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Abstract

Massive Data bring new opportunities and challenges to data scientists and statisti-

cians. On one hand, Massive Data hold great promises for discovering subtle population

patterns and heterogeneities that are not possible with small-scale data. On the other hand,

the size and dimensionality of Massive Data introduce unique statistical challenges and

consequences for model misspecification. Some important factors are as follows.

Complexity: Since Massive Data are often aggregated from multiple sources, they

often exhibit heavy-tailedness behavior with nontrivial tail dependence.

Noise: Massive Data usually contain various types of measurement error, outliers,

and missing values.

Dependence: In many data types, such as financial time series, functional magnetic

resonance image (fMRI), and time course microarray data, the samples are dependent

with relatively weak signals.

These challenges are difficult to address and require new computational and statistical tools.

More specifically, to handle these challenges, it is necessary to develop statistical methods
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that are robust to data complexity, noise, and dependence. Our work aims to make head-

way in resolving these issues. Notably, we give a unified framework for analyzing high

dimensional, complex, noisy datasets having temporal/spatial dependence. The proposed

methods enjoy good theoretical properties. Their empirical usefulness is also verified in

large-scale neuroimage and financial data analysis.
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CHAPTER 1. INTRODUCTION

We are entering the era of Massive Data — a term that refers to the explosion of avail-

able information. This Massive Data movement is driven by the fact that large amounts

of high dimensional data are routinely produced and stored in large volume cheaply. In

genomics, in only a few years, we have seen a dramatic drop in price for whole genome se-

quencing, going from millions of dollars and man hours to sequence one human genome, to

now routine whole genome sequence for all subjects in observational studies. Similar rev-

olutions in measurement have occurred in other areas, like social media analysis, biomed-

ical imaging, and high frequency finance. The existing trend that data can be produced

and stored more massively and cheaply is likely to be maintained, or even accelerated, in

the future. This trend will have a deep impact on science, engineering, and business. For

example, scientific advances are becoming more and more data-driven, and researchers

increasingly think of themselves as consumers of data. The massive amounts of high di-

mensional data bring both opportunities and new challenges to data analysis. As such,

statistical analysis for such data is becoming increasingly important.

We distinguish between Massive Data and Big Data. Whereas Big Data usually refers

to a large number of records, Massive Data are characterized by both high dimensionality

and large numbers of records. In addition, Massive Data are often aggregated from multiple

sources at different time points. This creates the issues of heterogeneity and experimental

variation. Such heterogeneity requires us to develop more adaptive and robust procedures,

which is precisely the aim of this work.

In detail, there exist several Massive Data qualities worthy of attention. These include:

2



CHAPTER 1. INTRODUCTION

(1) complexity: Massive Data are often an aggregation of multiple subpopulations, and of-

ten exhibit heavy tails and tail dependency. Accordingly, we must deal with heterogeneity

and non-Gaussian models. (2) Noise: Because the data are usually aggregated from nu-

merous sources, they frequently contain various types of measurement error, endogenous

covariates, outliers, and missing values. (3) Dependence: In many modern data types, such

as equity, fMRI, and time course microarray data, the samples are not independent with

relatively weak signals. To handle these challenges, it is necessary to develop statistical

methods that are robust to data complexity, noise, and dependence.

We begin by briefly summarizing the key ideas in this thesis. For addressing the chal-

lenge of data complexity, our main focus is on the heavy-tailed data generated in many

different areas (e.g., finance, social media, imaging). In conventional statistics, heavy-

tailedness is often not an issue and can usually be addressed via parametrically modeling.

However, such approaches are questionable in high dimensions, and especially for Mas-

sive Data. This is due to the data complexity phenomena: It is commonly too difficult, or

even impossible, to have a parametric model that could fully capture the characteristics in

Massive Data.

In the high dimensional statistics literature, there has not been a good balance between

heavy-tailedness and flexible modeling. In high dimensions, for addressing the flexible

modeling issue, it is most common to assume a nonparametric subGaussian model, i.e.,

assuming data are marginally or multivariately Gaussian distributed. Moment-based esti-

mators are then encouraged, and different kinds of minimax optimal procedures are pro-
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posed for different problems. However, there are two fundamental problems in this line

of research. First, the nonparametric subGaussian models fail to capture heavy-tailedness.

Second, moment-based estimators induced by subGaussian models perform poorly when

data are heavy-tailed.

In light of these facts, this thesis discusses a unified framework. We propose semipara-

metric modeling approaches coupled with nonparametric statistical methods. There are

two main insights. First, the semiparametric modeling approaches take a good balance be-

tween heavy-tailedness and flexible modeling. Second, induced nonparametric methods are

actually optimal in parameter estimation, of performance comparable to Gaussian-based

approaches under the Gaussian assumption.

For understanding the first insight, note a semiparametric model is one that has both

finite- and infinite-dimensional parameters, and (usually) the parameters of interest are

finite-dimensional. This thesis consists of two important semiparametric models: the ellip-

tical and transelliptical. The elliptical model is constructed via randomly scaling the Gaus-

sian, while the transelliptical modeling combines the ideas of random scaling and copulas

for constructing flexible statistical models. In both models, there exist finite-dimensional

parameters (mean and covariance of the latent Gaussian), as well as infinite-dimensional

parameters (scaling random variables and marginal transformations). In addition, the el-

liptical distribution can have arbitrarily symmetric margins, while the transellitpical can

have arbitrary margins. Hence, both the elliptical and transelliptical could be arbitrarily

heavy-tailed. They are suitable candidates for flexibly modeling the heavy-tailed data.
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In detail, the elliptical is a one-layer extension, while the transelliptical is a two-layer

extension of the Gaussian. In the first layer, the Gaussian random vector, Y , is stochas-

tically scaled by a random variable, η, producing an elliptical random vector, Z. In the

second layer, unspecified univariate strictly increasing functions, g1, . . . , gd, are applied to

the margins of the elliptical random vector, Z, producing the transelliptical random vector,

X . Figure 1.1 illustrates the generating scheme of the transelliptical distribution.

Gaussian

Elliptical

Transelliptical

  ξ

Figure 1.1: The graph illustrating the data generating schemes of the elliptical and transel-

liptical distributions. The black, blue, and red curves illustrate the contours of Gaussian,

elliptical, and transelliptical distributions. Here the Gaussian is first scaled by a positive

random variable ξ to the elliptical, then marginally transformed by two strictly increasing

functions g1, g2 to the transelliptical.

For understanding the second insight, we note both the elliptical and transelliptical as-

sume certain geometric constraints on the data. For the elliptical, it is symmetry. For the

transelliptical, it is a copula structure coupled with symmetry in the latent layer. In com-

parison, the nonparametric nonGaussian models require data light-tailedness, and hence
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require certain moment constraints on the data. Via replacing moment constraints by geo-

metric constraints, we are able to design statistically efficient methods which fully exploit

such model structures, and we prove to be actually optimal.

After obtaining these insights, we proceed to give an overview on the following chap-

ters. This thesis consists of five journal articles, each of which is put in a chapter and

designed in the spirit of addressing the issues raised from Massive Data analysis using the

main ideas discussed above. For this, Chapters 2 and 3 are focused on the transelliptical

model, while Chapter 4 is focused on the elliptical model. Chapter 5 discusses an even

more flexible distribution-free model coupled with nonparametric methods. Chapter 6 then

illustrates an application to the brain imaging data.

In detail, in Chapter 2, we present a work addressing how to efficiently conduct scale-

invariant PCA on possibly heavy-tailed data. Specifically, Chapter 2 introduces a semipara-

metric model: the meta-elliptical (also called the transelliptical) model. Building on this

model, we introduce a method for conducting scale-invariant sparse principal component

analysis (PCA) on high dimensional non-Gaussian data, called Transelliptical Component

Analysis (TCA). Compared to sparse PCA, TCA has weaker modeling assumptions and is

more robust to possible data contamination. Theoretically, TCA achieves a parametric rate

of convergence in estimating the parameter of interests under a flexible semiparametric dis-

tribution family. Computationally, TCA exploits a rank-based procedure and is as efficient

as sparse PCA. Empirically, TCA outperforms most competing methods on both synthetic

and real-world economics datasets. Chapter 3 further shows TCA is minimax optimal in
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conducting estimation of eigenvectors.

Although TCA proves to be a statistically efficient approach for conducting PCA on

possibly heavy-tailed data, its strength is constrained because it can only conduct scale-

invariant PCA. For further relaxing this, Chapter 4 introduces a robust alternative to princi-

pal component analysis (PCA) — named elliptical component analysis (ECA). ECA works

for possibly heavy-tailed but symmetric data. ECA aims at estimating the eigenspace of

the covariance matrix of elliptical data. To cope with the heavy-tailed elliptical distri-

butions, a multivariate rank statistic is exploited. At the model-level, we consider two

settings where the leading eigenvectors of the covariance matrix are either non-sparse or

sparse. Methodologically, we propose ECA procedures corresponding to both non-sparse

and sparse settings. Theoretically, we provide both non-asymptotic and asymptotic analysis

in quantifying the theoretical performances of ECA. Under the non-sparse setting, we show

ECA’s performance is highly related to the effective rank of the covariance matrix. Under

the sparse setting, the results are twofold. First, we show that the sparse ECA estimator

based on a combinatoric program attains the optimal rate of convergence. Second, build-

ing upon some recent developments in estimating sparse leading eigenvectors, we show a

computationally efficient sparse ECA estimator can attain the optimal rate of convergence

under a suboptimal scaling. We also apply ECA to study a brain imaging data extracted

from Autism Brain Imaging Data Exchange (ABIDE) project, and show ECA has the po-

tential to deliver better results for inference based on these estimated principal components.

With all the above chapters focusing on high dimensional robust estimation procedures,
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Chapter 5 proceeds to address high dimensional robust testing problems. In particular,

Chapter 5 considers the problem of testing mutual independence of all entries in a d-

dimensional random vector X = (X1, . . . , Xd)
T based on n independent observations.

For this, we consider two families of distribution-free test statistics that converge weakly to

an extreme value type I distribution. We further study the power of the corresponding tests

against alternatives. In particular, we show the power approaches one when the maximum

magnitude of the pairwise Pearson’s correlation coefficients is larger than C
√

log d/n for

some absolute constant C. This result is rate optimal. As important examples, we show the

tests based on Kendall’s tau and Spearman’s rho are rate optimal tests of independence. For

further generalization, we consider accelerating the rate of convergence by approximating

the exact distributions of these test statistics. This section also studies the tests of two more

structural hypotheses: m-dependence and data homogeneity. For these, we propose two

rank-based tests and show their optimality against certain alternatives (More details will be

provided in Chapter 5.).

Built on the robust procedures proposed in the previous chapters, the last chapter con-

siders an extensive data analysis of brain imaging data. In detail, Chapter 6 presents a

unified framework for conducting inference on complex aggregated data in high dimen-

sional settings, which are strongly motivated by the intrinsic structure of the brain imaging

data. We assume these data are a collection of multiple non-Gaussian realizations with

underlying undirected graphical structures. Utilizing the concept of median graphs in sum-

marizing the commonality across these graphical structures, we provide a novel semipara-
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metric approach to modeling such complex aggregated data, along with robust estimation

of the median graph itself, which is assumed to be sparse. We prove that the estimator

is consistent in graph recovery and give an upper bound on its rate of convergence. We

further provide experiments on both synthetic and real datasets to illustrate the empirical

usefulness of the proposed models and methods. In particular, an extensive study on the

ADHD-200 brain imaging dataset, of subjects with and without attention deficit hyperac-

tive disorder (ADHD), was conducted.

9
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2.1 Introduction

Principal component analysis (PCA) is a powerful tool for reducing the dimensions of

large data sets and helping identify key features in large datasets. Let X1, . . . ,Xn ∈ R
d

be n observations of a d-dimensional random vector X with covariance matrix Σ. PCA

aims at estimating the leading eigenvectors u1, . . . ,um of Σ that best explain patterns of

clustering in a dataset.

When the dimension d is small compared with the sample size n, u1, . . . ,um can be

consistently estimated by the leading eigenvectors û1, . . . , ûm of the sample covariance

matrix (Anderson, 1958). However, when d increases at the same order or even faster

than n, this approach can lead to poor estimates. In particular, Johnstone and Lu (2009)

showed the angle between û1 and u1 may not converge to 0 if d/n → c for some con-

stant c > 0. To handle this challenge, one popular assumption is to impose sparsity con-

straint on the leading eigenvectors. For example, when estimating the leading eigenvector

u1 := (u11, . . . , u1d)
T , we may assume that s := card({j : u1j �= 0}) < n. Under this as-

sumption, different variants of sparse PCA have been developed, more details can be found

in d’Aspremont et al. (2007), Zou et al. (2006), Shen and Huang (2008), Witten et al.

(2009), Journée et al. (2010), and Zhang and El Ghaoui (2011). The theoretical proper-

ties of sparse PCA in feature selection and parameter estimation have been investigated by

Amini and Wainwright (2009), Ma (2013), Paul and Johnstone (2012), Vu and Lei (2012),

and Berthet and Rigollet (2012).

There are several drawbacks of the classical PCA and sparse PCA approaches: (i) Nei-

11



CHAPTER 2. TRANSELLIPTICAL COMPONENT ANALYSIS

ther approach is scale-invariant, i.e., changing the measurement scale of variables makes

the estimates different (Chatfield and Collins, 1980); (ii) It is not robust to possible data

contamination or outliers (Puri and Sen, 1971); and (iii) The theory of sparse PCA relies

heavily on the Gaussian or sub-Gaussian assumption, which may not be realistic for many

real-world applications.

In the low dimensional settings, remedies for drawbacks (ii) and (iii) include general-

izing the Gaussian distribution to elliptical distribution (Fang et al., 1990), and considering

some robust estimators (Huber and Ronchetti, 2009). One research line is to develop var-

ious PCA estimators for the elliptical data (Möttönen and Oja, 1995; Choi and Marden,

1998; Marden, 1999; Visuri et al., 2000; Croux et al., 2002; Jackson and Chen, 2004).

Theoretical properties of these elliptical distribution based PCA estimators have been es-

tablished under the classical asymptotic framework (where the dimension d is fixed) by

Hallin et al. (2010), Oja (2010), and Croux and Dehon (2010). Along another research

line, multiple robust PCA estimators have been proposed to address the outlier and heavy

tailed issues via replacing the sample covariance matrix by a robust scatter matrix. Such ro-

bust scatter matrix estimators include M -estimator (Maronna, 1976), S-estimator (Davies,

1987), median absolute deviation (MAD) proposed by Hampel (1974), and Sn and Qn es-

timators (Rousseeuw and Croux, 1993). These robust scatter matrix estimators have been

exploited to conduct robust (sparse) principal component analysis (Gnanadesikan and Ket-

tenring, 1972; Maronna and Zamar, 2002; Hubert et al., 2002; Croux and Ruiz-Gazen,

2005; Croux et al., 2013). The theoretical performances of PCA based on these robust
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estimators in low dimensions were further analyzed in Croux and Haesbroeck (2000).

Here we propose a new method for conducting sparse principal component analysis on

non-Gaussian data. Our method can be viewed as a scale-invariant version of sparse PCA,

but is applicable to a wide range of distributions belonging to the meta-elliptical family

(Fang et al., 2002). The meta-elliptical (also called the transelliptical) family extends the

elliptical family. In particular, a continuous random vector X := (X1, . . . , Xd)
T ∈ R

d

follows a meta-elliptical distribution if there exists a set of univariate strictly increasing

functions f := {fj}dj=1 such that f(X) := (f1(X1), . . . , fd(Xd))
T follows an elliptical

distribution with location parameter 0 and scale parameter Σ0, whose diagonal values are

all 1. We call Σ0 the latent generalized correlation matrix. By treating {fj}dj=1 as nui-

sance parameters, our method estimates the leading eigenvector θ1 of Σ0 by exploiting a

rank-based estimating procedure and can be viewed as a scale-invariant PCA conducted on

f(X). Theoretically we show when s is fixed, it achieves a parametric rate of convergence

in estimating the leading eigenvector. Computationally, it is as efficient as sparse PCA.

Empirically, we show the proposed method outperforms the classical sparse PCA and two

robust alternatives on both synthetic and real-world datasets.

The rest of this chapter is organized as follows. In the next section, we review the el-

liptical distribution family and introduce the meta-elliptical distribution. In Section 2.3, we

present the statistical model, introduce the rank-based estimators, and provide computa-

tional algorithm for parameter estimation. In Section 2.4, we provide theoretical analysis.

In Section 2.5, we provide empirical studies on both synthetic and real-world datasets.
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More discussion and comparison with related methods are in the last section.

2.2 Elliptical and Meta-Elliptical Distributions

In this section, we briefly review the elliptical distribution and introduce the meta-

elliptical distribution family. We start by first introducing the notation: Let M = [Mjk] ∈

R
d×d and v = (v1, ..., vd)

T ∈ R
d be a d-dimensional matrix and a d-dimensional vector.

We denote vI to be the subvector of v whose entries are indexed by a set I . We also denote

MI,J to be the submatrix of M whose rows are indexed by I and columns are indexed

by J . Let MI∗ and M∗J be the submatrix of M with rows in I , and the submatrix of M

with columns in J . Let supp(v) := {j : vj �= 0}. For 0 < q < ∞, we define the �0,

�q and �∞ vector norms as ‖v‖0 := card(supp(v)), ‖v‖q := (
∑d

i=1 |vi|q)1/q and ‖v‖∞ :=

max1≤i≤d |vi|.We define the matrix �max norm as the elementwise maximum value: ‖M‖max :=

max{|Mij|}. Let Λj(M) be the j-th largest eigenvalue of M. In particular, we denote

Λmin(M) := Λd(M) and Λmax(M) := Λ1(M) to be the smallest and largest eigenvalues

of M. Let ‖M‖2 be the spectral norm of M. We define vec(M) := (MT
∗1, . . . ,M

T
∗d)

T and

S
d−1 := {v ∈ R

d : ‖v‖2 = 1} be the d-dimensional unit sphere. For any two vectors

a, b ∈ R
d and any two squared matrices A,B ∈ R

d×d, we denote the inner product of a

and b, A and B by 〈a, b〉 := aTb and 〈A,B〉 := Tr(ATB). For any matrix M ∈ R
d×d,

we denote diag(M) to be the diagonal matrix with the same diagonal entries as M. For

any univariate function f , we denote f(M) = [f(Mjk)] to be a d×d matrix with f applied
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on each entry of M. Let Id be the identity matrix in R
d×d. For two random vectors X and

Y , we denote X
d
= Y if they are identically distributed.

2.2.1 Elliptical Distribution

We briefly overview the elliptical distribution. In the sequel, we say a random vector

X = (X1, . . . , Xd)
T is continuous if the marginal distributions are all continuous. X

possesses density if it is absolutely continuous with respect to the Lebesgue measure.

Definition 2.2.1 (Elliptical distribution). A random vector Z = (Z1, . . . , Zd)
T follows an

elliptical distribution if and only if Z has a stochastic representation: Z
d
= μ + ξAU .

Here μ ∈ R
d, q := rank(A), A ∈ R

d×q, ξ ≥ 0 is a random variable independent of U ,

U ∈ S
q−1 is uniformly distributed on the unit sphere in R

q. Letting Σ := AAT , we denote

Z ∼ ECd(μ,Σ, ξ). We call Σ the scatter matrix.

In Definition 2.2.1, there can be multiple A’s corresponding to the same Σ, i.e., there

exist A1 �= A2 ∈ R
d×q such that A1A

T
1 = A2A

T
2 = Σ. To make the representation

unique, we always parameterize an elliptical distribution by the scatter matrix Σ instead of

A.

The model family in Definition 2.2.1 is not identifiable. For example, Σ is unique

only up to a constant scaling, i.e., for some constant c > 0, if we define ξ∗ = ξ/c and

A∗ = cA, then ξAU
d
= ξ∗A∗U . To make the model identifiable, we require the additional

condition that max1≤i≤d Σii = 1. We define Σ0 := diag(Σ)−1/2 · Σ · diag(Σ)−1/2 to be
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the generalized correlation matrix.

Table 2.1: Normality test for the stock daily log-return data. This table illustrates the

number of 452 stocks rejecting the null hypothesis of normality at the significance level

0.05.

Significance level Kolmogorov-Smirnov Shapiro-Wilk Lilliefors
0.05 428 449 449

0.05/452 269 448 426

2.2.2 Meta-Elliptical Distribution

Real world data are usually nonGaussian and asymmetric. To illustrate the nonGaus-

sianity and asymmetry issues, we consider the stock log return data in S&P 500 index, col-

lected from Yahoo! Finance (finance.yahoo.com) from January 1, 2003 to January

1, 2008, including 452 stocks and 1,257 data points. Table 2.1 illustrates the nonGaussian

distribution of the stock daily log-return data throughout five years1. Here we conduct the

three marginal normality tests as in Table 2.1 at the significant level of 0.05. It is clear that

at most 24 out of 452 stocks would pass any of three normality tests. Even with Bonferroni

correction there are still over half stocks that fail to pass any of these normality tests. Fig-

ure 2.1 plots the histograms of three typical stocks, “eBay Inc.”, “Macy’s Inc.”, and “Wells

Fargo”, in the sectors of information technology, consumer discretionary, and financials

respectively. The log-return values are skewed to the left.

1For daily closing prices S1, . . . , ST , the daily log returns are {log(St/St−1), t = 2, . . . , T}.
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Figure 2.1: Illustration of the asymmetry issue of the log-return stock data.

Though the elliptical distribution family has been widely used to model heavy-tail data

(Oja, 2010), it assumes the distribution contours to exhibit ellipsoidal structure. To relax

this assumption, Fang et al. (2002) introduced the concept of meta-elliptical distribution

under a copula framework. In this section, we introduce the concept of meta-elliptical

using a different approach, which extends the family defined in Fang et al. (2002).

First, we define two sets of symmetric matrices:

R+
d = {Σ ∈ R

d×d : ΣT = Σ, diag(Σ) = Id,Σ  0},

Rd = {Σ ∈ R
d×d : ΣT = Σ, diag(Σ) = Id,Σ � 0}.

The meta-elliptical distribution family is defined as follows:

Definition 2.2.2 (Meta-elliptical distribution). A continuous random vector X = (X1, . . . , Xd)
T

follows a meta-elliptical distribution, denoted by X ∼MEd(Σ
0, ξ; f1, . . . , fd), if there ex-
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ist univariate strictly increasing functions f1, . . . , fd such that

(f1(X1), . . . , fd(Xd))
T ∼ ECd(0,Σ

0, ξ), where Σ0 ∈ Rd. (2.2.1)

Here, Σ0 is called the latent generalized correlation matrix. When

(f1(X1), . . . , fd(Xd))
T ∼ Nd(0,Σ

0),

X follows a nonparanormal distribution, denoted by X ∼ NPNd(Σ
0; f1, . . . , fd).

The meta-elliptical is a strict extension to the nonparanormal defined in Liu et al.

(2012a). They both assume after unspecified marginal transformations the data follow

certain distributions. However, the nonparanormal exploits a Gaussian base distribution,

while the meta-elliptical exploits an elliptical base distribution.

On the other hand, we would like to point out Definition 2.2.2 extends the family orig-

inally defined in Fang et al. (2002) in three aspects: (i) The generating variable ξ does not

have to be absolutely continuous; (ii) The parameter Σ0 is strictly enlarged from R+
d to Rd;

and (iii) X does not necessarily possess density. Moreover, even if these two definitions

are the same confined in the distribution set with density existing, we can define the meta-

elliptical in fundamentally different ways by characterizing the transformation functions

instead of characterizing their density functions. By exploiting this new definition, we find

several results provided in the later sections can be easier to understand. Hence we also

call the meta-elliptical defined in this chapter the transelliptical (transit-elliptical).

18



CHAPTER 2. TRANSELLIPTICAL COMPONENT ANALYSIS

The meta-elliptical family is rich and contains many useful distributions, including mul-

tivariate Gaussian, rank-deficient Gaussian, multivariate t, logistic, Kotz, symmetric Pear-

son type-II and type-VII, the nonparanormal, and various other asymmetric distributions

such as multivariate asymmetric t distribution (Fang et al., 2002). To illustrate the model-

ing flexibility of the meta-elliptical family, Figure 2.2 visualizes the density functions of

two meta-elliptical distributions.

(A) (B)

x

y
z

x
y

z

Figure 2.2: Densities of two 2-dimensional meta-elliptical distributions. (A) The com-

ponent functions have the form f1(x) = sign(x)|x|2 and f2(x) = x3, and after trans-

formation follows a Gaussian distribution. (B) The component functions have the form

f1(x) = f2(x) = log(x), and after transformation follows a Cauchy distribution. In both

cases the latent generalized correlation matrix has all off-diagonal values to be 0.5.
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2.3 Methodology

We propose a new scale-invariant sparse PCA method based on the meta-elliptical dis-

tribution family. More specifically, under a meta-elliptical model X ∼MEd(Σ
0, ξ; f1, . . . , fd),

the proposed method aims at estimating the leading eigenvector of Σ0. Since the diagonal

entries of Σ0 are all 1, the proposed method is scale-invariant. From Definition 2.2.2, the

proposed method is equivalent to conducting scale-invariant sparse PCA on the transformed

data (f1(X1), . . . , fd(Xd))
T which follow an elliptical distribution.

2.3.1 Statistical Model

The statistical model of our proposed method is defined as follows:

Definition 2.3.1. We consider the following model, denoted by Md(Σ
0, ξ, f ;θ1, s), which

is defined to be the set of distributions:

Md(Σ
0, ξ, f ;θ1, s) :=

{
X : X ∼MEd(Σ

0, ξ; f1, . . . , fd) such that

θ1, the leading eigenvector of Σ0, satisfies ‖θ1‖0 = s.
}
. (2.3.1)

This model allows asymmetric and heavy tail distributions with nontrivial tail depen-

dency. It can be used as a powerful tool for modeling real-world data.
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2.3.2 Method

We now provide the proposed method to exploit the model (2.3.1). One of the key

components of the proposed rank based method is the Kendall’s tau correlation matrix

estimator, which will be explained in the next section.

2.3.2.1 Kendall’s tau based Correlation Matrix Estimator

The Kendall’s tau statistic was introduced by Kendall (1948) for estimating pairwise

correlation and has been used for principal component analysis in low dimensions (Croux

et al., 2002; Gibbons and Chakraborti, 2003). More specifically, let X := (X1, . . . , Xd)
T

be a d-dimensional random vector and let X̃ := (X̃1, . . . , X̃d)
T be an independent copy of

X . The Kendall’s tau correlation coefficient between Xj and Xk is defined as

τ(Xj, Xk) := P((Xj − X̃j)(Xk − X̃k) > 0)− P((Xj − X̃j)(Xk − X̃k) < 0).

The next proposition shows for the meta-elliptical distribution family, we have a one-to-one

map between Σ0
jk and τ(Xj, Xk).

Theorem 2.3.2. Given X ∼MEd(Σ
0, ξ; f1, . . . , fd) meta-elliptically distributed, we have

Σ0
jk = sin

(π
2
τ(Xj, Xk)

)
. (2.3.2)

Proof. It is obvious that the Kendall’s tau statistic is invariant under strictly increasing
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transformations to the marginal variables. Moreover, Lindskog et al. (2003) show that the

Kendall’s tau statistic is invariant to different generating variables ξ’s. Combining these

two results and Equation (6.6) of Kruskal (1958), we obtain the desired result.

Let X1, . . . ,Xn ∈ R
d with Xi := (Xi1, . . . , Xid)

T be n data points of X . The sample

version Kendall’s tau statistic is defined as:

τ̂jk :=
2

n(n− 1)

∑
1≤i<i′≤n

sign (xij − xi′j) sign (xik − xi′k) .

It is easy to see that τ̂jk is an unbiased estimator of τ(Xj, Xk). Using τ̂jk, we define the

Kendall’s tau correlation matrix as follows:

Definition 2.3.3 (Kendall’s tau correlation matrix). We define the Kendall’s tau correlation

matrix R̂ = [R̂jk] to be a d by d matrix with element entry to be

R̂jk = sin
(π
2
τ̂jk

)
. (2.3.3)

2.3.2.2 Rank-based Estimators

Given the model Md(Σ
0, ξ, f ;θ1, s), Theorem 2.3.2 provides a natural way to estimate

θ1. In particular, we solve the following optimization problem:

θ̂∗
1,k := arg max

v∈Rd

vT R̂v, subject to v ∈ S
d−1 ∩ B0(k), (2.3.4)
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where B0(k) := {v ∈ R
d : ‖v‖0 ≤ k}, k is a sufficiently large tuning parameter, and

R̂ is the Kendall’s tau correlation matrix. Equation (2.3.4) is a combinatorial optimization

problem and hard to compute. The corresponding global optimum is denoted by θ̂∗
1,k.

Because the estimator θ̂∗
1,k is very hard to compute, we consider an alternative way to

estimate θ1 using the truncated power algorithm proposed by Yuan and Zhang (2013). This

algorithm yields an estimator θ̃1,k. Here k := ‖θ̃1,k‖0 is a hypothesized value for s (the

number of nonzero elements of θ1) and can be treated as a tuning parameter.

More specifically, we apply the classical power method, but within each iteration t we

project the intermediate vector xt to the intersection of the d-dimension sphere S
d−1 and

the �0 ball with radius k > 0. Specifically, we sort the absolute values of the elements of xt

from the highest to the lowest, find the highest k absolute values, truncate all the others to

zero, and then normalize the truncated vector such that it lies in S
d−1 ∩ B0(k). To provide

the detailed algorithm, we first introduce some additional notation. For any vector v ∈ R
d

and an index set J ⊂ {1, . . . , d}, we define the truncation function TRC(·, ·) to be

TRC(v, J) :=
(
v1 · I(1 ∈ J), . . . , vd · I(d ∈ J)

)T
, (2.3.5)

where I(·) is the indicator function. The truncated power algorithm is presented in Algo-

rithm 1.

The formulation of the truncated power algorithm is nonconvex and the performance

of the estimator relies on the selection of the initial vector v(0). In practice, we use the
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Algorithm 1 Truncated Power Method

Require: : Kendall’s tau matrix R̂, initial vector v(0) ∈ S
d−1, and k as the tuning parame-

ter.

Ensure: : θ̃1,k := v(∞)

Set t = 1.

repeat
Compute xt = R̂v(t−1)

if ‖xt‖0 ≤ k then
v(t) = xt/‖xt‖2

else
Let At be the indices of the elements in xt with the largest k absolute values

v(t) = TRC(xt, At)/‖TRC(xt, At)‖2
end if
t← t+ 1

until Convergence

estimate obtained from the SPCA algorithm (Zou et al., 2006) as the initial vector. We set

the termination criteria to be ‖v(t) − v(t−1)‖2 ≤ 10−4.

In Section 2.4, we show that, by appropriately setting the initial vector v(0), the al-

gorithm converges and the corresponding estimator θ̃1,k is a consistent estimator of θ1. In

practice, we have found this algorithm always converges on all the synthetic and real-world

data.

2.3.3 Estimating the Top m Leading Eigenvectors

We exploit the iterative deflation method to estimate the top m leading eigenvectors

θ1, . . . ,θm of Σ0. This method is proposed by Mackey (2009) and its empirical perfor-

mance is further evaluated in Yuan and Zhang (2013). In detail, for any positive semidefi-
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nite matrix Γ ∈ R
d×d, its deflation with respect to the vector v ∈ R

d is defined as:

D(Γ,v) := (Id − vvT )Γ(Id − vvT ).

In this way, D(Γ,v) is positive semidefinite, left and right orthogonal to v, and symmetric.

To estimate θ1, . . . ,θm, we exploit the following approach: (i) The estimate θ̂1 (can be

either θ̂∗
1,k or θ̃1,k) of θ1 is calculated using Equation (2.3.4) or the truncated power method;

(ii) Given θ̂1, . . . , θ̂j , we estimate θ̂j+1 by plugging Γ(j+1) := D(Γ(j), θ̂j) into Equation

(2.3.4) or the truncated power method (Γ(1) := Σ0).

2.4 Theoretical Properties

In this section we provide the theoretical properties of the estimators θ̂∗
1,k and θ̃1,k. In

the analysis, we adopt the double asymptotic framework in which the dimension d increases

with the sample size n. This framework more realistically reflects the challenges of many

high dimensional applications (Bühlmann and van de Geer, 2011).

2.4.1 Latent Generalized Correlation Matrix Estimation

In this section, we focus on estimating the latent generalized correlation matrix Σ0.

In the next theorem we prove the rate of convergence OP (
√
log d/n) for |R̂jk − Σ0

jk|

uniformly over all indices j, k. This is an important result, which indicates the Gaussian
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parametric rate in estimating the correlation matrix obtained by Bickel and Levina (2008a)

can be extended to the meta-elliptical distribution family using the Kendall’s tau statistic.

Theorem 2.4.1. Let X1, . . . ,Xn be n observations of X ∼ MEd(Σ
0, ξ; f1, . . . , fd) and

let R̂ be defined as in Equation (2.3.3). We have, with probability at least 1− d−5/2,

‖R̂−Σ0‖max ≤ 3π

√
log d

n
. (2.4.1)

Proof. The result follows from Theorem 4.2 in Liu et al. (2012a) but with a slightly differ-

ent probability bound.

