structure approaches
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the limit in which it can be characterized by effective permittivity and continuous

hyperbolic (or elliptical) dispersion. In other words, the eigen functions f becomes

the Bloch [89] functions. However, the Bloch function method does not describe the

previously mentioned “surface modes” well and these modes play an important role in

imaging with hyperlens.

Even though these structures would be impractical from the fabrication point of

view at the present time, it is worthwhile to consider what limits they can reach in the

future. Also, while as far as we know it is next to impossible to reduce substantially

the ohmic losses in metals, let alone completely cancel them, it is also interesting to

consider what happens when the number of layers increases and the loss becomes very

small. When N becomes large, while the loss gets small, let us say N > 50, the OTF

under monochromatic illumination will contain a number of sharp resonant peaks;

in the practical situation when the light is not strictly monochromatic these peaks

will be averaged out and it is these averaged OTF that presents practical interest.

In Figs. 3-10(a)-(c), I show an example of the OTF for N = 100 and three different

values of loss (γ = 1010s−1, 1012s−1, and 1014s−1 ) which shows rapid oscillation as

loss decreases to admittedly unrealistic values. Next to it in Fig. 3-10(d) I show the

“incoherent OTF” obtained as OTFn =
[︄

kn−r∫︁
kn−l

| OTF(k)n |2 dk/(kn−r − kn−l)
]︄1/2

, where

kn−l and kn−r are the valley wavevectors on the left and right side of the n − th OTF

peak. The “smoothed” OTF of Figs. 3-10(a)-(c) shows that reduction of loss increases

the OTF and the cut-off wavevector but with diminishing returns. Two orders of

magnitude reduction of loss from 1014s−1 to 1012s−1 bring 12-fold improvement in

the OTF but the further reduction to 1010s−1 (highly unrealistic) value only yields a

10-fold. In other words, cancellation is still at work at low loss. To compare the effects

of granularity and the number of layers, I now plot the averaged OTF for N = 50 and

N = 100 with two different granularities in Fig. 3-11 for three aforementioned values

of loss.
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Figure 3-11. (a) and (b) The averaged OTF of hyperlens contains 50 metal/dielectric
periods for different metal loss when the thickness of meta and dielectric are tm = td = 5nm
and tm = td = 15nm respectively; (c) and (d) The averaged OTF of hyperlens contains
100 metal/dielectric periods for different metal loss when the thickness of meta and
dielectric are tm = td = 5nm and tm = td = 15nm respectively.
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Comparing Figs. 3-10(a) with 3-10(c) and Figs. 3-10(b) with 3-10(d) reveals that

an increase in the number layers from 50 to 100 still causes the OTF deterioration

and fall in kcut−off-result of the cancellation, but the reduction is small as discussed in

the end of section 3.2. A comparison of Figs. 3-10(a) with 3-10(b) and Figs. 3-10(c)

with 3-10(d) shows the improvement achieved with lower granularity as expected

from the effective hyperbolic medium, yet the benefit from lower granularity is quite

insignificant for the large number of layers. It is possible that these advantages can be

put into productive use with all-semiconductor structures in mid-IR range.

3.5 Conclusions

In this work, we investigated performance of the multilayer metal/dielectric near

field imaging structures. We have demonstrated that the imaging process of these

multilayer structure can be best understood as coupling of object signal into the SPP

eigenmodes supported by the structure and subsequent formation of the image on the

other side. Due to the ensuing strong cancellation of the contributions of symmetric

and antisymmetric eigen modes, the resolution decreases with more metal layers thus

limiting the number of layers to less than 20 and the object to image distance to only

a fraction of a micrometer-much less than what can be expected from the simple metal

loss considerations. We have also investigated and explained the impact of metal

loss, granularity, and fill ratio on the near field imaging performance of the multilayer

structure. Our main conclusion, which is also relevant to the cylindrical hyperlenses is

that multilayer metal dielectric structures do not offer a performance superior to the

single layer superlenses, but may find limited range of niche applications where one

needs to have object to image distance increased beyond tens of nanometers. These

results will hopefully be useful to the researchers active in the area.
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Chapter 4

Sub-wavelength field enhancement
in the mid-IR: photonics versus
plasmonics versus phononics

4.1 Introduction

In the past two decays, due to the emergence and fast development of the discipline

of plasmoncis, metamaterials and metasurfaces,numerous novel optical phenomena

that cannot be realized using natural materials have been achieved, this also directly

results in the explosive growth of nanophotonics. One of the most important and

interesting features is that the electric field can be confined on a subwavelength scale,

then strong electric field enhancement can be obtained, and mamy applications have

been developed.

To achieve strong field enhancement, people have developed and tried many

structures and methods. One of the most common is via the propagating and

localized surface plasmon polaritons (SPPs), which can generate high field enhancement

by confine the field at the surface, because the excited plasmon modes dissipate

very fast along the surface normal and in the propagation direction. Based on

this mechanisms, people have successfully achieve the strong field enhancement and

developed applications such as optical sensing [90, 91], imaging [14], photovoltaics
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[92] , nonlinear optics [93], optical micromanipulation and a plethora of other diverse

fields. So far, the cause of this disappointing state of affairs is the aforementioned

ohmic loss in the metals [78] which limits both the magnitude of the field enhancement

and its spectral selectivity in accordance with the SPP quality factor Q = ω/γm,

where γm ∼ 1014s−1 is the intrinsic (material) energy damping rate in a typical

noble metal [71]. In the visible and near-infrared (IR) ranges, it is unlikely to find

a low-loss alternative to metals, since alternative materials such as TiN [94], ITO

[95, 96], AlZnO [97], and others have damping rate orders of magnitude higher than

those of noble metals, while their plasma frequencies are lower. High scattering

rates are associated with either the d-shell character of states near the Fermi level,

as is the case in TiN, or with the lack of stoichiometry. Therefore, while these

materials may present an alternative to metals in terms of availability, complementary

metal–oxide–semiconductor (CMOS) compatibility, or higher melting point, they are

not likely to offer field concentration performance comparable to metals. However, for

longer wavelengths, especially in the all-important mid-IR region (3˘20µm), a number

of what appear to be viable low-loss alternatives to metals have recently emerged.

These alternatives include surface phonon polaritons (SPhPs) in the Reststrahlen

region of polar dielectrics [98], heavily doped high-mobility semiconductors [99] and,

last but not least, high-index all-dielectric structures operating just outside the

Reststrahlen region [100]. The intrinsic, or material momentum loss rates, γ, in all

these materials, are substantially (an order of magnitude or more) lower than in

the noble metals and, therefore, it is quite reasonable to posit that large and more

frequency selective field enhancements can be achieved with the new material systems.

However, the intrinsic loss rate is not the only relevant characteristic that determines

the field enhancement. Just as important is the way the energy is distributed between

the energy of the fields and the energy of the matter, as shown in Refs. [101–103].

In Ref. [101, 102], we have shown first analytically, and then numerically that, due

72



to a larger concentration of free electrons in metal structures, a smaller fraction of

energy needs to be stored in the form of kinetic motion of these carriers, and most

of the energy stays in the form of a magnetic field. As a result, the effective loss

of metallic structures can be lower than in the semiconductor ones, despite higher

intrinsic loss. However, to achieve SPP resonance in the mid-IR, metal nanoparticles

must have large aspect ratios that are hard to fabricate, as was pointed out in Refs.

[104, 105]. We have also shown in Ref. [101] that in phononic structures, a significant

(if not dominant) share of potential energy resides in the form of ion displacements,

which means that the electric field enhancement is far more modest than the energy

density enhancement. What has been absent from the accumulated work is the direct

comparison of different material systems for field enhancement in the mid-IR region,

which would give an unambiguous answer to the question of what would be the

best practical structure causing the strongest enhancement of electric field in the

sub-wavelength mode (relative to wavelength in vacuum). (Note that the physical

dimensions of the structure may be comparable or even larger than that wavelength.)

In this Letter, we perform such a comparative analysis for different material/shape

systems capable of providing resonant field enhancement in the wavelength region

10˘15µm [all shown in Figs. 4-2(a)–(e)] and arrive at a set of clear conclusions that

will hopefully assist researchers in designing field enhancement schemes to suit their

needs.

εr (ω) = ε∞

(︄
1 +

ω2
p

ω2
T O − ω2 − jωγ

)︄
(4.1)

εmet (ω) = ε∞

(︄
1 −

ω2
p

ω2 + jωγf

)︄
(4.2)

In this work, I compared several field enhancement mechanisms in the mid-IR region

via theoretical analysis and simulation.
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4.2 Energy Balance of Light Matter Interaction

In this section, let’s dive into the energy balance analysis in polar dielectric structures

first. Suppose a mode contained within some volume of dielectric with permittivity

ϵr(ω), and suppose the characteristic dimension of the volume is a, then the elec-

tric field can be written as roughly E sin(πx/a) sin(ωt) and the magnetic field as

H cos(πx/a) cos(ωt). By using the Maxwell equations one can get the relation between

the magnitudes of the above fields,

H ≈ ωa

π
ε0εrE = 2a

λ

εrE

η0
. (4.3)

The time-averaged electric energy density can be written as,

⟨UE⟩ = 1
4ε0

∂ (ωε′
r)

∂ω
E2 (4.4)

where ϵ
′
r is the real part of dielectric constant and the time-averaged magnetic energy

density is,

⟨UM⟩ = 1
4µ0|H|2 ∼

(︃2na

λ

)︃ 1
4ε0ε

′
rE

2, (4.5)

and n = Re(√ϵr). Here I consider only the lowest order mode in the cavity, then

a = λ/2n, by neglecting the dispersion one can obtain the energy conservation relation∫︁
⟨UE⟩d3r =

∫︁
⟨UM⟩d3r.

However the time averaged picture does not properly represent the energy balance

in the mode since the electric energy includes contributions oscillating 90 degrees

out of phase with each other (in-phase and quadrature components). From Lorentz

oscillator model, the relative dispacement of ions is,

x (t) = e∗/Mr[︂
(ω2

T O − ω2)2 + ω2γ2
]︂1/2 E sin (ωt − φ) (4.6)

where tan(ϕ) = γ2ω2/(ω2
TO − ω2)2, and the velocity of this motion is

ẋ (t) = −ω
e∗/M[︂

(ω2
T O − ω2)2 + ω2γ2

]︂1/2 E cos (ωt − φ) . (4.7)
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Then one can get the expressions for the kinetic energy and potential energy

densities inside the volume,

UK (t) = 1
2NMrẋ

2 (t) = 1
2

ω2ω2
p

(ω2
T O − ω2)2 + ω2γ2

ε0ε∞E2cos2 (ωt − φ) (4.8)

UP (t) = 1
2NMrω

2
T Ox2 (t) = 1

2
ω2

T Oω2
p

(ω2
T O − ω2)2 + ω2γ2

ε0ε∞E2sin2 (ωt − φ) (4.9)

And the potential energy density can be split into two parts,

UP (t) = 1
2

ω2
p (ω2

T O − ω2 + ω2)
(ω2

T O − ω2)2 + ω2γ2
ε0ε∞sin2 (ωt − φ) = UP 1 (t) + UP 2 (t) , (4.10)

the first part is

UP 1 (t) = 1
2

ω2
p (ω2

T O − ω2)
(ω2

T O − ω2)2 + ω2γ2
ε0ε∞E2sin2 (ωt − φ) = 1

2ε0 (ε′
r − ε∞) E2sin2 (ωt − φ)

(4.11)

where ϵ′
r is the real part of the dielectric constant, the second part is

UP 2 (t) = 1
2

ω2ω2
p

(ω2
T O − ω2)2 + ω2γ2

ε0ε∞E2sin2 (ωt − φ) = 1
4ε0ω

∂ε′
r

∂ω
E2sin2 (ωt − φ) ,

(4.12)

it has the same amplitude as the kinetic energy density, but its phase it shifted by 90

degrees. Then the total electric energy density can then be found as

UE (t) = UP 1 (t) + UP 2 (t) + U∞ (t) + UK (t) = 1
2ε0ε

′
rE

2sin2 (ωt − φ) + 1
4ε0ω

∂ε′
r

∂ω
E2

(4.13)

where

U∞ (t) = 1
2ε0ε∞E2sin2 (ωt) ≈ 1

2ε0ε∞E2sin2 (ωt − φ) (4.14)

is the sum of energy stored in the electric field proper UEF = 1
2ϵ0E2, and the potential

energy associated with oscillations of valence electrons UV = 1
2ϵ0(ϵ∞ − 1)E2. Then

bt neglecting a small phase shift ϕ in Eq. 4.14 amounts to a very small error on the

scale of γ2/ω2
p. By averaging Eq. 4.13 over time immediately leads to Eq. 4.4.
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Now we can see that the energy oscillating roughly in phase with the electric field,

which can be referred to as either “in phase” or “potential” is

UI (t) = U∞ (t) + UP 1 (t) + UP 2 (t) (4.15)

and has three components. The first one U∞(t) is entirely static electric field energy

because it is frequency independent. The second one Up1(t) is only weak resonant

and dominates the frequency response in the normal dispersion region. The third

component UP2(t), whose amplitude is equal to the amplitude of kinetic energy UK(t),

is very dispersive and becomes the dominant factor in the anomalous dispersion region.

In the Anomalous region, when ω > ωTO, Up1 becomes negative but the total

potential energy Eq. 4.10 is of courst always positive. The energy taht oscillates

roughly 90 degrees out of phase with the electric field, and can be referred to as either

“quadrature” or kinetic in the Lagrangian mechanics sense

UQ (t) = UK (t) + UM (t) , (4.16)

and it has two components, the actual kinetic energy of the ions UK(t), which is

strongly dispersive, and the magnetic energy UM(t). Whether kinetic of magnetic

energy dominates depends on the dimensions of the mode. Comparing Eq. 4.8 with

Eq. 4.5 immediately yields

UK

UM

∼
(︄

λ

2a

)︄2
ω

a|ε′
r|2

∂ε′
r

∂ω
∼ 1

2

(︄
λ

2a

)︄2 (︄
ω2

ε∞ω2
p

)︄
∼ 1

2

(︄
λp

2an∞

)︄2

(4.17)

γeff = γ
UK

UM + UK

∼
(︄

λp

2an∞

)︄2

/

⎡⎣(︄ λp

2an∞

)︄2

+ 2
⎤⎦ (4.18)

Equation 4.18 is the effective loss obtained based on the energy balance analysis.

