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Abstract 

 

The work included herein describes the synthesis and study of stable aromatic 

organoborane materials. The materials synthesized are based upon the architecture of 1,2-

azaborines, aromatic hydrocarbons with a single CC for BN bond substitution. The aromaticity and 

electronics of both molecular and macromolecular materials are investigated. A large portion of 

this work is focused on the development of the monomer BN 2-vinylnaphthalene (BN2VN) and 

homo- and copolymers of BN2VN resulting from radical polymerization. BN2VN functionalized 

polymers can be converted to novel materials owning to the implicit reactivity of organoboranes.  

 

Advisor: Professor Rebekka S. Klausen 

Reader: Professor J.D. Tovar 

Reader: Professor Thomas J. Kempa 

  



iii 
 

 

 

Dedicated to all those whom  

just keep pushing on. 

  



iv 
 

Acknowledgements 

Many people have helped to make my graduate school career a success and I could not have 

succeeded without the support from many different people, in many different capacities.  

Firstly, I thank my advisor, Professor Rebekka S. Klausen, for her warm mentorship. From 

the first weeks of working side-by-side unpacking boxes of glassware, to seeing me off as an 

accomplished chemical researcher, Rebekka has always challenged me to perform to the best of 

my abilities. To the first members of the Klausen Lab, Dr. Eric Moshe Press and Dr. Sravan 

Surampudi, I thank you for inviting me into your families and for continually being available to 

discuss all facets of my research. 

I thank my mother and father, Monica and John van de Wouw, for raising me to be an 

independent go-getter and granting me the freedom to choose my own path. I thank my sister, 

Jody van de Wouw, for always being there for me. To my aunts, Kim Hayashi and Leslie Rosen, 

thank you for challenging me to succeed academically and helping me navigate my course through 

higher education. Thanks to my grandparents, Ba-chan, Ji-chan, Grams, Tutu, and Opa, for always 

providing me with unconditional love, and especially my grandmothers for teaching me to be open 

and gregarious.  

My day-to-day as a graduate student has been continually brightened by the many 

undergraduate students with whom I have mentored over the years, Mr. Jae Young (Jake) Lee, 

Mr. Elorm C. Awuyah, and Ms. Jodie I. Baris. I am privileged to have lead such a lot of astute and 

dedicated mentees, each allowing me to learn from them as they arose to meet the challenge of 

becoming thoughtful researchers. Our shared comradery and commiseration allowed us to grow 

not just as researchers, but as young adults, together.  

Eduardo Silva and Zachary Inscho, I thank you both for standing by my side and offering 

support for both my technical and artistic aspirations. You both have helped me to create balance 

within my life and to enjoy my time in a completely different world, the East Coast. Rachel Harris, 



v 
 

your hospitality and understanding throughout my last month in Baltimore has been invaluable and 

I will forever admire your generosity.  

I would like to thank the members of the Klausen Research Group. With you we are able to 

support one another, build upon each other’s accomplishments, and grow as professionals. Yuyang 

Ji and Qifeng Zhang, thank you especially for your friendship and introducing me to new cultures 

and allowing me to share mine with you.  

I would like to thank the Johns Hopkins University, Department of Chemistry, especially: 

Prof. J. D. Tovar, Prof. Sara Thoi, Prof. Howard Fairbrother, Prof. Howard Katz, Boris Steinberg, 

Lauren McGhee, Dr. Joel Tang, Dr. Maxime Siegler, and Dr. Phil Mortimer. I was further supported 

by the department though both the Ernest M. Marks Award and the Harry and Cleio Greer 

Fellowship. Thank you Prof. Carmen F. Works for urging me to apply to Johns Hopkins University 

and continuing to be my mentor.  

Lastly, the work included in this dissertation and future directions of the BN sub-group is 

funded by the American Chemical Society, Petroleum Research Fund (Grant# 56380-DNI7: 

Controlling Polarization in Polystyrene) and the National Science Foundation (Grant# CHE-

1752791: Hydrophobic and Hydrophilic Polymers from Boron-Containing Polyolefins). 

 

  



vi 
 

Publications Drawing Upon this Dissertation 

1. van de Wouw, H. L.; Lee, J. Y.; Siegler, M. A.; Klausen, R. S. “Innocent BN Bond 

Substitution in Anthracene Derivatives.” Org. Biomol. Chem. 2016, 14, 3256–3263. 

2. van de Wouw, H. L.; Lee, J. Y.; Klausen, R. S. “Gram-Scale Free Radical Polymerization of 

an Azaborine Vinyl Monomer.” Chem. Commun. 2017, 53, 7262–7265. 

3. van de Wouw, H. L.; Lee, J. Y.; Awuyah, E. C.; Klausen, R. S. “A BN Aromatic Ring Strategy 

for Tunable Hydroxy Content in Polystyrene.” Angew. Chem., Int. Ed. 2018, 57, 1673–

1677. 

4. van de Wouw, H. L.; Awuyah, E. C.; Baris, J. I.; Klausen, R. S. “An Organoborane Vinyl 

Monomer with Styrene-like Radical Reactivity: Reactivity Ratios and Role of Aromaticity.” 

Macromol. 2018, 51, 6359–6368. 

5. van de Wouw, H. L.; Klausen, R. S. “BN Polystyrenes: Emerging Optical Materials & 

Versatile Intermediates.” J. Org. Chem. 2019, 84, 1117-1125. 

 

 

Publication not Included in this Dissertation 

1. van de Wouw, H. L.; Chamorro, J.; Quintero, M.; Klausen, R. S. “Opposites Attract: Organic 

Charge Transfer Salts.” J. Chem. Educ. 2015, 92, 2134–2139. 

  



vii 
 

Table of Contents 

Title Page i 

Abstract ii 

Dedication iii 

Acknowledgements iv 

Publication Drawing Upon this Dissertation vi 

Publications not included in this Dissertation vi 

Table of Contents vii 

List of Tables x 

List of Figures xi 

List of Schemes xii 

List of Abbreviations xiii 

 

Chapter 1: Introduction 

1.1 Introduction 1 

1.2 Synthesis of BN Aromatic Vinyl Monomers 

Vinyl Borazine 
BN Styrene (BNSt) and Substituted Styrenes 

BN 2-Vinylnaphthalene (BN2VN) 

4 

1.3 Radical Polymerization 

Free Radical Homopolymerization 
Controlled Radical Polymerization 

6 

1.4 Copolymerization 

N-Methyl BN Styrene and 2-Methylstyrene 
BN2VN and 2-Vinylnaphthalene 

BN2VN and Styrene 

10 

1.5 Postpolymerization Modification 14 

1.6 Stereoregular Polymers and Coordination-Insertion Polymerization 21 

1.7 Outlook 23 

 

  



viii 
 

Chapter 2: BN Anthracenes 

2.1 Introduction 24 

2.2 B-Aryl Anthracene Synthesis 26 

2.3 Single Crystal X-ray Crystallography 27 

2.4 2-Arylanthracene Syntheses and X-Ray Structures 30 

2.5 Calculated Structure 32 

2.6 Absorbance Spectroscopy 32 

2.7 Electrochemistry 34 

2.8 Electronic Structure Calculations 36 

2.9 Conclusion 38 

 

Chapter 3: Development of BN2VN and Homopolymerization 

3.1 Introduction 39 

3.2 Azaborine Monomer Development 40 

3.3 Free Radical Polymerization 42 

3.4 Conclusion 44 

 

Chapter 4: Copolymers of BN2VN and 2-Vinylnaphthalene 

4.1 Introduction 45 

4.2 Determination of Copolymer Composition 46 

4.3 Structural Characteristics of Copolymers 48 

4.4 Conclusion 50 

 

  



ix 
 

Chapter 5: Copolymers of BN2VN and Styrene 

5.1 Introduction 51 

5.2 Theoretical Considerations for Monomer Coreactivity 

Molecular Geometries 

NCIS Calculations 
Bond Dissociation Energies 

52 

5.3 BN2VN and Styrene Copolymerization 57 

5.4 Determination of Copolymer Composition 59 

5.5 Conclusion 60 

 

Chapter 6: A BN Aromatic Ring Strategy for Tunable Hydroxy Content in Polystyrene 

6.1 Introduction 61 

6.2 Oxidative Strategy 61 

6.3 Model Oxidation 63 

6.4 BN2VN-Styrene Copolymer Oxidation 64 

6.5 Conclusion 67 

 

Chapter 7: Reactivity Ratios 

7.1 Introduction 68 

7.2 Determination by Linearization Methods 71 

7.3 Determination by NLLS Method  75 

7.4 Insights into Polymer Microstructure 77 

7.5 Conclusion 79 

 

Appendix I: Experimental Details 80 

Appendix II: Bibliography 129 

Appendix III: Curriculum Vitae 145 

 



x 
 

List of Tables 

Table 1.1 Free radical polymerization of BN aromatic vinyl monomers.   

Table 1.2 Selected BN polystyrene photophysical data compared to 

hydrocarbon polymers. 

 

Table 1.3 Reactivity Ratios for the Copolymerization of BN Aromatic Vinyl 

Monomers and Styrene. 

 

Table 2.1 Exocyclic torsion angles and bond distances.  

Table 2.2 Experimental optical properties for compounds synthesized.   

Table 2.3 Electrochemical properties for compounds synthesized.  

Table 3.1 PBN2VN molecular weight characteristics.   

Table 3.2 Absence of thermal BN2VN auto-polymerization.  

Table 4.1 P(BN2VN-co-2VN) molecular weight and optical properties.  

Table 5.1 Cyclic bond angles in monomers.   

Table 5.2 Bond lengths in monomers.   

Table 5.3 Electrostatic and NICS comparison of monomers.   

Table 5.4 P(BN2VN-co-S) molecular weight and optical properties.  

Table 7.1 Low conversion P(BN2VN-co-S) molecular weight characteristics.   

Table 7.2 Reactivity ratios of BN2VN and styrene via linearization.  

Table 7.3 Reactivity ratios of vinyl alcohol precursors and styrene.  

Table 7.4 Prediction of P(BN2VN-co-S) thermal properties.   

 



xi 
 

List of Figures 

Figure 1.1 Diversity in polystyrene.  

Figure 1.2 Styrene-BN2VN reactivity ratios.  

Figure 2.2 BN Acenes.  

Figure 2.4 BN Anthracene crystal packing.   

Figure 2.7 Absorbance spectroscopy in THF.   

Figure 2.8 Potential dependence on Hammett electronic properties.   

Figure 2.9 Frontier M.O. energy dependence on Hammett electronic properties.  

Figure 3.1 1H NMR spectra of 2VN and BN2VN   

Figure 4.1 Absorbance spectroscopy in THF of BN2VN and 2VN.   

Figure 4.2 1H NMR spectra of P(BN2VN-co-2VN).  

Figure 4.3 11B NMR spectra of P(BN2VN-co-2VN).  

Figure 5.1 Aromatic vinyl borane monomers.  

Figure 5.2 Reactive radical computations.  

Figure 5.3 P(BN2VN-co-S) GPC chromatograms.   

Figure 5.4 P(BN2VN-co-S) composition calibration.   

Figure 6.1 1H NMR analysis of NaOOH-mediated oxidation of a model 

compound. 

 

Figure 6.2 Oxy. P(BN2VN-co-S) GPC curves  

Figure 6.3 Spectral signatures of P(BN2VN-co-S) oxidation.   

Figure 6.4 Oxy. P(BN2VN-co-S) differential scanning calorimetry.  

Figure 7.5 BN2VN and styrene copolymerization.  

Figure 7.6 Low conversion P(BN2VN-co-S) thermal properties.   

 



xii 
 

List of Schemes 

Scheme 1.1 Synthesis of BN styrenes.  

Scheme 1.2 Gram-scale homopolymerization of BN2VN initiated by AIBN.  

Scheme 1.3 Controlled radical polymerization.  

Scheme 1.4 Borane strategy for polyalcohol synthesis.  

Scheme 1.5 Postfunctionalization of BN2VN copolymers.   

Scheme 1.6 Stereoregular polymers.   

Scheme 2.1 Synthesis for BN anthracene starting material.   

Scheme 2.2 BN Anthracene synthesis.  

Scheme 2.3 Synthesis of 2-arylanthracenes.  

Scheme 3.1 Vinyl borane monomer strategy.   

Scheme 3.2 Poly(BN 2-vinylnaphthalene).  

Scheme 4.1 Free radical copolymerization of BN2VN and 2VN.  

Scheme 5.1 Free radical copolymerization of BN2VN and styrene.  

Scheme 6.1 Borapolyolefin oxidation.  

Scheme 7.1 Reactivity ratios in vinyl comonomers.   

 

  



xiii 
 

List of Abbreviations 

∠ angle 

°C degrees Celsius 

µL microliter 

µm micrometer 

2MeS 2-methylstyrene 

2VN 2-vinylnaphthalene 

4-ABSt 4-azaborinylstyrene 

Å angstrom 

ABS acrylonitrile-butadiene-styrene 

abu absorbance (arbitrary) units 

ACHN 1,1’-azobis(cyanocyclohexane) 

AIBN azoisobutyronitrile; 2,2’-azobis(2-methylpropionitrile) 

aPS atactic polystyrene 

aPVA atactic poly(vinyl alcohol) 

ATRP atom transfer radical polymerization 

BDE bond dissociation enthalpy 

BN2EtN BN 2-ethylnaphthalene 

BN2VN BN 2-vinylnaphthalene 

BNEtB BN 2-ethylbenzene 

BNSt BN styrene 

Bq ghost atom 

br broad 

ca.  circa 

CAM Coulomb-attenuated method 

CIP coordination-insertion polymerization 

cm centimeter 

Cp* pentamethylcyclopentadiene 

CPME cyclopentyl methyl ether 

CRP controlled radical polymerization 

CTA chain transfer agent 

d doublet 

Đ dispersity (Mw/Mn) 

DDMAT 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid 

DFT density functional theory 



xiv 
 

DMF dimethylformamide 

DMSO dimethyl sulfoxide 

DSC differential scanning calorimetry 

EA elemental analysis 

Eg optical band gap 

EI electron ionization 

Ep,a peak anodic potential 

Ep,c peak cathodic potential 

ESP electrostatic potential 

EtB ethylbenzene 

eV electronvolt 

EVA ethylene-vinyl acetate 

fBN2VN fractional composition of BN2VN in the monomer feed 

FBN2VN fractional composition of BN2VN in the copolymer 

Fc ferrocene 

FR Fineman-Ross 

g gram 

GIAO gauge-independent atomic orbital 

GPC gel permeation chromatography 

h hour 

Hz hertz 

I nuclear spin 

iPS isotactic polystyrene 

iPVA isotactic poly(vinyl alcohol) 

IR infrared 

J coupling constant 

JCI joint confidence interval 

JHU Johns Hopkins University 

kcal kilocalorie 

kDa kilodalton 

KT Kelen-Tüdös 

LDA lithium diisopropylamide 

M Molar concentration 

m meso 

m multiplet 



xv 
 

mg milligram 

min minute 

mL milliliter 

mm millimeter 

Mn number average molecular weight 

mol mole 

mol% mole percent 

Mw weight average molecular weight 

NaOOH sodium hydroperoxide 

NICS nucleus independent chemical shift 

NLLS non-linear least squares 

nm nanometer 

NMe2VAB N-methyl 2-vinylazaborine 

NMP nitroxide mediated polymerization 

NMR nuclear magnetic resonance 

P(4-ABS) poly(4-azaborinylstyrene) 

P2MeS poly(2-methylstyrene) 

P2VN  poly(2-vinylnaphthalene) 

PBN2VN poly(BN 2-vinylnaphthalene) 

PBNMeS poly(N-methyl 2-vinylazaborine) 

PBNS poly(BN styrene) 

PEE polyethylethylene 

PMMA poly(methyl methacrylate) 

ppm parts per million 

PS polystyrene 

PSS polystyrene sulfonate 

PVA poly(vinyl alcohol) 

PVB poly(vinyl borazine) 

PVBP poly(vinyl biphenyl) 

q quartet 

r racemo 

RAFT radical addition-fragmentation 

RCM ring closing metathesis 

RI refractive index 

s singlet 



xvi 
 

sPBN2VN syndiotactic poly(BN 2-vinylnaphthalene) 

sPS syndiotactic polystyrene 

sPVA syndiotactic poly(vinyl alcohol) 

St styrene 

SVA styrene-vinyl alcohol 

t triplet 

TBAF tetrabutylammonium fluoride 

TBS t-butyldimethylsilyl 

Tg glass transition temperature 

THF tetrahydrofuran 

Tm melting temperature 

TMS trimethylsilyl 

UV-vis ultraviolet-visible 

VAc vinyl acetate 

VB vinyl borazine 

VSi vinyl silanes 

wt% weight percent 

ε extinction coefficient 

λem wavelength of emission 

λmax longest wavelength of absorption 

λonset wavelength of absorption onset 

 

  



1 

 

  

Chapter 1:  

Introduction 

 

 

 

 

 

 

 

1.1 Introduction 

Polyolefin commodity chemicals have revolutionized the landscape of consumer goods by 

providing light weight and durable materials for both packaging and manufacturing. In 2015 more 

than 178 million tons of polyolefin materials were produced.1,2 Truly tunable, plastics can be made 

to possess a plethora of properties by varying monomer identity, degree of polymerization, and 

polymer architecture.  Commercially, there are there are over 300 grades of polyolefins, each 

offering unique mechanical properties.3 Beyond this, comonomer composition, polymer 

stereoregularity, and post polymerization modification have profound ability to further expand the 

functionality of polymeric materials.   

Vinylaromatic monomers, of most fame styrene, offer a dynamic insight into polyolefin 

polymerization. Conjugated aromatic groups provide the ability to stabilize propagating reactive 

ethylenic species through inclusion of resonance and aromatic stabilization energies. Styrene is a 

versatile monomer that is polymerized under free and controlled radical, thermal, anionic, cationic, 

and transition metal-catalyzed conditions.4 Polystyrene’s macromolecular properties are exquisitely 

controlled by synthesis (Figure 1a). Free radical polymerization yields amorphous polystyrene (PS) 

for packaging applications.5 Coordination-insertion polymerization provides crystalline high-melting 
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stereoregular PS.6 Controlled radical polymerization (CRP) yields well-defined block copolymers 

which self-assemble into nanoscale patterned domains.7 

PS derivatives with functionalized aryl side chains are important materials in their own 

right. Cross-linking and Friedel–Crafts sulfonylation provides polystyrene sulfonate (PSS), the major 

component of the ion exchange resin Dowex.8 Functionalization with polar groups is particularly 

desirable to improve adhesion to polar surfaces.9 Boron-functionalized organic polymers are an 

active research area.10,11 Tricoordinate boron-functionalized materials have found wide application 

in sensing,12 non-linear optics,13 and n-type charge transport.14 Isosteric and isoelectronic BN for 

CC bond substitution in aromatic compounds is an attractive approach to developing stable 

organoboranes.15,16 BN for CC substitution in polymer backbones, either as poly(aminoborane)s17–

22 or as conjugated polymers (Figure 1.1b),23–25 is well-precedented. 

 

Vinyl monomers with BN aromatic side chains are less explored. Interest in these structures stem 

from several distinct motivations: 

i. Reactivity. Styrene’s synthetic versatility arises from the utility of the benzylic 

reactive intermediates implicated in styrene polymerization. How does a BN aromatic 

ring influence the reactivity of a benzylic radical, anion, or other reactive intermediate 

relevant to polymerization?  

ii. Photophysics. BN aromatics have unusual photophysical properties compared to 

benzene, including bathochromically shifted absorption and emission.  

iii. Postfunctionalization. Organoboranes are workhorse intermediates in chemical 

synthesis.26,27 The C–B bond of B-vinyl polymers introduces opportunities for 

postpolymerization chemical modification, addressing long-standing challenges in the 

synthesis of functional polymers containing both polar and nonpolar functional groups. 
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Figure 1.1. Diversity in polystyrene. a) Styrene polymerization & applications of polystyrene 

architectures. b) Prior work in BN for CC isosterism in polymeric materials. c) BN for CC isosterism 

and aromaticity. NICS(0)πzz (ppm) values excerpted from Baranac−Stojanović et al.28,29 

 

This chapter focuses on “BN polystyrenes”, defined as polymers arising from vinyl 

monomers with BN aromatic side chains (Chart 1.1). As a systematic nomenclature for BN aromatic 

rings and polymeric derivatives is still evolving,15,16 materials in Chart 1 are named to emphasize 

similarity to a hydrocarbon polymer (e.g. PS, polystyrene vs. PBNS, poly(BN styrene)). BN aromatic 

heterocycles incorporated as polyolefin side chains include borazine (Sneddon, 1991),30 1,2-

azaborine and BN biphenyl (Liu and Jäkle, 2016),31 N-methyl-1,2-azaborine (Sönnichsen and 

Staubitz, 2017),32 and BN naphthalene (Klausen, 2017).33–36 BN aromatic rings, as determined by 

nucleus independent chemical shift (NICS) calculations, are less aromatic than benzene and 

aromaticity decreases with increasing BN substitution (Figure 1.1c).28,29 Localization of electrons 

over boron and nitrogen perturb the aromaticity of cyclic and polycyclic aromatic ring systems over 
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their hydrocarbon counterparts. This electronic consequence has inspired researchers to develop 

innovative chemistries for the synthesis of a variety of azaborine compounds.  

 

 

Chart 1.1. Polyolefins with BN aromatic side chains. PVB = poly(vinyl borazine);30 PBNS = BN 

polystyrene;31 P(4-ABS) = poly(4-azaborinylstyrene);31 PBNMeS = poly(1-methyl-2-vinyl-1,2-

azaborine);32 PBN2VN = poly(BN 2-vinylnaphthalene);33,35,36 sPBN2VN = syndiotactic PBN2VN.34 

RAFT = radical addition-fragmentation; CIP = coordination-insertion polymerization. 

 

1.2 Synthesis of BN Aromatic Vinyl Monomers.  

M. J. Dewar reported the first syntheses of BN aromatic structures such as BN 

phenanthrene37 and BN naphthalene38 in the 1950’s and 1960’s. Azaborine, the benzene analog 

with the general formula C4H6BN, has three isomers, which remained elusive for decades after 

Dewar’s initial work.15,16 In recent years, modern methods enabled fresh synthetic approaches that 

simplified access to monocyclic azaborines.39 Despite significant advances, there remains a need 

for synthetic methods suitable for gram-scale and larger synthetic approaches.40 
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1.2.1. Vinyl Borazine (VB). Sneddon reported the synthesis and polymerization of B-

vinylborazine (VB) in 1991.30 VB was synthesized by transition metal-catalyzed coupling of borazine 

(B3N3H6) and acetylene.41 Alkylated variants of VB (e.g. B-vinylpentamethylborazine) were 

synthesized by substitution reactions of B-haloborazines with Grignard reagents.42 

1.2.2. BN Styrene (BNSt) and Substituted Styrenes. Ashe reported the first synthesis of BNSt 

in 2009 via ring expansion of 1,2-azaborolide 1.43 The six-step synthesis proceeded in 6% overall 

yield (Scheme 1a). The authors reported that the BNSt anion acted as a -ligand in transition metal 

complexes, but did not explore vinyl polymerization. 

 

 

Scheme 1.1. Synthesis of BN styrenes (BNSt). a) Ashe: Ring expansion and deprotection of 1,2-

azaborolide 1 provides BNSt.43  b) Liu: Ring-closing metathesis (RCM) and aromatization provides 

4, a versatile intermediate in the synthesis of BN aromatic vinyl monomers.32,44 LDA = lithium 

diisopropylamide; TMS = trimethylsilyl; TBAF = tetrabutylammonium fluoride; TBS = t-

butyldimethylsilyl. 

 

Building on Ashe’s 2000 report on ring-closing metathesis routes to 1,2-azaborines,39 in 

2013 Liu described a ring closing metathesis (RCM)/aromatization sequence (Scheme 1b) to 1,2-
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azaborines.44 Structures of the general type 4 serve as a common intermediate in the preparation 

of functionalized monocyclic BN aromatics. In 2016, Liu and Jäkle described derivatization of 4 with 

vinyl and p-styryl organometallic reagents to provide BNSt and 4-azaborinylstyrenee respectively.31 

Sönnichsen and Staubitz reported the synthesis of BNMeSt by modification of the 

RCM/aromatization strategy (four steps, 15% overall yield).32 

1.2.3 BN 2-Vinylnaphthalene (BN2VN). The key step in Dewar’s 1959 synthesis of BN 

naphthalene is the condensation of 2-vinylaniline with trichloroborane, followed by reduction.38 

More recently, Molander reported the synthesis of dozens of substituted BN naphthalenes via the 

one pot condensation of vinylanilines with dichloroorganoboranes generated in situ from potassium 

organotrifluoroborate salts.45 Based on this precedent, we targeted bicyclic BN 2-vinylnaphthalene 

(BN2VN) as a more synthetically accessible monomer compared to monocyclic structures. We 

developed a two step, multigram scale synthesis of BN2VN (55% overall yield).35,36 Synthetic details 

are described in Chapter 3. 

1.3 Radical Polymerization 

Free radical polymerization is the most widely explored approach to BN polystyrene 

synthesis and free radical polymerization of all of the monomers in Section 1.3 has been reported. 

Table 1.1 summarizes representative results. In addition to free radical polymerization, there is one 

report each of controlled radical and coordination-insertion polymerization, from Liu & Jäkle and 

us respectively. The potential for future investigation is significant, including both further 

development of existing methods, as well as unexplored avenues like anionic polymerization. 

1.3.1 Free Radical Homopolymerization. Sneddon reported VB polymerization initiated by 

azoisobutyronitrile (AIBN), which provided two fractions: a major fraction consisting of soluble, 

moderate molecular weight (Mn = 10.7 kDa) material assigned to a polyolefin with borazine side 

chains and a smaller fraction (<15-20%) of high molecular weight material arising from crosslinking 

of the borazine side chains.30,46 Alkylated vinylborazines did not polymerize under free radical 

conditions.42,47  
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Free radical polymerization of vinyl monomers with 1,2-azaborine-derived substituents 

proceeds under similar conditions as reported for VB (AIBN, 70-90 C). No side chain cross-linking 

was observed. BN2VN, BNMeSt, and 4-ABSt polymerization provided high molecular weight 

polymers (Table 1), but PBNS was only isolated in low molecular weight (Mn = 1.6 kDa). The origin 

of this divergent reactivity is not yet clear. Free radical polymerization of vinyl boronic esters is 

known,48,49 suggesting that -boryl radicals are generally suitable for polymerization, an 

observation further supported by the high reactivity of BN2VN and BNMeSt. A potential explanation 

is chain transfer to monomer, the phenomenon in which the polymer radical abstracts a weakly 

bonded atom from the monomer. The formation of a molecular radical at the expense of a 

polymeric radical results in short chain lengths. However, calculations suggest that azaborine’s     

C–H and N–H bonds are strong, with bond dissociation enthalpies ranging between 105–112 kcal 

mol-1 (CAM-B3LY/6-311G(d,p)).50 Other pathways for early chain termination have neither been 

explored nor ruled out. 

To date, only BN2VN polymerization has been carried out on multigram scale (Scheme 

1.2). BNSt polymerization was reported on 10 mg scale and BNMeSt polymerization on ca. 150 mg 

scale.  

 

 

Scheme 1.2. Klausen: Gram-scale homopolymerization of BN2VN initiated by AIBN.  

 

All BN polystyrenes showed optical properties distinct from hydrocarbon analogs (Table 2); 

for example, PBN2VN is pale yellow (Scheme 3, inset), whereas P2VN is white. In general, the 
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longest wavelength absorption (max) bathochromically shifted and intensified upon BN substitution. 

The magnitude of the bathochromic shift varied from 16 nm (PS vs. PBNS) to 43 nm (P2VN vs. 

PBN2VN). The emission spectra of BN polystyrenes also differed from hydrocarbon polymers, with 

larger Stokes shifts seen in BN polystyrenes than in hydrocarbon polymers. Similar trends are 

observed in molecular systems, including the monomers themselves.51 

 

Table 1.1. Free radical polymerization of BN aromatic vinyl monomers. AIBN = 2,2’-azobis(2-

methylpropionitrile); ACHN = 1,1’-azobis(cyanocyclohexane). 

Entry 
Monomer 
(solvent) 

Radical 
Initiator 

Temperature Time Yield 
Mn 

(kDa) 
Đ Ref. 

1 VB 
(C6H6) 

AIBN 
(1 mol%) 

80 °C 20 h 25% 10.7 1.68 30 

2 BNSt 
(C6D6) 

ACHN 
(1 mol%) 

90 °C 72 h 50%a 1.6 1.33 31 

3 BNMeSt 

(neat) 

AIBN 

(1 mol%) 

85 °C 72 h 51% 16.5 1.51 32 

4 BN2VN 

(neat) 

AIBN 

(1 mol%) 

70 °C 24 h 75% 20.5 3.87 36 

5 4-ABSt 

(THF) 

AIBN 

(2.5 mol%) 

70 °C 20 h >99%a 38.5 3.91 31 

a % Conversion.   

 

 

Table 1.2. Selected BN polystyrene photophysical data compared to hydrocarbon polymers. 

 BN Aromatic Side Chains Hydrocarbon Aromatic Side Chains 

Entry Polymer max
a em

b Ref. Polymer max
a em

b Ref. 

