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Abstract

Nonconvex optimization naturally arises in many machine learning problems.

Machine learning researchers exploit various nonconvex formulations to gainmod-

eling flexibility, estimation robustness, adaptivity, and computational scalability.

Although classical computational complexity theory has shown that solving non-

convex optimization is generally NP-hard in the worst case, practitioners have

proposed numerous heuristic optimization algorithms, which achieve outstand-

ing empirical performance in real-world applications.

To bridge this gap between practice and theory, we propose a new generation

of model-based optimization algorithms and theory, which incorporate the statis-

tical thinking into modern optimization. Particularly, when designing practical

computational algorithms, we take the underlying statistical models into consid-

eration. Our novel algorithms exploit hidden geometric structures behind many

nonconvex optimization problems, and can obtain global optima with the desired

statistics properties in polynomial time with high probability.
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Chapter 1

Introduction

Nonconvex optimization naturally arises in many statistical machine learning

problems. Statisticians and machine learning scientists exploit various nonconvex

formulations to gain desired computational and statistical properties (e.g. esti-

mation robustness, modeling flexibility, computational efficiency, and scalability,

[5, 6, 7, 8, 9, 10, 11, 12, 13]). Typical real-world applications include, for instance:

analyzing sequencing data from high throughput genomic experiments, image

data from fMRI (functional Magnetic Resonance Imaging), proteomic data from

tandem mass spectrometry analysis, climate data from geographically distributed

data centers, and social media data from eBusiness [14, 15, 16].

Most work on these nonconvex problems treats the statistical properties and

practical algorithms separately. On one hand, practitioners proposed numerous

heuristic nonconvex optimization algorithms, many of which have been corrobo-

1



CHAPTER 1. INTRODUCTION

rated to achieve very good empirical performance in real-world applications. On

the other hand, existing statistical theory only establishes the statistical properties

for a small set of these nonconvex problems. Even worse, most of these statistical

properties are established only on hypothetical global optimum, which have been

shown to be intractable to obtain in the worst case by theoretical computer scien-

tists. Thus, there exists a significant gap between theory and practice: What has

been proved is not the same as what is being widely used!

To address this crucial computational and statistical challenge, we focus on

developing a new generation of statistical optimization algorithms and model-based

computational theory, which incorporates the statistical thinking into modern op-

timization. These new algorithms and theory naturally bridges researchers from

different areas, including machine learning, statistics, optimization, and stochas-

tic analysis. More specifically, we address the following two important nonconvex

problems in statistical machine learning:

Problem (1) Nonconvex Sparsity-inducing Regularization and Constraint: The

SCAD (Smooth Clipped Absolute Deviation) andMCP (Minimax Concavity Penalty)

regularizers, and the `0 constraint have been widely used for variable selection in

high dimensional regularized M-estimation problems. They can effectively reduce

the estimation bias, and make the obtained estimator attain significantly better

statistical performance in both parameter estimation and support recovery than

2
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the convex `1-regularized estimator [9, 13].

Problem (2) Biconvex Loss: These loss functions are very popular in low rank

matrix factorization problems such as matrix completion, noisy matrix decompo-

sition, and matrix regression. Compared with related convex approaches, they

avoid intensive singular value decompositions, and therefore gain significant im-

provement in computational efficiency and scalability [11, 12].

The above two nonoconvex optimization problems have been extensively stud-

ied by researchers from conventional optimization community. However, their

theory does not take the underlying statistical models into consideration so they

do not help statisticians to establish statistical guarantees. More precisely, the

underlying statistical models contain very rich distributional information, which

enables us to develop new algorithms and more refined theory to establish com-

putational and statistical guarantees for nonconvex optimization problems. This

unconventional research weaves the knowledge of statistics and optimization at a

fundamental level.

To tackle the nonconvexity in Problem (1) (Nonconvex Regularized or Con-

strained M-estimation), we exploit the restricted strong convexity of their non-

convex objective functions. Particularly, when restricted to a sparse set involving

only a few coordinates, these nonconvex objective functions mimic the behavior

of a strongly convex function. Thus the key to tackle the nonconvexity is to de-

3
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vise a mechanism, under which the solution path achieved by the optimization

algorithm always falls within the restricted convex regions. The restricted strong

convexity has been considered as one of the most important conditions in existing

statistical literature on developing high dimensional statistical guarantees. This

condition can also provide us new insights on developing computational guaran-

tees for nonconvex optimization algorithms. Particularly, we exploits the restricted

strong convexity and develops theoretical guarantees for pathwise coordinate opti-

mization in Chapter 2[9, 10].

The pathwise coordinate optimization has gained significant success in prac-

tice, and has been widely recognized as one of the most important computational

frameworks for solving high dimensional sparse learning problems with the MCP

and SCAD regularizers. It differs from the classical coordinate optimization in

three salient features: warm start initialization, strong rule for coordinate preselection,

and active set strategy. These three features grant superior empirical performance,

but also pose significant challenge to theoretical analysis. To close this long lasting

problem, we proposed a novel analytical framework. This framework shows that

these three features play pivotal roles in guaranteeing the outstanding statistical

and computational performance of the pathwise coordinate optimization frame-

work. In particular, we analyzed the existing pathwise coordinate optimization

algorithms, and developed a precise characterization of the solution sparsity pat-

terns. Our analysis lead to several new active set updating rules and initializa-
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tion strategies to improve existing pathwise coordinate optimization algorithms.

Through a simple but elegant proof, we showed that for the nonconvex optimiza-

tion problems in Problem (1), the proposed improved algorithms guarantee lin-

ear convergence to a unique sparse local optimum with the same optimal statistical

properties as the global optimum. This is the first result establishing the strong

computational and statistical guarantees of the pathwise coordinate optimization

framework in high dimensions [9, 10].

In addition, we apply our model-based optimization technique to high dimen-

sional sparse learning problems with the `0 constraint in Chapter 3. Specifically,

we propose a novel stochastic variance reduced gradient hard thresholding algo-

rithm. By exploiting the restricted strong convexity, we show that the proposed

stochastic optimization algorithm also enjoys strong linear convergence guaran-

tees and nearly optimal statistical accuracy. We further extend our proposed algo-

rithm to an asynchronous variant for parallel nonconvex optimization with a prov-

able linear speedup. This is the first result establishing the strong computational

and statistical guarantees for nonconvex stochastic optimization with variance re-

duction in high dimensions[13].

To address the nonconvexity in Problem (2) (Low Rank Matrix Factorization),

we propose a novel analytical framework for analyzing popular nonconvex opti-

mization algorithms such as alternating minimization and alternating gradient de-

scent algorithms in Chapter 4. Specifically, our proposed framework shows that

5
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these algorithms are essentially solving a sequence of convex optimization prob-

lems but using inexact gradient information. Then by exploiting our proposed

model-based computational theory, we show that given a proper initialization,

these algorithms can guarantee the error of the inexact gradient diminishes with

the iterations. This eventually allows me to establish global linear convergence to

global optima for these algorithms. To the best of our knowledge, this is the first

unified computational and statistical theory for a broad class of nonconvex low

rank matrix factorization algorithms [11, 12].
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Chapter 2

Pathwise Coordinate Optimization

for Nonconvex Sparse Learning

This chapter introduces our proposed novel pathwise coordinate optimization

algorithm for solving nonconvex sparse learning problems. By investigating the

data generating process (underlying statistical models) of sparse learning prob-

lems, we show that the resulting nonconvex optimization problem shows strong

convexity and smoothness over a sparse domain. Therefore, by exploiting such

hidden convex structures, we establish new computational and statistical theory

for our proposed optimization algorithm.

7



CHAPTER 2. NONCONVEX SPARSE LEARNING

2.1 Background

Modern data acquisition routinely produces massive amount of high dimen-

sional data, where the number of variables d greatly exceeds the sample size n,

such as high throughput genomic data [14] and image data from functional Mag-

netic Resonance Imaging [15]. To handle high dimensionality, we often assume

that only a small subset of variables are relevant in modeling [17]. Such a parsi-

monious assumption motivates various sparse learning approaches. Taking sparse

linear regression as an example, we consider a linear model y = Xθ∗ + ε, where

y ∈ Rn is the response vector, X ∈ Rn×d is the design matrix, θ∗ = (θ1, ...,θd)
> ∈ Rd

is the unknown sparse regression coefficient vector, ε ∼ N (0,σ2I ) is the random

noise, and I ∈ Rn×n is the identity matrix. Let ‖ · ‖2 denote the `2 norm, and Rλ(θ)

denote a sparsity-inducing regularizer with a regularization parameter λ > 0. We

can obtain a sparse estimator of θ∗ by solving the following regularized least

square optimization problem

min
θ∈Rd

Fλ(θ), where Fλ(θ) =
1

2n
‖y −Xθ‖22 +Rλ(θ). (2.1.1)

Popular choices ofRλ(θ) are usually coordinate decomposable,Rλ(θ) =
∑d
j=1 rλ(θj ),

including the `1 (Lasso, [18]), SCAD (Smooth Clipped Absolute Deviation, [19]),

and MCP (Minimax Concavity Penalty, [20]) regularizers. For example, the `1 reg-

ularizer takes Rλ(θ) = λ‖θ‖1 = λ
∑
j |θj | with rλ(|θj |) = λ|θj | for j = 1, ...,d.

8
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The `1 regularizer is convex and computationally tractable, but often induces

large estimation bias, and requires a restrictive irrepresentable condition to attain

variable selection consistency [21, 22]. To address this issue, nonconvex regular-

izers such as SCAD and MCP have been proposed to obtain nearly unbiased esti-

mators. Throughout the rest of the chapter, we only consider MCP as an example

due to space limit, but the extension to SCAD is straightforward. Particularly, let

E be an event, we define 1{E} as an indicator function with 1{E} = 1 if E holds and

1{E} = 0 otherwise. Given γ > 1, MCP has

rλ(|θj |) = λ

|θj | −

θ2
j

2λγ


 ·1{|θj |<λγ} +

λ2γ

2
·1{|θj |≥λγ}. (2.1.2)

We call γ the concavity parameter of MCP, since it essentially characterizes the

concavity of the MCP regularizer: A larger γ implies that the regularizer is less

concave. We observe that the MCP regularizer can be written as

Rλ(θ) = λ‖θ‖1 +Hλ(θ), (2.1.3)

where Hλ(θ) =
∑d
j=1hλ(|θj |) is a smooth, concave, and also coordinate decompos-

able function with

hλ(|θj |) = −
θ2
j

2γ
·1{|θj |<λγ} +

λ2γ − 2λ|θj |
2

·1{|θj |≥λγ}. (2.1.4)

9
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Figure 2.1: Several examples of the MCP regularizer with λ = 1 and γ = 2,4,8, and
∞ (Lasso). The MCP regularizer reduces the estimation bias and achieve better
performance than the `1 regularizer in both parameter estimation and support
recovery, but imposes great computational challenge.

We present several examples of the MCP regularizer in Figure 2.1.

[19, 20] show that the nonconvex regularizer effectively reduces the estimation

bias, and achieve better performance than the `1 regularizer in both parameter es-

timation and support recovery. Particularly, given a suitable chosen γ < ∞, they

show that there exits a local optimum to (2.1.1), which attains the oracle prop-

erties under much weaker conditions. However, they cannot not provide specific

algorithms that guarantee such a local optimum in polynomial time due to the

nonconvexity.

Typical algorithms for solving (2.1.1) developed in existing optimization liter-

ature include proximal gradient algorithms [23] and coordinate optimization al-

gorithms [24]. The proximal gradient algorithms need to access all entries of the

10
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design matrix X in each iteration for computing a full gradient and a sophisti-

cated line search step. Thus, they are often not scalable and efficient in practice

when d is large. To address this issue, many researchers resort to the coordinate

optimization algorithms for better computational efficiency and scalability.

The classical coordinate optimization algorithm is straightforward and much

simpler than the proximal gradient algorithms in each iteration: Given θ(t) at the

t-th iteration, we select a coordinate j , and then take an exact coordinate mini-

mization step

θ
(t+1)
j = argmin

θj

Fλ(θj ,θ(t)
\j ), (2.1.5)

where θ\j is a subvector of θ with the j-th entry removed. For the `1, SCAD, and

MCP regularizers, (2.1.5) admits a closed form solution. For notational simplicity,

we denote θ
(t+1)
j = Tλ,j(θ(t)). Then (2.1.5) can be rewritten as

θ
(t+1)
j = Tλ,j(θ(t)) = argmin

θj

1

2n
‖z(t) −X∗jθj‖22 + rλ(θj ), (2.1.6)

where X∗j denotes the j-th column of X and z(t) = y −Xθ(t) +X∗jθ
(t)
j is the partial

residual. Without loss of generality, we assume that X satisfies the column nor-

malization condition ‖X∗j‖2 =
√
n for all j = 1, ...,d. Let θ̃

(t)
j = 1

nX
>
∗jz

(t). Then for

11
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MCP, we obtain θ
(t+1)
j by

θ
(t+1)
j = θ̃

(t)
j ·1{|θ̃(t)j |≥γλ} +

Sλ(θ̃(t)
j )

1− 1/γ ·1{|θ̃(t)j |<γλ}, (2.1.7)

where Sλ(a) = sign(a) ·max{|a| −λ,0}. As shown in Appendix A.1, (2.1.7) can be ef-

ficiently calculated by a simple partial residual update trick, which only requires

the access to one single column of the design matrix X∗j (Recall the proximal gra-

dient algorithms need to access the entire design matrix). Once we obtain θ
(t+1)
j ,

we take θ
(t+1)
\j = θ

(t)
\j . Such a coordinate optimization algorithm, though simple, is

not necessarily efficient in theory and practice. Existing optimization theory only

shows its sublinear convergence to local optima in high dimensions if we select

coordinates from 1 to d in a cyclic order throughout all iterations [25]. Moreover,

no theoretical guarantee has been established on statistical properties of the ob-

tained estimators for nonconvex regularizers in parameter estimation and support

recovery. Thus, the coordinate optimization algorithms were almost neglected un-

til recent rediscovery by [3, 4, 26].

Remark 2.1.1 (Connection between MCP and Lasso). Let c
∞ = 0 for any constant

c. As can be seen from (2.1.2), for γ = ∞, MCP is reduced to the `1 regularizer,

i.e., rλ(|θj |) = λ|θj | with hλ(|θj |) = 0. Accordingly, (2.1.7) is reduced to θ
(t+1)
j =

Sλ(θ̃(t)
j ), which is identical to the updating formula of the coordinate optimization

algorithm proposed in [27] for Lasso. Thus, throughout the rest of the chapter, we

12
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just simply consider the `1 regularizer as a special case of MCP, unless we clearly

specify the difference between γ <∞ and γ =∞ for MCP.

As illustrated in Figure 2.2, [28, 4, 26] propose a pathwise coordinate optimiza-

tion framework with three nested loops, which integrates the warm start initial-

ization, active set updating strategy, and strong rule for coordinate preselection

into the classical coordinate optimization.

Particularly, in the outer loop, the warm start initialization optimizes (2.1.1)

with a sequence of decreasing regularization parameters in a multistage manner,

and yields solutions from sparse to dense. Within each stage of the warm start ini-

tialization (an iteration of the outer loop), the algorithm uses the solution from the

previous stage for initialization, and then adopts the active set updating strategy

to exploit the solution sparsity to speed up computation. The active set updating

strategy contains two consequent nested loops: In the middle loop, the algorithm

first divides all coordinates into active ones (active set) and inactive ones (inactive

set) based on some heuristic coordinate gradient thresholding rule (strong rule,

[26]). Then within each iteration of the middle loop, an inner loop is called to con-

duct coordinate optimization. In general, the algorithm runs an inner loop on the

current active coordinates until convergence, with all inactive coordinates remain

zero. The algorithm then exploits some heuristic rule to identify a new active set,

which further decreases the objective value and repeats the inner loops. The itera-

tion within each stage terminates when the active set in the middle loop no longer

13
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formance due to its complex algorithmic structure. The warm start initialization,

active set updating strategy, and strong rule for coordinate preselection are only

considered as engineering heuristics in existing literature. On the other hand,

many experimental results have shown that the pathwise coordinate optimization

framework is effective at finding local optima with good empirical performance,

yet no theoretical guarantee has been established. Thus, a gap exists between the-

ory and practice.

To bridge this gap, we propose a new algorithm, named PICASSO (Path-wIse

CalibrAted Sparse Shooting algOrithm), which improves the existing pathwise co-

ordinate optimization framework. Particularly, we propose a new greedy selection

rule for active set updating and a new convex relaxation based warm start initial-

ization strategy (for sparse learning problems using general loss functions beyond

the least square loss). These modifications though simple, have a profound impact:

The solution sparsity and restricted strong convexity can be ensured throughout

all iterations, which allows us to establish statistical and computational guaran-

tees of PICASSO in high dimensions [29, 30]. Eventually, we prove that PICASSO

attains a linear convergence to a unique sparse local optimum with optimal statis-

tical properties in parameter estimation and support recovery (See more details in

Section 2.3). To the best of our knowledge, this is the first result on the computa-

tional and statistical guarantees for the pathwise coordinate optimization frame-

work in high dimensions. Besides algorithm and theory, we also have the proposed
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algorithm implemented using C with a R wrapper. The latest version is available

on https://cran.r-project.org/web/packages/picasso.

