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Abstract 

 Skeletal muscle is a complex system with robust ability to repair and regenerate 

after damage.  Modulation of the pathways involved in these processes are very important 

in the context of muscle disease, where muscle progressively wastes or degenerates and 

loses its ability to regenerate efficiently.  One such pathway relies on nitric oxide (NO) 

signaling, which we modulated with the phosphodiesterase inhibitor sildenafil and the 

soluble guanylate cyclase activator BAY 60-2770 in the mouse models of muscle injury 

and muscular dystrophy, respectively, and showed no benefit from either treatment 

method. 

 An additional pathway of interest is the myostatin pathway, whose inhibition 

leads to muscle hypertrophy and altered muscle metabolism.  The altered metabolic 

program includes changes in mRNA levels of many metabolic genes, including the 

newly-described skeletal muscle-specific gene Mss51, presented here.  Expression 

patterns of Mss51 were described in various tissues of mice and humans, and in muscles 

of different fiber type distributions.  Mss51 was predominantly expressed in glycolytic 

muscle groups, and in humans, the protein product MSS51 localized to the mitochondria. 

 The effect of ablation of Mss51 was examined in C2C12 immortal myoblasts as 

well as in mice and primary myoblasts.  Decreased Mss51 expression resulted in altered 

myosin heavy chain expression, increased expression of genes involved in fatty acid 

oxidation, and altered metabolic function as shown with the Seahorse metabolic flux 

analyzer in C2C12 myotubes and treadmill endurance in Mss51
-/-

 mice.  Overall, Mss51 

was shown to be a skeletal muscle-specific gene playing a role in the regulation of 

metabolic processes specifically in glycolytic muscle groups. 
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Overview 

 In Chapter 1, I will provide an introduction to skeletal muscle regeneration in the 

context of injuries and disease, including therapeutic strategies such as inhibition of the 

TGF-superfamily member myostatin and modulation of nitric oxide signaling, adapted 

and expanded from a review article we wrote entitled “Regeneration versus fibrosis in 

skeletal muscle” [1]. In Chapter 2, I will present a study that used sildenafil, a 

phosphodiesterase 5 inhibitor, and BAY 60-2770, a soluble guanylate cyclase activator, 

to modulate nitric oxide signaling in mouse models of muscle injury and muscular 

dystrophy, respectively. In Chapter 3, I will present the in vitro characterization of the 

gene Mss51, which came to our attention after we showed its expression to be regulated 

by myostatin inhibition in vivo. Mss51 is a skeletal muscle-specific gene not previously 

described in mammals. It is encoded in the nucleus but the protein product was shown to 

localize to the mitochondria, and it is involved in the modulation of metabolic processes 

including fatty acid utilization and ATP production. In Chapter 4, I will introduce the 

Mss51
-/-

 mouse model we created. The CRISPR/Cas9 system for genetic engineering was 

used to delete parts of the first 2 exons of Mss51 and we have started to characterize the 

resulting phenotype. Preliminary results will be presented, as well as plans for the 

continued characterization of the mouse model. 
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Introduction 

Skeletal muscle repair and regeneration are processes that need to be better 

understood to provide the best treatment possible for numerous conditions, including 

traumatic injury and muscular dystrophy. Muscular dystrophy is a group of numerous 

genetic conditions characterized by progressive skeletal muscle weakness and the death 

of muscle fibers. In these conditions, muscle fibers initially undergo normal repair 

processes but with time, normal regeneration is not able to keep up with the pace of 

degeneration and muscle necrosis, leading to the characteristic pathology including 

fibrosis, fatty infiltration, increased inflammation, and decreased muscle integrity. Our 

lab studies the complex processes involved in muscle repair and regeneration. 

The process of repairing skeletal muscle balances regeneration and fibrosis with 

results ranging from complete regrowth of myofibers within their original basal lamina to 

complete replacement of muscle fibers by fat and fibrosis. Several immune, myogenic, 

and stromal cell types must interact to direct injured skeletal muscle toward a pathway of 

complete regeneration. Conversely, in certain environments such as those found in 

chronic muscle disorders, these same cells direct the establishment of fibrosis. For 

purposes of discussion, regeneration from an acute injury of skeletal muscle can be 

divided into three distinct phases, although in vivo, these processes are highly 

interdependent. First, immune cells infiltrate and phagocytose necrotic tissue releasing 

numerous cytokines. Second, muscle progenitors proliferate, differentiate, and fuse to 

form new myofibers. Third and finally, the extracellular matrix (ECM) is remodeled and 

fibroblasts undergo apoptosis or proliferate (see Figure 1.1). The critical roles of immune, 

myogenic, and stromal cells will first be explored, as well as their key mediators in the 
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repair of skeletal muscle from injury. Injury models serve as a controlled way to study the 

regenerative processes that occur continuously in chronic muscle disease. Numerous 

experimental injury models exist, including mechanical injuries, such as crush and freeze 

injury, or chemical injuries, such as injection of barium chloride or the snake venom 

cardiotoxin. While the method by which injury is achieved differs, the general processes 

that result are similar in each model. 

 

Cells of the immune system initiate the response to injury 

 Following injury, various cells of the immune system, including macrophages and 

lymphocytes, are activated within or attracted to skeletal muscle. The functions of these 

immune cells are crucial to the muscle's successful regeneration. Their activity is 

carefully mediated by factors that contribute to the final endpoint, which is either 

regenerated muscle or fibrotic tissue. Both resident and recruited macrophages of a 

variety of populations, defined by surface marker expression linked to function, appear 

necessary in the processes, whereas specific T cell response types may also play a role in 

the balance between fibrosis and regeneration. 

 Resident macrophages can be found in the connective tissue of muscle, in both the 

epimysium enveloping the entire muscle and the perimysium surrounding bundles of 

muscle fibers called fascicles, but rarely in the endomysium surrounding individual fibers 

[2]. Resident macrophages release cytokine-induced neutrophil chemoattractant and 

monocyte chemoattractant protein 1 (MCP-1, also called CC chemokine ligand 2, CCL2) 

after injury, leading to the recruitment of neutrophils and monocytes from vascular 
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circulation [2]. This initial cellular response is marked by a release of inflammatory 

mediators including tumor necrosis factor alpha (TNF-) and an accumulation of 

neutrophils and subsequent macrophages. The response subsists for several days and is 

widely accepted as an integral feature of myorepair (as reviewed by Chazaud et al. [3]). 

CCL2 and other chemokines implicated in monocyte/macrophage recruitment signal 

through the C-C chemokine receptor 2 (CCR2), which is found on a variety of bone 

marrow-derived cells, as well as non-bone marrow-derived cells such as fibroblasts and 

endothelial progenitor cells. The importance of CCR2 signaling to skeletal muscle 

regeneration was first demonstrated in CCR2-null mice in which regeneration was shown 

to be greatly decreased [4]. Bone marrow-derived cells have been implicated as the 

critical CCR2 expressing cell type mediating regeneration [5]. Using bone marrow 

chimeras, CCR2 expression in bone marrow-derived cells, but not skeletal muscle, was 

found to be necessary for the mononuclear cell infiltration present at 3 and 7 days after 

injury [5]. CCR2 expression in bone marrow-derived cells was also linked to larger 

myofiber size and smaller areas of residual necrosis 21 days after injury [5]. Interestingly, 

in animals receiving CCR2
-/-

 bone marrow, there were higher numbers of myogenic 

progenitor cells (MPCs) after 7 days [5]. In a complementary study, Lu et al. recently 

showed that a CCR2 ligand, CCL2, must be expressed in both bone marrow-derived cells 

and muscle tissue for adequate repair [6]. Again using various bone marrow chimeras, 

recruitment of wild-type macrophages by CCL2-deficient injured muscles was markedly 

impaired whereas wild-type bone marrow completely restored muscle inflammation in 

CCR2 null mice [6]. There remain important questions left unanswered, such as which 

cells of the muscle tissue (e.g. myoblasts, myofibers, endothelial cells, or fibroblasts) are 
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required to express CCL2 for full inflammatory response and subsequent regeneration. 

However, the published studies would suggest that without CCL2/CCR2, immune cells 

are not successfully activated or recruited to injured muscle and MPCs are not able to 

completely differentiate. 

 Various macrophage phenotypes and activation states dominate different phases 

of muscle regeneration. The early immune response to muscle injury is driven by 

cytokines produced by T helper 1 cells (Type 1 cytokine response), including interferon 

(IFN) and TNF-, which stimulate the so-called ‘classically activated’ macrophages 

(M1). M1 macrophages produce both pro-inflammatory cytokines and nitric oxide, 

promoting muscle damage. Within 1–3 days after macrophage activation, the dominant 

macrophage response changes from M1 to an ‘alternatively activated’ M2 phenotype, 

likely caused by the phagocytosis of both apoptotic and necrotic myofibers [3]. Two 

subsets of M2 macrophages have been shown to be involved in muscle regeneration and 

are activated by different cytokines produced by T helper 2 cells (Type 2 cytokine 

response): M2a by interleukin (IL)-4 and IL-13, and M2c by IL-10 (for an excellent and 

more extensive review of this subject, see Tidball and Villalta [7]). M2 macrophages both 

abrogate inflammation by deactivating M1 macrophages and release cytokines that 

promote tissue repair and nonmyeloid cell proliferation. Additionally, the relative 

involvement of various macrophage phenotypes has been shown to affect the severity of 

muscle pathology in muscular dystrophy models, linking nitric oxide of an M1 response 

with most severe muscle damage [8]. For example, muscle damage can be lessened with 

the appearance of an M2a response due to competition for L-arginine between inducible 

nitric oxide synthase (iNOS, expressed by M1 macrophages) and arginase (expressed by 



 

 7 

M2a macrophages) [8]. Simultaneously, expression of IL-10 increases, deactivating M1 

and stimulating M2c macrophages [8]. To deactivate potentially damaging M1 

macrophages in the mdx mouse model of Duchenne muscular dystrophy (DMD), 

Villalta et al. treated mice with IL-10, which was linked to decreased iNOS expression 

and increased levels of M2c macrophages [9]. Conversely, when the authors ablated IL-

10 expression, iNOS expression and muscle damage increased, and strength and 

endurance were reduced [9]. These experiments indicate that IL-10 could serve as a 

potential therapeutic target to reduce harmful aspects of the inflammatory response and 

subsequent fibrosis. 

 In addition to secreted cytokines, additional immunoregulatory molecules have 

recently been found to play critical roles in normal muscle regeneration. One example is 

stem cell antigen-1 (Sca-1), which is implicated in stem cell self-renewal and expressed 

on multiple hematopoietic cell types as well as myoblasts following muscle injury [10]. 

Sca-1 is necessary for the recruitment of soluble IgM and C3 complement to damaged 

muscle, which results in lysis of the cell followed by phagocytosis of the fragments by 

macrophages [11]. In the absence of Sca-1, there is reduced recruitment of IgM and B-1a 

cells, the non-conventional B cell subset that produces autoantibodies recognizing the 

altered surface patterns of damaged tissue [11]. Long et al. showed that TGF-1 

produced by macrophages in regenerating muscle negatively regulates the expression of 

Sca-1 in both myogenic and immune cells, including T cells, B cells, and macrophages 

[12]. Without Sca-1, the activity of matrix metalloproteinases (MMPs), enzymes 

responsible for ECM remodeling, is reduced, contributing to increased fibrosis in mdx 

mice [10]. 
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 The immune response to skeletal muscle damage is both complex and critical, and 

must be considered in all studies of muscle regeneration. Lagrota-Candido et al. remind 

us of that fact in a recent study characterizing fibrosis and muscle regeneration in 

different mouse strains [13]. In a bupivacaine injury model, they showed that C57BL/6 

mice, which produce a dominant Type 1 cytokine response, had successful regeneration 

with limited fibrosis whereas BALB/c mice, with their dominant Type 2 cytokine 

response, developed both higher levels of fibrosis and increased TGF- expression [13]. 

BALB/c
nu/nu

 mice developed a similar high deposition of collagen indicating that this 

fibrotic response is not secondary to T cell activity [13]. These results not only 

underscore the importance of properly controlling for the genetic background in animal 

models of muscle regeneration but also the complexity of the cytokine response to 

muscle injury that is not fully elucidated. 

 

Muscle cells and their progenitors receive and provide trophic cues 

 Following the initial inflammatory phase dominated by the presence of immune 

cells, normal muscle regeneration is marked by the proliferation and differentiation of 

MPCs. Most muscle regeneration occurs through the proliferation of myogenic cells, 

called satellite cells due to their position on the periphery of the muscle fiber beneath a 

common basal lamina. However, it is now clear that satellite cells are not a homogeneous 

population and that other progenitor cells, including those derived from the interstitium 

and bone marrow, have myogenic potential. Myogenic cells produce growth factors that 

act in autocrine and paracrine manners, further directing muscle regeneration or fibrosis. 
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 Satellite cells have traditionally been the focus of much research in muscle 

regeneration. The vast majority of these studies are in murine models. It is challenging to 

obtain large numbers of primary satellite cells from human muscle, due to their low 

prevalence in adult tissue and the invasive nature of muscle biopsies. It therefore remains 

to be shown whether human satellite cells exhibit the same behaviors and antigenic 

markers as mouse satellite cells. For example, Pax7, a paired box transcription factor, is a 

reliable marker of quiescent and activated mouse satellite cells but appears to only 

recognize a subset of human satellite cells as defined by neural cell adhesion molecule 

positivity and sublaminar position (for a complete review of human versus murine 

antigenic markers see Boldrin et al. [14]). Another difficult aspect in the study of satellite 

cells is that in both species, satellite cells are heterogeneous populations [15]. Even from 

satellite cells isolated from the same mouse fiber, a large range of proliferative potential 

and variability of antigenic markers have been demonstrated. 

 MPC function is highly dependent on environmental factors as has been 

demonstrated in elegant heterochronic parabiotic studies. Exposure of old muscle to 

youthful blood circulation stimulated proliferation of MPCs, enhanced regeneration and 

reduced fibrosis following injury [16,17]. The local and systemic environmental factors 

responsible for determining MPC function and their relative importance have not yet 

been clearly defined. However, the heterochronic parabiotic studies, among others, 

implicate the Notch signaling pathway as a key determinant of muscle regeneration 

[16,17]. Pharmacologically increasing Notch signaling, or inhibiting the opposing Wnt 

signaling pathway, leads to enhanced reparative ability of satellite cells in aged muscle. 
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Conversely, increased Wnt signaling is associated with increased fibrosis and may induce 

MPCs to alter their fate from myogenic to fibrogenic lineage [16]. 

 Other important factors in the local environment modulating MPC behavior 

include IGF-1, TGF-1, and myostatin. IGF-1 is likely the major pro-growth factor, 

stimulating MPC proliferation and differentiation and reducing muscle fibrosis. IGF-1 is 

expressed from a host of tissues, and within muscle is expressed by myofibers and 

macrophages [6,18]. Recently, a relationship between IGF-1 and Sonic hedgehog, both 

known to promote MPC proliferation and differentiation, was proposed [19]. IGF-1 acts 

cooperatively with Sonic hedgehog and its effector, smoothened, to stimulate the 

expression of myogenic regulatory factors, and increase the activation of PI3K-Akt and 

MAPK/ERK pathways in myoblasts [19]. 