1 PBNS 277 344 31 PS 261 278 52 

2 P(4-ABS) 299 369 31 PVBP n.d. 313 53 

3 PBNMeS 279 n.d. 32 P2MeS 265 n.d. 32 

4 PBN2VN 320 398 35 P2VN 277 335, 401 35 

a Longest wavelength absorption in nanometers. b Wavelength emitted after excitation at max in 

nanometers. PVBP = poly(vinyl biphenyl); P2MeS = poly(2-methylstyrene); P2VN = poly(2-

vinylnaphthalene). 
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1.3.2 Controlled Radical Polymerization. Controlled radical polymerization (CRP) introduces a 

dynamic equilibrium between propagating and dormant polymer chains (Scheme 1.3a).54 The low 

concentration of propagating polymer chain ends suppresses chain recombination and other 

termination events that contribute to a broad distribution of chain lengths (dispersity, Đ) in free 

radical polymerization. CRP is desirable for advanced applications requiring control of molecular 

weight, dispersity, and end group structure. Notable examples include atom transfer radical 

 

 

Scheme 1.3 a) Controlled radical polymerization by reversible deactivation. Green sphere 

represents a generic deactivating agent. b) Liu & Jäkle: RAFT polymerization of BNSt and BN-VBP.31 

DDMAT = 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid; DMF = dimethylformamide; 

ACHN = 1,1’-azobis(cyanocyclohexane). 
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polymerization (ATRP), nitroxide mediated polymerization (NMP), and reversible addition-

fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is convenient, as typically 

a chain transfer agent (CTA) is simply added to free radical polymerizations.55 Different CTA 

structures are optimal for styrenes, acrylates, and other monomers. 

Liu and Jäkle reported RAFT polymerization of both BNSt and 4-ABSt using the chain 

transfer agent 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) (Scheme 1.3b), 

a CTA optimized for styrene polymerization. Only P(4-ABS) demonstrated one of the signatures of 

CRP, chain extension upon introduction of additional monomer. Chain extension indicates end 

group fidelity, that the chain cap can still be reversibly cleaved to allow further polymerization. 

The outlook for BN aromatic vinyl monomer CRP is very promising. Future efforts will 

undoubtedly continue to explore methods in addition to RAFT, as well as the preparation of block 

copolymers containing BN aromatic side chains. 

1.4 Copolymerization 

 Copolymerization of two or more monomers is an essential strategy for tuning the physical 

properties of a polymer. The binary copolymerization behavior of two monomers M1 and M2 is 

described by their reactivity ratios r1 and r2, where r1 is the ratio of the rate constants for M1-M1 

homopolymerization divided by M1-M2 crosspolymerization and r2 describes the ratio of the rate 

constants for M2-M2 homopolymerization divided by M2-M1 crosspolymerization. Alternating 

copolymers arise when r1 = r2 = r1 •r2 = 0, indicating a preference for cross-polymerization. This 

behavior is seen for structurally dissimilar monomers, such as the radical copolymerization of 

electron-rich styrene with electron-poor maleic anhydride. Statistical copolymerizations arise when 

r1 and r2 are both close to 1 and is typically only observed with structurally similar monomers.  

Examination of the copolymerization of styrene with fluorous analogs of styrene shine light 

on the consequences of aromaticity to polymerization. Although structurally similar, it has been 

shown that styrene and 2,3,4,5,6-pentafluorostyrene (PFS) copolymerize in an alternating fashion, 
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in contrast to the statistical copolymerization of styrene with p-fluorostyrene.56  Benzene (Tm= 5.4 

°C) and hexafluorobenzene (Tm= 5.0 °C) form a tightly associated 1:1 charge transfer (Lewis 

acidLewis base) complex with an elevated melting temperature, Tm= 23.7 °C.57 

Quadrupolequadrupole interactions of benzene and hexafluorobenzene resulting from the dual 

quadrupole moments (an effect of differing electronegativities within CF and CH bonds) describe 

the mode of complex formation.58 

Reactivity ratios, especially the product of reactivity ratios (r1 •r2),59,60  are generally 

independent from concentration, solvent, and temperature effects of the copolymerization 

reaction.61 Exception to this rule occurs when comonomercomonomer complexation occurs, the 

extent of which is dynamically dependent on solution temperature and/or concentration. 

Calculation of reactivity ratios for styrene and PFS at several copolymerization temperatures show 

that with decreasing temperature r1 •r2  approaches naught (r1 •r2 = 0.17 at 70 °C; 0.048 at 25 

°C).56 Deviations in the reactivity ratios show that charge transfer complex formation between 

styrene and PFS may have some influence on the alternating nature of the comonomers, but the 

copolymerizations is still highly alternating at elevated temperatures.  

It is more likely that the alternating nature is mainly a consequence of frontier molecular 

orbital overlap of electron poor PFS and electron rich styrene. 13C NMR shifts are sensitive to 

resonant and mesomeric effects of groups bound to the ethylenic double bond. It has been shown 

that the 13C NMR shifts of styrenic βcarbons are predictive of reactivity towards radical 

polymerization and follow a linear free energy relationship with both Alfrey–Price Q–e values and 

Hammett’s  constants.62 Charge transfer complex formation does however lead to marked 

increases in the glass transition temperature of alternating copolymers vs. the predicted mole-

averaged glass transition temperatures calculated from homopolymers.56,63 

Copolymerization of BN aromatic vinyl monomers with styrene and its derivatives therefore 

presents an opportunity to qualitatively and quantitatively assess the styrene-like reactivity of the 

organoborane monomer. Copolymerizations with 2-methylstyrene (2MeSt), 2-vinylnaphthalene 
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(2VN), and styrene have been reported. These studies uniformly suggest that BN aromatic vinyl 

monomers have comparable, but somewhat lower, reactivity compared to the analogous 

hydrocarbons. 

1.4.1 BNMeSt and 2-Methylstyrene. Sönnichsen and Staubitz contrasted the 

homopolymerizations of BNMeSt and 2MeSt and also reported the free radical copolymerization of 

2MeSt and PBNMeS.32 2MeSt polymerization proceeded to higher conversion and provided higher 

molecular weight polymer than observed for free radical polymerization of BNMeSt under similar 

reaction conditions (P2MeS, Mn = 46.7 kDa; PBNMeS, Mn = 16.5 kDa). A binary free radical 

copolymerization (1:1 molar ratio of monomers) provided the atactic statistical copolymer P(2MeS-

co-BNMeS) (Mn = 21.8 kDa) which was determined to be enriched in 2MeSt by NMR spectroscopy. 

The authors concluded that the relative rates of 2MeSt and BNMeSt homo- and cross-

polymerization are of comparable magnitude, but 2MeSt is more reactive. Reactivity ratios were 

not reported.  

 The physical properties of the copolymer are intermediate between the parent 

homopolymers. P2MeS is an indefinitely stable white solid, while PBNMeS decomposes in air from 

a white to a brown solid within 72 hours. P(2MeS-co-BNMeS) discolors more slowly than PBNMeS. 

A single copolymer glass transition temperature (Tg), the temperature at which the material 

transforms from a glassy to rubbery state, was observed at 114 C. This single Tg, intermediate 

between the homopolymers (P2MeS, Tg = 132 C; PBNMeS, Tg = 85 C), supported microstructural 

assignment to a statistical copolymer. 

1.4.2  BN2VN and 2-Vinylnaphthalene. In 2017, we described the free radical 

copolymerization of BN2VN and 2VN.35 Gel permeation chromatography (GPC) revealed a unimodal 

distribution of copolymer molecular weights. A bimodal molecular weight distribution would have 

suggested formation of two homopolymers instead of a single copolymer. A suite of NMR 

spectroscopies (1H, 11B, 13C) aided copolymer characterization. A UV-vis spectroscopic assay based 

on the different absorption intensities at 320 nm of the BN naphthalene and naphthalene side 
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chains was developed to quantify BN2VN incorporation. Based on this optical assay, a close 

agreement between monomer feed ratio and copolymer composition was determined. P(BN2VN-

co-2VN) was prepared with between 9.2-74 wt% BN2VN. Copolymer molecular weights (Mn) 

ranged between 6.0-8.4 kDa, with the highest molecular weight copolymers obtained from 

copolymers enriched in 2VN. Our results again suggested that the vinyl borane has comparable, 

but lower, reactivity than the hydrocarbon analog. Further details of P(BN2VN-co-2VN) copolymers 

are described in Chapter 4.  

1.4.3 BN2VN and Styrene. In early 2018, we reported free radical copolymerization of styrene 

and BN2VN. An optical assay based on the selective absorption at 320 nm of the BN naphthalene 

side chain confirmed BN2VN incorporation into the copolymer at levels commensurate with the 

feed ratio.36 Reactivity ratios for BN2VN and styrene were determined from low conversion free 

radical copolymerizations using both traditional linearization methods and modern nonlinear least 

squares statistical analysis (Table 1.3 and Figure 1.2).50 The reactivity ratios (r1(BN2VN) = 0.423 

and r2(St) = 2.30) indicated a statistical copolymerization. Styrene is more reactive than BN2VN 

and at low conversion styrene-enriched copolymers were obtained. These insights enabled control 

over copolymer properties, such as the Tg. The Tg’s of copolymers with between 6.0-84 wt% BN2VN 

varied systematically with BN2VN content. Good agreement between calculated and experimental 

Tg was observed. Further details of P(BN2VN-co-S) copolymers are described in Chapter 5 and the 

determination of reactivity ratios are described in Chapter 7.  

Sneddon reported the radical copolymerization of VB and styrene in 1991.30 The reactivity 

ratios (r1(VB) = 0.078 and r2(St) = 4.02) indicated a greater reactivity mismatch between styrene 

and VB than between styrene and BN2VN. We attribute this reactivity difference to the increased 

aromaticity of BN naphthalene compared to borazine.28,29,50 BN2VN polymers show exciting 

potential as a solution to the challenge of preparing hydroxy-functionalized polyolefins via 

postpolymerization modification. In the following section, we summarize oxidative 

postfunctionalization of PBN2VN-stat-PS yielding statistical styrene-vinyl alcohol copolymers. 



14 

 

 

Table 1.3. Reactivity Ratios for the Copolymerization of BN Aromatic Vinyl Monomers and Styrene. 

M1 r1 M2 r2 Ref. 

VB 0.078 Styrene 4.02 30 

BN2VN 0.423 Styrene 2.30 36 

 

 

 

Figure 1.2. Klausen: Styrene-BN2VN reactivity ratios. a) Mayo-Lewis plot for the statistical 

copolymerization of BN2VN and styrene with AIBN.33 Dashed line represents a random 

copolymerization (r1 = r2 = 1); solid curve is a fit to the experimental data and indicates a statistical 

copolymerization where r1 = 0.423 and r2 = 2.30. FBN2VN = fractional composition of BN2VN in the 

copolymer; fBN2VN = fractional composition of BN2VN in the monomer feed. b) Reactivity ratios of 

statistical copolymerization of BN2VN and styrene with AIBN by Fineman-Ross (FR), Kelen-Tüdös 

(KT) and non-linear least squares (NLLS) analysis. Dashed ellipsoid represents the 95% confidence 

interval of NLLS analysis.33  

 

1.5 Postpolymerization Modification 

Postpolymerization modification is another means to alter the physical and chemical 

properties of polymers. Chemistries performed on polymers differ from that of small molecules due 

to innate dispersities and non-uniform structures. For example, extent of comonomer incorporation 

can be determined from bulk polymer, however differences in incorporation cannot be readily 
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determined macromolecule to macromolecule. Postpolymerization chemistries are used to 

transform one polymer to another commercial polymer, create highly specialized technical 

polymers, as well as also being relevant to the degradation and recycling of waste polymers.  

Hydrophilic poly(vinyl alcohol) (PVA) is transformed from the hydrophobic homopolymer 

poly(vinyl acetate) (PVAc) by hydrolysis. Differing degrees of hydrolysis, due to non-quantitative 

yields, impart a range of materials properties and are separated into two grades, fully (PVA) and 

partially (PVAc/PVA) hydrolyzed. Commercial PVA is produced by the base-catalyzed alcoholysis of 

PVAc in ethanol or methanol. PVA may also be produced by the saponification of PVAc with sodium 

hydroxide in water. 

 Mechanistic studies have shown that the hydrolysis of PVAc is autocatalytic with increased 

rates upon reaction progress.64 The presence of an adjacent hydroxy group enhances the reactivity 

of an acetate group towards alcoholysis or saponification.65 Increasing the hydrophilicity of 

PVAc/PVA polymer increases susceptibility towards hydrolysis. This is a non-trivial consequence of 

the self-aggregation of amphiphilic macromolecules in aqueous solutions, diffusion of reagents into 

aggregates limiting reactivity. The solution phase conformations of PVAc/PVA polymers are 

dependent on degrees of polymerization, hydrolysis, and blockiness of the polymer.66  

Partially hydrolyzed PVAc/PVA have been developed as water soluble packaging for 

detergents, such as the Tide POD.67 PVAc/PVA is accessed from various routes, either incomplete 

hydrolysis (alcoholysis or saponification) of PVAc as described above, or by the reacetylation of 

completely hydrolyzed PVA. Reacetylation to PVAc/PVA is performed by heating PVA with acetic 

acid and water; reduction in water content leads to high degrees of acetylation.65 The polymer 

architecture of PVAc/PVA is dependent on the preparative method used. Reacetylation of PVA 

produces a completely random PVAc/PVA, saponification of PVAc creates PVAc/PVA with a blocky 

sequence distribution, and alcoholysis of PVAc produces PVAc/PVA with an architecture 

intermediate between random and blocky.65,68  



16 

 

Extent of random vs. blocky sequence distribution can be determined spectroscopically.  

Infrared spectroscopy offers a convenient and straight-forward analysis of PVAc/PVA 

architecture.65,69,70 PVAc has a C=O carbonyl stretch at ~1734 cm-1, which remains unchanged in 

blocky PVAc/PVA with low degrees of hydrolysis. Upon transition to a more random sequence 

distribution, the C=O stretch shifts to lower frequency, ~1715 cm-1, due to increased hydrogen 

binding with adjacent hydroxy groups.65,69,70  Conversely, PVA has an OH alcohol stretch at ~3290 

cm-1, which remains unchanged in random PVAc/PVA with high degrees of reacetylation. Upon 

transition to a more blocky sequence distribution, the OH stretch shifts to higher frequency, ~3470 

cm-1.69  

PVA and PVAc can be differentiated by colorimetric assay upon complexation with iodine, 

developing a blue or red-violet color, respectivly.71 In the presence of boric acid and iodine, PVA 

forms a blue-green colored complex.72,73 PVA and iodine have also been used to quantify borate 

concentrations.74 Unfortunately, complexation with iodine only qualitatively detects PVA or PVAc 

content in sufficiently blocky polymers with sufficiently long sequences.68,71 Spectroscopic polymer 

architecture determination is most powerful when combined with thermal analysis of PVAc/PVA 

polymers.68,70 

 Organoboranes are versatile intermediates in synthetic chemistry, serving as precursors to 

alcohols, amines, and other functional groups.26,27 This versatility highlights the potential for boron-

functionalized polymers to serve as a platform to functional materials, but the challenge of 

introducing boron into the polymer limits the scope of relevant polymer architectures. Chung et al. 

functionalized alkenyl side chains in high-vinyl polybutadiene via hydroboration-oxidation,75 while 

Hartwig and Hillmyer demonstrated catalytic C–H activation of poly(ethylethylene) (PEE)76 yielding 

partially hydroxylated polymers (Scheme 1.4). Hillmyer et al. also reported C–H functionalization 

of the commodity polymers linear low-density polyethylene (LLDPE) and polypropylene.77,78  

 Challenges in the vinyl polymerization of trialkylboranes include deactivation of the double 

bond and the oxidative and hydrolytic instability of trialkylboranes. Chung reported Ziegler–Natta 
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polymerization of the monohydroboration products derived from long chain dienes, which were 

converted to polyalcohols by hydroperoxide oxidation.79 A four-carbon or longer spacer was needed 

between the double bond and boron to avoid suppressing reactivity. Vinyl boronic ester 

polymerization has been reported, but polymer sensitivity in air to hydrolysis and cross-linking 

limited characterization.48,49 

 Hydroperoxide oxidation occurs with the reactive perhydroxyl anion, HO2
, formed by the 

deprotonation of hydrogen peroxide (pKa= 11.6) upon mixing with a strong base, such as sodium 

hydroxide. Controlled oxidation is facilitated by high temperatures (≥50 °C) and exclusion of 

transition metals (Fe, Mn, Cu).80 Fenton reagent is hydrogen peroxide with catalytic ferrous iron 

and is a powerful non-selective oxidant by formation of various radical reactive oxygen species 

(ROSs).  Cuprous and cupric copper have also been shown to transform H2O2 into various radical 

ROSs via Fentonlike chemistry.81 

 

 

Scheme 1.4. Borane strategy for polyalcohol synthesis. 
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Nonetheless, the significant commercial interest in the incorporation of a controlled amount 

of a polar functional group into a nonpolar polymer continues to motivate academic and industrial 

research into general strategies for polymer functionalization. Polar functional groups play an 

essential role in modifying a plastic’s strength, toughness, melting point, and solvent 

compatibility.82,83 Examples of commercial polar-nonpolar copolymers include acrylonitrile-

butadiene-styrene (ABS) and ethylene-vinyl acetate (EVA).5,84 Challenges in the direct 

copolymerization of polar and nonpolar monomers are many, but include the incompatibility of a 

Lewis basic functional group with the polymerization catalyst and significant mismatch in reactivity 

ratios.85–87 

Styrene (St) and vinyl acetate (VAc) are an example of a comonomer pair with 

fundamentally incompatible reactivity: St is far more reactive than VAc and no VAc is incorporated 

in a binary copolymerization (r1(St) = 55 and r2(VAc) = 0.01).88,89 The reactivity mismatch between 

VAc and conjugated monomers limits VAc’s utility as a precursor to hydroxy-functionalized 

copolymers, even though poly(vinyl acetate) is a commodity polymer and precursor to poly(vinyl 

alcohol) (PVA) via side chain saponification.90 PVA is a semicrystalline water-soluble polymer, with 

applications as a coating or adhesive.  

The efficient statistical copolymerization of styrene and BN2VN suggested a solution to this 

challenge via oxidative conversion of the C–B bond into a C–O bond. We showed that alkaline 

hydrogen peroxide effected the conversion of PBN2VN-co-PS to PVA-co-PS (Scheme 1.5a). Several 

different copolymers with variable BN2VN content (13-58 wt%) and molecular weight (Mn = 12.8-

39.6 kDa) were investigated. In all cases, complete consumption of the organoborane side chain 

was observed, as monitored by loss of the unique spectroscopic signatures of the BN naphthalene 

chromophore. Overoxidation of the BN naphthalene side chain was identified, resulting in formation 

of indole and boric acid as by-products. A methanol azeotrope removed residual boric acid as 

trimethyl borate. Infrared spectroscopy provided evidence of the characteristic hydroxyl group 

stretching frequency above 3000 cm-1 (Scheme 1.5b).   
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Scheme 1.5. Klausen: Postfunctionalization of BN2VN copolymers. a) Typical reaction conditions 

for oxidation of PBN2VN-co-PS to PVA-co-PS. b) Cropped IR spectra highlighting the disappearance 

of BN2VN (NH) feature and appearance of PVA (OH) features after oxidation. Sample shown is 

P(BN2VN32-co-S92). IR spectra reprinted with permission from reference 36. Copyright 2018 Wiley. 

 

The durability and persistence of plastics in the environment has motivated widespread 

study in the fate of polymeric pollutants and their cradle to grave chemistries, implicit to 

environmental degradation and polymer recyclability.  Biodegradation is the biotic degradation of 

organic material by fungi, bacteria, and archaea. Degradation leads to the formation of structural 

inhomogeneities. Metabolism of biodegradable polymers provides a source of energy and carbon 

for microorganisms. Carbon within the polymer is converted to biomass and ultimately mineralized. 

Aerobic degradation of organic polymers results in the formation of carbon dioxide and water, 

whereas the anaerobic degradation of organic polymers results in the formation of methane, a 

greenhouse gas, and water.  

PVA has been known to biodegrade since the early 1930’s.91 A historic use of PVA has been 

as a paper coating, improving paper strength and resistance to oils and greases.92 Specialized PVA 
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degrading microbiota have been isolated from the sewage sludge of a paper mill wastewater 

treatment plant.93 Oxidase-type extracellular and intercellular enzymatic systems are responsible 

for degradation by random scission of the polymer chain followed by terminal, unzipping 

depolymerization of oligomeric PVA. Degradation of PVA is dependent on the degree of hydrolysis, 

the most hydrophilic polymers (>72% hydrolyzed) show a marked increase in the rate of 

degradation.  

Microbial degradation is facilitated by microbial adhesion to the surface of plastics, however 

the hydrophobicity of many polymers inhibit biofilm formation and adhesion. Experimentally, 

addition of a surfactant (Tween) enhances growth conditions, encouraging biodegadation.94 

Statistical incorporation of polar comonomers into hydrophobic polymers improve hydrophilicity of 

the material. This change in surface adhesion properties encourages the biodegradation of inert 

plastic refuse, especially if the polar segments are susceptible to biodegradation and oxidative 

backbone scission, as seen for PVA. Although polystyrene has recently been found to be susceptible 

to biodegradation, hydrophobicity and high molecular weights inhibit utilization of this substrate as 

a carbon source.95 Statistical styrene-vinyl alcohol (SVA) copolymers have the propensity to retain 

favorable materials properties of polystyrene, while improving the biodegradability of the polymer 

by statistical backbone scission. 

 BN2VN enabled the first synthesis of statistical SVA copolymers. SVA copolymers showed 

tunable variation in physical properties with hydroxy content. Solubility in polar, protic solvents like 

methanol increased with increasing hydroxy concentration. Differential scanning calorimetry (DSC) 

also showed systematic variation in the Tg. While PBN2VN-co-PS had a Tg intermediate between 

PS and PBN2VN, after oxidation, the Tg was intermediate between PS and PVA. Further details on 

the oxidation of P(BN2VN-co-S) copolymers to SVA copolymers are described in Chapter 6.  

 The styrene-like reactivity and versatility of BN2VN suggests a general platform for 

postfunctionalization chemistry. In the following section, we highlight a different application of 

postfunctionalization of BN aromatic side chains. 
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1.6 Stereoregular Polymers and Coordination-Insertion Polymerization 

Transition metal complexes catalyze coordination-insertion polymerization of ethylene, 

propylene and other vinyl monomers, yielding high molecular weight commercial polymers. 

Rational ligand design in well-defined homogeneous catalysts has yielded highly stereoregular 

polymers.96  

Polymer physical properties, including morphology and melting temperature, depend on 

the stereochemical relationships between adjacent repeat units in a polymer chain (Scheme 1.6). 

There are three types of tactic, or stereoregular, polymers: atactic, syndiotactic, and isotactic. If 

the stereochemical configuration of two adjacent repeating units is the same, it is a meso (m) diad, 

while in a racemo (r) diad the configurations are different in the two repeating units. Two adjacent 

racemo diads make a rr triad, two adjacent meso diads make a mm diad, and adjacent meso and 

racemo diads make a mr triad. A perfectly syndiotactic macromolecular chain consists of exclusively 

rr triads, a perfectly isotactic chain consists exclusively of mm triads, and an atactic chain consists 

of a statistical distribution of rr, mm, and mr triads.  

 The synthesis of highly stereoregular polar polyolefins is limited by the challenge of 

identifying coordination polymerization catalysts compatible with polar functional groups.83,85 Open 

coordination sites on the metal interact with carbonyl, amine, and other functional groups, resulting 

in catalyst and/or polymer decomposition. Nonetheless, stereoregular polar polyolefins have 

interesting properties and applications. For example, PVA hydrogels have potential therapeutic 

applications and high molecular weight PVA fibrils exhibit high tensile strength.97–99 Tacticity has a 

profound effect on both these applications as relative stereochemistry influences the extent of 

intra- and intermolecular hydrogen bonding between hydroxy groups.100,101 Synthetic routes to 

sPVA include cationic polymerization of vinyl ethers with bulky protecting groups102–104 or radical 

polymerization of vinyl pivalate,105,106 followed by protecting group cleavage. Syndiotacticties are 

typically modest and cationic polymerizations yield low molecular weight materials. The limited 

substrate scope of cationic polymerization and the poor reactivity of vinyl ester-derived radicals 
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also impose a limitation on the ability to tune PVA’s properties through copolymerization with 

nonpolar monomers. 

 

 

Scheme 1.6. Stereoregular polymers. a) Stereoregular polymer nomenclature. b) Variation in 

physical properties with tacticity. c) Klausen: Synthesis of syndiotactic PBN2VN (sPBN2VN) by 

coordination-insertion polymerization and postpolymerization oxidation to syndiotactic poly(vinyl 

alcohol) (sPVA). Inset is cropped 1H NMR spectra (400 MHz, DMSO-d6) of sPVA and aPVA 

highlighting the diagnostic hydroxy triads. Spectrum reprinted with permission from reference 34.  

 

Dr. Shehani Mendis of our group demonstrated that syndioselective coordination-insertion 

polymerization of BN2VN followed by stereoretentive oxidation provided sPVA by an orthogonal 

mechanism.34 This exciting result is the first example of BN styrene polymerization with a method 

other than radical polymerization.   

Homogeneous monocyclopentadienyl complexes107,108 known to catalyze ethylene and 

syndioselective styrene polymerization upon Lewis acid activation were also effective BN2VN 

polymerization catalysts. BN2VN’s aromaticity, and the dative interaction between neighboring 

elements, reduced the Lewis acidity and basicity of boron and nitrogen respectively, resulting in 

compatibility with the oxophilic Ti catalyst. Additionally, BN2VN’s aromaticity suggested  
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its ability to intercept the mechanism of styrene syndioselective polymerization.109 Indeed, we 

found that Cp*TiMe3 and B(C6F5)3 provided syndiotactic PBN2VN (sPBN2VN) in high yield (Scheme 

1.6c). 1H and 13C NMR studies, as well as thermal properties, suggested a highly stereoregular 

structure. Sodium hydroperoxide oxidation of sPBN2VN yielded sPVA, as confirmed by 1H NMR 

(Scheme 1.6c, inset) and IR spectroscopy. 

1.7 Outlook 

The studies highlighted herein showcase the exciting potential for BN polystyrenes to 

impact both fundamental and applied polymer science. BN aromatic vinyl monomers exhibit 

styrene-like reactivity and versatility in several contexts, including facile radical copolymerization 

with aromatic hydrocarbons and the ability to intercept reaction mechanisms dependent on 

styrene’s aromaticity. The unusual photophysical properties of BN polystyrenes not only point to 

potential sensing applications, but also facilitate quantitative copolymer characterization. New 

directions for BN polystyrenes as intermediates in the preparation of long-sought functional 

copolymers and stereoregular polymers were emphasized. Future work will undoubtedly continue 

to expand the synthetic potential of these materials, including the preparation of other BN aromatic 

isomers (e.g. 1,3- or 1,4-azaborines) and the further development of modern polymerization 

chemistries.  
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Chapter 2:  

BN Anthracenes 

 

 

 

 

 

 

 

 

2.1 Introduction 

  We report the synthesis and characterization of new extended azaborine derivatives 

and the remarkable structural, optical and electronic similarity of these heterocycles to 

anthracene.  

 The unusual stability of some cyclic conjugated organic structures, or aromaticity, is 

a foundational concept in organic chemistry.110 Main group organometallic compounds 

containing Hückel’s rule number of π electrons were first synthesized by Dewar in 1958. 111 

In recent years,112 new synthetic approaches courtesy of Liu,113 Ashe,114 and Molander115,116 

have energized research in the area of BN-heterocycles and both fundamental and applied 

research have expanded in scope. Most recently Liu described the synthesis of BN 

tetracene.117 

 The continued development of these materials depends on predictive structure-

function relationships as theoretical accounts have suggested that not all CC to BN bond 

substitutions are equal.118 In an effort to systematically characterize structure-dependent 

properties, we target a series of extended azaborine derivatives (BN anthracenes) with aryl 
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rings exocyclic to the BN heterocycle (Figure 2.1). We show that the B-aryl anthracenes 

in which the 1,2-positions are substituted with the BN bond have optical and electronic 

properties consistent with delocalization. The observed trends closely parallel anthracene 

itself and point to the remarkable innocence of some CC to BN bond substitutions.  

 

 

 

Figure 2.1. Chemical structures of known (1c) and new (1a-b, 1d-i) BN anthracenes 

synthesized in this work.  
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2.2 B-Aryl Anthracene Synthesis 

  Dewar’s pioneering synthesis of BN naphthalene via borylation of 2-

vinylaniline with trichloroborane (Figure 2.2) inspires recent work on extended azaborine 

derivatives.38 Molander reported the one-pot synthesis of functionalized BN naphthalene  

derivatives by the in situ generation of organodichloroboranes from bench-stable potassium 

organotrifluoroborate salts.115,116 Liu recently reported the first synthesis of BN anthracene 

by adaptation of Dewar’s borylation and reduction sequence (Figure 2.3a).119 The Liu 

synthesis begins with conversion of 2-amino-3-naphthoic acid 2 to iodoarene 3 by a 

Sandmeyer reaction-Curtius rearrangement sequence. The key intermediate 4 is obtained 

after a Suzuki vinylation with potassium vinyltrifluoroborate that proceeds in 65% yield.  