2.4.2 Leading Eigenvector Estimation

We analyze the estimation errors of the global optimum θ̂∗
1,k and the estimator θ̃1,k

obtained from the truncated power algorithm. We say the model Md(Σ
0, ξ, f ;θ1, s) holds

if the data are drawn from one probability distribution in Md(Σ
0, ξ, f ;θ1, s). The next

theorem provides an upper bound on the angle between θ̂∗
1,k and θ1.

Theorem 2.4.2. Let θ̂∗
1,k be the global optimum to (2.3.4), the model Md(Σ

0, ξ, f ;θ1, s)

hold, and k ≥ s. For any two vectors v1 ∈ S
d−1 and v2 ∈ S

d−1, let | sin∠(v1,v2)| :=√
1− (vT

1 v2)2. Then we have, with probability at least 1− d−5/2,

| sin∠(θ̂∗
1,k,θ1)| ≤

6π

λ1 − λ2
· k
√

log d

n
, (2.4.2)
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where λj := Λj(Σ
0) for j = 1, 2.

Remark 2.4.3. When s, λ1, λ2 do not scale with (n, d) and k ≥ s is a fixed constant,

the rate of convergence in parameter estimation is OP (
√
log d/n), which is the minimax

optimal parametric rate shown in Vu and Lei (2012) under certain model class.

In the next corollary, we provide a feature selection result for the proposed method.

When the selected tuning parameter k is large enough, we show that the support set of

θ1 can be consistently recovered in a fast rate by imposing a constraint on the minimum

absolute value of the signal part of θ1.

Corollary 2.4.4 (Feature selection). Let θ̂∗
1,k be the global optimum to Equation (2.3.4),

the model Md(Σ
0, ξ, f ; θ1, s) hold, and k ≥ s. Let Θ := supp(θ1), and Θ̂∗

k := supp(θ̂∗
1,k).

If we further have minj∈Θ |θ1j| ≥ 6
√
2π

λ1−λ2
· k
√

log d
n
, then P(Θ ⊂ Θ̂∗

k) ≥ 1− d−5/2.

In the next theorem, we provide a result on the convergence rate of the estimator θ̃1,k

obtained by exploiting the truncated power algorithm. This theorem, coming from Yuan

and Zhang (2013), indicates under sufficient conditions θ̃1,k converges to θ1 in a s
√
log d/n

rate.

Theorem 2.4.5. If the model Md(Σ
0, ξ, f ;θ1, s) holds, the conditions in Theorem 1 in

Yuan and Zhang (2013) hold, and k ≥ s, we have, with probability at least 1− d−5/2,

| sin∠(θ̃1,k,θ1)| ≤ C · (s+ 2k)

√
log d

n
,

for some generic constant C not scaling with (n, d, s).
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The result in Theorem 2.4.5 is a direct consequence of Theorem 1 in Yuan and Zhang

(2013) and therefore the proof is omitted. Here we note that, similar as Corollary 2.4.4, it

can be shown that under certain conditions, supp(θ1) ⊂ supp(θ̃1,k) with high probability.

2.4.3 Principal Component Estimation

In this section, we consider estimating the latent principal components of the meta-

elliptically distributed data. To estimate the latent principal components instead of the

eigenvectors of the latent generalized correlation matrix, one needs to obtain good estimates

of the unknown transformation functions f1, . . . , fd.

Let X ∼MEd(Σ
0, ξ; f1, . . . , fd) follow a meta-elliptical distribution and X1, . . . ,Xn

be n observations of X with Xi := (Xi1, . . . , Xid)
T . Let Z := (f1(X1), . . . , fd(Xd))

T

be the transformed random vector. By definition, Z ∼ ECd(0,Σ
0, ξ) is elliptically dis-

tributed. Let Qg be the marginal distribution function of Z (We know all the elements of Z

share the same marginal distribution functions). If Qg is known, we can estimate f1, . . . , fd

as follows. For j = 1, . . . , d, let F̂j(t; δn) be defined as

F̂j(t; δn) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δn, if t < δn

1
n

∑n
i=1 I(xij ≤ t), if δn ≤ t ≤ 1− δn

1− δn, if x > 1− δn

.
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We define

f̂j(t; δn) := Q−1
g (F̂j(t; δn)) (2.4.3)

to be an estimator of fj . When Qg(·) = Φ(·), where Φ(·) is the distribution function of

the standard Gaussian, we have the following theorem, showing f̂j(·; δn) converges to fj(·)

uniformly over an expanding interval with high probability.

Theorem 2.4.6 (Han et al. (2013)). Suppose that X ∼ NPNd(Σ
0; f1, . . . , fd) and for

j = 1, . . . , d, let gj := f−1
j be the inverse function of fj . For any 0 < γ < 1, we define

In :=
[
gj

(
−
√
2(1− γ) log n

)
, gj

(√
2(1− γ) log n

)]
,

then sup
t∈In

|f̂j(t; (2n)−1)− fj(t)| = OP

(√
log log n

nγ

)
. Here f̂j(t; δn) := Φ−1(F̂j(t; δn)).

Using Theorem 2.4.6, we have the following theorem, which shows, under appropriate

conditions, we can recover the first principal component of any data point X .

Theorem 2.4.7. For any observation X ∼ NPNd(Σ; f1, . . . , fd), under the conditions of

Theorem 2.4.2, letting

f̂(X) :=
(
f̂1(X1; (2n)

−1), . . . , f̂d(Xd; (2n)
−1)
)T

and f(X) := (f1(X1), . . . , fd(Xd))
T ,

29



CHAPTER 2. TRANSELLIPTICAL COMPONENT ANALYSIS

and b be any positive constant such that (s+ k)n−b/2 = o(1), we have

|f̂(X)T θ̂∗
1,k−f(X)Tθ∗

1| = OP

(√
(s+ k) · log log n

n1−b/2
+

k

λ1 − λ2

√
(s+ k) log d log n

n

)
,

where θ∗
1 := sign(θT

1 θ̂
∗
1,k) · θ1.

2.5 Experiments

In this section we evaluate the empirical performance of the proposed method on both

synthetic and real-world datasets, and compare its performance with the classical sparse

PCA and two additional robust sparse PCA procedures. We use the truncated power method

proposed by Yuan and Zhang (2013) for parameter estimation. The following four methods

are considered:

• Pearson: the classical high dimensional scale-invariant PCA using the Pearson’s

sample correlation matrix as the input;

• Sn: The sparse PCA using the robust Sn correlation matrix estimator (Rousseeuw

and Croux, 1993; Maronna and Zamar, 2002) as the input;

• Qn: The sparse PCA using the robust Qn correlation matrix estimator (Rousseeuw

and Croux, 1993; Maronna and Zamar, 2002) as the input;

• Kendall: The proposed method using the Kendall’s tau correlation matrix as the

input.
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Here the robust Qn and Sn correlation matrix estimates are calculated by the R package

robustbase (Rousseeuw et al., 2009). We also tried the sparse robust PCA procedure

proposed in Croux, Filzmoser, and Fritz. (2013), implemented in the R package pcaPP.

However, we found the grid algorithm, which is used in their paper to estimate sparse eigen-

vectors, has convergence problem when the dimension is high, which makes the obtained

estimator perform very bad. Therefore, we did not include this procedure in the draft for

comparison.

2.5.1 Numerical Simulations

In the simulation study we sample n data points from a given meta-elliptical distribu-

tion. Here we set d = 100. We first construct Σ0 using a similar idea as in Yuan and

Zhang (2013): First a covariance matrix Σ is synthesized through the eigenvalue decom-

position, where the first two eigenvalues are given and the corresponding eigenvectors are

pre-specified to be sparse. More specifically, let

Σ :=

2∑
j=1

(ωj − 1)uju
T
j + Id, where ω1 = 6, ω2 = 3.

We set u1 and u2 as follows:

u1j =

⎧⎪⎪⎨⎪⎪⎩
1√
10

1 ≤ j ≤ 10

0 otherwise

and u2j =

⎧⎪⎪⎨⎪⎪⎩
1√
10

11 ≤ j ≤ 20

0 otherwise

.

31



CHAPTER 2. TRANSELLIPTICAL COMPONENT ANALYSIS

The latent generalized correlation matrix Σ0 is Σ0 = diag(Σ)−1/2 ·Σ · diag(Σ)−1/2. We

then consider six different schemes to generate the data matrix X := (X1, . . . ,Xn)
T ∈

R
n×d:

Scheme 1: Let X1, . . . ,Xn be n observations of X ∼ Nd(0,Σ
0).

Scheme 2: Let X1, . . . ,Xn be n observations of X ∼ Nd(0,Σ
0), but with 5% entries

in each Xi randomly picked up and replaced by −5 or 5.

Scheme 3: Let X1, . . . ,Xn be n observations of X ∼ NPNd(Σ
0; f1, . . . , f1) with

f1(x) = x3.

Scheme 4: Let X1, . . . ,Xn be n observations of X ∼ MEd(Σ
0, ξ1; f0, . . . , f0) with

f0(x) = x and ξ1
d
=

√
κξ∗1/ξ

∗
2 . Here ξ∗1

d
= χd and ξ∗2

d
= χκ with κ ∈ Z

+. In this setting, X

follows a multivariate t distribution with degree of freedom κ (Fang et al., 1990). Here we

set κ = 3.

Scheme 5: Let X1, . . . ,Xn be n observations of X ∼ MEd(Σ
0, ξ2; f0, . . . , f0) with

ξ2 ∼ F (d, 1), i.e., ξ2 follows an F -distribution with degree of freedom d and 1.

Scheme 6: Let X1, . . . ,Xn be n observations of X ∼ MEd(Σ
0, ξ3; f0, . . . , f0) with

ξ3 follows an exponential distribution with the rate parameter 1.

Here Schemes 1 to 3 represent three different versions of Gaussian data: (i) The perfect

Gaussian data; (ii) The Gaussian data contaminated by outliers; (iii) The Gaussian data

contaminated by marginal transformations. Schemes 4-6 represent three different elliptical

distributions, which are all heavy-tailed and belong to the meta-elliptical family.

For n = 50, 100, 200, we repeatedly generate the data matrix X according to Schemes
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1 to 6 for 1,000 times. To show the feature selection results for estimating the support set of

the leading eigenvector θ1, Figure 2.3 plots the false positive rates against the true positive

rates for the four different estimators under different schemes.
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Figure 2.3: ROC curves under Scheme 1 to Scheme 6. Here n = 100 and d = 100.

To illustrate the parameter estimation performance, we conduct a quantitative compar-

ison of the estimation accuracy of the four competing method. For all methods, we fix

the tuning parameter (i.e., the cardinality of the estimate’s support set) to be 10. Table

2.2 shows the averaged distances between the estimated leading eigenvector and θ1, with

standard deviations presented in the parentheses. Here the distance between two vectors

v1,v2 ∈ S
d−1 is defined as | sin∠(v1,v2)|.

Both Figure 2.3 and Table 2.2 show that when the data are non-Gaussian but follow
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Table 2.2: Quantitative comparison on the datasets under the six generating schemes. The

averaged distances with standard deviations in parentheses are presented. Here n is chang-

ing from 50 to 200 and d is fixed to be 100.

Scheme n Pearson Sn Qn Kendall

Scheme 1 50 0.422(0.555) 0.607(0.473) 0.555(0.259) 0.473(0.266)

100 0.121(0.158) 0.188(0.140) 0.158(0.110) 0.140(0.201)

200 0.068(0.071) 0.072(0.072) 0.071(0.018) 0.072(0.024)

Scheme 2 50 0.911(0.878) 0.882(0.631) 0.878(0.105) 0.631(0.131)

100 0.806(0.715) 0.737(0.264) 0.715(0.169) 0.264(0.213)

200 0.484(0.354) 0.381(0.093) 0.354(0.222) 0.093(0.246)

Scheme 3 50 0.822(0.907) 0.921(0.473) 0.907(0.154) 0.473(0.101)

100 0.562(0.700) 0.737(0.140) 0.700(0.214) 0.140(0.202)

200 0.228(0.356) 0.410(0.072) 0.356(0.156) 0.072(0.255)

Scheme 4 50 0.947(0.679) 0.704(0.678) 0.679(0.095) 0.668(0.227)

100 0.910(0.247) 0.269(0.248) 0.247(0.157) 0.238(0.239)

200 0.873(0.079) 0.084(0.084) 0.079(0.232) 0.074(0.063)

Scheme 5 50 0.977(0.911) 0.910(0.854) 0.911(0.028) 0.854(0.102)

100 0.976(0.718) 0.722(0.532) 0.718(0.028) 0.532(0.214)

200 0.978(0.297) 0.305(0.147) 0.297(0.029) 0.147(0.244)

Scheme 6 50 0.959(0.848) 0.862(0.771) 0.848(0.060) 0.771(0.143)

100 0.931(0.548) 0.569(0.373) 0.548(0.108) 0.373(0.250)

200 0.840(0.156) 0.165(0.103) 0.156(0.223) 0.103(0.170)

a meta-elliptical distribution, Kendall constantly outperforms Pearson in terms of fea-

ture selection and parameter estimation. Moreover, when the data are indeed Gaussian

distributed, there is no obvious difference between Kendall and Pearson, indicating our

proposed rank-based method is a good alternative to the classical scale-invariant sparse

PCA under the meta-elliptical model.

We then compare Kendall with Sn and Qn. In Scheme 1, for the Gaussian data, Kendall

slightly outperforms Sn and Qn. For the data with outliers, Sn and Qn performs better
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than the classical sparse PCA estimates, but are not as robust as Kendall. For different

elliptical distributions explored in Schemes 4 to 6, Kendall has the best overall performance

compared to Sn and Qn. The results for the non-elliptically distributed data, as explored in

Scheme 3, shows a significant difference between our proposed method and the other two

robust sparse PCA approaches. In this case we are interested in, instead of the correlation

matrix of the meta-elliptically distributed data, the latent generalized correlation matrix,

which Sn and Qn fail to recover.

2.5.2 Equity Data Analysis

In this section, we investigate the performance of the four competing methods on the

equity data explored in Section 2.2.2. The data come from Yahoo! Finance (finance.

yahoo.com). We collect the daily closing prices for J = 452 stocks that are consistently

in the S&P 500 index from January 1, 2003 to January 1, 2008. This gives us altogether

T = 1, 257 data points, each data point corresponds to the vector of closing prices on a

trading day. Let St = [Stt,j] denote the closing price of stock j on day t. We are interested

in the log-return data X = [Xtj] with Xtj := log(Stt,j/Stt−1,j).

We evaluate the ability of using only a small number of stocks to represent the trend of

the whole stock market. To this end, we run the four competing methods on the log-return

data X and obtain the top four leading eigenvectors. Here the iterative deflation method

discussed in Section 2.3.3 is exploited with the same tuning parameter k in each deflation

step. Let Ak be the support set of the estimated leading eigenvectors by one of the four
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Figure 2.4: Successful matches of the market trend proportions only using the stocks in the

support sets of the estimated loading vectors. The horizontal-axis represents the cardinali-

ties of the estimates’ support sets; the vertical-axis represents the percentage of successful

matches.

methods. We define TW
t and TAk

t as

TW
t := I

(∑
j

Stt,j −
∑
j

Stt−1,j > 0

)
, TAk

t := I

(∑
j∈Ak

Stt,j −
∑
j∈Ak

Stt−1,j > 0

)
,

where I(·) is the indicator function. In this way, we can calculate the proportion of suc-
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cessful matches of the market trend using the stocks in Ak as:

ρAk
:=

1

T − 1

T∑
t=2

I(TW
t = TAk

t ).

We visualize the result by plotting (card(Ak), ρAk
) in Figure 2.4, which shows that Kendall

summarizes the trend of the whole stock market better than the other three methods.

Table 2.3: The ten categories of the stocks with their numbers and abbreviations provided.

Name Number Abbreviation

Consumer Discretionary 70 CD

Consumer Staples 35 CS

Energy 37 E

Financials 74 F

Health Care 46 HC

Industrial 59 I

Information Technology 64 IT

Telecommunications Services 6 TS

Materials 29 M

Utilities 32 U

Moreover, we examine the stocks selected by the four competing methods. The 452

stocks are categorized into 10 Global Industry Classification Standard (GICS) sectors, in-

cluding “Consumer Discretionary” (70 stocks), “Consumer Staples” (35 stocks), “Energy”

(37 stocks), “Financials” (74 stocks), “Health Care” (46 stocks), “Industrials” (59 stocks),

“Information Technology” (64 stocks), “Materials” (29 stocks), “Telecommunications Ser-

vices” (6 stocks), and “Utilities” (32 stocks). Table 2.3 provides a more detailed description

of these ten categories with their numbers and abbreviations provided.
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Table 2.4: The categories of the nonzero terms in the top four leading eigenvectors calcu-

lated by the four competing methods. The abbreviations are listed in Table 2.3. (Note: 30F

means 30 stocks are from the Financials category.)

Method PC1 PC2 PC3 PC4

Pearson 29F,1I 6CD,5F,8I,1IT,10M 8F,2E,3M,17U 8CD,1F,1I,20IT

Sn 29F,1I 2CD,2F,12I,14M 3I,27IT 3F,27U

Qn 29F,1I 2CD,2F,12I,1IT,13M 2I,28IT 3F,27U

Kendall 30F 15I, 15M 10CD, 10F,10I 3I, 27IT

We estimate the top four leading eigenvectors using the four competing methods with

the same k = 30 in each deflation step. The obtained non-zero features’ categories are

presented in Table 2.4. In general, Kendall has the best ability in grouping the stocks of

the same category together. Therefore, Kendall provides a more interpretable result.

2.6 Discussion

We propose a new scale-invariant sparse principal component analysis method for high

dimensional meta-elliptical data. Our estimator is semiparametric but achieves a fast rate

of convergence in parameter estimation, and is robust to both modeling assumption and

data contamination. Therefore, the new estimator can be a good alternative to the classical

sparse PCA method.

Although the rank-based Kendall’s tau statistic has been exploited for principal compo-

nent analysis in low dimensions (see, for example, Croux et al. (2002)), our work is funda-
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mentally different from the existing literature. The main difference can be elaborated in the

following three aspects: (i) We generalize the Kendall’s tau statistic to high dimensions,

while the current literature only focuses on the low dimension settings; (ii) Our theoretical

analysis are fundamentally different from the previous low dimensional analysis, which

exploits classical semiparametric theory under which the dimension d is usually fixed; (iii)

Most existing methods and theories are built upon the Gaussian or elliptical model, while

we consider the meta-elliptical model.

There is another trend in exploiting robust (sparse) PCA (see, for example, Maronna and

Zamar (2002) and Croux et al. (2013)). The empirical comparisons conducted in this chap-

ter indicate that, confined in the meta-elliptical family, the proposed rank-based method

can be more efficient in parameter estimation and feature selection than these additional

robust procedures. Moreover, our proposed method achieves the nearly parametric rate of

convergence in parameter estimation, while to the best of our knowledge the performance

of these robust sparse PCA procedures in high dimensions is mostly unknown.

Vu and Lei (2012) and Ma (2013) considered sparse principal component analysis and

studied the rates of convergence under various modeling and sparsity assumptions. Our

method is different from theirs in two aspects: (i) Their analysis relies heavily on the Gaus-

sian or sub-Gaussian assumption, which no longer holds under the meta-elliptical model;

(ii) They exploit the Pearson’s sample covariance or correlation matrix as the algorithm

input, while we advocate the usage of the Kendall’s tau correlation matrix in the meta-

elliptical model.
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Liu et al. (2012a) and Xue and Zou (2012) proposed a procedure called the nonparanor-

mal SKEPTIC, which exploits the nonparanormal family for graph estimation. The non-

paranormal SKEPTIC also adopts rank-based methods in high dimensions. Our method is

different from theirs in three aspects: (i) We advocate the use of meta-elliptical family, of

which the nonparanormal is a subset; (ii) We advocate the use of the Kendall’s tau, which is

adaptive over the whole meta-elliptical family but instead of the Spearman’s rho statistic;

(iii) Their focus is on graph estimation, in contrast, this work focuses on principal com-

ponent analysis. In a preliminary version of this work (Han and Liu, 2014b), they mainly

focused on estimating the first leading eigenvector of the latent generalized correlation ma-

trix by directly solving Equation (2.3.4), which is practically intractable. In contrast, we

exploit a computationally feasible procedure (truncated power method) for scale-invariant

sparse PCA, and provide theoretical guarantee of convergence for this algorithm. More-

over, our method estimates the latent principal components, which are crucial in practical

applications, and we provide the theoretical analysis of convergence for the corresponding

estimators.

For the principal component estimation algorithm in Section 2.4.3, when Qg is un-

known, we could estimate f1, . . . , fd using the following method:

1. Test whether the original data is elliptically distributed by using some existing tech-

niques (Li et al., 1997; Huffer and Park, 2007; Sakhanenko, 2008). If yes, we set

f̂j(t) = (t − μ̂j)/σ̂j . Here μ̂j and σ̂j are the marginal sample mean and standard

deviation for the j-th entry.
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2. If not, we construct a set of marginal distribution functions:

Π := {Qg : Qg is a well defined marginal distribution function}.

3. For any Qg ∈ Π, we calculate f̂ = {f̂1, . . . , f̂d} using Equation (2.4.3).

4. We transform the data using f̂ .

5. We test whether the transformed data is elliptically distributed by using the tech-

niques exploited in step 1.

We iterate steps 3-5 until we cannot reject the null hypothesis in step 5 for some Qg. This

is a heuristic method whose theoretical justification is left for future investigation. Other

future directions include analyzing the robustness property of the method to more noisy

and dependent data.

Lastly, we note this chapter follows one main idea throughout the thesis: A semipara-

metric model coupled with a nonparametric robust method could be an appealing approach

in tackling high dimensional complex data. Here we exploit the semiparametric transellip-

tical (meta-elliptical) model coupled with a nonparametric rank-based method.
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3.1 Introduction

Covariance and correlation matrices play a central role in multivariate analysis. An

efficient estimation of covariance/correlation matrix is a major step in conducting many

methods, including principal component analysis (PCA), scale-invariant PCA, graphical

model estimation, discriminant analysis, and factor analysis. Large covariance/correlation

matrix estimation receives a lot of attention in high dimensional statistics. This is partially

because the sample covariance/correlation matrix is an inconsistent estimator where d/n �→

0 (Here d and n represent the dimensionality and sample size.).

Given n observations x1, . . . ,xn of a d dimensional random vector X ∈ R
d with the

population covariance matrix Ω, let Ŝ be the Pearson’s sample covariance matrix calcu-

lated based on x1, . . . ,xn. For theoretical analysis, we adopt a similar double asymptotic

framework as in Bickel and Levina (2008a), where we write d to be the abbreviation of dn,

which changes with n. Under this double asymptotic framework, where both the dimen-

sion d and sample size n can increase to infinity, Johnstone (2001), Baik and Silverstein

(2006), and Jung and Marron (2009) pointed out settings where, even when X follows a

Gaussian distribution with identity covariance matrix, Ŝ is an inconsistent estimator of Σ

under spectral norm. In other words, letting ‖ · ‖2 denote the spectral norm of a matrix,

typically for (n, d) → ∞, we have

‖Ŝ−Ω‖2 �→ 0.
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This observation motivates different versions of sparse covariance/correlation matrix esti-

mation methods. See, for example, banding method (Bickel and Levina, 2008a), tapering

method (Cai et al., 2010; Cai and Zhou, 2012), and thresholding method (Bickel and Lev-

ina, 2008b). However, although the regularization methods exploited are different, they

all use the Pearson’s sample covariance/correlation matrix as a pilot estimator, and accord-

ingly the performance of the estimators relies on existence of higher order moments of the

data. For example, letting ‖ · ‖max and ‖ · ‖2,s denote the element-wise supremum norm and

restricted spectral norm (detailed definitions provided later), in proving

‖Ŝ−Ω‖max = OP

(√
log d

n

)
or ‖Ŝ−Ω‖2,s = OP

(√
s log(d/s)

n

)
(3.1.1)

(Here d and s are the abbreviation of dn and sn and OP (·) is defined to represent the

stochastic order with regard to n), it is commonly assumed that, for d = 1, 2, . . ., X =

(X1, . . . , Xd)
T satisfies the following subgaussian condition:

(marginal subgaussian) E exp(tXj) ≤ exp

(
σ2t2

2

)
, for all j ∈ {1, . . . , d},

or (multivariate subgaussian) E exp(tvTX) ≤ exp

(
σ2t2

2

)
, for all v ∈ S

d−1,

(3.1.2)

for some absolute constant σ2 > 0. Here S
d−1 is the d-dimensional unit sphere in R

d.

The moment conditions in (3.1.2) are not satisfied for many distributions. To elaborate

how strong this condition is, we consider the student’s t distribution. Assuming that T
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follows a student’s t distribution with degree of freedom ν, it is known (Hogg and Craig,

2012) that

ET 2k = ∞ for k ≥ ν/2.

Recently, Han and Liu (2014b) advocated using the transelliptical distribution for mod-

eling and analyzing complex and noisy data. They exploited a transformed version of

the Kendall’s tau sample correlation matrix Σ̂ to estimate the latent Pearson’s correlation

matrix Σ. The transelliptical family assumes that, after a set of unknown marginal transfor-

mations, the data follow an elliptical distribution. This family is closely related to the ellip-

tical copula and contains many well known distributions, including multivariate Gaussian,

rank-deficient Gaussian, multivariate-t, Cauchy, Kotz, logistic, etc.. Under the transellipti-

cal distribution, without any moment constraint, they showed a transformed Kendall’s tau

sample correlation matrix Σ̂ approximates the latent Pearson’s correlation matrix Σ in a

parametric rate:

‖Σ̂−Σ‖max = OP

(√
log d

n

)
, (3.1.3)

which attains the minimax rate of convergence.

Although (3.1.3) is inspiring, in terms of theoretical analysis of many multivariate meth-

ods, the rates of convergence under spectral norm and restricted spectral norm are more

desired. For example, Bickel and Levina (2008b) and Yuan and Zhang (2013) showed the

performances of principal component analysis and a computationally tractable sparse PCA
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method are determined by the rates of convergence for the plug-in matrix estimators under

spectral and restricted spectral norms. A trivial extension of (3.1.3) gives

‖Σ̂−Σ‖2 = OP

(
d

√
log d

n

)
and ‖Σ̂−Σ‖2,s = OP

(
s

√
log d

n

)
,

which are both not tight compared to the parametric rates (For more details, check Lounici

(2013a) and Bunea and Xiao (2014) for results under the spectral norm, and Vu and Lei

(2012) for results under the restricted spectral norm).

In this work we push the results in Han and Liu (2014b) forward, providing improved

results of the transformed Kendall’s tau correlation matrix under both spectral and restricted

spectral norms. We consider the statistical properties of the Kendall’s tau sample correla-

tion matrix T̂ in estimating the Kendall’s tau correlation matrix T, and the transformed

version Σ̂ in estimating Σ.

First, we considering estimating the Kendall’s tau correlation matrix T itself. Estimat-

ing Kendall’s tau is of its self-interest. For example, Embrechts et al. (2003) claimed in

many cases in modeling dependence Pearson’s correlation coefficient “might prove very

misleading” and advocated using the Kendall’s tau correlation coefficient as the “perhaps

best alternatives to the linear correlation coefficient as a measure of dependence for non-

elliptical distributions”. In estimating T, we show that, without any condition, for any
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continuous random vector X ,

‖T̂−T‖2 = OP

(
‖T‖2

√
re(T) log d

n

)
,

where re(T) := Tr(T)/‖T‖2 is called effective rank. Moreover, we provide a new term

called “sign subgaussian condition”, under which we have

‖T̂−T‖2,s = OP

(
‖T‖2

√
s log d

n

)
.

Secondly, under the transelliptical family, we consider estimating the Pearson’s correla-

tion matrix Σ of the latent elliptical distribution using the transformed Kendall’s tau sample

correlation matrix Σ̂ = [sin(π
2
T̂jk)]. Without any moment condition, we show, as long as

X belongs to the transelliptical family,

‖Σ̂−Σ‖2 = OP

(
‖Σ‖2

{√
re(Σ) log d

n
+
re(Σ) log d

n

})
,

which attains the nearly optimal rate of convergence obtained in Lounici (2013a) and Bunea

and Xiao (2014). Moreover, provided the sign subgaussian condition is satisfied, we have

‖Σ̂−Σ‖2,s = OP

(
‖Σ‖2

√
s log d

n
+
s log d

n

)
,

which attains the nearly optimal rate of convergence obtained in Vu and Lei (2012).
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3.1.1 Discussion with Related Works

Our work is related to a vast literature in large covariance matrix estimation, with dif-

ferent settings of sparsity assumptions (Cai et al., 2010; Cai and Zhou, 2012; Vu and Lei,

2012; Cai et al., 2014b), or without any sparsity assumption (Lounici, 2013a; Bunea and

Xiao, 2014). In particular, this work is closely related to Lounici (2013a) and Bunea and

Xiao (2014) with regard to the theoretical analysis of the spectral norm convergence, and

the work of Vu and Lei (2012) with regard to the theoretical analysis of the restricted spec-

tral norm convergence.

However, there are various new contributions made in this work given the aforemen-

tioned results. We emphasize the advantage of rank-based statistics over moment-based

statistics. One new message delivered in this work is, via resorting to the rank-based statis-

tics, the statistical efficiency attained by the aforementioned methods under some stringent

moment constraints, can also be attained under some more flexible models. Moreover, we

believe the technical developments built in this work, including the analysis of U-statistics,

the concentration of matrix-value functions, and the verification of the sign subgaussian

condition for several particular models, are distinct from the existing literature and of self-

interest.

Our work is also closely related to an expanding literature in extending copula models

to the high dimensional settings. These include the use of the nonparanormal (Gaussian

copula) and the transelliptical (elliptical copula) distribution families. Methodologically,

the Spearman’s rho is recommended in the analysis of the nonparanormal family for con-
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ducting graphical model estimation (Liu et al., 2012a; Xue and Zou, 2012), classification

(Han et al., 2013), and PCA (Han and Liu, 2014a). The Kendall’s tau is recommended

in the analysis of the transelliptical family for conducting graphical model estimation (Liu

et al., 2012c) and PCA (Han and Liu, 2014b).

Our work is motivated by the aforementioned results. But, different from the existing

ones, we give a more general study on the convergence of the Kendall’s tau matrix itself,

and provide more insights into the rank-based statistics. We characterize three types of

convergence with regard to the Kendal’s tau matrix T̂ and its transformed version Σ̂: The

element-wise supremum norm (�max), the spectral norm (�2), and the restricted spectral

norm (�2,s). In comparison, the existing results only exploited the �max convergence result,

which we find is not sufficient in showing the statistical efficiency of many rank-based

methods. It is also worth noting the new theories developed here with regard to the �2

and �2,s convergence have broad implications. They can be easily applied to the study of

factor model, sparse PCA, robust regression, and many other methods, and can lead to more

refined statistical analysis.

3.1.2 Notation System

Let M = [Mij] ∈ R
d×d and v = (v1, ..., vd)

T ∈ R
d. We denote vI to be the subvector

of v whose entries are indexed by a set I . We also denote MI,J to be the submatrix of

M whose rows are indexed by I and columns are indexed by J . Let MI∗ and M∗J be the

submatrix of M with rows indexed by I , and the submatrix of M with columns indexed
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by J . Let supp(v) := {j : vj �= 0}. For 0 < q < ∞, we define the �0, �q, and �∞ vector

(pseudo-)norms as

‖v‖0 := card(supp(v)), ‖v‖q := (
d∑

i=1

|vi|q)1/q, and ‖v‖∞ := max
1≤i≤d

|vi|.

Let λj(M) be the j-th largest eigenvalue of M and Θj(M) be a corresponding eigenvector.

In particular, we let λmax(M) := λ1(M). We define S
d−1 := {v ∈ R

d : ‖v‖2 = 1} to be

the d-dimensional unit sphere. We define the matrix element-wise supremum norm (�max

norm), spectral norm (�2 norm), and restricted spectral norm (�2,s norm) as

‖M‖max := max{|Mij|}, ‖M‖2 := sup
v∈Sd−1

‖Mv‖2, and ‖M‖2,s := sup
v∈Sd−1∩‖v‖0≤s

‖Mv‖2.

We define diag(M) to be a diagonal matrix with [diag(M)]jj = Mjj for j = 1, . . . , d.

We also denote vec(M) := (MT
∗1, . . . ,M

T
∗d)

T . For any two vectors a, b ∈ R
d, we denote

〈a, b〉 := aTb and sign(a) := (sign(a1), . . . , sign(ad))
T , where sign(x) = x/|x| with the

convention 0/0 = 0.

