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Abstract

When attempting to generate statistical inference, the notion of distance or (dis)similarity

among observations is a crucial for understanding the data’s structure. When the data

are sparse, as in single-cell RNA-sequencing (scRNA-seq), some notions of distance

can give false signals regarding observation structure. Motivated by a multinomial

model for scRNA-seq data, we test sought to test the performance of several dissim-

ilarities using experimental and simulated scRNA-seq data. Methods and results for

the permutations of these analyses are provided and summarized herein.

We leveraged the minicore package as an efficient and accurate means to com-

pute fifteen notions of dissimilarity for experimental and simulated scRNA-seq data.

Calculations were performed in experimental scRNA-seq data that had cluster and

lineage structure using multiple levels of variable genes for robustness. The simulated

scRNA-seq data sought to test robustness in response to experimental factors, so

simulated cluster and lineage structure data was tested with multiple varying simu-

lation settings. We provide five fitness metrics for each dissimilarity, kAcc (nearest-

neighbor accurarcy), TrajCor (lineage structure accuracy), ARI (truth label concor-

dance with simple clustering algorithm), 1-G+ (tightness of truth cluster labels), and

GapStat(evidence for k > 1 clusters). While no single distance vastly outperforms

all others, geometric (non-normalized) distances are consistently out-performed by

statistical (normalized). We reiterate the suggestions of minicore and recommend

JSD as a distance, which demonstrates strong overall performance in almost all test

scenarios.
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1 Introduction

Ribonucleic Acid sequencing (RNA-seq) is a set of protocols that allows researchers

to quantify genomic species at the transcript level. Notably, RNA-seq provides more

accurate quantification than previous technologies (Microarray, Sanger sequencing)

due to the use of reverse transcriptase to provide integer counts of RNA species [1].

RNA-seq is most commonly used to measure gene transcripts (which will eventually

be translated into proteins), however, the technology is fully capable of assessing less

common RNA such as micro RNA and long-noncoding RNA [2].

Advancements in RNA-seq technology have permitted RNA quantification of genes

at the level of a single cell (scRNA-seq). First published by Tang et al. [3], no-

table advancements on the protocol include SMART-seq, CEL-seq, and droplet-based

methods [4, 5]. A crucial factor which distinguishes previous generations of standard

(‘bulk’) RNA-seq and scRNA-seq is the amount of required input material. For ex-

ample, bulk RNA-seq protocols require nanogram-scale (1-500ng) amounts of RNA,

typically acquired from lysis and integration of a tissue sample to form one RNA-seq

observation [6]. In comparison, a similar tissue sample can generate thousands of

scRNA-seq measurements by virtue of the many cells which compose it. Consequen-

tially, scRNA-seq necessitates the input of substantially less RNA (picogram-scale,

often as low as 0.1pg) than bulk RNA-seq [7]. Due to the small scale of cellular RNA

quantities or technical limitations (i.e., ‘dropout’ events), count matrices generated

with scRNA-seq protocols demonstrate severe sparsity in comparison to those created

by bulk RNA-seq. Often, as many as 90% of entries in a scRNA-seq dataset will be

zero-valued [8].

Bulk RNA-seq has leveraged tremendous power for studying genomic processes

at the population level, i.e., cohort-level studies of development and disease. While

scRNA-seq can also be used in this way, the technology differs itself from others by
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means of turning a single tissue sample into thousands of single-cell observations.

This level of measurement allows researchers to investigate differences in cellular

populations across disease conditions at a fine level. For example, recent work has

unraveled the role of cigarette smoking in the dysregulation of basal cell differentia-

tion, leading to differential porportions and functions of airway epithelial cells such

as ciliated and mucus-producing cells [9]. Intrinsic to this form of research is the

capacity to quickly and accurately identify populations and their relationship to each

other within scRNA-seq data. Common forms of this analysis include unsupervised

clustering where the researcher seeks to group or label the observations (cells) into a

discrete clusters, often, cell types. As an extension of this analysis, researches often

seek to investigate the differences amongst these cell types. Often, classifying the cells

into k discrete clusters is an oversimplification, for example, in the case where the

sampled tissue is comprised of multiple cell types that all stem from a single progeni-

tor cell. In this case, the path from the progenitor states to the end states may follow

a continuous trajectory with varying levels of cells in transitory states between end

and finish. To this end, researchers also seek to identify this lineage-type structure

within the data, and place the cells along a one-dimensional lineage or ordering, i.e.,

‘pseudotime’ analysis [10, 11].

Intrinsic to all of these analytical methods is the capacity of the researcher to

accurately quantify (dis)similarity amongst all observations in the dataset. RNA-seq

measurements are often modeled using vectors. In this context, a vector can be de-

scribed as multivariate ordering of observations where each dimension corresponds to

the abundance (counts) of a given transcript (gene) within that sample. Historically,

the (dis)similarity between the gene expression of two cells has been modeled using

the normal distribution. This stems from near-Gaussian distribution of gene expres-

sion intensities measured with microarray technology. The most common choice of

dissimilarity measure has been the squared Euclidean (L2) distance using observed
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counts that have scaled by the total number of reads (i.e., more library size / sequenc-

ing depths) [12, 13]. These normalized data are then log2-transformed for variance

stabilization and to make the data more Gaussian (see Section 2.1). As noted by

Witten (2011) [14], another popular choice is correlation-based distance, which is

equivalent to squared Euclidean distance up to a scaling of the observations [15]. In

fact, the squared Euclidean distance can be derived from a hypothesis test using a

simple Gaussian model for the data [14].

The analytic tools (e.g. dissimiarity measures) that assume a Gaussian distribution

and use normalized and log2-transformed scRNA-seq data can be used for many

downstream analyses, including classification methods based on linear discriminant

analysis, clustering methods that use Euclidean distance such as k-means, or methods

that project the high-dimensional data to a low-dimensional space using, for example,

multidimensional scaling (MDS) [16]. Another example is Principal Components

Analysis (PCA), a popular dimension reduction method that is implicitly based on

Euclidean distance, which corresponds to maximizing a Gaussian likelihood [17]. The

assumption of Gaussian data in analytic tools for the analysis of scRNA-seq data are

ubiquitous and widely adopted into scRNA-seq workflows [18, 19]. However, several

recent studies have shown that either explicitly or implicitly use Euclidean distance on

normalized log2-transformed scRNA-seq data can induce unwanted technical artifacts

and may confound the results [20, 21, 22, 14, 17].

In contrast to modeling the data with a Gaussian distribution, RNA-seq (and

scRNA-seq) are nonnegative counts and can be modeled using discrete count distri-

butions, such as the Poisson, negative binomial or multinomial distributions. Ac-

cordingly, recent work has been made to improve the performance via optimizing the

dissimilarity measure itself that is designed for the count-based nature of sequencing

data. Notably, Witten (2011) [14] derived a dissimilarity metric for bulk RNA-seq

data, based on an empirically justified assumption a Poisson distribution [23, 24].
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However, recent papers have argued that technical noise or variation from scRNA-seq

data actually follow a multinomial [17] or negative binomial (NB) [25] (compared

to Poisson) distribution. This idea is behind count-based dimensionality reduction

methods such as generalized principal components analysis (glmpca) [17] compared

to Gaussian-based dimensionality reduction methods, such as principal components

analysis. Therefore, there is a need to have a distance metric based other nonnegative

count distributions on that can be used for other downstream applications including

dimensionality reduction, clustering, and corsets for scRNA-seq data [26].

Relevant work in this area is from Berninger et al. (2008) who proposed a dissim-

ilarity metric for sequencing data based on the multinomial distribution [27]. Witten

(2011) contrasts the Poisson dissimilarity metric [14] with the multinomial dissimi-

larity metric [27]:

“Berninger et al. (2008) propose a method for computing a dissimilar-

ity matrix using sequencing data that is also very closely related to ours.

They assume that each observation is drawn from a multinomial distribu-

tion, and they test whether or not the multinomial parameters for each

pair of observations are equal. This is almost identical to our Poisson

model and associated hypothesis testing framework, since if the observa-

tions are distributed according to [equation] (14), then their distribution

conditional on Xi, Xi′ is multinomial. In fact, the log-likelihood ratio

statistics under our model and theirs are identical for certain very natural

estimates of Nij, Ni′ j, dij, and di′ j in [equation] (17) (see the Appendix).

However, there are some important differences between the two propos-

als. Berninger et al. (2008) place a Dirichlet prior on the parameters for

the multinomial distribution, and then use a Bayes factor as a measure of

the dissimilarity between two observations. Consequently, two identical

observations can have nonzero dissimilarity according to Berninger et al.

4



(2008), and two different observations can have smaller dissimilarity than

two identical observations. This leads to problems in the interpretation

of their dissimilarity measure as well as in the performance of any clus-

tering approach that is based upon it. Finally, their approach can suffer

from numerical issues where the computed dissimilarity between a pair of

observations rounds to zero.”

In this work and in contrast to the Bayes factor approach from Berninger et al., we

extend the work from Witten (2011) [14] to a novel dissimilarity metric for uniquely

specified for scRNA-seq data based on the multinomial distribution. Furthermore,

we test the performance of many other statistic dissimilarity metrics, which operate

under the assumption of a multinomial distribution.

2 Methods

All distances matrices were calculated with default parameters or with a prior of 1 (see

2.1.3) and implemented in the minicore Python library [28] and saved as pickles

[29]. These which were then imported into R [30] using reticulate [31, 32]. The

rest of the Methods Section describes an overview of known and novel dissimilarity

measures (Section 2.1), where the mathematical derivations for the novel dissimilarity

measure based on the multinomial distribution introduced in this thesis is discussed in

Section 2.1.2. Next, we describe the data used to evaluate the dissimilarity measures

(Section 2.2), all scRNA-seq preprocessing performed (Section 2.3), a description

of how the null scRNA-seq data were simulated (Section 2.4), and a description of

performance metrics used to evaluate the dissimilarity measures (Section 2.5).
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2.1 Overview of dissimilarity measures

Assume we have two observations (or cells) xj and yj each observations from a set

of m features (genes), namely x = (x1, . . . , xm) and y = (y1, . . . , ym). We denote x̂j

as the scaled (normalized by the total counts for that cell) version of this entry, that

is x̂j = xj∑︁m

j=1 xj
such that ∑︁m

j=1 x̂j = 1. We define a dissimilarity dj(xj, yj) between

xj and yj for the jth feature, and D(x, y) as a generalized dissimilarity between

observations (cells) x and y. Typically, D(x, y) will take the form a transformed sum

over individual dj(xj, yj)

D(x, y) =
m∑︂

j=1
dj(xj, yj)

In the next two sections, we first describe a set of known dissimilarity measures

that we used (Section 2.1.1) and a novel dissimilarity measure based on the multino-

mial distribution (Section 2.1.2).