 Myostatin, also known as growth differentiation factor 8 (GDF8), is a TGF- 

family member expressed predominantly in skeletal muscle. The function of myostatin 

was first described by Se-Jin Lee and Alexandra McPherron’s characterization of 

myostatin knockout mice, which showed significant increases in body weight and muscle 

mass [20]. As decreased levels of myostatin lead to increased muscle mass, its inhibition 

is of high interest in the context of diseases of muscle wasting. Myostatin has been shown 

to be an autocrine and paracrine inhibitor of muscle growth, and its inhibition results in 

increased muscle growth and reduced fibrosis in animal models of chronic muscle 

disease. Conversely, myostatin directly promotes fibroblast proliferation resulting in 

muscle fibrosis in vivo [21].  
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Myostatin signals by binding a membrane-bound activin type II receptor, which 

results in the recruitment of the co-receptor ALK4 or ALK5, initiating a signaling 

cascade within the muscle. Inhibition of myostatin can be achieved using ActRIIB-Fc, a 

soluble activin type IIB receptor that binds and sequesters myostatin. ActRIIB-Fc 

treatment leads to rapid and dramatic increases in muscle mass in normal mice 

[22,23] and decreased fibroblast proliferation and fibrosis in dystrophic muscle (Z.B. Li 

and K.R. Wagner, unpublished observation). Gene expression profiling in mice treated 

with ActRIIB-Fc as well as in myostatin knockout mice has shown many changes in gene 

expression, with altered pathways including oxidative phosphorylation, mitochondrial 

function, citrate cycle, and pyruvate metabolism [24]. Additionally, in both ActRIIB-Fc 

treated mice and myostatin knockout mice there is decreased Type I slow fiber myosin 

heavy chain isoform expression and a trend toward decreased expression of the major 

slow fiber type determinant peroxisome proliferator-activated receptor- coactivator-1. 

PGC-1 [24]. Further understanding of the diverse effects of myostatin inhibition is 

needed. 

ActRIIB-Fc has been developed by Acceleron/Shire as the drug ACE-031 and 

was eagerly anticipated for the treatment of chronic muscle diseases prior to recent 

clinical trials in Duchenne muscular dystrophy being terminated for unacceptable side 

effects unrelated to its action on skeletal muscle (ClinicalTrials.gov Identifier 

NCT01099761). Pharmacological development of myostatin inhibitors continues, 

however, with alternative approaches and current high hopes for the introduction of 

follistatin, a nonspecific biological antagonist of myostatin. Transgenic overexpression of 

follistatin in mice was recently demonstrated to facilitate regeneration as well as reduce 
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fibrosis after injury in mice [25]. Follistatin gene delivery via adeno-associated virus 

serotype-1 induced increases in muscle size and strength without systemic toxicity in 

cynomolgus macaques, paving the way for clinical trials in inclusion body myositis [26]. 

As the biology of myostatin continues to be elucidated, additional targets are suggested: 

myostatin transcripts are subject to microRNA (miRNA)-mediated silencing indicating 

that it may be possible augment or mimic this biological modulator to inhibit myostatin 

activity [27]. Additional targets may arise as the effects of myostatin inhibition are better 

understood, including targets altering metabolic processes. 

 

Connective tissue cells alter skeletal muscle integrity 

 Muscle is intimately linked to connective tissue, where several cell types are 

involved in regeneration and referred to collectively as muscle resident stromal cells 

(mrSCs). These include fibroblasts, responsible for ECM and collagen synthesis, 

adipocytes which replace muscle fibers in disease and aging, and fibro/adipogenic 

progenitors (FAPs), bipotential cells that can become either fibroblasts or adipocytes. 

These cell types play important roles in successful muscle regeneration, but if not kept in 

check, contribute to a self-perpetuating process of fibrosis. 

 Recent studies describe important roles for stromal progenitor cells, FAPs, found 

in the endomysial compartment between myofibers. Following muscle injury, FAPs 

begin to proliferate among MPCs and damaged myofibers (in vivo) and provide trophic 

factors that stimulate myoblast differentiation (in vitro) [28]. When regeneration is 

effective, FAPs drop back down to their initial population size [28]. It is believed that 
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when this process goes awry, an inhibitory signal is missed and FAPs differentiate into 

adipocytes or fibroblasts, increasing fibrosis or fatty infiltration [29]. Conversely, direct 

cell contact with regenerating myofibers inhibits the differentiation of FAPs into 

adipocytes [30]. Less is known about the ability of FAPs to differentiate into 

fibroblasts in vivo, as the lack of selective fibroblast markers in skeletal muscle hampers 

this field in general. However, in skeletal muscle, the expression of the tyrosine kinase 

platelet-derived growth factor receptor alpha (PDGFR) appears to be selective for FAPs 

[30]. Conditional PDGFR knock-in mice have diffuse fibrosis in skeletal muscle, as 

well as other organs, suggesting that proliferation of FAPs may be sufficient to induce 

endomysial fibrosis and suggesting another therapeutic target for chronic myopathies 

[31]. 

 Additional evidence of the paracrine regulation of muscle growth by mrSCs is 

provided in an important study by Mathew et al. [32], describing the transcription factor 

Tcf4, which is strongly expressed by muscle tissue fibroblasts. Using Cre-activated 

expression of diphtheria toxin, the authors genetically ablated Tcf4-positive fibroblasts to 

demonstrate that fibroblasts modulate the determination of muscle fiber type, showing a 

reduced frequency of type I fibers in mice without Tcf4-positive fibroblasts [32]. These 

studies were performed in developing and normal adult muscle and the effects of Tcf4 in 

models of muscle regeneration will be important subsequent studies [32]. 

 Connective tissue cells can be regulated by a variety of mechanisms, presenting 

some additional targets that may have anti-fibrotic potential. In other organ systems, 

fibrosis is modulated by miRNAs, which may target TGF-, tissue inhibitors of 

metalloproteinases, or other mRNA targets. Depending on the target, the silencing effects 
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can result in either increased or decreased levels of fibrosis. Such a miRNA-based 

approach has recently been successfully demonstrated in a murine model of cardiac 

fibrosis [33]. Further studies in this area are anticipated to lead to new treatments that 

could be useful in a variety of chronic skeletal muscle diseases. 

 

Conclusion 

 In the past, many studies have focused primarily on muscle precursor cells and the 

factors that inhibit or stimulate their activities, but recent work has highlighted the 

interactions of immune and stromal cells with myogenic cells that results in regeneration 

of the muscle tissue. One theme that is emerging from these studies is that the timing of 

activation, proliferation, and differentiation of immune, muscle progenitor, and 

connective tissue cells is critical. Different cell types, as well as the factors that mediate 

them, may play unique and opposing roles at different times during the regeneration 

process. This will have implications not only to the design of novel therapeutics but 

potentially to the implementation of their clinical use. 

 Two areas of intense interest in the treatment of muscle disease have been 

modulation of nitric oxide signaling and inhibition of myostatin, both of which will be 

explored in greater detail in the following chapters. Nitric oxide (NO) is produced by 

nitric oxide synthase (NOS), an enzyme that, in mammals, exists in three isoforms: 

eNOS, or endothelial NOS; iNOS, or inducible NOS; and nNOS, or neuronal NOS, 

which is the predominant form expressed in skeletal muscle. The role of iNOS-produced 

NO in breaking down injured muscle was previously mentioned, but nNOS-produced NO 
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is an important signaling molecule within muscle fibers affecting calcium handling [34]. 

In Duchenne muscular dystrophy, the lack of the dystrophin-glycoprotein complex causes 

nNOS to mislocalize, decreasing NO production and signaling. Therefore, there is 

clinical interest in increasing levels or activity of members of the NO signaling pathway, 

which will be further explored in Chapter 2. 

 Myostatin inhibition causes numerous changes, including alterations in muscle 

growth, fat accumulation, and metabolic processes. One of these changes is the 

downregulation of Mss51 (formerly known as Zmynd17), a gene that was not previously 

described in mammalian systems. In Chapters 3 and 4, evidence for the role of Mss51 in 

metabolic regulation will be explored.  
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Figure 1.1. Stages of muscle regeneration. Normal muscle (a) is injured, inciting an 

immune response including M1 macrophages and stimulating muscle progenitor cell 

(MPC) proliferation. Following 1-2 days of muscle fiber necrosis and early inflammation 

(b), an M1 macrophage response is substituted for an M2c macrophage response, which 

accompanies MPC differentiation and leads to nascent muscle fibers by 3-5 days post 

injury (c). Muscle regeneration is completed by 1 month following injury (d) with 

increased protein synthesis in nascent myofibers, reduction in fibro/adipogenic precursors 

(FAP) and fibroblast populations, and remodeling of the extracellular matrix (ECM) by 

matrix metalloproteinases (MMPs). Alternatively, in the presence of persistent 

inflammation and growth factors such as myostatin and TGF-1, fibroblasts continue to 

proliferate and express collagen and other ECM components and a self-perpetuating 

process of fibrosis ensues (e). Development of novel therapeutics to resolve fibrosis and 

rescue surviving muscle progenitor cells to form new myofibers is needed. 
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Chapter 2. Modulating Nitric Oxide Signaling in Models of 

Skeletal Muscle Regeneration and Muscular Dystrophy 
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Abstract 

 The nitric oxide signaling pathway provides multiple therapeutic targets for 

modulation of skeletal muscle regeneration and health in contexts including the muscular 

dystrophies.  We treated cardiotoxin-injured wild-type mice with sildenafil and measured 

changes in cross sectional area and gene expression.  We also used the mdx model of 

Duchenne muscular dystrophy (DMD) to examine the effects of treatment with BAY 60-

2770, a soluble guanylate cyclase activator, during the first six weeks postnatal, during 

which the mice undergo massive waves of degeneration and regeneration.  In both cases, 

we did not find significant differences between treated and untreated animals, indicating 

that modulation of nitric oxide signaling was insufficient to improve the examined 

outcomes in these model systems.  
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Introduction 

Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin 

gene that result in a lack of functional protein [35].  Becker muscular dystrophy (BMD) is 

also caused by mutations in dystrophin, though patients with BMD produce some 

partially functional dystrophin, leading to less severe pathology [36].  Dystrophin is an 

integral part of the dystrophin-glycoprotein complex (DGC), anchoring many other 

proteins to the sarcolemma [37].  Without dystrophin, these other members mislocalize, 

are expressed at lower levels, and are less functionally active.  One of the members of the 

complex known to mislocalize is neuronal nitric oxide synthase (nNOS), which produces 

nitric oxide (NO) and activates soluble guanylate cyclase (sGC) [38].  sGC catalyzes the 

production of cyclic guanosine monophosphate (cGMP), which has been linked to 

changes in intracellular calcium levels that play important roles in muscle contraction and 

health [34].  As NO signaling is decreased when nNOS mislocalizes away from the 

sarcolemma, there has been interest in pharmacologically modulating downstream 

players in the pathway to maximize cGMP levels in the muscle of muscular dystrophy 

patients.   

 One way to achieve this is by inhibition of phosphodiesterase 5, which cleaves 

cGMP.  PDE5 inhibitors include sildenafil (Viagra and Revatio) and tadalafil (Cialis).  

PDE5 is found in various tissues including the corpus cavernosum and vascular smooth 

muscle, platelets, and skeletal muscle. PDE5 inhibitors cause vasorelaxation by blocking 

the hydrolysis of cGMP, increasing the cGMP-induced activation of protein kinase G 

[39].  Sildenafil was initially explored as a drug for the treatment of heart disease and 

hypertension, but its side effects caused it to be marketed instead for the treatment of 
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erectile dysfunction [39].  While that remains its most common indication, there has been 

renewed interest in the use of sildenafil in the treatment of both cardiac and skeletal 

muscle diseases [34,39,40].   

An alternate method to modulate the NO pathway is to use sGC activators that 

increase the production of cGMP in a NO-independent manner.  One such sGC activator 

is BAY 60-2770, which, like sildenafil, has also been shown to ameliorate erectile 

dysfunction and cause vasorelaxation in animal models [41–44].   

To explore the effects of modulating NO signaling in skeletal muscle, we used 

two different model systems: sildenafil treatment in a cardiotoxin injury model and BAY 

60-2770 treatment in the mdx mouse model of DMD. Cardiotoxins are the main 

component of the venom of cobras. In our injury model, the cardiotoxin used is harvested 

from Naja nigricollis, the black-necked spitting cobra.  It specifically affects and destroys 

muscle fibers by causing depolarization and contraction, leaving the muscle progenitor 

population, or satellite cells, to survive and regenerate functional muscle [45].  This 

injury model is commonly studied because it causes a uniform and synchronous wave of 

degeneration and necrosis followed by complete muscle regeneration.  The mdx mouse 

model is commonly used to study dystrophinopathies, though the phenotype is not 

equivalent to that of a patient with DMD [46].  The mdx mice undergo massive waves of 

degeneration and regeneration early in life.  By adulthood (approximately 8 weeks), the 

muscle appears relatively normal though centrally nucleated, which indicates that it has 

undergone regeneration [47].  These models allowed us to examine the effect of PDE5 

inhibition from acute injury through muscle repair and the effect of sGC activation 

through the period of major degeneration and regeneration in the mdx mouse. 
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Materials and Methods 

Animals 

 All animal experiments were performed in accordance with the guidelines of the 

Institutional Animal Care and Use Committee at the Johns Hopkins University School of 

Medicine.  Wild-type (C57Bl/6J) and mdx (C57Bl/10ScSn-Dmd
mdx

/J) were obtained 

from the Jackson Laboratories (Bar Harbor, ME).  Animals were maintained on a 

12h:12h light:dark schedule with ad libitum access to food and water.  Animals were 

euthanized by inhalation overdose of isoflurane and cervical dislocation.  Total blood was 

removed from mdx mice using cardiac puncture, and serum was isolated using serum 

separator microtainer tubes (BD, Franklin Lakes, NJ, USA). 

Administration of sildenafil and BAY 60-2770 

 For sildenafil treatment, two days before cardiotoxin injury, six-to-eight week old 

male wild-type mice began drug treatment.  Mice were fed transgenic dough diet (Bio-

Serv, Flemington, NJ, USA) containing sildenafil at a concentration of 1 mg per gram of 

dough.  20 mg tablets of sildenafil were generously provided by David Kass (Johns 

Hopkins University School of Medicine, Baltimore, MD, USA).  Tablets were processed 

into a fine powder using a mortar and pestle.  The powder was then carefully kneaded 

into the dough for thirty minutes at 4 degrees Celsius to ensure even distribution 

throughout the food.  Control mice were fed transgenic dough without drug.  Food was 

replaced every 2 days.  Mice ate approximately 5 g of dough each day, which contained 5 

mg of sildenafil, corresponding to a dose of 200 mg/kg/day, as the mice were 
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approximately 25 g.  Mice were maintained on control or treated diets until sacrifice 5, 7, 

or 14 days post-injury. 