3.1.3 Chapter Organization

The rest of this work is organized as follows. In the next section, we briefly overview

the transelliptical distribution family and the main concentration results for the transformed

Kendall’s tau sample correlation matrix proposed by Han and Liu (2014b). In Section 3.3
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we analyze the convergence rates of Kendall’s tau sample correlation matrix and its trans-

formed version with regard to the spectral norm. In Section 3.4, we analyze the convergence

rates of Kendall’s tau sample correlation matrix and its transformed version with regard to

the restricted spectral norm. The technical proofs of these results are provided in Section

3.5. More discussions and conclusions are provided in Section 3.6.

3.2 Preliminaries and Background Overview

In this section, we briefly review the transelliptical distribution and the corresponding

latent generalized correlation matrix estimator proposed by Han and Liu (2014b).

3.2.1 Transelliptical Distribution Family

The concept of transelliptical distribution builds upon the elliptical distribution. Ac-

cordingly, we first provide a definition of the elliptical distribution, using the stochastic

representation as in Fang et al. (1990). In the sequel, for any two random vectors X and

Y , we denote X
d
= Y if they are identically distributed.

Definition 3.2.1 (Fang et al. (1990)). A random vector Z = (Z1, . . . , Zd)
T follows an

elliptical distribution if and only if Z has a stochastic representation: Z
d
= μ + ξAU .

Here μ ∈ R
d, q := rank(A), A ∈ R

d×q, ξ ≥ 0 is a random variable independent of

U , U ∈ S
q−1 is uniformly distributed on the unit sphere in R

q. In this setting, letting

Σ := AAT , we denote Z ∼ ECd(μ,Σ, ξ). Here Σ is called the scatter matrix.
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The elliptical family can be viewed as a semiparametric generalization of the Gaussian

family, maintaining the symmetric property of the Gaussian distribution but allowing heavy

tails and richer structures. Moreover, it is a natural model for many multivariate methods

such as principal component analysis (Boente et al., 2012). The transelliptical distribution

family further relaxes the symmetric assumption of the elliptical distribution by assuming

that, after unspecified strictly increasing marginal transformations, the data are elliptically

distributed. A formal definition of the transelliptical distribution is as follows.

Definition 3.2.2 (Han and Liu (2014b)). A random vector X = (X1, . . . , Xd)
T follows a

transelliptical distribution, denoted by X ∼ TEd(Σ, ξ; f1, . . . , fd), if there exist univariate

strictly increasing functions f1, . . . , fd such that

(
f1(X1), . . . , fd(Xd)

)T ∼ ECd(0,Σ, ξ), where diag(Σ) = Id and P(ξ = 0) = 0.

Here Id ∈ R
d×d is the d-dimensional identity matrix and Σ is called the latent generalized

correlation matrix.

We note the transelliptical distribution is closely related to the nonparanormal distribu-

tion (Liu et al., 2009, 2012a; Xue and Zou, 2012; Han and Liu, 2014a; Han et al., 2013)

and meta-elliptical distribution (Fang et al., 2002). The nonparanormal distribution as-

sumes after unspecified strictly increasing marginal transformations, the data are Gaussian

distributed. It is easy to see the transelliptical family contains the nonparanormal family.

On the other hand, it is subtle to elaborate the difference between the transelliptical and
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meta-elliptical. In short, the transelliptical family contains meta-elliptical family. Com-

pared to the meta-elliptical, the transelliptical family does not require the random vectors

to have densities and brings new insight into both theoretical analysis and model inter-

pretability. We refer to Liu et al. (2012c) for more detailed discussion on the comparison

between the transelliptical family, nonparanormal, and meta-elliptical families.

3.2.2 Latent Generalized Correlation Matrix Estimation

Following Han and Liu (2014b), we are interested in estimating the latent general-

ized correlation matrix Σ, i.e., the correlation matrix of the latent elliptically distributed

random vector f(X) := (f1(X1), . . . , fd(Xd))
T . By treating both the generating vari-

able ξ and the marginal transformation functions f = {fj}dj=1 as nuisance parameters,

Han and Liu (2014b) proposed to use a transformed Kendall’s tau sample correlation

matrix to estimate the latent generalized correlation matrix Σ. More specifically, letting

x1, . . . ,xn be n independent and identically distributed observations of a random vector

X ∈ TEd(Σ, ξ; f1, . . . , fd), the Kendall’s tau correlation coefficient between the variables

Xj and Xk is defined as

τ̂jk :=
2

n(n− 1)

∑
i<i′

sign
(
(xi − xi′)j(xi − xi′)k

)
.
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Its population quantity can be written as

τjk := P
(
(Xj − X̃j)(Xk − X̃k) > 0)− P((Xj − X̃j)(Xk − X̃k) < 0

)
, (3.2.1)

where X̃ = (X̃1, . . . , X̃d)
T is an independent copy of X . We denote

T := [τjk] and T̂ := [τ̂jk]

to be the Kendall’s tau correlation matrix and Kendall’s tau sample correlation matrix.

For the transelliptical family, it is known that Σjk = sin(π
2
τjk) (Check, for example,

Theorem 3.2 in Han and Liu (2014b)). A latent generalized correlation matrix estimator

Σ̂ := [Σ̂jk], called the transformed Kendall’s tau sample correlation matrix, is accordingly

defined by:

Σ̂jk = sin
(π
2
τ̂jk

)
. (3.2.2)

Han and Liu (2014b) showed, without any moment constraint,

‖Σ̂−Σ‖max = OP

(√
log d

n

)
,
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and accordingly by simple algebra we have

‖Σ̂−Σ‖2 = OP

(
d

√
log d

n

)
and ‖Σ̂−Σ‖2,s = OP

(
s

√
log d

n

)
. (3.2.3)

The rates of convergence in (3.2.3) are far from optimal (Check Lounici (2013a), Bunea

and Xiao (2014), and Vu and Lei (2012) for the parametric rates). In the next two sections,

we will push the results in Han and Liu (2014b) forward, showing that better rates of

convergence can be built in estimating the Kendall’s tau correlation matrix and the latent

generalized correlation matrix.

3.3 Rate of Convergence under Spectral Norm

In this section we provide the rate of convergence of the Kendall’s tau sample correla-

tion matrix T̂ to T, as well as the transformed Kendall’s tau sample correlation matrix Σ̂ to

Σ, under the spectral norm. The next theorem shows, without any moment constraint or as-

sumption on the data distribution (as long as it is continuous), the rate of convergence of T̂

to T under the spectral norm is ‖T‖2
√
re(T) log d/n, where for any positive semidefinite

matrix M ∈ R
d×d,

re(M) :=
Tr(M)

‖M‖2

is called the effective rank of M and must be less than or equal to the dimension d. For

notational simplicity, in the sequel we assume the sample size n is even. When n is odd,
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we can always use n− 1 data points without affecting the obtained rate of convergence.

Theorem 3.3.1. Let x1, . . . ,xn be n observations of a d dimensional continuous random

vector X . Then when re(T) log d/n→ 0, for sufficiently large n and any 0 < α < 1, with

probability larger than 1− 2α, we have

‖T̂−T‖2 ≤ 4‖T‖2
√

{re(T) + 1} log(d/α)
3n

. (3.3.1)

Theorem 3.3.1 shows that, when re(T) log d/n→ 0, we have

‖T̂−T‖2 = OP

(
‖T‖2

√
re(T) log d

n

)
.

This rate of convergence is the same parametric rate as obtained in Vershynin (2010),

Lounici (2013a), and Bunea and Xiao (2014) when there is not any additional structure.

In the next theorem, we show that, under the modeling assumption that X is transellip-

tically distributed, which is of particular interest in real applications as shown in Han and

Liu (2014b), we have a transformed version of the Kendall’s tau sample correlation matrix

can estimate the latent generalized correlation matrix in a nearly optimal rate.

Theorem 3.3.2. Let x1, . . . ,xn be n observations of X ∼ TEd(Σ, ξ; f1, . . . , fd). Let Σ̂

be the transformed Kendall’s tau sample correlation matrix defined in (3.2.2). We have,

when re(Σ) log d/n → 0, for n large enough and 0 < α < 1, with probability larger than
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1− 2α− α2,

‖Σ̂−Σ‖2 ≤ π2‖Σ‖2
(
2

√
{re(Σ) + 1} log(d/α)

3n
+
re(Σ) log(d/α)

n

)
. (3.3.2)

Theorem 3.3.2 indicates that, when re(Σ) log d/n→ 0, we have

‖Σ̂−Σ‖2 = OP

(
‖Σ‖2

√
re(Σ) log d

n

)
.

By the discussion of Theorem 2 in Lounici (2013a), the obtained rate of convergence is

minimax optimal up to a logarithmic factor with respect to a suitable parameter space.

However, compared to the conditions in Lounici (2013a), and Bunea and Xiao (2014),

which require strong multivariate subgaussian modeling assumption on X (which implies

the existence of moments of arbitrary order), Σ̂ attains this parametric rate in estimating

the latent generalized correlation matrix without any moment constraints.

Remark 3.3.3. The log d term presented in the rate of convergence of T̂ and Σ̂ is an

artifact of the proof, and also appears in the statistical analysis of the sample covariance

matrix under the subgaussian model (See, for example, Proposition 3 in Lounici (2013a)

and Theorem 2.2 in Bunea and Xiao (2014)). If we would like to highlight the role of the

effective rank, re(T) and re(Σ), to our knowledge there is no work that can avoid the log d

term. On the other hand, in estimating T using T̂, aOP (
√
d/n) rate of convergence can be

attained under the condition of Theorem 3.4.11 provided in the next section. In estimating

Σ using Σ̂, a OP (
√
d/n) rate of convergence is also attainable under the condition of
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Theorem 3.4.11 when d(log d)2 = O(n).

3.4 Rate of Convergence under Restricted Spec-

tral Norm

In this section, we analyze the rates of convergence of the Kendall’s tau sample correla-

tion matrix and its transformed version under the restricted spectral norm. The main target

is to improve the rate OP (s
√

log d/n) shown in (3.2.3) to the rate OP (
√
s log(d/s)/n).

Such a rate has been shown to be minimax optimal under the Gaussian model (via combin-

ing Theorem 2.1 and Lemma 3.2.1 in Vu and Lei (2012)). Obtaining such an improved rate

is technically challenging since the data could be very heavy-tailed and the transformed

Kendall’s tau sample correlation matrix has a much more complex structure than the Pear-

son’s covariance/correlation matrix.

In the following we lay out a venue to analyze the statistical efficiency of T̂ and Σ̂ under

the restricted spectral norm. In particular, we characterize a subset of the transelliptical

distributions for which T̂ and Σ̂ can approximate T and Σ in an improved rate. More

specifically, we provide a “sign subgaussian” condition which is sufficient for T̂ and Σ̂ to

attain the nearly optimal rate. This condition is related to the subgaussian assumption in Vu

and Lei (2012), Lounici (2013a), and Bunea and Xiao (2014) (see Assumption 2.2 in Vu

and Lei (2012), for example). Before proceeding to the formal definition of this condition,

we first define an operator ψ : R → R as follows:
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Definition 3.4.1. For any random variable Y ∈ R, the operator ψ : R → R is defined as

ψ(Y ;α, t0) := inf
{
c > 0 : E exp {t(Y α − EY α)} ≤ exp(ct2), for |t| < t0

}
. (3.4.1)

The operator ψ(·) can be used to quantify the tail behaviors of random variables. We

recall that a zero-mean random variable X ∈ R is said to be subgaussian if there exists a

constant c such that E exp(tX) ≤ exp(ct2) for all t ∈ R. A zero-mean random variable

Y ∈ R with ψ(Y ; 1,∞) bounded is well known to be subgaussian, which implies a tail

probability

P(|Y − EY | > t) < 2 exp(−t2/(4c)),

where c is the constant defined in Equation (3.4.1). Moreover, ψ(Y ;α, t0) is related to the

Orlicz ψ2-norm. A formal definition of the Orlicz norm is provided as follows.

Definition 3.4.2. For any random variable Y ∈ R, its Orlicz ψ2-norm is defined as

‖Y ‖ψ2 := inf
{
c > 0 : E exp

(
|Y/c|2

)
≤ 2
}
.

It is well known that a random variable Y has ψ(Y ; 1,∞) to be bounded if and only if

‖Y ‖ψ2 in Definition 3.4.2 is bounded (van de Geer and Lederer, 2013).

Another relevant norm to ψ(·) is the subgaussian norm ‖ · ‖φ2 used in, for example,

Vershynin (2010). A former definition of the subgaussian norm is as follows.
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Definition 3.4.3. For any random variable X ∈ R, its subgaussian norm is defined as

‖X‖φ2 := sup
k≥1

k−1/2
(
E|X|k

)1/k
.

The subgaussian norm is also highly related to the subgaussian random variables. In

particular, we have if EX = 0, then E exp(tX) ≤ exp(Ct2‖X‖2φ2
).

Using the operator ψ(·), we now proceed to define the sign subgaussian condition. For

mathematical rigorousness, the formal definition is posed on {Fd, d = 1, 2, . . .}, where Fd

represents a set of probability measures on R
d. Here for any vector v = (v1, . . . , vd) ∈ R

d,

we remind that sign(v) := (sign(v1), . . . , sign(vd))
T . In the following, a random vector X

is said to be in a set of probability measures F ′ if its distribution is in F ′.

Definition 3.4.4 (Sign subgaussian condition). For d = 1, 2, . . . , let Fd be a set of proba-

bility measures on R
d where infinitely many sets Fd are non-empty and F := ∪∞

d=1Fd. F

is said to satisfy the sign subgaussian condition if and only if for any X in F , we have

sup
v∈Sd−1

ψ
(〈

sign(X − X̃),v
〉
; 2, t0

)
≤ K‖T‖22, (3.4.2)

where X̃ is an independent copy of X , K is an absolute constant, and t0 is another abso-

lute positive number such that t0‖T‖2 is lower bounded by an absolute positive constant.

We remind that here T can be written as

T := Esign(X − X̃) · (sign(X − X̃))T .
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To gain more insights about the sign subgaussian condition, we point out two sets of

probability measures of interest satisfying the sign subgaussian condition.

Proposition 3.4.5. Suppose the set of probability measures F satisfies that for any random

vector X in F and X̃ being an independent copy of X , we have

sup
v∈Sd−1

∥∥∥∥〈sign(X − X̃),v
〉2

− vTTv

∥∥∥∥
ψ2

≤ L1‖T‖2, (3.4.3)

where L1 is a fixed constant. Then F satisfies the sign subgaussian condition by setting

t0 = ∞ and K = 5L2
1/2 in Equation (3.4.2).

Proposition 3.4.6. Suppose the set of probability measure F satisfies that for any random

vector X in F and X̃ being an independent copy of X , we have there exists an absolute

constant L2 such that

‖vT sign(X − X̃)‖2φ2
≤ L2‖T‖2

2
for all v ∈ S

d−1. (3.4.4)

Then F satisfies the sign subgaussian condition with t0 = c‖T‖−1
2 andK = C in Equation

(3.4.2), where c and C are two fixed absolute constants.

In the following, for clarity of presentation, we abuse notation a little and write X satis-

fies the sign subgaussian condition if there exists a set of probability measures F satisfying

the sign subgaussian condition such that for d = 1, 2, . . ., X ∈ R
d is in F .

Proposition 3.4.6 builds a bridge between the sign subgaussian condition and Assump-
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tion 1 in Bunea and Xiao (2014) and Lounici (2013a). More specifically, saying X satisfies

Equation (3.4.4) is equivalent to saying sign(X−X̃) satisfies the multivariate subgaussian

condition defined in Bunea and Xiao (2014). Therefore, Proposition 3.4.6 can be treated as

an explanation of why we call the condition in Equation (3.4.2) “sign subgaussian”. How-

ever, by Lemma 5.14 in Vershynin (2010), the sign subgaussian condition is weaker than

that of Equation (3.4.4), i.e., a set of probability measures satisfying the sign subgaussian

condition does not necessarily satisfy the condition in Proposition 3.4.6.

The sign subgaussian condition is intuitive due to its relation to the Orlicz and subgaus-

sian norms. However, it is extremely difficult to verify whether a given set of distributions

satisfies this condition. The main difficulty arises because we must sharply characterize

the tail behavior of the summation of a sequence of possibly correlated discrete Bernoulli

random variables, which is much harder than analyzing the summation of Gaussian random

variables as usually done in the literature.

In the following we provide several examples of sets of distributions satisfying the sign

subgaussian condition. The next theorem shows the transelliptically distributed random

vector X ∼ TEd(Σ, ξ; f1, . . . , fd) such that Σ = Id (i.e., the underlying is a spherical

distribution) for d = 1, 2, . . . satisfies the sign subgaussian condition.

Theorem 3.4.7. Suppose that, for d = 1, 2, . . ., X ∼ TEd(Id, ξ; f1, . . . , fd) is transellipti-

cally distributed with a latent spherical distribution. Then X satisfies the sign subgaussian

condition.

In the next theorem, we provide a stronger version of Theorem 3.4.7. We call a square
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matrix compound symmetric if the off-diagonal values of the matrix are equal. The next

theorem shows the transelliptically distributed X ∼ TEd(Σ.ξ; f1, . . . , fd), with Σ a com-

pound symmetric matrix, satisfies Equation (3.4.4), and therefore satisfies the sign sub-

gaussian condition.

Theorem 3.4.8. Suppose that for d = 1, 2, . . ., X ∼ TEd(Σ, ξ; f1, . . . , fd) is transellipti-

cally distributed such that Σ is a compound symmetric matrix (i.e., Σjk = ρ for all j �= k).

Then if 0 ≤ ρ := Σ12 ≤ C0 < 1 for some absolute positive constant C0, we have that X

satisfies the sign subgaussian condition.

Although Theorem 3.4.7 can be directly proved using the result in Theorem 3.4.8, the

proof of Theorem 3.4.7 contains utterly different techniques which are more transparent

and illustrate the main challenges of analyzing binary sequences even in the uncorrelated

setting. Therefore, we still list this theorem separately. Theorem 3.4.8 leads to the follow-

ing corollary, which characterizes a subfamily of the transelliptical distributions satisfying

the sign subgaussian condition.

Corollary 3.4.9. Suppose that for d = 1, 2, . . ., X ∼ TEd(Σ, ξ; f1, . . . , fd) is transellipti-

cally distributed with Σ a block diagonal compound symmetric matrix, i.e.,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Σ1 0 0 . . . 0

0 Σ2 0 . . . 0

... . . . · · · · · · ...

0 0 0 . . . Σq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.4.5)
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where Σk ∈ R
dk×dk for k = 1, . . . , q is compound symmetric matrix with ρk := [Σk]12 ≥ 0.

We have, if q is upper bounded by an absolute positive constant and 0 ≤ ρk ≤ C1 < 1 for

some absolute positive constant C1, X satisfies the sign subgaussian condition.

We call the matrix in the form of Equation (3.4.5) block diagonal compound symmetric

matrix. Corollary 3.4.9 implies transelliptically distributed random vectors with a latent

block diagonal compound symmetric latent generalized correlation matrix satisfy the sign

subgaussian condition.

Remark 3.4.10. The subgaussian condition is an artifact of the proof. Right now, we are

not aware of any transelliptical distribution not satisfying this condition. More investiga-

tion on the necessity of this condition is challenging due to the discontinuity issue of the

sign transformation and will be left for future investigation.

Using the sign subgaussian condition, we have the following main result, which shows

as long as the sign subgaussian condition holds, improved rates of convergence for both T̂

and Σ̂ under the restricted spectral norm can be attained.

Theorem 3.4.11. For d = 1, 2, . . ., let x1, . . . ,xn be n observations of X ∈ R
d, for which

the sign subgaussian condition holds. We have, when s log(d/s)/n → 0,with probability

larger than 1− 2α,

‖T̂−T‖2,s ≤ 4(2K)1/2‖T‖2
√
s(3 + log(d/s)) + log(1/α)

n
. (3.4.6)

Moreover, when we further have X ∼ TEd(Σ, ξ; f1, . . . , fd), with probability larger 1 −
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2α− α2,

‖Σ̂−Σ‖2,s ≤ π2

(
2(2K)1/2‖Σ‖2

√
s(3 + log(d/s)) + log(1/α)

n
+
s log(d/α)

n

)
.

(3.4.7)

The results presented in Theorem 3.4.11 show under various settings the rate of con-

vergence for Σ̂ under the restricted spectral norm is OP (
√
s log(d/s)/n), which is the

parametric and minimax optimal rate shown in Vu and Lei (2012) within the Gaussian

family. However, the Kendall’s tau sample correlation matrix and its transformed version

attains this rate with all moment constraints waived.

3.5 Discussion

This work considers robust estimation of the correlation matrix using the rank-based

correlation coefficient estimator Kendall’s tau and its transformed version. We showed the

Kendall’s tau is an very robust estimator in high dimensions, because it can achieve the

parametric rate of convergence under various norms without any assumption on the data

distribution, and in particular, without assuming any moment constraints. We further con-

sider the transelliptical family proposed in Han and Liu (2014b), showing a transformed

version of the Kendall’s tau attains the parametric rate in estimating the latent Pearson’s

correlation matrix without assuming any moment constraints. Moreover, unlike the Gaus-

sian case, the theoretical analysis performed here motivates new understandings on rank-
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based estimators as well as new proof techniques. These new understandings and proof

techniques are of interest in their own right.

Han and Liu (2013b) studied the performance of the latent generalized correlation ma-

trix estimator on dependent data under some mixing conditions and proved that Σ̂ can

attain a s
√
log d/(nγ) rate of convergence under the restricted spectral norm, where γ ≤ 1

reflects the impact of non-independence on the estimation accuracy. It is also interest-

ing to consider extending the results in this work to dependent data under similar mixing

conditions, and see whether a similar
√
s log d/(nγ′) rate of convergence can be attained.

However, it is much more challenging to obtain such results in dependent data. The current

theoretical analysis based on U-statistics is still not sufficient to achieve this goal.

A problem closely related to the leading eigenvector estimation is principal component

detection, which is initiated in the work of Berthet and Rigollet (2012, 2013). It is in-

teresting to study this problem under the transelliptical family. It is worthy pointing out

Theorems 3.3.2 and 3.4.11 in this work can be exploited in measuring the statistical perfor-

mance of the corresponding detection of sparse principal components.

Lastly, we note this chapter consists of theoretical results sharpening the ones obtained

in the last chapter. In particular, we show the rank-based methods are indeed minimax

optimal for inferring the finite-dimensional parameters in a semiparametric transelliptical

model. This further supports our main idea in this thesis: We advocate using semiparamet-

ric models combined with nonparametric methods.
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4.1 Introduction

This chapter considers estimating the leading eigenvectors of the covariance matrix for

high dimensional, heavy-tailed data. Let X1, . . . ,Xn be n data points of a random vector

X ∈ R
d. We denote Σ to be the covariance matrix of X , and u1, . . . ,um to be its top m

leading eigenvectors. We want to find û1, . . . , ûm that can estimate u1, . . . ,um accurately.

In this chapter, we assume the covariance matrix of X exists.

The above problem is cloesely related to principal component analysis (PCA). In this

chapter we are interested in the high dimensional settings and consider the double asymp-

totic framework where the dimension d is allowed to increase with the sample size n. Under

this framework, the performance of PCA, using the leading eigenvectors of the Pearson’s

sample covariance matrix, has been studied for subgaussian data. In particular, for any

matrix M ∈ R
d×d, letting Tr(M) and σi(M) be the trace and i-th largest singular value

of M, Lounici (2013a) showed PCA is consistent when r∗(Σ) := Tr(Σ)/σ1(Σ) satisfies

r∗(Σ)/n → 0. r∗(Σ) is referred to as the effective rank of Σ in the literature (Vershynin,

2010; Lounici, 2013a).

When r∗(Σ)/n �→ 0, PCA might not produce a consistent estimator. The inconsis-

tency phenomenon of PCA under the double asymptotic framework has been pointed out

by Johnstone and Lu (2009). In particular, they showed the angle between the PCA esti-

mator and u1 may not converge to 0 if d/n → c for some constant c > 0. To avoid this

curse of dimensionality, certain types of sparsity assumptions are needed. For example,

in estimating the leading eigenvector u1 := (u11, . . . , u1d)
T , we may assume that u1 is
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sparse, i.e., s := card({j : u1j �= 0}) � n. We call the setting that u1 is sparse the “sparse

setting”, and the setting that u1 is not necessarily sparse the “non-sparse setting”.

Under the sparse setting, different variants of sparse PCA methods have been proposed.

For example, d’Aspremont et al. (2007) proposed to formulate a convex semidefinite pro-

gram for calculating the sparse leading eigenvectors. Jolliffe et al. (2003) and Zou et al.

(2006) connected PCA to regression and proposed to use lasso-type estimators in parame-

ter estimation. Shen and Huang (2008) and Witten et al. (2009) connected PCA to singular

vector decomposition (SVD) and proposed iterative algorithms for estimating the left and

right singular vectors. Journée et al. (2010) and Zhang and El Ghaoui (2011) proposed to

greedily search the principal submatrices of the covariance matrix. Recently, Ma (2013)

and Yuan and Zhang (2013) proposed to use modified versions of the power method to

estimate eigenvectors and principal subspaces.

Theoretical properties of these methods have been analyzed under both Gaussian and

subgaussian assumptions. On one hand, in terms of computationally efficient methods,

under the spike covariance Gaussian model, Amini and Wainwright (2009) showed the

consistency in parameter estimation and model selection for sparse PCA computed via the

semidefinite program proposed in d’Aspremont et al. (2007) and Ma (2013) justified the

use of a modified iterative thresholding method in estimating principal subspaces. Very

recently, via exploiting a convex program using the Fantope projection (Overton and Wom-

ersley, 1992; Dattorro, 2005), Vu et al. (2013) showed that there exist computationally ef-

ficient estimators that attain a rate of convergence OP (s
√
log d/n) for general covariance
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matrices. In Section 4.5.1 we will discuss the Fantope projection in more details.

On the other hand, there exists another line of research focusing on studying sparse

PCA conducted via combinatoric programs. For example, Vu and Lei (2012), Lounici

(2013b), and Vu and Lei (2013) studied leading eigenvector and principal subspace esti-

mation problems by exhaustively searching over all submatrices. They showed the optimal

OP (
√
s log(d/s)/n) rate of convergence can be attained using this computationally expen-

sive approach. Such a global search was also studied in Cai et al. (2014b), where they

established the upper and lower bounds in both covariance matrix and principal subspace

estimations. Barriers between the aforementioned statistically efficient method and compu-

tationally efficient methods in sparse PCA was pointed out by Berthet and Rigollet (2012)

using the principal component detection problem. Such barriers were also studied in Ma

and Wu (2013).

One limitation for the PCA and sparse PCA theories is that they rely heavily on the

Gaussian or subgaussian assumption. If the Gaussian assumption is correct, accurate es-

timation can be expected, otherwise, the obtained result may be misleading. To relax the

Gaussian assumption, Han and Liu (2014b) generalized the Gaussian to the semiparamet-

ric transelliptical family (called the “meta-elliptical” in their paper) for modeling the data.

The transelliptical family assumes that, after unspecified increasing marginal transforma-

tions, the data are elliptically distributed. By resorting to the marginal Kendall’s tau statis-

tic, Han and Liu (2014b) proposed a semiparametric alternative to scale-invariant PCA,

named transelliptical component analysis (TCA), for estimating the leading eigenvector of

70



CHAPTER 4. ELLIPTICAL COMPONENT ANALYSIS

the latent generalized correlation matrix Σ0. In a follow-up work, Han and Liu (2013a)

showed: (i) Under the non-sparse setting, TCA attains the OP (
√
r∗(Σ0) log d/n) rate of

convergence in parameter estimation, which is the same rate of convergence for PCA un-

der the subgaussian assumption (Lounici, 2013a; Bunea and Xiao, 2014); (ii) Under the

sparse setting, sparse TCA, formulated as a combinatoric program, can attain the optimal

OP (
√
s log(d/s)/n) rate of convergence under the “sign subgaussian” condition. More

recently, Vu et al. (2013) showed, sparse TCA, via the Fantope projection, can attain the

OP (s
√

log d/n) rate of convergence.

Despite of all these efforts, there are two remaining problems for the aforementioned

works exploiting the marginal Kendall’s tau statistic. First, using marginal ranks, they

can only estimate the leading eigenvectors of the correlation matrix but not the covariance

matrix. Secondly, the sign subgaussian condition is not easy to verify.

In this chapter, we show, under the elliptical model, the optimal OP (
√
s log(d/s)/n)

rate of convergence in estimating the leading eigenvector of Σ can be attained without

the need of sign subgaussian condition. In particular, we present an alternative procedure,

named elliptical component analysis (ECA), to directly estimate the eigenvectors of Σ and

treat the corresponding eigenvalues as nuisance parameters. ECA exploits multivariate

Kendall’s tau for estimating the eigenspace of Σ. When the target parameter is sparse, the

corresponding ECA procedure is specified to be called sparse ECA.

We show that (sparse) ECA has the following properties:

1. Under the non-sparse setting, ECA attains the efficient OP (
√
r∗(Σ) log d/n) rate of
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convergence;

2. Under the sparse setting, sparse ECA, via a combinatoric program, attains the mini-

max optimal OP (
√
s log(d/s)/n) rate of convergence;

3. Under the sparse setting, sparse ECA, via a computationally efficient program which

combines the Fantope projection (Vu et al., 2013) and truncated power algorithm

(Yuan and Zhang, 2013), attains the optimalOP (
√
s log(d/s)/n) rate of convergence

under a suboptimal scaling (s2 log d/n→ 0).

We compare (sparse) PCA, (sparse) TCA, and (sparse) ECA in Table 4.1.

4.1.1 Related Works

The multivariate Kendall’s tau statistic is first introduced in Choi and Marden (1998)

for testing independence and is further used in estimating low-dimensional covariance ma-

trices (Visuri et al., 2000; Oja, 2010) and principal components (Marden, 1999; Croux

et al., 2002; Jackson and Chen, 2004). In particular, Marden (1999) showed the popula-

tion multivariate Kendall’s tau, K, shares the same eigenspace as the covariance matrix Σ.

Croux et al. (2002) illustrated the asymptotical efficiency of ECA compared to PCA for the

Gaussian data when d = 2 and 3. Taskinen et al. (2012) characterized the robustness and

efficiency properties of ECA in low dimensions
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Table 4.1: The illustration of the results in (sparse) PCA, (sparse) TCA, and (sparse) ECA for the leading eigenvector estimation.

Similar results also hold for principal subspace estimation. Here Σ is the covariance matrix, Σ0 is the latent generalized

correlation matrix, r∗(M) := Tr(M)/σ1(M) represents the effective rank of M, “r.c.” stands for “rate of convergence”, ”n-

s setting 1” stands for the “non-sparse setting” and the estimation procedure is conducted via a combinatoric program, ”n-s

setting 2” stands for the ”non-sparse setting” and the estimation procedure is conducted via combining the Fantope projection

(Vu et al., 2013) and the truncated power method (Yuan and Zhang, 2013).

(sparse) PCA (sparse) TCA (sparse) ECA

working model: subgaussian family transelliptical family elliptical family

parameter of interest: eigenvectors of Σ eigenvectors of Σ0 eigenvectors of Σ

input statistics: Pearson’s covariance matrix Kendall’s tau multivariate Kendall’s tau

sparse setting (r.c.):
√
r∗(Σ) log d/n

√
r∗(Σ0) log d/n

√
r∗(Σ) log d/n

n-s setting 1 (r.c):
√
s log(d/s)/n s

√
log d/n (general),

√
s log(d/s)/n,√

s log(d/s)/n (sign subgaussian)

n-s setting 2 (r,c):
√
s log(d/s)/n s

√
log d/n

√
s log(d/s)/n

given s2 log d/n → 0 given s2 log d/n → 0
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Some related methods using multivariate rank-based statistics have also been discussed

in Tyler (1982), Tyler (1987), Taskinen et al. (2003), Oja and Randles (2004), Oja and

Paindaveine (2005), Oja et al. (2006), and Sirkiä et al. (2007). Theoretical analysis in low

dimensions was provided in Hallin and Paindaveine (2002b,a, 2004, 2005, 2006) and Hallin

et al. (2006).

Our work has significantly new contributions to high dimensional robust statistics lit-

erature. Theoretically, we study the use of multivariate Kendall’s tau in high dimensional

settings, provide new properties of the multivariate rank statistic, and characterize the per-

formance of ECA under both non-sparse and sparse settings. Computationally, we provide

an efficient algorithm for conducting sparse ECA and highlight the “optimal rate, subopti-

mal scaling” phenomenon in understanding the behavior of the proposed algorithm.

4.1.2 Notation

Let M = [Mjk] ∈ R
d×d be a symmetric matrix and v = (v1, ..., vd)

T ∈ R
d be a vector.

