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Abstract 
Infrared (IR) thermography is a valuable quantitative diagnostic tool that allows for 

non-invasive, accurate measurement of skin temperature variations in the presence of a 

lesion. Modeling the underlying thermal and physiological processes within the body offers 

excellent potential for improving the thermographic measurement system design and 

developing more exact, quantitative assessment criteria. Using computational modeling 

and infrared imaging experiments, this dissertation investigates the thermal signatures of 

lesions of varying geometrical and physiological characteristics. 

We first performed a comprehensive sensitivity analysis of the computed skin 

temperatures in order to understand the relationships between healthy skin temperatures 

and the underlying thermophysical processes and tissue properties. These functional 

relationships provide a foundation for interpreting steady state and transient thermal 

signatures of skin lesions. We developed a computational thermal model for a heel deep 

tissue injury (DTI) to allow for an early thermographic detection and assessment capability 

for DTIs. The DTI models were used to develop thermographic measurement strategies 

and quantitative staging criteria that can be employed in a clinical setting. We analyzed the 

infrared images of various vascular tumors and pigmented skin lesions acquired from 

patient studies, using the combined white light-infrared image processing approaches. Our 

quantitative thermal analysis of lesions of different physiological characteristics, sizes, 

locations and depths will facilitate quantitative assessment and interpretation of other skin 

lesion thermographic images. A better understanding of the thermal behavior of skin 
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lesions, gained using computational modeling and infrared imaging experiments in this 

study, can contribute to the advanced use of quantitative infrared imaging in medical 

diagnostic applications. 
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radially outwards). 𝐶𝐶𝑎𝑎𝑏𝑏 ∗= 𝑎𝑎 ∗ 2 + 𝑏𝑏 ∗ 2; the polar coordinate ℎ ∗ shows color hue (ℎ ∗=

0 for red, ℎ ∗= 90°  for yellow etc.) with ℎ𝑎𝑎𝑏𝑏 ∗= tan − 1𝑏𝑏 ∗ 𝑎𝑎 ∗. ................................ 102 
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Chapter 1 Introduction 

1.1 Background 

The association between abnormal body surface temperature and disease has long 

been recognized in medicine [1]. Medical thermometers were introduced in the 17th 

century, however, the association between elevated body temperature and fever was 

recognized much earlier by the early physicians [1, 2].  A skin lesion (a tumor or an injury 

of the skin or the underlying tissue) changes the surrounding tissue temperature that may 

cause the skin surface temperature to increase or decrease, thereby leading to a thermal 

signature associated with that lesion [3]. The abnormality in tissue temperature may be due 

to abnormal blood flow and metabolic activity associated with the lesion, or abnormal 

vessel morphology and lack of homeostasis control, or due to a host of other physiological 

processes such as inflammation, ischemia, etc. [4]. The spatial and temporal variations of 

skin temperature can be measured accurately and non-invasively at high resolution using 

modern infrared (IR) imaging cameras [4, 5]. This temperature measurement capability has 

led to considerable efforts into using IR imaging for medical diagnostics and assessment 

purposes [6]. However, the lack of insights into the underlying thermal and physiological 

processes in the tissue can lead to ambiguous or inaccurate interpretations and diagnosis, 

which is one of the reasons for IR imaging being avoided or underutilized in the clinic. To 

address this challenge, this dissertation aims to improve the understanding of how skin 

temperature is influenced by the thermal and physiological processes within the underlying 
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tissue layers and apply this knowledge to enhance the thermographic detection and 

assessment capability for a variety of skin lesions and subcutaneous lesions.   

Skin is the largest organ of the human body and it exhibits a heterogeneous 

multilayered physiological and thermal structure [7]. To model skin temperature, the 

superficial 10-20 mm thick tissue, encompassing the lesion and the surrounding healthy 

tissue, is considered as the region of interest in this study [8]. Depending on lesion location, 

size and the clinical application, a larger region of interest can be easily accommodated 

using the methodology described in the dissertation. This region consists of an avascular 

epidermis layer, a highly vascularized dermis layer and a subcutaneous region comprising 

of the fat, muscle and bone layers. The transport of heat from deep tissue to the skin surface 

is maintained by thermal conduction coupled with complex physiological processes such 

as blood flow (perfusion) and metabolism (heat generation) [4]. Therefore, the relevant 

thermophysical properties and physiological parameters for heat transport within tissue 

layers are: thermal conductivity, density, specific heat, blood perfusion rate (net rate of 

heat transport between tissue and flowing blood), metabolic heat generation rate 

(volumetric heat generation rate due to tissue metabolism). Each layer is described by a 

different set of the aforementioned properties, making tissue a complex thermal system. 

The physiological variations among different body locations and individuals [8-12] add 

further complexity to the mathematical description of the system, as these variations could 

potentially affect interpretations of the thermal model and the diagnostic accuracy or.  

The objectives of this dissertation are threefold. The first aim is to conduct a 

sensitivity analysis of skin temperatures, with respect to the thermophysical properties 

affecting skin temperature, computed using the thermal model of healthy tissue. In order 
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to reduce model complexity and gain increased understanding of the biophysical system of 

the skin, we model and quantify the effects of different thermophysical parameters on the 

healthy skin temperature, identify important parameters of the model and test the variability 

of healthy skin temperature to changes in the most important inputs. These functional 

relationships will serve as a foundation for the understanding of measurement 

uncertainties, interpreting thermal signatures of skin lesions and improving the IR 

measurement system design for skin lesion diagnosis.  

 Infrared (IR) thermography is a valuable quantitative diagnostic tool that allows for 

non-invasive, accurate measurement of skin temperature variations in the presence of a lesion 

[5]. An IR camera detects the electromagnetic radiation emitted from a surface (skin) in the 

infrared region of the spectrum (0.7-1000µm wavelength range) [4] and transforms the 

measured signal into a 2D greyscale image. The corresponding color-coded temperature 

map of the surface is obtained by using appropriate calibration [13]. Over the last two 

decades, IR imaging technology has dramatically improved due to the advances in IR 

camera instrumentation, such as the introduction of focal plane arrays, new coolant 

materials and uncooled detectors, as well as the use of computer vision and image 

processing algorithms for IR image analysis [14]. IR imaging can be performed passively 

(to measure steady state temperature) or actively (to measure the transient thermal response 

of the skin to an external forcing such as heating or cooling) [15]. The technological 

advances in instrumentation led to a considerable amount of effort focused on using IR 

imaging in medical diagnostics and assessment, during the past decade [6]. IR imaging was 

used for the assessment of arthritis [6], peripheral neuropathy [16-19], vascular disorders 

[20], wound healing [21], thermoregulation [22], diagnosis of skin tumors [15, 20, 23-26], 
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burns [27], shoulder impingement syndrome [28] and evaluation and monitoring of flap 

surgery [29].   

The second aim of this dissertation is to facilitate IR imaging based early detection 

capability for deep tissue injuries (DTIs), which are serious pressure injuries of the skin 

and the underlying tissue [30]. Early detection of DTIs is necessary to reduce mortality and 

morbidity among pressure ulcer patients and decrease financial and human burdens 

associated with these injuries [31, 32]. Early detection of DTIs is challenging because the 

injury starts to develop in the deep tissue layers and may remain invisible to the naked eye 

until substantial damage to the underlying tissue has already occurred [33]. While 

researchers have been attempting to develop thermographic techniques for the assessment of 

pressure injuries for almost four decades, they faced challenges associated with seemingly 

inconsistent skin temperature data (thermal signatures showed both skin temperature increase 

and decrease) that they could not explain [34]. The computational thermal models of DTI 

developed in this dissertation account for the pathophysiological processes associated with DTI 

damage, and they are extremely useful by allowing to gain insights into the seemingly 

inconsistent thermal signatures reported in previous studies. In addition to this, modeling skin 

temperature changes associated with DTIs provides data necessary for the design of an IR 

imaging measurement system for quantitative, objective detection and characterization of DTIs 

in early stages.  

The third and final aim of this dissertation is to initiate a catalog of thermal and 

color signatures of skin lesions. A systematic catalog of IR and white light images of 

different lesions encountered in clinical practice would provide an invaluable training tool 

for clinicians using IR imaging in practice.  Current methods for assessment of lesion color 
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rely on the subjective color and appearance interpretation of clinicians [35, 36]. In this 

study, we introduce objective, digital image processing tools for the analysis of lesion 

color. Clinical IR image analysis tools are needed for quantitative assessment of growth 

and regression of lesions and evaluation of treatment response for long term monitoring 

and evaluation. Current IR image analysis approaches for assessment of vascular tumors 

suffer from subjective interpretation and reliance on single point measurements [20, 26, 

37, 38]. Single point measurements only provide reference values for large lesions such as 

infantile hemangiomas, which exhibit significant temperature variations across the lesion. 

These variations can be associated with pathophysiological processes within the lesion and 

single point measurements are ineffective for lesions that demonstrate rapid changes in size 

and vascularity over the course of their lifecycle [39]. A collection of thermal signatures 

would serve as a reference database for the studies attempting to use quantitative infrared 

imaging for evaluation and assessment of skin lesions. This dissertation contributes to the 

catalog of thermal signatures by including IR and white light images of infantile 

hemangioma, port-wine stain, venous malformation, junctional dysplastic nevus, and 

compound dysplastic nevus.  

1.2 Organization of the thesis 

Using computational thermal modeling and quantitative infrared imaging, we 

address the aforementioned aims organized in the following chapters   

Chapter 2: Sensitivity analysis of healthy skin temperature  

The goal of this chapter is to better understand the behavior of the steady state skin 

temperature and the transient thermal response of skin to cooling. We performed a 
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comprehensive sensitivity analysis to quantify the relationships between healthy skin 

temperature and the parameters of the underlying tissue layers. The analysis provides a 

basis for interpreting the steady state and transient thermal signatures of skin lesions as 

well as an insight into the magnitude of possible temperature variations caused by the 

uncertainties in property data and their impact on measurement uncertainties in clinical 

applications of IR imaging. A systematic analysis of the transient thermal response to skin 

cooling with respect to the skin layers and their properties is invaluable to applications of 

dynamic IR imaging and the development of sensitive quantitative IR diagnostic 

techniques.   

Chapter 3: Heat transfer model for deep tissue injuries (DTIs) – a step towards an early 

thermographic diagnostic capability 

In order to explain the inconsistent temperature findings associated with DTIs in 

prior studies and to advance the use of IR imaging for early DTI detection and 

characterization, we developed a computational thermal model of a heel DTI. The model 

accounts for the pathophysiological processes during tissue damage and can explain the 

diverse thermal signatures of DTIs observed in prior thermographic studies. Using our 

model, based on both computed results and clinical observations, we introduced new and 

more accurate clinical thermal staging for DTI lesions. This novel staging can serve as a 

means to evaluate the severity of the DTI injury and determine management strategies for 

the injury. Additionally, our thermal model, coupled with inverse reconstruction 

techniques, demonstrated the feasibility of using IR imaging for estimating the depth, size 

and blood perfusion rate of DTIs.  
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Chapter 4: Quantitative assessment of infantile hemangioma using combined infrared and 

white-light imaging  

The research objective is to analyze the steady state thermal signatures and color 

signatures of infantile hemangioma lesions obtained from infrared and white light images 

acquired from patient studies. We quantitatively assessed the extent of subcutaneous 

involvement for different morphological types of infantile hemangiomas (superficial, deep 

and mixed); interpreted the thermal signatures in terms of their vascular activity during 

proliferation, plateau and involution phases; quantified the color differences by comparing 

the color of the hemangioma lesion with the surrounding healthy skin color; and developed 

a dimensionless temperature difference formulation for comparing IR images captured at 

different times during longitudinal studies. 

Chapter 5: Thermal signatures of skin lesions  

The aim of this chapter is to provide an atlas of thermal signatures of vascular and 

pigmented skin lesions. We selected lesions varying in physiological characteristics, sizes 

and depths. The collection will facilitate the analysis and interpretation of other vascular 

anomalies, pigmented lesions and soft tissue injuries. 

Chapter 6:  Conclusions  

This chapter summarizes the knowledge and experience gained from previous 

chapters and addresses the prospects of quantitative infrared imaging for the assessment 

and evaluation of skin lesions.  
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Chapter 2 Sensitivity analysis of  

healthy skin temperature  

Overview 

The aim of this chapter is to perform a comprehensive sensitivity analysis of healthy 

skin temperature with respect to tissue thermophysical properties and layer thicknesses. 

With a focus on medical applications of infrared imaging, our analysis includes sensitivities 

of both steady state skin temperature and the dynamic thermal recovery of the skin from a 

cooling excitation. In section 2.1, we introduce sensitivity analysis as a tool to address the 

model response to variation of input parameters. Prior sensitivity analysis studies for 

bioheat transfer models are reviewed in section 2.1. In section 2.2, we first develop the 

mathematical model for simulating skin temperatures during steady state, cooling and 

subsequent thermal recovery. Next, we use the computed skin temperatures to evaluate the 

sensitivities. Computed results for skin temperature sensitivities to relevant tissue 

parameters are discussed for the steady state and transient cases in section 2.3.  

The key contributions from this portion of this study are: (1) insights into the 

thermal behavior of the skin during steady state and transient thermal recovery from a 

cooling excitation and the relationships between healthy skin temperatures and 

thermophysical properties and thicknesses of tissue layers, (2) insights into why transient 

thermal recovery of skin from a cooling excitation is a better indicator of the underlying 

physiology compared to steady state skin temperature, (3) identification of the most 

important and least important tissue properties for skin temperature assessment, (4) 
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improved insight into the impact of uncertainties in thermophysical properties on surface 

temperature distributions to help assess the uncertainties in data interpretation.   

2.1 Introduction 
Heat transfer in living tissue and skin tissue is a complex process. The heat 

exchange between the skin surface and the underlying tissue takes place through the 

combined effects of thermal diffusion, blood perfusion, metabolic heat generation and 

thermal interactions between the skin and its surroundings [4]. A deviation from the normal 

physiological functioning, caused by a disease or an injury, is accompanied by changes in 

body temperature, which can also affect the temperature of the skin [40]. For example, 

deep tissue injury lesions that exhibit tissue ischemia cause skin temperature decrease [34]. 

Malignant melanoma lesions require increased blood supply to the lesion that causes skin 

temperature increase [41]. A better understanding of the relationships between skin surface 

temperatures and associated physiological variables can provide insights into the complex 

thermal behavior of the skin and serve as the foundation for the interpretation of thermal 

images captured in a clinical setting.  

The analysis of spatial and temporal distribution of the skin tissue temperature is 

central to thermal diagnostic applications of infrared imaging and thermal treatments 

involving skin tissue [3, 42, 43]. Computational thermal models are a convenient means to 

study the thermal behavior of the biophysical system of the skin and develop understanding 

of the thermal behavior of skin in the presence of a tumor or an injury. For example, heat 

transfer models of hyperthermia can provide detailed understanding of the thermal 

response of the tumor and the surrounding healthy skin to local thermo-stimulation, in 

order to develop criteria for effective thermal dose delivery [44-46]. Similarly, thermal 
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models of lesions are used to develop IR image based diagnostic and assessment criteria 

for lesions [8, 41].  

 Skin tissue has a heterogeneous multilayered structure [7]. The thermophysical 

properties vary within tissue layers, from one body location to another and from one 

individual to another [7, 9, 11, 47]. The skin layer thicknesses also show location-

dependent variations [7, 47]. Additionally, accurate property data for some locations may 

not be available, as measurements of thermophysical properties of the human tissue are 

difficult to perform [11, 12] and property values can exhibit individual variations. In most 

of the thermal models involving the skin, the computational domain is represented as a 

multilayered structure, in which each layer is characterized by average data for 

thermophysical properties and thicknesses. The thermal characteristics of each layer 

contribute to the heat transport process and other physiological processes associated with 

blood flow and metabolic heat generation. Owing to the heterogeneous tissue structure and 

non-uniform tissue properties, the skin temperature depends on a large number of 

thermophysical parameters, which we will call input parameters in the sensitivity analysis. 

The uncertainties in the input parameters (due to individual or physiological variations or 

errors in measurement data) add further complexity to the model, as they could potentially 

affect the accuracy of  diagnosis/interpretations of the thermal model. In order to reduce 

model complexity and gain an understanding of the thermal behavior of healthy skin tissue, 

we modeled and quantified the effects of different input variables on the healthy skin 

temperature, identified important input variables of the thermal model of the skin and tested 

the variability of healthy skin temperature to variations in the most significant inputs.  
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The manner in which a model output depends on the input parameter values can be 

studied using sensitivity analysis, which is a tool widely used in various disciplines, 

including control engineering [48], chemistry [49, 50] and environmental modeling [51]. 

The nature of the sensitivity analysis can be global (where model behavior is addressed for 

wide ranges of inputs) or local (where attention is focused on behavior near a specific point 

in the parameter space or a nominal operating point) [52]. Local parametric sensitivities 

are easier to compute, have a relatively low computational cost and can be compared across 

different parameters [52].  

Using the local measure, the sensitivity of a model output 𝑌𝑌  to a parameter 𝑥𝑥1 is 

the rate of change of 𝑌𝑌 with respect to 𝑥𝑥1, expressed mathematically as 𝑑𝑑𝑌𝑌 𝑑𝑑𝑥𝑥1⁄ . Local 

sensitivity analysis can be used to (1) establish quantitative relationships between a model 

output (skin surface temperature) and an uncertain input, (2) address model behavior with 

respect to these inputs and (3) identify the most sensitive or important input parameters of 

the model [49, 53]. The local, partial derivative based sensitivity measures can be 

computed using the direct method (where the differential equations for the sensitivities are 

solved simultaneously with the model) or by applying the one-factor-at-a time (OAT) 

method (where the sensitivities are obtained from the computed model output using finite 

difference approximations) [49]. In this study, we used the OAT method to perform 

sensitivity analysis with respect to thermophysical properties and thicknesses of tissue 

layers for steady state skin temperature as well as for the dynamic thermal response of the 

skin to a cooling excitation.   

Some form of sensitivity analysis has been performed on bioheat transfer models 

prior to this study for optimizing thermal treatment processes [46, 54-56], identifying 
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important parameters for burn injuries [10, 57-59] and improving thermographic diagnosis 

of lesions [41, 60]. Skin tissue exhibits a complex thermal process that involves many 

tissue layers and their thermal and physiological characteristics. However, prior studies 

addressed the influence of only a subset of these characteristics in their models. Some 

studies used global methods such as analysis of variance (anova), however they did not 

address the variations in thermophysical properties in individual layers of the tissue. Using 

the Taguchi design of experiments, Jamil and Ng [46] demonstrated that the 

electromagnetic parameters are the most important design parameters affecting 

hyperthermia treatment. Using a seven parameter based anova design, Ng [58] 

demonstrated that low metabolic heat generation, subcutaneous blood perfusion rates and 

low ambient temperature can yield better results for clinical thermographic assessment of 

breast cancer lesions. Ng et al [58] analyzed the sensitivity of thermal damage caused by a 

burn injury with respect to eight parameters using the anova design. Blood perfusion rate 

of the dermis layer, heat transfer coefficient and heating temperature were found to be 

significant parameters affecting skin temperature in a burn injury. Liu [54] adopted partial 

derivative based approach to calculate the uncertainties in temperature predictions resulting 

from uncertain parameters for a hyperthermia model. However, their study used a single-

layered tissue model and did not apply the method to transient temperature distributions 

[54]. Jasinski [55] performed transient sensitivity analysis of the model for a thermal injury 

using an injury dependent blood perfusion term. Thus, the focus of prior studies was on 

limited number of properties specific to the bioheat application. A comprehensive 

sensitivity analysis of the healthy skin temperature with respect to thermophysical 

properties and layer thicknesses of all tissue layers has not been carried out. The current 
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study attempts to fill the gap by evaluating sensitivities of both steady state skin 

temperature and the transient thermal response to skin cooling. We used a 6 layered thermal 

model of the skin consisting of epidermis, papillary dermis, reticular dermis, fat, muscle 

and bone and focused on the influence of thermophysical properties, such as thermal 

conductivity, specific heat, density, blood perfusion rates and metabolic heat generation 

rates, as well as layer thicknesses.  

The objective of the sensitivity analysis in this dissertation is to (1) identify the 

most important thermophysical properties and layer thicknesses of the model, (2) compare 

the steady state sensitivities with the sensitivities of the dynamic thermal response and (3) 

demonstrate that large variations in the most input parameters lead to small skin 

temperature changes. It should be noted that, that the current study assumes that the tissue 

thermophysical properties are constant over the timescale of interest and do not change 

with temperature for the investigated temperature ranges which are relatively small (10-

37°C). In the context of thermoregulation mechanisms, the blood perfusion rates may be 

modified when the skin is subjected to a mild cooling excitation [61], however, at this stage 

of the study these feedback mechanisms are neglected and will be considered in future 

research.  

2.2 Method 
In sections 2.2.1 and 2.2.2, we develop the mathematical model and the numerical 

model for computing steady state healthy skin temperatures and thermal recovery of the 

skin surface from a cooling excitation and provide model validation. In section 2.2.3, we 

first explain the partial derivative based sensitivity analysis method, using a simple 

function of two input variables. Next, we apply this method to our healthy skin tissue model 
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in section 2.2.4. Using the skin temperatures computed in section 2.2.1, we derive the 

formulations for skin temperature sensitivities, both for the steady state and transient 

situations. 

2.2.1 Mathematical model and simulation method 
The general bioheat equation is the most commonly used representation of the 

spatial and temporal temperature distribution in human skin tissue [7]. It was first 

introduced by Pennes in 1948 [62] in the following form  

 𝜌𝜌𝑐𝑐 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇ ∙ (𝑘𝑘∇𝑇𝑇) + ω𝜌𝜌𝑏𝑏𝑐𝑐𝑏𝑏(𝑇𝑇𝑏𝑏 − 𝑇𝑇) + �̇�𝑞, (2.1) 

where 𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) is the tissue temperature (K), a function of location and time, 𝜌𝜌  the 

tissue density (kg/m3), 𝑐𝑐  the specific heat (J/kg·K), 𝑘𝑘 the thermal conductivity (W/m·K), 

ω the blood perfusion rate (m3/s per m3 of the tissue), �̇�𝑞 the rate of metabolic heat 

generation (W/m3), 𝜌𝜌𝑏𝑏  the blood density (kg/m3), 𝑐𝑐𝑏𝑏 the blood specific heat (J/kg·K), and 

𝑇𝑇𝑏𝑏 the arterial blood temperature (K). The term on the left hand side represents the rate of 

change of change of thermal energy stored in a unit tissue volume. It is equal to the sum of 

the rates at which the thermal energy enters or leaves the control volume in a unit time due 

to heat conduction, heat exchange between the blood and the tissue, and tissue metabolism. 

Equation 2.1 assumes that the blood enters the differential control volume at a given rate 

ω at temperature 𝑇𝑇𝑏𝑏 [62]. The rate of heat transfer between the blood and the tissue is 

proportional to the volumetric blood perfusion rate and the temperature difference between 

them [62]. Although, numerous studies [7, 63] have suggested modifications to the Pennes 

bioheat equation to account for variations in vascular geometries and blood temperature, 
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the model described by Equation 2.1 is widely applied to understand temperature 

distribution in human tissue [3, 7].  

The temperature distribution in the tissue 𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) for a given geometry and 

application is determined by solving Equation 2.1 for the appropriate set of boundary 

conditions. To account for the heat loss from the skin due to radiation, evaporation and 

convection, Deng and Liu and Wilson [3] and Wilson and Spence [8] incorporated these 

terms in the energy balance equation at the skin surface. To evaluate different skin cooling 

methods for dynamic thermographic detection of lesions, Cheng and Herman [64] used 

different boundary conditions at the skin surface in their thermal model: - constant 

temperature cooling (cooling by high heat capacity cooling patch), contact cooling (cooling 

using a water-soaked cotton patch) and convective cooling (blowing cold air over the skin). 

To account for tissue heating during a thermal treatment process, heat source terms are 

added either on the right hand side of the bioheat equation for volumetric heating or 

accommodated by the appropriate boundary condition for surface heating [7].  

In this study, the general model described by Equation 2.1 is modified to 

accommodate the physical situation illustrated schematically in Figure 2.1(a). Since the 

dominant temperature variations develop in the direction perpendicular to the skin surface, 

the general bioheat equation, Equation 2.1 can be simplified by considering a single spatial 

dimension y, reducing it to a one-dimensional (1D) model. The 1D computational domain 

for the heat transfer model is shown in Figure 2.1(b). The domain has six subdomains, one 

subdomain for each of the tissue layers from Figure 2.1(a). The nodes represent the layer 

interfaces. For simplicity, we assumed that the thermophysical properties to be 

temperature-independent for the investigated temperature range which is relatively small 
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(10 - 37°C). The blood density, specific heat and temperature are also assumed to be 

constant. The property and thickness data for the tissue layers used in the models are 

summarized in Table 2.1. The range of physiological property variations and the 

corresponding average value for each property that is used in the computations are also 

provided in Table 2.1.  

A set of six coupled bioheat equations (one equation for each of the six layers)  

is solved to obtain the temperature distribution 𝑇𝑇(𝑦𝑦, 𝑡𝑡) in the computational domain. 

Equation 2.2 is solved by imposing appropriate initial and boundary conditions at the skin 

surface (topmost node, node 0, in Figure 2.1(b)) and the bottom node, node 6, and the 

 
ρ𝑛𝑛𝑐𝑐𝑛𝑛

𝜕𝜕𝑇𝑇(𝑦𝑦, 𝑡𝑡)𝑛𝑛
𝜕𝜕𝑡𝑡

= kn
∂2𝑇𝑇(𝑦𝑦, 𝑡𝑡)n

∂2y
+ 𝜔𝜔i𝜌𝜌𝑏𝑏𝑐𝑐𝑏𝑏(𝑇𝑇b − 𝑇𝑇(𝑦𝑦, 𝑡𝑡)𝑛𝑛) + �̇�𝑞𝑛𝑛       

ℎ𝑛𝑛−1 < 𝑦𝑦 < ℎ𝑛𝑛,ℎ0 = 0  and   n = 1, 2,..6 

(2.2) 

 
Figure 2.1 Schematic of the skin tissue: (a) Cross section of the skin illustrating the 
tissue layers and the blood vessels, (b) simplified 1D computational domain for the skin 
used in the simulations. The subscripts 1 to 6 refer to the tissue layers. Each layer is 
characterized by a thickness 𝑑𝑑, density 𝜌𝜌, specific heat 𝑐𝑐, thermal conductivity 𝑘𝑘, blood 
perfusion rate 𝜔𝜔 and metabolic heat generation rate �̇�𝑞. The symbol ℎ represents the 
location of the interfaces.  
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continuity conditions for temperature and heat flux at each layer interface. The continuity 

for temperature is given by 

 𝑇𝑇𝑛𝑛(𝑦𝑦 = ℎ𝑛𝑛, 𝑡𝑡) = 𝑇𝑇𝑛𝑛+1(𝑦𝑦 = ℎ𝑛𝑛, 𝑡𝑡)              𝑛𝑛 = 1,2,3,4,5 (2.3) 

and the continuity of heat flux is described as  

 
−𝑘𝑘𝑛𝑛

𝜕𝜕𝑇𝑇𝑛𝑛(𝑦𝑦 = ℎ𝑛𝑛, t)
𝜕𝜕𝑦𝑦

= −𝑘𝑘𝑛𝑛+1
𝜕𝜕𝑇𝑇𝑚𝑚+1(𝑦𝑦 = ℎ𝑛𝑛, t)

𝜕𝜕𝑦𝑦
   𝑛𝑛 = 1,2,3,4,5 (2.4) 

Equations 2.3 and 2.4 are satisfied at all times at the layer interfaces. The bottom-most 

node (y = h6) is maintained at a constant core body temperature at all times as  

 𝑇𝑇(y = ℎ6, 𝑡𝑡) = 37℃. (2.5) 

We aim to solve for the steady state temperature distribution as well as for the transient 

thermal response of the skin tissue to a cooling excitation. The solution is obtained in three 

steps: (1) compute the steady state temperature distribution with the skin surface exposed 

to ambient conditions (𝑡𝑡 =0), (2) apply cooling for a short duration (0 < 𝑡𝑡 < 𝑡𝑡𝑐𝑐) and (iii) 

compute the thermal recovery of the tissue as a function of time after the removal of cooling 

load and exposing the skin to ambient conditions. The thermal boundary conditions for the 

top and bottom nodes of the computational domain during these steps are illustrated in 

Figure 2.2. In step 1, we assumed a convective boundary condition as 

with an ambient temperature of 𝑇𝑇∞ = 22℃ and a convective heat transfer 

coefficient, ℎ∞ = 12 𝑊𝑊 𝑊𝑊2⁄ ∙ 𝐾𝐾 for the steady state conditions. The skin surface (y = h0) 

is exposed to these ambient conditions before the beginning of skin cooling (𝑡𝑡 < 0) (Figure 

 𝑞𝑞′′ = ℎ∞(𝑇𝑇(y = ℎ0, 𝑡𝑡) − 𝑇𝑇∞),     𝑡𝑡 < 0 and   𝑡𝑡 > 𝑡𝑡𝑐𝑐 (2.6) 
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2.2(a)) and after the removal of cooling load (𝑡𝑡 > 𝑡𝑡𝑐𝑐) (Figure 2.2(c)). Steady state 

temperatures were computed by solving Equations 2.2 – 2.6.  

In step 2, we applied a constant temperature cooling load on the skin surface (Figure 

2.2(b)) as  

The previously obtained (Step 1) steady state solution was used as the initial condition for 

the transient cooling process.  

Finally in step 3, we computed the transient thermal recovery of the skin tissue from the 

cooling load. The skin was again exposed to the convective boundary condition (Equation 

2.6) (shown in Figure 2.2 (c)) and the temperatures were computed until the skin surface 

reached its steady state temperature. The computations were carried out using the finite 

 𝑇𝑇(y = ℎ0, 𝑡𝑡) = 10℃,    0 ≤  𝑡𝑡 < 𝑡𝑡𝑐𝑐 = 2 min (2.7) 

 
Figure 2.2 Thermal boundary conditions at the top (𝑦𝑦 = 0) and bottom (𝑦𝑦 = ℎ6) nodes 
of the computational domain used for computing (a) steady state temperatures in step 1, 
(b) temperatures during skin cooling in step 2 and (c) transient thermal recovery 
temperatures in step 3. 𝑇𝑇∞ = 22℃,  ℎ∞ = 12 𝑊𝑊 𝑊𝑊2⁄ ∙ 𝐾𝐾,  𝑡𝑡c = 2 min.  
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element software COMSOL Multiphysics v4.4a. To verify the convergence with respect to 

the mesh size, the smallest element size was set to 0.18mm. The results differed by less 

than 1% before and after mesh refinement. The convergence of the solution was ensured 

by setting the time step ∆t as 0.1s for cooling and thermal recovery periods. Figure 2.3 

shows the temperature as a function of time during the thermal recovery, computed by 

solving Equations 2.2 to 2.7 for the average values of the tissue properties summarized in 

Table 2.1.  

2.2.2 Model validation 
The multi-layered model for healthy skin considered in this study is based on the 

heat transfer model of skin tissue introduced [41] and validated experimentally by Çetingül 

and Herman [5] and Cheng and Herman [64]. Çetingül and Herman [5] demonstrated a 

good agreement between model predictions for healthy skin temperature and measurement 

data obtained in a clinical study. In this section, we compare our model predictions for the 

 
Figure 2.3 Transient thermal recovery of the skin from a cooling excitation (10°C 
applied for 2 min). The time t = 0 corresponds to the removal of the cooling load and t 
= 40 min corresponds to the end of the thermal recovery, the time when the skin surface 
has regained its steady state temperature of 33°C.  
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temperature distribution in a single-layered tissue (with properties: 𝑘𝑘 = 0.185 W/m·K, 𝜔𝜔 = 
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0.5e-4 1/s, �̇�𝑞 = 368 W/m3, 𝑑𝑑 = 7.5 mm, 𝜌𝜌𝑏𝑏= 1060 kg/m3, 𝑐𝑐𝑏𝑏= 3770 J/kg·K and 𝑇𝑇𝑏𝑏= 37°C) 

against the analytical solution obtained for the 1D thermal model, subjected to the same 

boundary conditions. The steady state, 1D analytical solution for a single-layered tissue is 

derived below. For a tissue domain of thickness 𝑑𝑑 under steady state conditions, Equation 

2.2 for n = 1 reduces to  

 𝑘𝑘 𝜕𝜕2𝜕𝜕
𝜕𝜕2𝑦𝑦

+ 𝜔𝜔𝜌𝜌𝑏𝑏𝑐𝑐𝑏𝑏(𝑇𝑇𝑏𝑏 − 𝑇𝑇) + �̇�𝑞 = 0     0 ≤ 𝑦𝑦 ≤ 𝑑𝑑 . (2.8) 

The boundary condition for the skin surface (𝑦𝑦 = 0) is  

 −𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
𝑦𝑦=0

= ℎ∞�𝑇𝑇|𝑦𝑦=0 − 𝑇𝑇∞�. (2.9) 

The boundary condition for the bottom surface (core) (𝑦𝑦 = 𝑑𝑑) is  

 𝑇𝑇|𝑦𝑦=𝑑𝑑 = 37℃ (2.10) 

To obtain an analytical solution, we substitute 𝜃𝜃 = 𝑇𝑇𝑏𝑏 − 𝑇𝑇 and 𝜉𝜉 = (𝑑𝑑 − 𝑦𝑦) 𝑑𝑑⁄  into 

Equations 2.8 -2.10. Equation 2.8 reduces to 

  
𝜕𝜕2𝜃𝜃
𝜕𝜕2𝜉𝜉

− 𝛾𝛾2𝜃𝜃 = 𝜙𝜙     1 ≥ 𝜉𝜉 ≥ 0   

 

(2.11) 

where 𝛾𝛾 = 𝑑𝑑�𝜔𝜔𝜌𝜌𝑏𝑏𝑐𝑐𝑏𝑏 𝑘𝑘⁄  and 𝜙𝜙 = 𝑑𝑑��̇�𝑞 𝑘𝑘⁄ . The general solution of Equation 2.11 is  

  𝜃𝜃 = 𝐶𝐶1cosh 𝛾𝛾𝜉𝜉 + 𝐶𝐶2 sinh 𝛾𝛾𝜉𝜉 − 𝜙𝜙 𝛾𝛾2⁄    
 

(2.12) 

The boundary condition at the skin surface (𝜉𝜉 = 1) (Equation 2.9) becomes 

  
𝑘𝑘
𝑑𝑑

 
𝑑𝑑𝜃𝜃
𝑑𝑑𝜉𝜉
�
𝜉𝜉=1

= ℎ(𝑇𝑇𝑏𝑏 − 𝑇𝑇 − 𝜃𝜃|𝜉𝜉=1)   

 

(2.13) 

The boundary condition at the bottom boundary (𝜉𝜉 = 0) (Equation 2.10) becoms 
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  𝜃𝜃|𝜉𝜉=0 = 37℃   
 

(2.14) 

 Solving Equation 2.11 with Equations 2.12 and 2.13 yield 𝐶𝐶1 and 𝐶𝐶2 as 

  𝐶𝐶1 =
𝜙𝜙
𝛾𝛾2

   
 

 

(2.15) 

 

𝐶𝐶2 =
ℎ �(𝑇𝑇𝑏𝑏 − 𝑇𝑇∞) + 𝜙𝜙

𝛾𝛾2� −
𝜙𝜙
𝛾𝛾2 ((𝑘𝑘𝛾𝛾 𝑑𝑑) sinh(ℎ𝛾𝛾) + ℎcosh(ℎ𝛾𝛾)⁄ )

(𝑘𝑘𝛾𝛾 𝑑𝑑)⁄ cosh(ℎ𝛾𝛾) + ℎ sinh(ℎ𝛾𝛾)  

(2.16) 

Figure 2.4 shows that the model prediction obtained using Comsol matches the analytical 

solution exactly. Based on results of the experimental validation from previous studies [5, 

64] and the good agreement with the simple analytical model presented in this section, we 

conclude that our model represents the biophysical system of the skin with good fidelity. 

