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Abstract

Data-driven causal inference from real-world multivariate systems can be biased for

a number of reasons. These include unmeasured confounding, systematic censoring

of observations, data dependence induced by a network of unit interactions, and

misspecification of parametric models. This dissertation proposes statistical methods

spanning three major steps of the causal inference workflow – discovery of a suitable

causal model, which in our case, can be visualized via one of several classes of

causal graphical models, identification of target causal parameters as functions of the

observed data distribution, and estimation of these parameters from finite samples.

The overarching goal of these methods is to augment the data scientist’s toolkit to

tackle the aforementioned challenges in real-world systems in theoretically sound yet

practical ways. We provide a continuous optimization procedure for causal discovery

in the presence of latent confounders, and a computationally efficient discrete search

procedure for discovery and downstream estimation of causal effects in causal graphs

encoding interactions between units in a network. For identification, we provide an

algorithm that generalizes the state-of-the-art for recovery of target parameters in

missing not at random distributions that can be represented graphically via directed

acyclic graphs. Finally for estimation, we provide results on the tangent space of causal

graphical models with latent variables which may be used to improve the efficiency of

semiparametric estimators for any target parameter of interest. We also provide novel

estimators, including influence-function based estimators, for the average causal effect

of a point exposure on an outcome when there are latent variables in the system.
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Preface

As a computational genomics researcher, I learned that a principled causal analysis is

often hindered by various “imperfections” in the data, ones which standard statistical

tools and software are unable to correct for. For example, genomic sequencing is often

performed on multiple tumors from an individual, or on multiple individuals from

a single family or social network. This violates an assumption frequently employed

in statistics and machine learning – that the data are independent and identically

distributed. Further, the data may be censored or missing for a variety of reasons

ranging from technical limitations of the instruments to complex patterns of dropout

and re-enrollment in a longitudinal study, and non-response prompted by the social

stigma attached to questions pertaining to drug-use or sexual orientation. Finally, it is

unreasonable to expect that all sources of confounding in complex biological systems,

such as those associated with cancer immunotherapy, can be accounted for. Each of

these data imperfections pose a unique set of challenges to causal inference.

Data dependence, non-ignorable missingness, and unmeasured confounding, I

realized, are by no means unique to the field of computational genomics. Indeed,

“imperfect” data are pervasive and affect analyses across scientific disciplines, such as

epidemiology, economics, and the social sciences. Since this realization, I have made

it my goal to build theoretically sound, computationally feasible, and easy-to-use

causal inference tools and software to analyze and correct for such understudied yet

ubiquitous sources of bias. The contents of this dissertation are the start of my long

journey in tackling what I consider to be the biggest challenges in data science today.
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Chapter 1

Introduction

The study of qualitative and quantitative theories of causation in complex multivariate

systems is a fundamental scientific endeavor. By virtue of the active nature of causal

questions, e.g., “How does Y change when I do X?”, causal reasoning also plays a

key role in decision-making in the empirical sciences and public policy. Randomized

controlled trials are often considered the gold standard for establishing cause-effect

relations from data [2]. This is because in an ideal randomized controlled trial,

probabilistic dependence between a “treatment” variable (potential cause) and its

“outcome” (potential effect) due to factors other than causation are completely removed

via randomization of the treatment assignment. However, for several causal questions,

e.g., “Does smoking cause cancer?”, running a randomized experiment is either

unethical, infeasible, or too expensive. This has motivated the use of observational

data to directly infer or narrow the space of feasible causal hypotheses [3, 4, 5, 6].

However, data from multivariate biological, healthcare, and socio-economic systems

(even when derived from a randomized experiment) are “imperfect” in many ways.

They exhibit systematically censored observations, data dependence, unmeasured

confounding, and a myriad other issues that greatly complicate the task of inferring

causal relationships from the data.

A data-driven causal inference workflow consists of three major tasks – discovery

of the causal structure of the system, identification of target causal parameters as
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functions of the observed data distribution, and estimation of these parameters from

finite samples.1 Data scientists have come to rely on a popular set of methods, such as

imputation and covariate adjustment, as part of a standard toolkit used to accomplish

various tasks in this workflow. However, issues that arise due to the complexity of

real-world data result in serious violations of the underlying statistical assumptions

used by these methods, which can lead to severely biased estimates. Publication and

reliance on such estimates for informing public policy has contributed to the ongoing

replication crisis [7, 8].

This dissertation proposes statistical methods spanning the three steps of the

causal inference workflow outlined above. The overarching goal of these methods

is to serve as theoretically sound and practical procedures that augment the data

scientist’s toolkit – enabling them to address challenges arising from systematically

censored data, data dependence, unmeasured confounding, model misspecification,

and finite sample estimation. Many of the methods described here have also been

implemented as open-source software as part of a Python package for causal inference

using graphical models called Ananke [9]. We hope that this serves to reduce the

barrier-to-entry for the usage of these methods in standard data science workflows.

The contributions of this dissertation and its organization are as follows.

• The rest of Chapter 1 introduces the necessary preliminaries and background

information on causal modeling using graphical models.

• Chapters 2 and 3 describe methods for causal discovery in settings with “messy”

observational data. Chapter 2 describes continuous optimization schemes for

causal discovery in the presence of latent confounders based on work in [10],

while Chapter 3 describes methods for causal discovery when units in the data

are dependent due to an underlying network of unit interactions based on work
1A fourth task not covered in this dissertation is sensitivity analysis, which examines the relatonship

between model assumptions and the robustness of estimates.

2



in [11].

• Chapter 4 describes methods for the identification of target distributions from

missing not at random data when the target distribution and the missingness

mechanism can be modeled via a directed acyclic graph based on work in [12].

• Chapter 5 describes methods for robust and efficient estimation of causal effects

in the presence of latent confounders based on work in [13].

• Chapter 6 provides closing thoughts and concludes the dissertation.

The research for Chapters 4 and 5 was conducted jointly between the author of this

dissertation and Razieh Nabi as co-first authors. Consequently, some text appearing

in these chapters (and related introductory material in Chapter 1) may be similar

across our dissertations. Longer proofs in each chapter are deferred to the Appendix

of the dissertation.

1.1 Causal Inference Using Graphical Models

The cause-effect relationship between a treatment variable T and an outcome variable Y

is typically quantified through the use of potential outcomes, a.k.a. counterfactuals. For

example, the potential outcomes Y (1) and Y (0) may be used to represent a hypothetical

randomized controlled trial where units are randomly assigned to the treatment arm

(corresponding to T = 1), or the control arm (corresponding to T = 0). The average

causal effect (ACE) is frequently used to compare the distribution of such counterfactual

random variables on the mean difference scale. That is, ACE ≡ E[Y (1)]− E[Y (0)].

More generally, one could define a random variable Y (t)2 corresponding to the potential

outcome had treatment T been assigned to some value t. This allows for the contrast

of arbitrary treatment assignments t and t′ as E[Y (t)]− E[Y (t′)].
2Or equivalently, Y | do(t) in the do-calculus notation [5].
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It is well understood that causal parameters (such as the ACE) cannot be expressed

as functions of the observed data, or in other words are not identified, if no assumptions

are made about the data generating process [5]. The use of graphical models to facilitate

causal inference by encoding assumptions about the data generating process in a visual

and intuitive fashion has gained traction across scientific disciplines [14, 15, 16]. The

following subsections describe various graphical representations of causal models that

appear in this dissertation as well as their intended use cases.

1.1.1 Causal Modeling with Directed Acyclic Graphs

Formally, a directed acyclic graph (DAG) G(V ) is a set of nodes V connected by

directed edges, such that there are no directed cycles. The statistical model of a DAG

G(V ), denoted by MDAG(G), is the set of distributions that can be expressed as the

following product of conditional densities,

p(V ) =
∏
Vi∈V

p(Vi | paG(Vi)), (DAG factorization) (1.1)

where paG(Vi) are the parents of Vi in G.

Causal models are sets of distributions defined over counterfactual random variables.

Causal models of a DAG G(V ) are defined over counterfactual random variables

Vi(pai) for each Vi ∈ V, where pai is a set of values for paG(Vi). Alternatively, these

counterfactuals can be viewed as being determined by a system of structural equations

fi(pai, ϵi) that map values pai as well as values of an exogenous noise term ϵi to

values of Vi [5, 17]. Other counterfactuals may be defined from above via recursive

substitution. Specifically, for any set A ⊆ V , and a variable Vi, we have:

Vi(a) ≡ Vi
(
a ∩ paG(Vi), {Vj(a) : Vj ∈ paG(Vi) \ A}

)
. (Recursive substitution) (1.2)

For any set A ⊂ V , we may define a joint distribution of potential outcomes

p({V \ A}(a)), or p(V (a)) for short, by applying recursive substitution as in Eq. 1.2.
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Any such counterfactual distribution p(V (a)) is identified in causal models of a DAG G

via the g-formula (a.k.a truncated factorization or manipulated distribution) [3, 4, 5],

p(V (a)) =
∏

Vi∈V \A
p(Vi | paG(Vi))

⏐⏐⏐⏐⏐
A=a

. (g-formula) (1.3)

When A is the empty set, the above functional returns the DAG factorization in

Eq. 1.1, meaning that the causal model of a DAG G also implies its statistical model.

Under the causal DAG framework, the presence of an edge Vi→Vj should be

interpreted as saying “Vi is a potential direct cause of Vj.” The absence of an edge

between Vi and Vj not only implies the absence of a direct causal relation, but also

conditional independences in the probability distribution p(V ). These independences

can be read directly from G via the well-known d-separation criterion [18, 5]. That

is, for disjoint sets X, Y, Z, the following global Markov property holds (X ⊥⊥d-sep Y |

Z)G =⇒ (X ⊥⊥ Y | Z)p(V ). When the context is clear, we drop the explicit reference

to p(V ) and simply use X ⊥⊥ Y | Z to denote conditional independence between X

and Y given Z.

1.1.2 Causal Modeling in the Presence of Latent Confounders
with Acyclic Directed Mixed Graphs

For many practical applications, causal models must account for the presence of latent

variables. Reasoning directly with latent variable DAG models may lead to statistical

issues as parameterizations of such models are generally not fully identifiable and

may contain singularities [19]. Further, the use of latent variable models may require

positing assumptions on the number of latent variables, their state-space, and relations

between latent and observed variables. This can be difficult to do by the very nature of

latent variables being unobserved, which increases the chance of model misspecification

and biased estimation of target parameters.

Acyclic directed mixed graph (ADMGs) were proposed as an alternative graphical

representation for modeling relations among just the observed variables in the problem,
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while preserving much of the causal and statistical information from the original latent

variable DAG model [20, 21, 22]. Formally, the latent projection of a hidden variable

DAG G(V ∪H) onto observed variables V is an ADMG G(V ) with directed (→) and

bidirected (↔) edges constructed as follows. The edge Vi→Vj exists in G(V ) if there

exists a directed path from Vi to Vj in G(V ∪H) with all intermediate vertices in H.

An edge Vi↔Vj exists in G(V ) if there exists a collider-free path (i.e., there are no

consecutive edges of the form→ ◦←) from Vi to Vj in G(V ∪H) with all intermediate

vertices in H, such that the first edge on the path is an incoming edge into Vi and

the final edge is an incoming edge into Vj [23]. An example of applying the latent

projection operator is provided in Figure 1-1.

It was shown by [24] that all non-parametric equality constraints in the observed

data distribution p(V ) implied by Markov restrictions in the latent variable DAG

model given by the factorization p(V ∪H) with respect to G(V ∪H) are captured via

nested Markov models of an ADMG. Further, identification of many causal parameters,

such as the ACE, may be rephrased without loss of generality in terms of truncated

functionals of the nested Markov factorization of the observed data distribution.

[22, 12]. The following subsections describe the background necessary to describe the

nested Markov factorization as well as some coarser factorizations of ADMG models

used in Chapter 5 of this dissertation.

We adopt the following conventions in denoting standard genealogical relations

in an ADMG G(V ). The parents of a set of vertices S is defined as the set of

parents of each vertex in S not contained in S, i.e., paG(S) ≡ ⋃Si∈S paG(Si) \ S. We

follow the same convention for children of a set S, denoted chG(S). Other standard

genealogical relations, such as ancestors anG(Vi) ≡ {Vj ∈ V | ∃ Vj→ · · ·→Vi in G}

and descendants deG(Vi) ≡ {Vj ∈ V | ∃ Vi→ · · ·→Vj in G}, include the vertex Vi

itself by convention. The extension of these relations to a set S then uses the disjunctive

definition which also includes the set itself. For example, anG(S) = ⋃
Si∈S anG(Si).
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V1 V2H1

V3 H2 V4

(a) G(V ∪H)

V1 V2

V3 V4

(b) G(V )

Figure 1-1. (a) A hidden variable DAG G(V ∪H); (b) The ADMG G(V ) obtained via
latent projection.

District and Topological Factorization of ADMGs

We first describe the district factorization of the observed distribution p(V ) with

respect to an ADMG G(V ) which bears resemblance to the more familiar DAG

factorization (when all variables are observed) in the following sense. The district

factorization of p(V ) with respect to an ADMG G(V ) is a product of objects that

resemble (but are not necessarily equal to) conditional densities defined over sets of

variables given their parents. These objects are formally referred to as kernels and

these sets of variables are known as districts. We also describe how terms that appear

in the district factorization can be expressed as a product of ordinary conditional

densities in p(V ) via the topological factorization of the joint distribution.

A district is defined as a bidirected connected component of an ADMG G(V ), i.e.,

an induced subgraph of G in which any two vertices are connected to each other via

at least one bidirected path. Districts of G(V ) form a partitioning of its vertices. We

use disG(Vi) to denote the district in G that contains Vi and D(G) to denote the set of

all districts in G.

For disjoint subsets X, Y , a kernel qX(X | Y ) is defined as a mapping from values

in Y to normalized densities over X [25]. That is, kernels behave like conditional

densities in the sense that ∑X qX(X | Y = y) = 1,∀y in the state space of Y. For

any Z ⊂ V , marginalization and conditioning in a kernel are defined as qX\Z(V \ Z |
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Y ) ≡ ∑
Z qX(X | Y ) and qX(X \ Z | Z, Y ) ≡ qX(X|Y )

qZ(Z|Y ) respectively; more details and

examples of such operations can be found in Appendix A.

Given a latent variable DAG G(V ∪H) and corresponding distribution p(V ∪H),

[26] showed that for each district D in the latent projection ADMG G(V ), the kernel

mapping values of the parents of D to normalized densities over D, denoted by

qD(D | paG(D)), can be expressed as functionals of the observed distribution p(V ) as

follows. Define the Markov blanket of a vertex Vi as the district of Vi and the parents of

its district, excluding Vi itself, i.e., mbG(Vi) = disG(Vi)∪paG(disG(Vi)) \ {Vi}. Consider

a valid topological order τ on all k vertices in V, that is a sequence (V1, . . . , Vk) such

that no vertex appearing later in the sequence is an ancestor of vertices earlier in

the sequence. Let {⪯τ Vi} denote the set of vertices that precede Vi in this sequence,

including Vi itself. Then for each D ∈ D(G),

qD(D | paG(D)) =
∏
Di∈D

p(Di | mpG(Di)), (Identification of district-level kernels)

(1.4)

where mpG(Vi), the Markov pillow of Vi, is defined as its Markov blanket in a subgraph

restricted to Vi and its predecessors according to the topological ordering. More

formally, mpG(Vi) ≡ mbGS(Vi) where S = {⪯τ Vi}, and GS is the subgraph of G that

is restricted to vertices in S and the edges between these vertices.

The joint distribution p(V ) then satisfies the following district-level factorization

with respect to the latent projection ADMG G(V ) [26],

p(V ) =
∏

D∈D(G)
qD(D | paG(D)), (District ADMG factorization) (1.5)

Equations 1.4 and 1.5 together lead to a factorization of the observed distribution

as a product of simple conditional factors according to a valid topological order,

p(V ) =
∏
Vi∈V

p(Vi | mpG(Vi)). (Topological ADMG factorization) (1.6)
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The above factorization (and the district factorization from which it is derived),

does not always capture every equality restriction in p(V ) implied by the Markov

property of the underlying hidden variable DAG G(V ∪H). However, it is particularly

simple to work with, and under some conditions, which we derive in Chapter 5, is

capable of capturing all such restrictions.

Nested Markov Models of Acyclic Directed Mixed Graphs

In addition to the district factorization in the previous subsection, the nested Markov

factorization of the joint p(V ) with respect to an ADMG G(V ) asserts that certain

kernels associated with sets of vertices known as reachable sets may be expressed as

products of a base set of kernels associated with sets of vertices known as intrinsic

sets. This motivates the need for an intermediate graphical representation, known as

conditional ADMGs (CADMGs), that can be used to visualize and operationalize the

derivation of kernels associated with the reachable and intrinsic sets used to describe

the nested Markov model of an ADMG.

Conditional ADMGs (CADMGs) G(V,W ) are acyclic directed mixed graphs whose

vertices can be partitioned into random variables V and fixed variables W with the

restriction that variables in W may only have outgoing directed edges [22]. Fixed

variables are also not considered to be part of any districts in G(V ). However, the

definitions of genealogic sets such as parents, descendants, and ancestors as well as

other special sets such as the Markov blanket and Markov pillow of random variables

Vi ∈ V in a CADMG G(V,W ), extend naturally by allowing for the inclusion of fixed

variables into these sets as given by their standard definitions.

A vertex Vi ∈ V is said to be fixable in a CADMG G(V,W ) if disG(Vi) ∩ deG(Vi) =

{Vi}. The graphical operation of fixing Vi denoted by ϕVi(G), yields a new CADMG

G(V \ Vi,W ∪ Vi) where bidirected and directed edges into Vi are removed and Vi is

fixed to a particular value vi. Given a kernel qV (V | W ) associated with the CADMG
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G(V,W ), the corresponding probabilistic operation of fixing, denoted by ϕVi(qV ;G),

yields a new kernel

ϕVi(qV ;G) ≡ qV \Vi(V \ Vi | W ∪ Vi)

≡ qV (V | W )
qV (Vi | mbG(Vi),W ) . (Probabilistic fixing operator) (1.7)

The notion of fixability can be extended to a set of vertices S by requiring that

there exists an ordering (S1, . . . , Sp) such that S1 is fixable in G, S2 is fixable in ϕS1(G)

and so on. Such an ordering is said to be a valid fixing sequence and the set V \ S

is said to be reachable. It is known that any two valid fixing sequences on S yield

the same CADMG, which we will denote by ϕS(G(V,W )). Fix a CADMG G(V,W )

and a corresponding kernel q(V | W ). Given a valid fixing sequence σS on S ⊆ V

valid in G(V,W ), define ϕσS(qV ;G) inductively to be q(V | W ) when S is empty, and

ϕσS\S1(ϕS1(qV ;G);ϕS1(G)) otherwise, where σS \ S1 corresponds to the remainder of

the sequence after S1. A concrete example demonstrating sequential applications of

the graphical and probabilistic operations of fixing can be found in Appendix A.

The nested Markov factorization of an ADMG G relies on the notion of intrinsic

sets. A set S ⊆ V is said to be intrinsic in G if S is reachable and ϕV \S(G) contains a

single district. The set of intrinsic sets of G is denoted by I(G). A distribution p(V )

is then said to obey the nested Markov factorization relative to an ADMG G(V ) if for

every fixable set S and every valid fixing sequence σS,

ϕσS(p(V );G) =
∏

D∈D(ϕS(G))
qD(D| paG(D)), (Nested Markov factorization) (1.8)

where all kernels appearing in the product above can be constructed from the set

of kernels corresponding to intrinsic sets in G, i.e., {qS(S | paG(S)) | S ∈ I(G)}. If

p(V ) obeys the nested Markov factorization, then for any fixable set S, applying any

two distinct valid sequences σ1
S, σ2

S to p(V ) and G(V ) also yields the same kernel,

which we define as ϕS(p(V );G(V )). Moreover, for every D ∈ I(G), qD(D| paG(D)) =

10



ϕV \D(p(V );G(V )). The nested Markov factorization above defines the nested Markov

model, with associated Markov properties, described in [22].

In the previous subsection we saw that counterfactual distributions in the fully

observed setting could be thought of as truncated functionals of the statistical DAG

factorization given by the g-formula (Eq. 1.3). In an analogous fashion, identified

counterfactual distributions over observed variables in a latent variable DAG can be

given by truncated functionals of the nested Markov factorization. This strategy for

identification counterfactual distributions in a latent variable DAG model is known

to be sound and complete [27, 28, 22]. That is, identification of a counterfactual

distribution p(Y (a)) in a hidden variable causal model associated with a DAG G(V ∪H)

may be rephrased, without loss of generality, using its corresponding latent projection

ADMG G(V ). Specifically, for Y ∗ ≡ anGV \T (Y ),

p(Y (a)) =
∑
Y ∗\Y

∏
D∈D(GY ∗ )

ϕV \D(p(V );G(V ))
⏐⏐⏐⏐
T=t

, (Truncated nested Markov factorization)

(1.9)

provided every D ∈ D(GY ∗) is intrinsic; otherwise, p(Y (a)) is not identifiable [22].

Recall from the definition of the nested Markov model that a set S ⊆ V is said to be

intrinsic in G if V \ S is fixable, and ϕV \S(G) contains a single district.

Implications of Presence and Absence of Edges in an ADMG

When viewing an ADMG G(V ) as a graphical representation of the observed margin

of a latent variable causal DAG G(V ∪H), an edge Vi→Vj in the ADMG may be

interpreted as saying Vi is a potential direct cause of Vj, and an edge Vi↔Vj may

be interpreted as the presence of one or more latent confounders, e.g., Vi←Hk→Vj,

between Vi and Vj in G(V ∪ H). The absence of edges in ADMG G(V ) imply the

absence of a causal relation/unmeasured confounding, and may imply restrictions

in the observed distribution p(V ). Conditional independences in p(V ) can be read

off from the ADMG G(V ) by a simple analogue of the d-separation criterion, known
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as m-separation, that generalizes the notion of a collider to include mixed edges of

the form→ ◦↔,↔ ◦←, and↔ ◦↔, [29]. Sometimes, the absence of an edge may

not imply any conditional independence statements on p(V ) but rather generalized

equality restrictions, informally referred to as Verma constraints, that resemble ordinary

conditional independences albeit in post-intervention distributions [3, 23]. At present,

there exists no graphical criterion to read all non-parametric generalized equality

restrictions implied in p(V ) directly from G(V ). [30] provides a recursive algorithm

that outputs a list of non-parametric equality constraints that comprise the nested

Markov model and [22] rephrase this in terms of the fixing operator. It may also be

the case that the absence of an edge implies no equality restrictions on the observed

distribution p(V ). In Chapter 5 we provide a sound and complete algorithm to

determine the existence of non-parametric equality restrictions in the nested Markov

model of an ADMG Mnested(G). We use this algorithm to decide the statistical

efficiency of estimators for causal effects we present in Chapter 5.

1.1.3 Causal Modeling of Network Data with Chain Graphs

Classical causal and statistical inference methods typically assume the observed data

consists of independent realizations. However, in many applications this assumption is

inappropriate due to a network of dependences between units in the data. For example,

the COVID-19 global pandemic serves as a stark reminder that a disease may spread

within a social network of friends, family, or neighbors by a causal process known

as contagion, and that vaccinating a subset of the population may confer immunity

to a larger subset than those who were vaccinated (a phenomenon known as herd

immunity.) Further, the limited availability of beds in intensive care units can also

induce data dependence when patients are triaged before admission. That is, the

allocation of a bed in the intensive care unit to one individual not only improves their

own chance of survival, but also has a harmful “spillover effect” on the outcomes of
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other individuals to whom the bed was not given. Data dependence is not limited to

the infectious disease setting and may appear, for example, in classroom studies on

the efficacy of new pedagogical methods, and studies on the spread of misinformation

on social media, in the form of peer-to-peer influence and homophily [31].

Recently, chain graphs (CGs) have been used to model causal phenomena that

result in data dependence [32, 33, 34]. Formally, a chain graph is a mixed graph

consisting of directed (→) and undirected (–) edges, such that it is impossible to

create a directed cycle by orienting any combination of the undirected edges [25].

A CG with no undirected edges is simply a DAG. The variables in a CG can be

partitioned into subsets of undirected connected components known as blocks, which

play a central role in defining causal and statistical models of CGs. The set of all

blocks in a CG G is denoted by B(G).

In this dissertation we consider statistical and causal models of a chain graph under

the Lauritzen-Wermuth-Frydenberg (LWF) interpretation. For a subset of vertices

S ⊆ V, let GS denote the induced subgraph of G with vertices S and edges in G whose

endpoints are both in S. Given a CG GS, define the augmented graph GaS (sometimes

referred to as the moralized graph) to be an undirected graph constructed from GS

by replacing all directed edges with undirected edges and connecting all vertices in

paGS(B) for every block B in GS by undirected edges [25]. Let C(GaS) denote the set

of all cliques in the augmented graph GaS, where a clique C is defined as a maximal

set of vertices that are pairwise connected by undirected edges. The statistical LWF

model of a CG G(V ), denoted MCG(G) is then the set of distributions that satisfy

the following two-level factorization with respect to G,

p(V ) =
∏

B∈B(G)
p(B | paG(B)),

(
CG factorization (i)

)
(1.10)
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and for each block

p(B | paG(B)) =

∏
C∈
{

C
(

GabdG(B)

)
: C ̸⊆paG(B)

} κC(C)

Z
(

paG(B)
) ,

(
CG factorization (ii)

)
(1.11)

where each κC(C) is a non-negative clique potential function and Z(paG(B)) is a

normalizing function.

Causal models associated with DAGs have been generalized to causal models associ-

ated with CGs as follows. The causal interpretation of LWF CGs may be understood as

equilibria of dynamic models with feedback [35]. Under this interpretation, the distri-

bution p(B | paG(B)) for each block B ∈ B(G) can be determined by a Gibbs sampler

[36] on the variables Bi ∈ B. Here, each conditional distribution p(Bi | B \Bi, paG(B))

is produced by structural equation of the form fBi(B \Bi, paG(B), ϵBi). Interventions

on elements of B are defined by replacing the appropriate line in the Gibbs sampler

program. Under this interpretation, [35] showed that for any set A ⊂ V, the distri-

bution of p(V (a)) is identified by a CG version of the DAG g-formula which can be

interpreted as truncation of the two-level CG factorization as follows,

p(V (a)) =
∏

B∈B(G)
p(B \ A | paG(B), B ∩ A)

⏐⏐⏐⏐⏐
A=a

, (CG g-formula) (1.12)

and for each block

p(B \ A | paG(B), B ∩ A) =

∏
C∈
{

C
(

GabdG(B)

)
: C ̸⊆paG(B)

} κC(C)

Z
(

paG(B), B ∩ A
) (1.13)

where each κC(C) is a clique potential function and Z
(

paG(B), B∩A
)

is a normalizing

function as before. As was the case with causal and statistical models of a DAG, the

causal model of a CG implies its statistical model by considering A = ∅.

Under the causal LWF CG framework, the presence of an edge Vi→Vj can be

interpreted as encoding direct causation, while the presence of an edge Vi – Vj can

be interpreted as encoding symmetric causal relations induced by Gibbs equilibria as
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discussed above. Similar to DAGs, the absence edges in a CG G imply conditional

independences in the probability distribution p(V ). These independences can be read

directly from G via the c-separation criterion or the equivalent augmentation criterion

[37, 25]. That is, for disjoint sets X, Y, and Z, the following global Markov property

holds (X ⊥⊥c-sep Y | Z)G =⇒ (X ⊥⊥ Y | Z)p(V ).

Finally, if only interventions on entire blocks are of interest, i.e., we only consider

treatment assignments A = a where elements of A consist of entire blocks in B(G),

then there exists an alternative causal interpretation of a CG G that does not rely

on the Gibbs sampler machinery of [35]. Specifically, in such a case we consider a

causal DAG model where each block B corresponds to a supervariable VB defined as

a Cartesian product of variables in B, and a DAG causal model is defined on VB(a),

where a are values assigned to the parents of VB in G. If for each block B in a CG

G, the graph GabdG(B) has a single clique, then this yields a classical causal model of a

DAG. If not, we can still view the model as a classical causal model of a DAG, but with

an extra restriction that the observed data distribution factorizes as Equations 1.10

and 1.11 above; see also [34] for a perspective on interpreting chain graphs in the

interference and dependent data setting. The methods we present in Chapter 3.3 for

model selection of LWF CG models in the presence of data dependence induced by

unit interactions in a network are agnostic to the choice of causal interpretation.
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Chapter 2

Causal Discovery Under
Unmeasured Confounding

Biological, economic, and social systems are often affected by unmeasured (latent)

variables. In such scenarios, statistical and causal models of a directed acyclic graph

(DAG) over the observed variables do not faithfully capture the underlying causal

process. Chapter 1 introduced ADMG models as a principled alternative for modeling

causal and statistical relations over the observed variables in confounded systems.

There are three popular classes of ADMGs that we discuss in this chapter –

ancestral, arid, and bow-free ADMGs. Each class is suited to capturing information

on the observed distribution at different levels of granularity while providing certain

trade-offs in terms of statistical or computational benefits. We first briefly summarize

the graphical criteria that characterize each of these classes and then describe their

advantages/disadvantages.

An ADMG G = (V,E) is said to be ancestral if for any pair of vertices Vi, Vj ∈ V ,

a directed path Vi→ · · ·→Vj and bidirected edge Vi↔Vj do not both appear in G

[21]. An ADMG G is said to be arid if it does not contain any c-trees [38, 39]. A

c-tree is a subgraph of G whose directed edges form an arborescence (the directed

graph analogue of a tree) and bidirected edges form a single bidirected connected

component within the subgraph. It is easy to confirm that the ADMG in Figure 2-1(b)
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is ancestral while the one in Figure 2-1(c) is arid but not ancestral. An ADMG is

called bow-free if for any pair of vertices, Vi→Vj and Vi↔Vj do not both appear

in G [40]. A graph that is bow-free but neither arid nor ancestral is displayed in

Figure 2-1(e). The relation between these graph classes is the following:

Ancestral ⊂ Arid ⊂ Bow-free

Prior work in causal discovery in confounded systems has focused on discrete search

procedures for selecting ancestral ADMGs via their associated ordinary Markov models

[29] that encode ordinary conditional independence constraints among the observed

variables of the system [4, 41, 42]. However, as we have seen in Chapter 1, confounded

systems may also exhibit more general non-parametric equality restrictions, many of

which are only captured via the nested Markov factorization with respect to more

general classes of ADMGs [23, 30, 3]. While the general class of unrestricted ADMGs

capture all such equality constraints [24], the associated parametric models (for the

nested Markov models described in Chapter 1) are not guaranteed to form smooth

curved exponential families with globally identifiable parameters – an important pre-

condition for score-based model selection. A smooth parameterization for arbitrary

ADMGs is known only when all observed variables are either binary or discrete

[43]. For the common scenario when the data comes from a linear Gaussian system

of structural equations, the statistical model of an ADMG is almost-everywhere

identified if the ADMG is bow-free [40], and is globally identified and forms a smooth

curved exponential family if and only if the ADMG is arid [38, 39]. From a causal

perspective, arid and bow-free ADMGs, like ancestral ADMGs, have the desirable

property of preserving ancestral relationships in the underlying latent variable DAG,

while also capturing all equality restrictions on the observed margin [39]. While global

identifability of arid ADMG models is highly appealing, the search space of bow-free

ADMGs is computationally simpler to work with, and is often sufficient for accurate

causal discovery despite their weaker guarantee of identifiability.
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This chapter introduces a structure learning procedure for selecting arid, bow-free,

or ancestral ADMGs from observational data. Our learning approach is based on

reformulating the usual discrete combinatorial search problem into a more tractable

constrained continuous optimization program. Such a reformulation was first proposed

by [44] for the special case when the search space is restricted to DAGs. Subsequent

extensions such as [45], [46], and [47] also restrict the search space in a similar fashion.

In this work, we derive differentiable algebraic constraints on the adjacency matrices of

the directed and bidirected portions of an ADMG that fully characterize the space of

arid ADMGs. We also derive similar algebraic constraints that characterize the space

of ancestral and bow-free ADMGs that are quite useful in practice and connect our

work to prior methods. Having derived these differentiable constraints, we select the

best fitting graph in the class by optimizing a penalized likelihood-based score. While

the constraints we derive in this chapter are non-parametric, we focus our discovery

methods on distributions that arise from linear Gaussian systems of equations.

Our structure learning procedure for arid and ancestral graphs is consistent in

the following sense: asymptotically, convergence to the global optimum implies that

the corresponding ADMG is either the true model or one that belongs to the same

equivalence class. That is, if the optimization procedure succeeds in finding the global

optimum, the resulting graph is either the true underlying structure or one that implies

the same set of equality constraints on the observed data. While the L0-regularized

objective we propose is non-convex and so our optimization scheme may result in

local optima, we show via experiments and application to protein expression data

that our proposal works quite well in practice. It is important to note that optimizing

non-convex objectives is unavoidable when pursuing score-based causal discovery for

ADMGs as the likelihood of ADMG models is non-convex in general. We believe the

proposed algebraic constraints are valuable for further research at the intersection of

non-convex optimization techniques for L0-regularization and causal discovery.
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Figure 2-1. (a) A DAG if C→D or D→C exists but not both; (b) An ADMG that
posits an unmeasured confounder between C and D; (c) An (arid) ADMG encoding a
Verma constraint between C and B; (d) The ancestral version of (c); (e) A non-arid
bow-free ADMG that is a super model of (c).