 

 

Figure 2.2. a) Linearly fused extended azaborine derivatives. b) Dewar’s synthesis of BN 

naphthalene. i) BCl3, PhH, 80 °C, 45%; ii) LAH, Et2O, 40%. LAH = lithium aluminium 

hydride. 

 

 Towards the synthesis of our target library of compounds, we applied Molander’s 

one-pot reaction conditions to Liu’s 2-amino-3-vinylnaphthalene intermediate 4 (Figure 

2.3b). We also report a higher yielding synthetic route to key intermediate 4. We subject 

2-amino-3-naphthoic acid 2 to the sequence of a Sandmeyer reaction with cuprous 
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chloride120 and a Curtius rearrangement to yield chloroarene 5. A Suzuki reaction between 

chloroarene 5 and vinylboronic acid MIDA ester120 catalysed by Pd(OAc)2/SPhos proceeds 

in 90% yield. The overall yield of 4 from commercially available 2 is 71%. While compound 

1c was recently reported by Liu et al., the other BN anthracenes in this study are unknown. 

 

Figure 2.3.  Synthesis for BN anthracene starting material. a) Liu synthesis of 4. i) NaNO2, KI, 

HCl, 88%. ii) DPPA, NEt3, H2O, 89%. iii) Pd(dppf)Cl2, NEt3, potassium vinyl trifluoroborate, 65%. 

b) Klausen synthesis of 4. iv) NaNO2, H2SO4; CuCl, HCl, 86%. v) DPPA, NEt3, H2O, 92%. vi) 

vinylboronic acid MIDA ester, SPhos, Pd(OAc)2, K3PO4, 90%. DPPA = diphenylphosphoryl azide; 

MIDA = N-methyliminodiacetic acid; SPhos = 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl. 

 

2.3 Single Crystal X-ray Crystallography 

Single crystals of B-aryl anthracenes were grown from solution at room temperature. Key 

crystallographic parameters for the structures of 1b, 1c, 1d, 1f 1g, 1h, and 1i are 

summarized in Table 1.  

Across the series, the length of the BN bond remains statistically identical at ca. 1.42 Å 

(Table 2.1). This bond length is comparable to the 1.44 Å bond length of borazine 

(B3N3H6).121 It is intermediate between the BN single bond length (1.51 Å) and the BN 

double bond length (1.31 Å).122 Intermediate bond lengths and partial bond order are 
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experimental hallmarks of cyclic delocalization, or aromaticity: the bond lengths in benzene 

are ca. 1.40 Å, intermediate between the carbon-carbon single bond length of ca. 1.54 Å 

and the carbon-carbon double bond length of ca. 1.34 Å. 

 

 

Figure 2.4. BN Anthracene synthesis. a) Liu: 1c. i) PhBCl2, toluene, 110 °C, 65%. b) Klausen 

library: 1a-h. ii) ArBF3K, SiCl4, NEt3, toluene-CPME, 100 C, 19-70%. CPME = cyclopentyl methyl 

ether. 

 

 

Table 2.1. Selected torsion angles and bond distances for 1b, 1c, 1d, 1f, 1g, 1h and 1i. The 

values and esd in Table 2.1 were directly obtained from the experimental cif files. 

Compound Aryl Group ∠N1-B1-C13-C14 (deg)a N1-B1 (Å) 

1b* 4-(CH3)C6H4 -6.6(6), 7.5(5) 1.421(5), 1.418(5) 

1c Ph -5.0(3) 1.426(3) 

1d 4-FC6H4 -5.3(2) 1.423(2) 

1f 4-(CF3)C6H4 5.4(2) 1.4175(18) 

1g 4-(CN)C6H4 5.4(2) 1.419(2) 

1h 4-(NO2)C6H4 -2.7(2) 1.4207(16) 

1i Mesb -84.7(2) 1.418(2) 

a Torsion angle. b Mes = mesityl = 2,4,6-trimethylphenyl. * The two values of the torsion angles 

and bond distances are given for two crystallographically independent molecules. 
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  In all BN anthracenes we have prepared, the crystal packing arrangement is 

herringbone (Figure 2.4a-b), the same arrangement as in anthracene.123,124 That the BN 

anthracenes should have a similar crystal packing structure to anthracene is not obvious. 

Anthracene is a high symmetry hydrocarbon with zero net molecular dipole. Herringbone 

packing maximizes quadrupolar interactions between the positively charged aromatic edges 

and the negatively charged aromatic face. In contrast, the polar BN bond desymmetrizes 

the BN anthracenes and in principle the bond dipole moment could influence molecular 

interactions. That it does not again points to the innocence of a single BN bond substitution 

in the aromatic core. Furthermore, our structures are disordered so that two neighbouring  

 

 

Figure 2.4. Representative crystal packing of BN anthracenes. a) Herringbone packing of B-Ph 

1c. b) Herringbone packing of B-Tol 1b. c) Approximately antiparallel orientation of 1c molecules. 

d) Approximately parallel orientation of 1b molecules. The BN dipole is indicated with a green 

arrow. Displacement ellipsoids are given at 50% probability level. Disorder and hydrogens omitted 

for clarity. Grey = carbon; blue = nitrogen; pink = boron. 
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molecules may be either aligned parallel or antiparallel with respect to the BN bond (Figure 

2.4c-d). That there is no preference between parallel and antiparallel orientations shows 

the minimal influence of the bond dipole moment on the packing structure. 

 

  

Figure 2.5. Displacement ellipsoid plots (50 % probability level) of BN anthracenes at 110(2) K. 

Disorder and hydrogens omitted for clarity. Grey = carbon; blue = nitrogen; pink = boron; green 

= fluorine, red = oxygen. 

 

 In both ours and Liu’s crystal structures of 1c, the absolute value of the torsion 

angle between the exocyclic ring and the extended core is 5°. In fact, all BN anthracene 

structures but 1i show that the exocyclic B-aryl group is co-planar with the anthracene 

framework (Figure 2.5). The absolute values of the torsion angles vary from 2.7 to 7.5° 

(Table 1). In contrast, in the crystal structure of the heterocycle 1i, the mesityl group is 

almost orthogonal to the plane of the BN anthracene (∠ = ca. 85°). The orthogonal mesityl 

group is expected, as steric hindrance between the ortho methyl groups and the anthracene 

core prevents a coplanar arrangement. 

2.4 2-Arylanthracene Syntheses and X-Ray Structures 

  We hypothesized that the exocyclic B-aryl ring is coplanar with the anthracene core 

to stabilize the empty p-orbital on boron. As a control, we synthesized 2-phenylanthracene 
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8a, which has a full octet. We find that Suzuki coupling of commercially available 2-

chloroanthroquinone and an arylboronic acid125 followed by quinone reduction126 yields 2-

arylanthracenes 8a-c (Figure 2.6).  

 The crystal structure of 8a shows a coplanar arrangement (∠C20-C15-C13-C14=-

6.7(4)°) of the anthracene and exocyclic phenyl ring, which does not support the hypothesis 

that coplanarity is a result of a favourable driving force related to the empty boron orbital. 

A herringbone crystal packing structure in which individual molecules are antiparallel is 

observed for compound 8a. This result again highlights the similarity of BN anthracenes to 

aromatic hydrocarbons. 

 

 

 

Figure 2.6. Synthesis of 2-arylanthracenes 8a-c. i) ArB(OH)2, Pd(PPh3)4, K2CO3, toluene, 110 C, 

91-99%; ii) LAH, HCl, THF (repeat twice), 13-40%. LAH = lithium aluminium hydride. Inset shows 

molecular structure of 8a determined by single crystal XRD. Displacement ellipsoid plot (50% 

probability level) of 8a at 110(2) K. Grey = carbon. Disorder and hydrogens omitted for clarity. 

Atoms C14, C13, C15, and C20 are labelled. The torsion angle defined by these carbons is -6.7(4). 
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2.5 Calculated Structure 

  For more insight into the coplanar geometry, we compared the optimized geometry 

of isolated molecules in vacuum to the molecular crystal structures using density functional 

theory calculations (CAM B3LYP/6-311G(d,p)). At this level of theory, all B-aryl anthracenes 

and 2-arylanthracenes were predicted to have a noncoplanar structure with the key torsion 

angle varying between 25 and 40°. Calculations also accurately predict a BN bond length of 

1.42 Å. The difference between the optimized in vacuo structure and the experimentally 

determined crystal structure suggest crystal packing and intermolecular forces drive 

coplanarity. We identify short edge-face contacts between the exocyclic ring face and 

aromatic edges of neighbouring molecules in the crystal packing structure. 

2.6 Absorbance Spectroscopy 

  Solution phase absorbance spectroscopy of BN anthracenes suggests these 

materials can be divided into two classes.  

 In the first class are the coplanar derivatives 1a-g. These materials all have an 

onset of absorbance around 400 nm, corresponding to an optical bandgap of about 3.10 eV 

(Table 2.2, entries 1-7). In the second class are BN anthracene itself and mesityl derivative 

1i (entries 8-9). These two materials are slightly blue-shifted relative to the coplanar 

derivatives with an onset of absorbance at 390 nm (Eg ≈ 3.16 eV). 

 Clearly, the exocyclic ring positively influences the properties of the entire system 

when it achieves a coplanar arrangement. The degree of red-shifting achieved in the BN 

anthracenes is remarkably similar to that observed in the hydrocarbon scaffold as well. We 

find that 2-arylanthracenes 8a-c are also about 10 nm red-shifted relative to anthracene 

itself (entries 10-13) and that the optical band gaps of 8a-c are similar to their BN analogs. 
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Figure 2.7. Absorbance spectroscopy in THF. The extinction coefficient 

ε in M-1 cm-1 is plotted versus wavelength in nanometers. Spectra are 

offset for clarity and hash marks represent 10,000 M-1 cm-1. 

 

 

Table 2.2. Experimental optical properties for compounds 

syntheized in this study.a 

Entry Compound Substituent λonset (nm)b Eg (eV)c 

1 1a 4-MeO 401 3.09 

2 1b 4-Me 400 3.10 

3 1c 4-H 400 3.10 

4 1d 4-F 399 3.10 

5 1e 4-Cl 400 3.10 

6 1f 4-CF3 401 3.09 

7 1g 4-CN 396 3.13 

8 1i Mes 393 3.15 

9 BN Anthracene n/a 392 3.17 

10 8a 4-H 398 3.12 

11 8b 4-Me 399 3.11 

12 8c 4-F 398 3.12 

13 Anthracene n/a 383 3.24 

 

a Spectra recorded in tetrahydrofuran at room temperature. b λonset = 

wavelength of light corresponding to the onset of absorbance. c Eg = 

optical band gap.  
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2.7 Electrochemistry 

 BN anthracene electrochemistry closely parallels anthracene’s electrochemistry. In 

dimethylformamide at room temperature, for BN anthracenes 1a-g, we observe a reversible 

or quasireversible reduction peak at about −2.5 V vs. Fc/Fc+ (Table 2.2, entries 1-7). 

Reversible anthracene reduction (Ep ~ −2.0 V vs. SCE) has been reported in both acetonitrile 

and dimethylformamide;122 under our conditions, anthracene is reduced at -2.46 V vs. 

Fc/Fc+.  

Table 2.3. Electrochemical properties for compounds synthesized in this study.a 

Entry Compound Substituent Ep,a (V)b Ep,c (V)b 

1 1a 4-MeO 0.82 -2.54 

2 1b 4-Me 0.79 -2.54 

3 1c 4-H 0.81 -2.52 

4 1d 4-F 0.91 -2.53 

5 1e 4-Cl 0.74 -2.48 

6 1f 4-CF3 0.85 -2.41 

7 1g 4-CN 0.88 -2.33 

8 1i Mes 0.93 -2.59 

9 BN Anthracene n/a 0.77 -2.53 

10 8a 4-H 0.82 -2.37 

11 8b 4-Me 0.80 -2.39 

12 8c 4-F 0.81 -2.37 

13 Anthracene n/a 0.86 -2.46 

a Data recorded as 3.5 mM solutions in anaerobic, anhydrous dimethylformamide at room 

temperature with tetrabutylammonium hexafluorophosphate ([Bu4NPF6] = 0.1 M) supporting 

electrolyte under argon.  Working electrode = platinum button; counter electrode = platinum wire; 

reference electrode = Ag/Ag+NO3
- in acetonitrile; scan rate = 0.1 V s-1.  b Relative to Fc/Fc+ internal 

standard. Fc = ferrocene; Ep,a  = peak anodic potential; Ep,c = peak cathodic potential. 
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 BN anthracenes 1a-g are irreversibly oxidized at room temperature in 

dimethylformamide (Ep,a ~ 0.8 V vs. Fc/Fc+) and anthracene undergoes rapid oxidative 

decomposition at even cryogenic temperatures.127 The short-lived radical cation 

intermediates are thought to react with solvent, as stable electrochemically generated 

anthracene cations are observed only at very low temperatures and in very nonnucleophilic 

solvents.128 Indeed, we observe additional electrochemically active species in the 

voltammagram on repeated scans of 1a-g. As the nitro group is itself redox active, the 

cyclic voltammagram of compound 1h is complex.   

 

 

Figure 2.8. Potential dependence on BN anthracene electronic properties. Plot of experimentally 

determined peak reduction potential (red squares) and peak oxidation potential (blue diamonds) 

versus σp for BN anthracenes 1a-g. The black lines represent least squares fits to f(x) = a + ρ x. 
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  While the optical spectroscopy of BN anthracenes shows the same onset of 

absorbance regardless of electron-donating or electron-withdrawing substituents (Figure 

2.7), and therefore the same HOMO-LUMO gap, electrochemistry can separately probe the 

HOMO and LUMO energies. We find that the reduction potential becomes less negative with 

increasing electron-withdrawing character in the series 1a-g, reflecting a lower lying LUMO 

level in BN anthracenes with electron-withdrawing substituents. A least-squares fit of the 

Ep,c to the Hammett parameter σp is linear (R2 = 0.89, ρ = -0.22, Figure 8). The small rho 

value suggests a modest overall influence of the substituent on the LUMO energy. 

 The influence of the exocyclic substituent on the peak oxidation potential is less 

clear-cut. A Hammett analysis shows considerable scatter and a least-squares fit of the Ep,a 

to the Hammett parameter σp is not linear (Figure 2.8). Given that these materials have 

the same optical band gap, but a tunable reduction potential, we predicted that the exocyclic 

substituent should have an equal effect on the frontier orbitals, lowering the HOMO by an 

amount equal to the amount by which it lowers the LUMO. Similar results have been 

observed in triazaborine heterocycles.129 That we don’t observe a linear free energy 

relationship between substituent and the peak oxidation potential may reflect the rapid 

decomposition of the BN anthracene radical cation, which results in a broad and unstable 

peak oxidation potential and contributing to the scatter in the Hammett analysis.  

 

2.8 Electronic Structure Calculations  

  To further explore substituent effects absent any decomposition, we turned to DFT 

calculations. As described earlier, ground state geometry optimization of 1a-g (CAM 

B3LYP/6-311G(d,p)) converges on structures in which the exocyclic ring is not coplanar with 

the anthracene core. This level of theory was selected to allow for direct comparison to Liu’s 

calculations on BN anthracene.119  
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 Comparison of the calculated HOMO and LUMO energies of 1c and the orbital 

densities in the optimized geometry (∠= 25°) and using the crystallographic coordinates 

(∠= 7.52°) shows that electronic structure is not strongly conformation dependent. Since 

we are not able to isolate diffraction quality crystals for 1a and 1e, we carried out the 

remaining electronic structure calculations using the calculated geometries. 

 

 

Figure 2.9. Frontier molecular orbital energy dependence on BN anthracene electronic properties. 

Plot of calculated (CAM B3LYP/6-311G(d,p)) LUMO (red squares) and HOMO (blue diamonds) 

energies versus σp for BN anthracenes 1a-g. The black lines represent least squares fits to f(x) = 

a + ρ x. 

 

 We find a linear free energy relationship between both the calculated HOMO and 

LUMO energies and the Hammett parameter σp (Figure 9).  The slope ρ of the two lines are 

similar (HOMO: -0.33; LUMO: -0.48) consistent with an equal magnitude substituent effect. 
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The calculated band gaps across the series are also constant, in agreement with the 

absorbance spectroscopy. 

2.9 Conclusion 

 Our results show that the properties of BN anthracenes closely parallel anthracene 

and its derivatives. Substituents at the equivalent of the 2-positon of anthracene have a 

small but measurable influence on electronic properties, without perturbing bulk structure. 

These conclusions enable predictions about structure-function relationships in azaborine 

derivatives. For example, given that in anthracene peripheral functionalization at the 9,10 

positions is of particular interest for materials applications, our results highlight the 

desirability of more synthetic methods increasing the chemical and structural diversity of 

extended BN materials.   
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Chapter 3:  

Development and Polymerization of BN2VN 

 

 

 

 

 

 

 

 

3.1 Introduction 

Polystyrene (PS) is an essential commodity chemical produced annually on a million-

tonne scale.4 PS derivatives arising from chemical modification of the benzene ring represent 

important materials in their own right, such as polystyrene sulfonate, the ion exchange resin 

Dowex.8 The incorporation of boron into organic materials for functional purposes is an 

active area of synthetic innovation.11,112,130 BN for CC bond substitution (e.g. 1,2-dihydro-

1,2-azaborine (C4H6BN) is a BN analog of benzene) is a particularly attractive approach to 

developing stable organoboranes. A number of 1,2-azaborine-containing conjugated 

polymers and small molecules have been investigated as electronic materials.23,131–134 

Polymerization of vinyl borazine is reported.30 Liu and Jäckle135 and Staubitz136 have reported 

the synthesis and free radical polymerization of azaborine-containing vinyl monomers 

(Scheme 1a). These elegant synthetic studies of BN-polystyrene (PBNS) support the viability 

of achieving azaborine incorporation without heterocycle decomposition. 

  Elucidation of the bulk properties of these exciting polymers requires scalable 

synthetic approaches. While the synthesis of monocyclic 1,2-azaborine derivatives is a 

significant challenge, major progress has been achieved in the last several years.40 Ashe 
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reported the first synthesis of BN-styrene in 2009 via a ring expansion strategy.43 The five-

step synthesis from N-(trimethylsilyl)allylamine proceeds in 5.6% overall yield, however the 

repeated use of toxic and pyrophoric reagents including organostannanes and alkyllithiums 

poses a limitation with respect to scale and atom economy. Liu has reported a protecting 

group free synthetic approach to 1,2-azaborine derivatives, including BN-styrene, featuring 

a ring closing metathesis reaction promoted by Schrock’s catalyst (15% overall yield).44 Liu’s 

synthetic route has been adapted in both Jäkle’s and Staubitz’s syntheses of PBNS.135,136 

The polymerizations are conducted on millimolar scale. 

  The synthesis of bicyclic extended azaborines is considerably more straightforward 

than monocyclic structures. Dewar synthesized BN naphthalene in 1959 by reaction of 2-

aminostyrene with trichloroborane followed by reduction.38,119 Molander has reported a 

convenient one-pot approach to BN naphthalenes via in situ generation of chloroboranes 

from potassium organotrifluoroborate salts.115,137 An attractive feature of Molander’s report 

is the use of cyclopentyl methyl ether (CPME), a green solvent alternative to THF. 138,139 In 

earlier work, we described the synthesis and optoelectronic characterization of BN 

anthracenes using Molander’s conditions.51  

 

3.2 Azaborine Monomer Development 

   We hypothesized that the BN variant of 2-vinylnaphthalene (BN2VN) could serve as 

a readily accessible vinyl monomer. Here we report the two-step synthesis of BN2VN, two 

gram-scale free radical polymerization of this novel monomer, and comparison of the 

properties of azaborine and hydrocarbon polymers (PBN2VN and P2VN), as well as random 

copolymers. 

  The synthesis minimizes the use of toxic reagents and solvents (Scheme 3.1b). 

Commercially available 1 is converted to 2-aminostyrene 2 in 63% yield by water elimination 

under solvent-free conditions.140 Borylation with potassium vinyltrifluoroborate in toluene-

CPME using Molander’s conditions115 yields BN2VN in 88% yield. Purification of 
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intermediates is straightforward: we obtain 2 by distillation directly from the reaction 

medium and BN2VN can be isolated either by column chromatography or sublimation. The 

only stoichiometric by-products in the synthesis are water, halosilanes (e.g. ClSiF3), and 

triethylamine hydrochloride. The yield over two steps is 55%. 

 

 

Scheme 3.1. Vinyl borane monomer strategy. a) Preparation of polystyrene (PS) and BN 

polystyrene (PBNS) from vinyl monomers, R = H or Me. b) Scalable synthesis of BN2VN in 

two steps from commercially available starting material. i) KOH, 180 °C, 63%; ii) potassium 

vinyltrifluoroborate, SiCl4, NEt3, toluene-CPME, 60 °C, 88%. Me = methyl; Et = ethyl; CPME 

= cyclopentyl methyl ether. 

 
 

  The CC to BN bond substitution results in significant changes in the 1H NMR 

spectrum of monomer BN2VN compared with 2VN, particularly with respect to the vinylic 

protons (Figure 3.1). The terminal beta-styryl protons (labelled with diamond (◆) and star 

(★)) shift to lower field (|Δ| = 0.37-0.71 ppm), consistent with electron-withdrawing 

substitution. The alpha-styryl proton shifts to higher field (|Δ| = 0.39 ppm). The N-H proton 

is also apparent at δ 7.91.  
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  BN bond substitution also results in significant changes in chemical environment in 

the aromatic ring. 2VN and BN2VN formally have the same symmetry but the 1H NMR 

spectrum of BN2VN shows six distinct and well-resolved aryl multiplets spanning from 7.0 

to 8.0 ppm while the 2VN spectrum shows 3-4 multiplets within a more condensed range 

(7.4-8.0) due to overlapping signals.  

 

 
Figure 3.1. Comparison of 1H NMR spectra of 2VN and BN2VN in CD2Cl2. Vinylic protons 

are labelled with ■, ◆, and ★ (blue = 2VN; red = BN2VN). 

 
 

3.3 Free Radical Polymerization 

  We next examined the free radical polymerization of BN2VN. With 3 mol% of 2,2′-

azobis(2-methylpropionitrile) (AIBN) as initiator, the BN2VN homopolymer (PBN2VN) was 

isolated in 58% yield after methanol precipitation and drying in a vacuum oven for 36 hours. 

Gel permeation chromatography (GPC) analysis of PBN2VN revealed a low molecular weight 

polymer of moderate dispersity (Mn = 6.0 kDa, Ð = Mw/Mn = 1.43) (Table 3.1, entry 1). 

Higher molecular weight material is obtained under solvent-free conditions (Mn = 8.9 kDa, 

Ð = Mw/Mn = 1.54) (Table 3.1, entry 5).  
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Table 3.1. PBN2VN molecular weight characteristics. Influence of initiator concentration, 

temperature, and solvent. 

Entry 
AIBN 

(mol%) 
Time 
(h) 

Temperature 
(°C) 

Monomer 
Conc. (M) 

Mn 

(kDa)a Đ a 

1 3 24 70 3.33 6.0 1.43 

2 3 48 70 3.33 4.6 1.26 

3 1 24 70 3.33 5.6 1.25 

4 1 48 70 3.33 5.5 1.24 

5 1 72 85 n/a 8.9 1.54 

a Measured by gel permeation chromatography (GPC) at 254 nm relative to polystyrene standard 

(THF, 0.35 mL min-1, 40 °C).  

 

  Under the same reaction conditions as BN2VN, the hydrocarbon monomer 2VN 

yields a polymer of similar, although slightly higher, molecular weight and dispersity. This 

is in contrast to Liu and Jäkle who found significant differences in reactivity between B-vinyl 

and C-vinyl monomers with only C-vinyl monomers yielding high molecular weight 

polymers.135 No background auto-polymerization was observed: heating BN2VN to 60-100 

°C in the absence of AIBN, either neat or with toluene, did not lead to polymer formation 

(Table 3.2). 

 

Table 3.2. Absence of thermal auto-polymerization upon heating BN2VN without radical initiator. 

Entry Solvent Temperature (°C) Time (h) Polymer Formeda 

1 Neat 60 24 No 

2 Tolueneb 60 24 No 

3 Neat 70 24 No 

4 Tolueneb 70 24 No 

5 Neat 100 24 No 

6 Tolueneb 100 24 No 

a Measured by gel permeation chromatography (GPC) at 254 nm relative to polystyrene standard 

(THF, 0.35 mL min-1, 40 °C). If no product of molecular weight higher than that of BN2VN was 
detected, polymer was determined to not be formed.  b [BN2VN]= 6.6 M.  
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 Our synthetic approach enables the first multigram synthesis of an azaborine-

derived polymer (Scheme 3.2a). Free radical polymerization according to the standard 

conditions provides PBN2VN in 74% yield. After precipitation from methanol and drying in 

a vacuum oven for 36 hours, we obtain more than two grams of PBN2VN (Mn = 3890 Da, 

Ð = Mw/Mn = 1.84) as a pale yellow, free-flowing powder (Scheme 3.2b). 

 

 

Scheme 3.2. PBN2VN. a) Multi-gram scale polymerization of BN2VN. b) PBN2VN is a pale 

yellow powder. AIBN = 2,2′-azobis(2-methylpropionitrile).  

 

 

3.4 Conclusion 

  In summary, we describe a high-yielding and efficient synthesis of BN 2-

vinylnaphthalene that enables the study of vinyl azaborine polymer properties. We report 

the preparation of homopolymers of BN2VN, including large-scale multigram polymerization. 

The scalable synthesis will enable studies on the materials properties and applications of 

azaborine polymers. 

 

  



45 

 

Chapter 4:  

Copolymers of BN2VN and 2-Vinylnaphthalene 

 

 

 

 

 

 

 

 

4.1 Introduction 

  Encouraged by results suggesting that 2VN and BN2VN have comparable reactivity 

in free radical polymerization, statistical co-polymers were targeted by varying the feed ratio 

of BN2VN and 2VN (Scheme 4.1). The molecular weight of the isolated copolymers 

increases modestly with higher 2VN content in the feed ratio, consistent with slightly greater 

2VN reactivity (Table 4.1 and Figure 4.1d). 

 

 

Scheme 4.1. Free radical co-polymerization of BN2VN and 2VN. AIBN = 2,2′-azobis(2-

methylpropionitrile). 
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4.2 Determination of Copolymer Composition 

 We quantify % BN2VN incorporation with a spectroscopic assay. UV-vis absorbance 

spectra are shown in Figure 4.2. The onsets of absorbance in BN2VN and 2VN are similar, 

but the intensities of individual transitions vary significantly (Figure 4.2a), with BN2VN 

absorbing more strongly at 326 nm than 2VN. The same trend is observed in the 

homopolymers and at 320 nm, PBN2VN absorbance is much stronger than P2VN absorbance 

(Figure 4.2b). The spectra of both homopolymers are slightly blue-shifted relative to 

monomers, consistent with a decrease in conjugation occurring as the vinyl group is 

polymerized.  

 

Table 4.1. Optical and molecular weight properties of polymers and co-polymers. 

Entry Sample Namea Feed Ratio 

BN2VN:2VN 
ε320

b 
BN2VN Conc. 

(wt%)c Mn(kDa)d Đd 

1 PBN2VN 100:0 30.7 100% 6.0 1.43 

2 P(BN2VN74-co-2VN26) 80:20 23.4 74% 6.5 1.34 

3 P(BN2VN49-co-2VN51) 50:50 16.6 49% 6.2 1.48 

4 P(BN2VN9-co-2VN91) 20:80 5.38 9.2% 7.1 1.54 

5 P2VN 0:100 2.86 0% 8.4 1.68 

6 PBN2VNe 100:0 n.d. 100% 8.9 1.54 

a Samples named according to copolymer composition determined by UV-vis spectroscopy. b 

Extinction coefficient at 320 nm (ε320) in L g-1 cm-1. c Determined by UV-vis spectroscopy using 

Equation 3.1. d Measured by gel permeation chromatography (GPC) at 254 nm relative to 

polystyrene standard (THF, 0.35 mL min-1, 40 °C).  e Polymerization conditions: solvent-free, 85 

°C, 1 mol% AIBN, 72 h. n.d. = not determined. 
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Figure 4.1. Absorbance spectroscopy in THF. a) UV-vis absorption spectra of BN2VN and 

2VN. b) UV-vis absorption spectra of P(BN2VN9-co-2VN91), P(BN2VN49-co-2VN51), and 

P(BN2VN74-co-2VN26). c) GPC traces of homo- and co-polymers detected at 254 nm. 