2.1.1 Known dissimilarity measures

The absolute error loss (or L1 norm – referred to here as L1) is:

L1 = ||x − y||1 =
∑︂

j

|xj − yj| (1)

The Euclidean distance (or Euclidean norm or L2 norm – referred to here as L2) is:

L2 = ||x − y||2 =
√︄∑︂

j

(xj − yj)2 (2)

The squared Euclidean distance (referred to here as SqL2) is:

SQL2 = (L2)2 = (||x − y||2)2 =
∑︂

j

(xj − yj)2 (3)

The Multinomial Kullback-Leibler Divergence (referred to here as MKL) is:
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MKL(x, y) =
∑︂

j

x̂j × log x̂j

ŷj

(4)

The (Total Variation Distance):

TVD = 1
2 ×

∑︂
j

(|x̂j − ŷj|) (5)

The Jensen-Shannon Divergence (referred to here as JSD) is:

JSD = 1
2 × (MKL(x, y) + MKL(y, x)) (6)

The Jensen-Shannon Divergence can be converted to a metric, namely the Jensen-

Shannon Metric (JSM), using a square-root transform:

JSM =
√

JSD (7)

The Hellinger distance (HEL) is given by:

HEL =

⌜⃓⃓⃓
⎷∑︂

j

(︄√︂
x̂j −

√︂
ŷj

)︄2

× 1
2 (8)

The Bhatacharrya Distance (BCD) is:

BCD = − log
√︂

x̂ · ŷ (9)

And the metric version of this distance, the Bhatacharrya Distance Metric (BCM) is:

BCM =
√

1 − BCD (10)

The Itakura-Saito Distance (ISD) is:
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ISD(X, Y) =
∑︂

j

x̂j

ŷy

− log
ŷj

ŷj

− 1 (11)

The Reverse Itakura-Saito Distance (RISD) simply swaps the role of X and Y . The

Symmetric Itakura-Saito Distance (SIS) is a weighted average of the ISD and RISD:

SIS = 1
2 ×

(︂
ISD(x, y) + RISD(x, y)

)︂
(12)

2.1.2 A novel dissimilarity measure based on the multinomial distribution

In this section, we extend the work of Witten (2011) [14] who derived a distance

metric based on the Poisson distribution for count-based sequencing data. The main

idea behind this distance metric is it is defined as a Likelihood Ratio Test (LRT)

comparing the null and alternative hypotheses that the parameters for the distribu-

tions associated with cell x = (x1, . . . , xm) and cell y = (y1, . . . , ym) are not different

(null hypothesis) or there is a difference (alternative). Witten (2011) [14] used the

Poisson distribution, but here we use the multinomial distribution, which has been

empirically shown to model the mean-sparsity relationship in scRNA-seq data better

than other count-based distributions (Poisson and Negative Binomial) [17].

Consider a single observation x = (x1, x2, . . . , xm), here represented as a vector of

counts where each dimension is an gene. Assuming that this cell represents a draw

from a multinomial distribution, we describe the probability of observing the counts

for each gene using a vector px (e.g., px,j represents the probability of observing

counts for gene j of cell x, xj). Assume the random variable X follows a multinomial

distribution. Then, the probability mass function (PMF) for X conditional on its

multinomial parameterization is

P (X|px) =
(∑︁j xj)!∏︁

j xj

∏︂
j

px,j (13)

8



The maximum likelihood estimate (MLE) for the true relative abundance px will be

given by p̂x,j = xj∑︁
j

xj
. If we then consider a second cell as an independent multinomial

observation Y , their joint PMF is given by

P (X, Y |px, py) = P (X|px)P (Y |py) ∝
∏︂
j

px,jpy,j (14)

Extending the work of Witten (2011) [14], we propose a hypothesis test which

acts as a measure of dissimilarity. We consider the null hypothesis H0 in which cells

X and Y have the same multinomial parameterization p̄xy. For each p̄j,xy, we simply

take the mean of the MLE for gene j in cells X and Y , p̄j,xy = p̂x,j+p̂y,j

2 . Under H0,

the likelihood for our observed data is then

P (X, Y |H0) = P (X, Y |p̄j,xy) ∝
∏︂
j

p̄
xj

j,xyp̄
yj

j,xy (15)

We then consider an alternate hypothesis H1 in which X and Y are parameterized

by their respective MLEs, p̂x and p̂y.

P (X, Y |H1) = P (X, Y |p̂x, p̂y) ∝
∏︂
j

p̂
xj

j,xp̂
yj

j,y (16)

Similar to the work of Witten (2011) [14], our dissimilarity is then defined as a

LRT for H0 and H1, explicitly

Λ = P (X, Y |H0)
P (X, Y |H1)

=
∏︂
j

p̂
xj

j,xp̂
yj

j,y

p̄
xj

j,xyp̄
yj

j,xy

(17)

The intuition of this test is that if the data are more likely under H0, (the cells

share a common parameterization), the denominator increases, and the value for Λ

approaches 0. In practice, the sparsity of scRNA-seq will result in values of p̂x,j

that are 0 for many values of j. Computationally, the quantity ∏︁j p̂x,j, then quickly

becomes smaller than the numerical tolerance ϵ of most machines. This may be
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remedied by taking the log LRT (LLR), which we here denote

LLR = log (Λ) =
∑︂

j

xj log (p̂j,x) + yj log (p̂j,y) − xj log (p̄j,xy) − yj log (p̄j,xy) (18)

Noting that the LLR serves to functionally weigh the estimates p by their respec-

tive observations, we also introduce an unweighted log-likelihood ratio test (UWLLR),

UWLLR =
∑︂

j

log (p̂j,x) + log (p̂j,y) − 2 log (p̄j,xy) (19)

Difference between our dissimilarity metric (Equation 18) compared to

the Poisson dissimilarity measured proposed in Witten (2011) [14] and

the multinomial dissimilarity in Berninger et al. [27]. Let ∥·∥1 represent

the L1 norm (vector sum) of a single cell/observation. Using our notation, the LLR

calculated using the MLE (Equation 21 in [14]) for these two is given by

(︂ xj

∥x∥1

)︂xj
(︂ yj

∥y∥1

)︂yj
/︂1

2
(︂ xj

∥x∥1
+ yj

∥y∥1

)︂xj+yj (20)

We can similarly re-write down our LLR (Eq:17) with MLE estimates

(︂ xj

∥x∥1

)︂xj
(︂ yj

∥y∥1

)︂yj

/︄(︂ xj + yj

∥x∥1 + ∥y∥1

)︂xj+yj (21)

With some manipulation it can be seen that the numerators for Equations 20-21 are

the same, and the denominators of both are equal when ∥x∥1 = ∥y∥1. In other words,

our estimator theoretically differs from the work of [14] and [27] except for cells of

the exact same library size. In addition to this difference regarding hypothesis test

formulation, [14] and [27] both utilize priors, which can be given in minicore [28].

In this work we calculate the LLR as per Equation 18, so any portion multiplying

xj = 0 or yj = 0 is simply not counted toward the distance sum, essentially giving

these observations zero weight. This allows us to calculate Equation 18 without a

10



prior or ‘pseudocount’, a notable difference from the work of [14] and [27].

2.1.3 Comparison of dissimilarity measures

In this section, we seek to group the dissimilarity measures using their mathematical

properties given in Table 1. We grouped them into two categories: (i) geometric and

(ii) probabilistic. The first category uses un-normalized counts x, while the latter

uses unit-normalized vectors x̂. Specifically, the distances with standard geometric

interpretation (L1, L2, SQL2) are calculated using un-normalized vectors, while the

assumption of a generative multinomial model implicitly normalized the observations

in the other distances ([R]ISD, SIS, [UW]LLR, JSD[M], BCD[M], HEL, TVD, MKL).

Some dissimilarities further standardize the observations using square-root transfor-

mations (HEL, BCD), or square-root the resulting summand (L2, JSM, BCM). Other

dissimilarities standardize with a log-transformation of the distances or their ratio

(MLK, [R]ISD) or their resulting summands (BCM). Several dissimilarities utilize

a dot product between the two vectors (BCD[M], [UW]LLR). Several dissimilarities

utilize a difference between vectors (L1, L2, SQL2, HEL, TVD). Further distances

take an absolute-value transformation (TVD, L1). Other distances square entries

(L2, SQL2) or their summands (SQL2).

We note that many of the aforementioned dissimilarities are defined using ratios

of observations. Due to the sparsity of scRNA-seq data, many of these ratios will

be undefined. One way to circumvent this is to calculate the given dissimilarity

using a multinomial distribution with a Gamma(β, β) prior [14]. This practice is

quite common in the analysis of scRNA-seq data, and is often referred to as adding

a ‘pseudocount’ [25]. In-depth exploration of prior parameter choice (pseudocount

value) for scRNA-seq is beyond the depth of this work, so we simply choose the

accepted value of adding a single count to each observation such that all ratios and

distances are well defined. The distances to which a pseudocount is required to obtain

11



entirely sensible dissimilarities were MKL, SID, RSID, and SIS. As JSD and JSM are

symmetrizations of MKL, the undefined indices for MKL(x, y) and MKL(y, x) can

be dropped from the sum to create a defined dissimilarity. We similarly address zero-

valued entries in LLR and UWLLR, specifically, we choose to drop indices for which

the ratios are undefined.

Full Short X
∥X∥

√
X |X| log(X) X · Y X − Y X2 X

Y

L1 Distance L1 - - + - - + - -
L2 Distance L2 - + - - - + + -
Squared L2 SQL2 - + - - - + + -

Kullback-Leibler Divergence MKL + - - + - - - +
Jensen-Shannon Divergence JSD + - - + - - - +

Jensen-Shannon Metric JSM + + - + - - - +
Total Variation Distance TVD + - + - - + - -

Hellinger Distance HEL + + - - - + + -
Bhattacharyya Distance BCD + + - + + - - -
Bhattacharyya Metric BCM + + - + + - - -
Likelihood Ratio Test LLR + - - + + + - -

Unweighted likelihood Ratio Test UWLLR + - - + + + - -
Itakura Saito Distance ISD + - - + - + - +

Reverse ISD RISD + - - + - + - +
Symmetric Itakura Saito Distance SIS + - - + - + - +

Table 1: Mathematical operations performed by each distance measure. The rows
represent the measures. Columns 1 and 2 represent the full and short name for each measure.
The columns 3 through 9 represent various transformations that exist in the measures. The
+ represents a transformation that exists in the measure, while the - represents that this
transformation does not exist in the measure.

2.2 Data

In practice, the underlying structure of the observations in scRNA-seq data will be

unknown. To this end, we assembled both simulated and real scRNA-seq datasets

order to asses performance of each distance metric in a variety of scenarios. In terms

of simulated data, we used a state-of-the-art simulation package Splatter [33]. In

terms of real scRNA-seq data, we leveraged single cells measured using the CITE-seq

protocol which simultaneously quantifies gene and protein expression to provide as
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an orthogonal and more biologically driven labeling of the cell types. These included

datasets generated by multiple scRNA-seq protocols with both discrete and contin-

uous similarity structures amongst the cells. Using simulated datasets, we further

investigated the potential effects of observation clustering in addition to changes in

technical variation such as average library size.