The rest of Chapter 2 is organized as follows. We begin with a motivating example

and background on the structure learning problem for partially-observed systems.

We then derive differentiable algebraic constraints that characterize arid, bow-free,

and ancestral ADMGs. We then use these to formulate the first (to our knowledge)

tractable method for learning arid ADMGs from observational data, by extending

the continuous optimization scheme of causal discovery. Simply by modifying the

constraint in the optimization program, the same procedure may also be leveraged

to learn bow-free or ancestral graphs. Finally we evaluate the performance of our

algorithms in simulation experiments and on protein expression data from [1].

2.1 Motivating Example

To motivate our work, we present an example of how our method may be used to

reconstruct complex interactions in a network of genes, which is related to the data

application we present towards the end of the chapter.

Consider a scenario in which an analyst has access to gene expression data on four

genes: A,B,C, and D. Assume that the analyst is confident (due to prior analysis

or background knowledge) about the structure corresponding to non-dashed edges

shown in Figure 2-1(a), i.e., that A regulates C and B regulates D but A and B are

independent. This leaves an important ambiguity regarding regulatory explanations

of co-expression of genes C and D.
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An observed correlation between C and D may be explained in different ways that

provide very different mechanistic interpretations. If the hypothesis class is restricted

to DAGs, the only explanations available to the analyst are that C is a cause of D

or vice-versa as shown in Figure 2-1(a). If the analyst proceeds with either of these

explanations and performs a gene-knockout experiment where C (or D) is removed

but sees no change in D (respectively C), then the causal DAG fails to be a faithful

representation of the true underlying mechanism. The correlation may instead be

explained by an ADMG as in Figure 2-1(b) where C↔D indicates that C and D

are dependent due to the presence of at least one unmeasured confounding gene that

regulates both of them. That is, if we had data on these unmeasured genes U the

corresponding DAG would have contained a structure C←U→D. However, given

observations only on A,B,C,D, Figure 2-1(b) provides a faithful representation of the

underlying mechanism on the observed variables. It correctly encodes that intervention

on C or D has no downstream effects on the other.

Importantly, each of these different explanations are not just different from a

mechanistic point of view but also imply different independence restrictions on the

observed data. The two DAGs in Figure 2-1(a) imply that A ⊥⊥ D | C or B ⊥⊥ C | D

respectively, whereas Figure 2-1(b) implies A ⊥⊥ D and B ⊥⊥ C. Hence, a causal

discovery procedure that seeks the best fitting structure from the hypothesis class of

ADMGs, will be able to distinguish between these different explanations and choose

the correct one.

Some mechanisms, such as the one shown in Figure 2-1(c), are not distinguishable

using ordinary conditional independence statements alone. In this graph, the only pair

of genes with no edge between them is B and C. The absence of this edge implies that

C does not directly regulate the expression of B and only does so through D. This

missing edge does not correspond to any ordinary conditional independence (there are

no independence constraints implied by the model at all), but does encode a Verma
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constraint, namely that B ⊥⊥ C | D in a re-weighed distribution derived from the

joint, p(A,B,C,D)/p(C | A).

Ancestral ADMGs can “hide” certain important information because they encode

only ordinary conditional independence constraints. An ancestral ADMG that encodes

the same ordinary independence constraints as the arid graph in Figure 2-1(c) is shown

in Figure 2-1(d). It is a complete graph since there are no conditional independence

constraints in Figure 2-1(c). That is, the absence of any C→B edge in Figure 2-1(c)

is “masked” to preserve the ancestrality property. We can potentially learn a more

informative structure if we do not limit our hypothesis class to the class of ancestral

graphs.

2.2 Graphical Interpretation of Linear SEMs

In Chapter 1, we saw that causal models of a DAG may be interpreted as a system

of structural equations that give rise to counterfactual random variables. In this

section, we review linear structural equation models (linear SEMs) and their graphical

representations. Such representations date back to the seminal work of geneticist

Sewall Wright close to a century ago [48, 49]. We make use of the following standard

matrix notation: Aij refers to the element in the ith row and jth column of a matrix

A, indexing A−i,−j refers to the sub matrix obtained by excluding the ith row and jth

column of A, and A:,i refers to the ith column of A.

2.2.1 Linear SEMs and DAGs

Consider a linear SEM on d variables parameterized by a weight matrix θ ∈ Rd×d. For

each variable Vi ∈ V, we have a structural equation

Vi ←
∑
Vj∈V

θjiVj + ϵi,
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where the noise terms ϵi are mutually independent. That is, ϵi ⊥⊥ ϵj for all i ̸= j. Let

G(θ) and D(θ) ∈ {0, 1}d×d be the induced directed graph and corresponding binary

adjacency matrix obtained as follows: Vi→Vj exists in G(θ) and D(θ)ij = 1 if and

only if θij ̸= 0. The induced graph G has no directed cycles if and only if θ can be

made upper-triangular via a permutation of vertex labelings [50]. Such an SEM is

said to be recursive or acyclic and the corresponding probability distribution p(V )

is said to be Markov with respect to the DAG G(θ). This means that conditional

independence statements in p(V ) can be read off from G via d-separation [5].

2.2.2 Systems with Unmeasured Confounding

A set of observed variables is called causally insufficient if there exist unobserved

variables, commonly referred to as latent confounders, that cause two or more observed

variables in the system. In the linear SEM setting, unmeasured variables manifest as

correlated errors [5]. Such an SEM on d variables can be parameterized by two real-

valued matrices δ, β ∈ Rd×d as follows. For each Vi ∈ V, we have a structural equation

Vi ←
∑
Vj∈V δjiVj + ϵi, and the dependence between the noise terms ϵ = (ϵ1, ..., ϵd)

is summarized via their covariance matrix β = E[ϵϵT ]. In the case when each noise

term ϵi is normally distributed the induced distribution p(V ) is jointly normal with

mean zero and covariance matrix Σ = (I − δ)−Tβ(I − δ)−1. The induced graph G

is a mixed graph consisting of directed (→) and bidirected (↔) edges and can be

represented via two adjacency matrices D and B. Vi→Vj exists in G and Dij = 1 if

and only if δij ≠ 0. Vi↔Vj exists in G and Bij = Bji = 1 if and only if βij ̸= 0. That

is, the adjacency matrix B corresponding to bidirected edges in G is symmetric as the

covariance matrix β itself is symmetric (and positive definite.)

We consider three classes of mixed graphs to represent causally insufficient linear

SEMs: ancestral, arid, and bow-free ADMGs. All of these have no directed cycles

and lack specific substructures as defined in the previous section. A distribution p(V )
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induced by a linear Gaussian SEM is said to be Markov with respect to an ADMG G

if absence of an edge between Vi and Vj implies δij = δji = βij = βji = 0 which in turn

implies equality restrictions on the support of all possible covariance matrices Σ(G) by

forcing certain polynomial functions of entries in the covariance matrix to evaluate to

0 [51]. To facilitate causal discovery, we assume a generalized version of faithfulness,

similar to the one in [52], stating that if a distribution p(V ) is induced by a linear

Gaussian SEM where δij = δji = βij = βji = 0 then there is no edge present between

Vi and Vj in G. In other words, we define p(V ) to be Markov and faithful with respect

to G if absence of edges in G occurs if and only if the corresponding entries in δ and β

are 0.

As a concrete example, let Σ denote the covariance matrix of standardized normal

random variables A,B,C,D drawn from a linear SEM that is Markov with respect to

the ADMG in Figure 2-1(c), and let δ and β denote the corresponding normalized

coefficient matrices. By standard rules of path analysis [48, 49], the Verma constraint

due to the missing edge in Figure 2-1(c) corresponds to the equality constraint:

ΣBC − δCDδDB − δACβAB − δACβADδDB = 0.

Since entries in the covariance matrix are rational functions of δ and β, the above

constraint can be re-expressed solely in terms of entries in Σ. Our faithfulness assump-

tion is used to ensure that such polynomial functions of the covariance matrix do not

“accidentally” evaluate to zero, and only do so due to a missing edge in the underlying

ADMG.

As mentioned earlier, ancestral ADMGs cannot encode such generalized equality

restrictions but arid and bow-free ADMGs can. For any ADMG G, an arid ADMG

that shares all non-parametric equality constraints with G may be constructed by an

operation called maximal arid projection [39]. We consider bow-free ADMGs because

the algebraic constraint characterizing the bow-free property is simpler than the one
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characterizing the arid property. Though the lack of global identifiability in bow-free

ADMG models (only almost everywhere identifiable) can pose problems for model

convergence, we confirm in our experiments that enforcing only the weaker bow-free

property is often sufficient for accurate causal discovery in practice.

2.3 Differentiable Algebraic Constraints

We now introduce differentiable algebraic constraints that precisely characterize when

the parameters of a linear SEM induce a graph that belongs to any one of the ADMG

classes described in the previous section. Our results are summarized in Table 2-I in

terms of the binary adjacency matrices but as we explain below, the results extend

in a straightforward manner to real-valued matrices that parameterize a linear SEM.

In Table 2-I, A ◦B denotes the Hadamard (elementwise) matrix product between A

and B and eA denotes the exponential of a square matrix A defined as the infinite

Taylor series, eA = ∑∞
k=0

1
k!A

k. We formalize the properties of our constraints in the

following theorem.

Theorem 1. The constraints shown in Table 2-I are satisfied if and only if the

adjacency matrices satisfy the relevant property of ancestrality, aridity, and bow-

freeness respectively.

We defer formal proofs to the Appendix but briefly provide intuition for our results.

For a binary square matrix A, corresponding to a directed/bidirected adjacency matrix,

the entry Akij counts the number of directed/bidirected walks of length k from Vi

to Vj; see for example [53]. For k = 0, Dk is the identity matrix by definition and

for k ≥ 1, each diagonal entry of the matrix Dk appearing in the infinite series eD

thus corresponds to the number of directed walks of length k from a vertex back to

itself, i.e., the number of directed cycles of length k. The quantity trace(eD)− d is

therefore a weighted count of the number of directed cycles in the induced graph and
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Algorithm 1 Greenery

1: Inputs: d× d matrices (D,B)
2: greenery← 0 and I ← d× d identity matrix
3: for i in (1, . . . , d) do
4: Df , Bf ← D,B
5: for j in (1, . . . , d− 1) do
6: t← row sums of eBf ◦Df ▷ 1× d vector
7: f ← tanh(t+ Ii) ▷ 1× d vector
8: F ← [fT ; . . . ; fT ]T ▷ d× d matrix
9: Df ← Df ◦ F and Bf ← Bf ◦ F ◦ F T

10: C ← eDf ◦ eBf
11: greenery ← greenery + sum(C:,i) ▷ sum of ith column

12: return greenery− d

ADMG Algebraic Constraint

Ancestral trace(eD)− d+ sum(eD ◦B) = 0

Arid trace(eD)− d+ Greenery(D,B) = 0

Bow-free trace(eD)− d+ sum(D ◦B) = 0

Table 2-I. Differentiable algebraic constraints that characterize the space of binary
adjacency matrices that fall within each ADMG class. The Greenery algorithm to
penalize c-trees is described in Algorithm 1.

is zero precisely when no such cycles exist. Hence, this term appears in all algebraic

constraints presented in Table 2-I as requiring trace(eD)− d = 0 enforces acylicity.

Similar reasoning can be used to show that requiring sum(eD ◦ B) = 0 enforces

ancestrality. An entry i, j of the matrix Dk ◦B appearing in the infinite series counts

the number of violations of ancestrality due to a directed path from Vi to Vj of length

k and a bidirected edge Vi↔Vj. The sum of all such terms is then precisely zero when

the induced graph is ancestral. The bow-free constraint sum(D ◦B) = 0 is simply a

special case of the ancestral constraint where directed paths of length ≥ 2 need not

be considered.

C-trees are known to be linked to the identification of causal parameters, specifically,
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the effect of each variable’s parents on the variable itself [28]. The outer loop of

Algorithm 1 iterates over each vertex Vi to determine if there is a Vi-rooted c-tree.

The inner loop performs the following recursive simplification at most d − 1 times.

At each step, the sum of the ith row of the matrix eBf ◦ Df is zero if and only if

there are no bidirected paths from Vj to any of its direct children. If this criterion –

called primal fixability – is met, the effect of Vj on its children is identified and the

post-intervention distribution can be summarized by a new graph with all incoming

edges into Vj removed [13]. Lines 7-9 are the algebraic operations that correspond to

deletion of incoming directed and bidirected edges into primal fixable vertices, except

Vi itself as it is the root node of interest. The hyperbolic tangent function is used to

ensure that recursive applications of the operation do not result in large values. At

the end of the recursion, the co-existence of directed and bidirected paths to Vi imply

the existence of a c-tree. Hence, the quantity sum(C:,i) is non-negative and is zero if

and only if there is no Vi-rooted c-tree. Concrete examples of applying Algorithm 1,

and its connections to primal fixing are provided in Appendix B.1.

It is easy to see that the above results and intuitions can be applied to arbitrary non-

negative real-valued matrices D and B. Theorem 1 then extends in a straightforward

manner to parameters of a linear SEM by noting that for any real-valued matrix A,

the matrix A ◦ A is real-valued and non-negative.

Corollary 1.1. The result in Theorem 1 and the constraints in Table 2-I can be

applied to linear SEMs by plugging in D ≡ δ ◦ δ and B ≡ β′ ◦ β′, where β′
ij = βij for

i ̸= j and 0 otherwise.

Finally, while the matrix exponential makes theoretical arguments simple, the

resulting constraints are not numerically stable as pointed out in [45]. The following

corollary provides a more stable alternative that we use in our implementations.

Corollary 1.2. The results in Theorem 1 and Corollary 1.1 hold if every occurrence
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of a matrix exponential eA is replaced with the matrix power (I + cA)d for any c > 0,

where I is the identity matrix.

2.4 Differentiable Causal Discovery for ADMGs

Let θ be the parameters of a linear SEM. We use θ here to refer to a generic parameter

vector that can be reshaped into the appropriate parameter matrices δ, and β as

discussed in Section 2.2. Let G(θ) be the corresponding induced graph. Given a dataset

X ∈ Rn×d drawn from the linear SEM and a hypothesis class G that corresponds

to one of ancestral, arid, or bow-free ADMGs, the combinatorial problem of finding

an optimal set of parameters θ∗ ∈ Θ that minimizes some score f(X; θ) such that

G(θ) ∈ G can be rephrased as a more tractable continuous program.

min
θ∈Θ

f(X; θ)

s.t. G(θ) ∈ G
⇐⇒

min
θ∈Θ

f(X; θ)

s.t. h(θ) = 0.
(2.1)

The results in the previous section in Theorem 1, its Corollaries and Table 2-I tell

us how to pick the appropriate function h(θ) for each hypothesis class G. We now

discuss choices of score function f(X; θ) and procedures to minimize it for different

hypothesis classes.

2.4.1 Choice of Score Function

Given a dataset X ∈ Rn×d, the Bayesian Information Criterion (BIC) is given by

−2 ln(L(X; θ)) + ln(n)∑dim(θ)
i=1 I(θi ̸= 0), where L(·) is the likelihood function and

dim(θ) is the dimensionality of θ. The BIC is consistent for model selection in curved

exponential families [54, 55], i.e., as n→∞ the BIC attains its minimum at the true

model (or one that is observationally equivalent to it). This results in the following

desirable theoretical property when the BIC is used as our objective function.

Theorem 2. Let p(V ; θ∗) be a distribution in the curved exponential family that is

Markov and faithful with respect to an arid ADMG G∗. Finding the global optimum
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of the continuous program in display (2.1) with f ≡ BIC yields an ADMG G(θ) that

implies the same equality restrictions as G∗.

However, the presence of the indicator function makes the BIC non-differentiable

and optimization of L0 objectives like the BIC is known to be NP-hard [56]. While L1

regularization is a popular alternative, it often leads to inconsistent model selection

and overshrinkage of coefficients [57]. It is known that optimizing the L1 regularized

objective yields the true model when the data comes from a linear Gaussian SEM

when all noise terms in the system have equal variance [58, 59]. However, recent work

has shown that this is an untestable assumption that implies a known causal ordering

on all variables in the system and that causal discovery procedures that rely on this

information may be particularly prone to drops in performance when the data are

re-scaled [60, 61]. Hence, we pursue approximations to the BIC score itself.

Several procedures have been devised in order to provide approximations of the

BIC score; see [62] for an overview. In this work, we consider the approximate BIC

(ABIC) obtained via replacement of the indicator function with the hyperbolic tangent

function as outlined in [63] and [64]. That is, we seek to optimize −2 ln(L(X; θ)) +

λ
∑dim(θ)
i=1 tanh(c|θi|), where c > 0 is a constant that controls the sharpness of the

approximation of the indicator function and λ controls the strength of regularization.

As highlighted in [63], the ABIC is relatively insensitive to the choice of c. The main

hyperparameter is the regularization strength λ. In our experiments we set c = ln(n)

and report results for different choices of λ. In the next section we discuss our strategy

to optimize the ABIC subject to the constraint that θ induces a valid ADMG within

a hypothesis class G.

2.4.2 Solving the Continuous Program

We formulate the optimization objective as minimizing the ABIC subject to one of

the algebraic equality constraints in Table 2-I. We use the augmented Lagrangian
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Algorithm 2 Regularized RICF

1: Inputs: (X, tol,max iterations, h, ρ, α, λ)
2: Initialize estimates δt and βt and set c = ln(n)
3: Define LS(θ) as 1

2n
∑d
i=1 ||X:,i −Xδ:,i − Z(i)β:,i||22

4: for t in (1, . . . ,max iterations) do

5: ∀i ∈ (1, . . . , d) compute ϵi ← X:,i − δt:,iX
6: ∀i ∈ (1, . . . , d) compute Z(i) ∈ Rn×d as Z(i)

:,i = 0 and Z
(i)
:,−i ← ϵ−i(βt−i,−i)−T

7: δt+1, βt+1 ← argminθ∈Θ

{
LS(θ) + ρ

2 |h(θ)|2 + αh(θ) + λ
∑dim(θ)
i=1 tanh(c|θi|)

}
8: ∀i ∈ (1, . . . , d) compute ϵi ← X:,i − δt+1

:,i X
9: ∀i ∈ (1, . . . , d) set βt+1

ii ← var(ϵi)
10: if ||δt+1 − δt + βt+1 − βt|| < tol then
11: break
12: return δt, βt

formulation [65] to convert the problem into an unconstrained optimization problem

with a quadratic penalty term, which can be solved using a dual ascent approach.

Specifically, in each iteration we first solve the primal equation:

min
θ∈Θ

ABICλ(X; θ) + ρ

2 |h(θ)|2 + αh(θ),

where ρ is the penalty weight and α is the Lagrange multiplier. Then we solve the

dual equation α ← α + ρh(θ∗). Intuitively, optimizing the primal objective with a

large value of ρ would force h(θ) to be very close to zero thus satisfying the equality

constraint.

However, unlike DAG models, maximum likelihood estimation of parameters under

the restrictions of an ADMG does not correspond to a simple least squares regression

that can be solved in one step. [66] proposed an iterative procedure known as Residual

Iterative Conditional Fitting (RICF) that produces a sequence of maximum likelihood

estimates for δ and β under the constraints implied by a fixed ADMG G. Each RICF

step is guaranteed to produce better estimates than the previous step and the overall

procedure is guaranteed to converge to a local optimum or saddle point when G(θ) is
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Algorithm 3 Differentiable Discovery

1: Inputs: (X, tol,max iterations, s, h, λ, r ∈ (0, 1))
2: Initialize θt, αt,mt ← 1
3: while t < max iterations and h(θt) > tol do

4: θt+1 ← θ∗ from Regularized RICF with inputs (X, 10−4,mt, h, ρ, αt, λ)
where ρ is such that h(θ∗) < rh(θt)

5: αt+1 ← αt + ρh(θt+1)
6: mt+1 ← mt + s

7: return G(θt)

arid/ancestral, i.e., globally identified [38].

In Algorithm 2 we describe a modification of RICF that directly inherits the

aforementioned properties with respect to the regularized maximum likelihood ob-

jective, and can be used to solve the primal equation of our procedure. Briefly, for

Gaussian ADMG models, maximization of the likelihood corresponds to minimization

of a least squares regression problem where each variable i is regressed on its direct

parents Vj→Vi and pseudo-variables Z formed from the residual noise terms and

bidirected coefficients of its siblings Vj↔Vi. At each RICF step, we compute Z with

respect to the current parameter estimates, and then solve the primal equation in

line 7 of the algorithm. We repeat this until convergence or a pre-specified maximum

number of iterations. As RICF is not expected to converge during initial iterations

of the augmented Lagrangian procedure when the penalty applied to h(θ) is quite

small (resulting in non-arid graphs), we start with a small number of maximum RICF

iterations and at each dual step increment this number. Our simulations show this

works quite well in practice with convergence of the algorithm obtained typically

within 10-15 steps of the augmented Lagrangian procedure.

We summarize our structure learning algorithm in Algorithm 3. Though optimiza-

tion of the objective in display (2.1) is non-convex, standard properties of dual ascent

procedures as well as the RICF algorithm guarantee that at each step in the process
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we recover parameter estimates that do not increase the objective we are trying to

minimize. Further, per Theorem 2, if optimization of the ABIC objective for a given

level of λ provides a good enough approximation of the BIC, the global minimizer (if

found by our optimization procedure) yields a graph that implies the same equality

restrictions as the true graph.

2.4.3 Reporting Equivalent Structures

Our procedure only reports a single ADMG but there may exist multiple ADMGs

that imply the same equality restrictions on the observed data. In the linear Gaussian

setting, exact recovery of the skeleton of the ADMG (i.e., adjacencies without any

orientations) is possible, but complete determination of all edge orientations is not.

Reporting the uncertainty in edge orientations is important for downstream causal

inference tasks. When limiting our hypothesis class G to ancestral ADMGs, the

non-parametric equivalence class can be represented via a Partial Ancestral Graph

(PAG). After obtaining a single ADMG using our procedure, we can easily reconstruct

its equivalence class using rules in [67] to create the summary PAG. For arid and

bow-free ADMGs, a full theory of equivalence that captures Verma constraints is still

an open problem. Thus, while we are able to recover the exact skeleton, we coarsen

reporting of edge orientations by converting the estimated ADMG into an ancestral

ADMG and reporting the PAG. Connections in this PAG may be pruned using sound

rules from [68] and [69] though we do not pursue this approach in the present work.

Deriving a summary structure that captures the class of all ADMGs that are equivalent

up to equality restrictions is an important open problem. The authors in [70] made

progress on equivalence theory for 4-variable ADMGs by enumerating all possible

4-variable ADMGs and evaluating the BIC score for each one, grouping graphs with

equal scores to form an “empirical equivalence class.” We believe something similar

could be done for larger graphs using our proposed causal discovery procedure. If
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Figure 2-2. Top panel: plots showing rate of recovery of the true equivalence class of
ADMGs with a Verma constraint as a function of sample size. Bottom panel: plots showing
rate of recovery of the true equivalence class or a super model of the true equivalence
class of ADMGs with a Verma constraint as a function of sample size.

relevant patterns in larger empirical equivalence classes become apparent, this may

result in significant progress towards characterizing nested Markov equivalence.

2.5 Experiments

For a given ADMG, we generate data as follows. For each Vi→Vj we uniformly

sample δij from ±[0.5, 2.0], for Vi↔Vj, we sample βij = βji from ±[0.4, 0.7], and for

each βii we sample from ±[0.7, 1.2] and add sum(|βi,−i|) to ensure positive definiteness

of β.

Since randomly generated ADMGs are unlikely to exhibit Verma constraints, we

first consider recovery of the ADMG shown in Figure 2-1(c) and two other ADMGs
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Figure 2-3. Application of the ABIC bow-free method to protein expression data from
[1] .

A→B→C→D,B↔D and a Markov equivalent ADMG obtained by replacing

A→B with A↔B which have Verma constraints established in the prior literature.

Exact recovery of Figure 2-1(c) is possible while the latter ADMGs can be recovered

up to ambiguity in the adjacency between A and B as A→B or A↔B. We compare

our arid and bow-free algorithms to the greedyBAP method proposed in [68] (the only

other method available for recovering such constraints). Since greedyBAP is designed

to perform random restarts, we allow all methods 5 uniformly random restarts and

pick the final best fitting ADMG. As mentioned earlier, our main hyperparameter

is the regularization strength λ, which we set to 0.05 for all experiments. Choice of

other hyperparameters and additional experiments with varying λ are provided in

Appendix B. We generate 100 datasets for each sample size of [500, 1000, 1500, 2000]

from a uniform sample of the 3 aforementioned ADMGs. The results are summarized

via barplots in Figure 2-2.
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The ABIC arid and bow-free procedures both outperform the greedyBAP procedure

in recovering the true equivalence class; see top panel of Figure 2-2. The highest

recovery rate is shown by the bow-free procedure with 39% at n = 1000. Though this

seems low, these results are quite promising in light of geometric arguments in [71]

that show reliable recovery of Verma constraints may require very large sample sizes.

In examining the modes of failure of each algorithm, our ABIC procedures often fail to

recover the true ADMG by returning a super model of the true equivalence class while

the greedyBAP procedure often returns an incorrect independence model; see bottom

panel of Figure 2-2. The former kind of mistake does not yield bias in downstream

inference tasks while the latter does. Our bow-free procedure yields more accurate

results than the arid one most likely due to posing an easier optimization problem. In

the 400 runs used to generate plots in Figure 2-2, the bow-free procedure failed to

converge only 3 times and the arid one never failed to converge, which is consistent

with established theoretical results on almost-everywhere and global identifiability of

these models.

For larger randomly generated arid ADMGs, to save computation time, we only

compare our bow-free procedure with greedyBAP, and for ancestral ADMGs, we

compare our ancestral procedure with FCI [4] and greedySPo [42]. We also obtained

results for GFCI which were slightly worse than FCI and greedySPo so we only report

the latter. Random arid/ancestral ADMGs on 10 variables were generated by first

producing a random bow-free ADMG with directed and bidirected edge probabilities

of 0.4 and 0.3 respectively, and then applying the arid/ancestral projection. We report

true positive and false discovery rates for exact skeleton recovery of the true ADMG

as well as recovery of tails and arrowheads in the true PAG for 100 datasets of 1000

samples each. For FCI, we used a significance level of 0.15 which gave the most

competitive results. Our method performs favorably in recovery of both arid and

ancestral ADMGs. Results for 10 variable arid and ancestral ADMGs, which roughly

34



Skeleton Arrowhead Tail

Method tpr ↑ fdr ↓ tpr ↑ fdr↓ tpr ↑ fdr ↓

greedyBAP [68] 0.80 0.30 0.41 0.58 0.11 0.65

ABIC (bow-free) 0.89 0.17 0.72 0.29 0.30 0.45

Table 2-II. Comparison of our method to greedyBAP for recovering 10 variable arid
ADMGs. We report true positive rate (tpr) and false discovery rate (fdr) — the fraction
of predicted edges that are actually present in the target structure or the fraction that are
absent from the target structure, respectively — for skeleton, arrowhead and tail recovery.
(↑/↓ indicates higher/lower is better.)

Skeleton Arrowhead Tail

Method tpr ↑ fdr ↓ tpr ↑ fdr↓ tpr ↑ fdr ↓

FCI [4] 0.51 0.12 0.41 0.53 0.10 0.73

greedySPO [42] 0.88 0.27 0.45 0.59 0.32 0.81

ABIC (ancestral) 0.85 0.11 0.72 0.23 0.66 0.47

Table 2-III. Comparison of our method to FCI and gSPo for recovering 10 variable
ancestral ADMGs. We report true positive rate (tpr) and false discovery rate (fdr) — the
fraction of predicted edges that are actually present in the target structure or the fraction
that are absent from the target structure, respectively — for skeleton, arrowhead and tail
recovery. (↑/↓ indicates higher/lower is better.)

matches the dimensionality of our data application, are summarized in Tables 2-II

and 2-III respectively.

Finally we apply our ABIC bow-free method to a cleaned version of the protein

expression dataset in [1] from [72]. The result is shown in Figure 2-3. The precision

and recall of our procedure with respect to the true adjacencies provided in [72] are

0.77 and 0.61 respectively. We do not provide evaluation of orientations as there is

no consensus regarding many of them. However, we briefly highlight the importance

of a Verma restriction in producing a model that is consistent with an intervention

experiment performed by [1]. The authors found that manipulation of Erk produced

no downstream effect on PKA though they are correlated. The ADMG in Figure 2-3

has an edge Erk↔PKA that is consistent with this finding. Moreover, this edge

cannot be oriented in either direction without producing different independence models
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than the one implied by Figure 2-3. This is due to a Verma restriction between Akt

and PKC; we provide more details in Appendix B. We confirm that orienting the

edge as Erk←PKA or Erk→PKA leads to an increase in the BIC score, indicating

that the Verma restriction capturing the ground truth is preferred over these other

explanations.

2.6 Related and Future Work

Causal discovery methods for learning ancestral ADMGs from data are well developed

[4, 73, 41], but procedures for more general ADMGs are understudied. [74] propose a

constraint-based satisfiability solver approach for mixed graphs with cycles. However,

their proposal relies on an independence oracle that does not address how to perform

valid statistical tests for arbitrarily complex equality restrictions and their procedure

may lead to models where the corresponding statistical parameters are not identified

(so goodness-of-fit cannot be evaluated). A score-based approach to discovery for linear

Gaussian bow-free ADMGs was proposed in [68]. Their method relies on heuristics

that may lead to local optima and is not guaranteed to be consistent. Similar issues

are faced by the method in [75], which makes a linear non-Gaussian assumption.

Currently, there does not exist any consistent fully score-based procedure for learning

general ADMGs (besides exhaustive enumeration which is intractable); there are greedy

algorithms [42] and hybrid greedy algorithms [41] for ancestral ADMGs, but these are

computationally intensive due to the large discrete search space and extending these to

arid or bow-free ADMGs would be non-trivial. The procedure we have proposed has

the benefit of being easy to adapt to either ancestral, arid, or bow-free ADMGs while

avoiding the need to solve a complicated discrete search problem, instead exploiting

state-of-the-art advances in continuous optimization. Approaches to learning latent

variable DAGs, e.g., [76, 77], rather than ADMGs over the observed variables are also

related to our problem. However, these approaches impose assumptions, such as the
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purity assumption which requires the absence of edges between observed variables,

which may be considered restrictive in many applied settings.

We have extended the continuous optimization scheme of causal discovery to

include models that capture all equality constraints on the observed margin of hidden

variable linear SEMs with Gaussian errors. Extensions to other parametric settings

(including non-linear models) rely on the development of general curved exponential

ADMG models and methods for maximum likelihood estimation which, outside of the

discrete and linear Gaussian case, is still an open problem. However, the differentiable

algebraic constraints we have provided are non-parametric and may thus also enable

future development of non-parametric causal discovery methods. We conjecture that

using the ABIC as the objective function may also give our causal discovery procedure

nice theoretical properties, such as robustness to data re-scaling. However, these

claims require further investigation (both theoretical and empirical) and careful study.

Joint optimization of parameters and causal structure may also lend itself to ideas

for simultaneous causal discovery and estimation as pursued by [78] for the case of

covariate adjustment functionals. There also exists room for improving computational

efficiency of the procedure to make its run time more competitive with existing greedy

procedures, for e.g., by implementing a faster acyclicity constraint proposed in [79] and

using the Sherman-Morrison formula [80] to perform efficient matrix inversions in the

RICF algorithm. Studying the properties of hybrid procedures that use the methods

proposed here as a first step before applying a constraint-based method may also be

of interest. Finally, we propose that the methods developed in this work may also

help explore questions regarding distributional equivalence and Markov equivalence

with respect to all equality restrictions in ADMG models.
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Chapter 3

Causal Inference Under
Interference and Network
Uncertainty

In many scientific and policy settings, research subjects do not exist in isolation but

in interacting networks. For instance, data drawn from an online social network

will exhibit homophily (friends are similar, because they are friends) and contagion

(friends may causally influence each other) [81, 31, 82, 32]. A related phenomenon

that is well-documented in the infectious disease epidemiology literature is that of

herd immunity – vaccinating some subset of a population may confer immunity to

the entire population. Resource constraints in allocation problems may also induce

data dependence – a phenomenon known as allocational interference [83, 84, 85]. The

above phenomena imply that the treatment given to one individual or unit may affect

the outcomes for others within their (social) network.

In the context of causal inference, methods for dealing with data dependence are

developed under the heading of interference [86, 84, 87, 88, 89, 31, 85, 33, 90]. Most

such work assumes the structure of the dependence (which units depend on which

others, and how) is known precisely. For example, [89] assumes units in the data

may be organized into equal sized neighborhoods, where units within a neighborhood

are pairwise dependent and units across neighborhoods are not. Some work makes
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alternative assumptions, e.g., [33] assumes that neighborhoods are drawn from a

known Markov random field.

In many applications, the network inducing dependence between units may not be

known exactly. For instance, in vulnerable, stigmatized, or isolated communities (such

as groups of individuals with intravenous substance use disorders, or remote rural

communities), we may have no way of reconstructing the precise social ties between

individuals. Often, online databases of social media users may be anonymized, with

friendship ties deliberately omitted. There has been some work in such settings that

involves adapting the data collection method itself in order to discover the underlying

networks: e.g., snowball sampling in [91] and [92]. Unfortunately, such study designs

are not always possible to arrange in advance, and most data available on networks of

interacting units is not collected under such designs.