It shows the main difference between the plasmonic and phononic subwavelength

structures. The plasma wavelength of metals is in the range of 140–150 nm; hence, if

metallic structures operate in the mid-IR range, the characteristic dimension may be
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substantially smaller than the operating (resonant) wavelength λ0 but still an order

of magnitude larger than λP/2an and the effective loss can be orders of magnitude

smaller than the metal damping rate γ ∼ 1014s−1. When one operates far from

plasma frequency (λ ≫ λP) and the kinetic energy of electrons is small, it is preferable

not to invoke the term “plasmon” and instead use the terms “metal waveguides” or

”metal nanoantennas.” For phononic structures, on the other hand, the operational

wavelength is always much shorter than the plasma wavelength, meaning that in the

subwavelength phononic structure, the effective loss is always equal to the phonon

damping rate (which is, as mentioned above, two orders of magnitude less than the

electrons damping rate in the metal). Hence, even though the momentum damping

rate is lower, it does not offer any significant advantage over the metallic structures.

4.3 Field Enhancement Comparison

I refer to the first field enhancement scheme as a “phononic” scheme, since field

enhancement occurs via excitation of localized SPhPs, i.e., collective oscillations of

ions in polar dielectrics coupled with the electric field. I consider the widely used

example of silicone carbide (SiC), whose dielectric constant is described by

ϵSiC (ω) = ϵ∞,SiC

(︄
1 + ω2

LO − ω2
T O

ω2
T O − ω2 − jωγph

)︄
(4.19)

where ϵ∞,SiC = 6.7 is the high frequency dielectric constant, γph = 1012s−1 is the

damping rate, ωTO = 2π × 23.88THz and ωLO = 2π × 29.16THz [106, 107] are the

transverse and longitudinal optical phonon frequencies respectively. This dispersion

shown in Fig. 4-1(a) indicates that, in the Reststrahlen region between the TO and LO

frequencies, the dielectric constant is negative; hence, it can support localized SPhP

modes. The exact position of the resonance depends on the shape of the SiC and, for

air-clad spherical SiC particles (Fig. 4-2(a)), the resonance occurs at 934cm−1(10.7µm)

[108]. Since the damping rate of SiC is about two orders of magnitude smaller than
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that of metal, the resonance spectrum of a SiC sphere is expected to be much sharper

than others.

Alternatively, rather than operating in the Reststrahlen region, one can achieve field

enhancement at a wavelength somewhat longer than that of a TO phonon, where the

dielectric constant is large. As shown in Fig. 4-1(a), away from the Reststrahlen band

and, at frequencies below TO, the real part of permittivity and therefore the refractive

index of SiC can be positive and quite large, and the imaginary part is reasonably

small. By using a high-index material spherical structure, the electromagnetic field can

be enhanced through the different Mie photonic resonance modes inside the high-index

sphere. Of all these photonic resonance modes, the magnetic dipole mode shown in

Fig. 4-2(b) can generate the strongest field enhancement [109]. The relation between

the wavelength of the magnetic dipole (MD) resonance and the size of the spherical

particle of diameter D, is approximately given as λMD = nD, [110, 111] where n is the

refractive index. Note that, while many semiconductor and polar materials can be

utilized to build a high-index structure, for convenience, I still use SiC. While the

structure is not strictly sub-wavelength relative to λ/n, the region in which the field

gets enhanced is substantially smaller than the wavelength in free space. This field

enhancement scheme to which I refer as all-dielectric Photonic, has small non-radiative

loss, and the radiative loss is quite high; hence, it is not clear at first glance how

competitive this scheme is.

The third scheme studied here is the sphere made from a heavy doped semiconductor

whose dispersion is,

ϵGaAs (ω) = ϵ∞,GaAs

(︄
1 −

ω2
p,GaAs

ω2 + jωγs

)︄
(4.20)

and has been shown in Fig. 4-1(b), where, using the example of GaAs, ϵ∞,GaAs = 12.9,

its damping rate is γs = 2 × 1013s−1, and ω2
p,GaAs = N+

d e2/ϵ0ϵ∞m∗ is the bulk plasma

frequency, the effective mass m∗ is 0.067 times of electron mass and N+
d is the doping
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density. The sphere is capable of supporting the localized SPP for frequencies less

than ωp and when N+
d = 7.97 × 1017cm3 one can achieve the resonance at exactly the

same wavenumber of 934cm−1 as SPhP of Fig. 4-2(a). Since the operating frequency is

close (factor of 1/
√

3) to the plasma frequency, a significant part of energy is coupled

into the collective motion of electrons (rather than magnetic field) and this structure

can be referred to as operating in “true Plasmonic” regime that is expected to offer

some degree of field enhancement.

Figure 4-1. Permittivities of real and imaginary parts of the dielectric constant of (a)
SiC, (b) n doped GaAs, and (c) gold in and around the Reststrahlen region of SiC.

Last, but not least I consider metal-insulator-metal (MIM) structure of Fig. 4-2(e)

also known as the nano-patch antenna [107]. This structure is easier to fabricate

than the prolong ellipsoids considered in [102], and, although with sizes approaching

λ/2 they cannot be qualified as “sub-wavelength”, the field enhancement region in

them is clearly sub-wavelength. I shall refer to MIM and other antenna-like structures

incorporating metals as “metal photonic” rather than “plasmonic” because in the

mid-IR region, operating far below the plasma frequency, the real part of the dielectric
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constant of the noble metal, such as gold and copper, as shown in Fig. 4-1(c), can

be very large in absolute value (|Re (ϵ) | ∼ (3000 − 5000)) in the wavelength range

10 − 15µm. The field then hardly penetrates the metal and the energy remains in the

form of electric and magnetic fields with only a tiny fraction of it being coupled into

the kinetic motion of carriers. As a result, despite the high damping rate of the kinetic

energy, the overall effective damping rate is expected to remain low, causing the high

field enhancement. To get a comprehensive and convincing comparison, I also consider

the field enhancement of patch antennas built using polar material (SiC) and doped

semiconductor (GaAs), as shown in Figs. 4-2(d) and (f). Just as I have pointed out

above, with energy being channeled into lattice vibrations in polar dielectrics, and the

large penetration depth in doped semiconductors, the field enhancement is expected

to be less than that of MIM.

Figure 4-2. (a) Enhanced electric field profile when the SPhPs (“phononic”) resonance
occurs at the surface of a SiC sphere, whose radius is 1µm. (b) Electric and magnetic field
profile when the magnetic “all-dielectric photonic” resonance occurs in the same sphere
as (a). (c) Enhanced electric field profile when the SPP “plasmonic” resonance occurs
at the surface of a doped semiconductor sphere whose radius is 1µm. (d)–(f) Electric
field profiles of the SiC “phononic”, Au “metal photonic”, and GaAs “plasmonic” patch
antennas. The 0.1µm3 cube indicates a volume within which the mean field enhancement
is calculated.
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Figure 4-3. (a) Field enhancement spectra of phononic (SiC), all-dielectric photonic
(SiC), and plasmonic (GaAs) resonances in spherical nanoparticles of Figs. 4-2(a)–(c). (b)
Field enhancement spectra of metal photonic (Au), phononic (SiC), and plasmonic (doped
GaAs) patch antennas of Figs. 4-2(d)–(f).

I have compared the field enhancing performances of the mid-IR structures in-

troduced above with the help of a finite-different time-domain commercial program

(Lumerical FDTD). In simulations of SiC and GaAs spheres, a single sphere whose

radius is 1um was put in the air, light comes from the z direction, and in the x and

y directions, perfect matched layers were set to absorb the scattered field and avoid

reflection. For the simulation of a “metal photonic” MIM, SiC patch antenna, and

GaAs patch antenna schemes, a unit cell was simulated by setting a periodic boundary

condition in the x and y directions.

From the practical point of view, for many applications, particularly in sensing, the

field enhancement region (“hot spot”) should be sufficiently large so that it will not

be problematic to actually introduce the molecules or clusters to be studied into these

volumes. Therefore, to obtain a fair estimate of the enhancement, the calculated fields

are always averaged over a 0.1µm3 cube around the “hot spot” where the maximum

enhancement takes place as shown in Fig. 4-2.

The spectra of the mean field enhancement in all the aforementioned schemes are

shown in Figs. 4-3(a) and (b). The peak enhancement magnitude and full width half

maximum (FWHM) bandwidth are then summarized in Fig. 4-4. A few important
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Figure 4-4. Comprehensive comparison of the field enhancements and bandwidths for all
the mechanisms and structures considered in this Letter.

trends can be observed.

First, of all the schemes it is the SiC Phononic structure (Fig. 4-3(a)) that shows

the sharpest resonance around 930cm−1 which is entirely expected based on by far

the lowest intrinsic loss rate in SiC. The narrow bandwidth of phononic enhancement

makes it undeniably the best for applications requiring high frequency selectivity,

meaning sensing based on specific changes in either refractive or absorptive properties

of analytes. But the range in which this sharp resonance can exist is limited, practically

speaking, to about one half of the Reststrahlen band. At the same time, the degree

of field enhancement by SPhPs is not as high as would be expected based on their

low damping rate. That’s because when the phonon material interacts with an

electromagnetic field, the oscillating ions carry not only kinetic energy but also [102,

103]. Actually, in the Reststrahlen region, the magnitudes of these two kinds of energy

are comparable; hence in SPhP the energy transfers back and forth between the kinetic

and potential energy, with just a small fraction of energy contained inside the electric
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field. For a dispersive material in the near absence of the magnetic field, the energy

density is µ = [∂ (ωϵ) /∂ω] |E|2/4, and the value of ∂ (ωϵ) /∂ω ∼ 88 which means that

most of the energy resides in the form of potential energy of the oscillating ions. Hence,

field enhancement of phononic material cannot be as dramatic as metal.

Next, I turn our attention to the performance of the all-dielectric photonic structure

near the magnetic resonance of a SiC sphere, also shown in Fig. 4-3(a). As I have

mentioned before, just below the TO phonon frequency, the SiC dielectric constant

can be quite large; hence the small (in comparison to the free space wavelength)

all-dielectric structure can be resonant. In our example magnetic resonance takes

place near 760cm−1, where the refractive index is n ≈ 6.63, and the electric field

enhancement outside SiC is much smaller than that of the Phononic SiC structure, while

the bandwidth is just as narrow as within the phononic structure. The performance

of the all-dielectric photonic scheme is limited by the large radiation loss and the fact

that most energy still goes into ion vibrations ∂ (ωϵ) /∂ω ∼ 245. A more detailed

study of the field enhancement ability of all-dielectric structures has been conducted

[109], and it also identified the high radiation efficiency of the magnetic mode as

the main culprit behind the low field enhancement. Note that the magnetic dipole

resonance frequency and the field enhancement vary with the size of the SiC sphere,

but our simulation results show that the electric field enhancement is always smaller

than that of the SPhPs.

The heavily-doped GaAs sphere plasmonic structure performance is also shown in

Fig. 4-3(a). It clearly belongs to the opposite end of the performance spectrum: the

enhancement is much lower in magnitude and wider when compared to the Phononic

structure. This has to do with the significantly stronger damping rate in doped GaAs,

and, given that one operates close to the plasma frequency, the field permeates the

nanoparticles and the effective damping rate is commensurate with the intrinsic rate.

At the same time, unlike ions, free carriers in GaAs do not have potential energy.

83



Therefore, whatever enhancement of energy density is achieved is translated into

enhancement of the electric field. This can be formally seen from the fact that in

doped GaAs the value of ∂ (ωϵ) /∂ω ∼ 25 is significantly less than in SiC.

Finally, for the MIM structure – referred to by us as “metal photonic” (Fig. 3.3(b))

– the field enhancement is much stronger in magnitude while simultaneously occurring

over a much wider bandwidth than that of either “phononic” or “all-dielectric photonic”

structures. Because the electron density in metal is very high, and the high-density

electrons can support strong surface currents, the energy is confined inside the dielectric

gap. Since the free conduction electrons have no potential energy, the strong energy

density enhancement is directly translated into the enhancement of the electric field.

The width of the resonance, as in the case of all photonic structures is determined

by the strong radiative coupling of this patch antenna rather than by the intrinsic

material damping. This breadth of the resonance makes MIM less effective than

dielectric structures for “passive” sensing applications where one tries to sense minute

changes of the refractive index or absorption by observing the shift of the resonances.

But MIM with its much higher field enhancement is far more effective in “active”

sensing based on photoluminescence [112], Raman scattering [113], Surface Enhanced

Infrared Absorption Measurements [114], as well as in such potential applications as

photo detection and nonlinear optics [93, 115]. In the end, in order to obtain a strong

local electric field, it’s necessary to excite large numbers of oscillating dipoles with

a small mass, and from this point of view, metal still remains the best choice. This

is confirmed by Fig. 4-3(b) and Fig. 4-4 where one can see that the maximum field

enhancement obtained width SiC and GaAs patch antennas are much smaller, than

with the MIM patch antenna. That is because for the SiC patch antenna, a large

chunk of energy is trapped in the form of potential energy; and for the GaAs patch

antenna, most energy dissipates inside GaAs.

84



4.4 Conclusions

To summarize, in the mid-IR spectral range, the scope of material systems capable of

providing strong field enhancement broadens beyond metals to include heavy doped

semiconductors, as well as polar dielectrics operating either within or near their

Reststrahlen region. While all of these alternative systems have intrinsic energy loss

rates that are much smaller than those in metal, the large density of free carriers in

metals assures that the effective modal loss is small as the energy is concentrated outside

of the metal, and the magnitude of the field enhancement in the MIM nanoantenna is

much larger than is achievable with any alternative material. That makes these “metal

photonic” structures the best candidates for a large variety of IR sensing and other

applications, but not all of them as the all-dielectric phononic and photonic structures

offer the important advantage of narrow linewidth which makes them preferable for a

number of sensing applications, and, perhaps in thermal photovoltaics [116]. Highly

doped semiconductors offer neither strong field enhancement nor narrow linewidth, but

due to the ability to integrate them with electronic devices, such as photodetectors,

as well as their inherent tunability, these materials may also find their niche.
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Chapter 5

Nanoimprinted Mid-IR Corrugated
Metal-Insulator-Metal (MIM)
Metasurfaces

5.1 Introduction

As we mentioned in Chapter 1, metasurfaces are inherently two-dimensional (2D)

metamaterials, composed of monolayer or few-layered planar stacks that offer same

functionality as bulk metamaterials but in a more compact, lighter and loss-efficient

manner (lower Q-factors)[117]. Metasurfaces can even manipulate light in more

complex ways in 3D to create broadband circular polarizers [118], quarter wave plates

[21], helical phase beams [119] and computer generated holograms [120]. As compared

to fully 3D metamaterials, a major advantage of metasurfaces is that they are easier

to fabricate as most lithographic patterning techniques are inherently planar. With

metal, dielectric and semiconductor building blocks at their core, metasurfaces can

be patterned using wafer-scale production with integration capability [121]. This

key feature is critical to advance practical use of this promising technology in smart

nanophotonic and optoelectronic devices [122]. In this work, we demonstrate the design

and characterization of mid-IR metasurfaces fabricated using Nanoimprint lithography

(NIL) on rigid substrates. By combining NIL with photolithography, we are able to

mass produce millimeter scaled arrays with a variety of designs including novel 2D
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cantilevers and even 3D accordion-like shapes with widths ranging from 400 to 600 nm

and lengths ranging from 4 to 6µm. We characterize the mid-IR optical response in

transmission and reflection using Fourier transform infrared (FTIR) microscopy and

simulate the spectral response using Finite difference time domain (FDTD) calculations

which are in good agreement with experiments. The high throughput fabrication

methods offer the possibility of cost-effective fabrication of large area metasurfaces

for scalable photonic and plasmonic devices with significant tunability in structure

and optical characteristics. For metasurfaces of relevance to visible and infrared (IR)

devices such as antenna sensing [123, 124], spatial and spectral emission control [125],

perfect absorption via selective narrow-band and dual-band emission [126], radioactive

cooling via solar reflectors [127] and label-free analyte-sensitive biosensing using

multi-resonant responses [128], there is a prerequisite for highly parallel sub-micron

patterning over large areas. Currently, most devices are fabricated using Electron-

Beam Lithography (EBL) and Focused-Ion Beam lithography (FIB)[129, 130]. EBL

and FIB offer high resolution but are serial techniques with low throughput and high

cost. In contrast, nanoimprint lithography (NIL) [131] which uses stamps and molds

allows high fidelity parallel patterning using with resolution as low as 10 nm. Like

photolithography, NIL also allows repeated replication of nanoscale patterns over larger

areas as the stamps and molds are reusable. Unlike photolithography, NIL relies on the

thermo-mechanical deformation of polymeric resists and consequently the resolution

is not limited by diffraction. NIL has previously been used to fabricate metamaterials

and metasurfaces to achieve different predictable photonic effects. Initially NIL was

predominantly used to exploit the localized surface plasmon resonance (LSPR) and

ensemble electron density oscillations observed in noble metal nanoscale patterns [132].

