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Abstract 

This dissertation furthers our understanding of the nature of conceptual 

representations in the mind/brain, specifically with regard to the debate between grounded 

and abstractionist theories of cognition. Grounded cognition theories range from 

reductionist views that propose that concepts have only sensory/motor representations, to 

less reductive views that allow for amodal representations, although positing that these 

necessarily interact with modality-specific processes. Opposing abstractionist theories 

propose that conceptual processing is carried out with symbolic, amodal representations, 

interacting with sensory/motor processes only as context demands. 

This issue was examined in the domain of letter processing, where previous research 

has indicated that writing experience is more beneficial than non-motor experience for 

learning letters. The dissertation research includes a longitudinal training study with 

behavioral and neuroimaging analyses, designed to reveal the content of letter 

representations and how these are affected by different letter-learning Conditions: Typing, 

Visual, or Writing. The results address the following questions about the role of writing 

experience in letter learning: (1) Are the effects of writing experience due to motor learning 

per se, or to other variables confounded with the writing experience? (2) Does writing 

experience recruit only sensory/motor representations? (3) Which types of representations, 

motoric or otherwise, underlie the behavioral benefits of writing experience? 

I conclude that the evidence supports the view that cognition involves both 

groundedness and abstraction. Sensory/motor representations were found to be recruited 

for letter perception, and moreover were associated with behavioral performance on letter 
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processing tasks. This argues against a strong abstractionist claim that sensory/motor 

activity is epiphenomenal. However, symbolic, amodal letter identities (SLI) were also 

associated with behavioral performance, and were strongest in the Writing Condition. These 

results challenge grounded theories that reduce concepts to sensory/motor representations, 

and support the existence of conceptual representations that are truly amodal. 

On the basis of these findings, I propose that writing experience is particularly 

beneficial to learning letters because it strengthens connections between various modality-

specific letter representations, mediated by amodal SLI representations. I discuss the 

implications of these results for theories of cognition, educational practice and future 

directions for research. 
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Introduction 

This dissertation examines aspects of the nature of conceptual representations that are 

relevant to a fundamental debate in cognitive science regarding the role of sensory/motor 

representations in conceptual processing—the debate between grounded cognition and 

abstractionism. Specifically, the dissertation examines evidence arising from the role of 

learning experiences (writing, typing, or visual study) in letter acquisition. It does so by 

conducting a longitudinal training study including both behavioral and neural measures of 

letter learning. Previous research on this topic has suggested that writing experience is more 

beneficial for learning letters compared to other, non-motor learning experiences (Bhide, 

2018; James & Atwood, 2009; James & Engelhardt, 2012, 2012; Li & James, 2016; Longcamp 

et al., 2008; Longcamp, Zerbato-Poudou, & Velay, 2005; Longcamp, Boucard, Gilhodes, & 

Velay, 2006; Naka, 1998; Naka & Naoi, 1995; Zemlock, Vinci-Booher, & James, 2018), 

providing benefits to letter recognition, categorization, and retention. These findings have 

been argued to support theories of grounded cognition, which posit a necessary role for 

sensory/motor representations in conceptual processing (James, 2010, 2017; James & 

Gauthier, 2009; Loeffler, Raab, & Cañal-Bruland, 2016; Longcamp, Tanskanen, & Hari, 2006; 

Mangen & Balsvik, 2016). However, earlier work has not clearly established that the 

observed benefits are specifically due to motoric representations resulting from the writing 

experience, as would be predicted by grounded cognition. In order to address this 

outstanding issue, the work reported here goes beyond tasks of letter recognition and 

categorization to more deeply assess the impact of different learnings experience on letter 

processing. Additionally, it represents the first investigation of the consequences of writing 
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experience for the content of letter representations, both in terms of behavioral 

consequences, evaluated through letter perception tasks, and in terms of neural activity, 

evaluated using Representational Similarity Analysis (RSA, Kriegeskorte, Mur, & Bandettini, 

2008). 

The study design and analytic techniques allow for testing the following unresolved 

questions about the role of writing experience in letter learning: (1) Are the effects of writing 

experience due to motor learning per se, or to other variables confounded with the writing 

experience? (2) Does writing experience recruit only sensory/motor representations? (3) 

Which types of representations, motoric or otherwise, underlie the behavioral benefits of 

writing experience? The answers to these questions have important implications for 

understanding the nature of conceptual representations in general, letters being simply an 

example of an object category that has conceptual representations. Moreover, letters are 

particularly relevant for this debate, as they are associated both with information in multiple 

modalities (e.g., visual, motor, auditory) and abstract information (e.g., their identities). 

There are also important practical implications of this research, as evidenced by the interest 

of both the popular press and education researchers in findings about the role of writing 

experience’ in letter learning (Berninger et al. , 2006; Deardorff, 2011; Konnikova, 2014). 

 

What Do We Know About Letters? 

It has been estimated that, reading an average of one hour per day, a middle-aged adult will 

have encountered roughly one billion letters (Pelli et al., 2006). This vast amount of exposure 

makes letter processing an ideal topic for studying how experience affects conceptual 
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representations. Letters are not only a worthy subject because of our extensive familiarity 

with them, they are also fairly complex objects, despite the relative simplicity of their 

geometry. Their complexity stems from the wealth of information we have about letters. For 

a single letter like [A] we know that: this letter can look like ‘A’ or like ‘a’; it may be written 

beginning with an upward stroke slanted to the right; its name is /ei/ but in English it can 

represent the sounds /æ/ or /ɑ/; it is the first letter of the alphabet; on the keyboard it is 

situated to the left of [S] on the center row; and as an English word it indicates the indefinite 

article. 

This simple object, which typically appears in the real world as just a few black lines, 

evokes knowledge and processes that involve representations in multiple sensory 

modalities (visual, auditory, motor), as well as representations of abstract properties (e.g., 

identity, case, etc.). We use letters for multiple tasks, such as reading, writing, and spelling, 

in ways that involve numerous cognitive processes: visual processing for letter detection and 

identification, phonological processing for spelling to dictation, motor planning for writing 

and typing, etc. It is well-established that better letter knowledge among young children 

(pre-K and kindergarten) is predictive of reading and writing skills even into middle school 

years (Bara & Bonneton-Botté, 2018; Berninger, Abbott, et al., 2006; Treiman & Kessler, 

2004; Treiman et al., 1998; Zemlock et al., 2018). Given the importance of learning letters, 

there has recently been concern that changes in technology and elementary school curricula 

may have a negative impact on reading and writing skills. Letters have traditionally been 

taught in tandem with handwriting, but time spent teaching this skill has been vastly reduced 

(Deardorff, 2011; Konnikova, 2014), and both children and adults spend more reading and 

writing through digital formats, rather than through pen and paper. Thus, understanding 
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how letter processing is affected by learning experience, and in particular writing experience 

compared to typing or non-motor experiences, has important educational implications. 

 

Grounded Versus Abstract Cognition: The Nature of Conceptual Representations 

In recent years, cognitive scientists have debated between theories that all fall under the 

umbrella of “grounded cognition” (Pecher & Zwaan, 2005) and opposing abstractionist 

theories. The impetus behind grounded cognition theories may originally have been Searle’s 

“Chinese Room” (Searle, 1980)1, which was concerned with the fundamental issue of how 

symbols get their meaning and relate to the real world outside of the mind/brain. It is 

considered to be a critique of the prevailing abstractionist theories of cognition at that time, 

which held that cognition was symbolic in nature. The problem posed by Searle’s thought 

experiment has come to be known as the “symbol grounding problem” (Harnard, 1990). The 

issue can be posed as the question: What is the content of conceptual representations? The 

term “concept” here is used to refer to the representations and processes used to relate 

mental states to categories outside of the mind (following Barsalou, Simmons, Barbey, & 

Wilson, 2003). Concepts can be concrete, meaning they have referents in the physical world 

and thus are associated with sensory or motor information. Members of concrete concepts 

                                                        

1 Searle’s “Chinese Room” (1980) contested the assumption of symbolic artificial intelligence that a machine with a 

symbolic system (i.e., that carries out computations by manipulating abstract symbols) able to pass the Turing test 

must therefore have a mind. Searle’s thought experiment consists of supposing that if he himself were given the 

computer’s translation program in the form of an English-language manual, he too would seem to understand 

Chinese—despite not speaking a word of Chinese. The argument is thus that the meaning of symbols, such as the 

Chinese characters, is not intrinsic: their shapes convey no meaning or only do so through reference to objects in the 

real world. Therefore, human cognition cannot be purely symbolic or else it would be devoid of meaning or 

understanding. See (Harnard, 1990) for further explanation. 
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are distinguished from non-members by sensory/motor information—for example, a lemon 

but not a lime is associated with the concept [yellow] by virtue of perceived color. Other 

concepts are abstract, which are “irreducible to sensory-motor properties not by virtue of 

being invisible or inaudible, but because they form categories whose members are 

heterogeneous in their sensory-motor qualities” (page 997, Leshinskaya & Caramazza, 

2016). Thus, for example, sensory/motor information is insufficient to explain why 

dandelions and poison ivy, but not daisies or grape vines, are associated with the concept 

[weed]. The main contention relates to the question of the content of conceptual 

representations. There are three main types of representations that have been proposed:  

(1) Amodal representations: Concepts may be represented by amodal symbols, meaning the 

representations contain no information about any specific modality, and relate only 

arbitrarily to the real world. Amodal representations therefore have no intrinsic meaning 

and are ungrounded, in the sense of the symbol grounding problem. Amodal representations 

are well-suited for abstract concepts, which by definition have no concrete physical 

referents. However, amodal representations are not limited to abstract concepts, as some 

have proposed a role for them even in concrete concepts such as color (see Leshinskaya & 

Caramazza, 2016). 

(2) Modal representations: Concepts may be represented in terms of the modalities through 

which humans receive sensory information (e.g., visual, auditory) and produce responses 

(e.g., motoric), hence the term “sensory-motor”2. In some grounded cognition views, the 

                                                        

2 Although the term “sensory-motor” with a hyphen is in common parlance, I find it to be somewhat misleading, as it 

can suggest representations that are simultaneously sensory and motoric (see: multimodal representations), and may 
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modal representations may be extended to include other ways through which we experience 

the world (e.g., social context, affective state, appetite) (see Barsalou, 2016). Modal 

representations are grounded by default; however, they are less obviously sufficient for 

representing abstract concepts that do not have concrete referents. 

(3) Multimodal/supramodal representations: Information from multiple modalities may be 

combined to create a multimodal representation. A multimodal representation, alternatively 

called “supramodal”, does not contain information about any single modality, but rather 

combines information from multiple modalities into a new representation. This 

representation may include only partial information about any individual underlying 

modality. Nonetheless, because at least some modality information can be retrieved from 

multimodal representations, they remain grounded. Various mechanisms have been 

proposed by which multimodal representations may come to represent abstract concepts 

(see Chapter 1). 

In contemporary cognitive psychology, grounded cognition theories seek to resolve 

the symbol grounding problem by proposing that all concepts depend on modal and/or 

multimodal representations. This is held to be true even if the concepts refer to abstract 

entities. The various hypotheses differ in the degree to which they allow for non-

sensory/motor representations to play a role in cognition. The “strongest” grounded 

cognition claims reduce all concepts to sensory/motor representations (Barsalou, 2016; 

                                                        

obfuscate distinctions between cortex that is primarily somatosensory and cortex that is primarily motor. Henceforth 

I use the term “sensory/motor” with a slash, to instead indicate representations that are sensory or motoric, but not 

necessarily both. 
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Barsalou et al., 2003; Leshinskaya & Caramazza, 2016). The “weakest” grounded cognition 

claims allow for the existence of amodal representations for certain concepts, but stipulate 

that conceptual processing still fundamentally relies upon modality-specific representations 

(Barsalou, 2016). Opposed to grounded cognition are abstractionist theories, which have in 

common the claim that all concepts have amodal symbolic representations3, and thus are 

deeply at odds with strong grounded cognition claims. 

One of the most well-known grounded cognition theories is “embodied cognition” 

(Varela, Thompson, & Rosch, 2000), which falls on the side of strong grounded cognition. 

Embodiment proposes that all concepts are related to the outside world in terms of the body: 

how objects and events are perceived via human sensory organs, and how the body 

physically interacts with and is situated in the external environment. In its most extreme 

form, embodied cognition holds that concepts reduce entirely to sensory/motor 

representations—“conceptual processing already is sensory processing” ( 60, Mahon & 

Caramazza, 2008). Although a strong embodiment theory solves the symbol grounding 

problem, it raises the problem of how modal representations alone can support abstract 

concepts (Barsalou, 2016; Leshinskaya & Caramazza, 2015, 2016; Wilson-Mendenhall, 

                                                        

3This is not a statement that abstractionist theory rejects sensory/motor representations. On the contrary, sensory/motor 

representations are certainly though to exist and to be important, with respect to concrete concepts (e.g., color). The 

argument is that the “human mind must have… something that allows thinking to proceed unencumbered by our 

representations of our body and the world” ( 421, Mahon, 2015). Thus, while there are certainly sensory/motor 

representations of concepts like color and shape, the claim is that there must also be separate conceptual processes to 

allow cognition about such concepts in the abstract. The representations used in these processes are, under 

abstractionist theory, amodal. This is opposed to grounded cognition views, which maintain that (a) any concept that 

does have concrete referents, like for color concepts, need not have an amodal representation, and therefore must not; 

and (b) even abstract concepts without obvious sensory/motor referents can still be instantiated through modality-

specific representations. Discussion of proposed mechanisms by which abstract concepts could do without amodal 

representations is presented in Chapter 1. 
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Simmons, Martin, & Barsalou, 2013). Therefore, many grounded cognition theories adopt a 

less extreme position, allowing for abstract concepts to be represent by wider range of 

modalities beyond the sensory/motor ones, by multimodal representations, and the 

existence of certain amodal representations (Barsalou, 2016; Binder, 2016; Martin, 2016; 

Zwaan, 2016). In particular, amodal representations are granted for some concepts that 

“represent information that is common across modalities” (page 1127, Barsalou, 2016), such 

as magnitude. 

Arguably, the clearest difference between grounded cognition and abstractionist 

theories relates to the nature of modal-amodal interactions. Under abstractionist accounts, 

like in Searle’s “Chinese Room”, cognitive processes can operate exclusively on amodal 

representations, without any grounded, extrinsic referential meaning. Alternatively, 

according to grounded accounts, cognitive processes that make use of amodal 

representations mandatorily interact with modal representations (Barsalou, 2016; 

Leshinskaya & Caramazza, 2016; Mahon, 2015; Mahon & Hickok, 2016). Further discussion 

of the different proposals under both types of accounts is presented in Chapter 1.  

Grounded cognition theories have been put forth to explain a number of cognitive 

psychology and neuroscience phenomena, including ones examined in this dissertation. One 

phenomenon widely reported in neuroimaging studies over the last two decades is that areas 

of the brain traditionally associated with sensory/motor processing activate during tasks 

that would not seem to require sensory/motor information (see e.g., Barsalou, 2016; Dove, 

2016; Goldinger et al., 2016; Mahon & Hickok, 2016). For example, in response to simply 

reading action verbs like “lick”, “pick”, and “kick” (for a review see Pulvermüller, 2005), 
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activity in motor cortex reflects somatotopic arrangement (i.e., regions associated with 

motor responses for the face, arms, and legs, respectively). Although not often used as a key 

example in the ongoing debate, one domain in which this is consistently found to be the case 

is letter processing. For example, individuals viewing single letters while undergoing 

functional MRI (fMRI) show activation in “sensory-motor” areas implicated in written 

production (James & Atwood, 2009; James & Engelhardt, 2012; James & Gauthier, 2006; 

Kersey & James, 2013; Longcamp, Anton, Roth, & Velay, 2003; Longcamp, Hlushchuk, & Hari, 

2011; Longcamp et al., 2006; Vinci-Booher & James, 2016; Vinci-Booher, James, & James, 

2016). The specific areas of activation during letter processing tasks, including during 

passive viewing, have included primary motor, premotor, and supplementary motor cortices 

which have been implicated in planning writing movements (Planton, Longcamp, Péran, 

Démonet, & Jucla, 2017; Roux et al., 2009; Wamain, Tallet, Zanone, & Longcamp, 2012). 

These results are often explained by appealing to grounded cognition, as these types 

of findings are consistent with the claim that conceptual processing requires the re-

instantiation of modality-specific representations (Bhide, 2018; Li & James, 2016; Longcamp 

et al., 2008, 2005; Longcamp et al., 2006; Naka, 1998; Naka & Naoi, 1995; Zemlock et al., 

2018). With respect to the findings that writing experience affects letter learning, the claim 

from grounded cognition is that letter perception necessarily recruits the same network that 

is activated for writing letters, and that “handwriting experience plays a crucial role in the 

formation of the brain network that underlies letter recognition” (page 6, James, 2017).  

Taken together, the findings that writing experience affects letter learning 

behaviorally, and the brain’s response during letter perception, have led to a popular account 
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that writing experience is beneficial, and perhaps even critical, for learning to read and write 

(Bhide, 2018; Deardorff, 2011; James, 2017; Konnikova, 2014). This account can be 

characterized as making three claims, deeper scrutiny of which raises questions regarding 

the soundness of the conclusion that it is writing per se that is beneficial for letter learning, 

and whether the benefits are due to representations grounded in sensory/motor 

information. Consider the first claim: (1) sensory/motor cortex is activated during letter 

perception. Such activity is not proof in itself that sensory/motor representations become 

active during letter perception—this is particularly true because “sensory-motor” cortex has 

been used to refer to a network of regions, not all of which are thought to be primary sensory 

or motor areas. This network has been termed the “visual-motor letter processing system” 

(James, 2017) and includes association areas such as the inferior frontal gyrus and superior 

temporal gyrus. This means that the location of neural activity alone is not sufficient to draw 

conclusions about what type of information is being represented—a point which has been 

made by critics of grounded cognition generally (Leshinskaya & Caramazza, 2016; Mahon, 

2015; Mahon & Caramazza, 2008; Mahon & Hickok, 2016). It has not been ruled out, for 

example, that writing experience supports the learning of letter representations other than 

just motoric ones or ones used for visual-motor integration. The activation observed during 

letter perception could also reflect amodal representations of abstract concepts like 

symbolic letter identity (Lupyan, Thompson-Schill, & Swingley, 2010; Rothlein & Rapp, 

2014; Wiley, Wilson, & Rapp, 2016) 

Turning to the second claim: (2) sensory/motor cortex activation during letter 

perception is unique to individuals who have experienced writing those specific letters by 

hand. The evidence is actually that sensory/motor cortex activation following writing 
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experience is different than what is observed following other learning experiences, not that 

there is no sensory/motor activity whatsoever in individuals who lack writing experience. It 

remains to be demonstrated whether and how the effects of writing experience on 

sensory/motor cortex relate to letter processing. Finally, the third claim: (3) behavioral 

performance on tasks of letter recognition and retention is superior after writing experience 

compared to non-motor experiences. This piece of evidence only supports grounded 

cognition given the assumption that it is some aspect(s) of the motor learning that cause the 

superior behavioral performance. However, it has not been demonstrated that there is any 

association between behavior and the representations learned through motor experience 

per se. Alternatively, the superior behavioral performance may be related to some non-

sensory/motor representation. Indeed, the effects of writing experience may even be seen 

to stem from variables related to the experimental conditions of writing experience, 

incidental to the writing processing itself. For example, writing conditions tend to require 

more time on task than visual study conditions, and the effects of “writing” experience could 

be due simply to relatively greater exposure to the letter stimuli. 

 

Explaining the Effects of Writing Experience on Letter Learning 

Given that multiple studies have reported writing experience is beneficial for learning letters 

compared to other experiences, it is clear that some mechanism(s) must explain this benefit. 

As was previously indicated, the apparent benefits of writing experience for letter 

recognition, categorization, and retention have typically been attributed to fundamental 

properties of human cognition being grounded or embodied. Because grounded cognition 
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posits that sensory/motor representations are necessarily recruited during conceptual 

processing, the assumption is then that motoric letter representations are recruited for letter 

processing tasks, including ones that do not require writing. The mechanism by which this 

would happen is perhaps most clearly articulated in Anderson’s “neural reuse” hypothesis 

(Anderson, 2010; Barsalou, 2016; Martin, 2016). According to this hypothesis, conceptual 

processing is carried out by re-instantiating some of the same neural pathways that are 

implicated during perception and action. For example, conceptual representations of colors 

require activation of some of the same neural circuitry for perceiving color. This means that 

letter processing depends on re-instantiating perceptual processes (e.g., visual processes 

during viewing letters) and motor processes (e.g., movement planning processes during 

writing letters). It follows naturally from the neural reuse/grounded cognition hypothesis 

that writing experience better supports letter learning, because without it motoric letter 

representations/motor substrates are not available for this “neural reuse”. However, this 

would seem to require the additional assumption that visual representations alone are 

somehow deficient, relative to the combination of both motoric and visual representations. 

The views of abstractionist theory, on the other hand, do not make any assumptions 

about the mechanisms that would cause writing experience to better support letter learning 

than non-motor experiences. Therefore, while abstractionism provides an alternative 

account to grounded cognition in terms of what the content of letter representations may be, 

it does not provide an obvious account of why those representations may differ because of 

writing experience. There is, however, an account that has been put forth to explain similar 

effects that have been found in a domain outside of letter processing. Specifically, both 

writing and drawing have been found to provide benefits in memorizing word lists for 
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subsequent tasks of recognition and recall (see e.g., Bodner & MacLeod, 2016; MacLeod & 

Bodner, 2017; Wammes, Meade, & Fernandes, 2016). These results are specific examples of 

what are known as the “production effect” (MacLeod et al., 2010). The production effect 

refers to the phenomenon of better retention of studied items that were produced during the 

time of study. For example, in memorizing a list of words, words produced orally will be 

better remembered than words that were not read aloud. The production effect can be 

considered to fall within the class of “generation effects” (Slamecka & Graf, 1978). The 

distinction between production and generation is that in generation, the studier decides 

what the to-be-remembered item is, whereas in production, the items are given but are 

subsequently (re)produced by the learner. For example, a production effect is obtained if the 

word “kitten” is presented visually and participants read the word aloud themselves. A 

generation effect is obtained if instead a cue for the word is provided (“What rhymes with 

mitten and means a young cat?”). It has been established that the effects of generation and 

production on learning are distinct, and in fact some evidence suggests that combining the 

effects leads to even greater benefits (for example, given the cue and also prompted to say 

the word “kitten” aloud; see Wammes, Meade, & Fernandes, 2016). That the production 

effect is not limited to oral production but has also been found to include benefits of both 

writing and drawing suggests a plausible link to the benefit of writing experience on learning 

letters.  

 The critical question of course is what mechanism underlies the production effect? 

The leading account is that of “distinctiveness processing” (Hunt, 2013; MacLeod & Bodner, 

2017). Briefly, according to the theory of distinctiveness processing, the production effect 

arises from the fact that not only do participants have memories of the items presented to 
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them, they also have memory traces of the events of studying, In other words, participants 

can attempt to recall not only what items they were presented with, but also what actions 

they performed while studying each of those items. If the participants produced distinct 

responses (made a unique response to each item), then those memories provide an 

additional heuristic during memory tests. Importantly, the distinctiveness processing 

account does not appeal to any tenets of grounded cognition, as it does not make 

assumptions regarding the content of conceptual representations—the memory of how an 

item was studied could include a representation of sensory/motor or amodal information. 

Instead, distinctiveness processing presents a potential mechanism underlying the effect of 

writing experience that does not make specific commitments regarding the content of the 

letter representations that are learned. As such, it provides a possible explanation for 

benefits that may be observed which would be compatible with an abstractionist position. 

More details on this theory are provided in Chapter 1. 

 

Outline of the Dissertation 

In summary, an active area of research in cognitive science, and the central point of 

contention in the grounded cognition-abstractionist debate, concerns the nature of 

conceptual representations in the mind/brain. According to grounded cognition, all concepts 

must have representations that tie them to percepts and ultimately to concrete referents 

outside of the mind. Without grounding in the modalities, sensory/motor or otherwise, 

symbolic processing does not allow for interaction with the physical world. According to 

abstractionist views, concepts are represented by amodal symbols—conceptual processing 
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is grounded by interacting with sensory/motor processes, but only to the extent required for 

performing a particular task. Researchers on both sides of this issue generally agree that 

sensory/motor and conceptual processes interact; for example, that sensory/motor activity 

can lead to activation of concepts and vice versa (Barsalou, 2016; Mahon, 2015). However, 

there is disagreement on whether activation of “sensory-motor” cortex, broadly construed, 

indicates that sensory/motor representations are recruited and play a causal role in 

behavior. Alternatively, the content of the concepts may be amodal. Thus, sensory/motor 

processing may be mandatory during conceptual processing (grounded cognition), or may 

be optional, allowing cognitive processes to operate over purely amodal representations in 

a “stand alone” manner from modal representations (abstractionism). As such, any 

sensory/motor activity during conceptual processing may be epiphenomenal. 

Letter processing presents a compelling domain in which to examine these issues, 

given certain empirical findings that are seemingly consistent with the predictions of 

grounded cognition: sensory/motor cortex activates during letter perception, this activation 

arises only as result of writing experience, and writing experience is associated with better 

behavioral performance on letter processing tasks compared to non-motor learning 

experiences. However, the mere fact that these findings are consistent with grounded 

cognition is insufficient to dismiss the abstractionist position. In this regard it is key to 

demonstrate that it is aspects of the motor learning per se, and not other differences between 

writing experience and other learning experiences, that form the basis of the observed 

pattern of results. 
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  The outline of the dissertation is as follows: Chapter 1 elaborates on the background 

briefly presented in this Introduction, to understand what is and is not currently known 

about the role of motor experience in perception generally, and in particular the role of 

writing experience for written language acquisition. This survey of the literature portrays a 

state of knowledge that is highly suggestive that “writing does matter,” but presents mixed 

findings on what tasks writing experience impacts and has little to say about the underlying 

cognitive mechanisms and representations. In that chapter, the grounded cognition and 

abstractionist views are clearly defined, with a focus on the aspects of the debate to which 

this dissertation is relevant. The first chapter concludes by delineating the outstanding 

issues—what gaps in knowledge are addressed in the research presented here, and most 

importantly, what hypotheses are tested. The remainder of the dissertation is organized 

around answering the three major questions that were first presented in this introduction: 

(1) Are the effects of writing experience due to motor learning per se, or to other variables 

confounded with the writing experience? (2) Does writing experience recruit only 

sensory/motor representations? (3) Which types of representations, motoric or otherwise, 

underlie the behavioral benefits of writing experience? 

Chapter 2 describes the methods, the experimental designs, and the analytical 

approaches for both the behavioral and the neuroimaging experiments. Briefly, adult 

participants with no previous knowledge of Arabic learned 20 letters of that alphabet, 

through one of three learning conditions: typing, visual study, or writing. Extensive 

behavioral testing was conducted at multiple time points before, during, and after the 

participants reached criteria on a letter recognition task. In addition, both pre-training and 

post-training neuroimaging sessions were administered to detect changes in the neural 



INTRODUCTION 

 17 

representations of the letters as a consequence of the different learning conditions. Chapter 

3 then presents the results of the behavioral experiments that elucidate the effects of the 

writing experience compared to the non-motor learning experiences on a range of letter 

processing tasks. The findings contribute to understanding which of the benefits previously 

reported in the literature are due to the motor experience per se. The behavioral evidence in 

Chapter 3 is also examined in light of the theory of distinctiveness processing, to present an 

account to explain why writing experience may be beneficial for learning letters, even if 

those benefits are not specifically associated with motoric letter representations. Chapter 4 

presents the results of behavioral and neuroimaging experiments that reveal the content of 

the different letter representations that were learned, and how these representations 

differed as a consequence of the learning conditions. This includes results from both pre-

training and post-training time points, for both a behavioral same/different letter judgment 

task, and a representational similarity analysis (RSA) of neuroimaging data from a task 

involving viewing Arabic letters during fMRI scanning. The RSA results reveal the neural 

consequences of learning experiences in terms of: the types of information represented, the 

neural substrates that support them, and how these depend on learning experience. 

Moreover, the representational strength is related to individual differences among the 

participants in terms of performance on letter processing tasks (e.g., their ability to 

recognize the letters, or to write words), furthering our understanding of how the neural 

representations relate to task performance and letter learning. 

Finally, Chapter 5 presents a general discussion, moving from answering the specific 

empirical questions to situating the findings in the larger context of the grounded cognition-

abstractionism debate. The findings of this dissertation provide evidence about the content 
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of letter representations in the mind/brain, and the relationships between those 

representations and performance on letter processing tasks. As will be shown, the results 

provide evidence of amodal representations that represent a challenge for many grounded 

cognition theories. However, the results also reveal a relationship between writing 

experience and learning this amodal representation, which suggests a critical role for 

sensory/motor representations in the learning of amodal representations. An account of why 

writing experience might matter is put forth that combines an abstractionist theory of letter 

representation (Symbolic Letter Identity; Rothlein & Rapp, 2017) with the theory of 

distinctiveness processing (Hunt, 2013). This account proposes that writing training 

facilitates learning symbolic letter identities (SLIs) because it requires mapping between 

different representations of the same letter, and because the act of writing leaves distinctive 

memory traces that support visual recognition and recall of the letter-shapes. This 

hypothesis, and other findings of the dissertation, generate a number of testable predictions 

about the nature of conceptual representations and how they are learned, which are 

considered as future directions for research.  
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Chapter 1 – Background 

The primary aims of this dissertation are to investigate in depth the role of writing 

experience on the learning and perception of letters. These aims are operationalized as three 

questions: (1) Are the effects of writing experience due to motor learning per se, or to other 

variables confounded with the writing experience? (2) Does writing experience recruit only 

sensory/motor representations? (3) Which types of representations, motoric or otherwise, 

underlie the behavioral benefits of writing experience? These questions are addressed 

through a longitudinal training study of adults learning letters of the Arabic alphabet through 

different learning experiences (i.e., performing different tasks during study sessions). A 

number of behavioral and neuroimaging assessments, conducted at multiple time points 

during the training study, are used in combination to provide detailed information about 

how learning experience, and in particular writing experience, affects behavioral 

performance and letter perception. This contributes to our understanding of the nature of 

conceptual representations in the mind/brain, and in particular the status of amodal 

representations. It therefore has bearing on the debate, between grounded cognition and 

abstractionist theories of mind, over whether amodal representations exist, and if so, how 

they interact with sensory/motor representations. 

This chapter begins by further explicating the concepts put forward in the 

Introduction. The first sections provide more details from the literature on the role of motor 

experience in learning in general (I. “Effects of Motor Experience on Perception”), and the 

role of writing experience in letter learning in particular (II. “Previous Findings on the Role 

of Learning Experience in Letter Acquisition”). This background information is discussed by 
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situating it within the context of the debate between grounded cognition and abstractionist 

theories, especially with respect to claims about the nature of conceptual representations. 

The third section discusses what is known about how letters are represented and processed 

(III. “The Multiple Representations of Letters”), both in behavioral and neural terms.  

 The second half of this chapter expands upon the outstanding issues that are 

addressed in this dissertation. It is important to first establish whether the reported effects 

of writing experience on letter perception can in fact be attributed to the motor experience 

per se, and not to some other variable(s) associated with the experimental conditions under 

which participants have performed handwriting tasks. Further arguments about the nature 

of letter representations and in particular motor representations would be rendered moot if 

it were found that in fact the critical contributions of writing experience to letter learning 

does not in fact arise from motor experience per se. As such, this section is relevant to the 

first primary question of the dissertation. Although these issues do not relate specifically to 

the questions about the nature of conceptual representations, they are important in their 

own right and have practical implication for understanding how written language is 

acquired. Therefore, the fourth section presents alternative possibilities that could explain 

why writing experience benefits letter learning (IV. “Writing Experience Entails More Than 

Motor Experience”). 

The fifth section discusses possible explanations for how writing experience could 

affect letter learning that would not be due to incidental variables. As such, it specifies gaps 

in the existing body of knowledge and explains how they are addressed in the experiments 

conducted here (“V. Addressing Outstanding Issues”). Without addressing these gaps, it 

would be impossible to answer the second and third primary questions. Finally,, the last 
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section makes explicit how the results of this dissertation inform the grounded cognition-

abstractionism debate, and in particular our understanding of how conceptual letter 

representations are learned (VI. “Informing an Account of Learning Letter 

Representations”). The overarching goal of this chapter is to clearly delineate the issues that 

are at stake, and to explain how this dissertation informs those issues (full details on the 

methods and analyses are presented in Chapter 2). 

 

I. Effects of Motor Experience on Perception  

Long-standing questions in cognitive psychology ask about the relationship between action 

and perception in human cognition (Beilock et al., 2008; Brooks & Goldin-Meadow, 2015; 

Congdon, Novack, & Goldin-Meadow, 2016; Goldin-Meadow, 1999; Kandel, Orliaguet, & Boë, 

2000; Knoblich & Flach, 2003; Knoblich & Prinz, 2001; Knoblich, Seigerschmidt, Flach, & 

Prinz, 2002; McNeill, 1992, 2008; Rauscher, Krauss, & Chen, 1996; Viviani, Baud-Bovy, & 

Redolfi, 1997; Viviani & Stucchi, 1992). One line of research investigates how knowledge of 

how an action is performed influences perception of events or of the static traces left as a 

consequence of those actions (see Knoblich & Flach, 2003 for a review). For example, Casile 

& Giese (2006) demonstrated that individuals are significantly better at visually recognizing 

gait patterns corresponding to novel motor actions if they themselves have learned how to 

perform those actions (Casile & Giese, 2006). In that experiment, participants were taught 

how to perform new actions while blindfolded, based on verbal instruction and haptic 

feedback alone, and were subsequently tested on their ability to discriminate between 

moving dot displays of biological motion. The results of this study are particularly important 

because they distinguished visual experience of actions from motor experience (i.e., the 
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participants had no experience with viewing the actions conducted by themselves or anyone 

else), thereby demonstrating a contribution of motoric knowledge to visual perception, at 

least in the domain of action perception . A similar finding shows an effect of the amount of 

real-life experience with performing specific actions, not on visual perception of the actions 

themselves, but on the brain’s response to reading words describing those actions. For 

example, those who had actually played hockey showed differential brain activation in 

somatosensory regions when reading sentences like “The hockey player finished the stride,” 

compared to those who had never played hockey (Beilock et al., 2008). In fact, reading action 

verbs more generally has been found to activate somatosensory cortex (such as leg-related 

words like “kick” activating somatosensory regions associated with the leg, Pulvermüller, 

2005) 

In the domain of letter processing, analogous evidence has been reported suggesting 

that knowledge of how letters are written affects letter perception. There are two types of 

results: behavioral ones, showing that writing knowledge affects letter recognition, and 

neural ones, showing that sensory/motor cortex activates during letter perception. In terms 

of behavioral results, Freyd and colleagues (Freyd, 1983; Freyd, 1987; Babcock & Freyd, 

1988) provided some of the earliest indications that dynamic visual information is extracted 

from the perception of single static letters. For example, they demonstrated that individuals 

were better able to recognize pseudo-letters if the static visual traces of how they were 

produced (i.e., varying line thickness and stray marks) were consistent with how they had 

been taught to produce them, compared to letter-shapes that indicated an alternative motor 

plan in terms of the direction and/or order of strokes (Babcock & Freyd, 1988). In another 

study (Knoblich & Prinz, 2001), participants copied letters, both familiar Roman letters and 
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unfamiliar letters from other scripts, without viewing the results of their writing, and were 

then shown kinematic displays of the letters drawn either by themselves or by others. They 

were successful in discriminating between the letters they had drawn themselves and those 

drawn by others based on dynamic visual information alone (i.e., moving dot patterns that 

left no static trace). In a similar study (Knoblich et al., 2002), participants were asked to judge 

whether a single stroke had been written in isolation or as part of a larger symbol. While 

participants were significantly above chance in correctly identifying strokes which they had 

generated themselves a week prior, they were at chance in identifying strokes generated by 

others. Recent neuropsychological evidence (Schubert, Reilhac, & McCloskey, 2018) has 

revealed that dynamic information (i.e., animated displays of letters, as opposed to static 

images of letters) improved recognition in a patient with a letter identification deficit, but 

only if that dynamic information was consistent with typical motor plans for writing the 

letters. Finally, results obtained by Kandel and colleagues (Chary et al., 2004; Kandel, 

Orliaguet, & Boë, 2000; Kandel, Orliaguet, & Viviani, 2000; Orliaguet, Kandel, & Boë, 1997) 

demonstrate that the hand movements in writing are anticipated and generate predictions 

regarding the word that is being written, which suggests that dynamic information may be 

useful not only for identifying single letters but also entire words.  

