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Abstract

Photonic sources readily provide several THz of analog bandwidth for information

processing. Taking advantage of this fact, problems such as ultrawideband radio

(RF) spectrum sensing, high performance radar, and analog-to-digital conversion can

achieve significant performance gains with photonic techniques. Likewise, photonic

imaging systems such as time-stretch microscopy have produced a breakthrough in

continuous high speed imaging, enabling faster shutter speeds, higher frame rates,

and greater gain-bandwidth product than is possible with continuous read-out CCDs

and CMOS sensor arrays. However, imaging at this rate with traditional Nyquist

sampling inevitably yields sustained data output on the order of 100 Gb/s or more,

creating a significant challenge for storage and transmission. Real images and video

are highly compressible, so this deluge of data is also highly inefficient.

This thesis will address several techniques based on chirp-processing of ultrafast

laser pulses that demonstrate real-time efficient compression of both electronic and

optical signals, overcoming electronic bottlenecks via optical processing in the analog

domain. Several systems will also be presented that permit greater information ex-
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traction from high throughput microscopy experiments by measuring quantitative

phase images on a time-stretch microscope.

Primary Reader: Mark A. Foster

Secondary Reader: Trac D. Tran
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Chapter 1

Introduction

This thesis is primarily concerned with novel applications of the unique capabili-

ties of ultrafast lasers and optical fiber technologies for high-speed signal acquisition

and processing. Several techniques will be introduced for acquisition of electronic

and optical signals using chirp processing to achieve optical signal processing for

compressed sensing (CS) reconstruction. This introduction describes the relevant

background in optics and signal processing for understanding this work. Chapter 2

presents the first demonstration of the chirp processing with CS concept applied to

ultrawideband radio frequency (RF) signals. Chapter 3 describes a significant exten-

sion of that work to high-resolution acquisition of arbitrary frequencies. Chapter 4

shifts focus to image acquisition with an application of the work to high-speed flow

microscopy. Chapter 5 presents a new method for quantitative phase time-stretch mi-

croscopy using self-referencing of ultrafast pulses. Finally, chapter 6 describes several
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CHAPTER 1. INTRODUCTION

experimental techniques that are still in ongoing development for quantitative phase

time-stretch microscopy and chapter 7 offers a few concluding remarks.

1.1 Fiber Optics

In essence, optical fiber extends the theory of electromagnetic waveguides, first

conceived at the close of the 19th century [1–3] for radio frequency signals traveling in

structures composed of conductors and dielectrics, to light in a cylinder of glass with a

microscopic radial refractive index variation. Solutions to Maxwell’s equations for the

electric and magnetic field that are stable along the length of a structure are known as

modes. The propagation characteristics of a fiber’s fundamental mode such as atten-

uation at operating wavelengths, dispersion, and nonlinearity are most relevant here.

1.1.1 Fiber Parameters

Optical fibers are principally manufactured from fused silica glass with dopants to

produce a small refractive index contrast (e.g., ∆ = ncore − ncladding < 0.01) between

the core and cladding. The intersection of Rayleigh scattering and vibrational reso-

nances in silica in the infrared (λ > 7µm) leads to a relatively wide window in the

near-infrared (near-IR) close to 1550 nm with minimum transmission attenuation [4].

The telecommunications C- (1530–1565 nm) and L-bands (1565–1625 nm) are so des-

ignated in order to capitalize on the minimum loss possible: Corning SMF-28, for
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CHAPTER 1. INTRODUCTION

example, is specified for ∼0.2 dB/km from 1490 nm to 1625 nm. Many other fiber

designs naturally exist for special applications (e.g., microstructured and hollow-core

fibers for effective refractive indices close to unity and Fluoride fibers for transmission

in the mid-IR), but loss and cost are always higher than commodity telecommuni-

cations fibers, which will be used throughout this thesis.

1.1.2 Dispersion

In optics, dispersion generally refers to the dependence of refractive index on wave-

length (λ), written n(λ) or n(ω) if expressed in terms of optical frequency ω = 2πν.

Critical to all applications with large a bandwidth-distance product (e.g., THz of

optical bandwidth and km of fiber) is the phenomenon of temporal broadening as

different wavelengths move with different group velocities vg =
(
∂β
∂ω

)−1
where β(ω)

is the propagation constant in the medium.

In fiber, dispersion is due not only to the glass properties (material dispersion)

but also the waveguiding geometry (waveguide dispersion). Thus, many fiber designs

are available that are single-mode (avoiding modal dispersion) yet have very differ-

ent amounts of normal (red-shifted wavelengths travel faster than blue-shifted) or

anomalous (blue-shifted wavelengths travel faster) dispersion.

Dispersion is commonly treated using the spectral phase accumulated through the

propagation distance L and the propagation constant β(ω). This is straightforward

3



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Illustration of the temporal (a) and spectral (b) effects of β2 dispersion
without nonlinearity.

to represent with an inverse Fourier transform of the input field Ein(t)
FT←→ Ein(ω):

Eout(t) =
1

2π

∫
Ein(ω) exp(−jβ(ω)L) exp(jωt) dω. (1.1)

β(ω) is commonly represented by a Taylor expansion around the center frequency

of the laser ω0: β(ω) = β(ω0) + β1(ω − ω0) +
1
2
β2(ω − ω0)

2 + 1
6
β3(ω − ω0)

3 + . . .

where βn = ∂nβ/∂ωn. The terms represent the phase velocity vp = ω0/β0, group ve-

locity vg (see above), group velocity dispersion (GVD or second-order dispersion),

third-order dispersion (TOD), and so on.

Figure 1.1 depicts the effect of GVD (β2) on a Gaussian optical pulse with a power

full-width at half-maximum of ∆t (adapted from [5,6]). The time window is moving

with the pulse at its group velocity (in normalized retarded time τ = (t−β1z)/∆t) and

depicted at propagation distances that are multiples of the dispersion length defined

LD = ∆t2/|β2|. LD provides a characteristic length scale over which the duration

4



CHAPTER 1. INTRODUCTION

of a pulse will change noticeably due to GVD (Fig. 1.1(a)). Because the effect is

contained in the spectral phase, the spectral power in Fig. 1.1(b) remains unchanged.

For propagation through many dispersion lengths, it is also convenient to express

pulse duration using the pulse spectral width ∆λ and the parameter D = −2πcβ2/λ
2

(generally in units of ps/nm-km): ∆t = D∆λL [7].

1.1.3 Nonlinearity

Optical nonlinearity concerns the dependence of material refractive index

on the field traveling in the medium. In this domain, the well-known scalar

polarization density of the medium P = ε0χeE (ε0 is the permittivity of free

space and χe is the electric susceptibility), which is linear with the electric field

E, must be supplemented with additional terms

P = ε0
[
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

]
(1.2)

where χn is the nth order susceptibility. We ignore χ2 because it is nonzero only in

crystals that lack inversion symmetry; therefore, it is absent in glass. χ3, however,

is present in all materials and the E3 term gives rise to a nonlinear refractive index

nNL = n(ω) + n2|E|2 where n2 is the nonlinear coefficient of the material (propor-

tional to χ(3)) in units of inverse irradiance [m2/W].

5



CHAPTER 1. INTRODUCTION

Nonlinearity in optical fiber is a very rich topic that covers a plethora of in-

teresting phenomena [5]. For the purpose of this discussion, it is important to

mention that all solid-core single-mode fibers have a noticeable nonlinearity con-

veniently summarized by the nonlinear coefficient

γ =
2πn2

λ0Aeff

(1.3)

where the nonlinear coefficient n2 is assumed to be spatially uniform and Aeff is the

effective fiber mode area Aeff =
(
∫∫
|u(x,y)|2 dx dy)

2∫∫
|u(x,y)|4 dx dy [m2] for the electric field spatial profile

u(x, y) with λ0 center wavelength. A typical single-mode fiber for λ0 = 1550 nm, for

example, has the parameters Aeff = 80 µm2, and n2 = 2.7 × 10−20 m2/W, yielding

γ = 1.37 (W-km)−1. Special fibers with higher confinement (smaller Aeff) at shorter

wavelengths can have γ values 1–2 orders of magnitude higher.

Together with the propagation constant β(ω) (see section 1.1.2), γ can be

used to describe the propagation of short pulses via the nonlinear Schrödinger

equation (NLSE), which has the form [7]

∂u

∂z
− jβ2

2

∂2u

∂t2
+ jγ|u|2u = 0, (1.4)

ignoring higher order dispersion and other nonlinearities such as Raman scattering.

Nonlinear pulse shaping (see also section 1.2.2) is a constant fixture in

this work before the encoding stages and the effects of self-phase modulation

6



CHAPTER 1. INTRODUCTION

must always be considered when trying to maintain the spectrally-encoded

information of the succeeding chapters.

1.1.4 Devices

The success of fiber optic communications has led to a wide array of relatively

affordable fiber-coupled modulators for optical intensity, phase, and IQ modulation,

fiber-coupled high-speed detectors, and serial pattern generators for wavelengths near

1550 nm. High-frequency modulators (10–35 GHz and above) are based on lithium

niobate (LiNbO3), which provides large electro-optic coefficient, low attenuation, and

low chirp. Waveguides are formed by indiffusion of titanium to form the core and RF

electrodes are fabricated on top of the crystal to drive the electro-optic refractive index

modulation [8]. Phase modulators can be manufactured from a straight waveguide

with electrodes. Intensity and IQ modulators employ one or more waveguide Mach-

Zehnder interferometers with additional biasing electrodes to select the operating

region of the optical power vs. input voltage transfer function.

These components as well as standard single-mode fiber, dispersion-shifted

fibers, and fiber mode-locked lasers (see section 1.2) are crucial to all of

the work presented in this thesis.

7



CHAPTER 1. INTRODUCTION

1.1.5 Amplification

Erbium-doped fiber amplifiers (EDFAs) produced more than an order of mag-

nitude improvement in the capacity (i.e., bandwidth-transmission distance product)

of fiber communication systems after their invention in the 1980s [4, 9]. The com-

bination of high small-signal gain (>30 dB), low minimum input power, low noise

figure (close to the theoretical limit of 3 dB), and broad gain bandwidth (10s of

nm near 1550 nm) make EDFAs key components in high-capacity wavelength di-

vision multiplexed photonic communication links.

As will become apparent in chapters 4–6, they also provide an excellent

inline optical preamplifier for detecting high-speed image frames encoded on

ultrafast laser pulses. Light amplification (as opposed to electronic gain after

detection) within the flow of information for an imaging system is generally

possible only with fiber-based imaging systems and EDFAs provide the most

robust and widely available optical amplifier.

1.2 Ultrafast Optics

Ultrafast optics describes the science and applications of pulsed lasers capable of

generating ultrashort light pulses. Such pulses are bursts of light with durations on

the order of 1–100 femtoseconds (fs, defined as 10−15 seconds), though new subfields

have opened up concerned with extremely short attosecond (as, defined as 10−18

8
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seconds) phenomena. Such short durations imply exceptional temporal and spatial

(100 fs × 3× 108 m/s = 30 µm) resolution, broad bandwidth (determined by Fourier

relationship) easily extending over several THz, as well as the potential for high peak

powers of kW or more at typical repetition periods even at modest average optical

power (i.e., well below 1 W). This makes ultrafast sources essential to numerous

applications such as time-resolved spectroscopy, frequency metrology, laser cutting

and additive manufacturing, and biomedical imaging [7].

1.2.1 Sources

The most common ultrafast lasers are so-called mode-locked lasers, which re-

semble conventional lasers except that they are designed for broadband operation

with up to many thousands of longitudinal modes oscillating simultaneously. Un-

like a conventional multi-mode laser, all mode-locked lasers include an intra-cavity

loss mechanism that will cause the laser to favor pulsed operation rather .than free-

running continuous wave (CW) operation. That is, when mode-locked a laser sup-

ports propagation of an optical pulse that if observed at given location appears steady

with each round trip through the laser cavity. The exact pulses that a specific laser

can generate involve a complex interplay between the laser medium’s gain charac-

teristics, the intra-cavity dispersion and nonlinearity, attenuation, and the temporal

and spectral effects of the mode-locking mechanism. Thus, there is a wide vari-

ety of mode-locked laser designs with different gain media, dispersion management,

9
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and mode-locking schemes. Correspondingly, for any center wavelength (determined

by the gain medium) desired there is frequently a cluster of possible pulse widths,

energies, and temporal and spectral profiles.

This intra-cavity loss mechanism can be either active or passive. Active mode-

locking almost always implies the use of an intensity modulator inside the cavity,

externally-driven by an RF source at a multiple of the natural cavity repetition fre-

quency frep = 1/τrep where τrep is the cavity round-trip time. Either the RF source can

be tuned to (or derived from) the cavity length or (more commonly) the cavity length

can be adjusted to the source. Actively mode-locked lasers are capable of very high-

repetition rates (e.g., 10–20 GHz) in the case of harmonic mode-locking and straight-

forward synchronization with other electronics; however, pulse durations are generally

limited to 1 ps and longer. Passive mode-locking achieves the shortest pulses at the

expense of repetition rate and ease of synchronization. It is achieved without external

driving through the use of a saturable absorber that exhibits lower loss at high optical

fluence than low fluence. Either a slow saturable absorber such as a semiconductor

saturable absorber mirror (SESAM) or fast absorber such as the nonlinear refractive

index as a means for polarization rotation or spatial self-focusing can be used.

1.2.2 Ultrafast Pulse Shaping

Pulse shaping refers to the use of active (in the case of electro-optics) or pas-

sive optical methods to alter the temporal or spectral profile of the optical pulses

10
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Figure 1.2: 4-f pulse shaper designs with (a) two gratings and lenses for better
manipulation of the optical spectrum (imaged to a line at the iris) or (b) one grating
and one lens for compactness and simplicity of alignment.

in a system. Creation of pulse stacks, dispersion management, amplification, and

customization of pulse profile are just a few of its applications [10–15].

One of the canonical means for ultrafast pulse shaping is the 4-f pulse shaper

(Fig. 1.2). A diffraction grating and spherical lens at one focal length (f) separation

form a line image of the source’s optical spectrum at a distance f after the lens (i.e.,

utilizing the Fourier transform property of lenses [16]). The spectrum at this plane

can be modified either by a simple aperture (acting as a bandpass filter), a printed

transparency mask, or a phase or amplitude modulator such as a liquid crystal spatial

light modulator (SLM) [12, 17]. To recombine the filtered line into a high quality

beam, either a mirror can be placed at the image plane and the light reflected through

the same lens and grating or a second lens and grating can be added. The mirror

affords compactness and simplicity of alignment; the dual lens and grating approach

simplifies exact placement of the mask at the image.

11
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The basic 4-f pulse shaper with no mask or filter can also be freely reconfigured

using different magnification telescopes [18] (the basic configuration described above

forms a 1× magnification telescope with the lens and mirror or pair of lenses) and dis-

tances between the lenses and gratings to create temporal stretching or compression.

Several of the innovations presented in this thesis can be considered pulse-shaping

techniques; the 4-f pulse shaper will also reappear in multiple novel configurations.

1.2.3 Chirp Processing

Optical pulses which are as temporally short as their bandwidth permits are

known as transform-limited. However, as shown in section 1.1.2, spectral phase on

the orders of β2 and above causes the optical frequency content to be distributed in

time away from the pulse center frequency, which is known as chirp. β2 contributes

linear chirp or a linear mapping of frequency versus time. This is easily seen in

the spectrograms of Fig. 1.3 computed from the pulse at z = 0 and z = 5LD in

Fig. 1.1: for the input pulse (a) all of the frequency content is at time zero, but

for the dispersed pulse (b) the frequency content is linearly distributed in time .

Higher order dispersion causes other nonlinear frequency mappings that are impor-

tant and ever-present, but beyond this discussion.

The management of chirp through choice of fiber parameters or, in free-space,

through pulse shapers or diffractive stretchers/compressors is essential to high peak

power pulse delivery for, e.g., nonlinear microscopy and dozens of other applica-

12
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(a) (b)

Figure 1.3: Spectrograms computed at (a) z = 0 and (b) z = 5LD from the
propagation example in Fig. 1.1. Colormap is computed from power on logarithmic
scale.

tions. The possibility of temporally stretching and compressing a pulse in a matched

way is essential to high performance amplification, known as chirped pulse am-

plification (CPA) [19], where high peak powers would otherwise cause too much

nonlinearity or damage the optical system.