While there is a rich literature on model selection from observational data in the

context of causal inference (e.g., [4, 93, 94, 58]), to our knowledge all previous work has

assumed the absence of interference. This chapter explores learning the dependence

structure using graphical model selection methods. Techniques for structure learning

from probabilistic relational models and physical module networks are also related

to this work [95, 96, 97]. However, these models are not particularly well suited to

modeling the phenomena that arise in the infectious disease setting or settings involving

collective-decision making processes, i.e., biological and social contagion respectively.

As described in Chapter 1, chain graph models under the LWF interpretation have

been used to model such phenomena and form the focus of this chapter.

The contributions of this chapter may be viewed in one of two ways. From the

point of view of causal inference under interference, it provides methods for estimating

causal effects when there is substantial uncertainty about network structure. From the

point of view of causal discovery, it introduces novel algorithms for model selection

when units are dependent due to a network, the structure of which is unknown.
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L1 L2 L3 L4

A1 A2 A3 A4

Y1 Y2 Y3 Y4

Figure 3-1. A chain graph over three variables (L,A, and Y ) on 4 individuals, representing
possible relationships between disposable needle use and risk of blood-borne disease among
heroin-users.

3.1 Motivating Example and Background Assump-
tions

To motivate the work in this chapter, we discuss an example application. Consider a

public health program aimed at lowering the incidence of blood-borne diseases such as

HIV in at-risk individuals who are addicted to heroin and share needles when injecting

intravenously. An example of such a program is described in [98]. The program creates

pop-up clinics around the city where disposable needles are distributed for free to

individuals in need, but due to limited resources only a limited number of individuals

will actually receive these needles. We would like to know, in this restricted resource

setting, if the use of disposable needles spreads amongst the rest of the population.

Additionally, we would like to detect the phenomenon of herd immunity – whether

some members of the population being protected due to taking advantage of the clean

needles confer this protection to others who do not.

Data on heroin users was collected via such program, with users arranged by neigh-

borhood or municipality. Users in different neighborhoods are assumed independent,

but users within the same neighborhood are likely dependent. This setting is known

as partial interference [88]. For each individual i, data is collected on their use of

disposable needles Ai, their subsequent health outcome Yi (risk of obtaining blood-born

disease), along with a vector of pre-treatment covariates Li = (L1,i, ..., Lp,i).
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We may be interested in quantifying the causal effects of Ai on Yj, for arbitrary i

and j within a neighborhood, or network-averaged versions of such effects [85]. We

may assume that background knowledge or study design implies a “known” individual-

level causal structure for each i, namely that Ai→Yi and Ai←Li→Yi, but that

we are uncertain about network ties among users. One approach is to assume the

least restrictive model, where all users in a neighborhood are arbitrarily dependent.

This would correspond to a complete network, where every pair of vertices is directly

connected. However, assuming a complete network when the true network is sparse

ignores useful structure in the problem and leads to inefficient estimates of target

quantities. In addition, complete networks often lead to likelihoods that are intractable

to evaluate. An alternative is to a select a sparse network supported by the data. In

addition to enabling tractable and statistically efficient inference, such an approach

may also rule out the presence of certain causal effects without explicitly estimating

them, if corresponding pathways are absent in the selected network.

As an example, if neighborhoods have 4 units, we may aim to learn a chain

graph (CG) model such as the one shown in Figure 3-1. Recall that statistical and

causal models of chain graphs were described in Chapter 1. In the network setting,

directed edges in the model represent direct causal influences while undirected edges

representing symmetric network ties. The CG model in Figure 3-1 tells us that we

should expect some spread of disposable needle use from one unit to another. However,

it also tells us that users in neighborhoods are split into two non-interacting groups:

{1, 2} and {3, 4}. This implies the absence of contagion from one group to another.

In addition, the conditional independences among units implied by this split suggests

that contagion effects within groups may be estimated more efficiently as compared

to a statistically saturated model, with a complete network across units.

The algorithms proposed in this chapter are consistent (in the sense that they

asymptotically converge on the true model) under a set of assumptions which we
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now informally summarize. We assume the true data-generating process corresponds

perfectly (satisfying Markov and faithfulness conditions) to some unknown chain graph,

with two restrictions: (1) the unit-level graph is known, reflecting the aforementioned

causal ordering between pre-treatment covariates, treatment variables, and outcomes;

and (2) the graph respects what we later call tier symmetry, which restricts connections

between variables at the same “tier” in the causal ordering to be symmetric. We

assume the data is distributed with some (known) likelihood in the exponential family,

as well as some weak statistical regularity conditions. We also present algorithms that

make an additional simplifying assumption on the graphical structure – namely that

influence between units is the same for all unit pairs – but such an assumption is not

strictly necessary for consistency.

The rest of this chapter is organized as follows. We first describe an example causal

estimand that one may be interested in estimating using a CG network model, such

as the one shown in Figure 3-1. We then briefly describe a taxonomy of problems that

may be pursued with regards to CG network model selection and define the subset

that we choose to tackle in this chapter. We then present algorithms to learn the

structure of CG network models under varying degrees of uncertainty (corresponding

to various problems in our defined subset) with respect to edges between units in the

network. Finally we present experiments demonstrating the efficacy of our methods

for network recovery and downstream estimation of network causal effects.

3.2 The Conditionally Ignorable Network Model
and Network Causal Effects

We consider CGs decomposed into three disjoint sets of variables similar to the one

shown in Figure 3-1: L, represents vectors of baseline (pre-treatment) factors; A,

represents treatments; and Y , represents outcomes. For each unit i in a neighborhood,

we assume Li ⊆ paG(Ai), and Li∪Ai ⊆ paG(Yi). This represents a common assumption
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(which we call causal ordering) in causal inference that for each unit both baseline

factors and treatment potentially affect the outcome, and that the baseline factors

also affect treatment assignment. Here each unit has one treatment variable Ai, one

outcome variable Yi, and possibly many baseline variables Li. In interference settings,

it is standard to allow that variables for another unit j may influence variables for

unit i. In our case, there is a further complication: the precise nature of this influence

is unknown.

This model implies, for positive p(V ), the following standard assumptions from

the interference literature: Y (a) ⊥⊥ A | L (network ignorability); p(A = a | L) > 0 ∀a

(positivity); and Y (a) = Y if A = a (network consistency). Under these assumptions,

the joint counterfactual outcome is identified, regardless of the underlying network

structure, as the following special case of the chain graph g-formula in Eq. 1.12 and

Eq. 1.13, p(Y (a)) = ∑
L p(Y | A = a, L)× p(L).

Given a particular treatment assignment probability π(A), a number of causal

effects of interest may be defined; see [89] for an extensive discussion. In this chapter,

we focus on a single effect, the population average overall effect (PAOE), as an exemplar

network effect though our results generalize to any identified causal effect of interest in

network settings (for example, spillover effects.) Consider identical and independent

neighborhoods of size m as in a partial interference setting and two fixed treatment

assignment probabilities π1 and π2. Then the PAOE is defined as:

1
m

m∑
i=1

∑
A

E[Yi(A)]× {π1(A)− π2(A)}. (3.1)

Under the aforementioned assumptions, this effect is identified by the following

functional [89]:

1
m

m∑
i=1

∑
L,A

E[Yi | A,L]× p(L)× {π1(A)− π2(A)}. (3.2)

A number of estimation strategies for Eq. 3.2 are possible under various assumptions

on network structure. For example, [89] considered an inverse probability weighted
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estimator. In this chapter, we use the auto-g-computation algorithm from [33] to

estimate the PAOE, which makes use of the Gibbs sampler interpretation of CGs and

allows for arbitrary network structure; details of this estimator are in [33].

3.3 Taxonomy of Problems in Network Model Se-
lection

We are interested in estimating causal effects like the PAOE under the assumptions

of network ignorability, positivity, and consistency when there is uncertainty about

the network structure. We first provide a taxonomy of problems of this type, having

different levels of difficulty depending on the degree of uncertainty present. We will

use chain graphs to represent both causal relationships and network dependence

among units that form a (“social”) network. We define an undirected network N as a

graph (distinct from our CG of interest) where the vertices correspond to units (e.g.

individuals i, j, ...), not random variables. Units may be adjacent or non-adjacent in

N based on whether they are “friends” or otherwise directly dependent. For each

unit i, we denote the unit-level variables for i in the CG G (e.g., Li, Ai, and Yi in

Figure 3-1) by Vi, and edges among those variables by Ei. Similarly, for a pair of units

i, j which are adjacent in N , we represent the set of edges from Vi to Vj (and vice

versa) by Eij. It is the presence of these edges that induces data dependence between

i and j in the analysis of dependent data. The set of Eij for all pairs i, j adjacent in

N (i.e., the set of all cross-unit edges) will be denoted by EN .

The most general version of the network selection problem occurs when neither the

causal structure of each unit, nor the network structure inducing dependence between

units, is known. In this case the problem reduces to a structure learning problem for

arbitrary chain graphs, as considered in [99, 100, 101, 102]. We do not pursue this

version of the problem here for two reasons. First, the causal structure for each unit

is often known due to background knowledge on temporal ordering and study design,
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as is the case for our needle-dispensary motivating example. Second, model selection

of arbitrary CGs is known to be a very challenging problem which (in the worst case)

may require very large sample sizes [71].

In many settings, the causal structure for each individual unit is known and is

typically assumed to be the same for every unit, i.e., Ei = Ej for all i, j. The problem

of model selection then amounts to learning the structure of the connections between

units i.e., Eij for all i, j. The search space for such a problem, while much smaller

than the general problem, is still exponential. For a block that contains m units, there

are
(
m
2

)
possible pairings of units, leading to 2(m2 ) possible networks. The number of

possible valid chain graphs is even larger, since units i, j adjacent in a network could

be connected in a variety of ways via (undirected or directed) edges in Eij. Learning

these connections requires a search through all possible combinations of edges that

form Eij such that the overall graph is a CG.

We may restrict the problem further by requiring that the connections between

any two units, if present, are homogenous, meaning that dependence between any

two units, if it exists, arises in the same way. Formally, we define homogeneity such

that, for all pairs (i, j), (k, l) ∈ N , Eij = Ekl. Notice that the space of homogenous

networks is still fairly large. The problem may be made more tractable by one of the

following two assumptions. We may assume the existence of network connections is

known, but that their types are unknown, i.e., we know N and would like to learn Eij .

Alternatively, we may assume we know how two adjacent units are connected, but not

which pairs are adjacent, i.e., we know Eij and would like to learn N . We may also

have no such background knowledge. In the following, we present algorithms for both

homogenous and heterogenous settings.

Throughout, we make an assumption which we call tier symmetry, which is

commonly made implicitly or explicitly in the interference literature [89, 33]. That

is, we require connections between variables in the same “tier” of causal ordering
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to represent symmetric relations between the variables. This restricts edges Li –Lj,

Ai –Aj, and Yi – Yj to always be undirected. Also it is natural to extend the known

causal ordering of variables to connections between units: while we allow for e.g.,

Ai→Yj, the reverse, Yj→Ai is ruled out. Finally, we rule out the existence of

undirected edges connecting variables across tiers, e.g, edges of the form Ai – Yj , since

the existence of such edges, coupled with our causal ordering assumption, leads to

graphs which are not CGs.

3.4 Greedy Network Search

In this section, we will describe a greedy score-based procedure (readers may contrast

this with the continuous optimization based procedure for ADMGs described in

Chapter 2) to learn the true underlying chain graph network model. We begin by

describing an assumption used to facilitate learning graphical structures in the network

based on independences in the data. In Chapter 1, we introduced the global Markov

property of CGs which stated that the absence of edges in a CG G imply conditional

independences in the joint distribution p(V ), which can be obtained via c-separation.

In what follows, we make the faithfulness assumption, which is the converse of the

global Markov property: if X ⊥⊥ Y | Z in p(V ), then X is c-separated from Y given

Z in G. This is directly analogous to the faithfulness assumption made when selecting

DAG models from data via constraint-based or score-based methods [4, 93].

3.4.1 Model Scores and the Pseudolikelihood

We will learn the structure of the network using a score-based approach to model

selection. Score-based methods proceed by choosing the graph (from among some

space of candidates) that optimizes a model score. Exhaustive model search is typically

infeasible, so it is popular to employ greedy methods that optimize only “locally,” that

is, they traverse the space of candidate graphs considering only single-edge additions
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and deletions. Under some conditions, such greedy procedures can be shown to

asymptotically converge to the globally optimal model [93]. Scores used for greedy

search typically satisfy three properties that are sufficient for finding the globally

optimal model: decomposability, score-equivalence, and consistency.

A score is said to be decomposable if it can be written as a sum of local contributions,

each a function of one vertex and its boundary. A score is said to be score-equivalent

if two Markov equivalent graphs (i.e., graphs that imply the same set of conditional

independences by the global Markov property) yield the same score. A score is said

to be consistent if, as the sample size goes to infinity, the following two conditions

hold. First, when two models both contain the true generating model, the model of

lower dimension will have a better score. Second, when one model contains the true

model and another does not, the former will have a better score.

A popular score satisfying these properties for model selection among DAG models

is the Bayesian Information Criterion (BIC) [54]. Given a d-dimensional data set X

of size n and model likelihood L(X;G) ≡ ∏n
i=1 p(x1,i, . . . , xd,i;G), the BIC is given by

2 lnL(X;G)− k ln(n) where k is model dimension.1 For CG models, the BIC is only

decomposable for blocks, not for variables within the block. In addition, the score is

not easy to evaluate. Both of these issues arise due to the presence of normalizing

functions in the likelihood; refer to the CG factorization in Eq. 1.10 and Eq. 1.11.

We present an alternative score which avoids some of these problems, based on the

pseudolikelihood function [103]:

PL(X;G) ≡
n∏
i=1

d∏
j=1

p(xj,i | x−j,i;G),

where x−j is the vector (x1, . . . , xj−1, xj+1, . . . , xd). We define a score based on the

pseudolikelihood called Pseudo-BIC (PBIC): 2 lnPL(X;G)− k ln(n).

We propose a greedy score-based model selection procedure based on the PBIC
1In Chapter 2 we used the BIC in the context of minimizing the score. The definition of the BIC

here with flipped signs is equivalent and is often used in the context of maximizing the score.
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score, which is consistent and obeys a weaker notion of decomposability for exponential

families, as we show below.

Lemma 1. With dimension fixed and sample size increasing to infinity, the PBIC is

a consistent score for curved exponential families whose natural parameter space Θ

forms a compact set.

Decomposability of a scoring criterion makes greedy search a practical procedure,

by limiting the number of terms in the overall score that need to be recomputed

for each considered edge modification. While the BIC score for DAG models is

decomposable, the PBIC score for CG models is not. Nevertheless, a weaker notion of

decomposability holds, which implies that two CG models that differ by a single edge

differ by a subset of components of the score, which we now describe.

Consider a candidate edge between Vi and Vj in a CG G. Let Bloc denote the block

to which Vj belongs when the edge is directed Vi→Vj, or to which Vi and Vj belong

when the edge is undirected Vi – Vj. We use loc(Vi, Vj;G) to denote a set of vertices

called the local set, defined as:

⋃
C

{
C ∈ C

(
(GbdG(Bloc))a

)
: Vi, Vj ∈ C ̸⊆ paG(Bloc)

}
.

As we show, the score difference for graphs G and G ′ which differ by a single edge can

be written as the difference between terms that involve only variables in the local set

of G. The next result, and much subsequent discussion in the chapter, is stated for

conditional Markov random fields (MRFs). This is because statistical CG models can

be equivalently described as sets of conditional MRF models. We elaborate on this

relationship in Appendix C.

Lemma 2. Let G and G ′ be graphs which differ by a single edge between Vi and Vj.

For conditional MRFs in the exponential family, the local score difference between G

and G ′ is given by: ∑Vk∈loc(Vi,Vj ;G)∩Bloc{sVk
(
X;G

)
− sVk

(
X;G ′

)
}, where sVk(.) denotes

the component of the score for Vk.

48



Note that the above definition of the local set may simplify further in certain

special cases of MRF models in the exponential family. In particular, if we consider

an MRF that is multivariate normal, or a log linear discrete model with only main

effects and pairwise interactions, then the sum in Lemma 2 reduces to either a sum

over elements Vi and Vj (for an undirected edge Vi – Vj) or only Vj (for a directed

edge Vi→Vj). We omit these straightforward proofs. As we aim for our method to

be fairly general, we do not consider these special instances of the exponential family

in the remainder of this chapter, and provide an informal discussion of the incurred

computational costs for exponential families in general in Appendix C.

Having described the PBIC score and its properties, we are now ready to propose

our greedy search procedures. We begin by describing a greedy search procedure that

learns network ties EN without imposing homogeneity. Model selection proceeds by

solving 3 independent sub problems: learning a Markov random field (MRF) over the

baseline covariates L, learning a conditional MRF on the treatments A, and learning

a conditional MRF on the outcomes Y . The resulting network ties learned from each

of these, are combined to produce the final result (Algorithm 5). Each of the above

subproblems is solved by a greedy search procedure (Algorithm 4) that starts with the

complete conditional MRF (or MRF), and deletes the edge that yields the greatest

improvement to the PBIC score on each iteration.

We now describe procedures for learning network ties in the homogenous setting,

after defining some preliminaries. The homologs of an edge Eij ∈ EN with endpoints

Ui,Wj ∈ V , are defined as: h(Eij) ≡ {Ekl ∈ EN : endpoints(Ekl) = Uk,Wl}. The

network tie prototypes in a homogenous graph G are defined as: Eproto N ≡ {Eij ∈

Eijfor any (i, j) ∈ N}. h(Eproto N ) can then be defined as: {h(E) : E ∈ Eproto N}.

When the types of connections Eproto N between any two connected units is known,

we start with a CG that is fully connected as Eproto N for every pairwise combination

of units. Search proceeds by deleting Eij between two units i and j that yields the best
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Algorithm 4 Greedy Network Search

1: Inputs: G init, X

2: Initialize G∗ ← G init, score_change← True
3: while score_change do
4: score_change← False
5: E∗

N ← network ties in G∗

6: Emax ← argmaxE∈EN
∗ PBIC(X;G∗ \ E)

7: if PBIC(X;G∗ \ Emax) > PBIC(X;G∗) then
8: G∗ ← G∗ \ Emax ▷ delete edge Emax
9: score_change← True

10: return E∗
N

Algorithm 5 Heterogenous

1: Inputs: Gcomplete, X

2: GL,GA,GY ← conditional MRFs on L, A, and Y formed from Gcomplete

3: E∗
NL
← Greedy Network Search(GL, X)

4: E∗
NA
← Greedy Network Search(GA, X)

5: E∗
NY
← Greedy Network Search(GY , X)

6: return E∗
NL
∪ E∗

NA
∪ E∗

NY

improvement in the PBIC on each iteration (Algorithm 6). When the social network

N is known, we start with a CG where pairs of units in N are fully connected in

network ties. Search proceeds by deleting all homologs of the type of edge in Eproto N

that yields the best improvement in the PBIC on each iteration (Algorithm 7). Finally,

when there is no background knowledge, homogenous search (Algorithm 8) can be

performed by chaining the operations of Algorithm 6 and Algorithm 7 (or vice versa)

on the CG complete in network ties for every pairwise combination of units.

Clearly we could use the heterogenous procedure even if the true underlying network

ties are homogenous since it is more general. However, intuitively we expect the

homogenous procedures to fare better in a finite data setting, because the homogeneity

assumption allows pooling data from samples across units for each edge deletion test.

This intuition is confirmed in our simulations.
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Algorithm 6 Homogenous

1: Inputs: Gcomplete, X, Eproto N

2: G∗ ← graph obtained by removing all edges between units i, j in Gcomplete when
Eij ̸∈ h(Eproto N )

3: score change← True
4: while score change do
5: score change← False
6: N ∗ ← network in G∗

7: (i, j)max ← argmax(i,j)∈N ∗ PBIC(X;G∗ \ Eij)
8: if PBIC(X;G∗ \ Eijmax) > PBIC(X;G∗) then
9: G∗ ← G∗ \ Eijmax

10: score change← True

11: return N ∗

3.4.2 Size of the Search Space

In the heterogenous case, the search space grows as O(|Eproto N |
(
m
2

)
) i.e., as a function

of the number of possible edges between two units i and j multiplied by the number of

possible pairings on m units. Under homogeneity when Eproto N is known, this reduces

to O(
(
m
2

)
); when N is known, it reduces to O(|Eproto N |); and under homogeneity

where neither is available, it is O(
(
m
2

)
) +O(|Eproto N |).

3.4.3 Consistency of Greedy Network Search

Lemma 3. If the generating distribution is Markov to a CG satisfying tier symmetry

and the causal ordering assumption, then the search space of Greedy Network

Search consists of graphs belonging to their own equivalence classes of size 1.

Theorem 3. If the generating distribution is in the exponential family (with compact

natural parameter space Θ) and is Markov and faithful to a CG satisfying tier symmetry

and causal ordering then Greedy Network Search is consistent.

Under the same assumptions in the theorem above, we have the following corollary

results.
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Algorithm 7 Homogenous

1: Inputs: Gcomplete, X,N
2: G∗ ← graph obtained by removing all edges between units i, j in Gcomplete when

(i, j) ̸∈ N
3: score change← True
4: while score change do
5: score change← False
6: E∗

proto N ← prototypes of network ties in G∗

7: Emax ← argmaxE∈E∗
proto N

PBIC(X;G∗ \ h(E))

8: if PBIC(X;G∗ \ h(Emax) > PBIC(X;G∗) then
9: G∗ ← G∗ \ h(Emax)

10: score change← True

11: return E∗
proto N

Algorithm 8 Homogenous

1: Inputs: Gcomplete, X

2: Eproto N ← prototypes of network ties in Gcomplete

3: N ∗ ← Homogenous(Gcomplete, X, Eproto N )
4: E∗

proto N ← Homogenous(Gcomplete, X,N ∗)
5: return N ∗, E∗

proto N

Corollary 3.1. The Heterogenous procedure is consistent.

Corollary 3.2. When the true network ties are homogenous, the Homogenous

procedure is consistent.

3.5 Experiments

We evaluate the performance of our proposed algorithms on networks of varying size,

for various block sizes, and for different regularity settings. (Regularity refers to the

number of neighbors for each unit i in the dependency network N . This setting thus

controls the density of the graph.) We consider neighborhoods/blocks of size 4, 8, 16,

and 32, with regularity 2 or 3. The ground truth models are homogenous and of the
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form shown in Figures 3-2 and 3-3, where we display the case of block size 4. Data

is generated from each network via a Gibbs sampler with a burn-in period of 1000

iterations and thinning every 100 iterations using the following equations:

p(Li = 1) = expit(τ1),

p(Ai = 1|Li, {Aj : j ∈ nbN (i)}) = expit(β1Li + β2
∑

j∈nbN (i)
Aj),

p(Yi = 1|Li, Ai, {Aj : j ∈ nbN (i)}) = expit(ν1Li + ν2Ai + ν3
∑

j∈nbN (i)
Aj),

where expit(x) = (1 + exp(−x))−1. We emphasize that some of these networks are

quite large; for example, the network with block size 32 and 2000 iid blocks has an

effective size of 64,000 individuals. For each network setting we run 100 bootstraps

(bootstrapping blocks rather than individuals) of structure learning to get an average

estimate of precision and recall as shown in Figures 3-4 and 3-5. To spare computation

time, we use only Algorithm 6 on the latter two block settings. An interesting feature

of the results in Figures 3-4 and 3-5, which matches our earlier intuition, is the faster

convergence of the homogenous procedures to the true model – which we attribute to

the parameter sharing (effectively using of more data when testing each edge deletion.)

In order to demonstrate the utility of learning the structure in dealing with network

uncertainty, we consider the population average overall effect in Eq. 3.1. We first

execute structure learning, and then estimate the PAOE, contrasting a treatment

assignment determined with probability 0.7 with the naturally observed probability

(on the mean difference scale.) We do this for 2-regular networks with 2000 realizations

of iid blocks of varying size. We use the heterogenous procedure and one of the

homogenous procedures (Alg. 6) to learn the structure of the networks. Estimation of

the causal effect is done by the auto-g-computation algorithm described in [33]. We

perform 1000 bootstraps of both structure learning and effect estimation to compare

the bias and variance of the estimates from the learned graphs to the estimates

provided by utilizing the maximally uninformative complete graph. Unfortunately the
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auto-g-computation procedure is computationally intensive because it requires Gibbs

sampling. To spare computation time we do not run the heterogenous procedure

on the larger graphs with block sizes 16 and 32 (networks with 32,000 and 64,000

individuals). We also only perform 8 bootstraps for these larger networks. In order to

emphasize the need to deal with interference and network uncertainty appropriately,

we estimated the bias for 200 bootstraps of the network with blocks of size 8 using

the empty graph (a complete iid assumption), and an incorrect graph where N is

shuffled randomly to have incorrect adjacencies. In both cases the bias turned out

to be approximately .06, an order of magnitude higher than the bias from using the

complete or learned graphs.

L1 A1 Y1 Y2Y2 A2 L2

L3 A3 Y3 Y4 A4 L4

Figure 3-2. The 2-regular CG for a block/neighborhood of size 4

L1 A1 Y1 Y2Y2 A2 L2

L3 A3 Y3 Y4 A4 L4

Figure 3-3. The 3-regular CG for a block/neighborhood of size 4

Block Size Complete Homogenous Heterogenous

4 .009, 9.2e-5 .008, 8.1e-5 .009, 9.7e-5

8 .007, 6.6e-5 .006, 4.1e-5 .006, 4.5e-5

16 .006, 3.8e-5 .005, 1.9e-5 x

32 .007, 6.1e-5 .002, 7.6e-6 x

Table 3-I. Bias and variance for estimating the PAOE.
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Figure 3-4. Performance of structure learning algorithms as measured by precision.
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Figure 3-5. Performance of structure learning algorithms as measured by recall.

From Table 3-I we see that causal effect estimates based on learned structure have

the same or lower bias as compared with using the complete graph. Furthermore, the
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sparsity of the learned graph reduces variance of the estimates in most cases. This

reduction in bias and variance is more easily achieved when we are able to exploit

homogeneity in the network structure. In experiments with lower sample sizes, we see

that the bias of effect estimates may increase (because the learning procedure may fail

to recover the true graph) but that the variance of the estimates remains comparable

to or lower than the estimates based on the complete graph.

3.6 Related and Future Work

We have developed a method for estimating causal effects under unit dependence

induced by a network represented by a chain graph (CG) model [25], when there

is uncertainty about network structure. Instead of estimating causal effects given

a completely uninformative network where each pair of units is connected, as is

typically done in the interference literature [89], we estimated causal effects given

a sparser network learned via a score-based model selection method based on the

pseudolikelihood function [103]. We showed that this strategy can yield lower variance

in estimates without sacrificing bias, if the underlying true network structure is

recovered accurately. It is worth noting that similar results may be achieved if one

were able to develop regularization techniques for causal parameters in the interference

setting, such as the PAOE. However, regularization for causal inference must be given

careful treatment as the intended purpose of regularization is typically to improve

out-of-sample prediction rather than perform inference. This may lead to biased

estimates of the desired causal parameters; see [104, 105] for details.

Our model selection method relied on weak parametric assumptions, specifically

that all Markov factors in the CG model corresponded to conditional Markov random

fields in the exponential family. The approach here is a generalization of local score-

based search algorithms for directed acyclic graph (DAG) models [93] to CG models.

As a price of this generalization, our local search algorithms recompute a potentially
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larger part of the model score with every move through the model space. An alternative

to the pseudolikelihood approach we have taken here is Monte Carlo methods for

efficient computation of the normalizing functions as in [106]. However, this technique

is restricted to Gaussian graphical models where recomputation of the PBIC is fairly

straightforward.

Though the discussion in this chapter was focused on interacting units due to an

underlying social network, the methods proposed are readily adaptable to settings

where units (possibly even non-human units, such as individual power plants on a

grid) may be connected based on spatial proximity as in [107] and [108].

Finally, our approach only works for settings with partial interference, where units

within a block exhibit dependence, but data on blocks is iid. The restriction to blocks of

identical size may be relaxed by combining our heterogeneous procedure with a scheme

of parameter sharing and hierarchical modeling across blocks that are of different

sizes. In future work, we aim to extend our methods to full interference settings

and settings with unmeasured confounders modeled by segregated graphs (mixed

graphs with directed, undirected, and bidirected edges) [109]. In such settings, model

selection techniques will have to rely on alternatives to the BIC, such as the PBIC, as

the normalizing function is intractable [33]. Additionally, quantifying uncertainty post

model selection for certain effects that necessarily rely on the presence/absence of edges

when defining the estimand (such as the spillover effect) may be quite challenging.
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Chapter 4

Identification in the Presence of
Missing Data

Missing data is ubiquitous in applied data analyses resulting in target distributions

that are systematically censored by a missingness process. A common modeling

approach assumes data entries are censored in a way that does not depend on the

underlying missing data, known as the missing completely at random (MCAR) model,

or only depends on observed values in the data, known as the missing at random

(MAR) model [110]. However, these simple models are insufficient for problems where

missingness status may depend on underlying values that are themselves censored.

This type of missingness is known as missing not at random (MNAR).

Similar to causal inference, recovery of parameters from censored distributions

requires the analyst to pose restrictions on the full data distribution which consists of

the target distribution and its missingness process. While there exist MNAR models

whose restrictions cannot be represented graphically [111], the restrictions posed

in several popular MNAR models such as the permutation model [112], the block-

sequential MAR model [113], the itemwise conditionally independent nonresponse

(ICIN) model or no self-censoring model [114, 115], and those posed in [116, 117, 118,

119, 120, 121] are either explicitly graphical or can be interpreted as such.

The problem of identification of the target distribution from the observed data
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distribution in missing data DAG models bears many similarities to the problem

of identification of counterfactual distributions from the observed distribution in

causal DAG models with hidden variables. This observation prompted recent work

[119, 120, 122] on adapting identification methods from causal inference to identifying

target distributions in graphical models of missing data and leads to a natural

interpretation of missing data problems as causal inference problems.

In this chapter we show that the most general methods known for identification in

missing data DAG models retain a significant gap in the sense that they fail to identify

the target distribution in many models where it is identified. We show that methods

used to obtain a complete characterization (ensuring successful recovery of identifying

functionals whenever possible) of identification of counterfactual distributions in hidden

variable DAG models, e.g., via truncated nested Markov factorization as described in

Chapter 1, and simple generalizations of them, are insufficient for obtaining a complete

characterization for missing data problems. We describe, via a set of examples, that

in order for a missing data identification algorithm to be complete, the algorithm

must recursively simplify the problem by removing sets of variables rather than single

variables, and these must be removed according to a partial order rather than a

total order. Furthermore, the algorithm must be able to handle subproblems where

selection bias, hidden variables, or both, are present even if these complications are

missing in the original problem. We pose a new identification algorithm that exploits

these observations and significantly narrows the identifiability gap in existing methods.

Finally we show that in certain classes of missing data DAGs, our algorithm takes on

a particularly simple formulation to identify the underlying target distribution.

Chapter 4 is organized as follows. We begin with the necessary preliminaries on

missing data models, their graphical representations, and identification of the target

and full data distributions. We then present examples that demonstrate a gap in

missing data identification theory. We then present our algorithm, simplifications of
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it, and some results on graphical structures that prevent non-parametric identifiability

of the full data distribution of missing data DAG models. We conclude with a short

discussion of related work and new missing data identification theory that draw on

results presented in this chapter.

4.1 Missing Data Models

A missing data model is a set of distributions defined over the following sets of random

variables.

X(1) : where X(1)
i ∈ X(1) is a variable that is potentially missing.

R : where Ri ∈ R is a missingness indicator for X(1)
i .

X : where Xi is an observed proxy for X(1)
i .

O : where Oi ∈ O is a variable that is always observed.

While the state space of variables in X(1) and O are unrestricted, missingness indicators

are binary random variables by definition. The state space of each observed proxy

Xi is also restricted to be the same as X(1)
i along with a special symbol, such as “?”,

which can be used to represent that the true value of the variable X(1)
i is unobserved.

More formally, given X
(1)
i ∈ X(1) and its corresponding missingness indicator Ri ∈ R,

the observed proxy Xi is defined as Xi ≡ X
(1)
i if Ri = 1, and Xi =? if Ri = 0.

Hence, p(X | R,X(1)) is deterministically defined. The non-deterministic part of a

missing data distribution, i.e, p(O,X(1), R), is known as the full law, and can be

partitioned into two pieces: the target law p(O,X(1)) and the missingness mechanism

p(R | X(1), O). The censored version of the full law p(O,R,X), that the analyst

actually has access to is known as the observed data distribution.