In terms of neuroimaging results, several studies have reported that even during 

passive viewing of single letters (Longcamp et al., 2003, 2011, 2014; Longcamp et al., 2006), 

sensory/motor cortices activate in a way analogous to the activation in primary 

somatosensory and motor areas during reading of action verbs (e.g., Pulvermüller, 2005). 

This pattern of activation, which includes brain regions associated with motor planning of 
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the hand used for writing (e.g., “Exner’s area”, Roux et al., 2009), has furthermore been seen 

to depend on previous experience with writing letters (see section II of this chapter).  

 Taken together, the behavioral and neural results all imply that knowledge typically 

learned only through handwriting experience is recruited during visual letter recognition 

processes. This conclusion is also supported by evidence that letter identification is 

disrupted under conditions of motor interference (James & Gauthier, 2009): individuals are 

less accurate in identifying letters when they are simultaneously drawing similar shapes or 

letters, compared to dissimilar ones (e.g., poorer identification of curvy letters like C and S 

when writing curvy shapes versus when writing straight line shapes like L and T). These 

types of results have been seized upon by proponents of grounded cognition as evidence in 

favor of their theory. However, it has not been ruled out in any of these cases that there is 

concomitant causal activation of amodal conceptual representations (see section III “The 

Multiple Representations of Letters”).  

 

II. Previous Findings on the Role of Learning Experience in Letter Acquisition 

Questions about the importance of handwriting for learning to read have been of increasing 

interest to researchers, teachers, and parents since the proliferation of computers and the 

decline of the teaching of penmanship in many school curricula. From the education 

perspective, teachers and parents alike have wondered whether this sea change in written 

language production is having an impact on the ability of students to successfully learn not 

only to write, but also to read. Furthermore, findings such as those of Berninger and 

colleagues (Berninger, Abbott, et al., 2006; Berninger, Winn, et al., 2006; Richards et al., 

2011) have been generally supportive of a role of motor experience in literacy acquisition, 
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reporting correlations between measures of language development (e.g. reading ability, 

vocabulary) and both handwriting and typing skills, and that, on balance, young children 

(grades 1-6) are more productive in written output when writing by hand than typing on a 

keyboard. Relatedly, there are results reporting that handwriting compared to typing of 

classroom notes leads to better retention of information (Mueller & Oppenheimer, 2014; 

Ouellette & Tims, 2014). However, this avenue of research is generally more focused on the 

ability to translate language and thought into meaningful sentences and paragraphs, and not 

on more basic cognitive processes such as those that that underlie the ability to spell single 

words or identify individual letters. This dissertation focuses on the latter aspects of written 

language.  

Another reason why letter recognition may be likely to be influenced by writing 

experience is because, as has often been noted, reading and writing are typically acquired in 

tandem. Moreover, handwriting or other motor experience with letters has long been a 

popular remedy for children showing difficulties learning to read (Bara & Bonneton-Botté, 

2018, 2018; Fernald & Keller, 1921; Orton, 1928). While these findings are suggestive of the 

possibility that memories of how letters are written aid visual letter recognition, more direct 

evidence comes from studies that have manipulated the conditions under which letters are 

learned.  

At least 19 articles have been published in which individuals were taught letters via 

different learning experiences, with the explicit aim of comparing the effectiveness of writing 

experiences to others (see Bhide, 2018, for a review of the most relevant behavioral 

findings). This has included both children and adult learners, and both between- and within-

participant designs. The learning experiences have included different types of motor activity: 
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tracing, copying, and writing (the distinction between the latter two being that copying is 

done with the stimulus present while writing is done from memory). Several studies have 

included a typing condition, invariably referring to this condition as a motor experience. 

However, as will be argued in subsequent chapters, typing is probably best thought of as a 

type of visual experience. This is particularly so in the studies with children, or adults 

learning a second language, because the typing activity is slow and laborious (a visual search, 

in fact), and not automatized touch-typing. Most studies also include a “purely” visual 

learning experience, wherein no overt responses at all are made during the study sessions. 

In order to determine whether motor experience has different effects on the outcomes of 

learning compared to non-motor experiences, researchers have collected both behavioral 

and neuroimaging measures (fMRI). The studies that have reported significant effects of 

learning experience on neural activation, have either failed to test behavior, or have done so, 

but reported null results.. In other words, no study has reported any associations between 

neural activity during letter processing and behavior, either in terms of individuals 

differences or groups (e.g., comparing those with writing experience to those without). As 

for the significant findings of behavioral differences between motor and non-motor learning 

experiences, overall the results have been very mixed. Generally, motor experience has been 

found to be superior to other learning experiences, but this is affected by the nature of the 

motor experience, the other conditions to which it is compared, and what skills have been 

assessed as outcome measures. The following paragraphs discuss these findings, both neural 

and behavioral, in greater detail. 

 

Cognitive Neuroscience Findings 
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A number of neuroimaging studies have investigated whether the patterns of neural activity 

generated during viewing or producing learned letter shapes are affected by the 

characteristics of an individual’s learning experience. Several studies have found that the 

pattern of brain activation while reading letters depends on the person’s previous 

experience producing them (James, 2010; James & Atwood, 2009; James & Engelhardt, 2012; 

Kersey & James, 2013; Vinci-Booher, James, & James., 2016). James and Engelhardt (2012) 

provide the clearest support for the notion that the typical adult reading circuit (the pattern 

of activation expected of an average adult when performing reading tasks) arises after 

learning to write letters by hand, as opposed to learning to type or trace them. This reading 

circuit includes both the visual word form area (Dehaene et al., 2002; McCandliss, Cohen, & 

Dehaene, 2003), an area of the left fusiform gyrus held to be a key region of the reading 

circuit, and an extended network of other regions believed to be recruited during reading, 

Specifically, in a within-participants manipulation, they taught children to produce letters by 

handwriting, typing, and tracing, and found that children demonstrated activation in the 

adult reading circuit regions during passive viewing of letters, but only if they had written 

those letters by hand. A similar result was found among adults trained on pseudoletters 

(James & Atwood, 2009) either by writing, typing, or visual study. During scanning, the 

participants were then shown both the pseudoletters they were trained on and untrained 

pseudoletters, and the results revealed stronger activation for learned letters relative to 

novel ones, in the left fusiform and dorsal precentral gyrus, but only for letters that had been 

practiced by handwriting.  

More recent work by James and colleagues (Vinci-Booher, James, & James, 2016) 

made use of functional connectivity analysis to posit a mechanism by which handwriting 
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might lead to effects on letter perception. Specifically, in a reanalysis of the data of James & 

Engelhardt (2012), only handwriting experience and not typing or tracing led to 

strengthened functional connections during passive viewing of letters between the left 

fusiform gyrus and left dorsal precentral and postcentral gyri. While the left fusiform is 

implicated in word reading and spelling, the left dorsal pre- and postcentral gyri are 

associated with primary motor and somatosensory functions—increased connectivity 

between these regions is consistent with the account put forward by those authors: that 

handwriting uniquely (compared to typing or tracing) requires integration of fine motor 

skills with proprioceptive and visual feedback. This is supported by the findings that 

inconsistent proprioceptive feedback interferes with letter identification (James & Gauthier, 

2009). Taken together, these results suggest that handwriting may be uniquely well-suited 

to strengthening the connections in the brain involved in motor/proprioceptive feedback 

that may contribute to visual processing. Finding that typing experience does not lead to the 

same behavioral benefits as handwriting experience is thus explained by the fact that typing 

skills do not require knowledge specific to the geometry of the letter shapes (as the mapping 

between letter-shapes and keyboard locations is arbitrary). Thus, typing experience would 

not foster strengthening connections between motor and visual processing areas in the same 

way as handwriting experience. 

A major caveat to all of the aforementioned neuroscience findings is that they have 

been observed in the absence of behavioral effects of motor experiences/training. That is, 

the results just discussed that show effects of the type of learning experience on neural 

activity looked for, but did not find, behavioral benefits of writing experience on letter 

processing tasks (James, 2010; James & Atwood, 2009; James & Engelhardt, 2012; Kersey & 
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James, 2013; Vinci-Booher, James, & James, 2016). The evidence that writing experience is 

more beneficial for letter learning than non-motor experiences comes from a separate set of 

studies focused on the behavioral and not the neural consequences of learning experience.  

 

Behavioral Findings 

While neuroimaging studies have reported neural consequences of different experiences in 

training with letters or pseudoletters, behavioral studies have not consistently found 

differences in learning outcomes between handwriting and typing training (Bhide, 2018; 

Guan, Liu, Chan, Ye, & Perfetti, 2011; James & Atwood, 2009; James & Engelhardt, 2012; 

Kersey & James, 2013; J. X. Li & James, 2016; Longcamp, Boucard, et al., 2006; Longcamp et 

al., 2005; Naka, 1998; Naka & Naoi, 1995; Vinci-Booher & James, 2016; Zemlock et al., 2018). 

A few researchers (Guan et al., 2011; Naka, 1998; Naka & Naoi, 1995) have found that 

learning new shapes only by visual memorization results in poorer learning compared to 

learning by handwriting. In addition, two studies have reported differences in learning 

outcomes when learning experiences involving handwriting vs. typing are compared 

(Longcamp, Boucard, et al., 2006; Longcamp et al., 2005). Specifically, Longcamp and 

colleagues (Longcamp et al., 2005) demonstrated that children (mean age 46 months) 

trained to either type or write unfamiliar Roman letters were significantly more accurate in 

identifying the letters (in arrays that included three non-letters) that they learned through 

writing compared to typing. It was also found that adults who were trained to either type or 

write Gujarati characters (Longcamp, Boucard, et al., 2006) were significantly better at 

discriminating previously learned shapes from left-right reversals, for those characters 

learned via writing versus typing. However, several other studies have reported no 
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significant differences in learning outcomes across learning experiences (e.g., typing or 

writing), including the studies of James and colleagues that reported differences in neural 

outcomes (James, 2010; James & Atwood, 2009; James & Engelhardt, 2012; Kersey & James, 

2013; S. Vinci-Booher et al., 2016). This is particularly problematic for arguments that 

handwriting instruction should be part of classroom education. Furthermore, it raises the 

possibility that the neural findings that have been reported are unrelated to any behavioral 

benefits that have been reported. However, alternatively, it could be argued that the neural 

measures were more sensitive than the behavioral measures (accuracy and RT), either 

because behavioral changes sometimes lag behind neural changes (the argument put forth 

in James, 2017), or because the behavioral tasks were inadequate for detecting the 

behavioral changes (e.g. ceiling or floor performance).  

Ultimately, five shortcomings can be identified in the literature investigating the 

impact of motor/non-motor experience on letter learning: (1) inadequate training of 

participants and assessment of learning, (2) low educational relevance ( low “ecological 

validity”) of assessments, (3) failure to account for confounds between the type learning 

experience and irrelevant demands of the training task, (4) insufficient assessment of long-

term retention, and (5) absence of investigation of the nature of the learned letter 

representations. Each of these shortcomings is explained further (Section V. “Addressing 

Outstanding Issues”), and are specifically addressed in this dissertation (see Chapter 2). The 

overarching goal is to better understand the nature of letter representations in the 

mind/brain, how they are affected by learning experience, and thus the extent to which the 

role of writing experience on letter learning supports theories of grounded cognition or 

abstractionism. It should be noted that none of the studies just discussed, either behavioral 
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or neural, investigated the nature of the underlying letter representations. Therefore, the 

next section reviews what is known about the contents of letter representations. 

 

 III. The Multiple Representations of Letters 

The study of letter perception dates back to the earliest days of experimental psychology 

(Cattell, 1886; Javal, 1881), due both to their critical role in reading and writing of alphabetic 

languages, and also because they present unique opportunities for understanding visual 

object perception in general. Traditionally, the focus of investigation has been specifically on 

understanding the ability of the visual system to recognize letters. More recently, 

researchers have investigated questions relate to other types of letter representations: 

phonological (letter names and the phonemes they represent), motoric (the shape, direction, 

and sequence of strokes for writing letters), and orthographic. This last category is 

particularly relevant to the grounded versus abstract cognition debate, because proposed 

orthographic representations are amodal in nature. These include representations of letter 

position, letter case, and symbolic letter identities (SLI)—all properties of letters that are 

either unobservable in specific modalities or cut across the modalities, as in the case of SLI 

(e.g., the letter name /ei/ and shapes “A” and “a” all correspond to the SLI [A]). Thus, any 

evidence that these concepts have amodal representations, with instantiations in the brain 

and/or underlie behavioral effects on letter processing tasks, is problematic for grounded 

cognition views that reject amodal representations. 

 Evidence for these different types of letter representations has come from both 

behavioral and neural experimentation. In this section, the findings providing understanding 
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of these different representations are summarized, and a cognitive architecture is presented 

for an existing abstractionist proposal of how the amodal representation of SLI mediates 

between the different modality-specific representations. 

 

The Contents of Letter Representations 

Perhaps the most obvious type of letter information is visual. The leading theory of visual 

letter processing currently is that letters are recognized via their component visual features 

(Changizi, Zhang, Ye, & Shimojo, 2006; Courrieu, Farioli, & Grainger, 2004; Gervais, Harvey, 

& Roberts, 1984; Grainger, Rey, & Dufau, 2008; Wiley et al., 2016), as opposed to template-

matching processes that attempt to recognize exemplars by comparing them to prototypical 

letter-shapes (for an overview see Palmer, 1999). Active research focuses on identifying the 

precise nature of those visual features is (Fiset et al., 2009, 2008; Wiley et al., 2016). Other 

lines of research have investigated the importance of not only letter-shapes but also letter 

names in learning to read and spell (Treiman, 2011; Treiman & Kessler, 2004; Treiman, 

Levin, & Kessler, 2007; Treiman et al., 1998), and several studies have included letter name 

representations as a factor potentially affecting visual letter perception (Courrieu et al., 

2004; Lupyan et al., 2010; S. T. Mueller & Weidemann, 2012; Rothlein & Rapp, 2014, 2017; 

Wiley et al., 2016). 

For visual and phonological letter representations, both empirical and theoretical 

measures have been used to quantify the similarity of letters along those dimensions. For 

example, the similarity of visual representations can be indexed by low-level similarity 

measured in terms of the proportion of overlapping pixels, by observed rates of visual 
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confusion errors (typically under limited viewing conditions such as brief exposure, or else 

by naïve observers like children), or by measuring the proportion of theoretically posited 

shared visual features (such as lines, curves, and intersections). The similarity of 

phonological representations has been indexed by both observed confusion error rates in 

auditory recognition of letter names or by measuring the proportion of shared phonological 

features of the letter names (e.g., voicing, place of articulation, etc.).  

Relatively less is known about the content of motoric representations of letters. One 

particular challenge with motoric representations is the difficulty of distinguishing motor 

features from visual features, given that there is necessarily a high correlation. For example, 

a vertical line in a letter is necessarily the result of a vertical stroke. However, some evidence 

indicates that the two dissociate, providing information about the content of motoric 

representations. For example, there is neuropsychological evidence from individuals with 

acquired dysgraphia that, subsequent to a stroke, letter substitution errors may be based on 

the similarity of letters’ strokes, and not their visuospatial characteristics (Rapp & 

Caramazza, 1997). Importantly, the proposed motor stroke features in that study took into 

account the direction of strokes—thus for example, both a downward and an upward stroke 

will produce a vertical line, allowing for a differentiation between a letter-shape such as T 

(downward stroke) and N (upward stroke) in terms of the motor representation, but not the 

visual representation. Wiley, Wilson, & Rapp (2016) provided behavioral evidence that 

visual same/different letter judgments are influenced by the similarity of letters’ motor 

representations, using a metric that not only included direction of strokes but also stroke 

sequence. Wiley et al. found that the motoric similarity of letters made unique contributions 
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to explaining both reaction time and accuracy in the visual same/different task, even 

controlling for visual similarity. 

While visual, phonological and motoric letter representations are entirely consistent 

with grounded cognition theories, there is at least one type of letter representation that is 

not related to a sensory modality but which nonetheless also has empirical support. This is 

the amodal representation of symbolic letter identity (SLI), which is a representation of the 

concept that allographs, (different letter-shapes that represent the same letter) have the 

same identity, despite potentially gross differences in their visuospatial and motoric 

representations; for example, the allographs “a”, “a”, and “A” have the same SLI of [A]. Recent 

work (Rothlein & Rapp, 2014) identified a region of the brain spanning the parahippocampal 

and mid-fusiform gyri as being selectively sensitive to SLI. Specifically, it was found that only 

this region of the brain has a similar neural response to different inputs (such as lowercase 

“a” and uppercase “A”) regardless of their visual or motoric similarity, and also was shown 

not to reflect phonological (letter name) similarity. The identification of this brain region 

substantiates claims of the existence of SLIs. This claim is based on representational 

similarity analysis (RSA), an approach to analyzing neuroimaging data that is especially well 

suited to addressing questions about representational formats. RSA is a technique for 

quantitatively comparing the similarity of neural representations of stimuli (within a given 

set of voxels) to a model of their similarity for a specific type of cognitive representation (e.g., 

visual similarity). In other words, RSA allows one to infer representational content of neural 

representations by evaluating the degree to which the similarity of neural responses 

matches the similarity along the representational dimension of interest . The evidence for 

SLI in Rothlein & Rapp (2014) thus comes from the finding that this part of ventral-occipital 
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temporal cortex shows the patterns of cross-voxel neural response similarity that are 

predicted if cross-case letter pairs are represented as identical (e.g. “A” and “a”), without 

showing sensitivity to similarity on modality-specific dimensions: phonological, 

visuospatial, or motor. 

This evidence is problematic for views that deny the existence of amodal 

representations, and in particular for embodied cognition, which assumes that all letter 

representations are sensory/motor representations: predicting, for example, that the letter-

shapes “a” and “A” should generate similar neural representations only to the extent that 

they share physical properties. The most obvious way for these two different letter-shapes 

to be treated identically under an embodied account is via their identical letter names. 

However, not only did the analysis supporting the neural evidence for SLI (Rothlein & Rapp, 

2014) take this possibility into consideration, there is also a wealth of behavioral evidence 

of letter identity effects that cannot be explained by letter names. These findings come 

primarily from cross-case matching tasks (e.g., match “a” with “A” and “b” with “B”) and the 

same/different judgment task (see Schubert, Gawthrop, & Kinoshita, 2018), and has been 

found for Roman letters, Arabic letters, and even an equivalent concept for Japanese kana 

and the behavioral evidence (e.g., Carrasco, Kinchla, & Figueroa, 1988; Norris & Kinoshita, 

2008; Rothlein & Rapp, 2017; Schubert, Gawthrop, & Kinoshita., 2018; Wiley, Wilson, & Rapp, 

2016). What these studies all show is that, during perceptual tasks, allographs are responded 

to more similarly than non-allographs, whereas letters with similar names are not responded 

to more similarly. For example, “b” and “B” will be responded to more similarly than “b” and 

“p”, because of their shared identity, whereas “b” and “p” are not responded to more similarly 

than “b” and “q”, despite the much more similar letter names. 
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Letter Representations in the Grounded/Abstract Cognition Debate 

The difference between abstractionist views, which posit the existence of amodal 

representations for concepts like SLI, and the embodied cognition view that denies any 

amodal representation, is clarified in Figure 1-1 (taken from Rothlein & Rapp, 2017). 

According to this proposal, SLI plays a key role in “mediat[ing] translation between modality-

specific formats” (Rothlein & Rapp 2014,  322). For example, reading the letter string XGZ as 

“ex gee zee” is achieved by accessing the SLI [X], [G], and [Z] from the visual representations 

and linking those SLIs to phonological letter name representations.. This is in contrast to an 

embodied cognition account, wherein such a task must be completed without appealing to 

an amodal representation of SLI—this is achieved by past association of information 

represented in different modalities, such as by transcoding the visual representations 

directly into the letter names. Embodied accounts are challenged to explain what the 

representational content of the putative SLI-sensitive brain region found in Rothlein & Rapp 

is, if not an amodal symbolic representation, as well as to show that apparent SLI effects on 

cross-case matching tasks and same/different judgments are in fact due to direct 

associations between modality-specific representations (such as letter names). 

Unlike strong embodied cognition views, however, grounded cognition is generally 

less restrictive regarding the types of representations that may exist, allowing that visually 

dissimilar allographs like “a” and “A” can have a common conceptual representation, to the 

degree that they have been experienced and interacted with as equivalent objects in the 

environment (“interactions among action-environment-perception”, James, 2017). There 
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are at least two proposed mechanisms for how abstract concepts like SLI can have 

representations that are not necessarily amodal. The first has been termed “distilled 

abstraction” (e.g., Jamrozik et al., 2016; Barsalou et al., 2016), which proposes that concrete 

features are stripped away until only abstract ones are left behind. This could be achieved 

by processes of metaphor. For example, the SLI concept is akin to the metaphor “A” = “a”. The 

abstract features that afford such metaphors are proposed to be “distilled” by stripping away 

concrete features. Thus, in order for “A” = “a” to be true, information about differences in the 

physical shapes of the two letters must be removed from their representations. Ultimately, 

the distillation processes leaves behind only information that is consistent with the abstract 

concept. Because this process not only begins with sensory/motor representations, but also 

allows for representations that still retain some modality-specific information, it is 

considered to be consistent with grounded cognition theory. 

A second, similar proposed mechanism for constructing abstract representations has 

been termed “multimodal compression” (e.g., Barsalou, 2016; Binder, 2016). In multimodal 

compression, information from multiple modalities increasingly converges, compressing 

details about different specific modalities together into representations that represent only 

partial information about any single modality. Multimodal compression is thought to be 

supported by “association areas” in the brain, which integrate information from 

sensory/motor areas in a hierarchical fashion in order to representation abstractions. Both 

the distilled abstraction process and this multimodal compression process could result in 

amodal symbols, given a sufficient amount of processing such that no modality-specific 

information remains retrievable (Binder, 2016)—in other words, in the limit, 

representations could become amodal. However, the representations arising from 
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multimodal compression are considered to be representational prototypes (Barsalou, 2016), 

and importantly, “prototypes are not amodal symbols arbitrarily linked to exemplars. 

Instead, the features of exemplars appear in the prototype that covers exemplars,” ( 1133, 

Barsalou, 2016). 

The discussion of these two mechanisms, distilled abstraction and multimodal 

compression, underscore a critical distinction between grounded and abstract cognition 

theories. It is not the case that all proponents of grounded cognition absolutely refute the 

possibility of amodal symbols. Some, but by no means all, grant that amodal symbols may be 

needed to represent information that truly cuts across multiple modalities, such as space or 

magnitude (see e.g., Barsalou, 2016; Braga, Wilson, Sharp, Wise, & Leech, 2013). However, 

grounded cognition theories by definition require that all concepts ultimately have some 

means of grounding them to the modalities. Mechanisms such as distilled abstraction and 

multimodal compression predict that fundamentally, even amodal features like magnitude 

depend on modality information, because they depend on processing streams that do 

represent modality-specific information. This stands in clear opposition to all abstractionist 

views, which have in common not only that amodal representations exist, but that they do 

not fundamentally rely on modal representations4.  

Many of the previously mentioned studies that provide evidence of an amodal SLI 

representation do also report effects arising from sensory/motor representations, and 

                                                        

4 It may be that abstractionist views would grant some reliance or contribution of modality-specific information during 

the learning of amodal representations, in particular ones corresponding to concrete concepts like color. The question 

of how amodal concepts are learned is returned to in the final discussion (Chapter 5). 



CHAPTER 1 - BACKGROUND 

 39 

certainly more information is needed to adjudicate between grounded cognition and 

abstractionist theories. This dissertation strengthens the evidence for both sensory/motor 

and amodal letter representations of letters in two ways. First, it provides evidence that 

amodal representations are not unique to the Roman alphabet, nor limited to case-specific 

allographs. While Arabic also has allographs, they have historically arisen for a different 

purpose, which is to represent the letter’s position within sub-words, and thus the 

orthotactics that determine their usage are different from those determining the use of 

lowercase or uppercase Roman letters. Second, because this study manipulates the learning 

experiences that individuals have, it allows for developing a theory of how letter 

representations, amodal or otherwise, are learned. For example, differences in motoric 

representations across learning experiences can be directly attributed to the writing 

experience (or the lack thereof). Moreover, thus far no study on the effects of motor 

experience on letter learning has included allograph stimuli, and thus the concept of SLI has 

not been testable in this context. This allows for a stronger test of the grounded cognition 

hypothesis that the benefits of writing experience for letter learning is due to motoric 

representations, and that activation in those associated areas reflects sensory/motor 

representations and not amodal, SLI representations.  
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Figure 1-1. From Rothlein & Rapp, 2017 (Figure 1,  1412). Symbolic letter identities serve 
as mediators between visual forms, letter names, word forms, motor codes, etc. 

 

IV. Writing Experience Entails More than Motor Experience  

While there is evidence that motoric letter representations affect behavior on perceptual 

tasks (see section III. “The Multiple Representations of Letters”), there is not yet any 

evidence that motoric representations themselves play any role in how well letters are 

learned. In that regard it is important (though not sufficient) to establish that at least some 

of the reported effects of writing experience are attributable to the motor experience per se, 

and not to some other variable(s) associated with the experimental conditions under which 

participants have performed handwriting tasks. This section highlights five possible sources 

of behavioral effects that arise only indirectly and circumstantially through the conditions 

under which writing experience is gained. Some of these have been previously discussed in 
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the letter learning research, while others have been posited to explain similar effects in 

domains other than letter learning, but are equally relevant in this context.  

Consideration of these five possible sources of behavioral effects may shed light on 

the mechanism, or mechanisms, underlying the role of motor experience in learning letters 

and in letter processing more generally. Only one of these has explicitly been discussed in 

relation to the role of motor experience and letter perception. The others derive from 

research on human learning and memory, including both fundamental properties of human 

memory and research on false memory (Schacter, Israel, & Racine, 1999). Some of these have 

been proposed to explain the mechanism(s) underlying the production and generation 

effects, some of which have been ruled out (see Bertsch et al., 2007; Bodner & MacLeod, 2016 

for reviews). Each of the five are presented here, and connections are made between their 

original context and their application to the specific domain of writing experience and letter 

perception.  

 

(1) Variable Visual Input 

The possibility has been raised that the apparent effects of writing experience on letter 

learning are actually due to the fact that the output of handwriting is variable letter 

exemplars, and that subsequent viewing of these variable shapes “may serve to broaden 

perceptual categories, and in turn, enhance visual processing of that stimulus class” (page 

11, Kersey & James, 2013; see also James & Atwood, 2009; James & Engelhardt, 2012). This 

hypothesis was put to the test by Li & James (Li & James, 2016), in a between-participants 

experiment where children learned Greek letters by either writing, tracing, or visual study. 

In order to adjudicate between the effects of motor experience and the viewing of variable 
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exemplars, participants were either trained on exemplars of a single, typed font or were 

given variable exemplars (i.e., during study they were exposed to multiple typed fonts, or to 

variable exemplars created by sampling from other children’s handwritten productions). A 

symbol categorization task was administered as a post-test, wherein participants were given 

novel exemplars (both typed fonts and handwritten exemplars they had not previously seen) 

and were asked to sort them into 5 piles, one for each of the 4 Greek letters they had learned 

and one reject pile. The most important finding was that those that had learned the Greek 

letters by either tracing or visual study of a single font (i.e., zero variability of input) 

performed significantly worse than those who had learned by handwriting or by tracing or 

visual study of variable exemplars. There were no differences in performance between those 

who had learned by handwriting and those who learned by tracing or visual study of variable 

exemplars. On the basis of this result, the authors concluded that the critical aspect of writing 

experience is actually results from observing the variable output of handwriting, supporting 

“the notion that category learning is facilitated by exposure to multiple, variable exemplars” 

(page 309, Li & James, 2016). 

This conclusion rests on the result from the card sorting task, but is premature, given 

that the significant result was driven entirely by differences in the rates of rejecting novel 

exemplars in the card sorting task, not of incorrect categorization. It is important to consider 

what cognitive processes are necessary for this card sorting task—presumably it entails 

comparing the novel exemplars to the prototype exemplar (i.e., the piles into which cards 

were to be sorted were labeled with a target exemplar), and either accepting the novel 

exemplar as sufficiently visually similar, or rejecting it as too dissimilar from any of the 

prototypes. Therefore, the “failure” of the children trained in zero variability of input 
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conditions could simply be due to having a higher threshold/narrower understanding for 

what constitutes an acceptable exemplar. While this may be an interesting finding, it 

ultimately answers only a much narrower question: is it the motor aspect of writing 

experience or variable input that affects the construction of the visual letter categories. While 

certainly a part of learning to recognize letters is to develop a concept of what constitutes an 

exemplar of one letter versus another, this is only a part of the overall concept of a letter. 

Moreover, it is (by definition) a component of the visual representation of letters, and thus it 

is particularly unsurprising that variable input is a key factor. In other words, it is not 

surprising that previous exposure to only one specific exemplar of a shape would result in a 

more restricted concept of what that shape is. The original impetus behind the variable input 

hypothesis were findings about letter recognition, categorization, and retention, but the way 

that the card sorting task was conducted in Li & James (2016) fails to address these findings, 

because they did not examine performance on these tasks5. As such, it remains to be tested 

whether variable input accounts for the wider array of effects of writing experience on letter 

learning. 

 

(2) An Effort Account 

                                                        

5 Although the card sorting task might seem to be relevant to the skill of “letter categorization”, giving the participants 

the option of rejecting the letters left open the possibility that those who learned the Greek letters with zero variability 

of input might have correctly categorized the novel exemplars, had they been forced to choose from among the 4 

possibilities. In other words, it demonstrates only that they have a more narrowly-defined visual category, and not that 

they couldn’t recognize the rejected exemplars, such as in the context of a word. As for testing letter recognition, a 4 

alternative forced choice test administered in Li & James (2016) found the second-highest accuracy among participants 

in the visual study, zero variability of input condition—therefore, the evidence was not consistent with the variable 

visual input account. No measures of retention were obtained. 
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The effort account posits that generating or producing an item requires more effort than 

simply studying it, and thus the benefit of writing experience reduces to the greater effort 

required compared to other learning experiences like typing or visual study. This account is 

akin to concerns that have been expressed in the letter learning literature about “time on 

task”, i.e., that participants writing letters may perform better not because of writing per se 

but because there is more time and/or attention spent studying the letters under these 

conditions. While an effort account is appealing, there are two challenges: first, a purely 

effort-based account is challenged to explain results indicating that seemingly easier 

conditions lead to larger benefits (Bertsch et al., 2007), and second and perhaps more 

importantly, “effort” is too vague a notion to satisfyingly explain generation/production 

effects. 

 

(3) Selective Rehearsal Displacement 

This explanation was first suggested for the generation effect6 (Slamecka & Graf, 1978), and 

proposes that generated or produced items are favored over items that have not been 

generated/produced, because they receive more attentional resources and therefore result 

in stronger memories (for a review, see Bertsch et al., 2007). This theory has received some 

support from the fact that, in certain conditions, it has been shown that part of the apparent 

                                                        

6 The generation and production effects were described in the Introduction. Briefly, the generation effect refers to 

findings that self-generated items are better remembered relative to items that are given (e.g., better memory for the 

word “kitten” if it was generated based on a cue, such as “what means a young cat and rhymes with mitten?”, then if 

it was simply presented). In a similar way, the production effect finding is that producing the to-be-remembered items 

leads to better subsequent recognition and recall (e.g., writing the word “kitten” by hand rather than simply reading 

it). 
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benefit for generated/produced items is in fact due to a cost (selective rehearsal 

displacement) for the other items: in mixed-list designs where some items are 

generated/produced and some are not, there are lower rates of recall for the non-

generated/produced items than would be expected had they been studied in pure-lists 

where no items were generated/produced. Applied to the studies of the role of writing 

experience in letter learning, if the writing experience is given as a within-participant 

manipulation, then the selective rehearsal displacement account predicts that letters learned 

via writing practice are only recalled better relative to letters learned by other conditions 

such as visual study. However, this cannot account for the effect of writing experience in 

between-participant designs, and so can be rejected as a general explanation. 

The selective rehearsal displacement hypothesis is based on a more general 

phenomenon, which is that of the very straight-forward “stronger memory” account (Bodner 

& Taikh, 2012). Based on general principles of human learning and memory, a stronger 

memory account simply claims that memory traces are strengthened by repetition 

(Murdock, 1989; Ozubko & MacLeod, 2010), and thus seemingly complex phenomena like 

the production effect, or the benefit of writing experience for learning letters, may be due to 

learning conditions that resulted in more repetition. This is relevant to the letter learning 

literature because, as was pointed out in discussion of the variable visual input account, 

writing results in viewing two exemplars on each study trial: once when viewing the prompt, 

and once when viewing the self-generated exemplar. In addition, writing letters typically 

takes more time than non-motor learning conditions, especially compared to most visual 

study conditions, and so in between-participant designs, the writing condition may simply 

involve a greater amount of exposure to the visual exemplars. For the most part, previous 
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studies have conducted post hoc analyses to demonstrate that behavioral outcomes of 

learning letters do not correlate significantly with the amount of time spent on task (but see 

Zemlock et al., 2018, for one attempt to equate the amount of time spent in writing versus 

visual study), but this an aspect of experimental design that certainly could be improved 

upon. 

 

(4) Transfer-appropriate Processing 

In the research on generation and production effects, it has been pointed out that certain 

tasks used during study may allow participants to rehearse skills that are more similar to 

those required by the tasks used to measure learning (Bertsch et al., 2007). In other words, 

the observed benefits of certain learning conditions may be due to a closer match between 

the assessment tasks and the learning tasks. An obvious example is if participants who have 

writing experience are found to produce more well-formed letter-shapes in a writing-to-

dictation task, compared to participants who had only visual experience—such a result could 

be explained by the fact that the writing experience was more readily transferred to a 

writing-to-dictation task. Of course, finding that writing experience is beneficial because it 

more readily transfers to other tasks is not the same as finding that it is due to peripheral 

factors of the writing condition. A transfer-appropriate processing account would be entirely 

consistent with grounded cognition; however, it would not specifically support it without 

demonstrating that the transfer from writing experience to letter processing tasks is 

associated with motoric letter representations. As such, a transfer-appropriate processing 

account would leave unresolved the fundamental issue of determining the nature of letter 

concepts. 
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Any learning experience that is beneficial for behavioral performance must 

necessarily be so because it allows some transfer between what was learned during study 

and what is subsequently tested (i.e., generalization of learning). Therefore, transfer-

appropriate processing is more a hypothesis that describes the effects of learning experience 

on letter learning, rather than an explanation. Furthermore, it emphasizes the need to 

understand how the learning experience affects the content of letter representations. 

Determining which types of representations are affected by writing experience, and how 

those representations associated with behavioral performance, is informative both for the 

grounded/abstract cognition debate, and for understanding the content of representations 

that are transferred from the learning task to tasks assessing letter processing (see section 

VI. “Informing Accounts of Conceptual Representations & Letter Learning”). 

 

(5) Distinctiveness Processing Account 

This account hypothesizes that generation/production is beneficial to the extent that it 

provides distinctive memory traces, which serve as useful heuristics for recall. Under this 

account (Forrin, MacLeod, & Ozubko, 2012; MacLeod & Bodner, 2017), episodic memory of 

the “event” of generating or producing a study item provides an additional cue to recall (i.e., 

in addition to the memory of having been presented with the item itself). One requirement 

is that the act of generation or production must be item-specific, or in other words, the acts 

must be distinguishable from one another. Thus, for example, simply repeating a rote motor 

response (e.g., pressing a button or saying “next” to proceed to the next trial) while studying 

each item will not be beneficial, because (a) a rote response does not relate intrinsically to 

the item, and (b) making the same response to all items cannot serve to differentiate between 
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them. The memories of distinctive acts of production thereby provide additional cues for 

successful recall. 

The theory of distinctive processing (Hunt, 2013; Hunt, Smith, & Dunlap, 2011), first 

of all, highlights that distinctiveness is not merely difference, but is difference within the 

context of similarity (von Restorff, 1933). A single picture amongst a list of words is not only 

distinctive because it is different than the words, but because the words are all relatively 

more similar to one another in comparison. In the context of writing experience during letter 

learning, the implication is that it is the distinctiveness of the various learned motoric 

representations that aids recall, for example in letter recognition tests. Learning by writing 

is more beneficial than by visual study alone, as that training condition provides no 

additional cues whatsoever, given that no distinctive responses were produced. 