Several proximal gradient algorithms are closely related to PICASSO. By ex-

ploiting similar sparsity structures of the optimization problem, [31, 10, 32] show

that these proximal gradient algorithms also attain linear convergence to (approx-

imate) local optima with guaranteed statistical properties. We will compare these

algorithms with PICASSO in Section 2.6.

The rest of this chapter is organized as follows: In Section 3.2, we present the

PICASSO algorithm; In Section 2.3 we present a new theory for analyzing the path-

wise coordinate optimization framework, and establish the computational and

statistical properties of PICASSO for sparse linear regression; In Section 2.4, we

extend PICASSO to other sparse learning problems with general loss functions,

and provide theoretical guarantees; In Section 2.5, we present thorough numeri-

cal experiments to support our theory; In Section 2.6, we discuss related work; In

Section 2.7, we present the proofs of the theorems. Due to space limit, the proofs

of all lemmas are deferred to Appendix A.

Notations: Given a vector v = (v1, . . . , vd)
> ∈ R

d , we define vector norms: ‖v‖1 =

∑
j |vj |, ‖v‖22 =

∑
j v

2
j , and ‖v‖∞ =maxj |vj |. We denote the number of nonzero entries

in v as ‖v‖0 =
∑
j 1{vj,0}. We define the soft-thresholding function and operator as

Sλ(vj ) = sign(vj ) ·max{|vj | − λ,0} and Sλ(v) =
(
Sλ(v1), ...,Sλ(vd)

)>
. We denote v\j =

(v1, . . . , vj−1, vj+1, . . . , vd)> ∈ Rd−1 as the subvector of v with the j-th entry removed.
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Let A ⊆ {1, ...,d} be an index set. We use A to denote the complementary set to A,

i.e. A = {j | j ∈ {1, ...,d}, j <A}. We use vA to denote a subvector of v by extracting all

entries of v with indices in A. Given a matrix A ∈ Rd×d , we use A∗j = (A1j , ...,Adj )
>

to denote the j-th column of A, and Ak∗ = (Ak1, ...,Akd)
> to denote the k-th row of A.

Let Λmax(A) and Λmin(A) be the largest and smallest eigenvalues of A. We define

the matrix norms ‖A‖2F =
∑
j ‖A∗j‖22 and ‖A‖2 as the largest singular value of A. We

denote A\i\j as the submatrix of A with the i-th row and the j-th column removed.

We denote Ai\j as the i-th row of A with its j-th entry removed. LetA ⊆ {1, ...,d} be

an index set. We use AAA to denote a submatrix of A by extracting all entries of A

with both row and column indices in A.

2.2 Pathwise Calibrated Sparse Shooting Al-

gorithm

We introduce the PICASSO algorithm for sparse linear regression. PICASSO is

a pathwise coordinate optimization algorithm and contains three nested loops (as

illustrated in Figure 2). For simplicity, we first introduce its inner loop, then its

middle loop, and at last its outer loop.
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2.2.1 Inner Loop: Iterates over Coordinates within an

Active Set

We start with the inner loop of PICASSO, which is the active coordinate min-

imization (ActCooMin) algorithm. The iteration index for the inner loop is (t),

where t = 0,1,2, .... Recall we are interested in the following nonconvex optimiza-

tion problem

min
θ∈Rd
Fλ(θ), where Fλ(θ) =

1

2n
‖y −Xθ‖22 +Rλ(θ). (2.2.1)

As illustrated in Algorithm 1, the ActCooMin algorithm solves (2.2.1) by itera-

tively conducting exact coordinate minimization, but it is only allowed to iterate

over a subset of all coordinates, which is called “the active set”. Accordingly, the

complementary set to the active set is called “the inactive set”, because the val-

ues of these coordinates do not change throughout all iterations of the inner loop.

Since the active set usually contains a very small number of coordinates, the active

set coordinate minimization algorithm is very scalable and efficient.

For notational simplicity, we denote the active and inactive sets by A and A

respectively. Here we select A and A based on the sparsity pattern of the initial
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solution of the inner loop θ(0),

A = {j | θ(0)
j , 0} and A = {j | θ(0)

j = 0}.

The ActCooMin algorithm then minimizes (2.2.1) with all coordinates ofA staying

at zero values,

min
θ∈Rd
Fλ(θ) subject to θA = 0. (2.2.2)

The ActCooMin algorithm iterates over all active coordinates in a cyclic order at

each iteration. Without loss of generality, we assume

|A| = s and A = {j1, ..., js} ⊆ {1, ...,d},

where j1 ≤ j2 ≤ ... ≤ js. Given a solution θ(t) at the t-th iteration, we construct a

sequence of auxiliary solutions {w(t+1,k)}sk=0 to obtain θ(t+1). Particularly, for k = 0,

we take w(t+1,0) = θ(t); For k = 1, ..., s, we take

w
(t+1,k)
jk

= Tλ,jk (w(t+1,k−1)) and w
(t+1,k)
\jk = w

(t+1,k−1)
\jk ,

where Tλ,jk (·) is defined in (2.1.6). We then set θ(t+1) = w(t+1,s) for the next iteration.

Given τ as a small convergence parameter (e.g. 10−5), we terminate the ActCooMin
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Algorithm 1: The active coordinate minimization algorithm (ActCooMin) is
the inner loop of PICASSO. It iterates over only a small subset of all coordi-
nates in a cyclic order. Thus, its computation is scalable and efficient. With-
out loss of generality, we assume |A| = s and A = {j1, ..., js} ⊆ {1, ...,d}, where
j1 ≤ j2 ≤ ... ≤ js.
Algorithm: θ̂← ActCooMin(λ,θ(0),A,τ)
Initialize: t← 0
Repeat

w(t+1,0)← θ(t)

For k← 1, ..., s

w
(t+1,k)
jk

←Tλ,jk (w(t+1,k−1)), w(t+1,k)
\jk ← w

(t+1,k−1)
\jk

θ(t+1)← w(t+1,s)

t← t +1
Until ‖θ(t+1) −θ(t)‖2 ≤ τλ
Return: θ̂← θ(t)

algorithm when

‖θ(t+1) −θ(t)‖2 ≤ τλ. (2.2.3)

We then take the output solution as θ̂ = θ(t+1).

The ActCooMin algorithm only converges to a local optimum of (2.2.2), which

is not necessarily a local optimum of (2.2.1). Thus, PICASSO needs to combine

this inner loop with some active set updating scheme, which allows the active set

to change. This leads to the middle loop of PICASSO.
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2.2.2 Middle Loop: Iteratively Updates Active Sets

We then introduce the middle loop of PICASSO, which is the iterative active

set updating (IteActUpd) algorithm. The iteration index of the middle loop is

[m], where m = 0,1,2, .... As illustrated in Algorithm 2, the IteActUpd algorithm

simultaneously decreases the objective value and iteratively changes the active set

to ensure convergence to a local optimum to (2.2.1). For notational simplicity, we

denote the least square loss function and its gradient as L(θ) = 1
2n‖y −Xθ‖22 and

∇L(θ) = 1
nX
>(Xθ − y).

(I) Active Set Initialization by Strong Rule: We first introduce how PICASSO ini-

tializes the active set for each middle loop. Suppose an initial solution θ[0] is sup-

plied to the middle loop of PICASSO. [3] suggest a straightforward “simple rule”

to initialize the active set based on the sparsity pattern of θ[0],

A0 = {j | θ[0]
j , 0} and A0 = {j | θ[0]

j = 0}. (2.2.4)

[26] further show that (2.2.4) is sometimes too conservative, and suggest a more

aggressive active set initialization procedure using a “strong rule”, which often

leads to better computational performance in practice. Specifically, given an active

set initialization parameter ϕ ∈ (0,1), the strong rule1 for PICASSO initializes A0

1Our proposed strong rule for PICASSO is sightly different from the sequential strong rule
proposed in [26]. See more details in Remark 2.2.1.

21



CHAPTER 2. NONCONVEX SPARSE LEARNING

and A0 as

A0 = {j | θ[0]
j = 0, |∇jL(θ[0])| ≥ (1−ϕ)λ} ∪ {j | θ[0]

j , 0}, (2.2.5)

A0 = {j | θ[0]
j = 0, |∇jL(θ[0])| < (1−ϕ)λ}, (2.2.6)

where ∇jL(θ[0]) denotes the j-th entry of ∇L(θ[0]). As can be seen from (2.2.5), the

strong rule yields an active set, which is no smaller than the simple rule. Note that

we need the initialization parameter ϕ to be a reasonably small value (e.g. 0.1).

Otherwise, the strong rule may select toomany active coordinates and compromise

the solution sparsity.

(II) Active Set Updating Strategy: We then introduce how PICASSO updates the

active set at each iteration of the middle loop. Suppose at the m-th iteration (m ≥

1), we are supplied with a solution θ[m] with a pair of active and inactive sets

defined as

Am = {j | θ[m]
j , 0} and Am = {j | θ[m]

j = 0}.

Each iteration of the IteActUpd algorithm contains two stages. The first stage con-

ducts the active coordinate minimization algorithm over the active set Am until

convergence, and returns a solution θ[m+0.5]. Note that the active coordinate min-

imization algorithm may yield zero values for some active coordinates. Accord-
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ingly, we remove these coordinates from the active set, and obtain a new pair of

active and inactive sets as

Am+0.5 = {j | θ[m+0.5]
j , 0} and Am+0.5 = {j | θ[m+0.5]

j = 0}.

The second stage checks which inactive coordinates ofAm+0.5 should be added into

the active set. Existing pathwise coordinate optimization algorithms usually add

inactive coordinates into the active set based on a cyclic selection rule [3, 4]. Par-

ticularly, they conduct the exact coordinate minimization over all coordinates of

Am+0.5 in a cyclic order. Accordingly, an inactive coordinate is added into the ac-

tive set if the corresponding exact coordinate minimization yields a nonzero value.

Such a cyclic selection rule, however, has no control over the solution sparsity. It

may add too many inactive coordinates into the active set, and compromise the

solution sparsity.

To address this issue, we propose a new greedy selection rule for updating the

active set. Particularly, let ∇jL(θ[m+0.5]) denote the j-th entry of ∇L(θ[m+0.5]). We

select a coordinate by

km = argmaxk∈Am+0.5
|∇kL(θ[m+0.5])|.
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Algorithm 2: The iterative active set updating (IteActUpd) algorithm is the
middle loop of PICASSO. It simultaneously decreases the objective value and
iteratively changes the active set. To encourage the sparsity of the active set,
the greedy selection rule moves only one inactive coordinate to the active set
in each iteration.

Algorithm: θ̂← IteActUpd(λ,θ[0],δ,τ,ϕ)

Initialize: m← 0, A0← {j | θ[0]
j = 0, |∇jL(θ[0])| ≥ (1−ϕ)λ} ∪ {j | θ[0]

j , 0}
Repeat

θ[m+0.5]← ActCooMin(λ,θ[m],Am,τ)
Am+0.5← {j | θ[m+0.5]

j , 0}, Am+0.5← {j | θ[m+0.5]
j = 0}

km← argmaxk∈Am+0.5
|∇kL(θ[m+0.5])|

θ
[m+1]
km

←Tλ,km(θ[m+0.5]), θ
[m+1]
\km ← θ

[m+0.5]
\km

Am+1←Am+0.5 ∪ {km}, Am+1←Am+0.5 \ {km}
m←m+1

Until |∇kmL(θ[m+0.5])| ≤ (1 + δ)λ

Return: θ̂← θ[m]

We then terminate the IteActUpd algorithm if

|∇kmL(θ[m+0.5])| ≤ (1 + δ)λ, (2.2.7)

where δ is a small convergence parameter (e.g. 10−5). Otherwise, we take

θ
[m+1]
km

= Tλ,km(θ[m+0.5]) and θ
[m+1]
\km = θ

[m+0.5]
\km ,

and set the new active and inactive sets as

Am+1 =Am+0.5 ∪ {km} and Am+1 =Am+0.5 \ {km}.
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The IteActUpd algorithm, though equipped with the proposed greedy selec-

tion rule and strong rule for coordinate preselection, ensures the solution sparsity

throughout iterations only for a sufficiently large regularization parameter2. Oth-

erwise, given an insufficiently large regularization parameter, the IteActUpd algo-

rithm may still overselect active coordinates. To address this issue, we combine

the IteActUpd algorithm with a sequence of decreasing regularization parameters,

which leads to the outer loop of PICASSO.

2.2.3 Outer Loop: Iterates over Regularization Param-

eters

The outer loop of PICASSO is the warm start initialization (WarmStartInt). The

iteration index of the outer loop is {K}, where K = 1, ...,N . As illustrated in Algo-

rithm 3, the warm start initialization solves (2.1.1) indexed by a geometrically

decreasing sequence of regularization parameters {λK = λ0η
K }NK=0 with a common

ratio η ∈ (0,1), and outputs a sequence of N + 1 solutions {θ̂{K}}NK=0, which is also

called the solution path.

For sparse linear regression3, the warm start initialization chooses the leading

regularization parameter λ0 as λ0 = ‖∇L(0)‖∞ = ‖1nX>y‖∞. RecallHλ(θ) is defined
2As will be shown in Section 2.3, the choice of λ is determined by the initial solution of the

middle loop.
3When dealing with general loss functions, we need a new convex relaxation based warm start

initialization approach, which will be introduced in Section 2.4.2.
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in (2.1.3). By verifying the KKT condition, we have

minξ∈∂‖0‖1 ‖∇L(0) +∇Hλ0(0) +λ0ξ‖∞ =minξ∈∂‖0‖1 ‖∇L(0) +λ0ξ‖∞ = 0,

where the first equality comes from ∇Hλ0(0) = 0 for the MCP regularizer (See

more details in Appendix A.2). This indicates that 0 is a local optimum of (2.1.1).

Accordingly, we set θ̂{0} = 0. Then for K = 1,2, ...,N , we solve (2.1.1) for λK using

θ̂{K−1} as initialization.

The warm start initialization starts with large regularization parameters to sup-

press the overselection of irrelevant coordinates {j | θ∗j = 0} (in conjunction with

the IteActUpd algorithm). Thus, the solution sparsity ensures the restricted con-

vexity throughout all iterations, making the algorithm behaves as if minimizing a

strongly convex function. Though large regularization parameters may also yield

zero values for many relevant coordinates {j | θ∗j , 0} and result in larger estima-

tion errors, this can be compensated by the decreasing regularization sequence.

Eventually, PICASSO gradually recovers the relevant coordinates, reduces the es-

timation error of each output solution, and attains a sparse output solution with

optimal statistical properties in parameter estimation and support recovery.

Remark 2.2.1 (Connection to the sequential strong rule). [26] propose a sequential
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Algorithm 3: The warm start initialization is the outer loop of PICASSO. It
solves (2.1.1) with respect to a decreasing sequence of regularization param-
eters {λK }NK=0. The leading regularization parameter λ0 is chosen as λ0 =

‖∇L(0)‖∞, which yields an all zero output solution θ̂{0} = 0. For K = 1, ...,N ,

we solve (2.1.1) for λK using θ̂{K−1} as an initial solution. {τK }NK=1 and {δK }NK=1
are two sequences of small convergence parameters, where τK and δK corre-
spond to the K-th outer loop iteration with the regularization parameter λK .

Algorithm: {θ̂{K}}NK=0←WarmStartInt({λK }NK=0)
Parameter: η, ϕ, {τK }NK=1, {δK }NK=1
Initialize: λ0← ‖∇L(0)‖∞, θ̂{0}← 0
For K ← 1,2, ...,N

λK ← ηλK−1
θ̂{K}← IteActUpd(λK , θ̂

{K−1},δK ,τK ,ϕ)

Return: {θ̂{K}}NK=0

strong rule for coordinate preselection, which initializes the active set for λK as

A0 = {j | θ[0]
j = 0, |∇jL(θ[0])| ≥ 2λK −λK−1} ∪ {j | θ[0]

j , 0}, (2.2.8)

A0 = {j | θ[0]
j = 0, |∇jL(θ[0])| < 2λK −λK−1}. (2.2.9)

Recall λK = ηλK−1. Then we have 2λK − λK−1 = (1− (1− η)/η)λK . This indicates

that the sequential strong rule is a special case of our strong rule for PICASSOwith

ϕ = (1− η)/η.

2.3 Computational and Statistical Theory

Wedevelop a new theory to analyze the pathwise coordinate optimization frame-

work, and establish the computational and statistical properties of PICASSO for
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sparse linear regression. Recall our linear model assumption is y = Xθ∗ + ε, where

ε ∼ N (0,σ2I )4. Moreover, in (2.1.3), we rewrite the nonconvex regularizer as

Rλ(θ) = λ‖θ‖1 + Hλ(θ), where Hλ(θ) =
∑d
j=1hλ(|θj |) is a smooth, concave, and

coordinate decomposable function. For notational simplicity, we define L̃λ(θ) =

L(θ) +Hλ(θ). Accordingly, we rewrite Fλ(θ) as

Fλ(θ) = L(θ) +Rλ(θ) = L̃λ(θ) +λ‖θ‖1.

2.3.1 Computational Theory

We first introduce three assumptions. The first assumption requires λN to be

sufficiently large.