2.2.1 Single cells from scRNA-seq cell lines

1. Single cells and pseudo cells from the CellBench [34] scRNA-seq benchmarking

dataset

• All UMI-based data from five cell lines (HCC827, H1975, H2228, H838,

A549) in the CellBench [34] benchmarking dataset (except for cellmix5, a

population control) using the CEL-seq2 protocol (sc_celseq2, sc_celseq2_5cl_p1,

sc_celseq2_5cl_p2, sc_celseq2_5cl_p3, cellmix1, cellmix2, cellmix3, cellmix4,

RNAmix_celseq2 ), Drop-seq Dolomite protocol (sc_dropseq), the Sort-

seq protocol (RNAmix_sortseq), and 10x Chromium Genomics protocol

(sc_10x, sc_10x_5cl). For a description of the experimental design, GEO

accession numbers, protocol parameters, see the sc_mixology GitHub repo

and Additional file 4: Table S3.

2. Jurkat cell lines

• 10x_293t_jurkat (293T cells): N=3258 cells measured using UMIs and

the droplet-based protocol from 10x Genomics [5] (https://support.

10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat)

3. HEK293T cell lines

• 10x_293t_jurkat (jurkat cells): N=2885 cells measured using UMIs and

the droplet-based protocol from 10x Genomics [5] (https://support.

13

https://github.com/LuyiTian/sc_mixology/blob/master/cellbench.md#summary-of-all-datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t


10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t)

4. 50%Jurkat:50%HEK293T mixture experiment

• 10x_293t_jurkat (jurkat cells): N=3400 cells measured using UMIs and

the droplet-based protocol from 10x Genomics [5] (https://support.

10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat:

293t_50:50)

5. PBMC CITE-seq

• 10x_PBMC (Peripheral blood mononuclear cell): N=7,865 cells mea-

sured using UMIs and surface protein expression with a droplet-based

protocol from 10x Genomics [35], (https://support.10xgenomics.com/

single-cell-gene-expression/datasets/3.0.0/pbmc_10k_protein_v3:

50)

6. MALT CITE-seq

• 10x_MALT (mucosa-associated lymphoid tissue): N=8,412 cells mea-

sured using UMIs and surface protein expression with a droplet-based

protocol from 10x Genomics [35] (https://support.10xgenomics.com/

single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3)

2.2.2 Single cells from splatter

Count data intended to replicate patterns seen in scRNA-seq data was simulated us-

ing the Splatter package [33]. For each simulated dataset, G=20000 total features

(genes) were generated, and the distance calculation and downstream analyses were

conducted using only 1000 HVG’s. Four variables of data structure were explored:

n (number of cells), k (number of clusters), b (balance of cell types, i.e., the relative

proportions of cell type numbers within the dataset), and t (trajectory structure).
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Furthermore, for each study, three levels of ‘difficulty’ (i.e., clarity of signal or effect

sizes) were simulated to assess possible interactions amongst these factors. These

difficulty parameters included lS (library size), dP (probability of a gene to be differ-

entially expressed), lF (log-fold change of differentially expressed genes). Below we

describe the Splatter parameters used for the four simulation studies:

1. Increasing numbers of cells simulation study (‘n study’)

• n was varied between n = 1000, 5000, 10000 cells

• k was fixed at k = 5

• b was fixed at 20% for each cluster

• Easy setting: lS = 10.0, dP = 0.20, lF = 0.30

• Medium setting: lS = 9.5, dP = 0.10, lF = 0.20

• Hard setting: lS = 9.0, dP = 0.05, lF = 0.10

2. Increasing numbers of true clusters simulation study (‘k study’)

• n was fixed at n = 5000

• k was varied for increasing k = 2, 5, 10

• b was varied at (with increasing k) at

– b = {50%, 50%} (k = 2)

– b = {20%, 20%, 20%, 20%, 20%} (k = 5)

– b = {10%, 10%, 10%, 10%, 10%, 10%, 10%, 10%, 10%, 10%} (k = 10)

• Easy setting: lS = 10.0, dP = 0.20, lF = 0.30
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• Medium setting: lS = 9.5, dP = 0.10, lF = 0.20

• Hard setting: lS = 9.0, dP = 0.05, lF = 0.10

3. Changing the proportion of cell types (balanced vs imbalanced with

rare cell types) (‘b study’)

• n was fixed at n = 5000

• k was fixed for k = 5

• b was varied from

– balanced b = {20%, 20%, 20%, 20%, 20%}

– slightly unbalanced b = {15%, 35%, 25%, 15%, 10%}

– very unbalanced b = {05%, 55%, 25%, 05%, 10%}

• Easy setting: lS = 10.0, dP = 0.20, lF = 0.30

• Medium setting: lS = 9.5, dP = 0.10, lF = 0.20

• Hard setting: lS = 9.0, dP = 0.05, lF = 0.10

4. Simulating various types of scRNA-seq trajectories (‘t study’)

• n was fixed at n = 5000

• k was fixed for k = 5

• nsteps (intermediate trajectory cell type parameter) was fixed at s = 2000

• t (trajectories) varied from t = 1 (linear with even balance), t = 2 (branched

with even balance, and t = 3 (branched with uneven end-states). (See Figure

4C for examples of simulated lineage structures)
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• b was varied along with t. For t = 1 and t = 2: b = {20%, 20%, 20%, 20%, 20%}.

For t = 2: b = {20%, 20%, 20%, 35%, 05%}.

• Easy setting: lS = 10.0, dP = 0.20, lF = 1.00

• Medium setting: lS = 9.5, dP = 0.10, lF = 0.50

• Hard setting: lS = 9.0, dP = 0.05, lF = 0.25

2.3 Data preprocessing of scRNA-seq data

2.3.1 Quality Control for scRNA-seq data

For each dataset and quality control metric, 1% of cells which meet known thresh-

olding for ‘poor’ quality were removed. We used two accepted metrics of cellular

quality, percentage of reads which map to mitochondrial genes (indicative of lysed

cell [36, 37]), number of total RNA reads (library size, indicative of poor RNA-seq

experimental results) using scater [38]. Furthermore, for the CITE-seq datasets, the

total number of protein counts was used as a quality control metric. The smallest

and greatest half-percentiles were removed then removed from each dataset.

2.3.2 Normalization of scRNA-seq data

The data were potentially normalized twice in these analysis. First, to produce any

PCA plots, counts were log2-normalized using [38] using scater. All other normaliza-

tion was performed implicitly during distance matrix calculation using minicore [28].

See section 2.1.3 for an explanation of which distances implicitly normalize (ie., count,

square-root, or log transformations) observations during calculation of the distance

matrix.
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2.3.3 Cellular Identities for CITE-seq data

Cellular surface protein abundance was used to generate the truth labels for the

CITE-seq datasets. Identities for the 10x PBMC CITE-seq dataset were generated

according to established markers for immune PBMC cells. Specifically, hierarchical

clustering was induced on the log-normalized counts of CD8a (a T-cell coreceptor

highly expressed in cytotoxic t-cells, [39]), CD14 (highly expressed in monocytes

lineages [40]), CD16 (a marker for most cytotoxic cell types [41]), CD19 (a marker for

B-cell lineages [42]), CD3 (T-cell co-receptor shared across all T-cell lineages [43]),

and CD4 (a marker for helper T-cells [44]) as seen in Figure S1. The dendrogram

induced from clustering the cells on these protein markers was then cut at a height,

which gave k = 5 clusters to induce the labels seen in Figure S1.

Identities for the MALT CITE-seq dataset were similarly induced hierarchical clus-

tering (k = 2) with log-normalized CD3 (T-cell marker) and CD19 (B-Cell marker)

as can be seen in Figure S2.

2.4 Null simulation using scRNA-seq data

We consider the simplest case in a scRNA-seq experiment, that is, all sequenced cells

belong to a homogeneous population measured using the cell transcriptome profile in

a ‘null’ setting and ask whether the dissimilarity measures find evidence (or not) for

1 or more than one population of cells. The idea is that we assume that all dissim-

ilarity measures perform equally in terms of being able to recover one homogeneous

population of cells. However, scRNA-seq is affected by experimental artifacts (se-

quencing depth, normal variability of the cellular genome with a population), which

may cause a subset of dissimilarity measures to induce false structure (clustering)

among observations which are homogeneous in truth.

To study this ‘null’ scenario, we leverage two types of scRNA-seq data: (i) a pub-
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licly available 10x Genomics dataset comprised solely of 293T cells [5], and (ii) simu-

lated scRNA-seq data of variable difficulty using the Splatter [33] R/Bioconductor

package. In this ‘null’ simulation study, we defined the true number of clusters (k) to

be 1. To quantitatively evaluate whether the distance measures identify unwanted,

false signal (e.g. k ̸= 1), we utilize the Gap Statistic [45] described in Section 2.5.2.

Specifically, we apply multidimensional scaling (MDS) [16] with the distance mea-

sures, followed by inducing cluster labels using Partitioning Around Medoids (PAM)

[46]. Finally, we apply the Gap Statistic at k = 1 to 5, which we refer to Gap(k). In

Section 2.5.2, we describe more details on the Gap Statistic and how to interpret the

results using it as a performance metric.

2.5 Performance metrics to evaluate dissimilarity measures

2.5.1 Partitioning Around Medoids and Adjusted Rand Index

Here, we describe a performance metric that we use in our evaluation of dissimilarity

measures when there is a reliable ground-truth cluster label associated with each cell.

We do this in the context of a downstream analysis, namely unsupervised clustering

of scRNA-seq data. First, to assess the downstream behavior of each dissimilarity

measure, we utilize the k-medoids (also known as partitioning around medoids, PAM)

family of algorithms to induce cluster labels [46] using cluster [47]. The k-medoids

algorithms differ from the popular k-means algorithms in that they may utilize a

generalized dissimilarity matrix as input, whereas k-means is generally defined for L2

distance. Broadly speaking, this family of algorithms seeks to minimize the sum of

within-cluster distances (Wk), and operates as follows.

1. Greedily select k of the n observations as the centroid (medoid)

2. Associate each data point with its closest centroid
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3. Calculate the change in Wk associated with swapping every centroid and non-

centroid point

4. While Wk decreases, greedily select the swaps which give the greatest decrease

in Wk

As we have curated datasets with reliable ground-truth cluster labels (see Section

2.2), we can assess the performance cluster labels induced via k-medoids. A popular

method to non-parametrically compare the concordance of two sets of cluster labels

for the same data is the Adjusted Rand Index (ARI). Briefly, ARI utilizes the values

of a contingency table for two groupings or partitions (e.g. cluster labels) A =

{A1, A2, . . . , Ar} and B{B1, B2, . . . , Bs} to calculate their concordance. Let nij denote

an entry in the contingency table which is the number in common between Ai and

Bj or nij = |Ai ∩ Bj|. Further let ai and bj denote the marginal sums for clusters Ai

and Bj. Then ARI is defined as follows:

ARI =

∑︁
ij

(︂
nij

2

)︂
−
[︄∑︁
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)︂∑︁
j

(︂
bj

2

)︂]︄/︄(︂
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For each dissimilarity matrix, we induced PAM labels for the known value of k,

and generated the ARI as a function of these labels versus the truth labels.

2.5.2 Gap Statistic

Next, we describe the gap statistic as introduced by Tibshirani et al. (2001) [45],

which we use a performance metric in our evaluation of dissimilarity measures in the

setting where we have only a homogeneous population of cells (Section 3.1). Specifi-

cally, we denote the observed scRNA-seq count data as {xij} where i = (1, 2, . . . , n)

and j = (1, 2, . . . , m) consists of m features (genes) and n observations (cells). Let dii′

denote an arbitrary dissimilarity measurement between observations i and i′. In this
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notation, a commonly used dissimilarity measure is the squared Euclidean distance

Σj(xij − xi′j)2. Assume the data have been clustered in to k groups, {C1, C2, . . . , Ck}

with Cr denoting the indices for a cell which has been placed in cluster r and nr = |Cr|.