It has further been argued that the distinctiveness heuristic consists of two 

components that together reduce false alarms. First, it engages output monitoring (Gallo, 

2006; Koriat & Goldsmith, 1996; Schacter et al., 1999) in a particular way. In output 

monitoring, individuals select from among the possible responses that come to their mind, 

prior to making a final decision. The distinctiveness heuristic account is that individuals are 

better at rejecting incorrect possible responses by using information about their production 

(or lack thereof) of those items—essentially, the account goes “I think the answer is A, B, or 

C, but I only remember producing C, so my answer is C”. However, it is argued that distinctive 

processing reduces false alarms not only via improving output monitoring, but also by 

reducing the set of possible responses that come to mind in the first place (“I think the 

answer is A or C…”, not “A, B, or C”). This process has been termed “event-based distinctive 

processing” by Hunt and colleagues (Hunt et al., 2011), and is summarized as follows: 
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“Perception and comprehension of difference in the context of similarity yield 
diagnostic information about particular objects and events. Reinstating that 
processing at test both constrains search, such that access is limited to the 
target event, and enhances identification and reconstruction of target items 
within that event.” ( 13, Hunt, 2013)  

If the distinctiveness processing account is correct, then writing experience may be 

beneficial for learning letters because producing the letters leads to better learning of what 

makes them distinctive from one another, and moreover, this knowledge is used during 

letter perception, improving the accuracy and speed of letter identification (to the extent 

that letter identification relies on visual recognition). However, this account also would 

predict that any other learning condition that provided distinctive production/generation 

effects would similarly be beneficial. For example, copying letters by constructing them out 

of pipe cleaners, or performing visual tasks that require constructing the letters out of 

fragments, would be expected to be beneficial, too. The distinctiveness processing account 

in that sense, then, suggests that there is nothing unique to the writing experience that 

benefits letter learning, but rather that it is just one of many possible learning conditions that 

engage the production effect. 

 

 V. Addressing Outstanding Issues 

The previous section enumerated accounts regarding how writing experience could affect 

letter learning for reasons other than the motoric processes/representations that are acquired 

with that experience. Alternatively, the default account is that indeed, writing experience 

directly leads to developing knowledge that is somehow useful not only for writing itself, but 

for letter processing tasks more generally. The most popular interpretation of this is an 

account from grounded cognition—that motoric representations and the neural substrates 
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supporting them are necessarily recruited during letter processing. The implication of this 

is that only writing experience leads to those motoric representations, and that in turn these 

representations are directly implicated in behavioral performance. 

However, it is possible that writing experience would directly benefit letter learning 

and processing without being limited to effects stemming from motoric representations. This 

is important because, if writing experience affects learning and perception for reasons not 

exclusively related to motoric letter representations, then the findings cannot be taken to 

provide much evidence in support of grounded cognition theories. 

This section describes the limitations of previous research that must be overcome in 

order to provide further insight into the grounded cognition-abstractionism debate, as well 

as to provide support for implications for educational research. The efforts to overcome 

these limitations contribute both to ruling out the possible explanations of why writing 

experience might affect letter learning for incidental reasons (as discussed in section IV 

above), and to putting the grounded cognition account to the test. As such, the efforts 

described below specifically strengthen dissertation’s ability to provide evidence addressing 

the second and third main questions of the dissertation: (2) Does writing experience recruit 

only sensory/motor representations? (3) Which types of representations, motoric or 

otherwise, underlie the behavioral benefits of writing experience?  

 

Inadequate Training and Assessment of Learning 

The training tasks used have not always required that participants learn to fully identify the 

letters (i.e., memorize names and shapes and associate the two), but instead have allowed 

the possibility that the letter learning remains at a superficial level (such as recognizing 
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whether or not a shape is familiar, regardless of whether its identity is known). In terms of 

learning assessments, the vast majority of studies have asked participants to simply identify 

which shape is the one they learned out of two options, which shape is the proper form out 

of four options (with all distractors being non-letters), or categorize various exemplars as 

tokens of the same type (James, 2010; James & Atwood, 2009; J. X. Li & James, 2016; 

Longcamp et al., 2005; Zemlock et al., 2018). These assessments all leave open the possibility 

that only the most basic components of letter recognition have been successfully learned. 

For example, as depicted in Figure 1-1, given a letter-shape as input, the earliest steps of 

recognition involve detecting the visual features and computing an overall stimulus shape. A 

stored memory of the stimulus shape is sufficient for successfully completing these simple 

letter recognition tasks, and thus such an assessment does not constitute evidence that 

representations of allographs/identity have been learned, or indeed any information about 

motor or phonological letter representations. Furthermore, none of the studies have taught 

the sounds of letters, and thus no learning or assessment of words has been possible. Given 

the findings that knowledge of letter names and sounds, and not just their shapes, is 

important for learning to read and write (Berninger, Abbott, et al., 2006; Treiman, Cohen, 

Mulqueeny, Kessler, & Schechtman, 2007; Treiman & Kessler, 2004; Treiman, Levin, et al., 

2007; Treiman et al., 1998), it is important to know whether writing experience has an 

impact on learning letter name/sound knowledge. Additionally, participants have typically 

performed very accurately on the limited assessments that have been used, raising the 

concern of ceiling effects that preclude identifying differences in learning outcomes across 

learning experiences. Thus, it has been difficult to assess whether null results are due to a 
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true absence of differences. Finally, without sufficient training and assessment of letter 

learning, it is difficult to examine the content of the letter representations that are learned. 

 

Low Educational Relevance 

Relatedly, there has been little ecological validity to tasks used to evaluate learning 

outcomes. For the purposes of informing best practices in the classroom, it would be 

preferable to demonstrate learning that is relevant to the classroom—in the case of learning 

letters, the goals of the teacher include learning the names/sounds of the letters and their 

mapping to the physical shapes. To date, assessing these aspects of learning has not been 

possible because they require more extensive training and/or assessments than have been 

previously used (but see Zemlock, Vinci-Booher, and James, 2018). In other words, 

participants have not been required to discriminate the letters they are learning from one 

another, which is a central goal of teaching in the classroom. Furthermore, because letters 

are typically taught simultaneously both for purposes of word-reading and spelling/writing, 

an additional goal would be for students to be able to read and spell short words; to date 

such tasks have not been administered in the experimental literature.  

 

Matching Learning Experiences to Eliminate Confounds 

In the experiments discussed in section II, the learning experiences were not always well 

matched to ensure as much as possible that differences in outcomes were due to intrinsic 

properties of the specific learning experience, and not incidental task-related factors. For 

example, the different learning experiences have not all been well matched for the “time on 
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task” during the learning trials: participants in a visual condition (asked to simply view the 

letters and memorize their shapes) may spend less time learning the letters than participants 

in a motor condition, and so differences in performance could be the result of the amount of 

exposure to the stimuli, and not specific properties of the learning experience per se. A 

subtler but potentially important difference between writing and typing or visual study is 

that writing provides exposure to variable exemplars (see section IV, “Variable Visual 

Input”), and also perception of motion. In other words, not only do individuals in writing 

conditions produce letters by hand, they also perceive the movements of the hand and pen, 

and the handwritten exemplars. One study (Kersey & James, 2013) controlled for the 

variable of motion perception, by including a condition in which children viewed an adult 

experimenter writing the letters, but did not write themselves. The result of this study was 

that sensory/motor cortex activity during letter viewing was found only for children who 

had writing experience, not those who observed writing by others. However, there were no 

behavioral differences found between these two groups, once again suggesting that the 

sensory/motor activity may be not be causally related to behavioral benefits. As mentioned 

in the Introduction, it is possible to dissociate knowledge of how to perform an action and 

knowledge of what that action looks like (Casile & Giese, 2006), but this requires either 

experimental manipulation of the learning conditions, or information about the content of 

the learned representations (i.e., determining whether the representations are motoric or 

visual).  

 

Retention 
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Only two studies (Longcamp et al., 2006, 2005) tested learning retention. These two studies 

found that significant behavioral differences between learning letters through writing versus 

through typing emerged only one to three weeks after the completion of training. This 

suggests the possibility that an important difference between the learning experiences is the 

durability of the learned representations, but this has not been thoroughly investigated.  

 

The Content of Letter Representations 

No study that has manipulated learning experiences has examined how letters are 

represented, or how those representations are affected by the learning experience. Letter 

representations can be found in multiple modalities, and SLI are amodal representations. 

These various types of letter representations have been substantiated both through 

behavioral techniques and neuroimaging methods (as outlined in section III of this chapter). 

However, the relationship between these representations and the effects of learning 

experience, motor or otherwise, is unknown. It is clearly problematic that no experiment has 

yet provided evidence of whether indeed any differences exist in the representational space 

of letters in accordance with how the letters were learned.  

 

VI. Informing an Account of Learning Letter Representations 

Taken together, the accounts of why writing might affect letter learning for reasons other 

than motor representations (section IV. “Writing Experience Entails More than Motor 

Experience”, pages 41-49) and the various limitations of previous research on letter learning 

(section V. “Addressing Outstanding Issues”) reveal why it is premature to draw conclusions 
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about how writing experience “matters” for letter learning. Indeed, the behavioral effects of 

writing experience on letter processing tasks are unclear, and it is problematic that the 

neural effects, although consistently reported, have never been associated with any 

behavioral effects. The conclusions that are most sound are: (1) sensory/motor cortex 

activates in response to passive viewing of single letters; (2) this activation is present only 

for observers who have experience writing those letters; (3) experimental conditions where 

participants learn letters through writing tasks tend to lead to more accurate letter 

recognition tasks. These facts do not support conclusions regarding the content of the letter 

concepts nor whether those concepts are affected by the nature of the learning experience. 

They also do not show that writing experience is necessary for any letter processing task. 

Nonetheless, researchers and the interested public alike have sought to use this evidence to 

support two broad points: sensory/motor representations are causally implicated in letter 

processing tasks generally, and writing experience may be critical for learning a written 

language. This section therefore concludes the chapter by elaborating on the three primary 

questions addressed by this dissertation, explaining how answering them has broad 

theoretical and practical implications regarding the role of writing experience on letter 

learning. 

 

Question 1: Are the effects of writing experience due to motor learning per se? 

It is critical to know whether writing experience affects letter learning due to the learning 

that takes place only through producing letters by hand, or due to some other factor that is 

associated with the writing conditions. Should it be found that the relevant components of 

writing experience are peripheral to the actual writing process, then it is implausible that 
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the underlying representations are motoric in nature. Moreover, the practical implications 

would be that at best, writing is a convenient method of instruction, but some other training 

might focus on the relevant components—in other words, it would suggest that decreased 

instructional time for handwriting is not necessarily detrimental for learning letters.  

The existing research on the effects learning experiences on letter acquisition has 

been challenged to address the possibility that differences across conditions might be 

explained by factors as basic as time on task, for example with more time being spent writing 

letters than studying them by vision or by typing. In order to address this concern, the 

learning experiences used in the longitudinal training study here were designed so as to 

equate exposure to the letter stimuli in a number of ways: (1) the maximum amount of time 

spent on each letter was equated; (2) all participants were presented with visual information 

of the letters dynamic (i.e., animations), so that the writing experience is distinguished 

primarily by its motor components, and not additionally confounded by the dynamic visual 

information that is typically available only during handwriting. This is a particularly 

important point, and only one study (Kersey & James, 2013; Li & James, 2016) thus far has 

produced results that potentially adjudicate between whether it is motor activity per se, or 

the dynamic visual information that is necessarily associated with handwriting, that informs 

letter perception; (3) a wider range of behavioral measures was used, in part to address a 

pure effort account, which predicts  that the most “effortful” condition should perform better 

on a range of tasks; (4) participants in all learning experience conditions were trained to 

common criteria on a letter recognition task; and (5) measures of the amount of time 

participants spent completing their task during learning were compared to behavioral 

performance on other measures, to verify that relative amounts of effort are not predictive. 
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To somewhat anticipate results, an effort account is thus seen to be insufficient to explain 

the motor-perceptual link.  

 

Question 2: Does writing experience  recruit only sensory/motor representations? 

The answer to this question addresses the possibility that the effects of writing experience 

are not incidental to the motor learning aspects, but at the same time are not limited to motor 

representations. Put otherwise, the effects of writing experience could extend beyond 

knowledge of how to write the letters, and accordingly the source of differences across 

learning experiences could be other types of representations, including amodal ones. This is 

particularly important for supporting or refuting grounded cognition theories that assume 

activity in “sensory-motor” cortex actually reflects sensory/motor representations. This 

activity could represent information other than motoric, especially so because the term 

“visual-motor processing system” (James, 2017) often refers to areas beyond primary 

somatosensory and motor cortices. For example, this activity could reflect representation of 

the visual dynamic information learned from observing hand movements (although see 

Kersey & James, 2013, for evidence that this is not a full account of the effects of writing 

experience). Alternatively, this activity could also reflect “higher-level” orthographic 

representations, such as SLI, and as such could be amodal in nature. Such evidence would 

not specifically support a grounded cognition account, and would in general be supportive 

of abstractionist theory. This question has not been entertained as such in previous research, 

and no data has been collected to provide insight into what types of letter representations 

arise under different learning conditions. Thus, this dissertation addresses this question 

directly, by obtaining both behavioral and neural measures that reveal the content of letter 
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representations (behaviorally via a same/different judgment of pairs of letters, and neurally 

by RSA analysis of fMRI data). 

  

Question 3: Which types of representations underlie the behavioral benefits of writing 

experience? 

The popular account that writing experience leads to better letter learning is ultimately 

based on finding that children show adult-like brain activity in response to letters only if they 

have learned how to write those letters, together with evidence suggesting better 

performance on some basic letter processing tasks. However, there is a misconception in this 

popular account that the two have been associated with one another—that is, nothing has in 

fact indicated that the brain activity specifically in sensory/motor cortex underlies any of the 

purported behavioral advantages for writing experience. And while motoric letter 

representations have been found to influence behavior on perceptual tasks like the 

same/different judgment, they have not been related to the ability to use letters in actual 

language tasks (reading or spelling). In order to make a strong claim for a causal role of 

writing experience in letter learning, it is necessary to show that neural-behavioral 

associations are mediated through sensory/motor representations. The dissertation 

addresses this final question first of all by administering assessments of language tasks 

including reading and spelling (which has not previously been done), and secondly, by 

further investigating the relationship between performance on those tasks and the location 

and nature of the letter representations observed in the brain via the RSA technique.  
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Chapter 2 – Methods & Analyses 

This chapter describes how the influence of motor experience on the learning of letters is 

assessed in this dissertation. The chapter is divided into sections as follows. The first two 

sections present the behavioral (I. “Behavioral Methods”) and the neural (II. “Neural 

Methods”) approaches used to address the primary questions of interest. Details are given 

about the experiments conducted for each of these two approaches, as well as information 

about the overall structure of the longitudinal study (i.e., what tasks were administered and 

when) and about particularities of the Arabic alphabet that have a bearing on understanding 

the results. The next sections explain the approaches taken for analyzing the data from the 

various tasks (sections III. “Behavioral Analyses” and IV. “Neuroimaging Analyses”). A final 

section (V. “Primary Aims”) summarizes the methods and analyses by revisiting the three 

primary questions of the dissertation. It clarifies exactly how the experimental design and 

results of the analyses allow for answering the three questions (discussed in previous 

chapters) addressed in the dissertation. 

 

I. Behavioral Methods 

An overview of the various training tasks and behavioral assessments is depicted in the top 

panel of Figure 2-1. In total, six behavioral assessments were administered at one or more 

time points, in addition to training tasks that were performed over the course of multiple 

sessions as participants learned the shapes, names, and sounds of 20 Arabic letters. There 

were three learning Conditions: Typing (T), Visual (V), and Writing (W), designed to 
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manipulate the experience that participants had while studying the Arabic letters. Only the 

last of those conditions, the Writing Condition, is a true motor condition, whereas the Typing 

and Visual Conditions represent different non-motor experiences. Assessments were 

administered at multiple time points in order to evaluate the learning outcomes, as well as 

the trajectory of learning over the course of the study, in order to determine whether or not 

these differed as a result of the learning conditions. The time points included pre-tests (i.e., 

assessments prior to any learning of the Arabic letters), training (assessments during 

training sessions), post-training (assessments after reaching stopping criteria on training), 

and follow-up (assessments one month after post-training). The details of the assessments 

are as follows. 

 

 

Figure 2-1. Study schedule from pre-training to follow-up, with behavioral tasks (top row) 
and neuroimaging (fMRI, bottom row). LLN = Letter Learning Network. SDT = Symbol 
Detection Task. 
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42 participants were recruited from the greater Johns Hopkins community, with 14 assigned 

to each of three learning experiences. The participants were selected to have no history of 

learning disabilities or any previous experience with Arabic, as determined by a screening 

questionnaire. The sample size was intended to improve upon previous similar studies (e.g., 

Longcamp et al., 2006). The participant demographics are reported in Chapter 3 in Table 3-

1. Thirty-six participants completed the study through the post-training time point (see 

Figure 2-1), and thirty-three participants completed through the follow-up time point. There 

was a payment of $10 per session, including pre-tests and post-training sessions, and a $20 

payment for completing the follow-up session.  

 

Stimuli 

The Arabic alphabet consists of 28 unique letter identities, each of which has between 1 and 

4 distinct shapes (allographs), for a total of 52 different letter-shapes. A subset of 20 letter 

identities was selected from the full set of Arabic letter forms based on the following criteria: 

(1) to avoid selecting pairs of letters whose names are difficult for English speakers to 

distinguish (for example, the IPA-coded /t/, like English “t”, and the emphatic version /t’/ 

which is pharyngealized), (2) to avoid, as much as possible, shapes which are essentially 

indistinguishable from shapes of certain Roman letters (Wiley et al., 2016), so that all letters 

require learning to discern novel shapes, and (3) to include letters that have highly visually 

dissimilar allographs, so as to be able to better tease apart visual representations from 

symbolic letter identity representations. The final list contained 17 consonants and 3 vowels. 

13 of the consonants and 1 of the vowels have 2 allographs, while the remaining 6 letters 
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have only one, resulting in a total of 34 letter-shapes. Four different fonts (Figure 2-2: Adobe 

Arabic, Nadeem, Myriad, and Farisi) were used for the training stimuli. The font Adobe 

Arabic was used in all other tasks, including neuroimaging, unless otherwise noted. 

During training, both single letters and short 2-3 letter words were presented to 

participants. The single letters were used to teach the letters’ name and sound (see “Training 

Session Procedure”). Briefly, each letter was presented in a dynamic display (animated using 

the software Adobe AfterEffects), showing the letter as though it was being written on the 

screen, and was accompanied simultaneously with audio of the letter’s name and sound (e.g., 

“alef”, “ah”). While most Arabic letter-shapes map onto one unique sound, a few are 

ambiguous either because they represent semivowels (e.g. the letter name “waaw” 

represents both the consonant /w/ and the vowel /u/), or because they represent vowels 

which change quality in the presence of emphatic consonant (e.g. /ae/ becomes /ɑ/). For the 

purposes of the training, each letter -shape was presented as having only one unique sound 

(specifically, alef as /ae/, waaw as /u/, and ya as /i/) so that there was always a one-to-one 

mapping of shape onto sound (although there were one-to-two mappings of sounds onto 

shapes, for the 14 letters that have two allographs; see Figure 2-2). 

The short words were created by pairing each of the 17 consonants (C) with each of the 

3 vowels (V) to create three words for each consonant-vowel pair: CVC, CV, and VC. In the 

CVC words the same consonant occurred twice. Which vowel appeared in which syllable was 

random. For example, the consonant “kaf” (/k/) was used to make the pseudowords /kik/, 

/ku/, and /ak/ by pairing respectively with the three vowels /i/, /u/, and /a/, whereas the 

consonant “fa” (/f/) was paired with the vowels so as to may /faf/, /fi/, and /uf/. This 
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process created 51 words (17 consonants x 3 words for each). These words were presented 

during training for two different purposes. First, because Arabic is a cursive writing system, 

some of its properties become manifest only in the context of words: the direction of writing 

(and reading), the relationship between allographs and their position within the word, and 

the order of certain strokes. Indeed, many of these properties arise from how Arabic words 

can be divided into sub-words, which are the subsets of letters within words defined by the 

pattern of ligating and non-ligating letters (i.e., a gap in a word following a non-ligating letter 

creates a new sub-word). Figure 2-3 clarifies these properties as follows: (A) Arabic is 

written (and read) from right-to-left, which is not apparent in the context of single letters. 

(B) Allographs such as the two shapes of “kaf” are predictably related to their position in the 

sub-word. (C) The typical ordering of strokes is influenced by the need to write entire sub-

words in cursive, i.e., certain strokes are added after the “frame” of the sub-word. The second 

purpose of the word-blocks was to provide participants with some experience with words 

to facilitate post-training assessment of their ability to read and write whole words. As 

previously discussed (see Chapter 1), no previous study has examined whether the effects of 

motor experience on letter learning extend beyond processing of single letters. No 

definitions were given for the words (which included a mix of real Arabic words and 

pronounceable7 pseudowords). 

 

                                                        

7 Pronounceable according to English phonotactics. The teaching and learning of phonology is largely outside the 

scope of this experiment, apart from learning some letters whose phonology does not exist in English (e.g. “qaf”, /q/, 

the voiceless uvular plosive). Therefore, all words used for training or assessment of reading ability conformed to the 

phonotactics of English and not Arabic. 
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Figure 2-2. All stimuli for the learning experiences. The 20 letter identities are listed 
vertically, with allographs side by side. The four fonts are, from left to right: Adobe Arabic 
(default font), Nadeem, Myriad, and Farisi. 
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Figure 2-3. Properties of Arabic conveyed only in the context of whole words. The letters 
on the far left are all written in their “isolated” (unconnected) forms. The numbers indicate 
order of the strokes. (A) The letter “zay”, which looks like a lowercase Roman “j”, is written 
and read last in the word “baz” (right). (B) The two allographs of the letter “kaf” are 
selected based on whether they are initial in a sub-word (far right) or isolated in a sub-
word (third from left). (C) The letter “tau” (left) is written by the loop first, followed by a 
descending vertical line. This order (both prescribed and preferred by Arabic native 
speakers) facilitates the connection of “tau” within sub-words; for example, the descending 
vertical line would be written last in this segment in order to continue from the initial 
stroke smoothly into the second letter. 

 

 

Training Session Procedure 

Each training session consisted of two stages, a training stage and an assessment stage. In 

the training stage, there were four blocks of study trials: three letter-blocks and one word-

block. The first three were letter-blocks, consisting of 80 trials over 8 minutes, and within 

these blocks each of 20 different letter identities were presented four times, in random 

order: either two allographs in two different fonts, or one allograph in four different fonts. 

The rationale for including multiple fonts was twofold: (1) In order to expose participants in 

all conditions to variability in the input, which has been found to be an important factor in 
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learning to recognize letters (see Chapter 1; also, Li & James, 2016); (2) because some Arabic 

letters do not have a second allograph (including 2 out of the 3 vowels), including multiple 

fonts allows for each letter identity to be presented as multiple shapes, supporting the 

possibility of learning SLIs. 

 The fourth block of each training session was a word-block consisting of 51 trials and 

lasting 8.5 minutes. Each of the 51 short words (see “Stimuli” above) was presented once, 

resulting in each consonant being presented four times. Letter identities corresponding to 

vowels were necessarily used more than consonants, for a total of 17 times each per word-

block. In total, one training session thus consisted of 16 presentations of each consonant and 

29 of each vowel, across the four blocks of study. The structure of the individual trials within 

the letter- and word-blocks is described in the next section. 

In the second stage of the training sessions, participants were assessed on their letter 

learning with two tasks: a letter recognition test, and a letter naming task. The letter 

recognition task was used to determine when stopping criteria for training had been reached 

(see “Training timetable and post-training time point criteria), and to provide a longitudinal 

measure of the learning trajectory. The details of both of these tasks are provided in the 

section “Behavioral Assessments”. 

 

Structure of the Training Trials 

On each training trial, participants viewed dynamic displays of the letters/words as if being 

written by hand on the screen (see Figure 2-4). The trials differed slightly depending on 

whether they were in letter-blocks or word-blocks. (1) In letter-blocks, each dynamic 
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display was presented simultaneously with audio of the letter’s name and sound (e.g., “alef”, 

“ah”). Participants were told to learn the letter’s shape, name, and sound, and that they would 

be tested on this knowledge. The trials were 4 seconds long in total (Longcamp, Boucard, et 

al., 2006), with the dynamic image unfolding at a rate of 1 second/letter and the audio over 

the first 2 seconds. The static image remained onscreen for 3 seconds. See Figure 3-2 for a 

schematic of the trial structure. (2) In word-blocks, each dynamic display presented a two-

to-three-letter word simultaneously with audio. The trials unfolded in the same manner as 

in letter-blocks, except with the static image remaining on screen for an additional 5 seconds, 

bringing the total trial length to 9 seconds. No definitions for the words were given (which 

included a mix of real Arabic words and pronounceable pseudowords). During each training 

trial, participants performed a task according to their assigned learning Condition: Typing, 

Visual, or Writing. 

For all conditions and in both letter- and word-blocks, a tone played at the end of each 

trial indicating a 1 second intertrial interval with a blank screen. The task instructions for 

each learning Condition were as follows: 

(1) Typing Condition—The task was to find the letter(s) presented dynamically on each 

trial on a keyboard, which was modified with Arabic letter stickers on the keys, and to press 

the corresponding keys (in the correct sequence, for words). The participants were 

instructed to complete this task as quickly and accurately as possible, within the time limits 

of the trials: 4 seconds in letter-blocks and 9-seconds in word-blocks, which included 3 

seconds and 6-7 seconds respectively during which the letter(s) was/were displayed 

statically on the screen. The keyboard was modified by adhering opaque labels to a regular 



CHAPTER 2 – METHODS & ANALYSES 

 68 

US English keyboard. For those letters with multiple allographs, different keys were used for 

each shape (e.g. “A” and “a” would both appear on the keyboard, but on different keys). This 

was done to avoid giving participants in the Typing Condition specific information about SLIs 

for allographs (i.e., if allographs appeared on the same key, it would be an extra clue to their 

shared identity, unavailable to participants in the other learning conditions). The font used 

on these labels was Adobe Arabic, one of the four fonts used in the training and also the font 

used for all other behavioral tasks presented to participants via computer or print (e.g., 

during post-tests). The letters were arranged on this keyboard in the same layout for all 

participants and all sessions; this layout was the result of a randomization of the 34 letter-

shapes into three rows (seven, seven, and six) in the center of the keyboard, with the only 

constraint that no highly visually confusable letters were adjacent to each other. Visual 

confusability for this purpose was determined on the basis of earlier work on the naïve 

perception of Arabic letters (Wiley, Wilson, & Rapp, 2016). Both reaction time and accuracy 

were recorded on each trial. 

(2) Visual Condition—In this condition, the participants performed a visual detection task. 

The dynamic display was identical to the Typing and Writing Conditions, however the static 

image persisted for only 1 second before disappearing. It was followed by a 500ms blank 

screen, a 66ms fixation cross, and then a 1000ms probe. The probe was either a non-

alphabetic symbol (e.g., ?, %, #) or the target Arabic stimulus in a smaller font. After the 

probe, the target Arabic letter returned for the remainder of the trial (1433ms in letter-

blocks or 4.433-5.533ms in word blocks; see Figure 2-4). In this way, the total trial length 

remained the same as in the other conditions. The task was to indicate by pressing one of 

two keys whether the probe matched the identity of the target letter or not. The purpose of 



CHAPTER 2 – METHODS & ANALYSES 

 69 

this task was to ensure that attention was paid to the stimuli throughout the trial, in an effort 

to equate time spent on task in this condition with the two other conditions.  

(3) Writing Condition—The procedure was identical to the Typing Condition, except in 

place of the typing task, participants had to copy the stimuli. Participants wrote the 

letters/words with pen on ruled paper placed atop an electronic tablet (Wacom Intuos) 

connected to the E-Prime 2.0 software (Psychology Software Tools, Pittsburg, PA). This 

recorded the onset time of writing, allowing analysis of changes in reaction time over the 

course of training. The stroke patterns to be used were not explicitly prescribed, however 

they could be inferred based on the dynamic image presented on the screen.  
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Figure 2-4. Trial structure of training phase. Top: Letter-blocks, Bottom: Word-blocks. 
H=Handwriting, T=Typing, V=Visual. 

 

Training Instructions and Feedback 

Immediately prior to beginning the first training blocks, the participants in all learning 

conditions were told that Arabic is written from right to left and in cursive, and that most 

letters they see would have two shapes. It was explained to them that in Arabic, the letter-

shapes change depending on neighboring letters in words. On this point, they were given the 

example of cursive lowercase “l” differing somewhat in its shape depending on whether it is 

written followed by an “e” or an “m”. 
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The experimenter then showed the participants each letter used in the experiment 

printed on a flash card (Adobe Arabic, font size 24), in random order. The experimenter 

reminded them that they would be asked to learn the shapes, names, and sounds of the 

letters during training, but that during this “preview” they would have the opportunity to 

hear each letter’s name and sounds clearly. The flash cards were reviewed twice: once, with 

the experimenter asking the participant to repeat the letter name after them, and a second 

time, asking them to repeat the letter sound. In this way, it was assured that participants 

understood the distinction between the letter name and sound (and they were also given the 

example of English [A]: name /ei/, sound /æ/). Moreover, participants were given the 

opportunity to have the letter name or sound repeated, if they did not understand it, and 

were asked to repeat it themselves more than once, if they had misheard8. The flash cards 

were not reviewed again at any later time point, although the participants were allowed to 

ask for clarifications about what they heard in their training videos at any point. 

Pilot testing indicated that participants in the Typing or Writing Conditions might stop 

paying attention to the dynamic display, relying on the audio to produce their response 

without watching the screen. To diminish the likelihood of this approach to the training 

tasks, in all conditions 25% of the trials were silenced at random, thereby preventing a 

participant “strategy” of completing the task by listening to the audio only, at the expense of 

paying attention to the dynamic image. As for feedback, for the Typing and Visual Conditions, 

once a response was made, a tone indicated whether the response was correct or incorrect; 

                                                        

8 For example, the letter ذ /ðæ:l/ and sound /ð/ was often misheard as /væ:l/ and /v/-- the experimenter would clarify 

this for the participants, saying “No, it’s not V like Valerie, it’s TH like This”. 
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a distinct third tone marked the end of each trial if no response was recorded at all. For the 

Writing Condition, no formal feedback was given, but participants were able to view their 

own handwritten exemplars and compare them to the stimuli on the screen. 

 

Training Timetable and Post-test Time Point Criteria 

Training sessions took place twice a week, with a minimum of one day in between sessions 

(i.e., no sessions on consecutive days). At the end of each training session two short 

behavioral tasks were administered to provide longitudinal measures of learning: a letter 

recognition task and a letter naming task. These were administered identically across all 

three learning conditions, and the first of these was used to determine when stopping criteria 

were reached, as follows: 

Training to Criteria: Performance on the letter recognition task administered at the end of 

each training session was used to determine readiness for the post-training tasks, as well as 

the post-training neuroimaging session (see section II. “Neural Methods”). Specifically, all 

participants had to fulfill two criteria: greater than 90% accuracy, and a 25% reduction in 

RT relative to performance on the first administration of the task (i.e., after one training 

session). Moreover, this performance level had to be maintained across two consecutive 

sessions, or else training was continued, for a maximum of six training sessions. The purpose 

of these criteria was two-fold: (1) to assure some comparability in performance level across 

the three learning conditions, and (2) to assure some stability of the learned letter 

representations, which was particularly important for the participants completing the 
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neuroimaging sessions (as those scanning sessions necessarily took place at a later time 

point; see section II. “Neural Methods”).  

Assessment Timeline: The pre-test time point consisted of all tasks completed prior to 

beginning training: the Same/Different Judgement task of both Arabic and Roman letters, 

and the first neuroimaging session (see Figure 2-1). Training began at any point after the 

pre-tests, ranging from 2-52 days later. Post-training tasks (Letter Recognition task, Letter 

Naming task, Writing Letters to Dictation task, Spelling Words to Dictation task, and Reading 

Words task) were completed after reaching criteria, ranging from 2-5 days later. For 

participants undergoing neuroimaging, the second neuroimaging session was scheduled as 

soon as possible after the post-tests, ranging from the same day to no more than one week 

later9. Follow-up tests (Letter Recognition task, both regular and Novel Font, Letter Naming 

task, and Writing Letters to Dictation task) were completed approximately one month after 

the post-tests (ranging from 16-40 days). The details of each of these tasks are presented 

below. 

 

Behavioral Assessments 

The following tasks were administered to all participants, identically across all three 

learning conditions. (See Figure 2-1). 

                                                        

9 Participants who were unable to complete the second neuroimaging session within a week after post-tests, due to 

scheduling conflicts, were brought back for an additional training session. This “refresher” training session consisted 

of the learning condition tasks (both the 3 letter-blocks and 1 word-block) but none of the other assessments. In total, 

just 4 of the 24 neuroimaging participants completed refresher training sessions.  
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(1) Same/Different Judgement task: All participants performed same/different judgments 

on pairs of letters from both the Arabic and Roman alphabets, at both the pre-training and 

post-test time points. The procedure of the task was as follows: a 250ms fixation cross was 

followed by simultaneous side-by-side presentation of a pair of letters, for a maximum of 

2000ms or until a response of either “same” or “different” was made. The Arabic and Roman 

letters were presented separately (i.e., as two distinct experiments, but otherwise all 

pairwise combinations of the letters were used, for a total of 66 different pairs per alphabet. 

The stimuli were two allographs each of 6 Arabic and 6 Roman letters (for a total of 12 letter-

shapes per alphabet), corresponding to those also used in the neuroimaging task (see 

“Neuroimaging Methods”). The Same/Different Judgement task is useful for two reasons. 

First, it is possible for naïve observers to complete this task, and the accuracy and reaction 

times can be used to provide a measure of perceptual representations. Wiley, Wilson, and 

Rapp (2016) used this task with two participant groups, one naïve and one expert and their 

findings provide expectations for naïve observers’ perceptions of the Arabic letters in this 

study, and how these might change as a consequence of the training, as discussed in Chapter 

2 (section “Multiple Representations of Letters”). 

(2) Letter naming task: A letter naming task, also known as a discrete rapid automatized 

naming task (RAN, de Jong, 2011) was administered at the end of each training session, as 

well as at post-test and follow-up time points. All training letters were presented individually 

using E-Prime Professional software, recording voice onset time, with the experimenter 

manually recording accuracy. A response was scored as correct as long as it unambiguously 

referred to the correct letter, regardless of the accuracy of the participant’s actual 

articulation. Each letter-shape was presented twice, for a total of 68 trials. Letter naming 
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ability is known to be a strong predictor of reading acquisition in children cross-linguistically 

(McBride–Chang & Kail, 2002), and have been found to explain variance in reading abilities 

across children independent of phonological skills (Mazzocco & Grimm, 2013). An additional 

appeal of letter naming for this study is that it requires mapping between letter names and 

shapes, an ability which would not obviously be supported by any one of the learning 

experiences over another. 

(3) Letter Recognition task: A letter name was presented aurally (using the same audio 

files as the training videos) and participants had to select the corresponding letter-shape 

from an array of 4 letters, by clicking on it with the mouse cursor. This task was presented 

at the end of each training session, just prior to the letter naming task, as well as at post-test 

and follow-up time points. This task and the letter naming task together are the closest match 

to actual classroom assessments, that typically require students to associate letter shapes 

and names. Each of the 34 letter-shapes were presented 4 times using E-Prime Professional 

software. This task was self-paced, as between each trial participants had to return the 

mouse cursor to the center of the screen and click on a small fixation cross, after which the 

audio of the next letter immediately played and the four choices were presented equidistant 

from the cursor in the center of the screen. Both accuracy and reaction time were recorded. 

The distractor choices were chosen based on visual and letter-name similarity—specifically, 

all of the distractors were those that were previously established as being most visually 

confusable (Wiley, Wilson, & Rapp, 2016) but excluded distractors with highly similar letter 

names. This maximized the difficulty of the visual discrimination component of the task, 

while minimizing the potential complication of auditory comprehension. The correct target 

appeared once in each of the four possible locations, and trial order was randomized on each 
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session. Performance on this task was used to determine readiness for the post-test sessions 

(see this chapter, section “Training timetable and post-test time point criteria”). 

