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Abstract

We record work done by the author [29] on the Kakeya-Nikodym problems, and we also record the

joint work done by the author and Cheng Zhang [30] on improved geodesic restriction estimates for

eigenfunctions on compact Riemannian surfaces with nonpositive curvature.

The Kakeya-Nikodym problems are among the central topics in modern Harmonic analysis. The

work of the author [29] gives an alternative proof for the classical bound of Wolff for the Kakeya-

Nikodym type maximal operators in Euclidean spaces Rd, d ≥ 3, without appealing to the induction

on scales arguments.

As a consequence of the new proof, it is also shown in [29] that the same L(d+2)/2 bound holds

for Nikodym maximal function for any manifold (Md, g) with constant curvature, which generalizes

Sogge’s results [22] for d = 3 to any d ≥ 3. As in the 3-dimensional case, we can handle manifolds of

constant curvature due to the fact that, in this case, two intersecting geodesics uniquely determine a

2-dimensional totally geodesic submanifold, which allows the use of the auxiliary maximal function

to reduce the problem to a 2-dimensional one.

In the joint work of the author and Cheng Zhang [30], we prove improved L4 geodesic restriction

estimates for eigenfunctions on compact Riemannian surfaces with nonpositive curvature. We achieve

this by adapting Sogge’s strategy in [24]. This result improves the L4 restriction estimate of Burq,

Gérard and Tzvetkov [7] and Hu [13] by a power of (log log λ)−1. Moreover, in the special case of

compact hyperbolic surfaces, we obtain further improvements in terms of (log λ)−1 by applying the

ideas from [9] and [4]. We are able to compute various constants that appeared in [9] explicitly, by

lifting calculations to the universal cover H2.
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1

Kakeya-Nikodym type Maximal

Inequalities

1.1 Introduction

The original Kakeya problem, proposed by Kakeya [14] in 1917, is to determine the minimal area

needed to continuously rotate a unit line segment in the plane by 180 degrees. In 1928, Besicovitch

[3] showed that such sets may have arbitrarily small measure. Moreover, Besicovitch’s work indicates

the existence of measure zero subsets of Rd which contain a unit line segment in every direction.

Such sets are called Besicovitch sets or Kakeya sets.

It was later found that Kakeya sets are closely related to many fundamental problems in harmonic

analysis. Fefferman [12] was the first to apply the construction of measure zero Kakeya sets to a

problem of Fourier transform, namely the ball multiplier problem. It turns out that many problems

in analysis require more detailed information about the size of Kakeya sets, and in particular, the

fractal dimension. The Kakeya set conjecture asserts that even though the measure of a Kakeya set

can be zero, it still needs to be large in the sense of fractal dimension.

Conjecture 1 (Kakeya Set Conjecture). Kakeya sets in R
d must have full Hausdorff/Minkowski

dimension.

There is also a stronger formulation of the conjecture in terms of maximal functions, which is

called the maximal Kakeya conjecture, or the Kakeya maximal function conjecture.

Conjecture 2 (Kakeya Maximal Function Conjecture). For any 0 < δ < 1, given ϵ > 0, there exists

1



a constant Cϵ such that

∥f∗δ ∥Ld(Sd−1) ≤ Cϵδ
−ϵ∥f∥Ld(Rd). (1.1.1)

Here f∗δ : Sd−1 → R is the Kakeya maximal function defined by:

f∗δ (ξ) = sup
a∈Rd

1

|T δ
ξ (a)|



T δ
ξ
(a)

|f(y)| dy,

where T δ
ξ (a) is an 1× δ × · · · × δ tube centered at a ∈ R

d with direction ξ ∈ Sd−1.

Interpolating between (1.1.1) and the trivial L1 → L∞ estimate, one sees that natural partial

results to Conjecture 2 would be the following estimate:

∥f∗δ ∥Lq(Sd−1) ≤ Cϵδ
1− d

p
−ϵ∥f∥Lp(Rd), (1.1.2)

where 1 < p < d, and q = (d− 1)p′ are fixed. Indeed, it is well-known that an estimate like (1.1.2)

for a given p would imply that Kakeya sets have Hausdorff/Minkowski dimension at least p.

For the case d = p = 2, Conjecture 2 was fully solved by Córdoba [10]. However, it is still open

for any d ≥ 3. When p = (d + 1)/2, q = (d − 1)p′ = d + 1, (1.1.2) follows from Drury’s work on

X-ray transformations [11] in 1983. In 1991, Bourgain [5] improved this result for each d ≥ 3 to

some p(d) ∈ ((d + 1)/2, (d + 2)/2) by the so-called bush argument. Bourgain studied the “bush”

structure where a large number of tubes intersect at a given point. Four years later, Wolff [28]

generalized Bourgain’s bush argument to the more refined “hairbrush argument”, by considering

tubes with lots of “bushes” on them. Combining the hairbrush argument and an induction on scales

argument, Wolff showed that (1.1.2) holds for all d ≥ 3, p = (d+2)/2. Wolff’s result is still the best

for Conjecture 2 when d ≤ 8. Improved bounds have been proven in the higher dimensional cases,

and for the weaker Conjecture 1 in lower dimensional cases, see e.g. [6], [15], [16].

The induction on scales argument introduced by Wolff has been an essential technique for proving

such maximal inequalities. To be more specific, one can discretize Conjecture 2 by looking at the

corresponding restricted weak type bound.

Conjecture 3 (Maximal Kakeya Conjecture, discrete version). Let 0 < δ, λ < 1, 1 ≤ p ≤ d, and

{T1, . . . , TM} be a collection of 1× δ × . . .× δ tubes oriented in a δ-separated set of directions. For

each 1 ≤ i ≤M, let Ei ⊂ Ti be a set with |Ei| ≥ λ|Ti|. Then











M


i=1

Ei











≥ Cϵ(Mδd−1)λdδd−p+ϵ.
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Remark: The Minkowski dimension version of Conjecture 1 corresponds to the case where λ = 1,

and the Hausdorff dimension version essentially corresponds to the case where λ ≥ 1/(log2(1/δ)).

Thus, while the Kakeya set conjecture is concerned with how small one can make union of tubes

Ti, Conjecture 2 is concerned with how small one can make union of (possibly very small) density λ

portions Ei of tubes Ti.

Wolff’s induction on scales argument is also often called the “two-ends reduction” (see [27] for a

detailed discussion), because it allows one to avoid the situations where each Ei is concentrated only

in some small portion of the tube. That is, by two-ends reduction, it suffices to only consider portions

Ei which occupy both ends of the tube in some sense. This reduction exploits the approximate

scale-invariance of the Euclidean Kakeya problem, and has become a standard technique in similar

problems.

It is tempting to remove such a technical argument. In 1999, Sogge [22] managed to avoid the

two-ends reduction in his work on the closely related Nikodym maximal functions in 3-dimensional

manifolds with constant curvature. Sogge’s idea was to use a modified hairbrush argument and an

optimal bound for an auxiliary maximal function. Following Sogge’s idea, in 2014, Miao, Yang and

Zheng [17] were able to recover Wolff’s result for Kakeya maximal functions in R
3 without the use

of the two-ends reduction. In fact, Miao, Yang and Zheng also tried to recover Wolff’s results for all

dimension d ≥ 3, but it seemed impossible to extend the same argument to higher dimension d > 3,

due to the fact that their auxiliary maximal function bound involves a δ−(d−3)/2 loss.

The recent work [29] by the author addresses this problem. By using a more natural auxiliary

maximal function and taking into account certain geometric observations, an optimal auxiliary

maximal function bound was obtained. This leads to a new proof of Wolff’s Kakeya maximal

function bounds for all dimension d ≥ 3, without the use of the induction on scales argument.

Theorem 1 (Xi [29]). It can be shown without the induction on scales argument that the Kakeya

maximal function in R
d satisfies

∥f∗δ ∥
L

(d−1)(d+2)
d (Sd−1)

≤ Cϵδ
1− 2d

d+2−ϵ∥f∥
L

d+2
2 (Rd)

. (1.1.3)

This new proof shows that Wolff’s L(d+2)/2 bounds of the Kakeya maximal function follows

directly from some geometric combinatorics and Córdoba’s optimal bounds for the 2-dimensional

case. On one hand, it opens up a new route to get Wolff’s bounds where different values of λ and

different dimensions can be handled in the same way. On the other hand, since we now know how

to avoid the rescaling argument, it is easier to apply similar ideas to the non-Euclidean case for

3



Nikodym problems following arguments in [22].

Nikodym problems are close cousins to the Kakeya problems. The Nikodym set problem is

concerned with the fractal dimension of the so-called Nikodym sets. Similar to the Kakeya problems,

the conjectured dimension bound for the Nikodym sets follows from a Ld → Ld bound for the

corresponding Nikodym maximal function.

Recall that the Nikodym maximal function f∗∗δ in R
d is defined by:

f∗∗δ (x) = sup
γx∋x

1

|T δ
γx
|



T δ
γx

|f(y)| dy, (1.1.4)

where the supremum runs through all the unit line segments γx that contains the point x. Corre-

spondingly, we have the Nikodym maximal function conjecture.

Conjecture 4 (Nikodym Maximal Function Conjecture). For any 0 < δ < 1, given ϵ > 0 then there

exists a constant Cϵ such that

∥f∗∗δ ∥Ld(Rd) ≤ Cϵδ
−ϵ∥f∥Ld(Rd). (1.1.5)

Wolff’s hairbrush argument [28] applies equally well to the Nikodym maximal function, so we

have similar bounds:

∥f∗∗δ ∥
L

(d−1)(d+2)
d (Rd)

≤ Cϵδ
1− 2d

d+2−ϵ∥f∥
L

d+2
2 (Rd)

. (1.1.6)

Indeed, Tao [26] showed that Kakeya maximal function conjecture is equivalent to Nikodym maximal

function conjecture in Euclidean space, and furthermore, any bound like (1.1.2) is equivalent to the

corresponding bound for the Nikodym maximal function.

Even though Kakeya problems and Nikodym problems are equivalent in Euclidean spaces, Kakeya

problems are not natural on general manifolds since there is no unique way to identify directions

at different points on a general manifold. However, we can naturally extend the definition of the

Nikodym maximal function (1.1.4) to any Riemannian manifold (M, g), by replacing γx by any

geodesic segment that contains x with length α < min{1, 12 Inj(M)} fixed.

In 1997, Minicozzi and Sogge [18] were the first to study the Nikodym maximal functions on

general manifolds. By using a modified bush argument, they showed that for a general manifold

Drury’s bounds for p = (d + 1)/2 still hold. On the other hand, they noticed that Bourgain and

Wolff’s arguments relied heavily on reducing to lower dimensional subspaces. So, to extend these

arguments to a manifold, one would need the existence of many totally geodesic submanifolds.
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Unfortunately, for generic manifolds, this is rarely the case. Minicozzi and Sogge were able to

build counter-examples by exploiting this fact. They showed that for each d there exists a manifold

(Md, g), such that this estimate breaks down if p > ⌈(d + 1)/2⌉. In other words, Drury’s result is

the best possible at least for odd dimensional manifolds.

Clearly, if one wants to generalize Wolff’s Hairbrush argument to manifolds, some additional

assumptions are needed. In the later work of Sogge on Nikodym sets in 3-dimensional manifolds

[22], Sogge noticed that if M has constant curvature, all 2-planes in the geodesic normal coordinates

about a point are totally geodesic. Thus it seemed possible to generalize Wolff’s hairbrush argument

to manifolds with constant curvature. However, there was one obstacle on the way. The induction

on scales argument Wolff had used seemed hard to generalize to the non-Euclidean setting. By

introducing a weighted auxiliary maximal function and a more precise multiplicity argument, Sogge

was able to avoid the induction on scales argument and proved the L5/2-bounds for the Nikodym

maximal function in the 3-dimensional constant curvature case.

As an application of the proof for Theorem 1, it is shown in the second part of [29] that if one

works with a more natural auxiliary maximal function, Sogge’s idea for 3-dimensional manifolds

with constant curvature actually works for all dimensions d ≥ 3.

Theorem 2 (Xi [29]). For any d ≥ 3, assume that (Md, g) has constant curvature. Then for f

supported in a compact subset K of a coordinate patch and all ϵ > 0,

∥f∗∗δ ∥
L

(d−1)(d+2)
d (Md)

≤ Cϵδ
1− 2d

d+2−ϵ∥f∥
L

d+2
2 (Md)

. (1.1.7)

We remark that just like the Kakeya problem in Euclidean space, the Nikodym problem here is

a local problem, so Theorem 2 implies the more general case (without support assumption on f).

Thus it is easy to see that Theorem 2 implies Wolff’s result for Nikodym maximal function in R
d

[28] as a special 0 curvature case. Also, Theorem 2 generalizes Sogge’s [22] result for 3-dimensional

manifolds to any dimension higher than 3.

This chapter is organized as the following. In the next section, we modify Sogge’s strategy to

show that if we add in some more geometric observations, we can get rid of the δ−(d−3)/2 loss for the

auxiliary maximal function in [17], which allows us to reduce to Cordoba’s [10] optimal L2 estimate

for 2-planes. This modification helps us to recover Wolff’s result. In the third section, we adapt

the same idea to the Nikodym-type maximal function in the constant curvature case, and extend

Sogge’s result [22] to any dimension d ≥ 3, where we shall of course need a curved version of the

optimal L2 estimate for Nikodym maximal function which is due to Mockenhaupt, Seeger and Sogge

5



[19].

1.2 Kakeya maximal function in Euclidean space

In this section, we prove Theorem 1. We shall follow the strategy in [22] and [17] closely, and add in

some key observations. Throughout this section, we use C, c to denote various constants that only

depend on the dimension.