Subsequently, NIL was also used to create plasmonic waveguides either planar ones on

thin metal strips [133, 134] or over profiled metal surfaces [135, 136]. Experimental

realizations for a wider range of wavelengths have also been realized. For example,
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Wu et al. [137, 138] reported fabrication of a mid-IR metamaterial and Yao et al [139]

fabricated a large area metasurface with stacked subwavelength gratings and observed

asymmetric transmission response with superior extinction in visible to mid IR range.

NIL has even been creatively used in derived forms, such as to make exotic multilayer

structures based on a stacking process to demonstrate negative index ‘fishnet’ and

‘Swiss-cross’ metamaterials [140]. Another such variant is soft UV-NIL where the

soft polymeric stamp is transparent and in contact with UV-curable resist in absence

of external pressure. This method was used to make 2D nanocavities for biosensing

with near perfect absorption capability in the near IR [141]. A similar fabrication

methodology was used to make cylindrical nanowells for LSPR sensing and SERS

substrates [142]. With the aid of angled deposition, elliptical gold nanodisks were

realized for clinical immunoassay [143] which highlights the geometric adaptability

of NIL. Direct nanoimprinting on metallic films [144] or nanoparticles [145] has also

been previously utilized to manufacture plasmonic nanostructures with strong SERS

effects and highly sensitive LSPR sensing arrays respectively. Using colloidal gold

nanocrystal based nanoantennas patterned using NIL, Chen et al. [146] demonstrated

an ultrathin polarizing plasmonic metasurface and a quarter wave plate. Similar

devices when used with a hydrogel layer on top serve as an angle independent optical

moisture sensor [147]. More recently, Park et al. [148] patterned Fe/Al2O3 films via

NIL to engineer the modulation of effective density and refractive index of CNT forests.

These examples highlight the compatibility of NIL with diverse types of metallic and

non-metallic materials.

Here, we report the design and characterization of mid-IR metasurfaces fabricated

using NIL coupled with conventional photolithography. Our metasurfaces consist of

sub-micron periodic antenna units with selective dual band spectral responses in the

wavelengths 4 − 6m and 10 − 15µm. We were motivated to mass produce mid-wave

IR (MWIR) responsive metasurfaces for several reasons. First, the atmosphere is
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transparent in two mid-IR windows [149, 150] due to minimal vibrational and rotational

absorption of atmospheric gases such as oxygen and carbon dioxide [151]. Consequently,

signals in the mid-IR are widely used for environmental and remote sensing [152].

Second, commonly encountered thermal emissions from humans and hot objects such

as aircraft engines correspond to temperature ranges of 300 to 1000 K in the MWIR

band [153]. Thus MWIR metasurfaces have potential applications in energy harvesting,

tracking, camouflaging, and ambient radiative cooling. Conventional MWIR optics

requires is bulky and expensive. Finally, the losses in metallic metasurfaces are lower

in the MWIR range as compared to shorter wavelength regions such as the visible

or near IR. We note that NIL allows us to create features on the order of several

hundred nm which is commensurate with the subwavelength size and periodicity of

‘meta-atoms’ in the MWIR range. We utilize a comprehensive approach for design

and prediction of the optical responses for various antenna shapes and sizes in the

mid-IR wavelengths using numerical simulations in COMSOL. Using the fabrication

protocol described lin subsequent sections , we reproducibly create metasurfaces over

large areas using NIL and measure the optical responses using Fourier transform

infrared (FTIR) microscopy. We observed good agreement between simulations and

experiments. The results demonstrate the versatility of the method for two different

types of metasurfaces: disjointed-hook (DHM) and accordion-like (ALM). Our study

demonstrates that the electromagnetic wave can be artificially modulated by designing

optical nano antenna array.

5.2 Design of Mid-IR Metasurfaces

Our two-fold comprehensive approach uses numerical simulations in finite difference

time domain (FDTD) to design and predict the optical response in transmission and

reflection for various antenna shapes and sizes in the mid-IR wavelengths. Using the

fabrication protocol described later, we reproducibly make these metasurfaces and
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the results demonstrate the versatility of the method with different geometries. Later,

we characterize them using Fourier transform infrared (FTIR) microscopy to achieve

reasonable agreement with our FDTD calculations in the form of shallow dual band

mid-IR response for different cases. The metasurfaces are designed to have novel optical

properties in the Mid-IR region via 2-D nano-optical antenna arrays. For the radio

frequency and microwave regimes antennas are widely used to convert electromagnetic

radiation into localized energy and vice versa. But at optical frequencies, lenses and

mirrors are used to redirect the wavefronts of propagation radiation and the antenna

concept is widely unexplored. Consequently, the best possible localization of optical

radiation is governed by the diffraction limit. Many foreseeable application can be

expected by extending the antenna concept into the optical wavelength range, such

as high-resolution microscopy and spectroscopy, optical sensors, photovoltaics, solid

state lighting and lasing. Traditional antenna design makes use of structures with

characteristic length L that are directly related to the wavelength λ of the imcoming

(outgoing) radiation, such as L = const × λ, where the constant is an antenna-design

constant. For example, an ideal half-wave dipole antenna is made of a thin rod of

length L = (1/2)λ. However, at optical frequencies the simple wavelength scaling

breaks down due to the the fact that incident radiation is no longer perfectly reflected

from the antenna surface. Instead, the radiation with higher frequency penetrates into

the metal and cause the oscillations of the free-electron gas. So, at optical frequencies

the antenna no longer responds to the external wavelength but to a different effective

wavelength λeff , which depends on the material optical properties. Some experiments

showed at optical frequencies the wavelength λ should be replaced by a shorter effective

wavelength, and in these experiments the resonance of lithograohically fabricated

antennas turned out to be 20% shorter than the value predicted by antenna theory.

In [154], Lukas Novotny derived the linear scaling law for the effective wavelength λeff
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in the form,

λeff = n1 + n2[λ/λp], (5.1)

where λp is the plasma wavelength and n1,n2 are the coefficients with dimensions of

length that depend on antenna geometry and static dielectric properties, here the

assumptions are that the antenna is make of liear segments with radius R ≪ λ, and

the metal can be described by a free-electron gas according to the Drude model.

Figure 5-1. (a) The metasurfaces consist of optical antenna array; (b) The size information
of single optical antenna; (c) The effective wavelength VS. incident wavelength for optical
rod whose length is 2.5µm, radius 25nm; (d) The simulated optical response of the
designed metasurfaces in (a), obtained through Lumerical FDTD.

As we mentioned before, our aim is to design and lab fabricate metasurfaces which

can modulate the radiation of electromagnetic wave via optical antenna. Suppose

we want to design a metasurface that has high reflection at 6µm, then based on the

effective wavelength theroy in [154], as shown in Fig. 5-1 for the metal (Au) rod with

raidus 25nm, the length should be 2.5µm. But for the convenience of lab fabrication,

rectangle antenna is more easy to fabricate than rod, hence as shown in Figs. 5-1 (a)
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and (b), the metasurfaces consists of rectangle optical array are designed, the thickness

of single rectangle optical antenna is 50nm and the length and width are 3µm and

300nm respectively. Fig. 5-1(d) are the spectrum of the designed metasurfaces, we

can see that at λ = 6µm, the designed metasurface does have higher reflection, which

is what we want.

From the simulation we can see that we have successfully designed the metasurfaces

with the optical properties we want via the designing of optical antenna array. Next,

we fabricated the above metasurfaces in our lab then tested the fabricated samples

using FTIR. However, due to the fact that the optical antenna array was directly

on the top of silicon wafer, and the thickness of the silicon wafer we used is about

1mm, and the wavelength range we used is 2µm to 20µm. Hence, when we use FTIR

to measure the spectrum of the samples, the Fabry–Pérot resonance caused by the

reflection of up and bottom surfaces are very strong, and we cannot observe the

expected spectrum as shown in the simulation.

To get rid of this issue, we decided to change our structure. Instead of depositing

the optical antenna array directly on the top on silicon wafer, fist of all, we deposit

metallic (Au) ground plane directly on the top of silicon wafer, this metallic layer

should thick enough to prevent the light transmission and can guarantee better light

radiation modulation. Then on the top of ground metallic layer is a dielectric layer, the

properties of this dielectric layer, such as index, thickness, can affect the performance

of the metasurface. Finally, on the top of the dielectric layer is optical antenna

array. By doing this, the optical antenna is spaced from the ground metallic plane, by

using this configuration, this three layer metasurface couples to both the electric and

magnetic components of incident electromagnetic waves and allows for minimization of

the reflectance, at a certain frequency, by impedance matching to free space. Also, due

to coupling, the frequency or the wavelength at which that the strongest modulation

happens will be different with the effective wavelength theory. So we believe that
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compared to our previous geometry, this configuration has better performance in the

electromagnetic radiation modulation, and with the absence of silicon wafer caused

Fabry–Pérot resonance, we can easily get the spectrum. Figure 5-2 shows the geometric

structure and the size information of the three layer metasurface.

Figure 5-2. Side (a) and Top (b) view of the three layer metasurface.

5.3 Lab Fabrication of Mid-IR Metasurfaces

We first spin coated a thermally curable resist NXR-1025 (7%, Nanonex Corp) at

2000 rpm and baked the resist at 115◦C for 1 minute. We stamped the wafer using a

commercial NX-2000 imprinting tool with an 8 × 8mm2 mold (LightSmyth) with the

nanolines feature. Stamping was performed via a controlled cycle with an applied peak

pressure of 200 psi and peak temperature of 120◦C. The resulting samples were loaded

in a dry planar etcher with 22 sccm oxygen flow at 100W RF power for a minute

to reach the bottom of the substrate as shown in Fig. 5-3(D). Next, using thermal

evaporation in tungsten boats, we deposited (5 − 10nm) adhesive layer of chromium

followed by 50nm thick gold film at a deposition rate of 0.1˘1Å/sec in 1 × 10−5 torr
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chamber pressure. After this step, the residual imprint resist was dissolved in acetone

for lift-off metallization using a sonication bath. Till this part, the desired width of

the said nanoantennas was achieved.

Figure 5-3. General fabrication process of both metasurfaces types: (a) Thermal deposi-
tion of Au followed by MgF2 onto silicon substrate, (b) Spin coating of the thermoplastic
resist on top for imprint process, (c) Pressure and temperature controlled NIL step under
vacuum to transfer nanolines, (d) Removal of residual resist after NIL using oxygen plasma
descum to reach the substrate, (e) Thermal deposition of Au thickness desired preceded by
adhesive layer of Cr, (f) Lift-off metallization by sonicating in acetone bath to remove the
resist, (g) Photopatterning of the resist etch mask perpendicular to direction of imprinted
lines and developing thereafter to expose the unwanted Au, (h) Wet etching of Au followed
by Cr in a bath using commercially available selective etchants, (i) Removal of etch mask
resist layer using acetone, j) Final end product metasurface with disjointed antennas, and
k) Final accordion metasurface with corrugated joined antennas

In order to fabricate rectangular cantilevers from above obtained nano-lines, we

further spin coated a second UV-curable photoresist S1805 by Microposit at 4000

rpm and then baked it at 115◦C for a minute. I-line (365 nm) exposure was done

using a Neutronix NXQ 4000 mask aligner and the resist was developed using MF-319

developer for 7 sec. The photopatterning alignment was done such that the micron-

sized periodic line pairs on the chromium photomask were orthogonal to the imprinted
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metal lines, hence this step determined the final length of our antennas. The unmasked

metal regions between any two resist line pairs were dissolved at room temperature

using a commercially purchased wet etchant GE-8110 by Transene. The chemistry

was selective towards gold and mixed with surfactant to enable wetting. Chromium

etchant CR 1020 AC was applied to remove the underlying chromium below the gold

removed. Eventually, the resist was washed off using acetone to give rectangular

cantilever-shaped antennas. The aforementioned protocol for making single layer

metasurfaces can be adapted for metal-insulator-metal (MIM) structures with the

addition of two preceding steps. First, was thermal evaporation of the back reflector

metal layer with thickness about 200 nm, followed by a subsequent deposition of the 60

nm thick dielectric spacer layer, which was magnesium fluoride (MgF2) for our study.

The transmission and reflectance measurements for our metasurfaces were taken using

a Bruker Tensor 27 FTIR spectrometer coupled to a Hyperion 2000 microscope. The

incident light from the source was focused on the sample using a 15X visible-cum-IR

objective (NA = 0.4) while it is collected back by a liquid nitrogen cooled mercury

cadmium telluride (MCT) detector. Transmission measurements were performed for

normally incident IR light while in case of reflection, the weighted average angle

of incidence was 20◦. A gold mirror was used to normalize all sample spectra for

reflection while an open aperture (air) was used for transmission. The collection area

was confined to 100×100µm2 by a rectangular glass aperture to consider a region with

low defects. An IR polarizer was placed in the path of incident light before meeting

the sample at 3 optional angles of 0◦, 45◦ and 90◦ to generate linearly polarized light

with parallel, diagonal and perpendicular states with respect to the antenna. No

analyzer for the resulting light off the metasurface was used. All spectra taken for

the samples and background were collected from 2 to 16 µm at a resolution of 1cm−1

containing 64 scans with a mirror repetition rate of 20 kHz. Since there is no dry air

purge unit around the sample, the spectra were later corrected using the atmospheric
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compensation tool (for H2O and CO2) in OPUS package by Bruker and post processed

for smoothening by Savitzky-Golay algorithm.