(4) Novel Font Letter Recognition task: at the follow-up time point the participants were 

also given this task that was identical to the letter recognition task that was administered 

repeatedly, with the difference that the stimuli were presented in one of two fonts which 

they had never seen before (see Figure 2-5).  

(5) Writing Letters to Dictation task: Each of the 20 learned letter names was presented 

aurally and participants were asked to write the shapes of the letter from memory; 

participants were reminded that most of the letters had two shapes, and were prompted to 

produce both if they could remember both. This task was administered at post-test and again 

at follow-up. It is the only task (outside of performance on the training trials themselves) to 

address direct effects of learning experiences (see Chapter 1, “Direct and indirect effects of 

learning experience”), as it requires some of the same processes which were trained in the 

Writing Condition. Responses had to meet three criteria in order to be scored as fully correct: 

(1) they had to include the features necessary to make them distinct from other letters in the 

set (e.g., for Roman letters: missing the dot on a lowercase “j” would not be scored as 

incorrect, whereas not crossing the lowercase “t” would be); (2) they could not include any 

additional features, which might be taken to as intrusions from other letters (e.g., adding a 

dot over a lowercase “t” would be scored as incorrect), and (3) they could not be mirror-

reversed. As such, each response was categorized as either (a) correct, (b) distorted (e.g., 

lacking features or having additional features), (c) mirror-reversed, or (d) non-response (i.e., 
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nothing was written). Participants wrote the letters on an electronic tablet (Wacom Intuos 

Pen tablet). 

(5) Spelling Words to Dictation task: Immediately following the Writing Letters to 

Dictation task at the post-training time point, the participants were presented with audio of 

whole words, and asked to attempt to write them (on the electronic tablet). The stimuli 

included 20 words, ranging in length from 3 to 6 letters, including both familiar words they 

had seen in training (seven 3-letter words) and novel words. In order to focus evaluation on 

knowledge of the correct letters in this task, as opposed to the motor processes necessary 

for producing a well-formed written responses, these responses were scored with no penalty 

for mirror-reversed letters, for incorrect allographs (i.e., akin to using an uppercase letter in 

the middle of a word), or for distorted letter-shapes, as long as the intended letter was 

unambiguous (for example, adding a dot above the “t” while spelling “tea” would be scored 

as correct). Furthermore, responses were scored as the percent of letters correct, thus 

awarding partial credit to words that were not spelled completely correctly. 

(6) Reading Words task: Words ranging in length from 2-6 letters were presented to the 

participants for oral reading, only at the post-test time point. The stimuli included 20 words 

in total, 7 of which were familiar from training during word-blocks. Participants were 

allowed to spend as much time as they liked to try to read the word. They were prompted to 

try to sound the word out if they could, or else to name the letters individually if they were 

unsure of the sounds or unable to blend them together. Thus, the responses were scored in 

two ways: first, as the percent of letters correct (e.g., reading “cat” as “at” would receive a 
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score of 2/3), and second, as the percent of letters identified (e.g., reading “cat” as “see, ay, 

tee” would receive a score of 3/3). 

 

 

Figure 2-5. Fonts presented in the novel font letter recognition task (at follow-up time 
point): Basim (on the left) and Changa (on the right). Compare to familiar fonts, presented 
during training trials, in Figure 3-3. 
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II. Neuroimaging Methods 

An overview of the neuroimaging assessments is depicted in the bottom panel of Figure 2-1. 

Two fMRI tasks were administered in identical scanning sessions at both pre-training and 

post-training time points (see “Training Timetable and Post-test Time Point Criteria”). 

Briefly, these two tasks were: (1) Letter Learning Network (LLN) task, which was used to 

localize brain regions whose activity changed from pre- to post-training selectively in 

response to Arabic letters, and (2) Symbol Detection Task (SDT), which was used to 

determine the pattern of activity in response to single Arabic letters, within regions of 

interest. Previous examinations of the effects of motor versus non-motor learning 

experiences have drawn conclusions based exclusively on the strength and location of neural 

activity (BOLD signal). The one exception was the study of Vinci-Booher et al. (2016), who 

conducted a functional connectivity analysis of previously-reported data (James & 

Engelhardt, 2012). In that study it was reported that functional connections increased more 

for children who had writing training than typing training, between visual regions and both 

parietal and frontal regions. However, neither this nor any other study has investigated the 

representational content of the activity in these regions in response to letters. The 

neuroimaging methods detailed below were therefore used to reveal the nature of the letter 

representations (sensory/motor and/or amodal) and how they were affected by the learning 

condition, using Representational Similarity Analysis (RSA; see section IV. “Neuroimaging 

Analyses”).  

 

Participants 
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Of the total 42 participants, a subset of 27 , 9 per learning condition, were randomly selected 

(given their willingness to participate) to undergo two fMRI sessions, one before and one 

after training. Specifically, the first neuroimaging session took place before any of task or 

training was completed, with the exception of the Roman letter Same/Different Judgement, 

while the second neuroimaging session took place within a week after the post-training 

assessments (see Figure 2-1). Participants were paid $50 per scanning session. The 

participants ranged in age from 18 to 31 years old (see Chapter 4, Table 4-1 for demographic 

information)., and all had normal or corrected-to-normal vision. 

 

Neuroimaging Tasks 

During the scanning sessions, participants were administered two different tasks, repeated 

identically at both time points: 

(1) Letter Learning Network (LLN) Localizer task—Participants viewed 4 blocks of each 

of the following block types: Arabic letters, Roman letters, English words, and checkerboard 

patterns. Each 15-second block consisted of 10 different stimuli. The stimuli were all of the 

same height (63 pixels) and ranged in width from 20 to 233 pixels. The instructions were to 

press buttons (one held in each hand) whenever either a non-alphabetic symbol (%, *, ~, &, 

at the end of blocks of letters) or a boy’s name (e.g., Michael, at the end of word and 

checkerboard blocks) appeared. Participants completed 2 runs of this task. 

(2) Symbol Detection Task (SDT)—Participants viewed single letters in an event-related 

design, and responded by pressing buttons in both hands whenever a non-alphabetic 

stimulus appeared. Participants completed 8 runs of this task, alternating between Arabic 
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and Roman letters (4 runs each), with the order randomly assigned to participants. The same 

order was maintained across the two neuroimaging sessions. Each trial consisted of: fixation 

for 200ms, stimulus for 300ms, and a jittered post-stimulus blank (1500ms, 3500ms, or 

5500ms, on average 3500ms). Each run consisted of 64 trials in random order (48 letter-

shapes, 16 symbols), and lasted 4 minutes, 30 seconds in total (including an additional 14 

seconds of fixation at the start and end of the run). Each letter-shape was presented 4 times 

per run, for a total of 16 presentations across the session. 

Stimuli: As with the procedure of Rothlein & Rapp (2014), 12 letters (two allographs 

each, 24 letter-shapes) were included along with 4 non-alphabetic symbols (%, *, ~, &). 12 

letter-shapes were from the English alphabet (a, A, b, B, e, E, g, G, q, Q, r, R) and 12 from the 

set of Arabic letter-shapes (ب، بـ، ج، جـ، ش، شـ، ق، قـ، ك، كـ، ي، يـ). The Roman letter-shapes were 

presented in Arial font size 80, the Arabic letter-shapes in Adobe Arabic font size 120 

(equating the maximal heights of the two alphabets), as white text on black background. The 

letters were chosen on the basis that they have visually dissimilar allographs, and because 

pilot testing revealed that these Arabic letters tended to be the most readily learned (both 

their shapes and names). 

 

Scanning Protocol 

In addition to neuroanatomical scans, as described just above each session consisted of two 

tasks presented for a total of 10 task-based runs. MRI data were acquired using a 3.0-T 

Philips Intera Scanner. Whole-brain T2-weighted gradient-echo EPIs were acquired with an 

eight-channel SENSE (Invivio) parallel imaging head coil. Structural images were acquired 
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using a standard MP-Rage T1-weighted sequence yielding images with 1 mm isotropic voxels 

(repetition time = 8.036 ms, echo time = 3.8 ms, flip angle = 8°). All functional runs were set 

to a TR = 2s. Total scanning time for all task-based functional runs was 46 minutes. 

 

III. Behavioral Analyses 

Linear Mixed Effects Models: General Analysis Approach 

The general analytical approach to the data from the various behavioral tasks (described in 

I. “Behavioral Methods”) is described in this paragraph. Details about specific variations are 

described in subsequent subsections. (1) For the data from each of the tasks, the effects of 

learning Condition (Typing, Visual, and Writing) were analyzed using generalized Linear 

Mixed Effects Models (LMEM, Baayen, Davidson, & Bates, 2008). RT data were modeled as a 

Gamma distribution with the identity link (Lo & Andrews, 2015), and accuracy data were 

modeled as a binomial distribution (logistic model). In all models, learning condition was 

included as a categorical variable, and relevant interactions between this factor and other 

predictors were included as noted below. 

As a first step, a priori planned comparisons for the categorical variable of “group” 

(i.e., learning condition) consisted of (1) comparing the Typing to the Visual Condition 

(coding Typing as -1, Visual as +1, and Writing as 0), and (2) comparing the mean of the 

Typing and Visual Conditions to the Writing Condition (coding Typing and Visual as -1, and 

Writing as +2). This coding scheme has the benefit of providing orthogonal contrasts, and 
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was used to test the hypothesis that any effects of learning condition stem from a difference 

between motor experience and non-motor experiences. 

For any set of data where the first contrast returned a significant result (i.e., a 

significant difference between the Typing and Visual Conditions), then a second step was 

taken. Another LMEM l was run in order to report all pairwise comparisons. Specifically, this 

was achieved by re-fitting the LMEM from the first step, changing the contrasts for the 

variable “group” to a simple coding scheme, setting the Writing Condition as the baseline 

(first contrast: Typing coded as +2/3, Visual and Writing as -1/3; second contrast: Visual 

coded as +2/3, Typing and Writing as -1/3). 

 In all LMEMs, for both RT and accuracy analyses, p-values were obtained from 

bootstrapping (1,000 replications) the regression models, providing confidence intervals 

around the estimated beta-coefficients (Kuznetsova, Brockhoff, & Christensen, 2017). As a 

result, significance is reported as either p < 0.001, p < 0.01, p < 0.05, p < 0.1, or p > 0.1, 

reflecting whether the estimated coefficient fell outside of the 99.9% confidence interval, 

99% confidence interval, and so forth. The random-effects included for each model were 

determined based on model comparisons of goodness-of-fit (chi-squared tests) based on 

backward testing procedures: a maximal random effects-structure was iteratively reduced, 

leaving only those which improved model fit in the final reported model (Baayen et al., 2008). 

The random-effects ultimately included in the best-fitting models are reported with the 

results in Chapters 3 and 4. Measures of variance explained are provided by the R package 

“MuMIn” (Bartón, 2018), giving both the amount of variance explained by the fixed-effects 
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alone (marginal R2) and the combination of the fixed- and random-effects together 

(conditional R2). 

Additional details, including the specific fixed-effects included to analyze each 

behavioral task, are reported below for each behavioral assessment (see section I. 

“Behavioral Methods”). 

 

Analyses of Learning Trajectory 

Letter Recognition Task—In order to determine how quickly participants progressed on 

the letter recognition task, both accuracy and RT were analyzed. The fixed-effects include 

condition (Typing, T; Visual, V; Writing, W), % of training completed, trial order, and RT on 

previous trial, and the interaction of condition X % training completed. The terms of interest 

are the interaction terms, which reflect whether participants in one condition progressed 

more rapidly than another. It should be noted that, because participants were trained until 

reaching criteria (see section I. “Behavioral Methods”), any differences in rate of learning 

were driven by differences in the early sessions (i.e., all final assessments were near-ceiling 

performance). 

Number of Training Sessions—As a more straight-forward measure of the rate of learning, 

a simple one-way ANOVA was conducted to assess differences in the mean number of 

training sessions required to reach criteria on the letter recognition task. Specifically, the 

dependent variable was the number of training sessions, with one between-participant 

variable being learning condition. 
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Analyses of Learning Generalization & Retention  

Measures of how well the training tasks generalized to other letter processing tasks were 

drawn from: (1) the Letter Naming, (2) Writing Letters to Dictation, (3) Spelling Words to 

Dictation, (4) Reading Words, and (5) Novel Font Letter Recognition tasks. The measures of 

retention, collected at the follow-up time point, included: (1) Letter Recognition, (2) Letter 

Naming, and (3) Writing Letters to Dictation. All measures of generalization and retention 

were analyzed as described under “General Analysis Approach” with LMEM, and included 

the following fixed-effects as appropriate: trial order, RT on previous trial, and learning 

condition (Typing, T; Visual, V; Writing, W). Unless noted otherwise below, these were the 

only fixed-effects included for analyses of these tasks. For measures of retention, the actual 

number of days between the post-test and the follow-up were always included as well. 

Spelling Words to Dictation—Additional variables included Word Length and Word 

Familiarity (i.e., whether the word was including during training). 

Reading Words—Additional variables included word length and word familiarity (i.e., 

whether the word was during training). Because responses were scored in terms of the % of 

letters correct, each word’s score was weighted as a series of binomial trials equal to its 

length (e.g., a 4-letter word scored as 50% correct was modeled as four trials, two 0’s and 

two 1’s).  

 

Analysis of Same/Different Judgment Task 
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The Same/Different Judgement task is key for addressing questions related to the content of 

letter representations, and how these are affected by learning experiences. This task 

provides behavioral evidence of how letter perception is affected by learning experience, and 

reveals the multiple representations of letters, both sensory/motor and amodal. The basic 

assumption underlying the Same/Different Judgement task is that longer RTs to decide that 

two letters are different reflects greater similarity between those two letters. Therefore, 

differences in RT across responses to different pairs of letters are accounted for by 

simultaneous multiple regression, with predictors that index the similarity of pairs of letters 

along different dimensions (e.g., visual similarity, motoric similarity, etc.). 

The pre and post training Arabic letter data sets were analyzed separately. The pre-

training results were combined across participants in all learning conditions and analyzed 

to determine (1) which letter representations were perceived by and influenced 

performance for naïve observers, and (2) to verify that no significant differences existed 

between participants across the three learning conditions, prior to training. The post-

training results were analyzed similarly, except the goal was to determine whether, after 

completing the training, there were any significant differences in letter perception 

attributable to the different learning conditions. Each learning condition was also analyzed 

individually at the post-test time point, in order to fully interpret any significant interaction 

terms. 

Specifically, the dependent variable was RT in response to (correct) “different” 

judgments were analyzed with LMEM (following Wiley et al., 2016) . RT data were fit as a 

Gamma distribution (identity link) using generalized LMEM (see Lo & Andrews, 2015 for a 
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similar approach to RT analysis). No analyses were conducted of accuracy due to near-ceiling 

performance at both time points (see Chapter 4). The following fixed-effects were included: 

learning condition (Typing, T; Visual, V; Writing, W), trial order, RT on previous trial, and 5 

predictors of letter representational similarity: low and higher level visual representations 

(i.e., pixel overlap and visual feature similarity), motoric representation, phonological 

representations (letter name), and amodal representation (symbolic letter identities, SLIs). 

The five representational similarity measures were computed as follows: 

Low Level Visual Representations (Pixel Overlap)—Each letter-shape was overlaid on 

each of the others, exactly as they were presented in the scanner, and the percentage of 

overlapping pixels was used, indexing a low-level, retinotopic measure of visual similarity. 

Higher Level Visual Representations (Visual Features)—Following Wiley, et al., (2016), 

each letter-shape was decomposed into its constituent visual features (e.g., oriented lines, 

curves, intersections, terminations, etc..), and the similarity of each pair of letter-shapes on 

this dimension was calculated as the number of features in common, divided by the total 

number of features across the two letter-shapes.  

Motoric Representations (Motor Bistrokes)—The same process used to computer visual 

feature similarity was used, except the constituent motor features used here were “bistroke” 

features, i.e., ordered pairs of strokes that indicate direction of motion. For example, the 

letter-shape “L” consists of just two strokes (downward and rightward), but these define a 

series of three ordered bistroke features: (1) initial-downward, (2) downward-rightward, 

and (3) rightward-final. The letter-shape “T” consists of four bistrokes: initial-downward, 
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downward-lift, lift-rightward, and rightward-final. The pair “L”-“T” thus shares two 

bistrokes (initial-downward and rightward-final) out of five, for a predicted similarity of 0.4. 

Phonological Representations (Letter Names)—Replicating the methods used elsewhere 

(Rothlein & Rapp, 2017; Wiley, Wilson, & Rapp, 2016), letter name similarity was computed 

as the number of shared phonological features in the letter names. For example, the letter 

name for “B” consists of four features: for the consonant /b/: voiced, bilabial, stop, and the 

vowel /i/: close, central, unrounded. The letter name for “P” is the same except for the 

consonant being voiceless instead of voiced. The letter name similarity of the pair “B”-“P” is 

thus 0.83 (10 out of 12 features in common). 

Amodal Representations: Symbolic Letter Identities (SLIs)—Each pair of letters were 

effects-coded as either +1 (same identity, i.e., allographs of the same letters) or -1 (different 

identity).  

 

IV. Neuroimaging Analyses 

The two neuroimaging tasks were used in tandem to investigate the neural activity in 

response to viewing Arabic letters. Briefly, the LLN (Letter Learning Network; see section II. 

“Neuroimaging Methods”) task was used to localize regions of interest, specifically areas of 

cortex that showed significant changes in activity from pre- to post-training, selectively for 

Arabic letters. The results of the LLN analyses were, in turn, used to restrict the areas within 

which RSA was conducted as a searchlight analysis. The RSA approach was used specifically 

for data from the SDT (Symbol Detection Task) collected from the post-training MRI session. 

Given that the questions addressed by the RSA analysis depend upon how the learning 



CHAPTER 2 – METHODS & ANALYSES 

 89 

conditions affected the letter representations, and in particular representations that require 

learning, the pre-training data are not presented in this dissertation. 

Pre-processing of all MRI data was carried out in BrainVoyager QX 2.3 software 

(Maastricht, Netherlands). The participants’ brains were aligned to AC-PC space within 

BrainVoyager, and then normalized to MNI common space using the SPM toolbox in MATLAB 

(Mat Works, Inc.). Details of the subsequent analyses are as follows. 

 

Defining Regions of Interest 

Using data from the LLN task, letter-learning regions were defined as those voxels 

(voxelwise FDR corrected p < 0.05) in which, based on the 2 pre-training and 2-post training 

runs of the SDT task, the following contrasts were significant: Arabic letters Post-Pre > 

Roman letters Post-Pre. In this way, the letter-learning regions of interest were defined as 

all voxels that showed experience- dependent changes in activity specifically related to 

Arabic letters. 

 The contrast used to determine the LLN did not include any voxels in the canonical 

VWFA region, which is known to be key to written language processing (parts of the fusiform 

and inferior occipital gyri, bilaterally; see Chapter 1). As will be discussed later (Chapter 4) 

this was presumably due to the high level of activation in this region of cortex at the pre-

training time point, such that there was not a significant increase in activity across time 

points. To nonetheless identify this potentially relevant region, a separate contrast was used 

to identify letter-processing voxels within this region. Specifically, an anatomical ventral 

occipital-temporal (vOTC) mask was first applied to the concatenation of all four runs of the 
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LLN task (2 runs pre-training and 2 runs post-training). Then, within this anatomical mask, 

the contrast of Arabic letters > checkerboards (voxelwise FDR corrected p < 0.05) was used 

to identify relevant areas vOTC, and all RSA analyses conducted within the LLN were 

additionally conducted in this vOTC region. 

 

RSA: Learning Experience Analyses 

Representational similarity analysis (Kriegeskorte et al., 2008) treats the pattern of neural 

activity associated with experimental conditions as points in space across a span of voxels. 

The span of voxels under consideration may be of any shape and size of interest to the 

experimenter. More generally, the dependent measure in RSA is a dissimilarity measure that 

reflects differences in the neural response to different stimuli. It furthermore allows for 

investigating how these observed patterns of neuronal responses relate to hypothesized 

cognitive models, i.e., the expected patterns of responses given some predictive model. In the 

context of this dissertation, the patterns of activity in response to different Arabic letters is 

compared to the patterns that would be expected, if the underlying neural activity were 

reflecting information about the different sensory/motor and amodal representations. This 

is specifically implemented here by the use of LMEM regression, as described in detail below. 

The 4 runs of Arabic letter from the Symbol Detection Task from the post-training 

time point were concatenated separately for each participant, and following pre-processing 

as described above, the beta values were extracted from all voxels within the regions of 

interest identified in both the LLN and vOTC. A searchlight method was then used 

(searchlight volume = 7 voxels) with the following steps: (1) For each participant, each 
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searchlight volume yielded a 12x7 (letters X voxels) matrix of beta values; (2) These matrices 

were used to compute an observed neural similarity measure between each pair of letters, 

by calculating the (Euclidean) distance between the vector of beta values for each letter with 

every other letter (12 letters = 66 pairwise combinations); (3) This in turn resulted in a 

vector of length 66 for each participant (the neural similarity between each pair of letter-

shapes) for each searchlight volume, and these were concatenated across-participants to 

provide the dependent measures for a LMEM analysis in each searchlight volume; (4) Using 

LMEM, multiple regression models were computed at each searchlight volume. The fixed 

effects were as follows:  

Predictors 1-5—The predicted measures of similarity, which were the same 5 measures of 

letter representational similarity used to analyze RT in the Same/Different Judgement task: 

two measures of visual similarity (pixel overlap, and shared visual features), motoric 

similarity (shared motor features), letter name similarity (shared phonological features), 

and symbolic letter identity. 

Predictor 6—A control variable to account for data artifacts that were not otherwise 

adjusted for in the pre-processing (e.g., motion artifacts, biorhythms). This control variable 

was calculated as follows: (1) A ventricle mask was construct for each participant. (2) Beta 

values for each letter-shape for each voxel within the ventricles were extracted. (3) An 

observed neural similarity measure was computed for each participant for each pair of letter-

shapes, using the same method as already described, with the exception that the Euclidean 

distance was calculated across all voxels in the ventricle regions, instead of in 7 voxel 

searchlight volumes. This provided a measure of the neural similarity of the letter-shapes 
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entirely unrelated to any functional neural activity or cognitive processing (given the nature 

of activity that is recorded from within the ventricles). Including these measures as a control 

predictor allows for statistical control of some amount of observed, neural similarity that is 

in fact explained by activity in the ventricles and thus, not due to representational similarity 

of the letters in any cognitive dimension10. 

Predictor 7—Condition (Typing, T; Visual, V; Writing, W) was included as a main effect. All 

pairwise comparisons were computed: Typing versus Visual (TvV), Typing versus Writing 

(TvW), and Visual versus Writing (VvW)11. 

Predictors 8-17: The interaction terms between each of the 5 predicted similarity measures 

on the one hand, and the pairwise contrasts between the learning conditions. For example, a 

beta-value and p-value was computed for the interaction of Motoric Similarity X Condition 

(TvV), reflecting a difference in the association between observed neural similarity and 

predicted motoric similar for participants in the Typing Condition, relative to the Visual 

Condition. 

The LMEM analyses thereby provide, for each searchlight volume, beta values 

indicating the direction and magnitude of the relationship between neural similarity and 

predicted similarity measures. This includes both main effects (i.e., on average across all 

three learning conditions) and interactions between learning conditions. These are termed 

                                                        

10 The control predictor was seen to relate positively with neural similarity, significantly so in many voxels, suggesting 

that indeed some amount of variance in the observed patterns of neural similarity is due to un-accounted for factors 

relating to data artifacts such as motion and biorhythms. 
11 Given a categorical variable with 3 levels, necessarily only two contrasts can be computed within a single regression 

model. Therefore, each LMEM at each searchlight volume was in fact computed twice, changing the contrasts from 

the first to the second iteration, in order to provide p-values for each of the three pairwise contrasts. 
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“Learning Experience Analyses”, as they reveal information about the differences 

across learning conditions. Given the a priori expectation that there would be significant 

differences in the patterns of activity across learning experiences, each group (T, V, W), was 

also analyzed individually, in order to provide additional information for interpreting 

significant interactions. For example, finding a significant interaction of Motoric Similarity X 

Group (TvV), indicates that the relationship between neural similarity and motoric similarity 

was significantly different for those who learned by typing compared to those who learned 

by visual study. By also assessing the two groups separately, it is possible to determine the 

source of the interaction. For example, it could be due to both groups showing a significant 

effect of Motoric Similarity that was stronger for one group, or due to only one group 

showing a significant effect, or to the groups showing effects in the opposite direction, etc. 

Finally, to address the issue of multiple comparisons in the searchlight method (4,535 

voxels were included in the LLN and an additional 1,766 in the vOTC regions), a cluster size 

threshold correction was used. Specifically, a voxelwise uncorrected (i.e., primary threshold) 

p < 0.005 was used, and the BrainVoyager Cluster-Level Statistical Threshold Estimator 

plugin was then applied to determine the minimum number of contiguous voxels needed to 

constitute a significant cluster, at p < 0.05.  

 

RSA: Behavioral Performance Analyses 

The same approach used to analyze the relationship between learning conditions and letter 

representation types (i.e., the Learning Experience Analyses) was also used to assess 

whether there were differences in representational similarity across participants that was 
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related to their behavioral performance—thus these are termed “Behavioral 

Performance Analyses”. In other words, whereas the Learning Experience Analyses 

provide information as to how letter representations differed as a consequence of learning 

condition, the Behavioral Performance Analyses give an indication as to how the letter 

representations were implicated in letter processing tasks. For example, the Learning 

Experience Analyses could reveal a cluster of voxels sensitive to visual letter representations 

in the occipital lobe, and that this pattern of activity was unique to participants in the visual 

learning condition. The Behavioral Performance Analyses could further reveal that 

participants who were more accurate at letter recognition were also those who showed the 

strongest visual letter representations in those voxels. Taken together, then, those 

hypothetical results would suggest not only that the visual learning condition was associated 

with stronger visual representations in a particular brain region, but that there was 

furthermore an association between that type of representation in that area and successful 

letter recognition performance. 

Specifically, four measures of behavioral performance were tested, all based on the 

post-training time point: RT on the Letter Recognition task, RT on the Letter Naming task, 

accuracy on the Writing Letters to Dictation task, and accuracy on the Reading Words task. 

RT instead of accuracy was chosen for the Letter Recognition and Letter Naming tasks, 

because there was relatively little variance on those tasks in terms of accuracy (and in fact, 

accuracy was near ceiling on those tasks for the 12 letter-shapes included in the 

neuroimaging task). Four additional LMEM were computed in each searchlight volume, 

identical to the ones described for the RSA Learning Experience Analyses, except in place of 

the group categorical variable there was a continuous measure of behavioral performance. 
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V. Primary Aims 

As a summary of this chapter, each of the primary questions of the dissertation are revisited 

here, in terms of how the methods and analyses allow for those questions to be addressed. 

There are elements of the experimental design itself, as well as the data analysis approach, 

contribute to evaluating whether writing experience may be more beneficial for letter 

learning than non-motor experience (see Chapter 1), to addressing shortcomings in the 

existing literature, and ultimately to answering these three questions: 

 

Question 1: Are the effects of writing experience due to motor learning per se, or to other 

variables confounded with the writing experience? 

 This question is addressed by the experimental design itself, which was developed to 

directly rule out a number of potential confounding variables that otherwise leave open the 

possibility that effects of the learning conditions are unrelated to the motor or non-motor 

nature of the experience. Specifically, the following elements of the experimental design 

address the following issues: (1) Selective rehearsal displacement: the study was conducted 

as a between-participants design to rule out the possibility that within-participant designs 

may give a benefit to letters learned by writing, relative to letters learned by non-motor 

experience because of lower performance on the latter. (2) Variability of input: multiple 

fonts were presented to participants in all conditions in order to reduce the likelihood that 

writing experience influences letter learning only because typing and visual learning 

conditions provide no variability in exemplars for learning. (3) To address the possibility 
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that writing experience is beneficial because of visual learning from observing the strokes 

used to write letters, as opposed to motor learning from producing those strokes, animated 

videos of the letters being written were presented to participants in all conditions.  

  

   

Question 2: Does writing experience recruit only sensory/motor representations? 

 The use of two techniques that provide information about the content of the letter 

representations, the LMEM analysis of the Same/Different Judgment task and the RSA 

“Learning Experience Analyses”, are key to addressing this question. They do so by revealing 

the types of representations (in behavior or neural activity) that are associated with each of 

the learning conditions. Any evidence for SLI representation is particularly important for 

determining whether the effects of writing experience involve recruiting amodal letter 

representations. 

 

Question 3: Which types of representations, motoric or otherwise, underlie the behavioral 

benefits of writing experience?  

 The final question is addressed by the RSA “Behavioral Performance Analyses”, as 

they in particular examine how patterns of neural activity relate to performance on the 

behavioral tasks. The four behavioral measures which were included as interaction terms in 

the RSA were: the RT on letter recognition, the RT on letter naming, the accuracy on spelling 

words to dictation, and the accuracy on word reading. The logic is again as follows: whereas 
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the “Learning Experience Analyses” provide information about the types of letter 

representations that are associated with patterns neural activity generally, and whether this 

differs as a consequence of learning condition, the “Behavioral Performance Analyses” 

evaluate how the letter representations differ according to individual differences in the 

participants’ abilities on assessment tasks. In this way, these analyses provide an 

opportunity to identify: (1) clusters of activity corresponding to certain types of letter 

representations, (2) how the representations in those clusters are affected by learning 

condition, and (3) how those various representation are associated with specific behavioral 

measures (e.g., fast letter recognition, poor spelling performance, etc). 
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Chapter 3 – Results: Learning Letters 

This chapter reports the results of the analyses of behavioral tasks administered over the 

course of the longitudinal training study (see Chapter 2, section I. “Behavioral Methods”). 

These results are most relevant to answering the first of the three major questions addressed 

in the dissertation: Are the effects of writing experience due to motor learning per se, or to 

other variables confounded with the writing experience? The analyses first evaluate the 

effects, if any, of the writing experience on letter learning.  

To briefly review: Chapter 1 described how a number of studies have indicated that 

learning letters via writing experience, as opposed to non-motor experiences, provides 

behavioral benefits for certain letter processing tasks. In addition, other studies have 

reported that sensory/motor cortex activates in response to passive letter viewing, but only 

among observers who have had writing experience. These two basic results have been taken 

together as evidence for a strong embodied cognition claim that letter representations 

reduce to sensory/motor representations. However, a number of unresolved issues call into 

question how much the current findings actually support theories or grounded cognition 

more generally. Some grounded cognition views allow non-sensory/motor representations, 

but nonetheless claim that sensory/motor representations are fundamental for all 

conceptual representations, both concrete and abstract, and are skeptical as to the existence 

of amodal representations. The assumptions necessary in order to claim that the writing 

experience/letter learning evidence supports grounded cognition theories can be 

characterized as follows: (1) that the behavioral effects of writing experience stem from the 

writing process itself, and not incidental factors related to the experimental conditions; (2) 
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that motoric, not amodal, letter representations are recruited during letter perception; and 

(3) that there is a causal link between the motoric representations, on the one hand, and the 

behavioral effects of writing experience, on the other.  

The results of this chapter test in particular the first assumption described above, and 

contribute to testing the second and third assumptions in tandem with additional evidence 

reported in Chapter 4. The details of the methods and analyses are in Chapter 2, including 

the general approach to analysis (III. “Behavioral Analyses”, section “Linear Mixed Effects 

Models: General Analysis Approach”). This chapter is divided into three main sections, one 

each for: learning trajectory, generalization of learning, and retention of learning. Each of 

these sections concludes with interim discussion of the results. A final section summarizes 

how letter learning was affected, in terms of behavioral outcomes, by the three different 

learning conditions. 

  

Demographics  

In total, 42 participants enrolled in the training study, 27 of whom were also enrolled in the 

neuroimaging sessions. 36 participants completed the training study through the post-

training time point assessments, 33 of whom returned for a follow-up session approximately 

one month later. Of the 27 participants enrolled in the neuroimaging, 24 completed both pre- 

and post-training scans. Basic demographics of the participants, with enrollment numbers 

per learning condition, are reported in Table 3-1. All participants were native English 

speakers, with no previous knowledge of Arabic or any language written in the Arabic 

alphabet (e.g., Persian, Urdu). All participants signed informed consent according to Johns 
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Hopkins IRB protocols. All participants were paid $10 per behavioral session (including pre-

training assessments), and received a $10 bonus for returning for the one-month follow-up. 

Individuals who participated in neuroimaging sessions received $50 in compensation per 

scan. Participants who completed the follow-up session additionally completed a debriefing 

questionnaire (see Appendix X). 

Table 3-1. Participant demographics. T = Typing, V = Visual, W = Writing. 

 

 

I. Learning Trajectory 

Two analyses, (1) Time to Reach Criterion and (2) Training Trajectory, were conducted to 

assess the rate at which participants progressed on their letter recognition ability, and 

whether this rate differed depending on the learning condition. A third analysis, (3) Post-

training Letter Recognition, assesses performance across the learning conditions, upon 

reaching the training criteria. These three analyses were conducted on data from the Letter 

Recognition Task that consisted of a 4AFC test, with an auditory cue of the letter name and 

visually similar letter distractors; the details can be found in Chapter 2 (I. “Behavioral 

Methods”, section “Behavioral Assessments”). Also, the details of these analyses can be found 

in Chapter 2 (II. “Behavioral Analyses”, section “Analyses of Learning Trajectory”). 

 

Learning experience Enrolled (female) Age (sd) Education (sd)
Completed 

post-tests

Completed 

follow-up

T 14 (11) 21.7 (2.6) 15.8 (1.4) 12 11

V 14 (10) 21.1 (4.6) 15.2 (1.8) 12 10

W 14 (11) 21.6 (3.1) 15.8 (2.2) 12 12
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1. Time to Reach Criterion 

Figure 3-1 reports the time to reach criteria, measured in terms of the number of training 

sessions, for each learning condition. On average, participants in the Writing condition 

required the least amount of training (W, 3.67 sessions), followed by the typing (T, 3.92) and 

Visual Conditions (V, 4.25). However, a one-way ANOVA of the effect of group (T, V, or W) 

revealed no significant effect, F(2, 33) = 0.63, p = 0.54. 

 

Figure 3-1. Time to reach criteria on letter recognition task. T = Typing, V = Visual, W = 
Writing. 

 

2. Training Trajectory 

To get a finer-grained measure of the learning, the results of LMEM analyses of the Letter 

Recognition Task administered throughout the course of training are reported in Table 3-2, 

and the main predictors of interest are depicted in Figure 3-2, showing the LMEM predicted 

accuracy and RT (y-axes), respectively, as a function of the percentage of training completed 

(x-axis) for each of the learning conditions.  
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The results reveal that the rate of improvement in accuracy (Table 3-2, Figure 3-2 left 

panel) was significantly slower for the Visual Condition compared to both Typing (p = 0.01) 

and Writing (p = 0.02), with no significant difference between Typing and Writing (p = 0.61). 

In terms of RT (Table 3-2, Figure 3-2 right panel), there was a significant main effect of 

Condition: on average across training, the Typing Condition was slower on letter recognition 

compared to the Writing Condition (p < 0.001), which was slower compared to the Visual 

Condition (p < 0.001). In contrast, the rate of improvement in RT was slower for in the 

Writing Condition compared to the Visual Condition (p < 0.001), which in turn was slower 

than the Typing Condition (p < 0.001). 

Table 3-2. LMEM of the rate of improvement on the letter recognition task over the course 
of training, for accuracy (left panel) and RT (right panel). Random effects included 
intercept and slope for trial order and % training, by-participants, and intercept and 
Condition, by-items. T = Typing, V = Visual, W = Writing. *** p < 0.001, ** p < 0.01, * p < 
0.05, . p < 0.1. 