Missing data DAG models are defined as follows. Let G(V ) be a DAG, where

V = O ∪X(1) ∪ R ∪X. Following the convention in [119], edges in G are subject to

the following restrictions in addition to acyclicity: there are no outgoing edges from
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indicators in R to variables in X(1) and/or O, each observed proxy Xi ∈ X has only

two parents Ri and X(1)
i which encodes the deterministic nature of Xi (these edges are

shown in gray in all the figures below), and there are no outgoing edges from Xi (i.e.,

the proxy Xi does not cause any variable on the DAG, however the corresponding full

data variable X(1)
i may cause other variables.) The statistical model of a missing data

DAG G(V ) is defined as the set of distributions p(O,X(1), R,X) that factorize as,

∏
Vi∈O∪X(1)∪R

p(Vi | paG(Vi))
∏
Xi∈X

p(Xi | X(1)
i , Ri). (Missing data DAG factorization)

(4.1)

By standard results on DAG models, conditional independences in p(X(1), O,R) can

still be read off from G by the d-separation criterion [5]. For convenience, we will drop

the deterministic terms of the form p(Xi | X(1)
i , Ri) from the identification analyses in

the following sections since these terms are always identified by construction.

We also consider hidden variable DAGs G(V ∪H), where V = O ∪X(1) ∪R ∪X

and variables in H are unobserved, to encode missing data models in the presence

of unmeasured confounders. In such cases, the full law satisfies the nested Markov

factorization described in Chapter 1 with respect to a missing data ADMG G(V ),

obtained by applying the latent projection operator to the hidden variable DAG

G(V ∪H). Similar to when there was no missingness in the problem, marginalization of

latents H may give rise to bidirected edges encoding hidden common causes between

variables in V. It is straightforward to see that the missing data ADMG obtained via

latent projection of a hidden variable missing data DAG satisfies all the restrictions

mentioned in the previous paragraph. In particular, G(V ) has no directed cycles,

paG(Xi) = {X(1)
i , Ri}, every Xi ∈ X is childless, and there are no outgoing edges from

Ri to any variables in X(1) ∪O. Ordinary conditional independences in a missing data

ADMG model can be read off from G(V ) via the m-separation criterion as before.
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4.1.1 Identification in Missing Data Models

An analyst may pursue a few different tasks related to non-parametric identification

in missing data models. These include identification of the target law p(O,X(1)),

identification of specific functions of the target law f(p(O,X(1))), and identification

of the full law p(O,X(1), R). Though the focus of this chapter is on identification of

the target law of missing data DAG models, some of our results naturally extend

to identification of the full law as well as specific functionals of the target law. By

the chain rule of probability, the target law p(O,X(1)) is identified if and only if

p(R = 1 | O,X(1)) is identified. The identifying functional is given by,

p(O,X(1)) = p(O,X(1), R = 1)
p(R = 1 | O,X(1)) , (Identification of target law) (4.2)

where in the numerator of the right hand side X(1) = X, and is observed when R = 1

by definition. The full law p(O,X(1), R) is identified if and only if p(R | O,X(1)) is

identified. According to Eq. 4.2, the identifying functional is,

p(O,X(1), R) = p(O,X(1), R = 1)
p(R = 1 | O,X(1)) × p(R | O,X

(1)). (Identification of full law)

(4.3)

4.2 Gaps in Current Identification Theory

In this section, we describe a set of examples of missing data models that factorize

as in Eq. 4.1 for different DAGs, where the target law is identified. We start with

simpler examples where sequential fixing techniques from causal inference suffice

to obtain identification, then move on to describe more complex examples where

existing algorithms in the literature suffice, and finally proceed to examples where no

published method known to us obtains identification, illustrating an identifiability gap

in existing methods. In these examples, we show how identification may be obtained

by appropriately generalizing existing techniques. In these discussions, we focus on

obtaining identification of the missingness mechanism p(R | X(1), O) evaluated at
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(b) G1 ≡ ϕR1(G)
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(c) G2 ≡ ϕR2(G1)

Figure 4-1. (a), (b), (c) are intermediate graphs obtained in identification of a block-
sequential model by fixing {R1, R2, R3} in sequence.

R = 1, as this suffices to identify the target law p(X(1), O) by Eq. 4.2. In the course

of describing these examples, we will obtain intermediate graphs and kernels. In

these graphs, lower case letters (e.g. v) indicates the variable V is evaluated at v

(for Ri, ri = 1). A square vertex indicates V had been fixed. Drawing the vertex

normally with lower case indicates V was conditioned on (creating selection bias in

the subproblem.) For brevity, we use 1Ri to denote {Ri = 1}.

We first consider the block-sequential MAR model [113], shown in Figure 4-1 for

three variables. The target law is identified by applying the (valid) fixing sequence

(R1, R2, R3) via the fixing operator ϕ to G and p(R,X) as follows. p(R1 | mbG(R1)) =

p(R1 | paG(R1)) = p(R1) is identified immediately. Applying the fixing operator

ϕR1 yields the graph G1 ≡ ϕR1(G) shown in Figure 4-1(b), and a corresponding

kernel q1(X(1)
1 , X2, X3, R2, R3 | 1R1) ≡ p(X1, X2, X3, R2, R3, 1R1)/p(1R1) where X(1)

1

is now observed. Thus, in the new subproblem represented by G1 and q1, p(R2 |

paG(R2))|R=1 = q1(R2 | X(1)
1 , 1R1) is identified. Applying the fixing operator ϕR2 to G1

and q1 yields G2 ≡ ϕR2(G1) shown in Figure 4-1(c), and q2(X(1)
1 , X

(1)
2 , X3, R3 | 1R1,R2) =

q1(X(1)
1 , X2, X3, R2, R3 | 1R1)/q1(R2 | X(1)

1 , 1R1). Finally, in the new subproblem

represented by G2 and q2, p(R3 | paG(R3))|R=1 = q2(R3 | X(1)
1 , X

(1)
2 , 1R1,R2) is identified.

Applying the fixing operator ϕR3 to G2 and q2 yields q3(X(1)
1 , X

(1)
2 , X

(1)
3 | 1R1,R2,R3) =

p(X(1)
1 , X

(1)
2 , X

(1)
3 ). The identifying functional for the target law only involves monotone

64



X
(1)
1 X

(1)
2 X

(1)
3

R1 R2 R3

X1 X2 X3

(d)

Figure 4-2. An MNAR model that is identifiable by fixing all Rs in parallel.

cases (cases where Ri = 0 implies Ri+1 = 0) just as would be the case under the

monotone MAR model, although this model does not assume monotonicity and is

not MAR. In this simple example, identification may be achieved purely by causal

inference methods, by treating the missingness indicators R as treatments and finding

a valid fixing sequence on them. In this example, each Ri in the sequence is fixable

given that the previous variables are fixable, since all parents of Ri become observed

at the time it is fixed.

Following a total order to fix is not always sufficient to identify the target law, as

noted in [119, 120, 122]. Consider the model represented by the DAG in Figure 4-2.

For any Ri in this model, say R1, we have, by d-separation, that p(R1 | paG(R1)) =

p(R1 | X(1)
2 , X

(1)
3 , 1R2,R3), which is identified. However, if we were to fix R1 in p(X,R),

we would obtain a kernel q1(X(1)
1 , X2, X3, 1R2,R3 | 1R1) where selection bias on R2 and

R3 is introduced. The fact that q1 is not available at all levels of R2 and R3 prevents

us from sequentially obtaining p(Ri | paG(Ri)), for Ri = R2, R3, due to our inability

to sum out those variables from q1.

However, the model in Figure 4-2 allows identification of a target law in another

way. This follows from the fact that p(Ri | paG(Ri)) is identified for each Ri by

exploiting conditional independences in p(X,R) displayed by Figure 4-2. Since p(R |

X(1)) = ∏3
i=1 p(Ri | paG(Ri)), the missingness mechanism is identified, which means
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the target law is also identified, as long as we fix R1, R2, R3 in parallel (as in Eq. 4.2)

rather than sequentially. In other words, the model is identified, but no total order

on fixing operations suffices for identification. A general algorithm that aimed to

fix indicators in R in parallel, while potentially exploiting causal inference fixing

operations to identify each p(Ri | paG(Ri)) was proposed in [122]. Our subsequent

examples show that this algorithm is insufficient to obtain identification of the target

law in general, and thus is incomplete.

Consider the DAG in Figure 4-3. Since R2 is a child of R3 and X(1)
2 is a parent of

R3, we cannot obtain p(R3 | paG(R3)) = p(R3 | X(1)
2 ) by d-separation in any kernel

(including the original distribution) where R2 is not fixed. Thus, any total order on

fixing operations of elements in R must start with R1 or R2. Fixing either of these

variables entails dividing p(X,R) by some factor p(Ri | paG(Ri)), which is identified

as either p(R1 | X(1)
3 , 1R3) or p(R2 | X(1)

1 , 1R1). This division entails inducing selection

bias on the subsequent kernel q1 for a variable not yet fixed (either R1 or R3). Thus,

no total order on fixing operations works to identify the target law in this model. At

the same time, attempting to fix all R variables in parallel would fail as well, since we

cannot identify p(R3 | X(1)
2 ) either in the original distribution or any kernel obtained

by standard causal inference operations described in [122]. In particular, in any such

kernel or distribution R3 remains dependent on R2 given X
(1)
2 .

However, the target law in this model is identified by following a partial order

of fixing operations. In this partial order, R1 is incompatble with R2, and R2 ≺

R3. This results in an identification strategy where we fix each variable only given

that variables earlier than it in the partial order are fixed. That is, distributions

p(R1 | X(1)
3 ) = p(R1 | X3, 1R3) and p(R2 | X(1)

1 , R3) = p(R2 | X1, 1R1 , R3) are

obtained directly in the original distribution without fixing anything. The distribution

p(R3 | paG(R3)), on the other hand, is obtained in the kernel q1(X1, X
(1)
2 , X3, 1R1 , R3 |

1R2) = p(X,R)/p(R2 | X1, 1R1 , R3) after R2 (the variable earlier than R3 in the partial
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Figure 4-3. (a) A DAG where Rs are fixed according to a partial order. (b) The CADMG
obtained by fixing R2.

order) is fixed. The graph corresponding to this kernel is shown in Figure 4-3 (b).

Note that in this graph X(1)
2 is observed, and there is selection bias on R1. However, it

easily follows by d-separation that R3 is independent of R1. It can thus be shown that

p(R3 | X(1)
2 ) = q1(R3 | X(1)

2 , 1R2) even if q1 is only available at value R1 = 1. Since all

p(Ri | paG(Ri)) are identified, so is the target law in this model, by Eq. 4.2.

Next, we consider the model in Figure 4-4. Here, p(R2 | X(1)
1 , X

(1)
3 , R1) = p(R2 |

X1, X3, 1R1,R3) and p(R3 | X(1)
2 , R1) = p(R3 | X2, 1R2 , R1) are identified immediately.

However, p(R1 | X(1)
2 ) poses a problem. In order to identify this distribution, we

either require that R1 is conditionally independent of R2, possibly after some fixing

operations, or we are able to render X(1)
2 observable by fixing R2 in some way. Neither

seems to be possible in the problem as stated. In particular, fixing R2 via dividing by

p(R2 | X(1)
1 , X

(1)
3 , R1) will necessarily induce selection bias on R1, which will prevent

identification of p(R1 | X(1)
2 ) in the resulting kernel.

However, we can circumvent the difficulty by treating X
(1)
1 as an unobserved

variable U1, and attempting the problem in the resulting (hidden variable) DAG shown

in Figure 4-4 (b), and its latent projection ADMG G̃ shown in Figure 4-4 (c), where U1

is “projected out.” In the resulting problem, we can fix variables according to a partial

order ≺ where R2 and R3 are incompatible, R2 ≺ R1, and R3 ≺ R1. Thus, we are able

to fix R2 and R3 in parallel by dividing by p(R2 | mbG̃(R2)) = p(R2 | X1, R1, X
(1)
3 , 1R3)
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Figure 4-4. A DAG where selection bias on R1 is avoidable by following a partial order
fixing schedule on an ADMG induced by latent projecting out X(1)

1 .

and p(R3 | R1, X
(1)
2 ) = p(R3 | R1, X2, 1R2), leading to a kernel q̃1(X1, X

(1)
2 , X

(1)
3 , R1 |

1R2,R3), and the graph ϕ≺R1(G̃) shown in Figure 4-4(d), where notation ϕ≺R1 means

“fix all necessary elements that occur earlier than R1 in the partial order, in a way

consistent with that partial order.” In this example, this means fixing R2 and R3 in

parallel. We will describe how fixing operates given general fixing schedules given by

a partial order later in the paper. In the kernel q̃1 the parent of R1 is observed data,

meaning that p(R2 | X(1)
2 ) is identified as q̃1(R1 | X2, 1R2,R3). This implies the target

law is identified in this model.

In general, to identify p(Ri | paG(Ri)), we may need to use separate partial fixing

orders on different sets of variables for different Ri ∈ R. In addition, the fact that

fixing introduces selection bias sometimes results in having to divide by a kernel where

a set of variables are random, something that was never necessary in causal inference

problems. In general, for a given Ri, the goal of a fixing schedule is to arrive at a kernel
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Figure 4-5. (a) A DAG where the fixing operator must be performed on a set of vertices.
(b) A latent projection of a subproblem used for identifiation of p(R4 | X(1)

4 ).

where an independence exists allowing us to identify p(Ri | paG(Ri)), even if some

elements of paG(Ri) are in X(1) in the original problem. This fixing must be given

by a partial order, and sometimes on sets of variables. In addition, some elements

of X(1) must be treated as hidden variables. These complications are necessary in

general to avoid creating selection bias in subproblems, and ultimately to identify the

missingness mechanism. The following example is a good illustration.

Consider the graph in Figure 4-5(a). For R1 and R3, the fixing schedules are empty,

and we immediately obtain their distributions as p(R1 | X(1)
2 , X

(1)
4 , R2, R3) = p(R1 |

X2, X4, R3, 1R2,R4) and p(R3 | X(1)
4 , R2) = p(R3 | X4, 1R4 , R2). For R2, the partial

order is R3 ≺ R1 in a graph where we treat X(1)
2 as a hidden variable U2. This yields

p(R2 | X(1)
1 , R4) = q2(R2 | X(1)

1 , R4, 1R1,R3), where

q2(X(1)
1 , X2, X

(1)
3 , X4, R2, 1R4 | 1R1,R3) = q1

q1(1R1 | 1R3 , R2, X2)
, and

q1(X1, X2, X
(1)
3 , X4, R1, R2, 1R4 | 1R3) = p(X,R1, R2, 1R3,R4)

p(1R3 | R2, X4, 1R4) .

In order to obtain the propensity score for R4 we must either render X(1)
1 observable

through fixing R1 or perform valid fixing operations until we obtain a kernel in which

R4 is conditionally independent of R1 given its parent X(1)
1 . There exists no partial

order on elements of R, however, all partial orders on elements in R induce selection

bias on variables higher in the order, preventing the identification of the required
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distribution for R4. For example, choosing a partial fixing order of R1 ≺ R3, where

we treat X(1)
2 , X

(1)
4 as hidden variables results in selection bias on R3 as soon as we fix

R1. Other partial orders fail similarly. However, the following approach is possible in

the graph in which we treat X(1)
2 , X

(1)
4 as hidden variables.

R1, R3 lie in the same district in the resulting latent projection ADMG, shown

in Figure 4-5(b). Moreover, {R1, R3} is closed under descendants in the district in

Figure 4-5(b). As a result, R1 and R3 can essentially be viewed as a single vertex

from the point of view of fixing. Indeed we may choose a partial order {R1, R3} ≺ R2,

where we fix R1 and R3 as a set. The fixing operation on the set is possible since

p(R1, R3 | mbG(R1, R3)) is a function of p(X,R). Specifically it is equal to

p(1R1,R3 | X
(1)
3 , R2, R4, X2, X4) = p(1R3 | R2, R4, X2, X4)

× p(1R1 | R2, R4, X2, X3, X4, 1R3),

where the above equality holds by d-separation (R3 ⊥⊥ X
(1)
3 | R2, R4, X4, X2). We

then obtain p(R4 | X(1)
1 ) = q2(R4 | X(1)

1 , 1R1,R2,R3), where

q2(X(1)
1 , X

(1)
3 , X4, R4 | 1R1,R2,R3) = q1

q1(R2 | X(1)
1 , R4, 1R1,R3)

,

q1(X(1)
1 , X2, X

(1)
3 , X4, R2, R4 | 1R1,R3) = p(X,R2, R4, 1R1,R3)

p(1R3 | R2, R4)× p(1R1 | R2, R4, X3, 1R3) .

Our final example demonstrates that in order to identify the target law, we

may potentially need to fix variables outside R, including variables in X(1) that

become observed after fixing or conditioning on some elements of R. Figure 4-6

(a) contains a generalization of the model considered in [122], where O3 is fully

observed. In this model, distributions for R4 and R1 are identified immediately, while

identification of R2 requires a partial order R4 ≺ X
(1)
4 ≺ O3 ≺ R1 in the graph

where we treat X(1)
1 , X

(1)
2 , X

(1)
4 as latent variables (with the latent projection ADMG

shown in Figure 4-6 (b)) until they are rendered observed by fixing the corresponding
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Figure 4-6. A DAG where variables besides Rs are required to be fixed.

missingness indicators. To illustrate fixing operations according to this order, the

intermediate graphs that arise are shown in Figures 4-6 (c),(d),(e),(f).

4.3 A New Identification Algorithm

In order to identify the target law in examples discussed in the previous section, we had

to consider situations where some variables were viewed as hidden, and marginalized

out, and others were conditioned on, introducing selection bias. In addition, fixing

operations were performed according to a partial order rather than a total order as

was the case in causal inference problems. Finally, we sometimes fixed sets of variables

jointly, rather than individual variables. We now introduce relevant definitions that

allow us to formulate a general identification algorithm that takes advantage of all

these techniques.
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Let V be a set of random variables (and corresponding vertices) consisting of

observed variables O,R,X, missing variables X(1), and selected variables S. Let W be

a set of fixed observed variables. The following definitions apply to a latent projection

G(V \X(1),W ), for some X(1)
U ⊆ X(1), and a corresponding kernel q(V \X(1) | W ) ≡∑

X(1) q(V,W ). G can be viewed as a latent variable CADMG for q where X(1)
U are

latent. Such CADMGs represent intermediate subproblems in our identification

algorithm.

For Z ⊆ DZ ∈ D(G), let RZ = {Rj | X(1)
j ∈ Z ∪mbG(Z), Rj ̸∈ Z}, and mbG(Z) ≡

(DZ ∪ paG(DZ)) \ Z. We say Z is fixable in G(V \X(1)
U ,W ) if

(i) deG(Z) ∩DZ ⊆ Z,

(ii) S ∩ Z = ∅,

(iii) Z ⊥⊥ (S ∪RZ) \mbG(Z) | mbG(Z).

In words, these conditions apply to some Z that is a subset of its own district (which

is trivial when the set Z is a singleton). The conditions, in the listed order, require

that Z is closed under descendants in the district, should not contain any selected

variables, and should be independent of both selected variables S and the missingness

indicators RZ of the corresponding counterfactal parents given the Markov blanket of

Z, respectively. Consider the graph in Figure 4-5(b) where S = ∅ and let Z = {R1, R3}.

Z is fixable since Z ⊆ DZ = {R1, R3, X2, X4}, deG(Z) = {R1, R3, X1, X3} ∩ DZ =

{R1, R3} is closed, and S,RZ are empty sets.

A set Z̃ spanning multiple elements in D(G) is said to be fixable if it can be

partitioned into a set Z of elements Z ≡ Z̃ ∩ D ∈ D(G) such that each such Z is

fixable.

Given an ordering ≺ on vertices V ∪W topological in G, and Z̃ fixable in G, define
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ϕZ̃(q;G) as

q(V \ (X(1)
U ∪RZ), RZ = 1 | W )∏

Z∈Z

∏
Z∈Z

q(Z | mbG(Z; anG(DZ) ∩ {⪯ Z})), RZ)|(R∩Z)∪RZ=1
, (Fixing a set) (4.4)

where mbG(V ;S) ≡ mbGS(V ), and {⪯ Z} is the set of all elements earlier than Z in

the order ≺ (this includes Z itself).

Given a set Z ⊆ R ∪ O ∪ X(1), and an equivalence relation ∼, let Z/∼ be the

partition of Z into equivalence classes according to ∼. Define a fixing schedule for
Z/∼ to be a partial order ◁ on Z/∼. For each Z̃ ∈ Z/∼, define {⊴Z̃} to be the set of

elements in Z/∼ earlier than Z̃ in the order ◁, and {◁Z̃} ≡ {⊴Z̃} \ Z̃. Define ⊴Z̃ and

◁Z̃ to be restrictions of ◁ to {⊴Z̃} and {◁Z̃}, respectively. Both restrictions, ⊴Z̃

and ◁Z̃ , are also partial orders.

We inductively define a valid fixing schedule (a schedule where fixing operations can

be successfully implemented), along with the fixing operator on valid schedules. The

fixing operator will implement fixing as in (4.4) on Z̃ within an intermediate problem

represented by a CADMG where some X(1)
Z̃
⊆ X(1) will become observed after fixing Z̃,

with X(1) \X(1)
Z̃

treated as latent variables, and a kernel associated with this CADMG

defined on the observed subset of variables. We also define X(1)
{⊴Z̃} ≡

⋃
Z∈{⊴Z̃} X

(1)
Z .

We say ◁Z̃ is valid for {◁Z̃} in G if for every ◁-largest element Ỹ of {◁Z̃}, ⊴Ỹ

is valid for {⊴Ỹ }. If ◁Z̃ is valid for {◁Z̃}, we define ϕ◁Z̃
(G) to be a new CADMG

G(V \ ⋃Z∈{◁Z̃} Z,W ∪
⋃
Z∈{◁Z̃} Z) obtained from G(V,W ) by:

(i) Removing all edges with arrowheads into ⋃Z∈{◁Z̃} Z,

(ii) Marking any {X(1)
j | X

(1)
j ∈ Z ∪mbϕ◁Z (G)(Z), Z ∈ {◁Z̃}} as observed,

(iii) Marking any {RZ ∩ V | Z ∈ {◁Z̃}} \
⋃
Z∈{◁Z̃} Z as selected to value 1, where

RZ is defined with respect to ϕ◁Z (G)

(iv) Treating elements of X(1) \X(1)
Z̃

as hidden variables.
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We say ⊴Z̃ is valid for {⊴Z̃}, if ◁Z̃ is valid for {◁Z̃}, and Z̃ is fixable in ϕ◁Z̃
(G).

If ⊴Z̃ is valid, we define

ϕ⊴Z̃
(q;G) ≡ ϕZ̃

(
ϕ◁Z̃

(q;G);ϕ◁Z̃
(G)

)
, (4.5)

where ϕ◁Z̃
(q;G) ≡ q(V |W )∏

Ỹ ∈◁Z̃
qỸ

, and qỸ are defined inductively as the denominator of

(4.4) for Ỹ , ϕ◁Ỹ
(G) and ϕ◁Ỹ

(q;G). This leads to the following identification results.

Theorem 4. Given a DAG G(X(1), R,O,X), the distribution p(Ri | paG(Ri))|paG(Ri)∩R=1

is identifiable from p(R,O,X) if there exists

(i) Z ⊆ X(1) ∪R ∪O,

(ii) an equivalence relation ∼ on Z such that {Ri} ∈ Z/∼,

(iii) a set of elements X(1)
Z̃

such that X(1)
{◁Z̃} ⊆ X

(1)
Z̃
⊆ X(1) for each Z̃ ∈ Z/∼,

(iv) X(1) ∩ paG(Ri) ⊆ (Z \ {Ri}) ∪X(1)
{Ri},

(v) and a valid fixing schedule ◁ for Z/∼ in G such that for each Z̃ ∈ Z/∼, Z̃ ◁ {Ri}.

Moreover, p(Ri | paG(Ri))|paG(Ri)∩R=1 is equal to q{Ri}, defined inductively as the

denominator of Eq. 4.4 for {Ri}, ϕ◁{Ri}
(G) and ϕ◁{Ri}

(p;G), and evaluated at paG(Ri)∩

R = 1.

Theorem 4 implies that p(Ri | paG(Ri)) is identified if we can find a set of variables

that can be fixed according to a partial order (possibly through set fixing) within

subproblems where certain variables are hidden. At the end of the fixing schedule,

we require that Ri itself is fixable given its Markov blanket in the original DAG. We

encourage the reader to view the example provided in Appendix D, for a demonstration

of valid fixing schedules that may be chosen by Theorem 4.

Corollary 4.1. Given a DAG G(X(1), R,O,X), the target law p(X(1), O) is identified

if p(Ri | paG(Ri)) is identified via Theorem 4 for every Ri ∈ R.
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Proof. Follows from Theorem 4 and Eq. 4.2.

Further, in special classes of models, in addition to the target law, the full law is

also identified as follows.

Theorem 5. Given a DAG G(X(1), R,O,X), the full law p(R,X(1), O) is identifiable

from p(R,O,X) if for every Ri ∈ R, all conditions in Theorem 4 (i-v) are met, and

also for each Z̃ ∈ Z/∼, X(1)
Z̃

does not contain any elements in {X(1)
j | Rj ∈ paG(Ri)}.

Moreover, p(Ri | paG(Ri)) is equal to q{Ri}, defined inductively as the denominator of

Eq. 4.4 for {Ri}, ϕ◁{Ri}
(G) and ϕ◁{Ri}

(p;G), and

p(R,X(1), O) =
( ∏
Ri∈R

qRi

)
× p(R = 1, O,X)(∏

Ri∈R qRi
)
|R=1

Proof. Under conditions (i-v) in Theorem 4, we are guaranteed to identify the target

law and obtain p(Ri | paG(Ri)) where some Rj ∈ paG(Ri) may be evaluated at Rj = 1.

Under the additional restriction stated above, all Rj ∈ paG(Ri) can be evaluated at

all levels.

Theorem 5 always fails if a special collider structure X(1)
j →Ri←Rj, which we

call a colluder, exists in G. The following theorem establishes that the presence of a

colluder in the missing data DAG G is a sufficient condition for non-identifiability of

the full law.

Theorem 6. In a DAG G(X(1), R,O,X), if there exists Ri, Rj ∈ R such that

{Rj, X
(1)
j } ∈ paG(Ri), then p(Ri | paG(Ri))|Rj=0 is not identified. Hence, the full

law p(X(1), R) is not identified.

Proof. Follows by providing two different full laws that agree on the observed law (see

Appendix D) on a DAG with 2 counterfactual random variables. This result holds for

any arbitrary missing DAG containing the colluder structure defined above.
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Theorems 4 and 5 do not address a computationally efficient search procedure for

a valid fixing schedule ◁ that permit identification of p(Ri | paG(Ri)) for a particular

Ri ∈ R. Nevertheless, the following theorem shows how to easily obtain identification

of the target law in a restricted class of missing data DAGs.

Theorem 7. Consider a DAG G(X(1), R,O,X) such that for every Ri ∈ R, {Rj |

X
(1)
j ∈ paG(Ri)} ∩ anG(Ri) = ∅. Then for every Ri ∈ R, a fixing schedule ◁ for

{{Rj} | Rj ∈ GR∩deG(Ri)} given by the partial order induced by the ancestrality relation

on GR∩deG(Ri) is valid in G(X(1), R,O,X), by taking each X
(1)
Z̃

= ⋃
Z∈{⊴Z̃} X

(1)
Z , for

every Z̃ ∈ {⊴{Ri}}. Thus the target law is identified.

Theorem 7 is particularly helpful for identification in missing data DAG models

that may be used in longitudinal studies. In such studies, there may exist a natural

temporal ordering on the variables X(1) and the missingness indicators R, where

patient attendance at a future time point j, denoted by Rj, may be determined by

their past attendance at a point in time i, denoted by Ri, which in turn may be affected

by the patient’s view of their future outcome X(1)
j . This model bears many similarities

to a popular missing data model known as the permutation model proposed in [112].

4.4 Related and Future Work

This chapter addressed a significant gap present in identification theory for missing

data models representable as DAGs. We showed, by examples, that straightforward

application of identification machinery in causal inference with hidden variables do not

suffice for identification in missing data, and discussed the generalizations required to

make it suitable for this task. These generalizations included fixing (possibly sets of)

variables on a partial order and avoiding selection bias by introducing hidden variables

into the problem though they were not present in the initial problem statement.

Theorem 4 gives a characterization of how to utilize these generalized procedures to
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obtain identification of the target law, while Theorem 5 gives a similar characterization

for the full law. While neither of these results alluded to a computationally efficient

algorithm to obtain identification in general, Theorem 7 provides such a procedure

for a special class of missing data models where the partial order of fixing operations

required for each R is easy to determine. Further, Theorem 6 provided sufficient

graphical conditions, in the form of colluders, for non-parametric non-identifiability of

the full data law in missing data DAG models.

In follow-up work done in [123], we went on to show that in fact, the absence of

colluders are neccessary and sufficient for identifiability of the full data law in missing

data DAG models. The notion of a colluder was also extended to colluding paths in

missing data ADMG models. Using this generalization of the work on colluders done

in this chapter, [123] provides a sound and complete characterization for identification

of the full law in missing data models in the presence of unmeasured confounders. It

was further shown in [123] that all such identified missing data models are sub models

of a non-parametric saturated missing data CG model known as the no self-censoring

model [115, 114]. This enables adaptation of semiparametric estimation theory from

[124] for the no self-censoring model to these identified DAG/ADMG sub models.

However, designing estimators for gain in statistical efficiency and/or robustness for

specific identifying functionals (e.g., covariate adjustment in missing data DAG models

for which a sound and complete characeterization was provided by [121]) that exploit

restrictions in such missing data models is still an open problem. As is a complete

characterization for identification of the target law in missing data DAG models.

The work done in this chapter also relies heavily on the missing data DAG being

known. This can, in part, be alleviated by applying a structure learning algorithm as in

[125], [126], or [127] to first learn the missing data DAG or a set of Markov equivalent

missing data DAGs to use for identification. However, the improved understanding of

identification theory in missing data DAG models from this chapter (and its extensions
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in [123]) create the possibility of structure learning algorithms that allow for more

complicated forms of missingness than the ones considered in prior work.
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Chapter 5

Estimation of Causal Effects in the
Presence of Unmeasured
Confounders

In Chapter 1 we saw that truncated nested Markov factorization (Eq. 1.9) is a sound

and complete procedure to identify counterfactual distributions in a latent variable

DAG model. Despite the sophistication of causal identification theory, estimators based

on simple covariate adjustment remain the most common strategy for evaluating the

ACE from data. Estimates obtained in this way are often biased due to the presence

of unmeasured confounding and/or model misspecification. A popular approach for

addressing the latter issue has been to use semiparametric estimators developed using

the theory of influence functions [128, 129, 110]. The most popular of these estimators

is known as the augmented inverse probability weighted (AIPW) estimator and is

doubly robust in that it gives the analyst two chances to obtain a valid estimate for

the ACE – either by specifying the correct model for the treatment assignment given

observed covariates that render the treatment assignment ignorable, or by specifying

the correct model for the dependence of the outcome on the treatment and these

covariates. Recent work by [130] and [131] yields methods for constructing statistically

efficient versions of AIPW that take advantage of Markov restrictions implied on the

obseved data by a fully observed causal model associated with a DAG.
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If a causal model contains hidden variables, a.k.a. unmeasured confounders, causal

inference becomes considerably more complicated. In this chapter, we study estimation

strategies for the average causal effect of a single treatment variable on a single outcome

variable in scenarios where unmeasured confounding prevents us from finding a valid

covariate adjustment set. Our contributions can be summarized as follows.

We first study equality restrictions on the tangent space implied by a hidden

variable DAG model. Such restrictions are important as they play a role in deriving

the most efficient influence function based estimator (one that attains the lowest

asymptotic variance) for any given parameter of interest. In the special case where the

model is nonparametric saturated, no restrictions are imposed on the tangent space,

and the influence function is unique (and thus efficient). We provide Algorithm 9 as a

sound and complete procedure for checking whether a hidden variable causal model

that factorizes as a DAG imposes equality restrictions on the observed data tangent

space, provided the hidden variables in the model are unrestricted. We then define

a class of hidden variable causal models, termed mb-shielded acyclic directed mixed

graphs (ADMGs), for which the restrictions on the tangent space resemble those of a

DAG model with no hidden variables, which makes derivations of the efficient influence

function (from a given nonparametric influence function) exceptionally simple.

For estimation of the ACE in a large class of hidden variable causal models

characterized by a simple graphical criterion which we term primal fixability, we

propose two new inverse probability weighted (IPW) estimators, primal IPW and dual

IPW. We show that these estimators use variationally independent components of the

joint likelihood on the observed margin of the hidden variable DAG. This leads to an

influence function based semiparametric estimator, derived in [13], that can be viewed

as augmentation of primal IPW. This semiparametric estimator, known as augmented

primal IPW (APIPW), was shown to be doubly robust in the models involved in

the primal and dual IPW estimators. In this chapter, we study the efficiency of the
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APIPW estimator using our results on nonparametric saturation of ADMG models.

We then derive the efficient influence function for APIPW in mb-shielded ADMGs.

Finally, we propose the nested IPW estimator that generalizes IPW to all hidden

variable causal models where the target parameter is identified. We propose a sound

and complete algorithm (Algorithm 10) that derives the corresponding nested IPW

estimator when possible. We show that the nested IPW estimator can help alleviate

issues related to model misspecification by requiring the analyst fit parametric models

for only a subset of the observed data likelihood related to the treatment assignment.

5.1 Overview of Semiparametric Estimation The-
ory

In Chapter 1 we saw that the average causal effect may be expressed in terms of a

contrast between two counterfactual means E[Y (t)] and E[Y (t′)] – the expected value

of the outcome Y had treatment T been assigned to some value t or t′ respectively.