Increasing BN content indicated with black arrow; P2VN, P(BN2VN9-co-2VN91), P(BN2VN49-

co-2VN51), P(BN2VN74-co-2VN26), and PBN2VN. d) UV-vis absorption spectra of PBN2VN, 

P2VN, and blends with absorption at 320 nm indicated. e) Calibration curve for 

compositional analysis of P(BN2VN-co-2VN). Plot of weight fraction of PBN2VN in binary 

PBN2VN:P2VN blends versus absorption at 320 nm. Linear fit to data yields equation 4.1.  
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  We exploit the differential light absorption at 320 nm to construct a calibration curve 

for BN2VN incorporation (Figure 4.1d-e).141 A plot of extinction coefficient at 320 nm 

versus the weight fraction of PBN2VN in different mixtures of the homopolymers yields a 

straight line. A linear regression analysis of the data provides Equation 4.1, in which X = 

the weight fraction of BN2VN. Using copolymer absorption at 320 nm and Equation 4.1, 

we calculate the % BN2VN incorporation. Table 4.1 summarizes the feed ratio of the 

random co-polymers, measured % incorporation, and co-polymer molecular weight 

characteristics. The close agreement of feed ratio and % BN2VN incorporation further 

supports the observation that 2VN and BN2VN have comparable reactivity in free radical 

polymerization. Elemental analysis of homopolymers and copolymers are consistent with 

the weight percent incorporation of 2BNVN estimated by UV-vis absorbance spectroscopy. 

𝜀 = (27.8)𝑋 + 2.81                    (Equation 4.1) 

4.3 Structural Characterization of Copolymers 

  The 1H NMR spectrum of the PBN2VN homopolymer shows the disappearance of 

vinylic protons and the development of aliphatic peaks in the 0.5-3.0 ppm region (Figure 

4.2), consistent with vinyl polymerization. A broad multiplet is observed in the aromatic 

region as well (6.0-8.0 ppm). The signals in P2VN are significantly sharper than observed 

in PBN2VN. We attribute the peak width to the polarizing effect of BN bond substitution: as 

the 1H NMR spectrum of monomer BN2VN has more signals than the 1H NMR spectrum of 

monomer 2VN despite similar symmetry, the overlap of these signals is expected to result 

in a broader aromatic massif in the PBN2VN homopolymer. Five features can be identified 

in the PBN2VN aromatic massif, which we attribute to the five aromatic C-H signals. The 

NH broad singlet is not identifiable. Copolymers with higher % BN2VN incorporation have 

fewer distinct features, reflecting the greater number of isomeric states and stereochemical 

configurations. 
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Figure 4.2. Comparison of 1H NMR spectra of (top to bottom) P2VN, P(BN2VN9-co-2VN91), 

P(BN2VN49-co-P2VN51), P(BN2VN74-co-2VN26), and PBN2VN in CD2Cl2. Peaks labelled with 

an asterisk correspond to residual CH2Cl2. Peaks labelled with a diamond correspond to 

residual methanol and are observed in P2VN and P(BN2VN9-co-2VN91).  

 

  11B NMR spectroscopy provides further insight into PBN2VN structure. BN2VN has a 

single sharp peak at δ 32.4, while homopolymer PBN2VN has a broad singlet with a midpoint 

at δ 32.8. The 11B NMR chemical shifts reported by Liu and Jäkle for PBNS (δ 40)135 and 

Staubitz for P(4-ABS) (δ 44)136 are more deshielded than the naphthyl polymer and show a 

greater difference between B-vinyl monomer and B-alkyl polymer (Δ 8-12 ppm). The modest 

change in chemical shift upon polymerization could reflect an intrinsic difference between 

the systems, as molecular BN naphthalene materials show a small difference (Δ <5 ppm) 

in 11B NMR chemical shift when comparing B-vinyl and B-alkyl substituents (see B-(E)-

propene, δ 33.0 verses B-methyl, δ 37.7).115,116 The downfield shift may also be attenuated 

by shielding from neighbouring aromatic groups.142 The broad signal is present in all co-

polymer 11B NMR spectra, but diminishes in intensity relative to the background signal 
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arising from boron in probe components as the %BN2VN incorporation decreases (see 

Figure 4.3).  

 

Figure 4.3. Comparison of background subtracted 11B NMR spectra of (top to bottom) 

PBN2VN, P(BN2VN74-co-2VN26), P(BN2VN49-co-2VN51), P(BN2VN9-co-P2VN91), and P2VN in 

CD2Cl2. 

 

 

4.4 Conclusion 

  In summary, we describe a high-yielding and efficient synthesis of BN 2-

vinylnaphthalene that enables the study of vinyl azaborine polymer properties. We report 

the preparation of copolymers of BN2VN and 2VN, as well as quantitative characterization 

of BN2VN incorporation via absorbance spectroscopy and elemental analysis. Structural 

characterization my NMR is reported.  
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Chapter 5:  

Copolymers of BN2VN and Styrene 

 

 

 

 

 

 

 

 

5.1 Introduction 

Polymerization of azaborine vinyl monomers is promising given their increased stability 

relative to other boranes.43,44 Building on Sneddon’s description of the polymerization of vinyl 

borazine,30 several groups have recently reported free radical polymerization of azaborine vinyl 

monomers.135,136,143 This complements progress on inorganic main chain BN polymers and 

azaborine-derived conjugated polymers.18,19,133,134,144,145 We described the synthesis and gram-scale 

free radical polymerization of BN 2-vinylnaphthalene (BN2VN), as well as the preparation of 

copolymers with 2-vinylnaphthalene (2VN).143  

BN2VN-styrene copolymers are attractive candidates for investigating the vinylborane 

copolymerization with commercially ubiquitous styrene due to the scalable monomer 

synthesis.51,143,146 We prepare BN2VN in high overall yield and in two steps from commercially 

available starting materials. The multistep syntheses of monocyclic azaborine vinyl monomers limit 

polymerizations to milligram scale.135,136 The successful copolymerization of BN2VN and 2VN 

suggests the feasibility of copolymerization of styrene and BN2VN (PBN2VN-co-PS). 
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5.2 Theoretical Considerations for Monomer Coreactivity 

 

 

Figure 5.1. Aromatic vinyl borane monomers. a) Chemical structures of St, BNSt, and BN2VN with 

atom and ring numbering indicated. BN naphthalene numbering adapted from Dewar and Liu.147,148 

b) Geometry optimized structures (CAM-B3LYP/6-311G(d,p)). Top down and side on views highlight 

planarity.  

 

 

5.2.1 Molecular Geometries. Calculations on BN2VN reveal structural signatures of aromaticity 

including ring planarity and bond lengths intermediate between single and double bonds. 

Geometries were optimized using the restricted or unrestricted CAM-B3LYP149 hybrid exchange-

correlation functional with the 6-311G(d,p) basis set. CAM-B3LYP is known to reliably describe 

radicals and extended conjugated systems.150,151 Geometry optimization of St and BN styrene 

(BNSt) as control structures was performed at the same level of theory. 

All three geometry optimized structures are planar, as seen in top down and side on views 

(Figure 5.1). In BN2VN, the sum of the bond angles within both the A and B rings of BN2VN is 

720° and the average bond angle is 120° (Table 5.1). The same is observed in St and BNSt. The 

BN rings have a wider range of bond angles than the all carbon systems, reflecting the lower 

aromaticity of BN benzene (1,2-azaborine) analogs. 
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Table 5.1. Range of endocyclic bond angles (deg) in St, BNSt, and BN2VN. From geometry 

optimized structures.  

 St BNSt BN2VN 

Minimum 118.1 114.0 114.7 (A ring) 
118.6 (B ring) 

Maximum 121.2 123.9 125.0 (A ring) 

121.4 (B ring) 

Average 120.0 120.0 

 

120.0 (A ring) 

120.0 (B ring) 

Sum of Ring 

Bond Angles 

720.0 720.0 720.0 (A ring) 

720.0 (B ring) 

 

Optimized bond lengths are shown in Table 2. The BN bond in BN2VN is 1.422 Å. This 

value is consistent with the calculated BN bond length in BNSt (1.434 Å), 1,2-azaborine (1.438 Å)28 

and other previous theoretical work.152,153 The calculated BN bond length in BN2VN and BNSt is 

intermediate between BN single (1.582 Å)154 and double bonds (1.396 Å).130,155,156 The CC bonds 

are also intermediate between single and double bonds in length. A wider range of bond lengths 

is observed in BN aromatic rings than in all carbon rings. 

 

Table 5.2. Selected bond lengths (Å) in St, BNSt, and BN2VN. From geometry optimized 

structures. See Figure 5.1 for atom numbering.  

St BNSt BN2VN 

Bond Length (Å) Bond Length (Å) Bond Length (Å) 

C(1)–C(2) 1.395 B–N 1.434 B–N 1.422 

C(2)–C(3) 1.397 B–C(3) 1.516 B–C(3) 1.530 

C(3)–C(4) 1.384 C(3)–C(4) 1.363 C(3)–C(4) 1.350 

C(4)–C(5) 1.390 C(4)–C(5) 1.424 C(4)–C(10) 1.442 

C(5)–C(6) 1.386 C(5)–C(6) 1.356 C(10)–C(9) 1.408 

C(6)–C(1) 1.387 C(6)–N 1.363 C(9)–N 1.380 

C(α)–C(β) 1.328 C(α)–C(β) 1.331 C(α)–C(β) 1.331 

 

The C(α)–C(β) bond lengths in BNSt and BN2VN are both predicted to be 1.331 Å long, on 

par with a typical C–C double bond (1.34 Å). Vinyl bond lengths between 1.317–1.326 Å are 
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reported in crystal structures of related neutral B–vinyl compounds, supporting the validity of the 

predicted bond lengths.157,158  

Crystal structures of the vinyl monomers are not available to confirm the predicted bond 

lengths. BNSt is a volatile liquid. While we successfully grew large colorless plate-like crystals of 

BN2VN, diffraction was surprisingly poor as crystals barely diffracted beyond 1 Å (using both Mo 

and Cu Kalpha radiation).  Several attempts to collect data at different temperatures (110, 200 and 

293 K) were carried out, but all lead to poor quality diffraction patterns.  Strong decay of intensities 

at higher resolution may be explained by poor long-range order in the crystal.  

 

5.2.2 NICS Calculations. Nucleus independent chemical shift (NICS) calculations159,160 are 

routinely used as a magnetic index of local aromaticity. NICS values give a quantitative correlation 

of aromaticity by computing magnetic shielding or deshielding of a ghost atom (Bq) at ring centers 

or any location of interest. The location of Bq influences the magnitude of the shielding or 

deshielding effect arising from ring current. Significantly negative NICS values denote aromaticity 

and diatropic ring currents, while significantly positive NICS values denote antiaromaticity and 

paratropic ring currents. NICS values close to 0 indicate a non-aromatic structure. 

NICS values for BN2VN and several control structures were calculated as the negative value 

of the nuclear magnetic shielding computed at the geometric center of a ring (NICS(0)), by the 

gauge-independent atomic orbital (GIAO) method (Table 1.3).161–165 St exhibits the largest negative 

NICS values, while vinyl borazine (VB) has the least negative NICS values. BNSt and BN2VN, in 

which only one CC bond is substituted with a BN bond, are intermediate between these structures. 

The A-ring of BN2VN is less aromatic than the B-ring, but comparable to BNSt. Our results are 

consistent with prior computational work showing decreasing aromaticity with increasing BN 

substitution.28,153,166–169 Borazine (B3N3H6)’s weak aromaticity is attributed to the greater polarity of 

the BN bond compared to the CC bond, which localizes electron density on the more electronegative 

N atom.121,170 
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Table 5.3. Electrostatic potential (ESP) maps and NICS comparisons (ppm) of vinyl monomers.  

-10 kcal mol-1 (red) to 70 kcal mol-1 (blue).  

 

 

Electrostatic potential (ESP) maps support our conclusions about relative aromaticity. The 

poor delocalization of electrons in VB is readily apparent from its ESP map: electron density is 

highly localized to the electronegative nitrogen atoms. BN2VN exhibits the characteristic 

polarization of aromatic compounds, with an electron deficient C–H edge and electron-rich surface 

above the plane of the ring. Electron-density is less uniformly distributed above the  face in BNSt 

and BN2VN than in St. 

5.2.3 Bond Dissociation Energies. Relative trends in hydrocarbon C–H bond dissociation 

energies correlate with radical stability.171 The weakest C–H bond in toluene accurately predicts 
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that the most stable radical is formed at the benzylic position (Figure 5.2a).172 We investigated if 

BN aromatic rings exert a similar influence on bond dissociation energies as phenyl rings. 

We selected BN 2-ethylnaphthalene (BN2EtN) as a model system. Ethylbenzene (EtB) and 

BN 2-ethylbenzene (BNEtB) are included for comparison. Vibrational frequencies of fully geometry 

optimized closed-shell and radical structures were computed using the CAM-B3LYP functional with 

the 6-311G(d,p) basis set. From these data, theoretical gas phase bond dissociation enthalpies 

(BDEs, ΔrxnH298) were calculated at 298.15 K from homolytic cleavage of various C–H and N–H 

bonds from enthalpy corrected energies (Figure 5.2a).173,174 

 

 

Figure 5.2. Reactive radical computations. a) BDE calculation, shown for the homolytic abstraction 

of a benzylic hydrogen atom from toluene. Energies used are the “Sum of electronic and thermal 

enthalpies” terms from vibrational frequency job outputs. b) Calculated BDEs for each indicated C–

H or N–H bond for ethylbenzene (EtB), BN ethylbenzene (BNEtB), and BN 2-ethylnaphthalene 

(BN2EtN) (CAM-B3LYP/6-311G(d,p)). 

 

The calculated C–H BDEs of BN2EtN follow the trends consistent with our intuitive 

understanding of radical stabilization effects in hydrocarbons (Figure 5.2b).  The C(α)–H bond 

has the lowest BDE (87.3 kcal mol-1), followed by the C(β)–H bond (96.6 kcal mol-1). The aryl C–H 

bonds are significantly stronger (106–111 kcal mol-1) than alkyl C–H bonds, as is the N–H bond 

(109 kcal mol-1). Qualitatively similar trends are observed with EtB and BNEtB where the BDE 

decreases in the order α < β < aryl (Figure 5.2b).  
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Carbon-centered alkyl radicals such as the α-cyanoisopropyl radical derived from AIBN or 

benzylic radicals arising from toluene (PhCH2•) exclusively add to the tail position of styrene.175 The 

calculated BDE’s suggest that there is no energetic reason to expect an increase in head-addition 

or aromatic substitution with BN2VN.  

 

5.3 BN2VN and Styrene Copolymerization 

We investigated the free radical copolymerization of BN2VN and styrene with a focus on 

quantifying the incorporation of BN2VN. Polymerizations were conducted with azoisobutyrylnitrile 

(AIBN, 1 mol%) in toluene or in neat styrene (Table 5.1). Copolymerizations were conducted with 

feed ratios of 60 wt. %, 33 wt. %, or 14 wt. % BN2VN.  

All polymerizations proceeded to >75% conversion. The use of toluene resulted in 

polymers of moderate molecular weight and dispersity (12.8-14.6 kDa, Đ = 1.72-1.88; Table 5.4). 

Similar results are obtained in a control reaction with styrene alone (PS129). Gel permeation 

chromatography (GPC) curves of the polymers are unimodal, consistent with formation of a single 

copolymer instead of two homopolymers (Figure 5.3). 

 

 

Scheme 5.1. Free radical co-polymerization of BN2VN and styrene (St). AIBN = 2,2′-

azobis(2-methylpropionitrile). 

 

Neat reaction conditions provided high molecular weight polymers with high molecular 

weight distributions (32.6-39.6 kDa, Đ = 4.23-5.40, Table 1). GPC curves show a shoulder at high 

molecular weight that contributes to the high dispersity (Figure 5.3b, shoulder indicated with a 
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black arrow). Homopolymerization of each monomer is unlikely as the shoulder is also observed in 

the PS control reaction. Additionally, the molecular weight distribution is unchanged when the 

absorbance wavelength is changed from 254 nm to 310 nm. Since PS is transparent at 310 nm, if 

two homopolymers were present, only one peak should be observed at 310 nm. Instead, we 

suggest that the shoulder is a consequence of the gel effect in which at high molecular weight, the 

slow diffusion of the viscous polymer results in accelerated chain growth.61 

 

 
Figure 5.3. GPC curves of copolymers. a) Polymerization in toluene. Labels refer to the wt. % of 

BN2VN. b) Polymerization in neat styrene. Arrow indicates a high molecular weight shoulder.  

 

 
Table 5.4. Optical and molecular weight properties of PBN2VN-co-PS and PS. 

Entry Sample Namea Feed Ratio 

wt.% BN2VN 
ε320

b 
Experimental  

wt.% BN2VNc 
Mn(kDa)d Đd 

1 P(BN2VN48-co-S51) e 60 16.8 58 12.8 1.72 

2 P(BN2VN32-co-S92) e 33 9.74 34 14.5 1.75 

3 P(BN2VN14-co-S119) e 14 4.50 15 14.6 1.78 

4 PS129
 e 0 n.d. n.d. 13.5 1.88 

5 P(BN2VN127-co-S141) f 60 16.4 57 34.4 4.23 

6 P(BN2VN87-co-S236) f 33 10.2 35 38.1 4.91 

7 P(BN2VN32-co-S332) f 14 3.79 13 39.6 5.40 

8 PS313
 f 0 n.d. n.d. 32.6 5.03 

a Samples named according to copolymer composition determined by UV-vis spectroscopy. b 

Extinction coefficient at 320 nm (ε320) in L g-1 cm-1. c Determined by UV-vis spectroscopy using 

Equation 5.1. d Measured by gel permeation chromatography (GPC) at 254 nm relative to 

polystyrene standard (THF, 0.35 mL min-1, 40 °C). e Polymerization conditions: AIBN (1 mol%), 

toluene ([monomers]=10 M). f Polymerization conditions: AIBN (1 mol%), neat.  
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5.4 Determination of Copolymer Composition 

In our prior work on BN2VN-2VN copolymerization, we described a UV-vis absorbance 

spectroscopy assay for BN2VN incorporation based on the differential absorption of naphthalene 

and BN-naphthalene at 320 nm.143 A similar calibration curve was constructed for BN2VN and 

styrene (Figure 5.4b). A plot of extinction coefficient at 320 nm (ε320) versus the wt. % PBN2VN 

in binary mixtures of the homopolymers yields a straight line. A linear regression analysis of the 

data yields eq. 1 in which X = the weight percent of BN2VN incorporation. Using the experimentally 

determined copolymer ε320  and eq. 5.1, the PBN2VN-co-PS samples were analysed for wt.% BN2VN 

incorporation. The experimentally determined incorporation closely matched the feed ratio (Table 

5.4). Elemental analysis is consistent as well. 

 

ε320 = 28.2𝑋 + 0.208            (Eq. 5.1) 

 

 

 

Figure 5.4. P(BN2VN-co-S) composition calibration. a) UV-Vis spectra of PBN2VN and PS 

homopolymers and blends. b) Calibration curve for BN2VN and styrene for determination of wt. % 

PBN2VN from extinction coefficient at 320 nm (ε320).  
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5.5 Conclusion 

  Computational characterization of BN2VN aromaticity, including both structural 

parameters and NICS values give support for BN2VN and styrene coreactivity with radical 

copolymerization. The BN naphthalene side chain influences radical stabilities in a manner 

similar to the phenyl side chain in styrene We report the preparation of BN2VN and styrene 

copolymers, as well as quantitative characterization of BN2VN incorporation via absorbance 

spectroscopy and elemental analysis. 
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Chapter 6:  

A BN Aromatic Ring Strategy for Tunable Hydroxy Content in Polystyrene 

 

 

 

 

 

 

 

 

6.1 Introduction 

The incorporation of polar functional groups into nonpolar polymers is an essential strategy 

for modifying the strength, toughness, and solvent resistance of a polymeric material.82,83,176,177 

Industrial examples include acrylonitrile-butadiene-styrene (ABS) and ethylene-vinyl acetate 

(EVA).5,84 Challenges in the copolymerization of nonpolar and polar monomers include phase 

separation,178 significant differences in reactivity (reactivity ratios),61,179 and the limited 

compatibility of polar functional groups with polymerization catalysts.83,85–87  

 

6.2 Oxidative Strategy 

Here we describe a synthetic strategy that converts a nonpolar BN aromatic group into a 

polar hydroxy substituent. This strategy ensures comonomer miscibility and compatible reactivity, 

while caging the potent reactivity of organoboranes within in a stable aromatic core, and accesses 

structures that are a challenge for existing technology. Our solution is based on the unique 

properties of 1,2-azaborines, aromatic rings in which one CC bond is replaced with the BN 

bond.112,113,133 Recognizing the versatility of organoboranes in synthesis,180,181 we hypothesized that 

sodium hydroperoxide (NaOOH) oxidation182 of a vinylborane polymer would yield derivatives of 

water-soluble poly(vinyl alcohol) (PVA) (Scheme 1). However, concerns about the hydrolytic and 
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oxidative stability of boron reagents, as well as the propensity of vinyl boronic acids to undergo 

protodeboronation,183 have contributed to limited investigation of vinyl boronate polymerization.49  

BN2VN polymers are attractive candidates for investigating the proposed borapolyolefin 

oxidation due to the scalable monomer synthesis.51,143,146 Oxidative cleavage of the C-B bonds in 

PBN2VN-co-PS yields PVA-co-PS, a copolymer of nonpolar styrene and polar vinyl alcohol, in which 

the hydroxy content is tuned by the BN2VN content in the starting copolymer. The styrene-vinyl 

alcohol (SVA) statistical copolymer is not directly accessible from free radical copolymerization of 

styrene and vinyl acetate; styrene-enriched polymer is obtained due to the reactivity of the styrene 

radical relative to the vinyl acetate radical.89 

 

 

Scheme 6.1. Preparation of PVA derivatives via organoborane oxidation. St = styrene; BN2VN = 

BN 2-vinylnaphthalene; PVA = poly(vinyl alcohol). 

 

6.3 Model Oxidation 

The proposed oxidation was probed with model compound 1 (Figure 6.1). Upon 

treatment with NaOOH, complete conversion of 1 to two products of was observed within 10 

minutes at 0 °C. 1H NMR spectroscopic analysis of the unpurified reaction mixture and comparison 

to authentic samples supports the assignment of these products as indole 2 and phenethyl alcohol 

3 (Figure 6.1). Indole is suggested to arise from oxidation of both C-B bonds of 1 to an intermediate 
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enol that tautomerizes and cyclizes. Liu et al. recently described oxidative functionalization of the 

exocyclic C-B bond of azaborines in which the alkyl fragment dimerizes.184 

 

 

Figure 6.1. 1H NMR analysis of NaOOH-mediated oxidation of compound 1 (CD2Cl2). Top to 

bottom: Phenethyl alcohol (3), indole (2), unpurified reaction mixture, 1. a) Aromatic region. b) 

Aliphatic region. 
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6.4 BN2VN-Styrene Copolymer Oxidation 

NaOOH oxidation of PBN2VN-co-PS copolymers was conducted. Data for P(BN2VN32-co-

S92) are described here as a representative example (see published supplementary information for 

other copolymers). Reaction progress is monitored by GPC analysis at 310 nm. The loss of 

absorption at 310 nm before and after oxidation (Figure 6.2c) is consistent with cleavage of the 

BN2VN chromophore from the polymer. Extended reaction times and heating (15 h/65 °C) are 

required to observe >90% loss of signal at 310 nm. The need for forcing conditions is attributed 

to in situ cross-linking of the polymer with boric acid formed from oxidation of the azaborine (indole 

is also observed in crude reaction mixtures). During isolation, a methanol azeotrope removes boric 

acid as trimethyl borate. 

Comparing GPC traces of oxidized P(BN2VN32-co-S92) measured by optical response at 310 

nm versus refractive index (RI) provides compelling evidence that the polymer chains are intact. 

While no absorbance at 310 nm is observed after oxidation (Figure 6.2c), the RI data show a 

unimodal distribution and a modest decrease in molecular weight consistent with loss of the large 

BN naphthalene group (Figure 6.2d). Control reactions with PS129 and PS313 do not show a 

decrease in molecular weight. If unselective oxidation leading to backbone fragmentation were 

 

 

Figure 6.2. GPC curves of copolymers. a) Response by absorbance at 310 nm. GPC curves of 

PBN2VN32-co-PS92 before (solid) and after (dashed) NaOOH treatment. b) Response by refractive 

index. GPC curves of PBN2VN32-co-PS92 before (solid) and after (dashed) NaOOH treatment.
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occurring, the GPC traces of the borapolyolefins and PS samples would no longer be unimodal. The 

intact macromolecular backbone is consistent with prior work by Chung and others on 

functionalization of polyethylene and polypropylene by hydroboration-oxidation of vinyl end 

groups82,185 or internal unsaturation arising from copolymerization with dienes.186–188 Table 1 

summarizes the molecular weight characteristics of all polymers in this study before and after 

oxidation. Polymer fractionation during reisolation may be occurring, as the polymers exhibiting a 

high molecular weight shoulder (Figure 6.2c) show a narrower and more unimodal dispersity after 

reisolation. 

 

 

 

Figure 6.3. a) FTIR spectrum of P(BN2VN32-co-S92). b) FTIR spectrum of oxidized P(BN2VN32-co-

S92). c) 1H NMR spectra of P(BN2VN32-co-S92) before (bottom) and after (top) NaOOH treatment. 

The dashed box (left) highlights changes in the aromatic region. The dashed box (right) highlights 

the appearance of new signals at higher field after oxidation. 
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Infrared (IR) spectroscopy of the oxidized copolymers is consistent with a PVA-co-PS 

structure. PVA has several characteristic features in its IR spectrum, including a strong, broad OH 

stretching frequency at 3340 cm-1.189 Hydrogen-bonding is well known to broaden and shift the OH 

resonance to lower frequencies190 and the unusually low frequency hydroxy resonance in PVA is  

attributed to strong hydrogen-bonding networks.189 FTIR spectroscopic analysis of P(BN2VN32-co-

S92) before and after NaOOH treatment shows significant changes (Figure 6.3a-b), including the 

loss of the NH stretching frequency, but retention of aromatic CH stretching frequencies consistent 

with polystyrene.191 After oxidation, two features consistent with an OH stretch are observed, a 

comparatively sharp resonance at 3570 cm-1 and a broader resonance at 3430 cm-1 (Figure 6.3b). 

These resonances are assigned to free OH and hydrogen-bonded OH groups, respectively. As the 

BN2VN content of the original copolymers increases, the resonance assigned to the hydrogen-

bonded OH group broadens, intensifies, and shifts to even lower frequency, consistent with 

increased hydroxy content and increased hydrogen-bonding. There is no evidence of hydroxy 

groups in NaOOH-treated PS control samples. 

 

 

Figure 6.4. DSC curves of P(BN2VN87-co-S236) before (solid) and after (dashed) NaOOH treatment. 

The onset Tg is indicated.  
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1H NMR spectra of P(BN2VN32-co-S92) before and after NaOOH treatment show 

disappearance of the BN2VN peaks in the aromatic region, but not the loss of styrenic signals in 

the aromatic region (left box, Figure 6.3c). In the aliphatic region, after NaOOH treatments new 

peaks are observed at 2.5-3.0 ppm that are not observed in the borapolyolefin (right box, Figure 

6.3c). These peaks are assigned to protons adjacent to hydroxy functionality. This assignment is 

consistent with the greater than 2.0 ppm change in chemical shift of the protons adjacent to the 

boron atom upon oxidation to phenethyl alcohol observed in model system 1 (Figure 6.1).  

The white powdery SVA copolymers exhibit physical properties that vary with hydroxy 

content, including miscibility with polar, protic solvents and glass transition temperature (Tg). While 

low hydroxy content polymers like P(BN2VN14-co-S119) are purified by precipitation into methanol, 

polymers with higher hydroxy content are soluble in methanol and must be isolated by precipitation 

into water. Glass transition temperatures (Tg’s) were determined by differential scanning 

calorimetry (DSC). Borapolyolefin P(BN2VN87-co-S236) has a single glass transition with an onset at 

110 °C. The observation of a single Tg intermediate between PS (104 °C) and PBN2VN (129 °C) is 

consistent with a statistical copolymer. After NaOOH treatment, a single Tg is observed intermediate 

between PS (104 ºC) and PVA (85 ºC) and significantly lower than PBN2VN (Figure 6.4). 

 

6.5 Conclusion 

BN2VN, a BN aromatic vinyl monomer, exhibits styrene-like reactivity and forms statistical 

St-BN2VN copolymers under free radical conditions. Chemoselective organoborane oxidation 

providing novel SVA statistical copolymers is demonstrated. The hydroxy content is tuned by the 

starting BN2VN content. This synthetic strategy opens up a pathway for modulating the properties 

of two industrially relevant polymers, PS and PVA. The concept of oxidizing a protected borane is 

not limited to the statistical copolymers described herein and BN2VN copolymers represent a 

platform for the preparation of diverse polymeric architectures via the remarkable chemistry of C-

B bonds.  
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Chapter 7:  

Reactivity Ratios of BN2VN with Styrene 

 

 

 

 

 

 

 

 

7.1 Introduction 

We show in Chapter 5 that the unusual aromaticity of the BN heterocycle leads to styrene-

like reactivity. Computational data including structural parameters and nucleus independent 

chemical shift (NICS) values support the aromaticity of the BN naphthalene side chain of BN2VN. 

This work outlines design principles for the synthesis of tailored polymeric styrene-vinyl alcohol 

architectures. 