 

Fixed effects: Estimate Std. Error z-value Pr(>|z|) Fixed effects: Estimate Std. Error z-value Pr(>|z|)

(Intercept) 2.19177 0.25027 8.758 <0.001 *** (Intercept) 2505.233 2.306 1086.3 <0.001 ***

TvW -0.13663 0.4144 -0.33 0.7416 TvW -213.652 2.214 -96.5 <0.001 ***

VvW 0.22788 0.42796 0.532 0.5944 VvW 306.193 4.322 70.8 <0.001 ***

TvV 0.18226 0.21787 0.837 0.40285 TvV -121.184 2.777 -43.6 <0.001 ***

% training 1.32352 0.08325 15.898 <0.001 *** % training -164.009 2.667 -61.5 <0.001 ***

trial order 0.15364 0.03268 4.701 <0.001 *** trial order -39.241 2.111 -18.6 <0.001 ***

TvW:% training 0.08366 0.16332 0.512 6.09E-01 previous trial RT 117.883 2.176 54.2 <0.001 ***

VvW:% training -0.36792 0.1628 -2.26 0.0238 * TvW:% training 13.914 2.467 5.6 <0.001 ***

TvV:% training -0.22578 0.08339 -2.707 0.00678 ** VvW:% training -86.683 2.94 -29.5 <0.001 ***

TvV:% training -58.867 2.236 -26.3 <0.001 ***

marginal R^2 conditional R^2 R^2

0.2385159 0.5690961 0.4339036
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Figure 3-2. Rate of improvement on the Letter Recognition task over the course of training, 
depicted as predicted responses from the LMEM analyses of accuracy (y-axis, left panel) 
and RT (y-axis, right panel) across the percentage of training completed (x-axis). T = 
Typing, V = Visual, W = Writing. 

 

3. Post-training Letter Recognition 

The post-training letter recognition task evaluated letter recognition ability at the end of 

training for the three learning conditions. The Letter Recognition Task was administered at 

the beginning of the post-training session, which itself took place 2-5 days after participants 

reached >90% accuracy and >25% reduction in RT on the task. 

The average accuracy and RT by learning condition are depicted in Figure 3-3 (left 

and right panels, respectively), with the results of the LMEM analysis in Table 3-3. For 

accuracy, the analysis verifies that after reaching criteria, there was no significant difference 

between learning conditions (Table 3-3, Figure 3-3 left panel), with all groups achieving high 

accuracy (96%, 95%, and 97% respectively for T, V, and W). For RT (Table 3-3, Figure 3-3 

right panel), there was a significant main effect of group, with the average RT on letter 
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recognition for those in the Typing Condition (2130ms) significantly slower than in the 

Visual Condition (1892ms), which in turn was significantly slower than in the Writing 

Condition (1795ms). Despite this main effect of group, it should be noted that the 

improvement in RT across training sessions was significant across the three learning 

conditions (Table 3-2 right panel, effect of “% training completed”, p < 0.001). 

Table 3-3. LMEM of the post-training Letter Recognition task, for accuracy (left panel) and 
RT (right panel). Random effects included intercept and slope for trial order and % 
training, by-participants, and intercept and Condition, by-items. T = Typing, V = Visual, W = 
Writing. *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1. 

 

 

 
Figure 3-3. Grand mean of accuracy (left panel) and RT (right panel) by Condition on the 
post-training time point Letter Recognition task. Error bars reflect standard error of the 
mean. T = Typing, V = Visual, W = Writing. 

  

 

 

Fixed effects: Estimate Std. Error z-value Pr(>|z|) Fixed effects: EstimateStd. Errorz-value Pr(>|z|)

(Intercept) 4.08154 0.26109 15.633 < 0.001 *** (Intercept) 2386 19 123.24 < 0.001 ***

TvV 0.05232 0.23466 0.223 0.82356 TvV 362 12 31.4 < 0.001 ***

(T+V)vW 0.16616 0.14026 1.185 0.23614 TvW 322 5 62.6 < 0.001 ***

trial order 0.30678 0.09791 3.133 0.00173 ** VvW 141 6 23.3 < 0.001 ***

trial order -105 14 -7.41 < 0.001 ***

previous trial RT7.43 9 0.84 0.403

marginal R^2 conditional R^2 R^2

0.02862526 0.37861818 0.43
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Discussion: Learning Trajectory 

In terms of the learning trajectory, the results were mixed. The critical condition of interest, 

the Writing Condition, resulted in performance that was in between the Typing and Visual 

Conditions in terms of the rate of improvement on letter recognition, for both RT and 

accuracy. The results reveal the following patterns: (1) in terms of letter recognition 

accuracy, typing training resulted in the worst initial performance, but subsequently showed 

the greatest improvement, ultimately allowing participants in that condition to catch up to 

the other two in terms of letter recognition accuracy; (2) visual training resulted in the best 

initial performance, both RT and accuracy, but progress was subsequently slower, and thus 

participants in that condition ultimately required more time to reach criteria; (3) writing 

training resulted in performance in between that of the other two conditions, with the total 

amount of time to reach criteria being the shortest. Importantly, on the post-training letter 

recognition task, all participants performed at a high level of accuracy on letter recognition, 

with no significant differences across conditions. However, participants trained by writing 

were significantly faster than participants in the other two conditions at the post-training 

time point. This is particularly striking given that those writing participants received less 

training on average, as they were fastest to reach criteria.  

 The pattern of results reveals different learning trajectories as a consequence of the 

training tasks, and upon close inspection, a nuanced answer to the question of whether one 

learning experience is more beneficial than the others. Clearly, if only one hour of training 

were available, the visual study condition would be preferable: both initial speed and 

accuracy were best in this condition. However, the Typing and Writing conditions had 

significantly faster rates of improvement on letter recognition, and ultimately required less 
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time to reach criteria. This may stem from the degree of “desirable difficulty” of these two 

training tasks (Bjork, 1994; McDaniel & Einstein, 2005). Briefly, the notion is that certain 

difficulties that “slow the apparent rate of acquisition can enhance post-instruction recall 

and transfer” (Bjork, 2013). The tasks demands of the Typing and Writing Conditions, while 

apparently slowing the initial acquisition of letter recognition, may introduce a degree of 

desirable difficulty into the learning process. Under such an account, the slower 

improvement of the Visual Condition after the first session was due to weaker retention from 

one session to the next, whereas the other learning conditions were relatively better at 

supporting retention. In other words, more “relearning” across training sessions may have 

been needed in the Visual Condition relative to the other two, and thus an apparent initial 

advantage (i.e., after one hour of training) was attenuated with repeated practice. That the 

visual training task was easier (as measured by amount of time spent to complete the 

probe/target task, as well as accuracy on this task; see Appendix C) supports this conclusion. 

The concept of desirable difficulty relates not only to retention but also to generalization (i.e., 

transfer), and thus will be returned to in the next section in the discussion of how well 

training generalized across tasks. 

 

II. Generalization of Learning 

This section reports on the analyses of how well the training generalized to other letter 

processing tasks besides letter recognition, and whether generalization was affected by the 

learning condition. To address these questions, we consider the results of five tasks on which 

the participants were not trained and/or never received feedback. All of these were 
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administered after the participants had reached criteria on letter recognition, either at the 

post-training or follow-up time point. These tasks are reported in order of increasing 

generalization, i.e., beginning with the task that was most similar to the letter recognition 

task. 

 

1. Novel Font Letter Recognition 

Although this task was only administered at the follow-up time point, it serves as a measure 

of generalization because it tested the participants’ ability to recognize the trained letters in 

fonts they had never been exposed to previously. The descriptive statistics are depicted in 

the left panel of Figure 3-4 and the LMEM analysis is reported in the left panel of Table 3-4. 

The fonts tested in this task are pictured in Figure 2-5 (and can be compared with the trained 

fonts in Figure 2-2). 

There were no effects of learning condition on accuracy, with similar letter 

recognition for each condition, although writing training trended to result in the highest 

accuracy (82%, 83%, and 88%, respectively for T, V, and W). However, there was a significant 

effect of learning condition on RT (Table 3-4, Figure 3-4 right panel), with the Writing 

Condition leading to the fastest RT (2437ms), significantly faster than the Visual Condition 

(2528ms, p < 0.001), which in turn was significantly faster than the Typing Condition 

(2927ms, p <0.001).  
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Table 3-4. LMEM of performance on the Novel Font Letter Recognition task, for accuracy 
(left panel) and RT (right panel). Random effects included intercept and slope for trial 
order, by-participants, and intercept and Condition, by-items. T = Typing, V = Visual, W = 
Writing. *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1. 

 

 

 

Figure 3-4. Grand mean of accuracy (left panel) and RT (right panel) by Condition on the 
follow-up, Novel Font Letter Recognition task. Error bars reflect standard error of the 
mean. T = Typing, V = Visual, W = Writing. 

 

2. Writing Letters to Dictation 

The descriptive statistics for the Writing Letters to Dictation task are reported in Figure 3-5 
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chapter). This task differed from the writing task that was used during training for the 

Writing Condition, in that in this instance there were no visual stimuli presented, and thus 

the letters had to be drawn from memory. The participants were reminded that most letters 

had 2 allographs, and were prompted to write both of them if they could recall them. 

There was a significant effect of learning condition: specifically, the Writing Condition 

resulted in better performance compared to both the Typing (p = 0.02) and Visual (p < 0.001) 

Conditions, with the Typing Condition marginally outperforming the Visual Condition (p = 

0.07). An analysis of the errors revealed that mirror-reversals were the most common error 

type and, in fact, participants in both the Typing (5% of responses) and Visual (11% of 

responses) cConditions were more likely to produce these errors than those in the Writing 

Condition (2% of responses), a significant difference by LMEM analysis (p < 0.01). 

Table 3-5. LMEM of performance on Writing Letters to Dictation at the post-training time 
point (left panel) and follow-up (right panel). Random effects included intercept, by-
participants, and intercept and Condition, by-items. T = Typing, V = Visual, W = Writing. *** 
p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1. 

 

 

Fixed effects: Estimate Std. Error z-value Pr(>|z|) Fixed effects: Estimate Std. Error z-value Pr(>|z|)

(Intercept) 1.6373 0.1905 8.593 <2.00E-16 *** (Intercept) -0.1281 0.1722 -0.744 0.4571

TvV -0.78 0.4274 -1.825 0.067991 . days since post-test -0.2815 0.1707 -1.649 0.0991 .

TvW -1.0531 0.4505 -2.338 0.0194 * TvV -0.1161 0.2064 -0.562 0.574

VvW -1.8335 0.4458 -4.113 3.91E-05 *** (T+V)vW 0.1306 0.1198 1.09 0.2757

marginal R^2 conditional R^2 marginal R^2 conditional R^2

0.1174106 0.2996246 0.03469425 0.20871945



CHAPTER 3 – RESULTS: LEARNING LETTERS 

 110 

 

Figure 3-5. Grand mean of accuracy for Writing Letters to Dictation at the post-training 
(left panel) and follow-up (right panel) time points, by Condition. Error bars reflect 
standard error of the mean. T = Typing, V = Visual, W = Writing. 

 

3. Spelling Words to Dictation 

The descriptive statistics for the Spelling Words to Dictation task are reported in Figure 3-6 

and the LMEM analysis in Table 3-6. On this task, the writing and Visual Conditions resulted 

in similar performance (76% and 72%, respectively,  p = 0.84), whereas the Typing Condition 

resulted in the worst performance (63% mean accuracy), on average producing significantly 

fewer correct letters compared to both the Visual (p = 0.02) and Writing (p = 0.03) 

Conditions.  

Table 3-6. LMEM of performance on Spelling Words to Dictation at the post-training time 
point. Random effects included intercept and slope for length, by-participants, and 
intercept and Condition, by-items. T = Typing, V = Visual, W = Writing. *** p < 0.001, **e p < 
0.01, * p < 0.05, . p < 0.1. 
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Fixed effects: Estimate Std. Error z-value Pr(>|z|)

(Intercept) 1.18695 0.2541 4.671 2.99E-06 ***

TvV 0.52607 0.23022 2.285 0.0223 *

TvW -0.95246 0.43824 -2.173 0.0298 *

VvW 0.09969 0.47871 0.208 0.835

word length -0.28692 0.1695 -1.693 0.0905 .

training word 0.02394 0.17824 0.134 0.8932

marginal R^2 conditional R^2

0.06018077 0.38123567



CHAPTER 3 – RESULTS: LEARNING LETTERS 

 111 

 

Figure 3-6. Grand mean of accuracy for Spelling Words to Dictation at the post-training 
time point, by Condition. Error bars reflect standard error of the mean. T = Typing, V = 
Visual, W = Writing. 
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Table 3-7. LMEM of performance on Letter Naming at the post-training time point. 
Random effects included intercept and slope for trial order, by-participants, and intercept 
and Condition, by-items. T = Typing, V = Visual, W = Writing. *** p < 0.001, ** p < 0.01, * p < 
0.05, . p < 0.1. 

 

 

 

Figure 3-7. Grand mean of accuracy (left panel) and RT (right panel) for the Letter Naming 
task at the post-training time point, by Condition. Error bars reflect standard error of the 
mean. T = Typing, V = Visual, W = Writing. 
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across learning Conditions (all p’s > 0.1). There was a significant interaction of the length 

effect with the learning Conditions. Specifically, the length effect was significantly larger for 

the Typing Condition compared to the Writing Condition (p < 0.05) and marginally larger 

compared to the Visual Condition (p = 0.056), with no difference between the Visual and 

Writing Conditions (p > 0.10). Separate analyses of the effect of length by Condition revealed 

that the length effect was only significant for the Typing Condition (p < 0.01), not for the 

visual or Writing Conditions (p’s > 0.1). The effect sizes reveal that the predicted decrease in 

accuracy for a 6-letter word relative to a 2-letter word was 50% for the Typing Condition, 

versus just 23% and 16% for the Visual and Writing Conditions. 

Table 3-8. LMEM of performance on Reading Words task at the post-training time point. 
Random effects included intercept and slope for length, by-participants, and intercept by-
items. T = Typing, V = Visual, W = Writing. *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1.  

 

Fixed effects: Estimate Std. Error z-value Pr(>|z|)

(Intercept) 0.28319 0.35247 0.803 0.4217

TvV 0.2668 0.39669 0.673 0.5012

TvW -0.98203 0.78925 -1.244 0.2134

VvW -0.44842 0.77432 -0.579 0.5625

Length -0.35333 0.1417 -2.493 0.0127 *

Familiar 0.03612 0.27514 0.131 0.8956

TvV:Length 0.17308 0.09038 1.915 0.0555 .

TvW:Length -0.4558 0.17898 -2.547 0.0109 *

VvW:Length -0.10965 0.17341 -0.632 0.5272

marginal R^2 conditional R^2

0.0434294 0.55114612
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Figure 3-8. Grand mean of accuracy (% letters correct) for post-training time point 
Reading Words task, by Condition. Error bars reflect standard error of the mean. T = 
Typing, V = Visual, W = Writing. 
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significantly outperformed by the participants in the Writing Condition on three measures, 

but themselves significantly outperforming those in the typing training on three measures. 

  

Table 3-9. Summary of the generalization of learning results, ranking the learning 
Conditions from best (1) to worst (3) performance. Highlighting reveals significant 
comparisons: gold = best/tied for best; silver = second best/tied for second best; bronze = 
worst performance. Cells without highlighting reflects no significant differences.. T = 
Typing, V = Visual, W = Writing. 

   

 The results of the measures of generalization are consistent with claims that writing 

experience provides benefits to letter learning, not seen with non-motor learning 

experiences like typing or visual study. Numerically, participants with writing experience 

performed the best on every measure of generalization, significantly better than those with 

typing experience on five tasks, and visual experience on three tasks. 

What insight do the results of the dissertation thus far provide into the nature of this 

apparent benefit of writing experience for learning letters? The main contribution of the 

dissertation is to provide insight into the content of letter representations, which have 

implications for the debate between grounded cognition and abstractionism. However, it 

must first be established that there are significant effects of motor experience. This 
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discussion therefore first returns to four accounts that were outlined in Chapter 1 (sections 

IV-VI), which provide explanations of letter learning benefits from the motor condition that 

appeal to factors other than the motor experience itself. .  

 

(1) Variable visual input—Although this concern was addressed here by presenting 

multiple fonts to participants in all three learning conditions, the novel font letter 

recognition task has bearing on this hypothesis because it tested the ability to recognize 

letters despite novel variation in their shapes. In this way it tests whether the perceptual 

letter categories differ across the learning conditions. While there were no differences in 

terms of accuracy on this task, the Writing Condition did result in significantly faster RT than 

the Visual Condition, which was in turn faster than the Typing Condition. The superior 

performance of the Writing Condition could possibly be attributed to additional variability 

of input from each participant’s own writing, above and beyond the multiple fonts that were 

presented, but then an explanation is needed as to why the Visual Condition outperformed 

the Typing Condition.  

 

(2) An effort account—The benefits of writing experience could potentially be attributed 

to training conditions which require more effort, or relatedly that provide more exposure to 

the stimuli, compared to other conditions (see Chapter 1, section IV,  24). However, it was 

shown in the previous section on the learning trajectory, that the typing training task 

required the most time to complete, and was the most challenging (as reflected by higher 

error rates in finding the correct keys on the keyboard, compared to completing the visual 
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training task). Additionally, participants in the Writing Condition most quickly reached 

criteria, and thus -on average- participants in that condition had the least amount of 

exposure to the letter stimuli. Therefore, a simple effort account is a poor explanation for the 

better generalization to various letter processing tasks, among participants in the Writing 

Condition—indeed, the effort account would seem to make precisely the wrong prediction 

of superior performance in the Typing Condition--which showed the poorest generalization-

- and the worst performance in the Visual Condition--which mostly outperformed the Typing 

Condition. 

 

(3) Transfer appropriate processing—The transfer appropriate processing account can 

fairly readily explain the findings of the writing letters to dictation task, given that this task 

was clearly most similar to the writing training task (the difference being that the 

generalization task required producing the shapes from memory, rather than by copying). 

Even so, the results provide insight into the nature of how writing experience benefits the 

ability to recall the shapes from memory and produce them by hand, because the Writing 

Condition outperformed the other conditions in a specific way: the result was largely driven 

by the high rate of mirror-reversal errors made by participants in the typing and especially 

the Visual Conditions. This suggests that one aspect of letter learning that is particularly 

supported by writing experience is the breaking of mirror invariance; this point is expanded 

upon in the discussion of the retention results (section III). More importantly, apart from the 

writing letters to dictation task, a transfer appropriate processing account does not readily 

explain the rest of the generalization results. Arguably the two results that are most 
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problematic for this are the letter naming task, where writing training resulted in 

significantly better accuracy than either of the other conditions, and the word reading task, 

where both writing and visual training outperformed typing training. Neither of these tasks 

involve any written production, and the participants were never trained or received any 

feedback on their ability to orally produce the letter names or sounds.  

 

(4) Distinctiveness processing account—According to the theory of distinctiveness 

processing, memories of actions carried out during study provide a heuristic by which 

recognition and recall performance is improved (see Chapter 1, section IV s 28-29). This is 

predicted to be true so long as the study actions were distinctive, meaning distinguishable 

from one another and non-arbitrarily related to the study items. Writing requires distinct 

motoric patterns for each letter, whereas the actions required to produce responses in the 

typing and visual study tasks were repetitive and arbitrarily related to the letter-shapes. This 

means that distinctiveness processing may well capture the relevant difference been writing 

training and non-motor training conditions. 

 The mechanism proposed to underlie distinctiveness processing relates to output 

monitoring; specifically, the claim is that during tests of recall and recognition fewer false 

memories arise, and the decision-making process is facilitated by the memory of having 

produced the items (or not, as it were). The faster letter recognition among writing-trained 

participants, including on the novel font task, is consistent with more efficient output 

monitoring. Specifically, if the (auditory) cue in the letter recognition task called to mind 

fewer possible responses for participants in the Writing Condition, then subsequent 



CHAPTER 3 – RESULTS: LEARNING LETTERS 

 119 

selection of the correct response would be expected to be faster. As such, the distinctiveness 

processing account can explain differences in RT as readily as it can differences in accuracy.  

Distinctiveness processing does predict that writing, but not typing or visual study, 

would provide benefits to learning letters—and this can be more simply thought of as 

suggesting that writing training provides an additional cue to recall. This is so because only 

writing results in producing a response that is non-arbitrarily related to the letter-shapes. 

The keyboard layout is arbitrarily related, and of course visual study tasks require even less 

distinctive motor responses. A learning condition where participants were instructed to 

produce the letter names would be expected to facilitate learning the names, but not the 

shapes. In fact, one study of the production effect (which is most commonly explained with 

a distinctiveness processing account; see Chapter 1) examined how learning face-name 

associations was affected by producing the names, which were visually presented, by oral 

production (Hourihan & Smith, 2016). It was reported that while memory of the names was 

improved by the production effect, memory of the faces themselves was not, and thus 

learning the associations between the faces and the names was not facilitated. The authors 

explained this as being due to only the names having been produced, and not the faces (which 

would require considerable artistic drawing ability on the part of the study participants). 

This suggests that writing the letters while learning them facilitates letter recognition 

because it improves recall of the letter-shapes—and moreover, it does so only to the extent 

that the motor strokes used to write letters helps distinguish them from one another. This 

also suggests that learning to associate the letter-shapes with the letter names would not be 

facilitated without oral production of the names. Therefore, the prediction of distinctiveness 

processing is that writing experience supports letter processing tasks specifically by 
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improving recall of the letter-shapes, but does nothing to aid learning the letter names or 

sounds. 

 

(5) Grounded versus abstract cognition—The prevailing account for why results such as 

those reported here, showing better letter learning with writing training compared to typing 

and visual training, is that writing alone develops motoric representations, which are 

necessarily recruited during letter processing, regardless of the specific task. It is the case 

that the Writing Condition resulted in numerically superior performance on all of the tasks, 

including tasks that do not require motoric representations (e.g., letter naming), but the key 

question concerns the type of representations that underlie this improved performance. This 

information is also critical for abstractionist theory, as it predicts the existence of amodal 

letter representations. The focus of Chapter 4 is thus on the content of the letter 

representations that were learned by the participants over the course of their training. 

Before proceeding to that, the results of the measures of learning retention are presented in 

the third and final section of this chapter. 

 

III. Learning Retention 

Three measures of how well learning was retained were conducted at the follow-up time 

point, approximately one month after the post-training time point. In all of these analyses, 

the actual number of days since training had elapsed were taken into account, particularly 

important given that there was a wide range (13-43 days) across participants, although the 
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average amount of time per learning condition was very similar. The results of each of these 

three measures is presented and followed by a final discussion of the entire chapter.  

 

1. Letter Recognition 

The descriptive statistics for Letter Recognition task administered at the follow-up time 

point, which was identical to that administered at post-training, are depicted in Figure 3-9 

and the LMEM analysis in Table 3-10. For both accuracy (Table 3-10, Figure 3-9 left panel) 

and RT (Table 3-10, Figure 3-9 right panel) there was a significant effect of the actual number 

of days between the post-training session and follow-up, with performance declining with 

time (p = 0.02 and p = 0.01, for accuracy and RT respectively). However, there were no 

significant effects of learning Condition. 

Table 3-10. LMEM of performance on the follow-up Letter Recognition test, for accuracy 
(left panel) and RT (right panel). Random effects included intercept and slope for trial 
order, by-participants, and intercept and Condition, by-items. T = Typing, V = Visual, W = 
Writing. *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1. 

 

 

Fixed effects: Estimate Std. Error z-value Pr(>|z|) Fixed effects: Estimate Std. Error z-value Pr(>|z|)

(Intercept) 2.8599859 0.32321 8.849 <2e-16 *** (Intercept) 2720.909 24.157 112.63 <2e-16 ***

days since post-test -0.645408 0.28205 -2.288 0.0221 * days since post-test 71.186 27.702 2.57 0.0102 *

TvV -0.000168 0.30593 -0.001 0.9996 TvV -101.255 69.122 -1.46 0.143

(T+V)vW -0.01198 0.18808 -0.064 0.9492 (T+V)vW -22.085 21.349 -1.03 0.3009

trial order -0.224969 0.15025 -1.497 0.1343 trial order -126.892 23.893 -5.31 1.09E-07 ***

previous trial RT 2.464 17.745 0.14 0.8896

marginal R^2 conditional R^2 R^2

0.0836613 0.48490463 0.4021802
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Figure 3-9. Grand mean of accuracy (left panel) and RT (right panel) for the follow-up  
Letter Recognition task, by Condition. Error bars reflect standard error of the mean. T = 
Typing, V = Visual, W = Writing. 

 

2. Writing Letters to Dictation 

The descriptive statistics for the writing-to-dictation word task are reported above in Figure 

3-5 (in the “Generalization” section, right panel) and the LMEM analysis in Table 3-5 (in the 

“Generalization” section, right panel). There was no significant difference between the 

learning Conditions. 

 

3. Letter Naming 

The descriptive statistics for the letter naming task are reported in Figure 3-10 and the 

LMEM analysis in Table 3-11. For accuracy (Table 3-11, Figure 4-10 left panel), the better 

performance of the Writing Condition (82% mean accuracy) was not significantly different 
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significantly faster (1575ms) than the Visual Condition (1732ms), p < 0.001, which was in 

turn faster than the Typing Condition (1867ms), p < 0.001.  

Table 3-11. LMEM of performance on Letter Naming at the post-training time point. 
Random effects included intercept and slope for trial order, by-participants, and intercept 
and Condition, by-items. T = Typing, V = Visual, W = Writing. *** p < 0.001, ** p < 0.01, * p < 
0.05, . p < 0.1. 

 

 

 

Figure 3-10. Grand mean of accuracy (left panel) and RT (right panel) for Letter Naming at 
the follow-up time point, by Condition. Error bars reflect standard error of the mean. T = 
Typing, V = Visual, W = Writing. 
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learning conditions on letter recognition of the familiar font, but this contrasts with 

performance on the novel font (which was also administered at the follow-up time point; see 

section II “Generalization of Learning”). The only significant difference on the measures of 

retention was on letter naming, where Writing Condition was the fastest, following by the 

visual and then the Typing Conditions. 

 In terms of writing letters to dictation, the Writing Condition no longer significantly 

outperformed the others at the one-month follow-up. In fact, the Writing Condition was the 

only group to show a significant increase in the proportion of mirror-reversed errors from 

the post-training time point to the follow-up, from 1.7% of trials to 5.9% (p < 0.01 by LMEM 

analysis), versus an increase from 5.5% to 8.0% in the Typing Condition and a decrease from 

10.5% to 8.8% in the Visual Condition (p’s > 0.1). Taken together with the results from the 

post-training time point, the implication is that the Writing Condition is particularly helpful 

for learning the correct orientation of the letters, but that this ability is not especially 

retained, such that after a month the participants are making similar numbers of mirror-

reversed errors. This is perhaps not surprising, given that mirror-reversal errors are a well-

known phenomenon among children that requires extensive practice to overcome (Treiman, 

2011), and the types of errors produced here by the adult participants when writing the 

letters was qualitatively identical to those observed in children (see Figure 3-11). What is 

most interesting about this may be that indeed, despite having learned to distinguish mirror-

reversed pairs in the Roman alphabet (b/d, p/q), this ability clearly does not automatically 

transfer onto novel shapes. It should also be noted that strictly speaking, Arabic does not 

contain any mirror-reversed pairs, although in some fonts, there is one pair of letter-shapes 
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that are fairly similar (initial “meem” مـ and final “ha” ـه). Many of the mirror-reversed letters 

that the participants produced were thus non-letters in Arabic. 

 

Figure 3-11. An example of mirror-reversed letters (with correct letter-shapes portayed in 
red) for participant EKH (Visual Condition). The letters alef, ba, and nuun (ا ب ن), left-hand 
side, were written correctly, while ha, jim, and qaf were mirror-reversed (جـ ـه ق), right-
hand side.  

 

As for letter naming, the Writing Condition was significantly faster to name the letters 

than either other condition, with the Visual Condition faster than the Typing Condition as 

well. It is striking that letter naming, a task which is no more similar to one training task 

compared to another (e.g., it is not more related to typing training than to visual training), 

resulted in some of the clearest advantages for the Writing Condition, both in terms of 

generalization at the post-training time point and retention at the follow-up. In fact, an 

advantage in naming for writing experience over visual experience was recently found by 

Bhide (2018). In that study, adult participants learned Hindi akshara (graphs) either through 

a writing or a visual learning condition. The author noted that the better performance on 

Post-test: Letter writing
ا ب

ق
ن ه

ج

Writing	Letters	to	Dictation	Task
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akshara naming for those with writing experience was unexpected, but it was found to be 

significant for both RT and accuracy, and across two days of testing. No specific hypothesis 

was given for this result, other than a general appeal to the theory of desirable difficulty.  

 

VI. General Discussion of Letter Learning Results 

The primary question addressed here is: Are the effects of writing experience due to motor 

learning per se, or to other variables confounded with the writing experience? Taken 

together, the findings suggest (1) that there are indeed benefits of writing experience, the 

extent of which is broader than previously known, and (2) that numerous alternative 

accounts previously put forth can largely be dismissed. However, as will be discussed, a few 

questions remain, some of which are addressed in Chapter 4, and others which are 

considered at the end of this chapter as possible future directions. 

 

The Effects of Training Conditions on Learning Letters 

The Writing Condition was indeed the most consistently effective learning condition 

across the broad set of measures of learning investigated here: the trajectory of learning, 

generalization to new tasks, and retention. Strikingly, on every single measure, the Writing 

Condition was either significantly or numerically the best performing, with the exception 

only of the rate of improvement on accuracy and RT on the letter recognition test (on which 

the typing experience improved most quickly). This is even more impressive considering 

that participants in this condition tended to reach those levels of performance in less time 
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(3.7 sessions of training on average, versus 3.9 for typing and 4.3 for vision). Although the 

Typing Condition led to very rapid improvement on letter recognition, it generally showed 

poorer generalization, and had the worst retention. Moreover, the Typing Condition’s fast 

rate of improvement was associated with a comparatively worse performance on the initial 

session (both lower accuracy and slower RT). Interestingly, while the Visual Condition 

resulted in slower progress on letter recognition, it generally outperformed the Typing 

Condition. In terms of the broad issues under discussion, the results are unequivocal in 

supporting that there are benefits of writing practice for letter learning, and convey clearly 

that the nature of these benefits extends from the rate of learning to generalization to 

retention.  

These findings in themselves have important educational implications, and support 

the conclusion made by others (see Chapter 1) that writing experience does provide benefits 

for letter learning. The weight of the evidence suggests that there is something unique about 

writing, given that the typing and visual training conditions led to such different behavior 

across the different tasks. And the variable input account seems an insufficient explanation, 

given that all participants were presented with four fonts to learn from (just as in Li & James, 

2016). 

 One possibility why writing training may be so beneficial for learning letters is it 

requires learning to decompose the letter-shapes into components, which are needed to 

form the basis motoric strokes, but also serve to enhance a visuo-spatial, geometric 

representation of the letter. Such decomposition of a (relatively) complex shape into 

component features is not required for typing or visual learning conditions. The study of 
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Bhide (2018) is however not consistent with this account, as the visual training conditions 

there involved either constructing complex akshara from components, or deconstructing 

complex akshara into components. In that study, both of these visual training conditions 

resulted in poorer performance than writing training. However, the akshara components 

were themselves more complicated than single visual features or strokes (i.e., they remained 

composed of multiple parts), which leaves open the possibility that a different type of visual 

training could improve letter learning.  

 The next chapter reports on the results of analyses that reveal the content of the 

learned letter representations, as reflected both in behavior (via the Same/Different 

Judgement task) and in neural activity (via representational similarity analysis of fMRI data). 

Those analyses most directly test the grounded cognition position that sensory/motor 

activation during letter perception reflects sensory/motor, and not any amodal, letter 

representations. As outlined in Chapter 2 (“RSA:  Behavioral Performance Analyses”, s 94-

95), the behavioral results that were presented here are crucial for further testing this 

theory, as it also predicts that motoric representations learned by writing training are 

implicated in behavior, and as such there should be an association between the motoric 

representations and performance on letter processing tasks. 
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Chapter 4 – Results: Letter Representations 

This chapter presents the results of analyses targeted at uncovering the content of letter 

representations, and how those representations were affected by the different training 

conditions under which the letters were learned. These results address the second and third 

primary questions: (2) Does writing experience recruit only sensory/motor 

representations? And (3) which types of representations, motoric or otherwise, underlie the 

behavioral benefits of writing experience? In Chapter 3, the behavioral results of the 

longitudinal training study, in which participants learned Arabic letters through either 

typing, visual, or writing training tasks, affirmed what has been reported elsewhere in the 

literature: writing experience leads to superior performance on a range of letter processing 

tasks, relative to non-motor learning experiences. Such evidence has been taken by many as 

supporting grounded cognition theories, claiming that the reason writing is beneficial for 

learning letters is that letter processing depends on sensory and motoric representations. 

This claim has been further supported by findings of a “sensory-motor” brain network that 

activates during even passive letter viewing. However, no evidence has been put forth 

demonstrating that this neural activity corresponds entirely to sensory and/or motor letter 

representations. It cannot be taken for granted that the “visual-motor letter processing” 

network (James, 2017) instantiates only sensory/motor representations, given that it 

includes cortex outside of the primary sensory and motor areas. One alternative type of letter 

information that could be represented within this network is symbolic letter identity (SLI), 

an amodal representation that is proposed by abstractionist theory. According to an 

abstractionist account, an amodal SLI representation allows, for example, different 
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allographs of the same letter to be conceived of as identical, despite differences in their 

concrete instantiations. 

The first three sections of this chapter present results that directly address this issue, 

by providing information about the content of the letter representations that were learned 

by those who had writing training, and how those representations differ from those who had 

non-motor training. In the first section (I. “Letter Representations in Behavior”), analyses of 

the same/different letter judgment task reveal how the multiple letter representations 

(visual, motoric, phonological, and abstract) influenced letter perception, and in particular 

how this changed from pre- to post-training, and for each of the three training conditions. In 

the second section (II. “Letter Learning in the Brain”), the brain regions that showed changes 

in activity from pre- to post-training selectively in response to viewing Arabic letters were 

identified in order to in order to provide the basis for the representational similarity 

analyses (RSA) that were used to reveal the types of letter representations instantiated in 

these areas as a result of learning. Accordingly, the third section (III. “Letter Representations 

in the Brain”) presents the results of applying the RSA technique, and reports on five types 

of letter representations, where they are instantiated in the brain, and whether they differ 

as a consequence of the different training conditions. 

The set of results reported in the third section answer in particular the third main 

question of the dissertation (which types of representations underlie the behavioral 

benefits). As described in Chapter 3, four measures of individual differences in letter 

processing tasks (letter recognition, letter naming, writing letters to dictation, and reading 

words) are used here to evaluate interactions between behavioral performance and each of 

the five types of letter representations examined. This information is used to further examine 
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the prediction of grounded cognition, specifically that superior behavioral performance on 

letter processing tasks is associated with sensory/motor representations, and as such helps 

understand the role of the various letter representations in letter processing. While each 

section concludes with an interim discussion, a final section (IV. “General Discussion of 

Letter Representations”) is used to revisit the three main questions of the dissertation in 

light of the results reported in this chapter. 

 

I. Letter Representations in Behavior 

This section presents the results of the same/different letter judgment task, which was 

administered twice: at pre-training and post-training. The same/different task has been used 

extensively in the past to uncover the types of letter representations that influence letter 

perception. The logic that supports these types of inferences is that slower RTs to decide that 

two physically-different shapes are in fact different indicates that the underlying 

representations of those two shapes are more similar than those of shapes that are 

responded to more quickly. By using simultaneous multiple regression (specifically, LMEM), 

differences in RT across pairs of letters are explained as the result of a decision-making 

process (i.e., deciding the pair of shapes is “different”) that takes into account all of the 

sources of information such that responses will be slowed not only if the two letters are more 

visually similar, but also if they have more similar representations along other dimensions. 

Observers may be influenced by such information despite it being task-irrelevant (see Wiley, 

Wilson, & Rapp, 2016). 
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As a visual aid to interpreting the results of this analysis, a dendrogram representing 

the results of a hierarchical clustering analysis (HCA) of the data is also presented. The HCA 

is based on (correct) RT in response to pairs of different letters, and reflects the differences 

in RT across pairs by organizing the letters into a hierarchical structure that depicts their 

perceptual similarity. Letters that are closer together in the dendrogram are thus those that 

are perceptually more similar. As with the LMEM analyses, the HCA was conducted on the 

data from both the pre-training and post-training administrations of the Same/Different 

Judgement task. The results from each of those time points can be compared to one another 

through a “tanglegram” (Galili, 2015), which simply arranges two dendrograms in a way that 

highlights how the hierarchical structure of the perceptual letter space changed across the 

time points. 

 

Results: Same/different Letter Judgment Task 

The descriptive statistics for the Same/Different Judgement task are reported in Table 4-1. 