Since the results in this chapter hold for any value of treatment assignment, we will

set our target of inference ψ(t) to be E[Y (t)] without loss of generality. That is,

ψ(t) ≡ E[Y (t)] (Target parameter)

We now briefly review semiparametric estimation theory and its application to the

standard covariate adjustment functional for the counterfactual mean. Given a

statistical model M = {pη(Z) : η ∈ Γ} where Γ is the parameter space and η is

the parameter indexing a specific model. Let Pη0 and ψ0 denote the true model and

the true value of our target parameter ψ0 respectively. Then, an estimator ψ̂n of

the (scalar)1 parameter ψ based on n i.i.d copies Z1, . . . , Zn drawn from pη(Z), is

asymptotically linear if there exists a measurable random function Uψ(Z) with mean
1E[Y (t)] is a scalar parameter. For an extension to vector valued functionals in Rq, q > 1, refer to

[110, 132].
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zero and finite variance such that

√
n× (ψ̂n − ψ) = 1√

n
×

n∑
i=1

Uψ(Zi) + op(1), (5.1)

where op(1) is a term that converges in probability to zero as n goes to infinity. The

random variable Uψ(Z) is called the influence function of the estimator ψ̂n. The term

influence function is derived from the robustness literature [133]. Given a collection

of probability laws M, an estimator ψ̂ of ψ(P ) is said to be regular in M at P if its

convergence to ψ(P ) is locally uniform [128]. Our focus here will be on estimators

that are both regular and asymptotically linear, or RAL for short. For a review and

justification for restricting to such estimators, we refer the reader to [110] and [134].

Via application of the central limit theorem and Slutsky’s theorem, it can be shown

that the RAL estimator ψ̂n is consistent and asymptotically normal (CAN), with

asymptotic variance equal to the variance of its influence function Uψ,

√
n× (ψ̂n − ψ) d−→ N

(
0, var(Uψ)

)
. (5.2)

The first step in dealing with a semiparametric model, is to consider a simpler finite-

dimensional parametric submodel that is contained within the semiparametric model

and contains the truth. Consider a (regular) parametric submodel Msub = {Pηκ : κ ∈

[0, 1) where Pηκ=0 = Pη0} of the model M. Given Pη0 , define the corresponding score

to be Sη0(Z) = d

dκ
log pηκ(Z)

⏐⏐⏐⏐
κ=0

. It is known that

d

dκ
ψ(ηκ)

⏐⏐⏐⏐
κ=0

= E
[
Uψ(Z)× Sη0(Z)

]
, (5.3)

where ψ(ηκ) is the target parameter in the parametric submodel, Uψ(Z) is the corre-

sponding influence function evaluated at law Pη0 , Sη0(Z) is the score of the law Pη0 ,

and the expectation is taken with respect to Pη0 . Thus, Eq. 5.3 provides a method for

deriving an influence function for a given target parameter ψ.

We now discuss how this relates to estimation of counterfactual quantities under

the assumption of no unmeasured confounding. Often, data analysts will assume (as a
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Figure 5-1. (a) DAG representing conditional ignorability; (b) A DAG where missing
edges impose restrictions on the observed data distribution.

matter of convenience rather than substantive reasoning) that the treatment assignment

is ignorable conditional on a set of baseline covariates. That is, Y (t) ⊥⊥ T | C.

Graphically speaking, the conditionally ignorable model is often represented by the

DAG shown in Fig. 5-1(a). Under the assumptions of this model, the counterfactual

mean is identified via the adjustment functional as,

ψ(t) = E
[
E[Y | T = t, C]

]
(Adjustment functional) (5.4)

If a correct parametric model, say µt(C; η1) can be specified for the outcome

regression E[Y | T = t, C], the target parameter ψ(t) can be estimated via the

plug-in principle. That is, ψ(t) = Pn[µt(C; η̂1)], where Pn[.] ≡ 1
n

∑n
i=1(.) and η̂1

are the maximum likelihood values of η1. If such a parametric specification is not

possible, an alternative is to pursue an inverse probability weighted (IPW) estimator

that relies on specification of a parametric model, say πt(C; η2), for the treatment

assignment probability p(T = t | C). The IPW estimator takes the form Pn[ I(T=t)
πt(C;η̂2)×Y ],

where I(.) is the indicator function and η̂2 are the maximum likelihood estimates

of η2. The estimators based on outcome regression and IPW are
√
n-consistent and

asymptotically normal under correct specification of the parametric models they rely

on. However, correct specification of such models is often not possible. Further, even

if correct specification is possible for the IPW estimator or if the treatment assignment

probability is known via experimental design, the resulting estimates are inefficient,
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i.e., have high variance.

A principled alternative is to consider influence functions and RAL estimators.

In the nonparametric saturated model, corresponding to the complete DAG shown

in Fig. 5-1(a), the unique influence function for ψ(t) derived from the adjustment

functional in Eq. 5.4 using the method suggested by Eq. 5.3 is given by Uψt =
I(T=t)
πt(C) ×{Y −µt(C)}+µt(C)−ψ(t) [110]. This yields the AIPW estimator: Pn

[
I(T=t)
πt(C;η̂2)×

{Y − µt(C; η̂1)} + µt(C; η̂1)
]
. Given the standard factorization of the complete DAG

as p(Y | A,C)× p(A | C)× p(C), the propensity score model πt(C) and the outcome

regression model µt(C) are variationally independent. Further, the bias of this

estimator is a product of the biases of its nuisance functions πt(C) and µt(C). As a

result, the AIPW estimator exhibits the double robustness property, where it remains

consistent if either of the two nuisance models πt(C) or µt(C) is specified correctly,

even if the other is arbitrarily misspecified.

Influence functions provide a geometric view of the behavior of RAL estimators.

Consider a Hilbert space2 H of all mean-zero scalar functions, equipped with an inner

product defined as E[h1× h2], h1, h2 ∈ H. The tangent space in the modelM, denoted

by Λ, is defined to be the mean-square closure of parametric submodel tangent spaces,

where a parametric submodel tangent space is the set of elements Ληκ = {αSηκ(Z)}, α

is a constant and Sηκ is the score for the parameter ψηκ for some parametric submodel.

In mathematical form, Λ = [Ληκ ].

The tangent space Λ is a closed linear subspace of the Hilbert space H (Λ ⊆ H).

The orthogonal complement of the tangent space, denoted by Λ⊥, is defined as

Λ⊥ = {h ∈ H | E[h× h′] = 0,∀h′ ∈ Λ}. Note that H = Λ⊕ Λ⊥, where ⊕ is the direct

sum, and Λ ∩ Λ⊥ = {0}. Given an arbitrary element h ∈ Λ⊥, it holds that for any

submodel Msub, with score Sη0 corresponding to Pη0 , E[h× Sη0 ] = 0. Consequently,
2The Hilbert space of all mean-zero scalar functions is the L2 space. For a precise definition of

Hilbert spaces see [135].
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using Eq. 5.3, h+ Uψ(Z) is also an influence function. The vector space Λ⊥ is then

of particular importance because we can now construct the class of all influence

functions, denoted by U , as U = Uψ(Z) + Λ⊥. Upon knowing a single IF Uψ(Z) and

the tangent space orthogonal complement Λ⊥, we can obtain the class of all possible

RAL estimators that admit the CAN property.

Out of all the influence functions in U there exists a unique one which lies in the

tangent space Λ, and which yields the most efficient RAL estimator by recovering the

semiparametric efficiency bound. This efficient influence function can be obtained by

projecting any influence function, call it U∗
ψ, onto the tangent space Λ. This operation

is denoted by U effψ = π[U∗
ψ | Λ], where U eff

ψ denotes the efficient IF.

In a semiparametric model of a DAG with missing edges, such as the one shown

in Fig. 5-1(b) (this model also implies conditional ignorability Y (t) ⊥⊥ T | C, where

C = {C1, C2}), defined by conditional independence restrictions on the tangent space

implied by the DAG factorization, the AIPW influence function can be projected onto

the tangent space of the model to improve efficiency; see [131] for details. On the

other hand, if the tangent space contains the entire Hilbert space, i.e., Λ = H, then

the statistical model M is called a nonparametric model. In a nonparametric model,

we only have one influence function since Λ⊥ = {0}. This unique influence function

can be obtained via Eq. 5.3 and corresponds to the efficient influence function U eff
ψ

(the unique element in the tangent space Λ) in the nonparametric model M. For a

more detailed description of the concepts outlined here refer to [110, 132].

As we are interested in estimation of our target parameter ψ(t) in causal models

with unmeasured confounders, we first derive new results for restrictions on the tangent

space of ADMG models that we will use to study the efficiency of semiparametric

estimators derived in [13].
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Figure 5-2. (a) Example of an ADMG whose underlying nested Markov model is NPS
even though there is a missing edge between C and Y. (b) Absence of the bidirected edge
L↔Y in (a) introduces a Verma constraint C ⊥⊥ Y | T in p(V )/p(L | T,M,C).

5.2 Restrictions on the Tangent Space of ADMG
Models

In this section, we present results regarding restrictions on the tangent space of

ADMG models. Though we use these results in order to reason about the efficiency of

estimators proposed for our target of interest ψ(t), they are in fact applicable to any

target parameter of interest, not just the one defined in the present work.

Recall from Chapter 1, an ADMG G(V ) may encode two types of equality con-

straints: ordinary conditional independence statements such as Vi ⊥⊥ Vj | Vk, and more

general equality constraints, known as Verma constraints, that resemble conditional

independences albeit in post-intervention distributions [23]. Grouped together, these

are known as equality constraints. We first describe an algorithm that characterizes

when the statistical model of an ADMG G(V ), i.e.,M(G), is nonparametric saturated;

meaning M(G) imposes no equality restrictions on p(V ). As mentioned earlier, when

M(G) =Mnps, then the tangent space of the corresponding ADMG model consists of

the entire Hilbert space.

5.2.1 Algorithm to Detect Nonparametric Saturation

The easiest way to confirm whether the model implied by an ADMG is nonparametric

saturated (NPS) is to simply check that all vertices are pairwise connected by a
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directed or bidirected edge. However, the absence of edges between two vertices in an

ADMG do not necessarily correspond to a conditional independence or even generalized

conditional independence (Verma) constraint [30]; see Fig. 5-2(a) for example where

the missing edge between C and Y does not correspond to any constraint. The missing

edge between C and Y in Fig. 5-2(b) on the other hand, does correspond to the Verma

constraint C ⊥⊥ Y | T in the distribution p(V )/p(L | T,M,C); see [23, 70] for more

details.

We propose a procedure to check if the model implied by an ADMG G(V ) with

missing edges is nonparametric saturated by checking if it is equivalent to the model

implied by another ADMG where there are no missing edges. In order to do this, we

use the maximal arid projection of an ADMG as described in [39]. Such projections

yield another ADMG that implies the same set of equality restrictions as the original,

albeit one in which the absence of edges facilitates easier study of the constraints in

the model. The algorithm that we now describe closely relates to this projection in

that it declares a model to be NPS when the input ADMG’s maximal arid projection

is a complete graph, and not NPS otherwise. For more details see proof of Theorem 8

and [39].

The concept of a reachable closure, plays a key role in constructing the maximal

arid projection. The reachable closure of a set of vertices S, denoted by ⟨S⟩G is the

unique minimal superset of S such that V \ ⟨S⟩G is fixable [39]. We provide our

procedure for checking if a model is nonparametric saturated in Algorithm 9. We

show that our algorithm is sound and complete for this purpose in the following

theorem. Further, an informal complexity analysis of Algorithm 9 shows that it is

computationally tractable as it runs in polynomial time with respect to the number

of vertices and edges in the graph G. The complexity of the outer loop is O(|V |2)

as it requires the selection of all possible pairs of random vertices. Further, naive

implementations for computing reachable closures of sets are O(|V |2 + |V | × |E|) as it
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Algorithm 9 Check Nonparametric Saturation

1: Inputs: G
2: Define the disjunctive definition of parents of a set S as pad

G(S) ≡ ⋃Si∈S paG(Si)
3: for all Vi, Vj pairs in G such that i ̸= j do
4: if not

{
Vi ∈ pad

G(⟨Vj⟩G) or Vj ∈ pad
G(⟨Vi⟩G) or

5: ⟨Vi, Vj⟩G is bidirected connected in G
}

then
6: return Not NPS
7: return NPS

involves repeated applications of depth first search (popular algorithms for which are

linear in complexity O(|V |+ |E|) [136]) in order to determine the fixability of a set of

vertices.

Theorem 8. Algorithm 9 is sound and complete for deciding the nonparametric

saturation status of the model implied by an ADMG G(V ) by determining the absence

of equality constraints.

Example: Application of Algorithm 9

As an example of the application of Algorithm 9, we return to the ADMGs in Fig. 5-2.

As all pairs of vertices besides C and Y are adjacent in these ADMGs, the negation

of the condition in lines 4 and 5 trivially evaluates to False for these pairs. We

now focus on steps executed by the algorithm when examining the pair (C, Y ). In

the case of Fig. 5-2(a), the algorithm computes ⟨Y ⟩G = {L,M, Y }. Therefore, C is

indeed a parent of the reachable closure of Y, i.e., C ∈ pad
G(⟨Y ⟩G) (note the use of

the disjunctive definition of parents as defined in Algorithm 9), and the algorithm

completes execution by confirming that the model is NPS. In the case of Fig. 5-2(b),

the reachable closure of Y is ⟨Y ⟩G = {Y } and therefore, C ̸∈ pad
G(⟨Y ⟩G). It is also

easy to confirm that Y ̸∈ pad
G(⟨C⟩G), and that ⟨C, Y ⟩G = {C, Y } is not bidirected

connected. Thus, with all these conditions evaluating to False, the negation is True,

resulting in the algorithm correctly identifying Fig. 5-2(b) as not NPS.
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5.2.2 mb-shielded ADMGs

Both ordinary conditional independences and Verma constraints restrict the tangent

space of a given ADMG model. Hence, both sets of equality constraints play a role in

formulating estimators that achieve the semiparametric efficiency bound. Deriving

restrictions on the tangent space implied by Verma constraints may be quite difficult in

general as these restrictions hold in kernels obtained after recursive fixing operations.

In what follows, we identify a large class of ADMGs where all Verma constraints are

implied by ordinary conditional independences and derive the tangent space of such

ADMG models.

Assume the existence of a class of ADMGs where, given a topological order τ , all

equality constraints implied by the ADMG G(V ) can be written as ordinary conditional

independence statements of the form,

Vi ⊥⊥ {≺τ Vi} \mpG(Vi) | mpG(Vi). (5.5)

Such a property immediately implies that the topological factorization of the observed

data distribution p(V ) shown in Eq. 1.6 captures all equality constraints implied by the

ADMG G(V ). A sound criterion for identifying ADMGs that satisfy this property is to

check that an edge between two vertices Vi and Vj in G is absent only if Vi /∈ mbG(Vj)

and Vj ̸∈ mbG(Vi). We call this class of ADMGs mb-shielded ADMGs, as pairs of

vertices are always adjacent if either one is in the Markov blanket of the other. We

formalize this criterion in the following theorem, and show that mb-shielded ADMGs

possess the desired property.

Theorem 9. Consider a distribution p(V ) that district factorizes with respect to an

ADMG G(V ) where an edge between two vertices is absent only if Vi /∈ mbG(Vj) and

Vj ̸∈ mbG(Vi). Then, given any valid topological order on V, all equality constraints in

p(V ) are implied by the set of restrictions: Vi ⊥⊥ {≺ Vi} \mpG(Vi) | mpG(Vi), ∀Vi ∈ V .
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Since the factorization given in Eq. 1.6 captures all equality constraints, the tangent

space of the statistical model corresponding to an mb-shielded ADMG will be the

same as that of a Markov equivalent DAG obtained by orienting all bidirected edges

according to a valid topological order. This fact follows directly from Lemma 1.6 in

[137] and Theorem 4.5 in [110]. For the sake of completeness, we reiterate these results

and provide the tangent space of mb-shielded ADMGs and its orthogonal complement

in the following lemma.

Lemma 4. Consider the statistical modelM(G) where G(V ) is an mb-shielded ADMG.

The tangent space of M(G) is given by a direct sum of mutually orthogonal spaces:

Λ = ⊕Vi∈V Λi, where

Λi =
{
αi(Vi,mpG(Vi)) ∈ H s.t. E[αi | mpG(Vi)] = 0

}
=
{
αi(Vi,mpG(Vi))− E[αi | mpG(Vi)], ∀αi(Vi,mpG(Vi)) ∈ H

}
.

In addition, the projection of an element h(V ) ∈ H onto Λi, denoted by hi, is given

by hi ≡ Π[h(V ) | Λi] = E
[
h(V ) | Vi,mpG(Vi)

]
− E

[
h(V ) | mpG(Vi)

]
. Consequently, the

orthogonal complement of the tangent space Λ⊥ is given as follows,

Λ⊥ =
{ ∑
Vi∈V

αi(V1, . . . , Vi)− E
[
αi(V1, . . . , Vi)

⏐⏐⏐⏐ Vi,mpG(Vi)
]}
,

where αi(V1, . . . , Vi) is any function of V1 through Vi in H, such that E[αi | V1, . . . , Vi−1] =

0.

The following section studies estimators in a wide class of hidden variable causal

models characterized by a simple graphical criterion that we term primal fixability.

5.3 Estimating the ACE Under Primal Fixability

Consider the ADMGs shown in Fig. 5-3. It is easy to check that in either case there

exists no valid adjustment set to identify the causal effect of T on Y. However, such an
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effect is indeed identified in both graphs. The defining characteristic of these ADMGs

that permits identification of the target ψ(t), is that the district of T does not intersect

with its children.

More formally, we will discuss ADMGs where disG(T ) ∩ chG(T ) = ∅. This criterion

encompasses many popular models in the literature, including those that satisfy the

back-door and front-door criteria [5, 138], as special cases. We name this criterion

primal fixability or p-fixability for short, due to its generalization of the fixing criterion

introduced in the definition of the nested Markov model. For scenarios when the

treatment is p-fixable, we introduce two new estimators (primal and dual IPW) for

ψ(t) that use variationally independent pieces of the observed data likelihood. Since

these new estimators offer different perspectives on estimating the same target, we

draw inspiration from the optimization literature [139, 140] in naming them primal

and dual IPW.

5.3.1 Primal and Dual IPW Estimators

Primal fixability is known to be a necessary and sufficient condition for identification

of the causal effect of T on all other variables V \T [26]. In observed data distributions

p(V ) that district factorize according to an ADMG G(V ) where T is primal fixable,

the resulting identifying functional for the target is as follows.

ψ(t) =
∑
V \T

Y ×
∏

Vi∈V \DT

p(Vi | mpG(Vi))×
∑
T

∏
Vj∈DT

p(Vj | mpG(Vj))
⏐⏐⏐⏐
T=t

, (5.6)

where DT denotes the district of T [26]. We provide this special notation for the

district of T as DT due to its frequent occurrence in subsequent results.

For the remainder of the chapter, we assume a fixed valid topological ordering τ

where the treatment T appears later than all of its non-descendants i.e., T ≻τ V \deG(T )

and the outcome Y appears earlier than all of its non-descendant non-ancestors i.e.,

Y ≺τ V \ (deG(Y ) ∪ anG(Y )). This allows for easier exposition by fixing the definition
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Figure 5-3. Examples of acyclic directed mixed graphs where T is primal fixable.

of pre-treatment covariates as being any variable that appears earlier than T under

the ordering τ. In introducing primal IPW below, we use {⪰ T} (dropping subscript

τ for readability) to mean the set of vertices (including T ) that succeed T under the

topological order τ.

Lemma 5. Given a distribution p(V ) that district factorizes with respect to an ADMG

G(V ) where T is primal fixable, ψ(t) = ψ(t)primal ≡ E[β(t)primal] where

β(t)primal ≡
I(T = t)

qDT (T | mbG(T )) × Y

= I(T = t)×
∑
T

∏
Vi∈DT∩{⪰T} p(Vi | mpG(Vi))∏

Vi∈DT∩{⪰T} p(Vi | mpG(Vi))
× Y. (5.7)

The kernel qDT (T | mbG(T )) in Lemma 5 may be viewed as a nested propensity

score derived from the post-intervention distribution qDT (DT | paG(DT )) where all

variables outside of DT are intervened on and held fixed to some constant value. Recall

that the kernel qDT (DT | paG(DT )) is identified as ∏Vi∈DT p(Vi | mpG(Vi)) as in Eq. 1.4.

Consequently, qDT (T | mbG(T )) is identified by the definition of conditioning on all

elements in DT outside of T in the kernel qDT (DT | paG(DT )) as,

qDT (T | mbG(T )) = qDT (T | DT ∪ paG(DT ) \ T ) = qDT (DT | paG(DT ))
qDT (DT \ T | paG(DT ))

= qDT (DT | paG(DT ))∑
T qDT (DT | paG(DT )) =

∏
Vi∈DT p(Vi | mpG(Vi))∑

T

∏
Vi∈DT p(Vi | mpG(Vi))

.
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The final expression simplifies further by noticing that all vertices appearing prior to T

under the topological order τ, do not contain T in their Markov pillows. Consequently,

p(Vi | mpG(Vi)) is not a function of T if Vi ≺ T. Thus, these terms may be pulled out

of the summation in the denominator, and cancel with the corresponding term in the

numerator. This gives us the resulting primal IPW formulation in Eq. 5.7.

We now introduce the dual formulation. Define the inverse Markov pillow of

a vertex Vi to be all other vertices Vj outside of the district of Vi, such that Vi is

a member of the Markov pillow of Vj. More formally, mp−1
G (Vi) = {Vj ∈ V | Vj /∈

disG(Vi), Vi ∈ mpG(Vj)}.

Lemma 6. Given a distribution p(V ) that district factorizes with respect to an ADMG

G(V ) where T is primal fixable, ψ(t) = ψ(t)dual ≡ E[β(t)dual] where

β(t)dual =
∏
Vi∈mp−1

G (T ) p(Vi | mpG(Vi)) |T=t∏
Vi∈mp−1

G (T ) p(Vi | mpG(Vi))
× Y. (5.8)

The representation of ψ(t) as β(t)primal and β(t)dual in Lemmas 5 and 6 immediately

yields the corresponding primal and dual IPW estimators. In what follows, we occasion-

ally assume dependence on t to be implicit and for simplicity of notation, write ψ(t)primal

as simply ψprimal and βprimal(t) as βprimal for example. Assume a finite set of parameters

ηprimal used to parameterize the nuisance models
{
p(Vi | mpG(Vi)

)
,∀Vi ∈ DT ∩{⪰ T}}

that appear in βprimal . Similarly, assume a finite set of parameters ηdual used to parame-

terize the nuisance models {p(Vi | mpG(Vi)), ∀Vi ∈ mp−1
G (T )} that appear in βdual . Let

η̂primal and η̂dual denote the respective maximum likelihood estimates. The primal IPW

estimator ψ̂primal and dual IPW estimator ψ̂dual are obtained by evaluating empirical

versions of the estimating equations E
[
U(ψ(t), η̂primal)

]
= 0 and E

[
U(ψ(t), η̂dual)

]
= 0,

where U(ψ(t), ηprimal) = βprimal − ψ(t), and U(ψ(t), ηdual) = βdual − ψ(t). That is,
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ψ̂primal = 1
n

n∑
i=1

I(Ti = t)×

∑
T

∏
Vj∈DT∩{⪰T}

p(Vj,i | mpG(Vj,i); η̂primal)∏
Vj∈DT∩{⪰T}

p(Vj,i | mpG(Vj,i); η̂primal)
× Yi,

ψ̂dual = 1
n

n∑
i=1

∏
Vj∈mp−1

G (T )

p(Vj,i | mpG(Vj,i); η̂dual) |T=t

∏
Vj∈mp−1

G (T )

p(Vj,i | mpG(Vj,i); η̂dual)
× Yi.

We now show that the sets of nuisance models in the primal and dual IPW

estimators form variationally independent components of the observed data distribution

p(V ). That is, correct specification of the nuisance models in the primal IPW estimator

do not rely in any way on the correct specification of nuisance models in the dual

IPW estimator.

Theorem 10. Given a distribution p(V ) that district factorizes with respect to an

ADMG G(V ) where T is primal fixable, the IPW estimators ψprimal and ψdual proposed

in Lemmas 5 and 6 respectively, use variationally independent components of the

observed distribution p(V ).

We now briefly discuss some intuition regarding the primal and dual IPW estimators.

In the regular conditionally ignorable model, the primal and dual IPW estimators

correspond to the standard IPW and outcome regression plug-in estimators respectively.

More generally, primal IPW can be viewed as a generalization of the g-formula to

kernel factorizations that arise in ADMGs. The ordinary g-formula for a DAG model

involves truncation of the DAG factorization, namely dropping a simple conditional

factor of the treatment given its parents, i.e., p(V (t)) = {p(V )/p(T = t | paG(T ))}|T=t.

On the other hand, the primal formulation, or the nested g-formula, can be viewed

as truncation of the district factorization in Eq. 5.6, where the nested conditional

factor for the treatment given its Markov blanket is dropped from the observed joint

distribution, i.e., p(V (t)) = {p(V )/qDT (T | mbG(T ))}|T=t. Intuition for the dual IPW
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can be gained by viewing it as a probabilistic formalization of the node splitting

operation in single world intervention graphs (SWIGs) described in [141]. To provide

more concrete intuition on the primal and dual IPW estimators, we discuss their

application to the ADMGs shown in Fig. 5-3.

Examples: Primal and Dual IPW Estimators

Consider the ADMG in Fig. 5-3(a). T is primal fixable as there is no bidirected path

from T to any of its children, namely M. The inverse Markov pillow of T in Fig. 5-3(a)

is just M. Per Lemmas 5 and 6, the primal and dual IPW estimators for the target

parameter ψ(t) in Fig. 5-3(a) are given by,

(Fig. 5-3a) ψprimal = E
[
I(T = t)×

∑
T p(T | C)× p(L | T,M,C)× p(Y | T,M,L,C)
p(T | C)× p(L | T,M,C)× p(Y | T,M,L,C) × Y

]
,

ψdual = E
[p(M | T = t, C)

p(M | T,C) × Y
]
.

In order to estimate ψ(t) using finite samples, we proceed as follows. In case of

the primal IPW, we can fit parametric models (generalized linear models for instance)

for the conditional densities p(T | C), p(L | T,M,C), and p(Y | T,M,L,C),. The target

parameter is then obtained by empirically evaluating the outer expectation using the

fitted models. Note that we can also avoid modeling the conditional density of Y , as

the outcome regression E[Y | T,M,L,C] suffices to estimate ψ(t), i.e., ψprimal can be

expressed equivalently as

E
[
I(T = t)×

∑
T p(T | C)× p(L | T,M,C)× E[Y | T,M,L,C]

p(T | C)× p(L | T,M,C)
]
.

A simple procedure to estimate the dual IPW involves modeling the conditional density

p(M | T,C). However, a more sophisticated procedure may take advantage of modeling

the density ratio directly as suggested by [142].

We now turn our attention to the ADMG in Fig. 5-3(b). The inverse Markov pillow
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of T in Fig. 5-3(b) is {M,Y }. The corresponding primal and dual IPW estimators are

given by,

(Fig. 5-3b) ψprimal = E
[
I(T = t)×

∑
T p(T | C)× p(L | T,M,C)
p(T | C)× p(L | T,M,C) × Y

]
.

ψdual = E
[p(M | T = t, C)

p(M | T,C) × p(Y | T = t,M,L,C)
p(Y | T,M,L,C) × Y

]
.

Similar strategies can be used to estimate ψ(t) as in the previous example. Also, note

that the conditional density of Y in ψdual can be replaced by the outcome regression

E[Y | T = t,M,L,C], i.e., ψdual can be expressed equivalently as E
[
p(M |T=t,C)
p(M |T,C) × E[Y | T =

t,M,L,C]
]
.

5.3.2 Augmented Primal IPW Estimators

In the previous subsection we have shown the existence of two estimators for the target

ψ(t) that use variationally independent portions of the likelihood when T is p-fixable.

The question naturally arises if it is possible to combine these estimators to yield a

single estimator that exhibits double robustness in the sets of models used in each

one. In [13], we showed that in fact, the nonparametric influence function obtained by

applying the pathwise derivative to the functional in Eq. 5.6 yields such an estimator,

and this semiparametric estimator can be viewed as augmentation of primal IPW. In

this dissertation, we do not focus on the derivation of this nonparametric influence

function and the resulting augmented primal IPW (APIPW) (for this we refer the

reader to [13] for details) and instead study its efficiency using results we have derived

on the tangent space of ADMG models. We present the form of the nonparametric IF

in this subsection and then discuss results on its efficiency.

Let p(V ) be a distribution that factorizes with respect to an ADMG G(V ) where

the treatment T is primal fixable. For notational simplicity, we will assume that the

outcome Y has no descendants in G, though our results extend trivially to settings

where this is not true. Recall from the previous section, that we use a fixed topological
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order τ where T is preceded by all its non-descendants and Y is succeeded by all its

non-descendant non-ancestors. The set of variables V can then be partitioned into

three disjoint sets C,L, and M where,

C = {Ci ∈ V | Ci ≺ T},

L = {Li ∈ V | Li ∈ DT , Li ⪰ T},

M = {Mi ∈ V |Mi ̸∈ C ∪ L}. (5.9)

Based on the above definitions, the identifying functional for ψ(t) from Eq. 5.6

can be rewritten as,

ψ(t) =
∑
V \T

Y ×
∏

Mi∈M
p(Mi | mpG(Mi))

⏐⏐⏐
T=t
×
∑
T

∏
Li∈L

p(Li | mpG(Li))× p(C). (5.10)

It was shown in [13] that the nonparametric influence function obtained by applying

the pathwise derivative (Eq. 5.3) to Eq. 5.10 is given by the following theorem.

Theorem 11. Given a distribution p(V ) that district factorizes with respect to an

ADMG G(V ) where T is primal fixable, the nonparametric influence function Uψt for

the target parameter ψ(t) is as follows.

Uψt =
∑
Mi∈M

E[βprimal | {⪯Mi}]− E[βprimal | {≺Mi}]

+
∑
Li∈L

E[βdual | {⪯ Li}]− E[βdual | {≺ Li}]

+ E[βprimal/dual | C]− ψ(t),

where βprimal and βdual are obtained via Lemmas 5 and 6, respectively, and βprimal/dual

means that we may use either βprimal or βdual .
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[13] also shows that the above influence function Uψt uses information in the models

for Mi ∈M and Li ∈ L in order to yield an estimator that is doubly robust in these

sets. That is, the estimator obtained by solving the estimating equation E[Uψt ] = 0,

where Uψt is given in Theorem 11, is consistent and asymptotically normal if all models

in either {p(Mi | mpG(Mi)), ∀Mi ∈ M} or {p(Li | mpG(Li)), ∀Li ∈ L} are correctly

specified. To make concepts concrete before the discussion on efficiency, we provide a

brief example of the application of Theorem 11 to derive the nonparametric IF for the

target ψ(t).

Example: Augmented Primal IPW

We derive the nonparametric IF for the ADMG in Fig. 5-3(b). The sets in display (5.9)

are C = {C},L = {T, L}, and M = {M,Y }. Using Theorem 11, the nonparametric IF

for the target is given by,

(Fig. 5-3b) Uψt = E[βprimal | Y, T,M,L,C]− E[βprimal | T,M,L,C]
+ E[βprimal |M,T,C]− E[βprimal | T,C]
+ E[βdual | L, T,M,C]− E[βdual | T,M,C]
+ E[βdual | T,C] − E[βdual | C]
+ E[βdual | C] − ψ(t), (5.11)

where βprimal and βdual are the same primal and dual IPW functionals derived for

Fig 5-3(b) in the previous subsection. That is,

(Fig. 5-3b) βprimal = I(T = t)×
∑
T p(T | C)× p(L | T,M,C)
p(T | C)× p(L | T,M,C) × Y.

βdual = p(M | T = t, C)
p(M | T,C) × p(Y | T = t,M,L,C)

p(Y | T,M,L,C) × Y.

Plugging these into Eq. 5.11 allows us to explicitly write out the nonparametric IF in

terms of conditional densities appearing in the topological factorization of the ADMG

as follows.
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(Fig. 5-3b) Uψt =
I(T = t)

p(T | C) × p(L | T,M,C)
×
(∑

T

p(T | C) × p(L | T,M,C) × Y

−
∑
T

p(T | C) × p(L | T,M,C) × E[Y | T = t,M,L,C]
)

+
I(T = t)
p(T | C)

×
(∑
T,L

p(T | C) × p(L | T,M,C) × E[Y | T = t,M,L,C]

−
∑
T,L

p(T | C) × p(M | T = t, C) × p(L | T,M,C) × E[Y | T = t,M,L,C]
)

+
p(M | T = t, C)
p(M | T,C)

×
(
E[Y | T = t,M,L,C] −

∑
L

p(L | T,M,C) × E[Y | T = t,M,L,C]
)

+
∑
M,L

p(M | T = t, C) × p(L | T,M,C) × E[Y | T = t,M,L,C] − ψ(t). (5.12)

An estimator for the target ψ(t) is obtained by solving the estimating equation

E[Uψt ] = 0. In the resulting estimator, conditional densities for p(T | C), p(M |

T,C), p(L | T,M,C) and the outcome regression E[Y | T,M,L,C] can be fit either

parametrically or using flexible models. The outer expectation is then evaluated

empirically using the fitted models in order to yield the target parameter. Per the

double robustness property of the estimator, the resulting estimate for ψ(t) is consistent

as long as one of the sets {p(T | C), p(L | T,M,C)} or {p(M | T,C),E[Y | T,M,L,C]} is

correctly specified while allowing for arbitrary misspecification of the other.