It is well-known that it suffices to prove the following restricted weak type estimate:

|{ξ ∈ Sd−1 : (χE)
∗
δ(ξ) ≥ λ}| ≲ϵ (λ

−pδp−d|E|) q
p , (1.2.1)

where E is contained in the unit ball, χE denotes its characteristic function, p = d+2
2 and q = (d−1)p

p−1 .

For the sake of simplicity, we use the notation A ≲ϵ B throughout the chapter to denote A ≤ Cϵδ
−ϵB.

Similarly, B ≳ϵ A means B ≥ cϵδ
ϵA.

We start by doing some standard reductions (see e.g. [5]). First, without loss of generality, we

can assume that any ξ1, ξ2 ∈ {ξ ∈ Sd−1 : (χE)
∗
δ(ξ) ≥ λ} have angle ∠(ξ1, ξ2) ≤ 1. Second, we take

a maximal δ-separated subset {ξi}Mi=1 of {ξ ∈ Sd−1 : (χE)
∗
δ(ξ) ≥ λ}, then (1.2.1) is equivalent to

Mδd−1 ≲ϵ (λ
−pδp−d|E|) q

p , (1.2.2)

which is equivalent to

|E|2 ≳ϵ λ
d+2δd−2(Mδd−1)

d
d−1 . (1.2.3)

For each ξi, there is a tube T δ
ξi := T δ

i satisfying

|E ∩ T δ
i | ≥ λ|T δ

i |. (1.2.4)

Remark: Indeed, we will always assume λ ≥ δ in proving (1.2.3), for the reason that in the case

λ ≤ δ, it’s trivial that |E|2 ≥ |E ∩ T δ
i |2 ≥ λ2δ2d−2 ≥ λd+2δd−2 ≳ λd+2δd−2(Mδd−1)

d
d−1 . The last

inequality follows from the simple fact Mδd−1 ≲ 1.

We start our proof by applying a multiplicity argument to these tubes, which was first introduced

by Wolff. We will be using a strengthened version developed by Sogge, see Lemma 2.5 in [22]. This

modification by Sogge is crucial if one wants to avoid induction on scales.
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1.2.1 Multiplicity argument

Consider parameters θ ∈ [δ, 1], σ ∈ [λδ, 1]. First, for 1 ≤ j ≤M and x ∈ T δ
j fixed, let

Lθ(x, j) = {i : x ∈ T δ
i ,∠(T

δ
j , T

δ
i ) ∈ [θ/2, θ)}

index the tubes T δ
i containing x which intersect the fixed tube T δ

j at angle comparable to θ. Next,

let

Lσ(x, j) = {i : x ∈ T δ
i , |T δ

i ∩ {y ∈ E : dist(y, γj) ∈ [σ/2, σ)}| ≥ (2 log2
1

δ2
)−1λ|T δ

i |}

index the tubes T δ
i containing x which intersect the fixed tube T δ

j at x such that there is a non-trivial

portion of T δ
i ∩ E that has distance to the central axis of T δ

j , γj , comparable to σ. Now let

Lθ,σ(x, j) = Lθ(x, j) ∩ Lσ(x, j),

then we have the following

Lemma 1. There exist N ∈ N and θ ∈ [δ, 1], σ ∈ [λδ, 1] that fulfill the following two cases

I. (Low multiplicity case)There are at least M/2 values of j for which







x ∈ T δ
j ∩ E : #{i : x ∈ T δ

i } ≤ N


 ≥ λ

2
|T δ

j |.

IIθ,σ. (High multiplicity case at angle θ and distance σ)There are at leastM/(2(log2 1/δ
2))2 values

of j for which











x ∈ T δ
j ∩ E : #Lθ,σ(x, j) ≥

N

(2 log2
1
δ2 )

2









≥ λ

(4 log2
1
δ2 )

2
|T δ

j |. (1.2.5)

Proof. Choose the smallest N ∈ N that satisfies the low multiplicity case I. Then there must beM/2

values of j such that

|{x ∈ T δ
j ∩ E : #{i : x ∈ T δ

i } ≥ N/2}| ≥ λ

2
|T δ

j |. (1.2.6)

We claim that for any such fixed j and x ∈ T δ
j ∩ E with #{i : x ∈ T δ

i } ≥ N/2 we can find

1 ≤ mx,j ≤ log2
1
δ , and 1 ≤ nx,j ≤ log2

1
λδ ≤ log2

1
δ2 such that

#L2mxδ,2nxλδ(x, j) ≥
N

(2 log2
1
δ2 )

2
.

Indeed, if the inequality fails for every pair of such (m,n), summing over them would give us

7



Figure 1.1: The overlapping of {lδk}.

a contradiction. Similarly, for a fixed j, using the pigeonhole principle again, we can find some

uniform 1 ≤ mj ≤ log2
1
δ and 1 ≤ nj ≤ log2

1
δ2 such that (1.2.5) holds for all such fixed j. Finally,

since there are M/2 values of j satisfying (1.2.6), if we use pigeonhole principle one more time, we

can choose θ = 2mδ, σ = 2nλδ, so that (1.2.5) holds for at least M/(2(log2 1/δ
2))2 many values of j,

finishing the proof.

Remark: The reason that we need σ to go down to the scale λδ instead of δ is that we only

have λ|T δ
j | portion of each T δ

j to apply pigeonhole principle, but this does not hurt us thanks to the

fact that λ ≥ δ. Furthermore, noting that for such θ, σ that fulfill IIθ,σ, we must have

λ ≲ϵ
σ

θ
≲ 1. (1.2.7)

This will be crucial to extend the proof in [17] to dimension d ≥ 3.

1.2.2 Auxiliary maximal function

First we prove a simple geometric lemma which will be useful in our proof and can be easily gener-

alized to the constant curvature setting.

Lemma 2. Let 0 < r2 ≤ r1 < 1, and take a maximal δ-separated subset {vk} on r1S
d−2. Let lδk

be the δ-neighborhood of the line passing through the origin with direction vk, then the number of

8



overlaps of {lδk} at some point y ∈ r2S
d−2 is at most

C



r1
r2

d−2

,

which implies


k

χlδ
k
∩{y′:|y′|∈[r2/2,r2)}(y

′) ≲



r1
r2

d−2

.

Proof. See Figure 1.1. We consider two cases. First, if r2 ≤ δ, then the total number of overlaps is

trivially bounded by the cardinality of the δ-separated subset, which is C


r1
δ

d−2 ≤ C


r1
r2

d−2

.

On the other hand, if r2 > δ, then the points {r2vk} will be r2δ
r1

-separated on r2S
d−2, the number

of overlaps of {lδk} is bounded by

C
δd−2

( r2δr1
)d−2

∼ C



r1
r2

d−2

.

.

Remark: It is easy to extend this simple lemma to manifolds with constant curvature. One just

need to notice that if there are two geodesic segements γ1(s), γ2(s) parametrized by arc length with

γ1(0) = γ2(0) and ∠(γ1, γ2) = β, then the distance l(r) between γ1(r) and γ2(r) would satisfy

crβ ≤ l(r) ≤ Crβ,

where c, C only depend on the curvature, providing r ≤ min{1, 12 (injectivity radius)}.

Within this section, we fix j and consider the tube T δ = T δ
ξj . We may assume without loss of

generality that the central axis γj of T δ is parallel to e1, where {e1, e2, . . . , ed} is an orthogonal

normal basis of R
d. For y ∈ R

d, ξ ∈ Sd−1, we write y = (y1, y
′) = (y1, y2, y

′′), ξ = (ξ1, ξ
′) =

(ξ1, ξ2, ξ
′′), where y′, ξ′ ∈ R

d−1, y′′, ξ′′ ∈ R
d−2 respectively.

We can now define the auxiliary maximal function as

Aθ,σ
δ (f)(ξ) = sup

T δ
ξ
:T δ∩T δ

ξ
̸=∅,∠(T δ,T δ

ξ
)∈[θ/2,θ)

1

|T δ
ξ |



T δ
ξ
∩{y:|y′|∈[σ/2,σ]}

|f(y)| dy,

and define Aθ,σ
δ (f)(ξ) to be zero if ∠(e1, ξ) is outside the interval [θ/2, θ).

Theorem 3. For the auxiliary maximal function Aθ,σ
δ , we have

∥Aθ,σ
δ (f)∥L2(Sd−1) ≲



log
1

δ


1
2


θ

σ


d−2
2

∥f∥L2(Rd). (1.2.8)
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Figure 1.2: Πk in R
d−1.

Proof. For the sake of simplicity, we fix θ, σ and write Aθ,σ
δ (f) simply as A(f). Clearly, it suffices

to estimate the integral


Sd−1
+

|A(f)|2(ξ) dS,

where Sd−1
+ is the upper half-sphere {ξ ∈ Sd−1 : ξ1 ≥ 0}, and dS is the corresponding surface

measure.

Since ∠(ξ, e1) ∈ [θ/2, θ), we see that sin θ/2 ≤ |ξ′| < sin θ. Let

Cθ = {ξ′ ∈ R
d−1 : sin θ/2 ≤ |ξ′| < sin θ}.

Take a maximal δ
sin θ -separated subset {vk} of Sd−2, which has cardinality comparable to ( θδ )

d−2.

Let lk be the line passing through the origin with direction vk, and l
δ
k denotes the δ-neighborhood of

lk. Let Πk = lδk ∩Cθ, and note that {sin θ · vk} is a maximal δ-separated subset in sin θ ·Sd−2, so we

must have ∪kΠk ⊃ Cθ. Again by the maximality of {vk}, we see that {Πk} has bounded overlap, so

they are essentially disjoint pairwise. Indeed, we can take a new collection of sets {Γk} which also

covers Cθ, with Γ1 = Π1, and Γk = Πk \ ∪k−1
j=1Πj . Clearly each Γk will be nonempty and they are

pairwise disjoint.

10



Figure 1.3: T δ
ξ contained in Vk

Taking r1 = θ ∼ sin θ, r2 = σ in Lemma 1, we see that



k

χlδ
k
∩{y′:|y′|∈[σ/2,σ)}(y

′) ≲



θ

σ

d−2

.

Consider ξ′ ∈ Γk for some k. Remember that we require T δ ∩ T δ
ξ ̸= ∅, so the tube T δ

ξ with

direction ξ = (


1− |ξ′|2, ξ′) must lie in a 10δ-neighborhood H10δ
k of the 2-plane

Hk = span {e1, (0, vk)},

see Figure 2.2. Let

Vk =


y ∈ R
d : |y1| ≤ 1



∩H10δ
k ,

then clearly


k

χVk∩{y:|y′|∈[σ/2,σ)}(y) ≲


k

χlδ
k
∩{y′:|y′|∈[σ/2,σ)}(y

′) ≲



θ

σ

d−2

.

Now we begin to estimate


Sd−1
+

|A(f)|2(ξ) dS. We claim that it suffices to prove the following L2

estimate for each Vk,

∥A(fχVk
)∥L2({ξ∈Sd−1

+ :ξ′∈Γk})
≲



log
1

δ


1
2

∥fχVk
∥L2 . (1.2.9)

11



Indeed, noting that θ ≤ 1,



Sd−1
+

|A(f)|2(ξ) dS ≲



Rd−1

|A(f)|2(


1− |ξ′|2, ξ′) dξ′

≲


k



Γk

|A(fχVk
)|2(


1− |ξ′|2, ξ′) dξ′

≲



log
1

δ





k



Rd

|(fχVk
)|2 dy

≲



log
1

δ



θ

σ

d−2

∥f∥22.

It remains to prove (1.2.9). Without loss of generality, we assume (0, vk) = e2, and only consider

functions f with support inside Vk ∩ {y : |y′| ∈ [σ/2, σ)}.

For |y′′| < 10δ, we let P(y′′) denote the 2-plane that passes through the point (0, 0, y′′) and is

parallel to span {e1, e2} = Hk. Then for any ξ′ ∈ Γk, ξ = (ξ1, ξ
′), the setP(y′′)∩T δ

ξ is the intersection

of a 2-plane with a d-dimensional δ-tube, so it can always be contained in some 2-dimensional tube

tδ(y′′) with direction (ξ1,ξ2)√
ξ21+ξ22

.

Take r =


1− |ξ′′|2 then r ∼
√
1− Cδ2 ≥ 1

2 , and let Mδ be the standard 2-dimensional Kakeya

maximal function, then we have

δ−(d−1)



T δ
ξ

|f(y)| dy = δ−(d−1)



|y′′|≤10δ

dy′′


P(y′′)∩T δ
ξ

|f(y1, y2, y′′)| dy1dy2

≤ δ−(d−1)



|y′′|≤10δ

dy′′


tδ(y′′)

|f(y1, y2, y′′)| dy1dy2

≲ δ−(d−2)



|y′′|≤10δ

Mδ(f( · , y′′))




r2 − |ξ2|2, ξ2
r



dy′′,

therefore,

A(f)(ξ) ≲ δ−(d−2)



|y′′|≤10δ

Mδ(f( · , y′′))




r2 − |ξ2|2, ξ2
r



dy′′.

Noticing that if ϕ is some proper parameter for the subset of S1 where |ξ2| ≤ sin θ ≤ sin 1, then | dϕdξ2
|

12



is bounded below by some constant. Minkowski’s inequality gives us





|ξ2|≤sin θ

|A(f)(ξ′)|2dξ2


1
2

≲ δ−(d−2)



|y′′|≤10δ

dy′′





|ξ2|≤sin θ

|Mδ(f( · , y′′))|2




r2 − |ξ2|2, ξ2
r



dξ2


1
2

≲ δ−(d−2)



|y′′|≤10δ

dy′′


S1

|Mδ(f( · , y′′))|2(ϕ) dϕ


1
2

≲



log
1

δ


1
2

δ−(d−2)



|y′′|≤10δ

∥f( · , y′′)∥L2(y1,y2) dy
′′

≲



log
1

δ


1
2

δ−
(d−2)

2 ∥f∥L2 .