We denote vI to be the subvector of v whose entries are indexed by a set I , and MI,J to be

the submatrix of M whose rows are indexed by I and columns are indexed by J . We denote

supp(v) := {j : vj �= 0}. For 0 < q <∞, we define the �q and �∞ vector norms as ‖v‖q :=

(
∑d

i=1 |vi|q)1/q and ‖v‖∞ := max1≤i≤d |vi|. We denote ‖v‖0 := card(supp(v)). We define

the matrix entry-wise maximum value and Forbenius norms as ‖M‖max := max{|Mij|}

and ‖M‖F = (
∑

M2
jk)

1/2. Let λj(M) be the j-th largest eigenvalue of M. Let uj(M)

be the eigenvector of M corresponding to λj(M). With no loss of generality, we assume
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the first nonzero entry of uj(M) is positive. We denote ‖M‖2 to be the spectral norm of

M and S
d−1 := {v ∈ R

d : ‖v‖2 = 1} to be the d-dimensional unit sphere. We define

the restricted spectral norm ‖M‖2,s := supv∈Sd−1,‖v‖0≤s |vTMv|, so for s ≥ d, we have

‖M‖2,s = ‖M‖2. We denote f(M) to be the matrix with entries [f(M)]jk = f(Mjk). We

denote diag(M) to be the diagonal matrix with the same diagonal entries as M.

For any two numbers a, b ∈ R, we denote a ∧ b := min{a, b} and a ∨ b := max{a, b}.

For any two sequences of positive numbers {an} and {bn}, we write an = O(bn), or

equivalently bn = Ω(an), if there exist some constants N and C such that an ≤ Cbn for all

n > N . We write an � bn if an = O(bn) and bn = O(an). We write an = o(bn) if for

every positive constant ε, there exists a constant N such that an ≤ εbn for all n ≥ N . We

write bn = Ωo(an) if bn = Ω(an) and bn �� an.

4.1.3 Chapter Organization

The rest of this chapter is organized as follows. In the next section, we briefly introduce

the elliptical distribution, and review the marginal and multivariate Kendall’s tau statistics.

In Section 4.3, in the non-sparse setting, we propose the ECA method and study its theo-

retical performance. In Section 4.4, in the sparse setting, we propose a sparse ECA method

via a combinatoric program and study its theoretical performance. A computationally ef-

ficient algorithm for conducting sparse ECA is provided in Section 4.5. Experiments on

both synthetic and brain imaging data are provided in Section 4.6. The discussions are put

in Section 4.7.
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4.2 Background

In this section we briefly review the elliptical distribution, and marginal and multivariate

Kendall’s tau statistics. In the sequel, we denote X
d
= Y if random vectors X and Y have

the same distribution.

4.2.1 Elliptical Distribution

The elliptical distribution is defined as follows. Let μ ∈ R
d and Σ ∈ R

d×d with

rank(Σ) = q ≤ d. A d-dimensional random vector X has an elliptical distribution, de-

noted by X ∼ ECd(μ,Σ, ξ), if it has a stochastic representation

X
d
= μ+ ξAU , (4.2.1)

where U is a uniform random vector on the unit sphere in R
q, ξ ≥ 0 is a scalar random

variable independent of U , A ∈ R
d×q is a deterministic matrix satisfying AAT = Σ.

Here Σ is called the scatter matrix. In this chapter, we only consider continuous elliptical

distributions with P(ξ = 0) = 0.

An equivalent definition of the elliptical distribution is through the characteristic func-

tion exp(itTμ)ψ(tTΣt), where ψ is a properly defined characteristic function and i :=

√
−1. ξ and ψ are mutually determined. In this setting, we denote by X ∼ ECd(μ,Σ, ψ).

The elliptical family is closed to independent sums, and the marginal and conditional dis-

tributions of an elliptical distribution are also elliptically distributed.
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Compared to the Gaussian family, the elliptical family provides more flexibility in mod-

eling complex data. First, the elliptical family can model heavy-tail distributions (In con-

trast, Gaussian is light-tailed with exponential tail bounds.). Secondly, the elliptical family

can be used to model nontrivial tail dependence between variables (Hult and Lindskog,

2002), i.e., different variables tend to go to extremes together (In contrast, Gaussian fam-

ily can not capture any dependence in the tails.). The capability to handle heavy-tailed

distributions and tail dependence is important for modeling many datasets, including: (1)

Financial data (Almost all the financial data are heavy-tailed with nontrivial tail depen-

dence. See Rachev (2003) and Čižek et al. (2005)); (2) Genomics data (See Liu et al.

(2003) and Posekany et al. (2011)); (3) Bioimaging data (The fMRI data have heavy tails.

See, for example, Ruttimann et al. (1998)).

In the sequel, we assume Eξ2 < ∞ so the covariance matrix Cov(X) is well defined.

For model identifiability, we further assume Eξ2 = q so Cov(X) = Σ.

4.2.2 Marginal Rank-Based Estimators

In this section, we briefly review the marginal rank-based estimator using the Kendall’s

tau statistic. This statistic plays a vital role for estimating the leading eigenvectors of the

generalized correlation matrix Σ0 in Han and Liu (2014b). Letting X := (X1, . . . , Xd)
T ∈

R
d with X̃ := (X̃1, . . . , X̃d)

T be an independent copy of X , the population Kendall’s tau
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statistic is defined as:

τ(Xj, Xk) := Cov(sign(Xj − X̃j), sign(Xk − X̃k)).

Let X1, . . . ,Xn ∈ R
d with Xi := (xi1, . . . , xid)

T be n independent observations of X .

The sample Kendall’s tau statistic is defined as:

τ̂jk(X1, . . . ,Xn) :=
2

n(n− 1)

∑
1≤i<i′≤n

sign(xij − xi′j)sign(xik − xi′k).

It is easy to verify Eτ̂jk(X1, . . . ,Xn) = τ(Xj, Xk). Let R̂ = [R̂jk] ∈ R
d×d, with R̂jk =

sin(π
2
τ̂jk(X1, . . . ,Xn)), be the Kendall’s tau correlation matrix. The marginal rank-based

estimator θ̃1 used by TCA is obtained by plugging R̂ into the optimization formulation in

Vu and Lei (2012). When X ∼ ECd(μ,Σ, ξ) and under mild conditions, Han and Liu

(2014b) showed

E| sin∠(θ̃1,u1(Σ
0))| = O

(
s

√
log d

n

)
,

where s := ‖u1(Σ
0)‖0 and Σ0 is the generalized correlation matrix of X . However, TCA

is a variant of the scale-invariant PCA and can only estimate the leading eigenvector of

the correlation matrix. Then how to estimate the leading eigenvector of the covariance

matrix in high dimensional elliptical models? A straightforward approach is to exploit a
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covariance matrix estimator Ŝ := [Ŝjk], defined as

Ŝjk = R̂jk · σ̂jσ̂k, (4.2.2)

where {σ̂j}dj=1 are sample standard deviations. However, since the elliptical distribution

can be heavy-tailed, estimating the standard deviations is challenging and requires strong

moment conditions. In this work, we solve this problem by resorting to the multivariate

rank-based method.

4.2.3 Multivariate Kendall’s tau

Let X ∼ ECd(μ,Σ, ξ) and X̃ be an independent copy of X . The population multi-

variate Kendall’s tau matrix, denoted by K ∈ R
d×d, is defined as:

K := E

(
(X − X̃)(X − X̃)T

‖X − X̃‖22

)
. (4.2.3)

Let X1, . . . ,Xn ∈ R
d be n independent data points of a random vector X ∼ ECd(μ,Σ, ξ).

The definition of multivariate Kendall’s tau in (4.2.3) motivates the following sample ver-

sion multivariate Kendall’s tau estimator, which is a second-order U-statistic:

K̂ :=
2

n(n− 1)

∑
i′≤i

(Xi −Xi′)(Xi −Xi′)
T

‖Xi −Xi′‖22
. (4.2.4)
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It is obvious E(K̂) = K, and both K and K̂ are positive semidefinite (PSD) matrices.

Moreover, the kernel of the U statistics kMK(·) : Rd × R
d → R

d×d,

kMK(Xi,Xi′) :=
(Xi −Xi′)(Xi −Xi′)

T

‖Xi −Xi′‖22
, (4.2.5)

is bounded under the spectral norm, i.e., ‖kMK(·)‖2 ≤ 1. Intuitively, such a boundedness

property makes the U-statistic K̂ more amenable to theoretical analysis. Moreover, it is

worth noting the kMK(Xi,Xi′) is a distribution-free kernel, i.e., for any continuous X ∼

ECd(μ,Σ, ξ) with the generating variable ξ,

kMK(Xi,Xi′)
d
= kMK(zi, zi′),

where zi and zi′ follow Z ∼ Nd(μ,Σ). This can be proven using the closedness of the

elliptical family to independent sums, and Z is a stochastic scaling of X . Accordingly, as

will be shown later, the convergence of K̂ to K does not depend on the generating vari-

able ξ, and hence K̂ enjoys the same distribution-free property as the Tyler’s M estimator

(Tyler, 1987). However, multivariate Kendall’s tau can be directly extended to analyze high

dimensional data, while Tyler’s M estimator cannot.

Multivariate Kendall’s tau K can be viewed as the covariance matrix of the self-normalized

data {(Xi − Xi′)/‖Xi − Xi′‖2}i>i′ . It is immediate to see K is not identical or propor-

tional to the covariance matrix Σ of X . However, the following proposition, coming from

Marden (1999) and Croux et al. (2002), states the eigenspace of the multivariate Kendall’s
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tau statistic K is identical to the eigenspace of the covariance matrix Σ.

Proposition 4.2.1. Let X ∼ ECd(μ,Σ, ξ) be a continuous distribution and K be the

population multivariate Kendall’s tau statistic. Then if rank(Σ) = q and λj(Σ) �= λk(Σ)

for any k �= j ∈ {1, . . . , q}, we have

uj(Σ) = uj(K) and λj(K) = E

(
λj(Σ)Y 2

j

λ1(Σ)Y 2
1 + . . .+ λq(Σ)Y 2

q

)
, (4.2.6)

where Y := (Y1, . . . , Yq)
T ∼ Nq(0, Iq) is a standard multivariate Gaussian distribution.

Proposition 4.2.1 builds the connection between K and Σ, verifying they share the

same eigenspace with the same descending orders of the eigenvalues. Therefore, to recover

the eigenspace of the covariance matrix Σ, we can resort to recovering the eigenspace of

K, which, as is discussed above, can be more efficient in estimation via using K̂.

Remark 4.2.2. Equation (4.2.6) shows that uj(Σ) = uj(K). Given that Σ and K share

the same eigenspace as was shown in Marden (1999), this is equivalent to the statement

that λj(Σ) > λk(Σ) implies λj(K) > λk(K). Actually, we have

λk(K)

λj(K)
=

E
λk(Σ)Y 2

k

λj(Σ)Y 2
j +λk(Σ)Y 2

k +E

E
λj(Σ)Y 2

j

λj(Σ)Y 2
j +λk(Σ)Y 2

k +E

<
E

λk(Σ)Y 2
k

λk(Σ)Y 2
j +λk(Σ)Y 2

k +E

E
λj(Σ)Y 2

j

λj(Σ)Y 2
j +λj(Σ)Y 2

k +E

=
E

Y 2
k

Y 2
j +Y 2

k +E/λk(Σ)

E
Y 2
k

Y 2
j +Y 2

k +E/λj(Σ)

< 1,

where we letE :=
∑

i �∈{j,k} λi(Σ)Y 2
i independent of {Yj, Yk}. This provides a simple proof

of the left term of (4.2.6).

Remark 4.2.3. Proposition 4.2.1 shows the eigenspaces of K and Σ are identical and the
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eigenvalues of K only depend on the eigenvalues of Σ. Therefore, if we can theoretically

calculate the relationships between {λj(K)}dj=1 and {λj(Σ)}dj=1, we can recover Σ using

K̂. When, for example, λ1(Σ) = · · · = λq(Σ). this relationship is calculable. In particular,

it is shown (Check, for example, Section 3 in Bilodeau and Brenner (1999)) that

Y 2
j

Y 2
1 + · · ·+ Y 2

q

∼ Beta
(1
2
,
q − 1

2

)
, for j = 1, . . . , q,

where Beta(α, β) is the beta distribution with parameters α and β. Accordingly, λj(K) =

E(Y 2
j /(Y

2
1 +· · ·+Y 2

q )) = 1/q. The general relationship between {λj(K)}dj=1 and {λj(Σ)}dj=1

is non-linear: For example, when d = 2, Croux et al. (2002) showed that

λj(K) =

√
λj(Σ)√

λ1(Σ) +
√
λ2(Σ)

, for j = 1, 2.

4.3 ECA: Non-Sparse Setting

In this section, we propose and study the ECA method under the non-sparse setting, i.e,

we do not assume sparsity of u1(Σ). Without the sparsity assumption, we propose to use

the leading eigenvector u1(K̂) to estimate u1(K) = u1(Σ):

The ECA estimator : u1(K̂) (the leading eigenvector of K̂),
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where K̂ is defined in (4.2.4). For notational simplicity, in the sequel we assume the sample

size n is even. When n is odd, we can always use n − 1 data points without affecting the

obtained rate of convergence.

The approximation error of u1(K̂) to u1(K) is associated with the convergence of K̂ to

K under the spectral norm via the Davis-Kahan inequality (Davis and Kahan, 1970; Wedin,

1972). In detail, for any two vectors v1,v2 ∈ R
d, let sin∠(v1,v2) be the sine of the angle

between v1 and v2, with

| sin∠(v1,v2)| :=
√
1− (vT

1 v2)2.

Davis-Kahan inequality states the approximation error of u1(K̂) to u1(K) is controlled by

‖K̂−K‖2 divided by the eigengap between λ1(K) and λ2(K):

| sin∠(u1(K̂),u1(K))| ≤ 2

λ1(K)− λ2(K)
‖K̂−K‖2. (4.3.1)

Accordingly, to analyze the convergence rate of u1(K̂) to u1(K), we can focus on the

convergence rate of K̂ to K under the spectral norm. The next theorem shows, under the

elliptical distribution family, the convergence rate of K̂ to K under the spectral norm is

‖K‖2
√
r∗(K) log d/n, where r∗(K) = Tr(K)/λ1(K) is the effective rank of K and must

be less than or equal to d.

Theorem 4.3.1. Let X1, . . . ,Xn be n independent observations of X ∼ ECd(μ,Σ, ξ).

Let K̂ be the sample version multivariate Kendall’s tau statistic defined in Equation (4.2.4).
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We have, provided that n is sufficiently large such that

n ≥ 16

3
· (r∗(K) + 1)(log d+ log(1/α)),

with probability larger than 1− α,

‖K̂−K‖2 ≤ ‖K‖2
√

16

3
· (r

∗(K) + 1)(log d+ log(1/α))

n
.

There is a vast literature in bounding the spectral norm of a random matrix (See, for

example, Vershynin (2010) and the references therein) and our proof relies on the matrix

Bernstein inequality proposed in Tropp (2012), with a generalization to U-statistics.

Combining (4.3.1) and Theorem 4.3.1, we immediately have the following corollary,

which characterizes the explicit rate of convergence for | sin∠(u1(K̂),u1(K)|.

Corollary 4.3.2. Under the conditions of Theorem 4.3.1, provided that n is sufficiently

large such that

n ≥ 16

3
· (r∗(K) + 1)(log d+ log(1/α)),

we have, with probability larger than 1− α,

| sin∠(u1(K̂),u1(K))| ≤ 2λ1(K)

λ1(K)−λ2(K)

√
16

3
· (r

∗(K)+1)(log d+log(1/α))

n
.

Remark 4.3.3. Corollary 4.3.2 indicates it is not necessary to require d/n→ 0 for u1(K̂)
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to be a consistent estimator of u1(K). For example, when λ2(K)/λ1(K) is upper bounded

by an absolute constant strictly smaller than 1, r∗(K) log d/n → 0 is sufficient to make

u1(K̂) a consistent estimator of u1(K). Such an observation is consistent to the ob-

servations in the PCA theories and the log d term here is generally unavoidable if we

wish to highlight the role of the effective rank r∗(K) (Lounici, 2013a; Bunea and Xiao,

2014). On the other hand, Theorem 4.4.1 in the next section provides a rate of convergence

OP (λ1(K)
√
d/n) for ‖K̂−K‖2. Therefore, the final rate of convergence for ECA, under

various settings, can be expressed as OP (
√
r∗(K) log d/n ∧

√
d/n).

Remark 4.3.4. We note Theorem 4.3.1 can also help to quantify the subspace estimation

error via a variation of the Davis-Kahan inequality. In particular, let Pm(K̂) and Pm(K)

be the projection matrices to the span ofm leading eigenvectors of K̂ and K. Using Lemma

4.2 in Vu and Lei (2013), we have

‖Pm(K̂)− Pm(K)‖F ≤ 2
√
2m

λm(K)− λm+1(K)
‖K̂−K‖2, (4.3.2)

so that ‖Pm(K̂) − Pm(K)‖F can be controlled via a similar argument as in Corollary

4.3.2.

The above bounds are all related to the eigenvalues of K. The next theorem connects

the eigenvalues of K to the eigenvalues of Σ, so we can directly bound ‖K̂ − K‖2 and

| sin∠(u1(K̂),u1(K))| using Σ. In the sequel, let’s denote r∗∗(Σ) := ‖Σ‖F/λ1(Σ) ≤
√
d

to be the “second-order” effective rank of the matrix Σ.
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Theorem 4.3.5 (The upper and lower bounds of λj(K)). Letting X ∼ ECd(μ,Σ, ξ), we

have

λj(K) ≥ λj(Σ)

Tr(Σ) + 2‖Σ‖F
√
log d+ 2‖Σ‖2 log d

(
1− 1

d

)
,

and when Tr(Σ) > 2‖Σ‖F
√
log d,

λj(K) ≤ λj(Σ)

Tr(Σ)− 2‖Σ‖F
√
log d

+
1

d
.

Using Theorem 4.3.5, we can replace r∗(K) by (r∗(Σ) + 2r∗∗(Σ)
√
log d + 2 log d) ·

d/(d − 1) in Theorem 4.3.1. We also note Theorem 4.3.5 can help understand the scaling

of λj(K) with regard to λj(Σ). Actually, when ‖Σ‖F log d = Tr(Σ) · o(1), we have

λj(K) � λj(Σ)/Tr(Σ), and accordingly, we can continue to write

λ1(K)

λ1(K)− λ2(K)
� λ1(Σ)

λ1(Σ)− λ2(Σ)
.

In practice, ‖Σ‖F log d = Tr(Σ)·o(1) is a mild condition. For example, when the condition

number of Σ is upper bounded by an absolute constant, we have Tr(Σ) � ‖Σ‖F ·
√
d.

4.4 Sparse ECA via a Combinatoric Program

We analyze the theoretical properties of ECA under the sparse setting, where we assume

‖u1(Σ)‖0 ≤ s < d ∧ n. In this section we study the ECA method using a combinatoric
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program. For any matrix M ∈ R
d×d, we define the best s-sparse vector to u1(M) as

u1,s(M) := arg max
‖v‖0≤s,‖v‖2≤1

|vTMv|. (4.4.1)

We propose to estimate u1(Σ) = u1(K) via a combinatoric program:

Sparse ECA estimator via a combinatoric program : u1,s(K̂),

where K̂ is defined in (4.2.4). Under the sparse setting, by definition we have u1,s(K) =

u1(K) = u1(Σ). On the other hand, u1,s(K̂) can be calculated via a combinatoric program

by exhaustively searching over all s by s submatrices of K̂. This global search is not

computationally efficient. However, the result in quantifying the approximation error of

u1,s(K̂) to u1(K) is of strong theoretical interest. Similar algorithms were also studied in

Vu and Lei (2012), Lounici (2013b), Vu and Lei (2013), and Cai et al. (2014b). Moreover,

as will be seen in the next section, this will help clarify that a computationally efficient

sparse ECA algorithm can attain the same convergence rate, under a suboptimal scaling of

(n, d, s) though.

In the following we study the performance of u1,s(K̂) in conducting sparse ECA. The

approximation error of u1,s(K̂) to u1(K) is connected to the approximation error of K̂

to K under the restricted spectral norm. This is due to the following Davis-Kahan type
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inequality provided in Vu and Lei (2012):

| sin∠(u1,s(K̂),u1,s(K))| ≤ 2

λ1(K)− λ2(K)
‖K̂−K‖2,2s. (4.4.2)

Accordingly, for studying | sin∠(u1,s(K̂),u1,s(K))|, we focus on studying the approx-

imation error ‖K̂ − K‖2,s. Before presenting the main results, we provide some extra

notation. For any random variable X ∈ R, we define the subgaussian (‖ · ‖ψ2) and sub-

exponential norms (‖ · ‖ψ1) of X as follows:

‖X‖ψ2 := sup
k≥1

k−1/2(E|X|k)1/k and ‖X‖ψ1 := sup
k≥1

k−1(E|X|k)1/k. (4.4.3)

Any d-dimensional random vector X ∈ R
d is said to be subgaussian distributed with the

subgaussian constant σ if

‖vTX‖ψ2 ≤ σ, for any v ∈ S
d−1.

Moreover, we define the self-normalized operator S(·) for any random vector to be

S(X) := (X − X̃)/‖X − X̃‖2 where X̃ is an independent copy of X. (4.4.4)

It follows that K = ES(X)S(X)T .

The next theorem provides a general result in quantifying the approximation error of K̂
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to K with regard to the restricted spectral norm.

Theorem 4.4.1. Let X1, . . . ,Xn be n observations of X ∼ ECd(μ,Σ, ξ). Let K̂ be the

sample version multivariate Kendall’s tau statistic defined in Equation (4.2.4). We have,

when

s log(d/s)/n→ 0,

for n sufficiently large, with probability larger than 1− 2α,

‖K̂−K‖2,s ≤
(

sup
v∈Sd−1

2‖vTS(X)‖2ψ2
+ ‖K‖2

)
· C0

√
s(3 + log(d/s)) + log(1/α)

n
,

for some absolute constant C0. Here supv∈Sd−1 ‖vTX‖ψ2 can be further written as

sup
v∈Sd−1

‖vTS(X)‖ψ2 = sup
v∈Sd−1

∥∥∥∥∑d
i=1 viλ

1/2
i (Σ)Yi√∑d

i=1 λi(Σ)Y 2
i

∥∥∥∥
ψ2

≤ 1, (4.4.5)

where v := (v1, . . . , vd)
T and (Y1, . . . , Yd)

T ∼ Nd(0, Id).

It is obvious that S(X) is subgaussian with a variance proxy 1. However, typically

a sharper upper bound can be obtained. The next theorem shows, in various settings, the

upper bound can be in the same order of 1/q, which is much smaller than 1. Combined

with Theorem 4.4.1, these results give an upper bound of ‖K̂−K‖2,s.

Theorem 4.4.2. Let X1, . . . ,Xn be n observations of X ∼ ECd(μ,Σ, ξ) with rank(Σ) =

q and ‖u1(Σ)‖0 ≤ s. Let K̂ be the sample version multivariate Kendall’s tau statistic
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defined in Equation (4.2.4). We have,

sup
v∈Sd−1

‖vTS(X)‖ψ2 ≤
√
λ1(Σ)

λq(Σ)
· 2
q
∧ 1,

and accordingly, when s log(d/s)/n = o(1), with probability at least 1− 2α,

‖K̂−K‖2,s ≤ C0

{(
4λ1(Σ)

qλq(Σ)
∧ 1

)
+ λ1(K)

}√
s(3 + log(d/s)) + log(1/α)

n
.

Similar as Theorem 4.3.1, we wish to show

‖K̂−K‖2,s = OP (λ1(K)
√
s log(d/s)/n).

In the following, we provide several examples such that supv ‖vTS(X)‖2ψ2
is in the same

order of λ1(K), so that, via Theorem 4.4.2, the desired rate is attained.

• Condition number controlled: Bickel and Levina (2008a) considered the covari-

ance matrix model where the condition number of Σ, λ1(Σ)/λd(Σ), is upper bounded

by an absolute constant. Under this condition, we have

sup
v

‖vTS(X)‖2ψ2
� d−1,
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and applying Theorem 4.3.5 we also have

λj(K) � λj(Σ)

Tr(Σ)
� d−1.

Accordingly, we conclude supv ‖vTS(X)‖2ψ2
and λ1(K) are in the same order.

• Spike covariance model: Johnstone and Lu (2009) considered the following simple

spike covariance model:

Σ = βvvT + a2Id,

where β, a > 0 are two positive real numbers and v ∈ S
d−1. In this case, we have,

when β = o(da2/
√
log d) or β = Ω(da2),

sup
v

‖vTS(X)‖2ψ2
� β + a2

da2
∧ 1 and λ1(K) � β + a2

β + da2
.

A simple calculation shows supv ‖vTS(X)‖2ψ2
and λ1(K) are in the same order.

• Multi-Factor Model: Fan and Fan (2008) considered a multi-factor model, which is

also related to the general spike covariance model (Ma, 2013):

Σ =
m∑
j=1

βjvjv
T
j +Σu,

where we have β1 ≥ β2 ≥ · · · ≥ βm > 0, v1, . . . ,vm ∈ S
d−1 and are orthogonal

to each other, and Σu is a diagonal matrix. For simplicity, we assume Σu = a2Id.
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When
∑
β2
j = o(d2a4/ log d), we have

sup
v

‖vTS(X)‖2ψ2
� β1 + a2

da2
∧ 1 and λ1(K) � β1 + a2∑m

j=1 βj + da2
,

and supv ‖vTS(X)‖2ψ2
and λ1(K) are in the same order if, for example,

∑m
j=1 βj =

O(da2).

Equation (4.4.2) and Theorem 4.4.2 together give the following corollary, which quan-

tifies the convergence rate of the sparse ECA estimator calculated via the combinatoric

program in (4.4.1).

Corollary 4.4.3. Under the condition of Theorem 4.4.2, if we have s log(d/s)/n → 0, for

n sufficiently large, with probability larger than 1− 2α,

| sin∠(u1,s(K̂),u1,s(K))| ≤ 2C0(4λ1(Σ)/qλq(Σ) ∧ 1 + λ1(K))

λ1(K)− λ2(K)
·√

2s(3 + log(d/2s)) + log(1/α)

n
.

Remark 4.4.4. The restricted spectral norm convergence result obtained in Theorem 4.4.2

is also applicable to analyze principal subspace estimation accuracy. Following the discus-

sion in Vu and Lei (2013), we define the principal subspace estimator to the space spanned

by the toppest m eigenvectors of any given matrix M ∈ R
d×d as

Um,s(M) := arg max
V∈Rd×m

〈
M,VVT

〉
, subject to

d∑
j=1

I(Vj∗ �= 0) ≤ s, (4.4.6)
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where Vj∗ is the j-th row of M and the indicator function is 0 if and only if Vj∗ = 0. We

then have

‖Um,s(K̂)Um,s(K̂)T −Um,s(K)Um,s(K)T‖F ≤ 2
√
2m

λm(K)− λm+1(K)
· ‖K̂−K‖2,2ms.

An explicit statement of the above inequality can be found in Wang et al. (2013).

4.5 Sparse ECA via a Computationally Efficient

Program

There is a vast literature in studying computationally efficient algorithms for estimating

sparse u1(Σ). In this section, we focus on such an algorithm for conducting sparse ECA

by combining the Fantope projection (Vu et al., 2013) with the truncated power method

(Yuan and Zhang, 2013).

4.5.1 Fantope Projection

In this section, we first review the algorithm and theory developed in Vu et al. (2013)

for sparse subspace estimation, and then we provide some new analysis in obtaining the

sparse leading eigenvector estimators.

Let Πm := VmV
T
m with Vm as the combination of the m leading eigenvectors of K. It

is well known that Πm is the optimal rank-m projections to K. Similarly as in (4.4.6), we
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define sΠ to be the number of nonzero columns in Πm.

We then introduce the sparse principal subspace estimator Xm corresponding to the

space spanned by the first m leading eigenvectors of the multivariate Kendall’s tau matrix

K̂. To induce sparsity, Xm is defined to be the solution to the following convex program:

Xm := arg max
M∈Rd×d

〈
K̂,M

〉
− λ
∑
j,k

|Mjk|, subject to 0 � M � Id and Tr(M) = m,

(4.5.1)

where for any two matrices A,B ∈ R
d×d, A � B represents B−A is positive semidefinite.

Here {M : 0 � M � Id,Tr(M) = m} is a convex set called the Fantope. We then have

the following deterministic theorem to quantify the approximation error of Xm to Πm.

Theorem 4.5.1 (Vu et al. (2013)). If the tuning parameter λ in (4.5.1) satisfies that λ ≥

‖K̂−K‖max, we have

‖Xm −Πm‖F ≤ 4sΠλ

λm(K)− λm+1(K)
,

where we note the sΠ is the number of nonzero columns in Πm.

It is easy to see Xm is symmetric and the rank of Xm must be greater or equal to m,

but is not necessary to be exactly m. However, in various cases, dimension reduction for

example, it is desired to estimate the top m leading eigenvectors of Σ, or equivalently, to

estimate an exactly rank m projection matrix. Noticing that Xm is a real symmetric matrix,
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we propose to use the following estimate X̂m ∈ R
d×d:

X̂m :=
∑
j≤m

uj(Xm)[uj(Xm)]
T . (4.5.2)

We then have the next theorem, which quantifies the distance between X̂m and Πm.

Theorem 4.5.2. If λ ≥ ‖K̂−K‖max, we have

‖X̂m −Πm‖F ≤ 4‖Xm −Πm‖F ≤ 16sΠλ

λm(K)− λm+1(K)
.

4.5.2 A Computationally Efficient Algorithm

In this section, we propose a computationally efficient algorithm to conduct sparse ECA

via combining the Fantope projection with the truncated power algorithm proposed in Yuan

and Zhang (2013). We focus on estimating the leading eigenvector of K because the rest

can be iteratively estimated using the deflation method (Mackey, 2008).

The main idea here is to exploit the Fantope projection for constructing a good initial

parameter for the truncated power algorithm and then perform iterative thresholding as in

Yuan and Zhang (2013). We call this the Fantope-truncated power algorithm, or FTPM,

for abbreviation. Before proceeding to the main algorithm, we first introduce some extra

notation. For any vector v ∈ R
d and an index set J ⊂ {1, . . . , d}, we define the truncation
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function TRC(·, ·) to be

TRC(v, J) :=
(
v1 · I(1 ∈ J), . . . , vd · I(d ∈ J)

)T
, (4.5.3)

where I(·) is the indicator function. The initial parameter v(0), then, is the normalized

vector consisting of the largest entries in u1(X1), where X1 is calculated in (4.5.1):

v(0) = w0/‖w0‖2, where w0 = TRC(u1(X1), Jδ) and Jδ = {j : |(u1(X1))j| ≥ δ}.

(4.5.4)

We have ‖v(0)‖0 = supp{j : |(u1(X1))j| ≥ δ}. Algorithm 2 then provides the detailed

FTPM algorithm and the final FTPM estimator is denoted as ûFT
1,k.

Algorithm 2 The FTPM algorithm. Within each iteration, a new sparse vector v(t) with

‖v(t)‖0 ≤ k is updated. The algorithm terminates when ‖v(t)−v(t−1)‖2 is less than a given

threshold ε.

algorithmECA: ûFT
1,k(K̂) ← FTPM(K̂, k, ε)

Initialize: X1 calculated by (4.5.1) with m = 1, v(0) is calculated using (4.5.4), and

t← 0
Repeat:

t← t+ 1
Xy ← K̂v(t−1)

If ‖Xt‖0 ≤ k, then v(t) = Xt/‖Xt‖2
Else, let At be the indices of the elements in Xt with the largest k absolute values

v(t) = TRC(Xt, At)/‖TRC(Xt, At)‖2
Until convergence: ‖v(t) − v(t−1)‖2 ≤ ε

ûFT
1,k(K̂) ← v(t)

Output: ûFT
1,k(K̂)

In the rest of this section, we study the approximation accuracy of ûFT
1,k to u1(K).
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Via observing Theorems 4.5.1 and 4.5.2, it is immediate the approximation accuracy of

u1(X1) is related to ‖K̂ −K‖max. The next theorem gives a nonasymptotic upper bound

of ‖K̂−K‖max, and accordingly, combined with Theorems 4.5.1 and 4.5.2, gives an upper

bound on | sin∠(u1(X1),u1(K))|.

Theorem 4.5.3. Let X1, . . . ,Xn be n observations of X ∼ ECd(μ,Σ, ξ) with rank(Σ) =

q and ‖u1(Σ)‖0 ≤ s. Let K̂ be the sample version multivariate Kendall’s tau statistic

defined in Equation (4.2.4). If log d/n = o(1), we have there exists some positive absolute

constant C1 such that for sufficiently large n, with probability at least 1− α2,

‖K̂−K‖max ≤ C1

(8λ1(Σ)

qλq(Σ)
+ ‖K‖max

)√ log d+ log(1/α)

n
.

Accordingly, if

λ ≥ C1

(8λ1(Σ)

qλq(Σ)
+ ‖K‖max

)√ log d+ log(1/α)

n
, (4.5.5)

we have, with probability at least 1− α2,

| sin∠(u1(X1),u1(K))| ≤ 8
√
2sλ

λ1(K)− λ2(K)
.

Theorem 4.5.3 builds sufficient conditions under which u1(X1) is a consistent estimator

of u1(K). Under multiple settings, the “condition number controlled”, “spike covariance

model”, and “multi-factor model” settings considered in Section 4.4 for example, when
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λ � λ1(K)
√
log d/n, we have | sin∠(u1(X1),u1(K))| = OP (s

√
log d/n). This is sum-

marized in the next corollary.