A particularly rich application of chirp processing relies on the time-space du-

ality of pulse propagation and spatial diffraction [20, 21]. In the absence of non-

linearity (γ = 0), Eq. (1.4) simplifies to

∂u

∂z
=
jβ2

2

∂2u

∂t2
, (1.5)

which directly resembles the equation for paraxial diffraction of a monochromatic wave

∂u

∂z
=
−j
2k

(
∂2u

∂x2
+
∂2u

∂y2

)
(1.6)
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with β2 equivalent to −k−1 and t equivalent to x or y. For β2z → 0, the pulse exists

in the so-called near-field regime analogous to Fresnel diffraction. For z � LD or

|β2z| � T 2/8 where T is the full duration of the input pulse, the pulse exists in the

far-field regime analogous to Fraunhofer diffraction [7,16]. Another useful property of

diffraction appears here because the far-field version of the electric field is the Fourier

transform of the input field, but the transform yields the optical spectrum rather than

spatial frequency content. In another sense, the spectrogram of the dispersed pulse

(Fig. 1.3(b)) tilts so far that the temporal profile of the pulse directly reflects the op-

tical spectrum with the mapping constant ∂w
∂t

= 1
β2z

. Unlike diffraction, β2 and D can

be designed to take both signs so the temporal transformation can be easily reversed.

The ability to create a custom mapping of optical spectrum into time creates

several interesting possibilities. Optical spectra customized with a pulse shaper

can be serve as arbitrary temporal waveforms at extremely short timescales [13, 14].

Conversely, high-speed phenomena that can be imprinted onto a pulse can be used

to shape the optical spectrum for read out using a simple optical spectrum ana-

lyzer [10, 11, 15]: repetitive events that can be synchronized to the laser can be read

out with higher sensitivity scanning spectrometers, but nonrepetitive events require

a parallel spectrometer (i.e., a non-scanning sensor array) and higher pulse energies.

This issue will be discussed further in chapter 2.
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1.3 Compressed Sensing

Compressed sensing, also known as compressive sensing, is a new subfield of math-

ematics and signal processing and representation that has received considerable in-

terest during the past decade since its introduction by Candès, Tao, Romberg, and

Donoho in 2006 [22–26]. The core insight of CS is that the natural sparsity of real

signals when represented in an appropriate mathematical basis can be utilized to per-

mit accurate reconstruction from a small number of measurements far fewer than the

Nyquist dimension of the signal. Rather than sample at a rate greater than or equal

to twice the signal bandwidth, adhering to the Nyquist theorem, CS advocates the

acquisition of a small number of inner-products between the signal of interest and

known patterns with feature sizes fine enough to represent the signal bandwidth.

By reducing the number of necessary measurements, hardware designed for CS

can operate more efficiently using less power, data transmission, and storage [27,28].

Important for this work, CS can also alleviate traditional bottlenecks where high-rate

electronic sampling is impossible or limited in throughput [29].

1.3.1 Traditional Compression

Compression of image, audio, and video signals underpins the modern digital

world of streaming media and endless user-generated content. After digitization with

a pixel array or transducer and ADC, the full Nyquist version (with the inherent reso-
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Raster Scan
Digitization

Nyquist
Representation

Wavelet
Transform

Compressed
Image

Figure 1.4: Example of traditional image compression wherein only 5% of the coef-
ficients in an 8-level Haar wavelet transform are kept to reconstruct the image.

lution of the sensor) exists briefly in device memory before undergoing a compression

routine that will try to discard as much information as possible without losing per-

ceptual quality. Commonly, this involves a process of sparse approximation wherein

the signal is transformed to a basis such as a local discrete cosine transform (DCT,

used in JPEG) or multi-level wavelet transform (used in JPEG 2000). The goal is

to achieve a complete (i.e., invertible) representation of the signal that confines its

energy to a small number of significant coefficients so that the rest of the coefficients

can be thresholded and discarded. Thresholding implies lossy compression, incapable

of recovering a bit-accurate version of the original, but small approximation error

with high compression ratios (>10:1) are readily achieved. An example appears in

Fig. 1.4 where the JHU shield is acquired with a raster scan and compressed using

an 8-level Haar wavelet transform, keeping only 5% of the original entries accord-

ing to significance: the sparsity in the wavelet domain is immediately apparent and

the loss of perceptual quality is very acceptable.

16



CHAPTER 1. INTRODUCTION

1.3.2 CS Acquisition

CS measurement is conventionally represented as a matrix multiplication

yyy = ΦxΦxΦx where ΦΦΦ =


−φφφ1−

−φφφ2−

...

 . (1.7)

xxx is the signal of interest with its full Nyquist dimension N and φφφk are the known

measurement functions (also dimension N). In the case of a Nyquist measurement

with a shifted Kronecker delta function (i.e., raster scan or conventional parallel 2D

imaging array) or a basis scan with, e.g., a series of tones at different frequencies as in

a spectrum analyzer, ΦΦΦ will have dimensions N×N . However, because a sub-Nyquist

representation is desired, yyy is smaller than xxx and ΦΦΦ is often called a “short and fat”

matrix with dimensions M × N where M < N (see Fig. 1.5). This is an inverse

problem that gives rise to infinitely many solutions x̂̂x̂x since ΦΦΦ has a null space. Thus,

it is necessary to put conditions on ΦΦΦ and xxx to guarantee accurate recovery of xxx.

The solution is sparsity. Most often, xxx is a dense signal with many non-zero values

but there is often a basis or dictionary such as frequency or wavelet in which xxx is

sparse with very few significant coefficients. xxx can thus be represented xxx = ΨΨΨ−1sss

where ΨΨΨ is the forward transform to the sparse basis. The sensing operation is now

yyy = AsAsAs where AAA = ΦΨΦΨΦΨ−1. It can then be shown that for AAA matrices with low coher-

ence, defined as the maximum inner product between any two normalized columns
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×= =× ×

y Φ x Ψ −1 sΦ

Figure 1.5: Illustration of CS with output vector yyy, signal xxx, random measurement
matrix ΦΦΦ, sparsifying DFT transform ΨΨΨ, and sparse vector sss.

(denoted aaai and aaaj) µ(AAA) = max
i6=j
|〈aaai, aaaj〉|, sufficiently sparse sss can be recovered ex-

actly. That is, AAA satisfies the Restricted Isometry Property

(1− δ2S) ‖sss‖2
2 ≤ ‖AAAsss‖

2
2 ≤ (1 + δ2S) ‖sss‖2

2 (1.8)

for all S-sparse (i.e., containing S nonzero entries) vectors sss with a small constant

δ2S <
√

2 − 1. Thus, AAA, the product of the sampling matrix and sparsifying trans-

form, approximately preserves the length of S-sparse vectors, implying that such

sparse vectors cannot be in the null space of AAA. This guarantees that the S-sparse

vectors can be recovered exactly via `1 minimization

min
x̂̂x̂x∈Rn
‖x̂̂x̂x‖1 subject to yyy = AAAx̂̂x̂x (1.9)

and approximately S-sparse vectors can be recovered almost as well as if the S most

significant coefficients were measured directly [30].

18



CHAPTER 1. INTRODUCTION

1 2 3 4 5 6 7 8 9 10
Measurement Number

0

0.2

0.4

0.6

0.8

1

PD
 V

ol
ta

ge
 (a

rb
. u

ni
t)

Objective Lens

Object

Photodetector (PD)

Measurement Patterns
on a DMD

Focusing Lens

Summed Pixel Values

Figure 1.6: Schematic diagram of CS single-pixel camera acquisition.

The most well-known CS architecture for image signals is the single-pixel cam-

era (Fig. 1.6) [31]. In this camera, the conventional pixel array sensor is traded

for a digital micromirror device (DMD) and focusing lens onto a photodetector and

ADC. A highly sub-Nyquist number of random patterns are displayed in succes-

sion on the DMD and the summed optical power is recorded for each, effectively

computing the inner product in Eq. (1.7) in the optical domain. Because approx-

imately half of the pixels are turned on per pattern, a full image can be formed

with better SNR than a raster scan in less time than a full basis scan [32]. This

architecture will be discussed further in section 4.4.
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Chapter 2

Stationary RF Sensing

In this chapter, we introduce spectral encoding of highly-chirped ultrafast laser

pulses with pseudorandom bit sequences such that every laser pulse acquires a unique

spectral pattern. The pulses are partially compressed in time, extending the effec-

tive sampling rate beyond the electronic limit, and then modulated with a sparse

microwave signal. Finally the pulses are fully compressed and detected, effectively

integrating the measurement. We achieve 100 usable features per pattern allowing for

100 points in the reconstructed microwave spectra and experimentally demonstrate re-

construction of 2-tone and 3-tone microwave signals spanning from 900 MHz to 14.76

GHz. These spectra are reconstructed by measuring the energy of only 23 to 38 con-

secutive laser pulses acquired in a single-shot with a 500-MHz real-time oscilloscope.
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2.1 Radio Spectrum Sensing

In consumer and military wireless communications, it is often desirable to detect

and manage radio frequency (RF) spectrum usage rapidly across multiple frequency

bands. Though the radio spectrum is already tightly allocated, actual usage at any

single time tends to be very sparse [33] with a limited number of channels in use,

scattered across an extremely broad bandwidth.

One straightforward approach to fast RF frequency analysis is to sample in the

temporal domain at the Nyquist rate and apply a Fast Fourier Transform, but measur-

ing signals with a bandwidth of 20–30 GHz or more is challenging for electronic analog-

to-digital converters (ADCs). For this reason, photonic systems, which offer very large

instantaneous bandwidth are an attractive solution for microwave signal processing.

Recently, several applications of CS and microwave photonics to RF frequency

detection were demonstrated experimentally. In [34], the random demodulation tech-

nique proposed in [35] was implemented optically with a continuous wave (CW) laser

and two Mach-Zehnder modulators (MZMs) for RF and PRBS modulation in suc-

cession; a single tone near 1 GHz was successfully reconstructed. In [36], frequency

recognition and downconversion of two tones were demonstrated inside a 5 GHz band-

width between 15 and 20 GHz using a PRBS MZM and an RF MZM with two outputs

and a balanced detector. In [37], a mode-locked laser (MLL) with an RF MZM fol-

lowing a significant amount of fiber dispersion was used with a 118-pixel spatial light

modulator (SLM) in a 4-f pulse shaper to accomplish pseudorandom bit sequence
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(PRBS) modulation of a wavelength-to-time-to-1D spatial mapping. Two microwave

tones at 71.42 and 214.16 MHz were successfully reconstructed.

Several other systems have also been proposed in simulations [38–40]. Of interest

here, the possibility of dispersing MLL pulses in optical fiber, modulating with an

RF test signal, and dispersing them further with a second fiber for a desired amount

of temporal magnification [41] was proposed in [40]. However, this approach called

for PRBS mixing electronically after photodetection, limiting its use of optical infor-

mation processing. The detection of long-time dispersed pulses would also enforce

low peak-to-average power at the photodetector (PD) and long electronic integration

times limiting the measurement speed and signal-to-noise ratio (SNR).

2.2 Experimental System

In the system presented here (Fig. 2.1), ultrafast MLL pulses are chirped to spread

the optical spectrum over several ns in time. They are then modulated to encode a

different known PRBS pattern on each consecutive pulse’s spectrum. The PRBS

patterns form the set of φk’s with N random spectral features encoded on the kth

pulse. After PRBS modulation, the pulses are partially compressed in time, which

increases the feature rate and thereby the maximum recoverable RF frequency. These

partially compressed pulses are modulated once more with the sparse-frequency RF

signal under test (x), which yields the mixed PRBS patterns × RF signal encoded
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Figure 2.1: (a) Conceptual operation. (b) Detailed experimental system.

on their spectra. Finally, each optical pulse is fully compressed bringing the full

spectral content to one point in time prior to the PD. The second mixing stage and

full pulse compression respectively perform the inner product between the PRBS and

RF signals by first piecewise multiplying the PRBS and RF signal and then sum-

ming the products. The compressed pulse acts as an impulse to the relatively slow

detector, which therefore measures the pulse energy and allows one digital sample

to carry the full RF×PRBS inner product. By performing this summation opti-

cally we facilitate high SNR photodetection and enable single-shot digitization of

the measurements (yk) with an ADC much slower than the effective sampling rate

of the system. Thereby, the CS measurements yk are rapidly acquired at the pulse
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repetition rate of the MLL. These measurements yk are fed into a minimization al-

gorithm, described later, to recover the RF signal x.

Similar to [37], we employ chirping-based optical-wavelength-to-time mapping for

information processing, however we acquire unique pseudorandom measurements at

the laser repetition rate (90 MHz) rather than the SLM refresh rate (∼100 Hz), a 5–6

orders of magnitude improvement in measurement speed. Furthermore, by applying

the PRBS modulation entirely with fiber-based components, we reduce optical losses

and alignment sensitivity inside the system, also aiding output detection. Use of

a 2D SLM and parallel high-speed PDs and ADCs was proposed in [6] to permit

fast, concurrent pseudorandom measurements of RF signals, unaffected by the SLM

refresh rate. However, this approach requires splitting the laser pulse amongst M

parallel detection circuits leading to greater hardware complexity.

The specific experimental system consists of an erbium fiber MLL emitting pulses

at frep = 90 MHz (τFWHM = 300 fs). These pulses are spectrally broadened and sent

into a normal dispersion fiber for optical wavelength-to-time mapping. An erbium-

doped fiber amplifier (EDFA) immediately following the oscillator inside the MLL

provides some spectral broadening through self-phase modulation (SPM) in addition

to high peak power at the system input. This combines with the high dispersion

(D1 = −38 ps/nm-km) and modest nonlinearity (γ = 3.8 W−1km−1) of the 6.3-km-

long normal dispersion fiber to yield pulses that span greater than 30 nm in spectral

bandwidth at −6 to −7 dB and 8.5 ns in time.
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These chirped pulses are sent into an electro-optic Mach-Zehnder intensity mod-

ulator (MZM) driven by a pulse pattern generator (PPG) for random temporal mod-

ulation which in turn imposes the random pattern onto the spectrum of the highly

chirped pulses. The PPG outputs digital 1s and 0s at a rate of 11.52 Gbit/s or

128 bits per laser pulse period. Here, the chirped pulses span less than the full pe-

riod and the pattern length is set to N = 100. The PPG modulates the optical

field at the PRBS MZM with user-programmable patterns up to 1.3 Mbit in length;

customized patterns are used, allowing for more than 10,000 unique pseudorandom

signals (although we typically use <40). Each optical pulse serves as a single pseu-

dorandom measurement of the RF test signal, and the analog-to-digital conversion

of the pulse energies is performed in a single-shot without averaging, such that mea-

surements are obtained at the 90 MHz repetition rate and a full set of M < N

measurements can be acquired in only a few hundred ns.

Figure 2.2 illustrates the density of PRBS features that are modulated onto

the pulse spectra, depicting 0101. . . and 1010. . . in Fig. 2.2(a) and one example

pseudorandom modulation pattern as well as the spectral envelope for reference

in Fig. 2.2(b). These patterns are detected on an optical spectrum analyzer

(OSA) at the system output without an RF test signal and represent the temporal

pattern due to the wavelength-to-time mapping of the highly chirped pulses.

The full dimension N of the signal to be reconstructed is determined by the

spectral width (∆λ) above a user-defined threshold after nonlinear broadening,
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Figure 2.2: Example optical spectra showing (a) 0101. . . (blue curve) and
1010. . . (red curve) pattern modulation and (b) an example PRBS pattern (red curve)
plotted with the high and low envelopes (blue curves) for pattern modulation used
by the reconstruction matrix A in Eq. 2.4.

the dispersion (D1) and length (L1) of the time-stretching fiber, and the PPG

pseudorandom modulation rate (RPRBS) such that

N ≈ D1L1 ∆λRPRBS. (2.1)

The current results utilize spectral thresholds of −6 to −7 dB to achieve N = 100

(Fig. 2.2), yielding a resolution bandwidth RBW = fmax/(N − 1) = 150 MHz, where

fmax is the upper limit for frequency reconstruction (14.9 GHz here). An optical band-

pass filter is not employed to remove the spectral content below the spectral threshold.

Experimentally, we found this has negligible impact on signal recovery performance.

The dispersion, length, and spectral width are easily tunable by choice of fiber and
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operating conditions of the MLL. Higher-rate PRBS signal generators are also widely

available. Furthermore, the measurement rate of the system is highly customizable

by selection of the MLL or by temporal multiplexing of the laser pulse train.