5.4 Characterization and Optical Response Mea-
surement of Metasurfaces

Figure 5-4. (A) Schematic of the metasurface (mts) fabricated in Fig. 5-3(J) identifying
the underlying silicon substrate, the thick metal layer, insulator layer and the gold nanopat-
terns on top. (B) Large area SEM micrograph of DHM and (C) the magnified SEM with
a tilted side view to show the novel s-topography of the individual antennas.

Figure 5-5. (A) Schematic of the metasurface (mts) fabricated in Fig. 5-3(J) with the
same underlying layers and thicknesses as figure 2. Inset also shows a top view SEM image
that made us call it accordion-like metasurface (ALM) (B) Large area SEM micrograph
of ALM and (C) the magnified SEM with a tilted side view to show the continuous
connectivity of the antennas.

Our fabrication procedure is highly scalable and extremely effective in creating

differently sized antenna components by simply using molds and masks of varying

lateral characteristics (duty cycle or period, line width, depth, angle of photopattern-

ing). The SEM images in Fig. 5-4 show the good imprint integrity (negligible residual

layers) and high fidelity patterns over large areas as designed in the schematic. The
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progressively zoomed micrographs specifically show disjointed array of antennas that

are asymmetric along their width (hook-shaped topography) with approximately 50

nm height, 490 nm wide and 5.5µm long with a period of 510 nm along the width and

10.1µm along the length. The non-continuity and thickness of gold antennas is crucial

in determining the LSPR activity for this case as explained later. The geometrical

measurements of the patterns were done using ImageJ analysis of these SEM images.

Similarly, from Fig. 5-5 we realized the symmetric 3D accordion antenna array. The

high magnitude SEM images show that the antennas are connected uniformly along

the longer edge. High fidelity nanopatterning of the top most gold antenna ensemble

was realized in both cases. A non-trivial asymmetric topography is obtained in case

of DHM over a large area as shown in panels B and C of Fig. 5-4. The antennas are

separated along the right longitudinal edge and are closely packed adjacent to each

other. In case of the ALM, a continuous periodic corrugation was achieved in the top

gold layer. The surface profile is smoother for this case compared to DHM. A key

visual queue that differentiates otherwise seemingly similar metasurfaces is that if one

performs an asymmetric cross-sectional but periodic partitioning of the top gold layer

in ALM, the DHM topography can be fathomed. Hence a simple yet elegant variation

in lithography can be creatively exploited to fabricate tunable metasurfaces.

The bottom gold layer in our metasurfaces was sufficiently thick to prevent any

transmission to take place when the light is incident from above. Based on the

electromagnetic resonance in metal-insulator subwavelength bilayer, we saw reduced

reflection for certain mid IR frequencies. We have analyzed the reflection responses

for 3 different cases and compared our results with the experimental measurements.

The panels A, B and C in both Fig. 5-5 and Fig. 5-6 represent the predictions from

COMSOL while the panels D, E and F show the FTIR measurements over the same

wavelength range, respectively for DHM and ALM. The blue and the green curves

denote the measurements taken with the incident light polarized along the longer and
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Figure 5-6. (A-C) are the reflection obtained through COMSOL simulation. (D-F) FTIR
Reflection measurements for DHM explained in Fig. 5-4. The IR polarizer used generated
linearly polarized incident light at different angles with respect to the antenna, from (D)
being no polarizer in beam path (black curve), (E) polarization along length of antenna
(blue curve), and (F) polarization along the width of antenna (red curve).

shorter edge of the antennas respectively, while the black curves are for the unpolarized

incident light. While it was experimentally possible to measure for all the 3 cases in

our FTIR setup using an IR polarizer as described earlier, the FEM calculation for

the no polarization case (panels A) was taken as a mean of the cases in panel B and

C. For the DHM, we have observed significant reflection minima in 3 different mid

IR regions at around 2, 5 and 12µm respectively. The responses near 5 and 10µm

originate from the surface plasmon resonances along the longer edge of the antennas

as realized in panels B and E of Fig. 5-5. why, the response at 2µm is related to the

plasmon resonance along the shorter edge of the antenna as seen in panels C and F

of Fig. 5-5. In comparison, for the ALM case, we have observed same resonances

at longer wavelengths of 5 and 12µm, with no discernable featuresseen at shorter

wavelengths. The overall symmetry of the structure along the shorter edge doesn’t

generate the desired plasmonic interaction to limit the reflection for higher frequencies

as seen in green curves in panels C and F of Fig. 5-6. All the LSPR interactions
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observed at various wavelengths in FTIR responses are mostly consistent with the

full wave simulations in the panels above of same figures. When light is polarized

along the shorter dimension, LSPR occurs at the highest energy (transverse) and

conversely at the lowest (longitudinal) when along the longer dimension. This ability

to differentiate between 2 modes is possible with the orientation control given by NIL

as opposed to average of irregularly shaped structures chemically synthesized. This is

in agreement with the reflection measurements in both cases where the blue curve (L

pol) contributes to the main peak responses. The position of these responses can be

controlled and tuned using prefabrication changes. We also compared the reflection

responses of metasurfaces in Fig. 5-6 and Fig. 5-7, the reflection dip observed around

λ = 2.5µm for DHM is completely absent in the ALM. This shows that a simple

change in the design can alter the optical nature of the said device from multi band

to dual band response. In order to facilitate understanding of these symmetry driven

Figure 5-7. (A-C) are the reflection obtained through COMSOL simulation. (D-F) FTIR
Reflection measurements for ALM explained in Fig. 5-5. The IR polarizer used generated
linearly polarized incident light at different angles with respect to the antenna, from (D)
being no polarizer in beam path (black curve), (E) polarization along length of antenna
(blue curve), and (F) polarization along the width of antenna (red curve).

reflection responses governed by LSPR at the metal-dielectric interfaces, we also
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Figure 5-8. Electric field distributions around the DHM unit cell with (B), (C) and (D)
representing the valleys observed in reflection response starting from right to left, and (i)
and (ii) denote the side view and top view respectively.(A) shows the cross sectional view
taken at 3 different planes: 2 ends of the antenna [(i) L = 0 and (iii) L = L] and one at
the middle [(ii) L = L/2]

Figure 5-9. Electric field distributions around the ALM unit cell with (B), (C) and (D)
representing the valleys observed in reflection response starting from right to left, and (i)
and (ii) denote the side view and top view respectively.(A) shows the cross sectional view
taken at 3 different planes: 2 ends of the antenna [(i) L = 0 and (iii) L = L] and one at
the middle [(ii) L = L/2]

studied the electric field intensity distributions in the DHM and ALM unit cells. The

intensity plots were calculated for different orders of LSPR as seen in Fig. 5-6 and Fig.

5-7. The first order being the higher intensity one, located around 12µm, second order

near 12µm and the third at 2µm. While there may have been more orders occurring

on either sides of the spectrum, we only kept mid IR wavelengths as our region of
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interest for the purpose of this work. The asymmetry in the DHM manifested itself in

the hot spot locations of the resonances as shown in Fig. 5-8 for the side view along

length [panels B (i), C (i) and D (i)] and the top view as seen by encountered by

incoming light [panels B(ii), C (ii), D (ii)]. For the side view, the unit cell plane used

cuts the antenna on the left edge while the top view unit cell plane coincides with the

interface between top metal and dielectric layer. Same holds true for Fig. 5-9. The

said hot spots are shifted towards the right for the DHM, where the antenna rises in

the out of plane direction. Juxtaposed against ALM, we saw more intense hot spots

with ideal symmetry in the top view planes for all the orders [Fig. 5-9 panels B (ii), C

(ii), D (ii)]. Given their smoother edgeless topography, the fields also extend further

in the unit cell area under consideration than the DHM LSPR activity. Hence it can

be conclusively said that the geometric asymmetry in the DHM manifested itself in

the hot spot locations of the resonances, likewise symmetry played the same role in

ALM. More specifically to explore the plasmonic interactions taking place along the

width of these antennas, where the asymmetry or symmetry lies, we further looked

into electric field intensity distribution for the longest wavelength (12µm), evaluated

at 3 different orthogonal planes: 2 at the edges [panels A (i, iii)] and one at the center

[panels A (ii)] in both Fig. 5-8 and Fig. 5-9. The hot spots were realized at the

edges for DHM as opposed to the center for ALM. This observation establishes that

the resulting distributions for the 2 cases are spatially complementary to each other.

Using subtle symmetry manipulations in our metasurface fabrication we achieved

contrasting plasmonic responses for reflected light, which can be visualized as a logic

gate type control system for infrared light.

5.5 Discussion and Conclusions

The general profiles of FEM and FTIR for both cases were in great agreement in terms

of positions of band responses and baseline trends. There are a few disagreements
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present but we have sufficient insights to explain them: (i) the overall noise in FTIR

measurements is higher compared to their smooth FEM counterparts. This can

attributed to the ideal surface profiles constructed in COMSOL which can’t be said

for the fabricated metasurfaces. The process of thermally evaporating a dielectric

material is susceptible to the grainy morphology of the resulting thin film. The

resulting bumps or cavities created further contribute to both enhanced scattering

and a more diffused reflection rather than specular. It consequently results in greater

noise and (ii) low amplitude response since a lesser intensity of light is interacting

with the metasurface compared to the simulation unit cell. The FTIR reflection

data was corrected by a factor of 2 to take into account the 50% reduction in overall

light intensity occurring due to presence of the polarizer in beam path. Based on

the refractive index modelling of MgF2 in most commonly used commercial Maxwell

solvers, which is reliably researched and reported only as far as 7 to 7.5 microns [155]

for both ordinary and extraordinary rays, the experimentally observed increasingly

lossy behavior for higher IR wavelengths is not fairly captured in our FEM calculations.

(iii) The latter hence resulted in an increasingly reflective trend for the region of 7 to

15 microns in contradiction with the FTIR measurements. The location of this cut-off

wavelength can be accounted for by the vibrational mode phonon energy corresponding

to MgF2 octahedron building blocks in the material’s structure [156]. (iv) Another

factor that can contribute to the enhanced absorption for certain wavelengths in FTIR

data is the fact that the series of fabrication steps employed in our recipe involves

extensive use of various cleaning reagents, thermosetting polymers, silanizing agents,

photo responsive resists and chemical etchants. Even trace residual amounts of such

compounds, comprising an abundance of different bond energies present can interfere

with the LSPR interactions which are again not accounted for in the simulations.

(v) Sharp fano-resonant features seen in both cases. (vi) Other minor disagreements

between the simulations and experiments can be attributed to the imperfections or
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defects present on the sample. The experimental measurement conditions (not in

vacuum) were different from the ideal simulation. With the use of Cassegrain objectives

for FTIR microscopy, the reflected light can never be perfectly normal to the substrate

as in case of wave optics module in COMSOL. However, the setup can still monitor a

significant amount of reflected light and, therefore shouldn’t alter our conclusion. The

reflection of the MIM structure that we examine in this paper is determined by several

elements. Since, the electromagnetic resonance on the top antennas is excited by the

external incident electromagnetic wave, hence both the size of the antenna and the

polarization have effect on the reflection spectrum. The bottom metal (Au) acts as a

mirror, which couples to the resonance of the top antenna, enhances the interaction,

then both the distance between antenna and bottom metal and the material between

them will impact the interaction. As a summary, by changing the size and polarization,

we can change the resonance wavelength, hence the position where the trough in the

spectrum shows. Because different resonance modes can be excited by the external

incident electromagnetic, we can see that there are sever troughs in the spectrum.

By changing the distance or the material between the top and bottom metal, we

can change the depth of the trough of the spectrum, and potentially make the MIM

structure a perfect absorber.

Overall, our work demonstrated two subtly different metasurfaces with novel

topographies operating in the mid IR region with highly tunable and complementary

plasmonic responses sensitive to the state of linear polarization of the incoming

light. To establish perspective towards the novelty of the morphology aspect of these

metasurfaces and how it affects the accompanying surface plasmonics, we can compare

their reflection response towards polarized light in two different states (along the length

and width of antennas) to the control cases where the antennas lack any apparent degree

of patterning: a single continuous flat strip of gold and non-corrugated rectangular

cantilevers. By introducing these asymmetric and symmetric curvatures periodically
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over a large area of the semiconductor substrates, allows us to achieve true manipulation

of possible IR responses on the spectrum scale indicated by easily distinguishable

and drastically unique plasmonic activity. This feature can be efficiently employed

to accomplish otherwise esoteric tasks like precise biosensing of molecules in low

concentration or in vivo SERS, when the antennas are patterned to realize a plasmonic

resonance that fit into the energy transparency windows of the biological sample

under consideration. Key shortcomings of the outcomes were thoroughly discussed

and recommendations were outlined to address them. Further experimentation is

needed to fabricate more complex and truly 3D metamaterials by using these surface

characteristics as building blocks arranged in polyhedral spatial fashion. The materials

and manufacturing techniques used for in making these metasurfaces underline the

compatibility with semiconductor industry’s conventional CMOS tech. Scalable and

planar aspects our device can comply with the increasing demand for miniaturization

of optical components for compact portable device utilities, especially where on chip

integrations are required. A significant portion of findings till date have heavily

explored visible or near IR wavelengths, leaving out mid IR domain due to less

advanced manufacturing methods and very expensive characterization techniques, and

our research surely attempts at addressing that complaint by developing solutions

that agree on both experimental and modelling fronts. In the end, we realize large

area manufacturing of multilayer plasmonic metasurfaces using NIL and conventional

photolithography. The wavelength response can easily be shifted to visible and near

IR regimes when imprint stamps with features around 100 nm with varied packing

density are used. By altering the amount of plasmonic metal deposited, the intensity

of response can also be enhanced. We believe that the amplitude we achieved can

be sufficient for biomolecular sensing applications. When used in tandem with novel

thermally, chemically or mechanically responsive materials or opto-electronically

relevant family of 2D layered materials, these metasurfaces can generate further exotic
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properties. Therefore, low cost fabrication protocols like ours hold great promise to

advance the industrial realization of such neatly defined nanoscale metamaterials for

manipulating light.
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Chapter 6

Reversible MoS2 Origami with
Spatially Resolved and
Reconfigurable Photosensitivity

6.1 Introduction

Two dimensional layered materials (2DLMs) have attracted more and more attentions

in the fields of electronics [157], opto-electronics [158], energy [159], and sensing

applications[160], due to their unique properties [161] including atomic-scale thickness,

excellent electrical, thermal characteristics, high stability and mechanical strength [162,

163]. Despite significant progress, most monolayer 2DLM-based functional devices

are configured on rigid planar substrates which can limit device functionality and

increase overall device size. Because monolayer 2DLMs are extremely thin, they

possess low bending rigidity [164], and it has been suggested that they could be curved

or folded to create three-dimensional (3D) flexible and reconfigurable devices with

small form factors [165, 166]; however, achieving this vision is challenging [167]. Most

high-quality monolayer 2DLMs are grown on rigid substrates using high-temperature

chemical vapor deposition (CVD) approaches not compatible with flexible and stimuli

responsive polymeric materials. Also, due to the extremely low bending stiffness and

strong van der Waals interactions between these ultrathin films, it is challenging to

achieve well-controlled and reversible folding [168, 169].
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Three-dimensional structures offer significant advantages for opto-electronic appli-

cations as has been demonstrated with conventional semiconductors such as silicon

and III-V materials [170, 171]. For example, macroscale 3D silicon photovoltaic (PV)

structures with integrated absorbers and reflectors [172] or kirigami-patterned gallium

arsenide solar cells [173] were shown to generate much higher energy densities as

compared to flat PV panels. For photodetection and imaging, 3D deformable silicon

photodetector arrays were shown to have nearly infinite depth of field and a full field

of view with zero aberration [174, 175].