Poly(vinyl alcohol) (PVA) is a widely used water-soluble coating and adhesive via cross-

linking with boric acid.90 It is commercially synthesized by free radical polymerization of vinyl 

acetate (VAc), followed by hydrolysis. While PVA’s physical properties such as solvent resistance, 

crystallinity, and toughness are in principle modulated by incorporation of nonpolar groups, the 

reactivity mismatch between VAc and conjugated monomers complicates the synthesis of hydroxy-

functionalized polymers by direct radical copolymerization.82,88,89  

The copolymerization behavior of two monomers M1 and M2 is described by their reactivity 

ratios r 1 and r 2, which indicate the propagation preference of each monomer (Scheme 7.1a).179 

The reactivity ratio r1 is the ratio of the rate constants (k 11/k 12) for addition of M 1 or M 2 to an M 

1- terminated polymer. Likewise, the reactivity ratio r2 is the ratio of the rate constants (k 22/k 21) 

for addition of M 2 or M 1 to an M 2-terminated polymer. A large reactivity ratio r 1 indicates a strong 



69 

preference for homopolymerization, while a reactivity ratio r 1 significantly less than 1 indicates a 

strong preference for cross-polymerization. Ideal copolymerization is observed when the product 

of the reactivity ratios is 1.61  

 

 
Scheme 7.1.  Reactivity ratios in vinyl comonomers. a) Reactivity ratios for a comonomer pair M1 

and M2. b) Prior work on the synthesis of styrene-vinyl alcohol copolymers: extreme reactivity 

mismatch between vinyl acetate (VAc) and styrene (St) or vinyl silanes (VSi) results in zero or low 

hydroxy content, while BN2VN leads to high hydroxy content. c) This work: determination of the 

reactivity ratios of BN2VN and St. 
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VAc and St are an example of an extremely mismatched comonomer pair in which the rate 

of cross-polymerization is essentially zero (Scheme 7.1b). The reactivity ratios r 1(VAc) = 0.01 

and  r 2 (St) = 55 indicate that both St- and VAc-terminated polymers strongly prefer to add St.89 

Instead of copolymerization, consecutive homopolymerization is observed: St is polymerized first 

and when consumed, VAc homopolymerization is initiated. Low concentrations of St, initiator 

concentration inhibit VAc polymerization by consuming all initiator.88 The structural dissimilarity of 

St and VAc contributes to the reactivity mismatch: while the St-terminated polymeric radical is 

significantly resonance stabilized, the VAc-terminated polymer is not. 

We recently reported a solution to the challenging St-VAc radical copolymerization. The 

free radical copolymerization of St and BN 2-vinylnaphthalene (BN2VN), followed by sodium 

hydroperoxide (NaOOH) oxidation, provided statistical styrene-vinyl alcohol copolymers (Scheme 

7.1c).36,192 Evidence for a statistical copolymer includes the observation of a single glass transition 

temperature (Tg) intermediate between PBN2VN and polystyrene (PS), as well as a single Tg 

intermediate between PVA and PS in oxidized samples. 

BN2VN is a unique vinylborane due to the aromaticity of the 10 π electron BN naphthalene 

ring system (Scheme 7.1c). The Hückel aromaticity of cyclic conjugated BN materials112,193 is well-

established on the basis of resonance stabilization energy,194 electronic structure,119 and magnetic 

properties.28,119,169,195 Building on Sneddon’s early work on vinyl borazine (VB) polymerization,196–

198 several groups have recently explored BN for CC bond substitution in polymer backbones,17–22 

conjugated polymers,23,24,199 or in aromatic side chains.31,32,36,192  

While in principle any organoborane is a precursor to PVA via oxidation, BN2VN is attractive 

in several respects. BN2VN is stable to bench-top handling, whereas many organoboranes are air- 

and water-sensitive and prone to cross-linking.48,49 We attribute BN2VN’s increased stability to the 

aromatic cage surrounding the central boron atom. A high-throughput two-step synthesis of BN2VN 

makes multigram scale polymerization possible.192 Monocyclic BN aromatic heterocycles currently 

require multistep syntheses,43,44,113,193,200 which limits polymerizations to the milligram scale.31,32 VB 
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polymerization is hampered by polymer crosslinking arising from thermal dehydrogenative coupling 

of the inorganic side chain and hydrolytic instability.46,196,197  

BN2VN’s aromaticity enables compatible reactivity with St and high copolymer hydroxy 

content. For example, while vinylsilanes are typically more bench stable than vinylboronates, these 

lack aromatic character. Inoue et al. reported an alkoxyvinylsilane monomer (VSi) for styrene 

copolymerization that yields vinyl alcohol derivatives after Tamao–Fleming oxidation.201 VSi 

incorporation is limited by mismatched reactivity ratios [r1(VSi) = 0.11, r2(St) = 20] (Scheme 1b).202 

Herein we characterize BN2VN’s aromaticity and measure well-matched St and BN2VN 

reactivity ratios by traditional linearization methods and modern nonlinear least squares methods 

(NLLS: r1(BN2VN) = 0.423, r2(St) = 2.30; r1r2 = 0.97). Quantitative assessment of BN2VN and St 

reactivities enables fine control of copolymerization and the design of tailored styrene-vinyl alcohol 

copolymers.  

 

7.2 Determination by Linearization Methods 

  Reactivity ratios for radical copolymerizations following the terminal model are traditionally 

calculated by linearization of the copolymer equation (Equation 7.1) where f1 is the mole fraction 

of M1 in the feed, f2 = 1 – f1, F1 is the mole fraction of M1 in the copolymer and F2 is the mole 

fraction of M2 in the copolymer. 

𝐹1 =  
𝑟1𝑓1

2+ 𝑓1𝑓2

𝑟1𝑓1
2+2𝑓1𝑓2+𝑟2𝑓2

2          (Eq. 7.1) 

However, several assumptions underlying the linearization methods introduce significant 

systemic error, resulting in highly variable estimates of copolymerization reactivity ratios.203,204 

Nonlinear least squares (NLLS) fitting is the most statistically accurate method for estimating 

reactivity ratios.205 We describe initial estimation of St and BN2VN reactivity ratios based on the 

Fineman–Ross and Kelen–Tüdös linearization methods and then a NLLS analysis of the 

copolymerization data. Good agreement is observed between the three methods. 
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In the Fineman–Ross206 method (Equation 7.2) for linearization of the copolymer 

equation, several copolymerizations with different ratios of the two monomers are carried out to 

low conversion and the composition of the copolymers is determined. 

𝑓1(2𝐹1−1)

(1−𝑓1)𝐹1
=  

𝑓1
2(1−𝐹1)

(1−𝑓1)2𝐹1
𝑟1 − 𝑟2   (Eq. 7.2) 

A plot of G versus H yields a straight line with slope r1 and y-intercept –r2, where G and H are 

𝐺 =  
𝑓1(2𝐹1−1)

𝐹1(1−𝑓1)
  𝐻 =

𝑓1
2(1−𝐹1)

(1−𝑓1)2𝐹1
  

A disadvantage of the Fineman–Ross method is that low or high values of f1 

disproportionately influence the analysis. The Kelen–Tüdös method addresses this limitation by 

adding an arbitrary correction factor α that uniformly distributes data points.207 The reactivity ratios 

r1 and r2 are determined by a fit of the experimental data to equation 3 

𝜂 = [𝑟1 + (𝑟2 𝛼⁄ )]𝜉 − (𝑟2 𝛼⁄ )  (Eq. 7.3) 

where η, ξ and α are: 

𝜂 =  
𝐺

𝛼 + 𝐻
 

 

𝜉 =  
𝐻

𝛼 + 𝐻
 

 
𝛼 =  √𝐻𝑚𝑖𝑛𝐻𝑚𝑎𝑥 

The plot of η versus ξ gives a straight line with intercepts –r2/α and r1 when ξ = 0 and ξ = 1 

respectively. 

Copolymerization of BN2VN and St (
𝑓1

𝑓2
 = 0.111–9.00) was performed with 2,2′-azobis(2-

methylpropionitrile) (AIBN) as the radical initiator at 70 °C in toluene for 45 minutes. 

Polymerizations were quenched at low conversion (3-7%) by precipitation into methanol. 

Copolymer composition was analyzed by two independent techniques, absorbance spectroscopy 

and elemental analysis. 

As previously reported, the unique absorbance at 320 nm of the BN naphthalene 

chromophore enables a UV-vis assay for quantitative determination of BN2VN content in a 

copolymer.36,192 The absorption at 320 nm is measured for a series of different blends of PS and 

PBN2VN. A plot of the extinction coefficient at 320 nm (ε320) versus the weight fraction of PBN2VN 

in the blend (ΧBN2VN) is a straight line and linear regression provides equation 4 (Figure 5.5b).  

𝜒𝐵𝑁2𝑉𝑁 =
ε320−0.208

28.2
  (Eq. 7.4) 
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The fractional composition of BN2VN in a copolymer is calculated using equation 4 from 

the copolymer’s extinction coefficient at 320 nm (ε320). UV-vis spectra of copolymer solutions were 

recorded in THF at room temperature.  

BN2VN composition can also be determined by elemental analysis. Equation 7.5 describes 

the relationship between weight percent of carbon (wt% C) in a copolymer and the weight fraction 

BN2VN.  

𝜒𝐵𝑁2𝑉𝑁 = −
𝑤𝑡% 𝐶 − 92.3

14.8
   (Eq. 7.5) 

Table 7.1 summarizes copolymer characteristics. Good agreement is observed between both 

analytical methods with respect to determination of FBN2VN, the fractional composition of BN2VN in 

the copolymer.Reactivity ratios determined using the Fineman–Ross method (Figure 7.1a) and 

the Kelen–Tüdös method (Figure 7.1b) support an ideal radical copolymerization (r1r2 = 1) in 

which St is somewhat more reactive than BN2VN. Four separate estimates of the reactivity ratios 

are obtained by analysis of each set of experimental data by both linearization methods (Table 

7.2). In all cases, r1(BN2VN) is close to 0.5 (0.390-0.531), r2(St) is close to 2 (2.09-2.50), and the 

product of the reactivity ratios (r1r2) is close to 1.0 (0.815–1.33).  

 

Table 7.1. Low conversion P(BN2VN-co-S) molecular weight characteristics. 

Entry Sample Name a Yield Mn (kDa)b Đb ε320
c 

1 P(BN2VN4-co-S103) 6.2% 11.4 1.48 1.90 

2 P(BN2VN10-co-S86) 6.5% 10.4 1.50 4.26 

3 P(BN2VN15-co-S81) 5.2% 10.8 1.53 6.44 

4 P(BN2VN20-co-S70) 5.3% 10.4 1.48 8.59 

5 P(BN2VN25-co-S61) 4.9% 10.3 1.48 10.9 

6 P(BN2VN32-co-S46) 4.7% 9.63 1.46 14.5 

7 P(BN2VN38-co-S35) 3.4% 9.53 1.44 17.5 

8 P(BN2VN41-co-S20) 3.8% 8.39 1.38 21.5 

9 P(BN2VN39-co-S11) 3.9% 7.22 1.34 23.9 

a Samples are named according to average degree of polymerization (𝐷𝑃) of each monomer.  

b Determined by GPC analysis at 254 nm relative to a polystyrene standard. c In L g-1 cm-1. 
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Figure 7.1. Determination of reactivity ratios for the copolymerization of BN2VN and St by the a) 

Fineman-Ross (FR) method and b) Kelen–Tüdös (KT) method.  

 

 

 

Table 7.2. Copolymer Parameters for Linear Determination of Reactivity Ratios. 

Entry Sample Name  fBN2VN FBN2VN (UV-Vis)a
 FBN2VN (EA)b 

1 P(BN2VN4-co-S103) 0.100 0.0411 0.0568 

2 P(BN2VN10-co-S86) 0.200 0.101 0.0965 

3 P(BN2VN15-co-S81) 0.300 0.160 0.148 

4 P(BN2VN20-co-S70) 0.400 0.221 0.213 

5 P(BN2VN25-co-S61) 0.500 0.292 0.309 

6 P(BN2VN32-co-S46) 0.600 0.409 0.395 

7 P(BN2VN38-co-S35) 0.700 0.516 0.521 

8 P(BN2VN41-co-S20) 0.800 0.675 0.643 

9 P(BN2VN39-co-S11) 0.900 0.779 0.819 

a Determined by UV-vis from ε320 according to Equation 7.4. b Determined by elemental analysis 

(EA) from wt% C according to Equation 7.5. 
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Table 7.2. Reactivity ratios BN2VN and styrene via linearization methods. 

 
Fineman–Ross Kelen–Tüdös 

UV-Vis EA UV-Vis EA 

r 1 (BN2VN) 0.390 0.531 0.477 0.445 

r 2 (St) 2.09 2.50 2.39 2.25 

r 1 • r 2 0.815 1.33 1.14 1.00 

 

7.3 Determination by NLLS Method 

 The Mayo–Lewis plots of the fractional composition of BN2VN in the copolymer (FBN2VN) 

versus the fractional composition of BN2VN in the monomer feed (fBN2VN) for both analytical 

methods are shown in Figures 4a-b. The dashed line indicates the linear behavior expected from a 

random (Bernoullian) copolymerization in which both monomers are equally reactive (r1 = r2 = 1). 

Data analysis by van Herk’s NLLS method205 yielded estimates of the reactivity ratios r1(BN2VN) 

and r2(St) and a 95% joint confidence interval (JCI, Figure 7.5c-d). Point estimates of the 

reactivity ratios derived from linearization methods are included and fall within the confidence 

interval, with the exception of Fineman–Ross reactivity ratios derived from UV-vis spectroscopy.  

Based on the NLLS data analysis, we report r1(BN2VN) = 0.517 and r2(St)= 2.46 (UV-vis) 

and r1(BN2VN) = 0.423 and r2(St)= 2.30 (EA). This is a dramatic narrowing of the difference in 

reactivity between styrene and a vinyl alcohol precursor compared to prior state of the art (Table 

7.3). 

Table 7.3. Comparison of reactivity ratios in vinyl alcohol precursor and styrene copolymerization. 

Vinyl Alcohol Precursor r 1 (Precursor) r 2 (St) Reference 

VAc 0.01 55 89 

VSi 0.11 20 202 

BN2VN 0.52, UV-vis 
0.42, EA 

2.5, UV-vis 
2.3, EA 

This work 
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Figure 7.5. Mayo–Lewis plots of the fractional composition of BN2VN in the copolymer (FBN2VN) 

versus the fractional composition of BN2VN in the monomer feed (fBN2VN) determined by a) UV-vis 

spectroscopy and b) elemental analysis. The dashed line indicates the linear behavior expected 

from a random copolymerization (r1 = r2 = 1); the solid line indicates behavior for the respectively 

labeled reactivity ratios. NLLS determined 95% joint confidence intervals (JCI’s) and point 

estimates of the reactivity ratios derived by NLLS and linearization methods from c) UV-vis and d) 

elemental analysis data.  
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7.4 Insights into Polymer Microstructure 

The BN2VN and St reactivity ratios (r1 < 1 < r2; r1r2 = 1) belong to the special case of an 

ideal copolymerization in which the monomers do not have equal reactivities. An ideal 

copolymerization occurs when the propagating species has no preference for one monomer over 

another and implies that the product of the reactivity ratios r1r2 must be 1 (k11 = k21 and k22 = k12). 

𝑟1𝑟2 =  
𝑘11

𝑘12

×
𝑘22

𝑘21

= 1 

A subset of ideal copolymerizations occurs when r1 = r2 = 1 (both monomers are equally 

reactive) and a random copolymer with an equal distribution of monomers results. An ideal 

copolymerization is still possible with monomers with unequal reactivities (r1 < 1 < r2). In this case, 

at low conversion, a statistical copolymer is expected that is enriched in the more reactive monomer 

(e.g. St). 

The glass transition temperature (Tg) is a probe of copolymer microstructure. A diblock 

copolymer has two Tg’s corresponding to the homopolymer Tg, while a statistical copolymer has a 

single Tg intermediate between the homopolymers. A gradient copolymer has a single Tg, typically 

wider than the homopolymers. While 13C NMR spectroscopy is typically used for copolymer 

sequence analysis, the relaxation rate of the quadrupolar boron-11 nucleus (I = 3/2) negatively 

influences the 13C NMR signals of boron-adjacent carbon atoms, resulting in a drastic reduction in 

signal height.208 

Tg’s of the St-BN2VN copolymers were determined by differential scanning calorimetry 

(DSC) under nitrogen (Figure 5a). All copolymers show a single narrow Tg intermediate between 

PS159 (Tg = 96 °C, Mn = 16.5 kDa)209 and PBN2VN132 (Tg= 135.2 °C, Mn = 20.4 kDa),36 which 

increases with increasing BN2VN content (Figure 7.5a). Good agreement is observed between 

experimental Tg’s (triangles) and predicted Tg (dashed line, Figure 5b and Table 7).210 Minor 

deviations from prediction (± 7 °C) may reflect the lower molecular weights of the samples in this 

study (Mn = 7.22 – 11.4 kDa) compared to the PBN2VN reference and instrumental error (3-10 °C 

at a heating rate of 10 °C min-1).211  
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Figure 7.6. Low conversion P(BN2VN-co-S) thermal properties. a) Differential scanning 

calorimetry (DSC) thermograms of P(BN2VN4-co-S103), P(BN2VN10-co-S86), P(BN2VN15-co-S81), 

P(BN2VN20-co-S70), P(BN2VN25-co-S61), P(BN2VN32-co-S46), P(BN2VN38-co-S35), P(BN2VN41-co-S20), 

and P(BN2VN39-co-S11). b) Dependence of glass transition temperature (Tg, point of inflection) on 

the weight fraction BN2VN in the copolymers. Predicted Tg (dashed line) calculated using the Fox 

equation.210  

 

Table 7.4. Comparison of experimental and predicted Tg’s. 

Entry Polymer wt% BN2VNa 
Experimental 

Tg (°C)b 

Predicted Tg 

(°C)c 

1 P(BN2VN4-co-S103) 6.0 104 97 

2 P(BN2VN10-co-S86) 14 105 100 

3 P(BN2VN15-co-S81) 22 106 102 

4 P(BN2VN20-co-S70) 30 108 104 

5 P(BN2VN25-co-S61) 38 109 106 

6 P(BN2VN32-co-S46) 51 112 110 

7 P(BN2VN38-co-S35) 61 115 114 

8 P(BN2VN41-co-S20) 76 120 119 

9 P(BN2VN39-co-S11) 84 125 122 

a Determined by UV-vis from ε320 according to Equation 7.4. b Point of inflection of the glass 

transition. c Predicted Tg calculated using the Fox equation.210 
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Characterization is consistent with the predicted St-enriched statistical copolymer. Bulk 

composition data show St-enrichment compared to the feed ratio in all samples (see Table 7.4), 

while the observation of a narrow glass transition intermediate between PS and PBN2VN is 

consistent with a statistical sequence distribution.  

 

7.5 Conclusion 

The data presented in this paper show that aromaticity results in well-matched reactivity 

ratios between styrene and a vinyl alcohol precursor. The reactivity ratios r1(BN2VN) and r2(St) 

were determined by traditional linearization and modern NLLS statistical methods using two 

independent analytical techniques, elemental analysis and UV-vis spectroscopy. Compared to other 

comonomer pairs (e.g. St-VAc or St-VSi), St and BN2VN have the reactivity ratios closest to a 

random copolymerization. 

Our results support the development of tailored styrene-vinyl alcohol copolymer architectures, 

while minimizing the use of excess monomer. The relationship between organoborane structure 

and reactivity suggests design principles for well-matched reactivity between hybrid and organic 

vinyl monomers. 
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Appendix I:  

Experimental Details 

 

I.1. General Methods 

 I.1.1 Instrumentation 

 I.1.2 Statistical Methods 

 I.1.3 Computational Methods 

 I.1.4 Materials 

I.2. Experimental Details for Chapter 2: BN Anthracenes 

 I.2.1 Synthesis of BN Anthracenes 1a-h 

General Procedure A 

2-(4-Methoxyphenyl)-1,2-Dihydronaphtho[2,3-e][1,2]-Azaborinine (1a) 

2-(p-Tolyl)-1,2-Dihydronaphtho[2,3-e][1,2]-Azaborinine (1b) 

2-Phenyl-1,2-Dihydronaphtho[2,3-e][1,2]-Azaborinine (1c) 

2-(4-Fluorophenyl)-1,2-Dihydronaphtho[2,3-e][1,2]-Azaborinine (1d) 

2-(4-Chlorophenyl)-1,2-Dihydronaphtho[2,3-e][1,2]-Azaborinine (1e) 

2-(4-(Trifluoromethyl)Phenyl)-1,2-Dihydronaphtho[2,3-e][1,2]-Azaborinine (1f) 

4-(Naphtho[2,3-e][1,2]Azaborinin-2(1H)-yl)Benzonitrile (1g) 

2-(4-Nitrophenyl)-1,2-Dihydronaphtho[2,3-e][1,2]-Azaborinine (1h) 

 I.2.2 Synthesis of Mes BN Anthracene 1i 

2-Mesityl-1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (Mes BN Anthracene, 1i) 

 I.2.3 Synthesis of BN Anthracene 

1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (BN Anthracene) 

 I.2.4 Synthesis of 2-Arylanthracenes 8a-c 

General Procedure B 

2-Phenylanthracene-9,10-Dione (7a) 

2-(p-Tolyl)Anthracene-9,10-Dione (7b) 

2-(4-Fluorophenyl)Anthracene-9,10-Dione (7c) 

General Procedure C 

2-Phenylanthracene (4-H Ph Anthracene, 8a) 

2-(p-Tolyl)Anthracene (4-Me Ph Anthracene, 8b) 

2-(4-Fluorophenyl)Anthracene (4-F Ph Anthracene, 8c) 

I.3. Experimental Details for Chapter 3: BN 2-Vinylnaphthalene (BN2VN) and 

Polymers 

 I.3.1 BN2VN Monomer Synthesis 

2-Aminostyrene (2) 

Small Scale: 2-Vinyl-1,2-Dihydrobenzo[e][1,2]Azaborinine (BN2VN) 

Large Scale: 2-Vinyl-1,2-Dihydrobenzo[e][1,2]Azaborinine (BN2VN) 
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 I.3.2 BN2VN Polymerization 

PBN2VN39 (Toluene Polymerization) 

PBN2VN57 (Neat Polymerization) 

I.4. Experimental Details for Chapter 4: BN2VN and 2-Vinylnaphthalene (2VN) 

Copolymers  

 I.4.1 Copolymerization of BN2VN and 2VN 

General Procedure D 

PBN2VN39 

P(BN2VN74-co-2VN26) 

P(BN2VN49-co-2VN51) 

P(BN2VN9-co-2VN91) 

P2VN54  

I.5.  Experimental Details for Chapter 5: BN2VN and Styrene Copolymers 

 I.5.1 Copolymerization of BN2VN and Styrene 

General Procedure E 

PBN2VN132 

P(BN2VN127-co-S141) 

P(BN2VN87-co-S236) 

P(BN2VN32-co-S332) 

PS313 

General Procedure F 

P(BN2VN48-co-S51) 

P(BN2VN32-co-S92) 

P(BN2VN14-co-S119) 

PS129 

I.6. Experimental Details for Chapter 6: Polymer Side Chain BN Oxidation 

 I.6.1 Small Molecule Oxidation Study 

Potassium Phenethyltrifluoroborate 

2-Phenethyl-1,2-Dihydrobenzo[e][1,2]Azaborinine (1) 

Oxidation of 2-Phenethyl-1,2-Dihydrobenzo[e][1,2]Azaborinine (1) 

 I.6.2 Polymer Oxidation Study 

General Procedure G 

Oxy. P(BN2VN127-co-S141) 

Oxy. P(BN2VN87-co-S236) 

Oxy. P(BN2VN32-co-S332) 

Oxy. PS313 

Oxy. P(BN2VN48-co-S51) 

Oxy. P(BN2VN32-co-S92) 

Oxy. P(BN2VN14-co-S119) 

Oxy. PS129 

I.7. Experimental Details for Chapter 7: Reactivity Ratios of BN2VN and Styrene 

 I.7.1 Low Conversion BN2VN and Styrene Copolymerization 
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General Procedure H 

P(BN2VN4-co-S103) 

P(BN2VN10-co-S86) 

P(BN2VN15-co-S81) 

P(BN2VN20-co-S70) 

P(BN2VN25-co-S61) 

P(BN2VN32-co-S46) 

P(BN2VN38-co-S35) 

P(BN2VN41-co-S20) 

P(BN2VN39-co-S11) 

 

 

I.1 General Methods 

I.1.1 Instrumentation: 1H NMR, 11B NMR, and 13C {1H} NMR spectra were recorded on a Bruker 

UltraShield Avance I 400 MHz spectrometer, the 19F NMR spectrum was recorded on a Bruker 

UltraShield Avance I 300 MHz spectrometer, and chemical shifts are reported in parts per million 

(ppm). Spectra were recorded in dichloromethane-d2 or acetonitrile-d3 with the residual solvent 

peak as the internal standard (1H NMR: CH2Cl2, δ = 5.32 ppm; CH3CN, δ = 1.94 ppm. 13C NMR: 

CH2Cl2, δ = 53.84 ppm; CH3CN, δ = 1.39 ppm). 11B NMR spectra are externally referenced to boron 

trifluoride diethyl etherate (BF3●Et2O, δ = 0 ppm). Carbons bound to boron are not observed due 

to the quadrupolar relaxation of boron. Broad signals at ~ δ = 2.7 ppm in the 11B NMR spectrum 

are due to boron contained in probe components; all polymer spectra were acquired using quartz 

NMR tubes from Norell or Wilmad. Multiplicities are as indicated: s (singlet), d (doublet), t (triplet), 

q (quartet), p (pentet), m (multiplet), and br (broad). Coupling constants, J, are reported in hertz 

(Hz) and integration is provided, along with assignments, as indicated. Mass spectrometry and high 

resolution mass spectrometry were performed in the Department of Chemistry at Johns Hopkins 

University using a VG Instruments VG70S/E magnetic sector mass spectrometer with electron 

ionization (EI) (70 eV). The UNIlab Plus Glove Box by MBRAUN was maintained under nitrogen 

atmosphere. All column chromatography was performed on a Teledyne ISCO Combiflash Rf+ using 

Redisep Rf silica columns. Polymer molecular weights were measured by gel permeation 
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chromatography (GPC) on a Tosoh Bioscience EcoSEC GPC workstation using butylated 

hydroxytoluene stabilized tetrahydrofuran (THF) as the eluent (0.35 mL min-1, 40 °C) through 

TSKgel SuperMultipore HZ-M guard column (4.6 mm ID x 2.0 cm, 4 µm, Tosoh Bioscience) and a 

TSKgel SuperMultipore HZ-M column (4.6 mm ID x 15 cm, 4 µm, Tosoh Bioscience). Polystyrene 

standards (EasiVial PS-M, Agilent) were used to build a calibration curve. Processing was performed 

using EcoSEC Data Analysis software (Version 1.14, Tosoh Bioscience). Polymers were dissolved in 

THF (1 mg mL-1), filtered (Millex-FG Syringe Filter Unit, 0.20 μm, PTFE, EMD Millipore), and injected 

using an auto-sampler (10 μL). UV-Vis spectroscopy was performed on a Shimadzu UV-1800 UV-

Vis spectrophotometer.  The spectra were measured at room temperature in non-stabilized THF in 

a quartz cuvette (10 mm). Fluorescence spectroscopy was performed on a Photon Technology 

International, Inc. QuantaMaster 40 spectrofluorometer equipped with an Ushio short-arc xenon 

gas discharge lamp.  The spectra were measured at room temperature in non-stabilized THF in a 

quartz cuvette (10 mm) and all solutions were dilute (λmax  0.1 abu) to minimize re-absorption 

effects. Processing was done using FeliX32 Analysis (Version 1.2, Build 56, Photon Technology 

International, Inc.).  Fourier-transformed infrared (FTIR) spectroscopy was performed on a 

ThermoNicolet Nexus 670 FTIR spectrometer. The Polymers were dissolved in dichloromethane (6 

mg mL-1), drop cast onto a polished KBr window (International Crystal Labs), and spectra were 

obtained at room temperature in transmission mode. Differential scanning calorimetry (DSC) was 

carried out on a TA Instruments DSC Q20 V24.11 Build 124 and processing was performed using 

Universal Analysis V4.5A (TA Instruments). Polymer samples (2.5 – 5.0 mg) were sealed in 

hermetic aluminum pans, heated from 30 to 170 °C (10 °C min-1), and cooled from 170 to 30 °C, 

for three cycles under a purge gas of nitrogen (25 mL min-1). Glass transition temperatures (Tg) 

were calculated from the third heating cycle (all second and third heating cycles traced, 

respectively) and the Tg onset is reported.  Elemental analysis was performed by Robertson Microlit 

Laboratories. 
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I.1.2 Statistical Methods. Experimental data derived from UV-vis spectroscopy and elemental 

analysis were fit using the NLLS method with Contour version 1.8 with 3% and 1% relative 

estimated error, respectively. Point estimates of the reactivity ratios and a 95% joint confidence 

interval were calculated.  

I.1.3 Computational Methods. Density Functional Theory (DFT) calculations were performed 

using the Gaussian 09 program package. Geometries were optimized using the restricted or 

unrestricted CAM-B3LYP149 hybrid exchange-correlation functional with the 6-311G(d,p) basis set. 