After pseudorandom modulation, the pulses are compressed in time using a 19.8-

km-long anomalous dispersion fiber (D2 = 16.8 ps/nm-km) by a factor of 2.58. This

increases the effective sampling rate provided by the pseudorandom modulation to

29.8 GS/s. In this way, we set the upper limit for frequency reconstruction of this sys-

tem at fmax = 14.9 GHz to complement the limitations of the RF MZM. Importantly,

the length of the compression fiber is easily reconfigured to increase the RF frequency

bandwidth of the system. Due to the available spooled fiber lengths, the anomalous

dispersion fiber used here overcompensates the dispersion of the stretching fiber, and

the PRBS patterns at the output are time-reversed. The PRBS compression causes

gaps between measurement pulses. This is not a concern for sparse-frequency signals,

which are inherently long-lived in time. Elimination of this gap is possible with a

small reduction in the sampling randomness by chirping beyond the repetition period

before PRBS modulation and compressing to the full period before RF modulation.

Subsequently, the pulses pass through a second MZM for modulation with an

RF test signal. The system is designed for binary PRBS and linear RF modulation.

The PRBS modulation depth is greater than 15 dB across nearly the whole usable

spectrum, and the spectrum-to-time mapping makes it simple to use the optical

spectrum analyzer (OSA) to characterize the full modulation function R(t) such that
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after the output of the RF MZM, the optical power is

P (t) = R(t)[1 + αx(t)], (2.2)

where α is the modulation depth of the RF MZM (approximately 0.5 here). Each

measurement yk is then given by the integral of this intensity with the integral of

the random modulation alone subtracted

yk =

∫ tr/2

−tr/2
R(t)[1 + αx(t)] dt−

∫ tr/2

−tr/2
R(t) dt, (2.3)

where t is a time frame centered on pulse k and tr is the pulse repetition period.

Optical compression of each measurement pulse with 2.5 km of normal dispersion

fiber achieves this integration in the optical domain prior to the ADC. Finally,

the pulses are measured using a 1-GHz photodiode and digitized in a single-shot

using a 500-MHz real time oscilloscope.

2.3 Reconstruction Algorithm

Compressed sensing is motivated by the fact that many signals of inter-

est x have a sparse representation s in an appropriate orthonormal basis Ψ:

s = Ψx and x = Ψ−1s. For this system, which seeks a sparse frequency signal,

Ψ is a matrix representing the Discrete Fourier Transform (DFT). Thus, the
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sparse signal measurement can be represented as

y = As+ n, (2.4)

where A = ΦΨ−1 and n is additional noise. We use the Gradient Projection for Sparse

Reconstruction (GPSR) algorithm [42] to solve the minimization problem

min
s

(
1

2
‖y − As‖2

2 + τ‖s‖1

)
, (2.5)

where ‖y − As‖2
2 is the sum squared error between the measurement vector

y and a candidate reconstruction s, ‖s‖1 is the `1 norm of the candidate re-

construction, and the coefficient τ > 0 is a small sparsity-promoting constant

that pushes small components of s to zero.

2.4 Experimental Results

To illustrate the encoding of a multi-tone RF signal onto the optical spectrum,

Fig. 2.3(a) depicts the difference spectrum between the RF modulated and unmodu-

lated states without PRBS modulation as well as the shape of the optical spectrum

alone overlaid for reference. Figure 2.3(b), shows the difference signal with the spec-

tral envelope removed as well as an experimental temporal RF reconstruction from

compressed sensing measurements overlaid, showing excellent agreement.
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Our results (Fig. 2.3(b–e)) demonstrate accurate reconstruction of the spectral

and temporal representations of sparse-frequency RF signals composed of several

tones at high multiples of the laser repetition rate. RF tones at non-harmonics of

the repetition rate result in a deterministic phase-slip for each tone at frequency fRF

of ∆φ = 2πfRF/frep between measurement pulses. This effect can be addressed

in the reconstruction, e.g. by building it into the sparse basis Ψ, and such an

implementation will be the subject of future work. Sinusoids at 900 MHz, 2.43,

4.95, 9.9 GHz, and 14.76 GHz were successfully reconstructed in different groups

of two or three tones with varied input powers. The two- and three-tone signals

were reconstructed into N = 100 frequency bins across 14.9 GHz of bandwidth with

M = 23 and M = 28 measurements for two tones (Fig. 2.3(c) and Fig. 2.3(d), re-

spectively) and M = 38 measurements for three tones (Fig. 2.3(e)). The reported

value of M was chosen to correspond to the first local minimum of the amplitude

mean squared error (MSE) reached while increasing the number of measurements

M used for reconstruction [37]. The experimental compression ratios (M/N) were

thus 23–38% depending on the signal complexity. Measurements were acquired in

a single-shot, such that the measurements for a full two-tone reconstruction, e.g.

Fig. 2.3(d), were captured in ∼250 ns given the 90-MHz MLL repetition rate. Test

signals were spaced throughout the 14.9 GHz bandwidth without affecting the num-

ber of necessary measurements, demonstrating the large instantaneous bandwidth

of the system. This is particularly evident in Fig. 2.3(e) where a test signal with
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wide spanning frequency content of 900 MHz, 4.95 GHz and 14.76 GHz and 10-dB

variation in amplitude are faithfully reconstructed.

Compressed sensing theory predicts that pseudorandom sampling with a

symmetric Bernoulli distribution (our PRBS) permits accurate recovery of

a sparse signal with S non-zero components with excellent probability for

M ≥ C · S log(N/S) where C is a small constant that depends on the test case [30].

Using 38 measurements for three tones and 23–28 for two tones demonstrates

this approximately linear scaling in M for small S.

Notably, this system achieves reconstruction of signals up to 14.9 GHz using a 500-

MHz digitization bandwidth. Thus, the demonstrated PRBS modulation and pho-

tonic time-stretching/compression technique reduces the required ADC bandwidth

by a factor of >30. Moreover, by adjustment of the partial-compression fiber length,

the detection bandwidth can be extended far beyond 14.9 GHz, limited primarily

by the RF MZM. Also, by employing a higher speed ADC, the acquisition time can

be decreased by using a higher repetition rate MLL.

In conclusion, we demonstrate a photonic architecture for RF×PRBS mixing with

photonic time-stretching, optical integration of the mixed product, and single-shot

detection at the output to enable high-speed compressed sensing of sparse-frequency

RF signals. The experimental RF detection bandwidth is greater (to our knowledge)

than in any previously demonstrated microwave photonic CS system, and the archi-

tecture offers significant flexibility for adding more PRBS features (N) and sensing
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bandwidth. Signal acquisition for this system is 5–6 orders of magnitude faster than

previously demonstrated compressed sensing utilizing wavelength-to-time mapping,

and the use of photonic time-stretching permits detection of sparse-frequency RF

signals over a much broader bandwidth than would traditionally be possible with

the employed electronics alone. The demonstrated system is highly promising for

the rapid characterization of sparse and ultrawideband RF spectra as well as the

characterization of ultrawideband RF signals with rapid temporal dynamics.
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Figure 2.3: (a) Temporal RF measurement derived from the difference in optical
spectrum with and without RF modulation shown spectrally due to wavelength-to-
time mapping (red curve). The envelope from the spectral shape is overlaid for
reference (blue curve). (b) Temporal RF measurement with the effect of the envelope
removed and the reconstruction from the RF spectrum shown in panel (c) overlaid.
(c) Two-tone reconstruction of peaks at 4.95 and 14.76 GHz, with N = 100, M =
23, τ = 0.04, and MSE = 0.00031. (d) Two-tone reconstruction of peaks at 2.43 and
9.90 GHz, with N = 100, M = 28, τ = 0.068, and MSE = 0.00072. (e) Three-tone
reconstruction of peaks at 900 MHz, 4.95 and 14.76 GHz, with N = 100, M = 38,
τ = 0.05, and MSE = 0.00056.
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Chapter 3

Time-Dependent RF Sensing

Here, we extend the chirp procesing approach to photonic CS to measuring arbi-

trary frequencies and achieve vastly improved frequency resolution and compression.

Using joint sparsity reconstruction, we demonstrate experimental acquisition of multi-

tone signals at arbitrary frequency offsets from the reconstruction grid. We achieve

broad sampling bandwidth well beyond that of the electronics and all-optical inte-

gration permitting tremendous reduction in the necessary electronic sampling rate.

We demonstrate a photonic system for pseudorandom sampling of multi-tone sparse

radio frequency (RF) signals in an 11.95 GHz bandwidth using < 1% of the mea-

surements required for Nyquist sampling.
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3.1 RF Sensing at Arbitary Frequencies

Rapid wideband RF spectrum estimation is a critical technology for applications

such as cognitive radio and electronic warfare. However, efficiently detecting spec-

trum usage across a wide bandwidth is a primary challenge for such systems [43].

Conventional electronic sampling at the Nyquist rate followed by a discrete Fourier

transform (DFT) provides a straightforward method of spectrum estimation, but

ADCs to cover several 10s of GHz of bandwidth are prohibitively expensive and

power hungry, limited in SNR, or unavailable. Thus, there is great interest in ap-

plying compressed sensing (CS), which permits recovery of signals from a highly

sub-Nyquist number of measurements, to this problem [44].

Photonic systems, which possess extremely large instantaneous bandwidth, are

promising for implementing wide-bandwidth RF CS systems. Sampling of a single

1 GHz RF tone in a 5 GHz bandwidth using a PRBS-modulated CW laser and RF

low-pass filter was achieved at 5% of the Nyquist sampling rate in [34]. Multiple

works have since extended the use of optical signal processing in CS RF sampling.

In [45] four CW wavelengths were multiplexed, PRBS modulated, precisely delayed,

and demultiplexed after RF modulation into four PDs and ADCs to recover 20 tones

in a 5 GHz bandwidth using 120-MHz received bandwidth. In [46] four CW lasers and

dispersion compensating fiber were utilized for optical integration of the PRBS-RF

product to recover three tones in a 2.5 GHz bandwidth down to 10% of the Nyquist

sampling rate. Photonic time-stretch using mode-locked lasers (MLL) and dispersion
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management in optical fiber [47–49] has been successfully employed to extend the

effective sampling rate beyond the PRBS modulation rate, but so far only tones at

harmonics of the laser repetition rate have been reconstructed [37, 50].

The photonic CS approaches above demonstrate accurate reconstruction for sig-

nals placed on a frequency grid determined by the system and reconstruction basis.

However, for realistic input signals x(t) at arbitrary frequencies, even a small offset

of a few parts-per-million from the ∆ = fs/N frequency grid results in significant

squared-error with numerous spurious tones in ideal, noiseless reconstructions [51].

This problem is described as sensitivity to basis mismatch and proposed solutions

require modification of the signal model and the DFT sparsifying basis [52,53]. Basis

mismatch was experimentally observed in photonic links, exhibiting up to 100% fre-

quency identification failure for input frequencies near the midpoints of the frequency

grid [54]. Several algorithms have recently shown promise in mitigating the errors

induced by basis mismatch [55–58]. Alternatively, photonic multi-coset nonuniform

sampling allows reconstruction of arbitrary RF signals using a sub-Nyquist acquisi-

tion rate, but the technique required the Nyquist number of samples, corresponding

to much longer acquisition time at the reduced sampling rate [59].
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Figure 3.1: (a) Conceptual operation, (b) detailed schematic, and (c) example
spectra of 0101. . . and 1010. . . patterns.

3.2 Experimental System

The system (Fig. 3.1) functions by time-stretching 300-fs MLL pulses (frep = 90-

MHz repetition rate) in a normal dispersion fiber (D1 = −494 ps/nm) to achieve

wavelength-to-time mapping. The pulses are then modulated with PRBS patterns at

a rate of 11.52 Gbit/s by a Mach-Zehnder intensity modulator (MZM) driven by a

pulse pattern generator (PPG) synchronized to the MLL. The high peak power of the
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input pulse train couples with the moderate nonlinearity (γ = 3.8 W−1km−1) and high

dispersion of the chirping fiber to produce spectrally-broadened pulses spanning 35 nm

and greater than 17 ns in time before PRBS modulation. The stretched duration of

the pulses permits 200 features over the full width of the spectrum (Fig. 3.1(c)).

After PRBS modulation, the pulses are partially compressed in an anomalous

dispersion fiber (D2 = 256 ps/nm), increasing the effective sampling rate by a factor

of D1/(D1 +D2) = 2.07. Since the temporal compression ratio is enabled by well-

defined fiber dispersion, we have found the effective sampling rate to be consistent

across many days of measurements without any stabilization. Measurements can be

acquired indefinitely as long as the laser remains stably mode-locked. The partially

compressed pulses are modulated by the RF signal in a dual-output MZM. The two

outputs are represented as [1 + αx(t)]p′(t) and [1 − αx(t)]p′(t) where p′(t) is the

compressed PRBS waveform and α is the RF MZM modulation depth. Finally, the

residual chirp is compensated using circulators and a common fiber (D = 238 ps/nm)

to restore both arms to nearly transform-limited duration. One arm is tapped with

a 99:1 coupler and input to an optical spectrum analyzer (OSA) to characterize the

shape of the p(t) patterns on the spectrum and calibrate the sensing matrix Φ matrix

[50]. A 150-MHz balanced photodetector (PD) computes the difference between the

two arms, producing a pulsed voltage waveform with peak values proportional to∫ t1
t0

2αx(t)p′(t)dt where t0 and t1 are the temporal bounds of the partially compressed

PRBS pulses. This doubles the signal level, suppresses laser noise, and eliminates
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the need for an unmodulated reference to digitally compute a difference signal. To

reach the maximum data compression ratio, we employ a synchronized ADC clocked

at the laser repetition rate with its sampling windows aligned to the peaks of the

output voltage waveform. In this way, the required sampling rate to reconstruct

the sparse input signal is reduced by a factor of 266.

In other photonic realizations of the random demodulator, the integrator was

implemented with a low-pass electronic or microwave photonic filter [34,45,46], which

is difficult to approximate as an ideal integrator for 100-MHz or GHz sampling rates

[60]. This problem is solved in our approach because after the two modulation stages,

the pulse is restored to a ∼ps duration and acts as an impulse to the PD such that

a single ADC sample can represent the full inner product.

At the PRBS modulation stage, the pulse duration is longer than the 11.1-ns rep-

etition period and the tail of each pulse overlaps the head of the succeeding pulse.

Thus, after modulation, the pulses share certain pattern segments, but these fea-

tures are located at completely different wavelengths and upon partial-compression

there is no temporal overlap of the shared segments or of the pulses, maintaining

the orthogonality between the rows of pseudorandom Φ matrix. After partial com-

pression, the sampling duty cycle (T ) is determined by the optical bandwidth and

dispersive design: T = |D1 + D2|∆λfrep. Here the parameters were chosen to bal-

ance the RF bandwidth and the duty cycle (T = 0.75). The unobserved period

within each pulse repetition window corresponds to only 2.7 ns, which is sufficiently
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small for the observation of spectrally sparse carriers with each individual carrier

bandwidth up to the order of 100 MHz.

The present system can be scaled to effective sampling rates beyond the elec-

tronic pattern rate by a factor up to 10× or more [61] by ensuring sufficient optical

bandwidth per PRBS bit slot δt at the increased rate: δt2 > |D1 + D2|λ2/c [7].

This can be achieved without gaps in the sampling waveform by decreasing D1 and

time-interleaving the PRBS pulses with relative delays equal to several pulse periods.

In this way, a continuous train of minimally correlated pseudorandom patterns at

an extremely high rate can be constructed.

3.3 Reconstruction Algorithm

To reconstruct the signal under test, the random demodulator CS framework [35]

models a sparse-frequency input as a Fourier series x(t) =
∑N/2−1

n=−N/2X(n)ej
2π
Tx
nt, where

Tx is the period of x(t) and N is a positive even integer representing the full dimension

of the discrete signal. The finite summation indicates that the signal is assumed to

be bandlimited in the range −0.5W ≤ n
Tx
≤ 0.5W where n is an integer and W

is the PRBS rate, often referred to as the chipping frequency. The input x(t) is

assumed to be K sparse, which denotes that only K � N of the coefficients X(n) are

non-zero. PRBS measurement signals are chosen to satisfy the restricted isometry

40



CHAPTER 3. TIME-DEPENDENT RF SENSING

property (RIP), preserving the Euclidean length of K sparse signals and permitting

recovery from a sub-Nyquist number of measurements.

The input signal x(t) is mixed with the PRBS signal p(t) and fed into an ideal

integrator and sampled at a constant rate R where W/R is an integer. The mixing and

integrate-and-dump process can be cast as a matrix multiplication y = Φx where,

for M linear pseudorandom measurements, Φ is an M × N matrix of the form

Φ =


p0 . . . p N

M
−1

p N
M
. . . p 2N

M
−1

. . .

 (3.1)

and N/M = W/R. A CS recovery algorithm is employed to find the sparsest rep-

resentation s = Ψx of the input signal, constrained by the empirical measurement

y = ΦΨ−1s where Ψ is an appropriate sparsifying matrix, i.e., a discrete Fourier

Transform (DFT) matrix for sparse frequency signals.