We then define the sum of within-cluster distances as follows

Dr =
∑︂

i,i′∈Cr

dii′ (23)

To appropriately weight this sum by the number of clusters r, we then define Wk:

Wk =
k∑︂

r=1

Dr

2nr

(24)

The Gap Statistic [45] was derived in order to quantify the evidence for a specific value

of k in the context of clustering. Specifically, whether a given set of cluster labels

has less within-cluster distance (Wk) than one would expect by chance of clustering

data with no intrinsic cluster structure. One way this idea may be formalized is by

inducing cluster labels followed by calculating Wk from simulated datasets of the same

size and feature space as the original dataset. The weighted within-cluster distance

for these background datasets is then denoted as W ∗
k . In practice, W ∗

k is calculated

using B simulated reference datasets and then compared to the true values of Wk.

Hence, the Gap Statistic is given by

Gap(k) = 1
B

∑︂
b

log (W ∗
kb) − log(Wk) (25)

In this way, Gap(k) represents a weighted difference between the sum of within-

cluster distances for our observed data (Wk) and uniform noise (W ∗
kb). In general,

large positive values of Gap(k) indicate that the observed cluster labels induce smaller

values of within-cluster distances (cluster tightness) than one would expect by chance

(hence better performance). As Gap(k) approaches 0 or becomes negative, this is

evidence that there is no little to no cluster structure to the data that k = 1. In
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practice, Gap(k) is calculated for for a range of k values, and tested whether the

highest Gap(k) is substantially greater than others values.

Furthermore, the Gap Statistic provides a useful way to quantify evidence for the

presence (or absence) of clusters. If Gap(k) is non-increasing as a function of k, this

indicates that no information is gained at any particular value of k, i.e., there is no

evidence for any cluster structure of the data. Moreover, negative values of Gap(k)

indicate that information is lost by clustering the data, in other words, this is explicit

evidence of no cluster structure within the data.

To this end, we induced PAM cluster labels for k = 1, . . . , 5 on utilized real

and simulated datasets with no cluster structure (i.e., a single cell type). We then

reported scaled and unscaled Gap(k). Briefly, for each distance and k = 1, . . . , 5, the

data x = Gap(k) were scaled function(x) = (x − min(x))/(max(x) − min(x)) such

that each x has a range of [0, 1] (Figure 1E, Figures S4-S5).

2.5.3 G+

Next, we describe the a performance metric that assesses the tightness of the use

of a ground-truth label clusters. One potential problem with assessing the tightness

of the clusters when using different dissimilarity measures is that each dissimilarity

measure has different ranges of values that it spans (some are bounded, others not

[28]). Therefore, when we compare the performance across dissimilarity measures, it

is difficult to interpret the results.

To address this, we use the G+ performance metric [48, 49]. For n observations, a

dissimilarity matrix will generally have dimension n×n, with the all diagonals having

value 0. As the matrix is symmetric, there are then Nt = n(n−1)
2 unique (total) dissim-

ilarity values. Given a cluster label for each observation, each of these dissimilarity

values can be classified as a within-cluster (Iw) or between cluster (IB). One can

assess the tightness of these cluster labels without explicitly biasing the performance
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by the numerical value of the dissimilarity measure by counting the number of times

a within-cluster distance is strictly larger than a between-cluster distance. Adopting

the notation of [49], we denote this quantity as s−, which can be explicitly written as

follows. Where r, s index over the rows and columns corresponding to within-cluster

distances (IW ) and similarly with u, v between-cluster distances (IB)

s− =
∑︂

(r,s)∈IB

∑︂
(u,v)∈IW

1duv>drs (26)

As there are Nt distinct dissimilarity values, this summand requires a total of
Nt(Nt−1)

2 comparisons. The G+ index is then defined as follows

G+ = s−

Nt(Nt − 1)/2 (27)

In the case that every distance pair is discordant (every within-cluster distance

is bigger than every between-cluster distance), then G+ = 1. In the opposite case,

G+ = 0. Perhaps un-intuitively, the lower a value of G+ indicates greater cluster

tightness. Thus, for the purpose of this work, we report the value 1−G+, which retains

the same bounded behavior, but indicates performance is best when 1 − G+ = 1.

In the case where there is no cluster structure in the data, the expected value

E[G+] = 1
4 . For intuition on this expected value, we expand on this mathemati-

cally. First, we simulate this case with Gaussian data with observations that have

been randomly assigned cluster labels in (Figure S3A, left column). Theoretically,

we assume that samples drawn from within-(dW ) and between-cluster (dB) distances

(Figure S3B, left column) have all come from the same distribution, which we pa-

rameterize with mean µ and variance σ2. More explicitly, E[dW ] = E[dB] = µ and

V ar[dW ] = V ar[dW ] = σ2. Using fundamental properties of the indicator function,

we first note

E[1dW >dB
] = P (dW > dB) (28)
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We simplify the resulting probability by defining X = dW − dB. Using definitions

expectation and variance, we also note that

E[X] = E[dW − dB] = E[dW ] − E[dB] = µ − µ = 0 (29)

Assuming that dW and dB are independently drawn, we also have that

V ar[X] = V ar[dW − dB] = V ar[dW ] + V ar[dB] − 2Cov(dW , dB) = 2σ2 (30)

Using these equalities, and invoking the Central Limit Theorem along with the sym-

metry of the Gaussian distribution, we find

P (dW > dB) = P (X > 0) = P

(︄
X − E[X]

V ar[X] >
E[X]

V ar[X]

)︄
= P

(︄
X

2σ2 > 0
)︄

= 1
2 (31)

Thus, we now have that

E[1duv>drs ] = P (duv > drs) = 1
2 (32)

Conditional on the number of observations, s− can then be evaluated as

s− =
∑︂

(r,s)∈IB

∑︂
(u,v)∈IW

1duv>drs = Nt(Nt − 1)
2 × 1

2 = Nt(Nt − 1)
4 (33)

By plugging this value for s− into the formula for G+, it can be seen that the in the

case of totally random data, we expect that E[G+] = 1
4 or 1 − E[G+] = 3

4 (Figure

S3C, left column).

2.5.4 Efficient Estimation of G+

Full calculation of G+ requires comparison of O(n2) distinct dissimilarity values to

each other. This necessitates O(n2) × O(n2) ≈ O(n4) comparisons, a computational

order which quickly becomes impractical as the number of observations increases. In
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practice, the information of how often within-cluster distances DW are strictly greater

than between-cluster distances DB is largely contained within the order statistics

of these sets. For example, if the biggest within-cluster distance is less than the

smallest between-cluster distance, or max(DW ) < min(DB), then the G+ = 0 for

this dissimilarity matrix and label set. We leverage this observation to efficiently

approximate G+ using o(n) comparisons. Specifically, we calculate p order statistics

for DW and DB. The estimator for G+ utilizes the same equation as described

above, simply using these order statistics in place of the full sets. We demonstrate

the efficiency of this estimator for simulated data and the L2 distance in Figure S3A-

D. In simulated examples, our estimator approaches the true value of G+ sampling

few as %0.25 of the order statistics (Figure S3C). In our work, we utilize sampling %1

of all dissimilarity values (p = %0.5 for DW and DB each) to ensure the asymptotic

behavior of this estimator. For simulated datasets, of 1000 observations, we observe

substantial improvement in computational performance using our estimator (≈ 10

minutes for the full calculation versus < 10 seconds for the estimated version using

%1 of all dissimilarity values).

2.5.5 kAccuracy

Many popular clustering methods for scRNA-seq data utilize graph-based clustering

algorithms, such as Louvain or Leiden clustering [50, 51]. Intrinsic to these algorithms

is the generation of an adjacency matrix (or graph). In short, an adjacency matrix is a

weighted or unweighted similarity matrix which describes the strength of connections

(edges) between observations (nodes). Many methods induce an adjacency matrices

from a kNN/sNN (k/shared nearest neighbors) matrix. In order to test potential

performance for methods generated from this series of algorithms, we calculated the

kNN accuracy (kAcc) for each cell. For given k (in this work, we fix k = 50), we define

kAcc as the portion of cell i’s k closest neighbors that reside in the same cluster as
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cell k. For given cluster labels cr

kAcc =
∑︁k

j=1 1ci=cj

k
(34)

2.5.6 Performance metrics for Trajectory analyses

Differences between cell types are often continuous. For example, a single progenitor

cell population may differentiate into several end-states given different environmen-

tal stimuli. In this case, the differentiated end-states of the cells may be accurately

described as discrete groups/clusters, but the difference between the progenitor and

differentiated cells will follow a continuous trajectory. One way in which this con-

tinuous trajectory manifests with cells intermediate to the differentiated (end) and

progenitor (beginning) state. In this case, clustering algorithms designed to clas-

sify the cells into discrete groups will inaccurately describe the cells in intermediate

differentiation states. To account for these types of continuous biological processes,

researchers have introduced ‘pseudotime’ analyses which seek to accurately project

the cells along a single ‘time’ dimension [10, 11]. More explicitly, these methods seek

to represent a continuous biological differentiation process by ordering cells along a

single ‘time’ trajectory. R researchers can then study genomic regulation of differen-

tiation processes associated with these lineages.

We sought to order test differential effects of dissimilarity measurements on the ac-

curacy of pseudotime analyses. To this end, we utilized the Slingshot [52] R/Bioconductor

package, as it allows the user to provide its own set of reduced dimensions. For each

dissimilarity matrix, we used MDS cmdscale [30] to project the observations into

low-dimensional (m = 50) space, and provided this representation to Slingshot for

trajectory analyses. As the true lineage structure of each test dataset was known, we

could provide the start and end cluster labels as further input the Slingshot, such

that the algorithm was primarily testing the capacity of each dissimilarity measure
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to capture the latent trajectory structure. Once Slingshot had detected lineages

within the dataset, the Slingshot package was then used to project each cell onto

this lineage, which provides a single numerical feature (i.e., its pseudotime value)

that represents the place of this cell in the given lineage. For each lineage, the rank

correlation for the calculated pseudotime and the truth label order of these cells was

calculated and reported as the ‘TrajCor’ value.

3 Results

Using the dissimilarity measured described above, we consider three benchmark eval-

uations. First, we performed a null analysis where we expect no structure in the data

and evaluate if the distance measures artificially induce any structure in a down-

stream analysis, namely unsupervised clustering (Section 3.1). Second, we use real

and synthetic scRNA-seq data with real biological structure to evaluate which dis-

tance measures most accurately capture the true biological variation: (i) we consider

scRNA-seq falling into discrete clusters and use unsupervised clustering (Section 3.2)

and we consider scRNA-seq along a continuum and use trajectory analysis (Section

3.3).

3.1 Null analysis

We consider the simplest case in a scRNA-seq experiment, that is, all sequenced cells

belong to a homogeneous population measured using the cell transcriptome profile.