Therefore,





{ξ∈Sd−1
+ :ξ′∈Γk}

|A(f)(ξ)|2 dS


1
2

≲



Γk

|A(f)|2(


1− |ξ′|2, ξ′) dξ′


1
2

≤




{ξ′:|ξ2|≤sin θ,|ξ′′|≤10δ}

|A(f)|2(


1− |ξ′|2, ξ′) dξ′


1
2

=





|ξ′′|≤10δ

dξ′′


|ξ2|≤sin θ

|A(f)(ξ′)|2 dξ2


1
2

≲



log
1

δ


1
2

δ−
(d−2)

2





|ξ′′|≤10δ

∥f∥2L2 dξ′′


1
2

≲



log
1

δ


1
2

∥f∥L2 .

Remark: The key difference between our auxiliary maximal function estimate and that in [17]

is that we reduce to the optimal 2-dimensional L2 Kakeya bound for 2-planes rather than reducing

to (d− 1)-dimensional case for hyperplanes. In this way, instead of a δ−(d−3)/2 loss, the extra factor

(θ/σ)(d−2)/2 we have can be handled using (1.2.7). This is in fact natural if one looks back to Wolff’s

original hairbrush argument, the 2-dimensional L2 estimate for 2-planes is enough to justify that

the “bristles” are essentially separated. In other words, reducing to 2-dimensional case already gives

the best possible result for the hairbrush argument, so we do not expect improvements by reducing

to the (d− 1)-dimensional case.

13



1.2.3 A key lemma

From now on, let N be the number that fulfills both case I and IIθ,σ as in Lemma 1, and again we

fix an index j such that T δ = T δ
ξj satisfies IIθ,σ. Using our L2 estimate for the auxiliary maximal

function from last section, we will show that we can generalize Proposition 2.5 in [22] and Lemma

5.2 in [17] to any dimension d ≥ 3, which was the part where Wolff used induction on scales in his

paper.

Lemma 3. For any ϵ > 0, any point a

|E ∩B(a, δϵλ)c ∩ T σ| ≳ϵ λ
dNσδd−2. (1.2.10)

Proof. We claim that it suffices to show

|E ∩ T σ| ≳ϵ λ
dNσδd−2. (1.2.11)

Indeed, noticing the fact that for δ sufficiently small, the set E ∩B(a, δϵλ)c∩T σ has size at least

1
2 of the size of E ∩ T σ, we can replace E by E ∩ B(a, δϵλ)c in (1.2.11) and get (1.2.10). See [22]

and Proposition 5.2 of [17] for details.

For the tube T δ, we denote

Sδ = T δ ∩ E ∩


x : #Lθ,σ(x, j) ≥ 2−2N



log2
1

δ2

−2


.

By the definition of Lθ,σ(x, j), we see that there is a M0 ∈ (0,M ] and a subcollection {T δ
ik
}x of

{T δ
i }Mi=0 that are in Lθ,σ(x, j) for each x, so that if we let x run through every point in Sδ, and take

the union of these subcollections to get {T δ
ik
}M0

k=1, then we will have

M0


k=1

χT δ
ik

≥ N

22



log2
1

δ2

−2

on Sδ.

Recall that two δ-tubes which intersect at angle θ would have intersection measure less than C δd

θ ,

so we have

|Sδ| ≲ϵ N
−1



T δ

M0


k=1

χT δ
ik

(x)dx ≤ N−1
M0


k=1

|T δ
ik
∩ T δ| ≲ M0δ

d

Nθ
,
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together with the simple fact

|Sδ| ≳ϵ λ|T δ|,

we conclude

M0 ≳ϵ θδ
−1Nλ. (1.2.12)

Now, consider the average of the function f = χE∩{y:dist(y,γj)∈[σ/2,σ)} over T δ
ik
, we have

δ−(d−1)



T δ
ik

f(y) dy = δ−(d−1)


T δ
ik
∩ E ∩ {y : dist(y, γj) ∈ [σ/2, σ)}



 ≳ϵ λ.

On the other hand,

δ−(d−1)



T δ
ik

f(y) dy ≤ Aθ,σ
δ (f)(ξik).

After combining these two inequalities, we square both sides, multiply both sides byδd−1 and sum

up with respect to k = 1, . . . ,M0, then we have

M0δ
d−1λ2 ≲ϵ

M0


k=1

|Aθ,σ
δ (f)(ξik)|2δd−1

≲ ∥Aθ,σ
δ (f)(ξ)∥2L2(Sd−1)

≲ϵ
θd−2

σd−2
|E ∩ {y : dist(y, γj) ∈ [σ/2, σ)}|

≲ϵ
θ

σλd−3
|E ∩ T σ|,

where we used the maximality of the {ξk}, (1.2.8) and (1.2.7). Using (1.2.12) for the estimate of

M0, we get (1.2.11).

1.2.4 Completion of the proof

We shall give the estimates corresponding to high and low multiplicity cases separately, and we start

with the simpler one.

Lemma 4. For N satisfy I,

|E| ≳ λMδd−1

N
. (1.2.13)

Proof. Let E0 = {x ∈ E :
M

k=1 χT δ
k
(x) ≤ N}. Recalling that N fulfills case I, we know |T δ

i ∩ E0| ≥

15



λ|T δ
i |/2 for at least M/2 values of i = ik. Thus

|E| ≥













M/2


k=1

(E0 ∩ T δ
ik
)













≥ N−1

M/2


k=1

|E0 ∩ T δ
ik
| ≳ λMδd−1

N
.

In order to estimate the high multiplicity case, we need to establish a bush argument for the

collection of hairbrushes {E ∩ T σ
j }, where the following lemma plays a key role.

Lemma 5. Suppose there are M tubes {T σ
j }Mj=1 such that j ̸= j′ and T σ

j ∩ T σ
j′ ̸= ∅ implies

∠(T σ
j , T

σ
j′) ≥ γ for some 0 < γ < π

2 . Assume also that for some ρ > 0 and any a ∈ R
d, there

are M0 such tubes satisfying

ρ|T σ
j | ≤ |T σ

j ∩ E ∩B(a, σ/γ)c|. (1.2.14)

Then we have

|E| ≥ ρσd−1M
1/2
0

2
. (1.2.15)

Proof. By relabeling the indices, we have a sequence {T σ
j }M0

j=1 satisfying

ρσd−1M0 ≤


E

M0


j=1

χTσ
j
(x)dx.

Thus, there exists an x0 ∈ E such that

M0


j=1

χTσ
j
(x0) ≥

ρσd−1M0

2|E| .

Noting that the diameter of T σ
j′ ∩ T σ

j is at most σ/γ, so B(x0, σ/γ)
c ∩ T σ

j ∩ T σ
j′ = ∅, we have

|E| ≥













E ∩B(x0, σ/γ)
c ∩



{j:x0∈Tσ
j }

T σ
j













≥


{j:x0∈Tσ
j }

|E ∩B(x0, σ/γ)
c ∩ T σ

j | ≥
ρ2σ2(d−1)M0

4|E| .

Lemma 6. Let N satisfy IIθ,σ, then we have

|E| ≳ϵ λ
d+1N(Mδd−1)

1
d−1 δd−2 (1.2.16)
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Proof. By the multiplicity argument, we know that for some suitable constant c, there are at least

[cM(log2
1

δ2
)−2]

many tubes in IIθ,σ, denote them by

{T δ
j }

[cM(log2
1
δ2

)−2]

j=1 .

Let

γ =
σ

δϵλ
,

then clearly γ ≥ δ1−ϵ. If γ ≥ π
2 , then (1.2.16) follows directly from (1.2.10). Otherwise, take a

maximal γ-separated subset of {ξj}
[cM(log2

1
δ2

)−2]

j=1 and denote the size of this subset to be M0. By

maximality, we see easily

M0 ≳
M



log2
1
δ2

2 δ
d−1



δϵλ

σ

d−1

≳ϵ Mδd−1



λ

σ

d−1

,

and using (1.2.10) one may easily check that if we let ρ = Cϵλ
dσ2−dδd−2+ϵN for some proper

constant Cϵ then all requirements of Lemma 5 are fulfilled, so we have

|E| ≳ϵ λ
dσ2−dδd−2N · σd−1M

1
2
0

≥ λdσδd−2NM
1

d−1

0

≳ϵ λ
dσδd−2N



Mδd−1



λ

σ

d−1


1
d−1

= λdσδd−2N(Mδd−1)
1

d−1λσ−1

≥ λd+1N(Mδd−1)
1

d−1 δd−2,

where we used the fact that M
1/2
0 ≥M

1/(d−1)
0 since M0 ≥ 1 and d ≥ 3.

Now if we take the geometric mean of (1.2.16) and (1.2.13), we get (1.2.3), completing the proof.
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1.3 Nikodym-type maximal function in spaces of constant

curvature

Once we know how to prove Wolff’s result without appealing to induction on scales, it is easy

to generalize Sogge’s result for Nikodym maximal function in 3-dimensional spaces of constant

curvature to any dimension d ≥ 3. This section is somewhat parallel to the last section. Throughout

this section, we fix a dimension d ≥ 3 and use C, c to denote various constants that only depend on

the curvature of the manifold.

Let (Md, g) be a Riemannian manifold. Throughout this section, we fix a number α > 0 that

is smaller than min{1, 12 injMd}, where injMd denotes the injectivity radius of Md. Let γx denote

any geodesic passing through x ∈Md of length α. Using the metric, we let

T δ
x = {y ∈Md : dist(y, γx) ≤ δ}

be a tubular δ−neighborhood around γx. We shall also sometimes use the notation T δ
γx

to denote

the same tube. Now given a function f on Md, we can define the Nikodym maximal function

f∗∗δ (x) = sup
1

|T δ
x |



T δ
x

|f(y)| dy.

Since the Nikodym problem is local, Wolff’s result (Theorem 1) implies if Md has constant

curvature 0, then we have

∥f∗∗δ ∥Lq(Md) ≲ϵ δ
1− d

p ∥f∥Lp(Md), p =
d+ 2

2
, q = (d− 1)p′.

On the other hand, Sogge [22] showed that same bounds hold in the constant curvature case if

d = 3 (Theorem 2).

In this section we prove Theorem 2, which extend Sogge’s result to any dimension d ≥ 3.

Clearly, the L1 → L∞ bounds are trivial, so it suffices to prove the following restricted weak-type

estimate

|{x ∈Md : (χE)
∗∗
δ (x) ≥ λ}| ≲ϵ (λ

− d+2
2 δ

2−d
2 |E|) 2d−2

d , (1.3.1)

where E is a set contained in our coordinate patch.

Before turning to the proof of (1.3.1), we quote a useful geometric lemma which is in [18].
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Lemma 7. Suppose γ1, γ2 are geodesics of length α and assume that the γj belong to a fixed compact

subset K of Md. Suppose also a ∈ T δ
γ1

∩ T δ
γ2
. Then there is a constant c > 0, depending on (Md, g)

and K, so if

∠(T δ
γ1
, T δ

γ2
) ≥ δ

cλ
,

then we have

(T δ
γ1

∩ T δ
γ2
) \B(a, λ) = ∅.

Here we are using the induced metric on the unit tangent bundle to define the angle between

two geodesics (tubes) γ1, γ2 of length α

∠(T δ
γ1
, T δ

γ2
) = ∠(γ1, γ2) = min

xj∈γj ,τj=γ′

j |γj=xj

distUTMd((x1, τ1), (x2, τ2)).

Here γ′j |γj=xj
denotes a unit tangent vector at xj .

As in [22], [28] and [5], it is convenient to work with a discrete form of the problem.

We fix a geodesic γ0 and work in Fermi normal coordinates near γ0. To obtain these Fermi normal

coordinates, we first fix a point x0 ∈ γ0 and then choose an orthonormal basis {ek}dk=1 ⊂ Tx0
Md

with e1 being a unit tangent vector of γ0 at x0. Using parallel transport, one propagates this basis to

every point of γ0. If we choose γ0(s) to be the arc length parameterization of γ0 with γ0(0) = x0 and

γ′0(0) = e1, then the resulting vectors {ek(s)} will be orthonormal in Tγ0(s)M
d and γ′(s) = e1(s).

We then assign Fermi coordinates (x1, x2, . . . , xd) = (x, x′) to a point x, if it is the endpoint of the

geodesic of length |x′| starting at γ0(x1) with tangent vector (0, x′).

These coordinates provide us with some good properties. First, the rays t → (x1, tx
′) are

geodesics orthogonal to γ. Second, by construction we see that the vector fields ∂xk are parallel

along γ. Also, these Fermi normal coordinates are unique up to rotations preserving the x1-axis.

See details in [22].

Now we fix a small number c > 0, and consider only the geodesics γ that, belong to the collection

G = {γx′ : (0, x′) ∈ γx′ for some x′,∠(γx′ , γ0) ≤ c}.

Then for a large fixed constant C0, we consider a C0δ-separated collection {x′j}Mj=1 of the set

{(0, x′) ∈ Md : (χE)
∗∗
δ (0, x′) ≥ λ}. For each j, we choose a tube T δ

j to be the δ-tube about some

γx′

j
∈ G such that

|E ∩ T δ
j | ≥ λ|T δ

j |,
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then (1.3.1) would follow from the uniform bounds

Mδd−1 ≲ϵ (λ
− d+2

2 δ
2−d
2 |E|) 2d−2

d , (1.3.2)

Indeed, this inequality implies the slightly stronger version of (1.3.1), where the left hand side

is replaced by |{(0, x′) ∈ Md : (χE)
∗∗
δ (0, x′) ≥ λ}|, and we replace the maximal operator by one

involving averaging over δ-tubes with central geodesics in G.