Accuracy was high overall, at both time points: 95.6% and 96.5%, respectively for same and 

different pairs pre-training, and 96.2% and 97.1% at post-training. The RTs were also very 

similar across time points and for both same and different pairs: 676ms and 660ms for same 

and different pairs respectively at pre-training, and 689ms and 660ms post-training. 

The results of the task are visualized in Figure 4-1 as a tanglegram depicting the 

dendrograms of the Arabic letters, based on median RTs on correct trials at the pre-training 

time point (Figure 4-1, left-hand side) and at the post-training time point (Figure 4-1, right-

hand side).Pairs of letters that are in the same relationship to each other at both time points 

are indicated by solid black/non-crossing lines of color. Letters whose relative position in 
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the hierarchy changed from pre- to post-training are indicated by dotted black lines/crossing 

lines of color. One result evident in the tanglegram is that, of the six pairs of allographs 

included in the task (the letters “ba”, “jim”, “shin”, “qaf”, “kaf”, and “ya”), none are paired 

together in the closest clusterings at the pre-test time point, but two are paired together at 

the post-training time point (“jim” and “qaf”). Two of the other four pairs (“shin” and “kaf”) 

are perceptually closer at post-training relative to pre-training. The two pairs of allographs 

that are not closer at post-training compared to pre, the letters “ba” and “ya”, seem to be 

heavily influenced by the fact that one of the allographs of “ba” and one of the allographs of 

“ya” are extremely perceptually close. In fact, these two letter-shapes are the single most 

similar pair, differing only in that “ya” has one additional dot (see Figure 4-1, bottom two 

letters).  

Table 4-1. Descriptive statistics for the same-different judgment task. 

 

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd

Typing 95.8% 3.6% 712 125 95.7% 3.4% 696 115 97.1% 1.5% 692 102 97.0% 2.2% 678 117

Vision 95.6% 2.1% 629 50 96.2% 2.0% 626 66 97.0% 1.7% 630 73 96.7% 1.7% 600 57

Writing 95.4% 8.5% 687 106 96.7% 3.4% 741 126 95.3% 5.2% 659 92 97.7% 1.0% 703 101

different

Learning 

Experience:
acc rt acc rt

pre post

acc rt acc rt

pre post

same
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Figure 4-1. Tanglegram comparing the hierarchical clustering of 12 letter-shapes at pre-
training (left-hand side) to post-training (righthand side). The letter names appear below 
the shapes. Allographs are coded with the same color to emphasize their relationship. 
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The LMEM analyses assess the contribution of five types of letter representations to 

determining the RT of the different pairs: pixel overlap (low-level visual representation), 

visual features (higher-level visual representation), motor bistrokes (motoric 

representation), letter names (phonological representation), and symbolic letter identities 

(amodal representation). Full details on the LMEM analyses, including the computation of 

the five measures of letter representations, are available in Chapter 2 (section III. 

“Behavioral Analyses”). Because the predictors for each of the five types of representation 

were entered in simultaneous multiple regression, significant effects reflect unique 

contributions to explaining the variance in RT12. These results are presented for the pre-

training time point in Table 4-2, and the post-training time point in Table 4-3.  

Table 4-2. Results of the LMEM analysis of RT on correct "different" trials of the 
Same/Different Judgement task, at the pre-training time point. T = Typing, V = Visual, W = 
Writing. SLI = symbolic letter identity. 

 

                                                        

12 All Variance Inflation Factors were < 5. 

Fixed effects: Estimate Std. Error z-value Pr(>|z|)

(Intercept) 671.8920 68.2030 9.8510 < 0.0001 ***

Previous Trial RT 39.9450 9.3050 4.2930 < 0.0001 ***

Trial Number -11.5370 3.4130 -3.3810 < 0.0001 ***

TvV -34.1226 6.5547 -5.2060 < 0.0001 ***

TvW 17.0260 28.8460 0.5900 0.5550

VvW -51.2240 10.6530 -4.8080 < 0.0001 ***

Pixel Overlap 8.5360 2.3200 3.6790 0.0002 ***

Visual Features 2.4490 2.7320 0.8960 0.3702

Motor Bistrokes 4.4620 2.5500 1.7500 0.0801 .

Letter Names -4.0510 3.2150 -1.2600 0.2076

SLI -5.8990 6.8590 -0.8600 0.3897

TvV:Pixel Overlap -4.0629 2.6121 -1.5550 0.1198

TvW:Pixel Overlap 1.6940 7.3490 0.2300 0.8177

VvW:Pixel Overlap -6.4320 5.6610 -1.1360 0.2558

TvV:Visual Features -1.6594 3.2314 -0.5140 0.6076

TvW:Visual Features -1.2000 23.2440 -0.0520 0.9588

VvW:Visual Features -4.5190 13.2870 -0.3400 0.7338

TvV:Motor Bistrokes -0.3067 2.9154 -0.1050 0.9162

TvW:Motor Bistrokes 4.5090 10.8630 0.4150 0.6781

VvW:Motor Bistrokes 3.8960 7.3330 0.5310 0.5952

TvV:Letter Names 3.4549 3.0707 1.1250 0.2605

TvW:Letter Names -11.7480 6.2710 -1.8734 0.0640 .

VvW:Letter Names -4.8380 6.5600 -0.7370 0.4608

TvV:SLI -4.1128 4.9332 -0.8340 0.4045

TvW:SLI -4.6350 9.3020 -0.4980 0.6183

VvW:SLI -12.8610 14.4390 -0.8910 0.3731

Learning 

Experiences X 

Letter 

Representation 

Interactions

Letter 

Representations: 

Main Effects

Learning 

Experience Main 

Effects
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Table 4-3. Results of the LMEM analysis of RT on correct "different" trials of the 
Same/Different Judgement task, at the post-training time point. T = Typing, V = Visual, W = 
Writing. SLI = symbolic letter identity. 

 

For the pre-training time point (Table 4-2), there were no significant interactions with 

training group. The only letter representation predictor that was significant was that of pixel 

overlap, beta estimate = 8.5. In the interest of interpretation, this equates to a predicted 

increase of 36ms for a pair of letters with 75% pixel overlap compared to 25% (the actual 

stimuli ranged from 4% to 83% pixel overlap). Overall, the LMEM explained 10.3% of the 

variance in RT by fixed-effects alone, 28.7% in total including fixed- and random-effects. 

For the post-training time point (Table 4-3), a number of significant differences 

emerged. In terms of the main effects of letter representations: there was a significant effect 

of pixel overlap, beta estimate = 6.6, translating to a 27ms increase in RT for a pair of letters 

sharing 75% versus 25% of their pixels. There was also a significant effect of motor 

bistrokes, beta estimate = 10.4, translating to a 19ms increase in RT for a pair of letters 

sharing 75% of their motor features versus 25%. There was a significant effect of letter 

Fixed effects: Estimate Std. Error z-value Pr(>|z|)

(Intercept) 674.0509 5.6466 119.3740 < 0.001 ***

Previous Trial RT 40.1005 3.7074 10.8160 < 0.001 ***

Trial Number 2.2645 4.5904 0.4930 0.6218

TvV -23.9523 5.8215 -4.1140 < 0.001 ***

TvW -39.5752 10.8847 -3.6360 0.0003 ***

VvW -87.4894 6.2823 -13.9260 < 0.001 ***

Pixel Overlap 6.5743 2.2536 2.9170 0.0035 **

Visual Features 2.6555 2.6295 1.0100 0.3125

Motor Bistrokes 10.4002 2.3622 4.4030 < 0.001 ***

Letter Names -4.9171 2.5005 -1.9660 0.0492 *

SLI 21.9007 4.1115 5.3270 < 0.001 ***

TvV:Pixel Overlap 3.5843 2.4881 1.4410 0.1497

TvW:Pixel Overlap -5.1284 4.2641 -1.2030 0.2291

VvW:Pixel Overlap 2.0401 4.2575 0.4790 0.6318

TvV:Visual Features -1.7502 2.9811 -0.5870 0.5571

TvW:Visual Features 8.0720 4.5978 1.7560 0.0792 .

VvW:Visual Features 4.5716 4.4691 1.0230 0.3063

TvV:Motor Bistrokes -3.8782 2.5661 -1.5110 0.1307

TvW:Motor Bistrokes -4.5766 4.1209 -1.1110 0.2668

VvW:Motor Bistrokes -12.3328 4.1398 -2.9790 0.0029 **

TvV:Letter Names -6.6837 3.2414 -2.0620 0.0392 *

TvW:Letter Names 12.7220 4.8838 2.6050 0.0092 **

VvW:Letter Names -0.6451 4.5550 -0.1420 0.8874

TvV:SLI 18.4625 5.8560 3.1530 0.0016 **

TvW:SLI -52.9740 6.9412 -7.6320 < 0.001 ***

VvW:SLI -16.0498 7.6182 -2.1070 0.0351 *

Learning 

Experiences X 

Letter 

Representation 

Interactions

Letter 

Representations: 

Main Effects

Learning 

Experience Main 

Effects
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names, beta estimate = -4.9 (12ms decrease in RT for a pair of letters sharing 75% versus 

25% of their phonological features). Finally, there was a significant effect of SLI, beta 

estimate = 21.9, translating to an 22ms increase in RT for pairs of letters sharing the same 

identity (i.e., allographs). Overall, the model explained 13.2% of the variance in RT by the 

fixed-effects alone, and 34% in total from both the fixed- and random-effects. 

 All of these main effects, with the exception of pixel overlap, were modulated by 

interactions with the learning conditions. Separate LMEM were conducted to assess the 

significance of the effects for each learning Condition, when there were such interactions. 

For the motor bistrokes, there was a significant interaction showing that the effect was 

significantly larger for the Writing Condition compared to the Visual Condition with an effect 

size of 30ms, p < 0.001 (compared to the main effect reported of 19ms), whereas the Visual 

Condition resulted in a non-significant effect size of 7ms, p = 0.16. The Typing Condition 

showed a significant but smaller effect size of 21ms (p < 0.05). 

For letter names, the interactions revealed that participants in the Typing Condition 

differed significantly from participants in both the visual and Writing Conditions. In fact, the 

Visual and Writing Conditions had effect sizes of similar magnitude, -24ms and -22ms 

(compared to the main effect size of -12ms), although the effect was only significant for the 

Visual Condition (p = 0.01 versus p = 0.35). However, the Typing Condition resulted in a 

trend toward an effect in the opposite direction of 9ms, p = 0.12.  

Finally, the interactions with SLI revealed that each learning Condition differed from 

the others. The effect sizes for each learning Condition were -16ms (p = 0.09), 58ms (p < 

0.001), and 90ms (p < 0.001) for the Typing, Visual, and Writing Conditions, respectively. 

Thus, participants in the Writing Condition showed the greatest effect of SLI, whereas the 
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Typing Condition resulted in a trend in the opposite direction (with slightly faster RT to pairs 

of allographs compared to pairs of non-allographs).  

 

Discussion  

Similar to the findings reported here from the pre-training timepoint, previous research on 

letter perception by naïve participants performing the same-different task with the Arabic 

alphabet (Wiley et al., 2016) also only found evidence of visual representations. In contrast, 

evidence of not only visual but also of motoric, letter name, and SLI representations was 

found for expert observers, both of the Arabic alphabet (Wiley et al., 2016) and the Roman 

alphabet (Rothlein & Rapp, 2017). These findings are paralleled here in the post-training 

assessments. The novel insights provided by these results stem from the manipulation of the 

training conditions under which the participants learned the letters, and thus they provide 

a deeper understanding of how letter representations are affected by learning experience. 

On this basis, the results have implications for the grounded cognition/abstractionist debate 

in particular, and more generally for understanding the effects of writing experience on 

letter learning. There are two results in particular that merit further discussion. 

First, motoric representations were found as a main effect, but not uniquely following 

writing training. There was evidence that motoric representations had a significantly 

stronger influence on participants who had writing training compared to those who had only 

visual training, but there was no significant difference between the writing and the typing 

training. There are two possible explanations for why this motoric representation may have 

influenced letter perception even in the absence of writing training. The first is that the same-

different task was administered last during the post-training session, shortly after all 
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participants had been asked to write both letters and words to dictation. The mere fact that 

participants were able to complete that task even if they had never written the letters before 

(albeit with less accuracy than those who had) clearly indicates that they had sufficient 

knowledge to write the letters from memory. This indicates that it is not the case that writing 

requires stored motor plans from previous writing experience. The motor plans used by 

these participants were presumably constructed in an online fashion, and the 

representations used for such motor planning may differ from those stored in long-term 

memory by those with more extensive writing experience. One possibility for how this was 

done was to make use of the visual dynamic information that was presented in the training 

videos—that is, the letters were written based on visual memories of the letter animations. 

Either way, writing the letters in the same session as the same-different task could plausibly 

have influenced the letter perception task, albeit more weakly than for participants in the 

Writing Condition who did have stored motor plans. 

A second possibility is that the similarity of the pairs of letters in terms of motor 

features is at least partially confounded with the similarity of the training videos. Letters 

with similar strokes necessarily had similar videos, in terms of the spatial-temporal 

dynamics of the pixels as they were revealed on the screen. The importance of the training 

videos for forming the participants’ letter knowledge should not be underestimated, as they 

were exposed to many repetitions of these videos, and (a) they had to pay some attention to 

these videos in order to complete their training tasks, and (b) these videos were the only 

time during which they were exposed to the letter names and sounds. In fact, the letter 

names and sounds were presented simultaneously with the dynamic frames of the videos, 

thus necessarily there would be a high association between the dynamic motion in the videos 
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and the letter names and sounds. Therefore, there is a possibility that what the participants 

had in common, as captured by the significant main effect of the motor feature overlap on 

RT in the same-different task, was activation of the memory traces of the training videos, 

including the dynamic visual features. Dynamic visual information is known to effect 

perception of static images, including letters (e.g. Babcock & Freyd, 1988; see Chapter 1). 

One way to potentially de-confound the two possibilities (i.e., motor features versus dynamic 

visual features) is to consider neuroimaging data. Given the expectation that the Writing 

Condition would lead to a different type of motoric representation than the other two, the 

RSA technique allows for finding differences across the training conditions that cannot be 

found in analysis of the Same/Different Judgement. For example, the location of any motoric 

letter representations could differ between writing-trained and non-motor-trained 

participants (whereas, of course, no such distinction is possible in a RT analysis). This 

possibility is examined in section III of this chapter. 

Second, an amodal letter representation, SLI, was found to influence both the writing-

trained and visually-trained participants. This evidence in itself presents a challenge to any 

grounded cognition views that refutes the existence of amodal representations—they are 

challenged to explain how the SLI representation is not truly amodal. Moreover, this 

representation was found to be significantly stronger among participants in the Writing 

Condition, which is even more problematic for grounded theories—those who had the most 

“grounded” experience with the letters were those who developed the strongest amodal 

representation. The abstractionist proposal is that SLI representations serve to mediate 

between the different letter representations (see Chapter 1, Figure 1-1); if this is so, then 

finding stronger SLI representations among those with writing experience is consistent with 
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the general advantages of writing training for letter learning. In fact, it is striking that the 

overall pattern of behavioral results, with writing training clearly leading to the best 

performance on letter processing tasks and typing training the worst, parallels the results of 

the Same/Different Judgement task: not only did writing-trained participants show the 

strongest influence of SLI, the only group that did not show any significant effect of SLI was 

the Typing Condition. 

With regard to SLI, the Typing Condition participants showed a marginal trend in an 

unexpected direction, with faster responses to pairs of allographs. At the same time, they 

also showed a trend toward slower responses to letters with similar names. One concern is 

that the reverse signs on the effect of letter names and SLI, which was found for each group, 

could be a statistical artifact known as a “suppression effect” (an aspect of Lord's paradox, 

see Arah, 2008) due to the positive correlation between the letter name predictor and the 

SLI predictor (driven by the fact that allographs have identical letter names). This possibility 

was ruled out by analyzing the data from the non-allograph pairs only, including only the 

letter name predictor and dropping the other four types of letter information predictors. In 

that analysis, the pattern of results was the same, with the Visual and Writing Conditions still 

showing negative relationship between RT and letter name similarity, and the Typing 

Condition showing a positive relationship—thus, the results were not driven by the 

correlation between the SLI and letter name predictors.. 

 

II. Letter Learning in the Brain 

The analysis of the Letter Learning Network fMRI task (see Chapter 2, sections II and IV), 

administered at both the pre-training and post-training scanning sessions, was used to 
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determine regions-of-interest (ROIs) in which to conduct a representational similarity 

analysis (RSA). Specifically, the results presented here reveal which brain regions showed 

changes in activity, from pre- to post-training, selectively in response to viewing Arabic 

letters. Previous similar analyses of fMRI data, comparing the strength and location of neural 

activation across participants who have learned letters under different training conditions, 

have reported activation in what have been referred to as “sensory-motor” areas, among 

others. The mere location of this activation has been taken as evidence that cognition is 

grounded, but that conclusion assumes that the activity reflects the processing of sensory 

and/or motor representations, even though many of these areas lie outside primary 

somatosensory and motor cortex. In order to test that claim, it is first necessary to determine 

whether such sensory/motor activation was observed for the participants who underwent 

this longitudinal study, and to carry out RSA in these areas to investigate the nature of the 

representations reflected in the pattern of activity (section III. “Letter Representations in the 

Brain”). 

 

Letter Learning Network (LLN) 

The results of the univariate analysis of the orthographic localizer task (see Chapter 2, 

section II. “Neuroimaging Methods”,  81) are reported in Table 4-4 and Figures 4-2 and 4-3. 

In total, 25 anatomical regions were identified as showing a greater increase in pre to post 

training activity in response to Arabic letters, relative to Roman letters: 9 bilateral regions, 

5 regions in the left hemisphere, and 2 regions in the right hemisphere (Table 4-4). These 

regions are largely bilateral, with the exception of the STG and cuneus, which were only 

involved in the left hemisphere. These 25 regions were named on the basis of their 
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anatomical locations). Each of these regions showed a positive t-value, i.e., relatively greater 

increase in activity in response to Arabic letters from pre to post-training than for Roman 

letters—no region showed a significant effect in the other direction. The total volume of the 

LLN was 4,535 voxels (3x3x3mm). 

Table 4-4. List of anatomical regions as identified in the Letter Learning Network (LLN), 
voxelwise FDR correction q < 0.05. meSFG = medial superior frontal gyrus, DLPFC = 
dorsolateral prefrontal cortex, MFG = middle frontal gyrus, pre-SMA = pre-supplementary 
motor area, SPL = superior parietal lobule, FEF = frontal eye fields, IFG = inferior frontal 
gyrus, preCG = precentral gyrus, SMG = supramarginal gyrus, STG = superior temporal 
gyrus, IPL = inferior parietal lobule, VLPFC = ventrolateral prefrontal cortex 

 

 

bilateral L only R only

meSFG FEF IPL

cerebellum IFG VLPFC

DLPFC preCG

MFG SMG

cingulate STG

pre-SMA

precuneus

SPL

calcarine
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Figure 4-2. Letter Learning Network (LLN) in left frontal superior regions. A = anterior, P = 
posterior, R = right, L = left. SAG = sagittal, COR = coronal, TRA = transverse. MNI 
coordinates (-50, 7, 45). 

 

Figure 4-3. Letter Learning Network (LLN) in medial and posterior regions. A = anterior, P 
= posterior, R = right, L = left. SAG = sagittal, COR = coronal, TRA = transverse. MNI 
coordinates (-2, -70, 11). 

 

Ventral Occipital-Temporal (vOTC) Regions 

The same procedure used to define ROIs as part of the LLN was used, except with a different 

contrast (Arabic letters pre + post > checkerboards pre + post) in order to identify the areas 

within ventral temporal-occipital cortex (vOTC) that were responsive to Arabic letters 

generally, and not specifically areas that gave (univariate) evidence of changes as a result of 

learning. Only areas showing greater activity to Arabic letters compared to checkerboards 

were included; moreover, this contrast was restricted by an anatomical vOTC mask 

(extending from Y = -80 to -25, and Z = -34 to -5, bilaterally). The resulting vOTC ROIs are 

depicted in Figure 4-4, and included the fusiform gyri, the lateral occipital sulci, and parts of 

extrastriate cortex including the region of V5/MT (middle temporal visual area). The 

bilateral vOTC ROIs contained in total 1,766 voxels (3x3x3mm), extending across x = (-53, -
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31), y = (-88 -46), and Z = (-26, 10) in the left hemisphere and from x = (27, 56), y = (-90, -

43), and Z = (-29, 9) in the right hemisphere.  

 

Figure 4-4. Ventral occipital-temporal (vOTC) regions responsive to Arabic letters more 
than checkerboards. Yellow = anatomical vOTC mask, red = voxels selected by contrast of 
Arabic letters > checkerboards. A = anterior, P = posterior, R = right, L = left. SAG = sagittal, 
COR = coronal, TRA = transverse. MNI coordinates (-40, -58, -17). 

 

Summary & Discussion 

Noticeably absent from the Letter Learning Network ROIs were any areas of the fusiform 

cortex, in either hemisphere. Presumably this was because, unlike the areas identified in the 

LLN, the fusiform cortex was highly responsive to the Arabic letters at the pre-training time 

point—therefore, in the post-versus-pre contrast, no voxels survived the FDR correction. It 

is furthermore unsurprising that this area would be responsive to Arabic letters even among 

naïve observers, given that it is known to respond to orthographic-type shapes more than 

other visual stimuli, even if those shapes are unfamiliar (e.g., Hebrew letters > line drawings, 

among non-Hebrew readers, Baker et al., 2007). For that reason, a less restrictive contrast 

was used to localize regions with vOTC that were simply responsive to Arabic letters relative 

to checkerboards, The resulting ROIs in vOTC are consistent with areas commonly reported 
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as belonging to the visual word form area, or VWFA (Dehaene et al., 2002; Dehaene, Cohen, 

Morais, & Kolinsky, 2015; McCandliss et al., 2003; Vogel, Petersen, & Schlaggar, 2014), and 

extend bilaterally the length of the fusiform gyrus, as well as extrastriate and visual 

association areas of the occipital lobes. 

 The union of the set of ROIs from the LLN together with the bilateral vOTC regions 

were used to define the space of the subsequent searchlight RSA analyses. This combined 

area included the ROIs that have been previously identified as part of the “visual-motor letter 

processing system” (James, 2017; see Fig. 1,  2): the fusiform gyrus, the superior 

temporal/supramarginal gyrus, the precentral gyrus, the middle frontal gyrus, and the 

inferior frontal gyrus. The term “visual-motor”, however, may be a misnomer, in that it 

remains to be shown the extent to which the activity across this network in fact reflects 

visual and/or motoric letter representations. In the interest of better understanding the role 

of these areas in letter processing, the following section presents the results of RSA, which 

was used to assess the nature of the neural representations throughout the combined LLN-

vOTC network,. 

 

III. Letter Representations in the Brain 

This section presents the findings that most directly answer the second primary question of 

this dissertation: does writing experience result only in letter representations that are 

sensory/motor in nature? While the results of the behavioral same/different task revealed 

that motoric letter representations were not unique to individuals who had writing 

experience, the possibility was raised that this could be due to a confound between the 
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motoric and dynamic visual representations of the letters. While this possibility could not be 

addressed through the Same/Different Judgement task, it is possible for the neural analyses 

to do so because, unlike for RT analyses, information about both the neural location and 

strength of motoric letter representations may differ across training conditions. 

It should be pointed out that the direction of the relationships uncovered by RSA, 

between the letter similarity measures on the one hand (e.g., motoric representations), and 

the neural similarity measure on the other hand (i.e., the Euclidean distance between the 

vectors representing the neural responses to stimuli; see Chapter 2, section II. “Neural 

Methods”), can be either positive or negative. Thus, for example, greater visual similarity 

between letter pairs could be associated with relatively more similar neural activation 

patterns—or, alternatively, more visually similar letters could have more dissimilar neural 

representations. Possible interpretations of each of these are discussed at the end of this 

chapter. 

This section is organized as follows: first, a brief report of the in-scanner behavioral 

performance on the symbol detection task (SDT), which provided the data for the RSA. Then, 

the results of the RSA of the post-training data are presented for each of the five types of 

letter representations in turn: (1) low-level visual (pixel overlap), (2) higher-level visual 

(visual features), (3) motoric (motor bistrokes), (4) phonological (letter names), and (5) 

amodal (SLI). Within these subsections, two types of RSA results are reported. First, in 

addition to information about the location of clusters instantiating each type of letter 

representation, LMEM was used to also determine whether there were differences in the 

strength of those representations across training conditions. This directly bears on the issue 

of what types of letter representations are associated with each of the learning Conditions. 
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Second, in a similar way, LMEM was used to determine whether the strength of those 

representations covaried with individual differences on any of four behavioral measures: 

letter recognition, letter naming, writing letters to dictation, and word reading.  

 

In-scanner Behavioral Performance 

Performance accuracy on the symbol detection task in the scanner was very high, for all 

Conditions (see Table 4-5): the false alarm rate on letter trials was virtually identical at both 

time points, 0.7% on average (false alarms were removed from the subsequent analyses). 

Two participants had one entire run removed from the analyses, for having a hit-rate more 

than 3 standard deviations below the grand mean (25% and 9%). The resulting average hit 

rates were 95% and 91%, and RT was 556ms versus 617ms, respectively for the pre-test and 

post-test scanning sessions. LMEM analyses (with random intercepts by-participants) were 

used to analyze the hit rates and RT during the symbol trials. For RT, there was no main effect 

of group nor an interaction of time point X group (all p’s > 0.1), but there was a main effect 

of session, p < 0.01, indicating that participants were significantly slower to make responses 

during the post-training scanning session compared to the pre-training scanning session. 

The analysis of the hit rate paralleled the RT analyses, with no significant main effect of 

Condition or an interaction of time point X Condition (all p’s > 0.1), but there was a marginal 

main effect of time point, p ≈ 0.07, indicating a tendency toward a lower hit rate (i.e., more 

misses) at the post- relative to the pre-training time point. 
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Table 4-5. Hits, RT (on hits), and false alarm rates for the symbol detection task in the 
scanner at both pre- and post-training time points. T = Typing, V = Visual, W = Writing. 

 

 

Notes on Interpreting the RSA Results 

The following five sections present all of the significant clusters at the post-training time 

point, reflecting each of the five types of letter representations (low-level visual, higher-level 

visual, motoric, phonological, and amodal). These clusters reflect either significant effects for 

one of the groups (typing, visual, or Writing Conditions), or an interaction with one of the 

behavioral measures (letter recognition, letter naming, letter writing, or word reading)13. 

For each of those clusters the following information is presented: (1) the location and 

strength (t-value) of the peak voxel in each cluster, (2) the total cluster sizes (mm3), and (3) 

an anatomical/functional label for the cluster locations, and (4). 

Note: If two different effects are both given the same neuroanatomical label, this 

indicates that at least some of the significant voxels within those clusters are shared. In other 

words, two clusters with different labels necessarily share zero significant voxels, and two 

                                                        

13 A full report of all significant clusters, including main effects (i.e., effects in common across learning conditions) 

and interactions between groups (e.g., typing versus writing), is presented in Appendix A. 

pre post pre post pre post

T 91.3% 82.5% 569 662 0.9% 0.3%

V 96.6% 93.4% 538 620 0.4% 0.7%

W 94.8% 94.8% 552 554 0.9% 1.0%

mean 94.7% 90.7% 556 617 0.7% 0.7%

hits RT (hits) false alarms
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clusters with the same label necessarily share at least one voxel. For example, a “L fusiform 

(medial)” and a “L fusiform (posterior)” cluster do not overlap, whereas any two “L fusiform 

(medial)” clusters at least partially overlap, regardless of what effect is being reported there. 

 

 

1. Low Level Visual Representation (Pixel Overlap) 

The clusters showing a significant relationship with low level visual representations (i.e., 

greater pixel overlap, more similar neural representations) are listed in the left panel of 

Table 4-6, for group-specific effects, and in the right panel of Table 4-6, for interactions with 

behavioral tasks. These are depicted in Figures 4-5 (group-specific effects) and 4-6 

(behavioral interactions). In total, 10 distinct clusters showed some significant relationship 

with pixel overlap: L and R cerebellum, R posterior and middle fusiform gyrus, R calcarine 

sulcus, bilateral posterior cingulate cortex, L postcentral gyrus, R dorsal premotor cortex, L 

superior temporal gyrus, and L inferior frontal gyrus (pars opercularum). 

Table 4-6. Clusters associated with lowlevel visual representations (pixel overlap). Left 
panel: group-specific effects. T = Typing, V = Visual. Right panel: interactions with 
behavioral measures. Recognition = Letter Recognition RT, Naming = Letter Naming RT, 
Writing = Writing Letters to Dictation Accuracy, Reading = Word Reading Accuracy. Cerb = 
cerebellum, PCC = posterior cingulate cortex, FG = fusiform gyrus, IFG = inferior frontal 
gyrus, dPMC = dorsal premotor cortex, PostCG = postcentral gyrus, STG = superior 
temporal gyrus. 

 

 

EFFECT X Y Z T-VALUE voxels AREA EFFECT X Y Z T-VALUE voxels AREA

T -41 -66 -33 -4.34 33 L cerb Recognition 26 5 48 -5.27 35 R dPMC

T 0 -39 21 -4.58 14 bilateral PCC Naming -41 16 2 4.61 20 L IFG operculum

T 42 -78 -17 -3.67 20 R post FG Writing 42 4 52 3.92 12 R dPMC

V -48 10 2 -4.42 16 L IFG operculum Reading 4 -71 10 4.22 24 R calcarine sulcus

Reading -68 -20 22 4.36 16 L PostCG

Reading -56 9 -3 4.52 16 L STG

Reading 46 -62 -21 3.86 20 R middle FG
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Figure 4-5. Significant group-specific effects of low level visual representations. MNI 
coordinates are labeled on the top. Right is on the left. Red = Typing Condition, Blue = 
Visual Condition.  

 

Group-specific effects: The Typing Condition showed effects in L cerebellum, bilateral 

posterior cingulate cortex, and R posterior fusiform gyrus. The Visual Condition showed 

effects in L IFG (pars opercularis). All of these effects were positive relationships, with 

greater pixel overlap associated with greater neural similarity. 
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Figure 4-6. Significant interactions between behavioral measures and low level visual 
representations. MNI coordinates are labeled on the top. Right is on the left. Pink = Letter 
Recognition RT, Yellow = Letter Naming RT, Orange = Writing Letters to Dictation 
Accuracy, Teal = Word Reading Accuracy. 

 

Behavioral measure interactions: A more positive relationship (greater pixel overlap 

associated with greater neural similarity) was found to be associated with faster RT on letter 

naming in one cluster: the L IFG (pars opercularum). All other interactions with behavioral 

measures were negative: more positive relationships between pixel overlap and neural 

similarity were associated with slower letter recognition in the R dorsal premotor cortex, as 

was lower accuracy on writing letters to dictation. A negative interaction was also found 
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between pixel overlap and reading accuracy in four clusters: L superior temporal gyrus, L 

postcentral gyrus, R calcarine sulcus, and R middle fusiform gyrus. 

 

Summary & Discussion: Low Level Visual Representations 

Pixel overlap, a measure of low-level visual similarity, was found to be predictive of neural 

responses in a number of regions. In terms of the learning Condition, group-specific effects, 

all of the associated ROIs showed a positive relationship, indicating that pairs of letters 

overlapping more in pixels had more similar neural representations. This representation 

was most common for the Typing Condition, as participants in that group showed pixel 

overlap effects in three clusters, compared to just one for the Visual and none for the Writing 

Conditions.  

 In terms of the behavioral measures, pixel overlap was found to be associated with 

performance on all four tasks in at least one cluster. Strikingly, a more positive relationship 

with pixel overlap was associated with better performance in only one ROI: L IFG (pars 

opercularis) for the letter naming task. Individuals who were faster at letter naming showed 

a more positive association with pixel overlap-based representations. Moreover, this L IFG 

cluster overlaps heavily with that found for the Visual Condition where the effect was in the 

same direction. 

For the most part, better performance on behavioral measures was found to be 

associated with more negative pixel overlap-based representations: all 4 of the clusters 

associated with reading accuracy, as well as the R dorsal premotor cortex cluster associated 

with both letter recognition and writing. A plausible explanation for this is that reliance on 

low-level visual representations in those brain areas is less effective for letter recognition 
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and word reading. In other words, a strong low-level visual representation is not necessarily 

beneficial, and may be more present among individuals who perform worse, whereas those 

who perform better rely on other types of representations or other brain areas. Not mutually 

exclusive is the possibility that those who performed better on the behavioral tasks have a 

qualitatively different relationship between the predicted pixel overlap representation and 

the observed neural representation—this is suggested by the finding that those who 

performed best in fact had a negative association between pixel overlap and their neural 

activity.  

To illustrate this possibility, an example is drawn from one of the clusters with a 

significant interaction between the pixel overlap predictor and the predictor measuring 

behavioral performance on the word reading task (in the right calcarine sulcus). This 

interaction indicates that the association between the neural representation and the 

pixel overlap representation differed across individuals according to how well they 

performed on the word reading task. Figure 4-7 depicts this interaction by plotting the 

LMEM’s predicted neural similarity14 between pairs of letters (y-axis) as a function of the 

amount of pixel overlap between those letters (x-axis). In this example, the LMEM revealed 

that greater pixel overlap was associated with more similar neural representations among, 

individuals who performed worse on the word reading task (blue line)—a positive 

association. However, among individuals who performed better on the word reading task 

                                                        

14 LMEM, like all regression methods, can be used to generate predicted values of the dependent measure, given the 

fitted parameters (e.g., beta estimates). These predicted measures thus represent expected values of the dependent 

measure given independent measures, plus error (i.e., there is uncertainty around the predicted measure). 
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(yellow line), greater pixel overlap was associated with less similar neural representations—

a negative association (akin to an anti-correlation). 

This example highlights two important points. First is that the direction of the 

relationship distinguished between low and high-performers, and as such provides 

information about how a pixel overlap-based representation relates to behavior. In this 

example from the right calcarine sulcus, participants whose neural response was more 

similar to letters sharing more pixels performed worse on word reading. It is not the case, 

however, as can be seen in Figure 4-7, that individuals who performed the best had neural 

responses that were unrelated to pixel overlap. This relates to the second important point: 

sensitivity to some dimension of letter information (in this case, low-level visual 

information) is not necessarily reflected in neural responses that treat similar letters more 

similarly. Alternatively, it may be reflected in neural representations that treat similar letters 

significantly more differently. In either case, these results reflect some association between 

the type of letter information and the brain’s response in that region of cortex. Moreover, the 

direction of this association provides useful information—in the example presented here, it 

does so by differentiating between low- and high-performers. Elsewhere, as is reported in 

the following sections, it can also differentiate participants who had writing training from 

those who did not. 
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Figure 4-7. Effects plot of the interaction between low level visual representations and 
word reading accuracy, based on the LMEM analysis of the peak voxel in the R calcarine 
sulcus cortex. X-axis: pixel overlap, Y-axis: neural similarity measure (Euclidean distance, 
with greater distance indexing less neural similarity). Individuals with the highest 
behavioral performance on the word reading task outside of the scanner (yellow line) are 
predicted to have a negative relationship between pixel overlap and neural similarity 
(greater pixel overlap = greater neural distance, i.e., less similar neural representations), 
whereas those with the worst performance (blue line) are predicted to have a positive 
relationship (greater pixel overlap = less neural distance, i.e., more similar neural 
representations). 

 

One critical fact to keep in mind is that these results are based on brain activation 

patterns during the simple symbol detection task (SDT) and not during the actual behavioral 

tasks, which were administered outside of the scanner prior to the post-training fMRI 

session. This makes the findings more powerful, in that they reveal that the neural activity 

in response to viewing single letters during the (very easy) symbol detection task is in fact 
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predictive of behavioral performance on more complex tasks involving letter processing. 

However, this also means some caution should be taken when interpreting the results, 

because they cannot be taken as showing that these representations are actually active in 

these brain regions during the behavioral task. The conservative interpretation is that 

individuals whose neural activity is most similar to low-level visual representations tend to 

do worse on letter processing tasks. And, paralleling the results of the behavioral 

same/different letter judgment, the pixel overlap-based representation is seen primarily in 

those who had typing training, not those who had writing or visual training. This is consistent 

with the generally poorer performance of typing training on measures of learning 

generalization, and suggests part of this is due to reliance on the low-level visual information 

(which, notably, was the only type of letter representation found to influence letter 

perception at the pre-training time point).  