Assumption 2.3.1. We require that the regularization sequence satisfies

λN = 8σ

√
logd

n
≥ 4‖∇L(θ∗)‖∞ =

4

n
‖X>ε‖∞. (2.3.1)

Moreover, we require η ∈ [0.96,1).

Assumption 2.3.1 ensures that all regularization parameters are sufficiently

large to eliminate irrelevant coordinates for PICASSO.

Remark 2.3.2. Note that Assumption 2.3.1 is a deterministic bound for our chosen

4For simplicity, we only consider the Gaussian noise setting, but it is straight forward to extend
our analysis to the subGaussian noise setting.
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λN . As will be shown in Lemma 2.3.13, since ‖X>ε‖∞ is random, we need to verify

that (2.3.1) holds with high probability when applying PICASSO to sparse linear

regression.

Before we present the second assumption, we define the largest and smallest s

sparse eigenvalues of the Hessian matrix ∇2L(θ) = 1
nX
>X as follows.

Definition 2.3.3. Given an integer s ≥ 1, we define the largest and smallest s

sparse eigenvalues as

ρ+(s) = sup
‖v‖0≤s

v>∇2L(θ)v
‖v‖22

and ρ−(s) = inf
‖v‖0≤s

v>∇2L(θ)v
‖v‖22

.

The next lemma connects the largest and smallest s sparse eigenvalues to the

restricted strong convexity and smoothness.

Lemma 2.3.4. Suppose there exists an integer s such that 0 < ρ−(s) ≤ ρ+(s) < ∞.

For any θ,θ′ ∈ Rd satisfying ‖θ − θ′‖0 ≤ s, L(θ) is restricted strongly convex and

smooth,

ρ−(s)
2
‖θ′ −θ‖22 ≤ L(θ′)−L(θ)− (θ′ −θ)>∇L(θ) ≤

ρ+(s)

2
‖θ′ −θ‖22. (2.3.2)

Moreover, given α = 1/γ ≤ ρ−(s) and ρ̃−(s) = ρ−(s)−α > 0, where γ is the concavity

parameter of MCP defined in (2.1.2), for any θ,θ′ ∈ R
d satisfying ‖θ − θ′‖0 ≤ s,
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L̃λ(θ) is restricted strongly convex and smooth,

ρ̃−(s)
2
‖θ′ −θ‖22 ≤ L̃λ(θ′)− L̃λ(θ)− (θ′ −θ)>∇L̃λ(θ) ≤

ρ+(s)

2
‖θ′ −θ‖22.

Meanwhile, for any ξ ∈ ∂‖θ‖1, Fλ(θ) is restricted strongly convex,

ρ̃−(s)
2
‖θ′ −θ‖22 ≤ Fλ(θ′)−Fλ(θ)− (θ′ −θ)>(∇L̃λ(θ) +λξ).

Lemma 2.3.4 indicates the importance of the solution sparsity: When θ is suf-

ficiently sparse, the restricted strong convexity of L(θ) dominates the concavity

of Hλ(θ). Thus, if an algorithm ensures the solution sparsity throughout all it-

erations, it will behave like minimizing a strongly convex optimization problem.

Accordingly, a linear convergence can be established. Note that Lemma 2.3.4 is

also applicable to Lasso, since Lasso satisfies α = 1/γ = 1/∞ = 0. Now we intro-

duce the second assumption.

Assumption 2.3.5. Given ‖θ∗‖0 ≤ s∗, there exists an integer s̃ such that

s̃ ≥ (484κ2 +100κ)s∗, ρ+(s
∗ +2s̃) <∞, and ρ̃−(s∗ +2s̃) > 0,

where κ is defined as κ = ρ+(s
∗ +2s̃)/ρ̃−(s∗ +2s̃).

Assumption 2.3.5 guarantees that the optimization problem satisfies the re-

stricted strong convexity as long as the number of active irrelevant coordinates
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never exceeds s̃ throughout all iterations.

Remark 2.3.6. Assumptions 2.3.1 and 2.3.5 are closely related to high dimensional

statistical theories for sparse linear regression in existing literature. See more de-

tails in [29, 30, 20, 33].

Now we introduce the last assumption on the computational parameters.

Assumption 2.3.7. Recall the convergence parameters δK ’s and τK ’s are defined in

Algorithm 3, and the active set initialization parameter ϕ is defined in (2.2.5). We

require for all K = 1, ...,N ,

δK ≤
1

8
, τK ≤

δK
ρ+(s∗ +2s̃)

√
ρ̃−(1)

ρ+(1)(s∗ +2s̃)
, and ϕ ≤ 1

8
.

Assumption 2.3.7 guarantees that all middle and inner loops of PICASSO attain

adequate precision such that their output solutions satisfy the desired computa-

tional and statistical properties.

Remark 2.3.8. All constants in our technical assumptions and proofs are for pro-

viding insights of PICASSO. We do not make efforts on optimizing any of these

constants. Taking Assumption 2.3.1 as an example, we choose η ∈ [0.96,1) just for

easing our analysis. However, η can also be chosen as any other constant, e.g. 0.95,

as long as it is sufficiently close to 1. Such a change in η only affects the required

sample complexity, iteration complexity, and statistical rates of convergence up to

a small constant factor.
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Now, we start with the convergence analysis for the inner loop of PICASSO. The

following theorem presents the convergence rate in terms of the objective value.

For notational simplicity, we omit the outer loop index K , and denote λK and τK

by λ and τ respectively.

Theorem 2.3.9. [Inner Loop] Suppose Assumption 2.3.5 holds. If the initial active

set satisfies |A| = s ≤ s∗+2s̃, then (2.2.2) is essentially strongly convex. For t = 1,2...,

we have

Fλ(θ(t))−Fλ(θ) ≤
(

sρ2+(s)

sρ2+(s) + ρ̃−(s)ρ̃−(1)

)t
[Fλ(θ(0))−Fλ(θ)],

where θ is a unique global optimum to (2.2.2). Moreover, we need at most

(
1+

sρ2+(s)

ρ̃−(s)ρ̃−(1)

)
· log

(
2[Fλ(θ(0))−Fλ(θ)]

ρ̃−(1)τ2λ2

)

iterations to terminate the ActCooMin algorithm, where τ is defined in (2.2.3).

Theorem 2.3.9 guarantees that given a sufficiently sparse active set, Algorithm 1

essentially minimizes a strongly convex optimization problem, though (2.1.1) is

globally nonconvex. Thus, it attains a linear convergence to a unique global opti-

mum.

Then, we proceed with the convergence analysis for the middle loop of PI-

CASSO. The following theorem presents the convergence rate in terms of the ob-
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jective value. For notational simplicity, we omit the outer loop index K , and denote

λK and δK by λ and δ. Moreover, we define

4λ =
4λ2s∗

ρ̃−(s∗ + s̃)
, S = {j | θ∗j , 0}, and S = {j | θ∗j = 0}. (2.3.3)

Theorem 2.3.10. [Middle Loop] Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold.

For any λ ≥ λN , if the initial solution θ[0] satisfies ‖θ[0]

S ‖0 ≤ s̃ and Fλ(θ
[0]) ≤ Fλ(θ∗)+

4λ, then regardless the active set initialized by either the strong rule or simple

rule, we have |A0∩S| ≤ s̃. Meanwhile, form = 0,1,2, ..., we also have ‖θ[m]

S ‖0 ≤ s̃+1,

‖θ[m+0.5]

S ‖0 ≤ s̃, and

Fλ(θ[m])−Fλ(θ
λ
) ≤

(
1− ρ̃−(s∗ +2s̃)

(s∗ +2s̃)ρ+(1)

)m
[Fλ(θ(0))−Fλ(θ

λ
)],

where θ
λ
is a unique sparse local optimum of (2.1.1) satisfying

Kλ(θ
λ
) = min

ξ∈∂‖θλ‖1
‖∇L̃λ(θ

λ
) +λξ‖∞ = 0 and ‖θλS‖0 ≤ s̃. (2.3.4)

Moreover, recall δ is defined in (2.2.7), we need at most

(s∗ +2s̃)ρ+(1)

ρ̃−(s∗ +2s̃)
· log




δλ

3ρ+(1)[Fλ(θ[0])−Fλ(θ
λ
)]


 .

active set updating iterations to terminate the IteActUpd algorithm. Meanwhile,
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irrelevant coordinates and ensure the solution sparsity.

Next, we proceed with the convergence analysis for the outer loop of PICASSO.

As has been shown in Theorem 2.3.10, each middle loop of PICASSO requires a

proper initialization. Since θ∗ and S are unknown in practice, it is difficult to

manually pick such an initial solution. The next theorem shows that the warm

start initialization guides PICASSO to attain such a proper initialization for every

middle loop without any prior knowledge.

Lemma 2.3.11. [Outer Loop] Recall 4λK and KλK (θ) are defined in (2.3.3) and

(2.3.4) respectively. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. If θ sat-

isfies ‖θS‖0 ≤ s̃ and KλK−1(θ) ≤ δK−1λK−1, then we have

‖∆̂‖1 ≤ 11‖∆̂S‖1 ≤ 11
√
s∗‖∆̂‖2, KλK (θ) ≤

λK
4
, FλK (θ) ≤ FλK (θ∗) +4λK .

The warm start initialization starts with an all zero local optimum and a suffi-

ciently large λ0, which naturally satisfy all requirements

‖0S‖0 ≤ s̃ and Kλ0(0) = 0.

Thus, θ[0] = 0 is a proper initial solution for λ1. Then combining Theorems 2.3.10

and 2.3.11, we show by induction that the output solution of each middle loop is

always a proper initial solution for the next middle loop. The warm start initial-
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(I) At the K-th iteration of the outer loop, the number of exact coordinate mini-

mization iterations within each inner loop is at most

(
s∗ +2s̃ +

(s∗ +2s̃)2ρ2+(s
∗ +2s̃)

ρ̃−(s∗ +2s̃)ρ̃−(1)

)
· log

(
50s∗

ρ̃−(1)τ2K ρ̃−(s
∗ + s̃)

)
;

(II) At the K-th iteration of the outer loop, the number of active set updating iter-

ations is at most

(s∗ +2s̃)ρ+(1)

ρ̃−(s∗ +2s̃)
· log

(
75s∗ρ+(1)

δ2K ρ̃−(s
∗ + s̃)

)
;

(III) At the K-th iteration of the outer loop, we have

FλN (θ̂{K})−FλN (θ
λN ) ≤

[
1{K<N } +1{K=N } · δN

] 50λ2Ks
∗

ρ̃−(s∗ + s̃)
.

Theorem 2.3.12 guarantees that PICASSO attains a linear convergence to a

unique sparse local optimum, which is a significant improvement over sublinear

convergence of the randomized coordinate minimization algorithms established in

existing literature. To the best of our knowledge, this is the first result establishing

the convergence properties of the pathwise coordinate optimization framework in

high dimensions.
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2.3.2 Statistical Theory

Finally, we analyze the statistical properties of the estimator obtained by PI-

CASSO for sparse linear regression. We assume ‖θ∗‖0 ≤ s∗, and for any v , 0, the

design matrix X satisfies

ψ`‖v‖22 −γ` ·
logd

n
‖v‖21 ≤

‖Xv‖22
n
≤ ψu‖v‖22 +γu ·

logd

n
‖v‖21, (2.3.5)

where γ`, γu , ψ`, and ψu are positive constants, and do not scale with (s∗,n,d).

Existing literature has shown that (2.3.5) is satisfied by many common examples

of sub-Gaussian random design with high probability [34, 33].

We then verify Assumptions 2.3.1 and 2.3.5 by the following lemma.

Lemma 2.3.13. Suppose ε ∼ N (0,σ2I ) and (2.3.5) holds. Given λN = 8σ
√
logd/n,

we have

P

(
λN ≥ 4‖∇L(θ∗)‖∞ =

4

n
‖X>ε‖∞

)
≥ 1− 2d−2.

Moreover, given ‖1nX>X‖1 = O(d), ‖θ∗‖∞ = O(d), γ ≥ 4/ψ`, and large enough n,

there exists a generic constant C1 such that we have N = OP(logd),

s̃ = C1s
∗ ≥ [484κ2 +100κ] · s∗, ρ̃−(s∗ +2s̃) ≥ ψ`

4
, and ρ+(s

∗ +2s̃) ≤ 5ψu
4
.

Lemma 2.3.13 guarantees that the regularization sequence satisfies Assump-

tion 2.3.1 with high probability, and Assumption 2.3.5 holds when the design ma-
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trix satisfies (2.3.5). Thus, by Theorem 2.3.12, we know that with high probability,

PICASSO attains a linear convergence to a unique sparse local optimum for sparse

linear regression. Moreover, Lemma 2.3.13 also implies that the number of regu-

larization parameters only needs to be the order of logd. Thus, solving the opti-

mization problem with a sequence of regularization parameters does not require

much additional efforts.

We then characterize the statistical rate of convergence in parameter estimation

for the estimator obtained by PICASSO.

Theorem 2.3.14 (Parameter Estimation). Suppose ε ∼ N (0,σ2I ) and (2.3.5) holds.

Given γ ≥ 4/ψ` and λN = 8σ
√
logd/n, for small enough δN and large enough n

such that n ≥ C2s
∗ logd for a generic constant C2, we have

‖θ̂{N } −θ∗‖2 = OP

σ

√
s∗1
n
+σ

√
s∗2 logd
n


,

where s∗1 = |{j | |θ∗j | ≥ γλN }| and s∗2 = |{j | 0 < |θ∗j | < γλN }|.

By dividing all nonzero θ∗j ’s into strong signals and weak signals by their mag-

nitudes, Theorem 2.3.14 shows that the MCP regularizer reduces the estimation

error for strong signal with magnitudes larger than γλN , and therefore attains a

faster statistical rate of convergence than Lasso.

Remark 2.3.15 (Parameter Estimation for Lasso). Theorem 2.3.14 is also applica-

ble to Lasso with γ =∞. As a result, all nonzero θ∗j ’s are considered as weak signals
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|θ∗j | <∞ for all j = 1, ..,d, i.e., s∗1 = 0 and s∗2 = s
∗. Theorem 2.3.14 only guarantees a

slower statistical rate of convergence for Lasso,

‖θ̂{N } −θ∗‖2 = OP

σ

√
s∗2 logd
n


 = OP


σ

√
s∗ logd
n


 for γ =∞.

We then proceed to show that the statistical rate of convergence in Theorem 2.3.14

is minimax optimal in parameter estimation for a suitably chosen γ <∞. Particu-

larly, we consider a class of sparse vectors:

Θ(s∗1, s
∗
2,d) =

{
θ∗

∣∣∣ θ∗ ∈ Rd , ∑d
j=11{|θ∗j |≥θmin} ≤ s∗1, (2.3.6)

∑d
j=11{0<|θ∗j |<θmin} ≤ s∗2

}
.

where θmin =
8γσ√
C2(s

∗
1+s
∗
2)
is the threshold between strong and week signals for some

generic constant C2 and γ <∞. Given s∗ = s∗1 + s
∗
2 and n ≥ C2s

∗ logd, we have

θmin =
8γσ

√
C2(s

∗
1 + s

∗
2)
≥ 8γσ

√
logd

n
= γλN ,

which matches the threshold for dividing signals in Theorem 2.3.14. The next

theorem establishes a lower bound for parameter estimation.

Theorem 2.3.16 (Lower Bound). Let θ̂ denote any estimator of θ∗ based on y ∼

N (Xθ∗,σ2I ), where θ∗ ∈ Θ(s∗1, s
∗
2,d). Then there exists a generic constant C4 such
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that

inf
θ̂

sup
θ∈Θ(s∗1,s

∗
2,d)

E‖θ̂ −θ∗‖2 ≥ C4


σ

√
s∗1
n
+σ

√
s∗2 logd
n


.

Theorem 2.3.16 guarantees that the estimator obtained by PICASSO attains the

minimax optimal rates of convergence over Θ(s∗1, s
∗
2,d). The convex `1 regularizer,

however, only attains a suboptimal statistical rate of convergence due to the uni-

versal estimation bias regardless the signal strength. See more details in [29, 30].

To analyze the support recovery performance for the estimator obtained by

PICASSO, we define the oracle least square estimator θ̂o as

θ̂o
S = argmin

θS

1

2n
‖y −X∗SθS‖22 and θ̂o

S = 0, (2.3.7)

where S and S are defined in (2.3.3). Recall θ
λN is the unique sparse local mini-

mizer to (2.1.1) with λN . The following theorem shows that θ
λN is identical to the

oracle least square estimator θ̂o with high probability.

Theorem 2.3.17 (Support Recovery). Suppose (2.3.5) holds,

ε ∼N (0,σ2I ), and min
j∈S
|θ∗j | ≥ C5γσ

√
logd

n
(2.3.8)

for a generic constant C5. Given 4/ψ` ≤ γ < ∞ and λN = 8σ
√
logd/n, for large

enough n, there exits a generic constant C3 such that P(θ
λN = θ̂o) ≥ 1−4d−2. Mean-
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while, with probability at least 1− 4d−2, we also have

‖θ̂{N } −θ∗‖2 ≤ C3σ

√
s∗

n
and supp(θ̂{N }) = supp(θ∗).