CAM-B3LYP is known to reliably describe radicals and extended conjugated systems.150,151 

Frequency calculations carried out at the same level of theory on fully optimized geometries showed 

no imaginary frequencies, confirming optimized geometries as local minima on their potential 

surfaces.  Energies reported are the sum of electronic and thermal enthalpies at 298.15 K and are 

converted to kcal mol-1 from Hartrees (1 Eh = 627.509608 kcal mol-1). Visualization of optimized 

geometries and electrostatic potential (ESP) maps were performed using GaussView 5.0.9.  

Nucleus independent chemical shifts (NICS) were calculated as the negative value of the nuclear 

magnetic shielding computed at the geometric center of the rings (NICS(0)) and 1.0 Å above the 

geometric center of the rings (NICS(1)), by the gauge-independent atomic orbital (GIAO) 

method.161–165  

Homolytic bond dissociation energies (BDEs) are calculated as follows: BDE = (Ers+ EHa) – Ecs 

where Ers = enthalpy corrected energy of the radical species; EHa = energy of a hydrogen atom; 

Ecs = enthalpy corrected energy of the closed shell species. 

I.1.4 Materials: Unless otherwise specified, all chemicals were used as purchased without further 

purification. Solvents used for column chromatography and polymer workup were reagent grade 

and used as received. Reaction solvent toluene (Fisher, certified ACS) was dried on a J. C. Meyer 

Solvent Dispensing System (SDS) using stainless steel columns packed with neutral alumina and 

Q5 reactant, a copper(II) oxide oxygen scavenger, following the manufacturer’s recommendations 

for solvent preparation and dispensation. Acetone (PHARMCO-AAPER) was dried over magnesium 
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sulfate overnight. Ethanol (PHARMCO-AAPER) was dried over 3 Å molecular sieves. Triethylamine 

(Sigma Aldrich, >99%) was dried over potassium hydroxide overnight and distilled under argon 

just prior to use. 2-Vinylnaphthalene (2VN) (Sigma Aldrich, 95%) was sublimed at room 

temperature and 1.3 Torr, then stored in a glove box freezer (-20 °C) until future use. Styrene 

(Sigma Aldrich, ReagentPlus, 4-tert-butylcatechol stabilized) was purified by removal of stabilizer 

by washing twice with an equal volume of 1 N sodium hydroxide solution, then three times with 

deionized water, dried over anhydrous magnesium sulfate for three hours, decanted into an oven 

dried round bottom flask, vacuum distilled at room temperature, then freeze-pump-thawed until 

completely degassed. UV-Vis studies, fluorescence studies, and oxidations were performed in non-

stabilized THF from EMD Millipore. GPC studies were performed in butylated hydroxytoluene 

stabilized THF from EMD Millipore.  

 2,2′-Azobis(2-methylpropionitrile) (AIBN) (recrystallized, 99%), cyclopentyl methyl ether 

(CPME) (anhydrous, 99.9%), dichloromethane, hexanes, methanol, phenethylboronic acid, 

polyvinyl alcohol (98% hydrolyzed, average MW 13000-23000), potassium hydrogen fluoride 

(99%), potassium hydroxide, potassium vinyltrifluoroborate (95%), sodium chloride (>99%), 

sodium hydroxide (>97%), potassium vinyltrifluoroborate (95%), and silicon tetrachloride 

(SureSeal, 99%) were purchased from Sigma Aldrich. 

Acetonitrile-d3 (D, 99.8%), chloroform-d (D, 99.8%), and dichloromethane-d2 (D, 99.8%) were 

purchased from Cambridge Isotope Laboratories, Inc. Hydrogen peroxide (30% solution, stabilized) 

and toluene (for polymer elution) were purchased from EMD Milipore. Diethyl ether (anhydrous) 

and magnesium sulfate (anhydrous) were purchased from Fisher Chemical. Quinine hemisulfate 

monohydrate (purum for fluorescence, ≥98%) was purchased from Fluka. 2-Aminophenethyl 

alcohol (1, 97% or 95%) was purchased from Sigma Aldrich (or TCI America).  
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I.2 Experimental Details for Chapter 2: BN Anthracenes 

I.2.1 Synthesis of BN Anthracenes 1a-h 

 

 

3-Chloro-2-Naphthoic Acid (S1) 

 This synthesis was adapted from van Koten et al.212 and Tucker et al.213 

In air, a 1000 mL 3-neck round bottom flask equipped with a 

thermometer, unsealed reflux condenser (no water was used to cool), a powder 

funnel and a stir bar was charged with concentrated sulfuric acid (86 mL). Sodium 

nitrite (1.1 equiv., 117.7 mmol, 8.12 g) was slowly added to the sulfuric acid over 

20 minutes through the powder funnel. The heterogeneous, colorless mixture was 

heated to 70 °C for 20 minutes, or until all of sodium nitrite dissolved, then was cooled to room 

temperature then to 0 °C in an ice-water bath. A slurry of 2-amino-3-naphthoic acid (1 equiv., 

107.0 mmol, 20.02 g) in glacial acetic acid (214 mL) was poured in portions through the powder 

funnel into the cooled HONO solution, ensuring the temperature did not exceed 40 °C.1 The viscous 

mixture was warmed to room temperature then heated to 40 °C, and stirred at 40 °C for 30 

minutes.  

                                                
1  The Sandmeyer reaction is mildly exothermic and Tucker et al.213 “The temperature of 
diazotization is critical. Lower yields are obtained if the temperature rises above 40 °C.” 
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Separately, in air, a 1000 mL round bottom flask equipped with a stir bar and a 125 mL addition 

funnel was charged with copper(I) chloride (2.2 equiv., 235.4 mmol, 23.38 g) and the copper salt 

was dissolved in concentrated hydrochloric acid (214 mL). The copper solution was cooled to 0 °C 

with an ice water bath. The thick, brown solution of diazonium ion, which had been cooled to room 

temperature, was transferred to the addition funnel and added in a slow stream to the cooled 

solution of copper salt. Following the complete addition of diazonium salt, the ice water bath was 

removed and the reaction mixture was warmed to room temperature. The addition funnel was 

replaced with an unsealed reflux condenser (no cooling). The solution was slowly warmed to 80 

°C. At 50 °C effervescence began and heating continued until effervescence ceased, about 2.5 

hours. The flocculent reaction mixture was cooled to room temperature, water was slowly added 

(357 mL), and the mixture was allowed to slowly stir for 5 minutes causing more solids to form. 

The reaction mixture was filtered through a coarse fritted funnel, washing with water (500 mL) 

which was collected and subsequently properly disposed of. The solid product was dissolved in 

ethyl acetate (850 mL), passed through the fritted funnel, and separately collected. The dissolved 

mixture of S1 was washed with a saturated sodium chloride solution, and dried over anhydrous 

sodium sulfate. Solvent was removed by rotary evaporation under reduced pressure and dried on 

high vacuum overnight. 3-Chloro-2-naphthoic acid (S1) was used without further purification 

(unpurified yield 19.05 g, 86%). 

δ H (400 MHz, CDCl3) 8.62 (1 H, s), 7.97 (1 H, s), 7.87 (2 H, dd, J 52.3, 8.3), 7.61 (2 H, 

dt, J 28.9, 7.3). 

δ C (101 MHz, DMSO-d6) 166.73, 134.25, 131.56, 130.59, 128.94, 128.90, 128.83, 128.61, 

127.82, 127.26, 126.84. 

HRMS (EI)  [M]+ Calcd for C11H7ClO2 206.0135; Found 206.01373. 
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3-Chloronaphthalen-2-Amine (5) 

This reaction is adapted from Liu et al.119 

CAUTION: This reaction was performed behind a blast shield due to the potential explosion risk 

associated with acyl azides.214  

An oven-dried 1000 mL Schlenk flask equipped with a stir bar was cooled under vacuum and 

backfilled with nitrogen. To the flask was added S1 (1 equiv., 50 mmol, 10.33 g). The flask was 

purged and backfilled three times with nitrogen. Dimethylformamide (DMF) (400 mL) was added 

via cannula transfer and triethylamine (1.5 equiv., 75 mmol, 10.5 mL) and diphenyl phosphoryl 

azide (DPPA) (1.5 equiv., 75 mmol, 16.2 mL) were added via syringe. The brown solution was 

allowed to stir for 3 hours at room temperature under a positive pressure of nitrogen. Nitrogen-

sparged water (33.3 mL) was added via cannula transfer and the reaction mixture was heated to 

90 °C with stirring for 1 hour. The reaction mixture was cooled to room temperature, opened to 

atmosphere, and water (350 mL) was added. The biphasic mixture was poured into a 1000 mL 

separatory funnel and the aqueous layer was washed with diethyl ether (3 x 150 mL). The 

combined organic layers were washed sequentially with saturated sodium bicarbonate (2 x 175 

mL) then saturated sodium chloride solutions (2 x 175 mL) and dried over sodium sulfate. The 

organic solvent was removed by rotary evaporation under reduced pressure. The brown solid was 

dissolved in 150 mL warm toluene and hot filtered through a fritted funnel to remove insoluble 

materials. The organic solvent was removed by rotary evaporation under reduced pressure. This 

product was used without further purification (unpurified yield 8.13 g, 92%).  

δ H (400 MHz, CDCl3) 7.97 (1 H, s), 7.78 (2 H, dd, J 12.1, 8.3), 7.60 – 7.39 (2 H, m), 

7.18 (1 H, s), 4.27 (2 H, s). 

δ C (101 MHz, CDCl3) 140.89, 133.52, 127.99, 127.92, 126.86, 126.49, 125.58, 123.21, 
122.25, 109.72. 

HRMS (EI)  [M]+ Calcd for C10H8ClN 177.0345; Found 177.03418. 
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3-Vinylnaphthalen-2-Amine (4) 

This procedure was adapted from Burke et al.120  

An oven dried 250 mL Schlenk flask equipped with a condenser and stir bar was cooled under 

vacuum. The flask was charged with 5 (1 equiv., 10 mmol, 1.78 g), palladium(II) acetate (5 mol%, 

0.5 mmol, 112.3 mg), SPhos (10 mol%, 1 mmol, 410.5 mg), and vinylboronic acid MIDA ester (1.2 

equiv., 12 mmol, 2.05 g). The reaction vessel was purged and backfilled three times with nitrogen. 

The solids were dissolved in dioxane (100 mL) and a nitrogen-sparged aqueous solution of tribasic 

potassium phosphate (3 M, 20 mL) was added. The reaction was heated to 100 °C with stirring 

under a positive pressure of nitrogen for 4 hours. The reaction was cooled to room temperature, 

transferred to a 250 mL round bottom flask, and concentrated by rotary evaporation under reduced 

pressure. The solids were dissolved in ethyl acetate (50 mL) and added to a separatory funnel, 

along with an aqueous solution of sodium hydroxide (1 M, 40 mL). The aqueous layer was extracted 

with ethyl acetate (3 x 50 mL) and the combined organic layers were dried over sodium sulfate. 

After filtration, the organic solvents were removed by rotary evaporation under reduced pressure. 

4 was purified by automated silica gel column chromatography (40 g column) eluting with 10% 

ethyl acetate in hexanes (yield 1.52 g, 90%).  

δ H (400 MHz, CDCl3) 7.76 (1 H, s), 7.70 (1 H, dd, J 8.2, 1.1), 7.58 (1 H, dd, J 8.2, 1.1), 
7.35 (1 H, ddd, J 8.2, 6.8, 1.3), 7.28 – 7.19 (1 H, m), 7.02 (1 H, 

s), 6.92 (1 H, ddd, J 17.4, 11.0, 0.8), 5.80 (1 H, dd, J 17.3, 1.5), 

5.45 (1 H, dd, J 11.0, 1.5), 4.042 (2 H, s). 

δ C (101 MHz, CDCl3) 142.29, 134.58, 133.05, 128.26, 127.89, 127.54, 126.62, 126.33, 

125.50, 122.82, 117.57, 109.67. 

HRMS (EI)  [M]+ Calcd for C12H11N 169.0891; Found 169.08868. 

 

General Procedure A: This procedure was adapted from Molander et al.116 

An oven dried 15 mL heavy walled cylindrical pressure vessel equipped with a stir bar was charged 

with 4 (1 equiv., 1.8 mmol, 304 mg) and the appropriate potassium aryltrifluoroborate (0.8 equiv., 

1.5 mmol). The vessel and contents were brought into a nitrogen atmosphere glove box. Toluene 
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(6 mL), cyclopentyl methyl ether (CPME) (6 mL), triethylamine (1.5 equiv., 2.3 mmol, 0.32 mL), 

and silicon tetrachloride (1 equiv., 1.5 mmol, 175 µL) were added to the reaction vessel. The vessel 

was sealed with a PTFE screw cap, brought out of the glove box and heated to 100 °C for 18 hours 

with stirring. The reaction mixture was cooled to room temperature, added to a separatory funnel, 

and diluted with an aqueous hydrochloric acid solution (1M, 30 mL) and ethyl acetate (25 mL). The 

organic layer was collected and the aqueous layer was washed with ethyl acetate (3 x 25 mL). The 

combined organic layers were washed with a saturated aqueous sodium bicarbonate solution (1 x 

50 mL) then a saturated aqueous sodium chloride solution (1 x 50 mL), dried over anhydrous 

sodium sulfate, and concentrated by rotary evaporation under reduced pressure. The products 

were recrystallized from hot chlorobenzene. (In exception to this procedure was the work-up of 

1h, as detailed below) 

 

2-(4-Methoxyphenyl)-1,2-Dihydronaphtho[2,3-e][1,2]-Azaborinine (4-MeO Ph BN 

Anthracene, 1a)  

Synthesized according to General Procedure A using potassium 4-

methoxyphenyltrifluoroborate (0.8 equiv., 1.5 mmol, 0.32 g). Yield 

0.11 g, 25%.  

δ H (400 MHz, CDCl3) 8.24 (1 H, d, J 11.7), 8.17 (1 H, s), 8.05 (1 H, s), 7.99 – 7.92 (3 

H, m), 7.88 (1 H, d, J 8.4), 7.73 (1 H, s), 7.50 (1 H, ddd, J 8.3, 
6.7, 1.3), 7.41 (1 H, ddd, J 8.0, 6.7, 1.2), 7.10 – 7.04 (2 H, m), 

3.92 (3 H, s). 

δ C (101 MHz, DMSO-d6) 160.99, 144.90, 139.20, 135.33, 132.98, 127.99, 127.97, 126.50, 

126.27, 126.13, 123.45, 113.59, 113.25, 54.97. 

δ B (128 MHz, CDCl3) 34.10. 

HRMS (EI)  [M]+ Calcd for C19H16BNO 285.1325; Found 285.13217. 

Melting Point 263.8 °C 
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2-(p-Tolyl)-1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (4-Me Ph BN Anthracene, 1b) 

Synthesized according to General Procedure A using potassium p-

tolyltrifluoroborate (0.8 equiv., 1.5 mmol, 0.30 g). Yield 0.077 g, 19%. 

δ H (400 MHz, CDCl3) 8.23 (1 H, d, J 11.6), 8.16 (1 H, s), 8.09 (1 H, s), 7.94 (1 H, d, J 
8.2), 7.88 (2 H, d, J 7.9), 7.89 – 7.82 (1 H, m), 7.72 (1 H, s), 7.48 

(1 H, ddd, J 8.2, 6.7, 1.3), 7.39 (1 H, ddd, J 8.1, 6.7, 1.2), 7.35 – 
7.27 (3 H, m), 2.43 (3 H, s). 

δ C (101 MHz, DMSO-d6) 145.14, 139.45, 139.10, 133.69, 132.97, 128.68, 128.05, 128.03, 
128.02, 126.56, 126.31, 126.19, 123.54, 113.45, 21.22. 

δ B (128 MHz, CDCl3) 34.84. 

HRMS (EI)  [M]+ Calcd for C19H16BN 269.1376; Found 269.13806. 

Melting Point 252.6 °C 

 

2-Phenyl-1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (4-H Ph BN Anthracene, 1c)  

Synthesized according to General Procedure A using potassium 

phenyltrifluoroborate (0.8 equiv., 1.5 mmol, 0.28 g). Yield 0.17 g, 44%. 

δ H (400 MHz, CDCl3) 8.26 (1 H, d, J 11.6), 8.18 (1 H, s), 8.13 (1 H, s), 8.01 – 7.84 (4 

H, m), 7.74 (1 H, s), 7.55 – 7.46 (4 H, m), 7.40 (1 H, ddd, J 8.1, 
6.7, 1.2), 7.29 (1 H, dd, J 11.7, 1.9). 

δ C (101 MHz, DMSO-d6) 145.34, 139.02, 133.59, 133.59, 130.28, 129.89, 128.11, 128.09, 

128.03, 127.96, 126.591, 126.35, 126.19, 123.60, 113.60. 

δ B (128 MHz, CDCl3) 34.62. 

HRMS (EI)  [M]+ Calcd for C18H14BN 255.1219; Found 255.12272. 

Melting Point 232.5 °C 
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2-(4-Fluorophenyl)-1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (4-F Ph BN 

Anthracene, 1d) 

Synthesized according to General Procedure A using potassium 4-

fluorophenyltrifluoroborate (0.8 equiv., 1.5 mmol, 0.30 g). Yield 0.22 g, 

54%. 

δ H (400 MHz, CDCl3) 8.25 (1 H, d, J 11.6), 8.17 (1 H, s), 8.06 (1 H, s), 7.98 – 7.91 (3 
H, m), 7.89 – 7.84 (1 H, m), 7.73 (1 H, s), 7.50 (1 H, ddd, J 8.2, 

6.7, 1.3), 7.40 (1 H, ddd, J 8.1, 6.7, 1.2), 7.26 – 7.16 (3 H, m). 

δ C (101 MHz, DMSO-d6) 164.20 (d, J 246.9), 145.88, 139.42, 136.50, 136.42, 133.46, 
128.62, 128.57, 128.50, 127.07, 126.85, 126.57, 124.11, 115.49, 

115.29, 114.02. 

δ B (128 MHz, CDCl3) 34.42. 

δ F (376 MHz, CDCl3) –110.75. 

HRMS (EI)  [M]+ Calcd for C18H13BFN 273.1125; Found 273.11224. 

Melting Point 247.1 °C 

 

2-(4-Chlorophenyl)-1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (4-Cl Ph BN 

Anthracene, 1e) 

Synthesized according to General Procedure A using potassium 4-

chlorophenyltrifluoroborate (0.8 equiv., 1.5 mmol, 0.33 g). Yield 0.30 g, 

70%. 

δ H (400 MHz, CDCl3) 8.26 (1 H, d, J 11.7), 8.18 (1 H, s), 8.09 (1 H, s), 7.95 (1 H, ddd, 

J 8.3, 1.4, 0.7), 7.91 – 7.84 (3 H, m), 7.74 (1 H, s), 7.54 – 7.45 
(3 H, m), 7.41 (1 H, ddd, J 8.1, 6.7, 1.2), 7.23 (1 H, dd, J 11.6, 

2.0). 

δ C (101 MHz, DMSO-d6) 145.59, 138.85, 135.46, 134.98, 132.99, 128.25, 128.15, 128.05, 

128.02, 126.64, 126.42, 126.14, 123.71, 113.68, 113.64. 

δ B (128 MHz, CDCl3) 34.31. 

HRMS (EI)  [M]+ Calcd for C18H13BClN 289.083; Found 289.08337. 
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Melting Point 254.7 °C 

 

2-(4-(Trifluoromethyl)Phenyl)-1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (4-CF3 Ph 

BN Anthracene, 1f) 

Synthesized according to General Procedure A using potassium 4-

(trifluoromethyl)phenyltrifluoroborate (0.8 equiv., 1.5 mmol, 0.38 g). 

Yield 0.22 g, 46%. 

δ H (400 MHz, CDCl3) 8.31 (1 H, d, J 11.6), 8.21 (1 H, d, J 1.0), 8.17 (1 H, s), 8.08 – 

8.02 (2 H, m), 7.99 – 7.94 (1 H, m), 7.92 – 7.86 (1 H, m), 7.78 
(1 H, s), 7.77 – 7.71 (2 H, m), 7.54 – 7.48 (1 H, m), 7.42 (1 H, 

ddd, J 8.1, 6.7, 1.2), 7.26 (1 H, dd, J 11.6, 2.0). 

δ C (101 MHz, DMSO-d6) 146.39, 139.17, 134.67, 133.47, 130.48, 130.16, 128.77, 128.72, 
128.54, 127.16, 126.95, 126.65, 126.28, 124.92, 124.88, 124.30, 

123.57, 114.37. 

δ B (128 MHz, CDCl3) 34.53. 

δ F (376 MHz, CDCl3) –62.76. 

HRMS (EI)  [M]+ Calcd for C19H13BF3N 323.1093; Found 323.10941. 

Melting Point 256.3 °C 

 

4-(Naphtho[2,3-e][1,2]Azaborinin-2(1H)-yl)Benzonitrile  (4-CN Ph BN Anthracene, 

1g)  

Synthesized according to General Procedure A using potassium 4- 

cyanophenyltrifluoroborate (0.8 equiv., 1.5 mmol, 0.31 g). Yield 0.062 g, 

15%.  

δ H (400 MHz, CDCl3) δ 8.36 – 8.28 (1 H, m), 8.21 (1 H, s), 8.16 (1 H, s), 8.04 – 7.99 

(2 H, m), 7.92 (2 H, ddtd, J 32.0, 8.4, 1.3, 0.8), 7.80 – 7.73 (3 H, 
m), 7.48 (2 H, dddd, J 34.5, 8.1, 6.7, 1.2), 7.22 (1 H, dd, J 11.6, 

2.0). 
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δ C (101 MHz, DMSO-d6) 146.01, 138.61, 134.18, 132.99, 131.44, 128.32, 128.28, 128.06, 

126.70, 126.50, 126.17, 123.88, 119.09, 113.95, 112.05. 

δ B (128 MHz, CDCl3) 34.06. 

HRMS (EI)  [M]+ Calcd for C19H13BN2 280.1172; Found 280.11689. 

Melting Point 239.2 °C 

 

2-(4-Nitrophenyl)-1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (4-NO2 Ph BN 

Anthracene, 1h)  

Synthesized according to General Procedure A using potassium 4-

nitrophenyltrifluoroborate (0.8 equiv., 1.5 mmol, 0.34 g) and an 

alternative workup procedure. Once the reaction was cooled to room 

temperature the reaction mixture was diluted with hexanes (100 mL) then filtered through a fritted 

funnel and washed with hexanes (10 mL). The product was eluted with dichloromethane (200 mL), 

washed with a saturated aqueous sodium chloride solution (1 x 50 mL), dried over magnesium 

sulfate, and concentrated by rotary evaporation under reduced pressure. The product was 

recrystallized from hot chlorobenzene.  Yield 0.27 g, 59%.  

δ H (400 MHz, CDCl3) 8.37 – 8.30 (3 H, m), 8.23 (1 H, s), 8.21 (1 H, s), 8.12 – 8.07 (2 
H, m), 8.00 – 7.86 (2 H, m), 7.80 (1 H, s), 7.48 (2 H, dddd, J 34.4, 

8.1, 6.7, 1.2), 7.25 (1 H, dd, J 11.8, 1.8). 

δ C (101 MHz, DMSO-d6) 148.38, 146.07, 138.58, 134.70, 133.00, 130.25, 128.36, 128.34, 

128.31, 128.06, 126.98, 126.71, 126.51, 126.16, 123.90, 122.50, 

122.48, 114.05. 

δ B (128 MHz, CDCl3) 34.26. 

HRMS (EI)  [M]+ Calcd for C18H13BN2O2 300.107; Found 300.10714. 

Melting Point 256.3 °C 
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I.2.2 Synthesis of Mes BN Anthracene 1i  

2-Mesityl-1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (Mes BN Anthracene, 1i) 

This procedure was adapted from Liu et al.119 

An oven dried 250 mL Schlenk flask equipped with a condenser and stir 

bar was cooled under vacuum and purged with argon. The flask was charged with 4 (1 equiv., 1.9 

mmol, 0.32 g). The reaction flask was purged and backfilled three times with argon. The solid was 

dissolved in toluene (40 mL) and the brown solution was cooled to −40 °C in an acetonitrile/dry 

ice bath.  

Separately, an oven dried 5 mL heart-shaped flask, purged and backfilled with argon three times, 

was cooled to −78 °C in an isopropanol/dry ice bath. The flask was charged with boron trichloride 

(1M in hexanes, 4 mL). The chilled boron trichloride (1 M in hexanes, 2 equiv., 3.8 mmol, 3.8 mL) 

was added dropwise, via syringe in two portions, to the chilled and stirred solution of 4. The 

reaction mixture stirred for 1 hour at −40 °C. While under a high positive pressure of argon and 

still cool, an oven-dried condenser was fit to the reaction flask, then the reaction mixture was 

brought to reflux (120 °C) for 18 hours.  

The reaction was cooled to room temperature and solvent removed under reduced pressure with 

stirring. Once dried, the flask was backfilled with argon and the condenser was replaced with a 

septum. The reaction mixture was redissolved in diethyl ether (40 mL) and cooled to −40 °C in an 

acetonitrile/dry ice bath. 2-Mesitylmagnesium bromide (1M in THF, 2 equiv., 3.8 mmol, 3.8 mL) 

was added dropwise via syringe to the cooled reaction mixture with stirring. Following addition, 

the solution was warmed to room temperature and allowed to stir under argon for 18 hours.  

The reaction was cooled to 0 °C in an ice water bath and water (10 mL) was added dropwise by 

syringe to quench excess Grignard reagent then the biphasic mixture was warmed to room 

temperature for 30 minutes. Ethyl acetate (15 mL) and water (10 mL) were added and the biphasic 

mixture transferred to a separatory funnel. The organic layer was collected. The aqueous layer was 
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extracted with ethyl acetate (3 x 15 mL) and the combined organic layers were washed with a 

saturated aqueous solution of sodium chloride and dried over sodium sulfate. Organic solvents 

were removed by rotary evaporation under reduced pressure then passed through a silica gel 

column, eluting with 50% dichloromethane in hexanes. The product fractions were collected, 

concentrated by rotary evaporation, and dried on vacuum overnight (yield 0.25 g, 46%).  

δ H (400 MHz, CDCl3) 8.22 (2 H, d, J 11.8), 7.97 (1 H, d, J 8.3), 7.86 (1 H, d, J 8.4), 
7.82 (1 H, s), 7.62 (1 H, s), 7.50 (1 H, ddd, J 8.2, 6.7, 1.3), 7.42 

(1 H, ddd, J 8.1, 6.7, 1.2), 6.97 (1 H, dd, J 11.5, 1.8), 6.94 (2 H, 

s), 2.36 (3 H, s), 2.26 (6 H, s). 

δ C (101 MHz, DMSO-d6) 144.42, 139.08, 138.95, 137.980, 136.33, 132.77, 131.00, 

128.15, 128.02, 126.85, 126.44, 126.33, 125.80, 123.51, 113.24, 
40.15, 39.94, 39.86, 39.73, 39.52, 39.40, 39.31, 39.10, 38.90, 

22.62, 20.83. 

δ B (128 MHz, CDCl3) 37.71. 

HRMS (EI)  [M]+ Calcd for C21H20BN 297.1689; Found 297.1689. 

 

I.2.3 Synthesis of BN Anthracene  

1,2-Dihydronaphtho[2,3-e][1,2]Azaborinine (BN Anthracene) 

BN anthracene was synthesized as reported by Liu et al.119 on a 2.0 mmol scale 

(yield 0.096 g, 27%). Characterization data matched the reported spectra. 

δ H (400 MHz, CDCl3) 8.25 – 8.12 (3 H, m), 7.94 (1 H, ddt, J 8.3, 1.4, 0.7), 7.89 – 7.84 

(1 H, m), 7.68 (1 H, s), 7.49 (1 H, ddd, J 8.3, 6.7, 1.3), 7.41 (1 

H, ddd, J 8.1, 6.7, 1.3), 6.98 (1 H, ddd, J 11.5, 2.5, 1.7). 

δ C (101 MHz, CDCl3) 144.97, 137.95, 133.15, 128.83, 128.81, 128.16, 126.56, 126.47, 

126.46, 123.91, 113.40. 

δ B (128 MHz, CDCl3) 32.87 (d, J 95.7). 

HRMS (EI)  [M]+ Calcd for C12H10BN 179.0906; Found 179.09095. 
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I.2.4 Synthesis of 2-Arylanthracenes 8a-c 

 

General Procedure B: This procedure was adapted from Yamashita et al.125 

An oven dried 100 mL Schlenk flask equipped with a condenser and stir bar was cooled under 

vacuum. The nitrogen-filled flask was charged with 2-chloroanthraquinone, 6, (1 equiv., 2.1 mmol, 

0.50 g), the appropriate arylboronic acid (1.5 equiv., 3.1 mmol), and 

tetrakis(triphenylphosphine)palladium(0) (4.5 mol%, 0.09 mmol, 0.11 g). The flask was purged 

and backfilled three times with argon. The solids were dissolved in toluene (10.3 mL) and an argon-

sparged aqueous solution of potassium carbonate (2 M, 4.1 mL) was added. The biphasic reaction 

mixture was heated to reflux (110 °C) with stirring under a positive pressure of argon for 14 hours.  