Our previous work in chapter 2 [50] restricted the input RF frequencies to multiples

of the laser repetition rate frep. The measurement matrix thus took the form

Φ =


p0 . . . pN−1

pN . . . p2N−1

...

 . (3.2)
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This simplifies reconstruction by eliminating the possibility of phase slip ∆φ =

2πfRF/frep for an arbitrary frequency fRF between successive measurement windows.

However, the full dimension N of the reconstructed signal was fixed at the num-

ber of features per pattern (100 in that realization). By considering the passage of

time between individual pseudorandom measurements (i.e., shifting horizontally the

rows in Φ) in the random demodulator framework, N can be increased as desired

by increasing the number of measurements M . Here, this affords an increase in the

dimension of the reconstructed frequency grid by a factor of 250.

To reconstruct arbitrary RF tones with random offsets from the discrete basis

frequencies, we take the approach of solving a joint sparsity minimization with simul-

taneous orthogonal matching pursuit (SOMP) [62]. The original observation vector of

length M is subsampled with replacement to generate C shorter observation vectors

of length L, where L < M . In this way, the accumulated phase shift across multiple

pseudorandom measurements between the input tones and the closest DFT basis fre-

quency can be reduced (for illustration, see [52]). Each of the C sampling channels is

expected to yield the same sparse set of basis vectors, but with different coefficients

s magnitude-wise. Most importantly, we expect the support of s to be consistent

across multiple observations. Thus, we employ a similar strategy to that of bagging

or bootstrap aggregating, popular in the machine learning community, to generate C

multiple-measurement observations from our M collected measurements via random

sampling with replacement and then solve the sparse recovery problem via SOMP.
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Figure 3.2: (a) Average frequency error when reconstructing a single RF frequency
at nominal input frequencies of 500 MHz to 10 GHz in 500 MHz increments. (b)
Average reconstruction error for frequencies at three offsets from the N = 10000
reconstruction grid with ∆ spacing: 2.5 GHz (0.0187∆ offset), 4.5 GHz (0.234∆
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3.4 Experimental Results

To demonstrate the system performance, we first consider the frequency accuracy

when reconstructing a single input tone within the system bandwidth. Figure 3.2(a)

shows the rapid convergence of the reconstructed frequency, averaged over 20 tri-

als of 20 single-tone inputs at nominal frequencies from 500 MHz to 10 GHz with

500 MHz spacing. As in [54], we consider the two nearest grid frequencies to the

actual frequency to be correct identification. The recovered error quickly diminishes

to below the mean error of 1/2 of the grid spacing: 1.195 MHz for N = 10000 points

and 478 kHz for N = 25000 points on a two-sided bandwidth of 2 × 11.9505 GHz.

This implies perfect frequency identification at M = 60 measurements for N = 10000

(0.6% of Nyquist) and M = 70 for N = 25000 (0.28% of Nyquist). Figure 3.2(b)

shows the convergence of 20 trials of three frequencies at nominal distances of 0.0187
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Figure 3.3: Reconstructions and measured RF spectra of closely-spaced tones near
1 GHz at separations of (a) 53 MHz, (b) 28 MHz, (c) 13 MHz, and (d) 8 MHz. (e)
Full and (f) expanded time domain reconstruction from (c). M = 100, N = 25000,
L = 20, and C = 30.

(2.5 GHz case), 0.234 (4.5 GHz case), and 0.467 (9.0 GHz case) times the grid spacing

∆ from the N = 10000 frequency grid. The tones nearer to a sampling grid point

converge faster, but all cases converge rapidly with fewer than M = 60 measurements.

The acquisition time for convergence at both values of N is nearly equal to the time

required by a conventional ADC and FFT. The convergence of the 9.0 GHz tone

(∆ = 0.467) is a significant improvement over conventional recovery in [54] where the

support was never found correctly for offsets close to 0.5 times the grid spacing.
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Figure 3.4: Two- and three-tone reconstructions. (a) 497 MHz and 10.00 GHz; (b)
1.00, 1.20, and 8.99 GHz; (c) 1.00, 2.00, and 8.99 GHz; (d) 1.00, 5.00, and 8.99 GHz.
(e) Full and (f) expanded time domain reconstruction from (c). M = 200, N = 25000,
L = 20, and C = 60.

Figure 3.3 shows the ability to discriminate between two closely-spaced tones

without erroneous spurs. One tone is fixed at 997 MHz and a second tone

is brought successively closer at distances of 53, 28, 13, and 8 MHz. Perfect

frequency identification and excellent agreement between the measured and

reconstructed amplitude are achieved in all cases with M = 100 measurements

and an N = 25000 frequency grid (0.4% of Nyquist).

Figure 3.4 shows the ability to identify two- and three-tone RF signals across

an 11.95 GHz bandwidth utilizing less than 1% of the measurements traditionally
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required for Nyquist sampling. Perfect frequency identification of each tone was

achieved in all cases with M = 200 measurements and an N = 25000 frequency

grid (0.8% of Nyquist). Though, for most applications, correct identification of

active frequencies is most important, we expect that better amplitude agreement

over the full system bandwidth can be achieved with better modeling of the fre-

quency responses of the optoelectronics.

In conclusion, we have demonstrated accurate frequency identification of single

and multi-tone RF signals at arbitrary frequencies using less than 1% of Nyquist

sampling. Our chirp processing approach permits an effective sampling rate 2.07×

the electronic pseudorandom modulation rate as well as optical integration of the

PRBS-RF inner products to reduce the necessary analog-to-digital conversion rate

by a factor of 266. Joint-sparsity reconstruction with SOMP via a simple obser-

vation bagging strategy, permits accurate reconstruction of frequencies at random

offsets from the reconstruction frequency grid.
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Chapter 4

Continuous High-Rate

Photonically-Enabled Compressed

Sensing (CHiRP-CS) Microscopy

We demonstrate in this chapter an imaging system that harnesses continuous

high-rate photonically-enabled compressed sensing (CHiRP-CS) for image acqui-

sition. As before, ultrahigh-rate spectral shaping is achieved through dispersive

chirp processing of broadband laser pulses, but in the CHiRP-CS imaging approach

these pulses serve as ultrafast structured illumination of objects flowing through

a one-dimensional (1D) field of view. We investigate two different 1D spatial

dispersers for low and high magnification imaging of complex test objects printed on

transparencies and 25-µm polystyrene microsphere clusters, respectively, placed on
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a spinning hard disk platter. Compressive measurements are acquired continuously

without averaging at a rate of one digital sample per optical pulse. We demonstrate

successful reconstruction of 2D images from the 1D compressive measurements

at effective 1.46, 4.19, and 7.32-Gigapixel/sec rates from a 90-MHz sampling

rate. We also extend the system with optical pulse interleaving to 9.9, 19.8 and

39.6-Gigapixel/sec rates from a 720-MHz acquisition rate.

4.1 Flow Cytometry

Flow cytometry (FC) is an indispensable tool for single-cell characterization and

sorting of very large heterogeneous populations of up to millions of cells. It is very

widely used throughout basic cell and molecular biology, genetics, immunology, and

environmental science to quantify the phenotypes and physiological responses of single

cells [63,64]. In a typical flow cytometer, biological samples in suspension pass through

a flow cell to an interrogation point with one or several laser beams focused to a

spot slightly larger than the cells, typically 10 microns in diameter. Hydrodynamic

focusing in the flow cell forces sample particles into a single file line in the center of

the laser illumination. Detection optics collect forward scattered light (FSC) along

the beam direction and 90 deg to the side of the beam (side scattered light, SSC)

onto photodetectors to estimate the size of cells (FSC) and the granularity or internal

complexity (SSC). To gain additional information about cell biochemical properties,

48



CHAPTER 4. CONTINUOUS HIGH-RATE PHOTONICALLY-ENABLED
COMPRESSED SENSING (CHIRP-CS) MICROSCOPY

multiple fluorescent probes are frequently employed and the SSC emission spectrum

separated with a bank of dichroic mirrors and separate photomultiplier tubes. Typical

FC systems employ up to 5 to 10 channels for detecting fluorescence, but higher

numbers have been demonstrated [65]. Because sensitive high-speed photodetectors

and analog-to-digital converters (ADC) are widely available, FC systems capable of

analysis at rates up to the order of 100,000 cells/second in flows up to 10s of m/s (at

the interrogation point) have been available for a few decades now. The technique and

its extension with microdroplet electrostatic sorting are now more than 50 years old.

Because of its capacity for high analysis rates, FC is a compelling technique

to permit the detection and characterization of rare and ultrarare cells with inci-

dence rates of parts per million or below that are important to many basic and

clinical problems in biology such as isolation of rare cell clones with specific mu-

tations, rare metastatic cells, and rare stem/progenitor cells [66, 67]. Circulating

tumor cells (CTCs) in the bloodstream are rare cells of particular interest that have

been correlated with metastatic disease, which causes the majority of cancer-related

deaths [68]. In addition to the statistical sampling difficulties of locating rare positive

cells in a sea of uninteresting negative cells, FC inevitably encounters a problem of

signal-to-noise in the cell labeling process [66]. It is very difficult to make probes

that will bind specifically to only the cells of interest so multiple probes are most

commonly employed in order to discriminate between truly interesting cells and un-

interesting cells that will nonetheless pick up some of the rare cell probe. More
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probes are frequently required as cells of interest become more rare. High speed be-

comes paramount when taking into consideration not only the instrument stability,

but also the marker stability and the cell viability.

Imaging flow cytometry (IFC), represented by devices such as the Amnis

ImageStreamX , replaces the photomultipliers of conventional FC with two multi-

channel charge-coupled device (CCD) cameras such that multiple 2D fluorescence

images can be acquired of each cell in the flow, greatly increasing the information

content gained per cell [69]. 2D imaging in flow provides much more information

about morphology and localization of fluorescence compared to FC and permits

assays, for example, of nuclear translocation, apoptosis, colocalization of markers,

and intracellular trafficking [70]. The technique is well-suited to identifying rare

cells unambiguously, but the addition of high sensitivity time delay integration

CCD cameras strictly limits the reasonable flow speeds to 0.06 m/s to prevent

motion blurring of the images [71]. Thus, IFC is limited to analysis rates up to

approximately 1000 cells/second, which severely limits the possibilities for detection

of rare cells within practical time constraints (or time constraints imposed by

active biological processes of interest). Both IFC and other high content screening

(HCS) techniques typically based on automated microscopy of microwell arrays are

considered to be orders of magnitude too slow for many studies in combinatorial

biology [72]. And both generate terabytes of image information very quickly

even at slower than desired maximum analysis rates.
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4.2 High-Speed Imaging

Ultrahigh-speed continuous imaging is a critical technology for high-throughput

screening of cell structure and behavior [73], drug discovery [74, 75], rare cell de-

tection for cancer diagnostics [76], and numerous other clinical and basic research

applications throughout the life and physical sciences [77, 78]. For example, under-

standing cellular heterogeneity has become essential for investigating drug resistance

in cancer treatment wherein cells of interest often comprise less than 0.2% of the

total population [78]. Identification and isolation of subpopulations presents a signifi-

cant challenge for statistically and biologically meaningful analysis and thus demands

techniques capable of both high throughput and high information content.

Photonic ultrafast microscopic imaging approaches have recently shown promise

in closing the gap in analysis rates between high information content IFC and high

throughput traditional FC. Time-stretch microscopy replaces continuous wave illumi-

nation sources with a broadband ultrafast laser source that can be imaged onto a 1D

spectral line using a dispersive element [76, 79–84]. Objects of interest pass through

the wavelength-mapped confocal line, imprinting their spatial information onto the

spectra of the pulses. By collecting the spatially-patterned pulses into an optical

fiber and applying large amounts of fiber-based chromatic dispersion and optical am-

plification (see section 1.1.2 and 1.1.5), it is possible to map the pulse wavelengths

to time and read out the spatial information serially with a single photodetector

and ultrahigh rate ADC. By employing ultrafast lasers and fiber-based information
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processing, time-stretch microscopy elegantly solves the issue of low signal level at

high frame rates with corresponding short integration times and the problem of mo-

tion blur that makes even the fastest continuous readout CCDs unusable for fast

microscopic flows. Time-stretch microscopy permits shutter speeds in the range of

10 ps, much faster than the 0.5–1 µs integration times of the fastest continuous

readout CCDs. Imaging of cells in microfluidic flows moving up to 10 m/s with

resolution down to 1.2 µm has been reported [82].

The first demonstration of rare cell detection using photonically-enabled

microscopy detected the MCF7 cell line (breast cancer) spiked in blood: the cells

were fixed with formaldehyde and coated with metal beads with a diameter of

1 µm via an antibody to EpCAM [76]. After this coating, it was possible to

identify the cancerous cells down to an incidence of one part-per-million at a rate

of 100,000 cells/second in the presence of white blood cells, residual red blood

cells after the sample was lysed, and free-floating metal beads. A conventional

flow cytometer, by contrast, would achieve 100× lower detection specificity due

to the similarity in the scattered light and fluorescence intensity in an equivalent

analysis. Compared to the Amnis ImageStreamX , the device was predicted to

be capable of detecting rare cells on the order of 1 in 10 million within a few

minutes rather than weeks at the latter’s lower analysis rate.
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4.3 Performance Trade-Offs

High-speed imagers generally fall into two categories: burst sampling and con-

tinuous sampling. Using in situ storage, cutting-edge complementary metal-oxide

semiconductor (CMOS) [85] and CCD [86] imaging arrays have achieved impressive

burst frame rates of 10s of MHz [87]. However, these architectures offer maximum

record lengths limited by pixel-level memory constraints to approximately 100 frames.

Microscopic imaging up to a 4.4 THz frame rate for 6 frames has been demonstrated

in a technique called sequentially timed all-optical mapping photography (STAMP),

using spectrally-carved mode-locked laser pulses spatially separated on an imaging

array using a diffraction grating [88]. Burst imaging of macroscale objects at up to

100 GHz frame rates for up to 350 frames using a digital micromirror device (DMD)

and streak camera in conjunction with compressed sensing (CS) recovery has also

been recently demonstrated in a technique named compressed ultrafast photography

(CUP) [29]. The STAMP and CUP burst sampling systems achieve incredible burst

pixel rates of 1.66 exapixels/sec and 2.25 petapixels/sec, however these sampling rates

can only be sustained for time spans of 1.37 ps and 3.5 ns respectively, followed by

dead times of at least 1–10 ms for the required image sensor readout.

While burst sampling systems are useful for observing extremely fast but isolated

events in a single-shot, many applications (e.g. high-throughput diagnostics) neces-

sitate continuous sampling, which requires tremendous hardware resources to record

the massive stream of high-speed image data. Recently, cutting-edge imaging archi-
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tectures employing ultrafast laser pulses and fiber-optic-based information processing

yielded a performance leap in ultrahigh-speed continuous acquisition [79, 80, 82–84].

Still, such approaches remain fundamentally limited in speed, resolution, and im-

age quality by the measurement rate of electronic digitizers [89]. For example, both

traditional CCD arrays and state-of-the-art photonic systems such as serial time-

encoded amplified microscopy (STEAM) read out the pixel information serially with

a single analog to digital converter (ADC). Thus the number of pixels acquired per

second is equal to the sampling rate of the ADC.

Notably, real signals such as most natural images are highly compressible and con-

tain far less information than their full capacity as evidenced by the prevalence of mod-

ern data compression technology. Moreover, compressed sensing indicates that, due

to their compressibility, real signals can be acquired with far fewer measurements than

conventionally deemed necessary [23,25,26,30,90]. Thus cutting-edge ultrahigh-speed

imaging systems are inefficient, collecting far more data than is required to accurately

characterize the signals of interest and thus limiting their potential operating rate.

Recently, data compression in the optical domain has become a popular topic of

research to improve analog-to-digital conversion efficiency. As discuessed in chapters

2 and 3, several systems have been demonstrated for compressive photonic sam-

pling of sparse radio frequency (RF) signals [34, 37, 45, 50, 91]. Beyond permitting

signal characterization with a sub-Nyquist number of measurements, compression

in the optical domain has also enabled extension of the effective sampling band-
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width beyond the electronic subsystem limitations [37, 50] and temporal integration

of the pseudorandom measurements to allow for low ADC sampling rates [50, 91].

In addition to compressive sampling, the anamorphic stretch transform (AST) has

been proposed to achieve time-bandwidth compression of pulsed optical waveforms

by employing sublinear group delay chirping in conjunction with measurement of

the complex electric field [92, 93]. Very recently, multiple groups have also shown

interest in compressed sensing imaging using ultrafast pulses [94–97], but to our

knowledge this work is the first demonstration of ultrafast structured illumination

imaging of microscopic objects moving at high speed.