 For BAY 60-2770 treatment, mating cages of mdx mice were checked daily for 

pups.  When a litter was born, they were assigned a treatment group, and on p1 (postnatal 

day 1), treatment was initiated.  Mice were divided into three treatment groups: vehicle-

only control, low dose (0.1 mg/kg) and high dose (1.0 mg/kg).  Powdered BAY 60-2770 

was generously provided by David Kass.  BAY 60-2770 was dissolved in a solvent 

mixture of 70% water, 20% Cremophor EL (Sigma-Aldrich, St. Louis, MO, USA), and 

10% Transcutol HP (Gattefossé, Saint-Priest, France) at a concentration of 1 mg per 10 

mL solvent for the high dose and 0.1 mg per 10 mL solvent for the low dose.  Animals 

were weighed daily and dosed via subcutaneous injection every 24 hours for the first six 

weeks of life with 10 L solution per gram bodyweight.  To determine serum BAY 60-

2770 concentration, serum was frozen and shipped to Bayer (Wuppertal, Germany) for 

analysis. 

Cardiotoxin injury 

 To injure the tibialis anterior (TA) and induce complete muscle degeneration and 

regeneration, 100 L of 10 M cardiotoxin (EMD Millipore, Darmstadt, Germany) was 

injected intramuscularly to each TA.  To perform the injection, a 25 G needle was used to 

enter the skin at the distal end of the TA, inserted along the length of the muscle, and 50 

L was injected as the needle was slowly withdrawn through the muscle.  This was 

repeated once for a total injection volume of 100 L. 

Morphometric analysis 
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 Muscle was harvested and frozen in pre-cooled isopentane.   The muscles were 

cryosectioned at midbelly at a thickness of 10 m and stained either with hemotoxylin 

and eosin (H&E) or with an anti-laminin primary antibody (1:1,000, Sigma-Aldrich).  

Fiber cross-sectional area (CSA) and central nucleation were determined in non-

overlapping areas of muscle using ImageJ (National Institutes of Health, Bethesda, MD, 

USA).  All analysis was performed using blinded samples in randomized order.  

qRT-PCR 

 RNA was isolated from muscle homogenized in TRIzol (Life Technologies, 

Carlsbad, CA, USA) and extracted using the Direct-zol RNA MiniPrep kit (Zymo 

Research, Irvine, CA, USA).  cDNA was synthesized using the SuperScript II First-

Strand Synthesis kit (Life Technologies) and was diluted and used as the template for 

quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis, 

performed on the 7900HT Fast Real-Time PCR System (Applied Biosystems, Waltham, 

MA, USA).  Validated TaqMan Probes for MyoD, Myogenin, Myf5, and the reference 

gene Pgk1 (Applied Biosystems) were used with TaqMan Universal Master Mix II 

(Applied Biosystems) and analyzed using the Ct method. 

Statistical analysis 

 For analysis of CSA data, the R language for statistical analysis was used to 

perform a one-way nested analysis of variance (ANOVA) to compare groups and also 

determine the effect of animal-to-animal variability.  For qRT-PCR comparisons, two-

way Student’s t tests were performed.  To compare central nucleation between three 

treatment groups, a one-way ANOVA was used.  For all comparisons, probability values 



 

 25 

(p values) less than 0.05 were considered significant.  Additionally, all plots were coded 

using the R language. 
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Results 

Sildenafil treatment does not improve skeletal muscle regeneration 

 Mice began treatment with sildenafil two days before injury by cardiotoxin 

injection into the TA and continued treatment until euthanasia.  Control and sildenafil-

treated mice were harvested at days 5, 7, and 14 post injury.  Representative histological 

images from each time point show the appearance of small, centrally nucleated myofibers 

by 5 days post injury which increase in size by 7 days post injury, and appear nearly fully 

regenerated by 14 days post injury (Figure 2.1).  Injured myofibers remain predominantly 

centrally nucleated for the life of the animal, allowing for determination of efficiency of 

cardiotoxin delivery and injury. 

 From the images of H&E-stained sections, we measured cross sectional area of 

individual myofibers.  For each animal, histogram distributions were determined and 

averaged within each group to allow for comparison of the fiber size distribution, and 

additionally the grand means ± S.E.M. for each time point were examined (Figure 2.2).  

We did not find significant differences between the groups (p = 0.38 at day 5, p = 0.71 at 

day 7, and p = 0.87 at day 14), though from the histograms it does appear that the 

sildenafil-treated mice have a slight increase in the proportion of fibers less than 1000 

2
 in area at days 5 and 7 post injury (Figure 2.2B, E).   

 Additionally, data for each individual animal were plotted as box-and-whiskers 

plots (Figure 2.3).  As determined by a nested one-way ANOVA, the differences between 

individual animals were highly significant regardless of group effect (p < 1.0 x 10
-15

 at all 
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time points examined), which is made apparent by the fluctuations in median depicted in 

the box-and-whiskers plots at each time point. 

 We additionally performed qRT-PCR of three myogenic regulatory factors: 

Myogenin, MyoD, and Myf5. TAs were harvested 5 days after injury, and the data are 

displayed as relative abundance compared to the expression level in uninjured TA muscle 

from age- and sex-matched mice (Figure 2.4).  There were no significant differences 

between groups in any of the examined markers, which is likely attributable to the 

variability between individual animals.  There was a large upregulation of each marker 

compared to the uninjured controls, as would be expected in an animal undergoing 

massive skeletal muscle regeneration. 

BAY 60-2770 does not ameliorate muscle pathology in young mdx mice 

 To examine the effect of increased nitric oxide signaling in a model of Duchenne 

muscular dystrophy, we treated young mdx mice with the Bayer sGC activator BAY 60-

2770.  Mice were treated for the first 6 weeks postnatal with vehicle-only control, low 

dose (0.1 mg/kg bodyweight) or high dose (1.0 mg/kg bodyweight) BAY 60-2770.  After 

6 weeks, mice were euthanized, serum was collected, and the triceps and quadriceps were 

flash frozen for histological analysis. 

 From the triceps and quadriceps, CSA was determined using laminin-stained 

muscle sections (Figure 2.5).  Histograms and grand means comparing the control, low 

dose, and high dose-treated animals were plotted (Figure 2.6A-H).  There were no 

statistically significant differences between groups, though there did appear to be a trend 

towards a dose-dependent decrease in CSA in animals treated with BAY 60-2770 in both 
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muscle groups.  Additionally, we used images of the quadriceps to determine the percent 

of fibers with centrally located nuclei, an indicator that the fiber has undergone 

regeneration (Figure 2.6I).  Again, there was no significant difference in the percentage 

of fibers centrally nucleated between the groups, though there did appear to be a slight 

trend towards decreased central nucleation in BAY 60-2770-treated animals.  

Intriguingly, 6 week-old control and high dose-treated mice had many very small 

myofibers as seen in their histograms, but low-dose treated animals did not (Figure 2.6A-

F). 

 As with the sildenafil-treated animals, we also looked at the box-and-whiskers 

plots for each individual animal (Figure 2.7).  From this, there does appear to be a general 

trend toward smaller fiber area in animals treated with BAY 60-2770, but it is also 

apparent that the inter-animal variability is large.  One-way nested ANOVAs were used 

to compare the intra-group and inter-group variability, and it was shown that while 

group-to-group differences were not significant, differences between individual mice 

given the same treatment were highly significant (p < 1.2 x 10
-26

 for both muscles), much 

like what was observed in the sildenafil-treated wild-type mice.   

 Finally, serum levels of BAY 60-2770 were determined and are presented in 

Table 2.1 from all mice treated with either dosage of the drug.  For all except one of the 

low dose-treated mice, serum levels were below the limit of detection.  In the mice 

treated with the high dose, three had serum levels below the limit of detection, and the 

others had an average of 3.44 g BAY 60-2770 per liter of serum.  The variability was 

large, with a standard deviation of 1.69 g/L.  Additionally, the control serum sample, 
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which was pooled from 5 mice, gave a reading of 5.08 g/L, which was postulated to be 

due to carry over from the previous sample from the high dose-treated group. 

Discussion 

 From studies using sildenafil and BAY 60-2770, we presented preliminary data 

indicating that the modulation of NO signaling in muscle regeneration and a model of 

muscular dystrophy is not sufficient to alter the pace or magnitude of repair processes.  A 

common concern arising from both methods is that the inter-animal variability is 

substantial, which may function to mask small but significant treatment effects.  With 

that in mind, although we did not find statistical differences in the parameters examined, 

it is concerning that there appeared to be a slight decrease in mean myofiber CSA in a 

dose-dependent manner with BAY 60-2770 treatment in mdx mice (Figure 2.6).  

Simultaneously, there was a non-significant trend toward decreased central nucleation in 

the quadriceps of mice treated with BAY 60-2770 (Figure 2.6), a positive outcome 

indicating decreased susceptibility to initial fiber injury. 

Many groups have modulated NO signaling in both dystrophic animals and 

humans using phosphodiesterase inhibitors, and the results presented have been 

contradictory.  In mdx mice, sildenafil treatment has been shown to reduce diaphragm 

weakness and fibrosis as well as reduce functional deficits in the heart [34,40].  In human 

studies, these results were not replicated.  Patients with Becker muscular dystrophy were 

given sildenafil and improvements in blood flow, maximal work capacity, and heart 

function were examined, but no differences were found [48].  In that study, there were no 

adverse effects, but that has not always been the case. 
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In our group’s Phase 2 REVERSE-DBMD clinical trial (ClinicalTrials.gov 

identifier NCT01168908), adults with Duchenne or Becker muscular dystrophy (DBMD) 

and cardiomyopathy were recruited and randomized into sildenafil and placebo groups.  

The primary endpoint measurement was change in left ventricular end-systolic volume 

(LVESV) using cardiac magnetic resonance imagine (MRI).  The trial was terminated 

early, after preliminary review by an independent data and safety monitoring board 

determined there was an average worsening of individuals on sildenafil as determined by 

LVESV [49].  While this may not indicate that PDE5 inhibition is dangerous in patients 

with DBMD, it demonstrates that it is unlikely to ameliorate the cardiomyopathy present 

in the patients.  As a result of these studies and others, there is interest in using PDE5 

inhibitors that more selectively target PDE5 over other PDE family members. Tadalafil is 

a more specific PDE5 inhibitor than sildenafil which also targets PDE1c. 

Since there did not appear to be a benefit of sildenafil treatment in the context of 

injury, it may be most important to closely examine the cardiac phenotype as well as the 

development of fibrosis in skeletal muscle.  NO signaling is important in many contexts, 

and we only examined changes in skeletal muscle.  One such context is inflammation, 

which plays a key role in both muscle regeneration and the replacement of muscle with 

fibrosis.  When nNOS is ablated in mdx mice, there is no compensatory muscle 

hypertrophy, and there is increased macrophage infiltration and muscle weakness [38]. 

There may still be hope for the use of a more specific PDE5 inhibitor or a sGC 

activator to treat cardiomyopathy or prevent skeletal muscle fibrosis in DBMD patients.  

Studies have shown some functional benefit of sildenafil in skeletal muscle, including 

increased protein synthesis and reduced fatigue [50].  There may also be metabolic 
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benefits conferred by treatment with sildenafil or tadalafil by increasing blood flow to 

muscle during use [51].  Significant work examining the specificity and mechanisms of 

action of all modulators of NO signaling need to be considered if there is any hope of 

finding a beneficial and safe drug for the treatment of dystrophinopathies. 
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Figures 

Figure 2.1. Regeneration after cardiotoxin injury. Representative images of H&E 

stained sections of cardiotoxin-injured tibialis anterior muscles from control and 

sildenafil-treated mice harvested 5, 7, and 14 days after injury.  
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Figure 2.2. Cross sectional area (CSA) of injured myofibers does not significantly 

change after sildenafil treatment.  Control and sildenafil-treated mice were injured and 

CSA was measured from H&E-stained cryosections collected 5 days (A-C), 7 days (D-F), 

and 14 days (G-I) post injury.  For each time point, average histograms of each treatment 

group are presented as well as the grand means ± the standard error of the mean. n = 2-3 

mice per group. 

 

 

 

  



 

 34 

Figure 2.3. Cross sectional area of myofibers varies between individual mice after 

cardiotoxin injury irrespective of sildenafil treatment.  Box-and-whiskers plots 

comparing myofiber cross sectional area in individual mice either untreated (blue) or 

treated with sildenafil (red) and harvested 5 (A), 7 (B), and 14 (C) days post-cardiotoxin 

injury. 
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Figure 2.4. Gene expression of three myogenic regulatory factors does not 

significantly change with sildenafil treatment in regenerating TAs 5 days after 

injury.  (A) Myogenin, (B) MyoD, and (C) Myf5 mRNA expression levels were measured 

using qRT-PCR and normalized to uninjured TAs (not shown, relative mRNA abundance 

= 1).  n = 3 mice per group. 
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Figure 2.5. Representative images of quadriceps and triceps from control mice and 

mice treated BAY 60-2770. mdx mice were treated for 6 weeks postnatal with control 

(vehicle only) or a low (0.1 mg/kg) or high (1.0 mg/kg) dose of BAY 60-2770 and 

harvested.  Laminin is shown in red, nuclei are shown by DAPI staining in blue. 
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Figure 2.6. CSA analysis of mdx mice treated with BAY 60-2770.  (A-C) Average 

histograms of CSA from the quadriceps of control (A), low dose (B), and high dose (C) 

treated mice.  (D-F) Average histograms of CSA from the triceps of control (D), low dose 

(E), and high dose (F) treated mice.  (G, H) Grand means ± standard error of the mean of 

quadriceps and triceps, respectively.  (I) The percent of myofibers displaying central 

nucleation were determined from the quadriceps, and there was a trend towards decreased 

central nucleation in BAY 60-2770 treated mice, though it was not statistically 

significant. n = 4-6 mice per group. 
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Figure 2.7. Myofiber CSA varies between individual mice regardless of BAY 60-

2770 treatment.  CSA determined from the quadriceps (A) and the triceps (B) shown as 

box-and-whiskers plots for each individual animal treated.  Control animals are shown in 

blue, low dose-treated animals in light red, and high dose-treated animals in dark red. 
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Table 2.1. BAY 60-2770 serum levels. Determined in control, low dose, and high dose-

treated mdx mice. 
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Abstract  

Background 

The transforming growth factor β (TGF-β) signaling pathways modulate skeletal muscle 

growth, regeneration, and cellular metabolism.  Several recent gene expression studies 

have shown that inhibition of myostatin and TGF-β1 signaling consistently leads to a 

significant reduction in expression of Mss51, also named Zmynd17.  The function of 

mammalian Mss51 is unknown although a putative homolog in yeast is a mitochondrial 

translational activator.   

Objective 

The objective of this work was to characterize mammalian Mss51.  