The reaction was cooled to room temperature and diluted with ethyl acetate (10 mL). The biphasic 

mixture was transferred to a separatory funnel and the organic layer was collected. The aqueous 

layer was washed with ethyl acetate (3 x 15 mL) and the combined organic layers were washed 

with a saturated aqueous sodium chloride solution then dried over sodium sulfate. The mixture 

was filtered and concentrated by rotary evaporation under reduced pressure. Products 7a-c were 

purified by dissolving in a minimal quantity of dichloromethane, passing through a silica plug and 

eluting with 50% dichloromethane in hexanes.  
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2-Phenylanthracene-9,10-Dione (7a) 

Synthesized according to General Procedure B using phenylboronic acid (1.5 

equiv., 3.1 mmol, 0.38 g). Yield 0.53 g, 91%.   

δ H (400 MHz, CDCl3) 8.46 (1 H, dd, J 1.9, 0.5), 8.33 – 8.24 (3 H, m), 7.96 (1 H, dd, J 
8.1, 2.0), 7.80 – 7.73 (2 H, m), 7.71 – 7.66 (2 H, m), 7.52 – 7.39 

(3 H, m). 

δ C (101 MHz, CDCl3) 183.13, 182.80, 146.77, 138.90, 134.17, 134.05, 133.86, 133.62, 

133.59, 132.32, 132.12, 129.17, 128.90, 128.04, 127.34, 127.28, 
127.21, 125.52. 

HRMS (EI)  [M]+ Calcd for C20H12O2 284.0837; Found 284.08341. 

 

2-(p-Tolyl)Anthracene-9,10-Dione (7b) 

Synthesized according to General Procedure B using 4-tolylboronic acid 

(1.5 equiv., 3.1 mmol, 0.42 g). Yield 0.61 g, 99%. 

δ H (400 MHz, CDCl3) 8.51 (1 H, dd, J 2.0, 0.5), 8.36 (0 H, d, J 0.5), 8.35 – 8.31 (3 H, 
m), 8.00 (1 H, dd, J 8.1, 2.0), 7.84 – 7.77 (2 H, m), 7.66 – 7.60 

(2 H, m), 7.35 – 7.29 (2 H, m), 2.43 (3 H, s). 

δ C (101 MHz, CDCl3) 183.41, 183.01, 146.91, 139.14, 136.13, 134.27, 134.13, 134.00, 
133.80, 133.75, 132.21, 132.02, 129.99, 128.15, 127.39, 127.32, 

127.28, 125.37, 21.37. 

HRMS (EI)  [M]+ Calcd for C21H14O2 298.0994; Found 298.09976. 

 

2-(4-Fluorophenyl)Anthracene-9,10-Dione (7c) 

Synthesized according to General Procedure B using 4-fluorophenylboronic 

acid (1.5 equiv., 3.1 mmol, 0.43 g). Yield 0.61 g, 98%.  

δ H (400 MHz, CDCl3) 8.46 (1 H, d, J 1.9), 8.35 (1 H, dd, J 8.1, 0.5), 8.34 – 8.29 (2 H, 

m), 7.95 (1 H, dd, J 8.1, 2.0), 7.84 – 7.78 (2 H, m), 7.73 – 7.66 
(2 H, m), 7.23 – 7.16 (2 H, m). 

δ C (101 MHz, CDCl3) 183.24, 182.88, 163.45 (d, J 249.1), 145.86, 135.19, 135.16, 

134.34, 134.20, 134.01, 133.70, 133.65, 132.24, 129.23, 128.23, 
127.40, 127.34, 125.44, 116.27 (d, J 21.6). 
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δ F (376 MHz, CDCl3) –112.81. 

HRMS (EI)  [M]+ Calcd for C20H11FO2 302.0743; Found 302.07418. 

 

General Procedure C: This procedure was adapted from Tao et al. 126 

An oven dried 100 mL Schlenk flask equipped with a stir bar and sealed with a rubber septum was 

cooled under vacuum. The flask was charged with lithium aluminum hydride (4 equiv., 4.4 mmol, 

0.17 g). The flask was purged and backfilled three times with argon and the LAH was suspended 

in THF (5.5 mL). The heterogeneous suspension was cooled to 0 °C in an ice water bath. The 

appropriate anthraquinone (1 equiv., 1.1 mmol) was dissolved in THF (8.8 mL) and added dropwise 

via syringe to the cooled lithium aluminum hydride suspension under a positive pressure of argon. 

The reaction mixture was allowed to stir for 1 hour at 0 °C, after which a second portion of lithium 

aluminum hydride (2 equiv., 2.2 mmol, 0.08 g) was added by quickly removing the septum, pouring 

in reagent, and resealing. The ice bath was removed and the reaction mixture was allowed to warm 

to room temperature and stirred for 2 hours.  

The reaction was quenched by cooling to 0 °C with an ice water bath, followed by opening the 

reaction to air and the very slow dropwise addition of an aqueous solution of hydrochloric acid (6M, 

5.5 mL) via syringe. The mixture was stirred 30 minutes at 0 °C then warmed to room temperature. 

The reaction mixture was diluted with dichloromethane (20 mL) and the biphasic mixture was 

transferred to a separatory funnel. The organic layer was collected and the aqueous layer was 

washed with dichloromethane (3 x10 mL). The combined organic layers were washed with a 

saturated aqueous sodium chloride solution and dried over sodium sulfate. After filtration, the 

organic solvents were removed by rotary evaporation under reduced pressure.  

The product mixture was subjected to the reduction conditions for a second time using the same 

procedure.  
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The desired product was obtained after purification by silica gel chromatography (40 g column) 

eluting with a 20% dichloromethane in hexanes,  

 

2-Phenylanthracene (4-H Ph Anthracene, 8a) 

Synthesized according to General Procedure C using 7a (1 equiv., 1.1 

mmol, 0.31 g). Yield 0.093 g, 33%.  

δ H (400 MHz, CDCl3) 8.48 (1 H, s), 8.45 (1 H, s), 8.21 (1 H, t, J 1.2), 8.12 – 8.07 (1 H, 

m), 8.05 – 7.99 (2 H, m), 7.78 (3 H, td, J 8.5, 1.7), 7.55 – 7.37 
(5 H, m). 

δ C (101 MHz, CDCl3) 141.18, 137.93, 132.19, 132.00, 131.94, 130.99, 129.04, 128.90, 
128.36, 128.29, 127.57, 127.57, 126.70, 126.15, 125.80, 125.67, 

125.63, 125.53. 

HRMS (EI)  [M]+ Calcd for C21H16 254.1096; Found 254.10991. 

Melting Point 213.6 °C 

 

2-(p-Tolyl)Anthracene (4-Me Ph Anthracene, 8b) 

Synthesized according to General Procedure C using 7b (1 equiv., 1.1 mmol, 

0.33 g). Yield 0.12 g, 40%.  

δ H (400 MHz, CDCl3) 8.48 – 8.42 (2 H, m), 8.19 (1 H, dq, J 1.6, 0.8), 8.08 (1 H, dq, J 
8.9, 0.8), 8.04 – 7.99 (2 H, m), 7.76 (1 H, dd, J 8.8, 1.8), 7.72 – 

7.66 (2 H, m), 7.50 – 7.44 (2 H, m), 7.36 – 7.30 (2 H, m), 2.44 
(3 H, s). 

δ C (101 MHz, CDCl3) 138.25, 137.83, 137.40, 132.16, 132.06, 131.84, 130.93, 129.76, 

128.80, 128.35, 128.26, 127.30, 126.56, 126.11, 125.67, 125.57, 
125.42, 125.33, 21.31. 

HRMS (EI)  [M]+ Calcd for C20H14 268.1252; Found 268.12554. 
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2-(4-Fluorophenyl)Anthracene (4-F Ph Anthracene, 8c) 

Synthesized according to General Procedure C using 7c (1 equiv., 1.1 

mmol, 0.33 g). Yield 0.040 g, 13%.  

δ H (400 MHz, CDCl3) 8.47 (1 H, s), 8.45 (1 H, s), 8.15 (1 H, d, J 1.7), 8.11 – 8.06 (1 H, 
m), 8.05 – 7.98 (2 H, m), 7.77 – 7.67 (3 H, m), 7.51 – 7.44 (2 H, 

m), 7.24 – 7.14 (2 H, m). 

δ C (101 MHz, CD2Cl2) 163.04 (d, J 246.2), 137.58 (d, J 3.3), 137.19, 132.58, 132.32, 

132.25, 131.21, 129.38, 129.30, 129.26, 128.58, 128.49, 126.90, 
126.41, 126.05, 125.93, 125.84, 125.83, 125.69, 116.12 (d, J 
21.7). 

δ F (376 MHz, CDCl3) –114.89. 

HRMS (EI)  [M]+ Calcd for C20H13F 272.1001; Found 272.10074. 

 

  



102 

I.3 Experimental Details for Chapter 3: BN 2-Vinylnaphthalene (BN2VN) and 

Polymers  

I.3.1 BN2VN Monomer Synthesis 

 

 

2-Aminostyrene (2) 

This reaction is adapted from Hoveyda et al.140 

An oven-dried 100 mL Schlenk flask equipped with a rare-earth2 stir bar, short path 

distillation head, and tared receiving flask was cooled under vacuum and backfilled with argon. To 

the Schlenk flask was added 2-aminophenethyl alcohol (1) (1 equiv., 15.0 g, 109 mmol) and 

potassium hydroxide pellets (1 equiv., 6.1 g, 109 mmol). The entire distillation apparatus was 

purged and backfilled three times with argon, then returned to vacuum and heated to 180 °C. As 

the potassium hydroxide begins to melt the reaction mixture changes color from brown/purple to 

green. With continued heating and applied vacuum (1.3 Torr) the clear product distils over (83-90 

°C) to the tared receiving flask which was ultimately sealed under argon with a septum and stored 

in the glove box for future use (yield 6.2 g, 63%). 

Note: Depending on the source of 2-aminophenethyl alcohol, there may be contamination with 

dimethyl sulfoxide (DMSO) which codistils with 2. DMSO may be removed with successive liquid-

liquid extractions with deionized water, however DMSO contamination showed no noticeable effect 

on subsequent reactions.  

δ H (400 MHz, CDCl3) 7.29 (1 H, ddt, J 7.7, 1.6, 0.5), 7.14 – 7.04 (1 H, m), 6.84 – 6.72 (2 
H, m), 6.69 (1 H, ddd, J 8.0, 1.2, 0.4), 5.64 (1 H, dd, J 17.4, 1.5), 

5.33 (1 H, dd, J 11.0, 1.5), 3.75 (2 H, s). δ C (101 MHz, CDCl3) 
143.77, 132.87, 128.85, 127.46, 124.22, 119.05, 116.20, 115.82. 

                                                
2 A stronger magnet provided better stirring (Fischer Scientific Catalogue No. 14-513-511).  
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δ C (101 MHz, CDCl3)  143.77, 132.87, 128.85, 127.46, 124.22, 119.05, 116.20, 115.82. 

HRMS (EI)  m/z [M]+ Calcd for C8H9N 119.0735; Found 119.07365. 

Data collected match published material on this compound,45,140 therefore no further spectra were 

obtained.  

 

Small Scale: 2-Vinyl-1,2-Dihydrobenzo[e][1,2]Azaborinine (BN2VN) 

This procedure was adapted from Molander et al.45 

An oven-dried 500 mL Schlenk flask equipped with a stir bar and septum sealed reflux condenser 

was charged with potassium vinyltrifluoroborate (1.1 equiv., 18.6 mmol, 2.49 g) and purged and 

backfilled three times with argon. 2 (1 equiv., 16.9 mmol, 2.01 g), toluene (75 mL), cyclopentyl 

methyl ether (CPME) (75 mL), triethylamine (1.5 equiv., 25.3 mmol, 3.5 mL), then silicon 

tetrachloride (1.1 equiv., 18.6 mmol, 2.1 mL) were added and the reaction mixture was heated to 

60 °C for 18 hours with stirring. The reaction mixture was cooled to room temperature, diluted 

with hexanes (100 mL), and passed through a plug of celite to remove solids, washing with hexanes 

(100 mL).  The eluent was collected and concentrated by rotary evaporation. The product was 

purified by silica gel chromatography, eluting with hexanes, then ramping to 10% dichloromethane 

in hexanes. Fractions were concentrated by rotary evaporation and dried on vacuum (for a limited 

time due to sublimation, usually ~ 5 hours) to yield a white solid which was stored in a glove box 

freezer (-20 °C) for future use (yield 2.3 g, 88%).  

Note: A 40% reduction in amount of toluene and CPME used led to only minor decreases in yield. 

This is advantageous for large scale reactions (2, >2 g), however vigorous stirring is needed to 

allow the reaction to become homogeneous after addition of silicon tetrachloride. Pure 2 can also 

be isolated by sublimation at room temperature and 1.3 Torr, following celite filtration. 

δ H (400 MHz, CD2Cl2) 8.09 (1 H, d, J 11.5), 7.92 (1 H, s), 7.66 (1 H, ddt, J 7.8, 1.3, 0.6), 

7.45 (1 H, ddd, J 8.4, 7.1, 1.5), 7.29 (1 H, ddt, J 8.1, 1.3, 0.6), 
7.22 (1 H, ddd, J 7.9, 7.1, 1.2), 7.12 (1 H, dd, J 11.5, 2.0), 6.56 
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(1 H, dd, J 19.6, 13.3), 6.31 (1 H, dd, J 19.7, 3.7), 6.11 (1 H, dd, 

J 13.6, 3.5). 

δ C (101 MHz, CD2Cl2) 145.46, 140.61, 132.63, 129.86, 128.82, 126.33, 121.52, 118.66. 

(βcarbon shift is 132 ppm, determined by DEPT 135 in CDCl3.) 

δ B (128 MHz, CD2Cl2) 32.45. 

HRMS (EI)  m/z [M]+ Calcd for C10H10BN 155.0906; Found 155.09057. 

Anal. Found: C, 77.4; H, 6.4; N, 9.1. Calc. for C10H10BN: C, 77.5; H, 6.5; 

N, 9.0. 

Melting point:  66 °C. 

 

Large Scale: 2-Vinyl-1,2-Dihydrobenzo[e][1,2]Azaborinine (BN2VN) 

This procedure was adapted from Klausen et al.35  

An oven-dried 1 L Schlenk flask equipped with a stir bar and septum sealed reflux 

condenser was charged with potassium vinyltrifluoroborate (1.1 equiv., 86.4 mmol, 11.57 g) and 

purged and backfilled three times with argon. 2-Vinylanaline  (1 equiv., 78.5 mmol, 9.36 g), toluene 

(208 mL), cyclopentyl methyl ether (CPME) (208 mL), triethylamine (1.5 equiv., 117.8 mmol, 16.5 

mL), then silicon tetrachloride (1.1 equiv., 86.4 mmol, 9.9 mL) were added and the reaction mixture 

was heated to 60 °C for 18 hours with stirring under a positive pressure of argon. The reaction 

mixture was cooled to room temperature, diluted with hexanes (200 mL), and passed through a 

plug of silica to remove solids, washing with 25% dichloromethane in hexanes (300 mL).  The 

eluent was collected and concentrated by rotary evaporation. The product was purified by silica 

gel chromatography, eluting with hexanes, then ramping to 10% dichloromethane in hexanes. 

Fractions were concentrated by rotary evaporation, transferred to a tared scintillation vial, and 

placed on the Schlenk line to dry under reduced pressure (for a limited time due to sublimation, 

usually ~ 5 hours) to yield a white solid which was stored in a glove box freezer (-20 °C) for future 

use (yield 10.5 g, 86%). 

δ H (400 MHz, CD2Cl2) 8.05 (1H, d, J 11.6), 7.91 (1H, s), 7.62 (1H, ddq, J 7.8, 1.3, 0.6), 

7.42 (1H, ddd, J 8.4, 7.1, 1.5), 7.28 (1H, ddt, J 8.2, 1.2, 0.6), 7.17 
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(1H, ddd, J 7.8, 7.1, 1.2), 7.05 (1H, dd, J 11.6, 2.0), 6.51 (1H, dd, J 
19.6, 13.3), 6.24 (1H, dd, J 19.6, 3.7), 6.04 (1H, dd, J 13.1, 3.7). 

δ B (128 MHz, CD2Cl2) 32.45. 

Data collected match published material on this compound35 therefore no further spectra were 

obtained.  
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I.3.2 BN2VN Polymerization 

 

PBN2VN39 (Toluene Polymerization) 

An oven-dried 15 mL heavy walled cylindrical pressure vessel equipped with a rare-earth3 stir bar 

was brought into the glove box and charged with BN2VN (17.9 mmol, 2.77 g), toluene (2.7 mL), 

and AIBN (0.2 M in toluene, 3 mol%, 0.54 mmol, 2.7 mL). The pressure vessel was tightly sealed 

with a Teflon cap, brought out of the glove box, wrapped in aluminum foil, and heated (in a pre-

heated pie plate) to 70 °C for 24 hours with vigorous stirring. Polymerization was quenched by 

opening the reaction flask in air and immediately pipetting the solution into a beaker of methanol 

(200 mL). Over the course of 30 minutes the polymer precipitated from solution and was isolated 

by filtering off the methanol solution through a plug of celite. Collected polymer was washed with 

additional methanol (150 mL), then eluted with toluene (250 mL) into an empty round bottom 

flask. The toluene polymer solution was concentrated by rotary evaporation (to ~ 6 mL) and once 

again precipitated into methanol (200 mL). The second precipitation yielded a more powdery 

precipitate, which was filtered over a plug of celite, washed with methanol (150 mL), and then 

eluted with dichloromethane (200 mL) into an empty round bottom flask. The polymer solution 

was concentrated by rotary evaporation, divided among tared scintillation vials (3) for storage, 

concentrated by rotary evaporation, and then finally dried in a vacuum oven for about 36 hours at 

85 °C (yield 2.04 g, 74%). 

δ H (400 MHz, CD2Cl2) 8.30 – 5.46(7 H, m), 2.39 – 0.43 (3 H, m). 

δ C (101 MHz, CD2Cl2) 143.82, 140.13, 129.16, 127.89, 125.23, 120.42, 117.73. 

                                                
3 A stronger magnet provided better stirring (Fischer Scientific Catalogue No. 14-513-511). 
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δ B (128 MHz, CD2Cl2) 32.8 (br). 

Anal. Found: C, 77.1; H, 6.2; N, 9.1. Calc. for C10H10BN: C, 77.5; H. 6.5; 

N, 9.0. 

 

PBN2VN57 (Neat Polymerization) 

An oven-dried 2-5 mL microwave vial equipped with a small stir bar was brought into the glove 

box and charged with BN2VN (2 mmol, 310.1 mg) and AIBN (1 mol%, 3.3 mg). The microwave 

vial was crimped with an aluminum/PTFE/silicone septum seal, brought out of the glove box, 

wrapped in aluminum foil, and heated (in a pre-heated pie plate) to 85 °C for 72 hours with 

vigorous stirring. Polymerization was quenched by opening the microwave vial in air, dissolving the 

solid polymer in dichloromethane (10 mL), and immediately pipetting the solution into a beaker of 

methanol (30 mL). Over the course of 30 minutes the polymer precipitated from solution and was 

isolated by filtering off the methanol solution through a plug of celite. Collected polymer was 

washed with additional methanol (20 mL) then eluted with dichloromethane (20 mL) into an empty 

round bottom flask. The dichloromethane polymer solution was concentrated by rotary 

evaporation, re-dissolved in dichloromethane (5 mL), and once again precipitated into methanol 

(30 mL). The second precipitation yielded a more powdery precipitate, which was filtered over a 

plug of celite, washed with methanol (20 mL), and then eluted with dichloromethane (20 mL) into 

an empty round bottom flask. The polymer solution was concentrated by rotary evaporation, 

transferred to a tared scintillation vial for storage, dried on the Schenk line for about 30 min, and 

then finally dried in a vacuum oven for about 36 hours at 85 °C (yield 119.5 mg, 39%).  

 

Note: Due to the readiness of BN2VN to evaporate and condense at elevated temperatures in the 

absence of solvent, some monomer amassed at the top of the microwave vial (below, left). In 

order to limit characterization to the bulk polymer, the microwave vial was inverted and the top 

two thirds of the microwave vial was rinsed with dichloromethane (below, right). Potential for non-
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representative polymerization above the bulk is possible due to splashing of the less viscous 

reaction mixture during early stages of polymerization.  

δ H (400 MHz, CD2Cl2) 8.19 – 5.43 (6 H, m), 2.56 – 0.32 (3 H, m). 

 

Figure I.1. Image of bulk polymerization reaction vessel. Left: condensed monomer appears at 

top of vial and bulk material at bottom. Right: Bulk reaction after removing condensed monomer. 
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I.4 Experimental Details for Chapter 4: BN2VN and 2-Vinylnaphthalene (2VN) 

Copolymers  

I.4.1 Copolymerization of BN2VN and 2VN 

 

General Procedure D: An oven-dried 15 mL heavy walled cylindrical pressure vessel equipped 

with a small stir bar was brought into the glove box and charged with the appropriate monomer(s) 

(2 mmol total), toluene (0.3 mL), and AIBN (0.2 M in toluene, 3 mol%, 0.06 mmol, 0.3 mL). The 

pressure vessel was tightly sealed with a Teflon cap, brought out of the glove box, wrapped in 

aluminum foil, and heated (in a pre-heated pie plate) to 70 °C for 24 hours with vigorous stirring. 

Polymerization was quenched by opening the reaction flask in air and immediately pipetting the 

solution into a beaker of methanol (30 mL). Over the course of 30 minutes the polymer precipitated 

from solution and was isolated by filtering off the methanol solution through a plug of celite. 

Collected polymer was washed with additional methanol (20 mL), then eluted with toluene (20 mL) 

into an empty round bottom flask. The toluene polymer solution was concentrated by rotary 

evaporation, re-dissolved in toluene (5 mL), and once again precipitated into methanol (30 mL). 

The second precipitation yielded a more powdery precipitate, which was filtered over a plug of 

celite, washed with methanol (20 mL), and then eluted with dichloromethane (20 mL) into an 

empty round bottom flask. The polymer solution was concentrated by rotary evaporation, 
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transferred to a tared scintillation vial for storage, dried on the Schenk line for about 30 min, and 

then finally dried in a vacuum oven for about 36 hours at 85 °C.  

 

PBN2VN39 

Synthesized according to General Procedure D using BN2VN (2 mmol, 309.9 mg) (yield 178.1 mg, 

58%). 

δ H (400 MHz, CD2Cl2) 8.17 – 5.43 (5 H, m), 2.26 – 0.46 (3 H, m). 

δ C (101 MHz, CD2Cl2) 144.26, 140.44, 129.67, 128.40, 125.73, 120.92, 118.21. 

δ B (128 MHz, CD2Cl2) 31.2 (br). 

Anal. Found: C, 77.1; H, 6.2; N, 9.1. Calc. for C10H10BN: C, 77.5; H, 6.5; 
N, 9.0. 

 

P(BN2VN74-co-2VN26) 

Synthesized according to General Procedure D using BN2VN (1.6 mmol, 248.7 mg) and 2VN (0.4 

mmol, 61.6 mg) (yield 167.6 mg, 54%). 

δ H (400 MHz, CD2Cl2) 8.32 – 6.04 (6 H, m), 3.13 – 0.21 (3 H, m). 

δ C (101 MHz, CD2Cl2) 144.38, 140.41, 133.91, 132.64, 129.62, 127.97, 125.72, 120.93, 
118.18. 

δ B (128 MHz, CD2Cl2) 33.1 (br). 

Anal. Found: C, 81.0; H, 6.7; N, 6.8. Calc. for [C10H10BN]0.74[C12H10]0.26: 

C, 81.6; H. 6.5; N, 6.7. 

 

P(BN2VN49-co-2VN51) 

Synthesized according to General Procedure D using BN2VN (1 mmol, 156.1 mg) and 2VN (1 

mmol, 154.2 mg) (yield 190.5 mg, 61%). 
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δ H (400 MHz, CD2Cl2) 8.07 – 6.37 (6 H, m), 2.38 – 0.39 (3 H, m). 

δ C (101 MHz, CD2Cl2) 144.20, 139.81, 133.39, 132.14, 129.13, 127.52, 127.37, 126.60, 

125.67, 125.29, 125.00, 120.50, 117.72, 40.90. 

δ B (128 MHz, CD2Cl2) 33.2 (br). 

Anal. Found: C, 85.6; H, 6.2; N, 3.6. Calc. for [C10H10BN]0.49[C12H10]0.51: 
C, 85.6; H. 6.5; N, 4.4. 

 

P(BN2VN9-co-2VN91) 

Synthesized according to General Procedure D using BN2VN (0.4 mmol, 61.9 mg) and 2VN (1.6 

mmol, 245.6 mg) (yield 171.1 mg, 56%). 

δ H (400 MHz, CD2Cl2) 7.95 – 6.12 (7 H, m), 2.26 – 1.22 (3 H, m). 

δ C (101 MHz, CD2Cl2) 142.88, 133.85, 132.59, 127.99, 127.79, 127.23, 126.14, 125.78, 
125.44, 41.16. 

δ B (128 MHz, CD2Cl2) 34.5 (br). 

Anal. Found: C, 91.0; H, 6.0; N, 0.71. Calc. for [C10H10BN]0.09[C12H10]0.91: 
C, 92.0; H. 6.5; N, 0.81. 

 

P2VN54  

Synthesized according to General Procedure D using 2VN (2 mmol, 308.4 mg) (yield 271.0 mg, 

88%). 

δ H (400 MHz, CD2Cl2) 8.07 – 6.18 (7 H, m), 2.54 – 1.38 (3 H, m). 

δ C (101 MHz, CD2Cl2) 143.49, 142.98, 133.90, 132.63, 128.03, 127.85, 127.20, 126.14, 

125.48, 41.19. 

Anal. Found: C, 92.3; H, 6.2; N, 0.12. Calc. for C12H10: C, 93.5; H. 6.5. 

Found nitrogen incorporation likely reflects AIBN end groups. 
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I.5 Experimental Details for Chapter 5: BN2VN and Styrene Copolymers 

I.5.1 Copolymerization of BN2VN and Styrene 

 

General Procedure E: An oven-dried 2-5 mL microwave reaction vial equipped with a small stir 

bar was brought into a nitrogen filled glove box and charged with the appropriate monomer(s) (10 

mmol total) and AIBN (1 mol%, 0.1 mmol, 16 mg). The microwave vial was capped with an 

aluminum and Teflon seal, brought out of the glove box, wrapped in aluminum foil, and heated (in 

a pre-heated pie plate) to 70 °C for 24 hours with vigorous stirring. Polymerization was quenched 

by opening the reaction flask in air, dissolving in dichloromethane (5 x 5 mL), and immediately 

pipetting the solution into a beaker of methanol (200 mL). Over the course of 20 minutes the 

polymer precipitated from solution and was isolated by filtering off the methanol solution through 

a medium fritted funnel. Collected polymer was washed with additional methanol (100 mL), then 

eluted with dichloromethane (35 mL) into an empty round bottom flask. The dichloromethane-

polymer solution was once again precipitated into methanol (200 mL). The second precipitation 

yielded a more powdery precipitate, which was filtered through a medium fritted funnel, washed 

with methanol (100 mL), and then transferred to a tared scintillation vial for storage, dried on the 

Schenk line for about 30 min, and then finally dried in a vacuum oven for about 36 hours at 60 °C.  
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PBN2VN132 

Synthesized according to General Procedure E using BN2VN (10 mmol, 1.55 g) to yield a white 

powder (yield 1.17 g, 75%). 

δ H (400 MHz, CD2Cl2) 8.23-5.57 (7 H, m), 2.54-0.14 (3 H, m). 

δ C (101 MHz, CD2Cl2) 143.78, 139.93, 129.11, 127.77, 125.25, 120.40, 117.66, 38.28, 
29.92. 

δ B (128 MHz, CD2Cl2) 28.89 (br). 

FTIR (KBr, thin film) 3381 (m), 3008 (w), 2885 (m), 2836 (m), 1613 (m), 1562 (m), 1437 

(s), 807 (m), 761 (s) cm-1. 

Anal. Found: C, 77.09; H, 6.44; N, 8.91. Calc. for C10H12BN: C, 76.49; H, 

7.70; N, 8.92. 

 

P(BN2VN127-co-S141) 

Synthesized according to General Procedure E using BN2VN (5 mmol, 780 mg) and styrene (5 

mmol, 520 mg) to yield a white powder (yield 1.12 g, 87%). 

δ H (400 MHz, CD2Cl2) 8.11-6.08 (6 H, m), 2.71-0.48 (3 H, m). 

δ C (101 MHz, CD2Cl2) 146.10, 144.00, 139.93, 129.15, 127.98, 125.65, 120.47, 117.82, 

42.38, 40.63, 27.78, 25.71. 

δ B (128 MHz, CD2Cl2) 31.78 (br). 

FTIR (KBr, thin film) 3374 (w), 3025 (m), 2910 (m), 2844 (w), 1614 (m), 1562 (s), 1438 
(s), 806 (m), 761 (s), 700 (s), 667 (w) cm-1. 

Anal. Found: C, 83.46; H, 6.95; N, 5.07. Calc. for 
C10H12BN(0.47)+C8H8(0.53): C, 84.85; H, 7.72; N, 4.19. 

 

P(BN2VN87-co-S236) 

Synthesized according to General Procedure E using BN2VN (2.5 mmol, 390 mg) and styrene (7.5 

mmol, 780 mg) to yield a white powder (yield 1.01 g, 86%). 