4.4 Compressed Sensing Imaging

Real images and most real-world signals are highly compressible and can be ac-

curately represented by relatively few significant coefficients in an appropriate math-

ematical basis. Sparse approximation—the process of transforming the signal to this

basis and saving the most significant coefficients while ignoring the rest—is the foun-

dation of modern data compression technologies such as the Joint Photographic Ex-

perts Group (JPEG) and Moving Picture Experts Group (MPEG) formats [98, 99].

Traditionally a signal is sampled according to the Nyquist theorem to acquire a raw

digital representation and then a compression algorithm is applied, eliminating as

much of the redundancy in the original data as possible. Hence, most of the acquired
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data is simply thrown away. Consequently, for most applications in high-speed contin-

uous acquisition, the raw image data bandwidth is far larger than is truly necessary.

Compressed sensing is a recent and influential sampling paradigm that advocates

a more efficient signal acquisition process. According to CS theory, a K-sparse signal

xxx? ∈ Rn is measured through a set of M measurements of linear projections yi =

〈aaai,xxx?〉, i = 1, ...,M , in which vectors aaai ∈ RN form the matrix AAA of size M ×N . To

reconstruct xxx?, `1-minimization is proposed to solve the following problem

min
xxx
‖xxx‖1 s. t. ‖yyy −AAAxxx‖2 ≤ σ. (4.1)

The case above deals with imperfect observations contaminated by noise, i.e., yyy =

AAAxxx?+www where www is some unknown perturbation bounded by a known amount ‖www‖2 ≤

σ. If the sensing matrix AAA obeys the Restricted Isometry Property (RIP) [25] and

σ is not too large, then the solution x̂xx of Eq. (4.1) does not depart significantly

from the optimal solution xxx?, so long as the number of measurements M is on the

order of K logN [23,25,26,30,90]. Thus the CS framework advocates the collection of

significantly fewer measurements than the ambient dimension of the signal (M � N).

A notable CS imaging architecture is the single-pixel camera in which light col-

lected from an object is randomly combined via a digital micro-mirror device (DMD)

before it is focused onto a single-pixel photodetector [31]. By tuning each micro-mirror

in the pixel array, the system creates pseudorandom 2D patterns that modulate the
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image before summing the optical power using the single detector, thereby optically

performing the inner product, yi = 〈aaai,xxx?〉. This technique has also been extended to

macroscopic [100] and microscopic structured illumination imaging [101]. However, in

all of these systems the need to mechanically transition the MEMS-actuated micro-

mirrors sets the upper limit of the pattern rate to a few kHz, restricting the total

image acquisition time. In contrast, the CHiRP-CS architecture we demonstrate here

achieves illumination pattern rates more than 20,000× faster. Thus our approach

allows for application of CS to the domain of ultrahigh-speed image acquisition.

4.5 Experimental System

The principle of operation of the CHiRP-CS imaging system (Fig. 4.1) is to

modulate pseudorandom patterns at an ultrahigh rate onto the optical spectra of

broadband mode-locked laser pulses and then utilize these spectral patterns to cre-

ate structured illumination of an object. Light collected from the object is directed

onto a single-pixel high-speed photodetector and the energy of each returned laser

pulse is recorded continuously by a synchronized real-time ADC. A CS recovery al-

gorithm then constructs an image of the object from far fewer measurements than

would be required for conventional Nyquist sampling.

Spectral patterning is accomplished using chirp processing in optical fiber [50].

A passively mode-locked erbium-doped fiber laser (MLL) emitting 300-fs pulses at
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Figure 4.1: (a) Broadband laser pulses are dispersed in optical fiber to accomplish
spectrum-to-time mapping. Each pulse is modulated with a unique ultrahigh-rate
pseudorandom binary pattern and then re-compressed in fiber (Dispersion compen-
sation) to an ultrashort duration before passing through a 1D wavelength-to-space
mapping diffraction grating and lens that focuses the spectral pattern onto the object
plane, providing structured illumination of the object flow. The output pulse energy
traveling back through the spatial disperser to the photodiode and ADC represents an
optically-computed inner product between the pseudorandom pattern and the object.
The image is reconstructed via a sparsity-driven optimization from sub-Nyquist com-
pressive measurements. (b) Temporal overlap of the pulses at the pattern modulation
stage. (c) Detailed system schematic for low magnification results in Subsection 4.7.1.
(d) Pulse interleaver and (e) spatial disperser with microscope for high magnification
results in Subsection 4.7.2.
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the native 90-MHz repetition rate (centered at 1555 nm) is used in conjunction

with a C-band erbium-doped fiber amplifier (EDFA) to amplify the optical pulse

train to 200 mW. Dispersive spectrum-to-time mapping is then performed in a dis-

persion compensating fiber (DCF) with a total group velocity dispersion (GVD) of

−853 ps/nm and dispersion slope of −2.92 ps/nm2 at 1550 nm. Spectral broad-

ening to a full width of 33 nm is achieved through the high peak power after the

EDFA and the moderate nonlinearity (γ = 7.6 W−1km−1) of the DCF, stretching

the 300-fs MLL pulses to greater than 28 ns.

Pattern modulation is achieved with an 11.52-Gbit/s pulse pattern generator

(PPG) synchronized to the MLL driving a 20-GHz Mach-Zehnder intensity mod-

ulator (MZM). This permits 128 pseudorandom binary features per 11.1-ns pulse

repetition period. The PPG can output user-programmable patterns up to 1.3 Mbit

in length; in practice a customized string of 1.1 Mbit or 8615 patterns is used. Of

these, a few patterns are used as a header to determine the alignment between the

samples from the ADC and the predetermined pseudorandom patterns for the re-

construction. The PPG modulates the set of patterns continuously permitting un-

interrupted sampling and the 95.7-µs repetition period for the set of patterns does

not affect the robustness of the sampling approach.

As depicted in Fig. 4.1(b), the time-stretched pulses overlap partially during pat-

tern modulation. Thus, neighboring pulses share some temporal features, but these

features are mapped to different wavelengths and, thereby, involve different regions
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Figure 4.2: Example repeating 128-bit pseudorandom binary patterns observed
with an optical spectrum analyzer. In practice, we reconstruct 325 horizontal pixels
utilizing the full width of the spectrum. Actual sampling patterns are unique to each
pulse and cannot be observed on the averaged spectrum.

of the structured illumination pattern. This preserves mutual incoherence between

the pseudorandom patterns while permitting many more features per pulse. Three

example PRBS-encoded laser pulse spectra are shown in Fig. 4.2. In practice, we

achieve 325 features per pulse within the spectral bandwidth, which sets the hori-

zontal pixel resolution of the reconstructed images.

After spectral patterning, the pulses are time-compressed in standard single-

mode fiber (SMF) with complementary GVD of +853 ps/nm and dispersion

slope of +2.92 ps/nm2at 1550 nm to the DCF. The spectrally-patterned and

compressed laser pulses pass through a 1D spatial disperser to serve as ultrafast

structured illumination of an object flow.
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Here we demonstrate the CHiRP-CS imaging system at two levels of magnifica-

tion and therefore we construct two different 1D spatial dispersers. The low mag-

nification disperser is composed of a 600-line/mm ruled diffraction grating and 123-

mm effective focal length spherical lens. The high magnification disperser employs

the same grating with a 1-m focal length spherical lens to form an intermediate

structured illumination image before a 200-mm tube lens and a 50× near-IR mi-

croscope objective (Olympus LCPLN50XIR, NA=0.65) designed for long working

distance. Large-area high-resolution optics are specifically chosen to allow the spec-

tral resolution of the diffraction grating to exceed the minimum feature size. To

test the system under operating conditions safe for biological samples, we fix the

optical power at 300 µW at the object plane.

Each feature occupies a spectral bandwidth of 12.5 GHz, which corresponds to a

shutter speed of 35.2 ps for a transform-limited Gaussian feature inside the disperser.

The decreased modulation depth for the fastest (e.g., 010 or 101) alternating features

(Fig. 4.2) is a product of the single feature bandwidth and the pattern modulation

rate. By adjusting the pattern modulation rate, it is possible to achieve >15 dB

modulation depth for all features across the full spectral width [50] to approach ideal

binary patterns with an envelope corresponding to the spectral shape.

Test objects pass through the focused image of the structured illumination and the

scattered light returns through the disperser into an optical fiber and amplified 150-

MHz photodetector. Thus, the system behaves as a confocal imager. As in prior work
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focusing on application to imaging flow cytometry [76], the objects move through the

system field of view at a constant velocity and 2D images are reconstructed with a

vertical dimension that corresponds to both time and vertical spatial extent.

The detected pulse energy, recorded with a synchronized ADC, represents the

vector inner product between the spatial profile of the object and the unique spec-

tral illumination pattern. Therefore, only one digital sample per pulse, acquired at

the laser repetition rate, is required for each compressive measurement. To achieve

the minimum electronic digitization rate for the greatest system sampling efficiency,

an externally-clocked ADC is driven with a 90-MHz sampling clock derived from

the MLL monitor port input to a 1.2-GHz photodiode with appropriate RF band-

pass filters. The phase of the sampling clock is fixed to align the sampling windows

with the peaks of the detected voltage waveform.

The low magnification disperser produces a 2.77-mm × 5.4-µm structured illu-

mination line with 8.5-µm × 5.4-µm features at the object plane. In the high mag-

nification disperser, the tube lens and objective (designed for 180-mm tube length)

result in a 55.6× demagnification of the structured illumination patterns to create

1.2-µm × 1.2-µm features across a 390-µm 1D field of view. However, in practice,

we add a low-power EDFA before the high magnification disperser to compensate

the additional coupling loss into the microscope objective. Lower gain in the EDFA

at the edges of the spectrum causes slight narrowing of the field of view to 330 µm

with 275 horizontal pixels (28-nm spectral width).
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Figure 4.3: Patch based image recovery from 1D compressive pseudorandom mea-
surements, which iterates between two steps—global reconstruction of the image es-
timates and maximizing the sparsity level of all local image patches.

Finally, to investigate even higher acquisition rates in the high-magnification sys-

tem, we also add three time-interleaving fiber Mach-Zehnder interferometers after

the time-stretching fiber, before the PRBS MZM to increase the pulse repetition rate

to 720 MHz (Fig. 4.1(d)). To accommodate the new pulse repetition rate, we also

switch to a 1.2-GHz PD and 720-MHz ADC sampling rate.

4.6 Reconstruction Algorithm

To reconstruct the 2D image frames from the 1D compressive pseudorandom

measurements, a näıve approach is to recover one image row at a time indepen-

dently. Instead, we further develop a novel 2D reconstruction algorithm tailored to

this imaging apparatus. As depicted in Fig. 4.3, we utilize �1-minimization coupled

with a discrete cosine transform (DCT) basis at the local level of blocks of pixels

called patches: any selected local patch should be sparse. Out of all candidate images
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that are consistent with the 1D measurements, the iterative optimization algorithm

seeks the most sparse set of overlapped patches.

Similar to conventional image compression such as JPEG, the reconstruction

framework focuses on the local image structures. A popular model to quantify lo-

cal image information is sparsity in an appropriate domain: given a patch or block

of pixels x ∈ RNb×Mb extracted at random location from an image, the coefficient

α ∈ RNb×Mb of x under some sparsifying transform Ψ̃(·) defined by

α = Ψ̃(x)

should be sparse or compressible.

The recovery process estimates the set of sparse coefficients {αk}pk=1 of

the patch set {xk}pk=1 covering the entire image of interest which is consis-

tent with the 1D observations. Denoting {ᾱk}pk=1 as the sparse coefficients of

the patches {x̄k}pk=1 extracted from the original image Ḡ ∈ RN×M , the 1D

compressive measurement process can be written as

yj = Φj[P ({Ψ(ᾱk)}pk=1)]j, ∀j = 1, ...,M

where Ψ(·) is the inverse sparsifying transform of Ψ̃(·) satisfying x̄k = Ψ(ᾱk), ∀k =

1, ..., p; P (·) is the operator that combines the set of image patches {x̄k}pk=1 back

to the original image, i.e., Ḡ = P ({Ψ(ᾱk)}pk=1); Φj ∈ Rm×N , ∀j = 1, ...,M,
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is the local pseudorandom sensing matrix used to measure row ḡj of Ḡ and

yj is the corresponding measurement vector. Given the set of measurement

vectors and sensing matrices {(yj,Φj)}Mj=1, we propose to obtain the sparse

coefficients from the following optimization problem

min
{αk}

p∑
k=1

‖αk‖1

s.t. Φj[P ({Ψ(αk)}pk=1)]j = yj, ∀j ∈ 1, ...,M.

(4.2)

The optimization problem in Eq. (4.2) can be solved efficiently by an iteratively

alternating minimization procedure. At iteration t of the algorithm, a noisy esti-

mate Gt of the original image consistent with the observations is reconstructed based

on the information from the previous iteration. The estimates of the coefficients

{αkt }
p
k=1 at this iteration can then be found by thresholding the coefficients of the

noisy patches {xkt }
p
k=1 extracted from Gt.

Because we acquire compressive 1D pseudorandom line scans with a horizontal res-

olution set by the pulse spectral width and chirp processing parameters, the recovered

vertical dimension Nv can be used as a tuning parameter depending on the complexity

of the objects under test. In the reconstruction process, we use an effective Ml sam-

ples per line, far fewer than the number of pixels per line Nl where the full dimension

N = Nl × Nv. Thus, the compression ratio, line rate, and pixel rate are related to
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the average number of samples needed to reconstruct each line in the image by

Compression ratio =
Ml

Nl

, Line rate =
fs
Ml

, and Pixel rate = fs
Nl

Ml

where fs is the pulse repetition rate and ADC sampling rate. Because the pixel rate of

conventional systems is directly determined by the maximum usable ADC sampling

rate, we refer to this primarily as the system figure of merit.

4.7 Experimental Results

4.7.1 Low Magnification

We construct a high-speed test image using laser-printed transparencies fixed to

the platter of a dismantled 7200-RPM (rotations per minute) hard drive. The printed

test objects are positioned on the outer edge of the spinning platter, measured to

be moving at 34.3 m/s. The transparencies offer complex customized test objects

with microscale features to measure the system performance at low magnification.

Figure 4.4 depicts the raw voltage data acquired from two of the test objects. Each

compressive measurement arrives as a scaled impulse response on the photodetector,

which can be reduced to a single ADC value by synchronizing the ADC clock to the

peaks of the pulses for maximally efficient sampling [102].
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Figure 4.4: Raw experimental data from the low magnification CHiRP-CS system
showing the recorded impulse responses of the detector at (a) coarse timescale and
(b) fine timescale.

Our reconstructed results in Fig. 4.5 demonstrate imaging of complex objects

moving at high speed from far fewer measurements than required in conventional

Nyquist sampling. The first column shows optical microscope images of the static

test objects for the purpose of comparison. Each subsequent column shows images of

the objects moving at high speed taken with our compressive imager. Each of these

images is reconstructed from 8400 consecutive measurements acquired in a single

shot in 93.3 µs. Each column shows image reconstruction using a different relative

percentage of measurements to recover the full image dimension. Therefore, the 6.15,

2.15, and 1.23% compression ratios in Fig. 4.5 correspond to imaging rates of 1.46,

4.19, and 7.32 Gigapixel/sec, which vastly exceed the present 90-MHz sampling rate.
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Figure 4.5: A laser-printed transparency with three objects of varying complexity
(rows a–c) was fixed to the top platter of a 7200-RPM computer hard drive and imaged
by the system at compression ratios of 6.15, 2.15, and 1.23%. The unevenness in the
illumination is due to the spectral envelope (Fig. 4.2), which was left un-compensated
in these results.

The compression ratio is practically limited by the complexity of the ob-

ject’s spatial features. For example, simpler objects such as the soccer ball in

Fig. 4.5 in row (c) show very little loss of image quality as the compression ratio

decreases whereas more complex objects such as the shield in row (b) become

noticeably distorted in the horizontal dimension.