2DLMs have unique advantages over conventional semiconductors in opto-electronics

[176, 177], including light absorption over a wide energy spectrum, ultrafast carrier

dynamics, tunable optical properties via doping, and low dissipation rates [178]. How-

ever, their atomically thin structure is a limitation in optical devices due to low light

absorption and limited light-matter interactions [179, 180]. Strain engineering or shape

transformation of 2DLMs into well-defined 3D structures provides a promising strategy

to overcome this limitation [181–183]. One recent report showed that a mechanically

assembled 3D device based on 2DLMs was capable of measuring the direction, intensity,

and angular divergence properties of the incident light [184]. However, reversible,

reconfigurable, and stimuli-responsive 3D opto-electronic devices based on monolayer

2DLMs have yet to be achieved and this is an important step in the development

of biomimetic, adaptive, smart, wearable, and robotic devices [185, 186], such as

those capable of sun tracking (heliotropism), leaf opening (nyctinasty), or structurally

tuning color [187–189].

6.2 Fabrication and realization of MoS2 Origami

In this work, we reversibly transform monolayer MoS2 from a flat state to complex

3D shapes, by attaching it to differentially cross-linked and stimuli responsive poly-

mer (SU8) films with integrated gold (Au) electrodes. We report several important
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advances as compared to prior research. First, we can control both the folding extent

and the direction of MoS2 − Au − SU8 based on the tunable photo-cross-linking of

SU8; this control enables the folding of complex Miura-ori patterns which require

bidirectional hinges with rigid segments. Such geometries represent a significant

advance beyond simple self-folded and unidirectionally curved structures such as

cylinders and rolls [190]. The realization of the Miura fold pattern is also a major

step toward realizing more complicated origami/kirigami-inspired and deployable

functional devices. Second, our approach enables the arrangement and reconfiguration

of MoS2-based opto-electronic devices in predesigned 3D patterns, leading to spatially

or angle-resolved photodetection and vastly tunable detection area between the flat

and folded states. Third, the stimulus responsive folding is completely reversible

without the need for tethers or wires, and it also has the advantage of being flexible

and soft as compared to inorganic or metallic 3D structures, which paves the way for

next-generation adaptive, biomimetic, and environmentally responsive opto-electronic

devices. Finally, our 3D fabrication technique is based on SU8, which is a negative

photoresist widely used in conventional microfabrication. The fabrication and self-

folding process of the MoS2 − SU8 structures with integrated Au patterns is shown in

Fig. 6-1 and more details are in the SI. Briefly, the process involved MoS2 transfer,

multistep photopatterning, and etching. We used monolayer MoS2 film synthesized

using metal organic chemical vapor deposition (MOCVD), the details of which can be

found in a previous report [191]. The Raman spectrum of the synthesized MoS2 shows

peaks at 386 and 406cm−1, and the photoluminescence spectrum has a pronounced

peak at 658nm, which indicates the high quality of MoS2 used in this study [192]. We

transferred a monolayer of MoS2 from the growth substrate to the top of a silicon

wafer which was coated with a copper or aluminum sacrificial layer. We utilized the

poly(methyl methacrylate) (PMMA) transfer method [192]. Then, we deposited and

photolithographically patterned Au patterns on the MoS2 by thermal evaporation and
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a lift-off process. We subsequently deposited, differentially photo-cross-linked, and

patterned the SU8 into the predesigned 2D shape. We then removed the excess MoS2

using oxygen plasma etching. Finally, we released the MoS2 − Au − SU8 structures

from the silicon or glass substrate by dissolving the sacrificial layer.

Reversible self-folding of the 2D MoS2 − SU8 patterned structures is driven by

solvent exchange between a good (acetone) and a poor solvent (water) in the differen-

tially photo-cross-linked SU8 films. We utilized two different approaches to achieve

the self-folding of the SU8 microstructures, as illustrated in Figs. 6-1(b) and (c). In

the first approach, we fabricated anSU8 bilayer with a partially photo-cross-linked top

SU8 layer and fully photo-cross-linked the bottom SU8 layer. In the second approach,

we created a cross-linking gradient based on the exponential light intensity decay

in a single thicker SU8 layer by low UV dose exposure (Fig. 6-1(c)) [193]. Such

differentially photo-cross-linked SU8 films could be created with gradients from either

top or bottom by light exposure from the top or bottom of the SU8, respectively, and

also interspersed with fully cross-linked rigid SU8 panels to create complex designs

of bidirectional self-folding structures needed for Miura-ori (Fig. 6-1(d)). The 3D

MoS2 − SU8 photodetectors assembled by self-folding were characterized by measuring

the photovoltage during laser illumination at different angles (Fig. 6-1(e)). We were

also able to assemble reversible Miura-ori inspired photodetectors with a vastly differ-

ent optical detection area in the flat and folded states (Fig. 6-1(f)). The fabrication

and assembly process are parallel and can be done in a wafer-scale manner enabling

the high-throughput assembly of a wide range of curved and folded 3D-shaped devices

from their planar precursors. As shown in Figs. 6-2, a pyramid can be generated from

its triangular precursor (Figures 6-2 (a,b); a square pyramid structure folded from a

star-shaped precursor (Figs. 6-2(e) and (f)); and a closed flower structure folded from

a flat six-petal precursor (Figs. 6-2(i) and (g)). It is noteworthy that in these 3D

structures, the center SU8 panel are fully cross-linked and pinned on the wafer by the
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Figure 6-1. Illustration of the fabrication process for 3D self-folded MoS2 − Au − SU8
photodetectors. (a) A sacrificial film was deposited on a silicon wafer substrate, followed
by transfer of monolayer MoS2 and photolithographic definition of Au patterns. Then
SU8 was patterned by UV irradiation through a photomask. Finally, the MoS2 − SU8
microstructure was released by dissolving the sacrificial layer and the structures self-folded
in water. (b,c) Illustration of the two strategies used to fold the SU8 microstructures. (b)
A bilayer SU8 structure with the bottom SU8 layer fully cross-linked, whereas the top
SU8 layer partially cross-linked; (c) a thicker SU8 layer with gradient cross-linking density
along the thickness. In both cases, reversible self-folding is achieved with solvent exchange.
(d) Illustration of bidirectional self-folding of a flat SU8 film into a compact multilayer
structure, using two groups of hinges which fold from opposite directions. (e) The 3D
MoS2 − Au − SU8 photodetector is capable of spatially or angle-resolved photodetection.
(f) Illustration of a flat MoS2 − Au − SU8 photodetector with the Miura pattern that can
reversibly fold into a compact multilayer structure with significant difference in optical
detection area between flat and folded states.

selective patterning of the sacrificial layer to facilitate imaging and characterization.

Selective pinning of different regions of the self-folding structure is important to realize

on-chip devices. Alternatively, fully freestanding devices can be generated using an

unpatterned sacrificial layer.

We note that the self-folding is uniform with a high yield above 95%. The speed
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of the folding process depends on the thickness and the overall dimensions of the

SU8. The structures shown in Fig. 6-2 self-folded within minutes after immersion in

water (Figure S5) and reversibly unfolded within 20s when the solvent was changed

to acetone. This folding and unfolding process can be repeated numerous times

(> 20) without noticeable changes in shape. Also, the high quality of the MoS2

monolayer is retained before and after the solvent-induced folding/unfolding process.

We note that chemically responsive self-folding can enable autonomous operation in

biological, ambient, and marine environments and acetone and water are common

solvents. However, for some applications solvent exchange-induced folding may be not

desirable and in these cases one could replace SU8 with alternate stimuli responsive

materials such as temperature or light responsive polymers. We investigated the

mechanics of the self-folding process by developing a coarse-grained model to simulate

the shape transformation. The SU8 photoresist is composed of an epoxy base and

photoacid generator. The epoxy groups in the resin cross-link upon UV irradiation

and subsequent postexposure bake. Depending on the UV exposure dose, the SU8 can

be fully cross-linked or partially cross-linked. We simulated the SU8 bilayer with each

of the two SU8 layers represented by a coarse-grained membrane with a facecentered

cubic (fcc) lattice (a is the lattice constant) to model the location of the mass beads,

and elastic springs to model the interaction between the nearest neighboring beads.

The thickness (5µm of each layer) as well as the lateral dimension of each layer was set

to match the experimental values exactly. In the MoS2 − SU8 bilayer structures, the

bottom SU8 layer was fully cross-linked, whereas the top SU8 layer is partially (about

60%) cross-linked. In the model, the bending stiffness of the fully cross-linked bottom

layer (Db) is 4.2 × 10−8Nům [194] and that of the partially cross-linked top layer (Dt)

was approximately 60% of Db and could be varied depending on the cross-linking

extent or UV dose (the ratio λ = Dt/Db).

When the bilayer is transferred from a good solvent (acetone) to a bad solvent
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Figure 6-2. Self-folding of MoS2 − SU8 structures with different shapes. (a-j) Optical
microscope images of the parallel self-folding process of (a,b) pyramid, (e,f) square pyramid,
and (i,j) flower-shaped SU8 structures, respectively. The central colored region is due
to pinning of the SU8 by selective patterning of the sacrificial layer. (c,g,k) Snapshots
of the self-folding process obtained from coarse-grained mechanics simulations for the
(c) pyramid, (g) square pyramid, and (k) flower-shaped SU8 structures. (d,h,l) Optical
image (top panels) of the patterned MoS2 − Au − SU8 planar precursors and SEM image
(bottom panels) of the assembled MoS2 − Au − SU8 (d) pyramid, (h) square pyramid,
and (l) flower-shaped photodetectors. Scale bars are 500µm for panels a, b, e, f, i, and j
and 200µm for panels d, h, and l.

(water), the partially cross-linked porous top layer shrinks in order to minimize its

contact with water, and the fully cross-linked bottom layer remains intact. The effect

of exposing SU8 to water and the subsequent shrinkage was simulated by decreasing

the equilibrium length constant of the fcc lattice in the top layer. Details of the

model can be found in the SI. Snapshots of self-folded structures obtained using the

coarse-grained model at different folding stages for pyramid, square pyramid, and

flower, are shown in Figs. 6-2(c), (g) and (k), respectively. With the shrinkage of

the top layer, the panels located around the center start to curve and eventually fold

toward the center part. The final stage of the folding corresponds to a mismatch strain
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(1 − a/a0) of 0.15, which corresponds to a surface area shrinkage of 27.8%. We found

that the bending stiffness difference between the top and bottom layer also affects

the folding, and for a softer top layer the folding extent for a given mismatch strain

decreases.

6.3 Photoresponse of MoS2 Origami

When monolayer MoS2 and Au patterns are integrated with the differentially photo-

cross-linked SU8, a variety of selffolding photodetectors such as pyramid, square

pyramid, and flower shapes can be generated Figs. 6-2(d), (h) and (l). We investigated

the opto-electronic characteristics of the MoS2 − Au − SU8 photodetectors by first

measuring the photovoltage of the flat precursors. As shown in Fig. 6-3(a), we

irradiated the flat precursor using a focused laser from the objective of a confocal laser

scanning microscope and collected the electrical signals from copper wires bonded to

the Au pads. We spatially scanned the laser position along the direction perpendicular

to the electrodes (Y-direction) and observed a large photovoltage when the laser was

positioned over the MoS2 − Au regions, reaching a maximum at the first Au electrode

and decreasing to zero when the laser spot was in between electrodes, then increasing

to another maximum (opposite value) at the second electrode. This periodic pattern of

vanishing and maximal photovoltage was repeatedly observed when the laser was moved

over the MoS2 − Au patterns along the Y-direction. We rationalize this observation

by noting that the photovoltage generated is due to the combination of photovoltaic

(PV) and photothermoelectric (PTE) effects [195]. In principle, both PV and PTE

effects are related and associated with the injection of hot carriers across the potential

barrier on the MoS2 − Au interface. When photons get absorbed in the metal and its

junction with MoS2, electron-hole pairs are excited. When one of the carriers (usually

the electron) get injected into the MoS2 and then diffuses in the lateral direction, a

photovoltage is generated. On the other hand, when the photoexcited hot electron
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Figure 6-3. Photoresponse of the MoS2 − Au − SU8 structures. (a) Plot of the
photovoltage as a function of the relative position of the laser spot as it is scanned across
the Y-axis of the flat MoS2 − Au − SU8 photodetector. The insets show optical images
of the device (top right), and the experimental setup used for photoresponse measurement
(bottom left). (b) Plot of the time-resolved photovoltage when illuminated with a 488nm
laser at 10mW at intervals of 500ms (2 Hz). (c) Plot of the photovoltage measured
from the MoS2 − Au − SU8 structure under488nm illumination as a function of laser
power. (d) Plot of the photovoltage measured from the MoS2 − Au − SU8 structure under
illumination with lasers of different wavelength at a constant power of 10mW. The dashed
lines represent the independence of the photothermal and quadratic functional dependence
of the photovoltaic contributions to the photovoltage as a function of wavelength.

shares its energy with other electrons following rapid electron-electron scattering

processes, these hot carriers undergo thermal diffusion leading to the establishment

of photothermal voltage [195]. In addition to the photovoltaic response, the detector

can also be operated under bias, that is, in a photoconductive mode. The I-V curves

measured from the MoS2 − Au patterns are linear and symmetric for all the bias

voltages, indicating an ohmic-like contact, and the current increases as the device is
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illuminated. The current also increases with bias voltage due to the increase in carrier

drift velocity and related reduction of the carrier transit time.