Note since the basepoints {x′j} of the tubes are δ-separated, we must have

∠(T δ
j , T

δ
i ) > cδ, if i ̸= j,

for some constant c. Now we use the exact same multiplicity argument which we used for the Kakeya

problem in R
d.

1.3.1 Multiplicity argument

Consider parameters θ ∈ [δ, 1], and σ ∈ [λδ, 1]. First, for 1 ≤ j ≤M and x ∈ T δ
j fixed, let

Lθ(x, j) = {i : x ∈ T δ
i ,∠(T

δ
j , T

δ
i ) ∈ [θ/2, θ)}

index the tubes T δ
i containing x which intersect the fixed tube T δ

j at angle comparable to θ. Next,

let

Lσ(x, j) = {i : x ∈ T δ
i , |T δ

i ∩ {y ∈ E : dist(y, γj) ∈ [σ/2, σ)}| ≥ (2 log2
1

δ2
)−1λ|T δ

i |}

index the tubes T δ
i containing x which intersect the fixed tube T δ

j at x such that there is non-trivial

portion of T δ
i ∩ E with distance to γj comparable to σ. Now let

Lθ,σ(x, j) = Lθ(x, j) ∩ Lσ(x, j).

Then we have the following

Lemma 8. There are N ∈ N and θ ∈ [δ, 1], σ ∈ [λδ, 1] that fulfills the following two cases

I. (Low multiplicity case)There are at least M/2 values of j for which







x ∈ T δ
j ∩ E : #{i : x ∈ T δ

i } ≤ N


 ≥ λ

2
|T δ

j |.
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IIθ,σ. (High multiplicity case at angle θ and distance σ)There are at leastM/(2(log2 1/δ
2))2 many

values of j for which











x ∈ T δ
j ∩ E : #Lθ,σ ≥ N

(2 log2
1
δ2 )

2









≥ λ

(4 log2
1
δ2 )

2
|T δ

j |. (1.3.3)

The proof is identical to that of Lemma 1. We also have the same bound for σ/θ as in the remark

of Lemma 1 for the same reason.

λ ≲ϵ
σ

θ
≲ 1. (1.3.4)

1.3.2 Auxiliary maximal function

Throughout this section, we fix a tube T δ. We follow Sogge’s strategy in [22] closely and generalize

it to any dimension d ≥ 3. We work in the Fermi normal coordinates near the central geodesic γ of

T δ.

We now define the auxiliary maximal function for

Aθ,σ
δ (f)(x′) = sup

Tγ
x′

∈Sx′

1

|T δ
γx′

|



T δ
γ
x′

∩{y:|y′|∈[σ/2,σ]}

|f(y)| dy,

where the supremum runs through the collection of tubes

Sx′ = {T δ
γx′

: (0, x′) ∈ γx′ , γx′ ∩ γ ̸= ∅, ∠(γx′ ,γ) ∈ [θ/2, θ)},

and define Aθ,σ
δ (f)(x′) to be zero if Sx′ = ∅.

Theorem 4. With Aθ,σ
δ as above, we have

∥Aθ,σ
δ (f)∥L2 ≲



log
1

δ


1
2


θ

σ


d−2
2

∥f∥L2 . (1.3.5)

Proof. Write Aθ,σ
δ (f) simply as A(f). The proof is very similar to the proof of Theorem 1. We

estimate the integral


|A(f)|2(x′)dx.

Noticing that if we require Sx′ ̸= ∅, then |x′| ≤ C sin θ for some C that only depends on the

curvature. We define the subset Cθ in the base hyperplane {x ∈ (Md, g) : x1 = 0} by

Cθ = {x′ : |x′| ≤ C sin θ}.
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Figure 1.4: Πk in the base hyperplane

Take a maximal δ
sin θ -separated subset {vk} of Sd−2, which has cardinality comparable to ( θδ )

d−2.

Let Πk ⊂ Cθ be the conic set in {x : x1 = 0} such that

Πk ∩ sin θ · Sd−1 = B(sin θ · vk, δ) ∩ sin θ · Sd−1,

see Figure 2.4. As in proof of Theorem 1, we must have ∪kΠk ⊃ Cθ. And by the maximality of

{vk}, we can further assume Πk’s to be pairwise disjoint.

Consider x′ ∈ Γk for some k. Let

Hk = span {e1, (0, vk)},

Then Hk would be totally geodesic as a Fermi 2-plane. Remember that we require γ ∩ γx′ ̸= ∅, so

any tube T δ
γx′

∈ Sx′ must lie in a Cδ-neighborhood HCδ
k for some k. Where C is again some suitable

constant that only depends on the curvature. Let

Vk = {x : |x1| ≤ 1} ∩HCδ
k ,

then by the remark of Lemma 2, we have



k

χVk∩{y:|y′|∈[σ/2,σ)}(y) ≲



θ

σ

d−2

.
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T δ
γx′

Figure 1.5: T δ
γx′

contained in Vk

Similar to the Kakeya case in R
d, we conclude using the above fact and a twofold application of

Schwarz’s inequality, the theorem would follow from the following L2 estimate for each k,

∥A(fχVk
)∥L2(Πk) ≲



log
1

δ


1
2

∥fχVk
∥L2 . (1.3.6)

To prove (1.3.6), we need a curved version of the 2-dimensional Nikodym maximal inequality.

To state it we now suppose that (M2, g) is a 2-dimensional Riemannian manifold. If we fix a

geodesic γ0 ⊂ M2 of length α ≤ min{1, (injM2)/2}, we consider all geodesic γ of this length which

are close to γ0. Let γ1(t) be a geodesic which intersects γ0 orthogonally and is parameterized by arc

length. We set

Mδg(t) = sup
γ1(t)∈γ

δ−1



{y:dist(y,γ)≤δ}

|g(y)| dy. (1.3.7)

We claim (1.3.6) would follow from

∥Mδg∥L2(dt) ≲



log
1

δ


1
2

∥g∥L2(M2). (1.3.8)

This is (2.43) in [22], and we refer readers to [22] and [18] for the proof.

Now we show how (1.3.8) implies (1.3.6). We use the same trick as we did for the Kakeya

problem in Euclidean case. Without loss of generality, we fix k, assume e2 = (0, vk) and only

consider functions f with support contained in Vk ∩ {y : |y′| ∈ [σ/2, σ)}.
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Let P(s) be the surface that corresponds to the 2-plane {y ∈ (Md, g) : y = (y1, y2, s)} with

volume element dVs, where s is a (d− 2)-dimensional parameter for the collection of those 2-planes

with |s| ≤ Cδ. Since P(0) = span {e1, e2} is a totally geodesic 2-plane and we are in constant

curvature case, |dV0| ∼ |dy1dy2|.

For any x = (0, x′) = (0, x2, x
′′) ∈ Πk, we consider the integral over the cross section P(s)∩T δ

γx′
.

Clearly, the projection of this cross section onto P(0) is contained in P(0)∩ TC′δ
γx′

for some constant

C ′. Noticing the fact that dVs varies smoothly with respect to s, we see that for fixed s with |s| ≤ Cδ



P(s)∩T δ
γ
x′

|f(y1, y2, s)| dVs ≲


P(0)∩TC′δ
γ
x′

|f(y1, y2, s)| dV0 ≲



P(0)∩TC′δ
γ
x′

|f(y1, y2, s)| dy1dy2.

Since P(0) is totally geodesic, P(0) ∩ TC′δ
γx′

is contained in P(0) ∩ TC′′δ
γ(0,x2)

for some γ(0,x2) and C ′′.

Then we have

δ−(d−1)



T δ
γ
x′

|f(y)| dy = δ−(d−1)



|y′′|≤Cδ

dy′′


P(y′′)∩T δ
γ
x′

|f(y1, y2, y′′)| dVy′′

≤ δ−(d−1)



|y′′|≤Cδ

dy′′


P(0)∩TC′δ
γ
x′

|f(y1, y2, y′′)| dy1dy2

≤ δ−(d−1)



|y′′|≤Cδ

dy′′


P(0)∩TC′′δ
γ(0,x2)

|f(y1, y2, y′′)| dy1dy2

≲ δ−(d−2)



|y′′|≤Cδ

Mδ(f( · , y′′))(x2) dy′′,

Therefore,

A(f)(x′) ≲ δ−(d−2)



|y′′|≤Cδ

Mδ(f( · , y′′))(x2) dy′′.

Integrating over x1, x2 and using Minkowski’s inequality, we get





|x2|≤1

|A(f)(x′)|2dx2


1
2

≲ δ−(d−2)



|y′′|≤Cδ

dy′′





|x2|≤1

|Mδ(f( · , y′′))|2(x2) dx2


1
2

≲



log
1

δ


1
2

δ−(d−2)



|y′′|≤Cδ

∥f( · , y′′)∥L2(y1,y2) dy
′′

≲



log
1

δ


1
2

δ−
(d−2)

2 ∥f∥L2 .

Noticing |x′′| ≲ δ for x ∈ Vk, this leads to (1.3.6), so the proof is complete.
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1.3.3 A key lemma

This section is parallel to section 2.4. From now on, let N be the number that fulfills both case I

and IIθ,σ, and again we fix a index j such that T δ = T δ
j satisfy IIθ,σ. Using our L2 estimate for

the auxiliary maximal function, we will show that we can generalize Proposition 2.5 in [22] to any

dimension d ≥ 3.

Lemma 9. For any ϵ > 0, any point a

|E ∩B(a, δϵλ)c ∩ T σ| ≳ϵ λ
dNσδd−2. (1.3.9)

Proof. Clearly, it suffices to prove

|E ∩ T σ| ≳ϵ λ
dNσδd−2. (1.3.10)

For the tube T δ, we denote

Sδ = T δ ∩ E ∩


x : #Lθ,σ(x, j) ≥ 2−2N



log2
1

δ2

−2


.

By the definition of Lθ,σ(x, j), we see that there is a M0 ∈ (0,M ] and a subcollection {T δ
ik
}x of

{T δ
i }Mi=0 that are in Lθ,σ(x, j) for each x, if we let x run through every point in Sδ, and take the

union of these subcollections to get {T δ
ik
}M0

k=1, then we will have

M0


k=1

χT δ
ik

≥ N

22



log2
1

δ2

−2

on Sδ.

It follows from Lemma 7 that two δ-tubes intersect at angle comparable to θ have intersection

measure like δd

θ , so we have

|Sδ| ≲ϵ N
−1



T δ

M0


k=1

χT δ
ik

(x)dx ≤ N−1
M0


k=1

|T δ
ik
∩ T δ| ≲ M0δ

d

Nθ
.

Together with the simple fact

|Sδ| ≳ϵ λ|T δ|,

we conclude

M0 ≳ϵ θδ
−1Nλ. (1.3.11)
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Now, consider the average of the function f = χE∩{y:dist(y,γj)∈[σ/2,σ)} over T δ
ik

δ−(d−1)



T δ
ik

f(y) dy = δ−(d−1)|T δ
ik
∩ E ∩ {y : dist(y, γj) ∈ [σ/2, σ)}| ≳ϵ λ,

On the other hand, for some large C that only depends on curvature and some y′ik that lies in the

C0δ-neighborhood of x′ik , we have

δ−(d−1)



T δ
ik

f(y) dy ≲ Aθ,σ
Cδ (f)(y

′
ik
),

After combining these two inequalities, we square both sides, multiply both sides by δd−1 and

sum up with respect to k = 1, . . . ,M0, arriving at

M0δ
d−1λ2 ≲ϵ

M0


k=1

|Aθ,σ
Cδ (f)(y

′
ik
)|2δd−1

≲ ∥Aθ,σ
Cδ (f)(y

′)∥2L2

≲ϵ
θd−2

σd−2
|E ∩ {y : dist(y, γj) ∈ [σ/2, σ)}|

≲ϵ
θ

σλd−3
|E ∩ T σ|,

where we used the maximality of the {x′k}, (1.3.4) and (1.3.5). Using (1.3.11) for the estimate of

M0, we get (1.3.10).

1.3.4 Completion of the proof

Again, we give the estimate corresponding to the high and low multiplicity cases separately.

As what happened in the Euclidean case, if N satisfy I, it’s easy to see that

|E| ≳ λMδd−1

N
. (1.3.12)

In order to estimate the high multiplicity case, we need to use a curved version of the bush

argument, which is the following lemma ([18]):

Lemma 10. Suppose there are M tubes {T σ
j }Mj=1 such that j ̸= j′ and T σ

j ∩ T σ
j′ ̸= ∅ implies

∠(T σ
j , T

σ
j′) ≥ Cγ for some 0 < γ < 1. Assume also that for some ρ > 0 and any a ∈ R

d, there are

M0 such tubes satisfying

ρ|T σ
j | ≤ |T σ

j ∩ E ∩B(a, σ/γ)c|. (1.3.13)
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Then if C is large enough, we have

|E| ≳ ρσd−1M
1/2
0 . (1.3.14)

By Lemma 7, the diameter of T σ
j′ ∩ T σ

j is like σ/γ, thus the proof of this lemma is identical to

that of Lemma 5.

Finally, we estimate the high multiplicity case to finish the proof.