Another estimation strategy that is computationally simpler stems from the

usage of Theorem 11 to the ADMG in Fig. 5-3(b). With the simplification that

E[βprimal | Y, T,M,L,C] = βprimal, the resulting estimator for the target is,

(Fig. 5-3b) ψreform = E
[
βprimal−E[βprimal | T,M,L,C]
+ E[βprimal |M,T,C]− E[βprimal | T,C]
+ E[βdual | L, T,M,C]− E[βdual | T,M,C]
+ E[βdual | T,C]

]
. (5.13)

The above can be estimated from finite samples by first obtaining estimates for βprimal

and βdual for each row in our data and then fitting flexible regressions for each E[· | ·]

shown in Eq. 5.13 using these estimates as pseudo outcomes. The outer expectation
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Figure 5-4. An mb-shielded ADMG that is not NPS and where T is primal fixable.

is then evaluated empirically using these fitted models, yielding an estimate for the

target parameter ψ(t).

The two estimation strategies described above come with trade-offs. The former

approach requires modeling conditional densities and computing sums but preserves

the double robustness property and does not face issues of model incompatibility. The

latter approach trades model compatibility and double robustness for computational

tractability. The latter approach may also face issues in high dimensional settings.

5.3.3 Efficient IF in mb-shielded ADMGs Where T is Primal
Fixable

Algorithm 9 served as a means of checking whether the model implied by an ADMG

G(V ) is NPS. In an NPS model, there exists a single unique influence function. Hence,

the estimator that we obtain by solving E[Uψ] = 0, where Uψ is given by Theorem 11

when T is p-fixable, is not only doubly robust but also the most efficient estimator.

On the other hand, constraints in a semiparametric model shrink the tangent

space Λ, and thus expand its orthogonal complement Λ⊥. As Λ⊥ expands, we will

have more than one influence function (note that the class of all influence functions is

{Uψ + Λ⊥}.) We now discuss efficiency results for the class of mb-shielded ADMGs

proposed in Theorem 9.

Consider the ADMG shown in Fig. 5-4. Such an ADMG may reflect additional

background knowledge or conditional independences known to the analyst. For
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example, in Fig. 5-4, C1 ⊥⊥ C2 and M ⊥⊥ C1, Z1, Z2 | T,C2. As this model is no longer

NPS, the IF obtained via Theorem 11 is not the most efficient. However, it is easy to

see that this ADMG is mb-shielded and therefore the efficient IF is given by projection

of Uψt in Theorem 11 onto the tangent space in Theorem 4. In the following theorem,

we provide the general form of the efficient IF in an arbitrary mb-shielded ADMG

where T is p-fixable.

Theorem 12. Given a distribution p(V ) that district factorizes with respect to an

mb-shielded ADMG G(V ) where T is primal fixable, the efficient influence function

for the target parameter ψ(t) is given as follows,

U eff
ψt

=
∑
Mi∈M

E[βprimal |Mi,mpG(Mi)]− E[βprimal | mpG(Mi)]

+
∑
Li∈L

E[βdual | Li,mpG(Li)]− E[βdual | mpG(Li)]

+
∑
Ci∈C

E[βprimal/dual | Ci,mpG(Ci)]− E[βprimal/dual | mpG(Ci)] (5.14)

where C,L,M are defined in display (5.9), and βprimal and βdual are obtained as in

Lemmas 5 and 6 respectively. βprimal/dual means that we can either use βprimal or βdual

for the terms in C.

Hence, the primal and dual IPWs comprise the fundamental elements of the

efficient influence function in the setting where T is primal fixable. Simplified symbolic

representations of the efficient IF in terms of the conditional densities that appear

in the topological factorization can be obtained by plugging in the expression from

Theorem 12 into computer algebra systems such as [143] and [144].

Example: Efficient APIPW

Applying Theorem 12 to Fig. 5-4 gives us the following efficient estimator. Fix a valid

topological order (C1, C2, Z1, Z2, T,M,L, Y ). Then
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(Fig. 5-4) βprimal = I(T = t)×
∑
T p(T | C1, C2)× p(L | T,M,C1, C2)
p(T | C1, C2)× p(L | T,M,C1, C2) × Y,

βdual = p(M | T = t, C2)
p(M | T,C2) × Y. (5.15)

Define the sets M = {M,Y }, L = {T, L}, and C = {C1, C2}. Note that we have

dropped terms involving the vertices Z1 and Z2 as it is easy to check that E[βdual |

Zi,mpG(Zi)] = E[βdual | mpG(Zi)], resulting in a cancellation of these terms. Then

(Fig. 5-4) ψeff = E
[
E[βprimal | Y,L,C2]− E[βprimal | L,C2]
+ E[βprimal |M,T,C2]− E[βprimal | T,C2]
+ E[βdual | L,M, T,C1, C2]− E[βdual |M,T,C1, C2]
+ E[βdual | T,C1, C2]− E[βdual | C1, C2]
+ E[βdual | C2] + E[βdual | C1]− E[βdual]

]
(5.16)

The estimation strategy for the above functional is very similar to the one used for

Eq. 5.13. Estimation of the representation of the efficient IF in terms of the original

conditional densities as provided by computer algebra systems simply requires fitting

models for each conditional density that appears in the functional.

5.4 Estimation of the ACE in Arbitrary ADMGs

So far we have discussed inference of the target ψ(t) in a broad class of ADMGs

defined by the primal fixability criterion. However, in arbitrary hidden variable causal

models, ψ(t) may be identified even if there exists no valid adjustment set, and T is not

p-fixable. The resulting identifying functional is given by truncated factorization of the

nested Markov model discussed in Chapter 1 (Eq. 1.9). This strategy for identification

of the target is known to be sound and complete [22]. That is, identification of the

target parameter ψ(t) in a hidden variable causal model associated with a DAG

G(V ∪H) may be rephrased, without loss of generality, using its corresponding latent

projection ADMG G(V ).
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Figure 5-5. An ADMG where the treatment is not p-fixable but ψ(t) is still identified via
the truncated nested Markov factorization.

In special cases, when all observed variables are either discrete or multivariate

normal, a parametric likelihood can be specified for the nested Markov model [39, 145],

which leads naturally to estimation of ψ(t) in Eq. 1.9 by the plug-in principle. However,

in applications, assuming a full parametric likelihood is unrealistic. In this section

we describe IPW estimators that use only subsets of the likelihood thus reducing the

chance of model misspecification. We call this estimator nested IPW and show that

its consistency relies only on correct specification of a subset of the nested Markov

likelihood that form the district of T.

5.4.1 Nested IPW Estimators

We now describe a general algorithm that yields IPW estimators for any ψ(t)

that is identifiable from the observed margin p(V ) corresponding to an ADMG

G(V ). Consider the ADMG shown in Fig. 5-5. Though T is not p-fixable, ψ(t) is

still identifiable via the truncated nested Markov factorization as follows. Y ∗ =

{Y,M,C,R1, R2} and D(GY ∗) = {{Y,M,C}, {R1}, {R2}}. Fix a valid topological or-

der τ = (Z,C, T,R1, R2,M, Y ). Then from the truncated nested Markov factorization

in Eq. 1.9 we have,

ψ(t) =
∑
Y ∗

Y × ϕV \{Y,M,C}(p(V );G)× ϕV \R1(p(V );G)× ϕV \R2(p(V );G)
⏐⏐⏐⏐
T=t

=
∑

C,R1,R2,M

p(C)× p(M | C,R1)× E[Y |M,C,R1, R2, t]×
∑
Z

p(Z)× p(R1 | t, Z)× p(R2).

(5.17)
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Algorithm 10 Nested IPW

1: Inputs: G, p(V )
2: Let Y ∗ = anGV \T (Y ) and DT = disG(T ) and D∗ ← {D ∈ D(GY ∗) | D ∩DT ̸= ∅}
3: if ∃D ∈ D∗ such that D is not intrinsic in G then
4: return Fail
5: Define non-descendants of a vertex Vi as ndG(Vi) ≡ V \ deG(Vi)
6: Fix a topological order τ such that Vi ≻τ ndG(Vi) \ Y ∗, ∀Vi ∈ Y ∗

7: Define qD(D | paG(D)) ≡ ϕV \D(p(V );G(V ))

8: βnested ≡ I(T=t)
p(T |mpG(T )) ×

∏
D∈D∗

(
qD(D | paG(D))×∏Di∈D

1
p(Di|mpG(Di))

)
× Y

9: return ψ(t)nested ≡ E[βnested]

In the following theorem, we provide the corresponding IPW estimator for all

targets ψ(t) that are identifiable from the observed margin of a hidden variable causal

DAG G(V ∪H). As these estimators are derived from the nested Markov factorization

of the latent projection ADMG G(V ), we coin the term nested IPW in referring

to them. We show that Algorithm 10 which we use to derive such estimators is

sound and complete. That is, when Algorithm 10 returns a nested IPW functional,

ψ(t)nested = ψ(t) and when the algorithm fails to return a functional, ψ(t) is not

identifiable within the given model.

Theorem 13. Let p(V ) and G(V ) be the observed marginal distribution and ADMG

induced by a hidden variable causal model associated with DAG G(V ∪H). Then if

ψ(t) is identifiable in the model, ψ(t) = ψ(t)nested. If ψ(t) is not identifiable in the

model, Algorithm 10 returns ‘fail’.

It is easy to see that the nested IPW estimator only requires the specification for

parametric models for variables in DT . That is, the analyst is only required to model

distributions related to the treatment assignment and confounding factors related to

the treatment assignment.

Example: Nested IPW

We now return to the ADMG shown in Fig. 5-5 and discuss the application of
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Theorem 13, in order to obtain an estimator for ψ(t). Recall, Y ∗ ≡ {Y,M,C,R1, R2}

and D(GY ∗) = {{Y,M,C}, {R1}, {R2}}. Note that D∗ simply focuses on the districts

related to GY ∗ that do not overlap with DT . Therefore, D∗ in line 2 of the algorithm is

{{R1}, {R2}}. Since both of these districts are intrinsic in G, Algorithm 10 does not

fail. Fix the topological order (R2, Z, C, T,R1,M, Y ) according to line 6. Then,

ψnested = E
[ I(T = t)
p(T | Z,C) ×

∑
Z p(Z)× p(R1 | T,Z)
p(R1 | T,Z,C,R2) × p(R2)

p(R2) × Y
]

= E
[ I(T = t)
p(T | Z,C) ×

∑
Z p(Z)× p(R1 | T,Z)
p(R1 | T,Z,C,R2) × Y

]
. (5.18)

The above functional only requires fitting parametric models for conditional

densities that appear in the district of T . Thus, the amount of modeling required

for the above nested IPW functional is significantly less than parameterizing the full

observed data likelihood of the ADMG shown in Fig 5-5.

5.5 Related and Future Work

To the best of our knowledge, prior to the work discussed in this chapter, the front-door

model [138] was the only graphical model with unmeasured confounders such that no

valid covariate adjustment set exists but the ACE is nonparametrically identifiable

for which an influence function based estimator had been derived [146]. There also

exists a large body of work on semiparametric theory with instrumental variables

[147, 148, 149]. However, many of these estimators rely on more assumptions than

what is implied by the causal graphical model itself. Weight-based estimators for

a subclass of models considered in this paper, were studied in [150]. Other related

work includes numerical procedures for approximating the influence function proposed

by [151, 152]. However, such methods are either restricted to settings where simple

covariate adjustment is valid, or involve numerical approximations of the function

itself which may be computationally prohibitive.
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The work in this chapter raises several interesting questions for future work. This

includes (relatively) simple extensions such as extending the estimators presented here

to settings with multiple treatments and outcomes. Other open problems include

deriving the nonparametric influence function that serves to augment and improve

the efficiency of the nested IPW functional, deriving the tangent space for arbitrary

ADMG models which encode generalized equality (Verma) restrictions, and deriving a

general algorithm capable of projecting a given nonparametric IF onto the tangent

space to obtain the efficient IF.
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Chapter 6

Conclusion

This dissertation introduced methods for causal inference in the presence of various

complications arising from unmeasured confounding, data dependence, missing data,

and model misspecification. For the most part, these phenomena were assumed to

occur independently of each other. However, there is no substantive reason to believe

that these phenomena cannot co-occur. For example, individuals may pressure or

influence others in their social network to respond/not respond to surveys. Further, it

is well-known that the presence or absence of a friend or partner plays a major role

in the outcomes of an individual – whether it be quicker recovery from surgery, or

deriving more enjoyment through social bonding over a film. Modeling such phenomena

appropriately not only requires new graphical representations, but also definitions

of new types of counterfactual random variables, e.g., an individual’s outcome from

surgery had their partner been present/not present with them for their hospital visits.

Within each sub-problem we discussed there also remain several important unan-

swered questions. The question of nested Markov equivalence – a graphical char-

acterization of which ADMGs imply the same equality constraints on the observed

data distribution – and a description of general nested Markov likelihoods are ones

that I hope to continue pursuing past my dissertation work. Efficient semiparametric

estimators for causal effects in the presence of arbitrary patterns of confounding and

missingness are also problems that interest me a great deal.
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Technical issues aside, there remain major challenges in bridging the gap between

theory and practice in causal inference. New theoretical results in discovery, identi-

fication, and estimation arrive at a much quicker pace than what practictioners are

willing to adopt. Some of this, is in part, due to a disconnect between the needs of the

practitioner and the technical interests of the theorist. However, a significant portion

of this gap may also be attributed to a lack of robust and well-documented statistical

software for causal inference. I hope to address both these problems in my future

research program. The first by continuing to emphasize the development of practical

methods and staying in touch with the problems in computational oncogenomics that

motivated them. And second by continuing the development and maintenance of high

quality software for causal inference in Ananke [9].
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Appendix A

Marginalization, Conditioning, and
Fixing in Kernels

A kernel qV (V | W ) is a mapping from values of W to normalized densities over V. That

is, ∑V qV (V | W = w) = 1,∀w ∈ W. For any set of variables X ⊆ V, marginalization

and conditioning in a kernel are defined as follows.

qV \X(V \X | W ) ≡
∑
X

qV (V | W ), and

qV (V \X | X,W ) ≡ qV (V | W )
qV (X | W ) .

The notation qV (· | X) makes clear which variables appearing past the “conditioning”

bar in a kernel are fixed as opposed to simply conditioned on. That is, if a variable

Xi ̸∈ V, then it is fixed, else it is conditioned on. Occasionally, fixing operations may

also simplify to marginalization or conditioning events. We illustrate these concepts

with a simple example.

Consider the ADMG shown in Figure A-1(a) and fix the kernel of interest to be

qY (Y | T, Z1, Z2), i.e., a kernel where all other variables except Y are fixed. A valid

fixing sequence in order to obtain such a kernel from the joint p(V ) is (Z2, Z1, T ).

Fixing Z2 entails dividing by the simple conditional p(Z2 | Z1) and yields the CADMG

ϕZ2(G) and corresponding kernel qZ1,T,Y (Z1, T, Y | Z2) shown in Figure A-1(b). In

order to fix Z1, we must divide by the kernel qZ1,T,Y (Z1 | Z2, T, Y ). By rules of
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Z1 Z2 T Y

(a) G

p(V ) = p(Z2 | Z1)× p(Z1)× p(T, Y | Z1, Z2)

Z1 z2 T Y

(b) ϕZ2(G)

qZ1,T,Y (Z1, T, Y | Z2) = p(Z1)× p(T, Y | Z1, Z2)

z1 z2 T Y

(c) ϕ{Z1,Z2}(G)

qT,Y (T, Y | Z1, Z2) = ∑
Z1 p(Z1)× p(T, Y | Z1, Z2)

z1 z2 t Y

(d) ϕ{Z1,Z2,T}(G)

qY (Y | T, Z1, Z2) =
∑

Z1
p(Z1)×p(T,Y |Z1,Z2)∑

Z1
p(Z1)×p(T |Z1,Z2)

Figure A-1. An example to illustrate fixing and kernel operations.

conditioning and marginalization in kernels,

qZ1,T,Y (Z1 | Z2, T, Y ) ≡ qZ1,T,Y (Z1, T, Y | Z2)
qZ1,T,Y (T, Y | Z2)

≡ qZ1,T,Y (Z1, T, Y | Z2)∑
Z1 qZ1,T,Y (Z1, T, Y | Z2)

Fixing Z1 and evaluating the above expression gives us the CADMG and corresponding

kernel shown in Figure A-1(c). That is, fixing Z1 in the kernel qZ1,T,Y (Z1 | Z2, T, Y ),

simplifies to marginalization of Z1. Finally, applying rules of conditioning and marginal-

ization to the kernel qT,Y (T, Y | Z1, Z2) we can obtain the kernel qT,Y (T | Z1, Z2, Y ).

Dividing by this corresponds to fixing T, giving us the CADMG and desired kernel

shown in Figure A-1(d).
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Appendix B

Supplement to Chapter 2

In this Appendix, we first discuss details of the Greenery algorithm for penalizing

c-trees and introduce the formalizations necessary to prove its correctness. We then

provide additional comments on the protein expression network learned by applying

our method to the data from [1]. We then discuss additional implementation details

and choice of hyperparameters for our experiments. Finally we present formal proofs

of results in our paper.

B.1 Details of the Greenery Algorithm

[13] introduced a graphical and probabilistic operator called primal fixing that can be

applied recursively to an ADMG and its statistical model to identify causal parameters

of interest. In this section we provide the necessary background on the graphical

operator and discuss how it relates to the detection of c-trees. We then show how

primal fixing is codified in the steps of Algorithm 1 through an example.

A conditional ADMG (CADMG) G = (V,W,E) is an ADMG whose vertices can

be partitioned into random vertices V and fixed vertices W, with the restriction that

no arrowheads point into W [22]. A vertex Vi in a CADMG G = (V,W,E) is said to

be primal fixable if there is no bidirected path from Vi to any of its direct children.

The graphical operation of primal fixing Vi in G, denoted by ϕVi(G), yields a new
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V1 V4

V2 V3

(i) Ga

V1 V4

V2 V3

(ii) ϕV1(Ga)

V1 V4

V2 V3

(iii) ϕ{V1,V2}(Ga)

V1 V4

V2 V3

(iv) ϕ{V1,V2,V3}(Ga)

V1 V4

V2 V3

(v) Gb

Figure B-1. (i) An arid ADMG; (ii) The CADMG obtained after primal fixing V1; (iii)
The CADMG obtained after primal fixing V1 and V2; (iv) The CADMG obtained after
primal fixing V1, V2, and V3; (v) A non-arid bow-free ADMG that is a super model of (i).

CADMG G = (V \ Vi,W ∪ Vi, E \ {e ∈ E | e = ◦→Vi or ◦↔Vi}) where Vi is now

“fixed” (denoted by a square box in figures shown in this Supplement) and incoming

edges into Vi are deleted. This can be extended to a set of vertices as follows. A set

of k vertices S is said to be primal fixable if there exists an ordering (S1, . . . , Sk) such

that S1 is primal fixable in G, S2 is primal fixable in ϕS1(G), S3 is primal fixable in

ϕS2(ϕS1(G)), and so on. It is easy to see that any such valid ordering on S yields the

same final CADMG. Hence, we can denote primal fixing a set of vertices S as simply

ϕS(G). A vertex Vi in an ADMG G is said to be reachable if V \ Vi is primal fixable

in G. [39] showed that if Vi is reachable in G, then the causal effect of the parents of

Vi on Vi itself is identified, and there is no Vi rooted c-tree in G.1 If no valid primal

fixing order exists, Vi along with the unique minimal set of vertices that could not be

primal fixed form a Vi-rooted c-tree [39]. That is, an ADMG G is arid if and only if

every vertex Vi ∈ V is reachable. This forms the basis of Algorithm 1.

We now demonstrate usage of the primal fixing operator to establish that the

ADMG Ga shown in Figure B-1(i) is arid and the ADMG Gb shown in Figure B-1(v)

is not. These are the same graphs shown in Section 2.1 of the paper but we redraw

and relabel them here for convenience. The reachability of vertices V1, V2, and V3 in
1Actually this was shown with respect to the ordinary fixing operator proposed in [22] which

performs the same graphical operation as primal fixing but considers Vi to be fixable when there are
no bidirected paths to any descendant (a vertex Vj such that there exists a directed path from Vi to
Vj) of Vi. It is easy to see how primal fixing is a strict generalization of fixing by noting that the
children of Vi is a subset of its descendants.
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Ga is easily established. In every case, we can primal fix the remaining vertices in a

reverse topological order starting with V4 which has no children. The reachability of

V4 is established by noticing that V1 is primal fixable in Ga. In the resulting CADMG,

shown in Figure B-1(ii), both V2 and V3 are primal fixable. Primal fixing V2 yields

the CADMG in Figure B-1(iii) and finally primal fixing V3 yields the CADMG in

Figure B-1(iv). Hence, all vertices in Ga are reachable. It then follows that Ga is arid.

If we try to apply the same reasoning to the Gb in Figure B-1(v), we see that V1, V2,

and V3 are still reachable as before. However, we cannot establish a sequence of primal

fixing operations to reach V4 as none of the other vertices are primal fixable in the

original graph. Hence, there is a V4-rooted c-tree in Gb comprised of the arborescence

V1→V2→V3→V4 which also forms a bidirected component in Gb.

B.1.1 Example Application of the Greenery Algorithm

We now demonstrate how the above primal fixing steps relate to Algorithm 1. Let the

ordering of vertices of entries in the matrix be V1, V2, V3, V4. The adjacency matrices

D and B for Ga in Figure B-1(i) are as follows.

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1

0 0 0 0

1 0 0 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The ith iteration of the outer loop of the algorithm attempts to establish the reachability

of Vi, and hence, the presence or absence of a Vi-rooted c-tree. Note that since the

primal fixing operation can be applied at most d− 1 times (where d is the number of

vertices in G) to determine the reachability of Vi, the inner loop of Algorithm 1 also

executes d− 1 times. We now focus on the final iteration of the algorithm where it

tries to establish the reachability of V4.

In the first iteration of the inner loop we have Df = D and Bf = B. Therefore we
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have,

eB
f ◦D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0.59 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
f =

[
0 0 0.53 0.76

]
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.53 0.76

0 0 0.53 0.76

0 0 0.53 0.76

0 0 0.53 0.76

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Each entry i, j of the matrix eBf ◦D is zero if and only if a bidirected path from Vi to

Vj and a directed edge Vi → Vj do not co-exist in G. The sum of the ith row of this

matrix then exactly characterizes the primal fixability criterion. That is, Vi is primal

fixable if and only if the sum of the ith row in eBf ◦D is 0. The above calculations

indicate that the vertices V1, V2, and V4 are all primal fixable in Ga, which can be easily

confirmed by looking at the graph itself. The vector f then summarizes the primal

fixability of each vertex except we add the ith row of an identity matrix to ensure

that we do not accidentally primal fix Vi itself when determining its reachability. The

matrix F formed by tiling the f vector d times can then be used as a “mask” that

implements the primal fixing operation applied to V1 and V2 simultaneously, yielding

the following updates to Df and Bf .

Df =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0.53 0

0 0 0 0.76

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to confirm that the induced ADMG G(Df , Bf ) corresponds to the CADMG

shown in Figure B-1(iii). Note that a constant positive scaling factor can also be applied

to the hyperbolic tangent function to improve the sharpness of the approximation of

the primal fixing operator. In the second iteration of the loop, we apply the same
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process again and obtain,

eB
f ◦D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
f =

[
0 0 0 0.76

]
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0.76

0 0 0 0.76

0 0 0 0.76

0 0 0 0.76

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

That is, in the second iteration of the algorithm, V3 becomes primal fixable. Applying

the primal fixing operator yields the adjacency matrices,

Df =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0.58

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which induce the CADMG shown in Figure B-1(iv) corresponding to primal fixing V3.

Thus, in this case, reachability of V4 is established in 2 steps. However, the algorithm

will still perform a third step that does not result in any additional primal fixing and

does not change the conclusion of reachability of V4. As there are no vertices that have

both a bidirected path and directed path to V4 in the final CADMG and corresponding

adjacency matrices, C = eB
f ◦eDf is simply the identity matrix. Taking the ith column

sum then evaluates to 1 which is subtracted off later in the final “return” step of

the algorithm. A similar argument holds for vertices V1, V2, and V3. Thus, applying

Algorithm 1 to Ga in Figure B-1(i) returns a value of 0 confirming that Ga is arid.

We now consider application of the algorithm to the ADMG Gb shown in Figure B-

1(v). We will apply a scaling constant of 10 to the hyperbolic tangent function, i.e.,

we use tanh(10x), so that the values are large enough to illustrate the main concept.

We again focus on the reachability of V4. The adjacency matrices for Gb are:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1

0 0 0 1

1 0 0 0

1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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In the first iteration of the inner loop we have,

eB
f ◦D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.64 0 0

0 0 0.19 0

0 0 0 0.64

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
f =

[
1 0.96 1 1

]
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.96 1 1

1 0.96 1 1

1 0.96 1 1

1 0.96 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

That is, we see that none of the vertices in Gb are primal fixable. Therefore applying

the primal fixable operator through the matrix F results in adjacency matrices,

Df =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.96 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1

0 0 0 0.96

1 0 0 0

1 0.96 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which induce a “CADMG” that has the same edges as the original graph Gb. Repeated

applications of this in the second and third iterations do not change the structure of

the induced graph. Therefore, upon termination of the inner loop, there remains a

directed path from every vertex in V \ V4 to V4 and the vertices still form a bidirected

connected component. That is, there is a V4-rooted c-tree in Gb. This is confirmed

when we evaluate the sum of the ith column of C = eD
f ◦eBf to 2.34. The other vertices

V1, V2, and V3 are still reachable and their respective column sums upon termination

of the inner loop yield a value of 1 each. Subtracting d at the end of the algorithm still

leaves a positive remainder of 1.34. Hence, Algorithm 1 returns a positive quantity

when applied to Gb, confirming that it is not arid.

B.2 Comments on Protein Expression Analysis

In this section we discuss the Verma restriction that allows us to establish that Erk is

not a cause of PKA. The importance of this relation stems from manipulation of Erk

by the authors of [1] and establishing that no downstream change was observed in

PKA.
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We first point out that there is no ordinary conditional independence constraint

between Akt and PKC in the learned structure shown in the right panel of Figure 2-3,

despite the absence of an edge between the two. This can be confirmed by noting the

presence of an inducing path between Akt and PKC. An inducing path between Vi and

Vj is a path from Vi to Vj where every non-endpoint is both a collider (→ ◦←,↔ ◦←,

or↔ ◦↔ ) and has a directed path to either Vi or Vj. It is well-known that the presence

of such a path precludes the possibility of an ordinary conditional independence of the

form Vi ⊥⊥ Vj | Z for any Z ⊆ V \{Vi, Vj} [23]. In our analysis it can be confirmed that

Akt→Erk↔PKA↔PKC is an inducing path between Akt and PKC. Thus, there

is no ordinary conditional independence between these two proteins under our learned

model. However, under the faithfulness assumption, the absence of the edge between

Akt and PKC implies an equality restriction. We now provide the non-parametric

form of the corresponding Verma constraint.

Consider the ADMG and corresponding distribution obtained by recursively

marginalizing out all vertices (except PKC) with no outgoing directed edges in

Figure 2-3. In performing this graphical operation, none of the variables removed act

as a latent confounder for the remaining variables in the problem. Therefore, by rules

of latent projection described in [23], we simply obtain a subgraph of the original

network as shown in Figure B-2(i). Note that the inducing path between Akt and

PKC is still preserved. Let p(V s) be the corresponding marginal distribution on the

remaining subset of variables. The Verma constraint is then given by,

Akt ⊥⊥ PKC in p(V s)
p(Jnk | Erk,PKA) .

Intuitively, one can view the independence between Akt and PKC as manifesting

in a post-intervention distribution obtained after intervening on Jnk, resulting in

the CADMG (or truncated ADMG) shown in Figure B-2(ii) where incoming edges

to Jnk are removed. The resulting independence is then easily read off from the

CADMG via the m-separation criterion [29]. See [30] and [22] for more details on
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Akt Erk Jnk PKC

PKA

(i)

Akt Erk Jnk PKC

PKA

(ii)

Figure B-2. (i) A subgraph of the protein network in Figure 2-3 that we use to highlight
the Verma constraint between Akt and PKC; (ii) A CADMG corresponding to the post-
intervention distribution that would be obtained by intervening on Jnk.

how to derive such constraints in general. Orienting the Erk↔PKA edge as either

Erk←PKA or Erk→PKA breaks the inducing path between Akt and PKC, meaning

that either orientation produces a different independence model implying an ordinary

independence constraint instead of the Verma restriction. We evaluated the BIC

scores with either orientation and confirm that they both yield an increase in the

score. This indicates that our learned model which posits that Erk is correlated with

PKA through unmeasured confounding is the preferred causal explanation. This

explanation is consistent with experiments performed in [1], and we are able to arrive

at the same conclusion from purely observational data. Moreover, this explanation

was differentiated from others via the Verma restriction between Akt and PKC,

highlighting the value of considering general equality restrictions beyond ordinary

conditional independence.

B.3 Implementation Details

In this section we discuss implementation details of our procedure that were not

included in the main chapter.

B.3.1 Implementation of Constraints

As mentioned in Chapter 2, we use the representation of constraints in Table 2-

I obtained by replacing each matrix exponential eA with (I + cA)d. We have two
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primary reasons for doing so. First, as pointed out by [45], the latter representation is

numerically more stable. Second, by evaluating the binomial expansion (I + cA)d =

I+∑d
k=1

(
d
k

)
ckAk explicitly, we are able to obtain analytic gradients for our constraints

automatically via the HIPS Autograd package [153, 154]. Analytic gradients for the

matrix exponential on the other hand are not easily obtained and the function itself

is not implemented in many popular computing libraries. In our implementation we

use a value of c = 1 when computing portions of the constraint related to directed

edges and a value of c = 2 when computing portions of the constraint related to

bidirected edges. As the constraints in Theorem 1 are valid for any c > 0, these values

were chosen only to make values of h(θ) under violations of ancestrality, aridity, and

bow-freeness to be larger than the tolerance level (10−8) of the augmented Lagrangian

procedure. A scaling factor applied to the hyperbolic tangent function controls the

sharpness of approximation of the primal fixing operator. In our experiments we

use a scaling factor of ln(5000), but any sufficiently large value suffices as long as

the penalty h(θ) computed for c-trees is above the tolerance level of the augmented

Lagrangian procedure. Finally symmetry of the matrix β is enforced by requiring each

off-diagonal entry βij and βji are tied to a single free parameter. Positive-definiteness

of β is guaranteed by construction in the RICF procedure [66].

B.3.2 Choice of Hyperparameters

We summarize our choice of hyperparameters and justification for these choices in

Table B-I. Choice of some hyperparameters, such as tolerance levels for RICF and

increments in RICF iterations, require little justification as lower tolerance and more

iterations can only improve approximation. We set specific values only to cap the run

time of our procedure. Choices for most other hyperparameters are based on prior

literature.
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Hyperparameter Setting Justification

Tolerance for h(θ) 10−8 Numerically close enough to 0 – the lower the
better.

Max dual ascent iterations 100 Same value as in [44]; convergence is typically
achieved within 10 iterations.

RICF increment s 1 RICF often converges in 10 steps [66, 68].
Higher values should be used for larger
graphs.

Regularization strength λ 0.05 Obtained through manual testing on held-out
data derived from Figure 2-1(b,c).

Progress rate r 0.25 Same value as in [44]; [45].

Tolerance for RICF 10−4 Numerically close enough to 0 – the lower the
better.

Table B-I. Hyperparameter settings used for our experiments.

B.3.3 Converting Estimates of θ to an ADMG G(θ)

The final step of Algorithm 3 returns an ADMG G(θ) as follows. We first derive

the matrices δ and β from θ. The structure of the induced ADMG is then given

by: Vi→Vj exists in G if |δij| > ω and Vi↔Vj exists in G if |βij| > ω for all i ̸= j.

Such thresholding is standard in similar continuous optimization structure learning

methods, such as [44] and [45], and the threshold can be made arbitrarily small as

long as tolerance to h(θ) is also small. In our experiments we use ω = 0.05.

B.4 Proofs

Theorem 1 The constraints shown in Table 2-I are satisfied if and only if the

adjacency matrices satisfy the relevant property of ancestrality, aridity, and bow-

freeness respectively.

Proof. We use the following facts for all of our proofs. The matrix exponential of a
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square matrix A is defined as the infinite Taylor series,

eA =
∞∑
k=0

1
k!A

k. (B.1)

For a binary square matrix A, corresponding to a directed/bidirected adjacency matrix,

the entry Akij counts the number of directed/bidirected walks of length k from vertex

i to vertex j; see for example [53].

Ancestral ADMGs

Consider the constraint shown in Table 2-I. That is,

trace(eD)− d+ sum(eD ◦B) = 0.

It is easy to see from results in [44] that the constraint trace(eD)− d = 0 is satisfied if

and only if the induced graph G(D,B) is acyclic. We now show that sum(eD ◦B) = 0

if and only if G is ancestral.