We studied the photoresponse dynamics of the MoS2 − Au patterns by measuring

the rise and fall time under illumination of a modulated light source that could

be switched on and off. We utilized a modulated laser with wavelength of 488nm

and2Hz frequency for those experiments. The steep rise and fall edges suggest a

reasonably fast response speed (Fig. 6-3(b)). We characterized the speed of the

photodetector by calculating the rise time (Tr, the time interval from 10% to 90%

of the maximum photovoltage) and the fall time (Tf, the time interval from 90%

to 10% of the maximum photovoltage) of its response to an impulse light signal.

The MoS2 − Au − SU8 photodetector shows a Tr of 60ms, and a Tf of 86ms. The

photoresponse speed is lower than that of similar devices fabricated on rigid substrates

such as SiO2 due to the large number of surface traps and the rough SU8 surface [196].

The response speed can be further increased by encapsulating the MoS2 with a high-K

dielectric layer such as Al2O3 [184].

To study the dependence of the photovoltage on laser power, we varied the 488nm

laser power from 2.5 to 10.0mW, and the results are shown in Fig. 6-3(c). It can be

seen that the photovoltage has a linear dependence on the laser power, and the average

value increases from 83µV at 2.5mW to 348µV at 10.0mW. Increasing illumination

levels results in enhanced photovoltage and photocurrent due to electron-hole pair

generation by the light absorption in the Au and MoS2. We observed that the

photovoltage generated is broad in the visible spectral range, and also dependent on

the laser wavelength. As shown in Fig. 6-3(d) in which lasers with four different

wavelengths (405, 488, 555, and 639nm) with the same laser power (10mW) are used,

the generated photovoltage is highest at 405nm and lowest at 639nm. As shown by

the theoretical curves for PV and PTE indicated by dashed lines, the wavelength

dependence can indeed be interpreted as the sum of two effects, a relatively weak PTE
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voltage and a stronger PV response with the threshold around 650nm corresponding

to the barrier height of about 1.9eV [197].

Apart from the hingeless self-folding shapes shown in Fig. 6-2, more complicated

self-folding requires the incorporation of hinges interspersed by rigid panels. Also, in

order to use the MoS2 −Au−SU8 photodetectors for spatially resolved photodetection,

multiple MoS2 − Au patterns need to be defined. Both features are illustrated in the

self-folded cubic and dodecahedron MoS2−Au−SU8 photodetectors with interdigitated

electrodes on each individual face (Figs. 6-4(a) and (b)). In order to study the effect

of 3D geometry on the optical properties of MoS2, we performed the finite-difference

time-domain (FDTD) simulation on flat and cubic MoS2 nanostructures (Fig. 6-4(c)).

The absorption of a 2D monolayer MoS2 with infinite size was first calculated, and

the result agrees well with previous reports [198, 199]. Next, we simulated the optical

absorption of an array of 3D MoS2 cubes and 2D cruciform MoS2 precursors with

the same edge length of 100 nm. We observed that the 2D cruciform MoS2 array has

reduced optical absorption due to the reduced interaction area with the electromagnetic

field. Importantly, after folding into a cubic shape the optical absorption is significantly

enhanced as compared to the planar MoS2 with three major broad bands at around

434, 614, and 662 nm. There are several reasons for this enhanced optical absorption.

First, the electromagnetic wave interacts with multiple layers of MoS2 in the cube

as compared to a single planar layer for the 2D MoS2. Second, we observed strong

coupling of the electric field at the boundaries and corners of MoS2 cubes, which also

leads to stronger energy absorption. We also found that the size and spacing of the

MoS2 cubes have strong effects on their optical properties. Essentially, when the edge

length of the cubes increases from 100 to 2000nm (Fig. 6-4(d)), the optical absorption

gradually increases, except for the decrease in absorption in the 400 − 500nm range

for the 2000nm cubes. We rationalize this decrease by noting the edge length of

the MoS2 cubes increases to above the incident light wavelength, and there is strong
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Figure 6-4. Hinged 3D MoS2 − Au − SU8 photodetectors with interdigitated electrodes
and FDTD simulations of 2D and 3D MoS2. (a,b) Self-folding process of, (a) a hinged
dodecahedron, and (b) a hinged cube-shaped MoS2 − Au − SU8 photodetector from their
2D precursors. Scale bars are 1 mm. (c) FDTD simulated absorption spectra of 2D MoS2
with infinite size, 2D cruciform MoS2, and 3D cubic MoS2. (d) FDTD-simulated optical
absorption spectra of arrays of MoS2 cubes with different edge lengths.

Fabry-Perot resonance between the top and bottom faces of the MoS2 cubes which

leads to stronger reflection and weaker absorption (Figure S18). This phenomenon is

more pronounced at the 400 − 500nm range where the conductivity of MoS2 is high.

Also, for MoS2 cubes with the same size, the optical absorption is stronger when the

spacing between the cubes gets smaller (for instance, from 400 to 25nm). The main

reason is that with increasing cube size or decreasing spacing between the cubes, the
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fill ratio is increased, the electric field coupling at the boundaries is also enhanced,

and both contribute to the higher energy absorption. The FDTD simulations suggest

that such origami-inspired approaches could be used across length scales, and future

experiments using electron-beam patterning at sub-100 nm line widths would further

augment the present study. The 3D MoS2 − Au − SU8 photodetectors also enable

spatial and angle-resolved photodetection in all three dimensions. In comparison with

conventional 2D photodetectors, which only collect light at limited incident angles

(Fig. 6-5(a)), a 3D photodetector can have multiple electrodes arranged in a 3D

fashion and collect light at a wider range of incident angles. In fact, there are major

efforts to create 3D optical imagers inspired by the human eye for angular and efficient

light detection and imaging [174, 175]. We performed photovoltage measurements

using three different shapes of 3D MoS2 − Au − SU8 photodetector (Fig. 6-5(b)),

with the laser beam (488nm) irradiated in parallel to the basal plane. Additional

details of the experimental setup can be found in the SI. For all the MoS2 − Au − SU8

structures, multiple equally spaced electrodes were placed, one at each folded panel

so that photovoltage would be generated only when the laser beam was incident at

those angles or locations (Fig. 6-5(c)). We chose one of the electrodes as the reference

position (zero degree to the center), then successively measured the photovoltage

between the reference electrode and all the other electrodes in a counterclockwise

manner, while recording the rotating angle of the device in reference to the incident

light. For the pyramid-shaped MoS2 − Au − SU8, the angle-resolved photovoltage was

detected at 0◦, 120◦, and 240◦. Similarly, for the square pyramid MoS2 −Au−SU8, the

angle-resolved photovoltage was detected at 0◦, 90◦, 180◦, and 270◦. For the sixpetal

flower-shaped MoS2 − Au − SU8, the angle-resolved photovoltage was detected at

0◦, 60◦, 120◦, 180◦, 240◦, and 300◦. We note that the bending which occurs during

self-folding can induce some elastic strain in the MoS2, which can lead to band gap

modulation [200, 201] with associated changes in the photoresponse [202] of the 3D
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Figure 6-5. Spatially resolved and reconfigurable photoresponse of self-folded 3D MoS2 −
Au − SU8. (a) Schematic illustration of angle-resolved photodetection capability of the
self-folded square pyramid shaped MoS2 − Au − SU8 photodetector as compared to its
2D counterpart. (b,c) SEM images and angular-dependent photovoltage response of the
self-folded pyramid, square pyramid, and flower-shaped 3D MoS2 − SU8 photodetectors.
(d,e) Self-folding transformation of a flat MoS2 − Au − SU8 photodetector into a compact
tower with vastly different spatial arrangement of its functional components. (f) Optical
microscope image of a rectangular MoS2 −Au−SU8 photodetector with Miura-ori pattern
consisting of rigid panels and bidirectionally folding hinges. (g) Conformal wrapping of the
flexible MoS2 − Au − SU8 photodetector on a sphere. (h,i) Reversible Miura folding of the
2D MoS2 − Au − SU8 photodetector from flat to a compact multilayered geometry with
vastly different spatial arrangement and significantly reduced detection area in the XY
plane. (j) The photovoltage measured from the rectangle MoS2 −Au −SU8 photodetector
before (black line) and after (red line) Miura folding, when the laser is scanned along the
Y − axis. All scale bars are 1mm.
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MoS2 − Au − SU8 at specific wavelengths as compared to its 2D counterpart. The

self-folding of complex 3D structures that show stimuli responsive reversible folding

and unfolding with vastly different optical detection areas is a significant advance in

this work. In order to illustrate this concept, we reversibly reconfigured a 2D flat

MoS2 − Au − SU8 photodetector that changes shape into a 3D tower structure with

unidirectional folding (Figs. 6-5(d) and (e)). Importantly, inspired by the Miura-ori

[203], we were able to create a rectangular-shaped MoS2−Au−SU8 photodetector sheet

with arrays of Au patterns in the horizontal direction (Fig. 6-5(f)). The photodetector

is highly flexible and can conform to curved objects such as a sphere in analogy to the

properties of contact lenses (Fig. 6-5(g)). The SU8 film is photopatterned such that

it contains rigid panels and two types of folding hinges: one group folds upward while

the other one folds downward. As a result, the flat rectangular MoS2 − Au − SU8

photodetector can be transformed into a compact multilayer-folded shape with a

dramatic reduction in light detection area, as shown in the SEM images (Figs. 6-5(h)

and (i)). We measured the photovoltage from the Miura photodetector before and

after folding (Fig. 6-5(j)), during which the laser was scanned along the Y-axis of the

photodetector. Prior to folding, strong PV is generated when the laser illuminates

the MoS2 − Au regions as expected. After folding, the Miura pattern folds into an

ultracompact multilayer. Interestingly, the folding conceals the MoS2 − Au regions

within the compact structure and the PV essentially vanishes. After unfolding in

acetone, the PV is essentially recovered. This experiment highlights the dramatic

tunability that can be achieved in reconfigurable and reversible MoS2 − Au − SU8

photodetectors which is an important step toward realizing deployable and smart

biomimetic opto-electronic devices. We note that as compared to other designs used

in the paper, due to the large strain generated during the Miura folding and unfolding,

a fraction of the electrodes was damaged or delaminated after multiple cycles of

folding/unfolding.
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6.4 Conclusions

In summary, we have demonstrated a general approach to reversibly fold high-quality

monolayer MoS2 into well-defined 3D structures and opto-electronic devices. Reversible

selffolding is based on solvent-induced swelling and deswelling of a differentially photo-

cross-linked polymer SU8. The energy for shape transformation is derived from the

flow of the solvent in and out of the polymer and does not require any wires, tethers,

or batteries. Differential photo-cross-linking enables bending with both positive, zero,

and negative curvatures; consequently, we were able to realize both hingeless and

bidirectionally hinged 3D structures. We demonstrated that a 3D photodetector based

on the folded MoS2 − Au − SU8 structure offers spatially resolved 3D photodetection

capability, which is also tunable depending on the 3D distribution of the MoS2 − Au

patterns. As compared to conventional flat 2D structures, simulations show that

3D MoS2 structures such as nanometer-sized cubes offer significantly enhanced light-

matter interaction, and strong coupling of electric field at the boundaries and corners.

Furthermore, a dramatic reduction and recovery of the MoS2−Au−SU8 photodetection

area can be achieved with a Miura-ori, which is an advantageous attribute for wearables,

as well as portable, foldable, and smart, sensors and energy harvesting devices. We

anticipate that this self-folding approach could also be used with other 2D materials.

Also, its reliance on planar lithographically patterned precursors and SU8 photoresist

suggests the possibility for facile integration with microelectromechanical systems,

microfluidics, and complementary metal-oxide-semiconductor to realize even more

complex origami-inspired 3D integrated and multifunctional devices.
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Chapter 7

Wide Bandwidth, Nonmagnetic
Linear Optical Isolators based on
Frequency Conversion

7.1 Introduction

Nonreciprocal light propagation that breaks the time-reversal symmetry plays an

important role in optical communication and computing. For example, optical isolators

and circulator are used in laser protection, optical signal processing and instrumen-

tation application. To break the reciprocity, optical isolation has been traditionally

achieved through magneto-optical Faraday effect. However, for the fast-developing

silicon integrated photonics, the traditional optical isolators and circulators are at

disadvantage as are not compatible with complementary metal-oxide-semiconductor

(CMOS) processing platforms.

To avoid the integration of magneto-optical elements and achieve more compact

isolation, a variety of different physical principles have been proposed. Among these

new principles, one of the most attractive and studied is based on the electro-optical

effect. In electro-optic modulation velocities of RF and Optical waves are matched

only in one direction, and this breaks reciprocity. However, modulated isolators

usually suffer from a number of limitations, such as incomplete isolation, nonlinearity,
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excessive insertion loss and narrow bandwidth, moreover, because the momentum

mismatch inhibiting the backward transmission is very small, hence the achieved

optical isolator is very long (∼cm), which makes it harder for miniaturization. By

considering the above drawbacks of electro-optical effect, we can resort to another

widely used and relatively mature principle: nonlinear frequency conversion and four

wave mixing (FWM) based on the second and third-order nonlinear susceptibilities,

which can help us obtain wide bandwidth, linear optical isolators. In this work, two

ideas have been developed to achieve full isolation over wide bandwidth of a few THz

in the telecom range.

7.2 Wideband nonmagnetic linear optical isolator
based on nonlinear frequency conversion and
spectral filtering

Optical isolators and circulators are essential components for signal routing and

blocking in applications such as lasers protection and stabilization and optical networks

[204, 205]. Their functionality is fundamentally based on breaking time-reversal

symmetry or Lorentz reciprocity described by symmetric scattering matrix [206–208].

Key features of an ideal optical isolator include broadband operation, linearity, low

insertion loss and high isolation. Another crucial feature for modern integrated

photonic applications is small footprint required for integration of isolators with

other components. Guided-wave isolators have been realized for decades using the

Faraday effect in magneto-optical materials [209–211], where the garnet serves as the

optical guiding layer. Introducing thin layers of garnets, e.g., yttrium iron garnet

(YIG), to standard semiconductor-based photonic integrated circuits (PICs) has been

pursued more recently with reasonable success [212–214]. Still, fabrication challenges,

high insertion loss, and polarization dependence present formidable obstacles that

prevent integrated magnetic isolators from being widely adapted. Hence, alternative,
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nonmagnetic optical isolator has been vigorously pursued by many groups.