 

 
Figure 2.4 Comparison of the computational model prediction with analytical 
solution for the1D bioheat model of a single–layered tissue 



 

23 
 

2.2.3 Sensitivity analysis method 
In this study, we used the one-factor-at-a-time (OAT) method of sensitivity analysis 

[65, 66]. The OAT approach refers to determining parameter sensitivities by varying each 

input variable of the model independently, while holding the remaining variables fixed at 

their nominal values. The ratio of the change in the model output to the change in the model 

input, while other input variables remain fixed, is used as the sensitivity measure [65, 66].  

Figure 2.5 conceptualizes the OAT approach of computing the sensitivities in the 

form of partial derivatives. The method is illustrated using a two input parameter model, 

𝑌𝑌 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2). In our study the input parameters are the thermophysical properties of the 

tissue layers (30 properties) and layer thicknesses (6 layers). The output Y is the skin 

surface temperature 𝑇𝑇(𝑦𝑦, 𝑡𝑡) in our model. The large number of parameters affecting the 

thermal behavior of the system makes the problem very complex and serves as the 

motivation for identifying the most important input parameters that will determine the 

thermal response of the system. The influence of the model inputs 𝑥𝑥1 and 𝑥𝑥2 on the output 

Y is illustrated by the surface plot in Figure 2.5. Let 𝑌𝑌 = 𝑌𝑌∗ be the nominal response, when 

the input parameters are fixed at their nominal values (NVs), given by  𝑥𝑥1 = 𝑥𝑥1∗ and 𝑥𝑥2 =

𝑥𝑥2∗. The nominal values in our system are the average values of the thermophysical 

properties and tissue layer thicknesses listed in Table 2.1. The sensitivities of 𝑌𝑌 to 𝑥𝑥1 and 

𝑥𝑥2 at their nominal values can be expressed in terms of the partial derivatives 𝜕𝜕𝑌𝑌 𝜕𝜕𝑥𝑥1⁄  and 

𝜕𝜕𝑌𝑌 𝜕𝜕𝑥𝑥2⁄ , respectively [48] by sensitivity coefficients 𝑆𝑆𝒙𝒙𝟏𝟏and 𝑆𝑆𝒙𝒙𝟐𝟐 as  

 𝑆𝑆𝒙𝒙𝟏𝟏 =   𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

�
𝑥𝑥1∗ , 𝑥𝑥2∗

, 𝑆𝑆𝒙𝒙𝟐𝟐 =   𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

�
𝑥𝑥1∗ , 𝑥𝑥2∗

, (2.17) 
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as illustrated in Figure 2.5. To compute 𝑆𝑆𝒙𝒙𝟏𝟏, the nominal value of 𝑥𝑥1 is varied by a small 

amount ∆𝑥𝑥1 around 𝑥𝑥1while 𝑥𝑥2 is fixed at 𝑥𝑥2∗ . Then the resulting effect on the output 𝑌𝑌 is 

calculated. The sensitivity 𝑆𝑆𝒙𝒙𝟏𝟏 =   𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

�
𝑥𝑥1∗ , 𝑥𝑥2∗

is the magnitude of the slope of a tangent 

(shown by the red line in Figure 2.5) that points in the direction of increasing values of 𝑥𝑥1 

and meets the output surface at the point (𝑥𝑥1∗,  𝑥𝑥2∗). This slope is also the ratio of the change 

in 𝑌𝑌 due to a small change in 𝑥𝑥1 and therefore is the sensitivity measure of 𝑌𝑌 with respect 

to 𝑥𝑥1. Similarly, the value for 𝑆𝑆𝒙𝒙𝟐𝟐 is the effect of changing 𝑥𝑥2 by a small amount ∆𝑥𝑥2 on 

the output 𝑌𝑌, while 𝑥𝑥1 is fixed at 𝑥𝑥1∗. In order to compare the effects of different inputs 

(whose values may differ by orders of magnitudes), relative or normalized sensitivity 

coefficients are used [48]. The normalization is done by multiplying the sensitivity 

coefficients (Equation 2.17) by the ratio of the nominal value of the input to the nominal 

values of the output. The normalized sensitivities 𝑆𝑆�̅�𝒙𝟏𝟏 and 𝑆𝑆�̅�𝒙𝟐𝟐 are calculated as 

 𝑆𝑆�̅�𝒙𝟏𝟏 =   
𝑥𝑥1∗

𝑌𝑌∗
𝜕𝜕𝑌𝑌
𝜕𝜕𝑥𝑥1

�
𝑥𝑥1∗ , 𝑥𝑥2∗

, 𝑆𝑆�̅�𝒙𝟐𝟐 =   
𝑥𝑥2∗

𝑌𝑌∗
𝜕𝜕𝑌𝑌
𝜕𝜕𝑥𝑥2

�
𝑥𝑥1∗ , 𝑥𝑥2∗

 (2.18) 

In the skin temperature model (Equations 2.2 – 2.7) there are a total of 

36parameters, consisting of a set of five thermophysical properties (𝜌𝜌𝑛𝑛, 𝑐𝑐𝑛𝑛, 𝑘𝑘𝑛𝑛, 𝜔𝜔𝑛𝑛, �̇�𝑞𝑛𝑛) and 

a thickness value 𝑑𝑑𝑛𝑛 in the y direction, for each of the six constituent layers (𝑛𝑛 = 1, … ,6). 

The values of these properties are listed in Table 2.1. The average values of the input 

parameters (skin properties), used to compute skin temperatures, will be used as the 

nominal values. We are interested in computing two kinds of sensitivities: (1) steady state 

sensitivities (using steady state temperatures as the model output) and (2) transient 

sensitivity functions (using transient thermal recovery of skin surface as the model output).  

The steady state and transient skin temperature sensitivities lay foundations for interpreting 
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steady state and transient thermal signatures of lesions in Chapters 3-5. Table 2.1 shows 

that the input parameters for the skin temperature model differ by orders of magnitudes. 

Therefore, we will use normalized sensitivities to express the sensitivity measures of skin 

temperatures to thermophysical properties and thicknesses.   

2.2.4 Computation of sensitivities of skin temperature 
In this section, we apply the OAT method of sensitivity analysis to our thermal 

model of the skin. Let the vector 𝛽𝛽 consist of the thirty six input parameters of the skin 

tissue model.  

 𝛽𝛽 = [𝜌𝜌𝑖𝑖=1…6, 𝑐𝑐𝑖𝑖=1…6,𝑘𝑘𝑖𝑖=1…6,𝜔𝜔𝑖𝑖=1…6, �̇�𝑞𝑖𝑖=1…6,𝑑𝑑𝑖𝑖=1…6]          (2.19) 

 

Let 𝛽𝛽∗ = [𝜌𝜌𝑖𝑖∗, 𝑐𝑐𝑖𝑖∗,𝑘𝑘𝑖𝑖∗,𝜔𝜔𝑖𝑖
∗, �̇�𝑞𝑖𝑖∗,𝑑𝑑𝑖𝑖∗] represent the nominal values of the inputs (shown in Table 

2.1), where i = 1,…,6 denote the tissue layers. The independent effect of an input on the 

 
Figure 2.5 Illustration of the OAT method of sensitivity analysis. The sensitivity of 
the model outout 𝑌𝑌 with respect to an input paramter 𝑥𝑥1 is the partial derivative 
𝜕𝜕𝑌𝑌 𝜕𝜕𝑥𝑥1⁄ , computed at the nominal value (𝑥𝑥1∗, 𝑥𝑥2∗) in the input parameter space.  
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model output can be derived by expanding the model output using Taylor series in terms 

small increments of the input. For example, the independent effect of the blood perfusion 

rate can be derived by expanding the skin temperature 𝑇𝑇 using Taylor series, in terms of 

small increments ±∆𝜔𝜔 around the nominal value 𝜔𝜔∗, while other inputs are fixed at their 

nominal values 𝛽𝛽∗ as 

and 

 

In Equations 2.20 and 2.21, 𝑇𝑇∗ = 𝑇𝑇 (𝑡𝑡,𝛽𝛽𝑗𝑗∗) denotes the nominal value of the skin 

temperature computed for the nominal value 𝛽𝛽∗ by solving Equations 2.2 to 2.7. By 

summing Equations 2.20 and 2.21, we get a measure of 𝑆𝑆𝜔𝜔(t), which is the sensitivity of 

skin temperature 𝑇𝑇(𝑡𝑡) to the blood perfusion rate 𝜔𝜔. We used the central difference finite 

difference scheme for calculating the partial derivatives of skin temperatures with respect 

to the thermophysical properties and tissue layer thicknesses.  The sensitivity is expressed 

in terms of a second order accurate partial derivative, 𝜕𝜕𝑇𝑇 𝜕𝜕𝜔𝜔⁄ , computed at 𝛽𝛽∗as 

 
𝑆𝑆𝜔𝜔(t) =  

𝜕𝜕𝑇𝑇(𝑡𝑡)
𝜕𝜕𝜔𝜔

�
𝛽𝛽∗

≈
𝑇𝑇 (𝑡𝑡,𝛽𝛽1∗, . . ,𝜔𝜔∗ + ∆𝜔𝜔, . . ,𝛽𝛽36∗ ) − 𝑇𝑇 (𝑡𝑡,𝛽𝛽1∗, . . ,𝜔𝜔∗ − ∆𝜔𝜔, . . ,𝛽𝛽36∗ )

2∆𝜔𝜔
 

(2.22) 

 

 
𝑇𝑇(𝑡𝑡,𝛽𝛽1∗, …𝜔𝜔∗ + ∆𝜔𝜔, . . ,𝛽𝛽36∗ )

= 𝑇𝑇∗(𝑡𝑡,𝛽𝛽∗) +
𝜕𝜕𝑇𝑇(𝑡𝑡)
𝜕𝜕𝜔𝜔

�
𝛽𝛽∗
∆𝜔𝜔 +

1
2
𝜕𝜕2𝑇𝑇(𝑡𝑡)
𝜕𝜕2𝜔𝜔

�
𝛼𝛼∗

(∆𝜔𝜔)2+.. (2.20) 

 
𝑇𝑇(𝑡𝑡,𝛽𝛽1∗, …𝜔𝜔∗ − ∆𝜔𝜔, . . ,𝛽𝛽36∗ )

= 𝑇𝑇∗(𝑡𝑡,𝛽𝛽∗) −
𝜕𝜕𝑇𝑇(𝑡𝑡)
𝜕𝜕𝜔𝜔

�
𝛽𝛽∗
∆𝜔𝜔 +

1
2
𝜕𝜕2𝑇𝑇(𝑡𝑡)
𝜕𝜕2𝜔𝜔

�
𝛼𝛼∗

(∆𝜔𝜔)2−.. (2.21) 



 

27 
 

The resulting change in skin temperature, ∆𝑇𝑇(℃) to a small change ∆𝜔𝜔 of the blood 

perfusion rate 𝜔𝜔∗ is determined as  

 ∆𝑇𝑇(t) =   ∆𝜔𝜔𝑆𝑆𝜔𝜔(t)             (2.23) 

According to Equation 2.3, a positive sensitivity value means that the input increases the 

skin surface temperature and a negative sensitivity means that the input decreases the skin 

surface temperature. In this study, we will present the skin temperature sensitivities in the 

normalized form (Equation 2.18), which is a more relevant form allowing quantitative 

comparisons between inputs whose nominal values differ by orders of magnitudes. The 

normalized sensitivity, 𝑆𝑆�̅�𝜔(t), for the blood perfusion rate is  

 𝑆𝑆�̅�𝜔(t) =   
𝜔𝜔∗

𝑇𝑇∗(𝑡𝑡)
𝜕𝜕𝑇𝑇(𝑡𝑡)
𝜕𝜕𝜔𝜔

�
𝛽𝛽∗

             (2.24) 

The temperatures on the right hand side of Equation 2.22 are obtained by solving Equations 

2.2 to 2.7. First, the nominal skin temperature value 𝑇𝑇∗ = 𝑇𝑇 (𝑡𝑡,𝛽𝛽𝑗𝑗∗) is obtained by keeping 

all inputs fixed at their nominal values. In the next step, the skin temperature calculations 

are repeated for the values 𝜔𝜔 = 𝜔𝜔∗ + ∆𝜔𝜔 and 𝜔𝜔 = 𝜔𝜔∗ − ∆𝜔𝜔 (where ∆𝜔𝜔 = 0.1𝜔𝜔), while 

the rest of the parameters remain fixed. The sensitivities of the steady state temperature are 

obtained by substituting the steady state skin temperatures (from Equations 2.2 – 2.6) into 

Equations 2.22 – 2.24. The sensitivities of the transient thermal recovery of the skin (shown 

in Figure 2.3) are obtained by substituting transient skin temperatures (from Equations 2.2 

– 2.7) in Equation 2.22 and Equation 2.24. The sensitivity coefficient was calculated at 

each time instant. This process is repeated for all thirty six input parameters (Equation 

(2.19) to obtain the sensitivities of steady state and transient skin temperatures.  
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2.3 Results and discussion 
In this section, we evaluate the sensitivities of the steady state temperature and the 

dynamic thermal response (thermal recovery from a cooling excitation) of the skin. By 

ranking the normalized sensitivities in the order of their absolute values, we identify the 

most important tissue layers and thermophysical properties for the steady state thermal 

model. The sensitivity analysis of the dynamic thermal response is performed considering 

24 inputs (the epidermis and the bone were not included as they were the least important 

layers for the steady state thermal model). The independent effects of  𝜌𝜌, 𝑐𝑐, 𝑘𝑘, 𝜔𝜔, �̇�𝑞 and 𝑑𝑑 

on the dynamic thermal response are compared with the corresponding effects on the steady 

state skin temperature. For the transient skin temperatures, we also considered the 

sensitivities to the interactions between thermal conductivity, 𝑘𝑘, and specific heat, 𝑐𝑐, of the 

layers, to account for the effect of thermal diffusivity, 𝛼𝛼 = 𝑘𝑘 𝜌𝜌𝑐𝑐⁄ . The sensitivities are 

presented in the form of mixed partial derivatives, 𝜕𝜕2𝑇𝑇 𝜕𝜕𝑘𝑘𝜕𝜕𝑐𝑐⁄ .  

2.3.1 Sensitivity analysis of steady state skin temperature  
We computed the sensitivity of steady state skin temperature to each of the 36 input 

parameters using Equation 2.24, by considering a change of 10% in the nominal value. In 

order to compare the effects of thermophysical properties on steady state skin temperature, 

we plot the normalized sensitivities in Figure 2.6. A positive sensitivity coefficient 

indicates that the skin temperature increases by increasing the parameter (shown by 𝑆𝑆�̅�𝑘 in 

Figure 2.6(a), 𝑆𝑆�̅�𝜔 in Figure 2.6(b) and 𝑆𝑆�̇̅�𝑞 in Figure 2.6(c)). The effects of metabolic heat 

generation rates (Figure 2.6(c)) on steady state temperature were an order of magnitude 
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smaller (𝑆𝑆�̇̅�𝑞~10−3) than the effects of the blood perfusion rates and thermal conductivities 

(𝑆𝑆�̅�𝑘~10−2, 𝑆𝑆�̅�𝜔~10−2).  

A negative sensitivity coefficient indicates that skin temperature decreases by 

increasing the parameter. The thicknesses of the epidermis, fat and bone layers, all of which 

have either low or no perfusion, showed negative sensitivity values (Figure 2.6(d)). The 

 
Figure 2.6 Sensitivity of the steady state skin temperature to (a) thermal conductivities, 
𝑆𝑆�̅�𝑘, (b) blood perfusion rates, 𝑆𝑆�̅�𝜔 , (c) metabolic heat generation rates, 𝑆𝑆�̇̅�𝑞 , and (d) 
thicknesses, 𝑆𝑆�̅�𝑑 of the epidermis, papillary dermis, reticular dermis, fat, muscle and 
bone.  
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thicknesses of the reticular dermis and papillary dermis, which are highly vascular, showed 

positive sensitivities. Increasing the muscle layer thickness did not affect the steady state 

skin temperature. Very small sensitivities to tissue densities, 𝑆𝑆�̅�𝜌~10−13 and specific heats, 

𝑆𝑆�̅�𝑐~10−13 (not shown in Figure 2.6) demonstrate that these properties do not affect the 

steady state skin temperatures, since the rate of change of the energy storage term in the 

bioheat equation is zero and these properties are simply not present in the steady state 

mathematical model.  

To identify the most important thermophysical properties for the steady skin 

temperature, we arranged the normalized sensitivities of all 36 inputs by their magnitudes 

in Figure 2.7(a). The most important parameters are the thermal conductivity of the fat 

layer, blood perfusion rates of dermis layers and the fat layer thickness. The least important 

thermophysical properties are the specific heats and densities. Overall, thermal and 

physiological processes of the epidermis and bone layers affected the skin temperature by 

the least amount (Figure 2.7(a)).   

To compare the order of magnitude of effects on the skin temperature in response 

to 10% changes in input parameters, we computed steady state skin temperature changes 

∆𝑇𝑇(℃) using Equation 2.23. The results are shown for all the 30 thermophysical properties 

in Figure 2.7(b) and the 6 layer thicknesses in Figure 2.7(c). The maximum skin 

temperature increases of 0.1°C correspond to the fat thermal conductivity variations 

(Figure 2.7(b)), 0.06°C corresponding to the dermal blood perfusion rates (Figure 2.7(b)), 

0.04°C corresponding to the dermal thicknesses (Figure 2.7(c)) and the maximum 

temperature decrease of 0.1°C is caused by changes of the fat layer thickness (Figure 

2.7(c)). These results demonstrate that large variations in the most important parameters 
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lead to very small variations of the skin surface temperature, which makes IR diagnostic 

methods quite robust when considering the influence of uncertainties in thermophysical 

property data and individual variations.  

 
Figure 2.7 Ranking of the steady state skin temperature sensitivities. (a) Steady state 
sensitivities 𝑆𝑆,�  to thermophysical properties 𝑘𝑘, 𝜔𝜔, �̇�𝑞, 𝜌𝜌 and 𝑐𝑐 of all tissue layers. 
Changes in skin temperature, ∆𝑇𝑇(°C), when a change of 10% was made to each of the 
(b) tissue properties 𝑘𝑘, 𝜔𝜔, �̇�𝑞, 𝜌𝜌, 𝑐𝑐 and (c) tissue layer thicknesses.   
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2.3.2 Sensitivity analysis of transient thermal recovery of the 
skin to a cooling excitation 

Figure 2.8 shows the transient temperature profiles of different skin layers 

computed during cooling and subsequent thermal recovery. The temperature of the top-

most surface (skin) corresponds to the point at h = 0 in the domain, that was subjected to 

the cooling stress of 10°C. The temperature of each layer was computed at the mid-

thickness point i.e.at h = 0.13 mm for the epidermis, h = 0.8 mm for the papillary dermis, 

h = 1.9 mm for the reticular dermis, h = 5 mm for the fat layer and h = 9 mm for the muscle.  

The time t < 0 (shaded grey region) on the abscissa corresponds to a period of 2 mins of 

constant temperature cooling at 10°C. The time t = 0 coincides with the removal of the 

cooling load from the top-most surface. Different layers cooled down to different degree 

under the influence of the cooling stress. The temperature decreased from 34°C to 12°C 

for the epidermis layer (red), from 34°C to 15°C for the papillary dermis layer (blue), from 

 
Figure 2.8 Cooling and thermal recovery of skin tissue layers. A constant 
temperature cooling boundary condition of 10°C was imposed on the skin surface 
for 2 min (shaded region). The cooling was removed from the skin surface at time t 
= 0.  
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34°C to 18°C for the reticular dermis layer (magenta), from 36°C to 35°C for the fat layer 

(green) and from 36.87°C to 36.83°C for the muscle layer (dark blue). The epidermis and 

dermis layers started recovering their temperatures at t = 0 (when cooling load was 

removed). However, the fat (h = 5 mm depth) and muscle (h = 9 mm depth) layers 

continued to cool down until t = 2 min and t = 5 min respectively, during which the 

temperatures continued to decrease from 35°C to 34°C (for the fat layer) and from 36.83°C 

to 35.5°C (for the muscle layer). The continued cooling of the fat and muscle layers is due 

to the cooling wave that penetrated into the tissue during the cooling period. The 

differences in the thermal behavior of different skin layers during cooling and thermal 

recovery can be employed for improving skin cooling techniques for dynamic IR imaging 

applications. For example, the self-cooling behavior of the fat and muscle layers can be 

employed in optimizing skin cooling [64] for quantitative dynamic IR imaging of deep 

tissue injuries [34], to achieve shorter scan times in a clinical setting and improve patient 

comfort.   

The transient sensitivity functions, 𝑆𝑆̅(𝑡𝑡), are plotted as a function of the thermal 

recovery time, t (t = 0 corresponds to the beginning of the thermal recovery period and t = 

40 min is the time to reach steady state) in Figure 2.9. Figure 2.9(a) shows the transient 

sensitivity functions, 𝑆𝑆�̅�𝑘(𝑡𝑡), associated with thermal conductivities of papillary dermis, 

reticular dermis, fat layer and muscle. Figures 2.9(b) – (d) display the sensitivity functions 

associated with the densities and specific heats (𝑆𝑆�̅�𝜌(𝑡𝑡) and 𝑆𝑆�̅�𝑐(𝑡𝑡)), blood perfusion rates 

(𝑆𝑆�̅�𝜔(𝑡𝑡)) and thickness (𝑆𝑆�̅�𝑑(𝑡𝑡)), respectively. The sensitivity functions associated with 

metabolic heat generation are not shown in Figure 2.9, as they were an order of magnitude 

smaller (~10-3) than other parameters (~10-2).  
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The absolute values of the transient sensitivity coefficients are larger than the 

corresponding steady state sensitivities (transient sensitivities reach steady state values by 

t = 40 min, when skin temperature recovers its steady state), as shown by the 

maxima/minima during the t = 0 to 30 mins (Figures 2.9(a) – (d)) time interval. Some of 

the sensitivity functions, e.g. those associated with layer 𝑘𝑘 (Figure 2.9 (a)), 𝜔𝜔 (Figure 2.9 

(c)) and  𝑑𝑑papillary dermis and 𝑑𝑑reticular dermis (Figure 2.9 (b)), first increase from zero to 

 
Figure 2.9 Sensitivity of the transient thermal recovery of the skin to variations of (a) 
thermal conductivities, 𝑆𝑆�̅�𝑘(𝑡𝑡), (b) densities and specific heats, 𝑆𝑆�̅�𝜌(𝑡𝑡) and 𝑆𝑆�̅�𝑐(𝑡𝑡), 
respectively, (c) blood perfusion rates, 𝑆𝑆�̅�𝜔(𝑡𝑡) and (d)  thicknesses, 𝑆𝑆�̅�𝑑(𝑡𝑡) of the papillary 
dermis, reticular dermis, fat and muscle layers.  
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reach a maximum and then decrease from the maximum value to their steady state level. 

The positive values correlate with the increasing effect of these parameters on the steady 

state skin temperature (Figure 2.6). Other functions, e.g. those associated with layer 𝜌𝜌 and 

𝑐𝑐 (Figure 2.9 (b)) and 𝑑𝑑fat and 𝑑𝑑muscle (Figure 2.9(b), first decrease from zero to a 

minimum and then increase from the minimum value to the steady state level. Unlike 

steady state, the transient functions 𝑆𝑆�̅�𝜌(𝑡𝑡) and 𝑆𝑆�̅�𝑐(𝑡𝑡) are not zero because of the presence of 

the energy storage term on the left hand side of Equation 2.1. Additionally, the negative 

values for the layer thickness curves correlate with the effect of the thicknesses of fat and 

muscle on decreasing steady state skin temperature (Figure 2.6). The larger values of the 

transient sensitivity coefficients can be explained in the following way: cooling the skin 

surface increases the temperature gradients across the tissue, which activates different 

thermal and physiological processes within each tissue layer and leads to an enhanced 

thermal response of the skin. This means that the thermal recovery of the skin from a 

cooling excitation is a better, more sensitive indicator of the thermal state of the tissue 

underneath and provides more information than the steady state skin temperature. Our 

finding is consistent with the studies showing that the transient thermal response of the skin 

to cooling can detect very small temperature differences between malignant lesion and 

healthy tissue, which cannot be measured using static IR imaging [15, 67, 68]. For example, 

early stage melanoma do not exhibit measureable temperature differences during static 

imaging, but have a strong thermal signature, suitable for quantitative diagnostic 

applications, during dynamic imaging [15]. In our previous study [34], we demonstrated 

that the transient thermal recovery of the skin from a cooling excitation can provide more 

information about the physiological state of a deep tissue injury (inflammation, ischemia 
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or a combination of ischemia and inflammation) when compared to steady state skin 

temperature. The transient sensitivity analysis improves our understanding of the thermal 

response of healthy skin tissue to skin cooling.    

The timing of the maxima/minima for the sensitivity curves associated with a given 

property varies with the depth of the layer (Figures 2.9(a) – (d)). The peaks for a given 

property represent its maximum contribution to the increase/decrease of skin temperature 

during thermal recovery. For all properties (Figures 2.9(a) – (d)), the sensitivity curves 

associated with the fat and muscle layers showed late maxima/minima (after t = 2 mins), 

compared to the peaks for the papillary dermis and reticular dermis layers (before t = 2 

mins). The differences in the timings of maxima/minima can be tied to the skin cooling 

results displaying the temperature evolution in the tissue layers as a function of time, as 

shown in Figure 2.8. The differences in the timing of the minima in Figure 2.8 reflect the 

observations based on the sensitivity plots. The deeper layers started recovering late from 

the cooling excitation (t = 2 and 5 mins for the fat and muscle layers vs. t = 0 min for the 

dermis layers) and, therefore, the maximum contributions from these layers occur late 

(after t = 2 min) into the thermal recovery. This means that a deep tissue lesion (situated in 

fat or muscle layers) would present the strongest measurement signal late into thermal 

recovery (t = 2 to 10 mins from our analysis). A near surface lesion (involving epidermis 

or dermis layers) would present the strongest measurement signal early (t = 0 to 2 mins). 

Therefore, the optimum duration for a thermographic scan, that yields the best 

measurement sensitivity, would vary with the depth of the lesion.  

The positive (𝑘𝑘, 𝜔𝜔 and �̇�𝑞) and negative (𝜌𝜌, 𝑐𝑐 and 𝑑𝑑) signs for the sensitivities (Figure 

2.9(a) – (d)) show that there are competing effects within the tissue that determine the rate 
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of skin temperature increase during transient thermal recovery. To study the contributions 

from each layer, we grouped the sensitivity data by tissue layers in Figure 2.10 and Figure 

2.11. During rapid increase of skin temperature (first 10 - 30s shown in Figure 2.3), thermal 

recovery of the skin is mainly a function of dermal thermal conductivity (𝑆𝑆�̅�𝑘) and depends 

to a lesser extent on dermal perfusion (𝑆𝑆�̅�𝜔), specific heat (𝑆𝑆�̅�𝜌) and density (𝑆𝑆�̅�𝑐)  (Figures 

 
Figure 2.10 Sensitivity of the transient thermal recovery of the skin with respect to the 
parameters of the (a) papillary dermis, (b) reticular dermis, (c) fat and (d) muscle layer. 
The sensitivities 𝑆𝑆�̅�𝑘(𝑡𝑡),  𝑆𝑆�̅�𝜌(𝑡𝑡),  𝑆𝑆�𝑐𝑐(𝑡𝑡), 𝑆𝑆�̅�𝜔(𝑡𝑡),  𝑆𝑆��̇�𝑞(𝑡𝑡) and  𝑆𝑆�𝑑𝑑(𝑡𝑡) are shown for each 
layer.  
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2.10 (a) and (b)). When the rate of increase is less pronounced (after 30s), the temperature 

increase is dominated by the effects of dermal perfusion (𝑆𝑆�̅�𝜔), specific heat (𝑆𝑆�̅�𝜌) and density 

(𝑆𝑆�̅�𝑐) (Figures 2.10 (a) and (b)). The effect of the metabolic heat generation (𝑆𝑆�̇̅�𝑞)  is 

negligible in comparison to other effects (Figures 2.11 (a) and (b)).  

The sensitivities to layer thicknesses are shown in to compare the order of 

magnitude of the effects of thickness with thermophysical properties. The contributions 

from the fat and muscle layers (Figures 2.10(c) and (d)) appear late into the thermal 

recovery (due to prolonged cooling experienced by these layers). The contributions of fat 

perfusion (𝑆𝑆�̅�𝜔) and metabolic heat generation (𝑆𝑆�̇̅�𝑞) (Figure 2.10(c)) are negligible in 

comparison to other fat layer parameters (also shown in Figure 2.7). Smaller sensitivity 

values and flatter maxima/minima of the muscle sensitivity curves (Figure 2.3) can be 

explained in terms of lesser cooling of the muscle layer in comparison to other layers 

(Figures 2.10(d)). The contributions from the muscle layer may be increased, for example 

for detecting a deep lesion of the muscle, by extending the duration of cooling in dynamic 

IR imaging.  

We also analyzed the contributions of the interactions between thermal 

conductivity 𝑘𝑘 and specific heat 𝑐𝑐 on the transient skin temperature, to account for the 

effects of layer thermal diffusivities, 𝛼𝛼 = 𝑘𝑘 𝜌𝜌𝑐𝑐⁄  (a measure of the ability to conduct thermal 

energy relative to the ability to store thermal energy). Each parameter was simultaneously 

changed by 10% and the skin temperatures were computed for the following four 

combinations: (𝑘𝑘 + ∆𝑘𝑘, 𝑐𝑐 + ∆𝑐𝑐), (𝑘𝑘 − ∆𝑘𝑘, 𝑐𝑐 − ∆𝑐𝑐), (𝑘𝑘 + ∆𝑘𝑘, 𝑐𝑐 − ∆𝑐𝑐) and (𝑘𝑘 − ∆𝑘𝑘, 𝑐𝑐 +

∆𝑐𝑐). It should be noted that the thermal diffusivity changes only when the parameters are 

varied in the opposite directions i.e. for (𝑘𝑘 + ∆𝑘𝑘, 𝑐𝑐 − ∆𝑐𝑐) and (𝑘𝑘 − ∆𝑘𝑘, 𝑐𝑐 + ∆𝑐𝑐). The 
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second order skin temperature sensitivities were expressed in terms of mixed partial 

derivatives, 𝜕𝜕2𝑇𝑇(𝑡𝑡) 𝜕𝜕𝑘𝑘𝜕𝜕𝑐𝑐 ⁄ , using the finite difference approximations for the second-order 

derivative [69]. When compared to the first order sensitivities (independent effects of the 

individual parameters), only the fat layer exhibited larger second order effects (interaction 

effects). From Figure 2.11(c), (𝑆𝑆�̅�𝑘(𝑡𝑡)) and (𝑆𝑆�̅�𝑐(𝑡𝑡)) varied between -0.1 and 0.1, while  

𝜕𝜕2𝑇𝑇 𝜕𝜕𝑘𝑘𝜕𝜕𝑐𝑐 (𝑡𝑡)⁄  varied from -0.35 to 0.35, suggesting that the parameters intensified the 

 
Figure 2.11 Mixed partial derivatives, 𝜕𝜕2𝑇𝑇 𝜕𝜕𝑘𝑘𝜕𝜕𝑐𝑐⁄ , showing the effects of interactions 
between thermal conductivity and specific heat for (a) papillary dermis, (b) reticular 
dermis, (c) fat and (d) muscle.   
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effects of each other for the fat layer. For dermis and muscle layers, the changes caused by 

these parameters cancelled each other, resulting in very small second order the effects for 

these layers (Figures 2.11 (a), (b) and (d)).  

2.3.3 Summary and conclusions 
We performed a sensitivity analysis of healthy skin temperature with respect to 36 

tissue parameters (30 thermophysical properties and 6 layer thicknesses) in order to gain 

insights into the complex thermal behavior of the skin tissue. Both steady state skin 

temperatures (skin was exposed to ambient temperature) and transient thermal recovery of 

the skin to a cooling excitation were included in the analysis, with an emphasis on medical 

diagnostic applications of static and dynamic IR imaging (that relies on cooling methods). 

The partial derivative based normalized sensitivities allowed us to quantify and compare 

the independent effects of input parameters on skin temperatures. Large variations in the 

most important tissue parameters (thermal conductivity of the fat layer, blood perfusion 

rates of dermis layers and the fat layer thickness) had a negligible influence on the 

computed skin temperatures. Additionally, the metabolic heat generation rate is one of the 

least important parameters in the thermal model. Larger values of the transient sensitivity 

coefficients compared to their steady state values demonstrate that the thermal recovery of 

the skin from a cooling excitation is a better indicator of the thermal state of the tissue 

underneath and provides more information than the steady state skin temperature. This 

means that in diagnostic applications of IR imaging, thermal contrasts between lesion and 

healthy skin can be enhanced by subjecting the skin to cooling. We also analyzed the 

contributions of the thermal and physiological characteristics of each layer to the transient 

thermal recovery of the skin, in order to gain insights for improving the dynamic IR 
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measurement system design. Fat and muscle layers exhibited late onset of thermal recovery 

(after 2 and 5 minutes, respectively, following the removal of the cooling load) and 

subsequently, late maxima in the sensitivity curves in comparison to epidermis and dermis 

layers. This means that a deep tissue lesion (situated in the fat or muscle layers) would 

present the strongest measurement signal late into thermal recovery (t = 2 to 10 mins in our 

analysis). A near surface lesion (involving epidermis or dermis layers) would present the 

strongest measurement signal early (t = 0 to 2 mins in our analysis). Therefore, the optimum 

duration for a thermographic scan, that gives the best measurement sensitivity, would vary 

with the depth of the lesion. Additionally, the differences in the thermal behavior of the 

different skin layers during cooling and thermal recovery can be employed for improving 

skin cooling techniques for dynamic IR imaging applications. The fundamental 

understanding of the thermal system of the skin gained from this study is invaluable for the 

design of dynamic IR measurement systems, as well as systems for cryotherapy or 

hyperthermia treatments, and lays the foundations for interpreting the thermal signatures 

of lesions analyzed in Chapters 3 -5.
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Chapter 3 Heat transfer model for  

deep tissue injuries (DTIs) – a step  

towards an early thermographic  

diagnostic capability 

Overview 

The aim of this chapter is to develop a computational thermal model for deep tissue 

injuries (DTIs) to study their thermal signatures and assess the possibility of early 

thermographic detection and diagnosis. An introduction to DTIs and the current pressure 

injury staging system is provided in section 3.1. The imaging techniques that are currently 

used to assess DTI damage are reviewed in section 3.2. We also reviewed the seemingly 

inconsistent thermographic findings of pressure injuries reported in prior literature in 

section 3.2. To explain the inconsistencies reported in prior thermographic literature, we 

discuss the DTI etiologies (direct tissue damage, ischemic damage and ischemia –

reperfusion injury) in section 3.3. We identified upward and downward trends for blood 

perfusion, metabolic heat generation and tissue temperature associated with physiological 

events occurring during ischemia and ischemia reperfusion injuries in section 3.4. These 

trends are incorporated into the thermal models of DTIs (ischemia model, inflammation 

model and multilayer DTI model) that are developed in section 3.5. Finally, the results are 

presented in section 3.6. We propose a novel thermal staging for DTIs as ‘reversible-

damage DTIs’ and ‘irreversible-damage DTIs’ and analyze the long-term skin temperature 
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variations during these stages, incorporating ischemia and ischemia-reperfusion injuries. 