Theorem 2.3.17 guarantees that PICASSO converges to θ̂o with high probabil-

ity, which is often referred to the oracle property in existing literature [19]. Be-

sides, we also guarantee that the estimator θ̂{N } obtained by PICASSO is nearly

unbiased and correctly identifies the true support with high probability. Although

the `1 regularizer can be viewed as a special case of MCP, such an oracle prop-

erty does not hold Lasso. This is because we require γ < ∞ such that the esti-

mation bias can be eliminated for strong signals. Thus Lasso cannot guarantee

the correct support recovery (unless the design matrix satisfies a restrictive irrep-

resentable condition–see more details in [21, 22]). We present a illustration of

Theorems 2.3.14 and 2.3.17 in Figure 2.6.

Remark 2.3.18. There are several differences between [35] and our theory: (I) [35]

is only applicable to global optima or some local optima. But they do not provide

any algorithm, which can guarantee these optima. (II) Our theory is specifically

developed for the estimator obtained by PICASSO, which is an output solution

in a finite number of iterations. (III) [35] only analyze sparse linear regression

using the least square loss function, but our theory is also applicable to general

loss functions, as will be shown in the next section.
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When θ∗ is sparse, we consider the optimization problem

min
θ∈Rd
L(θ) +Rλ(θ), where L(θ) = 1

n

n∑

i=1

[
log

(
1+ e−yiX

>
i∗θ

)]
. (2.4.2)

For notational simplicity, we denote the logistic loss function in (2.4.2) as L(θ),

and define L̃λ(θ) = L(θ)+Hλ(θ). Then similar to sparse linear regression, we write

Fλ(θ) as

Fλ(θ) = L(θ) +Rλ(θ) = L̃λ(θ) +λ‖θ‖1.

The logistic loss function is twice differentiable with

∇L(θ) = 1

n

n∑

i=1

[1−πi(θ)]yiXi∗ and ∇2L(θ) = 1

n
X>PX,

where P = diag([1−π1(θ)]π1(θ), ..., [1−πn(θ)]πn(θ)) ∈ Rn×n. Similar to sparse linear

regression, we also assume that the design matrix X satisfies the column normal-

ization condition ‖X∗j‖2 =
√
n for all j = 1, ...,d.

2.4.1 Proximal Coordinate Gradient Descent

For sparse logistic regression, directly taking the minimumwith respect to a se-

lected coordinate does not admit a closed form solution, and therefore may involve

some sophisticated algorithm such as the root-finding method.
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To address this issue, [25] suggest a more convenient approach, which takes a

proximal coordinate gradient descent iteration. For example, we select a coordi-

nate j at the t-th iteration and consider a quadratic approximation of Fλ(θj ;θ(t)
\j ),

Qλ,j,L(θj ;θ(t)) = Vλ,j,L(θj ;θ(t)) +λ|θj |+λ‖θ(t)
\j ‖1,

where L > 0 is a step size parameter, and Vλ,j,L(θj ;θ(t)) is defined as

Vλ,j,L(θj ;θ(t)) = L̃λ(θ(t)) + (θj −θ(t)
j )∇j L̃λ(θ(t)) +

L

2
(θj −θ(t)

j )2.

Here we choose the step size parameter L such that Qλ,j,L(θj ;θ(t)) ≥ Fλ(θj ,θ(t)
\j ) for

all j = 1, ...d. We then take

θ
(t+1)
j = argmin

θj

Qλ,j,L(θj ;θ(t)) = argmin
θj

Vλ,j,L(θj ;θ(t)) +λ|θj |. (2.4.3)

Different from the exact coordinate minimization, (2.4.3) always has a closed form

solution obtained by soft thresholding. Particularly, we define θ̃
(t)
j = θ

(t)
j −∇j L̃λ(θ(t))/L.

Then we have

θ
(t+1)
j = argmin

θj

1

2
(θj − θ̃(t)

j )2 +
λ

L
|θj | = Sλ/L(θ̃(t)

j ) and θ
(t+1)
\j = θ

(t)
\j .

For notational convenience, we write θ
(t+1)
j = Tλ,j,L(θ(t)). When applying PICASSO
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to solve sparse logistic regression, we only need to replace Tλ,j(·) with Tλ,j,L(·) in

Algorithms 1-3.

Remark 2.4.1. For sparse logistic regression, we have ∇2jjL(θ) = 1
nX
>
∗jPX∗j . Since

P is a diagonal matrix, and πi(θ) ∈ (0,1) for any θ ∈ Rd , we have ‖P‖2 = maxi Pii ∈

(0,1/4] for all i = 1, ...,n. Then we have X>∗jPX∗j ≤ ‖P‖2‖X∗j‖22 ≤ n/4, where the last

inequality comes from the column normalization condition of X. Thus, we choose

L = supθmaxj ∇2jjL(θ) = 1/4.

We then analyze the computational and statistical properties of the estimator

obtained by PICASSO for sparse logistic regression.

2.4.2 Convex Relaxation based Warm Start Initializa-

tion

We assume that ‖θ∗‖0 ≤ s∗, and for any v , 0 and any θ such that ‖θ −θ∗‖2 ≤ R,

we have

ψ`‖v‖22 −γ`
√

logd

n
‖v‖21 ≤ v>∇2L(θ)v ≤ ψu‖v‖22 +γu

√
logd

n
‖v‖21, (2.4.4)

where γ`, γu , ψ`, ψu , and R are positive constants, and do not scale with (s∗,n,d).

Existing literature has shown that many common examples of sub-Gaussian ran-

dom design satisfy (2.4.4) with high probability [34, 33, 32].
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Similar to sparse linear regression, we need to verify Assumptions 2.3.1 and

2.3.5 for sparse logistic regression by the following lemma.

Lemma 2.4.2. Suppose (2.4.4) holds. Given λN = 16
√
logd/n, we have

P

(
λN ≥ 4‖∇L(θ∗)‖∞ =

4

n
‖X>w‖∞

)
≥ 1− d−7,

where w = ([1−π1(θ
∗)]y1, ..., [1−πn(θ∗)]yn)> with πi(θ)’s defined in (2.4.1). More-

over, given γ ≥ 4/ψ` and ‖θ −θ∗‖2 ≤ R, there exists some generic constant C1 such

that for large enough n, we have

s̃ = C1s
∗ ≥ [484κ2 +100κ]s∗, ρ̃−(s

∗ +2s̃) ≥ ψ`
2
, ρ+(s

∗ +2s̃) ≤ 5ψu
4
.

The proof of Lemma 2.4.2 directly follows Appendix A.9 and [32], and there-

fore is omitted. Lemma 2.4.2 guarantees that the regularization sequence satisfies

Assumption 2.3.1 with high probability, and Assumption 2.3.5 holds when the

design matrix satisfies (2.4.4).

Different from sparse linear regression, however, the restricted convexity and

smoothness only hold over an `2 ball centered at θ∗ for sparse logistic regression.

Thus, directly choosing θ̂{0} = 0 may violate the restricted strong convexity. A

simple counter example is ‖θ∗‖2 > R, which results in ‖0−θ∗‖2 > R. To address this

issue, we propose a new convex relaxation based warm start initialization to obtain

an initial solution for λ0. Particularly, we solve the following convex relaxation of
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(2.1.1):

min
θ∈Rd
F̃λ0(θ), where F̃λ0(θ) = L(θ) +λ0‖θ‖1 (2.4.5)

up to an adequate precision. For example, we choose θrelax satisfying the approxi-

mate KKT condition of (2.4.5) as follows,

min
ξ∈∂‖θrelax‖1

‖∇L(θrelax) +λ0ξ‖∞ ≤ δ0λ0, (2.4.6)

where δ0 ∈ (0,1) is the initial precision parameter for λ0. Since δ0 in (2.4.6) can be

chosen as a sufficiently large value (e.g. δ0 = 1/8), computing θrelax becomes very

efficient even for algorithms with only sublinear rates of convergence to global

optima, e.g., classical coordinate minimization and proximal gradient algorithms.

For notational convenience, we call the above initialization procedure the convex

relaxation based warm initialization.

Lemma 2.4.3. Suppose Assumption 2.3.5 holds only for ‖θ−θ∗‖2 ≤ R. Given ρ−(s∗+

s̃)R ≥ 9λ0
√
s∗ ≥ 18λN

√
s∗ and δ0 = 1/8, we have

‖θrelax
S ‖0 ≤ s̃, ‖θrelax −θ∗‖2 ≤ R, and Fλ0(θrelax) ≤ Fλ0(θ∗) +4λ0 .

Lemma 2.4.3 guarantees that θrelax is a proper initial solution for λ0. Thus, all

convergence analysis in Theorem 2.3.12 directly follows, and PICASSO attains a
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(Mcvx, [36]); (5) Local Linear Approximation (LLA, [37]). Note that all subprob-

lems of Mcvx and LLA are solved by proximal gradient algorithms with backtrack-

ing line search.

All experiments are conducted on a PC with Intel Core i5 3.3 GHz and 16GB

memory. All programs are coded in double precision C, called from a R wrapper.

We optimize the computation by exploiting the vector and matrix sparsity, which

gains a significant speedup in vector and matrix manipulations (e.g. computing

the gradient and evaluating the objective value). We apply PICASSO to sparse

linear regression with the MCP regularizer.

Simulated Data: We generate each row of the design matrix Xi∗ independently

from a d-dimensional Gaussian distribution with mean 0 and covariance matrix

Σ ∈ R
d×d , where Σkj = 0.75 and Σkk = 1 for all j,k = 1, ...,d and k , j . We then

normalize each column of the design matrix X∗j such that ‖X∗j‖2 =
√
n. The re-

sponse vector is generated from the linear model y = Xθ∗ + ε, where θ∗ ∈ Rd is the

regression coefficient vector, and ε is generated from a n-dimensional Gaussian

distribution with mean 0 and covariance matrix σ2I . We set n = 300, d = 18000,

s∗ = 18, and σ2 = 4. θ∗ has 18 nonzero entries, which are θ∗1000 = θ
∗
7000 = θ

∗
13000 = 3,

θ∗2000 = θ∗8000 = θ∗14000 = 2, θ∗3000 = θ∗9000 = θ∗15000 = 1.5, θ∗4000 = θ∗10000 = θ∗16000 =

−3, θ∗5000 = θ∗11000 = θ∗17000 = −2, and θ6000 = θ∗12000 = θ18000 = −1.5 for k = 0, ...,2.

We then set γ = 1.25, N = 70, λN = 0.25σ
√
logd/n, ϕ = 0.05, δK = 10−3, and

τK = 10−6 for all 1 ≤ K ≤N .

51



CHAPTER 2. NONCONVEX SPARSE LEARNING

We present the numerical results averaged over 1000 simulations. Specifically,

we create a validation set using the same design matrix as the training set for reg-

ularization parameter selection. We then tune the regularization parameter over

the selected regularization sequence. We denote the response vector of the valida-

tion set as ỹ ∈ Rn. Let θ̂λ denote the obtained estimator using the regularization

parameter λ. We then choose the optimal regularization parameter λ̂ by

λ̂ = argminλ∈{λ1,...,λN } ‖ỹ −Xθ̂
λ‖22.

We repeat the simulation for 1000 times and summarize the averaged results in Ta-

ble 1. In terms of timing performance, PICASSO slightly outperforms SparseNet,

outperforms A-PISTA, and greatly outperforms PISTA, LLA, and Mcvx respec-

tively. In terms of support recovery and parameter estimation, PICASSO slightly

outperforms A-PISTA, PISTA, and Mcvx, and greatly outperforms SparseNet and

LLA.

To further demonstrate the superiority of PICASSO, we present a typical fail-

ure example of SparseNet using the heuristic cyclic selection rule. This exam-

ple is chosen from our 1000 simulations, and illustrated in Figure 2.8. We see

that the heuristic cyclic selection rule in SparseNet always needs to iterate over

many irrelevant variables before getting to the relevant variable when identify-

ing a new active set. Since these irrelevant variables are highly correlated with

52



CHAPTER 2. NONCONVEX SPARSE LEARNING

Table 2.1: Quantitative comparison on the simulated data set (n = 300, d = 18000,
s∗ = 18, σ2 = 4). In terms of timing performance, PICASSO slightly outper-
forms SparseNet, outperforms A-PISTA, and greatly outperforms PISTA, LLA, and
Mcvx respectively. In terms of support recovery and parameter estimation, PI-
CASSO slightly outperforms A-PISTA, PISTA, and Mcvx, and greatly outperforms
SparseNet and LLA.

Method ‖θ̂ −θ∗‖2 ‖θ̂S‖0 ‖θ̂Sc‖0 Correct Timing

PICASSO 1.258(0.515) 17.79(0.54) 0.48(0.52) 616/1000 1.062(0.084)

SparseNet 1.602(0.791) 17.64(0.85) 2.07(1.41) 248/1000 1.109(0.088)

PISTA 1.267(0.528) 17.76(0.54) 0.55(0.51) 614/1000 52.358(5.920)

A-PISTA 1.276(0.530) 17.76(0.54) 0.57(0.57) 613/1000 6.358(0.865)

Mcvx 1.293(0.529) 17.76(0.52) 0.58(0.52) 615/1000 67.247(7.128)

LLA 1.517(0.949) 17.50(0.61) 1.28(0.85) 365/1000 31.247(3.870)

the relevant variables in our experiment, the heuristic cyclic selection rule tends

to overselect the irrelevant variables and miss some relevant variables. In con-

trast, PICASSO, PISTA, and A-PISTA have mechanisms to prevent overselecting

irrelevant variables when identifying active sets. This eventually makes them out-

perform SparseNet in both parameter estimation and support recovery. Moreover,

we also see that PISTA is much slower than other algorithms, because PISTA needs

to calculate a full gradient and conduct a sophisticated line search in every iter-

ation, which are computationally expensive. Though A-PISTA adopts the coordi-

nate minimization to further accelerate PISTA, it still suffers from the computa-

tionally expensive line search when identifying active sets. This eventually leads

to less competitive timing performance than PICASSO.
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Figure 2.8: A typical failure example of SparseNet using the heuristic cyclic selec-
tion rule, which is chosen from our 1000 simulations. We see that cyclic selection
rule tends to overselect the irrelevant coordinate and miss some relevant coor-
dinates when updating the active set. Thus SparseNet eventually yields denser
solutions with worse performance in parameter estimation and support recovery
than PICASSO, PISTA, and A-PISTA.

Real Data: We adopt the gene expression data set in [38]. The original data set

contains 31,042 gene expression values of 120 rats. Our goal is to identify genes

with expression values related to that of gene TRIM32, which is known to be as-

sociated with human diseases of the retina (corresponding to Probe 1389163 at).

Following the same preprocessing procedure as [39] and [40], we remove genes

lacking sufficient variation or expression, and then choose 4,000 genes with the

largest sample variances in expression values.
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Table 2.2: Quantitative comparison on the real data example. PICASSO attains
better prediction error and smaller average model sizes than those of other com-
peting algorithms. Moreover, PICASSO attains much better timing performance
than PISTA, Mcvx, and LLA.

Method Average model size Prediction Error Timing

PICASSO 12.35(5.33) 0.2789(0.0705) 0.759(0.278)

SparseNet 14.71(5.86) 0.2922(0.0854) 0.901(0.606)

PISTA 12.99(5.56) 0.2797(0.0803) 31.511(2.041)

A-PISTA 12.85(5.56) 0.2796(0.0803) 5.729(2.741)

Mcvx 14.15(3.61) 0.2825(0.0822) 36.672(4.464)

LLA 14.30(3.66) 0.2844(0.0861) 24.250(3.105)

We set γ = 1.05, N = 70, λN = 0.01λ0, δK = 10−3, and τK = 10−6 for all 1 ≤

K ≤ N . We randomly split the 120 rats into a training set of 90 rats for fitting

the model, a validation set of 15 rats for tuning parameter selection, and a testing

set of 15 rats for evaluating the prediction performance. The optimal tuning pa-

rameter is selected based on minimizing the prediction error on the validation set.

Table 2 summarizes the numerical results averaged over 100 random splits. We

see that PICASSO attains better prediction error and smaller average model sizes

than those of the other competing algorithms. Moreover, PICASSO attains much

better timing performance than PISTA and Mcvx. Besides, PICASSO identifies a

few genes, which are not identified by Lasso, SparseNet, and LLA. These identified

genes may be worth further investigation in genomic studies.
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2.6 Discussions and Future Work

Here we discuss several existing methods related to PICASSO, including the

multistage convex relaxation method (Mcvx), local linear approximation method

(LLA), path-following iterative shrinkage thresholding algorithm (PISTA), accel-

erated path-followi-ng iterative shrinkage thresholding algorithm (A-PISTA), and

proximal gradient algorithm.

The multistage convex relaxation method is proposed in [36]. It solves a se-

quence of convex relaxation problems of (2.1.1). [36] show that the obtained esti-

mator enjoys similar statistical guarantees to those of PICASSO for sparse linear

regression. However, there is online sublinear guarantee on its convergence rate to

a local optimum. Moreover, since each relaxed problem is still lack of strong con-

vexity, the multistage convex relaxation method needs to be combined with some

efficient computational algorithms such as PICASSO.

The local linear approximation method is proposed in [37, 40, 41]. It is essen-

tially a special case of the multistage convex relaxation with only two iterations.