4.7.2 High Magnification

To demonstrate the CHiRP-CS system’s potential for high-speed imaging of

micron-scale objects (Fig. 4.1(e)) with correspondingly reduced signal contrast, we

acquire images of a cluster of 25-µm undyed polystyrene microspheres dried onto
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Figure 4.6: A single cluster of 25-µm undyed polystyrene microspheres imaged by
the extended system, depicted in Fig. 4.1(c-e), moving at 12.4, 26.0, and 42.2 m/s
using compression ratios of 7.27, 3.64, and 1.82%. The measurements were acquired
at the interleaved pulse rate of 720 MHz and downsampled to the equivalent of 360,
180, and 90 MHz pulse rates for comparison.

the surface of the platter; the hard disk motor is now driven by a variable DC

brushless motor controller. Figure 4.6 depicts reconstructions of the cluster moving

at 12.4, 26.0, and 42.2 m/s from 7000, 3350, and 2140 measurements respectively

at measurement rates from 90-MHz up to the interleaved 720-MHz using 7.27, 3.64,

and 1.82% of Nyquist sampling. Note, each row of the figure corresponds to a single

acquisition at 720 MHz and downsampled versions at 360, 180, and 90 MHz in order

to demonstrate the benefit of the increased optical sampling rate for high-speed
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flows. At 12.4 m/s, the shape of the microsphere cluster is well-represented at

all sampling rates and compression ratios, but with some distortion at 90 MHz.

There is also some characteristic horizontal blurring within the cluster at the higher

compression ratio. At 42.2 m/s, though the reconstructed image contrast is reduced,

the cluster shape shows excellent agreement in the 720 MHz case, but there is

significant motion distortion that increases with lower sampling rate. At 1.82%

compression, the loss of horizontal resolution at very low compression ratios prevents

differentiation of the particles, but the overall size and shape of the cluster are well

reconstructed. These results demonstrate image reconstruction of very high-speed

microscopic flows at effective 9.9, 19.8 and 39.6 Gigapixel/sec rates from a maximum

720 MHz acquisition rate. To our knowledge these measurements are of the fastest

flow rates to date for a diffraction limited microscopic line scan imager [82].

To reconstruct the microspheres as bright objects on a dark background, we ac-

quire a reference trace on the ADC with no objects inside the field of view and

compute a difference signal with objects in the field of view and input this into

the reconstruction. The static image included for reference in Fig. 4.6 was acquired

with a separate visible light microscope using dark field illumination. Thus, there

is some uncertainty in how the interior regions of the microspheres should ideally

appear under the system’s near-IR confocal illumination.
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4.8 Discussion

In addition to data compression, the compressive sampling technique presented

here also results in considerable benefits for the signal to noise ratio of the measure-

ments. On average, half of a pulse’s spectral features are given a high ‘1’ intensity level

and half will be given a low ‘0’ level. Thus the output pulse energy per sample is pro-

portional to half of the unmodulated pulse energy. On the contrary, for conventional

systems the energy per sample is inversely proportional to the total number of pixels.

For example, in STEAM, considerable optical amplification (25–30 dB) is required to

raise the optical signal above the detection noise floor [76,79]. While the CHiRP-CS

approach demonstrated here is entirely compatible with optical amplification of the

output signal, it was not necessary for the results presented here.

The system presented here successfully extends CS imaging to continuous ul-

trahigh sampling rates. Compressive pseudorandom structured illumination reduces

the required sampling bandwidth and information storage capacity by shifting signal

processing complexity to the image reconstruction process. Thus, for the proposed

high throughput flow cytometry application, online processing can be employed to

exclude empty frames, but offline processing will be required to complete the image

reconstruction and analysis, similar to commercial imaging flow cytometers [69]. The

system offers a benefit nonetheless by increasing the achievable image acquisition

speeds and by achieving real-time efficient image compression. More test samples

can thus be analyzed by the imaging apparatus in less time with more efficient data
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storage. Image post-analysis can be completed with inexpensive, readily available,

and increasingly powerful computing hardware.

Compressive sampling opens a path to significantly higher speeds by increasing

the information content gained per digital sample. For conventional Nyquist-sampling

systems, the most efficient mode of operation is to acquire one sample per output im-

age pixel. Typically, each image line is encoded on a single laser pulse and each pulse

is sampled a number of times corresponding to the number of pixels per line. In

contrast, we operate with a higher pulse repetition rate and each pulse is sampled

once corresponding to a single compressive measurement. We demonstrate high-

speed imaging using a smaller number of measurements corresponding to only a few

percent of the total number of image pixels. In other words, at the same ADC

sampling rate, this compressive system can perform 10–100× faster. In addition, be-

cause the system relies on structured illumination with straightforward single-pixel

output photodetection, it can be readily adapted for imaging of fluorescence. Be-

yond imaging of flows, by employing a 2D spatial disperser [103], the system can

be readily adapted to 3D compressive video measurements [104] of ultrahigh-speed

phenomena. Furthermore, this all-optical approach to compressive measurements

can increase dramatically the speed and efficiency of multiple optical measurement

modalities, for example, real-time spectroscopy [105], swept-source optical coherence

tomography [106], and high-speed microwave measurement [37, 50, 51].
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Spectral Shearing Contrast

Quantitative Phase Microscopy

Photonic time-stretch microscopy enables record-high throughput imaging for

bioparticle classification in flows. While several demonstrations have adapted quan-

titative phase techniques to time-stretch microscopy, they have relied almost exclu-

sively on sensitive free-space interferometers and spatial filters. In this chapter, we

present a straightforward high-performance technique using self-referencing of ultra-

short pulses in a fiber spectral shearing interferometer to measure the amplitude and

phase images of low contrast microscopic subjects at very high speed. We demon-

strate quantitative phase imaging up to 400,000 cells/second.
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5.1 Label-Free Time-Stretch Microscopy

As discussed in section 4.1 and 4.2, imaging flow cytometry (IFC) is a recent

improvement to traditional flow cytometry (FC) for single-cell characterization and

sorting of very large heterogeneous populations up to millions of cells. FC is widely

used throughout basic cell and molecular biology, genetics, immunology, and environ-

mental science to quantify the phenotypes and physiological responses of individual

cells [63, 64]. IFC supplements the single-pixel scattering and fluorescence measure-

ments of traditional FC with 2D images, significantly increasing the amount of infor-

mation gained from each particle by resolving two-dimensional brightfield and fluores-

cent images of the particles in flow. However, to avoid motion blurring, IFC supports

flows only up to several cm/s, limiting the analysis rates to ∼1000 particles/s [69,70].

Photonic time-stretch microscopy (TSM), which utilizes dispersive frequency-to-

time mapping in optical fiber [107] to read out image pixel information serially with

a single photodiode (PD) and analog-to-digital converter (ADC) [79, 80, 108], has

been demonstrated to be an excellent solution for high-speed observation of particles

in microfluidic flows [76]. Under TSM, each pulse of a mode-locked laser (MLL)

represents a single line or frame, permitting ∼ps exposures and 10-1000 MHz exposure

rates. Identifying rare cells from a sample of biofluid is a compelling application of

time-stretch flow microscopy because its inherent capability for high speed can reduce

by several orders of magnitude the time necessary to analyze a sample and detect

events with exceedingly low incidence (e.g., below 1 ppm).
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With the problem of high-speed efficient acquisition addressed, one must address

the image contrast mechanisms available for characterizing the cells. High-throughput

particle classification in biofluids has traditionally relied on one or several biomarkers

to identify cells of interest. However, this approach always suffers from the problem

of cell-labeling specificity: the ratio of correctly labeled particles to nonspecific back-

ground ultimately determines the signal-to-noise ratio (SNR) of the measurement

more than the SNR of the instrument [66]. The general problem of signal-to-noise in

cell labeling specificity and the corresponding need for excellent sample preparation

makes label-free imaging a very attractive possibility for cell classification.

Thus, several works have recently attempted to improve the achievable image

contrast of unlabeled cells in suspension under TSM. Classical differential interfer-

ence contrast (DIC) using a Nomarski prism has been implemented on a TSM sys-

tem [109], permitting improved image contrast by mapping phase gradients to in-

tensity. By adding a beamsplitter to create a reference arm with a second identical

objective and reference mirror such that the sample sits in one arm of a Michelson

interferometer, it is possible to detect spectral interference fringes that can then be

used to unwrap the spatial phase shift due to the sample [81, 110, 111]. Common-

path designs have also been proposed [112]. In this way, it was possible to classify

cells based on diameter and refractive index contrast, used as a measure of protein

concentration. More recently, a technique called asymmetric-detection time-stretch

optical microscopy (ATOM) for label-free image contrast enhancement was devel-
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oped that relies on asymmetric coupling of the light from the sample into the optical

fiber preceding amplification and readout [82]. In this technique, the light returned

from the sample is split into two paths (one is delayed relative to the other in order

to create temporally multiplexed linescans) and the two arms are focused into the

same optical fiber but on opposing small angles θ relative to the optical axis of the

fiber and input collimating lens. The off-axis coupling effectively blocks part of the

cone of light received from each point on the object (recall that the end of the fiber

core is confocal with the points in the sample and the sample points are separated

spatially according to wavelength) without the additional requirement of coherent

interference. The contrast mechanism is more-or-less equivalent to differential phase

contrast (DPC) microscopy [113] and Schlieren photography. The use of multiple

arms allows for computation in post-processing of a differential image with further

enhanced contrast; to acquire quantitative phase images, the system was extended to

four asymmetric collection fibers, time-multiplexed for readout at the ADC [114].

5.2 Experimental System

Here, we adapt a technique from single-shot ultrashort pulse characterization for

amplitude and phase observation of low-contrast samples under TSM by using spectral

shearing interferometry. The technique affords simplicity, robustness, and tunability

while achieving performance that equals the state of the art.
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The system (Fig. 5.1) consists of a high magnification spectrally-mapped

linescan microscope, spectral shearing Sagnac loop interferometer, and dispersive

frequency-to-time mapping and serial readout in succession. Inside the microscope,

a 600 line/mm diffraction grating and 175-mm focal length Fourier transform (FT)

lens map the spectrum of 300-fs ultrafast mode-locked laser (MLL) pulses onto a

one-dimensional (1D) line at the image plane of a 60× NA = 0.7 polarized light

microscope objective and f = 175 mm tube lens system. To operate the microscope in

transmission mode, a second 50× NA = 0.8 objective and tube lens are used to focus

the line image onto a mirror. A microfluidic device placed between the objectives

carries a laminar flow of particles moving up to several m/s for high-throughput

observation. Light double-passed through the flow is spectrally recombined and

collected back into the input fiber and directed with an optical circulator into the

spectral shearing interferometer. The interferometer splits the pulse into sheared

and unsheared copies that are delayed relative to each other to create the spectral

interference fringes for detecting the spectral amplitude and phase of each pulse after

dispersive frequency-to-time mapping, photodetection, and digitization. As objects

move through the system field of view at a constant velocity, 2D images are acquired

with a vertical dimension that corresponds to both time and vertical spatial extent.

Spectral shearing is achieved with a 20-GHz LiNbO3 electro-optic phase modulator

(φM) driven by an 11.52-Gbit/s pulse pattern generator (PPG) synchronized to the

MLL. The PPG and RF bandpass filter are employed to generate a sinusoidal tone

77



CHAPTER 5. SPECTRAL SHEARING CONTRAST QUANTITATIVE PHASE
MICROSCOPY

MLL

D= −853 ps/nm
1.2-GHz 

PD

Monitor

Clock

PPG

90 MHz rep rate
PC

ADC

15-GHz
PD

EDFA

720 MHz
RF 

Microfluidic
Device

Tube
LensIntermediate

Image

60x ELWD Objective

5.8 GHz
RF 

EDFA

φ

←

RF
Phase Shifter

V

t
Sync

SyncSpectral Shearing
Interferometer

FT
Lens

50%

50%

PC

PC
Mφ

PM
fiber

A(ω)φ(ω)

50x Objective

Tube
Lens

Diffraction
Grating

Intermediate
Image at Mirror

Pulse with
Object Information

Time

D << 0

Frequency

abs( )

arg( )

FFT

I(ω)

∂φ
∂ω

(ω)

iFFT
∆t

Unsheared Copy

Spectrally Sheared 
Copy

Line Images

(b)

(a)

Figure 5.1: (a) Conceptual operation: The spectra of broadband MLL pulses are
imprinted with an object’s amplitude and phase information. Each pulse is split into
two copies (one of which is spectrally sheared) and recombined with a relative time
delay. The spectral interference is read-out via dispersive frequency-to-time mapping.
Finally, the intensity and differential phase line images are read out by filtering the
FFT of each pulse spectrum. (b) System schematic in detail.

at f = 5.76 GHz (64th harmonic of the 90 MHz MLL repetition rate). The optical

pulse train returning from the microscope is synchronized to the zero crossings of

the RF waveform by optimizing the RF phase shifter. Under this condition, the

driving voltage V (t) = (πVp/Vπ) sin(2πft) produces a sheared field E(ω − Ω) where

Ω = 2π2fVp/Vπ [115,116]. For the phase modulator and RF amplifier employed here,

a shear up to Ω=116 GHz (0.15 nm) is readily achieved. Because the shear Ω can be

controlled electronically by the amplitude or frequency of the RF voltage V (t), the

“contrast” can be easily adjusted to image large or small object phase gradients.
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Inside the fiber interferometer (dashed outline in Fig. 5.1), the counterclockwise

propagating pulse travels in the correct polarization state and direction for the electro-

optic phase modulator (φM), thus it experiences a spectral shear. After traveling

through an additional 8 m of polarization-maintaining (PM) fiber, a fiber polariza-

tion controller (PC) acts as a half-lambda plate to rotate the polarization by 90

degrees. The clockwise propagating pulse undergoes this polarization rotation first

and then travels through the PM fiber and φM in the orthogonal polarization state,

experiencing a different polarization mode delay in the loop compared to the coun-

terclockwise pulse. Because the clockwise pulse also travels through the φM in the

wrong polarization state and direction for phase modulation, it remains unsheared.

At the output of the loop, a sheared and an unsheared pulse, time-delayed relative

to each other, emerge rotated 90 degrees from the input polarization state [116]. We

have previously demonstrated a proof of concept version of this imaging system [117]

that relied on an asymmetric Mach-Zehnder fiber interferometer with the phase mod-

ulator in one arm and a tunable delay in the other (and PCs in both to set the

polarization states). The Sagnac loop has proven in our experiments to be extremely

stable in comparison to the previous fiber Mach-Zehnder interferometer. The linear

phase τω of the spectral interference fringes barely shifts over the course of an half-

hour in our studies without any thermal stabilization, permitting longer integration

times over several pulses for higher sensitivity measurements.
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The Sagnac loop’s advantage in stability also appears in comparison to a free

space interferometer: in [111] a standard grating-based optical spectrum analyzer

(OSA) introduced considerable noise compared to time-stretch readout due to its

longer integration time. Here the improved stability permits integration times far

longer than the order of seconds for an OSA sweep. Other sources of mismatch such

as the interferometer pulses’ polarization state and power [81,111], affecting the signal

to background ratio of the interference fringes, are mitigated in this approach.

The dispersive frequency-to-time mapping is performed in a normal dispersion

fiber (DCF) with D = −853 ps/nm. A C-band erbium-doped fiber preamplifier

compensates the loss in the microscope and dispersing fiber. A programmable am-

plitude and phase spectral filter (SF) immediately preceding the photodetector and

ADC serves both to flatten the optical spectrum, effectively creating uniform re-

ceived illlumination power over the full field of view, and to compensate the third

order dispersion (TOD) in the DCF, which would typically contribute an erroneous

quadratic component to the measured phase after the ∂ω/∂t = (β2L)−1 frequency-

to-time mapping where L is the length of the dispersing fiber. In addition, the SF is

used to set an output optical bandwidth of 1.5 THz that prevents overlap between

time-stretched pulses at the 90 MHz MLL repetition rate. The polarization mode

dispersion introduced by the φM and the PM fiber inside interferometer creates a

delay of 36.5 ps between the sheared and unsheared pulses. This results in a center

frequency of 5.32 GHz in the FFT of the interference signal after time-stretching.
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(a) (b) (c) (d)

Figure 5.2: (a) Microfluidic CAD design for photolithography. Photographs of a
finished device (b) and (c–d) a test device in the optical path without fluid inlets.

The spectrally sheared and time-delayed (by time τ) copies of the field E(ω) =√
I(ω) exp(φ(ω)) returned from the object yield a measured spectrum S(ω) with an

interferometric argument ∆φ = φ(ω)−φ(ω−Ω)−τω that permits direct measurement

of the finite difference of φ(ω) retrieved by bandpass filtering the Fourier transform

of S(ω). This fact is analogous to traditional DIC imaging wherein two polariza-

tion components are laterally sheared by a Nomarski or Wollaston prism and then

recombined, permitting the output amplitude to represent small spatial derivatives

in the optical path length. Here, the small spatial derivative in the object phase is

read out from the interference fringe phase. The raw differential phase images have

a characteristic appearance as if illuminated from the side.