Methods 

Quantitative RT-PCR and immunoblot of subcellular fractionation were used to 

determine expression patterns and localization of Mss51.  The CRISPR/Cas9 system was 

used to reduce expression of Mss51 in C2C12 myoblasts and the function of Mss51 was 

evaluated in assays of proliferation, differentiation and cellular metabolism. 

Results 

Mss51 was predominantly expressed in skeletal muscle and in those muscles dominated 

by fast-twitch fibers.  In vitro, its expression was upregulated upon differentiation of 

C2C12 myoblasts into myotubes.  Expression of Mss51 was modulated in response to 

altered TGF-β family signaling.  In human muscle, MSS51 localized to the mitochondria. 
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Its genetic disruption resulted in increased levels of cellular ATP, -oxidation, glycolysis, 

and oxidative phosphorylation. 

 

Conclusions 

Mss51 is a novel, skeletal muscle-specific gene and a key target of myostatin and TGF-

1 signaling. Unlike myostatin, TGF-1 and IGF-1, Mss51 does not regulate myoblast 

proliferation or differentiation.  Rather, Mss51 appears to be one of the effectors of these 

growth factors on metabolic processes including fatty acid oxidation, glycolysis and 

oxidative phosphorylation. 

 

Keywords: Mss51, myostatin, TGF-β, mitochondria, metabolism, myotube, skeletal 

muscle 
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Introduction 

Myostatin, or growth/differentiation factor 8 (GDF-8), is a member of the TGF-β 

superfamily and a negative regulator of muscle growth [20].  Myostatin inhibition has 

been shown to increase regeneration and decrease fibrosis of skeletal muscle and is thus 

of high interest for the treatment of acquired and inherited conditions where muscle is not 

able to regenerate efficiently [21,52–56].  An important additional feature of myostatin 

inhibition that may indicate potential therapeutic use in insulin resistance and obesity is 

its modulation of skeletal muscle metabolism [57].  Constitutive deletion of myostatin 

leads to changes in fiber type composition of skeletal muscle with a decrease in type 

I/type IIA oxidative fibers and an increase in type IIB glycolytic fibers [58–60].  

Myostatin deletion or postnatal inhibition improves insulin sensitivity, increases glucose 

uptake into skeletal muscle and decreases total body fat [61–63].  Myostatin deletion 

suppresses fat accumulation and abnormal glucose metabolism in agouti lethal yellow 

(A(y)) and obese (ob/ob) mice and transgenic overexpression of a dominant negative 

activin receptor type IIB resolves the severe diabetes of the lipodystrophy A-ZIP mouse 

[64,65]. Treating mice fed high-fat diets with postnatal inhibitors of myostatin reduces 

the development of insulin resistance and fat accumulation [66,67].   However, the 

specific targets of myostatin and other TGF- family members on genes producing these 

metabolic effects have not been clarified.    

In a previous study, we profiled gene expression in skeletal muscle of mice 

treated with a soluble activin type IIB receptor (ActRIIB-Fc), the putative receptor of 

myostatin and activin A [24].  One of the genes whose expression was most significantly 

altered was Mss51 mitochondrial translational activator, named after its putative yeast 
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homolog Mss51 and previously known as Zmynd17.  Mss51 was downregulated 4.3-fold 

in response to acute, and 3.3-fold in response to chronic treatment with ActRIIB-Fc, 

suggesting that Mss51 might be an effector or downstream target of myostatin or activin 

A [24]. 

Similar results have been seen in numerous other published studies.  Mss51 was 

downregulated 2.7-fold in skeletal muscle of mice where the myostatin gene was deleted 

post-developmentally [68], 2.8-fold when mice were treated with myostatin neutralizing 

antibody JA16 [69] and 4.8-fold in transgenic mice expressing a skeletal-muscle specific, 

myostatin inhibitory pro-peptide [70].  Additionally, Mss51 expression decreased 2.2-fold 

in skeletal muscle of transgenic mice expressing a skeletal muscle-specific dominant 

negative TGF-β receptor [71].  The consistent downregulation of Mss51 expression in 

response to numerous methods of postnatal, TGF-β superfamily inhibition suggested that 

Mss51 might have a unifying role in skeletal muscle function.   

 The function of Mss51 in mammals has not been previously reported.  In the yeast 

Saccharomyces cerevisiae, Mss51 couples the synthesis of cytochrome c oxidase subunit 

1 (COX1) to the assembly of the cytochrome c oxidase complex of the respiratory chain 

in the mitochondria [72].  Yeast Mss51 also senses heme and oxygen availability to 

regulate cytochrome c oxidase biogenesis [73].  Iterative orthology prediction using 

Ortho-Profile demonstrated that the human MSS51 protein is a putative homolog of the 

yeast Mss51 protein, and that human MSS51 has a mitochondrial localization signal [74].  

However, a global pairwise alignment (using the Needleman-Wunsch algorithm) between 

yeast Mss51 [NCBI RefSeq: NP_013304.1] and mouse Mss51 [RefSeq: NP_083380.1] 

revealed only 19% amino acid identity (91/490 residues). This suggested that Mss51, a 
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newly recognized target of myostatin and other TGF- family member signaling, may 

have a novel function in mammals.  Here we investigate the expression and function of 

Mss51 in skeletal muscle. 
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Materials and Methods 

Cell Culture  

C2C12 cells (ATCC, Manassas, VA) were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM, Life Technologies, Carlsbad, CA, USA) supplemented with 

10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO).  Differentiation was induced 

when cells reached approximately 80% confluence by switching to differentiation 

medium, DMEM supplemented with 2% horse serum (Life Technologies).  Cells were 

treated with growth factors or inhibitors after three days of differentiation.  For treatment 

with the inhibitors ActRIIB-Fc (generously provided by Qian Wang, Stony Brook 

University Medical Center, produced as previously described [23]) and TGF-β1/2/3 

neutralizing antibody 1D11 (R&D Systems, Minneapolis, MN), media was changed to 

DMEM supplemented with 0.1% bovine serum albumin 24 hours before the addition of 

the inhibitors.  For treatment with recombinant myostatin, activin A, TGF-β1 and insulin-

like growth factor 1 (IGF-1) (all obtained from R&D Systems), media was changed to 

DMEM supplemented with 0.1% bovine serum albumin and the indicated growth factor 

on the third day post differentiation media change. For all treatments, cells were 

incubated for 5 hours and harvested in TRIzol (Life Technologies) for qRT-PCR 

analysis. 

 

Skeletal Muscle Acquisition 

Skeletal muscle was obtained from mice for qRT-PCR and humans for subcellular 

fractionation and Western blots.  All animal experiments were conducted in accordance 
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with the guidelines prescribed by the Institutional Animal Care and Use Committee at the 

Johns Hopkins University School of Medicine. Ten to twelve week-old female C57BL/6J 

mice (The Jackson Laboratory, Bar Harbor, ME, USA) were maintained under a 12:12 

hour light:dark schedule with ad libitum access to food and water.  Mice were euthanized 

by inhalation overdose of isoflurane followed by cervical dislocation.  From three mice, 

the brain, heart, kidney, liver, small intestine, diaphragm, and quadriceps were harvested.  

From three other mice, the soleus, diaphragm, long head of the triceps, extensor 

digitorum longus (EDL), and white vastus lateralis (WVL) were harvested.   Tissues were 

minced and frozen in TRIzol for qRT-PCR analysis. 

 Acquisition of human skeletal muscle was approved by the Johns Hopkins 

Medicine Institutional Review Board.  Written informed consent was obtained for the 

collection and use of human tissue samples. Human samples of deltoid muscle were 

obtained by open muscle biopsy of a living volunteer and from an autopsy donor and 

were stored frozen prior to subcellular fractionation.  

 

CRISPR/Cas9-mediated Disruption of Mss51 Locus in C2C12 Cells 

In order to decrease Mss51 expression, the Mss51 genomic locus was disrupted in 

C2C12 cells using the clustered regularly interspaced short palindromic repeats 

(CRISPR)/Cas9 system for genome engineering [75].  Guide RNA (gRNA) target 

sequences and plasmids were designed and synthesized through the University of 

Massachusetts Medical School’s Mutagenesis Core, which provided a plasmid expressing 

both the CRISPR gRNA and the RNA-guided DNA endonuclease Cas9 under 
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independent promoters, as well as a reporter plasmid containing a non-functional GFP 

ORF, disrupted by homology arms flanking DNA sequence containing the Mss51-

specific CRISPR target sequence [76].  Proliferating C2C12 cells were transfected with 

the CRISPR/Cas9 plasmid and disrupted GFP reporter plasmid using an Amaxa 

Nucleofector II and Cell Line Nucleofector Kit V (Lonza, Walkersville, MD, USA) 

according to manufacturer’s instructions.  The target sequence within Mss51, depicted in 

Figure 3.4A, was cleaved by the CRISPR/Cas9 complex and re-sealed by non-

homologous end joining.  Simultaneously, the CRISPR/Cas9 complex also cleaved the 

disrupted GFP reporter plasmid, which was re-sealed by homology-directed repair using 

the homology arms flanking the cut site, allowing for functional expression of GFP only 

when the CRISPR/Cas9 complex was present.  After 24 hours, transfected cells were 

isolated by fluorescence-activated cell sorting using a FACSAria Ilu (BD Biosciences, 

Franklin Lakes, NJ, USA), shown schematically in Figure 3.4B.  In parallel, control cells 

were transfected with a plasmid expressing functional GFP and subjected to the same cell 

sorting process as the Mss51-disrupted cells.  Pooled populations of Mss51-disrupted and 

control cells were collected and expanded for comparative analysis.  Cells were allowed 

to differentiate into myotubes for six days before analysis unless otherwise stated. 

 

Cell Proliferation and Differentiation 

To compare rates of cell proliferation, incorporation of the nucleoside analog 5-

ethynyl-2’-deoxyuridine (EdU) was measured using the Click-iT EdU Alexa Fluor 594 

Imaging Kit per manufacturer’s instructions (Life Technologies).  To compare myotube 
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differentiation, cells were stained with anti-sarcomeric myosin (MF20-s, DSHB, Iowa 

City, IA, USA, 1:1) after fixing with 4% paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA, USA), permeabilizing with 0.1% Triton X-100 (Fisher Scientific, 

Hampton, NH, USA), and blocking with 5% normal goat serum (Vector Laboratories, 

Burlingame, CA, USA).  For both proliferation and differentiation, images were acquired 

using an EVOS FL Cell Imaging System equipped with a 20x/0.45 NA objective (Life 

Technologies).  Images were analyzed using ImageJ (National Institutes of Health, 

Bethesda, MD, USA).  The myofusion index was calculated as the percentage of nuclei 

that were found in MF20-positive fibers.  As an additional measure of differentiation, 

creatine kinase (CK) activity was compared between control and Mss51-disrupted cells 

using the EnzyChrom Creatine Kinase Assay Kit (BioAssay Systems, Hayward, CA, 

USA) following the manufacturer’s instructions. 

 

Subcellular Fractionation and Western Blot 

In order to separate nuclear, cytosolic, and mitochondrial fractions from human 

tissue, subcellular fractionation was performed as previously described [77] with minor 

modification.  Tissue homogenization was performed with a Poltyron PT 10-35 benchtop 

homogenizer (Kinematica, Luzern, Switzerland) and 20 passes through a 20G needle.  

Human tissue was used because at the time of these experiments, there were no available 

antibodies that selectively recognized mouse Mss51. The resulting fractions were then 

heat-denatured and reduced. 
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For Western blotting, cells were harvested in RIPA lysis buffer.  Heat-denatured 

and reduced protein samples were separated by SDS-PAGE and transferred to PVDF 

membranes by standard techniques.  To ensure equal protein loading, sample 

concentrations were measured using the bicinchoninic acid (BCA) assay.  Membranes 

were blocked with 5% nonfat milk in TBS with 0.1% Tween 20 (TBS-T), probed with 

primary antibodies, washed, incubated with appropriate horseradish peroxidase-

conjugated secondary antibodies in TBS-T, and developed using X-ray film and 

Amersham ECL Prime Western Blotting Detection Reagent (RPN2232; GE Healthcare 

Life Sciences, Pittsburgh, PA, USA).  Primary antibodies used were anti-puromycin 

(PMY-2A4-s; Developmental Studies Hybridoma Bank (DSHB), Iowa City, IA, USA; 

1:200), anti-GAPDH (G9545; Sigma-Aldrich; 1:10,000), anti-Histone H3 (H0164; 

Sigma-Aldrich; 1:10,000), anti-VDAC (4866; Cell Signaling Technology (CST), 

Danvers, MA, USA; 1:1,000), anti-AMPKα (5831; CST; 1:1,000), and anti-phospho-

AMPKα (2535; CST; 1:1,000).  At the time of publication, the only Mss51 antibody 

available is a human-specific, “anti-Zmynd17” (AP54659PU-N; Acris Antibodies, San 

Diego, CA, USA; 1:500).    

 

Quantitative RT-PCR 

Cells and tissues were homogenized in TRIzol, total RNA was isolated using the 

Direct-zol RNA MiniPrep Kit (Zymo Research, Irvine, CA, USA) and cDNA was 

synthesized from 1 microgram of RNA per sample using the iScript cDNA Synthesis Kit 

(Bio-Rad, Hercules, CA, USA).  cDNA was diluted and used as the template for real-time 
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PCR using a CFX Connect Real-Time PCR Detection System (Bio-Rad) and SYBR 

Green PCR Master Mix (Life Technologies).  Relative gene expression was determined 

using the ΔΔCt method normalized to the indicated reference genes through the analytical 

software qbase+ (Biogazelle, Ghent, Belgium).  At least three reference genes were 

included in each qRT-PCR experiment, and qbase+ was used to run the geNorm 

algorithm to select the most stable and suitable reference gene(s) for each experiment.  

Primer sequences are available upon request. 

 

SUnSET Assay 

To assay relative rates of protein synthesis, the surface sensing of translation 

(SUnSET) assay was used as previously described [78].  Cells were incubated with 1 M 

puromycin for 30 minutes before lysis in RIPA buffer with protease inhibitors, allowing 

for Western blot analysis of puromycin incorporation as a marker of protein synthesis.  In 

addition to the gel that was used for Western blot analysis, a duplicate gel was stained 

with SYPRO Ruby protein gel stain (Life Technologies) following manufacturer’s 

instructions for use in densitometry analysis normalization using ImageJ. 

 

Metabolic Assays 

For determination of cellular ATP content, cells were differentiated for 6 days and 

lysed in Reporter Lysis Buffer (Promega, Madison, WI, USA).  The ATP Determination 
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Kit (Life Technologies) was used according to manufacturer’s instructions and data were 

normalized to the protein content of each well as determined by BCA assay.   

-Oxidation of [1-
14

C]palmitic acid (C16:0, Moravek Biochemicals Inc., Brea, 

CA, USA) to water-soluble products was measured in intact myotubes grown in 6-well 

plates. Fatty acid in benzene solution was dried under a stream of nitrogen in a glass tube 

and solubilized with 10 mg/ml -cyclodextrin (Sigma-Aldrich) in 10 mM Tris-Cl
-
, pH 

8.0, to a final concentration of 0.1 mM and a specific activity of ~30,000 dpm/nmol. 