In this scenario, we imagine the possibilities that experimental artifacts (sequencing

depth, normal variability of the cellular genome with a population) may induce false

structure among observations which are homogeneous in truth. To study this scenario,

we leverage a publicly available 10x Genomics dataset comprised solely of 293T cells

[5]. We further investigate these phenomena using simulated datasets of variable diffi-
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culty using the Splatter [33] R/Bioconductor package. In the previously mentioned

cases, the true number of clusters (k) is 1. To quantitatively evaluate whether the

distance measures identify unwanted, false signal (e.g. k ̸= 1), we utilize the Gap

Statistic [45] described in Section 2.5.2. Specifically, we supply the distance measures

and fixed k for inducing cluster labels using PAM [46]. Finally, we calculate the Gap

Statistic for k = 1, . . . , 5 which we refer to Gap(k). Large positive values of Gap(k)

indicate that the given cluster labels induce smaller values of within-cluster distances

than one would expect by chance (Equation 25). As Gap(k) approaches 0 or becomes

negative, this is evidence that there is no little to no cluster structure to the data that

k = 1. In practice, Gap(k) is calculated for a range of k values and tested whether

the highest Gap(k) is substantially greater than others.

Figure 1A provides a schematic demonstration of how plotting the cells in two-

dimensional space can hint at the structure of the data. In low dimensional space,

homogeneous data (k = 1) will often tightly cluster with few outliers (Figure 1A,

green). Data with distinct cell types (k > 2) will often separate in low dimen-

sional space (Figure 1A, red). For these three scenarios, scaled Gap Statistic for

k = 1, 2, 3, 4, 5 is schematically illustrated in Figure 1B. Figure 1C shows demon-

strates low-dimensional embeddings (MDS) of L2 and LLR distances matrices for the

293t only data (top row) and unimodal simulated splatter data (bottom row). In

Figure 1C, the data are colored by the library size of each cell, while in Figure 1D,

the data are coloured by induced PAM cluster labels with fixed k = 2. We find that

MDS1 is more closely related to library size using L2 distances as opposed to LLR

distance. In other words, this false separation is reduced in the LLR plots. In Figure

1E, we demonstrate scaled Gap Statistics for all of the tested distances (unscaled

values of these gap statistics are given in Figures S4-S5). In the 293T plot (top row

of Figure 1E), the plot with the least increase from k = 1 to k = 2 is indicative of

the dissimilarity which gives the least false signal for k > 2. In the simulated data
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Figure 1: Motivation for benchmark evaluation of dissimilarity measures using
droplet-based scRNA-seq data. (A) Schematic of two true low-dimensional represen-
tations of scRNA-seq data with one true cluster (green) and two true clusters (red). (B)
Schematic representation of scaled Gap(k) (k = 1, . . . , 5) for data with one cluster (green)
and more than one cluster (red). Gap statistic plots for which k = 1 should peak at
G(k) = 1, and decrease for greater k. Evidence for k > 1 would peak some value after 1.
(C) Demonstration of how library size effects can induce false cluster structure in real (top
row) and simulated (bottom row using the Splatter R/Bioconductor package) scRNA-seq
data. The color in the first two columns represents the observed library size (defined as the
total sum of counts across all relevant features) for each cell. (D) The color in the last two
columns represents the cluster labels induced using PAM. Distances which give stronger
evidence for the (true) case that k = 1 will have increase less (or ideally decrease) from
Gap(1) to Gap(≥ 2). (E) Scaled gap statistic plots for scRNA-seq (top row) and simulated
(bottom row) data. Library size effects induce false signal for the scRNA-seq data, thus,
distances with the least increase from k = 1 to k = 2 demonstrate the best performance.
In simulated data, true evidence of k = 1 can be seen for several dissimilarities.

(bottom row of Figure 1E), true evidence for k = 1 can be seen in distances for which

Gap(1) is greatest, and decreases for k > 2. For both of these plots, the LLR and

HEL distances perform quite well, while L1 and SQL2 perform poorly. The unscaled

and scaled version of the Gap statistic analyses are fully reported for the 293t-only

RNA-seq data (Figures S3, Table S1) and single-cluster Splatter data (Figures S4,

Table S2).
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3.2 Clustering analyses

3.2.1 Using nine real scRNA-seq datasets

For each distance, dataset, and variable gene amount, we calculated the performance

metrics described in the Methods (Section 2.5). Herein, we explore the results of

the performance metrics which relate to the detection of cluster structure within

the datasets. The first of these clustering metrics is 1-G+, the proportion of times

within-cluster distances are strictly less than between-cluster distances. In other

words, we expect standard clustering algorithms to attain better performance as 1-G+

approaches 1. The second of the clustering methods is to induce a computational set

of labels using a common clustering technique (PAM), and compare the concordance

of these labels with the known labels using ARI. Lastly, we assess potential of graph-

based clustering algorithms in using the portion of each cell’s k closest neighbors

which lie in the same cluster as the given cell (kAcc). For all nine of the real scRNA-
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Figure 2: Performance results for clustering analysis using real scRNA-seq data.
Paired scatter plots demonstrating the clustering performance metrics (ARI, kAccuracy,
and 1-G+) in all distances tested using 1000 HVGs for all distances. (A) ARI (x-axis)
versus kAcc (y-axis) (B) ARI (x-axis) versus 1-G+ (y-axis) (C) kAcc (x-axis) versus 1-G+
(y-axis).
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seq datasets and each distance calculated with the top 1000 highly variable genes,

we induced a set of cluster labels with PAM and calculated each performance metric

described above. The average results across all nine scRNA-seq datasets is reported

in as pairwise scatter plots (Figure 2).

For all three plots, the top performing dissimilarity measures are MKL, JSM/D,

HEL, and (R)ISD. Most notably, the MKL distance is in the top-right corner in

Figure 2A-C, indicating best performance for the given performance metric pair.

Non-normalized distances (L1, L2, and SQL2) consistently demonstrated the worst

performance in the 1-G+ metric. Greatest performance was achieved by normal-

ized metrics in which summands and/or entries were log-transformed (MKL, JSM/D,

BCM/D).

In contrast to averaging the results across all nine scRNA-seq datasets, we also

provide heatmaps (and numerical values) for all three performance metrics separated

out for each dataset and for considering sets of HVGs (all genes, top 5000 genes, top

1000 genes, or top 500 genes) using 1-G+ (Figure S6, Table S3), kAccuracy (Figure

S7, Table S4), and ARI (Figure S8, Table S5). Notably, the performance of 1-G+

improves as fewer HVGs were used to calculated the dissimilarity metric (Figure S6),

while kAccuracy and ARI are less affected by the choice of HVGs (Figures S7-S8).

3.2.2 Using simulated scRNA-seq data from Splatter

Using 1-G+. Using simulated scRNA-seq datasets, we found that 1-G+ is relatively

stable across changes in cell type distribution (Figure S9, Table S6). Specifically, the

reported distances are robust to simulated changes in cell type proportion (b), number

of clusters (k), and number of cells (n). In terms of top performers, MKL perfromed

best, with JSD/M, BCD/M, and TVD also performing well. Notably, all of these

distances except TVD utilize a log-transformation, which may have contributed to

the performance of these distance metrics in simulated data. Additonally, we see the
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un-normalized geomtric distances (L1,L2,SQL2) consistenly demonstrate the lowest

performance

Using ARI. We next consider the PAM-induced ARI of the distance methods for

simulated scRNA-seq datasets. Similar to the 1-G+ results, non-normalized dis-

tances (L1, L2, SQL2) tend to perform quite poorly for all datasets and variable gene

amounts, while normalized distances with log operations (JSM/D, MKL) perform
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Figure 3: Performance results with kAcc for clustering analysis using simulated
scRNA-seq data. kAcc dotplots for all distances as a function of (A) increasing number
of cells n from 1000, 5000 and 10,000 (B) increasing numbers of clusters k from 2, 5, and 10
(C) and proportion of cell type balance p (uniform, proportional, and unbalanced). Within
each simulation framework, there are three levels of difficulties considered (see Methods
Section 2.2 for details): easy, medium, and hard.
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quite well (Figure S10, Table S7). Notably, the MKL distance is the only metric

which demonstrates any level robustness HVG robustness in the MALT CITE-seq

dataset. Furthermore, distance metrics for which summands were root-normalized

(JSM, HEL) demonstrated the most robust ARI performance.

For the simulated scRNA-seq datasets, we note that ARI is largely consistent when

grouped by simulation difficulty level (Figure S10). Some distances demonstrate

marginally greater ARI performance for more balanced study designs or smaller k

(MKL, JSM/D, BCM/D). In general, however, most distances are largely robust to

changes in number of cells, number of clusters, and proportional balance of these

clusters.

Using kAccuracy. We lastly consider the kAccuracy (kAcc) of the dissimilarity

measures. Broadly, we found that MKL appears as a consistent top performer within

in each simulation study (Figure 3). Again, JSDM, BCD/M TVD and HEL also

performed well, and suggesting that kAcc is well represented with many distances.

Similar to previous results, kAcc tended to improve the distances matrices calculated

with fewer HVGs (Figure S11, Table S8).

Notably, the common distinction between normalized and non-normalized dis-

tances appears less distinct in the kAcc performance. Specifically, LLR and UWLLR,

both of which utilized unit-scaled entries, demonstrate worse kAcc than non-normalized

distances (L1, L2, SQL2) in most of the tested scRNA-seq datasets. L2 and SQL2

were both highly robust in this metric, perhaps an artifact of the log-normal gener-

ative process from which Splatter counts are simulated. We also note that MKL,

which performs quite well in other tests, demonstrated high-tier performance with

the single exception of all using all genes in the Cellbench 10x scRNA-seq 3-cluster

dataset (Figure S7).

For the simulated datasets, distances measures demonstrated increasing kAcc per-

formance as n increased from 1000 to 5000 and 10,000 (Figure S11). We hypothesize
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that this behavior is partially attributable to the increased number of cells within

each population, such that the odds of a given cell’s k closest neighbors are increased.

Notably, kAcc is distinctly and negatively affected by increasing number of cell pop-

ulations, particularly at more difficult simulation settings. Notably, for the hard

simulation setting, the kAcc for k = 10 are typically one third as accurate for those

of k = 2. We hypothesize that greater number of potential cell labels increases the

odds of misclassification, which would negatively impact performance.

3.3 Trajectory analyses

In order to assess the manner in which the distance matrices can be accurately re-

duced to a one-dimensional ordering, we use MDS and Slingshot to construct a

psuedotime ordering for each relevant trajectory dataset using all the distance mea-

sures. This analyses encompassed three RNA-seq datasets from the CellBench [34]

datasets (each with four amounts of varying sets of highly variable genes) and three

simulated trajectories of varying difficulty (see Section 2.2 for more details). In gen-

eral, normalized and log-transformed distances (JSD/M, BCD/M) demonstrated the

most robust performance in terms of real and simulated scRNA-seq datasets (Figures

4 and S12, Table S9). Similarly to the clustering data, BCD/M, HEL and TVD also

appeared as top performers acrross all datasets.