Corollary 4.5.4. Under the conditions of Theorem 4.5.3, if we further have λ1(Σ)/qλq(Σ) =

O(λ1(K)), ‖Σ‖F log d = Tr(Σ) ·o(1), λ2(Σ)/λ1(Σ) is upper bounded by an absolute con-

stant less than 1, and λ � λ1(K)
√
log d/n, then

| sin∠(u1(X1),u1(K))| = OP

(
s

√
log d

n

)
.

Corollary 4.5.4 is a direct consequence of Theorem 4.5.3 and Theorem 4.3.5, and its

proof is omitted. We then turn to study the estimation error of ûFT
1,k(K̂). By examining

Theorem 4 in Yuan and Zhang (2013), for theoretical guarantee of fast rate of convergence,

it is enough to show that (v(0))Tu1(K) is lower bounded by an absolute constant larger

than zero. In the next theorem, we show, under mild conditions, this is true with high

probability, and accordingly we can exploit the result in Yuan and Zhang (2013) to show

that ûFT
1,k(K̂) attains the same optimal convergence rate as that of u1,s(K̂).

Theorem 4.5.5. Under the conditions of Corollary 4.5.4, let J0 := {j : |(u1(K))j| =

Ω0(s log d/
√
n)}. Set δ in (4.5.4) to be δ = C2s(log d)/

√
n for some positive absolute con-

stantC2. If s
√
log d/n→ 0, and ‖(u1(K))J0‖2 ≥ C3 > 0 is lower bounded by an absolute

positive constant, then, with probability tending to 1, ‖v(0)‖0 ≤ s and |(v(0))Tu1(K)| is

lower bounded by C3/2. Accordingly under the condition of Theorem 4 in Yuan and Zhang
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(2013), for k ≥ s, we have

| sin∠(ûFT
1,k(K̂),u1(K))| = OP

(√(k + s) log d

n

)
.

Remark 4.5.6. Although a similar second step of truncation is performed, the assump-

tion that the largest entries in u1(K) satisfy ‖(u1(K))J0‖2 ≥ C3 is much weaker than the

assumption in Theorem 3.2 of Vu et al. (2013), because we allow a lot of entries in the lead-

ing eigenvector to be small and not detectable. This is possible since our aim is parameter

estimation instead of guaranteeing the consistency in model selection.

Remark 4.5.7. In practice, we can adaptively select the tuning parameter k in Algorithm

2. One possible way is to use the criterion set up in Yuan and Zhang (2013), selecting k to

maximize (ûFT
1,k(K̂))T ·K̂val · ûFT

1,k(K̂), where K̂val is an independent empirical multivariate

Kendall’s tau statistic based on a separated sample set of the data. Yuan and Zhang (2013)

showed such a heuristic performed quite well in applications.

Remark 4.5.8. In Corollary 4.5.4 and Theorem 4.5.5, we assume λ is in the same scale of

λ1(K)
√
log d/n. In practice, λ is a tuning parameter. Here we can select λ using similar

data driven estimation procedures as proposed in Lounici (2013b) and Wegkamp and Zhao

(2013). The main idea is to replace the population quantities with their corresponding em-

pirical versions in (4.5.5). We hypothesize similar theoretical behaviors can be anticipated

using a data driven way to select λ, as were shown in Lounici (2013b) and Wegkamp and

Zhao (2013).
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4.6 Numerical Experiments

In this section we use both synthetic and real data to investigate the empirical usefulness

of ECA. We use the FTPM algorithm described in Algorithm 2 for parameter estimation.

To estimate more than one leading eigenvectors, we exploit the deflation method proposed

in Mackey (2008). Here the cardinalities of the support sets of the leading eigenvectors are

treated as tuning parameters. The following three methods are considered:

• TP: Sparse PCA method on the Pearson’s sample covariance matrix;

• TCA: Transelliptical component analysis based on the transformed Kendall’s tau co-

variance matrix shown in Equation (4.2.2);

• ECA: Elliptical component analysis based on the multivariate kendall’s tau matrix.

For fairness of comparison, TCA and TP also exploit the FTPM algorithm, while using

the Kendall’s tau covariance matrix and Pearson’s sample covariance matrix as the input

matrix. The tuning parameter λ in (4.5.1) is selected using the method discussed in Remark

4.5.8, and the truncation value δ in (4.5.4) is selected such that ‖v(0)‖0 ≤ 10.

4.6.1 Simulation Study

In this section, we conduct simulation study to back up the theoretical results and further

investigate the empirical performance of ECA.
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4.6.1.1 Dependence on Sample Size and Dimension

We first illustrate the dependence of the estimation accuracy of the sparse ECA estima-

tor on the triplet (n, d, s). We adopt the data generating schemes of Yuan and Zhang (2013)

and Han and Liu (2014b). More specifically, we first create a covariance matrix Σ whose

first two eigenvectors vj := (vj1, . . . , vjd)
T are specified to be sparse:

v1j =

⎧⎪⎪⎨⎪⎪⎩
1√
10

1 ≤ j ≤ 10

0 otherwise

and v2j =

⎧⎪⎪⎨⎪⎪⎩
1√
10

11 ≤ j ≤ 20

0 otherwise

.

Then we let Σ be Σ = 5v1v
T
1 +2v2v

T
2 +Id, where Id ∈ R

d×d is the identity matrix. We have

λ1(Σ) = 6, λ2(Σ) = 3, λ3(Σ) = . . . = λd(Σ) = 1. Using Σ as the covariance matrix,

we generate n data points from a Gaussian distribution or a multivariate-t distribution with

degrees of freedom 3. Here the dimension d varies from 64 to 256 and the sample size n

varies from 10 to 500. Figure 4.1 plots the averaged angle distances | sin∠(ṽ1,v1)| between

the sparse ECA estimate ṽ1 and the true parameter v1, for dimensions d = 64, 100, 256,

over 1,000 replications. In each setting, s := ‖v1‖0 is fixed to be a constant s = 10.

By examining the two curves in Figure 4.1 (A) and (B), the averaged distance between

v1 and ṽ1 starts at almost zero (for sample size n large enough), and then transits to almost

one as the sample size decreases (In other words, 1/n increases simultaneously.). Figure

4.1 reports all curves almost overlapped with each other when the averaged distances are

plotted against log d/n. This phenomenon confirms the results in Theorem 4.5.5. Con-

sequently, the ratio n/ log d acts as an effective sample size in controlling the prediction
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Figure 4.1: Simulation for two different distributions (normal and multivariate-t) with vary-

ing numbers of dimension d and sample size n. Plots of averaged distances between the

estimators and the true parameters are conducted over 1,000 replications. (A) Normal dis-

tribution; (B) Multivariate-t distribution.

accuracy of the eigenvectors.

4.6.1.2 Estimating the Leading Eigenvector of the Covariance Matrix

We now focus on estimating the leading eigenvector of the covariance matrix Σ. The

first three rows in Table 4.2 list the simulation schemes of (n, d) and Σ. In detail, let

ω1 > ω2 > ω3 = . . . = ωd be the eigenvalues and v1, . . . ,vd be the eigenvectors of Σ with

vj := (vj1, . . . , vjd)
T . The top m leading eigenvectors v1, . . . ,vm of Σ are specified to be
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sparse such that sj := ‖vj‖0 is small and

vjk =

⎧⎪⎪⎨⎪⎪⎩
1/
√
sj, 1+

∑j−1
i=1 si ≤ k ≤∑j

i=1 si,

0, otherwise.

Accordingly, Σ is generated as

Σ =
m∑
j=1

(ωj − ωd)vjv
T
j + ωdId.

Table 4.2 shows the cardinalities s1, . . . , sm and eigenvalues ω1, . . . , ωm and ωd. In this

section we set m = 2 (for the first three schemes) and m = 4 (for the later three schemes).

Table 4.2: Simulation schemes with different n, d and Σ. Here the eigenvalues of Σ are

set to be ω1 > . . . > ωm > ωm+1 = . . . = ωd and the top m leading eigenvectors

v1, . . . ,vm of Σ are specified to be sparse with sj := ‖vj‖0 and ujk = 1/
√
sj for k ∈ [1 +∑j−1

i=1 si,
∑j

i=1 si] and zero for all the others. Σ is generated as Σ =
∑m

j=1(ωj−ωd)vjv
T
j +

ωdId. The column “Cardinalities” shows the cardinality of the support set of {vj} in the

form: “s1, s2, . . . , sm, ∗, ∗, . . .”. The column “Eigenvalues” shows the eigenvalues of Σ in

the form: “ω1, ω2, . . . , ωm, ωd, ωd, . . .”. In the first three schemes, m is set to be 2; In the

second three schemes, m is set to be 4.

Scheme n d Cardinalities Eigenvalues

Scheme 1 50 100 10, 10, ∗, ∗, . . . 6, 3, 1, 1, 0, 0, . . .
Scheme 2 100 100 10, 10, ∗, ∗ . . . 6, 3, 1, 1, 0, 0, . . .
Scheme 3 100 200 10, 10, ∗, ∗, . . . 6, 3, 1, 1, 0, 0, . . .
Scheme 4 50 100 10, 8, 6, 5, ∗, ∗, . . . 8, 4, 2, 1, 0.01, 0.01, . . .
Scheme 5 100 100 10, 8, 6, 5, ∗, ∗, . . . 8, 4, 2, 1, 0.01, 0.01, . . .
Scheme 6 100 200 10, 8, 6, 5, ∗, ∗, . . . 8, 4, 2, 1, 0.01, 0.01, . . .

We consider the following four different elliptical distributions:

(Normal) X ∼ ECd(0,Σ, ξ1 ·
√
d/Eξ21) with ξ1

d
= χd. Here χd is the chi-distribution
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with degrees of freedom d. For Y1, . . . , Yd
i.i.d.∼ N(0, 1),

√
Y 2
1 + . . .+ Y 2

d

d
= χd.

In this setting, X follows a Gaussian distribution (Fang et al., 1990).

(Multivariate-t) X ∼ ECd(0,Σ, ξ2 ·
√
d/Eξ22) with ξ2

d
=

√
κξ∗1/ξ

∗
2 . Here ξ∗1

d
= χd and

ξ∗2
d
= χκ with κ ∈ Z

+. In this setting, X follows a multivariate-t distribution with degrees

of freedom κ (Fang et al., 1990). Here we consider κ = 3.

(EC1) X ∼ ECd(0,Σ, ξ3) with ξ3 ∼ F (d, 1), i.e., ξ3 follows an F -distribution with

degrees of freedom d and 1 (Here ξ3 has no finite mean. But ECA could still estimate the

eigenvectors of the scatter matrix and is thus robust).

(EC2) X ∼ ECd(0,Σ, ξ4 ·
√
d/Eξ24) with ξ4 ∼ Exp(1), i.e., ξ4 follows an exponential

distribution with the rate parameter 1.

We repeatedly generate n data points according to the schemes 1 to 3 and the four distri-

butions discussed above for 1,000 times. To show the estimation accuracy, Figure 4.2 plots

the averaged distances between the estimate v̂1 and the true v1, defined as | sin∠(v̂1,v1)|,

against the numbers of estimated nonzero entries (defined as ‖v̂1‖0), for three different

methods: TP,TCA, and ECA.

To show the feature selection results for estimating the support set of the leading eigen-

vector v1, Figure 4.3 plots the false positive rates against the true positive rates for the three

different estimators under different schemes of (n, d),Σ, and different distributions.
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Figure 4.2: Curves of averaged distances between the estimates and true parameters for

different schemes and distributions (normal, multivariate-t, EC1, and EC2, from top to

bottom) using the FTPM algorithm. Here we are interested in estimating the leading eigen-

vector. The horizontal-axis represents the cardinalities of the estimates’ support sets and

the vertical-axis represents the averaged distances.
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Scheme 1 Scheme 2 Scheme 3
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Figure 4.3: ROC curves for different methods in schemes 1 to 3 and different distributions

(normal, multivariate-t, EC1, and EC2, from top to bottom) using the FTPM algorithm.

Here we are interested in estimating the sparsity pattern of the leading eigenvector.
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Figure 4.2 shows when the data are non-Gaussian but follow an elliptical distribution,

ECA consistently outperforms TCA and TP in estimation accuracy. Moreover, when the

data are indeed normal, there is no obvious difference between ECA and TP, indicating

that ECA is a safe alternative to sparse PCA within the elliptical family. Furthermore,

Figure 4.3 verifies that, in term of feature selection, the same conclusion can be drawn.

4.6.1.3 Estimating the Top m Leading Eigenvectors of the Covariance

Matrix

Next, we focus on estimating the top m leading eigenvectors of the covariance matrix

Σ. We generate Σ in a similar way as in Section 4.6.1.2. We adopt the schemes 4 to 6

in Table 4.2 and the four distributions discussed in Section 4.6.1.2. We consider the case

m = 4. We use the iterative deflation method and exploit the FTPM algorithm in each step

to estimate the eigenvectors v1, . . . ,v4. The tuning parameter remains the same in each

iterative delation step.

As in the last section, Figure 4.4 plots the distances between the estimates v̂1, . . . , v̂4

and the true parameters v1, . . . ,v4 against the numbers of estimated nonzero entries. Here

the distance is defined as
∑4

j=1 | sin∠(vj, v̂j)| and the number is defined as
∑4

j=1 ‖v̂j‖0.

We see the averaged distance starts from 4 and decreases first, then increases with the

number of estimated nonzero entries. The minimum achieves when the number of nonzero

entries is 40. The same conclusions drawn in the last section hold here, indicating ECA is

a safe alternative to sparse PCA when the data are elliptically distributed.
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Figure 4.4: Curves of averaged distances between the estimates and true parameters for

different methods in schemes 4 to 6 and different distributions (normal, multivariate-t,
EC1, and EC 2, from top to bottom) using the FTPM algorithm. Here we are interested in

estimating the top 4 leading eigenvectors. The horizontal-axis represents the cardinalities

of the estimates’ support sets and the vertical-axis represents the averaged distances.
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4.6.2 Brain Imaging Data Study

In this section, we apply ECA and the other two methods to a brain imaging data

obtained from the Autism Brain Imaging Data Exchange (ABIDE) project (Di Martino

et al., 2013). The ABIDE project shares over 1,000 functional and structural scans from

people with and without autism. This dataset includes 1,043 subjects, of which 544 are

control and the rest are diagnosed with autism. Each subject is scanned for multiple time

points, ranging from 72 to 290. The data were pre-processed to correct for the motion and

eliminating noises. We refer to Di Martino et al. (2013) and Kang (2013) for more details

in data preprocessing procedures.

Based on the 3D scans, we extract 116 regions of interest (Tzourio-Mazoyer et al.,

2002) and broadly cover the brain. This gives us 1,043 matrices, each with 116 columns

and number of rows ranging from 72 to 290. We then followed the idea in Eloyan et al.

(2012) and Han et al. (2013) to compress the information of each subject by taking the

median of each column for each matrix. In this study, we are mainly interested in studying

the control group of subjects without autism. This gives a 544× 116 matrix.

Table 4.3: Testing for normality of the ABIDE data. This table illustrates the number

of voxels (out of a total number 116) rejecting the null hypothesis of normality at the

significance level of 0.05 with or without Bonferroni’s adjustment.

Critical value Kolmogorov-Smirnov Shapiro-Wilk Lilliefors
0.05 88 115 115

0.05/116 61 113 92
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First, we explore the obtained dataset to unveil several characteristics. In general, we

find the observed data are non-Gaussian and marginally symmetric. We first illustrate the

non-Gaussian issue. Table 4.3 provides the results of marginal normality tests. Here we

conduct the three marginal normality tests at the significant level of 0.05. It is clear that

at most 28 out of 116 voxels would pass any of three normality test. With Bonferroni

correction there are still over half voxels failing to pass any normality tests. This indicates

these imaging data are not Gaussian distributed.

We then show these data are marginally symmetric. For this, we first calculate the

marginal skewness of each column in the data matrix. We then compare the empirical dis-

tribution function based on the marginal skewness values of the data matrix with that based

on the simulated data from the standard Gaussian (N(0, 1)), t distribution with degree free-

dom 3 (t(df = 3)), t distribution with degree freedom 5 (t(df = 5)), and the exponential

distribution with the rate parameter 1 (exp(1)). Here the first three distributions are sym-

metric, and the exponential distribution is skewed to the right. Figure 4.5 plots the five

estimated distribution functions. We see the distribution function for the marginal skew-

ness of the imaging data is very close to that of the t(df = 3) distribution . This indicates

the data are marginally symmetric. Moreover, the distribution function based on the imag-

ing data is far away from that based on the Gaussian distribution, indicating these data can

be heavy-tailed.

The above data exploration results reveal the ABIDE data are non-Gaussian, symmetric,

and heavy-tailed, which make elliptical distribution an very appealing way in modeling the

110



CHAPTER 4. ELLIPTICAL COMPONENT ANALYSIS

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Skewness

x

F(
x)

N(0,1)
t(df=3)
t(df=5)
exp(1)
ABIDE

Figure 4.5: Illustration of the symmetric and heavy-tailed properties of the brain imaging

data. The estimated cumulative distribution functions (CDF) of the marginal skewness

based on the ABIDE data and four simulated distributions are plotted against each other.

data. We then apply TP, TCA and ECA to this dataset. We extract the top three eigenvectors

and set the tuning parameter of the truncated power method to be 40. We project any two

principal components of the ABIDE data into 2D plots, shown in Figure 4.6. Here the red

dots represent the possible outliers that could have strong leverage influence. The leverage

strength is defined as the diagonal values of the hat matrix in the linear model obtained

by regressing the first principal component on the second one (Neter et al., 1996). High
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Figure 4.6: Plots of principal components 1 against 2, 1 against 3, 2 against 3 from top to

bottom. The methods used are TP, TCA and ECA. Here red dots represent the points with

strong leverage influence.

leverage strength means including these points will severely affect the linear regression

estimates applied to principal components from the data. A data point is said to have

strong leverage influence, if its leverage strength is higher than a chosen threshold value.

Here we choose the threshold value to be 0.05(≈ 27/544).

112



CHAPTER 4. ELLIPTICAL COMPONENT ANALYSIS

It can be seen there are points with strong leverage influence for both statistics learnt

by TP and TCA, while none for ECA (noted by red in Figure 4.6). This implies ECA

has the potential to deliver better results for inference based on these estimated principal

components.

4.7 Discussion

In this chapter, we propose elliptical component analysis (ECA) for estimating the

eigenspace of the covariance matrix within the elliptical family, and study the statistical

properties of ECA. For handling heavy tailed distributions, we focus on the multivariate

Kendall’s tau statistic. In the previous sections, we provided theoretical results to justify

the use of both ECA and sparse ECA in analyzing high dimensional elliptical data. Table

4.1 summaries the theoretical performances of (sparse) ECA and provides comparisons to

(sparse) PCA and (sparse) TCA. It could be observed that (sparse) ECA, although built

on a significantly larger distribution family than the Gaussian, maintains similar statistical

properties as (sparse) PCA under the subgaussian model in various settings.

Existing theory of multivariate Kendall’s tau has been confined in the low dimensional

settings (The dimension d is fixed). See for example, Marden (1999), Croux et al. (2002),

and Jackson and Chen (2004). Instead, the ECA theory is for high dimensional regimes

(where d could be even larger than n). Two other related methods — TCA and Copula

Component Analysis (COCA) — have been recently proposed by Han and Liu (2014b)
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and Han and Liu (2014a), in which they studied the performance of marginal rank-based

statistics (including Kendall’s tau and Spearmans’ rho) on the transelliptical and nonparan-

romal models. These methods can efficiently estimate the leading eigenvectors of the (la-

tent) correlation matrix. However, ECA is fundamentally different from TCA and COCA

in the following aspects.

On one hand, the main differences between ECA and TCA include: (i) TCA can only

estimate the leading eigenvectors of the correlation matrix, while ECA estimates the lead-

ing eigenvectors of the covariance matrix; (ii) Unlike ECA, TCA cannot estimate the prin-

cipal components; (iii) ECA has a theoretically guaranteed faster rate of convergence com-

pared to TCA under the elliptical model.

On the other hand, the differences between ECA and COCA include: (i) COCA as-

sumes the nonparanormal model while ECA assumes the elliptical model. In fact, the only

distribution that is within the nonparanormal and elliptical families is Gaussian (Liu et al.,

2012b); (ii) To estimate the leading eigenvectors of the covariance matrix, COCA requires

a strong marginal subgaussian assumption, which is not needed for ECA.

Lastly, compared to Chapters 2 and 3, Chapter 4 discusses an alternative method, ECA,

on an alternative elliptical model. Under the elliptical model, we show ECA, built on the

nonparametric multivariate rank statistic, is a minimax optimal procedure for conducting

principal component analysis. Thusly, this further strengthens our main idea: Semipara-

metric modeling coupled with nonparametric methods could be an appealing approach for

tacking high dimensional complex data.
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5.1 Introduction

Let X1, . . . ,Xn be n independent observations of a continuous random vector X =

(X1, . . . , Xd)
T ∈ R

d. We aim to test the null hypothesis:

H0 : X1, X2, . . . , Xd are mutually independent. (5.1.1)

This problem plays a fundamental role in many fields, including the false discovery rate

(FDR) control (Benjamini and Hochberg, 1995), naive Bayes classification (Tibshirani

et al., 2002; Fan and Fan, 2008), and independent component analysis (Comon, 1994).

The problem of testing (5.1.1) has been intensively studied when X is multivariate

Gaussian. In low dimensions, major methods include the likelihood ratio test (LRT) (An-

derson, 2003), Roy’s largest root test (Roy, 1957), and Nagao’s test (Nagao, 1973). They

test Pearson’s covariance matrix Σ or correlation matrix R to be the identity Id matrix us-

ing their sample counterparts. When d → ∞ as n → ∞ and d/n ��→ 0, the classic LRTs

suffer poor performance due to the inconsistency of the eigenvalues of sample covariance

matrix to their population quantities (Bai and Yin, 1993). This observation motivates a

variety of works in the high dimensional settings, summarized as below.

• When d/n → γ ∈ (0, 1], Bai et al. (2009) and Jiang and Yang (2013) proposed

corrected LRT statistics and proved their asymptotic normality1. Johnstone (2001)

and Bao et al. (2012) proved the Tracy-Widom law for the null limiting distributions

1Bai et al. (2009) only considered the regime γ ∈ (0, 1). Jiang et al. (2012) proved it covers the extreme

γ = 1. Of note, for testing Σ = Id and R = Id, we require d < n and d ≤ n− 5 separately.
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of the Roy’s largest root test statistics2.

• When d/n → γ ∈ (0,∞), Ledoit and Wolf (2002) and Schott (2005) proposed

corrected Nagao’s test statistics and prove their asymptotic normality. Jiang (2004)

proposed a test statistic based on the maximum magnitude of the Pearson’s sample

correlation coefficients and show it converges to an extreme value type I distribution.

With some adjustments, Birke and Dette (2005) and Cai and Jiang (2012) proved the

tests in Ledoit and Wolf (2002) and Jiang (2004) are extendable to the case when

γ = ∞. To the best of our knowledge, there is no result generalizing the test in

Schott (2005) to the regime γ = ∞.

• When d/n ∈ [0,∞] with the limit of d/n possibly not existing, Srivastava (2006)

proposed a corrected LRT using only nonzero sample eigenvalues. Srivastava (2005)

introduced a test using unbiased estimators of the covariance matrix’s higher pow-

ers’ traces. Cai et al. (2014b) studied the test in Chen et al. (2010) and showed it

uniformly dominates the corrected LRT tests in Bai et al. (2009) and Jiang and Yang

(2013). The aforementioned three test statistics are asymptotically normal. Zhou

(2007) modified Jiang (2004)’s test and show that the null limiting distribution of the

test statistic is an extreme value type I distribution.

Most of the aforementioned tests are designed only under the Gaussian assumption.

Testing (5.1.1) in high dimensions for nonGaussian data is not as well studied as for the

2Bao et al. (2012)’s result is only valid when γ ∈ (0, 1), while the result in Johnstone (2001) applies to

the case γ = 1. Their results are further generalized to γ > 1 in Péché (2009) and Pillai and Yin (2012) with

possibly nonGaussian observations.
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Gaussian data. Péché (2009) and Pillai and Yin (2012) studied Roy’s largest root test for

sub-Gaussian data. Bao et al. (2013) studied the Spearman’s rho statistic. Jiang (2004)

studied the largest off-diagonal entry in the Pearson’s sample correlation matrix. In partic-

ular, Jiang (2004) showed, for testing a simplified null hypothesis of (5.1.1):

H′
0 : X,X1, . . . , Xd are independently and identically distributed, (5.1.2)

the Gaussian assumption could be relaxed to a moment assumption E|X|r < ∞ for some

r > 30. Later, Zhou (2007) modified Jiang (2004)’s test and relaxed the moment assump-

tion to be r = 6. For more advances in this track, we refer to Li and Rosalsky (2006), Zhou

(2007), Liu et al. (2008), Li et al. (2010), Cai and Jiang (2011), Cai and Jiang (2012), Shao

and Zhou (2014), among others.

In this work, we investigate testing (5.1.1) in high dimensions. The asymptotic regime

of interest is d, n→ ∞ and d/n ∈ [0,∞]. Our main focus is on nonparametric rank-based

tests and their optimality. The major contributions of this work are in threefold. First, we

consider a large family of rank-based test statistics including the Spearman’s rho (Spear-

man, 1904) and Kendall’s tau (Kendall, 1938) statistics. We prove they all converge weakly

to an extreme value type I distribution. Secondly, we provide power analysis and optimality

of the propose tests against the sparse alternative (Explicit definition is in Section 5.4). In

particular, we show the tests based on Spearman’s rho and Kendall’s tau are rate optimal.

Thirdly, we generalize these results to testing m-dependence and data homogeneity, for
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which we propose new rank-based tests and show these tests are rate optimal against cer-

tain alternatives. Techniques in Arcones and Gine (1993) and Zaı̈tsev (1987) for studying

the tails of U-statistics and approximation of summations of independent random vectors to

the Gaussian are key ingredients in the analysis. We also discuss approximating the exact

distributions of the test statistics for accelerating the rate of convergence.

5.1.1 Other Related Work

Testing (5.1.1) is related to testing bivariate independence. For testing independence of

two random variables, Hotelling and Pabst (1936) and Kendall (1938) proposed using the

Spearman’s rho and Kendall’s tau statistics, and Hoeffding (1948b) proposed a modified

Cramér-von Mises type statistic, the Hoeffding’s D statistic. For testing independence of

two random vectors (with possibly very large dimensions d1 and d2), Bakirov et al. (2006),

Székely and Rizzo (2013), and Jiang et al. (2013) proposed tests based on spatial signs, dis-

tance correlations, and modified likelihood ratios. However, we cannot directly apply these

results to test (5.1.1) without making multivariate adjustment. For testing (5.1.1), a no-

table alternative to Pearson’s correlation coefficient is Spearman’s rho (Zhou, 2007). More

specifically, Zhou (2007) established the limiting distribution of the largest off-diagonal

entry of the Spearman’s rho correlation matrix but without power analysis. This work in-

cludes the results in Zhou (2007) as a special case.
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5.1.2 Chapter Organization

In Section 5.2, we introduce the proposed families of tests of (5.1.1). In Section 5.3, we

prove the proposed test statistics converge weakly to an extreme value type I distribution.

In Section 5.4, we give power analysis and present the optimality properties of the proposed

tests. We present the numerical results in Section 5.5. In Section 5.6, we generalize the

results to testing more hypotheses and propose rate optimal rank-based tests against certain

alternatives. In Section 5.6, we also propose new methods which achieve improved rates

of convergence. In Section 5.7, we summarize the results and discuss the relevant work.

5.2 Testing Procedures

In this section, we introduce nonparametric rank-based tests of (5.1.1). Suppose we

observe n independent observations X1, . . . ,Xn of a d-dimensional continuous3 random

vector X ∈ R
d. We write Xi = (Xi1, . . . , Xid)

T . For any two entries j �= k ∈ {1, . . . , d},

letQj
ni be the rank ofXij in {X1j, . . . , Xnj} andQk

ni be the rank ofXik in {X1k, . . . , Xnk}.

We denote {Rjk
ni , i = 1, . . . .n} to be the relative ranks of the k-th entry corresponding to

the j-th entry, satisfying

Rjk
ni = Qk

ni′ subject to Qj
ni′ = i, for i = 1, . . . , n.

We propose two families of nonparametric tests based on the relative ranks. The first is

3We pose the assumption of continuity thereafter to avoid the possible ties in the data.
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based on the simple linear rank statistics of the form:

Tjk :=
n∑

i=1

cnig(R
jk
ni/(n+ 1)). (5.2.1)

Here {cni, i = 1, . . . , n} are an array of constants called the regression constants. g(·) is

a Lipchitz function and called the score function. For avoiding the trivial case, we assume∑
i c

2
ni > 0. For accommodating tests of independence, we further pose the alignment as-

sumption:

cni = n−1 · f(i/(n+ 1)), where f(·) is a Lipchitz function. (5.2.2)

Under this assumption, the corresponding simple linear rank statistic is a general measure-

ment of agreements in the ranks between two sequences of values4. Spearman’s rho is in

the family of simple linear rank statistics.

The second is based on the rank type U-statistics. A rank type U-statistic is a function

of relative ranks {Rjk
ni , 1 ≤ i ≤ n} and at the same time a U-statistic with order m < n:

Ujk :=
1

n(n−1)· · ·(n−m+1)

∑
i1 �=i2 �=···�=im

h(Xi1,{j,k},. . .,Xim,{j,k}), (5.2.3)

only depending on
{
Rjk

ni

}n
i=1

. Here for any vector Xi and some set A ⊂ {1, . . . , d}, we

denote Xi,A to be the sub-vector of Xi with entries indexed by A. The kernel function

4The alignment assumption in (5.2.2) is not required in deriving the null limiting distribution. However,

they play an important role in power analysis.
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h(·) : R
2 ⊗ · · · ⊗ R

2︸ ︷︷ ︸
m

→ R is assumed to be bounded, but not necessarily symmetric.

Because our focus is on measuring correlation instead of covariance, the boundedness as-

sumption is mild.

First, we focus on the simple linear rank statistics. Hotelling and Pabst (1936) first

introduced the family of simple linear rank statistics for testing homogeneity. Wald and

Wolfowitz (1940) proved they are asymptotically normal. Some more recent developments

in proving the moderate deviation (sometimes referred to as Cramér’s large deviation) prop-

erties of the simple linear rank statistics are in Kallenberg (1982), Vandemaele and Veraver-

beke (1982), Seoh et al. (1985), and Inglot (2012).

Of note, under (5.1.1) the distribution of Tjk is irrelevant to the specific distribution of

X . Accordingly, we can analytically calculate the mean and variance of Tjk without any

prior knowledge about the data. Let EH0(·) and VarH0(·) be the expectation and variance

of a certain statistic under H0. We have

EH0Tjk = ḡn

n∑
i=1

cni and VarH0Tjk =
1

n− 1

n∑
i=1

(
g(i/(n+ 1))− ḡn

)2
·

n∑
i=1

(cni − c̄n)
2,

(5.2.4)

where ḡn := 1
n

∑n
i=1 g(i/(n + 1)) is the sample mean of {g(Rjk

ni/(n + 1)), i = 1, . . . , n}.

Based on {Tjk, 1 ≤ j < k ≤ d}, we propose the following extreme value statistic for
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testing (5.1.1):

Ln := max
j<k

|Tjk − EH0Tjk|. (5.2.5)

Secondly, we focus on the rank type U-statistics. They belong to the general family

of U-statistics (Serfling, 2002). Similar to simple linear rank statistics, we can calculate

EH0Ujk and VarH0Ujk. We test (5.1.1) using

L̃n := max
j<k

|Ujk − EH0Ujk|. (5.2.6)

Detailed studies of Ln and L̃n’s null limiting distributions are in Section 5.3. We leave

the theoretical results until then, but give some intuition here. Under some regularity con-

ditions, the standardized version of Tjk (Ujk) is asymptotically normal. Accordingly, the

standardized version of L2
n (L̃2

n) is asymptotically “close” to the maximum of d(d − 1)/2

independent chi-square distributed random values with degree of freedom 1. The later

converges weakly to an extreme value type I distribution after certain adjustment.

Let σ2
T and σ2

U be the variances of
√
nTjk and

√
nUjk under (5.1.1):

σ2
T := nVarH0Tjk and σ2

U := nVarH0Ujk. (5.2.7)
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We propose the size α tests Tα and T̃α as follows:

Tα := I(nL2
n/σ

2
T − 4 log d+ log log d ≥ qα) and

T̃α := I(nL̃2
n/σ

2
U − 4 log d+ log log d ≥ qα). (5.2.8)

Here I(·) represents the indicator function and

qα := − log 8π − 2 log log(1− α)−1 (5.2.9)

is the 1− α quantile of the extreme value type I distribution with the distribution function

exp(− exp(−y/2)/
√
8π)5. The null hypothesis is rejected if Tα (or T̃α) returns value one.