Lorentz reciprocity holds for any linear, time-invariant and reciprocal systems

with symmetric permittivity and permeability tensors or combination thereof. Thus,

nonmagnetic optical nonreciprocity can be achieved through breaking either the

linearity or time-invariance condition [206, 208], often accompanied by introducing

optical loss and gain. This has been sought by a number of research groups through

adopting different approaches. For example, nonlinear effects (both second-χ(2) and

third-order χ(3) nonlinearity) have been in focus of works used [215–218]; however,

these schemes have limited potential since their performance depends on input power

or have limited operation bandwidth, and, furthermore, some of them are not even

true isolators, as explained in [207]. Similarly, Recently, proposed a theoretical

modeling of a non-reciprocal system based on a parity-time symmetric schemes has

been reported [219]. The proposed scheme that incorporates ring resonators waveguides

with alternating gain and loss regions in presence of Kerr nonlinearity are is clearly

non-reciprocal, in the sense that they have different transmittance spectra for left-to-

right and right-to-left incident signals, i.e TL(λ) ̸= TR(λ)an incident signal in opposite

directions. However However, in either direction, if the incident signal is back-reflected,

the scheme is incapable of blocking the reflected signal.for signal propagating from

right-to-left in the presence of its counter-propagating signal from left-to-right, both

will have the same transmittance and no isolation will be achieved.

At the same time, true optical isolators based on time-varying modulation of

material properties (usually refractive index) by traveling wave of RF frequency has

been proposed and investigated in recent years. These include electro-optically induced

indirect interband transition [220, 221], space-time modulation in photonic crystal

waveguides [222], acousto-optic modulation [223, 224] as well as electro-optic (EO)

modulation in commercial devices [225, 226], and more elaborate but conceptually

similar work that involved synthetic angular momentum [227, 228]. These schemes
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are truly isolating and linear, yet reliance on modulation at RF frequency leads to

three deleterious effects. First of all, modulation at frequency of say 10 GHz limits the

bandwidth of the signal to something less than that. Second, even if clever dispersion

engineering can alleviate this problem, presence of strong RF power inevitably causes

high noise in the signal band - it may be not important if the isolator just serves to

isolate the laser source, but it is problematic if it is used further along the optical path

where the weak signal will be difficult to discern in the presence of strong RF pump.

Last, but not least, the working principle of all time-modulated schemes relies upon

the fact that the processes that are momentum (phase) matched in one direction are

mismatched in the other direction. For instance, if the refractive index is modulated

by a wave with a frequency Ω and wavevector K(Ω), the efficient energy transfer

between two forward propagating optical waves of frequencies ω1 and ω2 = ω1 − Ω

will be achieved when k(ω1) = k(ω2) + K(Ω) (i.e., when the group velocity of optical

wave matches phase velocity of RF wave). For backward propagation, the momentum

mismatch is then ∆k = 2K, and the full isolation is attained if the length is chosen

to be L = π/K. If the coupling wave is RF, the mismatch is relatively small (on the

scale of cm−1), hence a long length is required. And any small deviation of length will

cause leakage. To avoid this issue, one may consider acousto-optic modulation [223,

224], where K is larger but then the bandwidth gets severely limited. All of these

limitations, however, can be lifted once one realizes that in essence any time-dependent

modulation scheme is a three-wave nonlinear parametric process, hence if instead of

low frequency RF coupling wave one uses the wave of optical frequency, the bandwidth

can be significantly expanded, no noise will enter the signal bandwidth, and, most

important the momentum mismatch K will becomes so large that no meaningful

coupling in the backward direction can occur leading to much higher and more robust

isolating ratios.

This is precisely the idea behind this work, as we introduce a wholly new approach
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based on nonlinear frequency conversion processes (e.g., difference-frequency generation

(DFG)) and spectral filtering, to achieve nonmagnetic wideband and linear (in a sense

of input vs. output characteristics) optical isolation. The scheme is compatible with

integrated photonics platforms, i.e., it can be potentially monolithically integrated on

a single chip with complex PICs. The operation principle of the new optical isolator is

Figure 7-1. Schematic diagram of the proposed optical isolator, showing operation
principle in (a) forward and (b) backward directions. SPF: short-pass filter, LPF: long-pass
filter.

based on breaking Lorentz reciprocity in nonlinear waveguides. In essence, nonlinearity

is one way to achieve asymmetric scattering matrix (ST ̸= S) and hence non-reciprocal

operation [206]. To explain the proposed concept, first consider the signal, s, and

pump, p, co-propagation in forward direction, shown in Fig. 7-1(a), with λs < 2λp. In

this case, an idler wave can be generated at wavelength λi = (λ−1
p − λ−1

s )−1 through

DFG, as long as the phase matching condition is satisfied. The shown long-pass filter

(LPF) at the output allows only the transmission of the idler, which now contains all

the information transferred from the signal and blocks all other involved wavelengths.

In Fig. 7-1(b), the signal and/or idler are coupled in the backward direction. The

signal is blocked by the LPF and only the idler can be transmitted. Since the pump
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and idler are counter-propagating in this case, the phase matching condition is not

satisfied, hence, given that the wavevector mismatch is large (coherence length is on

the scale of optical wavelength), no signal is generated, and the idler wave is eventually

absorbed by the short-pass filter (SPF).

The frequency shift from signal to idler inherent in this scheme should not present

a problem in most optical links, but if it does, it can be remedied by converting

the idler output back to the input signal wavelength through another DFG process.

Alternatively, as we have proposed elsewhere, the frequency shift can be completely

avoided as proposed by us in [229] if sum-frequency generation (SFG) instead of DFG

is used instead of DFG [229]. However, such a scheme would require a highly efficient

SFG process in a long waveguide to achieve sufficient signal depletion and hence good

isolation. It should be also noted that combination of SFG and optical absorption

can be used instead of filtering [230]. Again, long devices are needed to attain high

conversion and efficient absorption. Also, adiabatic rate of the quasi-phase-matching

period is another restriction imposed in this scheme, in order to avoid overdamping

problem due to strong absorption [230].

It should be mentioned that second-order nonlinearity in PPLN has been exploited

in the past to demonstrate optical isolation [215]. However, that scheme would only

functions at high input signal powers (1.5 W at 1550 nm), behaving more like a

power limiter and lacking linearity. While our isolator is also based on second-order

nonlinearity, its input-output relation is linear and not power dependent. In an ideal

case, Pi = ηPsPpL2, where η is the nonlinear conversion efficiency and L is the length

of PPLN, thus the generated idler power is proportional to the input signal for a fixed

pump power. Indeed, in our experiments the isolator works perfectly at low input

pump powers of ∼ 3mW.

In our proof-of-concept demonstration, we use a periodically-poled thin-film lithium

niobate (TFLN) waveguide as the χ(2) nonlinear element, and combine it with external
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spectral filters to achieve high isolation ratio. Details of the thin-film PPLN design and

fabrication can be found in our previous work [231]. We have recently developed an

actively-monitored iterative poling technique to optimize the periodic poling conditions

and report record-high efficiencies of up to 4600%W−1cm−2 [231]. The TFLN platform

has many unique properties and is a fairly recent ultracompact platform, on which a

wide variety of integrated photonic components, such as highly efficient periodically-

poled LN (PPLN) devices [231–234], high-speed optical modulators [235–237], cascaded

nonlinear devices [238, 239], quantum photonics devices [240, 241] and acousto-optic

devices [242, 243] have been demonstrated. An implementation of the proposed

Figure 7-2. Experimental setup for the demonstrated optical isolator with (a) the general
scheme for forward measurement, (b) the added components for input modulation and (c)
the detailed schematics of optical isolator.

isolator system is depicted in Fig. 7-2. The thin-film PPLN waveguide is pumped

using dual pump (pump-signal) to generate a DFG signal at the telecommunication

band. The pump source is a diode laser at 785nm wavelength, which is tunable over

few nanometers. The signal source is a continuous-wave (CW) laser that can be tuned
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from 1490nm to 1640nm. Inline polarization controllers (PCs) are used to adjust the

pump and signal polarizations for transverse-electric (TE) mode excitation into the

waveguide. This guarantees utilizing the highest nonlinear coefficient of X-cut lithium

niobate (d33 = 30pm/V).

The signal is first filtered by a mechanically tunable short-pass filter with a rolling-

off slope of 20 dB/nm and a tuning range of 1490 nm to 1610 nm. Then, it gets

multiplexed with the pump through a wavelength-division multiplexer (WDM). The

WDM output is coupled into the thin-film PPLN waveguide using an anti-reflection

(AR) coated lensed fiber. The output from the waveguide is also coupled using a

similar lensed fiber and then filtered using a mechanically tunable long-pass filter with

similar specifications. The output is characterized using either an InGaAs detector at

1550 nm wavelength range or an optical spectrum analyzer (OSA).

Prior to the isolation experiments, we have characterized the PPLN waveguide by

measuring SHG and achieve nonlinear conversion efficiency of 95%W−1 in 4-mm-long

PPLN regions out of 1-cm-long waveguides. This length can be significantly reduced

without affecting the whole system performance through using shorter PPLN devices

with better poling uniformity and, hence, higher normalized efficiency. The measured

phase matching characteristics is shown in Fig. 7-3 with a phase matching peak around

2λp = 1570nm. The observed deviation from an ideal sinc2 function is attributed to

statistical variation of fabrication parameters and poling nonuniformities over long

lengths. This nonideality may be alleviated by adopting techniques described in [244,

245].

The experimental setup for characterizing the isolator is shown in Fig. 7-2(a). We

first start with measuring the DFG signal. A wide tuning range of the DFG, extending

from 1505 to 1646 nm, is attained, as summarized in Figs. 7-2(a) and (b) and limited

by the available tuning range of the CW signal laser. Then, the output signal is

measured after the LPF demonstrating the forward propagation case, as shown in

129



Fig. 7-4(c). Evidently, the signal and pump waves are completely blocked and only

the idler is transmitted with power level more than -50 dBm, carrying all the signal

wave spectral information, as desired. The signal wavelength is tuned from 1550 nm

to 1565 nm resulting in an idler wavelength tuned from 1575 nm to 1590 nm with a

consistent power level. The overall insertion loss at the signal and idler wavelengths is

∼14 dB. However, only ∼1 dB is attributed to the 1-cm TFLN device. The other 13

dB is due to coupling loss into the chip (∼3.7 dB per facet) and insertion losses of

the WDM component (3 dB) and the two filters (1.3 dB, each), both of which can be

reduced or eliminated in a fully-integrated system.

Figure 7-3. Measured SHG efficiency versus pump wavelength shows a peak conversion
efficiency of 95%/W around 1570 nm.

Shown in Fig. 7-4(d) is, backward-propagating signals below 2λp = 1570nm

are completely blocked by the LPF, as far as the noise floor of the employed OSA

(-75 dBm) suggests. This implies that an optical isolationa difference of 40 dB is

achievedbetween the forward- and backward-propagationng transmittance at λs.

The isolation of the present isolator depends mainly on the filters’ extinction

ratios, nonlinear conversion efficiency, as well as any back-reflections of the involved

pump, signal and idler waves. However, iImagine a signal above 1570 nm is coupled
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Figure 7-4. Characterization results of the proposed isolator: Generated idler (DFG)
measured before LPF with signal tuned from (a) 1570 nm to 1640 nm and (b) 1500 nm
to 1560 nm. Measured Isolator output in (c) forward direction, (d) backward direction
with tuned signal from 1550 nm to 1565 nm and (e) backward direction with idler coupled
back and tuned from 1575 to 1590 nm. Dotted yellow lines represents the LPF and SPF
transmission windows.

in the isolator in backward direction. This can be the case if the forward-generated

idler is back-reflected into the system. Such a signal is transmitted through the LPF.

Although the phase-matching condition is not satisfied between this signal and the

forward pump, as explained earlier, an output signal below 1570 nm with 13-18 dB less

power than the forward case is evident in Fig. 7-4(e). In other words, the measured

isolation is 13 to 18 dB in this case, which is superior to most prior results obtained
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with time-varying schemes [221, 222, 224, 226]. Isolations of 30 dB (at 2 GHz) and

14 dB (at 10 GHz), have been reposted on an approach based on RF modulation

[225]. However, as mentioned before, that approach suffers from inherently limited

bandwidth and requires fine tuning.

The backward-propagating signal in the latter case is most likely generated through

the DFG process between the backward propagating idler and back-reflected pump

from the PPLN devices’ polished facet and any other reflections from other components

and fibers. The backward propagating pump power inside the PPLN is estimated

to be one order of magnitude less than the forward propagating pump based on the

facets reflectivity and insertion loss at pump wavelength. This back-reflected pump

and backward-coupled signal waves hence co-propagate in the backward direction and

satisfy the phase matching condition, resulting in a relatively efficient DFG process.

Then, the generated signal could pass through the SPF at the output, tuned to block

waves above 1570 nm, and get detected by the OSA, hence an isolation of 13-18 dB.

This backward generated signal can, nonetheless be significantly reduced or eliminated

by applying appropriately-designed anti-reflection (AR) coatings to the PPLN facets

and other system components to eliminate all back-reflections. The estimated isolation

after AR coating is 40 dB, i.e., on par with the first case explained above.

For the sake of demonstrating applicability to optical communication systems, we

examined the performance of our isolator when using RF-modulated optical signals.

The RF modulation setup is shown in Fig. 7-2(b), in which an external RF commercial

EO intensity modulator operating up to 13 GHz is employed. The modulating RF

signal is generated by a network analyzer and amplified by an RF amplifier. The

modulator is also DC-biased for maximum sensitivity. The output from the modulator

is amplified using an Erbium-doped fiber amplifier (EDFA) to compensate for the

insertion loss of the modulator. The laser signal, tuned from 1550 nm to 1565 nm, is

first modulated with 5 GHz RF signal and coupled into the isolator. Figure 7-5(a)
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Figure 7-5. Isolator output with RF modulated input signal at (a) fixed RF speed of 5
GHz and tuned optical signal (1550 to 1565 nm) and (b) tuned RF signal (5 to 11 GHz)
and fixed input signal at 1565 nm.

shows the isolator output in forward direction. The generated idler clearly carries

all the information from the input signal represented by the modulation sidebands,

shown in the zoomed output in the inset. The output power is a little bit lower

than the unmodulated case due to the added sources of losses in the system, but

still consistent over the tuning range. The input signal is then kept fixed at 1565

nm and the RF frequency is tuned from 5 to 11 GHz and the output at 1575 nm

is recorded for each frequency, as reported in Fig. 7-5(b). This result demonstrates

the isolator compatibility for high-speed communication, limited here only by the

employed modulator bandwidth.