Lemma 11. Let N satisfy IIθ,σ, then we have

|E| ≳ϵ λ
d+1N(Mδd−1)

1
d−1 δd−2 (1.3.15)

Proof. By the multiplicity argument, we know that for some suitable constant c, there are at least

[cM(log2
1

δ2
)−2]

many tubes in IIθ,σ, denote them by

{T δ
j }

[cM(log2
1
δ2

)−2]

j=1 .

Let

γ =
σ

δϵλ
.

Then clearly γ ≥ δ1−ϵ. If γ ≥ 1, then (1.3.15) follows directly from (1.3.9). Otherwise, take a

maximal γ-separated subset of {x′j}
[cM(log2

1
δ2

)−2]

j=1 and denote the total number of this subset to be

M0. By maximality, we see easily

M0 ≳
M



log2
1
δ2

2 δ
d−1



δϵλ

σ

d−1

≳ϵ Mδd−1



λ

σ

d−1

and using (1.3.9) one may easily check that if we let ρ = Cϵλ
dσ2−dδd−2+ϵN for some proper constant
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Cϵ then all requirements of Lemma 10 are fulfilled, so we have

|E| ≳ϵ λ
dσ2−dδd−2N · σd−1M

1
2
0

≥ λdσδd−2NM
1

d−1

0

≳ϵ λ
dσδd−2N



Mδd−1



λ

σ

d−1


1
d−1

= λdσδd−2N(Mδd−1)
1

d−1λσ−1

≥ λd+1N(Mδd−1)
1

d−1 δd−2,

where we used the fact that M
1/2
0 ≥M

1/(d−1)
0 since M0 ≥ 1 and d ≥ 3.

Now if we take the geometric mean of (1.3.11) and (1.3.15), we get (1.3.2), completing the proof

of Theorem 2.
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2

Improved geodesic restriction

estimates for eigenfunctions

2.1 Introduction

The investigation of the eigenfunctions of the Laplace-Beltrami operator on Riemannian manifolds

has been an ongoing endeavor for over one hundred years, and remains a central area in both

mathematics and physics. Studying various types of concentration exhibited by eigenfunctions is

essential in the development of this mathematical theory.

Let eλ denote the L2-normalized eigenfunction on a compact boundaryless manifold,

−∆geλ = λ2eλ,

so that λ is the eigenvalue of the first order operator


−∆g.

It is a classical result of Sogge [20] that the Lp norms of the eigenfunctions satisfy

∥eλ∥Lp(M) ≲ λσ(p)∥eλ∥L2(M), (2.1.1)

where 2 ≤ p ≤ ∞ and σ(p) is given by

σ(p) = max



n− 1

2



1

2
− 1

p



, n



1

2
− 1

p



− 1

2



.
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Alternatively, we can write

∥eλ∥Lp(M) ≲















λ
n−1
2 ( 1

2−
1
p
)∥eλ∥L2(M), 2 ≤ p ≤ 2(n+1)

n−1 ,

λn(
1
2−

1
p
)− 1

2 ∥eλ∥L2(M),
2(n+1)
n−1 ≤ p ≤ ∞.

(2.1.2)

Although the above estimates are sharp for the round sphere Sn due to various symmetries of the

sphere, it is expected that one should be able to improve it for generic Riemannian manifolds.

Eigenfunctions on a manifold with nonpositive curvature have been studied actively as a model

case. Indeed, in this setting, the eigenfunctions are conjectured to be distributed more and more

evenly as the frequency λ→ ∞. The Lp norms of eigenfunctions are thus expected to be satisfying

much better bounds than those in (2.1.1). It is a classical result of Bérard that one can get log

improvements for sup-norms assuming nonpositive curvature, that is

∥eλ∥L∞(M) = O(λ
n−1
2 /


log λ),

which gives log improvements over (2.1.1) for p > pc via interpolation.

Recently, log-type improvements over (2.1.1) for 2 < p < pc and p = pc have been obtained by

Blair-Sogge [4] and Sogge [24] respectively, essentially by proving log improved Kakeya-Nikodym

bounds which measure L2-concentration of eigenfunctions in λ−
1
2 -neighborhoods about unit length

geodesics.

In the last decade, similar Lp estimates have been established for the restriction of eigenfunctions

to geodesics. Burq, Gérard and Tzvetkov [7] and Hu [13] showed that for n-dimensional Riemannian

manifold (M, g), if Π denotes the space of all unit-length geodesics γ, then

sup
γ∈Π





γ

|eλ|p ds


1
p ≤ Cλσ(n,p)∥eλ∥L2(M), (2.1.3)

where

σ(2, p) =















1
4 , 2 ≤ p ≤ 4,

1
2 − 1

p , 4 ≤ p ≤ ∞.

(2.1.4)

and

σ(n, p) =
n− 1

2
− 1

p
, if p ≥ 2 and n ≥ 3, (2.1.5)

here the case n = 3, p = 2 is due to Chen and Sogge [9]. Note that in the 2-dimensional case,
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the estimates (2.1.3) have a similar flavor compared to Sogge’s Lp estimates (2.1.1). Indeed, when

n = 2, (2.1.3) also has a critical exponent pc = 4. Moreover, on the round sphere S2, (2.1.3) is

saturated by zonal functions when p ≤ 4, while for p ≥ 4, it is saturated by the highest weight

spherical harmonics. When n = 3, the critical exponent no longer appears in (2.1.3). However, the

estimate for p = 2 is still saturated by both zonal functions and highest weight spherical harmonics.

In higher dimensions n > 3, geodesic restriction estimates are too singular to detect concentrations

of eigenfunctions near geodesics. In fact, in these dimensions, estimates (2.1.3) are always saturated

by zonal functions rather than highest weight spherical harmonics on the round sphere Sn.

There has been considerable work towards improving (2.1.3) under the assumption of nonpositive

curvature in the 2-dimensional case. Bérard’s sup-norm estimate [2] provides natural improvements

for large p. In [8], Chen managed to improve over (2.1.3) for all p > 4 by a (log λ)−
1
2 factor:

sup
γ∈Π





γ

|eλ|p ds


1
p ≤ C

λ
1
2−

1
p

(log λ)
1
2

∥eλ∥L2(M). (2.1.6)

Sogge and Zelditch [25] showed that one can improve (2.1.3) for 2 ≤ p < 4, in the sense that

sup
γ∈Π





γ

|eλ|p ds


1
p

= o(λ
1
4 ). (2.1.7)

A few years later, Chen and Sogge [9] showed that the same conclusion can be drawn for p = 4:

sup
γ∈Π





γ

|eλ|4 ds


1
4

= o(λ
1
4 ). (2.1.8)

(2.1.8) was the first result to improve an estimate that is saturated by both zonal functions and

highest weight spherical harmonics. Recently, by using the Toponogov’s comparison theorem, Blair

and Sogge [4] showed that it is possible to get log improvements for L2-restriction:

sup
γ∈Π





γ

|eλ|2 ds


1
2 ≤ C

λ
1
4

(log λ)
1
4

∥eλ∥L2(M), (2.1.9)

In the joint work with Zhang, we obtained further improvements for the L4-restriction estimates.

Theorem 5. Let (M, g) be a 2-dimensional compact Riemannian manifold of nonpositive curvature,

let γ ⊂M be a fixed unit-length geodesic segment. Then for λ≫ 1, there is a constant C such that

∥χ[λ,λ+(log λ)−1]f∥L4(γ) ≤ Cλ
1
4 (log log λ)−

1
8 ∥f∥L2(M). (2.1.10)
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Therefore, taking f = eλ, we have

∥eλ∥L4(γ) ≤ Cλ
1
4 (log log λ)−

1
8 ∥eλ∥L2(M). (2.1.11)

Moreover, if Π denotes the set of unit-length geodesics, there exists a uniform constant C = C(M, g)

such that

sup
γ∈Π





γ

|eλ|4 ds


1
4 ≤ Cλ

1
4 (log log λ)−

1
8 ∥eλ∥L2(M). (2.1.12)

Furthermore, if we assume further that M has constant negative curvature, we are able to get

log improvement for the L4-restriction estimate following the ideas in [4] and [9].

Theorem 6. Let (M, g) be a 2-dimensional compact Riemannian manifold of constant negative

curvature, let γ ⊂M be a fixed unit-length geodesic segment. Then for λ≫ 1, there is a constant C

such that

∥eλ∥L4(γ) ≤ Cλ
1
4 (log λ)−

1
2 ∥eλ∥L2(M). (2.1.13)

Moreover, if Π denotes the set of unit-length geodesics, there exists a uniform constant C = C(M, g)

such that

sup
γ∈Π





γ

|eλ|4 ds


1
4 ≤ Cλ

1
4 (log λ)−

1
2 ∥eλ∥L2(M). (2.1.14)

Remark 1. (2.1.14) is slightly better than the estimate originally stated in [30], however, as pointed

out to us by Professor Sogge, this can be easily seen by a more careful analysis of the leading

coefficient of the Hadamard parametrix.

This chapter is organized as follows. In Section 2.2, we give the proof of Theorem 5. We do this

by first proving a new local restriction estimate which corresponds to Lemma 2.2 in [24]. Then we

use this local estimate together with the improved L2-restriction estimate (2.1.9) of Blair and Sogge

[4] and the classical improved sup-norm estimate of Bérard [2] to obtain improved L2(M) → L4,∞(γ)

estimate. Finally, we prove Theorem 5 by interpolating between the improved L2(M) → L4,∞(γ)

estimate and the L2(M) → L4,2(γ) estimate of Bak and Seeger [1]. In Section 2.3, we show how to

obtain further improvements under the assumption of constant negative curvature. We follow the

strategies that were introduced in [9] and [4]. We shall lift all the calculations to the universal cover

H
2 and then use the Poincaré half-plane model to compute the dependence of various constants

explicitly.

Throughout our argument, we shall assume that the injectivity radius of M is sufficiently large,

say, larger than 10, and fix γ to be a unit length geodesic segment. We shall use P to denote the
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first order operator


−∆g. Also, whenever we write A ≲ B, it means A ≤ CB with C being some

uniform constant depending only on the manifold.

2.2 Riemannian surface with nonpositive curvature

We start with some standard reductions. Let ρ ∈ S(R) such that ρ(0) = 1 and supp ρ̂ ⊂ [−1/2, 1/2],

then it is clear that the operator ρ(T (λ− P )) reproduces eigenfunctions, in the sense that

ρ(T (λ− P ))eλ = eλ.

Consequently, we would have the estimate (2.1.10) if we could show that

∥ρ(log λ(λ− P ))∥L2(M)→L4(γ) = O(λ
1
4 /(log log λ)

1
8 ). (2.2.1)

The uniform bound (2.1.12) also follows by a standard compactness argument.

2.2.1 A local restriction estimate

To prove (2.2.1), we apply Sogge’s strategy in [24]. We shall need the following local restriction

estimate.

Lemma 12. Let λ−1 ≤ r ≤ 1, and γr be a fixed subsegment of γ with length r. Then we have

∥ρ(λ− P )f∥L2(γr) ≲ λ
1
4 r

1
4 ∥f∥L2(M).

Proof. By a standard TT ∗ argument, this is equivalent to showing that

∥χ(λ− P )h∥L2(γr) ≲ λ
1
2 r

1
2 ∥h∥L2(γr), (2.2.2)

here χ = |ρ|2. Thus

χ(λ− P )h =
1

2π



χ̂(t)e−iλteitPh dt.

We shall need a preliminary reduction. Let β ∈ C∞
0 be a Littlewood-Paley bump function, satisfying

β(s) = 1, if s ∈ [1/2, 2], and β(s) = 0, if s ̸∈ [1/4, 4].
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Then we claim that it suffices to prove:









χ̂(t)e−iλtβ(P/λ)eitPh dt






L2(γr)
≤ Cλ

1
2 r

1
2 ∥h∥L2(γr). (2.2.3)

Indeed, we note that the operator



χ̂(t)e−iλt(1− β(P/λ))eitP dt (2.2.4)

has kernel


χ̂(λ− λj)(1− β)(λj/λ)ej(γ(s))ej(γ(s′)).

Since χ ∈ C∞
0 (R) and β is the Littlewood-Paley bump function, we see that

|χ̂(λ− λj)(1− β)(λj/λ)| ≤ C(1 + λ+ λj)
−4.

On the other hand, by the Weyl formula,



λj∈[λ,λ+1]

|ej(γ(s))ej(γ(s′))| ≤ C(1 + λ),

we conclude that the kernel of the operator given by (2.2.4) is O(λ−1). This means that this operator

enjoys better bounds than (2.2.2), which gives our claim that it suffices to prove (2.2.3).

To prove (2.2.3), we consider the corresponding kernel

Kλ(γ(s), γ(s
′)) =



χ̂(t)e−iλtβ(P/λ)eitP (γ(s), γ(s′)) dt.

We claim that Kλ satisfies

|Kλ(γ(s), γ(s
′))| = O(λ

1
2 |s− s′|− 1

2 ). (2.2.5)

Indeed, one may use a parametrix and the calculus of Fourier integral operators to see that modulo

a trivial error term of size O(λ−N )

(β(P/λ)eitP )(γ(s), γ(s′)) =



R2

ei(s−s′)ξ1+it|ξ| α(t, s, s′, |ξ|) dξ,

where α is a zero-order symbol. See the proof of [21, Lemma 5.1.3] and [23, Theorem 3.1.5]. Thus,
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modulo trivial errors,

Kλ(γ(s), γ(s
′)) =

  ∞

0

eit(l−λ) α(t, s, s′, l)




S1

eil(s−s′)⟨(0,1),ω⟩ dω


l dldt. (2.2.6)

Integrating by parts in t shows that the above expression is majorized by

 ∞

0

(1 + |l − λ|)−3l dl = O(λ),

thus (2.2.5) is valid when |s− s′| ≤ λ−1. To handle the remaining case, we recall that, by stationary

phase,


S1

eix·ω dω = O(|x|− 1
2 ), |x| ≥ 1.