In the following, we provide four examples of distribution-free tests of independence.

They are based on either simple linear rank or rank type U-statistics.

Example 5.2.1 (Spearman’s rho). Remind that Qj
ni and Qk

ni are the ranks of Xij and Xik

among {X1j, . . . , Xnj} and {X1k, . . . , Xnk}. The Spearman’s rho correlation coefficient

is defined as

ρjk :==
12

n(n2 − 1)

n∑
i=1

(
i− n+ 1

2

)(
Rjk

ni −
n+ 1

2

)
, (5.2.10)

where Q̄j
n = Q̄i

n := (n + 1)/2. It follows Spearman’s rho is a simple linear rank statistic.

5In practice we can conduct simulation to approximate the exact distribution of nL2
n/σ

2
T − 4 log d +

log log d and choose qα to be the 1 − α quantile of the corresponding empirical distribution. This is a

simulation-based approach to select the threshold value. Section 5.6.2 discusses the details of this approach.

124



CHAPTER 5. DISTRIBUTION-FREE TESTS OF INDEPENDENCE

In particular, using (5.2.4), we have

EH0ρjk = 0 and VarH0ρjk = 1/(n− 1).

Accordingly, the proposed test statistic based on Spearman’s rho is:

Tρ
α = I((n− 1)max

j<k
ρ2jk − 4 log d+ log log d ≥ qα).

Example 5.2.2 (Kendall’s tau). The Kendall’s tau correlation coefficient is defined as

τjk :=
2

n(n− 1)

∑
i<i′

sign(Xi′j −Xij)sign(Xi′k −Xik) =
2

n(n− 1)

∑
i<i′

sign(Rjk
ni′ −Rjk

ni),

where the sign function sign(·) is defined as sign(x) := x/|x| with the convention 0/0 = 0.

The Kendall’s tau statistic is a function of the relative ranks {Rjk
ni , i = 1, . . . , n} and a

U-statistics with a bounded kernel function. Accordingly, Kerdall’s tau is an rank type

U-statistic. Moreover, we have

EH0τjk = 0 and VarH0τjk =
2(2n+ 5)

9n(n− 1)
.

Accordingly, the proposed test statistic based on Kendall’s tau is:

Tτ
α = I

(
9n(n− 1)

2(2n+ 5)
max
j<k

τ 2jk − 4 log d+ log log d ≥ qα

)
.
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Example 5.2.3 (A major part of Spearman’s rho). Spearman’s rho is not a U-statistic. But

by Hoeffding (1948a), we can write

ρjk =
n− 2

n+ 1
· 3

n(n− 1)(n− 2)

∑
i �=i′ �=i′′

sign(Xij −Xi′j)sign(Xik −Xi′′k)︸ ︷︷ ︸
ρ̂jk

+
3τjk
n+ 1

.

(5.2.11)

ρ̂jk is a U-statistic with degree 3, an asymmetric bounded kernel function, and

EH0(ρ̂jk) = 0 and VarH0 ρ̂jk =
n2 − 3

n(n− 1)(n− 2)
.

We propose the test based on {ρ̂jk, 1 ≤ j < k ≤ d} as

Tρ̂
α = I

(
n(n− 1)(n− 2)

n2 − 3
max
j<k

ρ̂2jk − 4 log d+ log log d ≥ qα

)
.

Example 5.2.4 (Projection of Kendall’s tau to simple linear rank statistics). Kendall’s tau

does not belong to the family of simple linear rank statistics. However, by the projection

argument in Hájek (1968), τjk can be approximated by the following simple linear rank

statistic:

τ̂jk =
8

n2(n− 1)

n∑
i=1

(
i− n+ 1

2

)(
Rjk

ni −
n+ 1

2

)
.

126



CHAPTER 5. DISTRIBUTION-FREE TESTS OF INDEPENDENCE

Using the variance of ρjk and relation between ρjk and τ̂jk, it is easy to obtain

EH0 τ̂jk = 0 and VarH0 τ̂jk =
4(n+ 1)2

9n2(n− 1)
6,

The proposed test statistic based on {τ̂jk, 1 ≤ j < k ≤ d} then is

Tτ̂
α = I

(
9n2(n− 1)

4(n+ 1)2
max
j<k

τ̂ 2jk − 4 log d+ log log d ≥ qα

)
.

Remark 5.2.5. In this section, we consider two families of test statistics: the family of

simple linear rank statistics and the family of rank type U-statistics. When the sample

size n is small or large, Waerden (1957) and Woodworth (1970) separately studied the

performance of Spearman’s rho and Kendall’s tau in testing bivariate independence under

Gaussian assumption. They showed that Spearman’s rho is more favorable than Kendall’s

tau when n is small, while the reverse is true if n is large. Accordingly, the advantage of

one over the other is determined on a case-by-case basis.

5.3 Limiting Null Distributions

In this section, we characterize the limiting distributions of Ln and L̃n under (5.1.1).

We start with an introduction of some necessary notation. Let v = (v1, . . . , vd)
T ∈ R

d be

a d-dimensional vector and M = [Mjk] ∈ R
d×d be a d by d square matrix. For any sets

6We have VarH0(τ̂jk)/VarH0(τjk) goes to 1 as n goes to infinity, indicating τ̂jk is asymptotically equiv-

alent to τjk under the null hypothesis H0.
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I, J ⊂ {1, . . . , d}, let vI be the sub-vector of v with entries indexed by I , and MI,J be

the sub-matrix of M with rows indexed by I and columns indexed by J . For 0 < q < ∞,

let ‖v‖q := (
∑ |vi|q)1/q be the vector Lq norm. Let ‖M‖q := supv ‖Mv‖q/‖v‖q be

the matrix operator q-norm and let ‖M‖max := maxjk |Mjk| be the matrix elementwise

maximum norm. Let λmax(M) and λmin(M) denote the largest and smallest eigenvalues

of M. For two sequences of numbers {a1, a2, . . .} and {b1, b2, . . .}, we write an = O(bn)

if we have |an| ≤ C|bn| for some positive generic constant C and all sufficiently large n.

We write an = o(bn) if for any positive constant c, for all sufficient large n, |an| ≤ c|bn|.

We write an � bn if an = O(bn) and bn = O(an). For any two random vectors X and Y ,

we write X
D
= Y if they are identically distributed. We study the asymptotics of triangular

arrays (Greenshtein and Ritov, 2004) and allow the dimension dn to increase with n. We

write d to be the abbreviation of dn. Throughout the chapter, c and C represent generic

absolute positive constants. The actual values of c and C may vary at different locations.

Let’s first consider the simple linear rank statistic Tjk. The next theorem shows, under

(5.1.1) and some regularity conditions for the regression constants {cn1, . . . , cnn}, but with-

out any assumption on X , nL2
n/σ

2
T − 4 log d + log log d converges weakly to an extreme

value type I distribution.

Theorem 5.3.1 (Simple linear rank statistics). Suppose the simple linear rank statistics

{Tjk, 1 ≤ j < k ≤ d} take the form (5.2.1), the regression constants {cn1, . . . , cnn}
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satisfy:

max
1≤i≤n

|cni−c̄n| ≤ C1n
−1/2
( n∑

i=1

(cni − c̄n)
2
)1/2

,

∣∣∣ n∑
i=1

(cni−c̄n)3
∣∣∣ ≤ C2n

−1/2
( n∑

i=1

(cni−c̄n)2
)3/2

, (5.3.1)

where c̄n :=
∑n

i=1 cni represents the sample mean of the regression constants and C1, C2

are two absolute constants7, and the score function satisfies the Lipchitz condition8:

g(·) is differentiable, with bounded Lipchitz constant Δ <∞. (5.3.2)

We then have, under the regime log d = o(n1/3), d→ ∞, and (5.1.1), for any y ∈ R,

|P(nL2
n/σ

2
T − 4 log d+ log log d ≤ y)− exp(− exp(−y/2)/

√
8π)| = o(1).

Here Ln and σ2
T are separately defined in (5.2.5) and (5.2.7).

For testing (5.1.1), Theorem 5.3.1 gives a distribution-free type result. In other words,

the asymptotic or nonasymptotic behavior of a testing procedure is irrelevant to the specific

data distribution (Kendall and Stuart, 1977). In comparison, the tests based on the Pearson’s

sample covariance and correlation matrices (Jiang, 2004; Li et al., 2010; Cai and Jiang,

7Regularity conditions in the form (5.3.1) are common for the simple linear statistics to be asymptotically

normal and moderately deviated from the Gaussian. We refer to Hájek et al. (1999) and Kallenberg (1982)

for details. We also mention that Seoh et al. (1985) propose a similar (intrinsically the same) set of regularity

conditions for {cni, 1 ≤ i ≤ n}.
8The Lipchitz condition rules out the normal score (Fisher-Yates) statistic where g(·) is proportional to

Φ−1(·/(n+ 1)). Here Φ−1(·) represents the quantile function of the standard Gaussian.
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2011; Shao and Zhou, 2014) are not distribution-free. Check, for example, the moment

requirements for X in Li et al. (2010) and Shao and Zhou (2014).

Of note, Spearman’s rho is in the family of simple linear rank statistics, and it is straight-

forward to check that it satisfies the regularity condition (5.3.1). Therefore, Theorem 5.3.1

is a strict generalization to Theorem 1.2 in Zhou (2007).

We then turn to study the null limiting distribution of the rank type U-statistics. The next

theorem gives a result similar to Theorem 5.3.1. In particular, there is also no distributional

assumption required.

Theorem 5.3.2 (Rank type U-statistics). Suppose the rank type U-statistics {Ujk, 1 ≤ j <

k ≤ d} are of the form (5.2.3), of degree m, and satisfy the kernel function h(·) is bounded

and

σ̃2
U := m2 · VarH0

[
EH0

(
h(X1,{1,2}, . . . ,Xm,{1,2})|X1,{1,2}

)]
> 0 (5.3.3)

is fixed9. We then have, under the regime log d = o(n1/3), d → ∞, and (5.1.1), for any

y ∈ R,

∣∣P(nL̃2
n/σ

2
U − 4 log d+ log log d ≤ y)− exp(− exp(−y/2)/

√
8π)
∣∣ = o(1).

Here L̃n and σ̃2
T are separately defined in (5.2.6) and (5.2.7). σ2

U can be replaced by σ̃2
U

9This is equivalent to assuming that the rank type U-statistic is non-degenerate, and hence rules out the

Hoeffding’s D statistic (Hoeffding, 1948b).
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without changing the limiting distribution.

As a consequence of Theorems 5.3.1 and 5.3.2, we immediately have the following

corollary.

Corollary 5.3.3. Suppose the conditions in Theorems 5.3.1 or 5.3.2 hold. We then have

P(Tα = 1|H0) = α + o(1) or P(T̃α = 1|H0) = α + o(1).

Corollary 5.3.3 justifies the tests Tα and T̃α can effectively control the type I error. As

an immediate consequence of Theorems 5.3.1 and 5.3.2, all the test statistics in Examples

5.2.1 to 5.2.4 converge weakly to an extreme value type I distribution.

Corollary 5.3.4. Under the regime log d = o(n1/3) and d→ ∞, we have

P(Ta
α = 1|H0) = α + o(1)

for a ∈ {ρ, τ, ρ̂, τ̂}, corresponding to test statistics introduced in Examples 5.2.1 to 5.2.4.

5.4 Power Analysis and Optimality Properties

In this section, we first provide power analysis of the proposed tests against a certain

alternative. We then justify the optimality of these tests.
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5.4.1 Power Analysis

We first introduce some additional notation. Let’s consider the following set of matri-

ces:

U(c) :=
{
M ∈ R

d×d : diag(M) = Id,M = MT , max
1≤j<k≤d

|Mjk| ≥ c
√

log d/n
}
. (5.4.1)

Here c > 0 is a generic positive constant. For the simple linear rank statistics {Tjk, 1 ≤

j < k ≤ d}, we define the random matrix corresponding to it as T̂ = [T̂jk] ∈ R
d×d with

T̂jk = T̂kj =
Tjk − EH0Tjk

σT
and T̂jj = 1, for 1 ≤ j < k ≤ d,

where σT is defined in (5.2.7). We define the population version of T̂ to be T := ET̂. The

next theorem characterizes the conditions under which the power of the test Tα tends to

zero as n → ∞. This is when T is within a certain set of matrices U(C) for some large

enough constant C.

Theorem 5.4.1 (Powers of tests based on simple linear rank statistics). Assume the align-

ment assumption in (5.2.2) holds. Moreover, assume the following three conditions hold

for some positive absolute constants A1, A2, and Δ:

σ2
T = A1(1+o(1)), max{|f(0)|, |g(0)|} ≤ A2, and f(·), g(·) having Lipchitz constant Δ.

We have, there exists some large enough constant B1 only depending on A1, A2,Δ, such
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that

inf
T∈U(B1)

P(Tα = 1) = 1− o(1).

Here the infimum is taken over all distributions T ∈ U(B1).

For the rank type U-statistics {Ujk, 1 ≤ j < k ≤ d}, we can similarly define the

random matrix corresponding to it as Û = [Ûjk] ∈ R
d×d, with

Ûjk = Ûkj =
Ujk − EH0Ujk

σ̃U
and Ûjj = 1, for 1 ≤ j < k ≤ d,

where σ̃U is defined in (5.3.3). Let the population version of Û be U := EÛ. Similar to

the simple linear rank statistics, the test statistic T̃α attains the power tending to one when

U belongs to U(C) for some large enough generic constant C.

Theorem 5.4.2 (Powers of tests based on rank type U-statistics). Suppose the kernel func-

tion h(·) in (5.2.3) is bounded with |h(·)| ≤ A3 and

m2 · VarH0

[
EH0(h(X1,{1,2}, . . . ,Xm,{1,2})|X1,{1,2})

]
= A4(1 + o(1))

holds for some absolute positive constantsA3, A4. There exists some large enough constant

B2 > 0 only depending on A3, A4, and m, such that

inf
U∈U(B2)

P(T̃α = 1) = 1− o(1).
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Here the infimum is taken over all distributions such that U ∈ U(B2).

In Theorems 5.4.1 and 5.4.2, we consider a sparse alternative, i.e., at least one entry of

T or U has the magnitude larger than C
√

log d/n for some large enough constant C. Such

an alternative can be very close to the null. Actually, we can have all but a small number of

entries in T or U to be exactly zero. The above theorems show the proposed tests are very

sensitive to such small perturbations.

Next we consider the examples discussed in Section 5.2. Let Tρ,Tτ̂ and Uτ ,Uρ̂ be

matrices corresponding to Spearman’s rho, Kendall’s tau, and their variants outlined in

Examples 5.2.1 to 5.2.4. They all have power tending to one against the sparse alternative.

Corollary 5.4.3. There exists constant Ba > 0 such that

inf
Ma∈U(Ba)

P(Ta
α = 1) = 1− o(1),

for a ∈ {ρ, τ, ρ̂, τ̂} and the matrix Ma ∈ {Tρ,Tτ̂ ,Uτ ,Uρ̂}.

5.4.2 Optimality Properties

In this section, we prove the optimality of the proposed test statistics. Recall Tα and

T̃α can correctly reject the sparse alternative as long as at least one entry of T or U’s

magnitudes is larger than C
√
log d/n for some large enough constant C. In the following

we show such a bound is rate optimal.
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We first introduce some additional notation. For testing the null hypothesis H0, for

each n, let’s define Tα to be the set of all size α tests Tα with

Tα := {Tα : P(Tα = 1|H0) ≤ α}.

Consider the Pearson’s population correlation matrix R. Note under the Gaussian

model, the null hypothesis (5.1.1) is equivalent to the null hypothesis that R is an iden-

tity matrix. The next theorem shows that, over any distribution family including the Gaus-

sian as a subset, any size α test cannot differentiate the null hypothesis H0 and the sparse

alternative when maxj<k |Rjk| ≤ c
√

log d/n for some constant c < 1.

Theorem 5.4.4. Assume c0 < 1 is an absolute positive constant and we have log d/n =

o(1). Let α, β > 0 and α + β < 1 be any two absolute constants. For all large enough n

and d, we have

inf
Tα∈Tα

sup
R∈U(c0)

P(Tα = 0) ≥ 1− α− β,

where the supremum is taken over any distribution family including the Gaussian as a

subset and such that R ∈ U(c0).

For proving Theorem 5.4.4, we adopt the general framework in Baraud (2002). The

proof technique is relevant in deriving the lower bound in two sample covariance tests (Cai

et al., 2013). However, different from the test for covariance matrix, the test of indepen-

dence focuses on off-diagonal entries of the correlation/covariance matrices. For incorpo-

rating the particular structure of the correlation matrix, we need to construct a different set
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of parameters.

Theorem 5.4.4 then directly leads to the next theorem. It justifies the optimality of the

proposed tests against the sparse alternative under any distribution family including the

Gaussian as a subset.

Theorem 5.4.5. Suppose the simple linear rank statistics {Tjk, 1 ≤ j < k ≤ d} satisfy

all regularity conditions in Theorems 5.3.1, 5.4.1, and the corresponding matrix T satisfies

for all n, d large enough, we have

cTjk ≤ Rjk ≤ CTjk.

under the Gaussian assumption. We then have, under the regime log d = o(n1/3) and

d → ∞, the corresponding size α test Tα is rate optimal. In other words, there exist two

absolute constants D1 < D2 such that: (i)

sup
T∈U(D2)

P(Tα = 0) = o(1),

over any distribution family such that T ∈ U(D2); (ii) For any α, β > 0 with α + β < 1,

for all large enough n, d, we have

inf
Tα∈Tα

sup
T∈U(D1)

P(Tα = 0) ≥ 1− α− β,

where the supremum is taken over any distribution family including the Gaussian as a
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subset and T ∈ U(D1). For all rank type U-statistics satisfying the regularity conditions

in Theorems 5.3.2 and 5.4.2, and U satisfying the constraint that for all n, d large enough,

we have

cUjk ≤ Rjk ≤ CUjk,

under the Gaussian assumption, the same optimality property holds.

As an example, combined with Corollaries 5.3.4 and 5.4.3, the next corollary justifies

the tests statistics in Examples 5.2.1 to 5.2.4 are all rate optimal against the sparse alterna-

tive.

Corollary 5.4.6. Over any distribution family including the Gaussian as a subset, the tests

statistics in Examples 5.2.1 to 5.2.4 are all rate optimal against the sparse alternative.

5.5 Numerical Results

In this section, we present the numeric results for investigating the finite sample behav-

iors of the proposed tests and their competitors under the null and alternative hypotheses10.

We compare the empirical performance of these proposed tests to the classic likelihood ra-

tio test (Morrison, 2004) and to the alternatives in Jiang (2004) (Here we use the modified

version in Zhou (2007).) and in Mao (2014).. We are interested in testing (5.1.1). We de-

note R̂ = [rjk] to be the Pearson’s sample correlation matrix. The classic likelihood ratio

10For fair comparison, we use the theoretical threshold qα in (5.2.9) instead of the simulation-based one

introduced in Section 5.6.2.
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test rejects (5.1.1) if we have

−
(
n− 1− 2d+ 5

6

)
log |R̂| > F−1

(
1− α;χ2

d(d−1)/2

)
, (5.5.1)

where F−1(1− α; ξ2d(d−1)/2) represents the 1− α quantile of a chi-square distribution with

degree of freedom d(d− 1)/2. Jiang (2004) (modified by Zhou (2007)) proposed to reject

H0 if we have

nmax
j<k

r2jk − 4 log d+ log log d ≥ qα, (5.5.2)

where we note qα is the theoretical threshold value as defined in (5.2.9). Mao (2014) mod-

ified the original test in Schott (2005) and proposed the test rejecting the null hypothesis

if

(∑
j<k

r2jk
1− r2jk

− d(d− 1)

2(n− 4)

)
·
√

(n− 4)2(n− 6)

d(d− 1)(n− 3)
≥ Φ−1(1− α), (5.5.3)

where Φ−1(·) represents the quantile function of the standard Gaussian. Of note, the test

statistic in Mao (2014) has theoretically guaranteed size control only under the Gaussian

model. We compare the empirical performance of the following five tests of independence:

• R1: The proposed test using the Spearman’s rho statistic, outlined in Example 5.2.1;

• R2: The proposed test using the Kendall’s tau statistic, outlined in Example 5.2.2;
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• LRT: The likelihood ratio test in (5.5.1);

• Jiang: The test in Jiang (2004), shown in (5.5.2);

• Mao: The test in Mao (2014), shown in (5.5.3).

The next two sections provide experimental comparisons of these methods on both syn-

thetic and real data. Throughout this section, we set the significance level to be α = 0.05.

5.5.1 Synthetic Data Analysis

In this section, we illustrate the size and power comparisons among five competing tests

introduced earlier. We first focus on evaluating the empirical sizes of the competing tests.

To this end, we consider the following four models. Under each model, the data points are

independent observations of a d-dimensional random vector X = (X1, . . . , Xd)
T ∈ R

d.

• Model 1 (Gaussian): The data are generated from a Gaussian distribution with X ∼

Nd(0, Id).

• Model 2 (Gaussian copula): The data are generated from a Gaussian copula distri-

bution with Xj = Z
1/3
j for j = 1, . . . , d. Here Z = (Z1, . . . , Zd)

T ∼ Nd(0, Id) is

standard Gaussian.

• Model 3 (Gaussian copula): The data are generated from a Gaussian copula distri-

bution with Xj = Z3
j for j = 1, . . . , d. Here Z = (Z1, . . . , Zd)

T ∼ Nd(0, Id) is

standard Gaussian.
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• Model 4 (t distribution): The data are generated from a t distribution withX1, . . . , Xd

independently and identically distributed to a univariate t distribution with degree of

freedom three.

We conduct simulation studies based on the above four models, with sample size n = 60 or

100, and the dimension d changing from 50 to 800. We derive the empirical results based

on 5,000 replications. The empirical sizes of the five competing tests are present in the first

half columns of Table 5.1. We will discuss the obtained results in the end of this section.

We then turn to evaluate the sizes of the five competing tests. To this end, we consider

the following four models. Under each model, the data points are independent observations

of X .

• Model 5 (Gaussian): The data are generated from a Gaussian distribution with X ∼

Nd(0,R
∗). Here R∗ is generated as follows: Consider an random matrix Δ with

all but eight random nonzero entries. We select the locations of four nonzero entries

randomly from the upper triangle of Δ, each with a magnitude randomly drawn from

the uniform distribution in [0, 1]. The other four nonzero entries in the lower triangle

are determined by symmetry. R∗ := Id + Δ + δId, where δ = (−λmin(Id + Δ) +

0.05) · I(λmin(Id +Δ) ≤ 0).

• Model 6 (Gaussian copula): The data are generated from a Gaussian copula distri-

bution with Xj = Z
1/3
j for j = 1, . . . , d. Here Z = (Z1, . . . , Zd)

T ∼ Nd(0,R
∗) is

multivariate Gaussian.
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• Model 7 (Gaussian copula): The data are generated from a Gaussian copula distri-

bution with Xj = Z3
j for j = 1, . . . , d. Here Z = (Z1, . . . , Zd)

T ∼ Nd(0,R
∗) is

multivariate Gaussian.

• Model 8 (multivariate t distribution): The data are generated from a multivariate t

distribution with covariance matrix R∗ and degree of freedom 3.

The second half columns of Table 5.1 show the empirical powers of the five competing

tests based on 5,000 replications. Here the sample size ranges from 60 to 100, and the

dimension changes from 50 to 800.

Checking Table 5.1, there are some notable observations. First, with regard to the

Gaussian setting, the results in Model 1 show all tests can effectively control the sizes

under all different n and d considered here. On the other hand, the results in Model 5 show,

Jiang attains the highest power against the sparse alternative, and it is closely followed by

R1 and R2. Compared to CJ, R1, and R2, Mao has relatively lower power. This is as

expected because in Model 5 the Pearson’s correlation matrix has only 8 nonzero entries.

By averaging over all entries in the correlation matrix, Mao is less sensitive to such a sparse

alternative.

With regard to the nonGaussian case, we consider three settings: the light tailed Gaus-

sian copula data (Models 2 and 6), the heavy tailed Gaussian copula data (Models 3 and

7), and the heavy tailed elliptical data (Models 4 and 8). With regard to the light tailed

data, the results for Model 2 show that R1, R2, and Jiang can effectively control the sizes,

while for Mao it is slightly inflated. On the other hand, the results in model 7 illustrate R2
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Table 5.1: Comparison of five competing tests on Models 1 to 8. The sample size n is

changing from 60 to 100, and the dimension d ranges from 50 to 800. The results are

derived under 5,000 replications.

n d R1 R2 LRT Jiang Mao R1 R2 LRT Jiang Mao

Model 1 (empirical size) Model 5 (empirical power)

60 50 0.027 0.027 0.941 0.026 0.053 0.900 0.915 0.997 0.924 0.748
100 0.021 0.025 - 0.021 0.047 0.879 0.896 - 0.902 0.598
200 0.021 0.025 - 0.019 0.056 0.842 0.863 - 0.865 0.421
400 0.014 0.015 - 0.013 0.043 0.800 0.829 - 0.837 0.274
800 0.012 0.011 - 0.010 0.058 0.785 0.829 - 0.836 0.192

100 50 0.032 0.032 0.221 0.027 0.056 0.969 0.969 0.900 0.971 0.865
100 0.030 0.034 - 0.023 0.058 0.952 0.960 - 0.965 0.766
200 0.025 0.025 - 0.024 0.046 0.941 0.944 - 0.950 0.578
400 0.018 0.023 - 0.018 0.050 0.935 0.936 - 0.956 0.396
800 0.021 0.030 - 0.019 0.048 0.909 0.923 - 0.930 0.260

Model 2 (empirical size) Model 6 (empirical power)

60 50 0.027 0.027 0.953 0.032 0.057 0.900 0.915 0.995 0.880 0.647
100 0.021 0.025 - 0.032 0.058 0.879 0.896 - 0.843 0.511
200 0.021 0.025 - 0.026 0.066 0.842 0.863 - 0.808 0.350
400 0.014 0.015 - 0.021 0.069 0.800 0.829 - 0.739 0.247
800 0.012 0.011 - 0.018 0.111 0.785 0.829 - 0.722 0.226

100 50 0.032 0.032 0.236 0.041 0.053 0.969 0.969 0.848 0.950 0.811
100 0.030 0.034 - 0.035 0.058 0.952 0.960 - 0.944 0.677
200 0.025 0.025 - 0.042 0.059 0.941 0.944 - 0.927 0.463
400 0.018 0.023 - 0.032 0.049 0.935 0.936 - 0.917 0.320
800 0.021 0.030 - 0.030 0.066 0.909 0.923 - 0.879 0.218

Model 3 (empirical size) Model 7 (empirical power)

60 50 0.027 0.027 0.955 0.981 0.509 0.900 0.915 0.986 0.997 0.822
100 0.021 0.025 - 1.000 0.827 0.879 0.896 - 1.000 0.927
200 0.021 0.025 - 1.000 0.999 0.842 0.863 - 1.000 1.000
400 0.014 0.015 - 1.000 1.000 0.800 0.829 - 1.000 1.000
800 0.012 0.011 - 1.000 1.000 0.785 0.829 - 1.000 1.000

100 50 0.032 0.032 0.392 0.989 0.326 0.969 0.969 0.818 0.998 0.828
100 0.030 0.034 - 1.000 0.542 0.952 0.960 - 1.000 0.843
200 0.025 0.025 - 1.000 0.860 0.941 0.944 - 1.000 0.954
400 0.018 0.023 - 1.000 1.000 0.935 0.936 - 1.000 1.000
800 0.021 0.030 - 1.000 1.000 0.909 0.923 - 1.000 1.000

Model 4 (empirical size) Model 8 (empirical power)

60 50 0.032 0.033 0.944 0.399 0.126 0.901 0.945 1.000 0.994 1.000
100 0.023 0.034 - 0.639 0.181 0.883 0.919 - 0.995 1.000
200 0.020 0.025 - 0.915 0.302 0.878 0.910 - 0.995 1.000
400 0.013 0.017 - 1.000 0.648 0.863 0.905 - 0.998 1.000
800 0.010 0.009 - 1.000 0.985 0.834 0.882 - 0.995 1.000

100 50 0.035 0.035 0.256 0.475 0.113 0.965 0.978 1.000 1.000 1.000
100 0.034 0.034 - 0.797 0.130 0.957 0.971 - 1.000 1.000
200 0.036 0.038 - 0.991 0.234 0.941 0.964 - 1.000 1.000
400 0.023 0.028 - 1.000 0.427 0.911 0.948 - 1.000 1.000
800 0.019 0.023 - 1.000 0.852 0.907 0.947 - 1.000 1.000
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has the highest power, followed by R1. This is as expected because the current data are

Gaussian copula distributed, while the rank-based methods are very effective in handling

such data and their performance is identical to that under the Gaussian model. With regard

to the heavy tailed data, the results in Models 3 and 4 show the sizes of Jiang and Mao are

severely inflated, while R1 and R2 can still effectively control the sizes. Because of these

inflations, the comparison of the powers between R1, R2 and others are unfair.

In summary, R1 and R2 perform the best across all settings, with sizes consistently

under control and attaining averagely highest powers. R2 performs slightly better than R1

in terms of having higher powers. This is consistent to the theoretical results in Woodworth

(1970). They showed that Kendall’s tau is more powerful than Spearman’s rho in testing in-

dependence in terms of having Bahadur efficiency bounded in (1, 1.05] under the Gaussian

model. The performance of Jiang and Mao is severely influenced by the data structure,

and cannot effectively control the sizes for heavy tailed data. This is as expected because

the theory of Mao relies heavily on the Gaussian assumption, while the performance of

Jiang is related to the moments of the data. LRT does not perform well across all settings

because it is not designed for high dimensional data.

5.5.2 Real Data Analysis

We study the empirical performance of the competing methods on an real stock market

monthly log return data. We collect the daily closing prices of 452 stocks consistently in

the Standard and Poor 500 index from January 1, 2003 to January 1, 2008 (finance.
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yahoo.com). This gives us all together 59 data points, each with dimension 452. The

corresponding data matrix has the numbers of rows and columns 59 and 452 respectively.

For evaluating the size control ability of these methods, we generate the datasets with

independent columns based on the above monthly return data matrix. This is via random

permutation as follows: Each time, we independently and randomly permute the entries

in each column of the data matrix. Then it is obvious that the corresponding columns are

completely independent given the observed original stock data matrix.

We cannot apply LRT to this randomly permuted dataset because the dimension is

higher than the sample size. We apply the rest four competing tests to the randomly per-

muted dataset and record the resulting p-values. We repeat this procedure for 1,000 times.

Figure 5.1 shows the histograms of p-values for these four tests.

Because the data matrix is permuted within each column, the corresponding 452 entries

are completely independent and the histograms should be close to that of the uniform dis-

tribution in [0, 1]. We find the histograms of R1 and R2 are relatively flat and the proposed

tests can effectively control the size. In comparison, there is a strong skewness to the left

for the histograms of Jiang and Mao, indicating the tests tend to reject the null hypothesis.

This is as expected since the log return data contain extreme events and are heavy tailed

(Rachev, 2003). Random permutation cannot eliminate such extreme events. Following the

discussions in Shao and Zhou (2014) and observations in Section 5.5.1, Jiang and Mao are

very sensitive to such extreme events.
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Figure 5.1: Histograms of the p-values of four competing methods on the randomly per-

muted monthly return data. The results are derived based on 1,000 replications. The em-

pirical probabilities of the pvalues less than 0.05 are 0.014, 0.015, 1.000, and 1.000 for R1,
R2, Jiang, and Mao respectively.

5.6 Additional Results

In this section, we provide some additional results in generalizing the aforementioned

statistics to testing other structural hypotheses. We further discuss approximating the ex-

act distributions of the proposed test statistics, which focuses on accelerating the rate of

convergence.
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5.6.1 Generalizations to Other Structural Testing Prob-

lems

In this section we discuss and generalize the results in testing independence to other

settings, including testing m-dependence and data homogeneity.

5.6.1.1 Test of m-dependence

In this section we study the semiparametric Gaussian copula distribution family. A

random vector X = (X1, . . . , Xd)
T ∈ R

d follows a Gaussian copula distribution if and

only if we have

(F1(X1), F2(X2), . . . , Fd(Xd))
T D
= (Φ(Z1), . . . ,Φ(Zd))

T ,

where F1, . . . , Fd are the marginal distribution functions ofX1, . . . , Xd, Φ(·) represents the

distribution function of the standard Gaussian, and we have

Z = (Z1, . . . , Zd)
T ∼ Nd(0,Σ

0)

with Σ0 having diagonal entries all equal to 1. The Gaussian copula family includes the

Gaussian family, and is a semiparamtric model since we do not specify the marginal dis-

tributions of X . We refer Σ0 to be the latent correlation matrix of X . For simplicity, we

only consider X to be continuous for avoiding possible ties.
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We want to test the null hypothesis A0:

A0 : Σ0
jk = 0, for all |j − k| ≥ m.