After 6 days of differentiation, the culture medium was replaced with serum-free DMEM 

containing 10 M solubilized radiolabeled palmitate and 2 mM L-carnitine. After 2 hours 

at 37
o
C, the reaction was stopped by adding ice-cold HClO4 (final concentration 3%) to 

the medium. Plates were kept on ice for 1 hour before extraction of water soluble 

products using Folch partition as previously described [79]. The aqueous phase was 

mixed with Budget-Solve (RPI, Mount Prospect, IL, USA) and radioactivity was 

determined using a Beckman LS 6500 liquid scintillation spectrometer. Protein was 

determined in 5-6 wells of parallel 6-well plates by the method of Lowry et al. [80]. 

Results are presented as nmol/2 hr/mg protein + SEM. 

Extracellular acidification and oxygen consumption rates were measured using a 

Seahorse XF24 Flux Analyzer (Seahorse Bioscience, Billerica, MA, USA) according to 

manufacturer’s instructions for the glycolysis stress test and mitochondrial stress test.  

Cells were seeded at equal densities and differentiated for 6 days at which point 

metabolic flux analysis was performed.  For the glycolysis stress test, cells began in 

glucose-free stress test medium, to which glucose, oligomycin (an ATP coupler), and 2-

deoxy-D-glucose (a glucose analog) were added sequentially to final concentrations of 10 
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mM, 1 μM, and 100 mM, respectively.  For the mitochondrial stress test, cells began in 

stress test medium containing 10 mM glucose, to which oligomycin, carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP, an ATP uncoupler), and rotenone/Antimycin 

A (mitochondrial inhibitors) were added to final concentrations of 1 μM, 1 μM, and 0.5 

μM/0.5 μM, respectively.  In both tests, between the addition of each component, the 

oxygen consumption rate and extracellular acidification were measured as previously 

described [81]. 

 

Statistical Analysis 

The data are presented as mean ± standard error of the mean with the exception of 

Figure 3.2C, which presents data in box-and-whiskers format with the median, quartiles, 

and outliers depicted.  For qRT-PCR analysis, statistical analysis was performed using 

qbase+.  For all other experiments, statistical analysis was performed using SigmaPlot 11 

(SyStat Software, Chicago, IL).  When two groups were compared, differences were 

analyzed with a two-way Student’s t test.  For more than two groups, differences were 

compared using one-way analysis of variance (ANOVA) with Bonferroni post hoc 

comparisons.  Probability (p) values less than 0.05 were considered statistically 

significant. 
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Results 

Mss51 gene expression is modulated by TGF-β Superfamily Signaling  

To examine modulation of Mss51 expression, we first determined the time course 

of its expression in vitro.   Mss51 was expressed at low levels in proliferating C2C12 

myoblasts, and significantly higher levels as cells differentiated into myotubes (Figure 

3.1A). Myotubes were then differentiated for three days and treated with various TGF- 

superfamily members as well as various inhibitors (Figure 3.1B).  TGF- superfamily 

members (myostatin, TGF-1 and activin A) all increased Mss51 expression in 

myotubes.  The TGF-1/2/3 neutralizing antibody 1D11 decreased Mss51 expression and 

there was a trend toward decreased expression with ActRIIB-Fc treatment.  IGF-1, which 

has several similar effects on skeletal muscle as myostatin inhibition including increasing 

proliferation and differentiation in vitro and muscle growth in vivo [82], also decreased 

Mss51 expression.  We examined other time points and saw the greatest effects on Mss51 

expression levels when the myotubes were differentiated for three days and no significant 

change seen when proliferating myoblasts were treated (data not shown).  This may be 

because during differentiation, the cells are actively increasing Mss51 expression and are 

therefore more responsive to exogenous signaling cues. 

 

Mss51 is predominantly expressed in glycolytic skeletal muscle 

To determine the tissue specificity of Mss51, we performed qRT-PCR using RNA 

isolated from the brain, heart, kidney, liver, small intestine, diaphragm, and quadriceps of 
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10-12 week-old female C57BL/6J mice.  There were no significant differences between 

brain, heart, kidney, and liver, while expression was higher in the small intestine and 

diaphragm, approximately 20-fold above the expression level found in the brain.  In the 

quadriceps, expression was approximately 150-fold higher compared to brain (Figure 

3.2A).   

 We also examined the relative expression of Mss51 in different skeletal muscle 

groups, selected based on their established fiber type distributions [83–85], listed from 

more oxidative to more glycolytic: soleus, diaphragm, long head of the triceps brachii, 

extensor digitorum longus (EDL), and white vastus lateralis (WVL) (Figure 3.2B).  There 

were significant differences between muscle groups, with lower expression in the more 

oxidative soleus and diaphragm muscles, intermediate in the mixed-type long head of the 

triceps brachii, and higher expression in the glycolytic EDL and WVL.  Mss51 was 

highly expressed in muscles that are more glycolytic and dominated by type IIB fibers, 

while lowly expressed in predominantly oxidative muscles dominated by type I/IIA 

fibers.  

 To determine if the expression pattern was similar in humans, we examined the 

Genotype-Tissue Expression (GTEx) Portal database (http://www.gtexportal.org).  The 

GTEx Portal includes searchable RNA-seq data from over 40 tissue types of 175 humans 

[86].  Our search revealed MSS51 to be expressed at much higher levels in skeletal 

muscle than any other tissue examined (Figure 3.2C). 

 

 

http://www.gtexportal.org/
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MSS51 is localized to the mitochondria 

To determine cellular localization of MSS51, human deltoid muscles from an 

open muscle biopsy of a living donor and from an autopsy were used to perform 

subcellular fractionation.   Fractions of nuclear, cytoplasmic, and mitochondrial proteins 

were collected and used for SDS-PAGE and Western blotting.  These data showed that 

MSS51 protein co-fractionated with the mitochondrial fraction (Figure 3.3).   

 

Mss51 does not regulate proliferation and differentiation 

Using the CRISPR/Cas9 system for genome engineering, a double-strand break 

was introduced into the first exon of Mss51 in C2C12 cells at the locus depicted in Figure 

3.4A.  Pooled populations of sorted cells, control (transfected with a plasmid encoding 

GFP) versus Mss51-disrupted (CRISPR/Cas9 dual expression plasmid co-transfected 

with a GFP reporter plasmid that only expressed GFP when CRISPR/Cas9 is expressed in 

the same cell), were collected and enriched as represented in Figure 3.4B.  In the 

resulting cell populations, differentiation was induced and RNA was collected for 

analysis by qRT-PCR.  Relative Mss51 expression was determined using primers 

flanking the predicted double strand break, which demonstrated a significant decrease in 

Mss51 in differentiating Mss51-disrupted myotubes when compared to control cells 

(Figure 3.4C).  The Mss51-disrupted myotube population is a pool of many unique 

mutants that likely also includes cells that have at least one wild-type allele.  Because of 

the nature of this system, we did not achieve total knockout of Mss51 but instead a 

significant decrease in total Mss51 transcript abundance in the study population. 
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 Myostatin, TGF- and IGF-1 all modulate myoblast proliferation and 

differentiation and, as shown in Figure 3.1B, also are associated with altered Mss51 gene 

expression.  For this reason, we examined cell proliferation and differentiation in Mss51-

disrupted cells.  Proliferation was unchanged compared to control cells, as measured by 

EdU incorporation (Figure 3.5A, B) and alamarBlue assay (Supplementary Figure 3.1).  

Differentiation was also equivalent in Mss51-disrupted and control cell populations by 

myofusion index, the proportion of nuclei found in myosin heavy chain-positive fibers at 

day 5 post differentiation media (Figure 3.5C, D). Creatine kinase enzyme activity, a 

marker of differentiation, did not differ significantly between control and Mss51-

disrupted myotubes after six days of differentiation (Figure 3.5E).  Myotubes were 

differentiated for six days to ensure that stable levels of Mss51 transcript and protein 

were present in control cells, corresponding to the greatest difference between control 

and disrupted populations.  We also looked at expression of myogenic regulatory factors 

by qPCR and did not see meaningful differences between control and Mss51-disrupted 

cells (data not shown).  Protein synthesis, as measured by puromycin incorporation using 

the SUnSET assay, was not altered in Mss51-disrupted myotubes after 6 days of 

differentiation (Figure 3.5F, G). 

 

Mss51-disrupted myotubes are more metabolically active than wild-type myotubes 

 Myostatin knockout and IGF-1 transgene expression lead to an alteration in fiber-

type composition with a decrease in type 1 slow oxidative fibers and an increase in type 

IIB fast glycolytic fibers [24,58,59,87–90].  We therefore examined whether 
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CRISPR/Cas9-mediated  disruption of the Mss51 locus altered expression of the various 

myosin heavy chain isoforms (MyHCs) expressed by C2C12 myotubes.  In Mss51-

disrupted C2C12 myotubes, embryonic MyHC (Myh3), neonatal MyHC (Myh8), and 

MyHC IIX (Myh1) were significantly decreased, MyHC IIB (Myh4) was significantly 

increased, and MyHC IIA (Myh2) and MyHC I (Myh7) were unchanged (Figure 3.6A).  

The changes exhibited in Mss51-disrupted myotubes indicated a shift towards more fast-

twitch MyHC expression. 

Since expression of MyHC isoforms typically coincide with metabolic properties 

of muscle, we evaluated whether Mss51 modulates the mRNA expression of several key 

regulators of metabolism (Figure 3.6B).  Consistent with a shift toward MyHC IIB 

expression, Mss51-disrupted myotubes displayed a downregulation of PGC1 which 

among its many functions is the major factor in type I fiber type determination [91].  

Cytochrome c oxidase subunit 2 (Cox2) gene expression was minimally increased but 

other genes involved with mitochondrial biogenesis (including Nrf1, Nfe2l2, citrate 

synthase, ESRR) and genes of mitochondrial respiration (including Atp5o, Alas1, 

Cox5b, Cycs) were unchanged.  PGC1 is a major player in mitochondrial biogenesis, 

and it is intriguing that we did not see greater alterations in other genes involved in 

mitochondrial biogenesis, indicating that the decreased PGC1 expression may be 

primarily linked to the shift in fiber type profile in cells deficient in Mss51. We evaluated 

PGC1 expression in proliferating and differentiating Mss51-disrupted myotubes and 

found similar levels in proliferating Mss51-disrupted myoblasts versus controls but lower 

levels in differentiated Mss51-disrupted myoblasts compared to controls (Supplementary 

Figure 3.2). 
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 Expression of the glycolytic gene hexokinase 2 (Hk2), which has been shown to 

be more active in the glycolytic EDL muscle than the oxidative soleus muscle [92], was 

significantly increased in Mss51-disrupted myotubes (Figure 3.6B).  Other genes that had 

significant changes in expression with decreased Mss51 expression were Cd36 (fatty acid 

translocase), Fasn (fatty acid synthase), and Pdk4 (pyruvate dehydrogenase lipoamide 

kinase isozyme 4), which were all increased.  The products of these genes are all critical 

in fatty acid utilization. Other genes involved in fatty acid oxidation (FAO) including 

HSL (hormone sensitive lipase) and Acadl (long chain specific acyl-coA dehydrogenase) 

were also increased to a lesser extent while other genes involved in FAO were 

unchanged.   

Since yeast Mss51 is a translational activator, we examined changes in protein 

expression via immunoblotting.  We examined several mitochondrial markers, including 

cytochrome c, VDAC, CoxI, CoxIV, and pyruvate dehydrogenase, and did not detect any 

differences between Mss51-disrupted and control myotubes (Supplementary Figure 3.3).  

We also examined markers of peroxisome proliferator-activated receptor gamma 

(PPARγ)-regulated fatty acid metabolism, including AMP-activated protein kinase 

(AMPKα), SirT1, and GCN5L2 (Figure 3.6C and Supplementary Figure 3.3).  Of these, 

only AMPK was increased in Mss51-disrupted myotubes. Activated, phosphorylated 

AMPK (p-AMPK) is a marker of cellular energy [93], and both total protein 

expression and p-AMPK (relative to total AMPK were increased in myotubes with 

reduced Mss51 expression  (Figure 3.6C, D).   
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AMPK activation switches off ATP consuming pathways and switches on ATP 

generating processes (glucose uptake and fatty acid oxidation) [94]. To determine if the 

increases in gene expression of fatty acid utilization and p-AMPK described above 

resulted in increased ATP generation, we measured ATP content of populations of 

differentiated myotubes.  Cellular ATP content was significantly increased in Mss51-

disrupted myotubes (Figure 3.7A). To determine if fatty acid utilization was altered in 

Mss51-disrupted myotubes, we measured -oxidation of radiolabeled palmitic acid in 

intact control and Mss51-disrupted myotubes (Figure 3.7B).  Mss51-disrupted myotubes 

were shown to have a significantly higher -oxidation activity. 

 To confirm the finding that reduced Mss51 expression resulted in increased 

cellular metabolism as suggested by increased ATP production and increased -oxidation 

of palmitic acid, glycolysis stress and mitochondrial stress tests were performed using the 

Seahorse XF24 Flux Analyzer.  In the glycolysis stress test, the extracellular acidification 

rate was measured as an indicator of glycolysis when differentiated myotubes were 

perturbed.  Baseline measurements were taken in glucose-free media before glucose, 

oligomycin, and 2-deoxy-D-glucose were injected to begin glycolysis, shut down the 

electron transport chain, and inhibit glycolysis, respectively.  Between each treatment, the 

extracellular acidification rate was measured and plotted (Figure 3.7C), allowing for the 

calculation of several key parameters: glycolysis under normal conditions, maximal 

glycolytic capacity when the electron transport chain is disrupted, and glycolytic reserve.  

Comparing Mss51-disrupted and control myotubes, we found that Mss51-disrupted 

myotubes had significantly higher glycolysis, glycolytic capacity, and glycolytic reserve 

than wild-type myotubes (Figure 3.7D).  We also performed a mitochondrial stress test, 
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where cells were treated with oligomycin, carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone, and Rotenone/Antimycin to inhibit Complex V, 

uncouple the proton gradient, and inhibit Complexes I and III, respectively.   This 

allowed for the calculation of basal respiration, ATP production, maximal respiration, 

and spare respiratory capacity, all measured by changes in oxygen consumption rate 

(Figure 3.7E).  We found that all metrics of mitochondrial respiration excluding proton 

leak were significantly increased in Mss51-disrupted cells (Figure 3.7F), indicating that 

cells that expressed less Mss51 had higher metabolic activity, resulting in higher levels of 

respiration, glycolysis, and ATP production. 
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Discussion 

 In this report, we introduce mammalian Mss51 as a muscle-specific gene 

regulated by members of the TGF- superfamily. Mammalian Mss51 initially came to 

attention as one of the most consistently downregulated genes in gene profiling studies of 

myostatin inhibition [24,68–71].  Given myostatin’s role in skeletal muscle development, 

postnatal growth and regeneration, we originally postulated that Mss51 might have a role 

in myoblast proliferation or differentiation but this was not supported by assays on 

C2C12 myoblasts in which Mss51 was genetically disrupted (Figure 3.5).  Rather, Mss51 

appears to modulate other aspects of TGF- signaling in skeletal muscle including fiber 

type determination and metabolism. The observation that myostatin, TGF-1, activin A 

and IGF-1 all modulate expression of Mss51 suggest that it may be a common effector of 

these growth factors which converge to regulate metabolic adaptations (Figure 3.1).  