 

2. Higher Level Visual Representation (Visual Features) 

The clusters showing a significant relationship with higher level visual representations (i.e., 

more shared visual features, more similar neural representations) are listed in Table 4-7: 

with group-specific effects in left panel and for interactions with behavioral tasks in the right 

panel. These are depicted in Figures 4-8 (group-specific effects) and 4-9 (behavioral 

interactions). All of these clusters showed negative associations. In total, 15 distinct clusters 

showed some significant relationship with visual features: L V5/MT, L inferior frontal gyrus 

(operculum), L middle & posterior fusiform gyrus, L inferior temporal gyrus, L middle frontal 

gyrus (Brodmann Area 6), L supramarginal gyrus, L superior parietal lobule, L precentral 
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gyrus (two clusters, one superior), L dorsolateral prefrontal cortex, L precuneus, R 

ventrolateral prefrontal cortex, R middle fusiform gyrus, and R lateral occipital sulcus.  

Table 4-7. Clusters associated with higher-level visual representations (visual features). 
Left panel: group-specific effects. V = Visual, W = Writing. Right panel: interactions with 
behavioral measures. Recognition = Letter Recognition RT, Naming = Letter Naming RT, 
Writing = Writing Letters to Dictation Accuracy, Reading = Word Reading Accuracy. MT = 
middle temporal, IFG = inferior frontal gyrus, ITG = inferior temporal gyrus, MFG6 = middle 
frontal gyrus/Brodmann Area 6, SMG = supramarginal gyrus, PreCG = precentral gyrus, SPL 
= superior parietal lobule, DLPFC = dorsolateral prefrontal cortex, VLPFC = ventrolateral 
prefrontal cortex, LOS = lateral occipital sulcus. 

 

 

 

Figure 4-8. Significant group-specific effects of higher level visual representations. MNI 
coordinates are labeled on the top. Right is on the left. Blue = Visual Condition, Green = 
Writing Condition. 

 

EFFECT X Y Z T-VALUE voxels AREA EFFECT X Y Z T-VALUE voxels AREA

V -53 -75 -3 3.64 14 L V5/MT Recognition -53 -71 -2 -3.86 10 L V5/MT

V -53 13 6 5.42 26 L IFG operculum Recognition -53 4 11 -3.82 16 L PreCG

V -47 -68 -8 4.96 62 L middle & posterior fusiform, L ITG Recognition -50 10 25 -4.19 28 L PrecG (superior)

V -44 -6 39 3.58 13 L MFG6 Recognition -41 -81 -13 -5.21 27 L posterior fusiform

V -43 -52 51 5.25 39 L SMG Recognition -36 25 22 -3.82 19 L DLPFC

V 46 -69 -2 4.59 34 R middle fusiform Recognition -11 -69 38 -3.4 15 L precuneus

W -57 -7 7 4.24 11 L PreCG Recognition 41 40 7 -4.78 13 R VLPFC

W -50 8 17 5.225 14 L PrecG (superior) Recognition 43 -93 2 -4.23 9 R LOS

W -29 -67 46 4.26 12 L SPL Naming -55 11 14 -4.03 19 L PreCG, L PrecG (superior)

Naming -44 18 -1 -4.58 28 L IFG operculum

Reading -48 -42 55 5.56 64 L SMG

Reading -48 25 23 4.25 15 L DLPFC

Reading -48 25 23 4.25 15 L DLPFC

Reading -44 6 25 4.68 21 L PrecG (superior)

Reading -14 -67 38 5.21 30 L precuneus

Reading -43 -77 -19 5.57 27 L posterior fusiform
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Group-specific effects: The Visual Condition showed effects in L V5/MT, L IFG operculum, L 

middle & posterior fusiform gyrus, L MFG (Brodmann Area 6), L supramarginal gyrus, and 

the R middle fusiform gyrus. The Writing Condition showed effects in L two separate clusters 

in the precentral gyrus, and the L superior parietal lobule. All these effects were negative 

associations. 

 

Figure 4-9. Significant interactions between behavioral measures and higher level visual 
representations. MNI coordinates are labeled on the top. Right is on the left. Pink = Letter 
Recognition RT, Yellow = Letter Naming RT, Orange = Writing Letters to Dictation 
Accuracy, Teal = Word Reading Accuracy. 

 

Behavioral measure interactions: Better performance on the behavioral measures was 

associated only with more strongly negative associations with the neural representations. 

Specifically, faster RT on letter recognition was associated with more strongly negative 

associations in 8 clusters: L V5/MT, R lateral occipital sulcus, L posterior fusiform, L 

precuneus, two clusters in the L precentral gyrus, L DLPFC and R VLPFC. Likewise, faster RT 

on letter naming was associated with more strongly negative associations in the same two 

precentral gyrus clusters as well as in the L opercular cortex. Finally, better accuracy on 

reading was associated with more strongly negative relationships in the same (superior) L 
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precentral gyrus cluster, the L precuneus cluster, the L posterior fusiform cluster, the L 

supramarginal gyrus, and L DLPFC.  

 

Summary & Discussion: Higher Level Visual Representation 

As a striking counterpoint to the low-level visual representations (pixel overlap), the higher-

level visual representation measured by the proportion of shared visual features were 

exclusively negatively associated with neural representation. Without any exceptions, all 

effects suggested that pairs of letters with more visual features in common in fact tend to 

have less similar neural patterns of activation. 

 A large number of clusters (10) were found to be related to three of the four 

behavioral measures: letter recognition, letter naming, and word reading, and all three of 

these measures showed that those who performed best had less similar neural 

representations for stimuli that share more visual features. A comparison of the results for 

pixel overlap with those here for visual features reveals just two clusters in common, R 

middle fusiform gyrus and L IFG (operculum). Primarily the results are distinct—including 

the fact that the direction of the relationships tended to be opposite for the two measures, 

despite the two predicted similarity measures being themselves positively correlated (i.e., 

higher pixel overlap correlates positively with a higher proportion of shared features, r = 

0.769).  

 Lastly, the Typing Condition did not show any evidence of visual feature 

representations. This also contrasts with the results of pixel overlap, where the Typing 

Condition was predominant. This means that the clusters showing apparently desirable 

associations for performance on letter recognition, naming, and word reading overlapped 
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with some clusters unique to the Visual Condition (naming in L IFG, recognition in L V5/MT 

and L posterior fusiform) and the Writing Condition (naming, recognition, and word reading 

in the L precentral gyrus), but nothing for the Typing Condition. 

 All of the effects showed negative associations—letters sharing more visual features 

had less similar neural representations. One way this could be explained is if only distinctive 

features were represented and/or attended to (for an explanation of how this could lead to 

a negative association see Appendix B). In fact, research into the differences between naïve 

and expert letter perception has revealed that one of the hallmarks of expert letter 

processing is a greater influence of what makes a letter distinctive, relative to the set of 

alternative letters (Wiley and Rapp, under review). This is not surprising, given that 

successful letter identification hinges upon recognizing when a token of a letter is a 

representation of its type—variations in font and handwriting must be abstracted away 

from, which is presumed to be achieved by identifying the underlying visual features. 

Additional evidence that experts attend to only critical portions of letter stimuli comes from 

use of the “Bubbles” technique (Fiset et al., 2009, 2008; Hannagan & Grainger, 2013), 

revealing that in the Roman alphabet, successful letter identification is based on only certain 

portions of the letter-shapes.  

 Setting aside the nature of the negative direction of the associations, the visual 

features results reveal once again a striking degree of consistency with the behavioral 

findings, in terms of the strengths and weaknesses of the learning condition. Moreover, the 

results yet again are suggestive of how the differences in behavior may be tied to different 

cognitive representations, and access to these representations. As with the results of low-

level visual similarity, the Typing Condition was shown to be the most lacking in supporting 
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representations that were associated with better letter processing abilities. In both bilateral 

vOTC and L inferior frontal/precentral gyrus areas, the Typing Condition showed weaker 

effects than the visual and Writing Conditions. Overall, the Visual Condition showed the most 

widespread effects (the most distinct clusters), although the Writing Condition showed 

effects in areas that also related to three of the behavioral tasks (naming, recognition, and 

reading) compared to just two for the Visual Condition (naming and recognition).  

 

3. Motoric Representation (Motor Bistrokes) 

The clusters showing a significant relationship with motoric representations (i.e., more 

shared motor bistrokes, more similar neural representations) are listed in the left panel of 

Table 4-8, for group-specific effects, and in the right panel of Table 4-8, for interactions with 

behavioral tasks. These are depicted in Figures 4-10 (group-specific effects) and 4-11 

(behavioral interactions). In total, 30 distinct clusters showed some significant relationship 

with motoric representations, 25 positively associated and 5 negatively associated.  

 

Table 4-8. Clusters associated with motoric representations (motor bistrokes). Left panel: 
group-specific effects. T = Typing, V = Visual, W = Writing. Right panel: interactions with 
behavioral measures. Recognition = Letter Recognition RT, Naming = Letter Naming RT, 
Writing = Writing Letters to Dictation Accuracy, Reading = Word Reading Accuracy. MT = 
middle temporal; DLPFC = dorsolateral prefrontal cortex, ITG = inferior temporal gyrus, 
SMG = supramarginal gyrus, IFG = inferior frontal gyrus, PreCG = precentral gyrus, FG = 
fusiform gyrus, FEF = frontal eye fields, ACC = anterior cingulate cortex, meSFG = medial 
superior frontal gyrus, cerb = cerebellum, LOS = lateral occipital sulcus, IPS = intraparietal 
sulcus, IPL = inferior parietal lobule, postCG = postcentral gyrus, PCC = posterior cingulate 
cortex, MFG6 = middle frontal gyrus (Brodmann area 6), STG = superior temporal gyrus, 
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VLPFC = ventrolateral prefrontal cortex.

 

 

 

 

Figure 4-10. Significant group-specific effects of motoric representations. MNI coordinates 
are labeled on the top. Right is on the left. Red = Typing Condition, Blue = Visual Condition, 
Green = Writing Condition. 

 

Group-specific effects: The Typing Condition showed effects in 2 clusters, bilaterally around 

area V5/MT. The Visual Condition showed effects in 17 clusters: L DLPFC, L inferior temporal 

EFFECT X Y Z T-VALUE voxels AREA EFFECT X Y Z T-VALUE voxels AREA

T -51 -75 2 -4.41 25 L V5/MT Recognition -63 -20 24 3.945317 13 L post.CG

T 42 -67 -5 -3.91 13 R V5/MT Recognition -41 14 -3 4.407196 12 L IFG operculum

V -48 34 32 -4.801017 16 L DLPFC Recognition -39 -84 -14 5.2 63 L anterior, mid & post. FG, L ITG

V -46 -67 -6 -4.43 10 L ITG Recognition -23 -76 37 4.667494 12 L post. IPS

V -44 -48 55 -6.420595 83 L SMG Recognition -9 -65 37 5.445757 25 L precuneus

V -44 22 26 -5.988792 142 L IFG, L PreCG, PreCG (sup.), L DLPFC Recognition -5 20 43 4.275994 38 bilateral meSFG

V -41 -67 -14 -4.33 18 L mid FG Recognition 3 -39 26 5.336084 19 bilateral PCC

V -38 -85 -12 -4.06 12 L post. FG Recognition 28 13 45 5.060601 22 R MFG6

V -32 0 33 -6.546516 61 L FEF Recognition 42 -68 -5 -4.89 12 R V5/MT

V -15 -68 39 -5.868388 25 L precuneus Recognition 45 -50 43 -3.696916 11 R anterior IPS/R IPL

V -11 -18 36 -5.465593 12 L cingulate sulcus Naming -56 13 -9 5.303112 15 L STG

V -8 11 24 -5.19948 20 L ACC Naming -54 10 15 4.40964 25 L preCG (sup.)

V -3 30 40 -5.362441 87 bilateral meSFG Naming -47 14 7 4.919203 29 L IFG operculum

V -3 37 35 -4.314883 14 L anterior meSFG Naming -39 25 22 4.148455 13 L DLPFC

V 12 -64 40 -4.723657 32 R precuneus Naming -11 -68 37 5.038149 29 L precuneus

V 21 -72 -31 -6.673416 26 R cerb (post. inf.) Naming 13 -73 43 3.790202 23 R precuneus

W -34 -93 -1 -3.86 14 L LOS Writing -48 12 16 -4.5 20 L preCG (sup.)

W -23 -79 39 -5.21 43 L post. IPS Writing -39 -56 -9 -4.14 27 L anterior FG

W 33 -65 -26 -4.59 12 R cerb (post.) Writing 40 31 23 5.01 25 R DLPFC

W 48 -71 -17 -5.16 31 R post. FG Writing 42 3 3 4.5 15 R VLPFC

W 36 -44 40 4.82 16 R anterior IPS/R IPL Reading -46 -47 55 -7.714195 76 L SMG

W 49 -63 -10 -4.86 13 R mid FG Reading -45 -53 -11 -3.81 16 L anterior FG

Reading -43 -78 -19 -3.69 12 L post. FG

Reading -41 -70 -5 -3.49 9 L mid FG

Reading -41 7 35 -4.413876 51 L preCG (sup.), L FEF

Reading -9 -65 38 -6.539762 37 L precuneus

Reading 1 34 32 -4.621985 38 bilateral meSFG

Reading 13 -67 38 -4.360747 21 R precuneus

Reading 42 -65 -13 -3.91 10 R mid FG
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gyrus, L supramarginal gyrus, L IFG (operculum), both clusters in the L precentral gyrus, L 

middle and posterior fusiform gyrus, L frontal eye fields, L and R precuneus, L cingulate 

sulcus, L anterior cingulate cortex, bilateral medial superior frontal gyrus, L anterior 

superior frontal gyrus, and R cerebellum (posterior-inferior cluster). The Writing Condition 

showed effects in 7 clusters: L lateral occipital sulcus, L posterior intraparietal sulcus, R 

cerebellum (posterior cluster), R middle and posterior fusiform gyrus, R anterior 

intraparietal sulcus, and R inferior parietal lobule. All of these effects were positive 

association, with the exception of the writing experience effects in the R anterior IPS and R 

inferior parietal lobule. 
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Figure 4-11. Significant interactions between behavioral measures and motoric 
representations. MNI coordinates are labeled on the top. Right is on the left. Pink = Letter 
Recognition RT, Yellow = Letter Naming RT, Orange = Writing Letters to Dictation 
Accuracy, Teal = Word Reading Accuracy. 

 

Behavioral measure interactions: Faster RT on letter recognition had more positive 

associations with motoric representations in 10 clusters: 3 clusters spanning the length of 

the L fusiform gyrus, L precuneus, L inferior temporal gyrus, L IFG (opercular part), L 

postcentral gyrus, L posterior IPS, bilateral medial superior frontal gyrus, and R MFG 

(Brodmann Area 6). Faster RT on letter naming likewise was positively associated with 

motoric representations in 6 clusters: overlapping parts of the L IFG (opercular part) and L 
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precuneus, as well as the R precuneus, L precentral gyrus (superior cluster), L superior 

temporal gyrus, and L dorsolateral prefrontal cortex. Better accuracy on writing letters was 

positively associated in the L precentral gyrus (superior cluster) and in L anterior fusiform 

gyrus. Finally, better accuracy on word reading was positively associated in 10 clusters: the 

L precentral gyrus (superior cluster) and L precuneus, L frontal eye fields, L fusiform gyrus 

(all 3 clusters), R mid fusiform gyrus, L supramarginal gyrus, and bilateral medial SFG. 

In contrast, 5 clusters related to behavioral measures in the opposite direction, with 

better performance negatively associated letter recognition in R V5/MT, R anterior IPS, and 

R inferior parietal lobule, and with letter writing in R both ventro- and dorsolateral 

prefrontal cortex. 

 

Summary & Discussion: Motoric Representation 

There are several prominent results to highlight from the analyses of motor features. The 

extent of clusters showing sensitivity to this representational type was the most extensive, 

covering most of the regions in the combined LLN-vOTC search space. This is surprising, 

given that only one third of the participants had much writing experience with the Arabic 

letters. While certainly it is possible that all of the participants developed motoric 

representations (and they generally were all able to complete the writing letters to dictation 

task; see Chapter 3), these were expected to be strongest among the Writing Condition 

participants. On the contrary, the Writing Condition actually showed fewer clusters 

reflecting motoric representations, whereas the Visual Condition showed the most. 

However, a closer inspection of the evidence supports the conclusion that many of these 

clusters in fact reflected visual dynamic representations, and not motoric ones. 
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This is so first of all because the clusters where the Writing Condition showed motoric 

representations were largely unrelated to other types of information (i.e., low level or higher 

level visual). Of the 7 Writing Condition clusters reported here, in none of them did 

participants in that group show visual representations as whole. In terms of the interactions 

with behavioral measures, only in the R middle fusiform cluster was there found an 

association with visual information (in relation to letter recognition RT). 

This contrasts with the other two training Conditions. First, the Typing Condition 

showed just two motoric clusters. However, their location is highly indicative of dynamic 

visual information. These clusters lie in part of extrastriate cortex in the lingual gyrus, 

including the likely site of area V5/medial temporal (MT), also known as the human motion 

complex (Dumoulin, 2000; Kriegeskorte et al., Goebel, 1993). In fact, this area has been 

associated not only with letter processing, but also the processing of visual motion and action 

perception, And in fact, the R V5/MT motoric cluster also showed an interaction with letter 

recognition RT (a negative one, indicating that a motoric representation such as the Typing 

Condition showed was “undesirable” for fast letter recognition). 

 Second, although the Visual Condition showed a large number of motoric clusters (16 

in total), these were almost entirely associated with other types of information, Seven of 

them were previously reported (Table 4-7) because the same participants simultaneously 

showed evidence of higher level visual representations in the same voxels. Five more were 

also reported as showing interactions between visual representations and behavioral 

measures—notably, excluding the writing to dictation task. 

 The inference to be drawn here is that the “motoric representations” found among 

the Typing and Visual Conditions are very likely, although not definitely, reflecting visual 
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dynamic representations. This is so both because of what is known about what processes 

those areas are typically implicated in, and because the RSA results of this chapter also 

substantiated visual representations in many of the same clusters. This contrasts with the 

Writing Condition, where only 1 out of 7 clusters were similarly associated with visual 

information.  

 

 

4. Phonological Representation (Letter Names) 

Only one significant cluster was found to relate to letter names: in the L superior temporal 

gyrus, there was a positive association with the letter name similarity (i.e., more shared 

phonological features in the letter names, more similar neural representations), a Typing 

Condition-specific effect (Table 4-9).  

Table 4-9. Cluster positively associated with letter name representations. STG = superior 
temporal gyrus. T = Typing. 

 

 

Summary & Discussion: Phonological Representation 

There was scant evidence of phonological representations: only one cluster, which showed 

a Typing Condition-specific effect. This cluster overlaps extensively with 3 clusters 

previously reported: one showing a positive association between low level visual 

representation and word reading (MNI peak: -56, 9, -3), one showing a positive association 

with motoric representation (MNI peak: -54, 9, -5), and one showing a positive association 

EFFECT X Y Z T-VALUE voxels AREA

T -53 15 -3 -4.35 19 L STG
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between motoric representation and letter naming (MNI peak: -56, 13, -9). These clusters 

cover an anterior portion of the superior temporal gyrus and extend into the lateral sulcus 

and most inferior and lateral portions of the inferior frontal gyrus. 

 There are at least two possibilities for why there was a relative dearth of evidence for 

letter name representations. The first is that the characterization of letter name similarity, 

based on the phonological features of the letter names (see Chapter 2, section III. “Behavioral 

Analyses”), was perhaps not sufficiently similar to the representations actually present in 

the brain. The more interesting possibility is related to the fact that, as previously pointed 

out, in the scanner the participants were performing only a basic symbol detection task—

thus, it may be the case that regions that would be activated for the actual letter naming task 

and that would show letter name representations in an RSA analysis were not responding 

this way during the scanner task. 

One might wonder why motoric representations were found to be widely represented 

but not letter names, even though both types of information would seem to be equally 

irrelevant to the symbol detection task. However, at least some of the clusters responsive to 

motor features may in fact have been representing visual information (see last section), 

albeit dynamic instead of static (the scanner stimuli were static). Moreover, it has been well-

established that orthographic stimuli activate premotor and supplementary motor areas 

even during passive viewing tasks (James & Gauthier, 2006; James, Jao, & Berninger, 2015; 

Longcamp et al., 2003; Longcamp, Tanskanen, et al., 2006), and motor knowledge may be 

particularly activated by chirographic/cursive stimuli, such as were the Arabic letter stimuli 

in this experiment (Kersey & James, 2013; Li & Yeh, 2003). There is no corresponding 

evidence of such strong and consistent activation of auditory cortex during passive letter 
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viewing, and in fact auditory/phonological processing cortices were not included in the LLN 

(with the possible exception of this small cluster in left STG), unlike the supplementary 

motor and premotor areas. This is plausibly due to the fact that motoric representations and 

visual representations are necessarily related to one another, whereas the relationship 

between a letter’s shape and its name is completely arbitrary, and therefore recruiting 

motoric information is more likely to help visually recognize a letter than is phonological 

information.  

 

5. Amodal Representation: Symbolic Letter Identity (SLI) 

The significant clusters showing a positive association with the SLI (i.e., shared 

identity/allographs, more similar neural representations) are listed in Table 4-10, and 

depicted in Figure 4-12. No clusters showed a negative association. In total, 3 clusters 

showed some significant relationship with SLI: L precentral gyrus, bilateral pre-SMA, and R 

lateral occipital sulcus.  

 

 

Table 4-10. Clusters associated with symbolic letter identity (SLI) representations. PreCG 
= precentral gyrus, SMA = supplementary motor area, LOS = lateral occipital sulcus. T = 
Typing, V = Visual, W = Writing. TvV = Typing versus Writing, VvW = Visual versus Writing. 
Recognition = Letter Recognition RT. 

 

EFFECT X Y Z T-VALUE voxels AREA

Recognition -50 10 12 3.28 11 L PreCG 

TvW -57 7 9 3.9 15 L PreCG 

TvW 3 10 59 4.46 19 bilateral pre-SMA

VvW 1 11 59 4.22 18 bilateral pre-SMA

W -57 7 9 3.9 14 L PreCG 

W 1 12 61 3.49 16 bilateral pre-SMA

W 40 -85 2 3.86 9 R LOS
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Group-specific effects: The Writing Condition alone showed significant effects in 3 clusters: L 

precentral gyrus, bilateral pre-SMA, and R lateral occipital sulcus. The Writing Condition 

differed significantly from the Typing Condition in the L precentral gyrus ad pre-SMA 

clusters, and from the Visual Condition in the pre-SMA cluster. 

 

Figure 4-12. Significant clusters associated amodal SLI representations. MNI coordinates 
are labeled on the top. Right is on the left. Pink = Letter Recognition RT, Green = Writing 
Condition. 

 

Behavioral measure interactions: RT on the letter recognition task was positively associated 

with the strength of SLI representations in the L precentral gyrus cluster.  

 

Summary & Discussion: Amodal Representation 

Strikingly, the only significant effects were found for the Writing Condition. Moreover, these 

effects were significantly stronger than the Typing Condition in two clusters (L preCG and 

bilateral pre-SMA) and the visual experience in one (bilateral pre-SMA). The SLI 

representation also interacted with the behavioral measure of letter recognition, such that 

individuals who were faster showed stronger SLI representations, suggesting an advantage 
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for the Writing Condition (and with typing-trained participants once again the worst off, as 

the Typing Condition showed significantly less of an SLI representation in this L preCG 

cluster). 

The results here show that as a group, only the Writing Condition participants 

showed any evidence of the amodal representation of SLI. This mirrors their behavioral 

performance on the Same/Different Judgement task, although the Visual Condition also 

showed an effect of SLI on that task. In fact, the Visual Condition differed significantly from 

the Writing Condition in only the pre-SMA cluster, and not in the preCG cluster, whereas the 

Typing Condition differed significantly in both (see Appendix A).  

The results are unequivocal in showing that the SLI representation is most apparent 

after writing training. Taken together with the behavioral evidence from the Same/Different 

Judgement task, these results present compelling evidence that amodal letter 

representations not only exist, but in fact were seen to arise most strongly among those who 

have writing experience. Each of the three clusters showing this amodal representation is 

discussed in turn with regard to the role that the representation may be playing in that 

region. 

First, in addition to the Writing Condition-specific SLI representation, the R LOS 

cluster also showed an association between higher level visual representation and behavior 

on the letter recognition task (Table 4-7). The implication is that SLIs are used to support 

visual recognition processes in the R LOS, both because this region is considered part of the 

visual processing network and specifically shows sensitivity to shape (Braunlich, Gomez-

Lavin, & Seger, 2015; Sawamura, Orban, & Vogels, 2006), and because the RSA results 

showed that both SLI and visual representations were activated here (presumably 
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facilitating identification of the letter-shapes/allographs). It cannot be ascertained from this 

method whether or not the same voxels, much less the same neurons, are implicated in 

processing both SLI and visual information. Nonetheless, there are implications that the 

same substrates, grossly described, are seen to instantiate both modal and amodal 

representations—this is compelling evidence in favor of amodal representations that are not 

limited to “convergence zones” thought to reflect multimodal representations instead of 

amodal ones (see Barsalou, 2016; Binder, 2016).  

Second, the pre-SMA has functional connections to brain regions that are implicated 

in higher-level cognitive processes underlying complex planning for motor and language 

tasks (Kim et al., 2010). The SLI representation could plausibly be implicated in such 

cognitive processes. This moreover would be expected to arise in this area with writing 

experience, especially so as the writing training involved transcoding the visual and/or 

phonological input (the letter name) into motor plans, and SLI is proposed to mediate 

between such transcoding (see Chapter 5). Moreover, because participants were taught 

allographs that require distinct motor plans, a certain amount of abstraction was required 

for writing to dictation task: presumably letter name input led to activation of both 

allographs/motor plans, which then had to be selected by further incorporating additional 

cues—either visual or other contextual cues, indicating which allograph needed to written. 

Third, the cluster in the precentral gyrus overlapped15 with the many other 

precentral gyrus clusters (including the superior ones, all depicted in Figure 4-13): as with 

                                                        

15 N.B.: The term “overlap” here is used to indicate that the multiple regression (the LMEM analyses) found 

simultaneous unique variance was explained by more than one representational type. In other words, “overlapping” 

clusters mean that some model(s) reported significant effects of more than one modality-specific or amodal 

representation. 
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the R LOS cluster, the Writing Condition also showed higher level visual representations in 

the L superior preCG cluster. The higher level visual representations in this area were also 

associated with letter recognition, letter naming, and word reading performance. There was 

also main effect of motoric representations in the L superior preCG cluster, which was also 

associated with performance on the Letter Naming, Writing Letters to Dictation, and Reading 

Word tasks (see Appendix A). This area in particular has been identified as part of the “visual-

motor letter processing” system (James, 2017) associated with both letter perception and 

writing; perhaps most intriguing, it is one of the associative areas hypothesized to represent 

abstract concepts via multimodal compression (see Chapter 1), a possibility which is 

returned to in Chapter 5. 

 

Figure 4-13. Precentral gyrus clusters (MNI coordinates: -57, 7, 10) showing multiple 
letter representations. Cluster overlap (purple voxels) outlined in yellow. 

 

 Altogether, the evidence supports the account that the generally superior 

performance of the Writing Condition, on both measures of generalization and retention, is 

associated with better learning of the symbolic letter identities. This is supported by both 

the behavioral and the neural letter representation results (i.e., the same/different task and 

the RSA). The findings are also consistent with the more mixed performance for the Visual 
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Condition and generally poorest performance for the Typing Condition. This pattern of 

results is contrary to the predictions of strong embodiment theory, which rejects amodal 

representations. At the same time, the fact that amodal representations were most strongly 

learned by those who had writing experience upholds the importance of writing for letter 

learning. The advantages of writing training over non-motor training was seen to be related 

primarily to superior letter recognition. Certain aspects of grounded cognition accounts are 

supported by these results—both visual and motoric representations were seen to underlie 

much of the brain activity during the symbol detection task, and crucially these 

representations were associated with behavioral performance on letter processing tasks. 

This, therefore, constitutes strong evidence that sensory/motor representations activated 

during letter perception are not epiphenomenal. However, we clearly find amodal 

representations do form part of the content of letter concepts, and likewise are implicated in 

letter processing behaviors. In addition, given that neither grounded cognition nor 

abstractionist predict that writing experience would support learning amodal 

representations in particular. These issues are discussed in the following chapter. 
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Chapter 5 – General Discussion 

This chapter concludes that the evidence reported in this dissertation supports the view that 

cognition involves both groundedness and abstraction. Sensory/motor letter 

representations were found to be recruited for letter perception, and were associated with 

behavioral performance on letter processing tasks. However, motoric representations were 

not unique to individuals who had writing training. Furthermore, amodal letter 

representations, symbolic letter identities (SLIs), were also found to be associated with 

behavioral performance on letter processing tasks, and were most clearly present among 

individuals who had writing experience. Therefore, these results present a challenge both to 

embodiment theories that reduce concepts to sensory/motor representations, as well as to 

strong abstractionist claims that sensory/motor activity is epiphenomenal. On the basis of 

these results, I propose that the reason writing experience is particularly beneficial to 

learning letters is because it strengthens connections between various modality-specific 

letter representations that are mediated by amodal SLI representations. In addition to 

discussing the implications of these results for theories of cognition, practical implications 

for education and future directions for research are considered as well.  

 This following two sections review the results as they pertain to these issues. The first 

section (I. “How Does Writing Benefit Learning?”) focuses primarily on the behavioral 

results, answering the first question of the dissertation. Establishing what the benefits of 

writing experience actually are is important for its practical implications, but also provides 

the measures of behavioral performance necessary for answering the other two key 
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questions addressed in the dissertation. These are discussed in the second section of this 

chapter (II. “Multimodal and Amodal Letter Representations). 

 

I. How Does Writing Benefit Letter Learning? 

This section presents a final account of how writing training and non-motor training led to 

the learning of different letter representations and supported different behavioral abilities. 

A summary of the behavioral findings is presented in Table 5-1, and is used to guide 

discussion of the overall pattern of results.  

Table 5-1. Summary of the behavioral results from Chapter 3. Performance is ranked from 
1 (best) to 3 (worst) performance. Highlighting reveals significant comparisons: gold = 

best/tied for best; silver = second best/tied for second best; bronze = worst performance. 
Cells without highlighting reflects no significant differences. T = Typing, V = Visual, W = 

Writing. Novel Font = letter recognition task with novel fonts. Writing = writing letters to 
dictation. Spelling = spelling words to dictation. Reading = word reading. Length Effect = 

effect of word length on word reading accuracy. 
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The Writing Condition resulted in consistently superior behavioral performance, in 

particular on measures of generalization (see Table 5-1). The Writing Condition was 

significantly better than both the Typing and Visual Conditions on the following tasks: Letter 

Recognition (RT), Novel Font Letter Recognition (RT), Writing Letters to Dictation, and 

Letter Naming (accuracy, post-training time point, and RT, follow-up time point). The 

Writing Condition was also significantly better than the Typing Condition on the Spelling 

Words to Dictation task, and in terms of the effect of length on the Reading Words task. The 

Writing Condition resulted in the best performance, numerically, on nearly every measure. 

How did this happen? In Chapter 1, five possible sources of such benefits were discussed, 

which would indicate that the effect of writing experience stemmed from incidental factors: 

(1) variable visual input, (2) an effort account, (3) selective rehearsal displacement, (4) 

transfer-appropriate processing, and (5) distinctiveness processing. The first three of these 

were addressed through the experimental design of the training study, and are not 

supported by the results reported here. The transfer-appropriate processing account is 

challenged to explain why the Writing Condition excelled even on the Letter Naming task, 

given that the writing training task does not more readily transfer to the task demands of 

letter naming (as opposed to, say, the Writing Letters to Dictation task). This leaves only the 

distinctiveness processing theory, which remains a viable possibility—as such, this theory is 

returned to in the final account presented below. Below, the performance of the three 

learning Conditions on the assessment tasks is reviewed to facilitate discussion of this 

account. 
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1. The Typing Condition 

The Typing Condition presented a challenging learning task (see Appendix C) that did not 

well support generalization to other tasks. Participants in the Typing Condition struggled on 

tasks that required knowledge of the letter sounds in particular, such as Spelling to Dictation, 

Letter Naming, and Reading Words, and in general they were slow at visually processing the 

letters. Importantly, the Typing Condition was found to be the only group that failed to show 

any evidence of SLI effects, either on behavior in the Same/Different Judgment task, or in the 

RSA of the fMRI data (see section II of this chapter). This is consistent with the theory that 

symbolic letter identity (SLI) plays a key role in mediating between the multiple 

representations of letters. Instead of developing a robust amodal, symbolic letter 

representation, the Typing Condition resulted in narrower visual representations (e.g., font-

specific) and facilitated learning of only very specific processes—namely, those needed to 

perform a visual search to find the correct key on the keyboard. They were also seen to be 

more heavily influenced by the letter names (in both the Same/Different Judgment task and 

the RSA results), which is suggestive of the possibility that letter names may be used to 

transcode between different modality-specific representations prior to learning SLIs. 

 

2. The Visual Condition 

The Visual Condition presented participants with the least engaging, easiest training task 

(see Appendix C). This may have led to slower progress in reaching criteria, but allowed the 

participants to attend to information presented in the training videos that participants in the 

Typing Condition may have been too busy for: the letter names, sounds, and the dynamic 
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visual features portrayed through the letter animations. The claim that the Visual Condition 

resulted in relatively good learning of letter sound information is substantiated by their 

performance on the Spelling  Words to Dictation and Reading Words tasks, the only two tasks 

which required letter sound knowledge, and on which they outperformed the Typing 

Condition and were not significantly different from the Writing Condition. The case for the 

visual condition having learned the dynamic visual information is best supported by the RSA 

results (see section II of this chapter).  

  

3. The Writing Condition 

Finally, the Writing Condition was the most beneficial method for learning letters. There 

were no important measures on which the participants in the Writing Condition did not 

perform best, a fact that is even more striking when considering that those superior results 

were obtained after fewer total training sessions (3.7 sessions versus 3.9 and 4.3 for typing 

and visual study, respectively). A specific result from the Writing Letters to Dictation task 

was that writing experience may specifically help with “breaking” mirror invariance 

(Pegado, Nakamura, & Hannagan, 2014), whereas even intense visual study is insufficient to 

do so. But the benefits of writing experience extended well beyond the ability to write letters, 

and went beyond visual recognition tasks. The evidence resulting from this investigation is 

that learning SLI representations was facilitated the most by writing training, and this 

supports the conclusion that these representations allow for faster and more reliable 

mapping between different letter representations (e.g., from letter-shapes to names or 

sounds and vice versa). A major piece of evidence that writing experience supported learning 
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SLIs is provided by the Same/Different Judgment task, where writing training resulted in a 

significantly larger effect compared to the Typing and Visual conditions, such that RT was 

slower to pairs of letters sharing SLI than to all other pairs. Converging evidence came from 

the RSA results (discussed in the next section). 

 

A Final Account 

SLIs are proposed to have a critical role of mediating between different letter 

representations, necessary for performing any task that requires outputting letters in one 

representational format given input in another. This abstractionist framework is depicted in 

Figure 5-1. I propose that the writing training task in particular facilitated development of 

SLI representations, because it provided the most experience with mapping between 

different modality-specific letter representations. This was the case because the 

requirement of the writing task itself, coupled with the requirement of reaching criteria on 

the letter recognition task, encouraged learning to map between visual, motoric, and 

phonological representations. Although it is of course possible to copy the letter-shapes 

without a stored motor plan, repetition of the act of writing clearly resulted in learning and 

storage of motoric representations. In the Typing Condition, repetition of the act of typing 

could also result in a stored spatial representation of the letter locations on the keyboard, 

however the results were clear that whatever memories of these locations developed, they 

were not robust (RT during the typing task remained very slow; see Appendix C). This 

account does predict that, given sufficient time, typing training might also result in SLI 
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representations, but would not be expected to do so until the participants attained the ability 

to touch-type (i.e., typing without performing a visual search for the keys). 