Because X is assumed to be Gaussian copula distributed, the dependence structure among

{X1, . . . , Xd} is fully encoded in Σ0. Therefore, the aforementioned null hypothesis is

equivalent to testing m-dependence of entries in X:

Xj is independent of Xk, for all |j − k| ≥ m.

Cai and Jiang (2011) were the first to consider testing A0 in high dimensions. The

theory there applies only to the Gaussian data. Later, the result was extended to the non-

Gaussian data with a moment assumption (Shao and Zhou, 2014). In this section, we show

how, by resorting to the rank-based statistics, the moment assumption can be relaxed.

Under A0, there are many entries among {X1, . . . , Xd} that are correlated as long as

m > 1. For testing A0, instead of resorting to the Pearson’s sample correlation coefficients

as in Cai and Jiang (2011) and Shao and Zhou (2014), we consider using the Kendall’s

tau correlation coefficients {τjk, 1 ≤ j < k ≤ d} introduced in Example 5.2.2. It is

well known that Kendall’s tau is irrelevant to the marginal distributions of X (Nelsen,

1999). Accordingly, within the Gaussian copula family, Kendall’s tau is a more natural

measurement of dependence than the Pearson’s sample correlation coefficient. Moreover,
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it is known that, under the Gaussian copula family, we have

Σ0
jk = sin

(π
2
τ 0jk

)
, where τ 0jk := Eτjk.

Therefore, within the Gaussian copula family, testing A0 is equivalent to testing τ 0jk =

0 for all |j − k| ≥ m. We then propose the following test statistic

Tτ
α,m := I

(9n
4

· (Lτ
n,m)

2 − 4 log d+ log log d ≥ qα

)
, (5.6.1)

where qα is in (5.2.9) and the extreme statistic Lτ
n,m := max|j−k|≥m |τjk|. Lτ

n,m is an ex-

treme value statistic similar to Lτ
n and we expect it to have similar null limiting distribution

as Lτ
n given some proper conditions on m. We reject A0 if and only if Tτ

α,m = 1.

The following theorem justifies the test Tτ
α,m can asymptotically control the type I error

as n, d increase to infinity, provided that certain conditions hold.

Theorem 5.6.1. Suppose that we have log d = o(n1/3), d → ∞, m = o(dc) for any c > 0,

and for some fixed constant δ ∈ (0, 1), we have

Card
({

1 ≤ j ≤ d : |Σ0
jk| > 1− δ for some 1 ≤ k ≤ d and j �= k

})
= o(d).

Provided X is Gaussian copula distributed and continuous, under A0, we have

∣∣∣∣P(9n4 · (Lτ
n,m)

2 − 4 log d+ log log d ≤ y
)
− exp

(
− 1√

8π
exp
(
−y
2

))∣∣∣∣ = o(1).
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Accordingly, the test Tτ
α,m can asymptotically control the type I error as n, d→ ∞, i.e.,

P(Tτ
α,m = 1|A0) = α + o(1).

Remark 5.6.2. From the proof of this theorem, we can see the assumption, m = o(dc)

for any c > 0, can be easily relaxed. Specifically, we only need to require m = o(dε(δ))

for some small enough constant ε(δ) depending on δ. This can be verified by checking the

proof. But for simplicity, we use this assumption for discussion.

Similar to the power analysis in Section 5.4.1, we study the power of the test statistic

Tτ
α,m against a certain sparse alternative set. To this end, let’s consider the following set of

matrices

Um(c) :=
{
M ∈ R

d×d : diag(M) = Id,M = MT , max
|j−k|≥m

|Mjk| ≥ c
√

log d/n
}
.

The following theorem shows under the Gaussian copula family, as long as the latent corre-

lation matrix Σ0 is within a set Um(C) for some large enough constant C, the type II error

of the proposed test will tend to zero.

Theorem 5.6.3. Suppose we observe n independent observations of a d-dimensional ran-

dom vector X = (X1, . . . , Xd)
T following a Gaussian copula distribution with the latent
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correlation matrix Σ0. Then, there exists some large enough constant D3 such that

sup
Σ0∈Um(D3)

P(Tτ
α,m = 0) = o(1),

as n and d go to infinity. Here the supremum is taken over the Gaussian copula family such

that Σ0 ∈ Um(D3)

We prove Theorem 5.6.3 using the similar technique as in the proof of Theorem 5.4.1.

The proof is omitted accordingly.

We then turn to study the optimality of Tτ
α,m. For testing A0, for each n, we define Tα,m

to be the set of all size α tests Tα,m with

P(Tα,m = 1|A0) ≤ α.

The following theorem gives the detection lower bound in differentiating the null hypothe-

sis and the sparse alternative.

Theorem 5.6.4. Assume c′0 < 1, log d/n = o(1), d → ∞, and m = o(dc) for any c > 0.

Let α, β > 0 with α + β < 1. For all large enough n and d, we have

inf
Tα,m∈Tα,m

sup
Σ0∈Um(c′0)

P(Tα,m = 0) ≥ 1− α− β,

where the supremum is taken over any distribution family including the Gaussian as a

subset, and such that Σ0 ∈ Um(c
′
0).
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Therefore, as in the discussion in Section 5.4, we conclude Tτ
α,m is rate optimal when

testing the null hypothesis A0 against the sparse alternative.

Of note, for any constant c > 0, the matrix set U(c) defined in (5.4.1) includes Um(c).

Accordingly, the lower bound derived in Section 5.4.2 cannot be trivially exploited in deriv-

ing the lower bound for testing the bandedness of Σ0. However, using the fact m = o(dc)

for any c > 0, we can prove the lower bound for testing A0 via designing a similar set of

parameters as in the proof of Theorem 5.4.4.

5.6.1.2 Test of Homogeneity

In this section, we consider testing the complete homogeneity of the data. Let X1, . . . ,Xn ∈

R
d be n independently but not necessarily identically distributed random vectors with

Xi = (Xi1, . . . , Xid)
T for i = 1, . . . , n. We aim at testing

B0 : X1, . . . ,Xn are identically distributed. (5.6.2)

Testing (5.6.2) is of fundamental interest in many statistical fields, including linear discrim-

inant analysis, principal component analysis, and graphical model estimation.

General tests of homogeneity in high dimensions is very complicated. The works in

this field are very few and most of them are to test the equity of two sample means and

covariance matrices. For example, Bai and Saranadasa (1996), Srivastava and Du (2008),

Chen and Qin (2010), and Cai et al. (2014a) considered comparing the means of two high
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dimensional Gaussian vectors with unknown covariance matrices. Chen et al. (2010) and

Cai et al. (2014a) developed tests of equity of two covariance matrices.

In this section we consider a simplified setting of (5.6.2). That is, the entries in each

Xi are mutually independent. Under this simplified setting, we reduce the test of B0 to

the test that X1j, X2j, . . . , Xnj are identically distributed for any j ∈ {1, . . . , d}. For each

j, we test the homogeneity using an rank-based test statistic. In the end, we formulate an

extreme value statistic via combining the d separate rank-based test statistics.

In detail, let Hn be an extreme value statistic summarizing the d separate rank-based

test statistics:

Hn := max
j∈{1,...,d}

|hj|, with hj :=
2

n(n− 1)

∑
i<i′

sign(Xi′j −Xij).

Here hj is an rank-based statistic counting the number of inequalities Xi′j > Xij across all

pairs i < i′11. For testing (5.6.2), we propose the following statistic based on Hn:

Th
α := I

(9n
4
H2

n − 2 log d+ log log d ≥ q̃α

)
,

where q̃α := − log π − 2 log log(1 − α)−1 is the 1 − α quantile of the extreme value

distribution with the distribution function exp(− exp(−y/2)/√π).

Next we justify the test Th
α has theoretically controlled size. Under B0, we have

11Mann (1945) is the first to introduce the test statistic hj for testing homogeneity. They characterize the

sufficient conditions for hj to be consistent and unbiased. They show that this statistic is powerful against a

trend alternative (We will introduce the trend alternative in more details later). For more discussions on the

rationale of using hj for testing homogeneity, we refer to Kendall and Stuart (1977).
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X1j, . . . , Xnj are identically distributed and hence each sign(Xi′j −Xij) should be close to

zero, and the ranks of X1j, . . . , Xnj are uniformly sampled from the set of all permutations

of {1, . . . , n}. Accordingly, hj is identically distributed to the Kendall’s tau statistic under

(5.1.1). Therefore, using Example 5.2.2, we derive

E(hj|B0) = 0 and Var(hj|B0) =
2(2n+ 5)

9n(n− 1)
=

4

9n
· (1 + o(1)),

and the limiting distribution of Hn shall resemble the Kendall’s tau counterpart. Specifi-

cally, the following theorem provides the null limiting distribution of Hn.

Theorem 5.6.5. Suppose log d = o(n1/3) and d→ ∞. Under B0, we have, for any y ∈ R,

∣∣∣P(9n
4
H2

n − 2 log d+ log log d
)
− exp

(
− 1√

π
exp
(
−y
2

))∣∣∣ = o(1).

Accordingly, the test Th
α can asymptotically control the type I error as n, d→ ∞, i.e.,

P(Th
α = 1|B0) = α + o(1).

It is worth noting, similar to Corollary 5.3.3, Theorem 5.6.5 holds without any distribu-

tional assumption on X1, . . . ,Xn.

We then study the power of the proposed test. We consider a particular trend alternative.

That is, for at least one entry j ∈ {1, . . . , d}, the mean of Xij is a linear function of i for a
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certain entry j ∈ {1, . . . , d}:

B1 : there exists some j ∈ {1, . . . , d} such that EXij = β0 + β1i/n

with Var(Xij) = σ2, (5.6.3)

for i = 1, . . . , n and β0, β1, σ
2 ∈ R. Under B1, the variance σ2 is identical across sam-

ples while the means are monotonically increasing or decreasing with regard to the label i.

Such an alternative is of interest in areas including quality control, finance, and longitudi-

nal data analysis. For example, in quality control we are interested in inspecting whether

machines keep performing well. There one alternative of interest is: At least one machine’s

performance keeps decreasing.

Under B1, let’s consider the following set of real numbers (a1, a2):

B(c) :=
{
(a1, a2) : a2 > 0 and |a1|/a2 ≥ c

√
log d/n

}
.

The following theorem shows, uniformly over the alternative hypothesis set B(C), for some

large enough constant C > 0, the power of the proposed test tends to 1 as n→ ∞ .

Theorem 5.6.6. Suppose there exists at least one entry j ∈ {1, . . . , d} satisfying (5.6.3)

with parameters of interest (β1, σ). Moreover, for i = 1, . . . , n, the density function pij(·)
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of (Xij −EXij)/(VarXij)
1/2 is identical to some density function p(·), which satisfies that

p(x) ≥ D4 > 0 for all x ∈ [−M,M ], (5.6.4)

for some fixed constant M > 0. Then there exists some large enough constant D5 only

depending on D4 and M such that

sup
(β1,σ)∈B(D5)

P(Th
α = 0) = o(1).

In the following we show the detection boundary |β1|/σ ≥ C
√
log d/n is rate optimal.

To this end, let’s introduce some additional notation. We define T h
α to be the set of all size

α tests T h
α satisfying

P(T h
α = 1|B0) ≤ α.

The following theorem shows the proposed test is rate optimal in testing against the trend

alternative B1.

Theorem 5.6.7. Assume c′′0 <
√
3, log d/n = o(1), and d → ∞. Let α, β > 0 with

α + β < 1. For all large enough n, d, we have

inf
Th
α∈T h

α

sup
(β1,σ)∈B(c′′0 )

P(T h
α = 0) ≥ 1− α− β,

where T h
α represents any size α test under B0, and the supremum is taken over any distri-
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bution family of X1, . . . ,Xn including the Gaussian as a subset.

It is clear, when X1, . . . ,Xn are Gaussian distributed, Equation (5.6.4) in Theorem

5.6.6 is satisfied. Accordingly, combining Theorems 5.6.5, 5.6.6, and 5.6.7 concludes that

Th
α is rate optimal in testing the null hypothesis B0 against the trend alternative.

5.6.2 Approximation to the Exact Distributions

In this section, we study the convergence rates of the proposed test statistics to the

null limiting distribution, and further discuss accelerating the rate of convergence. The

focus is on testing independence, although the generalization to testing homogeneity is

straightforward.

Theorems 5.3.1 and 5.3.2 show the proposed test statistics Ln and L̃n converge weakly

to the type I extreme distribution. The next theorem explicitly characterizes the conver-

gence rates for Ln and L̃n.

Theorem 5.6.8. For all rank type U-statistics, if conditions in Theorem 5.3.2 hold and

log d = o(n1/3), we have

∣∣∣P(nL̃2
n

σ2
U

−4 log d+log log d ≤ y
)
−exp

(
− 1√

8π
exp
(
−y
2

))∣∣∣=O((log d)3/2
n1/2

+
1

(log d)3/2

)
.

For all simple linear rank statistics, if conditions in Theorem 5.3.1 hold and log d =
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O(n1/3−ε) for some fixed constant ε ∈ (0, 1/3), we have

∣∣∣P(nL2
n

σ2
T

−4 log d+log log d ≤ y
)
−exp

(
− 1√

8π
exp
(
−y
2

))∣∣∣
=O
((log d)3/2

n1/2
+

1

(log d)3/2
+
(log d)1/2

n1/6

)
.

Theorem 5.6.8 shows two points: (i) When log d � nκ for some κ < 1/3, the proposed

tests based on simple linear rank and rank type U-statistics achieve a polynomial rate of

convergence12. (ii) When d � nC or some C ∈ (0,∞), Theorem 5.6.8 only guarantees an

O((log n)−3/2) rate of convergence. In the following we show the convergence rate can be

accelerated by approximating the exact distributions of the test statistics.

Of note, under (5.1.1) {Tjk, j < k} and {Ujk, j < k} are independent and only depend

on the relative ranks {Rjk
ni , i = 1, . . . , n, j < k}. In particular, the relative ranks are uni-

formly distributed in the set of all permutations of {1, . . . , n}. Therefore, we can conduct

simulation to approximate the exact distributions of {Tjk, j < k} and {Ujk, j < k}.

More specifically, each time for i = 1, . . . ,M , we generate X(i) ∈ R
n×d to be an n by d

data matrix with all entries in X(i) independently and identically drawn from the standard

Gaussian. For each i ∈ {1, . . . ,M}, we calculate the values of pairwise simple linear

rank statistics {T (i)
jk , j < k} and rank type U-statistics {U (i)

jk , j < k}. Based on them, we

calculate the values of n(L
(i)
n )2/σ2

T−4 log d+log log d and n(L̃
(i)
n )2/σ2

U−4 log d+log log d.

Here L
(i)
n and L̃

(i)
n are the extreme value statistics based on {T (i)

jk , j < k} and {U (i)
jk , j < k}.

12Compared to the tests based on the rank type U-statistics, the tests based on simple linear rank statis-

tics lose an extra O(
√
log d/n1/6) term in the rate of convergence. This is the cost of approximating the

population ranks using the empirical ones.
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Let F̂ T
n,d;M(·) and F̂U

n,d,;M(·) be the corresponding empirical distributions. Let F T
n,d(·) and

FU
n,d(·) be their population counterparts.

The Dvoretzky-Kiefer-Wolfowitz inequality for discrete random variables (Dvoretzky

et al., 1956; Massart, 1990) guarantees, for each (n, d), we have

P

(
sup
x∈R

|F̂ T
n,d;M(x)−F T

n,d(x)|>
√

logM

M

)
≤ 2

M2
,

P

(
sup
x∈R

|F̂U
n,d;M(x)−FU

n,d(x)|>
√

logM

M

)
≤ 2

M2
. (5.6.5)

In (5.2.8), we replace qα using q̂Tα;n,d and q̂Uα;n,d, which are the 1− α quantiles of F̂ T
n,d;M(·)

and F̂U
n,d;M(·) separately:

q̂Tα;n,d := inf{x : F̂ T
n,d;M(x) ≥ 1− α} and q̂Uα;n,d := inf{x : F̂U

n,d;M(x) ≥ 1− α}.

We refer the tests using the simulation-based threshold values q̂Tα;n,d and q̂Uα;n,d to be the

exact tests.

Using (5.6.5), we immediately have the next theorem, which guarantees that the exact

tests have asymptotically controlled sizes.

Theorem 5.6.9. Under (5.1.1), the simple linear rank statistics satisfy that, for each (n, d),

with probability larger than 1− 2/M2, we have

sup
α∈[0,1]

∣∣∣P(nL2
n

σ2
T

−4 log d+log log d ≥ q̂Tα;n,d|{X(i)}Mi=1

)
−(1− F̂U

n,d;M(q̂Tα;n,d))
∣∣∣ ≤√ logM

M
.
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The same inequality also applies to the rank type U-statistics. Moreover, as n, d → ∞,

q̂Tα;n,d and q̂Uα;n,d are both consistent estimators of qα in (5.2.9) as M =Mn → ∞ with n.

Theorem 5.6.9 shows, with high probability, we can have arbitrarily fast convergence

rate to the above intermediate approximation by setting the number of simulations M large

enough. It is typically much faster than the rate of convergence O((log n)5/2/
√
n) derived

in Liu et al. (2008). On the other hand, to attain this arbitrarily fast rate of convergence,

we need to conduct M simulations for estimating the threshold value. This increases the

computational burden compared to all tests in (5.2.8). For the test of m-dependence, it is

impossible to simulate the null exact distribution and we stick to the test in (5.6.1).

In the following, we provide the empirical sizes and powers of such exact tests by

studying the finite sample Gaussian distributed datasets. We adopt the same generating

models 1 and 5 in Section 5.5.1. We compare the performance of LRT, Jiang, and Mao to

two exact tests:

• R1e: The proposed test based on Spearman’s rho and simulation-based threshold

value;

• R2e: The proposed test based on Kendall’s tau and simulation-based threshold value.

Table 5.2 provides the results. We see the type I errors of the exact tests R1e and R2e are

well controlled, and the powers are higher than the tests R1 and R2, which use the theo-

retical threshold value qα. Moreover, the powers of R1e, R2e are averagely comparable

to and sometimes higher than Jiang. This indicates the extra gain by resorting to the exact

159



CHAPTER 5. DISTRIBUTION-FREE TESTS OF INDEPENDENCE

Table 5.2: Comparison of five competing tests on Models 1 and 5. Here we conduct exact

tests for tests based on Spearman’s rho and Kendall’s tau. The sample size n is changing

from 60 to 100, and the dimension d ranges from 50 to 800. The results are derived under

5,000 replications.

n d R1e R2e LRT Jiang Mao R1e R2e LRT Jiang Mao

Model 1 (empirical size) Model 5 (empirical power)

60 50 0.056 0.054 0.941 0.026 0.053 0.919 0.923 0.997 0.924 0.748

100 0.056 0.050 - 0.021 0.047 0.899 0.907 - 0.902 0.598

200 0.048 0.040 - 0.019 0.056 0.890 0.888 - 0.865 0.421

400 0.048 0.058 - 0.013 0.043 0.879 0.880 - 0.837 0.274

800 0.041 0.048 - 0.010 0.058 0.845 0.844 - 0.836 0.192

100 50 0.059 0.058 0.221 0.027 0.056 0.970 0.971 0.900 0.971 0.865

100 0.042 0.040 - 0.023 0.058 0.962 0.964 - 0.965 0.766

200 0.046 0.053 - 0.024 0.046 0.953 0.952 - 0.950 0.578

400 0.056 0.046 - 0.018 0.050 0.944 0.949 - 0.956 0.396

800 0.050 0.048 - 0.019 0.048 0.944 0.942 - 0.930 0.260

tests.

5.7 Discussion

This work provides a set of distribution-free tests, as well as providing power analysis

and justifying certain optimality for them. Cai et al. (2013) and Cai et al. (2014a) provide

related lower bounds for covariance matrix and mean equity tests. We have clearly stated

the difference between the results in this work and theirs in Section 5.4.2.

In this work, we assume the regression constants {cni}ni=1 and the score function g(·) in

(5.2.1), as well as the kernel function h(·) in (5.2.3), to be identical across different pairs

of entries. Of note, they can also vary according to the entry (j, k). We do not pursue this

direction merely for the clearness of presentation.
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We note the problem studied in this work is related to one sample and two sample

tests of equality of covariance/correlation matrices and sphericity tests in high dimensions.

An extensive literature exists in this line of research. See, Ledoit and Wolf (2002), Chen

et al. (2010), Srivastava and Yanagihara (2010), Fisher et al. (2010), Li and Chen (2012),

Fisher (2012), Zhang et al. (2013), Cai et al. (2013), among many others. For equity and

sphericity tests, the existing methods mostly focus on Pearson’s sample covariance matrix.

The proposed methods are then based on the statistics characterizing the difference between

two sample covariance matrices under different norms, Frobenious and maximum norms

for example. As an alternative to the Pearson’s sample covariance matrix, Zou et al. (2014)

propose a test of sphericity using the multivariate signs. However, the theoretical results in

their paper are valid only under the regime d = O(n2).

Along the research line of this work, an immediate problem is to explore one sample

and two sample tests of equality of dependence under different measures of dependence,

Kendall’s tau and Spearman’s rho for example. This is nontrivial because of the possible

dependence among random variables. In this work, focusing on the one sample test, we test

the bandedness of the latent correlation matrix under the semiparametric Gaussian copula

model. We show the test statistic built on the Kendall’s tau statistic can asymptotically

control the type I error. This test is rate optimal against the sparse alternative. In the future,

it is of interest to test the equity of two latent correlation matrices under the Gaussian copula

family.

Lastly, in comparison to the focus on estimation procedures in the previous chapters,
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we note this chapter considers high dimensional testing problems and highlights robust

nonparametric approaches. Because of the particularly nice structure, for conducting tests

of independence, we could further relax the semiparametric models to a fully nonparamet-

ric one with no modeling constraints at all. On the other hand, the robust nonparametric

statistics (such as Kendall’s tau and Spearman’s rho) still prove to be performing extremely

well, and induce minimax optimal tests against sparse alternatives.
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6.1 Introduction

Undirected graphs provide a powerful tool for understanding the interrelationships

among random variables. Given a random vector, X = (X1, . . . , Xd)
T ∈ Rd, the asso-

ciated conditional independence graph, say G ∈ {0, 1}d×d, is the undirected binary graph

so the entry Gjk (for j �= k) is equal to 0 if and only if Xj is conditionally independent

of Xk given the remaining variables, {X\{j,k}}. For estimation, it is typically assumed

there are n independent and identically distributed realizations of X to infer independence

relationships, and thus the associated graph, G.

When X ∼ Nd(μ,Σ) has a multivariate distribution with mean μ and covariance ma-

trix Σ, one obtains the key observation that the non-zero entries of the so-called concen-

tration matrix Ω := Σ−1, otherwise known as its sparsity pattern, encodes the conditional

independence structure of X and hence defines the graph G (Dempster, 1972). In other

words, Gjk = I(Ωjk �= 0), where I(·) is an indicator function and Gjk indicates whether

an edge connects nodes j and k in the graph. Estimation of the concentration matrix be-

comes problematic in high dimensional settings where d > n, thus leading to an active

collection of research utilizing sparsity constraints to obtain identifiability (see Friedman

et al., 2007; Banerjee et al., 2008; Li and Toh, 2010; Scheinberg et al., 2010; Hsieh et al.,

2011; Rothman et al., 2008; Ravikumar et al., 2009; Lam and Fan, 2009; Peng et al., 2009;

Meinshausen and Bühlmann, 2006; Yuan, 2010; Cai et al., 2011; Liu et al., 2012a, for

example).

However, these papers all assumed the object of inference is a single graph estimated
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from a single set of realizations of X . In contrast, little work exists on estimation and

inference from a population of graphs. Such a setting arises frequently in the sometimes

controversial and rapidly evolving arenas of image- and electrophysiologically-based esti-

mates of functional and structural brain connectivity (Friston, 2011; Horwitz et al., 2003;

Fingelkurts et al., 2005; Rubinov and Sporns, 2010; Bullmore and Sporns, 2009). Here,

each subject-specific graph is an estimate of subject-specific brain connectivity. To date,

no theoretically justified definition for population graphs exists.

In addition, frequently the assumption that the data are independently and identically

drawn from a Gaussian distribution is too strong. Recently, Gaussian assumptions were

relaxed via the so-called nonparanormal distribution family (Liu et al., 2009). A random

vector, X , is said to be nonparanormally distributed if, after an unspecified monotone

transformation, it is Gaussian distributed. Moreover, an optimal rate in graph recovery is

obtained utilizing the rank-based estimator Kendall’s tau (Liu et al., 2012a). On the other

hand, however, little has been done in high dimensional graph estimation when the data are

actually not identically drawn from a certain distribution.

This work investigates a specific non-i.i.d. setting where the data arise from multiple

datasets, each of which is assumed to be distributed under a different distribution. This idea

is central in fields, such as epidemiology, where population summaries, are desired over a

collections of independently but not identically distributed data sets. A canonical example

is the common odds ratio estimate from a collection of individual odds ratios (see Liu and

Agresti, 1996, for example). In the motivating application, each dataset is a seed-based or
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region of interest summary of functional magnetic resonance imaging (fMRI) scans where

a graphical representation of brain connectivity is of interest. The proposed approach does

not assume a common underlying graph for each subject. Instead, the population graph de-

fined is a summary, looking at commonalities in graphical structure across a population of

heterogeneous graphs. Thus, it is proposed that under the presumption of variation in brain

graphical network structure, the investigation of a population graph is of conceptual and

practical interest, especially when comparing population graphs across clinical diagnostic

categories.

To best summarize the information from aggregated network datasets, the idea of “me-

dian graphs” from the pattern recognition field (Bunke and Shearer, 1998; Jiang et al.,

2001) is employed. However, it is herein extended to sparse median graphs. A sparse

median graph is defined as the sparse graph with the smallest sum of Hamming distances

to all graphs in a given sample. Combined with the strength of the nonparanormal mod-

eling, a new method for estimating sparse median graphs is proposed. Here we prove the

obtained estimator is consistent and the upper bound on the convergence rate with respect

to the Hamming distance is established.

In the neuroimaging literature, one relevant paper on summarizing multiple graphical

models is Ramsay et al. (2009). There are three main differences between our proposed

procedure and the one in Ramsay et al. (2009): (i) On the graph of interest, we focus on

the undirected graphical models, while their focus is on the directed graphical models. (ii)

On defining the summary graph combining the information from multiple datasets, Ram-
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say et al. (2009) proposed a Bayesian information criterion (BIC)-based data aggregation

criterion, while we propose a median graph based criterion. Our proposed method is shown

to motivate a more robust estimation procedure. (iii) On conducting the algorithm, Ramsay

et al. (2009) exploited a greedy search based algorithm (GES), while we exploit a convex

optimization based algorithm (CLIME).

The rest of the chapter is organized as follows. In Section 6.2, we introduce the notation

and review the nonparanormal distribution and rank-based estimators. In Section 6.3, we

introduce the model and give the definition of sparse median graphs. In Section 6.4, we pro-

pose the rank-based estimation procedures. Section 6.5 gives the theoretical properties of

the proposed procedure for graph recovery. Section 6.6 demonstrates experimental results

on both synthetic and real-world datasets to back up our theoretical results. Discussion is

provided in the last section.

6.2 Background

Let M = [Mjk] ∈ R
d×d and v = (v1, ..., vd)

T ∈ R
d. Let vI denote the subvector of v

with entries indexed by set I . Similarly, let the submatrix of M with rows indexed by set I

and columns indexed by set J be denoted by MIJ . Let MI∗ and M∗J be the submatrix of

M with rows in I , and the submatrix of M with columns in J . For 0 < q < ∞, define the
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�q and �∞ vector norms as:

‖v‖q :=
( d∑

i=1

|vi|q
)1/q

and ‖v‖∞ := max
1≤i≤d

|vi|,

and we define ‖v‖0 := card{supp(v)}, where card{·} and supp(·) are the cardinality and

support, respectively. Likewise, for matrix norms, we define

‖M‖q:= max
‖v‖q=1

‖Mv‖q, ‖M‖max:=max{|Mij|}, and ‖M‖H:=
∑
j>k

I(Mjk �=0),

where I(·) denotes the indicator function. We define diag(M) to be a diagonal matrix with

diagonal values same as M and all off-diagonal values to be zero.

6.2.1 The Nonparanormal

Liu et al. (2009) and Liu et al. (2012a) showed the Gaussian graphical model can be

relaxed to the nonparanormal graphical model without significant loss of inference power

when the data are Gaussian distributed and with significant gain of inference power when

it is not. This observation plays a role in our proposed model for relaxing the Gaussian

assumption. In this section, the nonparanormal distribution family is introduced with the

corresponding graphical model, following definitions in Liu et al. (2012a).

Definition 6.2.1 (The nonparanormal). Let f = {fj}dj=1 be a set of univariate strictly

increasing functions. A d-dimensional random vector X = (X1, . . . , Xd)
T is said to follow
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a nonparanormal distribution, denoted

NPNd(Σ, f), if and only if

f(X) := {f1(X1), . . . , fd(Xd)}T ∼ Nd(0,Σ), where diag(Σ) = Id,

where Id ∈ Rd×d is the identity matrix. Σ is referred to as the latent correlation matrix

and Ω := Σ−1 as the latent concentration matrix.

Although the nonparanormal distribution family is strictly larger than the Gaussian dis-

tribution family, Liu et al. (2009) showed the conditional independence property of the

nonparanormal is still encoded in the latent concentration matrix Ω. More specifically,

they noted if the random vector X = (X1, . . . , Xd)
T is nonparanormally distributed (i.e.

X ∼ NPNd(Σ, f)) then

Xj ⊥ Xk |X\j,k ⇔ Ωjk = 0. (6.2.1)

6.2.2 Rank-based Estimator

Liu et al. (2012a) and Xue and Zou (2012) exploited the rank-based estimator, Kendall’s

tau, in inferring the latent concentration matrix Ω in the nonparanormal family. Let x1,. . .,xn

be d-dimensional random vectors, with xi = (xi1, . . . , xid)
T for i = 1, . . . , n, be n ob-

169



CHAPTER 6. SPARSE MEDIAN GRAPHS ESTIMATION

served data points of a random vector X . The Kendall’s tau statistic is defined as:

τ̂jk(x1, . . . ,xn) :=
2

n(n− 1)

∑
1≤i<i′≤n

sign(xij − xi′j) · (xik − xi′k). (6.2.2)

The Kendall’s tau statistic is monotone transformation-invariant correlation between the

empirical realizations of Xj and Xk for any j, k ∈ {1, . . . , d}. Let R̂ = [R̂jk] ∈ Rd×d,

with

R̂jk = sin
(π
2
τ̂jk(x1, . . . ,xn)

)
, (6.2.3)

be the Kendall’s tau matrix. Liu et al. (2012a) showed if X is nonparanormally distributed,

R̂ is a consistent estimator of the latent correlation matrix Σ of X (with respect to element-

wise sup norm ‖ · ‖max), even when the order of d is nearly exponentially larger than n.

Since the latent concentration matrix, Ω = Σ−1, fully encodes the nonparanormal

graphical model and R̂ is a consistent estimator of Σ, Kendal’s tau is a good estimate of

the nonparanormal graphical model, as it directly estimates the latent concentration ma-

trix. Based on the Kendall’s tau matrix, Liu et al. (2012a) proposed the nonparanormal

SKEPTIC by directly plugging R̂ into any statistical methods in calculating the inverse co-

variance/correlation matrix. In this work, we will focus on one particular statistical method,

CLIME (Cai et al., 2011). Further details of the nonparanormal SKEPTIC are given in Sec-

tion 6.4.
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6.3 Models and Concepts

6.3.1 Models

In this section, the proposed approach for modeling the complex aggregated data is

given. Assume the data are aggregated from multiple datasets, each of which is distributed

according to a different nonparanormal distribution.

More specifically, let X1, . . . ,XT be T random vectors with Xt = (Xt1, . . . , Xtd)
T

satisfying

Xt ∼ NPNd(Σ
t, f t), for t = 1, . . . , T.

Let Θt := [Σt]−1. Based on Θt, we define Gt = [Gt
jk] ∈ {0, 1}d×d where

Gt
jk = 0 if and only if Θt

jk = 0.

Via Equation 6.2.1, Gt represents the Markov graph associated with Xt. In detail, the pair

(j, k) such that Gt
jk �= 0 indicates the conditional independence of Xtj and Xtk given all

the rest in Xt.

6.3.2 Sparse Median Graphs

This section introduces the concept of a sparse median graph, combining the ideas of

median graphs from Jiang et al. (2001) and the sparsity concept commonly adopted in high
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dimensional statistics (Bühlmann and van de Geer, 2011).

Let d(·) : {0, 1}d×d × {0, 1}d×d → [0,∞) be a distance function on the graph space.

Jiang et al. (2001) define the median graph (reproduced in Definition 6.3.1) as the graph

with the smallest sum of distances to all graphs in a given set.