Similar to the multistage convex relaxation method, it also needs an efficient com-

putational algorithm to solve each relaxed problem. Moreover, in order to obtain

the variable selection consistency, the local linear approximation method requires

a stronger minimum signal strength. Taking sparse linear regression as an exam-

ple, [40, 41] requires a minimum signal strength of order of σ
√
s∗ logd/n, while

PICASSO only requires a minimum signal strength of order of σ
√
logd/n.
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The path-following iterative shrinkage thresholding algorithm (PISTA) is pro-

posed in [31]. PISTA is essentially a proximal gradient algorithm combined with

the warm start initialization. PISTA needs to calculate the entire (d-dimensional)

gradient vector and requires a sophisticated backtracking line search procedure

in every iteration. Thus, PICASSO is computationally much more efficient than

PISTA in practice, although PISTA and PICASSO enjoy similar theoretical guaran-

tees. Besides, the implementation of PISTA requires subtle control over the step

size, and often yield slow empirical convergence. An accelerated PISTA algorithm

(A-PISTA) is proposed in [10], which uses coordinate minimization algorithms to

accelerated PISTA. It shows an improved computational performance over PISTA

in our numerical simulations, but not as competitive as PICASSO.

Moreover, when extending PISTA to general loss functions, [31] propose a con-

tained formulation. Particularly, they solve (2.1.1) with an additional constraint

min
θ∈Rd

L(θ) +Rλ(θ) subject to ‖θ‖2 ≤ R/2. (2.6.1)

The additional constraint guarantees that the solution always stays in the restricted

strongly convex region (a small neighborhood around θ∗), only under the assump-

tion ‖θ∗‖2 ≤ R/2, where R is a constant and cannot scale with (n,s∗,d). This as-

sumption is very restrictive, and also introduces an additional tuning parameter.

In contrast, our proposed convex relaxation based warm start initialization avoids
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this assumption, and allows ‖θ∗‖2 to be arbitrarily large. Furthermore, we want to

emphasize that PISTA exploits an explicit soft-thresholding procedure to directly

control the solution sparsity in each iteration, while PICASSO adopts an algorith-

mic strategy to control the sparsity of the active set.

Other researchers focus on solving (2.1.1) with an additional constraint,

min
θ∈Rd
L(θ) +Rλ(θ) subject to ‖θ‖1 ≤M, (2.6.2)

whereM > 0 is an extra tuning parameter. [32] show that the proximal gradient al-

gorithm attains a linear convergence to a ball centered at θ∗ to (2.6.2) with a radius

approximately equal to the statistical error. However, the analysis of [32] does not

justify the advantage of nonconvex regularization: They only provides a slower

statistical rate of convergence than PICASSO in parameter estimation for their

obtained estimator, and no support recovery guarantee is established. Besides,

their analysis for general loss functions also requires the restrictive assumption:

‖θ∗‖2 ≤ R/2, where R is a constant and does not scale with (n,s∗,d). Nevertheless,

PICASSO does not require this assumption.

For future work, we are interested in possible extensions: (I) Extension to more

complicated regularizers such as grouping regularizers for variable clustering; (II)

Extension to more complicated (possibly nonconvex) loss functions such as sparse

phase retrieval and sparse coding problems; (III) Extension to asynchronous par-
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allel optimization setting with shared memory or communication-efficient dis-

tributed optimization setting; (IV) Extension to second order algorithms such as

the regularized iterative reweighed least square optimization algorithm for sparse

generalized linear model estimation (proximal Newton). These extensions will

lead to more efficient and scalable coordinate optimization algorithms for more

sophisticated nonconvex optimization problems.

2.7 Proof of Main Results

We present the proof sketch of our computational and statistical theories. Some

lemmas are deferred to Section A. To unify the convergence analysis of PICASSO

using the exact coordinate minimization (2.1.6) and proximal coordinate gradient

descent (2.4.3), we define two auxiliary parameters ν+(1) and ν−(1). Specifically,

we choose ν+(1) = ν−(1) = L for the proximal coordinate gradient descent, and

ν+(1) = ρ+(1) and ν−(1) = ρ̃−(1) for the exact coordinate minimization.

2.7.1 Proof of Theorem 2.3.9

Proof. Since ‖θ(0)‖0 = s ≤ s∗ + 2s̃, by Assumption 2.3.5 and Lemma 2.3.4, we know

that (2.2.2) is a strongly convex optimization problem. Thus, its minimizer θ is

unique. We then introduce the following lemmas.
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Lemma 2.7.1. Suppose Assumption and 2.3.5 holds, and |A| = s ≤ s∗ + 2s̃. For

t = 0,1,2, ..., we have Fλ(θ(t))−Fλ(θ(t+1)) ≥ ν−(1)
2 ‖θ(t) −θ(t+1)‖22.

Lemma 2.7.2. Suppose Assumption and 2.3.5 holds, and |A| = s ≤ s∗ + 2s̃. For

t = 0,1,2, ..., we have Fλ(θ(t+1))−Fλ(θ) ≤ sρ2+(s)
2ρ̃−(s)

‖θ(t+1) −θ(t)‖22.

Lemmas 2.7.1 and 2.7.2 characterize the successive descent and the gap to-

wards the optimal objective value after each iteration respectively.

[Linear Convergence] Combining Lemmas 2.7.1 and 2.7.2, we obtain

Fλ(θ(t+1))−Fλ(θ) ≤
sρ2+(s)

ρ̃−(s)ν−(1)
[Fλ(θ(t))−Fλ(θ)] (2.7.1)

− sρ2+(s)

ρ̃−(s)ν−(1)
[Fλ(θ(t+1))−Fλ(θ)].

By simple manipulation, (2.7.1) implies

Fλ(θ(t+1))−Fλ(θ)
(i)
≤
(

sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)
[Fλ(θ(t))−Fλ(θ)] (2.7.2)

(ii)
≤

(
sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)t+1
[Fλ(θ(0))−Fλ(θ)],

where (ii) comes from recursively using (i).

60



CHAPTER 2. NONCONVEX SPARSE LEARNING

[Number of Iterations] Combining (2.7.2) with Lemma 2.7.1, we obtain

‖θ(t) −θ(t+1)‖22
(i)
≤ 2[Fλ(θ(t))−Fλ(θ)]

ν−(1)

≤
(

sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)t
2[Fλ(θ(0))−Fλ(θ)]

ν−(1)
,

where (i) comes from Fλ(θ(t)) ≥ Fλ(θ). Thus, we need at most

t = log−1
(

sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)
log

(
ν−(1)τ2λ2

2[Fλ(θ(0))−Fλ(θ)]

)

iterations such that

‖θ(t+1) −θ(t)‖22 ≤
(

sρ2+(s)

ρ̃−(s)ν−(1) + sρ2+(s)

)t
2[Fλ(θ(0))−Fλ(θ)]

ν−(1)
≤ τ2λ2.

2.7.2 Proof of Theorem 2.3.10

Proof. Before the proof starts, we first introduce the following lemmas.

Lemma 2.7.3. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. There exists a

unique sparse local optimum θ
λ
satisfying ‖θλS‖0 ≤ s̃ and Kλ(θ

λ
) = 0.

Lemma 2.7.4. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. If the initial solu-

tion θ(0) in Algorithm 1 satisfies ‖θ(0)

S ‖0 ≤ 2s̃ and Fλ(θ(0)) ≤ Fλ(θ∗) +4λ, the output

61



CHAPTER 2. NONCONVEX SPARSE LEARNING

solution θ̂ satisfies

min
ξA∈∂‖θ̂A‖1

‖∇AL̃λ(θ̂) +λξA‖∞ ≤ δλ and ‖θ̂S‖0 ≤ s̃. (2.7.3)

Lemma 2.7.5. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. If the initial solu-

tion θ[0] satisfies ‖θ[0]

S ‖0 ≤ s̃ and Fλ(θ
[0]) ≤ Fλ(θ∗) +4λ. Then regardless the simple

rule or strong rule, we have |A0 ∩S| ≤ s̃.

The proof of Lemmas 2.7.3, 2.7.4, and 2.7.5 are provided in Appendices A.3.5,

A.3.6, and A.3.8 respectively. Lemma 2.7.3 verifies the existence of the unique

sparse local optimum. Lemma 2.7.4 implies that the inner loop of PICASSO re-

moves irrelevant coordinates, and encourages the output solution sparsity. Lemma 2.7.5

implies that the initial active set is sufficiently sparse.

[Solution Sparsity] Since the objective always decreases, we have

Fλ(θ[m+1]) ≤ Fλ(θ[m+0.5]) ≤ Fλ(θ[0]) ≤ Fλ(θ∗) +4λ (2.7.4)

for all m = 0,1,2, .... Since θ[0] satisfies ‖θ[0]

S ‖0 ≤ s̃, by Lemma 2.7.5, we have |A0 ∩

S| ≤ s̃. Then by Lemma 2.7.4, we have ‖θ[0.5]

S ‖0 ≤ s̃. Moreover, the greedy selection

rule moves only one inactive coordinate to the active set, and therefore guarantees

‖θ[1]

S ‖0 ≤ s̃ + 1. By induction, we prove ‖θ[m]

S ‖0 ≤ s̃ + 1 and ‖θ[m+0.5]

S ‖0 ≤ s̃ for all

m = 0,1,2, ....
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[Linear Convergence] We first prove the linear convergence for the proximal coor-

dinate gradient descent. We need to construct an auxiliary solution

w[m+1] = argmin
w∈Rd

Jλ,L(w;θ[m+0.5])

= argmin
w∈Rd

L̃λ(θ[m+0.5]) + (w−θ[m+0.5])>∇L̃λ(θ[m+0.5])

+
L

2
‖w−θ[m+0.5]‖22 +λ‖w‖1.

We can verify w
[m+1]
k = argminθk Qλ,k,L(θk ;θ

[m+0.5]) for j = 1, ...,d. For notational

simplicity, we define w[m+1] = Tλ,L(θ[m+0.5]). Before we proceed, we introduce the

following lemmas.

Lemma 2.7.6. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. For the proximal

coordinate gradient descent and m = 0,1,2..., we have

Fλ(θ[m+0.5])−Fλ(θ[m+1]) ≥ 1

s∗ +2s̃

[
Fλ(θ[m+0.5])−Jλ,L(w[m+1];θ[m+0.5])

]
.

Lemma 2.7.7. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. For the proximal

coordinate gradient descent and m = 0,1,2..., we have

Fλ(θ[m+0.5])−Fλ(θ
λ
) ≤ L

ρ̃−(s∗ +2s̃)

[
Fλ(θ[m+0.5])−Jλ,L(w[m+1];θ[m+0.5])

]
.

The proofs of Lemmas 2.7.6 and 2.7.7 are presented in Appendices A.3.9 and
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A.3.12. Lemmas 2.7.6 and 2.7.7 characterize the successive descent in each itera-

tion and the gap towards the optimal objective value after each iteration respec-

tively. Combining Lemmas 2.7.6 and 2.7.7, we obtain

Fλ(θ[m+0.5])−Fλ(θ
λ
) (2.7.5)

≤ (s∗ +2s̃)L

ρ̃−(s∗ +2s̃)

(
[Fλ(θ[m+0.5])−Fλ(θ

λ
)]− [Fλ(θ[m+1])−Fλ(θ

λ
]
)
.

By simple manipulation, (2.7.5) implies

Fλ(θ[m+1])−Fλ(θ
λ
) ≤

(
1− ρ̃−(s

∗ +2s̃)

(s2 +2s̃)L

)
[Fλ(θ[m+0.5])−Fλ(θ

λ
)] (2.7.6)

(i)
≤
(
1− ρ̃−(s

∗ +2s̃)

(s∗ +2s̃)L

)
[Fλ(θ[m])−Fλ(θ

λ
)]

(ii)
≤

(
1− ρ̃−(s

∗ +2s̃)

(s∗ +2s̃)L

)m+1

[Fλ(θ[0])−Fλ(θ
λ
)],

where (i) comes from (2.7.4), and (ii) comes from recursively applying (i).

For the exact coordinate minimization, at the m-th iteration, we only need to

conduct a proximal coordinate gradient descent iteration with L = ρ+(1), and ob-

tain an auxiliary solution θ̃[m+1]. Since Fλ(θ[m+1]) ≤ Fλ(θ̃[m+1]), by (2.7.6), we fur-

ther have

Fλ(θ[m+1])−Fλ(θ
λ
) ≤

(
1− ρ̃−(s∗ +2s̃)

(s∗ +2s̃)ρ+(1)

)[
Fλ(θ[m])−Fλ(θ

λ
)
]
. (2.7.7)
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[Number of Iterations] Before we proceed, we introduce the following lemma.

Lemma 2.7.8. Suppose Assumption 2.3.5 holds. For any θ, we conduct an exact

coordinate minimization or proximal coordinate gradient descent iteration over a

coordinate k, and obtainw. Then we have Fλ(θ)−Fλ(w) ≥ ν−(1)
2 (wk−θk)2. Moreover,

if θk = 0 and |∇kL(θ)| ≥ (1 + δ)λ, we have

|wk | ≥
δλ

L
and Fλ(θ)−Fλ(w) ≥

δ2λ2

2ν+(1)
.

Lemma 2.7.8 characterizes the sufficient descent when adding the selected in-

active coordinate k into the active set. Assume that the selected coordinate km

satisfies |∇kmL(θ[m+0.5])| ≥ (1 + δ)λ. Then by Lemma 2.7.8, we have

Fλ(θ[m+0.5])−Fλ(θ
λ
) ≥ Fλ(θ[m+0.5])−Fλ(θ[m+1]) ≥ δ2λ2

2ν+(1)
. (2.7.8)

Moreover, by (2.7.6) and (2.7.7), we need at most

m = log−1
(
1− ρ̃−(s∗ +2s̃)

(s∗ +2s̃)ν+(1)

)
log




δ2λ2

3ν+(1)[Fλ(θ[0])−Fλ(θ
λ
)]




iterations such that Fλ(θ[m+0.5])−Fλ(θ
λ
) ≤ δ2λ2

3ν+(1)
, which is contradicted by (2.7.8).

Thus, we must have maxk∈Am |∇kL(θ
[m+0.5])| ≤ (1 + δ)λ, and the algorithm is termi-

nated.

[Approximately Optimal Output Solution] By Lemma 2.7.4, we know that when
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every inner loop terminates, the approximate KKT condition must hold over the

active set. Since∇AmHλ(θ
[m+0.5]) = 0, the stopping criterionmaxk∈Am |∇kL(θ

[m+0.5])| ≤

(1 + δ)λ implies that the approximate KKT condition holds over the inactive set,

min
ξAm∈∂‖θ

[m+0.5]

Am
‖1
‖∇AmL̃λ(θ

[m+0.5]) +λξAm‖∞ ≤ δλ.

The above two approximate KKT conditions implies that θ[m+0.5] satisfies the ap-

proximate KKT condition Kλ(θ[m+0.5]) ≤ δλ.

2.7.3 Proof of Theorem 2.3.12

Proof. [Result (I)] Before we proceed, we introduce the following lemma.

Lemma 2.7.9. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. For any λ ≥ λN ,

if θ satisfies ‖θS‖0 ≤ s̃ and Kλ(θ) ≤ δλ, where δ ≤ 1/8, then for any λ′ ∈ [λN ,λ], we

have

Fλ′ (θ)−Fλ′ (θ
λ′
) ≤ 40(Kλ(θ) + 3(λ−λ′))(λ+λ′)s∗

ρ̃−(s∗ + s̃)
.

The proof of Lemma 2.7.9 is provided in Appendix A.6. If we take λ = λ′ = λK

and θ = θ̂{K−1}, then Lemma 2.7.9 implies

FλK (θ̂{K−1})−FλK (θ
λK ) ≤ 25s∗λ2K

ρ̃−(s∗ + s̃)
. (2.7.9)
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Since the objective value always decreases within each middle loop, for any inner

loop with λK , we have FλK (θ(0)) − FλK (θ) ≤ FλK (θ̂{K−1}) − FλK (θ
λK ). Thus, by The-

orem 2.3.9 and (2.7.9), we know that the number of iterations within each inner

loop is at most

log−1
(
ρ̃−(s)ν−(1) + sρ2+(s)

sρ2+(s)

)
log

(
ν−(1)τ2K ρ̃−(s

∗ + s̃)
25s∗

)
.

[Results (II)] Combining Theorem 2.3.10 with (2.7.9), we know that the number of

active set updating iterations within each middle loop is at most

log−1
(
1− ρ̃−(s∗ +2s̃)

(s∗ +2s̃)ν+(1)

)
log

(
δ2K ρ̃−(s

∗ + s̃)
75ν+(1)s∗

)
.

[Results (III)] ForK < N , we take λ′ = λN , λ = λK , and θ = θ̂{K}. Then by Lemma 2.7.9,

we have

FλN (θ̂{K})−FλN (θ
λN ) ≤ 25(λK +λN )(KλK (θ̂{K}) + 3(λK −λN ))s∗

ρ̃−(s∗ + s̃)
,

which completes the proof due to λK > λN for K = 0, ...,N − 1.
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2.7.4 Proof of Theorem 2.3.16

Proof. For any θ∗, we consider a partition of Rd as

S1 =
{
j
∣∣∣∣ θ∗j ≥

C2σ√
s∗1 + s

∗
2

}
, and S2,3 =

{
j
∣∣∣∣ θ∗j <

C2σ√
s∗1 + s

∗
2

}
.