Next, we quantify the thermal signatures of reversible and irreversible DTIs using our 

computational heat transfer models for the steady state situation and the transient thermal 

recovery from a cooling excitation. Using these results, we conclude that the skin 

temperature changes associated with incipient DTIs can be measured non-invasively using 

static and dynamic thermographic imaging.  

The key contributions from this study are – (1) the explanations for the inconsistent 

thermographic findings reported in prior literature for pressure injuries, (2) heat transfer 

models for DTI that account for tissue physiology during ischemia and ischemia – 

reperfusion, (3) computational evaluation of thermal signatures of DTIs during steady state 

conditions and transient thermal recovery from a cooling excitation for early thermographic 

diagnosis, (4) new and more accurate thermal staging for DTIs that could serve as a means 

to identify and quantify the severity and properties of DTI (ischemia or inflammation) and 

tailor suitable management strategies for the injury.  

3.1 Introduction to deep tissue injuries (DTIs)  

Deep tissue injuries (DTIs) are severe pressure injuries of the skin and the 

underlying tissue resulting from sustained tissue loadings [30]. The patients experiencing 

limited mobility due to a physical or cognitive impairment are at most risk of developing 

DTIs [31], as illustrated in Figure 3.1. The locations on the body that are most susceptible 

to DTIs are those that are subjected to pressure loadings in a seated (Figure 3.1(a)) or a 

supine (Figure 3.1(b)) position, such as the heel, the ischial and the sacral regions [70]. 

Early detection of DTIs is challenging because the injury develops first in the deep tissue 
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near a bony prominence with intact overlying skin and fat layers [33]. By the time visible 

clinical signs of the injury appear on the skin surface, the injury has progressed to the 

vicinity of the surface. A severe DTI injury causes substantial damage to the underlying 

tissue [33]. Pressure injuries affect more than 2.5 million patients each year in the US, 

causing morbidity and mortality among patients across the health care facilities. The 

incidence rates vary between 0.4% – 38% among acute care patients and 2% - 24% among 

long term care patients [71]. The costs of pressure injuries pose huge financial burden to 

the US healthcare system, with more than $11 billion spent annually on the treatment and 

extended hospitalization stays of the affected patients [72]. Early diagnosis of DTIs is 

necessary to develop effective interventions and reduce the financial and human burdens 

associated with pressure injuries.   

DTIs are classified as the sixth type of pressure injury in the current pressure injury 

staging system defined by the National Pressure Ulcer Advisory Panel (NPUAP) [30, 73]. 

The staging system classifies pressure injuries on the basis of the visual signs of the injury 

and depth of tissue damage [30]. The classification includes stage I through IV pressure 

 
Figure 3.1 Common body sites where DTIs develop in a (a) seated and (b) supine 
position.  
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ulcers (with stage I ulcers defined as the least severe ulcers - to stage IV ulcers that involve 

full tissue thickness loss), unstageable pressure ulcers and DTIs. The visual signs and the 

extent of tissue damage as defined by the NPUAP are depicted in Figure 3.2, for a stage I 

pressure ulcer (Figure 3.2(a)), stage IV pressure ulcer (Figure 3.2(b)) and a severe DTI 

(Figure 3.2(c)). Pressure ulcers begin to develop at the skin surface compared to DTIs that 

begin to develop in the subcutaneous tissue. The damage is likely to begin at the skin 

surface in the form of a pressure ulcer if the compressive pressure loading is accompanied 

by the shearing of the skin layers against the support surface [74]. Additionally, a pressure 

ulcer may be identified early by the presence of non-blanchable erythema on the skin 

surface [73], as illustrated by Figure 3.2(a). In contrast, a DTI results primarily from 

 
Figure 3.2 Characteristic features of tissue damage for pressure ulcers and deep tissue 
injury (http://www.npuap.org). Tissue layers are added to the schematics to emphasize 
the extent of tissue damage in each case. The arrow indicates the direction of 
propagation of the injury from the incipient phase to an advanced stage. A pressure 
ulcer injury progresses from the skin surface at the top, as illustrated by (a) stage I 
pressure ulcer to the deep tissue at the bottom, as shown by (b) stage IV pressure ulcer. 
Stage I pressure ulcers present non-blanchable erythema of the intact skin and damage 
that is limited to the dermis. Stage IV pressure ulcers have a crater-like appearance and 
damage extends to the bone. (c) A DTI develops first in the deep tissue with an intact 
skin and progresses to the skin surface while causing extensive damage to the 
underlying tissue. A late stage DTI presents deep purple/maroon discoloration of the 
intact skin and damage that extends to the bone.  

http://www.npuap.org/resources/educational-and-clinical-resources/pressure-injury-staging-illustrations/
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compressive loading [74] and occurs when the subcutaneous tissue is compressed between 

a bony prominence and a support surface for an extended period of time. The initial injury 

occurs in the subcutaneous tissue with the overlying skin remaining intact. In later stages, 

it progresses upwards to the skin surface [33]. By the time DTIs present visible signs (non-

blanchable deep red, maroon or purple discoloration) on the skin (as illustrated in Figure 

3.2(c)), the underlying tissue is extensively damaged [33]. Thus, it is challenging to 

diagnose a DTI related damage in an early stage of the injury, when no visible signs are 

present on the skin surface. The DTI may rapidly evolve as a stage IV pressure ulcer 

(shown in Figure 3.2(b)) causing damage across the entire tissue thickness [33], if not 

managed properly. According to Black et al [75], a full thickness wound may develop 

within 7-10 days from the appearance of DTI related skin discoloration.  

The current pressure ulcer staging system is not suitable for accurately evaluating 

and diagnosing an early phase DTI that first develops in the subcutaneous tissue. 

Diagnostic imaging methods are needed for the early detection of incipient DTIs and the 

evaluation of the associated tissue damage. New and more accurate staging definitions for 

DTIs would enable more accurate clinical assessment of tissue damage and prevent 

misclassification of severe DTIs as milder stage I pressure ulcers that present visible skin 

discolorations similar to DTIs. The aim of this study is to demonstrate, using computational 

modeling, that the subcutaneous tissue damage associated with early stage DTIs can be 

detected quantitatively using thermographic imaging. Based on these results, new and 

improved staging of early DTI is proposed.   
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3.2 Current assessment techniques for DTI 

In the past decade, a limited number of imaging studies focused on early detection 

and assessment of DTIs. Ultrasonography was used for detecting the extent of soft tissue 

damage in DTI [76-79]. However, the ultrasound imaging based assessment of DTI related 

damage is subjective and difficult to interpret without a trained radiologist. Additionally, 

it is difficult to distinguish DTI related features from the heterogeneities of the healthy 

tissue in an ultrasound image [79]. Hamaluik et al [79] proposed using ultrasound 

elastography, which is based on measurement of the relative stiffness of the tissue, as a tool 

to determine soft tissue damage. Their method does not take into account DTI etiologies. 

For establishing diagnostic accuracy, certain biomarkers of tissue damage have been 

identified [80], but their applicability on human subjects is not established yet.  

Thermographic imaging has been attempted many times since the 1970s for the 

diagnosis and assessment of pressure related injuries [17, 81-86], however, the results of 

these studies have been inconclusive. Some studies measured elevated skin temperature for 

pressure injury cases when compared to the surrounding healthy skin [81, 86]. Other 

studies reported skin temperature decreases for pressure injuries [17, 83]. Using IR 

thermography, Goller et al [84] performed measurements of skin temperatures of human 

skin at pressure loading site and reported both skin temperature increases and decreases 

relative to healthy skin. Sprigle et al [85] performed skin temperature measurements in 

pressure injuries using thermocouples and reported both temperature increases and 

decreases. The subjective interpretation of thermal images and limited insights into the 

underlying physiological and thermal responses to tissue damage explain the inconsistent 

skin temperature patterns observed in prior studies.  
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In this study, our goal is to develop computational models of heat transfer for deep 

tissue injuries that account for the pathophysiological processes during tissue damage, such 

as ischemia and ischemia reperfusion, and provide a means for early assessment of DTIs 

and interpretation of their thermal signatures. The computational models will allow us to 

analyze the skin temperature responses associated with these processes and improve the 

understanding of the inconsistent skin temperature patterns reported in prior thermographic 

studies [17, 81-86]. Specifically, we demonstrate that the influence of ischemia and 

inflammation on the skin temperature, that can be measured with IR thermography can also 

be computed using these computational models. We postulate that our computational 

models will facilitate interpretation of thermographic images and therefore help to improve 

its diagnostic capability by decreasing reliance on subjective interpretation. Even more 

important is that these models can serve as the foundation for a more rigorous, quantitative 

interpretation of other soft tissue thermographic images, which can lead to more exact 

quantitative detection and diagnostic criteria.  

We will first discuss the likely etiologies for DTIs namely – direct tissue damage, 

ischemia damage and ischemia – reperfusion injury in section 3.3. Next, we will propose 

two sequences of the underlying biophysical and chemical processes in section 3.4 that 

lead to both ischemia mediated and ischemia-reperfusion mediated damage in DTI. In both 

cases, we identify the processes leading to changes in blood perfusion, metabolic heat 

generation and tissue temperature (either increase or decrease). These trends are 

incorporated into the thermal models of heel DTIs (ischemia model, inflammation model 

and multilayer DTI model) that are developed in section 3.5. Finally, the results are 

presented in section 3.6. We first propose thermal stages (reversible and irreversible tissue 
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damage) for DTIs, incorporating ischemia and ischemia reperfusion injuries, and next 

analyze the evolution of skin temperature with time in the presence of DTIs. The stages we 

introduced can explain the influence of sequential progression of ischemia and 

inflammation on skin temperature distributions. Next, we quantify the thermal signatures 

of reversible and irreversible DTIs during the steady state conditions and transient thermal 

recovery from a cooling excitation. The thermal signatures are computed for a range of 

lesion depths and thermophysical properties. Using these results, we show that the skin 

temperature changes associated with incipient DTIs can be measured non-invasively using 

static and dynamic thermographic imaging.  

3.3 DTI etiologies 

The experimental studies by Loerakker et al, (2010) [87] and Loerakker et al, 

(2011) [88] demonstrated that pressure induced tissue deformation, ischemia (occlusion of 

the subcutaneous vasculature) and ischemia reperfusion (revascularization of the ischemic 

tissue) are the likely etiologies for DTIs. These damage mechanisms are illustrated in 

Figure 3.3 for a heel DTI, which is the representative model for DTIs in this study. The 

heel is the most common site where DTIs develop [32] (Figure 3.3(a)). Although the heel 

is equipped to endure walking/running/standing-related routine mechanical loadings, the 

soft tissue becomes susceptible to DTI under immobile conditions that cause unfavorable 

sustained loadings [89]. The posterior portion of the heel tissue (as shown in Figure 3.3(a)) 

consists of a large heel bone (the calcaneus), a thin muscle layer (the panniculus carnosus) 

and a thick fat pad that has overlying dermal and epidermal skin layers [90]. These 

anatomical layers are illustrated for the cross section aa’ in Figure 3.3(b). The muscle layer 

is fed by a rich vascular supply from the subdermal and periosteal plexuses and is a region 
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of high metabolic activity [91]. In contrast, the fat layer has a marginal blood supply and 

is relatively avascular [90, 91].  

Under immobile conditions, the soft tissue of the heel remains under sustained 

compression from the calcaneus against a support surface (Figure 3.3(a)). The compression 

causes deformation in the tissue and a direct injury (Figure 3.3(b)). The injury is 

exacerbated by tissue ischemia that results from pressure - induced partial or complete 

occlusion of blood vessels [88] (Figure 3.3(c)). The low levels of oxygen and glucose 

during ischemia affect tissue metabolism and cause ischemia injury. Cichowitz et al [91] 

postulated that the muscle layer of the heel (Figure 3.3(b)) is inherently susceptible to 

ischemia damage because of its rich vascularity. The fat layer (Figure 3.3(b)) is also 

vulnerable to pressure - induced ischemia damage because of its inability to dissipate 

external pressures. Therefore, the fat and muscle layers are the likely primary sites of early 

tissue damage in heel DTIs [91]. The DTI lesion involving the fat and muscle layers, as 

displayed in Figure 3.3(b), represents an early DTI damage. The magnitude and duration 

of external loading, baseline blood perfusion levels, vascular integrity and 

immunocompetence of the subject are the major factors determining the extent of ischemic 

damage in a DTI [70]. A tissue unloading event may reverse the effects of ischemic damage 

by increasing blood supply in the affected tissue. Loerakker et al, (2011) [88] observed that 

the ischemic tissue in a DTI may develop an ischemia - reperfusion injury when the blood 

rushes back to the ischemic tissue upon tissue unloading (Figure 3.3(d)). In an ischemia-

reperfusion injury, the elevated blood perfusion aggravates the damage further by 

generating undesirable oxidative stresses and inflammation in the tissue [89]. According 

to Mak et al [89], these etiological factors may be present concomitantly. The injury during 
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tissue loading caused by tissue deformation and subsequent ischemia and tissue unloading 

due to ischemic reperfusion will depend on the relative magnitudes and time scales of 

ischemia and reperfusion [89]. 

3.4 Physiological responses of the tissue to ischemic injury 

and ischemia reperfusion injury 

We identified sequential physiological events during ischemia and ischemia-

reperfusion injury, from prior literature [92-98]. The characteristic sequences of 

physiological events (chemical and biophysical processes) are presented in Figure 3.4 for 

 

Figure 3.3 DTI of the heel tissue acquired during sitting. (a) The soft tissue of the heel 
(including muscle and fat) is continuously compressed by the calcaneus bone against a 
support surface (wheelchair footrest in this case) when the patient is confined to a 
wheelchair for prolonged durations. (c) Prolonged loading of the tissue causes partial 
or complete occlusion of the blood vessels causing an ischemia injury. (d) At 
unloading, reperfusion of the previously ischemic tissue causes increase in blood flow 
and the resulting oxidative stress can cause ischemia-reperfusion injury. 
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an ischemia injury and in Figure 3.5 for an ischemia-reperfusion injury. Next to the boxes 

that represents these events, we introduce the trends for tissue blood perfusion (𝜔𝜔), 

metabolic heat generation (𝑞𝑞) and temperature (T), which can be increasing, decreasing or 

remain constant. An upward arrow represents parameter increase and a downward arrow 

represents parameter decrease. This information allows us to incorporate the physiological 

changes occurring during ischemia and ischemia reperfusion mediated damage into our 

computational model for DTIs. We will use this information to propose thermal 

classification (reversible-damage and irreversible-damage injury) for deep tissue injury in 

section 3.6.1.  

3.4.1 Ischemic injury during tissue loading 

The physiological responses of the tissue to pressure induced ischemia injury are 

illustrated in Figure 3.4(a). Each block in the schematic is marked with a letter: when we 

refer to Figure 3.4(c), for example, we discuss events in block (c) of Figure 3.4. The soft 

tissue near bony prominences, such as the heel, experiences sustained pressure loadings 

when the patient is recumbent for extended periods during hospitalization or due to a 

profound disability (Figure 3.4(a)). An ischemic injury occurs when the pressure loading 

exceeds the levels at which the blood vessels are partially or completely occluded [95] 

(Figure 3.4(b)). Jennings and Reimer [92] demonstrated that the duration of loading and 

the level of occlusion (percentage of baseline blood perfusion present) are both important 

in causing the ischemia-led tissue damage. During an ischemic injury, the tissue does not 

get enough blood supplied as needed for adequate oxygen delivery as well as for the 

removal of the products of metabolism to maintain tissue viability. The reduced blood 

perfusion levels affect the aerobic metabolism (Figure 3.4(c)). In the presence of 
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insufficient oxygen levels, the tissue resorts to anaerobic glycolysis (or non-oxygen 

condition) mechanisms for metabolic heat generation, which are detrimental to tissue 

health [92] (Figure 3.5(c)). The rates at which the cells are able to generate energy are less 

than the rates at which the energy is being consumed by the cells. This process causes a 

shortage of oxygen and glucose levels in the tissue. Cell necrosis occurs if there is a deficit 

in ATP (energy) levels, leading to an accumulation of lactate and a subsequent drop in pH 

levels [92, 93]. These unfavorable physiological responses cause an ischemic injury 

resulting from a prolonged pressure application (Figure 3.4(d)). We have associated 

downward trends for blood perfusion, metabolic heat generation and temperature during 

ischemia injury, as illustrated in steps Figure 3.4(b), Figure 3.4(c) and Figure 3.4(d). The 

downwards trends account for reduced blood perfusion levels due to blood flow occlusion 

and low metabolic heat generation due to anaerobic metabolism conditions. Variations of 

 
Figure 3.4  Ischemia mediated DTI mechanism and physiological responses of the 
affected tissue. An arrow pointing up indicates an increasing trend in a parameter and 
vice versa. Blocks denote key events and the arrows indicate paths between the events. 
Relevant references are provided in the text.  
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these properties are incorporated in our computational heat transfer model of DTI ischemia, 

which allows us to quantify the tissue temperature responses to ischemia-led tissue damage 

in a DTI.   

3.4.2 Favorable hyperemic response during tissue unloading 

Prior studies have measured a characteristic hyperemic response to tissue unloading 

(Figure 3.4(e)) [74, 94]. The response is similar to an inflammatory response that is 

characterized by a significant increase in blood perfusion (when compared to the baseline 

perfusion levels) in the affected tissue (Figure 3.4(f)) [94]. Depending on the severity of 

the ischemic injury, physiological mechanisms (such as thermoregulation) may be able to 

compensate for the prior loss of blood perfusion by restoring oxygen and other vital 

nutrients to the tissue. The tissue will recover from an ischemic injury by means of the 

favorable hyperemic response (Figure 3.4(g)) [94]. To account for tissue hyperemia and 

restored oxygen supply, we have associated upward trends for blood perfusion, metabolic 

heat generation and temperature during a favorable hyperemic response, as illustrated in 

steps Figure 3.4(f) and Figure 3.4(g).  These increases in property values are incorporated 

into our computational heat transfer model of DTI inflammation, which allows us to 

quantify tissue temperature during a hyperemic response to tissue unloading.  

3.4.3 Unfavorable ischemia-reperfusion injury during tissue 

unloading 

An ischemia-reperfusion injury is caused by an unfavorable revascularization event 

during tissue unloading [99]. The physiological responses of the tissue to an ischemia-

reperfusion injury during tissue unloading are illustrated in Figure3.5. During an ischemia-



 

55 
 

reperfusion event, the re-entry of oxygen into the previously hypoxic tissue aggravates 

tissue damage, by initiating a reperfusion cascade (Figure 3.5(d)) [93, 96, 97]. The tissue 

responds with an inflammatory response which is characterized by the generation and 

accumulation of reactive oxygen species (ROS), reduction in the nitric oxide levels (Figure 

3.5(f)), and the activation of the complement cascade (Figure3.5 g)) [96, 97]. According to 

[93], some portions of the tissue may circumvent a reperfusion injury as a result of local 

swelling in the endothelium. These portions will remain ischemic, become necrotic over 

time and may show decreased temperatures (Figure3.5(c)). The activation of the 

 
Figure3.5 Ischemia-reperfusion mediated DTI mechanism and physiological responses 
of the affected tissue, leading to a permanent tissue damage. An arrow pointing up 
indicates an increasing trend in a parameter and vice versa. Blocks denote key events 
and the arrows indicate paths between the events. Relevant references are provided in 
the text.  
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complement cascade stimulates local endothelial white blood cell adhesion [93] releasing 

more cytotoxic enzymes and oxygen free radicals (Figure3.5 (f)). These events cause lipid 

per-oxidation, edema, cell wall abnormalities and eventually cell death [96] (Figure3.5 (g)). 

These unfavorable physiological responses ultimately lead to an ischemia – reperfusion 

injury that is more severe than the previous ischemic injury. We associated upward trends 

for blood perfusion, metabolic heat generation and temperature during the unfavorable 

inflammatory response, as illustrated in steps shown in Figure3.5(b) – (c) and Figure3.5(e) 

– (g). The upward trends account for increased blood perfusion levels and high metabolic 

heat generations due to the reperfusion cascade. We associated downward trends for blood 

perfusion and metabolic heat generation with severely ischemic regions (Figure 3.5(d)). 

These property trends of ischemia-reperfusion injury are incorporated into our 

computational heat transfer model of a multilayer DTI lesion (consisting of a necrotic 

wound bed surrounded by an inflammation layer) that exhibits both DTI ischemia and DTI 

inflammation. This physiological model allows us to quantify the tissue temperature 

responses to an unfavorable hyperemic response to tissue unloading.  

3.5 Methods 

 The goal of the computational model is to predict the skin temperature distributions 

of the healthy heel tissue and tissue with DTI and assess the possibility of an early 

thermographic diagnosis of the injury. The motivation for understanding the temperature 

distributions is the better interpretation of IR images captured in a clinical setting. 

Understanding the skin surface temperature distributions during different stages of the DTI 

holds the potential to be able to stage DTI from IR images. The thermal signatures 

(characteristic thermal responses) of DTIs are defined in terms of skin temperature 
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increases, decreases or no change with respect to the temperature of the healthy heel tissue. 

We included a steady state analysis (corresponding to data for steady state infrared 

imaging) and a transient analysis (that matches the conditions for dynamic infrared 

imaging). The steady state thermal signatures of DTIs are computed by exposing the skin 

to ambient conditions. The goal of the transient analysis is to enhance the temperature 

differences between the healthy and the injured tissue, when compared to the steady state 

situation. A prominent DTI can often be identified from the steady-state analysis alone. 

The transient analysis can yield a stronger measurement signal in a clinical application and 

may provide additional information on the type of DTI (ischemia, inflammation, multilayer 

DTI) when compared to the steady state condition. Therefore, the understanding of the 

transient thermal signatures is critical. The transient analysis begins with the skin (heel) 

exposed to ambient conditions, such as in the steady state analysis. At time t = 0, a cooling 

excitation is applied to the skin surface (constant surface temperature of 15°C for one 

minute in the present study). In a clinical setting, this can be accomplished by applying a 

gel pack at 15°C to the skin surface. The duration of cooling and the cooling temperature 

can be optimized for clinical applications to minimize patient discomfort, while achieving 

maximum temperature differences [64]. After the cooling is removed, the tissue is again 

exposed to ambient conditions, and it gradually warms up to reach steady state temperature. 

This reheating process is called the thermal recovery. We demonstrate that the thermal 

recovery of tissue previously subjected to cooling would result in a transient thermal 

signature yielding a capability to quantitatively detect deep tissue injury, both at the early 

ischemic and inflammatory stages. The details of our mathematical model and 

computational solution method are presented in the following sections.  
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3.5.1 Mathematical model and solution method 

In this study, the computational thermal model of the heel tissue serves as the 

representative model for DTIs. The computational domain in this model is the 2D cross 

section aa’ of the heel, as shown in the schematic in Figure 3.6(a). The semi – elliptical 

computational domain (Figure 3.6(b)) consists (1) epidermis, (2) papillary dermis, (3) 

reticular dermis, (4) fat, (5) muscle and (6) bone and (7) the deep tissue injury lesion. The 

 
Figure 3.6 Schematics of the heel tissue and computational domain for modeling 
early stage heel DTI. (a) Lateral view of the heel showing the talus bone, fat pad and 
skin layers. Section aa’ is the projection of the computational domain. (b) 
Computational domain showing detailed heel tissue anatomy across section aa’ and 
a DTI lesion in fat and muscle layers. Early stage DTI of heel is modeled by 
considering three possible lesion depths for onset of tissue damage: (c) h = 8 mm 
(DTI exists in the fat and muscle), (d) h = 6 mm (DTI exists in fat layer) and (e) h = 
3.8 mm (DTI exists in the fat and reticular dermis), where the depth h is measured 
from the skin surface (outermost boundary). The early stage DTI lesion is modeled 
as an ellipse with dimensions: d1 = 1.5 cm (major axis), d2 = 0.25 cm (minor axis). 
One form of an advanced stage DTI is modeled by considering a multilayer lesion 
(not shown) consisting of a 1.5 cm by 0.25 cm ellipse surrounded by a 1.25 mm 
thick layer.   
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layer thicknesses are overemphasized and not to scale in the schematics to show the 

anatomical details of the heel tissue. Our modeling efforts include an analysis for three 

lesion depths, since the exact location where the DTI begins in the heel tissue is not known 

in advance. The depths considered in this study are: (1) h = 8 mm (the injury begins in the 

muscle and fat layers), (2) h = 6 mm (the injury begins in the fat layer) and (3) h = 3.8 mm 

(the injury begins in the fat and reticular dermis layers). The schematics of computational 

domains for these depths are shown in Figures 3.6(c)-(e). We assume that each layer is 

homogenous, has a uniform thickness and a set of constant thermophysical properties that 

do not change with temperature, within the temperature range considered in this study. The 

thermophysical properties of tissue layers and lesion, tissue layer thicknesses and lesion 

dimensions were obtained from the prior literature [77, 91, 94, 100-102] and they are 

summarized in Table 3.1 and Table 3.2.   

The governing equation for the heat transfer model in this study is the Pennes 

bioheat equation [62], that we first introduced in Chapter 2, in section 2.1. Our 

mathematical heat transfer model is described by a set of seven (𝑖𝑖 = 1, 2, 7) coupled bioheat 

transfer equations (one equation for each tissue layer and one for the lesion) as  

 𝜌𝜌𝑖𝑖𝑐𝑐𝑖𝑖
𝜕𝜕𝑇𝑇𝑖𝑖
𝜕𝜕𝑡𝑡

= ∇ ∙ (𝑘𝑘𝑖𝑖∇𝑇𝑇𝑖𝑖) + 𝜔𝜔i𝜌𝜌𝑖𝑖𝑐𝑐𝑖𝑖�𝑇𝑇𝑏𝑏𝑖𝑖 − 𝑇𝑇𝑖𝑖� + 𝑞𝑞𝑖𝑖           
 

 (3.1) 

Equation 3.1 is solved in the computational domain using the appropriate initial, boundary 

and interface conditions. The continuity of temperature and heat flux is satisfied at the six 

interfaces (Figure 3.6(b)), 𝑊𝑊 =1, 2, 3, 4, 5 and 6 as 

 𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)|𝑗𝑗𝑚𝑚 =  𝑇𝑇𝑚𝑚+1(𝑥𝑥,𝑦𝑦, 𝑡𝑡)|𝑗𝑗𝑚𝑚  
 

(3.2) 
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−𝑘𝑘𝑚𝑚

𝜕𝜕𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)
𝜕𝜕𝑛𝑛

�
𝑗𝑗𝑚𝑚

= −𝑘𝑘𝑚𝑚+1
𝜕𝜕𝑇𝑇𝑚𝑚+1(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑛𝑛
�
𝑗𝑗𝑚𝑚

 (3.3) 

In Equation 3.3, 𝑛𝑛 is the direction of the normal to a boundary and 𝑊𝑊 represents the 

interfaces, as shown in Figure 3.6(b). The distance between the lesion center and the top 

surface is sufficiently large (2.2 cm) for the top surface to not feel the thermal effect of the 

lesion.  Therefore the boundary condition of zero heat flux  

 
−𝑘𝑘

𝜕𝜕𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝜕𝜕𝑛𝑛

�
top surface

= 0             (3.4) 

is used at the top horizontal surface of the domain (Figure 3.6(b)). The direction of the heat 

flux from the skin layers is radially outwards and a uniform core body temperature is 

assumed at the muscle-bone interface (Figure 3.6(b)) as  

  𝑇𝑇(𝑥𝑥, y, 𝑡𝑡)|j5 = 37°C          (3.5) 

Using Equations 3.1 to 3.5, the computational model is solved in three steps: (i) compute 

the steady state temperature distribution with the skin surface exposed to ambient 

conditions, (ii) for transient analysis apply skin cooling for a short cooling period 𝑡𝑡𝑐𝑐 and 

Table 3.1 Thermophysical properties of heel tissue used in the simulations 

Layer Thickness 
(mm) 

Specific 
heat 
(J/kg∙K) 

Thermal 
conductivity 
(W/m∙K) 

Perfusion 
rate 
(10-3) 
(1/s) 

Metabolic 
heat 
generation 
(W/m3) 

Arterial 
blood 
temperature 
(°C) 

Density 
(kg/m3) 

Epidermis 0.46a 3589b 0.235b 0b 0b 0b 1200b 

Papillary 
dermis 1.67a 3300b 0.445b 0.18b 368.1b 37b 1200b 

Reticular 
dermis 1.67a 3300b 0.445b 1.26b 368.1b 37b 1200b 

Fat layer 5a 2674b 0.185b 0.08b 368.3b 37b 1000b 

Muscle 2.5a 3600b 0.51b 2.7b 684.2b 37b 1085b 

Bone 3a 1300c 0.4c 0d 0d 0d 2000c 

a[91] 
b[41] 
c[102] 
d[100] 
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(iii) compute the transient thermal recovery of the skin surface as a function of time after 

the removal of the cooling load (the skin surface is exposed to ambient conditions again). 

For this study, we assumed an ambient temperature of 𝑇𝑇∞ = 22°C and a convective heat 

transfer coefficient  ℎ∞ = 12 W/m2·K for the steady state condition. The steady state 

solution describes the thermal state of the tissue before the skin cooling begins (𝑡𝑡 < 0) and 

also the thermal state which the tissue gradually attains during the thermal recovery 

process(𝑡𝑡 → ∞). The thermal boundary condition at the skin surface for the steady state 

situation with skin exposed to ambient air is 

 𝑞𝑞′′ = ℎ∞(𝑇𝑇(𝑥𝑥, y, 𝑡𝑡)|skin − 𝑇𝑇∞)   𝑡𝑡 < 0, 𝑡𝑡 > 𝑡𝑡𝑐𝑐 (3.6) 

The temperature distribution computed for the steady state solution (Equations 3.1 to 3.6) 

was used as the initial condition for the transient cooling process. In the transient analysis, 

we applied a cooling excitation to the skin surface. The boundary condition for skin cooling 

is constant temperature of 15°C for the cooling duration of 𝑡𝑡𝑐𝑐 = 1 min described as 

 𝑇𝑇(𝑥𝑥, y, 𝑡𝑡)|skin = 15°C,  0 ≤  𝑡𝑡 < 𝑡𝑡𝑐𝑐 = 1 min (3.7) 

Table 3.2 Thermophysical properties of DTI used in the simulations 

Damage 
mechanism 

DTI  
dimensions 
(cm) 

Specific 
heat 
(J/kg∙K) 

Thermal 
conductivity 
(W/m∙K) 

Perfusion 
rate 
(10-3) 
(1/s) 

Metabolic 
heat 
generation 
(W/m3) 

Arterial 
blood 
temperature 
(°C) 

Density 
(kg/m3) 

Ischemia d1=1.25e 2450f 0.1f 0.262g 342.1f 35f 1037f 

d2=0.25e       

Inflammation d1= 1.5e 2450f 0.558b 6.95b 5262.5b 37b 1037b 

d2=0.25e       
b[41] 
e[77] 
f[101] 
g[94] 
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The boundary condition described by Equation 3.7 can be approximated in a clinical setting 

by applying a cold gel pack to the skin surface. The cooling duration and temperature can 

be optimized to minimize patient discomfort and scan time, while yielding a satisfactory 

temperature difference. After the cooling was removed (𝑡𝑡 > 𝑡𝑡𝑐𝑐), the convective boundary 

condition described by Equation 3.6 was applied again to the skin surface to compute the 

thermal recovery of the skin surface from the cooling excitation. 

The computations were carried out using the finite element software COMSOL 

Multiphysics v4.3a. The mesh consisted of 4932 free triangular elements. Figure 3.7 shows 

the computational mesh in the entire domain. The magnified region shown to the right 

shows the mesh around the DTI lesion. The temperatures at the skin surface and around 

the lesion were of primary interest in the study. To achieve high spatial resolution, the 

maximum element size for the epidermis, the muscle and fat layers was set as 1.3mm, 

whereas the maximum mesh size was 2.4mm for the remaining domains. The 

computational results differed by less than 1% when the smallest element size was set as 

0.65mm. The convergence of the solution was ensured by setting the time step ∆t as 0.1s 

for the first 5 minutes of thermal recovery and 1s for the rest of the thermal recovery period.  

In this study, the early stages of a DTI lesion are characterized either by ischemia 

or inflammation, and thermal models were developed for these two cases. Table 3.2 

summarizes the thermophysical properties for these two DTI models. Staging the injury in 

terms of ischemia and inflammation is useful because it helps to explain the inconsistency 

in previously reported thermographic measurements of pressure ulcers. Temperatures 

computed for these models were compared with temperatures from the healthy tissue 

model. A multilayer model was also developed to account for the advanced stages of DTI. 
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3.5.1.1 Healthy tissue model 

The healthy tissue model serves as the baseline model for comparisons between the 

healthy tissue and tissue with DTI. The healthy heel model does not have any lesion. The 

thermophysical properties for healthy tissue for the mathematical model are summarized 

in Table 3.1.  

3.5.1.2 Ischemia model 

The ischemia model predicts the temperature distributions in the heel tissue in the 

presence of an ischemic lesion. The ischemic injury is characterized by low blood perfusion 

due to blood vessel occlusion and low metabolic heat generation due to anaerobic 

metabolic processes [94, 98], as illustrated in Figure 3.4. A decrease in the effective 

thermal conductivity and density of the tissue is likely due to lipid accumulation in the 

damaged tissue [77, 101]. The thermophysical properties of DTI ischemia lesions for the 

mathematical model are summarized in Table 3.2.  

3.5.1.3 Inflammation model 

 
Figure 3.7 Computational mesh for the heel cross section aa’ from Figure 3.6 with 
an 8 mm deep elliptical DTI lesion with d1 and d2 being the major and the minor 
axis, respectively. The mesh consists of 4932 free triangular elements. 
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The inflammation model predicts the temperature distributions in the heel tissue in 

the presence of DTI inflammation. A favorable hyperemic response to a prior ischemia 

injury (Figure 3.4) and an unfavorable hyperemia response to an ischemia – reperfusion 

injury (Figure3.5) are both characterized by an inflammatory response in the tissue. We 

incorporated elevated blood perfusion levels, high metabolic heat generation and high 

thermal conductivity [94] to characterize DTI inflammation. The thermophysical 

properties of DTI inflammation used in the mathematical model are summarized in Table 

3.2.  

3.5.1.4 Multilayer model 

The multilayer DTI model predicts temperature distributions in the heel in the 

presence of a more advanced injury. At an advanced stage, the initial ischemia lesion may 

transform into a DTI inflammation lesion followed by a multilayer DTI lesion, which is 

represented by a thin inflammation layer surrounding the ischemic core. The outer layer of 

the multilayer DTI lesion is characterized by thermophysical properties of DTI 

inflammation and the inner ischemic core is characterized by thermophysical properties of 

DTI ischemia (Table 3.2).  

3.6 Thermal signatures of DTIs 

In this section, we present the computed thermal signatures of DTIs during steady 

state conditions and transient thermal recovery from a cooling excitation, using the thermal 

models developed in section 3.5. Our aim is to demonstrate the possibility of steady state 

and dynamic thermographic early detection, identification and characterization of DTIs. In 

section 3.6.1, we first introduce ‘reversible-damage DTIs’ and ‘irreversible-damage DTIs’ 
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as two clinical stages or categories of DTIs. Next, we present the long-term skin 

temperature variations during the evolution of these stages. These projections are based on 

the tissue temperature trends that were identified in section 3.4. In sections 3.6.2 and 3.6.3, 

we quantify the thermal signatures of reversible and irreversible DTIs using our 

computational heat transfer models. To account for the unknown depth of the early damage, 

three possible lesion depths are considered for each stage DTI, as discussed in section 3.5.1. 