Definition 6.3.1 (Median Graph). Let G1, . . . ,GT be T different binary graphs in {0, 1}d×d,

the median graph G∗ is defined by

G∗ := arg min
G∈{0,1}d×d

T∑
t=1

d(G,Gt). (6.3.1)

When T is large, G∗ will not be sparse and therefore the resulting median graph may not

be interpretable. To attack this problem, consider the concept of a “sparse median graph”.

The sparse median graph is the graph with the smallest sum of distances to all graphs in a

given set, and the non-zero entries in the graph is less than or equal to some small value

s � d2. In particular, we use the Hamming distance ‖ · ‖H in calculating the distance of

any two graphs.

Definition 6.3.2 (Sparse Median Graph). Let {G1, . . . ,GT} be T different binary graphs.

The sparse median graph G∗
s is defined as

G∗
s := arg min

G∈{0,1}d×d,‖G‖H=s

T∑
t=1

‖G − Gt‖H , (6.3.2)

where ‖ · ‖H represents the number of non-zero entries in the upper triangle of the matrix

172



CHAPTER 6. SPARSE MEDIAN GRAPHS ESTIMATION

of interest.

The next proposition presents an equivalent representation of G∗
s and further discusses

identifiablility conditions of the model.

Proposition 6.3.3. Let Gt, t = 1, . . . , T and G∗
s be the sparse median graph defined as

above. Let ζjk =
∑

t Gt
jk and rjk be the rank of all values {ζjk}j<k. Then:

[G∗
s ]jk = [G∗

s ]kj =

⎧⎪⎪⎨⎪⎪⎩
1, if rjk ≤ s,

0, if rjk > s.

Moreover, the model is identifiable with respect to G∗
s if and only if there are no ties around

rank s for the sequence {ζjk}j<k.

Remark 6.3.4. The population sparse median graph is defined as the optimum of a spec-

ified loss function with regard to the Hamming distance. This is a common approach for

representing a summary of multiple, possibly heterogenous, data points. In principle, there

are potential issues by aggregation, such as averaging out effects when both positive and

negative ones exist. However, since we focus only on undirected graphs taking values

{0, 1}, such issues could be minimized. Actually, the robustness to aggregation issues is

one strong advantage motivating the sparse median graph. In a later section (Section 6.2),

we will further illustrate the empirical power of using the notion of sparse median graph

combined with robust estimation.
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6.4 Methods

For t = 1, . . . , T , let xt
i = (xti1, . . . , x

t
id)

T , i = 1, . . . , nt be nt independent realizations

of Xt (defined in Section 6.3.1). The observed data are {xt
i} for t = 1, . . . , T and i =

1, . . . , nt and the target is to estimate the sparse median graph G∗
s defined in Equation

(6.3.2). The proposed method is a two step procedure. In the first step, the nonparanormal

SKEPTIC is used to obtain the estimators {Ĝt}Tt=1 of {Gt}Tt=1. In the second step, G∗
s is

estimated based on the estimators {Ĝt}Tt=1 obtained in the first step.

More specifically, in the first step, for each t ∈ {1, 2, . . . , T}, let

R̂jk := sin
(π
2
τ̂jk(x

t
1, . . . ,x

t
nt
)
)
,

where τ̂jk(·) is defined in Equation (6.2.2). By using R̂t = [R̂t
jk] ∈ R

d×d to estimate Σt,

one can plug R̂t into CLIME to get estimates of Ωt and Gt:

Ω̂t =argmin
M

∑
j,k

|Mjk| (6.4.1)

such that ‖R̂tM− Id‖max ≤ λt,

where λt > 0 is a tuning parameter. Cai et al. (2011) showed this optimization can be

decomposed into d vector minimization problems, each of which can be reformulated as

a linear program. Thus, it has the potential to scale to very large problems. Once Ω̂t is

obtained, one can apply an additional thresholding step to estimate the graph, Gt. For this,
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the graph estimator Ĝt ∈ {0, 1}d×d is defined, in which a pair (j, k) satisfies that Ĝt
jk �= 0

if and only if Ω̂t
jk > γt. Here γt is another tuning parameter. However, in practice, the

CLIME algorithm works well without a second step truncation.

In the second step, provided the estimates {Ĝt, t = 1, . . . , T} have been obtained, the

following equation is optimized to obtain Ĝ∗
s

Ĝ∗
s = arg min

G∈{0,1}d×d,‖G‖H=s

∑
t

‖G − Ĝt‖H , (6.4.2)

where the term ‖G‖H = s controls the sparsity degree of G. In this work, it is assumed

s is known. Consider then the following proposition, which states Equation (6.4.2) has a

closed-form solution.

Proposition 6.4.1. Let ζ̂jk be defined as ζ̂jk :=
∑

t Ĝt
jk. Let (j1, k1), (j2, k2), . . . be s pairs

with the highest values in {ζ̂jk}j<k. Then Ĝjk = 1 if and only if (j, k) ∈ {(j1, k1), (j2, k2), . . .}.

Remark 6.4.2. For simplicity, it is assumed there are no ties around the rank s for the

sequence {ζ̂jk}. If the model discussed in Section 6.3 is identifiable and several mild con-

ditions as shown in Section 6.5 hold, then there are no ties with high probability.

6.5 Theoretical Properties

In this section, the estimators from Section 6.4 are proved to be consistent for the true

median graph. Notably, an nonasymptotic bound on the rate of convergence in estimating
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the sparse median graph with respect to the Hamming distance is provided.

Additional notation is required. Let Md be a quantity which may scale with the dimen-

sion d. Define

Sd(q, s,Md) :=

{
Ω : ‖Ω‖1 ≤Md and max

1≤j≤d

d∑
k=1

|Ωjk|q ≤ s

}
.

For q = 0, the class Sd(q, s,Md) contains all the s-sparse matrices. The next theorem

provides the parameter estimation and graph estimation consistency results for the non-

paranormal SKEPTIC estimator defined in Equation (6.4.1).

Theorem 6.5.1 (Liu et al. (2012a)). Let X t ∼ NPNd(Σ
t, f t) with Ωt := [Σt]−1 ∈

Sd(q, st,Md) with 0 ≤ q < 1. Let Ω̂t be defined in Equation (6.4.1). There exist constants,

C0 and C1, only depending on q, such that whenever one chooses the tuning parameter

λt = C0Md

√
log d
nt

, with probability no less than 1− d2,

‖Ω̂t −Ωt‖2 ≤ C1M
2−2q
d · s ·

(
log d

nt

)(1−q)/2

.

Let Ĝt be the graph estimator defined in Section 6.4 with the second tuning parameter

γt := 4Mdλt. If it is further assumed Ω ∈ Sd(0, s,Md) and minj,k:Ωjk �=0 |Ωjk| ≥ 2γt,

then

P(Ĝt �= Gt) ≤ 4d−ε1 ,

where ε1 > 0 is a constant that does not depend on (nt, d, st).
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Proof. Combine the Theorems 1 and 7 in Cai et al. (2011) and Theorem 4.2 in Liu et al.

(2012a).

Theorem 6.5.2 (Consistency). With the above notation, the assumptions from Theorem

6.5.1, λt, γt fixed and the model in Section 6.3 is identifiable, then

P(Ĝ∗
s �= G∗

s ) ≤ 4Td−ε1 , (6.5.1)

where Ĝ∗
s is defined as in Equation (6.4.2).

Proof. If the model is identifiable, then one only needs to show with high probability, all

Gt can be recovered. Note the union bound in Theorem 6.5.1 yields

P

(
T⋃
t=1

{Ĝt �= Gt}
)

≤
T∑
t=1

P(Ĝt �= Gt) ≤ 4d−ε1 ≤ 4Td−ε1 .

We thus finish the proof.

The next theorem provides an upper bound of the rate of convergence with respect to

the Hamming distance. Such a result is based on the recent explorations in graph recovery

with respect to the Hamming distance (Ke et al., 2012; Jin et al., 2012).

Theorem 6.5.3 (Rate of convergence). Assume the above assumptions in Theorems 6.5.1

and 6.5.2 hold. Let At be the event that

At := {‖Ĝt − Gt‖H ≤ δt}
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and δt be defined such that P(At) = 1− o(d−ε2). Moreover, reorder {ζjk}j<k to be ζ(1) ≥

ζ2 ≥ · · · ≥ ζd(d−1)/2 and let u∗ = (ζ(s) − ζ(s+1))/2. Then,

P

(
‖G∗

s − Ĝ∗
s‖H ≤ 2

∑T
t=1 δt
u∗

)
=1− o(Td−ε2). (6.5.2)

Remark 6.5.4. The bound constructed in Equation (6.5.2) is to balance the difference of

{Gt}Tt=1 to G∗
s and the estimation error of Ĝt to Gt. In other words, the better it is to

differentiate {Gt} with G∗
s in the population level and the more accuracy Ĝt can approach

Gt, the better the final estimator can converge to the sparse median graph.

6.6 Empirical Results

In this section, we investigate the performance of the proposed method compared to the

performance of alternative methods on synthetic and real-world datasets. Since we aim to

estimate a summary graph throughout multiple possibly non-i.i.d. datasets, our estimation

procedure in general involves two steps: In the first step, for each specific dataset, we em-

ploy a graphical model estimation procedure; In the second step, based on the calculated

graph estimates, we obtain a single estimate of the summary graph. We call the former

step the “estimation of graphs” part, and the later step the “combination1 of datasets” part.

In the following simulations and experiments, we will compare our methods with multi-

ple candidates using different graph estimation and datasets combination approaches, and

1We also use the terms “aggregation” and “summarization” synonymously in this work.
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reveal the advantage of our proposed one.

6.6.1 Estimation Methods

In our simulations and experiments, we consider the methods Kendall, Pearson, and

LW to estimate graphs (or correlation matrices) on individual datasets. To combine multiple

datasets, we employ SMG, Naive, and Average. Therefore, we will compare a total of

nine methods, each of which denoted by first stating the aggregation method and then

the graph estimation method. For example, our proposed method corresponds to SMG

Kendall. We elaborate the details of the competing methods as follows.

6.6.1.1 Estimation of Graphs

For any individual dataset, we consider the following approaches for graph estimation:

• Kendall: This method calculates the Kendall’s tau correlation matrix and plugs the

matrix into CLIME. Details are in Section 6.4.

• Pearson: This method follows the same steps as Kendall except that we plug the

Pearson sample correlation matrix into CLIME instead.
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• Ledoit-Wolf (LW): Using the tawny package (Rowe, 2014), this method calculates

a Ledoit-Wolf shrinkage estimation (Ledoit and Wolf, 2003) of the covariance matrix

of the dataset, Σ̂, and a corresponding precision matrix, Θ̂ = Σ̂−1. With Θ̂, we

estimate a graph Ĝ ∈ {0, 1}d×d, in which a pair (j, k) satisfies Ĝjk �= 0 if and only if

Θ̂jk > (0.001× Avg(Θ̂)), where Avg(Θ̂) := d(d−1)
2

∑
(j,k) Θ̂jk.

We select the tuning parameters {λt} in CLIME2 using the StARS stability-based ap-

proach (Liu et al., 2010). StARs selects a tuning parameter that simultaneously makes a

graph sparse and replicable under random sampling. The detailed procedure could be found

in Section 3.2 in Liu et al. (2010).

6.6.1.2 Combination of Datasets

Our experiments involve inference on T datasets, where each dataset corresponds to

a different subject. We consider the following approaches to estimate one sparse graph

across the multiple datasets:

• Sparse Median Graph (SMG): We estimate a graph for each of the T datasets.

Then, given some sparsity s, we combine these graphs with the method proposed in

Section 6.3.2 to obtain a sparse median graph.

2Recall the formal defintion of CLIME also require a set of thresholding parameters {γt}. While thresh-

olding by γt is indeed a valid option, we choose to use the method of setting every non-zero entry in the

precision matrix to correspond to an edge. Therefore, we do not actually use γt in our simulations and exper-

iments. In practice, we have found that the use of some threshold γt has very little impact on the output of

the method.
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• Naive: We concatenate the T datasets into one dataset on which we estimate a graph

using the techniques from Section 6.6.1.1.

• Average: For each of the T datasets, we calculate an associated correlation or preci-

sion matrix. We average these matrices and threshold such that only the s entries in

the averaged matrix with the largest magnitudes correspond to edges in the estimated

graph.

6.6.2 Synthetic Data Simulations

In this simulation, we examine the estimation performance of the proposed method on

synthetically generated data. In particular, we generate T = 15 different datasets with

100 samples in each dataset. Each dataset follows a different nonparanormal distribution,

corresponding to a different undirected graph Gt. For each method, we utilize a sequence

of uniformly spaced sparsity parameters ŝ from 0 to
(
d
2

)
to estimate a sequence of graphs,

over which we plot a ROC curve. In addition, we repeat this simulation for d = 50, 100,

and 250. Our results show SMG Kendall exhibit better estimation performance than the

competiting methods.

More specifically, we conduct the simulation with the following procedure:

1. Using the huge package (Zhao et al., 2012), we generate a sparse graph G∗
s with

sparsity s, along with a corresponding covariance matrix Σ. We will use this as the
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oracle graph of the population. In particular, we adopt the following five models for

G∗
s : banded, clustered, hub, random, and scale-free (definitions are provided in Zhao

et al. (2012)). We then examine G∗
s at d = 50, 100, and 250.

2. For each subject t = 1, 2, ..., T , we construct a perturbed graph Gt to reflect the

difference among different subjects. In particular, we add �0.001 × s� edges and

remove �0.75× (
(
d
2

)
−s)� edges from G∗

s . We illustrate a typical run of the generated

graphs Gt for a specific t in Figures 6.1, 6.2, and 6.3. In each figure, the black edges

represent the ones present in both G∗
s and Gt, the blue edges represent the ones only

present in G∗
s , and the red edges represent the ones only present in Gt.

3. Using each Gt, we generate a corresponding covariance matrix Σt with an algorithm

identical to the one implemented in the huge package.

4. For t = 1, . . . , T , we generate a (nt × d) dataset3 Dt from NPNd(Σ
t, f) where

f1(x) = · · · = fd(x) = x5. Thus, the population dataset is:

D = {D1,D2, . . . ,Dt, . . . ,DT}

5. Applying the nine methods described in Section 6.6.1 to D, we estimate a sparse

graph, Ĝ∗
ŝ , and calculate the the true positive and true negative rates.

6. We repeat the simulation 100 times and plot an averaged ROC curve over the range

3Each Dt corresponds to a realization {xt
i} for i = 1, . . . , nt from Section 6.4.
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of ŝ. We show the results in Figures 6.4, 6.5, and 6.6 .
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Figure 6.1: An illustration of the five graph patterns of the sparse graphs G∗
s and the corre-

sponding one individual dataset’s graph Gt for d = 50. Here the black edges represent the

ones present in both G∗
s and Gt, the blue edges represent the ones only present in G∗

s , and

the red edges represent the ones only present in Gt.

From the curves in Figures 6.4, 6.5, and 6.6, we clearly see our proposed method ex-

hibits a higher estimation performance than competing methods. This is as expected be-

cause the proposed method is the only consistent estimator of G∗
s , while all the compet-

ing methods deviate from the truth. In addition, note the Kendall-based methods tend to

outperform Pearson-based methods – a pattern that becomes more distinct with larger di-
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Figure 6.2: An illustration of the five graph patterns of the sparse graphs G∗
s and the corre-

sponding one individual dataset’s graph Gt for d = 100. Here the black edges represent the

ones present in both G∗
s and Gt, the blue edges represent the ones only present in G∗

s , and

the red edges represent the ones only present in Gt.
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Figure 6.3: An illustration of the five graph patterns of the sparse graphs G∗
s and the corre-

sponding one individual dataset’s graph Gt for d = 250. Here the black edges represent the

ones present in both G∗
s and Gt, the blue edges represent the ones only present in G∗

s , and

the red edges represent the ones only present in Gt.
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mensions. This result confirms the claim that utilizing Kendall’s tau leads to optimal graph

recovery rates (Liu et al., 2012a). Furthermore, the poor performance of the LW-based

methods (worse than both Kendall and Pearson) suggests, while covariance shrinkage

demonstrate potential in financial applications, their benefits do not carry over to graph

estimation.

6.6.3 ADHD Data Experiments

In practice, there exists no golden standard for the structure of the graph of brain imag-

ing data. Therefore, in addition to the above simulation on synthetic data, we investigate

the estimation performance, predictive power, and stability of the proposed method on a

brain imaging dataset, the ADHD-200 dataset (Milham et al., 2012; Eloyan et al., 2012).

The ADHD-200 dataset is a landmark study compiling over 1,000 functional and struc-

tural scans including subjects with and without attention deficit hyperactive disorder (ADHD).

The data used in the analysis are from 739 unique subjects: 478 controls and 261 children

diagnosed with ADHD of various subtypes. Each subject has at least one blood oxygen

level dependent (BOLD) resting state functional MRI scans. The number of scans within

an fMRI resting state session varies from 78 to 456, which were measured with different

time resolutions (TR) as well as different scan lengths. The varying TR and length of scan-

ning stress the importance of addressing subject-level heteroscedasticity in graph estimates.

The data also include demographic variables as predictors. These include age, IQ, gender

and handedness. These demographic variables are combined into a matrix with dimen-
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Figure 6.4: ROC curves in estimating the graphical models for different methods in five

different graph patterns. Here, d = 50 and nt = 100 for all t = 1, 2, . . . , 15.
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Figure 6.5: ROC curves in estimating the graphical models for different methods in five

different graph patterns. Here, d = 100 and nt = 100 for all t = 1, 2, . . . , 15.
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Figure 6.6: ROC curves in estimating the graphical models for different methods in five

different graph patterns. Here, d = 250 and nt = 100 for all t = 1, 2, . . . , 15.

189



CHAPTER 6. SPARSE MEDIAN GRAPHS ESTIMATION

Figure 6.7: The illustration of the locations of the 264 nodes.

sions 4× 739. We follow the procedure in Eloyan et al. (2012) for preprocessing with one

additional step of concatenating together datasets associated with the same patientID.

We constructed our predictors by extracting 264 voxels from each image that broadly

cover major functional regions of the cerebral cortex and cerebellum following Power et al.

(2011). The locations of these 264 voxels are illustrated in Figure 6.7 and the value of each

voxel is calculated as the mean of all data points inside these small seed regions. Therefore,

each subject twould correspond to a matrix of size nt×d where nt is the number of images

for that subject and d = 264.
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6.6.3.1 Simulations based on the ADHD Data

Here, we examine the estimation performance of the proposed method on real brain

imaging data. This involves three steps: First, we need to generate a “true graph”; Secondly,

we simulate multiple datasets with the sparse median graph corresponding to the “true

graph”; Thirdly, we examine the estimation performance based on the simulated multiple

datsets.

Specifically, we first estimate a sparse graph on a homogenous dataset and use this

graph as the “true graph.” Then, we simulate non-identically distributed subjects by par-

titioning the homogenous dataset and adding perturbations to each partition. Using these

simulated datasets, we will assess the estimation performance of the nine methods from

Section 6.6.1 with a simulation similar to that in Section 6.6.2. Our results confirm SMG

Kendall continues to exhibit better estimation performance than the competiting methods

when the data originates from real brain imaging data.

In particular, we use the brain imaging data of the subject with the patient ID 15002 in

the ADHD dataset. This patient possesses the largest number of scans in the dataset with

456 images. We denote this dataset by D. Then, we implement the following simulation

procedure:

1. Using the Kendall method described in Section 6.6.1.1, we estimate an oracle sparse

median graph G∗
s on D with the s parameter chosen using StARs.

2. To simulate different datasets, we randomly partition D into T = 10 smaller datasets
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{D1,D2, ...,Dt, ...,DT}. This creates six sets of 46 scans and four sets of 45 scans–

each with d = 264 corresponding to the number of voxels.

3. For each patient t = 1, 2, ..., T , we generate a graph Gt for the patient by removing

edges from G∗
s . More specifically, we select a pr := 50% of the d vertices in G∗

s

randomly, and delete all edges incident to these vertices.

4. Let μ and σ denote the mean and standard deviation of the vectorized D. Note

that each of the �pr × d� randomly selected vertices correspond to a column in the

datasets. We perturb each Dt to match Gt by replacing each entry of the randomly

selected columns with a number randomly generated from the distribution N(μ, σ).

Let us denote this perturbed dataset as D̃t.

5. To simulate the effects of outliers, we choose 30% of the rows in each D̃t and apply

the following transformation to each entry in a chosen row, i, in the dataset:

[D̂t]ij = [D̃t]
5
ij ×

∑d
k=1[D̃t]ik∑d
k=1[D̃t]5ik

In rows that were not chosen, the entries of D̂t and D̃t are identical. Therefore, D̂t is

the final perturbed dataset for one particular subject, and the dataset of all simulated

subjects is:

D̂ = {D̂1, D̂2, ..., D̂t, ..., D̂T}

6. Applying the nine methods described in Section 6.6.1 to D̂, we estimate a sparse
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graph, Ĝ∗
ŝ , and calculate the the true and false positive rates.

7. We repeat the simulation 100 times and plot an averaged ROC curve over the range

of ŝ. The results are shown in Figure 6.8.

Comparing the results from Figure 6.8 to those in Section 6.6.2, we see the proposed

method continues to demonstrate the best estimation performance, and the LW-based meth-

ods continue to perform the worst among these competing methods. However, in this simu-

lation, SMG Kendall and SMG Pearson outperform Naive Kendall and Naive Pearson,

where each Kendall-based method still outperforms the corresponding Pearson-based

method. This shows the benefits of sparse median graphs tend to dominate when estimat-

ing graphs on real brain imaging data – unlike the synthetic setting where the benefits of

utilizing Kendall’s tau tend to dominate. Nonetheless, the results from this simulation and

Section 6.6.2 both agree that the best estimation performance is achieved by the proposed

method.

6.6.3.2 Predictive Power Experiment

In this section, we compare the predictive power of our proposed method to that of the

competing methods4. To this end, we examine the difference of summary graphs between

different subpopulations. In the sequel, we focus on SMG Kendall, SMG Pearson, and

4We consider the predictive power of the methods in classification. Because the classification power

increases with greater separation between different classes, our experiment measures the predictive power by

calculating the scaled Hamming distance between the sparse graphs estimated over two classes of data.
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Figure 6.8: ROC curves in estimating the summary graphical models using data based on

the data of subject of ID 15002 in the ADHD-200 dataset. Here, d = 264 and T = 10.
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Naive Kendall, which perform the best in simulation5 (Avg Kendall and Avg Pearson

also performed well, but we omit them because they are not robust to outliers).

Several population sparse graph contrasts of interest were investigated and included:

ADHD case status (denoted by Case and Control), gender (denoted by Female and Male),

and age. Given the pediatric population in the ADHD study, this investigates young adults

versus children using a cutoff of 12 years. Subjects having ages larger than 12 years are

denoted by Senior and those less than or equal to 12 years denoted by Junior.

Figure 6.9 provides the comparison of the brain connectivity graphs obtained using the

three methods on Case and Control data. We find the Case and Control graphs show the

most edge disagreements when estimated with SMG Kendall. This is consistent to the

simulation results, and strongly indicates sparse median graphs coupled with the Kendall’s

tau estimation procedure works in studying real applications.

A more detailed analysis was subsequently attempted. We applied the three methods

on subpopulations to find difference between graphs with different covariate levels. For ex-

ample, graphs between cases and controls were investigated stratified by gender. Summary

statistics for these subpopulations differences are presented in Table 6.1.

In all cases, we again find SMG Kendall estimates the greatest difference between

any two classes. In addition, observe while SMG Pearson performs very closely to SMG
5All the remaining experiments utilize all patients in the ADHD dataset. For selecting tuning parameters,

since we must estimate a graph for each patient, and parameter selection is computationally expensive, we

randomly sample 100 subjects from the 739 subjects and apply StARs to estimate the CLIME parameter for

each subject. Then, we find the median valued parameter among the selected parameters and use it as the

universal parameter for all applications of CLIME in the following experiments. We found that the median

parameter from using both Kendall and Pearson is λ = 0.171.
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(A) Top (B) Left
SMG Kendall

SMG Pearson

Naive Kendall

Figure 6.9: The difference between the estimated sparse graphs of the cases and control

subjects using SMG Kendall, SMG Pearson, and Naive Kendall. Here, the black color

represents the edges only present in the graph for cases but not in controls persons, while

the red represents the opposite.
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Table 6.1: Predictive Power. Predictive power of SMG Kendall and competiting methods.

We measure predictive power by the Hamming distance between patients of two classes

divided by
(
d
2

)
. We use λ = 0.171 for the CLIME parameter. This table represents values

at 10−3 scale.

Case and Control Difference

data SMG Ken. SMG Pea. Naive Ken.
Whole 5.18 5.10 4.35

Male 10.57 10.05 4.90

Female 6.60 5.67 4.90

Junior 6.22 6.31 4.35

Senior 9.02 7.89 5.10

Male and Female Difference

data SMG Ken. SMG Pea. Naive Ken.
Case 9.07 8.64 5.67

Control 7.81 6.63 4.35

Junior and Senior Difference

data SMG Ken. SMG Pea. Naive Ken.
Case 9.45 8.93 5.67

Control 9.36 9.25 6.19

Kendall in most cases, there is a larger difference between the two methods in the tests sep-

arating or comparing the subjects by gender. This suggests SMG Kendall is more sensitive

to the differences between male and female brains, than SMG Pearson. Furthermore, both

SMG-based methods show much more predictive power than Naive Kendall. This result

demonstrates the predictive advantage of assuming a non-i.i.d population.
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6.6.3.3 Stability: CLIME Parameter Perturbations

In this experiment, we compare the stability of the proposed method to that of the

competiting methods under parameter perturbations. In particular, we examine the stability

by measuring the scaled Hamming distance between a sparse graph estimated with the

CLIME parameter λ = 0.171 and the sparse graph estimated using a perturbed CLIME

parameter.

To this end, we conduct the experiment as follows for each of the three methods:

1. Using the CLIME parameter λ = 0.171, we estimate a population level sparse graph

Ĝsλ
λ . Here we select the sλ parameter by setting sλ to be the median number of edges

of the graphs estimated for each individual subject. More specifically, recall the

algorithm first applies Kendall or Pearson (see Section 6.6.1.1) to each individual

graph. Each one of these individual graphs possess some number of edges. We

choose sλ to be the median among that set of numbers.

2. We repeat the procedure but estimate the graph of each individual subject with a

perturbed CLIME parameter. In particular, we use p × λ for the values of p = 0.9,

0.95, 0.99, 1.01, 1.05, and 1.1.

3. We examine the Hamming distance between each Ĝs(p×λ)

(p×λ) and Ĝsλ
λ divided by sλ. The

results are shown in Table 6.2.

We see our proposed method is comparable in stability to SMG Pearson. In addition,

observe Naive Kendall tends to display significantly higher instability than the SMG-
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Table 6.2: Stability w.r.t CLIME Parameter. Stability of SMG Kendall and competiting

methods with respect to perturbations to the CLIME parameter. Stability is measured as

Hamming distance, divided by sλ, between the graph estimated with the perturbed param-

eter and the graph estimated with the unperturbed parameter, λ. Here, sλ is the number

edges in the graph of estimated with the unperturbed parameter. We use λ = 0.171 for as

the CLIME parameter. This table represents values at 10−1 scale.

Variation
0.9λ 0.95λ 0.99λ

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

SMG Kendall 3.46 0.137 2.14 0.109 1.68 0.148

SMG Pearson 3.23 0.240 2.05 0.142 1.51 0.209

Naive Kendall 3.83 0.381 2.46 0.279 1.57 0.145

Variation
1.01λ 1.05λ 1.1λ

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

SMG Kendall 1.51 0.128 1.77 0.266 2.34 0.066

SMG Pearson 1.48 0.143 1.80 0.096 2.41 0.097

Naive Kendall 1.49 0.231 2.42 0.182 3.17 0.174
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based methods for 1.05λ and 1.1λ. Since CLIME outputs more sparse graphs for larger

λ parameters, this supports the claim that sparse median graphs provide a more stable

estimator of graphs in sparse settings than models assuming the population data arise from

i.i.d settings.

6.6.3.4 Stability: Data Perturbations

In this experiment, we consider the stability of the proposed method when the dataset is

perturbed. In particular, we take subsamples of the data from each patient to create a new,

subsampled dataset. We repeat this procedure multiple times and measure the instability

by examining the differences in the resulting graphs.

More specifically, we apply the following procedure using each of the three methods:

1. We randomly draw K = 100 subsamples from the set of subjects at subsampling

ratios of p. In other words, each subsampled dataset, Dk, contains data corresponding

to �p× T � subjects from the entire ADHD dataset, where T = 739. We perform this

procedure using subsampling ratios of p = 0.65, 0.8, and 0.9.

2. Using the CLIME parameter λ = 0.171, we estimate a sparse graph Ĝs
k from Dk.

3. We measure the instability by averaging the disagreements on the presence of edges

in Ĝs
1, Ĝs

2, ..., Ĝs
K . We refer to Section 3.2 of Liu et al. (2010) for a detailed descrip-

tion of this measure. The results are summarized in Table 6.3 where larger values

correspond to more instability.
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We see that our proposed method is comparable in stability to SMG Pearson under data

perturbations. In addition, observe Naive Kendall displays significantly more instabil-

ity than either of the other methods employing the sparse median graph approach. This

demonstrates the resistance of the sparse median graph approach to the characteristics of

individual subjects when estimating a population-level graph.

Table 6.3: Stability w.r.t Data. Stability of SMG Kendall and competiting methods with

respect to perturbations to the data via subsampling. Here, we measure the total instability

as the mean of the disagreements on the presence each edge (Liu et al., 2010). Here n =
100 samples were taken. We use λ = 0.171 used for the CLIME parameter. This table

represents values at 10−3 scale.

Sampling Ratio
0.65 0.8 0.9

Instability Std. Err. Instability Std. Err. Instability Std. Err.

SMG Kendall 2.39 0.152 1.55 0.122 0.941 0.096

SMG Pearson 2.30 0.152 1.54 0.126 1.02 0.102

Naive Kendall 3.00 0.171 2.70 0.162 2.46 0.157

6.7 Discussion

In this chapter, we discuss the concept of the sparse median graphs to estimate a popula-

tion level graph under nonparanormal assumptions. This new approach combines two new

developments in graph estimation literature – namely, (i) employing sparsity constraints in

high dimensional settings for identifiability and (ii) increasing graph recovery rates by us-

ing nonparanormal assumptions (Liu et al., 2009, 2012a) – with the idea of median graphs
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from pattern recognition literature (Bunke and Shearer, 1998; Jiang et al., 2001). The

resulting method, which we analyzed both theoretically and empirically, allows us to esti-

mate a graph emphasizing the commonalities within a population and downplays outliers

of individuals within the population.

In particular, we theoretically prove the consistency of this method and bound its rate of

convergence. Then, in two simulations – one with synthetic and one with real brain imag-

ing data – we demonstrate our proposed method displays higher estimation performance

than potential competing methods. In addition, we observe the benefits of the nonpara-

normal assumptions with Kendall’s tau tend to dominate in the synthetic data simulations,

but the benefits of the sparse median graph aggregation method tend to dominate in the

simulations with real data. One possible explanation is that the “biggest challenge” in esti-

mating the graphs from synthetic data is the data’s non-Gaussianity (which is “solved” by

utilizing Kendall’s tau), while the biggest challenge in estimating the graphs from the real

brain imaging data stems from the individual outlier characteristics of patients and scans

(which are downplayed by the sparse median graph). However, the consistent optimal per-

formance of the proposed method in both simulations demonstrates its value as an estimator

of choice for both highly non-Gaussian data, as well as complex aggregated datasets with

large variation in individual characteristics.

We then perform experiments using the ADHD-200 brain imaging dataset to demon-

strate the proposed method possesses the highest predictive power for classification tasks

among its competitors. Furthermore, stability experiments on the same dataset show the
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sparse median graph summarization provides much more stable estimators than the Naive

Kendall method assuming homogeneity of the entire dataset.

These results offer compelling evidence that the proposed method possesses the po-

tential to become an unified framework for conducting inference on complex datasets of

aggregated data. While the current analysis is primarily illustrative, we have demonstrated

its value for applications in arenas of image- and eletrophysiologically-based estimates of

function and structural brain connectivity, where interest lies primarily in population char-

acteristics. Therefore, we believe this investigation would justify a more thorough inferen-

tial investigation of the median graph properties and network modification with disease in

future works.

A key idea in this chapter is still the same as previous: We advocate using semipara-

metric models (transelliptical graphical model) coupled with nonparametric methods (rank-

based Kendall’s tau statistic). Via exhaustive numerical studies, we show the proposed

method is robust to different types of data contamination, as well as enjoys good predictive

powers and stability properties. This adds more merits to our unified framework in tackling

complex high dimensional data.
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Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection

with the lasso. The Annals of Statistics, 34(3):1436–1462.

Milham, M. P., Fair, D., Mennes, M., and Mostofsky, S. H. (2012). The ADHD-200 con-

sortium: a model to advance the translational potential of neuroimaging in clinical neu-

roscience. Frontiers in Systems Neuroscience, 6:62.

Morrison, D. (2004). Multivariate Statistical Methods (4th edition). Cengage Learning,

Stamford, CT.
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