δ H (400 MHz, CD2Cl2) 8.01-6.09 (6 H, m), 2.42-0.44 (3 H, m). 
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δ C (101 MHz, CD2Cl2) 145.47, 144.17, 139.86, 129.08, 127.93, 125.65, 120.41, 117.80, 

42.13, 40.45. 

δ B (128 MHz, CD2Cl2) 39.13 (br). 

FTIR (KBr, thin film) 3373 (w), 3025 (m), 2920 (m), 2847 (w), 1614 (m), 1562 (m), 1493 

(m), 1439 (m), 8078 (w), 761 (m), 699 (s), 667 (w) cm-1. 

Anal. Found: C, 87.47; H, 7.34; N, 2.71. Calc. for 
C10H12BN(0.27)+C8H8(0.73): C, 88.00; H, 7.73; N, 2.41. 

 

P(BN2VN32-co-S332) 

Synthesized according to General Procedure E using BN2VN (1 mmol, 160 mg) and styrene (9 

mmol, 940 mg) to yield a white powder (yield 970 mg, 89%). 

δ H (400 MHz, CD2Cl2) 7.99-6.25 (5 H, m), 2.43-0.42 (3 H, m). 

δ C (101 MHz, CD2Cl2) 145.48, 144.15, 139.87, 129.09, 128.01, 125.68, 120.42, 117.82, 
44.45, 42.12, 40.48. 

δ B (128 MHz, CD2Cl2) 37.87 (br). 

FTIR (KBr, thin film) 3059 (w), 3026 (m), 2923 (m), 2849 (w), 1600 (m), 1561 (m), 1451 
(m), 760 (m), 699 (s), 667 (w) cm-1. 

Anal. Found: C, 90.55; H, 7.47; N, 1.14. Calc. for 

C10H12BN(0.09)+C8H8(0.91): C, 90.84; H, 7.74; N, 0.80. 

 

PS313 

Synthesized according to General Procedure E using styrene (10 mmol, 1.05 g) to yield a white 

powder (yield 990 mg, 95%). 

δ H (400 MHz, CD2Cl2) 7.48-6.08 (5 H, m), 2.46-0.82 (3 H, m). 

δ C (101 MHz, CD2Cl2) 146.23, 145.85, 128.46, 128.06, 126.09, 44.54, 40.81. 

FTIR (KBr, thin film) 3026 (m), 2924 (m), 2850 (w), 1601 (w), 1493 (m), 1452 (m), 756 

(m), 699 (s) cm-1. 

Anal. Found: C, 92.20; H, 7.68; N, < 0.02. Calc. for C8H8: C, 92.26; H, 

7.74; N, 0.00. 
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General Procedure F: An oven-dried 2-5 mL microwave reaction vial equipped with a small stir 

bar was brought into a nitrogen filled glove box and charged with the appropriate monomer(s) (10 

mmol total), AIBN (1 mol%, 0.1 mmol, 16 mg), and toluene (1 mL, [monomer]=10 M). The 

microwave vial was capped with an aluminum and Teflon seal, brought out of the glove box, 

wrapped in aluminum foil, and heated (in a pre-heated pie plate) to 70 °C for 24 hours with 

vigorous stirring. Polymerization was quenched by opening the reaction flask in air, dissolving in 

dichloromethane (2 x 5 mL), and immediately pipetting the solution into a beaker of methanol (200 

mL). Over the course of 20 minutes the polymer precipitated from solution and was isolated by 

filtering off the methanol solution through a medium fritted funnel. Collected polymer was washed 

with additional methanol (100 mL), then eluted with dichloromethane (25 mL) into an empty round 

bottom flask. The dichloromethane-polymer solution was once again precipitated into methanol 

(200 mL). The second precipitation yielded a more powdery precipitate, which was filtered through 

a medium fritted funnel, washed with methanol (100 mL), and then transferred to a tared 

scintillation vial for storage, dried on the Schenk line for about 30 min, and then finally dried in a 

vacuum oven for about 36 hours at 60 °C.  

 

P(BN2VN48-co-S51) 

Synthesized according to General Procedure F using BN2VN (5 mmol, 780 mg) and styrene (5 

mmol, 520 mg) to yield a white powder (yield 860 mg, 66%). 

δ H (400 MHz, CD2Cl2) 8.04-6.03 (5 H, m), 2.56-0.39 (3 H, m). 

δ C (101 MHz, CD2Cl2) 145.87, 143.96, 139.82, 129.04, 127.86, 125.43, 120.36, 117.72, 

53.98, 42.46, 40.35. 

δ B (128 MHz, CD2Cl2) 36.80 (br). 

FTIR (KBr, thin film) 3373 (w), 3025 (m), 2915 (m), 2846 (w), 1614 (m), 1562 (m), 1439 
(s), 807 (m), 761 (s), 700 (s), 667 (w) cm-1. 

Anal. Found: C, 85.1; H, 7.09; N, 4.43. Calc. for 

C10H12BN(0.48)+C8H8(0.52): C, 84.69; H, 7.72; N, 4.28. 
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P(BN2VN32-co-S92) 

Synthesized according to General Procedure F using BN2VN (2.5 mmol, 390 mg) and styrene (7.5 

mmol, 790 mg) to yield a white powder (yield 860 mg, 73%). 

δ H (400 MHz, CD2Cl2) 8.06-6.13 (5 H, m), 2.74-0.41 (3 H, m). 

δ C (101 MHz, CD2Cl2) 145.44, 144.17, 139.80, 129.06, 127.92, 125.57, 120.38, 117.78, 
117.74, 42.47, 40.41. 

δ B (128 MHz, CD2Cl2) 37.84 (br). 

FTIR (KBr, thin film) 3371 (w), 3026 (m), 2921 (m), 2848 (w), 1614 (m), 1562 (m), 1493 

(m), 1450 (m), 807 (w), 761 (m), 669 (s), 667 (w) cm-1. 

Anal. Found: C, 88.24; H, 7.37; N, 2.21. Calc. for 

C10H12BN(0.26)+C8H8(0.74): C, 88.16; H, 7.73; N, 2.32. 

 

P(BN2VN14-co-S119) 

Synthesized according to General Procedure F using BN2VN (1 mmol, 160 mg) and styrene (9 

mmol, 940 mg) to yield a white powder (yield 840 mg, 77%). 

δ H (400 MHz, CD2Cl2) 8.16-6.24 (5 H, m), 2.79-0.50 (3 H, m). 

δ C (101 MHz, CD2Cl2) 145.46, 144.22, 139.87, 127.99, 125.70, 120.50, 117.75, 44.40, 

40.41. 

δ B (128 MHz, CD2Cl2) 35.77 (br). 

FTIR (KBr, thin film) 3026 (m), 2923 (m), 2849 (w), 1600 (w), 1561 (m), 1493 (m), 1451 
(m), 1028 (w), 760 (m), 699 (s), 667 (w) cm-1. 

Anal. Found: C, 90.51; H, 7.62; N, 0.94. Calc. for 
C10H12BN(0.11)+C8H8(0.89): C, 90.53; H, 7.74; N, 0.98. 

 

PS129 

Synthesized according to General Procedure F using styrene (10 mmol, 1.04 g) to yield a white 

powder (yield 850 mg, 81%). 

δ H (400 MHz, CD2Cl2) 7.54-6.21 (5 H, m), 2.78-0.79 (3 H, m). 
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δ C (101 MHz, CD2Cl2) 145.85, 128.40, 126.10, 44.79, 40.81. 

FTIR (KBr, thin film) 3026 (m), 2924 (m), 2850 (w), 1601(w), 1493 (m), 1452 (m), 756 

(m), 699 (s) cm-1. 

Anal. Found: C, 91.89; H, 7.89; N, < 0.02. Calc. for C8H8: C, 92.26; H, 

7.74; N, 0.00. 
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I.6 Experimental Details for Chapter 6: Polymer Side Chain BN Oxidation  

I.6.1 Small Molecule Oxidation Study 

 

Potassium Phenethyltrifluoroborate 

This reaction is adapted from Aggarwal et al.215 

To a 50 mL round bottom flask was added phenethylboronic acid (1 equiv., 456 

mg, 3 mmol) and methanol (10 mL). Aqueous potassium hydrogen fluoride solution (4.5 M, 1.5 

equiv., 2 mL, 9 mmol) was added dropwise to the methanol solution while swirling the reaction 

flask. The reaction flask was attached to the rotary evaporator and allowed to spin (without applied 

vacuum) in a 30 °C water bath for 30 minutes.  After 30 minutes the water bath temperature was 

raised to 50 °C and vacuum was applied to remove the water/methanol azeotrope by rotary 

evaporation. Once dry, methanol (6 mL) and DI water (3-6 mL) was added to re-dissolve the 

reaction mixture followed by continued rotary evaporation to dryness; this was repeated a total of 

4 times. After the final rotary evaporation, the reaction was placed on the Schlenk line to dry under 

reduced pressure, overnight. The following day the product was triturated away from insoluble 

salts with dry acetone (8 mL, then 3 x 2 mL), filtering the acetone solution through a cotton tipped 

pipette. The acetone solution was concentrated by rotary evaporation, transferred to a tared 

scintillation vial, and then placed on the Schlenk line to dry under reduced pressure to yield a white 

solid (yield 549 mg, 85%). 

δ H (400 MHz, CD3CN) 7.24 – 7.18 (4H, m), 7.10 – 7.05 (1H, m), 2.53 – 2.48 (2H, m), 0.49 
– 0.30 (2H, m). 

δ C (101 MHz, CD3CN)  149.52, 128.95, 128.92, 125.48, 106.06, 33.17, 33.14. 

δ B (128 MHz, CD3CN) 5.18, 4.68. 
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δ F (282 MHz, CD3CN) -140.44, -140.72, -140.91. 

HRMS (EI)  HRMS (EI) m/z: [M-KF]+ Calcd for C8H9BF2 154.0765; Found 

154.07666. 

Anal. Found: C, 44.86; H, 3.97; N, < 0.02. Calc. for C8H9BF3K: C, 45.31; 

H, 4.28; N, 0.00. 

  

2-Phenethyl-1,2-Dihydrobenzo[e][1,2]Azaborinine (1) 

This procedure was adapted from Klausen et al.35  

An oven-dried 100 mL Schlenk flask equipped with a stir bar and septum 

sealed reflux condenser was charged with potassium phenethyltrifluoroborate (1.1 equiv., 2.9 

mmol, 604 mg) and purged and backfilled three times with argon. 2-Vinylanaline (1 equiv., 2.6 

mmol, 309 mg), toluene (11.4 mL), cyclopentyl methyl ether (CPME) (11.4 mL), triethylamine (1.5 

equiv., 3.9 mmol, 0.54 mL), then silicon tetrachloride (1.1 equiv., 2.9 mmol, 0.33 mL) were added 

and the reaction mixture was heated to 60 °C for 16 hours with stirring under a positive pressure 

of argon. The reaction mixture was cooled to room temperature, diluted with hexanes (10 mL), 

and passed through a plug of silica to remove solids, washing with 20% dichloromethane in 

hexanes (150 mL).  The eluent was collected and concentrated by rotary evaporation. The product 

was purified by silica gel chromatography, eluting with hexanes, then ramping to 10% 

dichloromethane in hexanes. Fractions were concentrated by rotary evaporation, transferred to a 

tared scintillation vial, and placed on the Schlenk line to dry under reduced pressure to yield a 

while solid that was stored in the glove box for future use (yield 503 mg, 83%).  

δ H (400 MHz, CD2Cl2) 7.98 (1H, d, J 11.5), 7.77 (1H, s), 7.64 – 7.57 (1H, m), 7.39 (1H, 

ddd, J 8.5, 7.1, 1.5), 7.28 (4H, d, J 4.7), 7.24 – 7.12 (3H, m), 6.88 
(1H, dd, J 11.5, 2.0), 3.00 – 2.91 (2H, m), 1.68 – 1.61 (2H, m). 

δ C (101 MHz, CD2Cl2) 145.46, 144.64, 140.54, 129.62, 128.66, 128.43, 128.42, 125.85, 

121.05, 118.20, 32.25. 

δ B (128 MHz, CD2Cl2) 37.74. 

HRMS (EI)  HRMS (EI) m/z: [M]+ Calcd for C16H16BN 233.1376; Found 

233.13713. 
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Anal. Found: C, 82.23; H, 6.66; N, 5.90. Calc. for C16H16BN: C, 82.44; H, 

6.92; N, 6.01. 

Melting point:  97 °C 

 

Oxidation of 2-Phenethyl-1,2-Dihydrobenzo[e][1,2]Azaborinine (1) 

A two-dram vial equipped with a stir bar was added 1 (1 equiv., 0.2 mmol, 

50 mg), tetrahydrofuran (THF) (2.0 mL), ethanol (EtOH) (0.5 mL), and 

aqueous sodium hydroxide (3 N, 1.0 mL). The stirred reaction mixture was cooled to 0 °C in an ice 

bath and aqueous hydrogen peroxide (30%, 1.0 mL) was added dropwise. The reaction mixture 

was allowed to stir at 0 °C for 10 minutes then decanted into a separatory funnel filled with aqueous 

saturated sodium chloride (5 mL), and the vial rinsed with diethyl ether (3 mL) into the separatory 

funnel.  The organic layer was collected, dried with magnesium sulfate, concentrated by rotary 

evaporation, and then connected to the Schlenk line to dry under reduced pressure (for a limited 

time due to sublimation of indole and evaporation of phenethyl alcohol, 45 minutes) to yield a 

white solid suspended in a clear oil. 

δ H (400 MHz, CD2Cl2) 8.36 (1H, s), 7.65 (1H, dd, J 7.9, 1.2), 7.44 – 7.40 (1H, m), 7.38 – 

7.28 (2H, m), 7.27 – 7.21 (5H, m), 7.20 – 7.17 (1H, m), 7.14 – 7.09 

(1H, m), 3.84 (2H, t, J 6.6), 2.86 (2H, t, J 6.6), 1.68 (1H, s). 

Indole: 8.36 (1H, s), 7.65 (1H, dd, J 7.9, 1.2), 7.44 – 7.40 (1H, m), 

7.38 – 7.28 (2H, m), 7.20 – 7.17 (1H, m), 7.14 – 7.09 (1H, m). 

Phenethyl Alcohol: 7.27 – 7.21 (5H, m), 3.84 (2H, t, J 6.6), 2.86 (2H, 

t, J 6.6), 1.68 (1H, s). 

Data collected match authentic samples of these materials, therefore no further spectra were 

obtained.  
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I.6.2 Polymer Oxidation Study 

 

General Procedure G: 200 mg of polymer was added to a 100 mL round bottom flask fit with a 

stir bar and dissolved in THF (25 mL). To this was added ethanol (5 mL) and aqueous sodium 

hydroxide (6 N, 5 mL), followed by the dropwise addition of aqueous hydrogen peroxide (30%, 

10 mL) at room temperature. The reaction was allowed to stir in air for 30 minutes, then topped 

with an open topped reflux condenser and heated to 65 °C for 15 hours. The reaction mixture 

was allowed to cool to room temperature, then precipitated into deionized water (100 mL) in a 

500 mL round bottom flask. Volatile organic solvents were removed by rotary evaporation and 

the precipitated polymer was filtered through a medium fritted funnel, then washed with excess 

deionized water. The polymer was eluted with dichloromethane (20 mL) into a small round 

bottom flask, then this solution was added to methanol (100-200 mL). The methanol solution 

was concentrated and brought to dryness by rotary evaporation, to facilitate the removal of 

borates. The dry polymer was dissolved in dichloromethane (~ 5 mL), transferred to a tared 

scintillation vial, concentrated by rotary evaporation, and then dried in a vacuum oven at 85 °C 

for 16 hours.  

 

Oxy. P(BN2VN127-co-S141) 

Synthesized according to General Procedure G using P(BN2VN127-co-S141) (200 mg) to yield an 

off white solid (yield 52.7 mg). 

δ H (400 MHz, CD2Cl2) 7.56-6.22 (5 H, m), 4.10-0.33 (5 H, m). 
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δ C (101 MHz, CD2Cl2) 145.65, 128.49, 126.25, 44.96, 41.05. 

FTIR (KBr, thin film) 3359 (w), 3383 (br), 3060 (m), 3026 (m), 2926 (m), 2851 (m), 1601 

(m), 1493 (m), 1452 (m), 1029 (m), 760 (m), 700 (s) cm-1. 

Anal. Found: C, 84.79; H, 7.9; N, 0.31. Calc. for C2H4O(0.47)+C8H8(0.53): 

C, 74.5269; H, 8.4027; N, 0.00. 

 

Oxy. P(BN2VN87-co-S236) 

Synthesized according to General Procedure G using P(BN2VN87-co-S236) (200 mg) to yield a 

white solid (yield 156 mg). 

δ H (400 MHz, CD2Cl2) 7.37-6.33 (5 H, m), 3.66-0.42 (4 H, m). 

δ C (101 MHz, CD2Cl2) 145.28, 128.09, 125.71, 67.25, 44.43, 40.56. 

FTIR (KBr, thin film) 3579 (w), 3428 (br), 3026 (m), 2925 (m), 2851 (w), 1601 (w), 1493 
(m), 1452 (m), 1029 (w), 758 (m), 699 (s) cm-1. 

Anal. Found: C, 88.77; H, 7.29; N, 0.46. Calc. for C2H4O(0.27)+C8H8(0.75): 
C, 82.07; H, 8.12; N, 0.00. 

 

Oxy. P(BN2VN32-co-S332) 

Synthesized according to General Procedure G using P(BN2VN32-co-S332) 

 (200 mg) to yield a white solid (yield 156 mg). 

δ H (400 MHz, CD2Cl2) 7.35-6.21 (5 H, m), 3.14-0.44 (3 H, m). 

δ C (101 MHz, CD2Cl2) 145.32, 128.04, 125.68, 44.37, 40.39. 

FTIR (KBr, thin film) 3583 (w), 3439 (w), 3026 (m), 2924 (m), 2850 (w), 1601 (w), 1493 

(m), 1452 (m), 1028 (w), 758 (m), 699 (s) cm-1. 

Anal. Found: C, 90.28; H, 7.85; N, 0.19. Calc. for C2H4O(0.09)+C8H8(0.91): 

C, 88.86; H, 7.87; N, 0.00. 

 

Oxy. PS313 
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Synthesized according to General Procedure G using PS313 (200 mg) to yield a white solid (yield 

148.2 mg, 74%). 

δ H (400 MHz, CD2Cl2) 7.32-63.23 (5 H, m), 2.51-0.76 (3 H, m). 

δ C (101 MHz, CD2Cl2) 145.41, 128.02, 125.66, 44.14, 40.40. 

FTIR (KBr, thin film) 3026 (m), 2923 (m), 2850 (w), 1601 (w), 1493 (m), 1452 (m), 1028 
(w), 756 (m), 699 (s) cm-1. 

Anal. Found: C, 88.16; H, 7.37; N, < 0.02. Calc. for C8H8: C, 92.26; H, 
7.74; N, 0.00. 

 

Oxy. P(BN2VN48-co-S51) 

Synthesized according to General Procedure G using P(BN2VN48-co-S51) (200 mg) to yield an off 

white solid (yield 55 mg). 

δ H (400 MHz, CD2Cl2) 7.59-6.16 (5 H, m), 4.14-0.12 (6 H, m). 

δ C (101 MHz, CD2Cl2) 145.59, 128.51, 126.31, 67.69, 44.73, 41.11. 

FTIR (KBr, thin film) 3557 (w), 3384 (br), 3026 (m), 2927 (m), 1601 (w), 1493 (m), 1452 

(m), 1068 (m), 760 (m), 700 (s) cm-1. 

Anal. Found: C, 83.67; H, 8.05; N, 0.35. Calc. for C2H4O(0.5)+C8H8(0.5): 

C, 74.1496; H, 8.4168; N, 0.00. 

 

Oxy. P(BN2VN32-co-S92) 

Synthesized according to General Procedure G using P(BN2VN32-co-S92) (200 mg) to yield a 

white solid (yield 121 mg). 

δ H (400 MHz, CD2Cl2) 7.46-6.25 (5 H, m), 3.55-0.42 (4 H, m). 

δ C (101 MHz, CD2Cl2) 145.38, 128.06, 125.68, 67.20, 44.06, 40.42. 

FTIR (KBr, thin film) 3580 (w), 3426 (w), 3026 (m), 2925 (m), 2851 (w), 1601 (w), 1493 

(m), 1452 (m), 1029 (w), 759 (m), 699 (s) cm-1. 

Anal. Found: C, 87.85; H, 7.73; N, 0.35. Calc. for C2H4O(0.25)+C8H8(0.75): 
C, 82.45; H, 8.10; N, 0.00. 
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Oxy. P(BN2VN14-co-S119) 

Synthesized according to General Procedure G using P(BN2VN14-co-S119) (200 mg) to yield a 

white solid (yield 185 mg). 

δ H (400 MHz, CD2Cl2) 7.54-6.22 (5 H, m), 3.10-0.39 (3 H, m). 

δ C (101 MHz, CD2Cl2) 145.33, 128.05, 125.69, 67.24, 44.39, 40.39. 

FTIR (KBr, thin film) 3587 (w), 3448 (w), 3026 (m), 2925 (m), 2851 (m), 1601 (m), 1493 

(m), 1452 (m), 1029 (m), 758 (m), 699 (s) cm-1. 

Anal. Found: C, 90.9; H, 6.07; N, 0.33. Calc. for C2H4O(0.1)+C8H8(0.9): C, 

88.11; H, 7.90; N, 0.00. 

 

Oxy. PS129 

Synthesized according to General Procedure G using PS129 (200 mg) to yield a white solid (yield 

172 mg, 86%). 

δ H (400 MHz, CD2Cl2) 7.54-6.26 (5 H, m), 2.49-0.79 (3 H, m). 

δ C (101 MHz, CD2Cl2) 145.34, 127.98, 125.68, 44.43, 40.38. 

FTIR (KBr, thin film) 3026 (m), 2924 (m), 2850 (m), 1601 (m), 1493 (m), 1452 (m), 1028 

(m), 756 (m), 699 (s) cm-1. 

Anal. Found: C, 91.58; H, 7.53; N, < 0.02. Calc. for C8H8: C, 92.26; H, 
7.74; N, 0.00. 
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I.7 Experimental Details for Chapter 7: Reactivity Ratios of BN2VN and Styrene 

I.7.1 Low Conversion BN2VN and Styrene Copolymerization 

 

General Procedure H: Stock solutions of St and BN2VN (3.00 M in toluene) and AIBN (31.2 

mg/mL in toluene) were prepared. In a nitrogen atmosphere glove box, monomers (10.00 mmol 

total) and AIBN (0.095 mmol) were added to microwave reaction vials and vials were sealed. The 

sealed vials were heated in a pre-heated pie plate at 70 °C for 45 minutes with vigorous stirring. 

Upon opening to air, solutions were immediately transferred to a beaker of methanol (80 mL). The 

microwave vial was rinsed with dichloromethane (2 x 1 mL) and rinsates added to the methanol. 

Precipitated polymer was isolated by filtration through a thin pad of Celite (~3-5 mm), washed 

with methanol (10 mL), then eluted with dichloromethane (2 x 5 mL). Methanol precipitation was 

repeated a second time. The purified polymer was dried in a vacuum oven for about 18 hours at 

85 °C.  
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P(BN2VN4-co-S103) 

Synthesized according to the General Procedure H using BN2VN (0.33 mL, 1.00 mmol) and St (3.00 

mL, 9.00 mmol) to yield a white powder (yield 67.3 mg, 6.2%).  

δ H (400 MHz, CD2Cl2) 8.01-6.18 (br, 4.83 H), 2.77-0.44 (br, 3.00 H). 

FTIR (KBr, thin film) 3060 (m), 3026 (m), 2924 (m), 2850 (w), 1601 (w), 1560 (w), 
1493 (m), 1452 (m), 1028 (w), 759 (m), 698 (s), 541 (w) cm-1. 

 

P(BN2VN10-co-S86) 

Synthesized according to the General Procedure H using BN2VN (0.667 mL, 2.00 mmol) and St 

(2.67 mL, 8.00 mmol) to yield a white powder (yield 74.6 mg, 6.5%).  

δ H (400 MHz, CD2Cl2) 8.02-6.15 (br, 4.87 H), 2.80-0.34 (br, 3.00 H). 

FTIR (KBr, thin film) 3059 (w), 3025 (m), 2923 (m), 2849 (w), 1615 (m), 1562 (m), 
1493 (m), 1452 (m), 806 (w), 760 (m), 689 (s), 541 (w) cm-1. 

 

P(BN2VN15-co-S81) 

Synthesized according to the General Procedure H using BN2VN (1.00 mL, 3.00 mmol) and St (2.33 

mL, 7.00 mmol) to yield a white powder (yield 62.2 mg, 5.2%). 

δ H (400 MHz, CD2Cl2) 8.01-6.06 (br, 4.99 H), 2.75-0.45 (br, 3.00 H). 

FTIR (KBr, thin film) 3059 (w), 3025 (m), 2923 (br), 2848 (w), 1615 (m), 1598 (m), 
1563 (m), 1493 (m), 1452 (m), 761 (m), 698 (s) cm-1. 

 

P(BN2VN20-co-S70) 

Synthesized according to the General Procedure H using BN2VN (1.33 mL, 4.00 mmol) and St (2.00 

mL, 6.00 mmol) to yield a white powder (yield 66.5 mg, 5.3%). 

δ H (400 MHz, CD2Cl2) 8.01-6.05 (br, 5.03 H), 2.79-0.39 (br, 3.00 H). 
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FTIR (KBr, thin film) 3059 (w), 3025 (m), 2920 (br), 2847 (w), 1614 (m), 1597 (w), 

1563 (m), 1493 (m), 1452 (m), 1439 (m), 806 (w), 761 (m), 698 
(s) cm-1. 

 

P(BN2VN25-co-S61) 

Synthesized according to the General Procedure H using BN2VN (1.67 mL, 5.00 mmol) and St (1.67 

mL, 5.00 mmol) to yield a white powder (yield 63.8 mg, 4.9%).  

δ H (400 MHz, CD2Cl2) 8.04-6.08 (br, 5.13 H), 2.84-0.39 (br, 3.00 H). 

FTIR (KBr, thin film) 3372 (br), 3059 (w), 3025 (m), 2918 (br), 2847 (w), 1614 (m), 
1596 (w), 1562 (m), 1540 (w), 1493 (m), 1452 (m), 1438 (m), 

1387 (w), 1345 (w), 1137 (m), 806 (m), 761 (s), 699 (s), 458 (m) 
cm-1. 

 

P(BN2VN32-co-S46) 

Synthesized according to the General Procedure H using BN2VN (2.00 mL, 6.00 mmol) and St (1.33 

mL, 4.00 mmol) to yield a white powder (yield 63.7 mg, 4.7%).  

δ H (400 MHz, CD2Cl2) 8.11-5.90 (br, 5.28 H), 2.79-0.36 (br, 3.00 H). 

FTIR (KBr, thin film) 3373 (br), 3058 (w), 3025 (m), 2915 (br), 2845 (w), 1614 (m), 
1596 (m), 1562 (s), 1493 (m), 1451 (m), 1439 (m), 806 (m), 760 

(s), 699 (s), 458 (m) cm-1. 

 

P(BN2VN38-co-S35) 

Synthesized according to the General Procedure H using BN2VN (2.33 mL, 7.00 mmol) and St (1.00 

mL, 3.00 mmol) to yield a white powder (yield 47.6 mg, 3.4%).  

δ H (400 MHz, CD2Cl2) 8.03-6.10 (br, 5.40 H), 2.60-0.38 (br, 3.00 H). 

FTIR (KBr, thin film) 3373 (br), 3025 (m), 2911 (br), 2844 (w), 1614 (s), 1596 (m), 

1562 (s), 1493 (m), 1438 (s), 1137 (w), 806 (m), 760 (s), 700 (s), 

458 (m) cm-1. 
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P(BN2VN41-co-S20) 

Synthesized according to the General Procedure H using BN2VN (2.67 mL, 8.00 mmol) and St 

(0.667 mL, 2.00 mmol) to yield a white powder (yield 55.7 mg, 3.8%).  

δ H (400 MHz, CD2Cl2) 8.10-5.95 (br, 5.55 H), 2.66-0.33 (br, 3.00 H). 

FTIR (KBr, thin film) 3375 (br), 3024 (m), 2903 (br), 2842 (m), 1614 (s), 1597 (m), 
1562 (s), 1492 (m), 1472 (m), 1439 (s), 1136 (m), 806 (m), 761 

(s), 700 (m), 459 (m) cm-1. 

 

P(BN2VN39-co-S11) 

Synthesized according to the General Procedure H using BN2VN (3.00 mL, 9.00 mmol) and St 

(0.333 mL, 1.00 mmol) to yield a white powder (yield 57.9 mg, 3.9%).  

δ H (400 MHz, CD2Cl2) 8.07-5.87 (br, 6.58 H), 2.50-0.30 (br, 3.00 H). 

FTIR (KBr, thin film) 3375 (br), 3024 (w), 2897 (br), 2841 (m), 1614 (s), 1596 (m), 

1562 (s), 1474 (m), 1438 (s), 1136 (m), 806 (m), 760 (s), 700 (m), 
458 (m) cm-1. 
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