3.6.1 Thermal classification for DTIs 

To enable more accurate clinical assessment of tissue damage during the evolution 

of DTI, we propose two thermal stages: reversible-damage DTI (representing an early stage 

injury) and irreversible – damage DTI (representing an aggravated injury). These 

definitions are based on the tissue temperature trends that we identified in section 3.4 for 

ischemia-led tissue damage (Figure 3.4) and ischemia – reperfusion-led injury (Figure3.5). 

A reversible DTI refers to an incipient ischemic injury to the subcutaneous tissue (caused 

during tissue loading) that could be reversed by a hyperemic response (or inflammation) to 

tissue unloading (Figure 3.4 (a) – (g)). The tissue eventually recovers its baseline healthy 

state (Figure 3.4(g)). The skin temperature evolution during the occurrence and progression 

of a reversible DTI is displayed in Figure 3.8(a). It can be detected by infrared imaging of 

the affected lesion during the time period of interest. The initial temperature decrease in 

Figure 3.8(a), during reversible ischemia, indicates low blood perfusion and metabolic heat 

generation (Figure 3.4(b) – (d)). The following increase in temperature, during reversible 

inflammation, is a hyperemic response (elevated blood perfusion) to tissue unloading 

(Figure 3.4(e) – (f)). The subsequent temperature decrease to the baseline healthy state 

temperature (shown in Figure 3.4(g)) indicates the recovery of the damaged tissue to a 
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healthy state. Further research is necessary to examine the time scales for the temperature 

decreases and temperature increases. The magnitude of temperature decreases and 

increases during reversible DTI ischemia and inflammation will depend on the magnitude 

and duration of sustained loading, leading to ischemia, as well as on the dimensions and 

depth of the DTI lesion. Quantitative skin temperature data for a reversible DTI lesion, 

computed using DTI ischemia and inflammation models will be presented in section 3.6.2.  

An irreversible DTI develops from a pre-existing ischemic injury (caused during 

tissue loading) that is aggravated by an ischemia-reperfusion injury during tissue unloading 

(Figure 3.4(h) and Figure 3.5(a) – (g)). Advanced stage damage can be classified as 

thermally and clinically irreversible. The ischemic DTI lesion may evolve into a single thin 

inflammation layer around the ischemic core region and transform into a multilayer DTI 

or into a DTI inflammation lesion over time. The skin temperature variations during 

irreversible DTI occurrence and progression are qualitatively displayed in Figure 3.8(b). 

 
Figure 3.8 Qualitative display of skin surface temperature evolution over time for 
two clinical outcomes of DTI. (a) Case I: tissue recovers from a brief ischemic 
episode. (b) Case II: tissue suffers irreversible damage as a result of a severe 
inflammatory response and ischemia – reperfusion injury. 
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The initial temperature decrease (in Figure 3.8(b)) indicates the state of low blood 

perfusion and metabolic heat generation (Figure 3.4(b) – (d)) and Figure 3.5(d)), during 

ischemia, similar to the situation in Figure 3.8(a)). The subsequent sustained temperature 

elevation (in Figure 3.8(b)), contrasted to short duration in Figure 3.8(a), suggests an 

extended unfavorable inflammatory response (elevated blood perfusion levels), caused by 

the ischemia-reperfusion event following tissue unloading (Figure 3.4(h) and Figure3.5 (b) 

– (c), (e) – (g)). The temperature rise may also be due to the presence of a thin inflammation 

layer around the pre-existing ischemic lesion or inflammation occurring in the full volume 

of the DTI. In the presence of an aggravated injury, the tissue metabolism fails to restore 

the baseline healthy temperatures (Figure 3.8(b)) over time. Quantitative skin temperature 

data for an irreversible DTI lesion computed from the multilayer DTI models will be 

presented in section 3.6.3.  

3.6.2 Thermal signatures of reversible DTIs 

In this section, we present computed skin temperatures in the presence of reversible 

ischemia and inflammation damage. The characteristic responses are computed for a 1.5 

cm by 0.5 cm large heel DTI lesion situated at three depths: (1) h = 8 mm (muscle and fat 

layer are damaged), (2) h = 6 mm (fat layer is damaged) and (3) h = 3.8 mm (fat and 

reticular dermis layers are damaged). Steady state thermal signatures of reversible DTIs 

are presented in section 3.6.2.1 (steady state thermographic assessment) and the transient 

thermal signatures in section 3.6.2.2 (dynamic thermographic assessment).  

3.6.2.1 Steady state signatures (reversible DTIs) 
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Steady state heel temperatures were computed for healthy tissue and DTI models 

for ischemia and inflammation using Equations 3.1 to 3.6. Figure 3.9 displays the computed 

temperature distributions for DTI ischemia and DTI inflammation cases. The results are 

shown for the ROI outlined by a dashed red box in the top right schematic. The temperature 

plots are color coded: dark blue color is the lowest temperature and red color is the highest 

temperature. The boundaries of different layers are indicated by the black lines. A 

temperature decrease is observed during ischemia, due to low blood perfusion levels 

(Figure 3.9 (a), (c) and (e)). A temperature increase is observed during an inflammatory 

response, due to elevated blood perfusion levels (Figures 3.9 (b), (d) and (f)).  These effects 

 

Figure 3.9 Computed steady state temperatures for DTI models of ischemia and 
inflammation. The red box in the top right schematic shows region of interest. 
Temperature distributions are shown for lesion depths h = 8 mm (a) ischemia and (b) 
inflammation; h = 6 mm (c) ischemia and (d) inflammation; and h = 3.8 mm (e) 
ischemia and (f) inflammation. Temperatures increase from dark blue to red.  
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are illustrated for the three depths of DTI lesion: h = 8mm ischemia and inflammation in 

Figures 3.9 (a) and (b); h = 6mm ischemia and inflammation in Figures 3.9(c) and (d); and 

h = 3.8mm ischemia and inflammation in Figures 3.9(e) and (f).  

The steady state skin surface temperature profiles for the healthy model, DTI 

ischemia and DTI inflammation are compared in Figure 3.10 for the three lesion depths. 

The ordinate shows the skin temperature during steady state. The distance l on the x axis 

is the distance measured along the curved surface of the heel periphery, as indicated in the 

 
Figure 3.10 Steady state thermal signatures for DTI ischemia and inflammation. Skin 
surface temperature profiles from the healthy tissue model and ischemia models 
compared for depths (a) h = 8 mm, (b) h = 6 mm and (c) h = 3.8 mm. Skin surface 
temperature profiles from the healthy tissue model and inflammation models compared 
for depths (d) h = 8 mm, (e) h = 6 mm and (f) h = 3.8 mm depths. Temperature 
differences are computed as ∆Tisc =  Tischemia − Thealthy for DTI ischemia and 
∆Tinf (Tinflammation − Thealthy) for DTI inflammation. The ordinate is the distance 
along the circumference of the heel, as shown in the schematic.  
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top heel schematics. The healthy skin temperature profiles are shown by the black lines 

and the blue lines represent the skin temperature profiles for ischemia (top row images) 

and inflammation (bottom row of images). With respect to the healthy skin profile, the 

computed temperature decreases during ischemia (∆Tisc = Tischemia − Thealthy ) and the 

temperature increases during inflammation (∆Tinf = Tinflammation − Thealthy) are 

indicated in each plot. The maximum temperature decreases and increases are observed for 

the location l = 48mm, which is the location above the lesion center. During steady state, 

the skin temperature decreases for a DTI ischemic lesion by 0.41°C for the h = 8mm depth 

(Figure 3.10(a)) depth, 0.37°C for the h = 6 mm depth (Figure 3.10(b)) and 1.05°C for the 

h = 3.8mm depth (Figure 3.10(c)) case. The skin temperature increases for a DTI 

inflammation lesion by 0.56°C for the h = 8mm depth (Figure 3.10(d)), 0.6°C for the h = 

6mm (Figure 3.10(e)) and 0.86°C for the h = 3.8 mm (Figure 3.10(f)) depth case. As 

expected, the temperature difference and the corresponding measurement signal is larger, 

the closer the lesion is to the skin surface. The thermal signatures of this magnitude can 

easily be measured using modern IR cameras, resulting in a steady state thermographic 

diagnostic capability for heel DTI ischemia and inflammation.   

3.6.2.2 Transient thermal signatures (reversible DTIs) 

While the steady state situation can yield relatively large temperature differences 

that are easy to measure, especially for larger DTIs relatively close to the skin surface, even 

more information can be gained and the temperature differences between the healthy and 

DTI cases can be enhanced (when needed, for example for small lesions) by considering 

transient thermal recovery temperatures of the skin. In the present study, the skin surface 
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was subjected to a cooling load of 15°C for 1 min duration and its transient thermal 

recovery was computed using the healthy tissue and DTI models, by solving Equations 3.1 

to 3.7. Figure 3.11 displays the transient thermal recoveries of the healthy tissue, and of an 

8mm deep lesion characterized by ischemia as well as inflammation. The transient 

temperatures are plotted for point P (shown in the top right heel schematic), which 

corresponds to the l = 48 mm location on the skin surface. At this location, the maximum 

steady state thermal signatures were detected. The characteristic transient thermal 

signatures of DTI ischemia and inflammation lesions are shown as function of thermal 

recovery time in Figure 3.11(a). For a cooling load of 15°C of 1 minute duration, the 

complete thermal recovery takes about 20-25 minutes (Figure 3.11(a)). However, key 

information regarding the nature of the DTI (ischemia vs. inflammation) is available within 

 
Figure 3.11 Transient thermal recovery of skin surface temperature for healthy tissue 
and DTI models of ischemia and inflammation. Top right schematic shows point P 
where recoveries were computed. (a) Complete thermal recovery – until temperature of 
the skin reaches steady state, (b) magnified region of the early thermal recovery period 
(the first five minutes of particular interest in clinical applications) (c) Temperature 
difference ∆TDTI−healthy shown for the first five minutes of thermal recovery. Red curve 
shows temperature increase for inflammation and blue curve shows temperature 
decrease for ischemia.  
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the first five minutes of the thermal recovery period. DTI ischemia can be identified by a 

slower recovery (light blue curve) and DTI inflammation can be identified by a faster 

recovery (red curve) when compared to the healthy tissue (green curve) during the first five 

minutes of thermal recovery (Figure 3.11(b)).  

For the 8 mm deep DTI case, the computed temperature decrease ∆Tisc =

 Tischemia − Thealthy was in the range of 0.25°C − 0.5°C (Figure 3.11(c)). The computed 

temperature increase ∆Tinf =  Tinflammation − Thealthy was in the range of 0.5°C − 0.9°C, 

during the first five minutes of the thermal recovery (Figure 3.11(c)). These results show 

that the tissue affected by DTI ischemia and DTI inflammation can be distinguished from 

the healthy tissue by cooling down the skin surface and measuring the thermal recovery of 

the skin above the lesion as a function of time. The 8 mm deep DTI case serves as the worst 

case depth scenario in our model for detecting the changes associated with DTI ischemia 

and inflammation. Deep tissue injuries can develop deeper, in locations with a thicker fat 

layer, such as the sacral area. Dynamic IR imaging can be particularly valuable for the 

detection of such lesions. We have demonstrated that the transient thermal signatures of 

the 8 mm deep ischemia or inflammation lesions are measurable with modern IR cameras. 

Therefore, depending upon the location and size of the lesion as well as the tissue 

properties, the duration of a transient measurement would be 1-5 minutes, which is 

acceptable in a clinical setting. These transient thermal signatures suggest that the entire 

diagnostic measurement can be carried out within 6 minutes, which is acceptable in a 

clinical practice.  

Figure 3.12 illustrates that our transient analysis can enhance the temperature 

differences between healthy and tissue affected by DTI in a clinical setting and provide 
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stronger thermal signatures compared to the steady state case. The steady state temperature 

profiles (shown in green) are plotted along the tissue depth line hh’ (shown schematically 

in the top right schematic). The position h = 0 is located on the skin surface and h’= 11.3 

mm is the bone-muscle interface in Figure 3.12. With respect to healthy skin, a temperature 

decrease of 0.35°C is observed for ischemia (Figure 3.12(b)) and an increase of 0.6°C is 

observed for inflammation for a 6 mm deep DTI (Figure 3.12(c)) in steady state. The 

temperature profiles computed at 3.5 minutes into the thermal recovery are shown by the 

black lines. At this time, a temperature decrease of 0.41°C is observed for ischemia (Figure 

3.12(b)) and an increase of 0.7°C is observed for inflammation (Figure 3.12(c)), when 

compared to skin temperature of healthy tissue at the same time (Figure 3.12(a)). This time 

 
Figure 3.12 Skin temperature profiles plotted along depth line hh’ during steady 
state and transient thermal recovery (top row) and 2D color-coded temperature 
distributions during thermal recovery (bottom row) for (a) healthy tissue, (b) tissue 
with a 6 mm deep DTI ischemia and (c) inflammation lesion. In the top row, the 
green curves show steady state and the black curves show transient tissue 
temperature profiles at 3.5 minutes into the thermal recovery, at a time when the 
temperature differences of interest are large.  
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instant is selected for comparison because the temperature difference between healthy 

tissue and DTI responses is largest in the 3-4 minute time range. Both the 0.41°C 

temperature decrease and the 0.7°C temperature increase (with respect to the healthy 

situation) at the skin surface are larger than in the steady state situation (0.35°C decrease 

and 0.6°C increase, respectively) and can easily be measured with modern, relatively low 

cost IR cameras.  

The bottom row of images shown in Figure 3.12 displays the 2D color coded heel 

tissue temperature distributions computed at 3.5 minutes into thermal recovery for the 

healthy tissue model (left), DTI ischemia model (middle) and DTI inflammation model 

(right) for a 6 mm deep DTI. The blue regions in the color-coded images correspond to low 

temperatures and red regions to the high temperatures. A temperature decrease is visible in 

the region of the lesion and its surroundings for ischemia (Figure 3.12(b)), whereas the 

temperature increases in this region for inflammation (Figure 3.12(c)), when compared to 

the healthy tissue shown in Figure 3.12(a).  

Figure 3.13 displays the transient skin surface temperatures computed for DTI 

ischemia and inflammation, along the perimeter of the heel (location, l shown in top 

schematics)  as a function of the thermal recovery time, t. The plots for ischemia lesions 

for depths h = 8 mm (Figure 3.13(a)) and h = 3.8mm (Figure 3.13(b)) show temperature 

decreases. The plots for inflammation lesions for depths h = 8 mm (Figure 3.13(c)) and h 

= 3.8 mm (Figure 3.13(d) show temperature elevations. The increases or decreases in the 

skin temperatures are most pronounced for the location range from l = 35 to l = 65 mm, the 

area above the lesion. The width of the region characterized by temperature increases or 

decreases scales with major axis of the DTI. The results demonstrate that key quantitative 
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information regarding the nature of the DTI (ischemia vs. inflammation) is available within 

the first 2-5 minutes of thermal recovery.  

The impact of lesion depth on the transient skin temperatures is illustrated for DTI 

ischemia lesions in Figure 3.14 and DTI inflammation in Figure 3.15. For the three depths 

of DTI ischemia and DTI inflammation lesions, the skin surface thermal response was 

computed during the first five minutes of the thermal recovery process. The results are 

compared with the skin temperatures of the healthy tissue for the same times of the thermal 

recovery process in Figure 3.14 (ischemia) and Figure 3.15 (inflammation). As expected, 

 
Figure 3.13 Skin surface temperature distribution as a function of location and 
thermal recovery times for DTI lesions. Ischemia lesions at (a) h = 3.8 mm and (b) 
h = 8 mm depth and inflammation lesions at (c) h = 3.8 mm and (d) h = 8 mm depth. 
The locations l = 35 to 65 mm along the skin surface and the thermal recovery times 
from t = 2 to 5 minutes provide best sensitivity for measurement. DTI dimensions: 
d1 = 1.5 cm (major axis), d2 = 0.25 cm (minor axis).  
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the 3.8 mm deep DTI (blue line) results in the most pronounced temperature 

decrease/increase in skin surface temperature with respect to the healthy tissue (green line) 

in both ischemia (Figure 3.14) and inflammation plots (Figure 3.15). The trends for the 

3.8mm depth DTI indicate that the lesion closer to the skin surface will have stronger 

thermal signatures. Skin temperatures for the 6mm and 8 mm deep ischemia lesions do not 

differ as much as the skin temperatures for the inflammation lesions at the same depths 

(Figure 3.14 and Figure 3.15), suggesting weaker thermal signatures for ischemia when 

 
Figure 3.14 Impact of DTI ischemia lesion depth on the transient skin surface 
temperature profiles. Skin surface temperatures are plotted along the perimeter of 
the heel (l shown in top left schematic) for healthy (green) tissue and lesions at 
depths h = 3.8 mm (blue), 6 mm (black) and 8 mm (red). The results are shown at 
thermal recovery times of (a) t = 2 min, (b) t = 3 min, (c) t = 3.5 min, (d) t = 4 min, 
(e) t = 4.5 min and (f) t = 5 min, when the temperature differences of interest are 
large. DTI dimensions: d1 = 1.5 cm (major axis), d2 = 0.25 cm (minor axis). 
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compared to inflammation.  These trends can be explained by our findings from Chapter 

2, section 2.3 indicating that the skin temperature is less sensitive to changes in fat 

perfusion (the 6 mm depth ischemia lesion, mainly located in the fat layer) when compared 

to changes in muscle perfusion (the 8 mm depth ischemia lesion, mainly in the muscle 

layer). The thermal signatures of the ischemia lesions are affected by the competing effects 

of the lesion depth and the sensitivity of the skin temperature to the blood perfusion in the 

tissue layer affected by the DTI. 

 
Figure 3.15 Impact of DTI inflammation lesion depth on the transient skin surface 
temperature profiles. Skin surface temperature profiles are plotted along the 
perimeter of the heel (l shown in top schematic) for healthy tissue (green) and 
lesions at depths h = 3.8 mm (blue), 6 mm (black) and 8 mm (red). The results are 
shown for thermal recovery times of (a) t = 2 min, (b) t = 3 min, (c) t = 3.5 min, (d) 
t = 4 min, (e) t = 4.5 min and (f) t = 5 min, when the temperature differences of 
interest are large. DTI dimensions: d1 = 1.5 cm (major axis), d2 = 0.25 cm (minor 
axis). 



 

78 
 

  Figure 3.16 displays the computed transient thermal signatures ∆Tisc for DTI 

ischemia and ∆Tinf for DTI inflammation lesions for the duration of 2- 5 minutes of the 

thermal recovery process. The results are shown along the heel perimeter for the location 

range l = 25 mm to 75 mm (l is shown in top schematics), that provides the best spatial 

sensitivity for detecting the thermal signatures of the DTI lesions (dimensions: d1 = 1.5 cm 

major axis, d2 = 0.25 cm minor axis) of this study.  The early thermal recovery times from 

2-5 minutes were selected because they are sufficient for best sensitivity in dynamic 

thermal imaging. The temperature differences computed from the healthy and DTI 

 
Figure 3.16 Thermal signatures of DTI ischemia and DTI inflammation from 
transient analysis. Skin surface temperature differences, ∆T (TDTI  –Thealthy), plotted 
from l = 25 mm to 75 mm (l shown in top schematics) at thermal recovery times t = 
2, 3.5, 4 and 5 minutes for DTI ischemia lesions (∆Tisc) at (a) h = 8 mm, (b) h = 6 
mm and (c) h = 3.8 mm depth and for DTI inflammation lesions (∆Tinf) at (d) h = 8 
mm, (e) h = 6 mm and (f) h = 3.8 mm depth.  
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ischemia models (∆Tisc =  Tisc − Thealthy ) are shown in the top row of Figure 3.16. During 

the first 2 - 5 minutes of the thermal recovery period, the temperature decreases ∆Tisc varied 

in the range of 0.38°C to 0.5°C for an 8 mm deep lesion (Figure 3.16 (a)), 0.45°C to 0.5°C 

for a 6 mm deep lesion (Figure 3.16(b)) and 1.4°C to 2°C for a 3.8 mm deep lesion (Figure 

3.16(c)). These are relatively large temperature differences can easily be measured with 

modern IR cameras in a clinical setting. The temperature differences obtained from healthy 

and DTI inflammation models (∆Tinf =  Tinf − Thealthy)  are shown in the bottom row of 

Figure 3.16. ∆Tinf varied in the range 0.25°C to 0.9°C for an 8 mm deep lesion (Figure 

3.16(d)), 1.0°C to 1.6°C for a 6 mm deep lesion (Figure 3.16(e)) and 1.7°C to 2.5°C for a 

3.8 mm deep lesion (Figure 3.16(f)). Again, these temperature differences can be measured 

with modern IR cameras in a clinical setting. 

  We observed that early recovery times (2–4.5 minutes).present stronger 

measurement signal for ischemia lesions in comparison to later recovery times. The values 

for ∆Tisc for the 3.8 mm deep ischemia lesion decreased after t = 2 minutes into the thermal 

recovery period (Figure 3.16(c)). For the 6 mm and 8 mm deep ischemia cases, this 

decrease in the values for ∆Tisc was observed after t = 4.5 minutes of the thermal recovery 

period (Figures 3.16 (a) and (b)). In contrast, the thermal signatures of the inflammation 

cases increased with increasing recovery times, reaching a maximum at t = 5 minutes. 

These results suggest that the imaging times of 1-5 minutes of the thermal recovery will be 

sufficient for best sensitivity in dynamic thermal imaging of both DTI ischemia and DTI 

inflammation lesions.  

 



 

80 
 

3.6.3 Thermal signatures of irreversible DTIs 

Irreversible damage can occur in DTIs if the initial ischemic lesion evolves as a 

pure inflammation lesion or turn into a multilayer DTI. A pure inflammation lesion could 

also turn into a multilayer DTI if the central portion becomes necrotic. The thermal 

signatures of a pure inflammation lesion will be similar to reversible inflammation DTI 

which are discussed in section 3.6.2. In this section, we discuss the thermal signatures of a 

multilayer DTI that represents a case of an irreversible DTI damage. We model an 

irreversible DTI as a multilayer DTI. A 1.5cm by 0.5 cm large elliptical ischemic lesion is 

surrounded by a 1.25 mm thick inflammation layer. It should be noted that the multilayer 

DTI is larger than the single layer DTI, considered previously. The thermal signature of 

the multilayer DTI on the skin surface will be affected by the combined effects of ischemia 

and inflammation. The analysis is presented for three lesion depths: h = 8mm, h = 6 mm 

and h = 3.8 mm. The steady state signatures are presented in section 3.6.3.1 and the 

transient signatures are presented in section 3.6.3.2.  

3.6.3.1 Steady state signatures (irreversible DTIs) 

Steady state heel temperatures were computed using healthy tissue and multilayer 

DTI models by solving Equations 3.1 to 3.6. Figure 3.17 displays the color coded 

temperature distributions computed for three depths of multilayer DTI lesions: h = 8mm 

(Figure 3.17(a)), 6 mm (Figure 3.17(b)) and 3.8 mm (Figure 3.17(c)). The ROI for 

displaying the temperature distributions is outlined by a dashed red box in the top left 

schematic. The locations of the tissue layers and DTI are indicated by the black lines. For 

the steady state conditions, the tissue temperature patterns for the multilayer DTI matched 
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the temperature patterns for the DTI inflammation lesions (discussed in section 3.6.2.1). 

An increase in tissue temperature was observed for all three multilayer DTI cases (Figure 

3.17 (a) – (c)). The net temperature increase for a multilayer DTIs indicates that the effects 

of tissue inflammation (present in the outer rim) dominate the effects of tissue ischemia 

(present in the central portion) in steady state conditions.   

Figure 3.17 (d) – (f) display the steady state skin surface temperatures in the 

presence of multilayer DTIs (yellow) for the three lesion depths. The computed steady state 

temperature profiles of the healthy skin (green), reversible DTI ischemia (blue) and 

reversible DTI inflammation (red) at same depths are also shown in the plots. It should be 

noted that the width of the multilayer DTI is larger than reversible DTIs, due to an outer 

 
Figure 3.17 Steady state temperature distributions for the multilayer DTI cases. 
Color coded 2D temperature distributions for multilayer DTI lesion at depths (a) h 
= 8 mm, (b) h = 6 mm and (c) h = 3.8 mm. Skin surface temperature profiles plotted 
along the perimeter of the heel (from l = 20 to 80 mm) for multilayer DTI lesions at 
depth (c) h = 8 mm, (d) h = 6 mm and (e) h = 3.8 mm. The skin surface temperature 
profiles for healthy tissue and DTI ischemia, DTI inflammation at the same depth 
are also shown in the bottom row plots.  
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inflammation layer. An increase in skin surface temperature was observed for all multilayer 

cases (Figure 3.17 (d) – (f)). The temperature increase for an 8mm deep multilayer DTI 

(Figure 3.17 (d)) was equal in magnitude to the increase for an 8 mm deep reversible DTI 

inflammation lesion , which is smaller (1.5cm by 0.5 cm large). For the 6mm (Figure 3.17 

(e)) and 3.8 mm (Figure 3.17 (f)) deep multilayer DTI lesions, the temperature increases 

are larger in magnitudes when compared increases for reversible DTI inflammation lesions 

at the same depths. The skin temperature decreases due to tissue ischemia are dominated 

by the temperature increases due to tissue inflammation, resulting in a net temperature 

increase in the healthy tissue in steady state conditions.  

3.6.3.2 Transient thermal signatures (irreversible multilayer 

DTIs)  

Figure 3.18 shows the transient thermal recoveries of the skin surface in the 

presence of multilayer DTI lesions. The thermal recovery as a function of time was 

computed for the three multilayer DTI depths and results were compared with healthy 

tissue as well as DTI ischemia, inflammation results for the same lesion depth (Figures 

3.18 (a)– (c)). Again, when compared to the steady state analysis (section 3.6.3.1), the 

transient analysis for multilayer DTIs can provide more information about the properties 

of DTIs and allow us to distinguish between inflammation only and multilayer DTIs. 

 Figure 3.19 displays the steady state skin surface temperature distributions and the 

transient skin temperatures during early recovery times (t = 10 to 210s) for three multilayer 

DTI depth cases (schematically shown in Figure 3.19(a), (d) and (i)). The surface 

temperatures are displayed for the locations l = 20 to 80 mm along the heel periphery. The 
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steady state temperatures show only a temperature increase with respect to the healthy 

tissue case as shown for h = 8mm in Figure 3.19(b),  h = 6mm in Figure 3.19 (e) and h = 

3.8 mm depth case in Figure 3.19 (j). In contrast, the transient temperatures show both a 

local temperature decrease (ischemia dominated thermal signature) and a local temperature 

increase (inflammation dominated thermal signature) compared to the healthy tissue. The 

surface temperature distribution is a result of the competing effects of temperature 

decrease, an indication of ischemia, and temperature increase, an indication of 

inflammation. Temperature decrease is detectable on the skin surface only during the early 

stages of the transient analysis and not during steady state. The temperature decrease was 

observed within the first 30s for the multilayer DTI cases (Figure 3.19 (c), (f) and (i)). After 

this period, only temperature increase was observed as the skin surface temperature 

recovered further (Figure 3.19 (c), (f) and (i)). These results clearly illustrate the 

possibilities of generating larger temperature differences (measurement signals) and 

 
Figure 3.18 Skin temperature as a function of thermal recovery time for healthy 
tissue, multilayer DTIs, DTI ischemia, DTI inflammation for the DTI lesions at 
depths (a) h = 8 mm, (b) h = 6 mm and (c) h = 3.8 mm. The skin temperature was 
computed at point P shown in the top right schematic.  
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reducing measurement errors by using dynamic IR imaging contrasted to steady state 

 

 
Figure 3.19 Steady state and transient thermal signatures of multilayer DTI lesions. 
Schematics of multilayer DTI lesions are shown for (a) h = 8 mm, (d) h = 6 mm and 
(g) h = 3.8 mm deep lesions. The central grey portion represents the necrotic region 
and the surrounding orange portion represents inflammation. The steady state 
thermal signatures of multilayer DTI lesions are shown for the depths (b) h = 8mm, 
(e) h = 6 mm and (h) h = 3.8 mm. The temperature is plotted as a function of the 
distance l along the heel periphery (shown in left schematics) between l = 20 mm to 
l = 80 mm where the temperature differences of interest are large. The transient 
thermal signatures of multilayer DTI lesions are shown for thermal recovery times t 
= 10s, 15s, 30s, 60s and 210s for (c) h = 8mm, (f) h = 6mm and (i) h = 3.8 mm deep 
lesions.   
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techniques.  

Also, using dynamic infrared imaging and the transient analysis, we are able to 

quantitatively detect the presence of irreversible multilayer DTIs. This feature is important 

in a clinical setting, as the clinician is able to gain better insight into the level of damage 

as well as detect irreversible damage soon. In this way, measures to alleviate further 

damage can be implemented sooner and the overall impact on the health of the patient can 

be reduced.  

3.7 Discussion - thermal signatures of DTIs 

Quantitative diagnostic imaging tools are needed for the early detection of DTIs to 

gain better insight into the state and level of tissue damage. Our computational modeling 

analysis for DTIs shows that infrared imaging can be used for detecting the manifested skin 

temperature changes associated with ischemia and inflammation in DTIs. Since infrared 

imaging offers a non-invasive, non-contact and quantitative method that could be used in 

clinics, it could be a valuable tool to the clinicians for diagnosing and assessment of DTIs.  

Our computational modeling results provide better insights into the biophysical 

processes underlying the temperature changes manifested on the skin surface during DTI 

occurrence and progression. The results show that the previous thermographic findings of 

temperature increases and temperature decreases for pressure injuries can be explained in 

terms of tissue inflammation and ischemia, respectively. The proposed thermal stages for 

DTIs are based on the long-term skin temperature evolution during DTI occurrence and 

progression. A reversible-damage DTI is associated with a milder incipient injury that is 

reversible in nature with proper clinical care and characterized by milder ischemia and 
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inflammation. An irreversible damage DTI is represents an aggravated injury that is 

characterized by unfavorable chemical and biophysical processes occurring during 

ischemia-reperfusion. The thermal labeling of DTIs as reversible-damage and irreversible-

damage injuries offers a quantitative, objective and a convenient method to classify the 

severity and the type of the DTI which is suitable for clinical use. The proposed thermal 

classification derived from this computational study would complement the longitudinal 

thermographic scans of the at risk patients.  

Thermographic scans of the tissue at risk for DTI will either show temperature 

decrease, increase or no temperature difference, when compared to the temperature of the 

surrounding healthy skin or the healthy tissue temperature of the same body part 

(unaffected symmetrical location) measured at an earlier time. We have incorporated 

ischemia and inflammation as key thermal variables in our computational models to 

account for the sequential progression of DTIs by ischemia or ischemia – reperfusion 

mechanisms. The quantitative thermal signatures associated with tissue ischemia, 

inflammation and with the combination of ischemia and inflammation have been computed 

in this study. We demonstrated that the tissue with early ischemia and inflammation DTI 

or a multilayer DTI can be identified by measuring either steady state temperature 

distributions or the thermal response to the cooling stress and comparing it with the thermal 

response of the healthy tissue. By obtaining thermographic measurements of DTI subjects 

and comparing measurement data to the data computed from the ischemia, inflammation 

and multilayer models, clinicians can gain better quantitative insight into the properties and 

stages of DTIs. Additionally, the temperature data obtained by IR imaging can be coupled 



 

87 
 

with inverse reconstruction techniques [103] to obtain key parameters of the DTI lesion, 

such as dimensions, depth, blood perfusion rate and metabolic heat generation rates.  

Furthermore, our computational modeling study illustrates the advantages of 

dynamic infrared imaging over static infrared imaging for the diagnosis and assessment of 

DTI. We demonstrated that the thermal signatures of DTIs during steady state conditions 

can be enhanced by considering transient thermal recoveries of the skin surface from a 

cooling excitation. Additionally, we showed that the transient analysis can provide more 

information about the type of DTI (ischemia or inflammation or multilayer) when 

compared to the steady state analysis. Our analysis for the multilayer DTI case is an 

example to demonstrate that considering the transient skin temperatures has advantages 

over the steady state thermal analysis. The transient thermal recovery of the affected area 

can detect the effects of ischemia and inflammation present in the multilayer DTI lesion, 

in contrast to the steady state analysis that could only detect inflammation and could 

potentially underestimate the severity of the injury in a clinical setting. To illustrate the 

potential of inverse reconstruction techniques coupled with IR imaging for DTI 

assessment, we show examples of reconstruction of DTI size, blood perfusion and depth 

based on the computed steady state temperature data in the next section.    

3.8 Inverse method applied to the bioheat transfer model for 

DTIs – measuring DTI properties from thermal signatures 

In the previous sections, we solved a direct bioheat transfer problem by computing 

the skin surface temperatures for known geometrical and thermophysical properties of 

DTIs. Our model demonstrated that the characteristic thermal responses of DTI ischemia 
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and inflammation lesions can be measured using thermographic imaging. In this section, 

our aim is to solve an inverse bioheat transfer problem of estimating the geometrical and 

thermophysical properties of DTIs using the skin surface temperature distributions [103]. 

We applied the Levenberg – Marquardt (LM) method [104] to solve the inverse problem 

of estimating the depth, size and blood perfusion rate of the DTI. This preliminary analysis 

is based on the steady state characteristic responses of DTIs and a 15 mm by 6 mm large 

elliptical DTI ischemia lesion (with 50% blood perfusion rate when compared to the 

surrounding healthy tissue) was used as the test case for the simulations.   

The LM method is a minimization technique [104] that is used for solving the least 

squares curve fitting problems. The damping term in the minimization formulation of the 

LM method makes it more robust when compared to the traditional least square 

approaches. In this study, the LM algorithm estimates the best set of lesion parameters by 

minimizing the difference between the measured and the computed skin surface 

temperatures in a least squared sense. The mathematical details [105] are provided in the  

Appendix. Initially, a measured skin temperature profile and an initial guess of the 

unknown parameters is provided to the algorithm. The measured data in this study 

correspond to the data obtained from our computational phantom for the selected test case. 

The skin temperature profile is computed for the guessed parameters and is compared with 

the measurement data. The next set of parameters is estimated iteratively until the sum of 

the squared error between the measured and the computed data is minimized. We can 

simultaneously and accurately estimate two parameters using the steady state skin surface 

temperatures [105]. In this study, we focused on three parameters– the depth h, the size d1 

(major axis of the lesion) and the blood perfusion rate ω, that are most relevant for DTIs. 
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To evaluate these parameters using the steady state temperatures, we tested three cases (1) 

the size and the depth are unknown, (2) the size and the blood perfusion rate are unknown 

and (3) the depth and the blood perfusion rate are unknown [105]. In the next section, we 

will present the results for these three cases.  

3.8.1 Results of the inverse problem  

Reconstructing DTI geometry (known blood perfusion rate) – Our goal is to 

estimate the depth and the size (dimension of the major axis) for an ischemic DTI lesion 

that has 50% blood perfusion rate of the surrounding healthy tissue. We modeled a 15 mm 

by 6 mm large DTI lesion at the depths of 8mm, 6 mm and 3.8mm from the skin surface. 