We consider the first scenario, where S3 = ∅. Then we establish the lower bound for

estimating θ∗S1 only. Let θ̃S1 denote any estimator of θ∗S1 based on y ∼N (X∗S1θ
∗
S1 ,σ

2I ).

This is essentially a low dimensional linear regression problem since s∗1 < n. By the

minimax lower bound for standard linear regression model in [42], we have

inf
θ̃S1

sup
θ∈Θ(s∗1,s

∗
2,d)

E‖θ̃S1 −θ∗S1‖2 ≥ C6σ

√
s∗1
n

for a generic constant C6. We then consider a second scenario, where S1 = ∅. Then

we establish the lower bound for estimating θ∗S2,3 only. Let θ̃S2,3 denote any estima-

tor of θ∗S2,3 based on y ∼ N (X∗S2,3θ
∗
S2,3 ,σ

2I ). This is essentially a high dimensional

sparse linear regression problem. By the lower bound for sparse linear regression

model established in [43], we have

inf
θ̃S2,3

sup
θ∈Θ(s∗1,s

∗
2,d)

E‖θ̃S2,3 −θ∗S2,3‖2 ≥ 2C7σ

√
s∗2 log(d − s∗2)

n
≥ C7σ

√
s∗2 logd
n

,
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where C7 is a generic constant and the last inequality comes from the fact s∗2� d.

Combining two scenarios, we have

inf
θ̂

sup
θ∈Θ(s∗1,s

∗
2,d)

E‖θ̂ −θ∗‖2

≥max
{
inf
θ̃S1

sup
θ∈Θ(s∗1,s

∗
2,d)

E‖θ̃S1 −θ∗S1‖2, inf
θ̃S2,3

sup
θ∈Θ(s∗1,s

∗
2,d)

E‖θ̃S2,3 −θ∗S2,3‖2
}

≥ 1

2
inf
θ̃S1

sup
θ∈Θ(s∗1,s

∗
2,d)

E‖θ̃S1 −θ∗S1‖2 +
1

2
inf
θ̃S2,3

sup
θ∈Θ(s∗1,s

∗
2,d)

E‖θ̃S2,3 −θ∗S2,3‖2

≥ C6

2
σ

√
s∗1
n
+
C7

2
σ

√
s∗2 logd
n

≥ C4


σ

√
s∗1
n
+σ

√
s∗2 logd
n


,

where C4 =min{C6
2 ,

C7
2 }.

2.7.5 Proof of Theorem 2.3.17

Proof. For notational simplicity, we denote λN by λ, θ̂{N } by θ̂, and θ
λN by θ

λ
.

Before we proceed, we first introduce the following lemmas.

Lemma 2.7.10. Suppose ε ∼ N (0,σ2I ) and ‖X∗j‖2 =
√
n for j = 1, ...,d. Then we

have

P



1

n
‖X>ε‖∞ ≥ 2σ

√
logd

n


 ≤ 2d−2.
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Lemma 2.7.11. Suppose Assumptions 2.3.1 and 2.3.5, and the following event

E1 =

1

n
‖X>ε‖∞ ≥ 2σ

√
logd

n



hold. We have

1

n
X∗S (y −Xθ̂o) +∇SHλ(θ̂o) +λ∇‖θ̂o

S‖1 = 0.

Lemma 2.7.12. Suppose Assumptions 2.3.1, and 2.3.5, and the following event

E2 =

1

n
‖U>ε‖∞ ≥ 2σ

√
logd

n



hold, where U = X>(I − X∗S (X>∗SX∗S )−1X>∗S ). There exists some ξ̂oS ∈ ∂‖θ̂
o
S‖1 such

that

1

n
X>∗S (y −Xθ̂

o) +∇SHλ(θ̂o) +λξ̂oS = 0.

The proof of Lemma 2.7.10 is provided in [33], therefore is omitted. The proofs

of Lemmas 2.7.11 and 2.7.12 are presented in Appendices A.11 and A.12. Lem-

mas 2.7.11 and 2.7.12 imply that θ̂o satisfies the KKT condition of (2.1.1) over S

and S respectively. Note that the above results only depend on Conditions E1 and
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E2. Meanwhile, we also have

‖U∗j‖2 = ‖X>∗j (I −X∗S (X>∗SX∗S )−1X>∗S )‖2

≤ ‖I −X∗S (X>∗SX∗S )−1X>∗S‖2‖X∗j‖2 ≤ ‖X∗j‖2 =
√
n, (2.7.10)

where the last inequality comes from ‖I −X∗S (X>∗SX∗S )−1X>∗S‖2 ≤ 1. Thus, (2.7.10)

implies that Lemma 2.7.10 is also applicable to E2. Moreover, since both θ̂{N } and

θ̂o are sparse local optima, by Lemma A.3.1, we further have P(θ̂o = θ
λ
) ≥ 1−4d−2.

Moreover, since θ̂ converges to θ
λ
, given a sufficiently small δN , we have

‖∇L̃λ(θ
λ
)−∇L̃λ(θ̂)‖∞ ≤ ‖L̃λ(θ

λ
)− L̃λ(θ̂)‖2 ≤ ρ+(s∗)‖θ

λ − θ̂‖2 ≤ ω�
λ

4
.

Since we have proved ‖∇S L̃λ(θ
λ
)‖∞ ≤ λ/4 in Lemma 2.7.12, we have

‖L̃λ(θ̂)‖∞ ≤ ‖∇S L̃λ(θ
λ
)‖∞ + ‖∇L̃λ(θ

λ
)−∇L̃λ(θ̂)‖∞ ≤

λ

4
+ω.

Since θ̂ also satisfies the approximate KKT condition and δ ≤ 1/8, then we must

have θ̂S = 0. Moreover, since we have also proved that there exists some con-

stant C8 such that minj∈S |θ
λ
j | ≥ C8σ

√
logd/n in Lemma 2.7.11, then for ω/ρ−(s∗)�

C8σ
√
logd/n, we have

min
j∈S
|θ̂j | =min

j∈S
|θλj | −ω ≥ C8σ

√
logd

n
> 0.
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Combining with the fact θ̂S = 0, we have supp(θ̂) = supp(θ
λ
) = supp(θ∗). Mean-

while, since all signals are strong enough, then by Theorem 2.3.14, we also have

‖θ̂ −θ∗‖2 ≤ C3σ
√
s∗
n .
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Chapter 3

Stochastic Variance Reduced

Optimization for Nonconvex Sparse

Learning

This chapter proposes a stochastic variance reduced optimization algorithm for

solving sparse learning problems with cardinality constraints. Sufficient condi-

tions are provided, under which the proposed algorithm enjoys strong linear con-

vergence guarantees and nearly optimal estimation accuracy in high dimensions.

We further extend the proposed algorithm to an asynchronous parallel variant

with a nearly linear speedup. Numerical experiments demonstrate the efficiency

of our algorithm in terms of both parameter estimation and computational perfor-

mance.
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3.1 Background

High dimensionality in learning tasks is challenging from both the statisti-

cal and computational perspectives. Based on the principle of parsimony, we

usually assume that only a small number of variables are relevant for modeling

the response variable. In the past decade, a large family of `1-regularized or `1-

constrained sparse estimators have been proposed, including Lasso [18], Logistic

Lasso [44], Group Lasso [45], Graphical Lasso [46, 47], and more. The `1-norm

serves as a convex surrogate for controlling the cardinality of the parameters, and

a large family of algorithms, such as proximal gradient algorithms [48], have been

developed for finding the `1-norm based estimators in polynomial time. The `1-

regularization or constraint, however, often incurs large estimation bias, and at-

tains worse empirical performance than the `0-regularization and constraint [19,

20]. This motivates us to study a family of cardinality constrained M-estimators.

Formally, we consider the following nonconvex optimization problem:

min
θ∈Rd

F (θ) subject to ‖θ‖0 ≤ k, (3.1.1)

where F (θ) is a smooth and non-strongly convex loss function, and ‖θ‖0 denotes

the number of nonzero entries in θ [49, 1].

To solve (4.3.1), a (full) gradient hard thresholding (FG-HT) algorithm has been

proposed in the statistics and machine learning communities over the past few
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years [49, 1, 50, 51]. FG-HT iteratively performs a gradient update followed by a

hard thresholding operation. Let Hk(θ) denote a hard thresholding operator that

keeps the largest k entries in magnitude and sets the other entries equal to zero.

Then, at the t-th iteration, FG-HT performs the update:

θ(t) =Hk
(
θ(t−1) − η∇F (θ(t−1))

)
,

where η > 0 is the step size. Existing literature has shown that under suitable

conditions, FG-HT attains linear convergence to an approximately global optimum

with optimal estimation accuracy with high probability [49, 1].

Despite these good properties, FG-HT is not suitable for solving large-scale

problems. The computational bottleneck is that FG-HT evaluates the (full) gradi-

ent at each iteration; its computational complexity depends linearly on the num-

ber of samples. Therefore, FG-HT becomes computationally expensive for high-

dimensional problems with large sample sizes.

To address the scalability issue, a scenario that is typical in machine learning

wherein the objective function decomposes over samples is considered in [2], i.e.

the objective function F (θ) takes an additive form over many smooth component

functions:

F (θ) =
1

n

n∑

i=1

fi(θ) and ∇F (θ) =
1

n

n∑

i=1

∇fi(θ),
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and each fi(θ) is associated with a few samples of the entire data set (i.e., the mini-

batch setting). In such settings, we can exploit the additive nature of F (θ) and

consider a stochastic gradient hard thresholding (SG-HT) algorithm based on un-

biased estimates of the gradient rather than computing the full gradient. In par-

ticular, SG-HT uses a stochastic gradient ∇fit (θ(t)) as an estimate of the full gradi-

ent ∇F (θ(t)), where it is randomly sampled from {1, . . . ,n} with equal probabilities

at each iteration. Though SG-HT greatly reduces the computational cost at each

iteration, it can only obtain an estimator with suboptimal estimation accuracy,

owing to the variance of the stochastic gradient introduced by random sampling.

Moreover, the convergence analysis of SG-HT in [2] requires F (θ) to satisfy the

Restricted Isometry Property (RIP) with parameter 1/7, i.e., the restricted condi-

tion number of the Hessian matrix ∇2F (θ) cannot exceed 4/3 (see more details in

Section 3.3). Taking sparse linear regression as an example, such an RIP condition

requires the design matrix to be nearly orthogonal, which is not satisfied even by

some simple random correlated Gaussian designs [34].

To address the suboptimal estimation accuracy and the restrictive requirement

on F (θ) in the stochastic setting, we propose a stochastic variance reduced gradi-

ent hard thresholding (SVRG-HT) algorithm. More specifically, we exploit a semi-

stochastic optimization scheme to reduce the variance introduced by the random

sampling [52, 53]. SVRG-HT contains two nested loops: at each iteration of the

outer loop, SVRG-HT calculates the full gradient. In the subsequent inner loop,
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the stochastic gradient update is adjusted by the full gradient followed by hard

thresholding at each iteration. This simple modification enables the algorithm

to attain linear convergence to an approximately global optimum with optimal

estimation accuracy, and meanwhile the amortized computational complexity re-

mains similar to that of conventional stochastic optimization. Moreover, our theo-

retical analysis is applicable to an arbitrarily large restricted condition number of

the Hessian matrix ∇2F (θ). To further boost the computational performance, we

extend SVRG-HT to an asynchronous parallel variant via a lock-free approach for

parallelization [54, 55, 56]. We establish theoretically that a near linear speedup is

achieved for asynchronous SVRG-HT.

Several existing algorithms are closely related to our proposed algorithm, in-

cluding the proximal stochastic variance reduced gradient algorithm [57], stochas-

tic averaging gradient algorithm [58], and stochastic dual coordinate ascent algo-

rithm [59]. However, these algorithms guarantee global linear convergence only

for strongly convex optimization problems. Several statistical methods in exist-

ing literature are also closely related to cardinality constrained M-estimators, in-

cluding nonconvex constrained M-estimators [60] and nonconvex regularized M-

estimators [32]. These methods usually require somewhat complicated computa-

tional formulation and often involve many tuning parameters. We discuss these

methods in more details in Section 3.6.

The rest of the paper is organized as follows: in Section 2, we derive the SVRG-
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HT algorithm; in Section 3, we present the computational and statistical theory; in

Section 4, we introduce the parallel variant of SVRG-HT; in Section 5, we present

the numerical experiments; in Section 6, we discuss related algorithms and opti-

mization problems; and in Section 7, we present the technical proof of all theo-

rems. Due to space limit, we defer some technical details to Appendix.

3.2 Algorithm

Before we present the proposed algorithm, we introduce some notations. Given

an integer n ≥ 1, we define [n] = {1, . . . ,n}. Given a vector v = (v1, . . . , vd)
> ∈ R

d ,

we define vector norms: ‖v‖1 =
∑
j |vj |, ‖v‖22 =

∑
j v

2
j , and ‖v‖∞ = maxj |vj |. Given

an index set I ⊆ [d], we define IC as the complement set of I , and vI ∈ R
d ,

where [vI ]j = vj if j ∈ I and [vI ]j = 0 if j < I . We use supp(v) to denote the

index set of nonzero entries of v. Given two vectors v,w ∈ R
d , we use 〈v,w〉 =

∑d
i=1 viwi to denote the inner product. Given a matrix A ∈ R

n×d , we use A> to

denote the transpose, Ai∗ and A∗j to denote the i-th row and j-th column respec-

tively, σi(A) to denote the i-th largest singular value, rank(A) to denote the rank,

‖A‖∗ =
∑rank(A)
i=1 σi(A) to denote the nuclear norm, and vec(A) to denote a vector ob-

tained by concatenating the columns of A. Given an index set I ⊆ [d], we denote

the submatrix of A with all row indices in I by AI∗, and denote the submatrix of

A with all column indices in I by A∗I . Given two matrices A,B ∈ R
n×d , we use
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Algorithm 4: Stochastic Variance Reduced Gradient Hard Thresholding Al-
gorithm (SVRG-HT).Hk(·) is the hard thresholding operator, which keeps the
largest k (in magnitude) entries and sets the other entries equal to zero.

Parameter: update frequency m, step size parameter η, sparsity k

Initialize: θ̃(0)

For r = 1,2, . . .

θ̃ = θ̃(r−1)

µ̃ = 1
n

∑n
i=1∇fi(θ̃)

θ(0) = θ̃
For t = 0,1, . . . ,m− 1

(S1) Randomly sample it from [n]

(S2) θ
(t+1)

= θ(t) − η
(
∇fit (θ(t))−∇fit (θ̃) + µ̃

)

(S3) θ(t+1) =Hk(θ
(t+1)

)

θ̃(r) = θ(m)

Return: θ̃(r)

〈A,B〉 = Trace(A>B) =
∑n
i=1

∑d
j=1AijBij . Moreover, we use the common notations of

Ω(·) and O(·) to characterize the asymptotics of two real sequences. For logarith-

mic functions, we denote log(·) as the natural logarithm when we do not specify

the base.

The proposed stochastic variance reduced gradient hard thresholding (SVRG-

HT) algorithm is presented in Algorithm 4. Different from the stochastic gradient

hard thresholding (SG-HT) algorithm proposed in [2], our SVRG-HT algorithm

adopts the semi-stochastic optimization scheme proposed in [52], which can guar-

antee that the variance introduced by stochastic sampling over component func-

tions decreases with the optimization error.

Next, we sketch a concrete example for illustrating the details of SVRG-HT.
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Specifically, we consider a sparse linear model

y = Aθ∗ + z, (3.2.1)

where A ∈ R
nb×d is the design matrix, y ∈ R

nb is the response vector, θ∗ ∈ R
d is

the unknown sparse regression coefficient vector with ‖θ∗‖0 = k∗, and z ∈ Rnb is a

random noise vector sampled from N (0,σ2I ). We are interested in estimating θ∗

by sovling the following nonconvex optimization problem:

min
θ∈Rd

F (θ) =
1

2nb
‖y −Aθ‖22 subject to ‖θ‖0 ≤ k. (3.2.2)

To solve (3.2.2) in the stochastic mini-batch optimization regime, we divide A into

n submatrices such that each submatrix contains b rows of A, i.e., we have n mini-

batches and b is the mini-batch size. For notational simplicity, we define the i-th

submatrix as ASi∗, where Si is the set of the corresponding row indices with |Si | = b

for all i = 1, ...,n. Accordingly, we have

fi(θ) =
1

2b
‖ySi −ASi∗θ‖22 and F (θ) =

1

n

n∑

i=1

1

2b
‖ySi −ASi∗‖22.

Let us consider the computational cost of SVRG-HT per iteration. Note that the

full gradient µ̃ = ∇F (θ) remains unchanged through the inner loop, and we only

calculate the full gradient once every m inner iterations. We can verify that the
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Algorithm 5: Stochastic Average Gradient Hard Thresholding Algorithm
(SAGA-HT). The SAGA-HT algorithm has similar computational and statis-
tical performance to SVRG-HT in both theory and practice.