The microfluidic channel has a 140 µm wide by 40 µm tall rectangular cross

section (see Fig. 5.3) with asymmetric curving segments for inertial focusing of the

particles into the center of the channel cross section [76,81,82,118] prior to a tapered

region with 50 µm width at the observation line. It is fabricated in Polydimethyl-

siloxane (PDMS) using soft lithography and bonded via plasma oxidation to a glass
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(a) (b) (c)

Figure 5.3: 3D profilometer measurements of the SU-8 photoresist on silicon mas-
ter for making the microfluidic channels. Highlighted are the (a) 3D profile of one
sidewall, (b) channel height, and (c) channel width measured at two points along the
length. Roughness is due to the resolution of the printed photolithography mask.

coverslip following standard protocols [119]. To facilitate high magnification imag-

ing through the channel, the PDMS slab thickness is set to 1 mm except at the

inlets where an additional 3 mm slab of PDMS is bonded to stabilize the tubing

connections. The glass correction collar on the 60× objective (Nikon CFI S Plan

Fluor ELWD) is optimized for observation through the PDMS and the 50× objec-

tive (Nikon TU Plan Fluor) observes through the coverglass. Additional discussion

of the microfluidic system can be found in section 6.2.2.

5.3 Experimental Results

Figure 5.4 depicts the system’s capability for high throughput flow imaging of

cells. A sample of marine phytoplankton (genera Nannochloropsis and Chlorella) were

flowed through the channel at 5 m/s average velocity. The intensity and differential

phase images from a buffer of 256 MSamples acquired in real time at 40 GSample/s

(corresponding to 6.4 ms duration) is depicted on the left. In the middle are the
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Figure 5.4: High-throughput imaging of phytoplankton flowing at 5 m/s. Intensity
and differential phase images from a 256 MSample single-shot acquisition, 6.4 ms in
duration, are depicted in full (left) and zoomed in to 150 µs (middle). Segments (right)
of the differential phase images containing individual particles and small clusters are
automatically selected in software.

intensity and differential phase images from 150 µs of this acquisition. On the right

are segments of the differential phase image centered on individual particles and

small clusters, selected automatically in software via thresholding for positive and

negative polarity features in the differential phase image. Thus, we demonstrate

single particle analysis at a sustained rate of 400,000 cells/s.

Figure 5.5 depicts experimental results with reference objects: baker’s yeast (Sac-

charomyces cerevisiae) and red blood cells in whole blood. Samples were placed

under a cover slip and stepped through the system field of view in steps of 250 nm for
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Figure 5.5: Experimental results with reference objects: low contrast yeast and red
blood cells.

comparison with conventional imaging using a CMOS sensor. In the left column are

conventional images under the system’s microscope (utilizing a dichroic mirror, white

LED source, and sensor not pictured in Fig. 5.1) using oblique brightfield illumination

for improved contrast. In the middle two columns are the raw amplitude and differen-

tial phase images returned from filtering the FFT of the interference fringes. On the

right are 3D plots of the phase obtained by numerical integration of the differential

phase images across the frame, taking into account the shear distance Ω, which is the

only calibration necessary for accurate quantitative phase measurements.

The measured complex field E(ω) also provides a unique benefit in terms of com-

putational refocusing after the image acquisition. Ideally, hydrodynamic focusing

can localize all of the particles within the system field of view and depth of field

(DOF). However, inertial focusing requires matching of the flow velocity and the
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particle size [118], allowing many particles in a heterogeneous mixture not to meet

the focusing criterion. The ability to refocus the high magnification (i.e. shallow

DOF) images permits many more usable frames to be derived from nonideal flow

conditions. To refocus the images, we compute the field Eout(x, z) resulting from

1D scalar diffraction of the line images Ein(x) (x replaces ω to represent the wave-

length to space mapping in the microscope) using the angular spectrum (AS) method

approximation to the Rayleigh-Sommerfeld integral:

Ẽin(kx) = F{Ein(x)} =

∫
Ein(x) exp(−jkxx)dx

G(kx, z) = exp(jz
√
k2

0 − k2
x)

Eout(x, z) = F−1{Ẽin(kx)G(kx, z)}

Eout(x, z) =
1

4π2

∫
Ẽin(kx)G(kx, z) exp(jkxx)dkx

where F{·} and F−1{·} denote the forward and inverse Fourier transform (i.e. FFT)

and G(kx, z) is the 1D optical transfer function in the spatial frequency domain [120].

As before, the 2D image is formed by stacking the refocused 1D line images. Fig-

ure 5.6 demonstrates refocusing of a slightly out-of-focus image of baker’s yeast in

flow. The measured I(x) and φ(x) images form the input field Ein(x) =
√
I(x)φ(x),

which is diffracted through a path of several microns around the original focus of the

microscope objective. In this case, refocusing the image by z = −1 µm leads to a

better focus on the yeast cell in the lower right portion of the image.
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Figure 5.6: Computational refocusing after acquisition by applying 1D scalar diffrac-
tion (AS method) to the measured complex field, amplitude and phase (integrated
from the differential phase image).

5.4 Discussion

In conclusion, we have demonstrated a new technique for acquiring quantitative

phase images at a 90 MHz line rate using electro-optic spectral shearing and self-

referencing of ultrashort MLL pulses. The self-referencing interferometer is extremely

stable and free of alignment so it can be added to any spectrally mapped microscope.

The technique directly yields intensity and differential phase images that are well

suited to high-throughput classification of low contrast unlabeled cells in a microfludic

flow. In this paper, flows up to 5 m/s and sustained cell imaging up to 400,000

cells/s were demonstrated. The measured complex field is also demonstrated to be

refocusable for increased post-processing flexibility.
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Electro-optic phase modulators are readily available at λ = 800 nm and 1 µm

and the technique can be readily extended to microscopy at these wavelengths.

This should be the subject of future work.
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Chapter 6

Ongoing Work

6.1 Multiplexed Detection Quantitative

Phase Time-Stretch Microscopy

We present in this section a straightforward technique for multiplexing

interferometric signals as a means to improve the SNR and electronic band-

width of quantitative phase time-stretch microscopy, enabling better sam-

pling rates and detection efficiency.

6.1.1 Introduction

The problem of high information content classification of very large numbers of

particles in a biofluid has led to significant interest in label-free high-throughput
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microscopy. In particular, photonic time-stretch microscopy (TSM), discussed in

sections 4.2 and 5.1, has shown much promise for high-throughput observation of

microfluidic flows [76]. Compared to other automated microscopes and imaging

flow cytometers, TSM can reduce by several orders of magnitude the time neces-

sary to analyze a sample and detect events with exceedingly low incidence (e.g.,

below 1 ppm). Because detection based on one or several biomarkers to identify

cells of interest always suffers from the problem of cell-labeling specificity [66], sev-

eral works have incorporated intensity and phase measurements via interferome-

try [81, 111, 112, 117] or differential phase contrast [82, 114].

Here, we extend quantitative phase TSM by capturing both outputs from

the interferometer into a single fiber using polarization multiplexing to mea-

sure a differential interference signal that enables higher SNR detection and

more efficient use of the digitization bandwidth.

6.1.2 Experimental System

The system (Fig. 6.1(a)) consists of a high magnification spectrally-mapped inter-

ferometric linescan microscope, polarization multiplexing step, dispersive frequency-

to-time mapping, and polarization demultiplexing and photodetection in succession.

Inside the microscope, a 600 line/mm diffraction grating and 175-mm focal length

Fourier transform (FT) lens map the spectrum of 300-fs ultrafast mode-locked laser

(MLL) pulses onto a one-dimensional (1D) line at the image plane of a 60× NA=0.7
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Figure 6.1: System diagram: the spectra of broadband MLL pulses are imprinted
with an object’s amplitude and phase information and these images are recovered via
filtering of the FFT.

polarized light microscope objective and 175-mm tube lens system. As objects move

through the system field of view at a constant velocity, 2D images are acquired with

a vertical dimension that corresponds to both time and vertical spatial extent.

A polarization controller (PC) and inline fiber polarization beamsplitter/combiner

(PBS) precede the collimated input to the microscope such that only horizontally

polarized light enters. Inside the microscope, a 50:50 beamsplitter splits the input

into an imaging arm (containing the grating, lenses, and objective) and a reference

arm containing a lens and mirror on a 1-D linear stage. Light returned from the

sample is collected back through the imaging arm such that the microscope acts

as an asymmetric Michelson interferometer. After the imaging and reference arms

recombine at the beamsplitter, one output path travels back into the input fiber and

the second passes through a λ/2 waveplate (rotating the polarization by 90 degrees)
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through a second collimator into the orthogonal polarization state of the PBS. In this

way, both interference signals from the beamsplitter can be captured into a single

fiber. After this polarization multiplexing, the returned light containing the image

information is directed with an optical circulator into the dispersing fiber.

Dispersive frequency-to-time mapping is performed in a normal dispersion fiber

(DCF) with D = −853 ps/nm. A programmable amplitude and phase spectral filter

(SF) preceding the erbium-doped fiber amplifier (EDFA) acts a bandpass filter; it can

also be used to flatten the optical spectrum to create uniform received illumination

power over the full field of view (FOV) and to compensate the third order dispersion

(TOD) in the DCF. After amplification, the two polarization signals are demultiplexed

with a second PC and PBS and matched in time and optical power into a highly-

linear balanced 20-GHz photodiode. Between the mux and demux stages, both signals

travel in the same fiber and EDFA, making the system easier to assemble and more

robust against noise and nonlinearity than could be achieved, e.g., by amplifying and

then passing in opposing directions through the DCF before photodetection.

The time-delayed (by time τ) reference and image fields of the form E(ω) =√
I(ω) exp(φ(ω)) yield a measured spectrum S(ω) with a DC image component

Iimage(ω) + Iref (ω) and an interferometric component with the argument ∆φ =

φimage(ω) − φref (ω) − τω that can be retrieved directly by bandpass filtering the

Fourier transform of S(ω). Because the beamsplitter produces two outputs with a π
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phase difference in the interference term, both can be used in a differential manner

to cancel the DC component and double the power in the interferometric component.

6.1.3 Results

A challenge for interferometric TSM using a single-ended photodetector is the

high sampling rate required to capture an interference fringe mapped to a high-

frequency temporal signal. Previous works have chosen center frequencies of 5 GHz

or more to prevent aliasing between the image information centered at DC and the

interference terms. Here, we effectively cancel the image information centered at DC,

permitting more efficient use of the ADC sampling bandwidth. Assuming similar

bandwidth between the DC and interference terms, the single-ended measurement

requires 50% more electronic sampling bandwidth than the approach presented here.

To demonstrate the intended benefit, we set the image-reference relative time delay in

the microscope to lower the interference fringe to 2 GHz (digitized at 10 GSample/s)

and compare the single-ended and differential measurement cases.

In Fig. 6.2, time-stretched interference fringes are depicted for the differen-

tial system presented in Fig. 6.1 and the same system with one arm blocked

at the demultiplexing PBS. The cancellation of the unused DC image appears

excellent: the central peak on the FFT descends by more than 40 dB, touching

the noise floor, and the interference peaks increase in power by the desired
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Figure 6.2: A single-ended and full differential measurement (showing full cancella-
tion of the unused DC image) are compared in time and frequency.

3 dB. Thus, the reasonable width of the bandpass filter in post-processing can

be much broader to increase the system resolution.

To test imaging of the intensity and phase of a low contrast subject, a sample of

baker’s yeast (Saccharomyces cerevisiae) in water was stepped through the microscope

field of view in increments of 250 nm and a single-shot measurement of one pulse was

collected at each step (Fig. 6.3). The filter bandwidth for recovering the intensity and

phase images was centered at 2 GHz with a 1.9 GHz half-width. The images from

the differential measurement achieve essentially the full resolution available to the

ADC without aliasing, while the single-ended measurement experiences tremendous

distortion in trying to achieve the same resolution and bandwidth efficiency.

To demonstrate the system’s potential for high throughput, a larger sample of

yeast cells was prepared and moved at maximum rate through the FOV on a servo
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(a) (b)

Figure 6.3: Reconstructed intensity and phase images of a sample of yeast cells
using the full ADC sampling bandwidth. (a) The differential measurement system
produces accurate images with the maximum resolution (i.e., filter bandwidth). (b)
The single-ended measurement experiences significant aliasing with the wide filter
bandwidth producing artifacts in the intensity image and a completely unusable phase
image. Scale bar: 10 µm.

stage. The yeast appear with much better contrast in the phase images (located on

the right in each pair) and the overlapping of cells is much more apparent than in

the amplitude images (located on the left in each pair). By calculating the standard

deviation across localized regions of the phase images, we estimate the phase noise to

be σ = 0.011 rad, which is comparable to the state of the art for TSM [110].
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Figure 6.4: Larger scale measurement of yeast on a moving slide. The paired images
are amplitude on the left and phase on the right.

6.2 Diffraction Interference Time-Stretch

Microscopy

6.2.1 Optical System

The double-pass transmission microscope depicted in Fig. 5.1 provides a straight-

forward means to illuminate the sample and collect the returned light through a

single fiber, diffraction grating, and Fourier transform (FT) and tube lens pair. The

second objective (50×) and tube lens permit accurate positioning of the center of

the microfluidic channel into the center of the system field of view (FOV) and depth

of field (DOF). The alternative is to use only one objective and bond the microflu-
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idic channel to a mirror or glass substrate with gold deposited below the observation

area of the channel [76, 81]. Using a mirror permits simple alignment, but makes it

difficult to focus particles within the DOF of the microscope. Moreover, it signifi-

cantly increases the cost of each microfluidic channel (PDMS and glass coverslips are

much more affordable by comparison), which often should be treated as single-use

devices in order to prevent cross-contamination.

The downside to the double-pass configuration is the attenuation incurred in the

microscope objectives: each pass through the pair of objectives causes close to 6 dB

loss. There is also a presumed loss of resolution due to the repeated effect of the

lens modulation transfer functions (MTF).

Thus, a new single-pass configuration was developed that would bring several ad-

vantages (Fig. 6.5). The FT and tube lenses from chapter 4 through here form a Keple-

rian telescope that creates angular magnification (M) before (or after) the microscope

objective. The pair of infinite conjugate microscope objectives can also be viewed as

a telescope with a focal length ratio fM1 = 3.33 mm : fM2 = 4 mm due to the 60×

and 50× magnifications with intended f = 200 mm tube lens. Viewing the system as

a chain of three telescopes, it is necessary to return the total magnification to unity so

that the beam divergence matches the input and the wavelengths can be recombined

successfully for efficient coupling into the output fiber. To this end, the magnification

of the third telescope must take into account the different focal lengths of the micro-

scope objectives and take on a 6:10 focal length ratio rather than 5:10. (The grating
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Figure 6.5: Schematic diagram of the diffraction interference microscope depicting
the imaging arm, undiffracted reference arm, and white-light imaging paths.

angles must also be symmetrical to match the angular dispersion and beam elliptic-

ity.) With these considerations, the loss in the aligned system is very acceptable:

<6 dB coupling loss using packaged FC/PC collimators (Thorlabs, f = 37.52 mm).

The FOV can be calculated from these focal lengths along with the input mag-

nification and the angular dispersion (dθD
dλ

) of the diffraction grating

FOV = fM1M∆λ
dθD
dλ

(6.1)

where ∆λ is the optical bandwidth in use. The 1.46 nm/mrad dispersion of the

600 line/mm diffraction grating and the 100 mm : 50 mm lens ratio with ∆λ = 12 nm

sets the FOV = 55 µm. The new FOV is twice that presented in Fig. 5.1 and 6.1,

suitable for larger mammalian cells in future investigations.

97



CHAPTER 6. ONGOING WORK

The second major advantage of the new design is that the Michelson interferometer

can be abandoned by routing the undiffracted light (order m = 0) from the diffraction

gratings to act like a Mach-Zehnder interferometer but with no beamsplitters! The

relatively small amount of light that is undiffracted from the gratings matches quite

well the loss in the microscope arm and the ratio can be fine-tuned elegantly by

changing the input polarization to favor the grating’s more efficient perpendicular (to

the grooves) or less efficient parallel polarization state. The signal and reference paths

are nearly common-path so the design is quite stable for a free-space interferometer.

The final advantage of the new microscope is that the linear layout permits

simple addition of two dichroic mirrors for simultaneous visible imaging and per-

haps fluorescence measurement for classification. The previous designs were set up

only for intermittent white-light imaging (not simultaneous with normal system op-

eration) by dropping in a visible beamsplitter into a 30 mm cage cube visible in

Fig. 5.2(b) to form an epi-illuminated brightfield image using a dichroic positioned

between the intermediate image and the tube lens.