For these three lesions, the skin temperature data obtained from the computational phantom 

serve as the measurement data for the LM algorithm. Table 3.3 summarizes the actual 

values and the initial guesses used for estimating the sizes and depths for each lesion. The 

top row in Figure 3.20 illustrates the iterative progression of the initial guesses (set 2 from 

Table 3.3) to the actual values of the DTI parameters. The black lines correspond to the 

depth estimates and the blue lines correspond to the size estimates. The bottom row shows 

the variation of the sum of the squared error, S with the number of iterations. The parameter 

Table 3.3 Initial guesses for the inverse estimation of depths and sizes for an 
ischemic DTI. The blood perfusion levels are assumed to be 50% of that of the 
surrounding healthy tissue. 

Actual 
values 

ω = 50% ischemia ω = 50% ischemia ω = 50% ischemia 
h = 8 
mm 

d1 = 15 
mm 

h = 6 
mm 

d1 = 15 
mm 

h = 3.8 
mm 

d1 = 15 
mm 

Guess 1 6 12 5 13 2.5 10 
Guess 2 9 13 4 10 2.9 12 
Guess 3 7 12 3 19 1.5 10 
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values converged to their actual values within 5 iterations for the 8 mm depth lesion (Figure 

3.20 (a)), 12 iterations for the 6 mm depth lesion (Figure 3.20 (b)) and 45 iterations for 3.8 

mm depth lesion (Figure 3.20 (c)). The other two sets of initial guesses (sets I and III from 

Table 3.3) also converged to the actual values indicating the uniqueness of the solution. 

These results demonstrate that, by using the steady state analysis, it is possible to estimate 

the depth and the size of the DTI simultaneously. We were able to estimate a 15 mm by 6 

mm large DTI ischemia lesion between 3.8 to 8 mm depths.  

Reconstructing DTI size and blood perfusion rate (known depth): The objective is to 

determine the size (dimensions of the major axis) and the blood perfusion rate for a DTI 

ischemia lesion which is 3.8 mm deep. We modeled a 15 mm by 6 mm large DTI lesion 

with a blood perfusion rate of 𝜔𝜔 = 0.0005 1/s. For this lesion, the skin temperature data 

 
Figure 3.20 Size (d1) and depth (h) estimates for an ischemic DTI lesion which has 50% 
blood perfusion rate of the surrounding healthy tissue. The inverse estimates are shown 
for a DTI lesion which is (a) 8 mm deep, (b) 6 mm deep and (c) 3.8 mm deep, all with 
a 15 mm large major axis. The minor axis of the lesion is assumed to be 0.5 times to the 
dimension of the major axis.  
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obtained from the computational phantom serve as the measurement data for the LM 

algorithm. Table 3.4 summarizes the actual values and the initial guesses for the major axis 

dimensions and the blood perfusion rates. The different values of initial guesses were used 

to test the uniqueness of solution. Figure 3.21 illustrates the iterative progression of the 

solution from the initial guesses (set 1 from Table 3.4) to the actual values. The black lines 

correspond to the size estimates and the blue lines correspond to blood perfusion estimates. 

The bottom row shows the variation of the sum of the squared error S with the number of 

iterations. The parameter values converged to their actual values within 18 iterations for 

guess 1, 5 iterations for guess 2 and 5 iterations for guess 3. These results demonstrate that, 

by using the steady state analysis, it is possible to estimate the size and the blood perfusion 

rate of an ischemic DTI.   

Reconstructing lesion depth and blood perfusion (known size): The goal is to estimate 

the depth and the blood perfusion rate for an elliptical DTI lesion which is 15mm by 6mm. 

We modeled a 3.8 mm deep lesion with a blood perfusion rate of 𝜔𝜔 = 0.0005 1/s. For this 

lesion, the skin temperature data obtained from the computational phantom serve as the 

measurement data for the LM algorithm. Table 3.5 summarizes the actual values and the 

initial guesses for the depth and the blood perfusion rate of the lesion. These different 

values of initial guesses were used to test the uniqueness of the inverse reconstruction. 

Table 3.4 Initial guesses for the inverse reconstruction of DTI size and blood 
perfusion rate for a known depth 

Actual values 
h = 3.8 mm 

d1 = 15 mm ω = 0.0005 1/s 
(50% ischemia) 

Guess 1 11 0.001 
Guess 2 12 0.0003 
Guess 3 12 0.001 
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Figure 3.22 illustrates the iterative progression of the solution from the initial guesses to 

the actual values for initial guesses (set 3 in Table 3.5) for the size and blood perfusion. 

The black lines correspond to the size estimates and the blue lines to blood perfusion 

estimates. The bottom row shows the variation of the sum of the squared error, S with the 

 
Figure 3.21 Size (d1) and blood perfusion rate (ω) estimates for an ischemic DTI at 
3.8 mm depth (top row) and the convergence of the iterative inverse computation 
(bottom row).  

Table 3.5 Initial guesses for the inverse estimation of DTI depth and blood 
perfusion rate for a given size 

Actual values 
d1 = 1.5 cm, d2 = 0.6 cm 

h = 3.8 mm ω = 0.0005 1/s 
(50% ischemia) 

Guess 1 3 0.0003 
Guess 2 2.5 0.0003 
Guess 3 2 0.0003 
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number of iterations. The two lesion parameters converged to their actual values within 9 

iterations for guess 1, 7 iterations for guess 2 and 12 iterations for guess 3. These results 

demonstrate that, by using the steady state analysis, it is possible to estimate the size and 

the blood perfusion rate of an ischemic DTI.  

In summary, our computational thermal model and inverse reconstruction approach 

will help the clinicians relate thermographic findings with key physiological changes, to 

identify patients at risk at an early stage of the injury, and to provide necessary intervention 

to prevent the spreading of the DTI. The proposed thermal classification from this 

computational study for quantitatively documenting the stage of the DTI, would benefit 

 

Figure 3.22 Depth (h) and blood perfusion rate (ω) estimates for an ischemic DTI 
lesion of size 1.5 cm by 0.6 cm (top row) and the convergence of the iterative inverse 
computation (bottom row).  
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from the longitudinal thermographic scans combined with ultrasound or MRI images of 

the at risk patients. IR imaging coupled with inverse reconstruction techniques for DTIs 

provides a quantitative, inexpensive and non-invasive tool to assess tissue damage, which 

is suitable for a clinical setting.  
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Chapter 4 Quantitative assessment  

of infantile hemangiomas using  

combined infrared and white-light  

imaging  

Overview 

The aim of this chapter is to present quantitative assessment of vascular infantile 

hemangiomas (IHs) with the combined white – light and infrared imaging technique. First, 

IHs are introduced in section 4.1, with brief descriptions of their life-cycle (proliferation, 

plateau and involution phases) and the depth of subcutaneous involvement based 

classification (superficial, mixed and deep). A review of current assessment techniques for 

infantile hemangiomas is presented in section 4.2. Next, the white-light and steady state 

infrared imaging and image processing for obtaining the color and thermal signatures of 

lesions are discussed in sections 4.3 through 4.4. Sample hemangioma cases are assessed 

using the combined imaging technique in section 4.5. Finally, the main findings of the 

study are summarized in section 4.6.  

The major contributions from this chapter are: quantitative assessment of the extent 

of subcutaneous involvement in different morphological types of infantile hemangiomas 

(superficial, deep and mixed); interpretation of the thermal signatures in terms of the 

hemangioma vascular activity in proliferation, plateau and involution phases; 
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quantification of color differences by comparing hemangioma color and surrounding 

healthy skin color; and the dimensionless temperature difference formulation for 

comparing the IR images captured at different times during longitudinal studies. 

4.1 Introduction to infantile hemangiomas (IHs) 

Infantile hemangiomas (IHs), often referred to as “strawberry” birthmarks, are the 

most common vascular tumors of infancy [106-109]. They affect approximately 10% of 

the infant population, while the risks are higher for female subjects and preterm infants 

born with low body weight [110, 111]. They most often appear present within the first few 

weeks after birth, with 60% tumors affecting the head and neck region [112]. IHs grow 

rapidly in size during the first 3-10 months of age and slowly regress with time. Some IHs 

may be completely resolved by 7-10 years of age [113]. Though most IHs are benign, the 

location of the IH may be problematic [114] if it impacts vital functioning [106] such as 

vision (IHs near the eye), airway (IHs involving the nose), feeding (IHs involving mouth 

or lip). Furthermore, some IHs can cause excessive cosmetic disfigurement or may be 

complicated by ulceration [106, 107]. Objective, quantitative imaging tools are needed to 

assess IH growth and regression and evaluate treatment response for long term monitoring 

of IHs in routine clinical practice. Early assessment and treatment can prevent 

complications and will benefit IH subjects in the long run.  

4.1.1 Life cycle 

Infantile hemangiomas demonstrate unique characteristics during their life cycle 

that differentiate them from other vascular malformations [112], such as venous 

malformations and arterio - venous malformations. However, their pathogenesis is still not 
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well understood, which drives the research for new treatment drugs [113, 115]. The 

schematic in Figure 4.1 illustrates the lifecycle of an IH lesion where the evolution phases 

are marked along with their characteristic features. Hemangiomas appear within few weeks 

after birth, enter into a rapid growth (proliferation) phase of almost one year, which is 

followed by a phase of slow regression (involution phase) that may last 7-10 years [39, 

112], as shown in Figure 4.1. A short period of growth arrest (plateau phase) also occurs 

between proliferation and involution (Figure 4.1) [113]. The proliferation phase shows 

increase in lesion size [39], vascularity [116] and temperature [117]. Formation of new 

capillaries occurs during the proliferative growth phase [112]. The upward arrows shown 

for blood perfusion, 𝜔𝜔 and temperature, 𝑇𝑇 in Figure 4.1 indicate increased vascularity and 

IH temperature. The involution phase shows decrease in lesion size, decrease in lesion 

 

Figure 4.1 Lifecycle of an infantile hemangioma. Hemangiomas enter a rapid growth 
phase of proliferation (pink region) that lasts for almost 1 year characterized by rapid 
growth of lesion, increase in vascularity (or blood perfusion 𝜔𝜔) and tissue 
temperature, 𝑇𝑇. Upward arrows indicate increase in these two parameters. Proliferation 
is followed by a short plateau phase of growth arrest (grey region) and finally by a long 
involution phase (blue region). Involution phase shows slow regression that is marked 
with decrease in blood perfusion 𝜔𝜔 and temperature, 𝑇𝑇. Downward arrows represent the 
decrease in these two parameters.  
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vascularity and increase in replacement of tumor tissue by fibrous fatty tissue [112]. 

Downward arrows for blood perfusion and lesion temperature during lesion involution 

illustrate this trend in Figure 4.1. 

4.1.2 Classification 

Infantile hemangiomas are classified on the basis of their appearance (color) and 

the depth of subcutaneous tissue involved as superficial, deep and mixed [106]. Examples 

of IH in each category are shown in Figure 4.2. The top row shows the white-light (WL) 

images or digital photographs of the three sub-types of IHs – superficial (left), mixed 

(middle) and deep (right). The bottom row shows schematics including the cross sections 

of the subcutaneous region of the tissue affected by the IH lesion (shown in red). The depth 

of IH is measured by the extent of the subcutaneous tissue involving each category. The 

schematics are based on histological findings that show IHs infiltrating dermal and 

subcutaneous layers of the tissue during proliferating stages [118]. Superficial (or 

strawberry) IHs have a visible superficial portion that is limited to the regions above the 

skin surface (Figure 4.2(a), bottom row). They are easy to diagnose due to their bright red 

color and the characteristic flat or raised appearance (top row, Figure 4.2(a)). In contrast to 

superficial hemangiomas, deep (or cavernous) hemangiomas have a deep subcutaneous 

portion that is covered with an overlaying healthy skin layer (bottom row, Figure 4.2(b)). 

The hemangioma may either be lightly visible, as shown in top row of Figure 4.2(b), or not 

visible at all. Subcutaneous hemangiomas are difficult to diagnose by their appearance, as 

they only present light red or light blue discoloration of the skin (top row, Figure 4.2(b)). 

Mixed hemangiomas consist of both superficial (visible) and subcutaneous (less visible or 
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invisible) portions [106] (top and bottom rows of Figure 4.2 (c)). Figure 4.2 illustrates that 

we can only identify the extent of the visible portion of hemangiomas by WL imaging. It 

is important to note that the extent of the subcutaneous portion of the IH lesion cannot be 

identified by WL imaging alone. 

4.2 Current assessment techniques for IHs 

Documentation of lesion appearance (i.e. size, shape and color) by capturing a 

series of digital photographs is a well-established approach in medicine and dermatology 

[108, 109]. A white-light camera (or a digital camera) captures the light reflected from the 

skin surface in the visible spectrum (0.4–0.7 µm wavelength) of electromagnetic radiation, 

 

Figure 4.2 Clinical classification of IH based on the depth of subcutaneous involvement. 
The top row shows the WL images of a (a) superficial, (b) deep and (c) mixed IH. The 
bottom row depicts the depth of subcutaneous involvement for a (a) superficial IH (the 
skin layers are affected, lesion is visible in the WL), (b) deep IH (the subcutaneous 
tissue is mostly affected, subtle discoloration of the skin might be present) and a (c) 
mixed IH (the skin and subcutaneous tissue are affected. The WL image shows the 
superficial portion but the subcutaneous portion is invisible). 
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with the light source being white-light (natural, incandescent, neon light, LEDs etc.). A 

color image of the scene is produced by the WL camera sensor by combining color 

information from the red, green and blue color filters of the color filter array [119]. Infantile 

hemangiomas demonstrate changes in lesion appearance as they evolve from proliferation 

to involution [35]. Drolet [109] documented changes in IH color from bright red during 

proliferating phase to dull red during involuting phase. Recent studies on assessment of IH 

color either used subjective color descriptors such as bright red, dull red, blue etc. [35], or 

a measurement score varying from 0 for mild discoloration to 2 for severe symptoms [36]. 

These methods rely on the subjective color and appearance interpretation of the clinicians. 

In this study, we introduced objective, digital image processing tools for the analysis of IH 

color. Our approach involves representation of lesion and healthy skin colors in a color 

coordinate system (Figure 4.3(a)) or a color space [120] to quantify the color differences 

between them. We chose the CIE 1976 (L*, a*, b*) color model (Figure 4.3 (a)), often 

referred to as the CIELAB color model [121] (CIE stands for Commission internationale 

de l'éclairage). The advantages of this color model over other conventional color models, 

such as RGB, CYMK etc., are that it is device independent (not dependent on the 

parameters of capture device or display equipment) and perceptually uniform (suitable for 

computing color differences) [121-123]. Additionally, the CIELAB color model can be 

represented by a simple three dimensional coordinate system with L*, a* and b* as the 

three coordinates.  L* represents the lightness of color (0 for dark to 100 for bright), a* 

represents the balance between red and green hue (typically -120 for green to 120 for red) 

and b* represents the balance between yellow and blue hue (typically -120 for blue to 120 

for yellow) [122] (as shown in Figure 4.3(a)). Prior studies demonstrate that the CIELAB 
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model is suitable for color based lesion segmentation [124, 125], relative lesion color 

assessment in vascular lesions such as  hemangiomas [126] and port wine stains [127]; and 

assessment of skin conditions such as erythema [128, 129]. The CIELAB model has been 

shown as an effective tool to objectively quantify color differences between lesion and the 

healthy skin in subjects with hemangiomas and ota (melanocytic) naevi [126]. Kim et al 

[126] demonstrated that the visually perceived changes in lesion color can be expressed in 

terms of uniform changes of the three components L*, a* and b* of the CIELAB color 

space. Madooei and Drew [124] developed a color palette for visualization of the blue-

white veil of melanoma lesions by presenting information from the CIELAB color space 

in the form of Munsell representation of colors.  

In this study, we have combined the merits of the CIELAB based color difference 

analysis [126] and color visualization analysis [124] for color assessment of IH lesions. 

The color difference maps at lesion location and the average color difference values 

between lesion and healthy skin could be used for objective, quantitative assessment of IH 

color with respect to the healthy skin color. Additionally, the representation of colors in 

the cylindrical Munsell color space, achieved by conversion from the CIELAB to the 

Munsell though the intermediate CIELCh color space [120, 124, 130], offers an intuitive 

method of visualization of IH and healthy skin colors. An intuitive representation of color 

is possible because of the way information is displayed in the cylindrical coordinate system 

(that is used by both CIELCh model and Munsell color space [120]). In such a system, the 

color lightness L* (dark vs light) is displayed on the z axis, color saturation or chroma C* 

(weak vs strong color) is displayed on the radial axis; and color hue h* (e.g. red, yellow, 
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green, blue etc.) represents the polar angle (as illustrated in Figure 4.3(b)). Figure 4.2 

illustrates the WL imaging technique alone is not suitable for accurate assessment of the 

extent and activity of IH lesions. The visual observations of WL imaging cannot accurately 

assess the extent of subcutaneous portions of lesions as illustrated in Figure 4.2 (b) and 

Figure 4.2 (c). Tsang et al [131] proposed assessment of IH volume by assuming the lesion 

to be spherical or hemispherical [131], since measurements of diameter or area from the 

 

Figure 4.3 Illustrations of the CIELAB and CIELCh color spaces for color analysis of 
lesions. (a) The CIELAB color space is represented by a 3D cartesian geometry. The 
vertical axis shows color lightness L* (L* = 0 for dark, L* = 100 for light); the green – 
red axis, a* accounts for the balance between greenness (a*=-120) and redness 
(a*=120) of a color; yellow – blue axis b* accounts for the balance between blueness 
(b*=-120) and yellowness (b*=120) of color. The formula for the color difference ∆𝐸𝐸 
between the two color coordinates  𝐿𝐿𝑙𝑙∗, 𝑎𝑎𝑙𝑙∗ 𝑏𝑏𝑙𝑙∗ (lesion) and 𝐿𝐿ℎ∗ , 𝑎𝑎ℎ∗ , 𝑏𝑏ℎ∗  (healthy skin) is 
the distance formula in a cartesian geometry. (b) The CIELCh color space is represented 
by a cylindrical coordinate system. The vertical axis describes color lightness L* (L* = 
0 for dark, L* = 100 for light); the radial coordinate 𝐶𝐶∗or chroma shows color saturation 
or strength (increases radially outwards). 𝐶𝐶𝑎𝑎𝑏𝑏∗ = √𝑎𝑎∗2 + 𝑏𝑏∗2; the polar coordinate ℎ∗ 
shows color hue (ℎ∗ = 0 for red, ℎ∗ = 90°  for yellow etc.) with ℎ𝑎𝑎𝑏𝑏∗ = tan−1 𝑏𝑏

∗

𝑎𝑎∗
. 
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WL images or paper tapes were not sufficient in cases of subcutaneous or mixed 

hemangiomas. Tsang et al [131] noted the limitations of this approach due to uncertainties 

in the assumptions about lesion shape in these calculations. Still, most trials that evaluated 

treatment response of IHs relied on imprecise area or volume approximations bolstered by 

qualitative assessments of color and texture, documented with photographs or reported by 

individual physicians [113, 132-134]. While imaging methods, such as ultrasound, 

computed tomography (CT) and magnetic resonance (MR) are suitable for imaging 

subcutaneous tissue structures, except for serious cases, they are not recommended for 

routine clinical assessment of young infants due to the requirement of sedation or 

anesthesia or exposure to radiation and high costs [112, 131, 135].  

Infrared (IR) imaging is a powerful tool to image and accurately measure small 

temperature differences on the skin surface with high spatial and temporal resolutions [15, 

136]. An infrared camera detects the electromagnetic radiation naturally emitted by a 

surface (skin) in the 0.7-1000µm wavelength range, which can be related to surface 

temperature using appropriate calibration methods [15, 136]. As highly vascularized 

lesions, IHs are uniquely suited for thermographic (IR) assessment, since the increased 

blood flow through the lesion [116] results in a locally elevated temperature relative to the 

surrounding healthy tissue [117]. Both IH size and the activity of the hemangioma’s 

vascular network can be assessed using the IR images [117]. The potential for temperature 

measurements (using IR thermography and other temperature sensors) to track 

hemangioma over time and manage treatment methods has been recognized prior to this 

study [20, 26, 37, 38, 117, 137, 138]. The first use of infrared thermography in infantile 

hemangiomas was reported by Miki [138] and Desmons et al [117]. They independently 
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observed that deep (cavernous) IHs showed elevated temperatures relative to surrounding 

healthy skin and maximum temperature differences exceeded 2°C [117, 138]. These 

studies demonstrated that IR thermography can be used for differentiating IHs from port-

wine stains, which do not exhibit elevated temperatures and in determining therapeutic 

effects in these lesions [117, 138]. Saxena and Willital [20] reported significant 

temperature increases of 3.0±0.4oC in proliferating IHs, followed by temperature decreases 

to 1.5±0.3oC above healthy tissue values in involuting IHs. The authors used these data to 

reach treatment decisions. In prior studies, the temperatures were either measured at the 

mid-point of IH [38, 117, 138] or along the center line of the IH lesion [20] or an average 

temperature measure was considered [26, 37]. Such measurements can only serve as 

reference values, given the large sizes of IH lesions and the temperature variations within 

the lesions. Burkes et al [137] reported spatial temperature distributions of IHs in their 

results, but did not explain why elevated temperatures extend beyond the visible boundary. 

Other studies used contact temperature measurements using digital touch probes to study 

IHs [26, 38]. The studies demonstrated that the temperature of the lesion can be used to 

study proliferation and involution [26, 38].   

As can be seen, only limited number of temperature measurement studies [20, 26, 

37, 38, 117, 137, 138] were carried out either using IR thermography or other temperature 

sensors. The majority of these studies involved single point measurements and some were 

contact measurements. Hemangiomas are large lesions (with surface areas that can reach 

more than 20cm2 in some cases) that demonstrate changes in vascularity from proliferation 

to involution [116]. Therefore, single/two point measurements can only provide reference 

values of IH temperature and vascularity. They do not accurately represent the thermal and 
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vascular state of the entire hemangioma lesion during the proliferation or involution phases. 

Furthermore, non-contact temperature measurement methods such as IR imaging 

demonstrate superior performance compared to contact temperature measurements, 

especially in medical diagnostic applications. Quantitative measurements, such as 

temperature distribution over the total lesion surface and estimation of affected area (both 

superficial and subcutaneous portions), using IR thermography are necessary in 

quantitative diagnostic applications.   

We aim to integrate the advantages of infrared (IR) imaging and white – light (WL) 

imaging in a combined IR – WL imaging framework for non-invasive, quantitative 

assessment of IH color, temperature and vascular activity. The imaging method and image 

processing techniques for quantitative assessment of IHs are presented in section 4.3 and 

section 4.4. We were able to sample IHs from different anatomical locations – lip (case I), 

nose (case II), scalp (cases III and IV), back (case V), arm (case VI) and glabella (case VII) 

at various stages - proliferation, plateau and involution. Two of the lesions analyzed were 

superficial (cases III and IV), four were mixed (case I, case II, case V, VI) and one was 

deep (case VII).  The assessment of color, temperature and vascular activity of these seven 

IHs is presented in sections 4.5 and 4.6. The analyzed IR images for cases IV [139], VI 

[140] and VII [139] are included in the chapter for the sake of completeness of the 

interpretations in this chapter. 

4.3 Combined infrared (IR) and white – light (WL) imaging 

We describe a non-invasive, non-contact imaging method for accurate quantitative 

assessment of infantile hemangiomas. This method is suitable for clinical assessment of 
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young IH subjects because it requires no sedation or anesthesia.  The physical principles 

of IR imaging and IR camera calibration are presented in sections 4.3.1 and 4.3.2. The 

details of the clinical study, the experimental setup and imaging method using combined 

IR and WL imaging are discussed in sections 4.3.3 and 4.3.4.  

4.3.1 Physical principles of IR imaging 

Infrared imaging relies on the basic laws of blackbody radiation. The spectral 

radiance, 𝐴𝐴(𝜆𝜆,𝑇𝑇), of a blackbody at an absolute temperature, 𝑇𝑇 (K) is given by the Planck’s 

law [141] 

 𝐴𝐴𝜆𝜆,𝑏𝑏(𝜆𝜆,𝑇𝑇) =
2ℎ𝑐𝑐02

𝜆𝜆5[exp (ℎ𝑐𝑐0 𝜆𝜆𝑘𝑘𝑇𝑇) − 1⁄ ] 
(4.1) 

where ℎ = 6.6256 ×10-34 J·s is the Planck’s constant,  𝑘𝑘 = 1.3805×10-23 J/K the 

Boltzmann constant and 𝑐𝑐0= 2.998×108 m/s the speed of light. The spectral emissive power 

of a blackbody [141] 𝐸𝐸𝜆𝜆,𝑏𝑏(𝜆𝜆,𝑇𝑇) is  

 𝐸𝐸𝜆𝜆,𝑏𝑏(𝜆𝜆,𝑇𝑇) = π𝐴𝐴𝜆𝜆,𝑏𝑏(𝜆𝜆,𝑇𝑇) =
𝐶𝐶1

𝜆𝜆5[exp (𝐶𝐶2 𝜆𝜆𝑇𝑇) − 1⁄ ] (4.2) 

where 𝐶𝐶1= 2πℎ𝑐𝑐02 W·µm4/m2 and 𝐶𝐶2 = ℎ𝑐𝑐0 𝑘𝑘⁄  µm·K are the first and second 

radiation constants. The wavelength corresponding to the maximum emissive power moves 

to the shorter wavelengths as the temperature increases, which is given by the Wien’s 

displacement law [141] 

 𝜆𝜆𝑚𝑚𝑎𝑎𝑥𝑥𝑇𝑇 = 𝐶𝐶3 (4.3) 
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where 𝐶𝐶3 is the third radiation constant. The total emissive power of the blackbody 𝐸𝐸𝑏𝑏 is 

obtained by integrating Equation 4.2 over all wavelengths that leads to the Stefan – 

Boltzmann law [141] 

 𝐸𝐸𝑏𝑏 = σ𝑇𝑇4 (4.4) 

where σ = 5.67 ×10-8 W/m2·K4 is the Stefan – Boltzmann constant. The emission from a 

real surface (that does not absorb all incident radiation) is expressed in the form  

 𝐸𝐸 =  εσ𝑇𝑇4 (4.5) 

where the emissivity ε is defined as the ratio of the radiation emitted by the surface to the 

radiation emitted by a blackbody at the same temperature [141]. The emissivity of human 

skin is constant at a value of 0.98±0.01 in the wavelength range of 2-14µm [4, 142].  

4.3.2 IR camera calibration 

For temperature measurements with an IR camera, the radiation detected by the 

camera is converted into temperature information using camera calibration. The response 

of an IR camera, 𝐴𝐴(𝑇𝑇), to the incident radiation can be represented in the form [13, 143]  

 𝐴𝐴(𝑇𝑇) =  � 𝑝𝑝(𝜆𝜆,𝑇𝑇)𝐴𝐴(𝜆𝜆)𝑑𝑑𝜆𝜆
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚

 (4.6) 

where the function 𝑝𝑝(𝜆𝜆,𝑇𝑇) describes the spectral radiance of the source (described by 

Equation 4.1 for a blackbody), 𝐴𝐴(𝜆𝜆) characterizes the spectral response function of the 

camera and the limits of integration are defined by the wavelength band of the detector (3-

5µm for mid-wave, 7-14 µm for long-wave etc.). 𝐴𝐴 must be determined by calibrating the 
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IR camera against a blackbody of known temperature, 𝑇𝑇 [143]. The radiation incident on 

the camera consists of radiation emitted by the object attenuated by the atmosphere; 

radiation from the surroundings reflected by the object and attenuated by the atmosphere; 

and radiation emitted by the atmosphere. The corresponding relationship [144] is expressed 

as 

 𝐴𝐴 = 𝜏𝜏𝜏𝜏𝐴𝐴(𝑇𝑇0) + 𝜏𝜏(1 − 𝜏𝜏)𝐴𝐴(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠) + (1 − 𝜏𝜏)𝐴𝐴(𝑇𝑇𝑎𝑎𝜕𝜕𝑚𝑚) (4.7) 

where 𝜏𝜏 is the atmosphere’s transmittance over the wavelength range of interest and 𝜏𝜏 is 

the emissivity of the object. 𝑇𝑇0, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑎𝑎𝜕𝜕𝑚𝑚 are the temperatures of the blackbody, 

surroundings and atmosphere, respectively. For shorter distances from the object surface, 

the atmospheric absorption is negligible, therefore 𝜏𝜏 = 1 in Equation 4.7. As shown in 

Equation 4.7, the object radiation is a function of the emissivity of the object that can vary 

within the measurement wavelength range.  

The procedure for an IR camera calibration that was followed to calibrate our IR 

imager has been described in detail by Çetingül and Herman [13]. We summarize the 

procedure here for the sake of completeness. Our IR camera was calibrated against a 

blackbody (CI Systems SR800) of temperature uniformity of 0.025°C, whose temperature 

was varied at increments of 0.5°C in the range of 5 - 35°C [13, 145]. While the camera was 

positioned at a fixed distance (30cm) from the blackbody (with 𝜏𝜏 = 1 in Equation 4.7) and 

the ambient temperature was held constant, IR images of the blackbody were captured at 

each temperature level [13]. The calibration curve that relates pixel intensity to temperature 

was obtained using a polynomial fit. Because of the radial intensity gradients present in the 

image, the average intensity of the central pixels (60 x 60) was used for calibration [13]. 
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The calibration procedure was performed three times and the mean difference in the 

blackbody temperatures between three attempts was 0.026°C, demonstrating the 

correctness of the procedure [13]. The polynomial fit is of the form [13] 

 T(℃) = −28 + 0.0018 × g − 1.2 × 10−8 × g2 (4.8) 

where g denotes the pixel intensities. In the next step of the calibration procedure, the image 

non-uniformities due to the presence of dead pixels in focal plane array matrix and radial 

temperature gradients were corrected [13]. The intensity of every dead pixel was replaced 

by an average intensity of the neighboring four pixels. To correct the radial gradients, a 

pixel based error map (difference between pixel temperature and blackbody temperature) 

was calculated for all temperature levels. Çetingül and Herman [13] showed that this error 

is a function of both pixel location (shown by the bell shaped distribution) as well as the 

blackbody temperature and needs to be corrected to give accurate temperature information. 

To account for these dependencies, Çetingül and Herman [13] fitted polynomial models to 

the error first in terms of pixel position (using multiple least square regression) and then in 

terms of temperature (using a least square 3rd order polynomial) [13] to obtain correction 

masks for each temperature level. As a preprocessing step in the image processing of IR 

images of the skin, this correction mask was added to the uncorrected IR images to account 

for the inherent image deteriorations [13].  

4.3.3 Clinical study 

The clinical imaging study was conducted at the Johns Hopkins Children’s Harriet 

Lane Clinic (Department of Dermatology at the Johns Hopkins Medical Institutions) 

between September 2012 and March 2013 (IRB protocol:NA_00014694, Retrospective 

https://e-irb.jhmi.edu/eirb2/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity%5bOID%5b428D61CE752DE2458AAD3312D5C99A38%5d%5d
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Study to Measure Treatment Outcomes of Vascular Anomalies, and Pediatric 

Interventional Radiology Procedures). Inclusion criteria consisted of clinical diagnosis of 

infantile hemangiomas by pediatric dermatologists at Johns Hopkins. The steady state and 

dynamic infrared imaging technique developed at the Heat Transfer Lab at The Johns 

Hopkins University [5, 15, 146] was used to image and analyze young subjects of age 

groups ranging from 1 month to 30 months.  

4.3.4 Equipment and imaging method 

Infrared imaging in combination with white – light imaging was used in the study 

to analyze infantile hemangioma lesions. The imaging setup is shown in Figure 4.4.  Figure 

4.4 (a) shows the Merlin® midwave infrared camera (FLIR Systems Inc., Wilsonville, 

OR), the PC connected to the infrared camera for IR image acquisition and storage and a 

Canon PowerShot G11™ digital camera (Canon U.S.A., Inc., One Canon Park, Melville, 

NY) used for capturing the WL images. Figure 4.4 (b) shows the cold gel pack used for 

skin cooling during dynamic IR imaging. A sample WL image (0.4 – 0.7 µm spectral range) 

of a hemangioma of the forehead is shown in Figure 4.4 (c). The IR camera is equipped 

with a 320x256 pixel indium antimonide (InSb) focal plane array (FPA) and can record 16-

bit raw data with a frame rate of 60 Hz. It has a temperature sensitivity of 0.025°C and 

field of view (FOV) of 22x16 degrees. Figure 4.4 (d) shows a sample grey scale IR image 

(3 – 5 µm wavelength range) of the same lesion as the WL image in Figure 4.4 (c).  Figure 

4.4 (e) displays the color coded IR image of the lesion obtained after IR camera calibration 

[147] . An adhesive white paper marker was applied to the skin at the beginning of the 

imaging session, as shown in Figure 4.4(c). The marker was used as a reference to measure 

lesion size (major and minor axis dimensions) from its WL image. Since the marker is 

https://e-irb.jhmi.edu/eirb2/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity%5bOID%5b428D61CE752DE2458AAD3312D5C99A38%5d%5d
https://e-irb.jhmi.edu/eirb2/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity%5bOID%5b428D61CE752DE2458AAD3312D5C99A38%5d%5d
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visible in the WL and IR images, it was also used as a reference for WL-IR image alignment 

[146]. During the imaging process, a reference WL image of the lesion (shown in Figure 

4.4 (c)) was acquired first using the WL camera. Next, a steady state IR image sequence of 

20 images was acquired at 2 fps for 10 seconds. Recording multiple images offered the 

option of selecting the best quality image in the sequence as well as the possibility of time 

averaging. A greyscale IR image is displayed in Figure 4.4(d) and the corresponding color 

 

Figure 4.4 Combined IR – WL image acquisition setup for imaging of IHs. The imaging 
setup consists of the (a) Merlin midwave (3-5 µm) IR Camera, the Canon PowerShot 
G11™ WL (0.4 – 0.7 µm) camera, the PC for saving the IR images and (c) a cold gel 
pack for skin cooling during dynamic IR imaging. The bottom row shows the (c) WL 
image of an IH lesion, (d) the corresponding greyscale IR image before calibration and 
(c) the matching color coded IR image of the IH lesion after calibration. 



 

112 
 

coded IR image is shown in Figure 4.4 (e). Dynamic IR imaging, measuring the change of 

temperature distribution with time, was also used to image some vascular lesions. For such 

cases, the lesion was cooled down for a period of 60 seconds with a cold gel pack (shown 

Figure 4.4 (b)). Finally, a dynamic IR image sequence of 120-360 images was acquired at 

a rate of 2 fps for 2-3 minutes. This allowed capturing the thermal recovery of the lesion 

from cooling excitation.  

Imaging of young infants, especially those who were under treatment, was quite 

challenging. Imaging was usually performed after the routine evaluation or the treatment 

of the subject was completed. The young subjects would often feel tired after their lengthy 

stay at the clinic, limiting our ability to repeat imaging scans (in case the subject moved a 

lot or removed the paper marker during the initial scan). Dynamic infrared imaging that 

would require subject’s cooperation throughout the combined sessions of skin cooling and 

subsequent thermal recovery was not always feasible. 