By definition of the matrix exponential,

sum(eD ◦B) = sum
(
I ◦B +

∞∑
k=1

1
k!D

k ◦B
)

= sum
(
I ◦B

)
+

∞∑
k=1

1
k!sum

(
Dk ◦B

)
,

where the second equality follows from basic matrix properties.

The first term in the series, sum(I ◦B), counts the number of self bidirected edges

Vi↔Vi which is a special-case violation of ancestrality. This term is zero if no such

edges exist. An entry i, j in the matrix Dk ◦ B counts the number of occurences of

directed paths from Vi to Vj of length k such that Vi and Vj are also connected via a

bidirected edge. Therefore, all remaining terms of the form 1
k!sum(Dk ◦B) count the

number of directed paths of length k that violate the ancestrality property rescaled

by a positive factor of 1
k! . That is, these terms are all ≥ 0 and equal to zero only when

no such paths exist, i.e., G is ancestral.
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Arid ADMGs

Consider the constraint shown in Table 2-I. That is,

trace(eD)− d+ Greenery(D,B) = 0.

The terms trace(eD) − d capture the acyclicity constraint as before. We now show

that the output of Algorithm 1 is zero if and only if G satisfies the arid property. That

is, Greenery(D,B) = 0 is satisfied if and only if G is arid. The background required

for this proof was laid out at the beginning of this Appendix.

The outer loop of Algorithm 1 iterates over each vertex Vi in order to evaluate its

reachability, or equivalently, the presence/absence of a Vi-rooted c-tree [39]. The inner

loop achieves this as follows.

Reachability of Vi can be determined in at most d − 1 primal fixing operations.

Therefore, the inner loop executes d − 1 times. On each iteration, the algorithm

considers the primal fixability of vertices by effectively treating the matrices Df and

Bf as adjacency matrices of a CADMG. In the first iteration, Df and Bf are initialized

with values from the directed and bidirected adjacency matrices respectively. The

sum of the jth row in the matrix eBf ◦Df evaluates to zero if and only if there are no

bidirected paths from Vj to any of its direct children Vk, which exactly corresponds to

the graphical criterion for determining primal fixability of Vj. The addition of the ith

row of an identity matrix to t ensures that Vi itself is not treated as primal fixable

when evaluating its reachability. Therefore, in the first iteration, the vector f encodes

a smoothened version (due to the application of the hyperbolic tangent function) of

the usual primal fixability criterion for all vertices V \ Vi in the original graph G.

Tiling the vector f to form the d× d matrix F allows us to apply the softened version

of primal fixing to the adjacency matrices, which is performed in lines 7-9 of the

algorithm. On the next iteration, the matrices Df and Bf can then be treated as

adjacency matrices of a CADMG obtained by primal fixing a set of vertices, say S1,
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that satisfied the primal fixability criterion in G. The same logic can be applied to

subsequent iterations of the algorithm where we determine the primal fixability of a

set of vertices V \ (S1 ∪ Vi) in ϕS1(G), denote the primal fixable vertices as S2, and

then proceed to do the same for V \ (S1 ∪ S2 ∪ Vi) in ϕS1∪S2(G), and so on.

On termination of the inner loop, we have that S1 ∪ S2, . . . ,∪Sd−1 ⊆ V \ Vi. We

first consider the case when equality holds. In this case, Vi is reachable, from which it

follows that there is no Vi-rooted c-tree in G [39]. The final matrices Df and Bf then

correspond to a CADMG where all vertices except Vi have been primal fixed. In such

a CADMG the only edges that may be present are directed edges into Vi due to the

removal of incoming edges to all other vertices in the graph. Thus, eBf evaluates to

an identity matrix as there are no bidirected edges. Assuming G is a graph with no

directed cycles (which is already enforced by the first two terms in the arid constraint),

the Hadamard product C = eB
f ◦ eDf is then also an identity matrix. Taking the sum

of the ith column of C then simply evaluates to 1. If every vertex Vi ∈ V is reachable

in this manner, it implies that the graph is arid, and the greenery quantity will then

evaluate to d. The subtraction of d in the “return” statement of Algorithm 1 then

returns a value of 0 for arid graphs. Now we consider the case when equality does

not hold, i.e., there exists a set of vertices X = V \ Vi \ (S1 ∪ S2 · · · ∪ Sd−1) that

could not be primal fixed. This implies that Vi is not reachable and there exists a

Vi-rooted c-tree. By definition, the structure of this c-tree comprises of directed and

bidirected paths from vertices in X to Vi. The sum of the ith column in C = eB
f ◦ eDf

then provides a weighted count of these paths. Subtracting off d in the final “return”

statement then yields a positive quantity that provides a weight for each Vi-rooted

c-tree detected in a non-arid graph G.
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Bow-free ADMGs

Consider the constraint shown in Table 2-I. That is,

trace(eD)− d+ sum(D ◦B) = 0.

The terms trace(eD)− d capture the acyclicity constraint as before. It is easy to see

that the term sum(D ◦B) counts the number of bows in the induced graph G. Hence,

sum(D ◦B) is zero if and only if G is bow-free.

Theorem 2 Let p(V ; θ∗) be a distribution in the curved exponential family that is

Markov and faithful with respect to an arid ADMG G∗. Finding the global optimum

of the continuous program in display (2.1) with f ≡ BIC yields an ADMG G(θ) that

implies the same equality restrictions as G∗.

Proof. This follows immediately from the validity of the constraints in Theorem 1 and

the consistency of the BIC score for model selection in curved exponential families

[55].

Corollary 1.2 The results in Theorem 1 and Corollary 1.1 hold if every occurrence

of a matrix exponential eA is replaced with the matrix power (I + cA)d for any c > 0,

where I is the identity matrix.

Proof. The proof is straightforward by noting that the binomial expansion of (I +

cA)d = I +∑d
k=1

(
d
k

)
ckAk which is similar to the infinite series expansion of the matrix

exponential truncated to d terms. As paths greater than length d are irrelevant in a

system with d vertices, these terms are sufficient.
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Appendix C

Supplement to Chapter 3

In this Appendix, we first describe how CG models may be viewed as a set of conditional

MRFs. We then provide an informal analysis of the computational cost incurred by

computing the PBIC for CG models. Finally we provide longer technical proofs that

were excluded from the main chapter.

C.1 Conditional MRFs

A CG model can be viewed as a set of conditional MRFs. A conditional MRF

corresponds to a graph whose vertices can be partitioned into two disjoint sets: W ,

corresponding to non-random variables whose values are fixed; and V , corresponding

to random variables. The only edges allowed in a conditional MRF are directed edges

Wi→Vi and undirected edges Vi – Vj for Wi ∈ W and Vi, Vj ∈ V . A statistical model

associated with a conditional MRF G is a set of densities that factorize as:

p(V | W ) =

∏
C∈
{

C
(

GabdG(B)

)
: C ̸⊆W

} κC(C)

Z
(
W
) .

It is easy to see that the above factorization is analogous to the second level of

CG factorization found in Eq. 1.10 where V is a block, and W are its parents.
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C.2 Computational Complexity of Computing Scores
of a CG Model

In blocks of a CG, the number of local terms that need to be computed corresponds

to the number of vertices present in cliques containing the edge of interest in the aug-

mented subgraph of the block and its parents. A term for Vj requires an O(| bdG(Vj)|)

computation to update, which in the worst case may be exponential in the number of

vertices if the graph is not sparse. In search problems, restrictions can be made on the

maximum size of the boundary set, sacrificing accuracy for tractability. For a block in

a CG corresponding to a conditional MRF in the exponential family, and an edge that

is present in a set of cliques spanning all vertices, we will have a local set of size O(d)

in the worst case, with each local term requiring an O(clique size) computation. Thus,

limiting the maximum clique size may speed up the computation of each local term,

but in many cases we may be unable to avoid an O(d) number of such terms. In other

words, our scoring method for CG models where blocks correspond to conditional

MRFs in the exponential family may not scale to very large graphs, even if such graphs

are sparse. Achieving such a scaling will entail making additional assumptions, such

as Gaussianity, or non-existence of higher order interaction terms in log-linear models.

We contrast this with DAG models, where the local set is of constant size regardless

of parametric assumptions made.

C.3 Proofs

Lemma 1 With dimension fixed and sample size increasing to infinity, the PBIC is

a consistent score for curved exponential families whose natural parameter space Θ

forms a compact set.

Proof. Let M0 denote the true model and M1, M2 two candidate models. A scoring
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criterion S(X;M) is said to be consistent if:

lim
n→∞

Pn(S(X;M1) < S(X;M2))→ 1 when

M1 ̸⊇ M0 and M2 ⊇M0 or (*)

M1,M2 ⊇M0 and k1 > k2. (**)

To prove consistency of the PBIC we need to show that,

lim
n→∞

Pn(PBIC(X;M1) < PBIC(X;M2))→ 1 (C.1)

when (*) or (**).

Note in all following steps, we assume dependence on the dataset X to be implicit

in the calculation of the likelihoods and pseudolikelihoods.

To prove (C.1) holds under the scenario (*), it is sufficient to show that the

following is true for some ϵ > 0

1
n

(lnPLn(θ̂2)− lnPLn(θ̂1)) > ϵ (C.2)

It was shown in [55] that for any M1 outside of a neighborhood N of θ0, and M2

containing this neighborhood, we can pick a δ > 0 such that:

1
n

(lnLn(θ̂2)− lnLn(θ̂1)) > δ (C.3)

In order to extend this result to (C.2), we invoke a result from [155] stating that

PLn(θ) ≥ dLn(θ) +
d∑
i=1

Hi(P̃n) (C.4)

where d is the dimensionality of the data, and Hi(P̃n) is the Shannon entropy of the

empirical distribution. It then follows that (C.2) holds when (C.3) is true.

Showing that (C.1) holds under the scenario (**) is equivalent to showing that the

following quantity is Op(1/n):

1
n
| lnPLn(θ̂1)− lnPLn(θ̂2)| (C.5)
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Consider the difference between the full log-likelihoods:

1
n
| lnLn(θ̂1)− lnLn(θ̂2)|. (C.6)

We first closely follow the proof in [55] to show that the quantity in (C.6) is

Op(1/n). Consider data drawn from a curved exponential family density p(X; θ) =

h(X)exp(θT (X)−Z(θ)), where θ ∈ Rk is a set of canonical parameters in the natural

parameter space Θ, T (X) is a set of sufficient statistics, and Z(θ) is a normalizing

function. For a particular choice of a modelM in this setting, the BIC can be written

as lnLn(D; θ̂)− k
2 ln(n) or equivalently,

sup
θ∈M∩Θ

n∑
i=1

θT (Xi)− Z(θ)− k

2 ln(n), (C.7)

Note that for simplicity of notation and without loss of generality, we set h(X) = 1.

Now consider Tn = 1
n

∑n
i=1 T (Xi), the sample average of the sufficient statistics. We

can then express (C.7) as

n sup
θ∈M∩Θ

θTn − Z(θ)− k

2 ln(n). (C.8)

Define the quantities Sn,i and Un as,

Sn,i ≡ sup
θi∈Mi∩Θ

θiTn − Z(θi) = θ̂n,iTn − Z(θ̂n,i),

Un ≡ θ0Tn − Z(θ0),

where θ̂n,i is the MLE. We now show that Sn,i −Un and by extension each term in

(C.6) is Op(1/n). Since θ0 lies in both model spaces under scenario (**),

Sn,i − Un = (θ̂n,i − θ0)Tn − Z(θ̂n,i) + Z(θ0) ≥ 0. (C.9)

Considering the Taylor expansion of Z about θ0, we have that Z(θ̂n,i)− Z(θ0) =

(θ̂n,i − θ0)∇Z(θ0) + Op(1/n), where the Op(1/n) term comes from the efficiency of

MLE [156]. Plugging this into (C.9) we get,

Sn,i − Un = (Tn −∇Z(θ0))(θ̂n,i − θ0) +Op(1/n). (C.10)
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By the Central Limit Theorem, Tn − ∇Z(θ0) is Op(1/
√
n) and by the efficiency of

MLE, θ̂n,i − θ0 is also Op(1/
√
n). Thus, Sn,i − Un is Op(1/n), and we have our result.

In order to extend this result to (C.5), we once again invoke the result from [155]

that

PLn(θ) ≥ dLn(θ) +
d∑
i=1

Hi(P̃n) (C.11)

where Hi(P̃n) is the Shannon entropy of the empirical distribution. We see that as

long d≪ n (which in our setting we assume to be true), (C.6) being Op(1/n) implies

that (C.5) is as well.

Lemma 2 Let G and G ′ be graphs which differ by a single edge between Vi and Vj.

For conditional MRFs in the exponential family, the local score difference between G

and G ′ is given by: ∑Vk∈loc(Vi,Vj ;G)∩Bloc{sVk
(
X;G

)
− sVk

(
X;G ′

)
}, where sVk(.) denotes

the component of the score for Vk.

Proof. A conditional MRF corresponding to p(B | paG(B)) for a block B in a CG G

in the (conditional) exponential family has a probability distribution of the general

form:

p(B | paG(B);ψ) = exp

⎛⎜⎝ ∑
{C∈C((GbdG(B))a):C ̸⊆paG(B)}

ψCT (C)− Z(ψ, paG(B))

⎞⎟⎠ (C.12)

where {
ψC : C ∈ C((GbdG(B))a), C ̸⊆ paG(B)

}
is a set of canonical parameters associated with potential functions κ(C) in the CG

factorization, {
T (C) : C ∈ C((GbdG(B))a), C ̸⊆ paG(B)

}
is a set of sufficient statistics for ψC , and Z(θ, paG(B)) is a normalizing function.

Assume Vk is in a clique C that contains the edge Vi – Vj in G, and let G− be

the edge subgraph of G with that edge removed. Then p(Vk | bdG(Vk)) will only
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be a function of clique parameters ψS, where S ⊆ C((GbdG(B))a) : C ̸⊆ paG(B) and

Vk ∈ S. All others terms in the factorization cancel by definition of conditioning. As

a consequence, p(Vk | bdG(Vk)) will be a function of ψC .

However, after Vi – Vj is removed, C will no longer be a clique in G−, by definition,

but will instead decompose into two cliques, say C1 and C2. By following the above

reasoning, p(Vk | bdG−(Vk)) will be function of all clique parameters {ψS : S ⊆

C((GbdG(B))a), C ̸⊆ paG(B), Vk ∈ S}, which will include ψC1 and ψC2 . Since the

parameterization for p(Vk | bdG−(Vk)) is thus different in models for G and G−, the

contribution to the score associated with this term will also be different.

Now assume Vk is not in a clique that contains the edge Vi – Vj in G, and let G− be

the edge subgraph of G with that edge removed, as before. Then p(Vk | bdG(Vk)) will

only be a function of clique parameters ψS, where S contains Vk, all others will cancel

by definition of conditioning. Note that since no such S contains the edge Vi – Vj in G,

the set of cliques S in G is the same as the set of cliques S in G−. Moreover, since G−

is an edge subgraph of G, no new cliques are introduced. As a result, p(Vk | bdG−(Vk))

will be parameterized by the same set of ψS in the model for G− as it was in the model

for G.

Our conclusion then follows because by properties of the exponential family, the

sufficient statistics for a clique parameter ψS are functions of only S. Since draws

from p(S) are fixed, the estimates for ψS will coincide if the data is evaluated under

the model for G, and the model for G−. Furthermore, the number of parameters in

p(Vk | bdG(Vk)) and p(Vk | bdG−(Vk)) is the same. This implies the score contribution

for p(Vk | bdG(Vk)) in G will equal the score contribution of p(Vk | bdG−(Vk)) in G−.

The only terms remaining in the score difference between G and G ′ are then local

scores for Vk ∈ loc(Vi, Vj;G). This implies the conclusion.
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Lemma 3 If the generating distribution is Markov to a CG satisfying tier symmetry

and the causal ordering assumption, then the search space of Greedy Network

Search consists of graphs belonging to their own equivalence classes of size 1.

Proof. Under the restrictions listed above, the only moves in our search procedure

are edge deletions or additions of the form Li –Lj , Ai –Aj , Yi – Yj , Li→Aj , Li→Yj ,

Ai→Yj. Since chain graphs are maximal in the sense that every missing edge

corresponds to conditional independence relations via c-separation [25], it immediately

follows that two CGs G and G ′ that differ by an edge will imply different restrictions

on the observed data distribution. Thus, in general, an edge deletion or addition in

our search space gives rise to graphs that are not Markov equivalent and reside in

their own equivalence classes of size 1.

Theorem 3 If the generating distribution is in the exponential family (with compact

natural parameter space Θ) and is Markov and faithful to a CG satisfying tier symmetry

and causal ordering then Greedy Network Search is consistent.

Proof. The algorithm begins with a complete conditional MRF that contains the true

underlying distribution. We are guaranteed that the truth is contained in every state

through the entirety of the algorithm by the following argument. Consider the first

edge deletion performed by GNS to a conditional MRF that does not contain the

true model. It follows from consistency of the PBIC that any such deletion would

decrease the score. Choosing such an edge deletion would contradict the greediness of

the algorithm.

Now assume the algorithm stops at a sub optimal conditional MR G that contains

the truth but has more parameters than the true model G∗. We know there exists a

series of single edge deletions in EN that takes us from G to G∗. By Lemma 3, each

of these edge deletions yield graphs in separate equivalence classes. It follows then
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from the consistency of the PBIC that each of these edge deletions strictly increases

the score (each edge deletion yields a smaller model containing the truth) and thus,

a local optimum found by greedily maximizing the PBIC corresponds to finding the

global optimum G∗.

Corollary 3.1 The Heterogenous procedure is consistent.

Proof. By consistency of GNS, each conditional MRF returned for L, A, and Y

corresponds to the true model. The union of these will then produce the true CG on

V .

Corollary 3.2 When the true network ties are homogenous, Homogenous network

search is consistent.

Proof. Each of the homogenous procedures described above can be decomposed into

a series of single edge deletions that we have shown to be consistent.

132



Appendix D

Supplement to Chapter 4

In this Appendix, we first provide an example that showcases the missing data

identification algorithm we have developed in its full generality. We then provide

longer technical proofs for results in the main chapter.

D.1 An Example to Illustrate the Algorithm

We walk the reader through identification of the target law for the missing data DAG

shown in Figure D-1(a) in order to demonstrate the full generality of our missing ID

algorithm. As a reminder, the target law is identified by Eq. 4.2 if we are able to

identify p(Ri | paG(Ri))|R=1 for each Ri ∈ R. The identification of these conditional

X
(1)
1 X

(1)
2 X

(1)
3 X

(1)
4

R1 R2 R3 R4R5R6R7R8

X
(1)
5X

(1)
6X

(1)
7X

(1)
8

(a) G

Figure D-1. A complex missing data DAG used to illustrate the general techniques used
in our algorithm
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R2
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R8

R6 R7

(c)

R4

R2

{R1, R3}

R5

R8

R7R6

(d)

Figure D-2. (a-d) The corresponding fixing schedules of Rs.

densities are shown in equations (i) through (viii).

We start with {R3, R5, R6, R7}. The fixing schedules for these are empty and we

obtain the following immediately from the original distribution.

(i) p(R3 | pa(R3)) = p(R3 | R2, X
(1)
4 ) = p(R3 | R2, X4, 1R4),

(ii) p(R5 | pa(R5)) = p(R5 | R1, X
(1)
6 ) = p(R5 | R1, X6, 1R6),

(iii) p(R6 | pa(R6)) = p(R6 | R1, R8, X
(1)
5 , X

(1)
7 ) = p(R6 | R1, R8, X5, X7, 1R5,R7),

(iv) p(R7 | pa(R7)) = p(R7 | R8, X
(1)
6 ) = p(R7 | R8, X6, 1R6).

For R1, we choose Z = {R1, R5, R6}, and no equivalence relations. Thus, Z/∼ =

{{R1}, {R5}, {R6}}. The fixing schedule ◁ is a partial order shown in Figure D-1(b)

where R5 and R6 are incompatible, and R5 ≺ R1, R6 ≺ R1. Starting with the original

G in Figure D-1(a), fixing R5 and R6 in parallel yields the following kernel.

qr1(X \ {X5, X6},X(1)
5 , X

(1)
6 , R \ {R5, R6} | 1R5,R6) =

p(X,R = 1)
p(R5 | R1, X

(1)
6 ) p(R6 | R1, R8, X

(1)
5 , X

(1)
7 )|R=1

, (D.1)
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where the propensity scores in the denominator are identified using (ii) and (iii). The

CADMG corresponding to this fixing operation is shown in Figure D-3(a).

(v) p(R1 | pa(R1))|R=1 = p(R1 | R2, R3, X
(1)
2 , X

(1)
4 , X

(1)
5 , X

(1)
6 )|R=1

= qr1(R1 | R2, R3, X
(1)
2 , X

(1)
4 , X5, X6, 1R5,R6)|R=1

= qr1(R1 | R3, X2, X
(1)
4 , X5, X6, 1R2,R5,R6)|R=1

= qr1(R1 | R3, X2, X4, X5, X6, 1R2,R4,R5,R6)|R=1 (by d-sep)

where the last term can be obtained using kernel operations (conditioning+marginalization)

on qr1(· | ·) defined in (D.1).

A similar procedure is applicable to R8, where Z/∼ = {{R8}, {R7}, {R6}}; Figure D-

1(d). Starting with the original G in Figure D-1(a), fixing R6 and R7 in parallel yields

the following kernel.

qr8(X \ {X6, X7},X(1)
6 , X

(1)
7 , R \ {R6, R7} | 1R6,R7) =

p(X,R = 1)
p(R6 | R1, R8, X

(1)
5 , X

(1)
7 ) p(R7 | R8, X

(1)
6 )|R=1

, (D.2)

where the propensity scores in the denominator are identified using (iii) and (iv). The

CADMG corresponding to this fixing operation is shown in Figure D-3(b).

(vi) p(R8 | pa(R8))|R=1 = p(R8 | R4, X
(1)
6 , X

(1)
7 )|R=1

= qr8(R8 | R4, X
(1)
6 , X

(1)
7 , 1R6,R7)|R=1

= qr8(R8 | R4, X6, X7, 1R6,R7)|R=1

where the last term can be obtained using kernel operations (conditioning+marginalization)

on qr8(· | ·) defined in (D.2).
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(a) ϕ{R5,R6}(G)

X
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(b) ϕ{R6,R7}(G)

Figure D-3. (a) Graph corresponding to the kernel obtained in (D.1) (b) Graph corre-
sponding to the kernel obtained in (D.2).

For R2, we choose Z = {R1, R2, R3, R5, R6}, and no equivalence relations. Thus,
Z/∼ = {{R1}, {R2}, {R3}, {R5}, {R6}}. The fixing schedule ◁ is a partial order where

R3, R5, R6 are incompatible and R5, R6 ≺ R1 ≺ R2 and R3 ≺ R2 as shown in

Figure D-1(c). In addition, the portion of the fixing schedule involving R1, R5, and

R6 is executed in a latent projection ADMG where we treat X(1)
2 as being hidden

as shown in Figure D-4(a), while the portion of the fixing schedule involving R3 is

executed in the original graph, Figure D-1(a).

(vii) p(R2 | R4, X
(1)
1 ) = qr2(R2 | R4, X

(1)
1 , 1R1,R3), (D.3)

where qr2 corresponds to the kernel obtained by following the partial order of fixing

R3 and R1, separately. That is,

qr2(· | 1R1,R3) = p(X,R = 1)
q1
r2(R1 | R2, R3, X2, X5, X6, X

(1)
3 , X

(1)
8 , 1R5,R6) p(R3 | R2, X

(1)
4 )

.

(D.4)

The propensity score for R3 is obtained from (i) and q1
r2 is the kernel obtained by

fixing R5 and R6 in parallel in a graph where X(1)
2 is treated as hidden, as shown in

Figures D-4(a) and (b). That is,

q1
r2(X \ {X5, X6},X(1)

5 , X
(1)
6 , R \ {R5, R6} | 1R5,R6) =

p(X,R = 1)
p(R5 | R1, X

(1)
6 ) p(R6 | R1, R8, X

(1)
5 , X

(1)
7 )|R=1

.
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(b) G2 ≡ ϕ{R5,R6}(G1)

X1 X
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(c) G3 ≡ ϕR1(G2)
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(d) ϕR3(G)

Figure D-4. Execution of the fixing schedule to obtain the propensity score for R1 (a)
Latent projection ADMG obtained by projecting out X(1)

2 (b) Fixing R5 and R6 in G1 (c)
Fixing R1 in G2 (d) Fixing R3 in the original graph.

The propensity scores in the denominator above are identified using (ii) and (iii). For

clarity, the CADMGs corresponding to fixing R1 and R3 are illustrated in Figures

D-4(c) and (d).

Finally, for R4, we choose Z = {R} and equivalence relation R1 ∼ R3. Thus,
Z/∼ = {{R1, R3}, {R2}, {R4}, {R5}, {R6}, {R7}, {R8}}. The fixing schedule ◁ is a

partial order where R5, R6 ≺ {R1, R3} ≺ R2 ≺ R4 and R6, R7 ≺ R8 ≺ R4 as shown

in Figure D-1(e). In addition, the portion of the fixing schedule involving R5, R6,

{R1, R3}, and R2 is executed in a latent projection ADMG where we treat X(1)
2 and

X
(1)
4 as hidden variables, shown in Figure D-5(b), while the portion of the fixing

schedule involving R6, R7, and R8 is executed in the original graph, Figure D-1(a).

(viii) p(R4 | X(1)
1 ) = qr4(R4 | X(1)

1 , 1R2,R8), (D.5)

where qr4 corresponds to the kernel obtained by following the partial order of fixing
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X
(1)
1 X

(1)
2 X

(1)
3 X

(1)
4

R1 R2 R3 R4r5r6r7r8

X5X6X7X8

(a) ϕ{R6,R7,R8}(G)

X
(1)
1 X

(1)
3

R1 R2

X2

R3 R4

X4

R5R6R7R8

X
(1)
5X

(1)
6X

(1)
7X

(1)
8

(b) G1 ≡ G(V \ {X(1)
2 , X

(1)
4 })

X
(1)
1 X

(1)
3

R1 R2

X2

R3 R4

X4

r5r6r7R8

X5X6X7X
(1)
8

(c) G2 ≡ ϕ{R5,R6}(G1)

X1 X3

r1 R2

X2

r3 R4

X4

r5r6r7r8

X5X6X7X8

(d) G3 ≡ ϕ{{R1,R3}}(G2)

Figure D-5. Execution of the fixing schedule to obtain the propensity score for R4 (a)
CADMG obtained by following the schedule to get the propensity score for R8 (b) Latent
projection ADMG obtained by projecting out X(1)

2 and X(1)
4 (c) Fixing R5 and R6 in G1

(d) Fixing R1 in G2.

R2 and R8, separately. That is,

qr4(· | 1R2,R8) = p(X,R = 1)
q1
r4(R2 | R4, X2) q2

r4(R8 | R4, X6, X7)
. (D.6)

q1
r4 is the kernel obtained by fixing the set {R1, R3} in graph G2 shown in Figure D-5(c).

That is,

q1
r4(· | 1R1,R3,R5,R6) =

q3
r4(· | 1R5,R6)

q3
r4(R1, R3 | R2, R4, X2, X

(1)
3 , X4)

=
q3
r4(. | 1R5,R6)

q3
r4(R1 | R2, R4, X2, X3, X4, 1R3) q3

r4(R3 | R2, R4, X2, X4)

q3
r4 is the kernel obtained by fixing R5 and R6 in parallel in the graph G1 shown in

Figure D-5(b). That is,

q3
r4(· | 1R5,R6) = p(X,R = 1)

p(R5 | R1, X
(1)
6 ) p(R6 | R1, R8, X

(1)
5 , X

(1)
7 )|R=1

.

The propensity scores in the denominator above are identified using (ii) and (iii).
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Finally, q2
r4 is the kernel obtained by fixing R6 and R7 in parallel in the original

graph G, shown in Figure D-1(a). That is,

q2
r4(· | 1R6,R7) = p(X,R = 1)

p(R6 | R1, R8, X
(1)
5 , X

(1)
7 ) p(R7 | R8, X

(1)
6 )|R=1

.

The propensity scores in the denominator above are identified using (iii) and (iv). For

clarity, the CADMG corresponding to fixing R8 is illustrated in Figures D-5(a).

D.2 Proofs

Theorem 4 Given a DAG G(X(1), R,O,X), the distribution p(Ri | paG(Ri))|paG(Ri)∩R=1

is identifiable from p(R,O,X) if there exists

(i) Z ⊆ X(1) ∪R ∪O,

(ii) an equivalence relation ∼ on Z such that {Ri} ∈ Z/∼,

(iii) a set of elements X(1)
Z̃

such that X(1)
{◁Z̃} ⊆ X

(1)
Z̃
⊆ X(1) for each Z̃ ∈ Z/∼,

(iv) X(1) ∩ paG(Ri) ⊆ (Z \ {Ri}) ∪X(1)
{Ri},

(v) and a valid fixing schedule ◁ for Z/∼ in G such that for each Z̃ ∈ Z/∼, Z̃ ◁ {Ri}.

Moreover, p(Ri | paG(Ri))|paG(Ri)∩R=1 is equal to q{Ri}, defined inductively as the

denominator of Eq. 4.4 for {Ri}, ϕ◁{Ri}
(G) and ϕ◁{Ri}

(p;G), and evaluated at paG(Ri)∩

R = 1.

Proof. We first outline the essential argument made in this proof. We will reformulate

the process of fixing according to a partial order in a missing data problem as a

problem of ordinary fixing based on a total order in a causal inference problem where,

previously missing variables are in fact observed. If we are able to show this, we can
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invoke results from [22], that guarantee that we obtain the desired conditional for

each Ri.

Consider Z̃ ∈ Z/∼, and define X(1)
{⊴Z̃}

≡ ⋃
Z∈{⊴Z̃} X

(1)
Z , and R{⊴Z̃} ≡ {Rk | X(1)

k ∈

X
(1)
{⊴Z̃}
}, and similarly for X(1)

{◁Z̃}
and R{◁Z̃}.

We first note that any total ordering ≺ on {◁Z̃} consistent with ◁ yields a

valid fixing sequence on sets in {◁Z̃} in G(R,O,X(1), X)), where X(1)
{◁Z̃}

, R,O,X are

observed. The total ordering ≺ can be refined to operate on single variables where

each set Z̃ is fixed as singletons following a topological total order where variables

with no children in Z̃ would be fixed first. Such a total order is also valid and follows

from the validity of ◁ and the fact that at each step of the fixing operation in the

total order, the Markov blanket of each Z contains only observed variables; hence no

selection bias is induced on any singleton variables {≻ Z̃}.
We now show, by induction on the structure of the partial order ◁, that for a

particular Z̃ ∈ Z/∼, q
Z̃

is equal to∏
Z∈Z

∏
Z∈Z

q̃(Z | mbG̃(Z; anG̃(DZ)∩ ≺G̃ {Z}, RZ)|(R∩Z)∪RZ=1, (D.7)

obtained from a kernel

q̃ ≡ ϕ{◁Z̃}(p(R,O,X
(1)
{◁Z̃}

, X);G),

and CADMG

G̃ ≡ ϕ{◁Z̃}(G(R,O,X(1)
{◁Z̃}

, X)),

where X(1)
{◁Z̃}

, R,O,X are observed.

For any ◁-smallest Z̃, Z̃ is independent of R{⊴Z̃} given its Markov blanket; therefore

treating X(1)
{⊴Z̃}

as observed results in the same kernel as q
Z̃

.

We now show that the above is also true for any Z̃ ∈ Z/∼. Assume the inductive
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hypothesis holds for all Ỹ ∈ {◁Z̃}. Since ◁ is valid, we obtain q
Z̃

by applying

ϕ⊴
Z̃
(q;G) ≡

ϕ
Z̃

(p(O,X,R \R{◁Z̃}, R{◁Z̃} = 1)∏
Ỹ ∈{◁Z̃} qỸ

;ϕ◁
Z̃
(G)

)
, (D.8)

where q
Ỹ

are defined by the inductive hypothesis, and ϕ
Z̃

is defined via

q(V \ ((X(1) \X(1)
{◁Z̃}

) ∪RZ), RZ = 1 | W )∏
Z∈Z

∏
Z∈Z

q(Z | mbG̃(Z; anG̃(DZ)∩ ≺G̃ (Z)), RZ)|(R∩Z)∪RZ=1
, (D.9)

where

q(V \ (X(1) \X(1)
{◁Z̃}

) | W ) ≡
p(O,X,R \R{◁Z̃}, R{◁Z̃} = 1)∏

Ỹ ∈{◁Z̃} qỸ
.

Consider the equivalent functional in the model where we observe X(1)
{◁Z̃}

q†(V \ ((X(1) \X(1)
{◁Z̃}

) ∪RZ), RZ = 1 | W )∏
Z∈Z

∏
Z∈Z

q†(Z | mbG̃(Z; anG̃(DZ)∩ ≺G̃ (Z)), RZ)|(R∩Z)∪RZ=1
, (D.10)

where

q†(V \(X(1) \X(1)
{◁Z̃}

) | W ) ≡

p(O,X,X(1)
{◁Z̃}

, R \ R̃{◁Z̃}, R̃{◁Z̃} = 1)∏
Ỹ ∈{◁Z̃} qỸ

,

and R̃{◁Z̃} is defined as the subset of R{◁Z̃} that is fixed in {◁Z̃}.