Parameter: step size parameter η, sparsity k

Initialize: θ̃(0)

For r = 1,2, . . .
Randomly sample ir from [n]

θ
(r)
ir

= θ̃(r−1), and store ∇fit (θ
(r)
it
) in the table of stochastic gradients. All

other entries
in the table remain unchanged

θ
(r)

= θ̃(r−1) − η
(
∇fit (θ(t))−∇fit (θ

(r−1)
i ) + 1

n

∑n
i=1∇fi(θ

(r)
i )

)

θ̃(r) =Hk(θ
(t+1)

)

Return: θ̃(r)

average per iteration computational cost is O((n+m)bd/m). When m is of the same

order of n for some constant c > 0, it is further reduced to O(bd), which matches

that of SG-HT up to a constant factor.

A closely related algorithm to SVRG is stochastic average gradient algorithm

(SAGA); we refer the reader to [61] for further details. In Algorithm 5, we present

an extension of SAGA to SAGA hard thresholding (SAGA-HT) algorithm for non-

convex sparse learning. As for SVRG-HT, the average per iteration computational

cost for SAGA-HT is O(bd). However, unlike SAGA-HT, which needs to maintain

n stochastic gradients in the memory resulting in a space complexity of O(nd),

SVRG-HT only maintains a batch gradient in memory relaxing the space require-

ments to O(d). This is an enormous advantage for SVRG-HT over SAGA-HT for

large n.
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3.3 Theory

We are interested in analyzing the convergence of our proposed algorithm to

the unknown sparse parameter θ∗ of the underlying statistical model. For exam-

ple, for sparse linear regression in (3.2.1), θ∗ is the unknown regression coefficient

vector. This is different from the conventional optimization theory, which analyzes

the convergence properties of the algorithm to an optimum of the optimization

problem.

Our proposed theoretical analysis is applicable to both SVRG-HT and SAGA-

HT. As mentioned in Section 3.2, SVRG-HT has an advantage over SAGA-HT in

space complexity. Therefore, we focus only on the analysis for SVRG-HT in this

section, and an extension to SAGA-HT is straightforward.

Throughout the analysis, we make two important assumptions on the objective

function, which are defined as follows.

Definition 3.3.1 (Restricted Strong Convexity Condition). A differentiable func-

tion F is restricted ρ−s -strongly convex at sparsity level s if there exists a generic

constant ρ−s > 0 such that for any θ,θ′ ∈ Rd with ‖θ −θ′‖0 ≤ s, we have

F (θ)−F (θ′)− 〈∇F (θ′),θ −θ′〉 ≥ ρ
−
s

2
‖θ −θ′‖22. (3.3.1)

Definition 3.3.2 (Restricted Strong Smoothness Condition). For any i ∈ [n], a dif-

ferentiable function fi is restricted ρ
+
s -strongly smooth at sparsity level s if there
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exists a generic constant ρ+s > 0 such that for any θ,θ′ ∈ Rd with ‖θ − θ′‖0 ≤ s, we

have

fi(θ)− fi(θ′)− 〈∇fi(θ′),θ −θ′〉 ≤
ρ+s
2
‖θ −θ′‖22. (3.3.2)

We assume that the objective function F (θ) satisfies the restricted strong con-

vexity (RSC) condition, and all component functions {fi(θ)}ni=1 satisfy the restricted

strong smoothness (RSS) condition. Moreover, we define the restricted condition

number κs = ρ+s /ρ
−
s . The restricted strong convexity and smoothness have been

widely studied in high dimensional statistical theory [34, 32, 62]. They guaran-

tee that the objective function behaves like a strongly convex and smooth function

over a sparse domain, which is extremely important for establishing the computa-

tional theory.

The restricted isometry property (RIP) is closely related to the RSC and RSS

conditions [63, 64]. However, RIP is more restrictive, since it requires ρ+s < 2,

which can be easily violated by simple random correlated sub-Gaussian designs.

Moreover, RIP is only applicable to linear regression, while the RSC and RSS con-

ditions are applicable to more general problems such as sparse generalized linear

models estimation.
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3.3.1 Computational Theory

We present two key technical lemmas which will be instrumental in developing

a computational theory for SVRG-HT. Recall that θ∗ ∈ Rd is the unknown sparse

vector of interest with ‖θ∗‖0 ≤ k∗, and Hk(·) : R
d → R

d is a hard thresholding

operator that keeps the largest k entries (in magnitude) setting other entries to

zero.

Lemma 3.3.3. For k > k∗ and for any vector θ ∈ Rd , we have

‖Hk(θ)−θ∗‖22 ≤
(
1+

2
√
k∗√

k − k∗

)
‖θ −θ∗‖22. (3.3.3)

Lemma 3.3.3 shows that the hard thresholding operator is nearly non-expansive

for k sufficiently larger than k∗ such that 2
√
k∗√

k−k∗ is small. The proof of Lemma 3.3.3

is presented in Appendix B.1.

Remark 3.3.4. It is important to note that while Lemma 3.3.3 may seem related

to Lemma 1 in [1], there is an important difference. Lemma 1 in [1] characterizes

the effect of the hard thresholding operator by bounding the distance ‖Hk(θ)−θ‖2

between a vector and its thresholded version. Lemma 3.3.3, on the other hand,

bounds the increase in distance of a vector from a fixed target vector (of sparsity

k∗) due to thresholding. The latter, we argue, makes more intuitive sense from an

optimization perspective.

For notational simplicity, we denote the full gradient and the stochastic vari-
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ance reduced gradient by

µ̃ = ∇F (θ̃) =
1

n

n∑

i=1

∇fi(θ̃) and g (t)(θ(t)) = ∇fit (θ(t))−∇fit (θ̃) + µ̃. (3.3.4)

The next lemma shows that g (t)(θ(t−1)) is an unbiased estimator of ∇F (θ(t−1)) with

a well controlled second moment over a sparse support.

Lemma 3.3.5. Suppose that F (θ) satisfies the RSC condition and that functions

{fi(θ)}ni=1 satisfy the RSS condition with s = 2k + k∗. Let I ∗ = supp(θ∗) denote

the support of θ∗. Let θ(t) be a sparse vector with ‖θ(t)‖0 ≤ k and support I (t) =

supp(θ(t)). Then conditioning on θ(t), for any I ⊇ (I ∗ ∪I (t)), we have E[g (t)(θ(t))] =

∇F (θ(t)) and

E‖g (t)I (θ(t))‖22 ≤ 12ρ+s
[
F (θ(t))−F (θ∗) +F (θ̃)−F (θ∗)

]
+3‖∇IF (θ∗)‖22. (3.3.5)

The proof of Lemma 3.3.5 is presented in Appendix B.2.

Remark 3.3.6. For smooth convex problems, we have ∇F (θ∗) = 0 if θ∗ is a global

minimizer. However, given that the problem of interest here, Problem 4.3.1, is

nonconvex, the second term on the R.H.S of (3.3.5) is nonzero. This results in a

setting different from existing work using variance reduction [52, 53].

We now present our first main result characterizing the quality of solution

given by Algorithm 4 both in terms of the error in the objective value as well as

85



CHAPTER 3. NONCONVEX SPARSE LEARNING

error in terms of the parameter estimation.

Theorem 3.3.7. Let θ∗ denote the unknown sparse parameter vector of the under-

lying statistical model, with ‖θ∗‖0 ≤ k∗. Assume that the objective function F (θ)

satisfies the RSC condition and functions {fi(θ)}ni=1 satisfy the RSS condition with

s = 2k + k∗, where k ≥ C1κ
2
s k
∗ and C1 is a generic constant. Define

Ĩ = supp(H2k(∇F (θ∗)))∪ supp(θ∗).

There exist generic constants C2,C3, and C4 such that if we set ηρ+s ∈ [C2,C3] and

m ≥ C4κs, then we have

(
1+ 2

√
k∗√

k−k∗

)m
· 2
√
k∗√

k−k∗

ηρ−s (1− 6ηρ+s )
((
1+ 2

√
k∗√

k−k∗

)m
− 1

) +
6ηρ+s

1− 6ηρ+s
≤ 3

4
.

Furthermore, the parameter θ̃(r) at the r-th iteration of SVRG-HT satisfies

E

[
F (θ̃(r))−F (θ∗)

]
≤

(
3

4

)r
·
[
F (θ̃(0))−F (θ∗)

]
+

6η

(1− 6ηρ+s )
‖∇ĨF (θ∗)‖22 and (3.3.6)

E‖θ̃(r) −θ∗‖2 ≤

√√
2
(
3
4

)r [F (θ̃(0))−F (θ∗)
]

ρ−s

+
2
√
s‖∇F (θ∗)‖∞

ρ−s
+ ‖∇ĨF (θ∗)‖2

√
12η

(1− 6ηρ+s )ρ−s
. (3.3.7)

Moreover, given a constant δ ∈ (0,1) and a pre-specified accuracy ε > 0, we need at
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most

r =

⌈
4log

(F (θ̃(0))−F (θ∗)
εδ

)⌉

outer iterations such that with probability at least 1− δ, we have

F (θ̃(r))−F (θ∗) ≤ ε + 6η

(1− 6ηρ+s )
‖∇ĨF (θ∗)‖22 and (3.3.8)

‖θ̃(r) −θ∗‖2 ≤
√

2ε

ρ−s
+
2
√
s‖∇F (θ∗)‖∞

ρ−s
+ ‖∇ĨF (θ∗)‖2

√
12η

(1− 6ηρ+s )ρ−s
. (3.3.9)

The proof of Theorem 3.3.7 is presented in Section 3.7.1.

Remark 3.3.8. Theorem 3.3.7 has two important implications: (I) Our analysis

for SVRG-HT allows an arbitrary large κs as long as F (θ) and {fi(θ)}ni=1 satisfy the

RSC and RSS conditions respectively with s = Ω(κ2s k
∗). In contrast, the theoreti-

cal analysis for SG-HT in [2] requires κs not to exceed 4/3, which is very restric-

tive; (II) To get θ̃(r) to satisfy (3.3.8) and (3.3.9), we need O(log(1/ε)) outer itera-

tions. Since within each outer iteration, we need to calculate a full gradient and

m stochastic variance reduced gradients, the overall computational complexity of

SVRG-HT is

O
(
[n+κs] · log

(
1

ε

))
.

In contrast, the overall computational complexity of the full gradient hard thresh-

olding algorithm (FG-HT) is O(κsn log(1/ε)). Thus SVRG-HT yields a significant
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improvement over FG-HT when κs is large.

3.3.2 Statistical Theory

SVRG-HT is applicable to a large family of sparse learning problems. Here, we

present theoretical results for three popular examples of constrainedM-estimation

problems: sparse linear regression, sparse generalized linear model estimation,

and low-rank matrix estimation (where the cardinality constraint is replaced by a

rank constraint).

3.3.2.1 Sparse Linear Regression

Consider the sparse linear model

y = Aθ∗ + z,

as introduced in Section 3.2. We want to estimate θ∗ by solving the optimization

problem in (3.2.2). We assume that for any v ∈ Rd with ‖v‖0 ≤ s, the design matrix

A satisfies

‖Av‖22
nb‖v‖22

≥ ψ1 −ϕ1
logd

nb

‖v‖21
‖v‖22

and
‖ASi∗v‖22
b‖v‖22

≤ ψ2 +ϕ2
logd

b

‖v‖21
‖v‖22

,∀i ∈ [n], (3.3.10)
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where ψ1, ψ2, ϕ1, and ϕ2 are constants that do not scale with (n,b,k∗,d). Existing

literature has shown that (3.3.10) is satisfied by many common examples of sub-

Gaussian random design [34, 62]. The next lemma shows that (3.3.10) implies the

RSC and RSS conditions.

Lemma 3.3.9. Suppose that the design matrix A satisfies (3.3.10). Then, given

large enough n and b, there exist a constant C5 and an integer k such that F (θ)

and {fi(θ)}ni=1 satisfy the RSC and RSS conditions respectively with s = 2k + k∗,

where

k = C5k
∗ ≥ C1κ

2
s k
∗, ρ−s ≥ ψ1/2, and ρ+s ≤ 2ψ2.

Aproof of Lemma 3.3.9 can be found in Appendix B.3. Combining Lemma 3.3.9

and Theorem 3.3.7, we get the following computational and statistical guarantees

for the estimator obtained by SVRG-HT.

Corollary 3.3.10. Suppose that the designmatrixA satisfies (3.3.10) with
maxj ‖A∗j‖2√

nb
≤

1, and k, η and m are as specified in Theorem 3.3.7. Then, for any confidence pa-

rameter δ ∈ (0,1), a sufficiently small accuracy parameter ε > 0, and large enough

n and b, we need at most r =
⌈
4log

(
F (θ̃(0))−F (θ∗)

εδ

)⌉
outer iterations in SVRG-HT to

guarantee that with high probability, we have

‖θ̃(r) −θ∗‖2 = O

σ

√
k∗ logd
nb


 . (3.3.11)
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See Section 3.7.2 for a proof of Corollary 3.3.10.

Remark 3.3.11. Corollary 3.3.10 guarantees that the proposed SVRG-HT estima-

tor attains the optimal statistical rate of convergence in parameter estimation [43]

when ε = O
(
σ

√
k∗ logd
nb

)
. In contrast, previous work, for instance see Corollary 5 in

[2], shows that the estimator obtained by the SGHT algorithm attains the statistical

rate of convergence

O

σ

√
k∗ logd
b




with high probability, and hence is suboptimal when n scales with (b,k∗,d).

3.3.2.2 Sparse Generalized Linear Models

We next consider sparse generalized linear models (GLM) defined by the fol-

lowing conditional distribution

P (yi |Ai∗,θ∗,σ) = exp

{
yiAi∗θ∗ − h(Ai∗θ∗)

a(σ)

}
,

where a(σ) is a fixed and known scale parameter, θ∗ ∈ Rd is the unknown sparse

regression coefficient with ‖θ∗‖0 = k∗, and h(·) is the cumulant function[65] satisfy-
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ing

h′(Ai∗θ
∗) = E[yi |Ai∗,θ∗,σ].

We further assume that there exists some constant cu such that h′′(x) ≤ cu for all

x ∈ R. Such a boundedness assumption is necessary to establish the RSC and RSS

conditions for GLM [32]. Note that this assumption holds for various popular set-

tings, including linear regression, logistic regression, and multinomial regression.

Analogous to sparse linear regression, we divide A into n mini-batches, where

each mini-batch is denoted by ASi∗ and Si denotes the corresponding row indices

of A, with |Si | = b, for all i = 1, ...,n. Then, our objective is essentially the negative

log-likelihood, i.e.,

min
θ∈Rd

F (θ) =
1

a(σ) ·n
n∑

i=1

fi(θ) subject to ‖θ‖0 ≤ k, ‖θ‖2 ≤ τ, (3.3.12)

for some τ > 0, where fi(θ) =
1
b

∑
`∈Si (h(A`∗θ)− y`A`∗θ), for all i = 1, . . . ,n. The

additional constraint ‖θ‖2 ≤ τ in (3.3.12) may not be necessary in practice, but

it is essential for our theoretical analysis; we further expand on this later in this

section.

For concreteness, we consider sparse logistic regression as a special case of

the setup above. We want to estimate θ∗ from nb independent responses y` ∼

Bernoulli(π`(θ
∗)), ` ∈ [nb], where π`(θ

∗) =
(

exp(A>`∗θ
∗)

1+exp(A>`∗θ
∗)

)
. The resulting optimiza-
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tion problem is as follows:

min
θ∈Rd

1

n

n∑

i=1

1

b

∑

`∈Si
(log[1 + exp(A`∗θ)]− y`A`∗θ) subject to ‖θ‖0 ≤ k, ‖θ‖2 ≤ τ.

Assume that for any v ∈ Rd with ‖v‖0 ≤ s and ‖v‖2 ≤ 2τ, the design matrix A

satisfies
maxj ‖A∗j‖2√

nb
≤ 1, and the objective F (θ) and {fi(θ)}ni=1 satisfy

v>∇2F (θ)v ≥ ψ1‖v‖22 −ϕ1
logd

nb
‖v‖21 and

v>∇2fi(θ)v ≤ ψ2‖v‖22 +ϕ2
logd

b
‖v‖21, (3.3.13)

where ψ1, ψ2, ϕ1 and ϕ2 are constants that do not scale with (n,b,k∗,d) – (3.3.13)

is satisfied by many common examples of sub-Gaussian random design [32]. We

show that (3.3.13) implies the RSC and RSS conditions over an `2 ball centered at

θ∗ with radius 2τ.

Lemma 3.3.12. Suppose that F (θ) and {fi(θ)}ni=1 satisfy (3.3.13). Then, given large

enough n and b, for any θ with ‖θ−θ∗‖2 ≤ 2τ, there exist a constant C6 and an inte-

ger k such that F (θ) and {fi(θ)}ni=1 satisfy the RSC and RSS conditions respectively

with s = 2k + k∗, where

k = C6k
∗ ≥ C1κ

2
s k
∗, ρ−s ≥ ψ1/2, and ρ+s ≤ 2ψ2.

The proof of Lemma 3.3.12 is analogous to the proof of Lemma 3.3.9, thus is
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omitted. Lemma 3.3.12 guarantees that the RSC and RSS conditions hold over a

neighborhood of θ∗. For sparse GLM, we further assume ‖θ∗‖2 ≤ τ. This implies

that for any θ ∈ Rd with ‖θ‖2 ≤ τ, we have ‖θ −θ∗‖2 ≤ ‖θ‖2 + ‖θ∗‖2 ≤ 2τ.