4.4 Image processing  

We implemented computational techniques used in image processing and computer 

vision for extraction and analysis of information from WL [124, 126] and IR [146] images 

of lesions. Our image processing pipeline involves techniques for lesion color analysis 

[126], lesion boundary segmentation [5], planar homography for image registration [119] 

and computational photography for IR – WL image overlay [140]. Section 4.4.1 introduces 

the WL image processing pipeline for performing color analysis and area calculations of 

lesions and section 4.4.2 focuses on the IR image processing steps for thermal analysis and 

area calculations of lesions based on the IR images.  
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4.4.1 White – light image processing 

Figure 4.5 summarizes our WL image processing pipeline for computing lesion 

dimensions, lesion and healthy skin colors and color differences between them from the 

WL images. The flowchart in the top panel show the image processing steps. The bottom 

rows of images illustrate the results of these steps. The WL images were captured using 

the digital camera (section 4.3.4) using the sRGB (standard red, green and blue) color space 

setting (Figure 4.5(a)). The first step in the WL image processing is the segmentation of 

the superficial portion of the lesion and a region representing the healthy skin (Figure 4.5(d) 

– (f)) in the WL image. Next, the dimensions of the lesion including the lesion size and 

area are measured from the WL image. The segmentation of the lesion and healthy skin 

and measurement of key dimensions are discussed in section 4.4.1.1. In the next step, the 

color differences between lesion and healthy skin are measured in the CIELAB space 

(Figure 4.5(a), (b), (i) – (k)). We present the color difference calculation method in section 

4.4.1.2. In the final step, the quantitative representation of lesion and healthy skin colors in 

the Munsell color space (Figure 4.5(a), (b), (i), (l) – (m)) is presented in section 4.4.1.3.  

4.4.1.1 Lesion size from the WL image 

The lesion was manually segmented from the WL image. The lesion boundary is 

outlined with green dots in Figure 4.6(a). This region will be referred to as the superficial 

portion of the lesion because it is visible in the WL image. Next, a binary lesion mask was 

created from the lesion boundary by setting pixels inside the boundary be 1 and those 

outside as 0 (Figure 4.6(b)). The area of the superficial portion is determined by counting 
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the number of pixels inside the boundary and converting this area into cm2 using the length 

scale provided by the paper marker (Figure 4.6 (c)). This area will be referred to as AreaWL. 

The IH lesion may have an irregular shape. In this case, the lesion was approximated by an 

 

 

Figure 4.5 WL image processing pipeline. The letter labels marked in each box of the 
flowchart are associated with the images that are obtained by the means of processing 
those steps. The lesion size and area is computed in steps (a), (c), (d) – (h). The color 
difference between lesion and healthy skin is computed in steps (a), (b), (i) – (k). The 
quantitative color visualization using Munsell representation of colors is achieved in 
steps (a), (b), (i), (l) – (m).  
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equivalent ellipse, such that it has the same area and the same center of mass as the lesion. 

As a result, the longest axis of the lesion shape is approximated by the major axis and the 

length perpendicular to the longest axis by the minor axis.  

4.4.1.2 Color difference between lesion and healthy skin 

The color difference between lesion and healthy skin is calculated in the CIELAB 

color space. We converted the WL image originally captured in the sRGB (standard RGB) 

color space to the CIELAB color space and used the CIELAB color coordinates to compute 

the color differences between lesion and healthy skin.  We used the sRGB setting in the 

digital camera to capture the color images. This setting specifies the color of each pixel in 

terms of a tristimulus vector [𝐴𝐴 𝐺𝐺 𝐵𝐵]𝜕𝜕 in the sRGB format, where R represents the red 

channel, G represents the green channel and B represents the blue channel. The measured 

RGB values were first converted into CIEXYZ (intermediate color space) values by a linear 

transformation, and finally into CIELAB by a non-linear transformation [120, 122]. The 

conversion to an intermediate CIEXYZ color space is necessary to obtain positive values 

of the tristimulus [123, 126]. All conversions were implemented in Matlab. The conversion 

to CIELAB can be expressed as 

 

𝐿𝐿∗ = 116 𝑓𝑓(𝑌𝑌 𝑌𝑌𝑛𝑛⁄ ) − 16 

𝑎𝑎∗ = 500[𝑓𝑓(𝑋𝑋 𝑋𝑋𝑛𝑛⁄ ) − 𝑓𝑓(𝑌𝑌 𝑌𝑌𝑛𝑛⁄ )] 

𝑏𝑏∗ = 200[𝑓𝑓(𝑌𝑌 𝑌𝑌𝑛𝑛⁄ ) − 𝑓𝑓(𝑍𝑍 𝑍𝑍𝑛𝑛⁄ )] 

where   𝑓𝑓(x) = �
x1 3⁄ , 𝑥𝑥 > � 6

29
�
3

1
3
�29
6
�
2

x + 4
29

, 𝑥𝑥 ≤ � 6
29
�
3 

 (4.9) 
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In Equation 4.9, 𝑋𝑋𝑛𝑛, 𝑌𝑌𝑛𝑛 and 𝑍𝑍𝑛𝑛 are the CIEXYZ tristimulus values for the reference white 

(standard illuminant D65 was used in this study). The CIELAB data are presented in the 

cartesian coordinate system. A more intuitive representation of color is obtained by 

representing CIELAB values (shown in Figure 4.3(a)) in an equivalent cylindrical 

coordinate system, CIELCh (shown in Figure 4.3(b)) that matches more closely with the 

visual experience of colors [120, 123]. The transformation can be described as 

 

𝐿𝐿∗ = 𝐿𝐿∗ 

𝐶𝐶𝑎𝑎𝑏𝑏∗ = �𝑎𝑎∗2 + 𝑏𝑏∗2 

ℎ𝑎𝑎𝑏𝑏∗ = tan−1 �
𝑏𝑏∗

𝑎𝑎∗
� 

 

(4.10) 

where 𝐿𝐿∗ or lightness is shown along the z axis,  𝐶𝐶𝑎𝑎𝑏𝑏∗  or chroma correspond to the radial 

coordinate and ℎ𝑎𝑎𝑏𝑏∗  or hue is represented by the angular coordinate of the cylindrical 

coordinate system (Figure 4.3(b)). The values of 𝐿𝐿∗, 𝐶𝐶𝑎𝑎𝑏𝑏∗  and ℎ𝑎𝑎𝑏𝑏∗  will be utilized in this 

study for visualization of lesion color and healthy skin color. Next, the color difference 

between lesion color and healthy skin color was computed using the CIELAB values for 

healthy and lesion pixels. Let 𝐿𝐿ℎ∗ , 𝑎𝑎ℎ∗  and 𝑏𝑏ℎ∗  represent healthy skin color coordinates and 

𝐿𝐿𝑙𝑙∗, 𝑎𝑎𝑙𝑙∗ and 𝑏𝑏𝑙𝑙∗ represent lesion color coordinates in the CIELAB color space. The cartesian 

distance between the two coordinate points gives a measure of the color difference between 

them [122, 126]. 

 ∆𝐸𝐸 = �(∆𝐿𝐿∗)2 + (∆𝑎𝑎∗)2 + (∆𝑏𝑏∗)2 (4.11)  

In Equation 4.11, ∆𝐸𝐸 is the measure of the color difference and ∆𝐿𝐿∗ = 𝐿𝐿𝑙𝑙∗ − 𝐿𝐿ℎ∗   , 

∆𝑎𝑎∗ = 𝑎𝑎𝑙𝑙∗ − 𝑎𝑎ℎ∗   and ∆𝑏𝑏∗ = 𝑏𝑏𝑙𝑙∗ − 𝑏𝑏ℎ∗ . The ∆𝐸𝐸 value combines the individual differences in 
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color lightness (∆𝐿𝐿∗), redness (∆𝑎𝑎∗), and blueness (∆𝑏𝑏∗) into one quantitative metric that 

is proportional to the visually perceived color difference between lesion and healthy skin 

[148]. This means that large ∆𝐸𝐸 values represent larger color differences between lesion 

and healthy skin and small ∆𝐸𝐸 values represent smaller color differences. For each clinical 

case considered in this study, we report mean color differences between (1) superficial 

portion and healthy skin and (2) subcutaneous portion and healthy skin.  

4.4.1.3 Quantitative visualization of lesion and healthy skin 

color 

In this study, we introduced quantitative visualization of IH lesion color and healthy 

skin colors, achieved by the means of CIELAB to Munsell color space approximation 

[130]. In Munsell representation of colors, a color is specified in the form HV/C where H 

 

Figure 4.6 Illustration of lesion size and area calculation from the WL image. (a) The 
WL image of an IH surrounded by a 5 cm x 5 cm paper marker. The lesion boundary 
is outlined with green dots. (b) Binary mask of the lesion (lesion pixels = 1 (white), 
other pixels = 0 (black). The area in pixel units is the total number of lesion pixels. (c) 
Major axis (longest axis of the lesion shape) and minor axis (axis perpendicular to the 
longest axis) determined from the binary mask. The cm units for lesion size (cm) and 
area (cm2) are estimated with the help of the reference length scale provided by the 
paper marker. 
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is the hue, V is the value or the lightness, and C is the chroma [120]. The cylindrical 

Munsell color space [120]  is displayed in Figure 4.7(a) showing the color lightness on the 

y-axis, chroma on the radial axis and hue as the polar angle. The lightness varies from 1 to 

10. The hue is specified by a combination of a letter and a numeric designator, as illustrated 

in the hue circle shown in Figure 4.7(b). The single letter designators represent the primary 

hues – R (red), Y (yellow), G (green), B (blue) and P (purple) and the double letter 

designators denote a combination of the primary hues – YR (yellow –red), GY (green – 

yellow),  BG (blue – green), BP (blue – purple) and RP (red – purple) [120]. The numeric 

designator is greater than 1 and less than or equal to 10, where the number 5 is associated 

with the primary hues (Figure 4.7(b)). For example, a 5R would represent the primary red, 

a 2.5R would represent red-purple hue and an 8R would represent a yellow – red hue [120].  

 

Figure 4.7 Munsell representation of colors. (a) A color is represented by its lightness 
(y-axis), chroma (radial axis) and hue (polar angle) in the cylindrical coordinate system 
of the Munsell color space. (b) The Munsell hue circle showing the five primary hues 
– 5R (red), 5Y (yellow), 5G (green), 5B (blue) and 5P. The double letter designators 
represent the intermediate hues – YR (yellow – red), GY (green – yellow) etc. The 
number designator is greater than 1 and less than equal to 10.  
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If the color lies on the Y-axis, its chroma is equal to 0. This description of colors in the 

Munsell representation is more intuitive when compared to the CIELAB representation 

(Figure 4.3(a)) and provide a quantitative means to assess colors of the IH lesion and 

healthy skin [120]. We approximated the Munsell colors from the respective CIELAB 

coordinates using the approximations adopted by Centore [130] and Madooei and Drew 

[124]. The Munsell value V is equivalent to L* and varies from 1 to 10, the chroma C is 

approximately 1/5 times 𝐶𝐶𝑎𝑎𝑏𝑏∗  (Equation (4.10) and is a positive value, and the hue H 

corresponds to ℎ𝑎𝑎𝑏𝑏∗   (Equation  (4.10). The primary yellow hue corresponds to ℎ𝑎𝑎𝑏𝑏∗ = 90° 

and the other nine hues are located at evenly spaced hue angles during the conversion 

process [120, 130], as illustrated by Figure 4.7(b). The color conversion was implemented 

in Matlab [130].   

4.4.2 Infrared image processing  

Figure 4.8 summarizes our IR image processing steps for the detection of lesion 

boundary in the IR image, visualization and quantification of the total affected area from 

the IR image, thermal image overlay onto the WL image, comparison of lesion areas from 

the WL and IR images and finally the computing the dimensionless temperature difference 

images. The flowchart in the top panel elucidates the IR image processing steps. The 

bottom rows of images illustrate the results of these steps. As the first step in IR image 

processing, the greyscale image is converted into a color coded IR image using the 

temperature calibration for the IR camera [147] (Figure 4.8 (a) and (c)). The rest of the IR 

image analysis will be performed on the color coded IR image. Next, the superficial 

boundary is detected in the IR image (Figure 4.8 (a) - (e) and (g)) using the WL to IR image 

registration technique [119, 139] . The mapping of the lesion boundary from the WL image 
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onto the IR image is explained in section 4.4.2.1. The total affected area in the IR image is 

 

 

Figure 4.8 IR image processing pipeline. The letter labels marked in each box of the 
flowchart are associated with the images shown below, that are obtained by the means 
of processing those steps. The superficial lesion boundary in the IR image is identified 
in (a) – (e) and (g). The affected area in the IR image is determined in (f) – (k). The 
affected area is back-mapped onto the WL image in (l).  
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quantified in steps in Figure 4.8(f) – (j). The method of thermal contours is presented for 

quantification and visualization of the total affected area is presented in section 4.4.2.2. 

The affected area is back mapped onto the WL image in Figure 4.8(i) and (l). The method 

of thermal image overlay [140] is discussed in section 4.4.2.3. The total affected area from 

the IR image is compared with the area of the lesion from the WL image in section 4.4.2.4. 

In the final step, the dimensionless temperature difference maps are computed from the IR 

images in section location over time during longitudinal studies.  

4.4.2.1 Detection of lesion boundary in the IR image 

Infantile hemangiomas can affect significant subcutaneous portions of the tissue in 

addition to their superficial portion. In this study we consider two boundaries: the boundary 

of the superficial lesion (visible in the WL image, section 4.4.1) and the boundary of the 

entire lesion to be determined from the IR image as explained in this section. The boundary 

of the entire lesion, in general, may not be distinguished from the surrounding healthy skin 

by visible inspection. Small lesions such as melanomas show small temperature differences 

(or low thermal contrast) with respect to healthy skin [5]. We observed that the region of 

elevated temperature for IHs is often significantly larger than the visible portion of the 

lesion. For large lesions, such as infantile hemangiomas, the problem is to identify both the 

superficial and subcutaneous portions.  

We used WL – IR image registration [119, 139] to identify the superficial lesion 

boundary in the IR image. First, the IR image was registered with the reference WL image 

using the four–points-correspondence based 2D projective transformation, referred to as 

homography [119]. The registration process is illustrated in Figure 4.9. The four corners of 
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the paper marker (that is visible in the WL and IR images) served as the points of 

correspondences between the two image planes. The corners were marked manually on the 

WL image as P1, P2, P3 and P4 (marked by green dots in Figure 4.9(a)) and on the IR 

image as P1’, P2’, P3’ and P4’ (marked by black dots in Figure 4.9(b)). Based on these point 

correspondences, a 3x3 homography matrix 𝐻𝐻 was solved using the DLT (direct linear 

transformation) algorithm [139].  

 𝐻𝐻 = �
ℎ1 ℎ4 ℎ7
ℎ2 ℎ5 ℎ8
ℎ3 ℎ6 ℎ9

� (4.12) 

In Equation 4.12, the matrix 𝐻𝐻 describes a two dimensional mapping from the WL 

image plane, given by (𝑥𝑥,𝑦𝑦), to the IR image plane, given by (𝑥𝑥′,𝑦𝑦′), as shown in Figure 

4.9. The elements ℎ1 … .ℎ8 of the matrix represent the eight degrees of freedom and by 

 

Figure 4.9  2D projective transformation from the WL image (with image coordinates, 
(𝑥𝑥,𝑦𝑦)) to the IR image (with image coordinates (𝑥𝑥′,𝑦𝑦′)). (a) The green corner points of 
the paper marker P1, P2, P3 and P4 in the WL image are mapped into the corresponding 
(b) black corners points P1’, P2’, P3’ and P4’ in the IR image to obtain the WL – IR 
2D projection matrix H. This matrix was used to map the lesion boundary (outlined 
with green dots) in the (a) WL image into the (b) IR image to locate the superficial 
lesion boundary in the IR image.  
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convention ℎ9 = 1 [119]. Similarly, an inverse mapping 𝐻𝐻−1 maps points from the IR 

image plane to the WL image plane. The latter mapping is used later for the thermal image 

overlay. 

In the next step, the homography matrix 𝐻𝐻 was used to map the lesion boundary 

points from the WL image plane to the IR image plane. The mapping assumes that the 

points on the boundary lie in the same plane as the four points selected for computing 

homography.  Let us assume that a point  𝑃𝑃𝑊𝑊𝑊𝑊 in the WL image is described by the vector 

[𝑥𝑥,𝑦𝑦]𝜕𝜕in cartesian coordinate notation. Using homogenous coordinates notation [119], the 

coordinates of point 𝑃𝑃𝑊𝑊𝑊𝑊 are expressed by the vector [𝑥𝑥,𝑦𝑦, 1]𝜕𝜕. The corresponding 

coordinates of this point 𝑃𝑃𝐼𝐼𝐼𝐼, in the IR image can be computed using 𝐻𝐻. The output 

coordinate vector [𝑢𝑢, 𝐸𝐸,𝑤𝑤]𝜕𝜕 is in the projective space of the IR camera.  

 �
u
𝐸𝐸
𝑤𝑤
� = [𝐻𝐻] �

𝑥𝑥
𝑦𝑦
1
� (4.13) 

In cartesian coordinates, the coordinates of the point 𝑃𝑃𝐼𝐼𝐼𝐼 in the IR image are given 

by the vector [𝑥𝑥′,𝑦𝑦′]𝜕𝜕 where  𝑥𝑥′ = 𝑠𝑠
𝑤𝑤

 and 𝑦𝑦′ = 𝑣𝑣
𝑤𝑤

. The image in Figure 4.9(b) shows the 

mapped lesion boundary (green dotted boundary) in the IR image, which is the superficial 

lesion boundary in the IR image. 

4.4.2.2 Visualization of the total affected area in the IR image 

(thermal contours) 

We used thermal contours to visualize temperature distribution at lesion location 

and its surroundings. The thermal contours or isotherms are imaginary lines that connect 

regions of equal temperature in the IR image (thermal map). The color coded IR image of 
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a hemangioma lesion is shown in Figure 4.10(a). A region of interest, ROI (a region 

surrounding the lesion) is indicated by the black rectangle in the IR image in Figure 4.10(a). 

The superficial lesion boundary is outlined with green dots. A magnified IR image of the 

ROI is displayed in Figure 4.10(b), where the temperature is visualized using thermal 

contours. The thermal contours allow better visualization of the temperature gradients in 

the IR image. The IR image in Figure 4.10(b) visualizes temperature distribution in the 

temperature range of 34 – 36°C with a temperature increment of 0.25°C. The black dotted 

boundary is the superficial lesion boundary mapped from the WL image, as explained in 

the previous section. The superficial portion is marked with a solid black arrow and the 

subcutaneous portions of the lesion is marked with dashed black arrows. The 3D 

temperature map shown in Figure 4.10(c) visualizes temperature elevation with respect to 

the surrounding unaffected skin temperature using thermal contours.  

 
Figure 4.10 Visualization of the affected area in the IR image using the thermal 
contours. (a) An IR image of an IH of the upper back. The superficial lesion boundary 
shown in green is mapped into the IR image from the WL image. (b) Temperature 
distribution in the magnified ROI (80 pixels by 140 pixels large) displayed using 
thermal contours (34 – 36.5°C temperature range, with an increment of 0.25°C). The 
white areas are regions below 34°C which are not considered. The superficial and 
subcutaneous portions are marked with arrows. (c) 3D visualization of temperature 
distribution within the ROI using thermal contours  
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4.4.2.3 Visualization of the total affected area in the WL 

image (thermal image overlay)  

The thermal image overlay is the overlay of thermal contours (determined from the 

IR image) onto the WL image using an inverse homography estimation (Equation 4.13) 

[140]. We mapped the total affected area determined using thermal contours onto the WL 

image for better, more intuitive visualization of the total affected area in the WL image. 

The visualization of the total affected area in a single image allows for easy interpretation 

of results of WL imaging and IR imaging and better evaluation of the total affected area.  

An example of the thermal image overlay is shown in Figure 4.11. The WL image 

of an IH of the forehead is shown in Figure 4.11(a). Using thermal contours, the 

temperature of the lesion is visualized in Figure 4.11(b) in the temperature range of 31°C 

and 36.2°C with an increment of 0.5°C. The image indicates that the total affected area 

 

Figure 4.11 Area affected by the hemangioma mapped onto the WL image using 
thermal contours. (a) Area affected by the IH lesion in the WL image. The superficial 
visible portion of the IH is marked with a black arrow. (b) Total area affected by the 
lesion in the IR image. The thermal map is displayed using thermal contours with an 
increment of 0.25°C for the temperature range 31°C - 36°C. (c) Total area affected by 
the lesion in the WL image. The superficial and subcutaneous portions are marked with 
the black arrows.  
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extends well beyond the superficial lesion boundary (identified by green dots). The solid 

black arrows point towards the superficial and subcutaneous portions of the lesion. The 

temperature information is back mapped onto the WL image (Figure 4.11 (a)), as illustrated 

in Figure 4.11(c). By setting the transparency of the thermal contours at 0.6 value, the 

superficial and subcutaneous portions can be simultaneously visualized in the WL image. 

For clinicians, it is convenient to simultaneously visualize the superficial portion and its 

surroundings and the skin temperatures, in order to better evaluate the total affected area.  

4.4.2.4 Lesion area ratio  

We calculated the lesion area ratio, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊⁄ , which is the ratio of the lesion 

area measured from the IR image (𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼) to the superficial lesion area measured from 

the WL image (𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊). From the WL image, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 was computed from the binary 

mask of the superficial portion of the lesion (section 4.4.1). From the IR image, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 

was computed using the temperature elevation map of the lesion, as shown in Figure 

4.12(a). The temperature elevation map is obtained by subtracting the reference healthy 

skin temperature value from the temperature of each pixel of the IR image. The resulting 

temperature elevation distribution at the lesion location is visualized using thermal 

contours in Figure 4.12 (a). A temperature rise in the range of 1°C to 2.2°C is observed 

with respect to the healthy skin temperature.  Figure 4.12 (b) illustrates the regions of the 

map in Figure 4.12 (a) that are 1°C, 1.8°C and 2°C above the healthy skin temperature. 

The number of pixels in the temperature elevation contour (dark blue contour in this case 

with ∆T ≥ 1℃) were counted to get an estimate for  𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 in pixels. The units were then 

converted into cm2 using the length scale provided by the paper marker.  
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4.4.2.5 Dimensionless temperature difference maps 

The dimensionless temperature difference maps were introduced to compare the 

temperature distributions (on a scale of 0 to 1) at lesion location over time in longitudinal 

studies (Figure 4.13). Let 0 ≤ 𝜃𝜃∗ ≤ 1 represent the dimensionless temperature difference 

between the lesion and healthy skin, where  

 𝜃𝜃∗ =
𝑇𝑇 − 𝑇𝑇𝑠𝑠𝑟𝑟𝑟𝑟

𝑇𝑇𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑇𝑇𝑠𝑠𝑟𝑟𝑟𝑟
 (4.14) 

In Equation 4.14, 𝑇𝑇 is the local skin temperature,  𝑇𝑇𝑠𝑠𝑟𝑟𝑟𝑟 is the temperature of a 

reference healthy location and 𝑇𝑇𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum skin temperature. 𝜃𝜃∗ = 0 at the 

reference healthy location and 𝜃𝜃∗ = 1 at the location where 𝑇𝑇 = 𝑇𝑇𝑚𝑚𝑎𝑎𝑥𝑥 (warmest point of 

the IH lesion).  Figure 4.13 illustrates the use of this method for comparison of temperature 

distributions of an IH lesion (of the nasal region) from two clinical visits (first imaging and 

 

Figure 4.12 Lesion area calculation from the IR image using thermal contour masks. 
(a) The temperature elevation at lesion location relative to the surrounding healthy skin 
temperature. (b) The thermal contour masks of regions in (a) that are 1°C, 1.8°C and 
2°C above the surrounding healthy skin temperature. The green dotted boundary on the 
masks outlines the superficial lesion. 
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follow-up imaging three months later).  The IR image at first imaging session is shown in 

Figure 4.13 (a). The average healthy skin temperature is in approximately 33°C and the 

temperature of the hemangioma lesion is in the range of 34.5 - 36°C.At the second imaging 

session three months later, the average healthy skin temperature is approximately 31°C and 

the temperature of the hemangioma lesion in in the range of 34 - 36°C (Figure 4.13(c)). 

The dimensionless temperature difference maps were obtained using Equation (4.14. The 

left cheek temperature was used as the reference for the healthy skin in both cases, 

 

Figure 4.13 Original IR images of an IH of the nasal region and the corresponding 
dimensionless temperature difference (𝜃𝜃∗) maps. (a) The IR image at the first imaging 
and (b) the corresponding dimensionless temperature difference image. (c) The IR 
image at the follow-up imaging three months later and (d) the corresponding 
dimensionless temperature difference image obtained using Equation (4.14. 𝜃𝜃∗ = 0 at 
the left cheek in both cases and 𝜃𝜃∗ = 1 at the location where lesion temperature is 
highest.  
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assuming that the temperature distribution of the left cheek would mirror that of the right 

cheek in the absence of the lesion.  The dimensionless temperature difference 𝜃𝜃∗ = 0 at the 

left cheek and 𝜃𝜃∗ = 1 at the lesion in both cases, as displayed in Figure 4.13(b) and Figure 

4.13(d)). The normalized temperature differences between the lesion and reference healthy 

location can be used to compare the temperature distribution at the lesion location and its 

surroundings at different times in longitudinal studies.  

4.5 Results 

In this section, the thermal analysis and color characterization of IHs by the 

combined WL – IR imaging approach are illustrated by considering seven sample IH cases. 

The key clinical characteristics of the lesions are summarized in Table 4.1. For descriptive 

purposes, the cases are grouped into the stages of evolution and arranged in the order of 

increasing age of the subjects. All subjects were female ranging from two to thirty months. 

This distribution does align with studies indicating that the female gender is a risk factor 

for the development of IH [109]. Out of the seven cases, two IHs were in their proliferation 

phase and were located on the subject’s lip (case I) and nose (case II), two IHs were in their 

plateau phase and were located on the subject’s scalp (cases III and IV) and three IHs were 

in their involution phase and were located on the subject’s back (case V), arm (case VI) 

and glabella (case VII). A follow – up analysis for case II before and after Propranolol 

treatment is also presented. All lesions were focal hemangiomas. Two were superficial 

(strawberry or capillary) hemangiomas, one was deep (cavernous) and four were mixed 

(capillary cavernous), with both superficial and deep components. Three of the subjects 

were treated with propranolol and one was treated with Timolol prior to imaging. The 

remaining three patients received no treatment prior to imaging.  
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4.5.1 Organization of results 

In this study, we introduce a novel way of presenting imaging data (Figure 4.14 to 

Figure 4.20) using a six-step imaging strategy. The top row of each figure displays the WL 

image (top left), WL image overlaid with temperature information (middle) and color 

difference data between the lesion and healthy skin (top right). The bottom row of the 

figures shows the original IR image (bottom left), the magnified IR image within the ROI, 

showing temperature map at lesion location (middle) and temperature elevation with 

Table 4.1 Summary of patient information and clinical features of IHs included in this 
study 

Case 
 No 

Subject  
Age 
(months) 

Subject 
Gender 

Stage by  
Clinical 
Impression 

Location  
of IH 

Morphologic 
Subtype Description Treatment 

I 1.2 Female Proliferating Lip Focal Mixed None 
II 2.2 Female Proliferating Nasal tip Focal Mixed None 

III 8.5 Female Plateau/early 
involution 

Left 
temporal 
scalp 

Focal Superficial None 

IV 9.8 Female Plateau 

Right  
forehead 
and 
parietal  
scalp 

Focal Superficial Propranolol 

V 13.7 Female Involuting 
Right 
upper 
back 

Focal Mixed Timolol 

VI 16.7 Female Involuting Left arm Focal Mixed Propranolol 
VII 29.3 Female Involuting Glabella Focal Deep Propranolol 
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respect to healthy skin (bottom right). The WL images of the hemangiomas (top left 

images) show the superficial portion of the IH lesion that is identifiable by visual 

inspection. In some of the cases, the superficial portion of the IH visible in the WL image 

represents the entire hemangioma (cases II and III). However, the majority of cases showed 

that the portion of the IH visible in the WL image is merely the superficial component of a 

mixed hemangioma or the subcutaneous tumescence of a deep hemangioma. We observed 

that some cases have ‘suspicious areas’ around the superficial portion that cannot be 

detected in the WL image (cases II and III).  The advantage of our combined WL – IR 

imaging approach is that it also shows these suspiciously warm regions. The color 

differences between the lesion and healthy skin in terms of the individual color attributes 

L*, a* and b* of the CIELAB color space are displayed in top right images. The computed 

color differences in terms of ∆E (Equation (4.11) are summarized in Table 4.2 

(proliferating IH cases), Table 4.4 (plateau phase IH cases) and Table 4.6 (involuting IH 

cases). A green dotted boundary outlining the superficial lesion is presented in the bottom 

left IR image. The information in the ROI (outlined with a black box in the same IR image) 

is presented using thermal contour maps in the magnified image (bottom middle images). 

Finally, this temperature map is mapped onto the WL image (middle top images).  

We first present results of the characterization of IH cases in proliferative phase 

(section 4.5.2), plateau phase (section 4.5.3) and involuting phase (section 4.5.4). A 

summary of the analysis of IHs in each phase is presented at the end of the section using 

tables. The computed color differences in terms of ∆E (Equation (4.11) are summarized in 

Table 4.2 (proliferating IH cases), Table 4.4 (plateau phase IH cases) and Table 4.6 

(involuting IH cases). The geometrical and thermal features of IHs, i.e. maximum lesion 
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temperature, range of temperature elevation at the lesion location, lesion sizes (cm) and 

areas (cm2) from the WL and IR images are summarized in Table 4.3 (proliferating IH 

cases), Table 4.5 (plateau phase IH) and Table 4.7 (involuting IH cases). Next, lesion colors 

and healthy skin colors are visualized in the Munsell color space in section 4.5.5.  Finally, 

the IR images of a proliferating IH lesion (case II) before and after treatment are compared 

in section 4.5.6. We discuss and summarize key results of our analysis in section 4.6.  

4.5.2 Characterization of IHs in proliferative phase 

The proliferation phase of hemangioma lesion is characterized by rapid growth. 

During proliferation, there is formation of new capillaries that increase the vascularity of 

the growing lesion. The lesion may infiltrate the dermal and/or the subcutaneous tissue 

[118], forming a subcutaneous component that may or may not show visible traces on the 

skin surface. The increase in lesion vascularity causes a temperature rise that can be 

measured non-invasively by infrared imaging. We demonstrate the applicability of the IR 

– WL imaging technique in quantitatively assessing proliferating IHs in case studies I and 

II. We discuss the applicability of IR imaging as a quantitative assessment tool for 

comparing proliferating IHs over time (at different clinical visits) in section 4.5.6. The 

summaries of analysis of lesion color and temperature in proliferative cases I and II are 

presented at the end of this section in Table 4.2 and Table 4.3.  

Case I Proliferating IH of the lip: Figure 4.14(a) shows a proliferating, mixed 

hemangioma of lip in a 1-month-old Caucasian female. The lesion did not receive any 

treatment prior to imaging. The lesion appears as a bump on the lip covering 60% of its 

mucosal and cutaneous regions. It was ulcerated and had been bleeding on an intermittent 
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basis, which resulted in an abated vermilion border. The color difference analysis shown 

in Figure 4.14(c) suggests that the lesion is darker in color (ΔL* = -10) and has dark reddish 

(Δa* = 17) and light bluish (Δb* = -3) hues when compared to the healthy skin.  

From the WL image (in Figure 4.14(a)), the dimensions of the lesion are 3.3 cm 

(major axis) by 1.9 cm (minor axis), its surface area is 4.6cm2 and it covers the lower lip 

of the subject. These dimensions describe the superficial portion of the lesion visible in the 

 

Figure 4.14 Case I - Proliferating hemangioma of the lower lip in a 1-month-old 
Caucasian female that was ulcerated and bleeding intermittently. The lesion did not 
receive treatment prior to imaging. (a) WL image. The green boundary outlines the 
superficial visible portion of the lesion. (b) The superficial affected area mapped onto 
the WL image. (c) Color difference data between the lesion and healthy skin in terms 
of color attributes 𝐿𝐿∗, 𝑎𝑎∗ and 𝑏𝑏∗. (d) The color coded IR image. The green boundary is 
the superficial boundary mapped from the WL image. The black arrows mark the extent 
of the subcutaneous involvement and the black rectangle outlines the ROI. (e) The 
magnified IR image within the ROI, showing temperature map at lesion location and 
(f) temperature elevation with respect to healthy skin (1 – 2.2°C). Lesion area ratio: 
𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 5.8 ⁄ . Color differences: ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 32.17 (superficial, healthy skin) 
and ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 13.71 (subcutaneous, healthy skin).  
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WL image (Figure 4.14(a)). The IR images (Figure 4.14(d) – (e)) show that the lesion also 

affects some areas on the neck as well as the face. The subcutaneous portion of the lesion 

is marked with three dashed black arrows in Figure 4.14(d) - (e). The affected areas include 

the submandibular triangle, the left portion of the chin, the cutaneous and mucous lip, the 

philtrum and the left nasal sidewall region (Figure 4.14 (d)). The large subcutaneous 

involvement of the lesion is easily noticeable in an IR image because of the elevated 

temperature (35.5– 36.5°C) relative to the surrounding healthy skin (34.8°) (Figure 4.14 

(e)). The hypervascular regions (with high blood perfusion) present in the vascular tumor 

during its proliferation phase [116] cause local increase in skin temperature that is 

identifiable in an IR image. The total area affected by the lesion as determined from the IR 

image is 26.8 cm2. This means that the region affected by the hemangioma is 5.8 times 

larger than the lesion area visible in the WL image. This result suggests that the assessment 

of IH by visual inspection alone can severely underestimate the true extent of the affected 

region.  

Additionally, we observed that the temperature increase is larger for the superficial 

portion of the lesion (1.8 – 2.6°C) than the subcutaneous portion (1.0 – 1.8°C), as shown 

in Figure 4.14(f). This difference in the temperature distribution is due to the presence of 

healthy skin layer overlying the subcutaneous portion of the IHs that decreases the effect 

of subcutaneous vasculature on the skin temperature. Finally, the temperatures of the 

superficial and (some of the) subcutaneous portions of the lesion are displayed in Figure 

4.14(b) for easy visualization of the lesion extent. 

Case II Proliferating IH of the nose: Figure 4.15(a) shows a proliferating, mixed 

hemangioma of the nasal tip in a 2-month-old Caucasian female. The lesion did not receive 
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any treatment prior to imaging. The lesion’s appearance resembled an elevated rubbery 

mass that had softened, flattened and greyed particularly on the right side compared to the 

appearance during a previous visit. The visual inspection of the lesion showed light 

reddish-bluish discoloration left of the nasal tip (shown by an arrow on Figure 4.15(a)), 

suggesting deeper involvement. Figure 4.15(c) shows that the lesion is darker in 

 

Figure 4.15 Case II – Proliferating hemangioma of the nasal tip in a 2-month-old 
Caucasian female. The lesion did not receive treatment prior to imaging. (a) WL image, 
(b) Total affected area mapped onto the WL image, (c) color difference analysis 
between lesion and healthy skin in terms of  ∆𝐿𝐿∗, ∆𝑎𝑎∗ and ∆𝑏𝑏∗. (d) Color-coded IR 
image. The superficial boundary mapped from the WL is shown in green and marked 
with a solid black arrow. The dashed black arrows indicate the extent of subcutaneous 
involvement and the blue dashed arrows point to the suspiciously warm regions that 
might belong to the subcutaneous portion of the lesion. The black rectangle shows the 
ROI. (e) The magnified IR image showing temperature in the ROI and (f) temperature 
elevation at lesion location with respect to surrounding healthy skin (1.4 – 2.6°C). 
Lesion area ratio: 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 1.6.⁄  Color differences: ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 32.17 
(superficial, healthy skin) and ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 13.71 (subcutaneous, healthy skin). 
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appearance (ΔL* = -15) and has more reddish (Δa* = 15) and bluish (Δb* = -5) hues when 

compared to the healthy skin.  