 Mss51 is expressed almost exclusively in skeletal muscle in mice and humans.  In 

mice, it is expressed most abundantly in muscles rich in glycolytic type II fibers and 20- 

to 25-fold less in those rich in oxidative type I fibers (Figure 3.2). Genetic disruption of 

Mss51 shifts the myosin heavy chain expression profile toward a more glycolytic 

phenotype dominated by Type IIB myosin heavy chain (Figure 3.6).  This is consistent 

with the effects of myostatin gene deletion and IGF-1 transgene overexpression on fiber 

type composition which cause a similar shift toward a more glycolytic phenotype in vivo 

[58–60,87–90].  PGC1, which is a major determinant of type 1 fiber formation, has 

been shown to be decreased in myostatin-null mice and muscle-specific IGF-1 transgenic 

mice [60,88,95]. Further, in a transgenic model of overexpression of activated Akt1, a 
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shift toward increased type IIB fibers was shown to accompany an increase in Hk2 

expression and a decrease in PGC1expression alongside increased metabolic 

parameters [96]. Consistent with these findings, PGC1 is downregulated and Hk2 is 

upregulated in Mss51-disrupted myotubes which have increased MyHC IIB expression 

compared to control myotubes (Figure 3.6).  

 Although mammalian Mss51 has a limited similarity to its yeast ortholog Mss51 

(19% amino acid identity shared only across the zf-MYND domain), both proteins co-

localize with mitochondria (Figure 3.3, [72]).  Yeast Mss51 is a translational activator of 

Cox1 but Mss51-disrupted myotubes did not show a reduction in CoxI or CoxIV protein, 

suggesting its function is not conserved across species (Supplementary Figure 3.3).  

Conversely, myotubes deficient in Mss51 displayed increased ATP production, -

oxidation and activation of AMPK, a marker of cellular metabolic state (Figures 3.6 and 

3.7).  Glycolysis and mitochondrial respiration are both increased after Mss51 disruption 

(Figure 3.7).  While the specific actions of Mss51 on cellular metabolism remain to be 

determined, it appears possible that there is a shift from glucose to fatty acid utilization 

occurring when there is less Mss51 present.  -oxidation is increased in Mss51-disrupted 

cells (Figure 3.7B) and several genes involved in fatty acid metabolism (HSL, Acadl, 

Cd36, Fasn) are upregulated.  Further, increased expression of Pdk4 and activation of 

AMPK would predict a shift toward fatty acid utilization.  Although the relationship 

between lipid balance and muscle insulin sensitivity continues to be explored, one model 

of obesity-associated insulin resistance posits intramyocellular lipid content as a principal 

contributor [97].  Myostatin inhibitors have been shown to prevent diet-induced obesity 

and insulin resistance in a number of models [66,67,98,99].  The possibility that these 
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effects are in part mediated by Mss51 is consistent with the downregulation of Mss51 by 

myostatin inhibitors and corresponding upregulation of genes involved in fatty acid 

metabolism.   

Multiple myostatin inhibitors are currently in clinical trials for the treatment of 

neuromuscular disease (ClinicalTrials.gov Identifiers: NCT012310763, NCT02515669, 

NCT01519349 and NCT01423110).  While these trials hope to increase muscle function 

by stimulating muscle growth and regeneration, inhibition of myostatin is also likely to 

have metabolic effects on skeletal muscle.  Preclinical work by our group and others 

suggest that Mss51 will be downregulated by myostatin inhibition [24,68–70]   The 

current study suggests that this will have positive effects on bioenergetics, increasing 

cellular ATP.  However, there are limitations to the current in vitro study in which, 

necessarily, only basal states are assayed and glucose and glutamine are the primary fuels 

of cellular metabolism.  Additionally, the cell population characterized in this present 

study does still express functional Mss51, albeit significantly less than control 

populations, which may obscure the changes that would occur in its complete absence.  In 

vivo studies using stimuli that modulate fatty acid oxidation and mitochondrial biogenesis 

will be necessary to further elucidate Mss51 function.    

  

List of abbreviations 

2-DG, 2-deoxy-D-glucose; Acadl, acyl-CoA dehydrogenase, long chain (also called 

LCAD); Acads, acyl-CoA dehydrogenase, short chain (also called SCAD); Acadvl, acyl-

CoA dehydrogenase, very long chain (also called VLCAD); ActRIIB-Fc, soluble Activin 
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chain; Nfe2l2, nuclear factor, erythroid 2-like 2 (also called Nrf2); Nrf1, nuclear 

respiratory factor-1; OCR, oxygen consumption rate; ORF, open reading frame; Pdk4, 

pyruvate dehydrogenase lipoamide kinase 4; Pfk-1, phosphofructokinase 1; PGC1, 

peroxisome-proliferator activated receptor gamma coactivator 1; Pgk1, phosphoglycerate 

kinase 1; PPAR, peroxisome-proliferator activated receptor; PVDF, polyvinylidene 

fluoride; qRT-PCR, quantitative reverse transcription polymerase chain reaction; RPKM, 
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reads per kilobase per million reads mapped; SDS-PAGE, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis; Sirt1, sirtuin 1; Slc2a4, solute carrier family 2 

member 4 (also called Glut4); Socs7, suppressor of cytokine signaling 7; Srebf1, sterol 

regulatory element binding transcription factor 1; SUnSET, Surface Sensing of 

Translation; TBP, TATA box binding protein; TBS, Tris-buffered saline; Tfam, 

transcription factor A, mitochondrial; TGF-β, transforming growth factor β; Ucp, 

uncoupling protein; VDAC, voltage-dependent anion channel; WVL, white vastus 

lateralis; Zmynd17, zinc-finger MYND-domain containing protein 17. 
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Figures 

Figure 3.1.  Mss51 expression in vitro.  (A) Mss51 mRNA expression measured by 

qRT-PCR in proliferating and differentiating C2C12 cells.  Expression level is 

normalized to proliferating (Day 0) cells using the reference gene TBP.  (B) Mss51 

expression in differentiated C2C12 myotubes treated with various growth factors and 

inhibitors: 300 ng/mL myostatin, 5 μg/mL ActRIIB-Fc, 50 ng/mL TGF-β1, 10 μg/mL 

TGF-β neutralizing antibody 1D11, 20 ng/mL Activin A, and 100 ng/mL IGF-1.  

Expression level is normalized to control (untreated) cells using reference genes m and 

TBP.  For (A) and (B), significant differences between groups were determined by a one-

way ANOVA (n=3, p < 0.01) with Bonferroni post hoc comparisons. The annotation 

above each bar indicates statistically significant differences between the means in each 

group at p < 0.05:  Groups sharing a letter designation were not significantly different 

from each other, while groups not sharing a letter were significantly different. 
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Figure 3.2.  Mss51 tissue expression.  (A) Mss51 mRNA expression measured by qRT-

PCR in brain, heart, kidney, liver, small intestine, diaphragm, and quadriceps of 10-12 

week-old female C57BL/6J mice, normalized to the quantity found in the brain using the 

reference gene Pgk1 (n=3).  (B) Mss51 mRNA expression in soleus, diaphragm, long 

head of triceps brachii, extensor digitorum longus, and white vastus lateralis of the 

quadriceps of 10-12 week-old female C57BL/6J mice, normalized to the expression 

levels found in the soleus using reference genes Pgk1 and TBP (n=3).  (C) MSS51 

expression across human tissue types determined by RNA-seq from the Genotype-Tissue 

Expression (GTEx) Portal showing MSS51 reads per kilobase per million reads mapped 

(RPKM).  Data were downloaded from GTEx Portal on June 17, 2015.  For qRT-PCR 

experiments, groups were significantly different from each other as determined by a one-

way ANOVA (n=3, p < 0.01) and Bonferroni post hoc comparisons. Different letters 

above each bar signify statistically significant differences between the means in each 

group at p < 0.05. 
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Figure 3.3. Subcellular localization of MSS51.  Subcellular fractionation was 

performed on human deltoid samples from a biopsy and an autopsy and resulting 

fractions were subjected to SDS-PAGE.  Immunoblotting was performed with the only 

current antibody specific to MSS51 (anti-ZMYND17, Acris Antibodies, San Diego, CA, 

USA) showing a band in the mitochondrial fraction of the predicted protein product size, 

51 kDa.  Loading controls were VDAC (mitochondrial), GAPDH (cytoplasmic), and 

Histone H3 (nuclear).  
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Figure 3.4.  CRISPR/Cas9-disruption of Mss51 locus in C2C12  myoblasts.  (A) 

Schematic of the Mss51 genomic locus with the CRISPR guide RNA (gRNA) target 

sequence enlarged, predicted cut site marked in red, exons marked in black, UTRs in 

white.  At the cut site, a double-strand break occurred and was re-sealed by non-

homologous end joining.  (B) Production of Mss51-disrupted cells was achieved by co-

transfection of a dual-expression plasmid encoding the CRISPR gRNA (red) and the 

Cas9 endonuclease (blue), and a reporter plasmid encoding a disrupted GFP with two 

homology arms (dark green) flanking the CRISPR target site (red), which was cleaved by 

Cas9, re-sealed by homology-directed repair, and expressed functional GFP. Two 

populations of GFP-positive cells were collected by FACS sorting and expanded for 

further analysis – Mss51-disrupted cells were collected as shown and in parallel, control 

cells were transfected with a GFP expression plasmid and subjected to the same FACS 

process.  (C) Mss51 expression measured by qRT-PCR in control and Mss51-disrupted 

populations over 6 days of differentiation, normalized to expression in proliferating 

control cells (Day 0) using reference genes Tfam and TBP (n=3). ** p < 0.01, *** p < 

0.001. 
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Figure 3.5.  Mss51-disrupted myoblasts proliferate and differentiate normally.  (A) 

Proliferating control and Mss51-disrupted myoblasts labeled with EdU (red) and 

Hoeschst 33342 (blue).  (B) Quantification of EdU staining (n=6 wells imaged per 

sample).  (C) Representative myosin heavy chain (MF20, green) staining of control and 

Mss51-disrupted myotubes 2 days after induction of differentiation with nuclei stained by 

DAPI (blue).  (D) Quantification of fusion index (percentage of nuclei found in MF20+ 

myotubes, n=6).  (E) Creatine kinase (CK) activity in myotubes after 6 days of 

differentiation. (F) Protein synthesis rates as measured by puromycin incorporation on the 

left and total protein stained by SYPRO Ruby on the right after 6 days of differentiation.  

(G) Densitometric analysis of SUnSET assay as shown in F, normalized to SYPRO 

Ruby-stained total protein (n=3).  Differences between groups were not statistically 

significant.  
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Figure 3.6. Gene and protein expression in Mss51-disrupted differentiated myotubes 

(A) Myosin heavy chain expression measured by qRT-PCR in control and Mss51-

disrupted C2C12 myotubes, normalized to expression levels in control myotubes using 

reference genes Tfam and TBP (n=3).  (B) Expression of metabolic genes in control and 

Mss51-disrupted C2C12 myotubes, normalized to expression levels in control myotubes 

using reference genes Tfam and TBP (n=3).  (C) Western blots of control and Mss51-

disrupted C2C12 myotubes examining expression and phosphorylation of AMPKα.  (D) 

Densitometric analysis of AMPKα expression normalized to GAPDH and of AMPKα 

phosphorylation normalized to both GAPDH and total AMPKα (n=3). * p < 0.05, ** p < 

0.01. 
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Figure 3.7.  Glycolysis and Oxidative Phosphorylation in Mss51-disrupted cells. (A) 

ATP production in control and Mss51-disrupted myotubes (n=6).  (B) Activity of C16:0 

fatty acid -oxidation in control and Mss51-disrupted myotubes (n=6).  (C) Glycolysis 

stress test measuring the extracellular acidification rate (ECAR) in control and Mss51-

disrupted myotubes treated with glucose, oligomycin, and 2-deoxy-D-glucose. (D) 

Glycolysis, glycolytic capacity, and glycolytic reserve calculated from the glycolysis 

stress test (n=10).  (E) Mitochondrial stress test results comparing oxygen consumption 

rates (OCR) between control and Mss51-disrupted myotubes treated with oligomycin, 

carbonyl cyanide-p-trifluoromethoxyphen (FCCP), and Antimycin A/Rotenone.  (F) 

Basal respiration, ATP production, proton leak, maximum respiration, and spare 

respiratory capacity as calculated from the mitochondrial stress test (n=10). * p < 0.05, 

*** p < 0.001. 
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Supplementary Data 

Supplementary Figure 3.1. Proliferation of Mss51-disrupted cells (red) compared to 

control (black).  Cells were plated at indicated densities in 96-well plates and 

proliferation was measured over 1.5 days using the alamarBlue assay (Life Technologies, 

n = 12). 
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Supplementary Figure 3.2. PGC1 expression. PGC1mRNA expression was 

measured in control and Mss51-disrupted myotubes through the first 6 days of 

differentiation.  Expression was normalized to expression levels in proliferating (Day 0) 

control cells using reference genes TBP and Tfam (n=3).  * p < 0.05. 
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Supplementary Figure 3.3. Expression of several metabolic proteins in control 

versus Mss51-disrupted myotubes. Protein levels were compared by Western blot in 

control and Mss51-disrupted myotubes differentiated for 6 days. 
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Chapter 4. Generation and preliminary characterization of 

Mss51
-/-
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Abstract 

 Mss51
-/-

 mice were generated using the CRISPR/Cas9 system for genetic 

engineering to introduce double strand breaks into the first two exons of Mss51, and 

several resulting mutants were backcrossed onto the C57BL/6J background.  The 

CRISPR/Cas9 system was delivered efficiently, with 48 of the 104 pups screened 

showing genomic deletions at least several hundred base pairs in size.  Heterozygote 

crosses generated wild-type and knockout homozygotes, which were used for preliminary 

studies.  Primary cells were derived and showed no difference in rates of proliferation or 

differentiation, though there were significant alterations in gene expression of metabolic 

markers and myosin heavy chain isoforms.  Muscle and fat weights did not differ 

between wild-type and knockout animals, though there appear to be trends towards 

altered metabolic gene expression and treadmill endurance.  Further challenges will be 

required to elucidate the phenotype resulting from genetic ablation of Mss51.  
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Introduction 

 Our previous work with Mss51 elucidated several important clues regarding its 

function and mechanism, but there is still much work to be done before the gene’s role is 

fully understood.  It is known that Mss51 is skeletal muscle-specific and its expression 

can be regulated by modulating TGF- superfamily signaling [100].  Additionally, its 

expression is enriched in muscle groups that are dominated by fast-twitch fibers such as 

the extensor digitorum longus and the white vastus lateralis [100].  When it was 

genetically disrupted, cellular proliferation and differentiation were unaltered but cellular 

metabolism increased, as determined by increased ATP content and -oxidation of fatty 

acids.  Both gene and protein expression changed as well, with an upregulation of genes 

involved in fatty acid oxidation, a switch in myosin heavy chain expression to more 

glycolytic, and increased expression and activation of AMPK [100].  In a recent 

analysis of human gene expression data, expression of Mss51 was shown to be inversely 

correlated to physical capacity as determined by VO2MAX in a highly significant manner 

[101]. 