If we plug this into (2.2.6) with x = l(s − s′, 0), and integrate by parts in t, we conclude that if

λ−1 ≤ |s− s′|, we have

|Kλ(γ(s), γ(s
′))| ≤

 ∞

0

(1 + |l − λ|)−3 (l|s− s′|)− 1
2 l dl = O(λ

1
2 |s− s′|− 1

2 ),

as claimed. By Young’s inequality, the left hand side of (2.2.3) is bounded by

λ
1
2



 r

0







 r

0

1

|s− s′| 12
h(s′) ds′







2

ds


1
2 ≤ λ

1
2 r

1
2 ∥h∥L2([0,r]),

completing our proof.

Remark 2. In fact, Lemma 12 also follows from the L4 restrction bound (2.1.3) and Cauchy-Schwarz

inequality. However, we gave the proof above because a similar argument gives the same estimate

for the more general operator ρ(T (λ − P ))f for all T ≥ 1. Indeed, it is easy to see that the same

proof works for operators with kernel of the form





a(t) eitλ e−itP dt


(γ(s), γ(s′)), (2.2.7)

providing a ∈ C∞
0 (−1, 1). While the operator ρ(T (λ− P )) corresponds to the kernel

 1

T



a(t/T ) eitλ e−itP dt


(γ(s), γ(s′)),

which can be handled by smoothly partitioning the interval [−T, T ] into subintervals of size 1. Each

piece of the kernel over a subinterval of size 1 enjoys the same bound as in Lemma 12, thanks to
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the fact that e−itP is unitary on L2. Now if we sum up the T pieces resulting from the partition,

we obtain the desired estimate for ρ(T (λ− P )).

2.2.2 An improved weak-type estimate

In this section, we prove the following improved weak-type estimate.

Proposition 1. Let (M, g) be a 2-dimensional compact Riemannian manifold of nonpositive cur-

vature. Then for λ≫ 1

∥ρ(log λ(λ− P ))∥L2(M)→L4,∞(γ) = O(λ
1
4 /(log log λ)

1
4 ). (2.2.8)

As discussed before, the L4 restriction bound is saturated by both zonal functions and highest

weight spherical harmonics. Thus as in [24], to get improved L4 bounds, we shall need the following

improved results which corresponds to the range 2 ≤ p < 4 and the range 4 < p ≤ ∞ respectively.

Lemma 13 ([4]). Let (M, g) be as above. Then for λ≫ 1 we have

∥ρ(log λ(λ− P ))∥L2(M)→L2(γ) = O(λ
1
4 /(log λ)

1
4 ). (2.2.9)

Lemma 14 ([2]). If (M, g) is as above then there is a constant C = C(M, g) so that for T ≥ 1 and

large λ we have the following bounds for the kernel of η(T (λ− P )), η = ρ2,

|η(T (λ− P ))(x, y)| ≤ C



T−1
 λ

dg(x, y)


1
2

+ λ
1
2 eCT



, (2.2.10)

The first lemma is a recent result of Blair and Sogge [4]. The other bound (2.2.10) is well-known

and follows from the arguments in the paper of Bérard [2].

Now we are ready to prove Proposition 1. It suffices to show that

|{x ∈ γ : |ρ(log λ(λ− P ))f(x)| > α}| ≤ Cα−4λ(log log λ)−1. (2.2.11)

assuming f is L2 normalized. By Chebyshev inequality and (2.2.9), we have

|{x ∈ γ : |ρ(log λ(λ− P ))f(x)| > α}| ≤ α−2



γ

|ρ(log λ(λ− P ))f |2 ds

≤ α−2λ
1
2 (log λ)−

1
2 .
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Note that for large λ we have

α−2λ
1
2 (log λ)−

1
2 ≪ α−4λ(log log λ)−1, if α ≤ λ

1
4 (log λ)

1
8 .

Thus it remains to show

|{x ∈ γ : |ρ(log λ(λ− P ))f(x)| > α}| ≤ Cα−4λ(log log λ)−1,

when α ≥ λ
1
4 (log λ)

1
8 .

We notice that







ρ(c0 log log λ(λ− τ))− 1


ρ(log λ(λ− τ))


 ≲
log log λ

log λ
(1 + |λ− τ |)−N ,

together with the estimate

∥χλ∥L2(M)→L4(γ) = O(λ
1
4 ),

we see that







ρ(c0 log log λ(λ− P ))− I


◦ ρ(log λ(λ− P ))f




L4(γ)
≲

log log λ

log λ
λ

1
4 ∥f∥L2(M).

Therefore we would be done if we could show that

|{x ∈ γ : |ρ(c0 log log λ(λ− P ))h(x)| > α}| ≤ Cα−4λ(log log λ)−1,

if α ≥ λ
1
4 (log λ)

1
8 , and ∥h∥L2(M) = 1.

Let

A = {x ∈ γ : |ρ(c0 log log λ(λ− P ))h(x)| > α}.

Take

r = λα−4(log log λ)−2.

We decompose A into r-separated subsets ∪jAj = A with length ≈ r. By replacing A by a set of

proportional measure, we may assume that if j ̸= k, we have dist(Aj , Ak) > C0r, where C0 will be

specified momentarily.

Let Tλ = ρ(c0 log log λ(λ − P )), which has dual operator T ∗
λ mapping L2(γ) → L2(M). Let

ψλ(x) = Tλf(x)/|Tλf(x)|, if Tλf(x) ̸= 0, otherwise let ψλ(x) = 1. Let Sλ = TλT
∗
λ and aj = ψλ1Aj

.
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Then by Chebyshev’s inequality and Cauchy-Schwarz inequality, we have

α|A| ≤










γ

Tλfψλ1A ds









≤















γ



j

Tλfaj ds













=















M



j

T ∗
λajf dVg













≤







M









j

T ∗
λaj







2

dVg





1
2

,

squaring both sides, we see that

α2|A|2 ≤


j



M

|T ∗
λaj |2dVg +



j ̸=k



γ

Sλajak ds = I + II.

By the dual version of Lemma 12 (see Remark 2), we see that

I ≲ r
1
2λ

1
2



j



γ

|aj |2 ds = r
1
2λ

1
2 |A| = λα−2(log log λ)−1|A|.

By making c0 sufficiently small, we see from (2.2.10) that we can control the kernel, Kλ(s, s
′), of Sλ

by

|Kλ(s, s
′)| ≤ C



(log log λ)−1
 λ

|s− s′|


1
2

+ λ
1
2 (log λ)

1
40



,

thus

II ≲


(log log λ)−1
 λ

C0r


1
2

+ λ
1
2 (log λ)

1
40





j ̸=k

∥aj∥L1∥ak∥L1

≤ C
− 1

2
0 α2|A|2 + λ

1
2 (log λ)

1
40 |A|2.

Since we are assuming α ≥ λ
1
4 (log λ)

1
8 , for sufficiently large C0, we have

II ≤ 1

2
α2|A|2,

thus

α2|A|2 ≤ Cλα−2(log log λ)−1|A|+ 1

2
α2|A|2,

which gives

|A| ≤ Cλα−4(log log λ)−1, if α ≥ λ
1
4 (log λ)

1
8 ,

completing the proof of Proposition 1.
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2.2.3 Proof of Theorem 5

We shall combine the improved L2(M) → L4,∞(γ) estimate (2.2.8) we obtained in the last section

with the following L2(M) → L4,2(γ) estimate established by Bak and Seeger [1] to prove our main

theorem. This estimate of Bak and Seeger holds for general Riemannian manifold without any

curvature condition.

Lemma 15 ([1]). Let (M, g) be a 2-dimensional Riemannian manifold. Fix γ ⊂M to be a geodesic

segment. Then we have the following estimate for the unit band spectral projection operator χ[λ,λ+1]

∥χ[λ,λ+1]f∥L4,2(γ) ≤ C(1 + λ)
1
4 ∥f∥L2(M). (2.2.12)

We remark that Lemma 15 is a special case of the results in [1] regarding the restriction of

eigenfunctions to hypersurfaces for manifolds with dimension n ≥ 2.

Let us recall some basic facts about the Lorentz space Lp,q(γ). First, for a function u on M , we

define the corresponding distribution function ω(α) with respect to γ as

ω(α) = |{x ∈ γ : |u(x)| > α}, α > 0.

Let u∗ be the nonincreasing rearrangement of u on γ, given by

u∗(t) = inf{α : ω(α) ≤ t}, t > 0.

Then the Lorentz space Lp,q(γ) for 1 ≤ p <∞ and 1 ≤ q <∞ is defined as all u so that

∥u∥Lp,q(γ) =
q

p

 ∞

0



t
1
pu∗(t)

q dt

t


1
q

<∞, (2.2.13)

It is well known that for the special case p = q, the Lorentz norm ∥ · ∥Lp,p(γ) agrees with the

standard Lp norm ∥ · ∥Lp(γ). Moreover, we also have

sup
t>0

t
1
pu∗(t) = sup

α>0
α[ω(α)]

1
p .

If we take u = χ[λ,λ+(log λ)−1]f , and assume ∥f∥L2(M) = 1, then by (2.2.8) we have

sup
t>0

t
1
4u∗(t) ≤ Cλ

1
4 (log log λ)−

1
4 . (2.2.14)
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On the other hand, since χ[λ,λ+1]u = u, by Lemma 15 we have

∥u∥L4,2(γ) ≤ Cλ
1
4 ∥u∥L2(M) ≤ Cλ

1
4 . (2.2.15)

Interpolating between (2.2.14) and (2.2.15), we then get

∥u∥L4(γ) =

 ∞

0



t
1
4u∗(t)

4 dt

t


1
4

≲



sup
t>0

t
1
4u∗(t)


1
2

∥u∥
1
2

L4,2(γ)

≲


λ
1
4 (log log λ)−

1
4


1
2λ

1
8

= λ
1
4 (log log λ)−

1
8 ,

which completes the proof of Theorem 5.

2.3 Riemannian surfaces with constant negative curvature

We shall apply the strategies in [9] and [4] to prove Theorem 6. Recall that in [9], Chen and Sogge

showed that for Riemannian surfaces with nonpositive curvature,



 1

0









 1

0

χ(T (λ− P ))(γ(t), γ(s))h(s)ds









4

dt


1
4

≤ CT− 1
2λ

1
2 ∥h∥

L
4
3 ([0,1])

+ CTλ
3
8 ∥h∥

L
4
3 ([0,1])

,

(2.3.1)

here χ(T (λ − P ))(x, y) denotes the kernel of the multiplier operator χ(T (λ − P )). Clearly, this

would imply (2.1.8) if one takes T to be sufficiently large. We shall show that under the assumption

of constant negative curvature, the constant CT in (2.3.1) can be taken to be eCT where C > 0

is some constant independent of T . Then if we set T = c log λ, for some small c > 0, we can

obtain log improvements. From now on, we shall use C to denote various positive constants that

are independent of T and λ.

2.3.1 Some reductions

Choose a bump function β ∈ C∞
0 (R) satisfying

β(τ) = 1 for |τ | ≤ 3/2, and β(τ) = 0, |τ | ≥ 2.
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Then we may write

χ(T (λ− P ))(x, y) =
1

2πT



β(τ)χ̂(τ/T )eiλτ (e−iτP )(x, y) dτ

+
1

2πT



(1− β(τ))χ̂(τ/T )eiλτ (e−iτP )(x, y) dτ = K0(x, y) +K1(x, y).

As (2.2.5) in the proof of Lemma 1, one may use a parametrix to see that



 1

0









 1

0

K0(γ(t), γ(s))h(s)ds









4

dt


1
4

≤ CT−1λ
1
2 ∥h∥

L
4
3 ([0,1])

, (2.3.2)

which is better than the bounds in (2.3.1). (See [9, p.8].) Since the kernel of χ(T (λ+P )) is O(λ−N )

with constants independent of T , we are left to consider the integral operator Sλ:

Sλh(t) =
1

πT

 ∞

−∞

 1

0

(1− β(τ))χ̂(τ/T )eiλτ (cos τP )(γ(t), γ(s))h(s) dsdτ. (2.3.3)

As in [9] and [4], we now use the Hadamard parametrix and the Cartan-Hadamard theorem to

lift the calculations up to the universal cover (H2, g̃) of (M, g).

Let Γ denote the group of deck transformations preserving the associated covering map κ : H2 →

M coming from the exponential map from γ(0) associated with the metric g on M . The metric g̃ is

the usual metric on H
2 for the upper half plane model. Choose also a Dirchlet fundamental domain,

D ≃ M , for M centered at the lift γ̃(0) of γ(0). We shall let γ̃(t) denote the lift of the geodesic

γ(t), containing the unit geodesic segment γ(t), t ∈ [0, 1]. We measure the distances in H
2 using its

Riemannian distance function dg̃( · , · ).

Following [9], we recall that if x̃ denotes the lift of x ∈ M to D, then we have the following

formula

(cos t


−∆g)(x, y) =


α∈Γ

(cos t


−∆g̃)(x̃, α(ỹ)).

Consequently, we have, for t ∈ [0, 1],

Sλh(t) =
1

πT



α∈Γ

 ∞

−∞

 1

0

(1− β(τ))χ̂(τ/T )eiλτ (cos τ


−∆g̃)(γ̃(t), α(γ̃(s)))h(s) dsdτ .