6.2.2 Microfluidic System

As described in section 5.2, prior experiments utilized a microfluidic channel that

relied on inertial focusing [118] of microparticles. In order to improve the robustness

of focusing (i.e., decrease its dependence on particle size and fluid velocty) and si-
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multaneously decrease the fluidic resistance in the channel, we’ve begun developing

a ‘Y’-junction channel to use a sheath fluid to provide hydrodynamic focusing.

We modify and expand on the model presented in [121]. Three 100 µm wide

by 50 µm tall channels converge to one: the center carries the solution of cells or

particles, the other two are angled at 60 deg to the center and carry a buffer fluid.

Focusing can be customized by changing the ratio of the center (vc) and left/right

(vlr) flow velocities. For example, in [121] it was experimentally demonstrated that a

solution of fluorescein in a 200 µm channel could be focused to a width of 7.95 µm

by setting the velocity ratio without dependence on the flow velocities.

In Fig. 6.6, we verify in a Comsol 5.2 simulation (vc = 1µL/s and vlr = 2 µL/s

depicted) that the desired focusing takes place in a 3D laminar flow both for the

transport of diluted species (Fig. 6.6(a)) and particle tracing in the presence of

drag (Fig. 6.6(b-c)) models. Fabricating the devices and considering the mor-

phological impact of forces experienced by cells inside the channel [122–124]

will be the next subject of future work.
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(a)

(b)

(c)

Figure 6.6: Comsol simulations of a 100 µm wide by 50 µm microfluidic channel
junction designed to focus cells (introduced in the center channel) into the center
of the channel using a sheath fluid introduced in the angled inlets. Shown are (a)
transport of diluted species (colormap represents dilution) and (b-c) particle tracing
results (colormap represents particle velocity).
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Chapter 7

Conclusion

This thesis has presented several techniques for high-speed signal acquisition us-

ing optical processing of ultrafast pulses. Efficient real-time analog compression of

sparse-frequency RF waveforms as well as complex optical images was implemented,

significantly reducing the required number of measurements to ∼ 1% of Nyquist and

lower. Several new approaches to high-speed quantitative phase microscopy were in-

troduced, which improve the efficiency and robustness of interferometric time-stretch

microscopy. By altering the CS measurement matrix, it should be possible to marry

the compression and quantitative phase information in future work.

101



Bibliography

[1] L. Rayleigh, “On the passage of electric waves through tubes, or the vibra-

tions of dielectric cylinders,” The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, vol. 43, no. 261, pp. 125–132, 1897.

[2] J. J. Thomson, Notes on Recent Researches in Electricity and Magnetism.

Clarendon Press, 1893.

[3] G. C. Southworth, “Survey and History of the Progress of the Microwave Arts,”

Proceedings of the IRE, vol. 50, no. 5, pp. 1199–1206, may 1962.

[4] G. P. Agrawal, Fiber-Optic Communication Systems. John Wiley & Sons,

2012.

[5] ——, Nonlinear fiber optics. Academic press, 2007.

[6] R. Pleban, A. Azari, R. Salem, and T. E. Murphy, “SSPROP,” 2006.

[7] A. Weiner, Ultrafast Optics. John Wiley & Sons, 2009.

102



BIBLIOGRAPHY

[8] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Halle-

meier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and Others, “A

review of lithium niobate modulators for fiber-optic communications systems,”

IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 1, pp.

69–82, 2000.

[9] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped

traveling-wave fiber amplifier,” Optics Letters, vol. 12, no. 11, p. 888, 1987.

[10] M. E. Fermann, V. da Silva, D. A. Smith, Y. Silberberg, and A. M. Weiner,

“Shaping of ultrashort optical pulses by using an integrated acousto-optic tun-

able filter,” Optics Letters, vol. 18, no. 18, pp. 1505–1507, 1993.

[11] P. Tournois, “Acousto-optic programmable dispersive filter for adaptive com-

pensation of group delay time dispersion in laser systems,” Optics Communi-

cations, vol. 140, no. 4, pp. 245–249, 1997.

[12] A. Weiner, “Femtosecond optical pulse shaping and processing,” Progress in

Quantum Electronics, vol. 19, no. 3, pp. 161–237, 1995.

[13] D. E. Leaird and A. M. Weiner, “Femtosecond optical packet generation by a

direct space-to-time pulse shaper,” Optics Letters, vol. 24, no. 12, pp. 853–855,

1999.

103



BIBLIOGRAPHY

[14] I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband

microwave arbitrary waveforms applicable to ultra-wideband communication,”

IEEE Microwave and Wireless Components Letters, vol. 15, no. 4, pp. 226–228,

2005.

[15] F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude

and phase control of ultrashort pulses by use of an acousto-optic programmable

dispersive filter: pulse compression and shaping,” Optics Letters, vol. 25, no. 8,

pp. 575–577, 2000.

[16] J. W. Goodman, Introduction to Fourier Optics. Roberts and Company Pub-

lishers, 2005.

[17] O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dis-

persion using refraction,” Journal of the Optical Society of America A, vol. 1,

no. 10, p. 1003, 1984.

[18] O. E. Martinez, “3000 times grating compressor with positive group velocity

dispersion: Application to fiber compensation in 1.3-1.6 µm region,” IEEE

Journal of Quantum Electronics, vol. 23, no. 1, pp. 59–64, 1987.

[19] P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of

ultrahigh peak power pulses by chirped pulse amplification,” IEEE Journal of

Quantum Electronics, vol. 24, no. 2, pp. 398–403, 1988.

104



BIBLIOGRAPHY

[20] B. H. Kolner, “Space-Time Duality and the Theory of Temporal Imaging,”

IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1951–1963, aug 1994.

[21] A. Papoulis, “Pulse compression, fiber communications, and diffraction: a uni-

fied approach,” Journal of the Optical Society of America A, vol. 11, no. 1, p. 3,

jan 1994.

[22] E. Candès and T. Tao, “Near-Optimal Signal Recovery From Random Pro-

jections: Universal Encoding Strategies?” IEEE Transactions on Information

Theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[23] E. J. Candès, J. Romberg, and T. Tao, “Robust Uncertainty Principles : Ex-

act Signal Frequency Information,” IEEE Transactions on Information Theory,

vol. 52, no. 2, pp. 489–509, 2006.

[24] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incom-

plete and inaccurate measurements,” Communications on Pure and Applied

Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[25] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Transac-

tions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[26] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information The-

ory, vol. 52, no. 4, pp. 1289–1306, 2006.

105



BIBLIOGRAPHY

[27] J. Zhang, Y. Suo, S. Mitra, S. P. Chin, S. Hsiao, R. F. Yazicioglu, T. D. Tran,

and R. Etienne-Cummings, “An efficient and compact compressed sensing mi-

crosystem for implantable neural recordings,” IEEE Transactions on Biomedical

Circuits and Systems, vol. 8, no. 4, pp. 485–496, 2014.

[28] J. Zhang, T. Xiong, T. Tran, S. Chin, and R. Etienne-Cummings, “Compact all-

CMOS spatiotemporal compressive sensing video camera with pixel-wise coded

exposure,” Optics Express, vol. 24, no. 8, pp. 9013–9024, 2016.

[29] L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast

photography at one hundred billion frames per second,” Nature, vol. 516, no.

7529, pp. 74–77, 2014.

[30] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”

IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[31] D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham,

K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera archi-

tecture using optical-domain compression,” Proc. SPIE, vol. 6065, pp. 606 509–

606 510, 2006.

[32] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly,

and R. G. Baraniuk, “Single-Pixel Imaging via Compressive Sampling,” IEEE

Signal Processing Magazine, vol. 25, no. 2, pp. 83–91, mar 2008.

106



BIBLIOGRAPHY

[33] A. Bleicher, “Peaceful coexistence,” IEEE Spectrum, vol. 50, no. 4, pp. 42–56,

2013.

[34] J. M. Nichols and F. Bucholtz, “Beating Nyquist with light: a compressively

sampled photonic link,” Optics Express, vol. 19, no. 8, p. 7339, apr 2011.

[35] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Bara-

niuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE

Transactions on Information Theory, vol. 56, no. 1, pp. 520–544, 2010.

[36] L. Yan, Y. Dai, K. Xu, J. Wu, Y. Li, Y. Ji, and J. Lin, “Integrated multifre-

quency recognition and downconversion based on photonics-assisted compres-

sive sampling,” IEEE Photonics Journal, vol. 4, no. 3, pp. 664–670, 2012.

[37] G. C. Valley, G. A. Sefler, and T. J. Shaw, “Compressive sensing of sparse radio

frequency signals using optical mixing,” Optics Letters, vol. 37, no. 22, p. 4675,

2012.

[38] H. Nan, Y. Gu, and H. Zhang, “Optical analog-to-digital conversion system

based on compressive sampling,” IEEE Photonics Technology Letters, vol. 23,

no. 2, pp. 67–69, 2011.

[39] H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, “Microwave

spectral analysis based on photonic compressive sampling with random demod-

ulation,” Optics Letters, vol. 37, no. 22, p. 4636, 2012.

107



BIBLIOGRAPHY

[40] H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spec-

trum sensing based on photonic time stretch and compressive sampling,” Optics

Letters, vol. 38, no. 2, p. 136, 2013.

[41] F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its

application to analog-to-digital conversion,” IEEE Transactions on Microwave

Theory and Techniques, vol. 47, no. 7 PART 2, pp. 1309–1314, 1999.

[42] M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for

sparse reconstruction: Application to compressed sensing and other inverse

problems,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 4,

pp. 586–597, 2007.

[43] D. Cabric, S. Mishra, and R. Brodersen, “Implementation issues in spectrum

sensing for cognitive radios,” in Asilomar Conference on Signals, Systems and

Computers. IEEE, 2004, vol. 1, pp. 772–776.

[44] H. Sun, A. Nallanathan, C.-X. Wang, and Y. Chen, “Wideband spectrum sens-

ing for cognitive radio networks: A survey,” IEEE Wireless Communications,

vol. 20, no. 2, pp. 74–81, apr 2013.

[45] Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-

channel compressive sampling based on effective time delay pattern,” Optics

Express, vol. 21, no. 22, p. 25700, nov 2013.

108



BIBLIOGRAPHY

[46] Y. Chen, X. Yu, H. Chi, S. Zheng, X. Zhang, X. Jin, and M. Galili, “Compres-

sive sensing with a microwave photonic fi lter,” Optics Communications, vol.

338, pp. 428–432, 2015.

[47] C. Wang, M. Li, and J. Yao, “Continuously tunable photonic microwave fre-

quency multiplication by use of an unbalanced temporal pulse shaping system,”

IEEE Photonics Technology Letters, vol. 22, no. 17, pp. 1285–1287, sep 2010.

[48] M. Li and J. Yao, “All-optical short-time Fourier transform based on a temporal

pulse-shaping system incorporating an array of cascaded linearly chirped fiber

Bragg gratings,” IEEE Photonics Technology Letters, vol. 23, no. 20, pp. 1439–

1441, 2011.

[49] ——, “Ultrafast all-optical Wavelet transform based on temporal pulse shaping

incorporating a 2-D array of cascaded linearly chirped fiber bragg gratings,”

IEEE Photonics Technology Letters, vol. 24, no. 15, pp. 1319–1321, aug 2012.

[50] B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically

enabled compressed sensing of sparse radio frequency signals,” Optics Letters,

vol. 38, no. 22, pp. 4892–4895, 2013.

[51] M. Mishali, Y. C. Eldar, and A. J. Elron, “Xampling: Signal acquisition and

processing in union of subspaces,” IEEE Transactions on Signal Processing,

vol. 59, no. 10, pp. 4719–4734, oct 2011.

109



BIBLIOGRAPHY

[52] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to basis

mismatch in compressed sensing,” IEEE Transactions on Signal Processing,

vol. 59, no. 5, pp. 2182–2195, may 2011.

[53] M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing toolbox,”

Applied and Computational Harmonic Analysis, vol. 35, pp. 111–129, 2013.

[54] C. V. McLaughlin, J. M. Nichols, and F. Bucholtz, “Basis mismatch in a com-

pressively sampled photonic link,” IEEE Photonics Technology Letters, vol. 25,

no. 23, pp. 2297–2300, 2013.

[55] G. C. Valley and T. J. Shaw, “Applications of the Orthogonal Matching Pursuit

/ Nonlinear Least Squares Algorithm to Compressive Sensing Recovery,” in

Applications of Digital Signal Processing, C. Cuadrado-Laborde, Ed. Intech,

2011, pp. 169–190.

[56] G. C. Valley, G. A. Sefler, and T. J. Shaw, “Sensing RF signals with the optical

wideband converter,” Proc. SPIE, vol. 8645, pp. 1–10, 2013.

[57] J. M. Nichols, A. K. Oh, and R. M. Willett, “Reducing basis mismatch in har-

monic signal recovery via alternating convex search,” IEEE Signal Processing

Letters, vol. 21, no. 8, pp. 1007–1011, aug 2014.

110



BIBLIOGRAPHY

[58] J. M. Nichols, F. Bucholtz, C. V. McLaughlin, A. K. Oh, and R. M. Willett,

“Fixing basis mismatch in compressively sampled photonic link,” Proc. SPIE,

vol. 9118, p. 91180N, 2014.

[59] T. P. McKenna, M. D. Sharp, D. G. Lucarelli, J. A. Nanzer, M. L. Dennis,

and T. R. Clark, “Wideband Photonic Compressive Sampling Analog-to-Digital

Converter for RF Spectrum Estimation,” in Optical Fiber Communication Con-

ference/National Fiber Optic Engineers Conference 2013. Optical Society of

America, 2013, p. OTh3D.1.

[60] S. Smaili and Y. Massoud, “Accurate and efficient modeling of random de-

modulation based compressive sensing systems with a general filter,” in IEEE

International Symposium on Circuits and Systems. IEEE, jun 2014, pp. 2519–

2522.

[61] J. R. Stroud, B. T. Bosworth, D. Tran, T. McKenna, T. Clark, T. Tran, S. Chin,

and M. A. Foster, “Continuous 119.2-GSample/s Photonic Compressed Sens-

ing of Sparse Microwave Signals,” in Conference on Lasers and Electro-Optics

(CLEO). Optical Society of America, 2015.

[62] J. A. Tropp, “Algorithms for simultaneous sparse approximation.Part I and

Part II,” Signal Processing, vol. 86, no. 3, pp. 589–602, 2006.

[63] H. M. Shapiro, Practical Flow Cytometry, 4th ed. Hoboken, N.J.: Wiley, 2003.

111



BIBLIOGRAPHY

[64] M. Leach, M. Drummond, and A. Doig, contents, Practical Flow Cytometry in

Haematology Diagnosis. Hoboken, N.J.: Wiley, 2013.
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R. O. C. Oreffo, H. Morgan, J. Guck, and O. Otto, “Mechanical phenotyping

of primary human skeletal stem cells in heterogeneous populations by real-time

deformability cytometry,” Integrative Biology, vol. 8, no. 5, pp. 616–623, 2016.

122



Vita

Bryan T. Bosworth completed his B.S. in Electrical Engineering at Princeton

University. Before coming to Johns Hopkins, he was a Fulbright scholar at the

Albert-Ludwigs-Universität Freiburg and a DAAD RISE Professional student at SMA

Solar Technology AG in Niestetal, Germany.

123


	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Fiber Optics
	Fiber Parameters
	Dispersion
	Nonlinearity
	Devices
	Amplification

	Ultrafast Optics
	Sources
	Ultrafast Pulse Shaping
	Chirp Processing

	Compressed Sensing
	Traditional Compression
	CS Acquisition


	Stationary RF Sensing
	Radio Spectrum Sensing
	Experimental System
	Reconstruction Algorithm
	Experimental Results

	Time-Dependent RF Sensing
	RF Sensing at Arbitary Frequencies
	Experimental System
	Reconstruction Algorithm
	Experimental Results

	Continuous High-Rate Photonically-Enabled Compressed Sensing (CHiRP-CS) Microscopy
	Flow Cytometry
	High-Speed Imaging
	Performance Trade-Offs
	Compressed Sensing Imaging
	Experimental System
	Reconstruction Algorithm
	Experimental Results
	Low Magnification 
	High Magnification 

	Discussion

	Spectral Shearing Contrast Quantitative Phase Microscopy
	Label-Free Time-Stretch Microscopy
	Experimental System
	Experimental Results
	Discussion

	Ongoing Work
	Multiplexed Detection Quantitative Phase Time-Stretch Microscopy
	Introduction
	Experimental System
	Results

	Diffraction Interference Time-Stretch Microscopy
	Optical System
	Microfluidic System


	Conclusion
	Bibliography
	Vita