 The mechanism of action is still poorly understood and there are no known 

binding partners.  In humans, MSS51 localizes to the mitochondrial fraction by 

subcellular fractionation [100], but it is unknown if it is binding other proteins or 

mitochondrial transcripts.  Mss51 was previously known as Zmynd17, named for its 

predicted zinc finger MYND domain.  The MYND domain is named for proteins 

myeloid, Nervy, and DEAF-1, each of which contain a zinc binding domain rich in 

cysteine and histidine.  Numerous studies have shown MYND domain-containing 

proteins to bind other proteins and form co-repressor complexes, inhibiting the 
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expression of target genes [102–106].  If Mss51 is part of a co-repressor complex and 

localizes to the mitochondria, it would follow that its function is to inhibit transcription of 

one or more genes in the mitochondrial genome. 

In order to elucidate the function of Mss51, it was an early priority to generate a 

knockout mouse line.  We initially attempted to generate a conditional knockout mouse 

using traditional cloning techniques to insert loxP sites into intronic regions of Mss51.  

The constructs would then undergo embryonic stem cell targeting to achieve germline 

transmission of the mutation, followed by backcrossing mutants to inbred mice, and 

crossing to mice expressing skeletal muscle-specific Cre recombinase to disrupt Mss51 

only in skeletal muscle.  We were in the process creating this construct, specificially 

introducing loxP sites incorporated into Mss51, when the CRISPR/Cas9 system was 

introduced. 

By 2013, investigators adapted the clustered regularly interspaced short 

palindromic repeat (CRISPR) prokaryotic immune system to manipulate DNA in 

eukaryotes [107–109].  In prokaryotes, the CRISPR/Cas9 complex functions to recognize 

and cleave foreign DNA, injected into the organism by bacteriophage.  CRISPR guide 

RNAs (gRNAs) are complementary to known antigenic sequence, and they associate with 

the CRISPR-associated endonucleases (Cas) to cleave the target sequence.  Researchers 

have been able to hijack the system and use it widely to modify DNA in a variety of 

settings using CRISPR and Cas9.  In this setting, gRNAs are selected based on the 

uniqueness of sequence upstream of a protospacer adjacent motif (PAM) of the sequence 

form NGG.  The CRISPR/Cas9 system introduces a double strand break three nucleotides 

upstream of the PAM, which must then be repaired by non-homologous end joining or 
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homology-directed repair.  Now, all that is required to manipulate the genome is a 

plasmid expressing Cas9 and a gRNA, which can be easily synthesized and cloned due to 

its short length.  The system has drastically decreased the time and energy required to 

generate knockout animals. 

Using the CRISPR/Cas9 system, we derived several mutant mouse lines and have 

started to characterize the resulting phenotype.  As Mss51 came to attention in the context 

of myostatin inhibition, we started looking for changes that have already been shown to 

occur when myostatin is inhibited, especially those linked to metabolic changes.  These 

include altered fiber type distribution with less Type I fibers, increased muscle mass, and 

decreased fat accumulation [24,58–60].  We have started by examining both primary 

myoblasts and mice, comparing results to our previous work and further exploring the 

effects of ablation of Mss51.  
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Materials and Methods 

Generation of Mss51
-/-

 Mice 

All animal experiments were performed in accordance with the guidelines of the 

Institutional Animal Care and Use Committee at the Johns Hopkins University School of 

Medicine.  Using the University of Massachusetts Medical School’s Mutagenesis Core, 

two CRISPR gRNAs were selected, targeting exons 1 and 2 of the Mss51 locus, depicted 

in Figure 4.1.  Selection was based on the CRISPRseek software, scoring potential 

gRNAs to predict offtarget effects.  The Mutagenesis Core synthesized plasmids and 

provided in vitro transcribed RNA of the Cas9 endonuclease and each gRNA.   

An injection mix was created with Cas9 mRNA at a concentration of 50 ng/L 

and each gRNA at 20 ng/L, which was delivered to the Johns Hopkins Transgenic 

Mouse Core facility. There, microinjection was performed to deliver the RNA cocktail to 

single cell B6SJL/F2 embryos.  11 pseudopregnant mice were implanted each with 25 

embryos and resulting litters were transferred to our animal facility.  At the time of 

weaning, tail snip biopsies were taken and DNA was isolated using QuickExtract DNA 

solution (Epicentre, Madison, WI, USA).  Genotyping was performed by PCR using 

Platinum Pfx Polymerase (Life Technologies) with primers spanning both predicted cut 

sites, allowing for simple screening of deletions (Forward: 5’-

GGGCCTTAGAGAGACTTGAATG-3’; Reverse: 5’-GCAGAGGCAGATGGATTTCT-

3’).   

For mice whose genotyping showed discernible deletions, the smallest sized 

bands were cut from the gel and purified using the QIAquick Gel Extraction Kit (Qiagen, 

Venlo, Netherlands).  DNA was sequenced using the same primers used for PCR, and 
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from the sequence, protein products were predicted.  Based on these results, founder mice 

were selected for backcrossing to C57BL/6J mice, and we now have 5 different lines that 

have been backcrossed 6 generations.  During the backcrossing process, heterozygote 

siblings were mated to produce homozygous offspring to ensure viability and allow for 

preliminary characterization of phenotype.  Additionally, RNA was isolated from 

homozygous knockout mice using the Direct-zol RNA MiniPrep kit (Zymo Research) 

and cDNA was synthesized using the SuperScript III First-Strand synthesis sytem with 

oligo-dT (Life Technologies).  The cDNA was used as the template for PCR using 

primers flanking the deleted region (Forward: 5’-CTTGGAGGAAAGAGAAGGAAGG-

3’; Reverse: 5’-TGAGGGATGCGAAAGGATTAG-3’) and the resulting sequence was 

analyzed to ensure that the mutant transcript would not produce functional Mss51 

protein. 

Animals were euthanized by inhalation overdose of isoflurane and cervical 

dislocation.  Body, muscle, and fat pad weights were obtained and muscle was flash 

frozen in pre-cooled isopentane.   

Primary Cell Culture 

 Primary cells were isolated from the limb muscles of two mice as previously 

described [110]. One wild-type and one Mss51 knockout mouse, generated from crossing 

N4 mice of line 41, were used to isolate wild-type and Mss51
-/-

 myoblasts.  Briefly, 

muscles were harvested, tendons and fat were removed, and the remaining muscle was 

minced and digested in digestion cocktail containing 2.4 U/mL Dispase II (Roche, Basel, 

Switzerland), 100 mg/mL Collagenase A (Roche), 50 mM CaCl2 (Sigma-Aldrich, St. 

Louis, MO), and 2 U/mL DNase I (Roche) for 1.5 hours at 37 degrees Celsius with 
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frequent agitation.  Cells were washed with PBS with 0.2% BSA and 0.1% DNase I and 

sequentially passed through 100 m, 70 m, and 40 m cell strainers.  Cells were plated 

in DMEM supplemented with 20% fetal bovine serum (Sigma-Aldrich), 2% chick 

embryo extract (USBiological, Salem, MA, USA), 2.5 ng/mL bFGF-2 (BioPioneer, San 

Diego, CA, USA) and 1% penicillin streptomycin (Life Technologies).  To eliminate 

fibroblasts from the culture, cells were pre-plated for 3 hours, during which time many 

fibroblasts attached while most myoblasts remained in suspension.  The media was then 

transferred to plates coated with Geltrex (Life Technologies) and allowed to attach and 

proliferate.  When cells approached 60% confluence, they were split and subjected to the 

pre-plating process again.  To induce differentiation, media was replaced with DMEM 

containing 5% horse serum (Life Technologies), 2% chick embryo extract, and 1% 

penicillin streptomycin.   

Determination of Cell Proliferation, Differentiation, and ATP Content 

 To assay the rate of proliferation, cells were labeled for four hours with 10 M 5-

ethynyl-2’-deoxyuridine (EdU, a thymidine analogue) using the Click-iT EdU Alexa 

Fluor 594 Imaging Kit (Life Technologies), following manufacturer’s instructions.   The 

percentage of nuclei positive for EdU was determined using ImageJ software (National 

Institutes of Health, Bethesda, MD, USA).   

To assay changes in differentiation, cells were allowed to differentiate for two 

days and then fixed using 4% paraformaldehyde (Electron Microscopy Sciences, 

Hatfield, PA, USA) and stained with anti-sarcomeric myosin (MF20-s, 1:1, 

Developmental Studies Hybridoma Bank (DSHB), Iowa City, IA, USA).  The percentage 

of nuclei found within MF20-positive myotubes was determined using ImageJ software. 
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For both proliferation and differentiation, images were acquired using an EVOS FL Cell 

Imaging System equipped with a 10x/0.3 NA objective (Life Technologies).  

Additionally, creatine kinase (CK) enzyme activity was measured in myotubes 

differentiated for three days using the EnzyChrom Creatine Kinase Assay Kit (BioAssay 

Systems, Hayward, CA, USA) following manufacturer’s instructions. 

To determine cellular ATP content, cells were differentiated for three days and 

lysed in Reporter Lysis Buffer (Promega, Madison, WI, USA).  The ATP Determination 

Kit (Life Technologies) was used according to manufacturer’s instructions and data were 

normalized to protein content as determined by the bicinchonic acid (BCA) assay.   

Quantitative RT-PCR 

Cells and tissues were homogenized in TRIzol, total RNA was isolated using the 

Direct-zol RNA MiniPrep Kit (Zymo Research) and cDNA was synthesized from 1 

microgram of RNA per sample using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, 

CA, USA). cDNA was diluted and used as the template for real-time PCR using a CFX 

Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) and SYBR 

Green PCR Master Mix (Life Technologies). Relative gene expression was determined 

using the ΔΔCt method normalized to the indicated reference genes through the analytical 

software qbase+ (Biogazelle, Ghent, Belgium). At least two reference genes were 

included in each qRT-PCR experiment, and qbase+ was used to run the geNorm 

algorithm to select the most stable and suitable reference gene(s) for each experiment. 

Primer sequences are available upon request.  

Western blot 

 Primary myotubes differentiated for three days were lysed and stored frozen.  
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Samples were heat denatured and reduced.  They were separated by SDS-PAGE and 

transferred to PVDF using standard techniques.  Membranes were blocked with 5% 

nonfat milk in TBS with 0.1% Tween 20 (TBS-T), probed with primary antibodies 

(1:1,000 anti-phosphoAMPK, Cell Signaling Technology, Danvers, MA, USA; 

1:10,000 anti-Histone H3, Sigma-Aldrich), washed, incubated with horseradish 

peroxidase-conjugated anti-rabbit secondary antibody, and developed using X-ray film 

and Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare Life 

Sciences, Pittsburgh, PA, USA).   

Exercise Endurance 

 Exercise endurance was compared using an Exer 6 rodent treadmill (Columbus 

Instruments, Columbus, OH, USA) as previously described [111].  Animals were 

acclimated to the treadmill set at a 10° incline for a 5 minute 0 m/min period, after which 

the speed was increased to 6 m/min and raised by 2 m/min every 5 minutes until 

exhaustion, which was defined as 10 consecutive seconds on the shock pad.  Time to 

exhaustion was recorded for each animal, and from that, total distance run was calculated. 

Statistical Analysis 

 For qRT-PCR analysis, the software qbase+ (Biogazelle, Ghent, Switzerland) was 

used to determine statistical differences.  For other experiments, two groups were 

compared using Student’s t tests.  Probability values (p values) less than 0.05 were 

considered statistically significant. 
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Results 

Genetic Characterization of Founder Generation 

 The CRISPR/Cas9 system for genetic engineering was used to create Mss51
-/-

 

mouse lines.  Double strand breaks were introduced in the first two exons of the Mss51 

gene in single cell mouse embryos, which were implanted into pseudopregnant mice 

(Figure 4.1A, B).  104 pups from 11 litters were screened for deletions by genotypic 

PCR, which showed at least 48 pups with an easily detected deletion (Figure 4.1C).  

From these 48 mice, the smallest band was isolated, purified, and subjected to Sanger 

sequencing to determine the sequence of the mutant allele.  Based on these results, eight 

lines were selected for backcrossing to C57BL/6J mice. 

 Heterozygous offspring of the second backcross generation and subsequent 

generations were crossed to each other to generate homozygotes, both to check for 

viability and to isolate RNA and perform reverse transcription PCR of Mss51.  The 

amplicons were sequenced to ensure that the transcribed mRNA could not be translated 

to produce Mss51.  Interestingly, while the genetic sequences of each mutant line are 

distinct, the cDNA sequencing results of each line showed that the mutations resulted in 

the same mRNA sequence.  The consensus mutant transcript omits exons 1 and 2, joining 

the 5’ untranslated region (UTR) to exon 3 (Figure 4.2).  From this, the first ATG start 

site reached after the UTR results in a short peptide followed by a stop codon.  If that 

start site were skipped, it is possible that a truncated peptide without the N-terminus 

could be produced, though it would lack the zf-MYND functional domain (Figure 4.2).  

Additionally, the ratios of genotypes resulting from each heterozygote cross were 

compared to determine if the Mss51 alleles were being inherited in the frequencies 
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expected by Mendelian genetics.  From 13 litters, we determined ratios of 0.174 ± 0.149 

Mss51
-/- 

: 0.554 ± 0.159 Mss51
+/- 

: 0.272 ± 0.165 Mss51
+/+

 which were not significantly 

different from the expected ratio of 0.25 : 0.5 : 0.25.   

Characterization of Mss51
-/-

 Primary Myoblasts 

 Primary myoblasts were isolated from one wild-type mouse and one Mss51
-/- 

mouse for characterization.  To verify that these cells do not express Mss51, gene 

expression was measured in cells differentiated for 3 days (Figure 4.3A).  Previously, we 

showed that decreased Mss51 expression had no effect on proliferation and 

differentiation of C2C12 cells [100].  In the primary cells, we found no difference in 

proliferation as determined by incorporation of the thymidine analogue EdU (Figure 

4.3B, C).  Additionally, there were no differences in markers of differentiation, including 

fusion index after 2 days of differentiation (Figure 4.3D, E) or CK activity after 3 days of 

differentiation (Figure 4.3F).   