The only difference between Eq. D.9 and Eq. D.10 for the purposes of the denomi-

nator is the variables in R{◁Z̃} \ R̃{◁Z̃}. But the denominator is independent of these

variables, by assumption. Thus, it follows that fixing on a valid partial order with

missing data and fixing on a total order consistent with this partial order, as in causal

inference, yield equivalent kernels.

The conclusion follows by Lemma 55 in [22].
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Theorem 6 In a DAG G(X(1), R,O,X), if there exists Ri, Rj ∈ R such that

{Rj, X
(1)
j } ∈ paG(Ri), then p(Ri | paG(Ri))|Rj=0 is not identified. Hence, the full

law p(X(1), R) is not identified.

Proof. Proven by providing two full laws that agree on the observed data law as in

the tables below.

X
(1)
1 X

(1)
2

R1 R2

X1 X2

R1 p(R1)

0 a

1 1− a

X
(1)
1 p(X(1)

1 )

0 b

1 1− b

X
(1)
2 p(X(1)

2 )

0 c

1 1− c

R2 R1 X
(1)
1 p(R2|R1, X

(1)
1 )

0 0 0 d

1 0 0 1− d

0 1 0 e

1 1 0 1− e

0 0 1 f

1 0 1 1− f

0 1 1 g

1 1 1 1− g

R1 R2 X
(1)
1 X

(1)
2 p(Full Law) X1 X2 p(Observed Law)

0 0

0 0 abcd

? ? a
[
db+ f(1− b))

]1 0 a(1− b)cf

0 1 ab(1− c)d

1 1 a(1− b)(1− c)f

1 0

0 0 (1− a)ebc
0

?

(1− a)eb
1 0 (1− a)g(1− b)c

0 1 (1− a)eb(1− c)
1 (1− a)g(1− b)

1 1 (1− a)g(1− b)(1− c)

0 1

0 0 abc(1− d)

?

0 ac
[
1−

(
db+ f(1− b)

)]
1 0 a(1− b)c(1− f)

0 1 ab(1− c)(1− d)
1 a(1− c)

[
1−

(
db+ f(1− b)

)]
1 1 a(1− b)(1− c)(1− f)

1 1

0 0 (1− a)(1− e)bc 0 0 (1− a)(1− e)bc

1 0 (1− a)(1− g)(1− b)c 1 0 (1− a)(1− g)(1− b)c

0 1 (1− a)(1− e)b(1− c) 0 0 (1− a)(1− e)b(1− c)

1 1 (1− a)(1− g)(1− b)(1− c) 1 1 (1− a)(1− g)(1− b)(1− c)

Table D-I. Table for proof of non-identifiability of the full law in missing data DAG models
full with colluder structures.
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Any pair of {d, f} would lead to different full laws. However, as long as db+f(1−b)

stays constant, the observe law would agree across all different full laws (which include

infinitely many models). This is a general characterization of non-identifiable models

with two binary random variables.

Theorem 7 Consider a DAG G(X(1), R,O,X) such that for every Ri ∈ R, {Rj |

X
(1)
j ∈ paG(Ri)} ∩ anG(Ri) = ∅. Then for every Ri ∈ R, a fixing schedule ◁ for

{{Rj} | Rj ∈ GR∩deG(Ri)} given by the partial order induced by the ancestrality relation

on GR∩deG(Ri) is valid in G(X(1), R,O,X), by taking each X
(1)
Z̃

= ⋃
Z∈{⊴Z̃} X

(1)
Z , for

every Z̃ ∈ {⊴{Ri}}. Thus the target law is identified.

Proof. In order to prove that the target law is identified, we demonstrate that condi-

tions (i-v) in Theorem 4 are satisfied for each Ri.

Conditions (i) and (ii) are trivially satisfied as we choose to fix Z ⊆ R, and we

choose no equivalence relation, thus Z/∼ consists of singleton sets of Rs. Condition

(iii) is also trivial as each X(1)
Z̃

is a union of the corresponding sets X(1)
Ỹ

, for Ỹ earlier

in the partial order. In the proposed order we never fix elements in X(1), and propose

to keep elements in X(1) ∩ paG(Rj) for every Rj ∈ Z. In particular, this also includes

Ri, satisfying condition (iv).

Finally, we show that the proposed schedule ◁ is valid by showing that each

Z̃ ∈ Z/∼ is fixable. There are 3 conditions for an element Z̃ to be fixable as mentioned

in the missing data setting. We go through each of these conditions and demonstrate

each Z̃ in Z/∼ is a valid fixing in ϕ◁
Z̃
(G) where ◁ is the proposed fixing schedule above.

In the proposed schedule each Z̃ is a singleton Rj ∈ Z/∼ that we are trying to fix

in a graph ϕ◁Rj
(G). Since X(1)

Rj
= X(1), ϕ◁Rj

(G) is a CDAG. Thus, D(ϕ◁Rj
(G)) is just

sets of singleton vertices. In particular, DRj = {Rj}. Further, by definition of the

schedule, it must be that deϕ◁Rj (G)(Rj) = {Rj}. This satisfies condition (i).
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For condition (ii), we note that S ⊆ ndϕ◁Rj (G)(Rj) else, S contains some Rk ∈

deG(Rj) which should have been fixed prior to Rj by the proposed partial order. Thus,

it follows that S ∩ {Rj} = ∅.

Finally, following the partial order, and under the assumption stated in the

theorem, R{Rj} ⊆ {◁Rj}. We have also proved that S ⊆ ndϕ◁Rj (G)(Rj). Therefore,

Rj ⊥⊥ (S ∪R{Rj}) \mbϕ◁Rj (G)(Rj) | mbϕ◁Rj (G)(Rj).

Since each Z̃ is fixable, the proposed partial order ◁ for each Ri is valid. Therefore,

all five conditions in Theorem 4 are satisfied concluding the target law is ID.
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Appendix E

Supplement to Chapter 5

This Appendix contains longer proofs for results in the main chapter.

E.1 Proofs

Theorem 8 Algorithm 9 is sound and complete for deciding the nonparametric

saturation status of the model implied by an ADMG G(V ) by determining the absence

of equality constraints.

Proof. The construction of Algorithm 9 is closely related to the maximal arid projection

described in [39]. MArGs were proposed as a more general analogue of maximal

ancestral graphs typically used in the context of causal discovery and where the

absence of edges may only imply ordinary conditional independence constraints

[21, 157, 158]. The absence of an edge between two vertices in a MArG rule out the

presence of certain paths between them known as dense inducing paths resulting in

the so called maximality property. We now show that Algorithm 9 declares an input

ADMG to be NPS if it is equivalent to a MArG with no missing edges, and not NPS

if it is equivalent to one with at least one missing edge. We then use the maximality

property to derive the form of the implied equality constraint.

Given any ADMG G(V ), there exists a nested Markov equivalent MArG Ga(V )

that implies the same set of conditional and generalized independence constraints and
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can be obtained via the maximal arid projection as follows [39]. Recall the definition

of pad
G(S) as ⋃Si∈S paG(Si).

• For Vi ∈ V, the edge Vi→Vj exists in Ga(V ) if Vi ∈ pad
G(⟨Vj⟩G).

• For Vi, Vj ∈ V, the edge Vi↔Vj exists in Ga(V ) if neither Vi ∈ pad
G(⟨Vj⟩G) nor

Vj ∈ pad
G(⟨Vi⟩G) but ⟨Vi, Vj⟩G is a bidirected connected set.

Soundness

We prove soundness by showing that Algorithm 9 declares the model to be nonpara-

metric saturated (NPS) only when the input ADMG G(V ) is nested Markov equivalent

to a MArG Ga(V ) where all vertices in V are pairwise adjacent. If all vertices are

pairwise adjacent, this immediately rules out the possibility of equality constraints.

For each pair of vertices (Vi, Vj) either of the first two conditions in line 4 of

Algorithm 9 evaluates to True precisely when the MArG projection operator adds a

directed edge between Vi and Vj. Further, the third condition in line 5 evaluates to

True when the MArG projection adds a bidirected edge between Vi and Vj. Thus, as

long as the MArG projection operator continues to require the presence of an edge

between each pair (Vi, Vj) the negation of all the conditions makes it so that line 6

of the algorithm is never executed. Once all pairs have been checked, the model is

declared to be nonparametrically saturated in line 7.

Completeness

We prove completeness by showing that Algorithm 9 declares the model to be not

NPS only when the input ADMG is nested Markov equivalent to a MArG Ga(V ) that

has a pair of vertices (Vi, Vj) that are not connected by a directed or bidirected edge.

We then explicate the equality constraint implied by this missing edge.

It is clear from previous arguments in the proof of soundness that the negation of

the conditions in line 2 evaluates to True only when the MArG projection operator
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fails to add an edge between a pair of vertices (Vi, Vj). As soon as this occurs, it is

also clear that the resulting MArG Ga(V ) obtained by executing the full projection

will still have a missing edge between Vi and Vj. We now show that this missing edge

corresponds to an equality constraint involving Vi and Vj.

A path (Vi, X1, . . . , Xp, Vj) is said to be inducing if every non-endpoint node Xi

is both a collider on this path as well as an ancestor of at least one of the vertices

Vi or Vj. Such paths are important because it has been shown that the absence of

an inducing path between two non-adjacent vertices Vi and Vj implies the existence

of a set Z such that Vi and Vj are m-separated given Z [23]. That is, when Vi and

Vj are not connected by an inducing path in Ga(V ), there exists a set Z such that

Vi ⊥⊥ Vj | Z and this is an equality constraint that rules out nonparametric saturation

of G.

Consider the case when there does exist an inducing path between Vi and Vj. By

definition of the maximality property of MArGs, there exists a valid fixing sequence

for some S ⊂ V such that this path is no longer inducing in ϕS(Ga(V )). We now

discuss all possible cases of inducing paths between Vi and Vj and the corresponding

equality constraint obtained after fixing some subset of vertices in Ga(V ). Note it is

sufficient for us to focus on the subgraph Gant ≡ GaanG(Vi∪Vj) [29]. This subgraph also

preserves the inducing path as all ancestors of Vi and Vj are included.

Consider the case when the inducing path consists of only bidirected edges i.e.,

Vi↔X1↔, . . . ,↔Xp↔Vj. Note that none of the vertices Xi in this path are fixable

in Gant as by definition of an inducing path, Xi is either an ancestor of Vi or of Vj.

Thus, disGant(Xi) ∩ deGant(Vi) ̸= {Xi}. However, the construction of the MArG Ga

guarantees that Vi and Vj are not bidirected connected in ⟨Vi, Vj⟩G and consequently

not bidirected connected in the ancestral subgraph ⟨Vi, Vj⟩Gant . In order for this to

be true, at least one vertex Xi must become fixable after a sequence of fixing on

some vertices S that are descendants of X and ancestors of Vi and Vj (excluding
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X, Vi, and Vj). In the graph ϕS(Gant), Xi is fixable precisely because it is no longer

an ancestor of either Vi or Vj. Therefore, the path Vi↔X1↔, . . . ,↔Xp↔Vj is no

longer inducing in ϕS(Gant). Thus, there exists a set Z such that Vi and Vj can be

m-separated in ϕS(Gant), and the corresponding equality constraint is Vi ⊥⊥ Vj | Z in

ϕS(p(anG(Vi ∪ Vj));Gant).

Consider the case when the inducing path is of the form Vi→X1↔, . . . ,↔Xp↔Vj.

As the graph Gant is an ancestral subgraph of Ga(V ), we can apply the district fac-

torization to Gant. Define X ≡ {X1, . . . , Xp}, and let V ant denote all vertices in Gant

and DX denote the district in Gant that contains {X, Vj} or {Vi, X, Vj} if Vi is also

in the same district. Then, qDX (DX | paGant(DX)) is identified and district factorizes

with respect to the CADMG ϕV \DX (Gant) [22]. In such a CADMG, the only possible

directed paths from any vertex Xi to Vi or Vj are through vertices in DX as these

are the only random vertices that remain in ϕV \DX (Gant). First consider the case

when Vi is not in DX . Then Vi is fixed in ϕV \DX (Gant) and has no ancestors so the

path Vi→X1↔, . . . , Xp↔Vj remains inducing only if all vertices Xi ∈ X have a

directed path to Vj. If such a path exists for every Xi ∈ X then no Xi is fixable in

ϕV \DX (Gant). Further, no Di ∈ DX \Vj is fixable either as they are all within the same

district and have directed paths to Vj. Thus, the reachable closure of Vj in Gant and

as a consequence in Ga, contains X1. Since Vi is a parent of X1, the MArG projection

should have yielded an edge Vi→Vj which is a contradiction. Similarly, if Vi is in

DX , and all Xi ∈ X have directed paths to either Vi or Vj, then ⟨Vi, Vj⟩Ga would

remain a bidirected connected set and the MArG projection would have yielded an

edge Vi↔Vj which is also a contradiction. Therefore, in either case, there exists at

least one Xi ∈ X such that Xi is neither an ancestor of Vi nor Vj in ϕV \DX (Gant).

Thus, the path Vi→X1↔, . . . ,↔Xp↔Vj is no longer inducing and we have the

equality constraint, given some set Z ⊂ V ant that Vi ⊥⊥ Vj | Z in ϕV \DX (Gant).

Thus, it must be true that the input ADMG G(V ) implies at least one equality
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constraint, specifically between the variables Vi and Vj, as it is nested Markov equivalent

to a MArG with a missing edge between these two vertices, and we have provided

a form for the implied equality constraint. Hence, whenever line 6 is executed in

Algorithm 9, the model is truly not nonparametrically saturated.

Theorem 9 Consider a distribution p(V ) that district factorizes with respect to an

ADMG G(V ) where an edge between two vertices is absent only if Vi /∈ mbG(Vj) and

Vj ̸∈ mbG(Vi). Then, given any valid topological order on V, all equality constraints

in p(V ) are implied by the set of restrictions: Vi ⊥⊥ {≺ Vi} \ mpG(Vi) | mpG(Vi),

∀Vi ∈ V .

Proof. The proof relies on the fact that the constraint finding algorithm provided in

[30] finds a list of equality constraints that is sufficient to define the nested Markov

model of an ADMG (this was shown by [22]). Here we show that the only non-trivial

equality constraints found by applying this algorithm to an arbitrary mb-shielded

ADMG G are of the form Vi ⊥⊥ {≺ Vi} | mpG(Vi) thus implying that all equality

constraints in the nested Markov model of such an ADMG are implied by ordinary

conditional independences of that form.

Given a valid topological order on the vertices, the constraint finding algorithm in

[30] iterates over each vertex Vi in the order and attempts to find constraints between

Vi and {≺ Vi}. In substep (A1) of the algorithm (see [30] for details), it identifies

constraints of the form Vi ⊥⊥ {≺ Vi} | mpG(Vi). Substep (A2) and recursive applications

of it, attempts to find constraints between Vi and subsets of {≺ Vi} ∩mb(Vi). Since

the mb-shielded criterion enforces that if some vertex Vj is in the Markov blanket of

Vi, they must be adjacent, there can be no non-trivial equality constraint between Vi

and any subset of {≺ Vi}∩mb(Vi). Hence, this step never returns any new constraints

(compared to those found in (A1)) for an mb-shielded ADMG.

Thus, running the algorithm on an mb-shielded ADMG returns a list of constraints
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consisting of only ordinary conditional independence constraints (those that are found

by substep (A1)), and specifically ones that are of the form Vi ⊥⊥ {≺ Vi} | mpG(Vi).

Lemma 5 Given a distribution p(V ) that district factorizes with respect to an

ADMG G(V ) where T is primal fixable, ψ(t) = ψ(t)primal ≡ E[β(t)primal] where

β(t)primal ≡
I(T = t)

qDT (T | mbG(T )) × Y

= I(T = t)×
∑
T

∏
Vi∈DT∩{⪰T} p(Vi | mpG(Vi))∏

Vi∈DT∩{⪰T} p(Vi | mpG(Vi))
× Y.

Proof. Our goal is to demonstrate that the primal IPW formulation is equivalent to

the identifying functional of the target parameter ψ(t) shown in Eq. 5.6 and restated

below.

ψ(t) =
∑
V \T

∏
Vi∈V \DT

p(Vi | mpG(Vi))
⏐⏐⏐⏐
T=t
×
∑
T

∏
Di∈DT

p(Di | mpG(Di))× Y.

The primal IPW formulation for the target ψ(t) is,

E[βprimal(t)] ≡ E
[

I(T = t)
qDT (T | mbG(T )) × Y

]

where qDT (DT | paG(DT )) = ∏
Vi∈DT p(Vi | mpG(Vi)), and

qDT (T | mbG(T )) = qDT (T | DT ∪ paG(DT ) \ T ) = qDT (DT | paG(DT ))
qDT (DT \ T | paG(DT ))

= qDT (DT | paG(DT ))∑
T qDT (DT | paG(DT )) =

∏
Vi∈DT p(Vi | mpG(Vi))∑

T

∏
Vi∈DT p(Vi | mpG(Vi))

=
∏
Vi∈L p(Vi | mpG(Vi))∑

T

∏
Vi∈L p(Vi | mpG(Vi))

.

The last equality holds because the conditional densities of Vi ∈ C, does not depend

on T, and they cancel out from the numerator and denominator. Therefore, product in

the ratio is over the variables in DT ∩ {⪰ T} which we have denoted by L. Therefore,
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E[βprimal(t)] = E
[
I(T = t)×

∑
T

∏
Di∈L p(Di | mpG(Di))∏

Di∈L p(Di | mpG(Di))
× Y

]
=
∑
V

∏
Vi∈V

p(Vi | mpG(Vi))× I(T = t)×
∑
T

∏
Di∈L p(Di | mpG(Di))∏

Di∈L p(Di | mpG(Di))
× Y

=
∑
V

I(T = t)×
∏

Vi∈V \L
p(Vi | mpG(Vi))

×
∏
Di∈L

p(Di | mpG(Di))×
∑
T

∏
Di∈L p(Di | mpG(Di))∏

Di∈L p(Di | mpG(Di))
× Y

=
∑
V

I(T = t)×
∏

Vi∈V \L
p(Vi | mpG(Vi))×

∑
T

∏
Di∈L

p(Di | mpG(Di))× Y.

In the second equality, we evaluated the outer expectation with respect to the joint

p(V ). In the third equality, we partitioned the joint into factors for the set L and

factors for V \ L. In the fourth equality, we canceled out the the factors involved in

the denominator of the primal IPW with the corresponding terms in the joint.

We can then move the conditional factors of pre-treatment variables in the district

of T past the summation over T as these factors are not functions of T. Finally, we

evaluate the indicator function, concluding the proof. That is,

ψprimal =
∑
V

I(T = t)×
∏

Vi∈V \DT

p(Vi | mpG(Vi))×
∑
T

∏
Di∈DT

p(Di | mpG(Di))× Y

=
∑
V \T

∏
Vi∈V \DT

p(Vi | mpG(Vi))
⏐⏐⏐⏐
T=t
×
∑
T

∏
Di∈DT

p(Di | mpG(Di))× Y = ψ(t)

Lemma 6 Given a distribution p(V ) that district factorizes with respect to an ADMG

G(V ) where T is primal fixable, ψ(t) = ψ(t)dual ≡ E[β(t)dual] where

β(t)dual =
∏
Vi∈mp−1

G (T ) p(Vi | mpG(Vi)) |T=t∏
Vi∈mp−1

G (T ) p(Vi | mpG(Vi))
× Y.

Proof. The proof strategy is similar to the one used for the primal IPW. The dual

IPW formulation for the target ψ(t) is,
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E[βdual(t)] = E
[∏

Mi∈mp−1
G (T ) p(Mi | mpG(Mi)) |T=t∏

Mi∈mp−1
G (T ) p(Mi | mpG(Mi))

× Y
]

=
∑
V

∏
Vi∈V

p(Vi | mpG(Vi))×

∏
Mi∈mp−1

G (T ) p(Mi | mpG(Mi)) |T=t∏
Mi∈mp−1

G (T ) p(Mi | mpG(Mi))
× Y

=
∑
V

∏
Vi∈V \mp−1

G (T )

p(Vi | mpG(Vi))

×
∏

Mi∈mp−1
G (T )

p(Mi | mpG(Mi))×

∏
Mi∈mp−1

G (T ) p(Mi | mpG(Mi)) |T=t∏
Mi∈mp−1

G (T ) p(Mi | mpG(Mi))
× Y

=
∑
V

∏
Vi∈V \mp−1

G (T )

p(Vi | mpG(Vi))×
∏

Mi∈mp−1
G (T )

p(Mi | mpG(Mi)) |T=t × Y

=
∑
V \T

∏
Vi∈V \{mp−1

G (T )∪DT }

p(Vi | mpG(Vi))×
∏

Mi∈mp−1
G (T )

p(Mi | mpG(Mi)) |T=t

×
∑
T

∏
DT

p(Di | mpG(Di))× Y.

In the above derivation, we first evaluated the outer expectation with respect to

the joint p(V ). We then partitioned the joint into factors corresponding to mp−1
G (T )

and V \ mp−1
G (T ). The factors involved in the denominator of the dual IPW then

canceled out with the corresponding terms in the joint. The last equality holds because

by the definition of the inverse Markov pillow, mp−1
G (T ) contains all variables not

in the district of T such that T is a member of its Markov pillow. In the above

expression, factors corresponding to the inverse Markov pillow of T are evaluated at

T = t. Consequently, the only factors above that are still functions of T are the ones

corresponding to the district of T. This allows us to push the summation over T .

Finally, since the summation over T will prevent factors within the district of

T from being evaluated at T = t, we can simply apply the evaluation to the entire

functional and merge the sets not involved in the district of T above. That is,

ψdual =
∑
V \T

∏
Vi∈V \DT

p(Vi | mpG(Vi))×
∑
T

∏
Di∈DT

p(Di | mpG(Di))× Y
⏐⏐⏐⏐
T=t

= ψ(t).
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Theorem 10 Given a distribution p(V ) that district factorizes with respect to an

ADMG G(V ) where T is primal fixable, the IPW estimators ψprimal and ψdual proposed

in Lemmas 5 and 6 respectively, use variationally independent components of the

observed distribution p(V ).

Proof. Consider the topological factorization of the observed distribution p(V ) for the

ADMG as shown in Eq. 1.6.

p(V ) =
∏
Vi∈V

p(Vi | mpG(Vi)).

Note by definition, the inverse Markov pillow of T does not contain elements in the

district of T, i.e., mp−1
G (T )∩DT = ∅. Thus, we can partition V into three disjoint sets

as follows:

L = DT ∩ {⪰ T}, M∗ = mp−1
G (T ), R = V \ (L ∪M∗)

The set L is the same as what we defined earlier at the beginning of this proof section.

M∗ is a subset of M, and the remainder terms R = C ∪ {M \M∗}. The topological

factorization of the observed joint can then be restated as,

p(V ) =
∏
Ri∈R

p(Ri | mpG(Ri))
∏

Mi∈M∗
p(Mi | mpG(Mi))

∏
Li∈L

p(Li | mpG(Li)).

It is then clear from the above factorization that the components of the primal IPW

estimator which sit in L, and the components of the dual IPW estimator which sit

in M, form congenial and variationally independent pieces of the joint distribution

p(V ).

Theorem 12 Given a distribution p(V ) that district factorizes with respect to an

mb-shielded ADMG G(V ) where T is primal fixable, the efficient influence function
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for the target parameter ψ(t) is given as follows,

U eff
ψt

=
∑
Mi∈M

E[βprimal |Mi,mpG(Mi)]− E[βprimal | mpG(Mi)]

+
∑
Li∈L

E[βdual | Li,mpG(Li)]− E[βdual | mpG(Li)]

+
∑
Ci∈C

E[βprimal/dual | Ci,mpG(Ci)]− E[βprimal/dual | mpG(Ci)]

where C,L,M are defined in display (5.9), and βprimal and βdual are obtained as in

Lemmas 5 and 6 respectively. βprimal/dual means that we can either use βprimal or βdual

for the terms in C.

Proof. Consider the reformulated IF in Theorem 11. In order to get the efficient IF,

we project the reformulated IF onto the tangent space Λ∗ given by Lemma 4. We first

note that we can rewrite the term ∑
C E[βprimal/dual | C] − ψ(t) in the reformulated

IF as ∑Ci∈C E[βprimal/dual | {⪯ Ci}]− E[βprimal/dual | {≺ Ci}], where βprimal/dual means

that we can use either βprimal or βdual for the C term. We have,

π[U reform
ψt | Λ∗] =

∑
Mi∈M

π
[
E[βprimal | {⪯Mi}]− E[βprimal | {≺Mi}]

⏐⏐⏐ Λ∗
]

+
∑
Li∈L

π
[
E[βdual | {⪯ Li}]− E[βdual | {≺ Li}]

⏐⏐⏐ Λ∗
]

+
∑
Ci∈C

π
[
E[βprimal/dual |⪯ Ci]− E[βprimal/dual |≺ Ci]

⏐⏐⏐ Λ∗
]
.

Let β be either βprimal or βdual or βprimal/dual. Note that
{
E
[
β | {⪯ Vi}

]
− E

[
βprimal |

{≺ Vi}
]}

lives in ΛVi , and ΛVi ⊥⊥ Λ∗ \Λ∗
Vi
. Therefore, their projection onto Λ∗ \Λ∗

Vi
is

zero. We have,

π
[
E
[
β | {⪯ Vi}

]
− E

[
β | {≺ Vi}

]⏐⏐⏐ Λ∗
Vi

]
= E

[
E[β | {⪯ Vi}]− E[β | {≺ Vi}]

⏐⏐⏐ Vi,mpG(Vi)
]
− E

[
E[β | {⪯ Vi}]− E[β | {≺ Vi}]

⏐⏐⏐ mpG(Vi)
]

= E
[
β
⏐⏐ Vi,mpG(Vi)

]
− E

[
E
[
β
⏐⏐ ≺ Vi] ⏐⏐⏐ Vi,mpG(Vi)

]
− E

[
β
⏐⏐ mpG(Vi)

]
+ E

[
β
⏐⏐ mpG(Vi)

]
= E

[
β
⏐⏐ Vi,mpG(Vi)

]
− E

[
E
[
β
⏐⏐ ≺ Vi] ⏐⏐⏐ Vi,mpG(Vi)

]
= E

[
β
⏐⏐ Vi,mpG(Vi)

]
− E

[
β
⏐⏐ mpG(Vi)

]
.
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Therefore, the efficient IF is as follows.

π[U reform
ψt | Λ∗] =

∑
Mi∈M

E
[
βprimal |Mi,mpG(Mi)

]
− E

[
βprimal | mpG(Mi)

]
+
∑
Li∈L

E
[
βdual | Li,mpG(Li)

]
− E

[
βdual | mpG(Li)

]
+
∑
Ci∈C

E
[
βprimal/dual | Ci,mpG(Ci)

]
− E

[
βprimal/dual | mpG(Ci)

]
.

Theorem 13 Let p(V ) and G(V ) be the observed marginal distribution and ADMG

induced by a hidden variable causal model associated with DAG G(V ∪H). Then if

ψ(t) is identifiable in the model, ψ(t) = ψ(t)nested. If ψ(t) is not identifiable in the

model, Algorithm 10 returns ‘fail’.

Proof. Soundness of the algorithm implies that when our algorithm succeeds, the

subsequent identifying functional for ψ(t) is correct. Completeness implies, that when

the algorithm fails, the target parameter ψ(t) is not identifiable within the model.

Soundness

We first prove soundness of the algorithm. That is, when Algorithm 10 does not fail,

ψ(t) is indeed equal to ψ(t)primal and ψ(t)dual. The algorithm does not fail when all

districts D ∈ D∗ are intrinsic in G. Note that D∗ is a subset of the districts in GY ∗ .

However, by construction of D∗, the remaining districts in GY ∗ are those that do not

have any overlap with DT . We now show that such districts are always intrinsic in G.

Consider a district D ∈ D(GY ∗) such that D ∩ DT = ∅. The district D forms a

subset of a larger district in G, say D′ ∈ D(G). Due to results in [26], we know that

D′ is always intrinsic. If D = D′ then the result immediately follows. Otherwise,

In the CADMG ϕV \D′(G), there exists at least one vertex Di in D′ not in Y ∗, that

has no children. This is because all directed paths from Di to vertices in Y ∗ must

go through T and since T is not in D′, all incoming edges to T have been deleted.
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The only other way Di may not be childless is if there existed a cycle in G, which is

a contradiction. Thus, such a vertex Di is always fixable and furthermore, fixing it

corresponds to the marginalization operation ∑Di qD′(D′ | paG(D′)) [22]. Once Di is

fixed, another vertex Dj that is in D′ but not in Y ∗ becomes childless. Applying this

argument inductively, we see that all Di ∈ D′ such that Di ̸∈ Y ∗ are fixable through

marginalization under a reverse topological order. Hence for districts D in GY ∗ that

do not overlap with DT , the set D = D′ \ {Di ∈ D′ | Di ̸∈ Y ∗} is always intrinsic.

Thus, Algorithm 10 succeeds when all districts in GY ∗ are intrinsic.

We now show that under this condition, ψ(t)nested ≡ Ep†

[
I(T=t)

p(T |mpG(T )) × Y
]

= ψ(t).

By definition, we have

ψ(t)nested =
∑
V

p(V )×
∏

D∗∈D∗

qD∗(D∗ | paG(D∗))∏
D∗
i ∈D∗ p(D∗

i | mpG(D∗
i ))
× I(T = t)
p(T | mpG(T )) × Y.

The districts of G can be partitioned into three sets. DT is the district in G that

contains T (with all elements in D∗, if any, subsets of DT ). D′ is the set of districts in

G, excluding DT , that overlap with Y ∗. Dz is the set of districts in G, excluding DT ,

that do not overlap with Y ∗. The observed distribution p(V ) then district factorizes

as,

p(V ) =
∏

Dz∈Dz

qDz(Dz | paG(Dz))×
∏

D′∈D′

qD′(D′ | paG(D′))× qDT (DT | paG(DT )).

By results in [26], qDT (DT | paG(DT )) is identified as ∏Di∈DT p(Di | mpG(Di)) (for any

topological ordering). Since every element in D∗ is a subset of DT , and since vertices

in DT \
⋃
D∗∈D∗ precede vertices DT ∩

⋃
D∗∈D∗ = DT ∩ Y ∗ in the ordering, we have

ψ(t)nested =
∑

V

∏
Dz∈Dz

qDz (Dz | paG(Dz))×
∏

D′∈D′

qD′(D′ | paG(D′))×
∏

D∗∈D∗

qD∗(D∗ | paG(D∗))

×
∑

DT ∩Y ∗

qDT
(DT |paG(DT ))× I(T = t)

p(T | mpG(T )) × Y.

Since T is the last element in the ordering in DT \ Y ∗, we further have:
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ψ(t)nested =
∑
Y ∗

∑
V \Y ∗

∏
Dz∈Dz

qDz (Dz | paG(Dz))×
∏

D′∈D′

qD′(D′ | paG(D′))×
∏

D∗∈D∗

qD∗(D∗ | paG(D∗))

×
∑

(DT ∩Y ∗)∪{T }

qDT
(DT |paG(DT ))× I(T = t)× Y.

Consider applying marginalization of elements in V \ Y ∗ to ψ(t)nested above in

the reverse topological ordering on V \ Y ∗. Districts in G partition V and so, by

definition of D∗,D′ and DT , elements in Dz ∪{D′ \Y ∗ : D′ ∈ D′}∪{DT \ (Y ∗∪{T})}

partition V \ Y ∗. This partition, and the fact that marginalizations are processed

in reverse topological order, means that at every stage, the variable to be summed

occurs in precisely one place in the expression. This implies that the result of the

overall summation of V \ Y ∗ yields:

ψ(t)nested =
∑
Y ∗

∏
D′∈D′

∑
D′\Y ∗

qD′(D′ | paG(D′))×
∏

D∗∈D∗
qD∗(D∗ | paG(D∗))× I(T = t)× Y

By definition, qD∗(D∗ | paG(D∗)) ≡ ϕV \D∗(p(V );G(V )). Since every D′ in D′ is

a top level district in G, there exists a valid fixing sequence on V \ D′. Further,

in the CADMG ϕV \D′(G(V )), any element in D′ \ Y ∗ cannot be an ancestor of an

element in D′ ∩ Y ∗ (if a directed path not through T existed from an element Vi

in D′ to an element in D′ ∩ Y ∗, then Vi must itself be in D′ ∩ Y ∗, while a directed

path from Vi to D′ ∩ Y ∗ through T disappears in ϕV \D′(G(V )) since T is outside D′.

Consequently fixing elements D′ \ Y ∗ in reverse topological order in ϕV \D′(G(V )) and

ϕV \D′(p(V ),G(V )) is equivalent to marginalizing those variables. As a result, for every

D′ ∈ D′, ∑D′\Y ∗ qD′(D′ | paG(D′)) = ϕV \(D′∩Y ∗)(p(V );G(V )). Our conclusion follows:

ψ(t)nested =
∑
Y ∗

∏
D∈D(GY ∗ )

ϕV \D(p(V );G)× Y
⏐⏐⏐⏐⏐
T=t

= ψ(t).

Completeness

Follows trivially as we have shown the failure condition of Algorithm 10 to be equivalent

to the failure condition of the identification algorithm in [22] which is known to be

sound and complete.
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