Notably, these analyses appeared much less sensitive to the selection of an HVG

subset (Figure S12). We hypothesize that this feature is due to the projection of

these dissimlarity matrices into a lower-dimensional space via MDS. Particularly,

low-dimensional embedding is a standard technique to reduce noise and improve per-

formance of scRNA-seq analytical methods [19]. Herein, we note that in some cases,

subsetting for too few HVGs results in decreased performance for some distances

(for example, MKL and UWLLR in the RNAmix 10x dataset). We note that in the

simulated datasets, perturbation of the trajectory structure from linear (Trajectory
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1) to branched (Trajectories 2 and 3) does not drastically affect the performance.

We conclude, as before, that unit-normalized and log-transformed distances tend to

universally provide the most stable performance for trajectory analyses, regardless of

gene selection or lineage structure.
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Figure 4: Performance results with TrajCor in trajectory analysis using real and
simulated scRNA-seq data. Dotplots for trajectory correlations (TrajCor) analysis (A)
in simulated scRNA-seq datasets and (B) real scRNA-seq data with three known-lineages.
(C) PCA plots demonstrating the simulated scRNA-seq lineage structures evaluated in (A).
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4 Discussion

In order to assess the overall performance of each distance across different datasets

and computational experiments, we ranked each distance’s mean behavior within per-

formance measures using data pooled into: (i) real scRNA-seq data (Figure 5A) and
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Worst Best

SQL2 L2 L1 ISD SIS UWLLR LLR RISD MKL JSM JSD BCM BCD TVD HEL

G
ap

S
ta

t
kA

cc
1−

G
+

A
R

I
Tr

aj
C

or

sc
R

N
A
−

se
q 

(h
vg

1k
)

SIS L1 SQL2 L2 ISD RISD LLR UWLLR BCM BCD TVD MKL HEL JSD JSM

G
ap

S
ta

t
kA

cc
1−

G
+

A
R

I
Tr

aj
C

or

S
pl

at
te

r 
(h

vg
1k

)

SQL2 L1 SIS LLR MKL JSD BCD HEL
L2 ISD UWLLR RISD JSM BCM TVD

R
N

A
S

IM

Rank

A.

B.

C.

Figure 5: Overall performance results across all analyses with each distance and
performance metric. (A) Ranked mean performance using real scRNA-seq data. (B)
Ranked mean performance for simulated scRNA-seq data. (C) Final ranked performance
(ordered by performance in the columns in (A)).
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(ii) simulated scRNA-seq data (Figure 5B). Specifically, for the scRNA-seq datasets,

mean performance for each distance was computed across each dataset and corre-

sponding set of highly variable genes. For the simulated datasets, mean performance

for each distance was computed by pooling mean performance for each difficulty and

simulation setting. Each distance then had a two mean performance value for each

performance metric, one calculated with simulated data and one with real scRNA-seq

data. Within each data category, these preference values were then ranked according

to their performance in the scRNA-seq data (Figure 5C).

Based on the results of our studies, distances which implicitly normalize data

garner improved performance. Specifically, L1, L2, and SQL2 all rank amongst the

bottom three (real scRNA-seq data) or bottom four (simulated scRNA-seq data) of all

tested distances (Figure 5C.) This corroborates many previous studies and standard

practice in analysis of RNA-seq in which normalizing data is known to reduce noise

in downstream analysis [19, 18, 13]. We note that HEL demonstrates most consistent

performance as the best in real scRNA-seq data, and third-best in simulated scRNA-

seq data. We also draw attention to JSD/M performing in the top 5 (Figure 5A) or

top 2 (Figure 5B) for each metric. Furthermore, both BCD/M are in the top 3 for real

scRNA-seq data, and top 6 for simulated scRNA-seq data. Notably, all of these except

HEL utilize a log transformation of the data. These findings indicate that implicit

normalization (i.e., lowering the overall scale of the data) serves to decrease noise

in downstream analyses. Moreover, the variety of mathematical operations amongst

the top-performing distances we cannot currently determine if using one operand for

(dis)similarity (dot-product in BCD/M versus ratio in JSD/M or difference in TVD)

will yield drastically improved results over any other.

Based on Figures 2-4 and related supplemental figures (Figures S6-S11), strong

evidence is presented that unit-normalizing data improves clustering performance.

While there are fallacies to be seen with comparing gap statistics due to the bound-
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edness of different distances, Figures S5-S6 show that these same distances do give

overall good performance, especially in the unscaled data (bottom row) of show that

these same distances tend to be very low, even negative, which does suggest no clus-

tering (Figure S6) [45]. We refer to previous publications using minicore [28], in

particular, JSD and BCM appear to strike a balance of performance in our work and

computational speed in [28]. We note that in this plot, JSM/D perform within the

top 2/3 of scRNA-seq, and the two best for simulated data. This, along with positive

ARI results for JSD in [28] could indicate that that this distance is the most robust.

Given the performance of JSD in [28] and the its performance in our studies, we feel

comfortable suggesting the minicore implementation of JSD for most scRNA-seq

analyses.
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Figure S1: Heatmap of protein abundance and associated labels generated from hierarchical
clustering in the 10x PBMC CITE-seq dtataset.
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Figure S2: Heatmap of protein abundance and associated labels generated from hierarchical
clustering in the 10x MALT CITE-seq dtataset.
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Figure S3: (A) PCA plots of simulated data with no structure (randomly assigned labels,
left column) and two-cluster structure (right column). (B) Histograms of witin-cluster
distances (blue) and between-cluster distances. (C) 1-G+ plots for the true G+ value
(dashed line) and estimated values (blue circles) as a function of varying number of order
statistics sampled, (D) Time for associated calculations in row (C) with log10-scaled y-axes
for visualization.
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Figure S4: Gap statistic for each distance as a function of k for the simulated one-cluster
dataset. Gap statistics scaled to (0,1) are given in the top row, and unscaled gap statistics
are given in the bottom row. Columns from left to right indicate increasing numbers of
HVGs used for distance calculation.
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Figure S5: Gap statistic for each distance as a function of k for the 293t only scRNA-seq
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are given in the bottom row. Columns from left to right indicate increasing numbers of
HVGs used for distance calculation.
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Figure S6: Heatmap of 1-G+ for all distances and scRNA-seq cluster datasets. Each test
scRNA-seq dataset is grouped in a set of four rows, with number of HVGs used increasing
from 500 to full.
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Figure S7: Heatmap of kAccuracy for all distances and scRNA-seq cluster datasets. Each
test scRNA-seq dataset is grouped in a set of four rows, with number of HVGs used in-
creasing from 500 to full.
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Figure S8: Heatmap of ARI for all distances and scRNA-seq cluster datasets. Each test
scRNA-seq dataset is grouped in a set of four rows, with number of HVGs used increasing
from 500 to full.
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Figure S9: Heatmap of 1-G+ for all distances and simulated cluster datasets. Each set
of three rows compares performance accross varying celltype balance (b, top nine rows),
number of clusters (k, middle nine rows), or nubmer of cells (n, bottom nine rows). Within
each set of nine rows are groups of three rows for easy, medium, and hard simulation settings.
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Figure S10: Heatmap of ARI for all distances and simulated cluster datasets. Each set
of three rows compares performance accross varying celltype balance (b, top nine rows),
number of clusters (k, middle nine rows), or nubmer of cells (n, bottom nine rows). Within
each set of nine rows are groups of three rows for easy, medium, and hard simulation settings.
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Figure S11: Heatmap of kAccuracy for all distances and simulated cluster datasets. Each
set of three rows compares performance accross varying celltype balance (b, top nine rows),
number of clusters (k, middle nine rows), or nubmer of cells (n, bottom nine rows). Within
each set of nine rows are groups of three rows for easy, medium, and hard simulation settings.
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Figure S12: Trajectory correlation results for all distances and scRNA-seq (top twelve rows)
and simulated (bottom nine rows) datasets. Each set of four rows within the scRNA-seq
datasets represents varying amounts of HVGs for the same trajectory dataset. Each set of
three rows with the simulated datasets represents varying levels of simulation difficulty.
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Table S1: Corresponding scRNA-seq Gap statistic data for Figure S4

L1
L2
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JSM
JSD

M
K

L
H

EL
BC

M
BC

D
T

V
D

LLR
U

W
LLR

ISD
R

ISD
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hvg500_
k=

1
1.06

1.07
1.87

0.24
0.46

0.92
0.21

0.33
0.33

0.33
1.61

0.54
1.09

1.09
0.73
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k=
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1.24

1.29
2.40
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0.48

0.97
0.21

0.35
0.35

0.35
1.62

0.56
1.08

1.09
0.78

hvg500_
k=

3
1.31

1.39
2.65

0.25
0.49

0.97
0.22

0.36
0.36

0.36
1.64

0.57
1.11

1.14
0.78

hvg500_
k=

4
1.35

1.44
2.76

0.26
0.50

0.97
0.22

0.36
0.36

0.36
1.63

0.57
1.12

1.15
0.80

hvg500_
k=

5
1.36

1.45
2.81

0.26
0.50

0.99
0.22

0.36
0.36

0.36
1.63

0.57
1.13

1.15
0.80

hvg1k_
k=

1
1.04

1.05
1.82

0.18
0.35

0.88
0.14

0.29
0.29

0.29
1.49

0.43
1.02

1.03
0.68

hvg1k_
k=

2
1.21

1.29
2.41

0.19
0.37

0.92
0.15

0.30
0.30

0.30
1.50

0.44
1.08

1.07
0.76

hvg1k_
k=

3
1.28

1.40
2.68

0.19
0.37

0.93
0.15

0.31
0.31

0.31
1.50

0.45
1.08

1.09
0.80

hvg1k_
k=

4
1.31

1.45
2.79

0.20
0.38

0.94
0.16

0.32
0.32

0.32
1.51

0.45
1.09

1.11
0.80

hvg1k_
k=

5
1.33

1.47
2.84

0.20
0.38

0.95
0.16

0.32
0.32

0.32
1.51

0.45
1.09

1.10
0.80

hvg5k_
k=

1
1.19

1.04
1.80

0.08
0.15

0.85
0.04

0.18
0.18

0.18
1.47

0.21
1.12

1.13
0.77

hvg5k_
k=

2
1.34

1.29
2.40

0.08
0.16

0.95
0.05

0.19
0.19

0.19
1.47

0.22
1.27

1.27
1.02

hvg5k_
k=

3
1.39

1.39
2.68

0.09
0.16

0.99
0.05

0.20
0.20

0.20
1.47

0.22
1.31

1.31
1.11

hvg5k_
k=

4
1.42

1.45
2.81

0.09
0.16

1.00
0.05

0.20
0.20

0.20
1.47

0.22
1.32

1.33
1.15

hvg5k_
k=

5
1.43

1.48
2.86

0.09
0.16

1.01
0.05

0.20
0.20

0.20
1.47

0.22
1.34

1.34
1.17

full_
k=

1
1.21

0.98
1.68

0.09
0.18

0.91
0.07

0.18
0.18

0.18
1.48

0.23
1.19

1.19
0.88

full_
k=

2
1.34

1.19
2.20

0.10
0.18

1.03
0.07

0.20
0.20

0.20
1.48

0.24
1.32

1.32
1.12

full_
k=

3
1.39

1.31
2.50

0.10
0.19

1.07
0.07

0.20
0.20

0.20
1.48

0.24
1.36

1.36
1.20

full_
k=

4
1.42

1.38
2.66

0.10
0.19

1.09
0.07

0.20
0.20

0.20
1.48

0.24
1.37

1.37
1.24

full_
k=

5
1.43

1.42
2.71

0.10
0.19

1.10
0.07

0.20
0.20

0.20
1.48

0.24
1.38

1.38
1.26
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Table S2: Corresponding simulated Gap statistic data for Figure S5
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hvg500_
k=