 We also used primary cells differentiated for 3 days to measure gene expression 

of numerous metabolic genes that were previously shown to be modulated by decreased 

Mss51 expression [100].  In C2C12 myotubes, we showed a shift towards more fully 

mature, glycolytic myotubes expressing more MyHC IIb and less embryonic, neonatal, 

and MyHC IIx when Mss51 expression was decreased.  In Mss51
-/-

 primary myotubes, 

the MyHC expression pattern was again altered, but not in the same direction (Figure 

4.4A).  In this setting, there was again a decrease in neonatal MyHC, but this time, 

MyHC IIb mRNA levels also decreased in the absence of Mss51.  Additionally, the 

expression levels of the oxidative types MyHC I and MyHC IIa were significantly 

increased in the Mss51
-/-

 myotubes (Figure 4.4A). 
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We examined the expression of some metabolic genes shown to be altered in 

C2C12s with disrupted Mss51.  Long chain acyl-CoA dehydrogenase (Acadl) and fatty 

acid translocase (Cd36) mRNA levels were significantly increased in Mss51
-/-

 myotubes, 

in concordance with our previous results (Figure 4.4B).  Peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC1) mRNA levels were significantly 

decreased in Mss51
-/-

 myotubes, also in concordance with our previous results (Figure 

4.4B).  Unlike our previous results, fatty acid synthase (Fasn) was slightly but 

significantly decreased (Figure 4.4B), whereas in C2C12 myotubes we saw an increase 

when Mss51 was disrupted.  Glut4 (or Slc2a4, a glucose transporter) was also slightly but 

significantly decreased, while in C2C12 myotubes we saw no difference between control 

and Mss51-disrupted myotubes.  In Mss51-disrupted C2C12 myotubes, we saw increased 

pyruvate dehydrogenase lipoamide kinase 4 (Pdk4) and hormone sensitive lipase (HSL), 

while in wild-type and Mss51
-/-

 primary myotubes, there were no significant differences 

(Figure 4.4B).   

We also examined ATP levels in wild-type and Mss51
-/-

 primary myotubes.  

Previously, we found Mss51-disrupted C2C12 myotubes to have significantly higher 

levels of ATP, while the opposite was found in the Mss51
-/-

 primary myotubes, which had 

significantly lower levels of ATP (Figure 4.4C).  Finally, we examined the activating 

phosphorylation of AMP-activated protein kinase alpha (AMPK), which increased 

significantly in Mss51-disrupted C2C12 myotubes.  In primary myotubes, we found no 

evidence of increased phosphorylated AMPK (Figure 4.4D).   

 We examined changes in body weight in several litters of mice born to 

heterozygous parents from approximately one week of age through six weeks of age 
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(Figure 4.5A, B).  We found no differences in the growth rate of male or female wild-

type, heterozygote, or knockout mice.  We used two wild-type and two Mss51
-/-

 female 

mice to determine tissue mass of several muscles, including the extensor digitorum 

longus (EDL), soleus, tibialis anterior (TA), quadriceps, triceps, gastrocnemius, and 

pectoralis major, as well as the gonadal white fat pads and subcutaneous brown fat pad 

(Figure 4.5C,D).  We found no significant differences in any of the tissues examined. 

 We examined expression of the genes encoding the myosin heavy chain isoforms 

in the quadriceps and EDL using qRT-PCR, and found the altered pattern of myosin 

heavy chain expression to lead to a more oxidative phenotype, with a non-significant 

trend towards increased expression of the genes encoding Type I and Type IIa myosin 

heavy chain, in agreement with the results in Mss51
-/-

 primary myotubes (Figure 4.6A, 

B).  Additionally, gene expression of Acadl and Cd36, previously shown to be 

upregulated in both Mss51-disrupted C2C12 myotubes and in Mss51
-/-

 primary cells, was 

measured and showed a non-significant trend towards increased expression (Figure 4.6C, 

D).  As a whole-organism functional measure, we compared treadmill endurance between 

6 week old wild-type and Mss51
-/-

 mice, and saw a non-significant trend toward increased 

endurance as measured by time (Figure 4.6E) and distance (Figure 4.6F).   
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Preliminary Conclusions 

 Mss51
-/-

 mouse lines were generated and have been backcrossed onto the 

C57BL/6J inbred background (Figure 4.1).  From those mouse lines, preliminary 

characterization has been performed.  While each line carried a unique mutation in the 

Mss51 genomic locus, the sequence of the resulting mRNA transcripts produced were 

shown to be identical, with the first two exons skipped and the 5’ UTR spliced directly to 

the third exon.  The coding sequence produced therefore was predicted to result in a short 

frame-shifted peptide resulting in an early stop codon.  Even if an alternate start site is 

used and a truncated Mss51 protein is expressed, it would lack the zf-MYND functional 

domain, likely ablating all protein function (Figure 4.2). 

We have demonstrated that Mss51
-/-

 primary myoblasts do not differ from wild-

type primary myoblasts in their ability to proliferate or differentiate (Figure 4.3), though 

they did show altered gene expression (Figure 4.4).  Unlike Mss51-disrupted C2C12 

myotubes, their shift in fiber type distribution does not lead to a more glycolytic 

phenotype but instead to a more oxidative one.  Additionally, the Mss51
-/-

 myoblasts from 

these preliminary studies appeared to possess lower cellular ATP levels, contrary to what 

we previously have shown in the Mss51-disrupted C2C12 myotubes.  Phosphorylation of 

AMPK was not altered in primary myotubes, indicating that the metabolic phenotype 

differed significantly between the immortal myotube model and the primary myotube 

model. 

 Primary myoblasts may be a better system for characterization of Mss51, as they 

are closer to what occurs physiologically in vivo.  Fiber type expression also appeared to 

shift in the quadriceps, where by qRT-PCR we showed a trend toward increased 
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expression of the genes encoding MyHC I and MyHC IIa, which are the most oxidative 

fiber types (Figure 4.6).  This was concordant with the trend toward increased treadmill 

endurance that we reported in preliminary studies using both male and female wild-type 

and Mss51
-/-

 mice.  Increased treadmill endurance and expression of the oxidative fiber 

type genes in Mss51
-/-

 mice was consistent with reported human gene expression that 

shows that individuals with higher physical capacity express significantly less Mss51 

[101].  This also was in agreement with increased expression of Cd36 and Acadl, both of 

which are involved with the oxidation of fatty acids as an energy source.  These mice did 

not differ in overall body weight or in the relative weight of a variety of muscles and fat 

deposits, indicating that phenotype resulting from Mss51 knockout is significantly 

different than that of myostatin-null mice (Figure 4.5).   

An additional phenotype observed during preliminary characterization of one of 

increased spontaneous activity in Mss51
-/-

 mice.  Mss51
-/-

 mice were often seen running 

about in their cages, often in small circles, while their wild-type littermates rested.  It is 

currently unknown if this phenotype is primarily behavioral/neurological or metabolic.  

Additional tests and measures will be required to fully understand this and the broader 

metabolic phenotype resulting from ablation of Mss51.  
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Future Directions  

 Muscle is a major regulator of metabolic homeostasis, and Mss51 appears to be 

involved in the regulation of several metabolic processes.  Decreased expression of 

Mss51 has been linked to increased fatty acid oxidation, increased physical capacity, and 

a trend toward increased endurance (Figure 4.6, [100,101]).  To fully elucidate the role of 

Mss51 in mouse muscle, Mss51
-/-

 mice will be subjected to a battery of metabolic 

challenges, including altered diets and measures of exercise endurance and strength.   

 Six week-old wild-type and Mss51
-/-

 mice will be fed a high fat diet for up to 12 

weeks.  These mice have been backcrossed onto the C57BL/6J strain, which has a well-

established predisposition to diet-induced obesity [112].   While on this high fat diet, 

mice will be weighed twice per week and changes in weight will be compared between 

wild-type and Mss51
-/-

 mice.  Additionally, their body compositions will be compared by 

EchoMRI, which allows for the determination of the percentage of lean, fat, and water 

mass [113]. The intraperitoneal glucose tolerance test (IPGTT) will be performed to test 

for changes in glucose metabolism.  To perform this standard test, 2 g glucose per kg 

body weight will be injected into fasted mice, and at the time of injection as well as at 

timed intervals, blood glucose levels will be determined from a tail nick using a handheld 

glucose meter.   

 Wild-type and Mss51
-/-

 mice will be subjected to additional exercise tests, 

including repeated endurance testing using the treadmill.  Treadmill endurance will be 

examined in mice at additional ages, and changes in endurance will be measured over 

time.  Additionally, endurance differences can be examined in mice fed a high fat diet, to 
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examine if changes are altered by the change in metabolic fuels in wild-type and 

knockout mice.   

To examine differences in spontaneous activity, open field behavior monitoring 

will be performed.  In this test, mice are placed in a chamber that records their movement 

over time, allowing for the quantification of differences between the activity levels of 

wild-type and Mss51
-/-

 mice.  Activity has previously been shown to change in response 

to metabolic changes including the stimulation of AMPK by 5-Aminoimidazole-4-

carboxamide ribonucleotide (AICAR) treatment [114], and we predict we will see 

increased locomotion in the Mss51
-/-

 mice.  We can also perform the Rotarod test to 

determine if the mice have altered motor coordination, which may help us to determine if 

Mss51
-/-

 mice have an altered neurological phenotype.  Voluntary wheel running may 

also be measured using rodent wheels (Bioseb, Pinellas Park, Florida, USA) attached to  

sensors that record activity.  We hypothesize that the Mss51
-/-

 mice will use the wheel 

significantly more than the wild-type mice. 

Indirect calorimetry, reviewed in [115], will be useful in determining basal fuel 

utilization as well as numerous other potential metabolic differences between wild-type 

and Mss51
-/-

 mice.  In indirect calorimetry, changes in oxygen and carbon dioxide levels 

in the air are measured as indicators of respiration, allowing for the calculation of the 

respiratory exchange ratio (RER).  The RER, determined by dividing the CO2
 
exhaled 

(VCO2) divided by the O2 inhaled (VO2), varies depending on the substrate being 

metabolized, from a value of 1.0 for pure carbohydrate metabolism down to 0.7 for pure 

fat metabolism [115]. The Johns Hopkins Centralized Services for Metabolism Research 

has a 16-animal Oxymax indirect calorimeter (Columbus Instruments, Columbus, OH), 
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which can be used for 5-day experiments that allow for acclimation, calibration, and 

experimental data collection.  Due to the trends we have observed in Acadl and Cd36 

mRNA expression, we hypothesize that Mss51
-/-

 mice will have a lower RER, indicating 

that they metabolize fats more efficiently than wild-type mice.  

To examine the effects of ablation of Mss51 in dystrophic muscle, mice are 

currently being bred to produce Mss51
-/-

 mdx double mutants.  These mice will lack both 

Mss51 and dystrophin, allowing for the examination of metabolic benefits in a mouse 

model of muscular dystrophy without altered muscle mass, as occurs with ablation or 

inhibition of myostatin.  Myostatin-null mdx mice demonstrate less severe pathology than 

mdx mice expressing normal levels of myostatin, including increased strength and 

myofiber diameter and less fibrosis and fatty remodeling of the diaphragm [116,117].  

Simultaneously, muscle hypertrophy resulting from myostatin inhibition may increase 

stress on dystrophic fibers, as demonstrated recently by the accelerated degeneration 

observed after myostatin inhibition in a mouse model of dysferlinopathy [118].  It is 

possible that some of the benefits offered with myostatin ablation or blockade in mdx are 

due, in part, to metabolic changes linked to decreased Mss51 expression.  To explore this, 

we will examine the muscle of Mss51
-/-

 mdx mice compared to mdx mice that express 

wild-type Mss51, looking for changes in strength, endurance, and markers of 

degeneration and regeneration.  
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Figures 

Figure 4.1. Generation and genetic characterization of Mss51
-/-

 mice.  (A) CRISPR 

gRNA target sites located in exons 1 and 2 of the Mss51 genomic locus.  (B) Diagram of 

procedures including injection of gRNAs and Cas9 mRNA into mouse zygotes, which 

develop into blastocysts and are transferred into pseudopregnant females.  The resulting 

pups are potential Mss51 mutants.  (C) Results of Mss51 genotyping show at least 48 of 

104 pups had easily detected deletions in exons 1 and 2 of Mss51.  The red dotted line 

indicates the expected size for wild-type Mss51.  Mice 523 and 524 were mothers of 

founders serving as wild-type controls, and NTC indicates no template control.  Mice 

were identified by numbers 1 through 104. 
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Figure 4.2.  Mss51 mRNA from Mss51
-/-

 mice is missing exons 1 and 2.  RNA was 

isolated from knockout mice and used to make cDNA, which served as the template for 

RT-PCR of Mss51.  The amplicon was purified, sequenced, and compared to the wild-

type Mss51 transcript.  All mouse lines analyzed produced the same transcript, joining 

the 5’ UTR to exon 3. 
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Figure 4.3. Mss51
-/- 

primary cells proliferate and differentiate normally. (A) 

Differentiated primary cells from Mss51
-/-

 mice do not express Mss51, as determined by 

qRT-PCR normalized to reference genes TBP and Tfam (n=3).  (B) Representative 

images of EdU incorporation (red), with Hoechst 33342 nuclear counterstain (blue).  (C) 

Wild-type and Mss51
-/-

 cells proliferate at the same rate as determined by EdU 

incorporation (n=9).  (D) Representative images of MF20-stained myotubes differentiated 

for 2 days.  (E) Fusion index indicates there is no difference in differentiation of wild-

type and Mss51
-/-

 myotubes (n=6).  (F) Wild-type and Mss51
-/-

 myotubes differentiated 

for 3 days have equivalent creatine kinase (CK) activity (n=6). 
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Figure 4.4. Gene expression and ATP content of Mss51
-/- 

primary myotubes.  (A) 

Myosin heavy chain and (B) metabolic gene mRNA levels determined by qRT-PCR, 

normalized to wild-type mRNA abundance using reference genes TBP and Tfam (n=3).  

(C) ATP content of wild-type and Mss51
-/-

 myotubes, normalized to protein content 

(n=6). (D) Levels of phosphorylated AMPK determined by Western blot with loading 

control Histone H3 (n=4).   
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Figure 4.5. Mss51
-/- 

mice do not differ in size from wild-type mice.  (A) Female and 

(B) male mouse body weights from one week to six weeks postnatal (n=2 to 6 per group).  

(C) Muscle weights of EDL, gastrocnemius, soleus, triceps, and pectoralis, normalized to 

body weight, in wild-type and Mss51
-/-

 mice (n=2).  (D) Weights of the gonadal white fat 

deposit and the subcutaneous brown fat deposit normalized to body weight, in wild-type 

and Mss51
-/-

 mice (n=2). 
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Figure 4.6. Mss51
-/- 

mice appear to differ metabolically from wild-type mice.  (A) 

Myosin heavy chain gene expression profiling from the quadriceps and (B) from the EDL 

of wild-type and Mss51
-/-

 mice (n=2).  (C) Acadl and Cd36 gene expression in the 

quadriceps and (D) the EDL of wild-type and Mss51
-/-

 mice (n=2).  (E) Time to 

exhaustion and (D) distance to exhaustion in treadmill endurance tests of female and 

male wild-type and Mss51
-/-

 mice (n=2 to 3). 
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