Before concluding we briefly outline the means by which the performance of the

demonstrated isolator can be improved. The isolation ratio can be greatly improved

by incorporating AR coatings and superior filters, The insertion loss can be reduced by
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improving coupling and eventually integrating all the component and the conversion

efficiency can be enhanced substantially if the pump instead of being lost at the output

LPF can be rerouted back to the rear facet of the pump laser so the DFG can take

place inside the ring pump laser cavity. It should be noted that this scheme is, in

principle, a parametric amplifier. Hence, if the insertion loss is reduced significantly

and efficiency is enhanced, the isolator can operate with gain rather than loss. It must

be also mentioned that the proposed signal-to-idler isolation scheme is not limited to

χ(2) nonlinearity, as third-order nonlinear (χ(3)) processes, such as four-wave mixing

(FWM), can be alternatively considered.

To summarize, we have proposed a novel class of nonmagnetic wideband linear

optical isolators based on frequency conversion in nonlinear waveguides. We have

demonstrated and characterized the performance of the proposed isolator using DFG

in thin-film PPLN devices. The operational range of the isolator has extended from

1490 nm to 1640 nm, limited only by the bandwidth of the used equipment, and the

isolation of up to 18 dB is measured for the idler and signal waves. The difference

between forward- and backward-propagation transmittances at the signal wavelength

is 40 dB. The isolator has demonstrated linearity and has shown no performance

degradation with signals of up to 11 GHz in bandwidth making it an attractive

candidate for fully integrated photonics circuits.

7.3 Optical Isolators Based on Mode Conversion
in Waveguides with Adiabatic Couplers

In the previous section, we successfully achieve a non-magnetic linear optical isolation

based on non-linear frequency conversion and spectral filters. However, because the

signal and idler wave are always coexisted, spectral filters are necessary at the input

and output which makes the whole optical isolator costy and bulky. Hence, if we can

separate the signal and idler wave at the output, then we can get rid of the spectral
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filters. Based on the waveguide coupler theory, if the signal and idler are orthogonal

modes in waveguide coupler, they can be separated by coupling to different waveguide

coupler arms. In this section, I design the filter-free optical isolators based on the

conventional symmetric waveguide coupler and adiabatic waveguide coupler.

Both the symmetric and adiabatic waveguide coupler are widely used to coupling or

splitting light into different waveguides. The coupling length of symmetric waveguide

coupler is extremely sensitive to wavelength and fabrication imperfections which make

it difficult to achieve the desired coupling ratio and the exact beat length. Asymmetric

adiabatic couplers have been developed to overcome these drawbacks. Adiabatic

couplers work by adiabatically converting the mode of a single waveguide into either

the even or odd mode of two identical waveguides separated by a small gap. Adiabatic

couplers do not require precisely defined power-transfer length. In addition, they

have small wavelength and fabrication variation dependence but with a trade-off of

longer coupling lengths than directional couplers. Figure 7-6 is a brief schematic of

the adiabatic waveguide coupler. Usually it consists of two asymmetric waveguides or

linear tapers, separated by a gap. Figure 7-7(a) shows the geometric structure of the

Figure 7-6. Schematic of adiabatic waveguide coupler consists of two asymmetric
waveguides.

filter-free optical isolator. The middle symmetric wavegudie coupler, whose two arms

have the same cross-section 1.5 × 1.5µm2 and length Ld, is symmetrically sandwiched

by two adiabatic waveguide couplers, the length of the adiabatic waveguide couplers is

La, the cross-section of the narrow core is 2 × 2µm2 at the input and output, and then
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Figure 7-7. (a) is the schematic of filter-free optical isolator; (b) and (c) are the Comsol
simulation results when the signal is input form different coupler arms.

linearly increases to 2.5×2.5µm2 at the connection to the middle symmetric waveguide

coupler, the cross-section of the wide core is 3 × 3µm2 at the input and output and

then linearly decrease to 2.5 × 2.5µm2 at the connection to the middle symmetric

waveguide coupler. The radius of the bend waveguides at the input and out have

been optimized using parameter sweeping. The gap between the two arms of middle

symmetric waveguides is 2.5µm. Figures 7-7(b) and (c) show the different propagation

modes inside the waveguide couplers based on different exciting conditions. As shown

in Fig. 7-7(b), when the signal is input from the wide arm, a symmetric mode with

propagation constant βs is excited in the middle symmetric directional wavegudie
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coupler, after the directional waveguide coupler, the symmetric mode couples back to

the wide arm and output from the wide arm. Similarly, When a signal is input from

the narrow arm, a antisymmetric mode with propagation constant βa is excited in

the middle symmetric waveguide coupler, after the directional waveguide coupler, the

antisymmetric mode couples back and output from the narrow arm, as shown in Fig.

7-7. In the middle symmetric waveguide coupler, if we take some strategy to achieve

the mode conversion, we can probably realise the nonreciprocal propagation. For

example, for the symmetric mode excited by inputting the signal from wide arm, if we

can make it convert to antisymmetric mode at the end of middle symmetric waveguide

coupler, then the antisymmetric mode would couple to the narrow arm instead of

wide arm. For the backward operation, when the signal is reflected back to the narrow

arm, in the middle symmetric waveguide coupler, the mode conversion condition is

not satisfied, and finally it will outcome from narrow arm. Several mechanisms can be

employed to achieve the mode conversion, such as electro-optical effect, acoustic-optical

effect and nonlinear optics. The following are two optical isolators achieved, and the

mode conversion in the first one is realized using electro-optical effect and in the

second one using difference frequency generation (DFG).

7.3.1 Optical Isolator Based on Electro-Optical Mode Con-
version

To realize the mode conversion inside waveguide coupler, it is necessary to compensate

the propagation constants difference. We slightly modulate the refraction index of

the symmetric waveguide coupler. One of the most commonly used method is the

application of electric field, just as people did to achieve modulators. As shown in Fig.

7-9 electrodes are deposited on the top and bottom of the symmetric waveguide coupler.

The waveguide design assures momentum matching, i.e δβ = βs − βa − βRF = 0. There

are several electro-optical materials such as LiNbO3, GaAs and LiTaO3, in this work
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we use LiNbO3, and it electro-optical coefficient is about γ13 = 8pm/V at wavelength

1.55µm [246]. The index of core is nc = 2.22 and the index of cladding is nd = 2.2.

Figure 7-8 is the evolution of symmetric and antisymmetric modes propagation constant

with input wavelength when there is no applied voltage. We can see from Fig. 7-8, at

the wavelength 1.55µm, the propagation constants difference ∆k is 9.7753 × 103m−1,

then for a modulation frequency ωRF = 20GHz, to compensate the propagation

difference, the modification of index should be ∆n = ωRF/(∆kc) = 6.82 × 10−3,

where c is the light speed in vacuum, then the electric potential Ep needed can be

calculated through ∆n = 1
2n3

cγ13Ep. The total cross-section, of the waveguide is

2.5 × 2.5µm2, hence the amplitude of the voltage needed to apply on the waveguide

during the simulation is Vp = (Ep × 2.5 × 10−6) = 400V, then the modulation voltage

is V = Vpcos(ωRFt).

Fig. 7-10 shows the performance of optical isolator based on the electro-optical

effect, we can see that the energy from the signal symmetric mode moves to the idler

antisymmetric mode inside the middle symmetric waveguide coupler. To achieve full

isolation, we need to choose the length of the middle symmetric waveguide coupler,

according to Fig. 7-10(a) the length is about 2.65cm with the electric modulation

frequency ωRF = 20GHz.

For the backward operation, due to the uncompensable propagation constant

difference δβ = βs − βa + βRF = 2βRF, when the idler wave is input or reflected back to

the narrow arm of rare adiabatic waveguide coupler, the mode is always antisymmetric

inside the middle symmetric waveguide coupler, and finally it outputs from the narrow

arm of the front adiabatic waveguide coupler. Hence, by using the electric modulation,

we successfully achieved the mode conversion and nonreciprocal transmission. It is

linear and power efficient. However, due to the small electric modulation frequency,

when it operates backward, the propagation constant difference is much smaller than

the first isolator we proposed and demonstrated in section 7.2. Hence, if either length
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Figure 7-8. Changes of propagation constant of symmetric and antisymmetric mode with
wavelength.

Figure 7-9. The forward and backward operation of the second optical isolator.

or voltage slightly deviates, the isolation is not a full isolation, as shown in Fig .

7-10(b), the energy can still transfer back and forth between the symmetric and

antisymmetric modes. Then, to realize full isolation, we much carefully choose the

waveguide coupler length and other parameters such as the modulation frequency, in

order to let the maximum forward energy transfer and the minimum backward energy

transfer overlap, as shown in Fig. 7-11(a). Figure 7-11 shows the effect of modulation

power on the performance of isolation. We can see that, suppose we have selected the
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Figure 7-10. (a) and (b) are the forward and backward performance of the optical isolator
when electric modulation is used to match the phase mismatch.

proper waveguide length and modulation power for full isolation, then by changing the

modulation power at the original signal input for forward operation, the output power

shows up and keeps increasing due to the imperfect isolation. Hence, it desirable to

combine adiabatic mode conversion with difference frequency generation to achieve a

good isolation without retorting to high finesse filtering.

Figure 7-11. (a) To reach full isolation the maximum forward transfer must overlap the
minimum backward transfer; (b) Change of the output power with modulation power at
forward input when the isolator operates backward.
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7.3.2 Optical Isolator based on Non-linear Optical Mode Con-
version

By using the waveguide couplers and electro-optical effect, we have successfully

achieved the mode conversion and optical isolation without using the filter. However,

as we can see, for the backward operation, the energy from the reflected wave can still

couple to the original input, it can only be avoided by carefully choosing the precise

waveguide length. But by considering the fabrication error, it very difficult to reach it.

Hence, to reach a stable optical isolation, we tried another mode conversion strategy-

nonlinear optical effect. Here to compensate the propagation constant difference

and achieve mode conversion, we utilize the periodically poled LiNbO3 (PPLN),

which is widely using in nonlinear optics to eliminate phase mismatch, in arms of

the directional waveguide coupler. By doing this the propagation constant difference

can be compensated, hence in the directional waveguide coupler the symmetric and

antisymmetric modes can convert to each other. For the simulation and calculation,

the nonlinear coefficient we use is d33 = 30pm/V.

The period of the PPLN is decided by the phase mismatch, the pump power used

here is 100mw at wavelength λp = 780nm, the wavelength of signal is λs = 1550nm,

the idler wavelength is λi = 1560nm, then the phase mismatch is ∆k = ks + ki − kp =

3.211 × 105m−1, hence the period of PPLN is 2π/∆k = 19.57µm. The indies for the

pump, signal and idler waves are 2.2580, 2.2111 and 2.2108 reslectively [247].

Figure 7-12 shows the forward and backward operation of optical isolator based on

nonlinear optical mode conversion. The signal (1550nm) is input from the wide arm,

and in the middle directional waveguide couplers, the symmetric propagation will be

excited. The pump (780nm) is input from the narrow arm, hence the antisymmetric

mode will be excited in the middle directional waveguide coupler. As we all know, the

second order nonlinear coefficient can result in three wave mixing. Hence in the middle

directional waveguide coupler, due to the three wave mixing, idler wave (1560nm) will
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Figure 7-12. The forward and backward operation of the PPLN optical isolator configu-
ration.

Figure 7-13. (a) and (b) are the forward and backward performance of the designed
optical isolator when PPLN is used to match the phase mismatch.

be obtained, because the new generated idler wave is antisymmetric mode, hence, in

the rare adiabatic waveguide coupler the idler wave couples to the narrow arm and

output through the narrow arm. There are both pump and idler wave at the narrow

arm output, so, in order to get the idler wave, a low-pass filter (LPF) is required at

the narrow arm output, as shown in Fig. 7-12(a). For the backward operation, as

show in the Fig. 7-12(b), when the idler wave is incident from the narrow arm of the

rare arm, in the middle directional waveguide coupler, the antisymmetric mode will be

excited, but due to the large phase mismatch (∆k = ks + ki + kp = 2kpump), the three
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wave mixing process cannot happen there, therefor, the idler antisymmetric mode

propagates from the rare to the front adiabatic waveguide coupler and output from

the narrow arm of the front adiabatic waveguide coupler. Now, by using the second

order nonlinear coefficient and three wave mixing, we have successfully achieved the

asymmetric coupling and nonreciprocal transmission for the forward and backward

operation in the waveguide coupler. Figure 7-13 shows the theoretical calculation, we

assume that the pump is undepleted, in the middle directional waveguide coupler,

the energy transfers from the pump to the idler wave, the three-wave mixing process

is similar to the optical parameter amplifier. The power of the pump is 100nw, and

our calculation shows that the required directional waveguide coupler length is about

2.8cm. Figure 7-13 shows the signal and idler wave for the backward operation, we

can see that due to the large phase mismatch, the propagation of idler wave are

totally isolated. Even though we are using the second order nonlinear coefficient, the

performance of the optical isolator is linear, and its working bandwidth are very wide

with low insertion loss. Moreover, our calculation shows full isolation can be achieved,

only the LPF at the output can affect the performance of this optical isolator. The

disadvantage here is the frequency shift- the idler wave and signal wave have different

frequencies. The optical isolator involves frequency shit due to the difference frequency

generate effect.

7.4 Conclusions

In this chapter, We have proposed and analyzed different schemes for non-magnetic

optical isolators. We demonstrated the first one experimentally, it’s achieved based

on frequency conversion process (DFG) in single PPLN waveguide combining with

spectral filters. It exhibits a wide bandwidth of more than 150 nm, limited only by

the measurement setup, and an optical isolation ratio of up to 18 dB for the involved

idler and signal waves. The difference of transmittance at the signal wavelength
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between forward and backward propagation is 40 dB. Then to realize spectral filter-

free and non-magnetic optical isolators, I have proposed and designed two optical

isolators based on adiabatic waveguide coupler and waveguide conversion based on

electro-optical effect and DFG. By comparison, I have demonstrated that the filter-free

isolator based on electro-optical effect can work entirely in the telecom range with high

power efficiency and wide band, but it’s challenging to reach satisfying isolation in

practice; the optical isolator based on nonlinear optical effect (DFG) on the other hand

can offer full optical isolation with linearity and wide working band, but frequency

of output wave is different from the original input due to the nonlinear optical three

wave mixing process. Our new proposed optical isolators based on different schemes

provide new choices for the development of integrated photonics.

144



Chapter 8

Conclusion

In this thesis I presented the results of my study of various aspects of light interaction

with structured all-dielectric and metal-dielectric materials. Using theoretical analysis,

numerical modeling, and, in some cases experimental measurements, I have identified

and studied number of interesting properties of these materials which make them

attractive for many applications. These include novel subwavelength imaging schemes,

various sensors operating in visible and mid IR ranges, thermal emitters, photodetectors

and non-reciprocal optical devices. At the same time, I have also pointed out to the

constrains placed on the performance of structured materials by practical issues of

losses, fabrication resolution and generally low efficiency of many optical processes.

The results of the research have been published in 6 papers in high impact journals

and presented at numerous conferences. These results present a small, but hopefully

important step on the path to practical applications of metamaterials.
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