1
0.84

0.70
1.38

-0.06
-0.12

0.24
-0.08

-0.07
-0.07

-0.07
0.87

-0.10
0.71

0.71
0.47

hvg500_
k=

2
0.87

0.73
1.44

-0.06
-0.12

0.24
-0.08

-0.07
-0.07

-0.07
0.87

-0.10
0.71

0.70
0.47

hvg500_
k=

3
0.87

0.73
1.45

-0.06
-0.12

0.24
-0.08

-0.07
-0.07

-0.07
0.87

-0.10
0.71

0.71
0.47

hvg500_
k=

4
0.87

0.73
1.45

-0.06
-0.12

0.24
-0.08

-0.07
-0.07

-0.07
0.87

-0.10
0.71

0.71
0.47

hvg500_
k=

5
0.88

0.73
1.46

-0.06
-0.12

0.24
-0.08

-0.07
-0.07

-0.07
0.87

-0.10
0.71

0.71
0.47

hvg1k_
k=

1
0.95

0.73
1.44

-0.12
-0.24

0.22
-0.15

-0.12
-0.12

-0.12
0.90

-0.22
0.76

0.75
0.53

hvg1k_
k=

2
0.98

0.76
1.50

-0.12
-0.24

0.22
-0.15

-0.12
-0.12

-0.12
0.90

-0.22
0.76

0.75
0.54

hvg1k_
k=

3
0.98

0.76
1.51

-0.12
-0.24

0.22
-0.15

-0.12
-0.12

-0.12
0.90

-0.22
0.76

0.76
0.54

hvg1k_
k=

4
0.99

0.76
1.51

-0.12
-0.24

0.22
-0.15

-0.12
-0.12

-0.12
0.90

-0.22
0.76

0.76
0.54

hvg1k_
k=

5
0.99

0.77
1.52

-0.12
-0.24

0.22
-0.15

-0.12
-0.12

-0.12
0.90

-0.22
0.76

0.76
0.55

hvg5k_
k=

1
1.33

0.82
1.62

-0.25
-0.49

0.30
-0.29

-0.25
-0.25

-0.25
1.14

-0.48
1.08

1.08
0.91

hvg5k_
k=

2
1.35

0.85
1.68

-0.25
-0.49

0.30
-0.29

-0.25
-0.25

-0.25
1.14

-0.48
1.10

1.10
0.96

hvg5k_
k=

3
1.35

0.85
1.69

-0.25
-0.49

0.30
-0.29

-0.25
-0.25

-0.25
1.14

-0.48
1.10

1.10
0.96

hvg5k_
k=

4
1.35

0.86
1.70

-0.25
-0.49

0.31
-0.29

-0.25
-0.25

-0.25
1.14

-0.48
1.10

1.10
0.96

hvg5k_
k=

5
1.35

0.86
1.71

-0.25
-0.49

0.31
-0.29

-0.25
-0.25

-0.25
1.14

-0.48
1.10

1.10
0.97

full_
k=

1
1.44

0.85
1.68

0.69
1.37

1.59
0.65

1.62
1.62

1.62
1.25

1.39
1.24

1.24
1.10

full_
k=

2
1.46

0.88
1.74

0.69
1.37

1.61
0.65

1.62
1.62

1.62
1.25

1.39
1.25

1.25
1.14

full_
k=

3
1.47

0.89
1.76

0.69
1.37

1.61
0.65

1.62
1.62

1.62
1.25

1.39
1.26

1.26
1.15

full_
k=

4
1.47

0.89
1.76

0.69
1.37

1.61
0.65

1.62
1.62

1.62
1.25

1.39
1.26

1.26
1.16

full_
k=

5
1.47

0.89
1.77

0.69
1.37

1.61
0.65

1.62
1.62

1.62
1.25

1.39
1.26

1.26
1.16
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Table S3: Corresponding scRNA-seq 1-G+ data for Figure S6
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L
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5cl_
hvg500
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0.84

0.85
0.88

0.89
0.89

0.90
0.93

0.92
0.92
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0.92

0.92
0.92
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5cl_
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0.84
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0.86
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0.88

0.89
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0.92
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0.92
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0.92

0.91
pbm
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5cl_
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0.86
0.86
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full

0.84
0.84

0.82
0.82
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0.87
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0.96
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0.91

0.91
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full

0.87
0.87

0.86
0.85

0.89
0.92

0.93
0.93

0.92
0.95

0.95
0.95

0.93
0.93

0.96
cellbenchD

S_
rnaseq_

3cl_
hvg500

0.80
0.80

0.84
0.95

0.95
0.96

0.94
0.94

0.95
0.95

0.95
0.95

0.95
0.95

0.96
cellbenchD

S_
rnaseq_

3cl_
hvg1k

0.80
0.80

0.83
0.94

0.94
0.96

0.94
0.93

0.94
0.94

0.94
0.94

0.94
0.94

0.96
cellbenchD

S_
rnaseq_

3cl_
hvg5k

0.80
0.80

0.81
0.84

0.87
0.91

0.91
0.88

0.89
0.91

0.91
0.91

0.90
0.90

0.95
cellbenchD

S_
rnaseq_

3cl_
full

0.79
0.79

0.79
0.80

0.83
0.85

0.86
0.84

0.84
0.86

0.86
0.86

0.85
0.85

0.91
cellbenchC

S2_
rnaseq_

3cl_
hvg500

0.82
0.82

0.83
0.94

0.94
0.93

0.91
0.92

0.93
0.92

0.92
0.92

0.93
0.93

0.94
cellbenchC

S2_
rnaseq_

3cl_
hvg1k

0.81
0.81

0.82
0.93

0.94
0.93

0.90
0.91

0.91
0.91

0.91
0.91

0.91
0.91

0.94
cellbenchC

S2_
rnaseq_

3cl_
hvg5k

0.81
0.81

0.81
0.85

0.88
0.88

0.87
0.87

0.86
0.88

0.88
0.88

0.87
0.87

0.93
cellbenchC

S2_
rnaseq_

3cl_
full

0.78
0.78

0.79
0.78

0.81
0.81

0.82
0.83

0.81
0.83

0.83
0.83

0.82
0.82

0.85
cellbenchC

S2_
rnaseq_

5cl_
hvg500

0.83
0.83

0.86
0.95

0.94
0.97

0.95
0.95

0.96
0.94

0.94
0.94

0.96
0.96

0.96
cellbenchC

S2_
rnaseq_

5cl_
hvg1k

0.83
0.83

0.86
0.94

0.93
0.96

0.95
0.94

0.95
0.94

0.94
0.94

0.95
0.95

0.96
cellbenchC

S2_
rnaseq_

5cl_
hvg5k

0.83
0.83

0.85
0.87

0.89
0.92

0.92
0.88

0.90
0.92

0.92
0.92

0.91
0.91

0.95
cellbenchC

S2_
rnaseq_

5cl_
full

0.81
0.81

0.84
0.84

0.86
0.89

0.89
0.85

0.86
0.88

0.88
0.88

0.87
0.87

0.92
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Table S4: Corresponding scRNA-seq kAccuracy data for Figure S7
U