Let

TR(γ̃) = {(x, y) ∈ R
2 : dg̃((x, y), γ̃) ≤ R} (2.3.4)
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and

ΓTR(γ̃) = {α ∈ Γ : α(D) ∩ TR(γ̃) ̸= ∅}.

From now on we fix R ≈ InjM .

We write

Sλh(t) = Stube
λ h(t) + Sosc

λ h(t) =


α∈ΓTR(γ̃)

Sα
λh(t) +



α/∈ΓTR(γ̃)

Sα
λh(t), t ∈ [0, 1].

By the Huygens principle,

(cos τ


−∆g̃)(γ̃(t), α(γ̃(s))) = 0, if dg̃(γ̃(t), α(γ̃(s))) > τ.

Recall that χ̂(τ) = 0 if |τ | ≥ 1. Hence dg̃(γ̃(t), α(γ̃(s))) ≤ T, s, t ∈ [0, 1].

Since there are only O(1) “translates” of D, α(D), that intersect any geodesic ball with arbitrary

center of radius R, it follows that

#{α ∈ ΓTR(γ̃) : dg̃(0, α(0)) ∈ [2k, 2k+1]} ≤ C2k. (2.3.5)

Thus the number of nonzero summands in Stube
λ h(t) is O(T ) and in Sosc

λ h(t) is O(eCT ).

Given α ∈ Γ set with s, t ∈ [0, 1]

Kα(t, s) =
1

πT

 T

−T

(1− β(τ))χ̂(τ/T )eiλτ (cos τ


−∆g̃)(γ̃(t), α(γ̃(s))) dτ.

When α = Identity, by using the Hadamard parametrix (see e.g. [8, p. 9]), we get

|KId(t, s)| ≤ CT−1λ
1
2 |t− s|− 1

2 .

Thus, by Hardy-Littlewood-Sobolev inequality, the corresponding operator is bounded from L
4
3 ([0, 1])

to L4([0, 1]) with norm CT−1λ
1
2 .

If α ̸= Identity, we set

ϕ(t, s) = dg̃(γ̃(t), α(γ̃(s))), s, t ∈ [0, 1].
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Then by the Huygens principle and the fact that α ̸= Identity, we have

2 ≤ ϕ(t, s) ≤ T, if s, t ∈ [0, 1]. (2.3.6)

Following Lemma 3.1 in [9], we can write

Kα(t, s) = w(γ̃(t), α(γ̃(s)))


±

a±(T, λ;ϕ(t, s))e
±iλϕ(t,s) +R(t, s),

where |w(x, y)| ≤ Ce−cdg̃(x,y) by the Gunther comparison theorem, and for each j = 0, 1, 2, ..., there

is a constant Cj independent of T , λ ≥ 1 so that



∂jra±(T, λ; r)


 ≤ CjT
−1λ

1
2 r−

1
2−j , r ≥ 1. (2.3.7)

Using the Hadamard parametrix with an estimate on the remainder term (see [23]), we see that

|R(t, s)| ≤ eCT .

Therefore we are able to estimate Sα
λh, α ̸= Id by Young’s inequality. Indeed, the kernel satisfies















α∈ΓTR(γ̃), α ̸=Id

Kα(t, s)













≤ CT−1λ
1
2



1≤2k≤T

e−c2k2k2−k/2 + eCT = CT−1λ
1
2 + eCT .

Consequently,


Stube
λ h





L4([0,1])
≤ (CT−1λ

1
2 + eCT )∥h∥

L
4
3 ([0,1])

. (2.3.8)

2.3.2 A stationary phase argument

To deal with the remaining part Sosc
λ h(t), we need the following detailed version of the oscillatory

integral estimates. (See e.g. [21, Chapter 1]).

Proposition 2. Let a ∈ C∞
0 (R2), let ϕ ∈ C∞(R2) be real valued and λ > 0, set

Tλf(t) =

 ∞

−∞

eiλϕ(t,s)a(t, s)f(s) ds, f ∈ C∞
0 (R).

If ϕ
′′

st ̸= 0 on supp a, then

∥Tλf∥L2(R) ≤ Ca,ϕλ
− 1

2 ∥f∥L2(R),
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where

Ca,ϕ = Cdiam(supp a)
1
2



∥a∥∞ +



0≤i,j≤2

∥∂ita∥∞∥∂jtϕ
′′

st∥∞

inf |ϕ′′

st|2



. (2.3.9)

Assume that there is one t0 such that ϕ
′′

st(t0, s) = 0, and ϕ
′′′

stt(t0, s) ̸= 0 for all (t0, s) ∈ supp a, and

ϕ
′′

st(t, s) ̸= 0 for all t ̸= t0, then

∥Tλf∥L2(R) ≤ C ′
a,ϕλ

− 1
4 ∥f∥L2(R),

where

C ′
a,ϕ = Cdiam(supp a)

1
4



∥a∥∞ +



0≤i,j≤2

∥∂ita∥∞∥∂jtϕ
′′

st∥∞

inf |ϕ′′

st/(t− t0)|2



. (2.3.10)

Here the infimums are taken on supp a.

Proof. By a standard TT ∗ argument and Young’s inequality, it suffices to estimate the kernel of

T ∗
λTλ

K(s, s′) =



eiλ(ϕ(t,s)−ϕ(t,s′))a(t, s)a(t, s′) dt.

Let

φ(t, s, s′) =
ϕ(t, s)− ϕ(t, s′)

s− s′
, s ̸= s′, and φ(t, s, s) = ϕ′s(t, s),

and let

ã(t, s, s′) = a(t, s)a(t, s′).

Then the kernel reads

K(s, s′) =



eiλ(s−s′)φ(t,s,s′)ã(t, s, s′) dt. (2.3.11)

If ϕ
′′

st ̸= 0 on supp a, then by the mean value theorem,

|φ′
t(t, s, s

′)| = |ϕ′′st(t, s′′)| ≥ inf|ϕ′′st|,

where s′′ is some number between s and s′. If λ(s− s′) ≤ 1, it is easy to see that

|K(s, s′)| ≤


|a(t, s)||a(t, s′)| dt ≤ diam(supp a)∥a∥2∞.
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For λ(s− s′) ≥ 1, we integrate by parts twice to see that

|K(s, s′)| ≤ (λ|s− s′|)−2










∂

∂t



1

φ′
t

∂

∂t



ã

φ′
t









dt

≤ C(λ|s− s′|)−2diam(supp a)





0≤i,j≤2

||∂ita||∞||∂jtϕ
′′

st||∞
2

inf |ϕ′′

st|4
,

where C is some uniform constant.

Hence

|K(s, s′)| ≤ Cdiam(supp a)



∥a∥2∞ +





0≤i,j≤2

||∂ita||∞||∂jtϕ
′′

st||∞
2

inf |ϕ′′

st|4



(1 + λ|s− s′|)−2,

again C is some constant independent of λ, a and ϕ. Consequently,



|K(s, s′)|ds ≤ C2
a,ϕλ

−1,

which finishes the proof of the first case.

Now we prove the second part of our proposition. Let δ > 0. Choose ρ ∈ C∞
0 (R) satisfying

ρ(t) = 1, |t| ≤ 1, and ρ(t) = 0, |t| ≥ 2. Then









eiλ(s−s′)φãρ((t− t0)/δ) dt




 ≤ 4δ∥a∥2∞.

For the remainder term with factor 1− ρ, we integrate by parts twice to see that if s ̸= s′,









eiλ(s−s′)φã(1− ρ((t− t0)/δ)) dt






≤ (λ|s− s′|)−2



|t−t0|>δ









∂

∂t



1

φ′
t

∂

∂t



ã(1− ρ((t− t0)/δ))

φ′
t









dt

≤ C(λ|s− s′|)−2





0≤i,j≤2

||∂ita||∞||∂itϕ
′′

st||∞
2

inf (|ϕ′′

st|/|t− t0|)4


|t−t0|>δ

(|t− t0|−4 + δ−2|t− t0|−2) dt

≤ Cδ−3(λ|s− s′|)−2





0≤i,j≤2

||∂ita||∞||∂itϕ
′′

st||∞
2

inf (|ϕ′′

st|/|t− t0|)4
,

where C is a constant independent of λ, a, ϕ and F .
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By setting δ = (λ|s− s′|)− 1
2 , we get

|K(s, s′)| ≤ C



∥a∥2∞ +





0≤i,j≤2

||∂ita||∞||∂jtϕ
′′

st||∞
2

inf(|ϕ′′

st|/|t− t0|)4



(λ|s− s′|)− 1
2 , if s ̸= s′.

Therefore,


|K(s, s′)|ds ≤ C
′2
a,ϕλ

− 1
2 ,

which completes the proof.

2.3.3 Proof of Theorem 6

Noting that diam(supp a±) ≤ 2 and we have good control on the size of a± and its derivatives by

(2.3.7), it remains to estimate the size of ϕ
′′

st and its derivatives. On general surfaces with nonpositive

curvature, it seems difficult to get desirable bounds. However, under our assumption of constant

curvature, we can compute ϕ
′′

st and its derivatives explicitly.

Without loss of generality, we may assume that (M, g) is a compact Riemannian surface with

constant curvature equal to −1. It is well known that the universal cover of any Riemannian surface

with constant negative curvature −1 is the hyperbolic plane H2. We consider the Poincaré half-plane

model

H
2 = {(x, y) ∈ R

2 : y > 0},

with the metric given by

ds2 = y−2(dx2 + dy2).

Recall that the distance function for the Poincaré half-plane model is given by

dist((x1, y1), (x2, y2)) = arcosh



1 +
(x2 − x1)

2
+ (y2 − y1)

2

2y1y2



,

where arcosh is the inverse hyperbolic cosine function

arcosh(x) = ln(x+


x2 − 1), x ≥ 1.

Moreover, the geodesics are the straight vertical rays orthogonal to the x-axis and the half-circles

whose centers are on the x-axis. Any pair of geodesics can intersect at at most one point. Without

loss of generality, we may assume that γ̃ is the y-axis. There are three possibilities for the image
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α(γ̃). It can be a straight line parallel to γ̃, a half-circle parallel to γ̃, or a half-circle intersecting γ̃

at one point. We need to treat these cases separately.

Let {γ̃(t) = (0, et), t ∈ R} be the infinite geodesic parameterized by arclength. Our unit geodesic

segment is given by {γ̃(t), t ∈ [0, 1]}. Then its image {α(γ̃(s)), s ∈ [0, 1]}, is a unit geodesic segment

of α(γ̃).

Lemma 16. If α /∈ ΓTR(γ̃) and α(γ̃) ∩ γ̃ = ∅, then we have

inf |ϕ′′

st| ≥ e−CT ,

and

∥ϕ′′

st∥∞ + ∥ϕ′′′

stt∥∞ + ∥ϕ′′′′

sttt∥∞ ≤ eCT ,

where C > 0 is independent of T . The infimum and the norm are taken on the unit square {(t, s) ∈

R
2 : t, s ∈ [0, 1]}.

Lemma 17. Let α /∈ ΓTR(γ̃) and α(γ̃) be a half-circle intersecting γ̃ at the point (0, et0), t0 ∈ R.

If t0 /∈ [−1, 2], then the intersection point (0, et0) is outside the geodesic segment {γ̃(t) : t ∈

[−1, 2]}. We have

inf |ϕ′′

st| ≥ e−CT ,

and

∥ϕ′′

st∥∞ + ∥ϕ′′′

stt∥∞ + ∥ϕ′′′′

sttt∥∞ ≤ eCT ,

where C > 0 is independent of T .

On the other hand, if t0 ∈ [−1, 2], we have

inf |ϕ′′

st/(t− t0)| ≥ e−CT ,

and

∥ϕ′′

st∥∞ + ∥ϕ′′′

stt∥∞ + ∥ϕ′′′′

sttt∥∞ ≤ eCT ,

where C > 0 is independent of T . The infima and the norms are taken on the unit square {(t, s) ∈

R
2 : t, s ∈ [0, 1]}.

We shall postpone the proof of Lemma 16 and Lemma 17 to the last section. Now we see first

how to finish the proof of Theorem 6 using Lemma 16 and Lemma 17.
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Proof of Theorem 6. By (2.3.2) and (2.3.8), we only need to show that

∥Sosc
λ h∥L4([0,1]) ≤ eCTλ

3
8 ∥h∥

L
4
3 ([0,1])

, (2.3.12)

where C is independent of T .

Let α /∈ ΓTR
(γ̃). If α(γ̃)∩ γ̃ = ∅, by Proposition 2, Lemma 16 and the condition on the amplitude

(2.3.7), we have

∥Sosc
λ,αh∥L2([0,1]) ≤ eCT ∥h∥L2([0,1]).

Assume that α(γ̃) intersects γ̃ at the point γ̃(t0). Since α /∈ ΓTR(γ̃), the intersection point cannot

lie on the unit geodesic segment α(γ̃(s)), s ∈ [0, 1]. Thus, by Proposition 2, Lemma 17 and (2.3.7)

we obtain

∥Sosc
λ,αh∥L2([0,1]) ≤ eCT ∥h∥L2([0,1]), if t0 /∈ [−1, 2],

and

∥Sosc
λ,αh∥L2([0,1]) ≤ eCTλ

1
4 ∥h∥L2([0,1]), if t0 ∈ [−1, 2],

where we set F = [−1, 2]× [0, 1] in Proposition 2 for the case t0 ∈ [−1, 2].

Recall that the number of nonzero summands in Sosc
λ is O(eCT ). Consequently, for λ > 1 we

always have

∥Sosc
λ h∥L2([0,1]) ≤ eCTλ

1
4 ∥h∥L2([0,1]).

By interpolating with the trivial L1 → L∞ bound, we obtain (2.3.12), finishing the proof.