However, the non-arbitrary relationship between visual representations and motoric 

representations may also be crucial, and by comparison the arbitrariness of the keyboard 

layout may prevent typing training from ever being as effective as writing training. This is 

also suggested by distinctiveness processing theory, which proposes that the “production 

effect” (MacLeod et al., 2010) will only be effective for promoting recall and recognition if 

the responses that are produced during study are distinctive. That is, the responses must 

differentiate between the studied items—it is thus not clear that one key press compared to 

another would be sufficiently distinctive. As for the Visual Condition, no requirement of the 

visual probe/target task necessitated any transcoding at all (beyond associating the visual 

and auditory inputs together), given that it was an entirely visual task, and thus SLI 

representations would not obviously be developed or strengthened by that training. 
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Figure 5-1. An abstractionist framework of the letter representations and processes during 
the training tasks. The stimuli reflect the animated letters shown to participants in all 

conditions with the accompanying audio. Mapping between visual, phonological, motoric, 
and spatial (i.e., keyboard location) representations requires mediation through SLI, given 

the arbitrary relationships between those modalities. 

 

The effects of writing experience in this study are similar to what has been termed the 

“drawing effect” (Wammes, Meade, & Fernandes., 2016). In the study of Wammes and 

colleagues (2016), it was found that words were better memorized if participants were 

asked to draw pictures of them. It was argued that the benefit of drawing was that it 

combined elements of both generation and production—the participants must themselves 

generate semantic features of the words, the associated visual features, the motor plans to 

draw these features, and then of course they must also produce them. Moreover, the authors 

put forth what they called a “synergistic interaction” (Wammes, Meade & Fernandes, 2016,  

1771) to explain the fact that the total benefit of drawing was greater than the sum of the 

benefits obtained by other learning conditions. Specifically, they also had participants 
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memorize the words in three other conditions: by only listing visual features of the target 

words, by visualizing them through mental imagery, or by viewing pictures of them. The 

performance of those in the drawing condition was higher than what would be predicted if 

it were a linear combination of the effects of the other three conditions. The drawing effect 

is similar to the SLI account here, in that the multiple representations of letters were engaged 

by a writing task that entailed multiple ways of both generating and producing features of 

letters. What the SLI account additionally proposes is that, at least in the case of letters, the 

interaction between the processes and representations for generating and producing these 

different features is mediated by an amodal representation, SLI. 

This account must also explain why the Visual Condition outperformed the Typing 

Condition, given that the visual training task is not predicted to especially support learning 

SLI representations. The explanation lies in the performance of the participants trained in 

the Visual Condition on tasks involving the letter sounds. The letter sound information was 

never necessary during training, but was tested only at post-training in the Spelling Words 

to Dictation and Reading Words tasks. One argument is that the relatively poor performance 

of the Typing Condition on these tasks was evidence that the difficulty of the typing task 

affected learning the letter sounds, which were presented after the letter animation and 

letter name16. Anecdotally, participants in the Visual Condition tended more often to covertly 

repeat the letter name and sound, which is perhaps not surprising given that their training 

                                                        

16 The letter animations took place over 1000ms, whereas the audio of the letter name and sound required 2000ms. 

Thus, depending on the length of the letter name, the audio of the letter sound tended to play after the animation was 

completed (i.e., coincided with the static image), whereas the audio of the letter name coincided with the dynamic 

image. 
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task could be performed only after this information was presented, and so they were free to 

focus on this information. This differed from the Typing and Writing conditions, where it was 

possible to begin performing the training task while the auditory information was still being 

presented. In short, the Visual Condition clearly resulted in learning the letter names and 

sounds nearly as well as did the Writing Condition. Because associating letter names, sounds, 

and shapes is achieved via SLI in this abstractionist account, the Visual Condition thereby 

had a stronger SLI representation relative to the Typing Condition, where less learning of the 

letter names and sounds was achieved. The Writing Condition, on the other hand, clearly 

learned not only how to map between phonological and visual representations, but also 

between phonological and motoric, and visual and motoric, representations, further 

strengthening the SLI representation. 

 

Challenging the Embodied Account 

A possible embodied cognition framework is presented in Figure 5-2, depicting an 

alternative architecture for transcoding between letter representations by direct 

connections between modality-specific contents, instead of an amodal SLI representation. In 

the architecture depicted in that figure, associations between the letter names and 

information in other modalities is proposed to allow retrieving one type of information from 

another. However, the evidence found in this dissertation did not support a critical role for 

letter names during letter perception, and indeed primary auditory cortex has not been 

consistently activated during letter processing tasks in the same way as have parts of 

somatosensory and motor cortices. Of course, embodied cognition views are not limited to 
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proposing that letter names facilitate letter processing, and can posit as many direct across-

modality connections as needed. However, critically, no amodal representation ever needs 

enter into such a framework, and as such the positive findings of SLI here are a direct 

challenge to embodiment. While it is only embodiment theories that reduce concepts to 

sensory/motor representations, grounded cognition theories more generally are skeptical 

that amodal representations exist. Grounded cognition views then must either accept that 

SLI represents an instance of an abstract amodal concept, or else that the SLI representation 

is not in fact amodal but rather multimodal/supramodal. As outlined in Chapter 1, current 

proposals for how abstract concepts (such as letter identity) can be represented without 

amodal representations include multimodal or “supramodal” representations, distilled 

abstraction, and distributed linguistic representations (for a review see Barsalou, 2016).  

 

Figure 5-2. A possible embodied cognition framework of the letter representations and 
processes during the training tasks. The stimuli reflect the animated letters shown to 
participants in all conditions with the accompanying audio. Mapping between visual, 

phonological, motoric, and spatial (i.e., keyboard location) representations is mediated by 
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direct modality-specific connections, in this example, through association of different 
modality information with letter names. 

The evidence in this dissertation argues against the possibility that the SLI 

representation is only multimodal, however. This is because the SLI representation 

accounted for unique variance in simultaneous regression (in both the Same/Different 

Judgment and the RSA results)—in other words, letters were perceived as more similar to 

one another if they shared the same identity, even when controlling for their shared 

representations along modality-specific dimensions. This suggests at the very least that 

processes like “multimodal compression“ or “distilled abstraction” (see Introduction), which 

have been proposed by grounded cognition theorists, (Barsalou, 2016; Binder, 2016; 

Jamrozik, McQuire, Cardillo, & Chatterjee, 2016; Martin, 2016) would need to result in 

representations that are so abstract as to no longer be tied to any of the modalities from 

which they arose. This point is returned to in section II (“Multimodal and Amodal Letter 

Representations”). 

In summary, the abstractionist account I propose here claims that writing experience 

does benefit letter learning, and does so in particular by strengthening the ability to map 

between different letter representations via amodal SLI representations. The next section 

discusses the broader implications of this account to the grounded/abstractionist cognition 

theories, beyond the domain of letter processing. 
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II. Multimodal and Amodal Letter Representations 

In this section, I review two pieces of evidence that are consistent with grounded cognition 

theory, broadly construed. I then present two challenges to these views that instead support 

abstractionist positions. First, regions that have been previously described as part of the 

“visual-motor letter-processing” network (James, 2017) were identified within the Letter 

Learning Network (described in Chapter 4), replicating the finding that this network is 

activated during simple observation of single letters (in this case, a symbol detection task). 

The first novel, and critical, result reported here was that many of the clusters of activity 

were found to include sensory/motor representations: low and higher level visual 

representations, motoric representations, and phonological representations. These were 

found outside of primary somatosensory and primary motor areas, and therefore 

substantiate the first claim of grounded cognition, that activation in these regions at least 

includes sensory/motor representations. Most importantly, motoric representations (not 

just visual ones) were identified even though the scanner task did not involve motor 

production of letter shapes. 

The second finding supporting a grounded cognition position is that associations 

were found between sensory/motor representations and behavioral performance on letter 

processing tasks. The most widespread type of representation across the brain actually was 

motoric. However, many of the clusters that seemed to reflect motoric representations in 

fact may be better understood as reflecting the representation of the dynamic visual features. 

This interpretation was supported by the fact that roughly two-thirds of the motoric 

representation clusters overlapped with those representing visual information (pixel 
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overlap and/or shared visual features; see Chapter 4). Indeed, the motoric representation 

clusters associated with the Writing Condition, and/or with behavioral performance on the 

Writing Letters to Dictation task, stood out from the clusters associated with the Typing and 

Visual Conditions and/or the behavioral tasks that did not require writing: the writing-

associated clusters almost exclusively represented only motoric information, whereas the 

visual- and typing-associated clusters by and large simultaneously represented visual 

information (as established by the multiple regression LMEM). This suggested that those 

latter clusters actually reflected visual dynamic, not motoric, information. 

Overall, the results strongly indicate that sensory/motor activity is not 

epiphenomenal, in particular the results showing associations between motoric/visual-

dynamic representations and letter recognition, naming, and word reading abilities. 

However, the other major findings from the RSA results were highly problematic for any 

grounded cognition view that predicts letter processing can be achieved without amodal 

representations, including embodied theory. First, clusters of activity were found that 

reflected amodal SLI representations, and SLI was also seen to influence behavioral 

Same/Different Judgments. Second, strong SLI evidence was found only for those with 

writing experience, and importantly, these representations was also associated with faster 

letter recognition.  

 Therefore, despite the apparent role of sensory/motor representations, and some 

evidence that writing experience uniquely produces motoric representations that in turn 

support letter perception, a core tenet of grounded cognition is called into question. The 

results here present a challenge to most of the grounded cognition hypotheses, including the 
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theory of “neural reuse” (Anderson, 2010; Barsalou, 2016; Martin, 2016). As described by 

Martin, the neural reuse theory is that “representations are grounded by virtue of their being 

situated within (i.e., partially overlapping with) the neural system that supports perceiving 

and interacting with our external and internal environments.” ( 980, Martin, 2016). While 

the locations of the letter representations reported here are consistent with this claim, their 

content is not. Specifically, the amodal SLI representation counters the neural reuse theory. 

Succinctly worded by Barsalou, “if the neural reuse hypothesis is correct, it follows that when 

a conceptual process utilizes the resources of a modality-specific processing stream, the 

resultant conceptual representations have a modality-specific character, not an amodal one” 

(page 1131, Barsalou, 2016). This is taken to be so because the processes and 

representations that initially develop in these areas are proposed to necessarily be modality-

specific, and as such the neural activity is constrained to reflect content that is tied to the 

modalities, rather than abstract amodal content. Amodal representations, if they exist, 

should not be found in the same substrates as sensory/motor representations. 

 The SLI representation reported here is potentially consistent with the proposal of 

Binder (Binder, 2016), which is that abstract concepts are instantiated in the brain not 

through amodal symbols, but rather through “convergences of information at crossmodal 

levels” (page 1103, Binder, 2016) that lead to what is termed “cross-modal conjunctive 

representations” (CCRs). As such, the resultant representations are best not thought of as 

amodal. However, there is an interpretation of the results of this dissertation that is 

consistent with this theory, if granted that “in the limit… CCRs can become so abstract as to 

sometimes become amodal symbols” (page 1132, Barsalou, 2016). For example, consider the 

L precentral gyrus cluster, where the simultaneous LMEM regression found evidence of 
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visual, motoric, and SLI representations in heavily overlapping areas. This finding is certainly 

consistent with the proposed CCRs, allowing that the representation indeed has become so 

abstract as to be amodal. In addition to this, another argument in favor of Binder’s proposal 

is that the clusters that reflected more than one information type, including the L precentral 

gyrus cluster showing SLI representation, were nearly all found within the areas (see 

Appendix A) identified as part of a “supramodal ‘conceptual hub’” (Binder, 2016; Binder, 

Desai, Graves, & Conant, 2009), including inferior parietal cortex, ventromedial temporal 

cortex, dorsomedial prefrontal cortex, ventromedial prefrontal cortex, inferior frontal gyrus, 

and precuneus. 

Taken together, these results reveal that amodal representations do exist. The 

evidence is consistent with the possibility that they may arise (i.e., that they are learned) 

from conjunctions of different modality-specific information—however, the resulting 

representations seem to no longer depend on modality-specifeic information that may have 

been needed during the learning stages. 

 

Do Amodal Representations Stand Alone? 

One outstanding issue in the grounded-abstract cognition debate relates to the status of 

amodal representations (allowing that amodal representations do exist). The strongest 

abstractionist claims are that amodal, symbolic concepts can operate in a stand-alone 

manner, without any concomitant processing of modality-specific representations 

(Barsalou, 2016; Leshinskaya & Caramazza, 2016; Mahon, 2015; Mahon & Caramazza, 2008; 

Mahon & Hickok, 2016). The argument against amodal representations has been that 
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without any modality-specific content whatsoever, such representations remain 

ungrounded and are therefore meaningless—hence the complaint of grounded theorists that 

amodal symbols would serve no purpose, if instead modality-specific representations would 

serve.  

I argue that at least one of the purposes of amodal representation is exactly to allow 

for concepts that do not rely on modality information. This is deeply important because 

otherwise, the loss of any modality-specific content will result in a fundamentally different 

concept. While it is certainly not inconceivable that this would be true, empirical results 

suggest otherwise. For example, extensive evidence shows that concepts of both objects and 

events are not fundamentally different among the congenitally blind (Bedny, Caramazza, 

Grossman, Pascual-Leone, & Saxe, 2008; Bedny, Pascual-Leone, Dodell-Feder, Fedorenko, & 

Saxe, 2011; Bedny, Pascual-Leone, & Saxe, 2009). There is even stronger evidence from 

neuropsychology (see e.g., Mahon & Caramazza, 2008) that loss of one modality post-stroke 

does not lead to altered conceptual processing. I thus propose an extension of abstractionist 

theory: learning abstract, amodal concepts likely depends on sensory/motor 

representations, although no specific modalities are required. However, once learned, 

amodal representations serve to support stable concepts that no longer require accessing 

the sensory/motor representations that were part of the learning process. This generates 

testable predictions, which are discussed in the final section below. 
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III. Implications & Future Directions 

This dissertation makes two major claims, the first about the role of writing experience in 

letter learning specifically, and the second about the how amodal representations arise from 

sensory/motor processes. The first has educational implications, as understanding whether 

and why certain learning experiences are beneficial can inform best practices in education. 

Based on the evidence from this investigation, I propose that the reason writing experience 

matters for learning letters is that it strengthens amodal SLI representations, which are used 

for mapping between different letter representations. This predicts that any learning 

condition that provides additional experience with transcoding between multiple letter 

representations will facilitate learning SLIs, and thereby provide benefits similar to what is 

seen with writing training. This does suggest that it is not motor learning per se that is 

important for letter learning, but nonetheless writing would seem to be the most natural way 

of learning letters (not to mention it is a useful skill in itself). For example, more extensive 

typing training, such that participants become able to touch-type, would be predicted to also 

result in SLI representations. Memorizing a keyboard layout, however, seems to be more 

challenging than memorizing how to write a shape. This is undoubtedly due at least partially 

to the fact that letter-shapes and motoric representations are related, whereas keyboard 

layouts are arbitrary. Alternatively, and simpler than an extended typing training condition, 

would be a condition that emphasizes learning to name the letter/produce their sounds. 

Such a condition should similarly facilitate developing SLI, although there again the 

relationship between letter-shapes and names/sounds is arbitrary and may be less 

beneficial than writing practice. 



CHAPTER 5 – GENERAL DISCUSSION 

 194 

 One result that has perhaps been de-emphasized in the discussion thus far is that the 

Visual Condition in fact resulted in nearly equal performance to the Writing Condition on 

several tasks, including the Spelling Words to Dictation and Reading Words tasks. Given that 

the ultimate goal of written language instruction is to teach students how to spell and read, 

it seems important that such good results were achieved without writing experience. While 

certainly the Writing Condition was the best, the suggestion is that the visual training task 

still enabled good learning. This was surely due in part to the efforts taken to equate the 

three learning Conditions, in particular by affording even the Visual Condition participants 

with exposure to variable font input (Li & James, 2016), but also the novel adoption of 

dynamic videos for the purposes of training. In fact, the results were highly suggestive that 

the dynamic visual information portrayed by these videos was crucial for learning the letters. 

Perhaps a more challenging visual task, such as requiring participants to perform a 

probe/target task where the distractors are similar letter shapes (as opposed to non-

alphanumeric symbols, as was done here) would lead to even better performance. Another 

interesting possibility raised by the results, in conjunction with the literature on the 

production effect, is that requiring participants to simultaneously produce the letter in 

multiple modalities (e.g., both write the letter and say its name) is likely to produce even 

stronger results. This would be consistent with the findings of the “drawing effect” 

(Wammes, Meade, & Fernandes, 2016), and is also predicted, by the abstractionist 

framework presented here, to facilitate learning amodal SLI representations even further. 

The second major claim in this dissertation is that the evidence for amodal SLI 

representations contributes to the conclusion that cognition does not reduce to 

sensory/motor representations. While this goes against embodied cognition, it does not 
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necessarily run counter to all groundedness claims. For example, the claim is potentially 

consistent with the “crossmodal conjunctive representation” account of Binder (Binder, 

2016), if taken to the limit that initially multimodal representations become amodal, after 

learning results in a high degree of abstraction. Future work might further examine the claim 

that these representations are truly amodal, and that they do not ultimately depend on any 

specific modalities to learn—for example, participants could be trained to write letters in 

two groups, differing according to what motor plans they were taught. These motor plans 

could be manipulated by changing the direction and order of strokes (similar to Babcock & 

Freyd, 1988), such that the predicted similarity of the letters would differ greatly depending 

on which motor plans were learned. Under such conditions, it would be predicted that an 

RSA-LMEM analysis would find interactions between these two groups of participants in 

terms of their motoric representations, but not their SLI representations. 

It was also suggested that motoric representations may in part be useful for letter 

recognition because of the relationship between how letters are written and the resulting 

visual shapes. This might predict that during auditory letter processing (e.g., of letter names), 

motoric representations would not be so extensively activated as they were found to be 

during visual letter processing. This could be tested by essentially the same procedures used 

in this dissertation, but by contrasting RSA results from data acquired during blocks of visual 

letter presentations (as in the Symbol Detection Task used here) with blocks of auditory 

letter presentations. 

This dissertation is the result of a research paradigm that was developed specifically 

to extensively integrate behavioral and neuroimaging techniques. The results of the RSA 

would not be nearly as informative about cognition were they not related to detailed 
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information about what the participants knew about the letters, and how they came to know 

it. This information was only able to be collected because of the longitudinal and training 

aspects of the study. In fact, the behavioral and neuroimaging experiments were all designed 

from their inception by taking into account how they could be used together to strengthen 

the inferences that might be drawn from the results. Doing so provided an exponentially 

richer empirical basis from which to draw inferences. 

One goal of this dissertation was to provide the basis for further research that has 

educational implications, and as such the research paradigm used here exemplifies a model 

of how experiments can be designed that both address fundamental cognitive science 

questions, and provide the basis for future translational research. Indeed, the results 

reported here do not represent the entire breadth of the data that was collected. For 

example, in addition to the RSA results of the post-training time point, data is also available 

from the pre-training time point. The participants also performed many of the same tasks, 

both behavioral and neuroimaging, with Roman letters (e.g., the Same/Different Judgment 

task, the Letter Naming task, and the Symbol Detection Task that is the basis of the RSA 

results). A number of measures of individual differences were also collected (e.g., measures 

of short term memory, visual working memory, verbal fluency). Thus, in addition to the 

future directions discussed above, this dissertation already provides more information that 

can be used to test questions about cognition other than the nature of conceptual 

representations.  
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IV. Conclusion 

The findings of this dissertation further our understanding of the nature of conceptual 

representations in the mind/brain, and have bearing on the debate between grounded and 

abstract theories of cognition. I conclude that the evidence presented here supports the view 

that cognition involves both groundedness and abstraction. Sensory/motor representations 

were found to be recruited for letter perception, and moreover were associated with 

behavioral performance on letter processing tasks. This argues against a strong 

abstractionist claim that sensory/motor activity may be epiphenomenal. However, symbolic 

letter identities (SLI), an amodal representation, were also associated with behavioral 

performance, and were strongest in the Writing Condition. These results challenge grounded 

theories that reduce concepts to sensory/motor representations, and support the existence 

of conceptual representations that are truly amodal. On the basis of these findings, I propose 

that writing experience is particularly beneficial to learning letters because it strengthens 

connections between various modality-specific letter representations, mediated by amodal 

SLI representations. 
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Appendices 

Appendix A – Full RSA Results 

This appendix reports the full results of the RSA analyses, both the Learning Experience 

Analyses and the Behavioral Measure Analyses. This mirrors the results reported in Chapter 

4, but additionally includes the between-Condition comparisons (e.g., Typing versus Writing, 

Visual versus Writing, etc.) and the main effects (i.e., representations found when collapsing 

across the three learning Conditions). 

Key: T = Typing, V = Visual, W = Writing; ME = Main Effect 
TvV = Typing versus Visual, TvW = Typing versus Writing, VvW = Visual versus Writing 
Recognition = Letter Recognition RT 
Naming = Letter Naming RT 
Writing = Writing Letters to Dictation Accuracy 
Reading = Reading Words accuracy 
 

1. Low Level Visual Representation (Pixel Overlap) 

Table A-1. Clusters associated with low-level visual representations (pixel overlap). Left 
panel: positive associations. Right panel: negative associations. Cerb = cerebellum, IPL = 
inferior parietal lobule, PCC = posterior cingulate cortex, FG = fusiform gyrus, IFG = inferior 
frontal gyrus, dPMC = dorsal premotor cortex, PostCG = postcentral gyrus, STG = superior 
temporal gyrus. 

 

 

 

 

EFFECT X Y Z T-VALUE voxels AREA EFFECT X Y Z T-VALUE voxels AREA

ME 25 -59 -26 -4.11 15 R cerb Recognition 26 5 48 -5.27 35 R dPMC

ME -48 -39 44 -3.9 11 L IPL Writing 42 4 52 3.92 12 R dPMC

T -41 -66 -33 -4.34 33 L cerb Reading 4 -71 10 4.22 24 R calcarine sulcus

T 0 -39 21 -4.58 14 bilateral PCC Reading -68 -20 22 4.36 16 L PostCG

T 42 -78 -17 -3.67 20 R post FG Reading -56 9 -3 4.52 16 L STG

V -48 10 2 -4.42 16 L IFG operculum Reading 46 -62 -21 3.86 20 R middle FG

TvW -39 -61 -32 4.57 15 L Cerb

Naming -41 16 2 4.61 20 L IFG operculum
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2. Higher Level Visual Representation (Visual Features) 

Table A-2. Clusters associated with higher-level visual representations (visual features). 
Left panel: main effects and learning condition-specific effects. Right panel: interactions 
between learning experiences, and with behavioral tasks. PreCG = precentral gyrus, IFG = 
inferior frontal gyrus, ITG = inferior temporal gyrus, MFG6 = middle frontal gyrus 
Brodmann Area 6, SMG = supramarginal gyrus, SPL = superior parietal lobule, DLPFC = 
dorsolateral prefrontal cortex, VLPFC = ventrolateral prefrontal cortex, LOS = lateral 
occipital sulcus. 

 

 

 

 

 

 

 

 

 

EFFECT X Y Z T-VALUE voxels AREA EFFECT X Y Z T-VALUE voxels AREA

ME -57 8 7 4.32 12 L PreCG Naming -55 11 14 -4.03 19 L PreCG, L PrecG (superior)

ME -42 -84 -13 4.45 20 L posterior fusiform Naming -44 18 -1 -4.58 28 L IFG operculum

V -53 -75 -3 3.64 14 L V5/MT Reading -48 -42 55 5.56 64 L SMG

V -53 13 6 5.42 26 L IFG operculum Reading -48 25 23 4.25 15 L DLPFC

V -47 -68 -8 4.96 62 L middle & posterior fusiform, L ITG Reading -48 25 23 4.25 15 L DLPFC

V -44 -6 39 3.58 13 L MFG6 Reading -44 6 25 4.68 21 L PrecG (superior)

V -43 -52 51 5.25 39 L SMG Reading -14 -67 38 5.21 30 L precuneus

V 46 -69 -2 4.59 34 R middle fusiform Recognition -53 -71 -2 -3.86 10 L V5/MT

W -57 -7 7 4.24 11 L PreCG Recognition -53 4 11 -3.82 16 L PreCG

W -50 8 17 5.225 14 L PrecG (superior) Recognition -50 10 25 -4.19 28 L PrecG (superior)

W -29 -67 46 4.26 12 L SPL Recognition -41 -81 -13 -5.21 27 L posterior fusiform

Recognition -36 25 22 -3.82 19 L DLPFC

Recognition -11 -69 38 -3.4 15 L precuneus

Recognition 41 40 7 -4.78 13 R VLPFC

Recognition 43 -93 2 -4.23 9 R LOS

TvV -47 -50 55 4.44 28 L SMG

TvV -39 -81 -11 4.53 29 L posterior fusiform

TvV -14 -66 43 3.98 13 L precuneus

TvV 42 -63 -14 4.48 11 R middle fusiform

TvW -54 14 16 3.82 17 L PrecG (superior)

VvW -47 10 6 -3.9 13 L IFG operculum

VvW -41 -81 -14 4.53 39 L posterior fusiform, L ITG

VvW -28 -64 44 3.97 14 L SPL
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3. Motoric Representation (Motor Bistrokes) 

Table A-3. Clusters positively associated with motoric representations (motor features). 
Left panel: main effects and learning condition-specific effects. Right panel: positive 
interactions between learning experiences, and with behavioral tasks. PreCG = precentral 
gyrus, STG = superior temporal gyrus, cerb = cerebellum, FG = fusiform gyrus, SMG = 
supramarginal gyrus, FEF = frontal eye fields, meSFG = medial superior frontal gyrus, SPL = 
superior parietal lobule, IPS = intraparietal sulcus, DLPFC = dorsolateral prefrontal cortex, 
ACC = anterior cingulate cortex, IFG = inferior frontal gyrus, MFG6 = middle frontal gyrus 
(Brodmann Area 6). 

 

 

EFFECT X Y Z T-VALUE voxels AREA EFFECT X Y Z T-VALUE voxels AREA

ME -56 8 16 -5.44 43 L preCG (sup.) Naming -56 13 -9 5.303112 15 L STG

ME -54 9 -5 -4.42 13 L STG Naming -54 10 15 4.40964 25 L preCG (sup.)

ME 18 -72 -28 -5.43 18 R cerb (post. inf.) Naming -47 14 7 4.919203 29 L IFG operculum

ME 33 -73 -20 -3.79 11 R cerb (post.) Naming -39 25 22 4.148455 13 L DLPFC

ME 39 -73 -24 -4.16 12 R post. FG Naming -11 -68 37 5.038149 29 L precuneus

T -51 -75 2 -4.41 25 L V5/MT Naming 13 -73 43 3.790202 23 R precuneus

T 42 -67 -5 -3.91 13 R V5/MT Reading -46 -47 55 -7.714195 76 L SMG

TvV -47 -47 58 -5.662083 41 L SMG Reading -45 -53 -11 -3.81 16 L anterior FG

TvV -38 -84 -13 -4.41 15 L post. FG Reading -43 -78 -19 -3.69 12 L post. FG

TvV -37 3 26 -3.962824 11 L FEF Reading -41 -70 -5 -3.49 9 L mid FG

TvV -14 -69 40 -4.862972 28 L precuneus Reading -41 7 35 -4.413876 51 L preCG (sup.), L FEF

TvV 1 25 52 -4.752724 15 bilateral meSFG Reading -9 -65 38 -6.539762 37 L precuneus

TvV 13 -65 40 -4.913815 18 R precuneus Reading 1 34 32 -4.621985 38 bilateral meSFG

TvV 37 -69 40 -4.458631 17 R SPL Reading 13 -67 38 -4.360747 21 R precuneus

TvW -23 -76 39 -5.83 66 L post. IPS Reading 42 -65 -13 -3.91 10 R mid FG

V -48 34 32 -4.801017 16 L DLPFC Recognition -63 -20 24 3.945317 13 L post.CG

V -46 -67 -6 -4.43 10 L ITG Recognition -41 14 -3 4.407196 12 L IFG operculum

V -44 -48 55 -6.420595 83 L SMG Recognition -39 -84 -14 5.2 63 L anterior, mid & post. FG, L ITG

V -44 22 26 -5.988792 142 L IFG, L PreCG, PreCG (sup.), L DLPFC Recognition -23 -76 37 4.667494 12 L post. IPS

V -41 -67 -14 -4.33 18 L mid FG Recognition -9 -65 37 5.445757 25 L precuneus

V -38 -85 -12 -4.06 12 L post. FG Recognition -5 20 43 4.275994 38 bilateral meSFG

V -32 0 33 -6.546516 61 L FEF Recognition 3 -39 26 5.336084 19 bilateral PCC

V -15 -68 39 -5.868388 25 L precuneus Recognition 28 13 45 5.060601 22 R MFG6

V -11 -18 36 -5.465593 12 L cingulate sulcus Writing -48 12 16 -4.5 20 L preCG (sup.)

V -8 11 24 -5.19948 20 L ACC Writing -39 -56 -9 -4.14 27 L anterior FG

V -3 30 40 -5.362441 87 bilateral meSFG

V -3 37 35 -4.314883 14 L anterior meSFG

V 12 -64 40 -4.723657 32 R precuneus

V 21 -72 -31 -6.673416 26 R cerb (post. inf.)

VvW -51 -68 -20 4.49 9 L mid FG (lateral)

VvW -49 13 8 4.672048 18 L IFG operculum

VvW -47 34 31 5.317067 16 L DLPFC

VvW -44 -52 52 6.029407 47 L SMG

VvW -38 -84 -14 -3.57 14 L post. FG

VvW -37 -71 -12 -4.44 10 L mid FG

VvW -36 4 41 4.075641 18 L FEF

VvW -24 -78 44 -4.691848 23 L post. IPS

VvW -14 -68 39 4.583352 18 L precuneus

VvW 1 25 46 5.166742 33 bilateral meSFG

VvW 14 -67 41 3.992679 14 R precuneus

VvW 49 -72 -17 4.09 21 R mid FG

W -34 -93 -1 -3.86 14 L LOS

W -23 -79 39 -5.21 43 L post. IPS

W 33 -65 -26 -4.59 12 R cerb (post.)

W 48 -71 -17 -5.16 31 R post. FG

W 49 -63 -10 -4.86 13 R mid FG
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Table A-4. Clusters negatively associated with motoric representations. IPS = intraparietal 
sulcus, IPL = inferior parietal lobule, DLPFC = dorsolateral prefrontal cortex, VLPFC = 
ventrolateral prefrontal cortex. ME = main effect, T = Typing, V = Visual, W = Writing. 

 

 

 

4. Phonological Representation (Letter Names) 

Table A-5. Cluster positively associated with letter name representations. STG = superior 
temporal gyrus. T = Typing. 

 

 

5. Amodal Representation: Symbolic Letter Identity (SLI) 

Table A-6. Clusters associated with symbolic letter identity (SLI) representations. PreCG = 
precentral gyrus, SMA = supplementary motor area, LOS = lateral occipital sulcus. ME = 
main effect, T = Typing, V = Visual, W = Writing. 

 

 

EFFECT X Y Z T-VALUE voxels AREA

Recognition 42 -68 -5 -4.89 12 R V5/MT

Recognition 45 -50 43 -3.696916 11 R anterior IPS/R IPL

TvW 40 -41 44 5.29 20 R anterior IPS/R IPL

VvW 46 -32 43 4.981581 15 R anterior IPS/R IPL

W 36 -44 40 4.82 16 R anterior IPS/R IPL

Writing 40 31 23 5.01 25 R DLPFC

Writing 42 3 3 4.5 15 R VLPFC

EFFECT X Y Z T-VALUE voxels AREA

T -53 15 -3 -4.35 19 L STG

EFFECT X Y Z T-VALUE voxels AREA

Recognition -50 10 12 3.28 11 L PreCG 

TvW -57 7 9 3.9 15 L PreCG 

TvW 3 10 59 4.46 19 bilateral pre-SMA

VvW 1 11 59 4.22 18 bilateral pre-SMA

W -57 7 9 3.9 14 L PreCG 

W 1 12 61 3.49 16 bilateral pre-SMA

W 40 -85 2 3.86 9 R LOS
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Appendix B – Negative versus Positive Associations in RSA Results  

This appendix demonstrates an account of how negative associations (i.e., akin to anti-

correlations) could arise in the RSA results, between observed patterns of neural similarity 

on the one hand, and predicted patterns of letter similarity on the other. Specifically, it was 

proposed in Chapter 4 that voxels responding selectively to a subset of features, in particular 

distinctive features, could result in negative correlations. It was discussed that the possibility 

of distinctive features are selectively attended to is not unfounded (Wiley & Rapp, under 

review; Fiset et al., 2008, 2009). A set of voxels that, given feedback from lower-level visual 

areas, responds to a subset of features could quite plausibly result in an apparently negative 

association between the neural similarity measure and the predicted measure, as follows. 

As an illustration, consider the response of the following two hypothetical voxels to 

three different stimuli: Voxel A encodes information about the orientation of straight lines, 

and Voxel B encodes (binary) information about whether a shape is open or closed. Stimulus 

1 has a single oriented line, Stimulus 2 has two oriented lines and closed space, and Stimulus 

3 has no oriented lines but closed space. The predicted similarity of these three stimuli (using 

the procedure outlined in Chapter 3) would be 67% of features shared for the Pair 1-2,  0% 

for the Pair 1-3, and 67% for the Pair 2-3. 

Despite the predicted high similarity of the Pair 1-2 (67%, the stimuli that share 

oriented lines) and the low similarity of the Pair 1-3 (0%), in Euclidean distance Stimulus 1 

would be more distant from the other two, given simple assumptions. For example, if Voxel 

A encoded the stimuli respectively as 1, 2, and 0 (reflecting the number of oriented lines 
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present in the stimuli), and Voxel B encoded the stimuli respectively as 0, 1, and 2 (treating 

closed space as a binary feature), then the relative distances of the stimuli would be that 

depicted (to scale) in Figure B-1. The correlation between the predicted similarity (0.67, 0, 

0.67) and the neural similarity (1.0, 1.0, 0.6) would be negative (r = -0.5). The reason for this 

may be made more plain by interpreting Figure B-1 as representing the feature “oriented 

lines” on the x-dimension, and the feature “closed space” on the y-dimension: Stimuli 2 and 

3 are thus equal on the y-dimension (both having closed space), whereas the three stimuli 

extend linearly along the x-dimension (due to have 0, 1, and 2 oriented lines). Depending on 

the relative weighting of the features, the predicted similarity can thus seem to be “inverted”, 

i.e., anti-correlated, as in this example, where the Pair 2-3 is actually less similar than the Pair 

1-2 (despite their predicted similarity of 67% versus 0%), because of the relative weighting 

of the feature dimension “oriented lines” compared to “closed space”. 

 

Figure B-1. Relative Euclidean distance in hypothetical neural space for three stimuli. 
Stimuli pair 1-2 is predicted to be equally similar as pair 2-3 (each sharing 2/3 of their 
visual features), but in the neural space pair 2-3 is actually more dissimilar. Likewise, the 
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pair 1-3 is predicted to be less similar than the pair 1-2 (shared 0 features versus 2/3 
features), but the relative distances are equal. The result is that the association between 
predicted similarity and observed similarity will be overall negative.  

 

While conjectural in nature, the findings in Chapter 4 about the sign of the 

relationship between predicted and observe similarity suggest possible research directions. 

For example, careful manipulation of the visual features in stimuli might be used to both test 

the hypothesis, that RSA uncovers dimensions of featural representations, and furthermore 

to specifically determine what those features might be (a question that, at least in the case of 

letters, has eluded conclusive evidence).  

Appendix C – Learning Condition: Training Task-Specific Results 

The following tables and figures report the results from the specific training tasks used in 

the three learning Conditions: Typing, Visual, and Writing. Specifically, the Typing Condition 

task was to find the presented letter(s) on the keyboard and press them (in sequence, for 

word blocks). The Visual Condition task was a probe/target match decision (the probe was 

either the target Arabic letter presented on that trial, or a non-alphanumeric symbol). The 

Writing Condition task was to copy the letter-shape using pen and ink; only RT information 

is available for this condition. 
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Table C-1. RT to correct responses (top panel), and accuracy (bottom panel) for the 
learning Conditions’ specific training tasks, across the (maximal) six sessions of training, 
during letter-blocks. 

 

 

 

 

Table C-2. RT to correct responses (top panel), and accuracy (bottom panel) for the 
learning Conditions’ specific training tasks, across the (maximal) six sessions of training, 
during word-blocks. 
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Figure C-1. RT to correct responses for the learning Conditions’ specific training tasks, 
across the (maximal) six sessions of training, during letter-blocks. T = Typing, V = Visual, W 
= Writing. 

 

 

  

Figure C-2. Accuracy for the learning Conditions’ specific training tasks, across the 
(maximal) six sessions of training, during letter-blocks. T = Typing, V = Visual. 
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