From the WL image (in Figure 4.15 (a)), we determined that the superficial lesion 

is 1.7 cm (major axis) by 1.3 cm (minor axis) large, with a surface area of approximately 

1.5 cm2 and it covers the nasal tip. This is the superficial portion of the mixed lesion visible 

in the WL image (Figure 4.15 (a)). The IR images (Figure 4.15 (d) - (e)) show that the nasal 

base, the ala of the nose and the portions of the nasal ridge are also affected. These 

subcutaneous portions determined in the IR image are marked with dashed black arrows in 

Figure 4.15(d) - (e) and solid black arrows in Figure 4.15(f). Relative to the surrounding 

healthy skin temperature (33 – 34°C), we measured a temperature increase in the range of 

1.4 – 2.6°C at the lesion location (shown in Figure 4.15(f)). The hypervascular regions 

(with high blood perfusion) present in the vascular tumor during its proliferation phase 

[116] are responsible for this local increase in skin temperature. The IR image shows that 

the dimensions of the entire lesion are 1.9 cm (major axis) by 1.6 cm (minor axis) and a 

surface area of approximately 2.3 cm2. This is 1.6 times larger than the area visible from 

the WL image.  

Additionally, we detected suspiciously warm areas in the middle forehead. These 

regions seem to be connected to the high temperature areas of the original lesion’s 

subcutaneous portions. These suspicious areas are marked in Figure 4.15(a) with blue 

dashed arrows. We cannot confirm whether the temperature elevation in this region is due 

to the effect of subcutaneous vasculature of the lesion or the combined effect of the 

physiological blood circulation of the forehead and the abnormal, proliferating vasculature 

of the lesion. Therefore, we excluded this region from our calculations of lesion area based 
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on the IR image. Additional imaging by ultrasound or MRI would be needed to more 

accurately interpret the causes of the elevated temperatures on the forehead.  

Summary for the proliferating IHs – Case studies I through II demonstrated the 

applicability of the combined IR – WL imaging technique in quantitatively assessing 

proliferation phase IHs. The color, thermal and geometrical features of the proliferating 

phase IHs are summarized in Table 4.2 and Table 4.3. Both lesions were classified as mixed 

subtypes. Case I was an elevated IH covering the lower lip and case II was a flat raised 

lesion at the nasal tip. We demonstrated that the color differences computed using the 

CIELAB model are proportional to the visually perceived color differences. The measured 

color differences between the superficial lesion and healthy skin are larger than the 

measured color differences between the subcutaneous portion and healthy skin. We also 

demonstrated that the total affected area, which is visualized by IR imaging, extends 

significantly beyond the visible superficial lesion boundary. The measured surface area of 

the elevated temperature region is 5.8 times larger than the measured surface area from WL 

images for case I and by 1.6 times for case II. The significant subcutaneous involvement 

can be associated with the proliferating subcutaneous portion of the lesion. The temperature 

Table 4.2 WL image based color differences between lesion and healthy skin for 
proliferating IHs (from WL images) 

Case No Description Location 
∆𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 
(superficial, 
healthy skin) 

∆𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 
(subcutaneous, 
healthy skin) 

I Mixed Lip 32.17 13.71 
II Mixed Nasal tip 28.11 27.62 
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elevation with respect to surrounding healthy skin was between 1 - 2.6°C for both cases. 

This temperature rise is due to the presence of hypervascular regions during the 

proliferating phase. These cases demonstrate the applicability of IR imaging as an 

inexpensive, non-invasive imaging technique for identifying the subcutaneous 

involvement in proliferating cases of mixed subtype. Accurate assessment of the 

subcutaneous involvement of IH early in the proliferative stage can prevent complications 

and will allow better tailoring of treatment strategies which will benefit IH subjects in the 

long run.  

4.5.3 Characterization of IHs in plateau phase 

The proliferative phase is followed by a short period of growth arrest, referred to 

the plateau phase (as illustrated in Figure 4.1). The plateau phase marks the transition of 

the IH lesion from proliferation (hypervascularity) to involution (both hypovascular and 

hypervascular regions may be present). We demonstrate the applicability of the combined 

IR – WL imaging technique in assessing the plateau phase of IHs through case studies III 

and IV. A summary of lesion color and plateau phase temperature characteristics for cases 

III and IV is presented at the end of this section using Table 4.4 and Table 4.5.  

Table 4.3 Geometrical and thermal features of proliferating IHs (from WL and IR 
images) 

Case 
No 

Maximum 
lesion 
temperature 
Tmax (℃) 

Temperature 
elevation 
∆T (℃) 

Major 
Axis(WL) 
Minor 
Axis(WL) 

(𝒄𝒄𝒄𝒄) 

Major 
Axis(IR) 
Minor 
Axis(IR) 
(𝒄𝒄𝒄𝒄) 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐖𝐖𝐖𝐖 
(𝒄𝒄𝒄𝒄𝟐𝟐) 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐈𝐈𝐈𝐈 
(𝒄𝒄𝒄𝒄𝟐𝟐) 

Area  
ratio 
( 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐈𝐈𝐈𝐈
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐖𝐖𝐖𝐖

) 

I 36.6 1.0-2.6 3.3, 1.9 5.0, 3.8 4.6 26.8 5.8 
II 36.2 1.4-2.6 1.7, 1.3 1.9, 1.6 1.5 2.3 1.6 
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Case III Plateau phase IH of the scalp: Figure 4.16(a) shows a plateau/early involution 

phase, superficial hemangioma of the scalp in a 9-month-old Caucasian female. The lesion 

was deeply erythematous, very soft to palpation and had a greyish to dark purplish color 

by clinical observations. It did not receive treatment prior to imaging. Figure 4.16(c) shows 

 

Figure 4.16 Case III - Plateau phase hemangioma of scalp in a 9-month-old Caucasian 
female [139]. The lesion was deeply erythematous and very soft to palpation. The 
superficial portion of the lesion had a somewhat grey, dark purple appearance. The 
patient did not receive treatment prior to imaging. (a) WL image.  The dashed red arrow 
points at the central grey region b) Total affected area mapped onto the WL image. (c) 
Color difference between lesion and healthy skin in terms of ∆𝐿𝐿∗, ∆𝑎𝑎∗ and ∆𝑏𝑏∗. (d) 
Color-coded IR image. The solid black arrow indicates the superficial portion, the 
dashed black arrows point to the subcutaneous portions. The blue dashed arrows point 
to the suspiciously warm regions that might represent extensions to the subcutaneous 
portion. The black rectangle outlines the ROI. (e) Magnified IR image showing 
temperature in the ROI and (f) temperature elevation at lesion location (1 – 1.8°C) with 
respect to the surrounding healthy skin. The lesion area ratio is 
𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 1.75.⁄  The measured color differences are ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 14.15 
(superficial, healthy skin) and ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 7.27 (subcutaneous, healthy skin). 
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that the lesion is darker in appearance (ΔL* = -10.3), has more bluish hues (Δb* = -9.7) 

and similar reddish hues (Δa* = 1.2) when compared to the healthy skin color.  

From the WL image (in Figure 4.16(a)), the superficial portion of the lesion is 1.4 

cm (major axis) by 1.1 cm (minor axis) large and covers an area of  1.2cm2 on the left 

temporal scalp of the subject. The IR images (Figure 4.16(d) – (e)) show that the lesion 

affects a larger area on the scalp than detected in the WL image. The black dashed arrows 

indicate the subcutaneous involvement of the lesion in Figure 4.16(e). The dimensions of 

the entire lesion, measured from the IR image, are 1.5 cm (major axis), 1.4 cm (minor axis) 

and a total area of 2 cm2. This area is 1.7 times larger than the area measured from the WL 

image. This result suggests that the assessment of IH by visual inspection alone can 

underestimate the true extent of the affected region. We detected suspiciously warm areas 

in the forehead that seem to be connected to the high temperature areas of the original 

lesion’s subcutaneous portions. These suspicious areas are indicated in Figure 4.16(d) by 

dashed blue arrows. We cannot confirm if the elevated temperatures in these areas is the 

result of the subcutaneous vasculature of the IH or the combined effect of the healthy blood 

vessels of the forehead region and the subcutaneous lesion vasculature. The IR image in 

Figure 4.16(d) detects additional areas of elevated temperatures which are partially covered 

by the subject’s hair. Therefore, we excluded these regions from our calculations of lesion 

area based on the IR image. Additional imaging by ultrasound or MRI would be needed to 

more accurately interpret the causes of the elevated temperatures on the forehead. At the 

time of imaging, the central portion of the lesion exhibited greying (Figure 4.16(a)), which 

is considered an early sign of lesion regression [39]. In addition to the color change, IHs 

experience decrease in vascularization during regression [116]. The IR image (in Figure 
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4.16(f)) shows that the central greyish region has a smaller temperature elevation (1 – 

1.2°C) than the top left boundary of the superficial portion (1.6 – 1.8°C). This temperature 

distribution can be explained in terms of decreased vascularization in the central portion of 

the lesion that shows lower temperature than the surrounding portion. The thermal map in 

Figure 4.16(e) is overlaid onto the WL image for better visualization (Figure 4.16(b)). This 

case illustrates the capability of IR imaging to quantitatively identify changes in lesion 

vascularity from the proliferative period to the involution period.  

Case IV Plateau phase IHs of the forehead and scalp: Figure 4.17 shows two plateau 

phase hemangiomas in a 10-month-old Caucasian female subject. Lesion 1 was on the right 

forehead (Figure 4.17(a)) and lesion 2 was in the right parietal scalp region (Figure 

4.17(g)). Lesion 1 was a 3.25 cm (major axis) x 1.8 cm (minor axis) large, elevated dome 

shaped hemangioma, as determined from the WL image. Lesion 2 resembled an oval 

shaped plaque that has overlying purple papules. The top left portion is labeled as L1 

(2.5cm (major axis) x 1.4cm (minor axis) large) and bottom right portion is labeled as L2 

(2.2 cm (major axis) x 0.7cm (minor axis)). These dimensions were measured form the WL 

image and represent the superficial portion of lesion 2. Lesion 2 was treated with topical 

Timolol gel. The average color differences between the superficial portion and healthy skin 

are -  ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 21.45 for lesion 1 and ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 29.5  for lesion 2 (Table 4.4). The average 

color differences between the subcutaneous portion and healthy skin for both lesion 1 and 

lesion 2 are  ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 2.55 (Table 4.4).   

The IR image of the subject is displayed in Figure 4.17(d), where ROI1 corresponds 

to lesion 1 and ROI2 corresponds to lesion 2. The temperature distributions in the ROIs are 

visualized in Figure 4.17(e) for lesion 1 and Figure 4.17(h) for lesion 2. These results show 
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that larger portions of the scalp region are affected by the combined effect of the lesions. 

The temperatures of the affected areas are 2.4 – 4.2°C above the healthy skin temperature 

as illustrated in Figure 4.17(f) for lesion 1 and Figure 4.17(i) for lesion 2. The solid black 

 

Figure 4.17 Case IV – Plateau phase hemangiomas of the forehead (lesion 1) and the 
scalp (lesion 2) in a 10-month-old, Caucasian female. (a) WL image of lesion 1. (b) 
Total affected area mapped onto the WL image for (b) lesion 2 and (c) lesion 1. (d) 
Color-coded IR image: the two black rectangles outline the ROIs for lesions 1 and 2. 
(e) Magnified IR image showing temperatures in ROI1 and the corresponding (f) 
temperature elevation map for lesion 1. (g) WL image of lesion 2. (h) Magnified IR 
image showing the temperatures in ROI2 and the corresponding (i) temperature 
elevation map for lesion 2. The temperature elevation with respect to the healthy skin 
is 2.4 to 4.2°C for lesions 1 and 2. The lesion area ratios are 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 9 ⁄  for 
lesion 1 (forehead) and 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 2.8 ⁄  for lesion 2 (scalp). The color 
differences are ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 21.45 (superficial, healthy skin) for lesion 1 and ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 =
29.5  for lesion 2.  ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 2.55 (subcutaneous, healthy skin) for both lesions. 
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arrows point to the superficial portions and the dashed white arrows indicate the 

subcutaneous involvement for both cases. The dimensions of the entire lesion measured 

from the IR images are: 8.9 cm (major axis), 6.6 cm (minor axis) with a surface area of 41 

cm2 for lesion 1; and 7.3 cm (major axis), 3.5 cm (minor axis) and 15.5 cm2 for lesion 2. 

The areas of the affected portions measured from the IR images are 9.1 times larger for 

lesion 1 and 2.8 times larger for lesion 2, than the respective areas measured from the WL 

image. The total extent of the affected area, color coded to show the local temperature, was 

mapped onto the WL images and results are visualized in Figure 4.17(b) and (c).  When 

considering the thermal signatures of the two lesions, we conclude that the entire scalp 

portion between lesion 1 on the right forehead and lesion 2 on the right parietal scalp seems 

to be affected. The temperature elevation in the affected region is due to the combined 

effect of the subcutaneous vasculature of lesions 1 and 2.   The superficial portions of the 

lesions show higher temperature elevations (3.8 – 4.2°C for lesion 1 and 3.4 – 4.2°C for 

lesion 2) than the subcutaneous portions (2.4 – 4.0°C for lesion 1 and 3 – 4.0°C for lesion 

2). The healthy skin layer (with lower perfusion and vasculature) overlying the 

subcutaneous portion decreases the heating effect of the subcutaneous vasculature on the 

skin temperature. The central portion of the elevated dome shaped lesion 1 is colder 

(35.5°C) when compared to the superficial boundary (36.2°C) close to the paper marker, 

as illustrated in  Figure 4.17(e) – (f). Two explanations are possible for the lower 

temperature elevation in the central portion of the dome-shaped lesion. First, the higher 

central portion of the lesion can cool down more when exposed to ambient natural 

convection than the base of the lesion which is heated by perfusion from the subcutaneous 

lesion and thermal conduction from the tissue underneath. Alternatively, the low 
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temperature increase at the center of lesion 1 may be an indicator of the regression of the 

central portion. This explanation can be validated by observing the thermal signatures of 

the lesion over time.  

Summary for the plateau phase IHs – Case studies III and IV demonstrated the 

applicability of the combined IR – WL imaging technique as an inexpensive, non-invasive 

imaging technique to quantitatively assess vascular patterns associated with plateau phase 

and early involuting phase IHs. The color, thermal and geometrical features of the plateau 

phase IHs are summarized in Table 4.5 and Table 4.4. Both lesions were clinically 

classified as superficial subtype and were located on the scalp. Lesion 1 had a raised dome 

shaped structure and lesion 2 resembled an oval shaped plaque overlaid with papules. The 

measured color differences between the superficial lesion and healthy skin are larger than 

the measured color differences between the subcutaneous portion and healthy skin. We 

demonstrated that the total affected area, which is visualized by IR imaging, extends well 

beyond the visible superficial lesion boundary. The area ratios were: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 1.7⁄  for case III; 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 9⁄  for lesion 1 of case IV; and 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 2.8⁄  for lesion 2 of case IV. These results suggests that the assessment 

Table 4.4 Geometrical and thermal features of plateau phase IHs (from WL and IR 
images) 

Case 
No 

Maximum 
lesion 
temperature 
Tmax (℃) 

Temperature 
rise 
∆T (℃) 

Major 
Axis(WL) 
Minor 
Axis(WL) 

(𝒄𝒄𝒄𝒄) 

Major 
Axis(IR) 
Minor 
Axis(IR) 
(𝒄𝒄𝒄𝒄) 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐖𝐖𝐖𝐖 
(𝒄𝒄𝒄𝒄𝟐𝟐) 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐈𝐈𝐈𝐈 
(𝒄𝒄𝒄𝒄𝟐𝟐) 

 
Area  
ratio 
( 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐈𝐈𝐈𝐈
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐖𝐖𝐖𝐖

) 

III 35.1 1.0-1.8 1.4, 1.1 1.5, 1.4 1.2 2.1 1.7 
IV(1) 36.0 3.0-4.2 3.25, 1.8 8.9, 6.6 4.5 41.0 9.0 

IV(2) 36.0 3.0-4.0 2.5,1.4(L1) 
2.2,0.7(L2) 7.3, 3.5 5.6 15.5 2.8 
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of an IH lesion by visual inspection alone can significantly underestimate the true extent 

of the affected region. We demonstrated that the lesion geometry and vascularity can affect 

the temperature elevation distributions. Early accurate identification of the subcutaneous 

involvement and assessment of the subcutaneous vascular patterns in IHs would be useful 

during longitudinal studies. It would allow taking clinical measures to prevent 

complications and quantitative treatment evaluations.  

4.5.4 Characterization of involuting phase IHs  

The final phase of lesion evolution is the involution phase, which is marked by slow 

regression of the lesion. According to [112], the fibrous fatty tissue replaces the deep 

vascular portions of the tumor, resulting in decreased size and vascularity [116] of IHs 

during the involution phase.  The lesion becomes softer to the touch and shows greying of 

the visible portion [106, 110, 112, 137]. We demonstrate the applicability of the combined 

IR – WL imaging technique in assessing involuting IH cases V, VI and VII. A summary 

Table 4.5 WL image based color differences between lesion and healthy skin for 
plateau phase IHs  

Case No Description Location  
∆𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 
(superficial, 
healthy skin) 

∆𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 
(subcutaneous, 
healthy skin) 

III Superficial Left  scalp 14.15 7.27 

IV (1) Superficial Right  
forehead 21.45 2.55 

IV (2) Superficial 
Right 
parietal 
scalp 

L1:28.74 
L2:31.93 2.55 
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of lesion color and temperature characteristics for the involution phase cases V to VII is 

presented at the end of this section in Table 4.6 and Table 4.7. 

Case V Involuting IH of the back: Figure 4.18 (a) shows an involuting, mixed 

hemangioma of the back in a 14-month-old Caucasian female. The focal hemangioma 

resembled a soft red vascular plaque. The central portion of the lesion shows greying, 

indicating involution. A significant deep component was appreciated clinically and the 

 

Figure 4.18 Case V - Involuting hemangioma of the back in a 14-month-old Caucasian 
female. The lesion resembled a soft red vascular plaque with central greying. A 
significant deeper component was clinically appreciated and the lesion was treated with 
Timolol gel. (a) WL image.  (b) Total affected area mapped onto the WL image. It is 
color coded to show local temperature. (c) Color difference between the lesion and 
healthy skin in terms of 𝐿𝐿∗, 𝑎𝑎∗ and 𝑏𝑏∗. (d) Color-coded IR image. The solid black arrow 
points to the superficial portion, the dashed black arrows point to the subcutaneous 
portion and the black rectangle outlines the ROI. (e) Magnified IR image showing 
temperature in the ROI and (f) temperature elevation (0.7°C – 2.1°C) at the lesion 
location with respect to the surrounding healthy skin. Lesion area ratio: 
𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 2.1⁄  .Color difference: ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 12.09 (superficial, healthy skin) 
and ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 6.05 (subcutaneous, healthy skin). 
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lesion was treated with Timolol gel. Figure 4.18 (c) shows that the lesion is darker in 

appearance (ΔL* = -11) and has a dark reddish (Δa* = 7) and bluish hue (Δb* = -11) when 

compared to the healthy skin color. From the WL image, the dimensions of the 

superficial portion are 4.4 cm (major axis), 2.3 cm (minor axis) and a surface area of 

approximately 7.8 cm2. The IR images (in Figure 4.18 (d) - (e)) show that larger portion of 

the back is affected than the region apparent by visual inspection. The dashed black arrows 

in Figure 4.18 (d) and Figure 4.18 (e)) point to the areas of subcutaneous involvement. The 

total affected portion of the lesion was mapped onto the WL image and the result is 

visualized in Figure 4.18(b). With respect to the surrounding healthy skin at 34°C (Figure 

4.18 (d)), the temperature rise at lesion location is 1.1 – 2.1°C (Figure 4.18 (f)). Figure 4.18 

(f) shows that the maximum temperature rise (1.7 - 2.1°C) is present in the region just 

outside the superficial boundary (outlined by black dotted line). The temperature rise is 

due to the hypervascular portions of the tumor. The greying of the central portion of the 

lesion (marked with a dashed red arrow in Figure 4.18(a) and (b)) is a sign of lesion 

regression. The temperature rise of the central region, that exhibits greying, is 0.7°C less 

than the temperature rise at the top rim of the lesion (Figure 4.18(e)). This temperature 

distribution at the central portion can be explained by the decreased vascularity of the 

involuting portion of the lesion. The lesion measures 5.1 cm (major axis) by 4.2 cm (minor 

axis) in the IR image with a total area of 16.3 cm2. This is 2.1 times larger than the area 

measured from the WL image. This results suggests that the affected area is likely to be 

underestimated if considering the visible portion of lesion in the WL image alone. 
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Case VI Involuting IH of the arm: Figure 4.19(a) shows an involuting, mixed 

hemangioma of the arm in a 16-month-old Caucasian female. The focal hemangioma 

resembled a nodular red vascular plaque with some central greying. The lesion was treated 

with Propranolol. Figure 4.19 (c) shows that the lesion is darker in color (ΔL* = -11), has 

 

Figure 4.19 Case VI - Involuting hemangioma of the arm in a 16-month-old Caucasian 
female [140]. The lesion resembled a nodular red vascular plaque with some central 
greying. It was treated with Propranolol. (a) WL image. (b) Total affected area mapped 
onto the WL image. The map is color coded to show local temperature. (c) Color 
difference between the lesion and healthy skin in terms of  𝐿𝐿∗, 𝑎𝑎∗ and 𝑏𝑏∗. (d) Color-
coded IR image. The solid black arrow points to the superficial portion of lesion, and 
the dashed black arrows point to the subcutaneous portion. The black rectangle outlines 
the ROI. (e) The magnified IR image showing temperature in the ROI and (f) 
temperature elevation at the lesion location (2 – 3.8°C) with respect to the surrounding 
healthy skin. ∆T is 2 – 2.8°C in the subcutaneous portion and 2.8 – 3.2°C in the 
superficial portion of the lesion. Lesion area ratio: 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 2.2 ⁄  Color 
differences: ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 13.05 (superficial, healthy skin) and ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 11.95 
(subcutaneous, healthy skin). 
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more reddish (Δa* = 7) and bluish hues (Δb* = -11) when compared to the healthy skin 

color.  

From the WL image, the dimensions of the superficial portion of the lesion are 2.1 

cm (major axis), 1.8 cm (minor axis) with a surface area of 3.0 cm2. The IR images (shown 

in Figure 4.19(d)) and (e)) show that a larger portion of the arm is affected than detected 

in the WL image. The dashed black arrows point to the subcutaneous portion of the lesion 

in Figure 4.19 (d) - (e). The total affected area was mapped onto the WL image and the 

result is visualized in Figure 4.19(b). The subcutaneous portion extends from the top right 

to the bottom left of the superficial portion, as illustrated in Figure 4.19 (b) and (e).  

The lesion was significantly warmer by 2.0 – 3.2°C (Figure 4.19(f)) with respect to 

the surrounding healthy skin temperature of 33.2°C (Figure 4.19(d)). Figure 4.19(f) shows 

that the temperature elevation of the right half (3 – 3.2°C) is larger than the left half (2.6 – 

2.8°C) of the superficial visible component. This temperature distribution can be associated 

with the regressing left half of the lesion. The entire affected area measured from the IR 

image, was 3.9 cm (major axis) by 2.2 cm (minor axis) large with a total surface area of 

6.8 cm2. This area is 2.2 times larger than the area measured from the WL image. This 

result suggests that again the affected area is likely to be underestimated if the visible 

portion of lesion is considered alone.  

Case VII Involuting IH of the glabella: Figure 4.20(a) shows an involuting, deep 

hemangioma of the glabella in a 29-month-old Caucasian female. The focal hemangioma 

resembled a soft compressible, subcutaneous nodule that has some coarse overlying 

telangiectasia with an overlying purple hue. The lesion was treated with Propranolol. 

Figure 4.19(c) shows that the lesion is darker in appearance (ΔL* = -15.2), has similar 
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redness (Δa* = 1.8) and dark bluish (Δb* = -10.5) hues when compared to the healthy skin 

color. The superficial portion of the lesion was identified on the basis of light purple 

discoloration (green boundary in Figure 4.20 (a)) of the skin. From the WL image, the 

dimensions of the superficial portion were measured as 1.6 cm (major axis), 0.8 cm (minor 

axis) and a surface area of 1.0 cm2 (Figure 4.20 (a)). The IR images in Figure 4.20 (d)-(e) 

 

Figure 4.20 Case VII - Involuting, deep hemangioma of glabella in a 29-month-old 
Caucasian female [139]. The lesion resembled a soft, compressible subcutaneous 
nodule that has some coarse overlying telangiectasia with an overlying purple hue. It 
was treated with Propranolol. (a) WL image. (b) Total affected area (color-coded 
temperature map) mapped onto the WL image. (c) Color difference between the lesion 
and healthy skin in terms of  𝐿𝐿∗, 𝑎𝑎∗ and 𝑏𝑏∗.(d) The color-coded IR image. The solid 
black arrow points to the superficial portion of lesion and the black dashed arrows point 
to the subcutaneous portion. The black rectangle outlines the ROI. (e) Magnified IR 
image showing temperature in the ROI and (f) temperature elevation at the lesion 
location (1 – 2°C) with respect to the surrounding healthy skin. ∆T is 1 – 1.8°C in the 
subcutaneous portion and 1.6 – 2°C in the superficial portion of the lesion. Lesion area 
ratio: 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊 = 4 ⁄ . Color differences: ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 18.57 (superficial, healthy 
skin) and ∆𝐸𝐸𝑎𝑎𝑣𝑣𝑎𝑎 = 11.56 (subcutaneous, healthy skin). 
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display the temperature distributions at the superficial and surrounding subcutaneous 

portions of the deep IH lesion. The entire lesion, as measured from the IR image, was 2.5 

cm (major axis) by 2.1 cm (minor axis) large with an area of 4.1 cm2. This area is 4 times 

larger than the area measured from the WL image. The total affected area (as color-coded 

IR thermal map) was mapped onto the WL image and the result is visualized in Figure 4.20 

(b). With respect to the healthy skin temperature of 34°C (Figure 4.20(d)), the temperature 

increase is in the range of 1.0 – 1.4°C at the subcutaneous portion and 1.4 – 2.0°C at the 

superficial portion, as illustrated in Figure 4.20 (f). The superficial and subcutaneous 

portions are marked by solid black arrows. This temperature distribution can be attributed 

to the presence of the healthy skin layer overlying the subcutaneous portion that decreases 

the effect of the subcutaneous vasculature on the skin temperature.  

Summary for the involution phase IHs – Cases V through VII demonstrated the 

applicability of the combined IR – WL imaging technique in quantitatively assessing 

involution phase IHs. The color, thermal and geometrical features of the involuting phase 

IHs are summarized in Table 4.6 and Table 4.7. Two lesions were of mixed subtype (case 

V, upper back and case VI, left arm) and one was classified as a deep IH (case VII, 

glabella). Case V was a flat raised lesion, case VI was elevated dome-shaped and case VII 

was a subcutaneous nodule. The measured color differences between the superficial lesion 

and healthy skin are larger than those between the subcutaneous portion and healthy skin. 

By comparing lesion outlines in WL and IR images, we showed that the total affected area 

extends well beyond the visible superficial boundary. We quantified the extent of 

subcutaneous involvement from the IR images. When compared to the area measured from 

the WL image, the total affected area measured from the IR images was 2.1 times larger 
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for case V, 2.2 times larger for case VI and 4 times larger for case VII. The temperature 

decrease observed at the central portion in cases V and VII can be explained by the 

involution phase characteristics of the IH lesions. The less perfused fibrous fatty tissue 

replaces the highly perfused tumor, causing decrease in lesion vascularity and subsequent 

decreases in skin temperature. These results demonstrate the applicability of IR imaging in 

identifying regressing portions of the lesion during the involution phase.   

 

Table 4.7 Geometrical and thermal features of the involuting IHs (from WL and IR 
images) 

Case 
No 

Maximum 
lesion 
temperature 
Tmax (℃) 

Temperature 
rise 
∆T (℃) 

Major 
Axis(WL) 
Minor 
Axis(WL) 

(𝒄𝒄𝒄𝒄) 

Major 
Axis(IR) 
Minor 
Axis(IR) 
(𝒄𝒄𝒄𝒄) 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐖𝐖𝐖𝐖 
(𝒄𝒄𝒄𝒄𝟐𝟐) 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐈𝐈𝐈𝐈 
(𝒄𝒄𝒄𝒄𝟐𝟐)  

 
Area  
ratio 
( 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐈𝐈𝐈𝐈
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐖𝐖𝐖𝐖

) 

V 36.2 0.7-2.1 4.4, 2.3 5.1, 4.2 7.8 16.3  2.1 
VI 36.4 2.0-3.2 2.1, 1.8 3.9, 2.2 3.0 6.8  2.2 
VII 36.1 1.0-2.0 1.6, 0.8 2.5, 2.1 1.0 4.1  4.0 

 

Table 4.6 WL image based color differences between lesion and healthy skin for 

the involuting IHs  

Case No Description Location  
∆𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 
(superficial, 
healthy skin) 

∆𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 
(subcutaneous, 
healthy skin) 

V Mixed Upper back 12.09 6.15 
VI Mixed Left arm 13.05 11.95 
VII Deep Glabella 18.57 11.56 
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4.5.5 Quantitative visualization of IH colors and healthy skin 

colors  

The Munsell color representations (HC/V values) for IHs and healthy skin colors 

were computed from the CIELAB coordinates of the colors, as discussed in section 4.4.1.3. 

Table 4.8 summarizes the quantitative color data for IHs and the healthy skin for the cases 

considered in this study. The measured hue (H), value (V) and the chroma (C) values for 

these cases are expressed in the HC/V notation of the Munsell representation. The hues and 

chroma values for the color of IHs and the corresponding healthy skin are visualized in the 

Munsell hue circle in Figure 4.21. The blue radial arrows represent IH cases and the red 

radial arrows correspond to the healthy skin colors. The numbers next to the arrows refer 

to the cases (Table 4.8). The color lightness varies along the y – axis (perpendicular to the 

 

Figure 4.21 Quantitative visualization of IH and healthy skin colors on the 
Munsell hue circle. The blue arrows represent the IH lesions and the red arrows 
represent the corresponding healthy skin colors.  
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plane of the paper) and the lightness data are shown in Table 4.8. We measured red to 

yellow – red hues (with a larger red component) for the first three IH cases (Figure 4.21(b)) 

- 9.5R for case I (Figure 4.14(a)), 0.6YR for case II (Figure 4.15(a)), and 4.8R for case III 

(Figure 4.16(a)). We measured yellow – red hues (with a larger yellow component) for the 

next four cases (Figure 4.21(b)) - 6.8 YR for case IV (Figure 4.17(a)), 3.3 YR for case V 

(Figure 4.18 (a)), 3.5YR for case VI (Figure 4.19(a)), and 5YR for case VII (Figure 

4.20(a)). The corresponding healthy skin colors demonstrate yellow, yellow – red and 

yellow – green hues, illustrated in Figure 4.21.  

4.5.6 Follow-up imaging of a proliferative phase IH lesion  

Follow–up of case II (proliferating IH of the nasal tip): We applied the non-

dimensional temperature technique developed in section 4.4.2  to the IR images of case II 

(a proliferating lesion of the nasal tip), captured during two clinical visits. The results are 

illustrated in Figure 4.22.  Figure 4.22(a) shows the WL image during the first imaging 

session. The WL image of the lesion captured three months after the first imaging session 

Table 4.8 Quantitative color representations for IHs 
and healthy skin colors using the HC/V Munsell color 
notation 

Case No HC/V 
(IH) 

HC/V 
(healthy skin) 

I 9.5R 3.4/7 7.5Y 6/4.3 
II 0.6YR 3.3/7.4 1.2Y 6.2/6.2 
III 4.8R 4.3/4.2 3YR 5.3/5.6 
IV 6.8YR 2.8/5.7 8.5GY 5.6/6.5 
V 3.3YR 2.6/6.1 4GY 4.0/7.3 
VI 3.5YR 4.8/4.4 5.6GY 7/4.1 
VII 5YR 5.7/3.8 5.5Y 6.8/4.0 
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is displayed in Figure 4.22(b). The lesion was under treatment between the two visits. The 

lesion showed lighter discoloration at the second imaging session when compared to its 

 

Figure 4.22 Non-dimensional temperature difference technique applied to the IR images 
of a proliferating lesion captured during two clinical visits. WL images captured during 
the (a) first and (b) second imaging session, three months later. (c) Dimensionless 
temperature difference (𝜃𝜃∗) map (top row) and the magnified image showing the 
dimensionless temperature difference in the ROI (bottom row) during the first visit. (d) 
Dimensionless temperature difference (𝜃𝜃∗) map (top row) and the magnified image 
showing the dimensionless temperature difference in the ROI (bottom row) during the 
second visit, three months later. 
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appearance during the first visit. The change in the color of the lesion from darker to lighter 

is induced by the regression due to treatment of the superficial lesion.  

We generated the non-dimensional temperature difference (𝜃𝜃∗) maps using 

Equation 4.14. The left cheek temperature was chosen as the reference healthy skin 

temperature, as described in section 4.4.2. The non-dimensional temperature difference 

image for the first visit is shown in Figure 4.22(c) and for the second visit in Figure 4.22(d) 

(top rows). The bottom rows of Figure 4.22 (c) and (d) display the non-dimensional 

temperature differences in the ROI (yellow rectangle) using thermal contours. The results 

demonstrate the changes in the shape of the 0.9 intensity thermal contour from the first to 

the second visit. The 0.9 intensity contour at the nasal tip region is smaller at the second 

visit, when compared to the first. This decrease in non-dimensional temperature difference, 

demonstrated by the superficial portion of the lesion at the second visit, may be associated 

with the efficacy of the treatment. We detected suspiciously warm regions in the forehead 

region (also indicated in Figure 4.15(d) with dashed blue arrows) during both the first and 

second clinical visits. These regions (marked by dashed black arrows in bottom row of 

Figure 4.22s (c) and (d)) may be a part of the subcutaneous portion of the IH lesion, as 

explained for case II in section 4.5.2. The thermal contour of 0.9 intensity outlining the 

subcutaneous regions has increased in size, when compared to the first visit.  This increase 

in non-dimensional temperature difference, manifested in the subcutaneous portions of the 

lesion at the second visit, may be associated with the proliferating subcutaneous 

vasculature of the lesion.  

4.6 Discussion and conclusions  
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In this chapter, we demonstrated that the combined IR – WL imaging developed in 

this study can be used as an inexpensive, non-invasive tool for quantitative assessment of 

infantile hemangiomas. As the imaging technique does not require anesthesia or sedation, 

unlike MRI and CT, it is suitable for clinical imaging of young IH infants. We applied the 

WL and IR image processing techniques to quantitatively assess the IH color and 

temperature in different types of hemangiomas. Different classes of IH lesions (superficial, 

mixed and deep) were sampled from different regions of the body including the lip (case 

I), nasal region (case II), scalp (cases III and IV), back (case V), arm (case VI) and forehead 

(case VII). The lesions were in different phases (from proliferating to involuting) at the 

time of imaging and the subjects ranged from 1 to 30 months of age.  Some subjects had 

received treatments (Propranolol or Timolol gel) prior to the time of imaging, while others 

had received no treatment. We summarize key findings and capabilities of the combined 

IR – WL steady state image analysis technique for quantitative assessment of all subjects 

in Figure 4.23. For presentation purposes, we plotted the results in the order of increasing 

age of the subjects (shown on the x axis) and grouped them by the IH stage (shown by 

horizontal arrows on the top). We present a comparison of lesion areas measured from the 

IR and WL images in Figure 4.23(a), temperature elevation distributions at lesion location 

with respect to the healthy skin temperature in Figure 4.23(b) and the color differences 

between lesion and healthy skin in Figure 4.23(c).   