2.3.4 Proof of Lemmas

Before proving the lemmas, we remark that in the Poincaré half-plane model

TR(γ̃) = {(x, y) ∈ R
2 : y > 0 and y ≥ |x|/



(coshR)2 − 1}.

Indeed, the distance between (0, et) and (x, y), y > 0, is

f(t) = arcosh


1 +
x2 + (y − et)2

2yet



= arcosh
x2 + y2 + e2t

2yet



.

48





One can obtain this expression by direct computations. See also the proof of (2.3.16) below.

By (2.3.6), we have ϕ ≤ T . Thus

a2e−t−s + et−s + es−t ≤ 2coshT,

which gives s ∈ [−T, T + 1] and |a| ≤ CeT . Here C is independent of T .

To get the lower bound of |ϕ′′

st|, we need to use the condition that α /∈ ΓTR(γ̃). We claim that

α /∈ ΓTR(γ̃) ⇒ |a| ≥ Ce−T , (2.3.13)

where C is independent of T . Note that if the segment {γ2(s), s ∈ [−T, T+1]} is completely included

in TR(γ̃), then we must have α ∈ ΓTR(γ̃), meaning that

e−T ≥ |a|


(coshR)2 − 1 ⇒ α ∈ ΓTR(γ̃),

which implies our claim. Consequently,

|ϕ′′

st| ≥ C
e−2T e−2T

e6T
= Ce−10T .

This gives the lower bound of |ϕ′′

st|. Moreover, direct computations give

ϕ
′′′

stt =
−16a2e2s+2t((a2 + e2s)2 + e2s+2t − a2e2t − 2e4t)

((a2 + e2t + e2s)2 − 4e2s+2t)5/2
,

ϕ
′′′′

sttt =
−32a2e2s+2t((a2 + e2s)4 + lower order terms)

((a2 + e2t + e2s)2 − 4e2s+2t)7/2
.

Here the lower order terms in the bracket are lower order as multivariate polynomials of a and es.

The upper bounds can be estimated similarly. By (2.3.6), we have ϕ ≥ 2, namely a2+e2t+e2s ≥

2(cosh2)etes. Thus

a2 + e2t + e2s − 2es+t ≥ (2cosh2− 2)etes ≥ Ce−T .

So we have

(a2 + e2t + e2s)2 − 4e2s+2t ≥ Ce−2T .

Thus

|ϕ′′

st| ≤ C
e2T e2T

e−3T
≤ Ce7T .
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Taking derivatives on both sides, we obtain

(ϕ′t + ϕ′s + ϕ
′′

ts)sinhϕ+ (1 + ϕ′tϕ
′
s)coshϕ = es+t/r. (2.3.17)

Denote X = es+t, Y = (a− r)2es−t, Z = et−s, and W = (a+ r)2e−s−t. Since

4rcoshϕ = X + Y + Z +W,

taking derivatives gives

4rϕ′tsinhϕ = X − Y + Z −W, 4rϕ′ssinhϕ = X + Y − Z −W.

Then we multiply both sides of (2.3.17) by 4r2(sinhϕ)2 and use the hyperbolic trigonometric identity

(sinhϕ)2 = (coshϕ)2 − 1 to obtain

4r2(sinhϕ)3ϕ
′′

st = (a− r)(X +W ) + (a+ r)(Y + Z) = e−s−t(a+ r + (a− r)e2s)(a2 − r2 + e2t).

This gives our desired expression (2.3.16).

Again by (2.3.6), we get ϕ ≤ T . Namely,

(e2t + (a− r)2)e2s − 4r(coshT )etes + e2t + (a+ r)2 ≤ 0, (2.3.18)

which implies

r

4coshT
≤ es ≤ 4rcoshT. (2.3.19)

Moreover, note that if we view the left hand side of (2.3.18) as a quadratic polynomial of es, then

the discriminant has to be nonnegative:

16r2(coshT )2e2t − 4(e2t + (a− r)2)(e2t + (a+ r)2) ≥ 0,

we obtain that

a

r
≤ 2ecoshT, (2.3.20)

|a− r| ≤ 2ecoshT, (2.3.21)
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and

r ≥ 1

2coshT
. (2.3.22)

To get the lower bound of |ϕ′′

st|, we need to use the condition that α /∈ ΓTR(γ̃).

We claim that there exists some constant C independent of T such that

α /∈ ΓTR(γ̃) ⇒ r ≤ CcoshT or |a− r| ≥ 1

CcoshT
. (2.3.23)

Indeed, we shall prove the contrapositive:

r ≥ CcoshT and |a− r| ≤ 1

CcoshT
⇒ α ∈ ΓTR(γ̃). (2.3.24)

We obtain this by showing that under the above assumptions on r and |a−r|, the segment {γ2(s), s ∈

[−ln(4r−1coshT ), ln(4rcoshT )]} is completely contained in TR(γ̃), which implies α ∈ ΓTR(γ̃).

By solving the polynomial system















y = |x|/


(coshR)2 − 1

(x− a)2 + y2 = r2

and recalling that

x = a+ r
1− e2s

1 + e2s
,

we can see that

{γ2(s) : s ∈ R} ∩ TR(γ̃)

= {γ2(s) : (a− r)2e4s + 2(a2 − (2(coshR)2 − 1)r2)e2s + (a+ r)2 ≤ 0}.
(2.3.25)

Note that our assumptions imply a/r ≤ coshR, namely















r ≥ CcoshT

|a− r| ≤ (CcoshT )−1

⇒ a/r ≤ 1 + (CcoshT )−2 ≤ coshR.

Thus in the case when a ̸= r, the RHS of (2.3.25) becomes

{γ2(s) : u− ≤ e2s ≤ u+}, (2.3.26)
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where

u± =
(2(coshR)2 − 1)− (a/r)2 ±



((coshR)2 − (a/r)2)((coshR)2 − 1)

(a/r − 1)2
. (2.3.27)

It is easy to see that

u− ≤ ((a/r)2 − 1)2

(a/r − 1)2(2(coshR)2 − 1− (a/r)2)
≤ (a/r + 1)2

(coshR)2 − 1
≤ coshR+ 1

coshR− 1
, (2.3.28)

u+ ≥ (2(coshR)2 − 1)− (a/r)2

(a/r − 1)2
≥ (coshR)2 − 1

(a/r − 1)2
. (2.3.29)

So under our assumptions, if we choose C = 4
√
coshR+ 1/

√
coshR− 1, we see that

a ̸= r and















r ≥ CcoshT

|a− r| ≤ (CcoshT )−1

⇒















u− ≤ r2(4coshT )−2

u+ ≥ (4rcoshT )2
⇒ α ∈ ΓTR(γ̃). (2.3.30)

In the easier case a = r, we have u+ = +∞. Consequently, we obtain















r ≥ CcoshT

|a− r| ≤ (CcoshT )−1

⇒ α ∈ ΓTR(γ̃).

This finishes the proof of our claim.

We note that by ϕ ≤ T ,

|ϕ′′

st| ≥ |ϕ′′

st|


A

4res+tcoshT

2

≥ |a+ r + (a− r)e2s||a2 − r2 + e2t|
(coshT )2rA

. (2.3.31)

Remark 3. Since we have not used the assumption that a ≥ r so far, (2.3.14)-(2.3.31) are applicable

later to the case a < r in the proof of Lemma 17.

We proceed by estimating |ϕ′′

st| for the two cases in (2.3.23) separately. By (2.3.31), it suffices to

obtain a good lower bound for the numerator of the right hand side.

(I) Assume r ≤ CcoshT .

If a−r ≥ 1, then by (2.3.19)-(2.3.22), A is bounded by Cr2(a−r)2(coshT )2. And the numerator

in the right hand side of (2.3.31) is bounded below by (a− r)e2s(a2 − r2). Using (2.3.19), we get

|ϕ′′

st| ≥
C

(coshT )2
(a+ r)(a− r)2r2(coshT )−2

r(r2(a− r)2(coshT )2)
≥ Ce−6T .
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If 0 ≤ a− r ≤ 1, then similarly we have

|ϕ′′

st| ≥
C

(coshT )2
a+ r

r(r2(coshT )2)
≥ Ce−6T .

(II) Assume a − r ≥ 1
CcoshT . We may assume further that r ≥ 1, otherwise it is reduced to the

first case.

If a− r ≥ 1, then using (2.3.19)-(2.3.22) we get

|ϕ′′

st| ≥
C

(coshT )2
(a+ r)(a− r)2r2(coshT )−2

r((a− r)2r2(coshT )2)
≥ Ce−6T .

If 0 ≤ a− r ≤ 1 then similarly we obtain

|ϕ′′

st| ≥
C

(coshT )2
(a+ r)(a− r)2r2(coshT )−2

r(r2(coshT )2)
≥ Ce−8T .

Note that the constant C is independent of T . Hence we finish the proof of the lower bound of |ϕ′′

st|.

The upper bounds can be obtained in a similar fashion. By the expression (2.3.16), direct

computations give

ϕ
′′′

stt =
−32re2s+2t(a+ r + (a− r)e2s)((a+ r)(a− r)5e4s + lower order terms)

(A2 − 16r2e2s+2t)5/2
, (2.3.32)

ϕ
′′′′

sttt =
−64re2s+2t(a+ r + (a− r)e2s)((a+ r)(a− r)9e8s + lower order terms)

(A2 − 16r2e2s+2t)7/2
. (2.3.33)

Here again the lower order terms in the bracket are lower order as multivariate polynomials in terms

of a, r and es.

By (2.3.32)-(2.3.33), we only need to estimate the lower bound of A2 − 16r2e2s+2t and the

upper bounds of the absolute values of the numerators. By (2.3.6), we have ϕ ≥ 2, namely A ≥

4(cosh2)res+t. Thus

A− 4res+t ≥ (4cosh2− 4)retes. (2.3.34)

(I) Assume r ≤ CcoshT . Using (2.3.19)-(2.3.22) and (2.3.34), we get

A− 4res+t ≥ (4cosh2− 4)retes ≥ C(coshT )−3,

which implies

A2 − 16r2e2s+2t ≥ C(coshT )−6.
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Then by (2.3.19)-(2.3.21),

|ϕ′′

st| ≤
C(coshT )(coshT )4(coshT )5(coshT )2

(coshT )−9
≤ Ce21T ,

|ϕ′′′

stt| ≤
C(coshT )(coshT )4(coshT )5(coshT )14

(coshT )−15
≤ Ce39T ,

|ϕ′′′

stt| ≤
C(coshT )(coshT )4(coshT )5(coshT )26

(coshT )−21
≤ Ce57T .

(II) Assume r ≥ CcoshT . By (2.3.19) and (2.3.34), we have

A− 4res+t ≥ (4cosh2− 4)retes ≥ Cr2(coshT )−1,

which implies

A2 − 16r2e2s+2t ≥ Cr4(coshT )−2.

Thus by (2.3.19)-(2.3.21),

|ϕ′′

st| ≤
Cr3(coshT )2(r2(coshT )3)(rcoshT )

((coshT )−2r4)3/2
≤ Ce9T ,

|ϕ′′′

stt| ≤
Cr3(coshT )2(r2(coshT )3)(r5(coshT )9)

((coshT )−2r4)5/2
≤ Ce19T ,

|ϕ′′′′

sttt| ≤
Cr3(coshT )2(r2(coshT )3)(r9(coshT )17)

((coshT )−2r4)7/2
≤ Ce29T .

Since the constant C is independent of T , the proof is complete.

Remark 4. Since we did not use the assumption that a ≥ r in the proof of the upper bounds of

various derivatives, these upper bounds are also valid for the case a < r in Lemma 17. Indeed, the

upper bounds for the derivatives hold for not only α /∈ ΓTR(γ̃) but all α ̸= Id, as we only use the

condition that 2 ≤ ϕ ≤ T .

Proof of Lemma 17. Let γ1(t) = (0, et) and γ2(s) = (a + r 1−e2s

1+e2s ,
2res

1+e2s ) parametrize the two unit

geodesic segments respectively, where r > |a| ≥ 0, t ∈ [0, 1] and s is in some unit closed interval of R.

Without loss of generality, we may only consider the case r > a ≥ 0. The expressions of the distance

function ϕ and its derivatives are the same as in (2.3.14)-(2.3.16), (2.3.32) and (2.3.33). Moreover,
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By Remark 3, the claim (2.3.23) is also applicable here. By (2.3.21), we have

A ≤ Cr2(coshT )4.

Since t0 /∈ [−1, 2], |e2t− r2+ a2| = |e2t− e2t0 | ≥ 1− e−2. If r ≤ C(coshT )4, by (2.3.31) and (2.3.36),

we have

|ϕ′′

st| ≥
Cr

(coshT )2r(r2(coshT )4)
≥ Ce−14T .

If |r − a| ≥ 1
CcoshT and r ≥ (coshT )4, then

(r − a)e2s − (a+ r) ≥ Cr2(coshT )−3 − 2r ≥ Cr2(coshT )−3,

r2 − a2 − e2t ≥ Cr(coshT )−1 − e2 ≥ Cr(coshT )−1.

Thus by (2.3.31) we get

|ϕ′′

st| ≥
C(r2(coshT )−3)(r(coshT )−1)

(coshT )2r(r2(coshT )4)
≥ Ce−10T ,

which completes our proof.

Remark 5. As pointed out in [4], the various upper bounds for pure derivatives |Dα
t ϕ|+ |Dα

s ϕ| ≤

Cαe
CT follow from Proposition 3 and Lemma 4 in [2]. But it seems that the upper bounds for

mixed derivatives are unknown. So we are including the proofs for these upper bounds for the sake

of completeness.
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