W
LLR

LLR
L2

SQ
L2

L1
SIS

H
EL

ISD
M

K
L

JSM
JSD

R
ISD

BC
M

BC
D

T
V

D
pbm

c_
citeseq_

5cl_
hvg500

0.61
0.62

0.76
0.76

0.78
0.79

0.78
0.79

0.82
0.78

0.78
0.82

0.77
0.77

0.77
pbm

c_
citeseq_

5cl_
hvg1k

0.55
0.52

0.76
0.76

0.78
0.79

0.75
0.77

0.82
0.76

0.76
0.82

0.77
0.77

0.77
pbm

c_
citeseq_

5cl_
hvg5k

0.38
0.46

0.76
0.76

0.76
0.76

0.70
0.72

0.80
0.73

0.73
0.81

0.77
0.77

0.77
pbm

c_
citeseq_

5cl_
full

0.30
0.39

0.76
0.76

0.72
0.72

0.59
0.66

0.76
0.61

0.61
0.79

0.72
0.72

0.72
m

alt_
citeseq_

2cl_
hvg500

0.72
0.91

0.95
0.95

0.96
0.97

0.96
0.96

0.96
0.96

0.96
0.96

0.96
0.96

0.96
m

alt_
citeseq_

2cl_
hvg1k

0.68
0.85

0.95
0.95

0.96
0.97

0.95
0.96

0.96
0.95

0.95
0.96

0.95
0.95

0.95
m

alt_
citeseq_

2cl_
hvg5k

0.63
0.74

0.94
0.94

0.95
0.96

0.95
0.96

0.96
0.95

0.95
0.97

0.95
0.95

0.95
m

alt_
citeseq_

2cl_
full

0.59
0.62

0.93
0.93

0.94
0.95

0.89
0.94

0.95
0.91

0.91
0.96

0.93
0.93

0.93
jurkat293t_

rnaseq_
2cl_

hvg500
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

jurkat293t_
rnaseq_

2cl_
hvg1k

0.97
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
jurkat293t_

rnaseq_
2cl_

hvg5k
0.92

0.95
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

jurkat293t_
rnaseq_

2cl_
full

0.86
0.91

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
cellbench10x_

rnaseq_
3cl_

hvg500
1.00

1.00
0.99

0.99
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

cellbench10x_
rnaseq_

3cl_
hvg1k

1.00
1.00

0.99
0.99

0.99
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
cellbench10x_

rnaseq_
3cl_

hvg5k
0.97

0.96
0.99

0.99
0.99

0.98
0.96

0.99
0.83

0.96
0.96

0.98
0.95

0.95
0.95

cellbench10x_
rnaseq_

3cl_
full

0.93
0.93

0.98
0.98

0.99
0.96

0.94
0.97

0.47
0.94

0.94
0.98

0.93
0.93

0.93
cellbench10x_

rnaseq_
5cl_

hvg500
0.97

0.98
0.94

0.94
0.97

0.98
0.98

0.98
0.98

0.98
0.98

0.98
0.98

0.98
0.98

cellbench10x_
rnaseq_

5cl_
hvg1k

0.96
0.98

0.96
0.96

0.98
0.98

0.98
0.98

0.98
0.98

0.98
0.98

0.98
0.98

0.98
cellbench10x_

rnaseq_
5cl_

hvg5k
0.91

0.94
0.96

0.96
0.97

0.97
0.98

0.97
0.98

0.98
0.98

0.98
0.98

0.98
0.98

cellbench10x_
rnaseq_

5cl_
full

0.87
0.77

0.96
0.96

0.97
0.96

0.97
0.96

0.98
0.98

0.98
0.97

0.98
0.98

0.98
cellbenchD

S_
rnaseq_

3cl_
hvg500

0.93
0.92

0.74
0.74

0.90
0.96

0.96
0.97

0.96
0.96

0.96
0.94

0.96
0.96

0.96
cellbenchD

S_
rnaseq_

3cl_
hvg1k

0.91
0.92

0.74
0.74

0.90
0.95

0.96
0.97

0.96
0.96

0.96
0.92

0.96
0.96

0.96
cellbenchD

S_
rnaseq_

3cl_
hvg5k

0.80
0.86

0.73
0.73

0.85
0.86

0.93
0.92

0.96
0.94

0.94
0.89

0.95
0.95

0.95
cellbenchD

S_
rnaseq_

3cl_
full

0.71
0.75

0.65
0.65

0.79
0.78

0.87
0.85

0.92
0.90

0.90
0.85

0.93
0.93

0.93
cellbenchC

S2_
rnaseq_

3cl_
hvg500

0.90
0.86

0.76
0.76

0.81
0.93

0.97
0.96

0.97
0.97

0.97
0.91

0.96
0.96

0.96
cellbenchC

S2_
rnaseq_

3cl_
hvg1k

0.88
0.83

0.75
0.75

0.81
0.91

0.96
0.95

0.96
0.96

0.96
0.89

0.96
0.96

0.96
cellbenchC

S2_
rnaseq_

3cl_
hvg5k

0.80
0.67

0.74
0.74

0.79
0.85

0.93
0.87

0.93
0.94

0.94
0.84

0.94
0.94

0.94
cellbenchC

S2_
rnaseq_

3cl_
full

0.77
0.56

0.57
0.57

0.73
0.71

0.88
0.76

0.81
0.89

0.89
0.82

0.89
0.89

0.89
cellbenchC

S2_
rnaseq_

5cl_
hvg500

0.87
0.94

0.82
0.82

0.88
0.95

0.96
0.95

0.96
0.96

0.96
0.95

0.95
0.95

0.95
cellbenchC

S2_
rnaseq_

5cl_
hvg1k

0.80
0.92

0.82
0.82

0.88
0.95

0.95
0.94

0.96
0.95

0.95
0.94

0.95
0.95

0.95
cellbenchC

S2_
rnaseq_

5cl_
hvg5k

0.54
0.72

0.82
0.82

0.86
0.91

0.87
0.89

0.96
0.90

0.90
0.91

0.93
0.93

0.93
cellbenchC

S2_
rnaseq_

5cl_
full

0.53
0.59

0.71
0.71

0.81
0.86

0.82
0.83

0.93
0.86

0.86
0.88

0.90
0.90

0.90
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Table S5: Corresponding scRNA-seq ARI data for Figure S8
SQ

L2
L2

L1
SIS

U
W

LLR
ISD

LLR
R

ISD
BC

M
BC

D
T

V
D

M
K

L
JSD

JSM
H

EL
pbm

c_
citeseq_

5cl_
hvg500

0.00
0.31

0.30
0.32

0.50
0.43

0.34
0.43

0.47
0.47

0.47
0.44

0.45
0.45

0.46
pbm

c_
citeseq_

5cl_
hvg1k

0.00
0.33

0.30
0.29

0.50
0.34

0.27
0.48

0.48
0.48

0.48
0.49

0.45
0.45

0.46
pbm

c_
citeseq_

5cl_
hvg5k

0.00
0.32

0.30
0.17

0.35
0.30

0.31
0.34

0.45
0.45

0.45
0.38

0.45
0.44

0.44
pbm

c_
citeseq_

5cl_
full

0.00
0.36

0.30
0.16

0.17
0.33

0.45
0.33

0.32
0.32

0.32
0.30

0.42
0.42

0.41
m

alt_
citeseq_

2cl_
hvg500

0.00
0.00

-0.01
-0.02

0.04
0.18

0.09
0.65

0.06
0.06

0.06
0.79

0.81
0.81

0.76
m

alt_
citeseq_

2cl_
hvg1k

0.00
0.00

0.00
0.00

0.03
0.12

0.07
0.65

0.06
0.06

0.06
0.82

0.07
0.07

0.07
m

alt_
citeseq_

2cl_
hvg5k

0.00
0.00

0.00
0.00

0.00
-0.01

0.11
-0.01

0.06
0.06

0.06
0.81

0.07
0.07

0.07
m

alt_
citeseq_

2cl_
full

0.00
0.00

0.00
0.00

0.00
0.00

0.03
0.00

0.03
0.03

0.03
0.00

0.06
0.06

0.06
jurkat293t_

rnaseq_
2cl_

hvg500
0.26

0.54
0.68

0.95
0.98

0.95
0.98

0.96
0.98

0.98
0.98

0.98
0.99

0.99
0.99

jurkat293t_
rnaseq_

2cl_
hvg1k

0.23
0.46

0.55
0.88

0.96
0.80

0.96
0.98

0.98
0.98

0.98
0.96

0.99
0.99

0.99
jurkat293t_

rnaseq_
2cl_

hvg5k
0.23

0.35
0.41

0.23
0.76

0.67
0.89

0.71
0.98

0.98
0.98

0.89
0.99

0.99
0.99

jurkat293t_
rnaseq_

2cl_
full

0.14
0.29

0.23
0.10

0.41
0.30

0.84
0.16

0.98
0.98

0.98
0.72

0.98
0.98

0.98
cellbench10x_

rnaseq_
3cl_

hvg500
0.53

0.91
0.93

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

cellbench10x_
rnaseq_

3cl_
hvg1k

0.94
0.93

0.91
1.00

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
0.99

0.99
cellbench10x_

rnaseq_
3cl_

hvg5k
0.88

0.91
0.83

0.46
0.09

0.49
0.10

0.47
0.01

0.01
0.01

0.00
0.02

0.09
0.10

cellbench10x_
rnaseq_

3cl_
full

0.81
0.87

0.68
0.08

0.03
0.13

0.01
0.32

0.00
0.00

0.00
0.00

0.00
0.01

0.01
cellbench10x_

rnaseq_
5cl_

hvg500
0.29

0.37
0.48

0.69
0.87

0.94
0.95

0.94
0.96

0.96
0.96

0.96
0.96

0.96
0.96

cellbench10x_
rnaseq_

5cl_
hvg1k

0.38
0.43

0.49
0.64

0.91
0.64

0.95
0.94

0.96
0.96

0.96
0.96

0.96
0.96

0.96
cellbench10x_

rnaseq_
5cl_

hvg5k
0.39

0.43
0.47

0.37
0.60

0.50
0.94

0.58
0.96

0.96
0.96

0.95
0.96

0.96
0.96

cellbench10x_
rnaseq_

5cl_
full

0.34
0.40

0.38
0.32

0.63
0.34

0.76
0.66

0.56
0.56

0.56
0.00

0.58
0.87

0.86
cellbenchD

S_
rnaseq_

3cl_
hvg500

0.04
0.28

0.57
0.90

0.79
0.96

0.83
0.96

0.94
0.94

0.94
0.83

0.94
0.94

0.93
cellbenchD

S_
rnaseq_

3cl_
hvg1k

0.04
0.26

0.47
0.88

0.83
0.96

0.91
0.90

0.96
0.96

0.96
0.93

0.92
0.92

0.90
cellbenchD

S_
rnaseq_

3cl_
hvg5k

0.18
0.23

0.25
0.25

0.78
0.42

0.69
0.89

0.94
0.94

0.94
0.88

0.92
0.92

0.92
cellbenchD

S_
rnaseq_

3cl_
full

0.00
0.10

0.17
0.04

0.00
0.21

0.00
0.25

0.00
0.00

0.00
0.00

0.00
0.49

0.43
cellbenchC

S2_
rnaseq_

3cl_
hvg500

0.14
0.17

0.23
0.54

0.67
0.81

0.77
0.73

0.89
0.89

0.89
0.74

0.94
0.94

0.95
cellbenchC

S2_
rnaseq_

3cl_
hvg1k

0.00
0.15

0.26
0.40

0.49
0.66

0.76
0.56

0.95
0.95

0.95
0.64

0.95
0.95

0.95
cellbenchC

S2_
rnaseq_

3cl_
hvg5k

0.00
0.12

0.23
0.05

0.45
0.52

0.77
0.34

0.53
0.53

0.53
0.22

0.53
0.97

0.98
cellbenchC

S2_
rnaseq_

3cl_
full

0.00
0.01

0.08
0.00

0.00
0.01

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
cellbenchC

S2_
rnaseq_

5cl_
hvg500

0.07
0.12

0.28
0.87

0.53
0.88

0.41
0.62

0.69
0.69

0.69
0.90

0.90
0.81

0.91
cellbenchC

S2_
rnaseq_

5cl_
hvg1k

0.06
0.18

0.28
0.58

0.47
0.79

0.64
0.88

0.79
0.79

0.79
0.89

0.82
0.82

0.94
cellbenchC

S2_
rnaseq_

5cl_
hvg5k

0.11
0.14

0.30
0.45

0.66
0.35

0.47
0.84

0.69
0.69

0.69
0.92

0.75
0.75

0.77
cellbenchC

S2_
rnaseq_

5cl_
full

0.06
0.04

0.16
0.16

0.61
0.21

0.08
0.50

0.63
0.63

0.63
0.01

0.63
0.81

0.78
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Table S6: Corresponding simulated 1-G+ data for Figure S9
L1

L2
SQ

L2
SIS

H
EL

R
ISD

ISD
U

W
LLR

JSD
JSM

BC
M

BC
D

T
V

D
LLR

M
K

L
splatsim

_
n1_

d1
0.91

0.93
0.93

0.97
0.97

0.96
0.96

0.98
0.98

0.98
1.00

1.00
1.00

1.00
1.00

splatsim
_

n2_
d1

0.92
0.96

0.96
0.98

0.99
0.97

0.97
0.99

0.99
0.99

1.00
1.00

1.00
1.00

1.00
splatsim

_
n3_

d1
0.91

0.93
0.93

0.97
0.98

0.97
0.97

0.99
0.99

0.99
1.00

1.00
1.00

1.00
1.00

splatsim
_

n1_
d2

0.81
0.85

0.85
0.83

0.84
0.84

0.84
0.85

0.86
0.86

0.88
0.88

0.88
0.88

0.92
splatsim

_
n2_

d2
0.82

0.85
0.85

0.84
0.85

0.86
0.86

0.86
0.86

0.86
0.89

0.89
0.89

0.90
0.93

splatsim
_

n3_
d2

0.82
0.84

0.84
0.85

0.85
0.87

0.87
0.86

0.86
0.86

0.89
0.89

0.89
0.90

0.93
splatsim

_
n1_

d3
0.77

0.77
0.77

0.77
0.77

0.78
0.78

0.77
0.77

0.77
0.78

0.78
0.78

0.78
0.80

splatsim
_

n2_
d3

0.77
0.77

0.77
0.78

0.78
0.79

0.79
0.78

0.78
0.78

0.78
0.78

0.78
0.79

0.81
splatsim

_
n3_

d3
0.78

0.80
0.80

0.79
0.78

0.79
0.79

0.79
0.79

0.79
0.80

0.80
0.80

0.80
0.83

splatsim
_

k1_
d1

0.93
0.97
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Table S7: Corresponding simulated ARI data for Figure S10
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Table S8: Corresponding simulated kAccuracy data for Figure S11
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Table S9: Corresponding scRNA-seq and simulated TrajCor data for Figure S12
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