Analysis of IH size – We introduced an area ratio metric, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑊𝑊𝑊𝑊⁄ , to demonstrate 

the advantages of using quantitative IR imaging over conventional WL imaging for 

assessment of IH size. We observed that the total affected area extends well beyond the 

superficial portion that is visible in the WL images. According to Figure 4.23(a), the 
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measured surface area of the lesion from the IR images, AreaIR (cm2) was at least 1.6 times 

larger than the measured surface area from the WL images, AreaWL (cm2). We observed 

 

Figure 4.23 IH characteristics plotted as a function of the subject age and stage of 
evolution of the lesion. (a) Lesion area measured from the WL images and IR images, 
(b) temperature elevation at lesion location with respect to the surrounding healthy skin 
temperature and (c) color difference between the lesion and healthy skin in superficial 
and subcutaneous portions of the lesion.  
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this trend for all IH subtypes (superficial, mixed or deep). For most of the subjects (cases 

I and cases IV – VII), AreaIR was significantly larger than AreaWL. This result implies that 

the IR images provide a complete picture of the IHs by showing the subcutaneous 

involvement of IHs. For cases II (Figure 4.15) and III (Figure 4.16), for which smaller area 

ratios were observed, we cannot confirm with certainty whether the warm regions 

surrounding the superficial portion are the extensions of the subcutaneous involvement. 

Therefore, we did not include these areas in estimating the total affected area from the IR 

images.  For superficial IH lesions, such as cases III (Figure 4.16) and IV (Figure 4.17), 

estimating the lesion area from the WL image, simply based on the redness or discoloration 

of the skin, may significantly underestimate the affected area. The subcutaneous portions 

of the mixed subtype IHs, such as cases I (Figure 4.14), II (Figure 4.15), V (Figure 4.18) 

and VI (Figure 4.19), and the deep IHs, such as case VII (Figure 4.20) are covered by an 

overlying layer of the healthy skin. Visible inspection alone cannot be used to accurately 

assess the subcutaneous portion of the IHs. Our thermal image overlay technique provides 

a unique capability to visualize and quantify the superficial and subcutaneous extent of the 

lesion simultaneously on the WL image.  

Additionally, our current IR-WL image processing technique can be extended 

easily to estimate IH volume by including lesion depth information. The volume of the 

superficial portion may be computed by measuring the lesion elevation from the skin 

surface and combining it with the measured lesion surface area. In Chapter 3, we 

demonstrated that the depth of the lesion can be estimated non-invasively using inverse 

reconstruction algorithm using skin surface temperature as an input. The combined IR – 

WL imaging technique coupled with inverse reconstruction algorithms will allow 



 

160 
 

measuring the depth of the subcutaneous portion and subsequently the complete volume of 

the IH lesion non-invasively. Therefore, the combined IR – WL imaging approach is a 

suitable tool for quantitative assessment and long term monitoring of IH lesions.  

Analysis of thermal signature of IHs: The box and whisker plot in Figure 4.23(b) shows 

the temperature elevation distributions for different IH cases. We considered the entire 

lesion area (including the subcutaneous and superficial portions) in contrast to one or two 

points for quantifying the thermal signatures of IH lesions. For each case, the minimum 

and maximum values of the whisker plots provide the range of temperature elevation at 

lesion location relative to the surrounding healthy skin temperature (Figure 4.23(b)). The 

mean and median temperature rise (from 1.5 – 3.5°C) is shown by the middle line and the 

dot of the box plot respectively. The upper and bottom limits represent the first and fourth 

quartiles of the temperature elevation distribution. In proliferating and plateau phase 

lesions, the subcutaneous portions exhibited lower temperature rise compared to the 

superficial portions (Figure 4.14(e) for case I and Figure 4.15(e) for case II, Figure 4.17(e) 

for case IV). The lower temperature rise of the subcutaneous portions is due to the 

overlaying layer of the healthy skin. The regressing portions of the involution phase IHs 

(identified by greying of the lesion) demonstrated smaller temperature elevations when 

compared to the non-regressed portions (shown in Figure 4.16(e) for case III; Figure 

4.18(e) for case V and Figure 4.19 for case VI). 

Analysis of color difference between lesion and healthy skin: In this study, we 

demonstrated that the color difference between the lesion and healthy skin in terms of ∆𝐸𝐸 

(from CIELAB color model) [126] offers an objective and quantitative method to quantify 

changes in IH color with respect to the surrounding healthy skin. The visually perceived 
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color differences between the superficial portion and healthy skin are larger than those 

between the subcutaneous portion and healthy skin (from the WL images in cases I to VII).  

The ∆𝐸𝐸 values shown in Table 4.2, Table 4.4 and Table 4.6 align with this observation i.e. 

the superficial portions of lesions have larger ∆𝐸𝐸 than the subcutaneous portions in cases I 

through VII (also shown in Figure 4.23 (c)). After the completion of this study, we 

identified some of the limitations of our imaging technique. The temperature distributions 

for IHs involving the eyes are difficult to interpret, as illustrated by the IR images for case 

II (Figure 4.15).  The eyes themselves emit more heat, making the process of differentiating 

the hemangioma’s vasculature from the eye’s vasculature challenging. Additionally, the 

estimates of area ratios for cases II and III are relatively smaller when compared to other 

cases (Figure 4.23(a)). The 2D projective registration of the lesion boundary is less accurate 

for the curved regions because the assumption that all the points to be registered lie in the 

same plane is not accurate for the curved areas. We detected suspiciously warm regions for 

these cases, however, we cannot confirm whether these areas belong the subcutaneous 

component of the lesions. Additional imaging by ultrasound or MRI would be needed to 

more accurately interpret the causes of the elevated temperatures in these cases. The 

presence of shadows due to elevated portions of the lesions and the non-uniform 

distribution of lighting pose limitations for color analysis. To overcome these effects, we 

selected the healthy skin regions where the illumination levels matched with that of the 

lesion for computing color differences between the lesion and healthy skin.  

In conclusion, the successful analysis of this broad range of hemangiomas (different 

locations, subtypes and morphological characteristics) shows the feasibility and flexibility 

of the combined IR thermography with WL imaging in assessing these vascular tumors. 
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We developed color analysis tools for hemangiomas, which allow us to measure the color 

differences between lesion and healthy skin and provide quantitative visualization for the 

colors. We demonstrated that steady state infrared imaging in combination with the white 

– light imaging can quantify the total affected area (including the superficial and 

subcutaneous involvement) by the IHs. By applying WL – IR image registration, we can 

compare the areas of the visible portion of the IH with its thermal signature in the same 

image. This comparison shows that the IR image gives a more complete picture of the 

hemangioma area showing both the superficial and subcutaneous components. When 

coupled with inverse reconstruction techniques, the IR image may also provide the depth 

of the subcutaneous involvement allowing for volume measurements, which is a subject of 

future research. We combined the clinical knowledge of lesion phase and subtype with the 

lesion shape and temperature distribution to interpret the thermal signatures of IHs. This 

thermal analysis allowed us to quantitatively characterize the proliferating or involuting 

portions of the lesion and measure their surface areas. Finally, we developed a 

dimensionless temperature difference formulation, which allowed us to quantify the 

temperature elevations with respect to the surrounding healthy skin on a scale of 0 to 1. 

We used this technique to compare IR images of a proliferating lesion during different 

clinical visits (before and after starting treatment). We demonstrated that the intensity and 

shape of the dimensionless temperature difference contours can be associated with the 

increase or decrease in lesion size and vascular activity. The image processing methods 

presented in this chapter are used to measure the thermal and color signatures of other types 

of pigmented and vascular lesions in the next chapter. 
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Chapter 5 Thermal signatures of  

skin lesions 

5.1 Motivation 

The aim of this chapter is to initiate an atlas of thermal signatures of skin lesions 

varying in clinical and physiological characteristics, sizes and depths. A collection of 

thermal signatures serves as a reference for the studies using quantitative infrared imaging 

for evaluation and assessment of skin lesions as well as a reference for clinicians 

interpreting the images.  

5.2 Methods 

The details of the imaging equipment, setup and protocol used for imaging vascular 

lesions were described in Chapter 4, in sections 4.4 to 4.5. The data for pigmented skin 

lesions were acquired in 2009 in a patient study (protocol: NA00016040, Using High 

Resolution Functional Infrared Imaging to Detect Melanoma and Dysplastic Nevi) at the 

JHU Department of Dermatology, Pigmented Lesion Clinic at the Johns Hopkins Hospital 

Outpatient Center. The inclusion criteria consisted of clinical indication of biopsy as 

identified by the dermatologists [15]. For pigmented skin lesions, cooling was achieved by 

blowing cold air onto the skin using a vortex tube [15]. For vascular lesions, cooling was 

achieved by applying a cold gel pack onto the skin, as described in Chapter 4, in section 

4.5. The thermal signatures of lesions were analyzed using the combined WL – IR image 

processing techniques described in Chapter 4, in section 4.6.  
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5.3 Results 

The thermal characterization of skin lesions using the combined WL – IR imaging 

approach is illustrated by considering five sample cases in this study. The key clinical 

features of skin lesions are summarized in Table 5.1. For descriptive purposes, the cases 

are grouped into their respective categories.  

Table 5.1 Summary of features of skin lesions included in this study 

Case No Lesion 
description Category Location Depth of lesion 

involvement 

I Port wine stain Vascular 
malformation Left cheek Dermisb 

II 

Venous 
malformation 

with superficial 
telangiectasias 

Vascular 
malformation 

Left side of the neck, 
middle upper back 

Can be both 
superficial and deepc 

III 

Junctional 
dysplastic 
nevus with 
moderate 

atypia 

Atypical pigmented 
lesion Lower back Epidermis – dermis 

junctiona 

IV 

Compound 
dysplastic 
nevus with 
moderate 

atypia 

Atypical pigmented 
lesion Left thigh Both epidermis and 

dermisa 

V Hand injury Soft tissue injury Left hand  Entire skin tissued 

a – [149] 
b – [150] 
c – [151] 
d – Case V was a case of a bone fracture injury.  

5.3.1 Vascular malformations 

Vascular malformations are the anomalies of the vascular system that may involve 

either of the vascular segments – arteries, capillaries, veins and lymph vessels [152]. They 

are present at birth and do not undergo proliferation or involution. In this study, we 

considered two types of vascular anomalies – port wine stains that consist of dilated 
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capillaries in the dermis and venous malformations that consist of dilated venous vessels 

[152].   

5.3.1.1 Port-Wine Stain 

Case I - Figure 5.1(a) shows a 2 cm (major axis) x 2 cm (minor axis) large port-

wine stain of the left cheek in an Asian female. Figure 5.1(c) displays the quantitative color 

differences between lesion and healthy skin measured from the WL image. The color 

difference values were calculated at every lesion pixel yielding a color–coded color 

difference map, where red represents larger color differences and blue smaller color 

differences. The superficial boundary of the lesion was identified on the basis of the dark 

red-purple discoloration (green boundary in Figure 5.1(a)) of the skin. The temperature 

distribution mapped onto the WL image and the result are visualized in Figure 5.1(b).The 

color-coded steady state IR images in Figure 5.1 (d) and the temperature elevation map in 

Figure 5.1(e) did not show any differences between lesion temperature and surrounding 

healthy skin temperature. This finding is consistent with the steady state temperature 

measurements reported in prior literature for port wine stains [153].  

In order to study the transient thermal signature, we subjected the lesion and its 

surroundings to a mild cooling excitation and measured their thermal recoveries. We 

introduced a dimensionless temperature, T∗ = (T − Tcooling) (Tsteady state − Tcooling⁄ ), 

where Tcooling is the cooling temperature and Tsteady state is the steady state temperature of 

the pixel obtained from the steady state image. The dimensionless temperature allows us 

to scale the thermal recoveries of each pixel in the range of 0 to 1 and eliminate the impact 

of non-uniform cooling. Figure 5.1(f) shows the dimensionless temperature distribution for 
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the lesion and healthy skin as well as the temperature difference between them, as a 

function of time. The lesion recovered at almost the same rate as the surrounding healthy 

skin until t = 120s. The rate of lesion recovery slowed down from t = 120s to 380s, yielding 

a maximum dimensionless temperature difference, ∆𝑇𝑇∗= -0.15°C between lesion and 

healthy skin. The slower recovery and a temperature decrease can be attributed to a lower 

value for the average blood perfusion rate of the lesion when compared to that of the 

healthy skin. We observed a very small temperature difference (-0.15°C) between port-

wine stain and healthy skin during transient thermal recovery. This result, however, 

 

Figure 5.1 Case I - Port wine stain of the left cheek (before laser treatment), in an Asian 
female. (a) WL image, (b) color-coded temperature map mapped onto the WL image, 
(c) color difference (∆E) distribution between lesion and healthy skin, (d) IR image 
showing temperature distribution at left cheek. The region within the black boundary 
belongs to the lesion. (e) Temperature elevation distribution at left cheek with respect 
to healthy skin temperature. (f) Dimensionless temperature distribution as a function of 
time for the port wine stain and healthy tissue.  
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demonstrates the enhanced skin temperature sensitivity to blood perfusion of the 

underlying tissue, which we also observed from the sensitivity analysis study (Chapter 1, 

in section 2.3.2).    

For case I, we also compared skin temperatures before treatment with skin 

temperatures after laser treatment of the lesion. Both measurements were performed on the 

same day. It should be noted that a gel was applied to the subject’s left cheek after the laser 

treatment. The top and bottom rows of images in Figure 5.2 display the WL images 

(Figures 5.2 (a) and (d)), the steady state IR images (Figures 5.2(b) and (e)) and the 

magnified IR images showing the temperature distribution at lesion location (Figures 5.2(c) 

 

Figure 5.2 Before and after laser treatment comparison for case I. (a) WL image, (b) IR 
image. The black rectangle outlines the ROI and the green boundary outlines the lesion, 
(c) magnified IR image in the ROI showing temperature distribution at lesion location, 
captured before treatment. (c) WL image, (d) IR image and (e) magnified IR image in 
the ROI showing temperature at lesion location, captured immediately after treatment. 
Both set of images were captured on the same day 
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and (f)), before and after treatment, respectively. As described earlier, the lesion did not 

show any temperature difference with respect to the surrounding skin before treatment 

(Figures 5.2(c)). After laser treatment, the lesion showed a significant temperature increase 

(4 - 5°C) compared to surrounding healthy skin. The temperature increase can be attributed 

the heating and the body response to the heating of the tissue during laser treatment. Huang 

et al [154] demonstrated that an increase in the blood perfusion of the tissue may occur 

immediately after the laser treatment in order to remove excess heat from the tissue. This 

temporary dilation of the blood vessels might contribute to the increase in skin temperature 

in our case.  

5.3.1.2 Venous malformation 

Case II - Figure 5.3 illustrates a venous malformation having superficial 

telangiectasias (blood vessels located just below the surface of the skin) in a young 

Caucasian male subject. The lesion covered some portions of the left side of the neck 

(identified as lesion 1 in Figure 5.3(a)) as well as the middle upper back (identified as lesion 

2 in Figure 5.3(b)). The superficial portions of both lesions were identified on the basis of 

the light red purple discoloration (green boundaries in Figures 5.3(a) and (b)) of the skin. 

The steady state IR images in Figures (c) and (d) display the temperature distributions at 

the superficial and subcutaneous portions of the venous malformation. With respect to the 

healthy skin temperature of 34°C (Figures (c)), the temperature increase was in the range 

of 1 – 2.5°C at the subcutaneous portion and 1.5 – 2°C at the superficial portions. The 

subcutaneous portions are marked by solid black arrows. The significant increases in skin 
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temperatures can be attributed to higher blood flow due to the combined effect of the 

superficial blood vessels and the dilated venous vessels of the lesion.    

 

Figure 5.3 Case II - Venous malformation of the neck and the upper back with 
superficial telangiectasias. (a) WL image of the lesion on the neck (lesion 1) and (b) 
WL image of the lesion on the upper back (lesion 2).  Color-coded steady state IR 
image of (c) lesion 1 and (d) lesion 2. The solid black lines mark the subcutaneous 
portion of the lesion. Temperature elevation distribution (1-2.5°C) at (e) lesion 1 and 
(f) lesion 2 locations. 
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5.3.2 Pigmented lesions 

5.3.2.1 Junctional dysplastic nevus 

 Case III - Figure 5.4(a) shows a 7mm (major axis) x 5 mm (minor axis) large atypical 

lesion of the lower left back that was clinically identified as a junctional dysplastic nevus. 

The lesion possessed moderate atypia and was referred for biopsy. Figure 5.4(b) shows the 

dermoscope image of the lesion. It was used to measure the color differences between 

lesion and healthy skin and compute the color difference map at lesion location (Figure 

3.4(c)). The non-uniformity of lesion color (Figure 5.4(b)) is well illustrated by the 

contours of the color difference map (Figure 5.3(c)). From the steady state temperature 

distributions displayed in Figures 5.4(c) and (d), we did not observe any differences in 

lesion temperature and surrounding healthy skin temperature, which indicate that the lesion 

is benign. For better visualization of lesion temperature, the color-coded thermal map is 

mapped onto the WL image, as shown in Figure 5.4(b). Figure 5.4(h) illustrates the 

transient temperature distributions at lesion location and its surroundings at t = 0s, 2s, 10s, 

15s, 30s and 58s into thermal recovery. Again, we did not observe any temperature 

differences between lesion and healthy skin from the transient temperature contours. Both 

the steady state and transient thermal signatures suggest that the lesion is benign.  The 

results of the biopsy also showed that the lesion is benign. 

5.3.2.2 Compound dysplastic nevus 

Case IV - Figure 5.5(a) shows a 5 mm (major axis) x 5 mm (minor axis) large atypical 

lesion of the left thigh that was clinically identified as a compound dysplastic nevus. The 
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lesion possessed moderate atypia and was referred for biopsy.  A dermoscope image of the 

lesion is shown in the top right corner of Figure 5.5(a). The IR image in Figure 5.5(b) 

displays the temperature distribution at lesion location and its surroundings. The 

temperature distribution in the top right corner of the image is dominated by a blood vessel 

that increases the skin temperature locally. A better visualization of the temperature 

 

Figure 5.4 Case III - Junctional dysplastic nevus of the lower left back. (a) Magnified 
WL image, (b) dermoscopic image and (c) color difference (∆E) distribution between 
lesion and healthy skin computed using dermoscopic image. (d) Original WL image, 
(e) color-coded temperature map mapped onto the WL image, (f) color-coded, steady 
state IR image. The black rectangle outlines the ROI. (g) Magnified IR image in the 
ROI showing temperature distribution at lesion location. (h) Color-coded IR images 
after 1 min of cooling. Temperature distribution at ROI is shown for t = 0s, 2s, 10s, 
15s, 30s and 58s into thermal recovery.  
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distribution is provided by the WL-IR image overlay in Figure 5.5(c). The temperature 

elevation distribution was computed with respect to a healthy skin temperature of 31.4°C 

(the region that is not influenced by the blood vessel), as shown in Figure 5.5(d). We 

observed a temperature rise of 0.2 - 0.5°C at lesion location (Figure 5.5(d)). Since, there is 

a large region of high temperature surrounding the lesion location, we cannot conclude 

from the steady state analysis whether the 0.2-0.5°C rise is due to lesion malignancy (high 

blood flow and metabolic activity) or is an effect of the nearby blood vessel. Transient 

thermal recovery of the lesion and surrounding healthy skin can provide more information 

about the lesion. The results of the biopsy showed that the lesion is benign. 

5.3.3 Soft tissue injury and bone fracture 

Case VI - Figure 5.6 illustrates qualitative follow-up of a soft tissue injury and bone 

fracture of the middle finger of the left hand, in a female subject. A bone fracture repair 

surgery was performed using metal pins that held the bone of the middle finger in place. 

 

Figure 5.5 Case IV - Compound dysplastic nevus of the left thigh. (a) WL image. The 
top left image shows the dermoscope image. (b) Color-coded IR image showing 
temperature distribution at lesion location and its surroundings. The green boundary 
outlines the lesion. (c) Color-coded temperature map mapped onto the WL image and 
(d) temperature elevation distribution at lesion location and its surroundings, with 
respect to healthy skin temperature. 
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The WL and greyscale IR images of the right (healthy) and left (injured) hands were first 

acquired before the surgery (Figure 5.6 (a) and (b)) and then 3 weeks (Figures 5.6 (c) and 

(d)) and 4 weeks (Figures 5.6(e) and (f)) after the surgery. The greyscale IR images are 

color coded, where red indicates high temperature and blue low temperature. The black 

arrows in the IR images point to the symmetrically opposite locations and allow qualitative 

comparison of temperatures between two hands. The yellow arrows point to the 

corresponding locations in the WL images and allow qualitative comparison of swelling 

and skin color.  

 

Figure 5.6 Qualitative follow-up of a soft tissue injury of the hand. Combined WL – IR 
images of (a) healthy and (b) injured hand captured before surgery; (c) healthy and (d) 
injured hand captured 3 weeks after surgery; and (e) healthy and (f) injured hand 
captured 4 weeks after surgery. 
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Before surgery, the WL image of the left hand (Figure 5.6 (b)) showed swelling 

and a relatively pale skin color in contrast to the healthy skin color (shown in Figure 5.6 

(a)). The corresponding IR image (Figure 5.6 (b)) indicated inflammation in fingers (high 

temperature) and an impaired blood flow (low temperature) in back of the palm, contrasted 

to the temperature distribution of the healthy hand (Figure 5.6 (a)).  The WL image showed 

improvement in skin color, three weeks after the surgery (Figure 5.6(d)). The 

corresponding IR image indicated inflammation in the entire hand (high temperature 

regions), when compared to healthy hand temperatures in Figure 5.6 (c). By the fourth 

week after surgery, both WL and IR images of the left hand were similar to those of the 

right hand, indicating improvements in skin color and temperature.  

5.4 Conclusions 

We analyzed thermal signatures of skin lesions of varying physiologies, sizes and 

depths in this study. The transient analysis for the port wine stain lesion demonstrate that 

more information about lesion can be obtained by using dynamic thermal imaging. We 

believe that a collection of thermal signatures of skin lesions in this study would facilitate 

the analysis and interpretation of other vascular anomalies, pigmented lesions and soft 

tissue injuries. 
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Chapter 6 Conclusion 
This dissertation addressed a subset of fundamental and practical questions relevant 

for quantitative thermographic characterization of thermal signatures of skin lesions as well 

as subcutaneous lesions. The overall aim was to explore the feasibility of steady state and 

transient IR imaging for early detection and staging of deep tissue injuries and quantitative 

assessment of skin lesions (including pigmented lesions and vascular tumors), using 

computational thermal modeling combined with quantitative WL – IR imaging and image 

processing tools. Our modeling efforts and the interpretation of thermal signatures benefit 

from the fundamental understanding of the thermal behavior of skin, gained by conducting 

a comprehensive sensitivity analysis of healthy skin temperature variations with respect to 

variations in tissue thermophysical properties and layer thicknesses. Our imaging and 

image analysis framework uses a combined WL-IR imaging approach that allows 

quantitative, objective assessment of growth and regression needed for long term 

monitoring of lesion history for treatment evaluation.  

In Chapter 2, we performed a sensitivity analysis of healthy skin temperature 

variations with respect to small changes of 36 tissue parameters (30 thermophysical 

properties and 6 layer thicknesses) in order to gain insights into the complex thermal 

behavior of the skin tissue. The sensitivity analysis is essential for a better understanding 

of the influence of individual variations and uncertainties in property values describing a 

biophysical system on the measured skin temperature, with implications for clinical 

diagnostic applications. The insights from the sensitivity analysis provide guidelines for 

the design of the clinical measurement system and interpretation of measurement data. 
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Both steady state skin temperatures and transient thermal recovery of the skin to a cooling 

excitation were included in the analysis, as they are important for medical diagnostic 

applications of static and dynamic IR imaging (that relies on cooling). The partial 

derivative based normalized sensitivities allow us to quantify and compare the independent 

effects of input parameters on skin temperatures.  

Our analysis demonstrated that large variations in key tissue parameters (thermal 

conductivity of the fat layer, blood perfusion rates of dermis layers and the fat layer 

thickness) had a negligible influence on the computed skin temperatures. Additionally, we 

found that the metabolic heat generation rate is among the least influential parameters 

affecting the steady state skin temperature and the transient thermal recovery of skin from 

a cooling excitation. Larger values of the transient sensitivity coefficients compared to their 

steady state values demonstrate that the thermal recovery of the skin from a cooling 

excitation is a better indicator of the thermal state of the tissue underneath and provides 

more information than the steady state skin temperature. This means that in diagnostic 

applications of IR imaging, thermal contrasts between lesion and healthy skin can be 

enhanced by subjecting the skin to cooling. This leads to a conclusion that dynamic IR 

imaging should be used in clinical applications when the lesion is small or deep, and no 

significant temperature difference is detected in a static analysis.  

We also analyzed the contributions of the thermal and physiological characteristics 

of each layer to the transient thermal recovery of the skin, in order to gain insights for 

improving the dynamic IR measurement system design. Fat and muscle layers exhibited 

late onset of thermal recovery (largest temperature difference reached after 2 and 5 

minutes, respectively, following the removal of the cooling load) and subsequently led to 
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late maxima in the sensitivity curves in comparison to the epidermis and dermis layers. 

This implies that a deep tissue lesion (situated in the fat or muscle layers) would present 

the strongest measurement signal late into the thermal recovery (t = 2 to 10 mins, as 

indicated in our analysis). A near surface lesion (involving the epidermis or dermis layers) 

would present the strongest measurement signal early (t = 0 to 2 mins).  Therefore, the 

optimum duration for a thermographic scan, that gives the best measurement signal and 

sensitivity, would vary with the depth of the lesion. Additionally, the differences in the 

thermal behavior of different skin layers during cooling and thermal recovery can be 

employed for improving skin cooling techniques for dynamic IR imaging applications. The 

fundamental understanding of the thermal system of the skin gained from this study is 

invaluable for the design of dynamic IR measurement systems and lays the foundations for 

interpreting the thermal signatures of lesions in Chapters 3 -5.  

In Chapter 3, we developed a computational thermal model of a heel deep tissue 

injury (DTI) to demonstrate that incipient DTIs can be detected and characterized 

quantitatively and non-invasively in a clinical setting using IR imaging. First, to explain 

the inconsistencies reported in prior literature on pressure related injuries, we accounted 

for ischemia and ischemia reperfusion processes (etiologies for DTI) in our thermal model 

by incorporating ischemia and inflammation as thermal variables. Next, we proposed new 

and more accurate clinical staging criteria for DTIs, which classifies them into reversible 

and irreversible DTIs, and characterized thermal signatures of each stage using our thermal 

model. To assess the feasibility of early thermographic detection (before the lesion 

becomes visible on the skin surface), we considered an incipient 1.5 cm by 0.5 cm lesion. 

Our steady state computational models demonstrate that the measurement signals 



 

178 
 

associated with DTI ischemia and inflammation for lesion depths of 8mm, 6 mm and 3.8 

mm can be detected using static IR imaging, yielding a static thermographic detection 

capability for reversible DTIs. We, however, observed that steady state IR imaging alone 

cannot distinguish between DTI inflammation and multilayer DTI (inner ischemic core 

surrounded by inflammation mantel). To overcome this limitation, we included a transient 

analysis in our model to test the dynamic infrared imaging capability. We observed that 

the measurement signal in a clinical setting can be enhanced by subjecting the skin to 

cooling and comparing the transient thermal recovery of tissue affected by the DTI with 

healthy tissue. Furthermore, dynamic IR imaging can detect both ischemia and 

inflammation in the case of a multilayer DTIs, yielding a thermographic detection 

capability for both reversible and irreversible DTIs.  

We also demonstrated the feasibility of IR imaging coupled with inverse 

reconstruction methods to non-invasively measure key DTI properties such as the lesion 

depth, size and blood perfusion rate. The thermal staging criteria proposed in this 

dissertation offer an objective, convenient and quantitative method to document the 

severity and property of the injury, yielding a thermographic diagnosis and assessment 

capability.  

We applied combined IR-WL image processing approaches for quantitative assessment 

of skin lesions in Chapters 4 and 5. We developed color analysis tools, which allowed us to 

measure the color differences between lesion and healthy skin and quantitatively visualize their 

colors. However, considering that the WL images may present shadows that add noise to the 

measurement, it is desirable to have a standardized uniform lighting source in the examination 

room.  
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The combined IR-WL imaging and image processing tools developed in the Heat 

Transfer Lab of the Johns Hopkins University were applied to analyze infantile hemangioma 

(IH) lesions first. A comparison of the IH area visible in the WL image (detected by a clinician 

by visual inspection) with the total affected area measured in  the IR image leads to the 

conclusion that the IR image provides a more complete picture of the IH lesion, by visualizing 

both its superficial and subcutaneous components. The quantification of the extent of 

subcutaneous involvement is especially useful for the problematic IH lesions (that interfere 

with vital functions), as the combined IR – WL imaging can be performed with relative 

simplicity without requiring sedation or anesthesia in young subjects.  

As demonstrated in Chapter 3, the measured temperature data can be coupled with 

inverse reconstruction methods to obtain the depth estimates for the subcutaneous portion, 

allowing for volume measurements, which is the subject of future research efforts. An accurate 

assessment of the IH volume, early in the proliferative stage, can prevent complications and 

allows better tailoring of treatment strategies. Using dimensionless temperature maps to 

compare IR images of a proliferating lesion captured during different clinical visits (before and 

after starting treatment, 3 months weeks apart), we demonstrated that IR imaging can be used 

to assess increase/decrease in lesion size and activity over time. The follow-up imaging and 

quantitative assessment of a tumor under treatment using the combined IR – WL imaging could 

be improved by standardizing the imaging conditions such the light source and illumination 

conditions for WL imaging and controlling the ambient temperature, camera focal length, 

imaging time, the positioning of the patient with respect to the IR camera.  

The measured temperature data for skin lesions in Chapters 4 and 5 demonstrate 

that the lesion type, geometry and vascularity affect the temperature elevation distributions. 

The characteristic thermal signatures of skin lesions of different types (IHs, port-wine stain , 
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venous malformation, benign and malignant atypical lesions), shapes (dome – shaped, flat-

raised, flat) and sizes and locations (face, back, legs), depths from the skin surface have been 

summarized in these chapters. The broad range of lesions analyzed in this dissertation 

demonstrates the flexibility and feasibility of IR imaging as an effective clinical assessment 

tool. We also identified potential limitations of IR imaging as a quantitative assessment tool. 

The temperature distributions for IHs involving the eyes were difficult to interpret. The eyes 

themselves emit more heat, making the process of differentiating the hemangioma’s 

vasculature from the eye’s vasculature challenging. Furthermore, we noticed that some IH 

lesions of the face exhibited warm regions, which may or may not belong to the subcutaneous 

component of the lesion. Additional imaging by ultrasound or MRI would be needed to 

accurately interpret the causes of elevated temperatures in such cases.  

In summary, the improved understanding of the biophysical system of the skin gained 

from this study will be very useful for the design of IR measurement systems suitable for lesion 

detection and quantification. The collection of thermal signatures provides a knowledge 

database that will facilitate the analysis and interpretation of clinical thermographic images of 

other skin and subcutaneous lesions and help expand the clinical applications of quantitative 

IR imaging. 
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Appendix 

Levenberg-Marquardt method for measuring properties of 

DTI 

We describe the Levenberg-Marquardt (LM) method [104] based inverse bioheat 

transfer approach [103] to simultaneously estimate two DTI parameters from the measured 

steady state skin surface temperature data. The relevant DTI properties are the depth, h, 

size (i.e. length of the major axis), d1 and blood perfusion rate, ω. To demonstrate the 

workflow, we explain the steps to simultaneously estimate DTI depth, ℎ and the size, 𝑑𝑑1, 

from a given skin surface temperature profile,  𝑌𝑌. Let 𝑃𝑃 = �𝑃𝑃1𝑃𝑃2 � be the vector of the 

unknown parameters, i.e. 𝑃𝑃1 = ℎ  and 𝑃𝑃2 = 𝑑𝑑1.  

Step 1: Guess values for the unknown parameter vector 𝑃𝑃 and solve for the corresponding 

skin temperature profile,  𝑇𝑇(𝑃𝑃).  

Step 2: Compute the objective function, 𝑆𝑆, which is the sum of squared error between the 

measured temperature profile (𝑌𝑌) and the computed temperature profile, 𝑇𝑇(𝑃𝑃). 

 𝑆𝑆(𝑃𝑃) = [𝑌𝑌 − 𝑇𝑇(𝑃𝑃)]𝜕𝜕[𝑌𝑌 − 𝑇𝑇(𝑃𝑃)] (1) 

Step 3: Exit, if 𝑆𝑆(𝑃𝑃) < 10−5. Otherwise, proceed to Step 4. 

Step 4: Calculate the sensitivity matrix, 𝐽𝐽(𝑃𝑃), using the temperature information from i 

number of points on the skin surface  
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𝐽𝐽(𝑃𝑃) =
𝜕𝜕𝑇𝑇𝜕𝜕(𝑃𝑃)
𝜕𝜕𝑃𝑃

=

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑇𝑇1
𝜕𝜕𝑃𝑃1

𝜕𝜕𝑇𝑇1
𝜕𝜕𝑃𝑃2

⋮ ⋮
𝜕𝜕𝑇𝑇𝑖𝑖
𝜕𝜕𝑃𝑃1

𝜕𝜕𝑇𝑇𝑖𝑖
𝜕𝜕𝑃𝑃2⎦

⎥
⎥
⎥
⎤

 (2) 

The partial derivatives in Equation 2 may be approximated using finite difference 

approximation.  

Step 5: Solve for the next best set of parameters using the LM algorithm [104]. If 𝜇𝜇 is the 

damping parameter, the parameter values during the  𝑊𝑊 + 1𝜕𝜕ℎ iteration i.e. 𝑃𝑃𝑚𝑚+1 are 

obtained using  

 𝑃𝑃𝑚𝑚+1 = 𝑃𝑃𝑚𝑚 + [(𝐽𝐽𝑚𝑚)𝜕𝜕𝐽𝐽𝑚𝑚 + 𝜇𝜇𝑚𝑚Ω𝑚𝑚]−1(𝐽𝐽𝑚𝑚)[𝑌𝑌 − 𝑇𝑇(𝑃𝑃𝑚𝑚)] (3) 

In Equation 3, Ω𝑚𝑚 = 𝑑𝑑𝑖𝑖𝑎𝑎𝐸𝐸[(𝐽𝐽𝑚𝑚)𝜕𝜕𝐽𝐽𝑚𝑚] is the diagonal matrix computed at the 𝑊𝑊𝜕𝜕ℎ iteration.  

Step 6: Substitute 𝜇𝜇 = 10𝜇𝜇 in Equation 3, if the parameter values computed at Step 5 are 

not realistic, i.e. the corresponding temperature data  𝑇𝑇(𝑃𝑃𝑚𝑚+1) < 0. Repeat Step 5 until 

realistic parameter values are obtained. Otherwise, proceed to Step 7.  

Step 7: If  𝑆𝑆(𝑃𝑃𝑚𝑚+1) < 𝑆𝑆(𝑃𝑃𝑚𝑚), make 𝜇𝜇 = √10𝜇𝜇 and go to Step 3. If 𝑆𝑆(𝑃𝑃𝑚𝑚+1) > 𝑆𝑆(𝑃𝑃𝑚𝑚), 

make 𝜇𝜇 = 10𝜇𝜇 and go to Step 5.  
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