Remark 3.3.13 (SVRG-HT with Projection). Due to the additional `2-constraint,

we need a projection step in SVRG-HT. In particular, we replace Step (S3) in Algo-

rithm 4 with the following update:

θ(t+1) =Πτ(Hk(θ
(t+1)

)),

whereΠτ(·) : Rd → R
d is an `2-norm projection operator defined asΠτ(v) = max{‖v‖2,τ}·

v/‖v‖2 for any v ∈ R
d . Since Πτ(·) is strictly contractive, i.e., ‖Πτ(θ) − θ∗‖2 ≤

‖θ − θ∗‖2, Theorem 3.3.7 still holds1 for SVRG-HT with this additional projection

step.

Our next result gives the statistical rate of convergence of the obtained estima-

tor for sparse GLM estimation.

Corollary 3.3.14. Suppose that Ai∗’s have i.i.d. sub-Gaussian rows, and k, η and

m are as specified in Theorem 3.3.7. In addition, suppose ‖θ∗‖2 ≤ τ. Then, given a

constant δ ∈ (0,1), a sufficiently small accuracy parameter ε > 0, and large enough

n and b, we need at most r =
⌈
4log

(
F (θ̃(0))−F (θ∗)

εδ

)⌉
outer iterations of SVRG-HT so

1The gap of the objective value is also contractive after projection due to the convexity of F .
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as to guarantee that, with high probability, we have

‖θ̃(r) −θ∗‖2 = O



√
k∗ logd
nb


 . (3.3.14)

We note that the statistical rate of convergence above matches the state-of-the-

art result in parameter estimation for GLM; see [32] for more details. A proof of

Corollary 3.3.14 is given in Section 3.7.3.

3.3.2.3 Low-rank Matrix Recovery

Next, we consider a low-rank matrix linear model

y =A(Θ∗) + z,

where y ∈ R
nb is the response vector, Θ∗ ∈ R

d×p is the unknown low-rank ma-

trix with rank(Θ∗) = k∗, A(·) : Rd×p → R
nb is a linear operator defined as A(Θ) =

[〈A1,Θ〉, . . . ,〈Anb,Θ〉]> for any matrix Θ ∈ Rd×p, Ai ∈ Rd×p is a measurement matrix

for all i = 1, . . . ,nb, and z ∈ Rnb is a random noise vector sampled from N (0,σ2I ).

As before, we divide the observations into n blocks, indexed by ySi , where Si

denotes the corresponding indices of y, with |Si | = b, for all i = 1, . . . ,n. Then, the
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resulting optimization problem is

min
Θ∈Rd×p

F (Θ) =
1

n

n∑

i=1

fi(Θ) subject to rank(Θ) ≤ k, (3.3.15)

where fi(Θ) = 1
2b‖ySi −ASi (Θ)‖22 and ASi (Θ) denotes a sub-vector of A(Θ) indexed

by Si , for all i = 1, . . . ,n.

For low-rank matrix problems, we consider the following matrix RSC and RSS

conditions that are simple generalization of the RSC and RSS conditions for sparse

vectors in Definitions 3.3.1 and 3.3.2. These matrix RSC and RSS conditions were

studied recently in high-dimensional statistical analyses for low-rank matrix re-

covery [66, 33, 67].

Definition 3.3.15 (Matrix Restricted Strong Convexity Condition). Adifferentiable

function F : Rd×p→ R is restricted ρ−s -strongly convex at rank level s if there exists

a generic constant ρ−s > 0 such that for any Θ,Θ′ ∈ Rd×p with rank(Θ −Θ′) ≤ s, we

have

F (Θ)−F (Θ′)− 〈∇F (Θ′),Θ −Θ′〉 ≥ ρ
−
s

2
‖Θ −Θ′‖2F. (3.3.16)

Definition 3.3.16 (Matrix Restricted Strong Smoothness Condition). For any i ∈

[n], a differentiable function fi : R
d×p→ R is restricted ρ+s -strongly smooth at rank

level s if there exists a generic constant ρ+s > 0 such that for any Θ,Θ′ ∈ Rd×p with
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rank(Θ −Θ′) ≤ s, we have

fi(Θ)− fi(Θ′)− 〈∇fi(Θ′),Θ −Θ′〉 ≤
ρ+s
2
‖Θ −Θ′‖2F. (3.3.17)

As with the RSC and RSS conditions, the matrix RSC and RSS conditions can

be verified for F (Θ) and {fi(Θ)}ni=1 by studying sub-Gaussian random design [66].

Specifically, if {Ai}nbi=1 in the linear operator A(·) are drawn i.i.d. from the ΣA-

Gaussian ensemble, i.e., vec(Ai) ∼ N (0,ΣA) with ΣA ∈ R
dp×dp, then, with high

probability, we have

A(Θ)√
nb
≥ ψ1‖

√
ΣAvec(Θ)‖2 −ϕ1ρ(ΣA)




√
d

nb
+

√
p

nb


‖Θ‖∗ and

ASi (Θ)
√
b
≤ ψ2‖

√
ΣAvec(Θ)‖2 −ϕ2ρ(ΣA)




√
d

b
+

√
p

b


‖Θ‖∗ for all i = 1, . . . ,n,

where ρ2(ΣA) = sup‖u‖2=1,‖v‖2=1var(u
>Xv), and the random matrix X is sampled

from the ΣA-Gaussian ensemble. This further implies that F (Θ) and {fi(Θ)}ni=1

satisfy the matrix RSC and RSS conditions respectively for large enough k, follow-

ing the result in Lemma 3.3.12.

Remark 3.3.17 (SVRG-HT for Singular Value Thresholding). For low-rank matrix

recovery, we need to replace the hard thresholding operator Hk(·) in Step (S3) of

Algorithm 4 by the singular value thresholding operator Rk(·). In particular, we
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replace Step (S3) with the following update:

Θ
(t+1) =Rk(Θ

(t+1)
) =

r∑

i=1

σ iU iV
>
i ,

where σ i , U i , and V i are the i-th largest singular value, and the corresponding left

and right singular vectors of Θ
(t+1)

respectively.

For sparse vectors, Lemma 3.3.3 guarantees that the hard thresholding oper-

ation is nearly non-expansive when k is sufficiently larger than k∗. We provide a

similar result for the singular value thresholding operation on matrices.

Lemma 3.3.18. Recall that Θ∗ ∈ Rd×p is the unknown low-rank matrix of interest

with rank(Θ∗) ≤ k∗, and Rk(·) : R
d×p → R

d×p is the singular value thresholding

operator, which keeps the largest k singular values and sets the other singular

values equal to zero. Given k > k∗, for any matrix Θ ∈ Rd×p, we have

‖Rk(Θ)−Θ∗‖2F ≤
(
1+

2
√
k∗√

k − k∗

)
· ‖Θ −Θ∗‖2F. (3.3.18)

See Appendix B.4 for a proof of Lemma 3.3.18. Given Lemma 3.3.18, the com-

putational theory follows directly from Theorem 3.3.7. This further allows us to

characterize the statistical properties of the obtained estimator for low-rank ma-

trix recovery as follows.

Corollary 3.3.19. Suppose that in the linear operator A(·), vec(Ai) is drawn i.i.d.
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from N (0,ΣA), and k, η and m are as specified in Theorem 3.3.7. Then, given a

constant δ ∈ (0,1), a sufficiently small accuracy parameter ε > 0, and large enough

n and b, we need at most r =
⌈
4log

(
F (θ̃(0))−F (θ∗)

εδ

)⌉
outer iterations of SVRG-HT to

guarantee that, with high probability, we have

‖Θ̃(r) −Θ∗‖F = O

σ

√
k∗(d + p)
nb


 .

The statistical rate of the convergence in Corollary 3.3.19 matches with the

state-of-the-art result in parameter estimation for low-rank matrix recovery [66].

The analysis follows directly from Corollary 3.3.10 and [66].

3.4 Asynchronous SVRG-HT

We extend SVRG-HT to an asynchronous parallel variant, named asynchronous

SVRG-HT (ASVRG-HT). Here, we assume a parallel computing procedure with a

multicore architecture, where each processor makes a stochastic gradient update

on a global parameter stored in a shared memory in an asynchronous and lock-

free mode. This setup is similar to that used in many asynchronous algorithms

[54, 55, 56, 68].

Compared with SVRG-HT, the algorithmic difference is as follows: at the t-

th iteration of inner loop, we randomly sample an index it ∈ [n] of the component

function with equal probability and an index set et ⊂ [d] over all subsets of [d] with
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Algorithm 6: Asynchronous Stochastic Variance Reduced Gradient Hard
Thresholding Algorithm. We assume a parallel computing procedure with
a multicore architecture, where each processor makes a stochastic gradient
update of a global parameter stored in a shared memory via an asynchronous
and lock-free mode.
Parameter: update frequency m, step size parameter η, sparsity k

Initialize: θ̃(0)

For r = 1,2, . . .

θ̃ = θ̃(r−1)

µ̃ = 1
n

∑n
i=1∇fi(θ̃)

θ(0) = θ̃
For t = 0,1, . . . ,m− 1

(S1) Randomly sample it from [n] and et ⊂ [d] with |et | ≤ k
(S2) θ

(t+1)
= θ(t)−η · [g (t)(θ(t))]et , where g (t)(θ(t)) = ∇fit (θ(t))−∇fit (θ̃)+ µ̃

(S3) θ(t+1) =Hk(θ
(t+1)

)

θ̃(r) = θ(m)

Return: θ̃(r)

equal probability, where et has a fixed cardinality upper bounded by k for any t.

Then we only update θ(t) over the index set et of the variance reduced gradient

g (t)(θ(t)). The full algorithm is presented in Algorithm 6.

We first introduce two important parameters following the notions in [54]. The

first parameter ς captures the degree of parallelism in the asynchronous algorithm.

Let t′ be the actual evaluation of θ performed at the t-th iteration, then ς is the

smallest positive integer such that t − t′ ≤ ς for any t. This is an upper bound of

delay that the actual evaluation of parameter is performed at the current iteration.

The more parallel computations are adopted, the larger value of ς can be. The

value of ς is approximately linear on the number of cores in parallel computing

architecture [54, 56].
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The second parameter ∆ captures the sparsity of data. Suppose fi(θ) only de-

pends on θei , where ei ⊂ [d] and |ei | = ki for some positive integer ki . Then ∆ ∈ [0,1]

is the smallest constant such that E‖θe‖22 ≤ ∆‖θ‖22, where e ⊆ [d] is a subset of [d]

with |e| = ki sampled with equal probabilities. The sparser the parameter is, on

which the function depends, the smaller ∆ is. We are interested in the setting

∆� 1.

We now present our main result characterizing the error of the objective value

and estimation error for Algorithm 6.

Theorem 3.4.1. Let θ∗ be the unknown sparse vector of our interest with ‖θ∗‖0 ≤

k∗. Suppose F (θ) satisfies the RSC condition and {fi(θ)}ni=1 satisfy RSS condition

with s = 2k + k∗, where k ≥ C1κ
2
s k
∗ and C1 is a generic constant. We define

Ĩ = supp(H2k(∇F (θ∗)))∪ supp(θ∗).

There exist generic constants C2,C3,C4, and C5 such that if we set ηρ+s ∈ [C2,C3],

m ≥ C4κs and ∆ς2 ≤ C5, then

(
1+ 2

√
k∗√

k−k∗

)m
· 2
√
k∗√

k−k∗

ηρ−s (1− 12ηρ+s Γ)
((
1+ 2

√
k∗√

k−k∗

)m
− 1

) +
12ηρ+s Γ

1− 12ηρ+s Γ
≤ 5

6
.

where Γ =
1+ρ+s ∆ς

2η

1−2ρ+2s ∆ς2η2
. Further, the parameter θ̃(r) at the r-th iteration of ASVRG-
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HT satisfies

E

[
F (θ̃(r))−F (θ∗)

]
≤

(
5

6

)r [
F (θ̃(0))−F (θ∗)

]
+

18ηΓ

1− 12ηρ+s Γ
‖∇ĨF (θ∗)‖22 and

E‖θ̃(r) −θ∗‖2 ≤

√√
2
(
5
6

)r [F (θ̃(0))−F (θ∗)
]

ρ−s
+
2
√
s‖∇F (θ∗)‖∞

ρ−s
+ ‖∇ĨF (θ∗)‖2

√
36ηΓ

(1− 12ηρ+s Γ)ρ−s
.

Moreover, given a constant δ ∈ (0,1) and a pre-specified accuracy ε > 0, we need at

most

r =

⌈
4log

(F (θ̃(0))−F (θ∗)
εδ

)⌉

outer iterations such that with probability at least 1− δ, we have simultaneously

F (θ̃(r))−F (θ∗) ≤ ε + 18ηΓ

1− 12ηρ+s Γ
‖∇ĨF (θ∗)‖22 and

‖θ̃(r) −θ∗‖2 ≤
√

2ε

ρ−s
+
2
√
s‖∇F (θ∗)‖∞

ρ−s
+ ‖∇ĨF (θ∗)‖2

√
36ηΓ

(1− 12ηρ+s Γ)ρ−s
.

The proof of Theorem 3.4.1 is presented in Section 3.7.4. Theorem 3.4.1 indi-

cates that ASVRG-HT has a similar iteration complexity to SVRG-HT. Therefore,

when ∆ς2 = O(1), ASVRG-HT can be ς times faster than SVRG-HT due to the par-

allelism. For example, if ∆ = O(k/d), then we achieve a speedup of ς = Ω(
√
d/k)

times, which is analogous to ASVRG in [55]. Since Theorem 3.4.1 provides similar

computational guarantees for ASVRG-HT, we can further establish similar statis-
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tical guarantees for ASVRG-HT by following Section 3.3.2.

Remark 3.4.2. To ease the analysis, we assume a sampling scheme of with-replacement

for parallelism, where only one component of the gradient is used to update the

parameter to avoid using locks in practice. However, in practice, a scheme of

without-replacement can be applied to significantly improve the efficiency [54].

3.5 Experiments

We compare the empirical performance of SVRG-HT with two other competi-

tors: FG-HT proposed in [1] and SG-HT proposed in [2] on both synthetic data

and real data. We also compare the performance of parameter estimation between

the `0-constrained problem (4.3.1) and an `1-regularized problem solved by the

proximal stochastic variance reduced gradient (Prox-SVRG) algorithm [57].

3.5.1 Synthetic Data

We consider a sparse linear regression problem. We generate each row of the

designmatrixAi∗, i ∈ [nb], independently from a d-dimensional Gaussian distribu-

tion with mean 0 and covariance matrix Σ ∈ Rd×d . The response vector is generated

from the linear model y = Aθ∗ + z ∈ Rnb, where θ∗ ∈ Rd is the k∗-sparse regression

coefficient vector, and z is generated from an n-dimensional Gaussian distribution

with mean 0 and covariance matrix σ2I . We set nb = 10000, d = 25000, k∗ = 200

102



CHAPTER 3. NONCONVEX SPARSE LEARNING

and k = 500. For Σ, we set Σii = 1 and Σij = c for some constant c ∈ (0,1) for all

i , j . The nonzero entries in θ∗ are sampled independently from a uniform dis-

tribution over the interval (−2,+2). We divide 10000 samples into n mini batches,

and each mini batch contains b = 10000/n samples.

Figure 3.1 illustrates the computational performance of FG-HT, SG-HT, and

SVRG-HT for eight different settings of (n,b) and Σij , each with step sizes η =

1/256,1/512, and 1/1024. The first four settings are noiseless, i.e., σ = 0 with (1)

(n,b) = (10000,1), Σij = 0.1; (2) (n,b) = (10000,1), Σij = 0.5; (3) (n,b) = (200,50),

Σij = 0.1; (4) (n,b) = (200,50), Σij = 0.5. For simplicity, we choose the update fre-

quency of the inner loop as m = n throughout our experiments2. The last four

settings are noisy with σ = 1 and identical choices of (n,b), Σij and m as in (1)-(4).

For all algorithms, we plot the objective values averaged over 50 different runs.

The horizontal axis corresponds to the number of passes over the entire dataset;

computing a full gradient is counted as 1 pass, while computing a stochastic gra-

dient is counted as 1/n-th of a pass. The vertical axis corresponds to the ratio of

current objective value over the objective value using θ̃(0) = 0. We further provide

the optimal relative estimation error ‖θ̃(106) − θ∗‖2/‖θ∗‖2 after 106 effective passes

of the entire dataset for all settings of the three algorithms in Table 3.1. The es-

timation error is obtained by averaging over 50 different runs, each of which is

chosen from a sequence of step sizes η ∈ {1/25,1/26, . . . ,1/214}.
2Larger m results in increasing number of effective passes of the entire dataset required to

achieve the same decrease of objective values, which is also observed in Prox-SVRG [57]
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(h) (n,b) = (200,50), Σij = 0.5, σ = 1

Figure 3.1: Comparison among the three algorithms in all settings on the sim-
ulated data. The horizontal axis corresponds to the number of passes over the
entire dataset. The vertical axis corresponds to the ratio of current objective value

over the objective value using θ̃(0) = 0. For each algorithm, option 1, 2 and 3 cor-
respond to the step sizes η = 1/256,1/512, and 1/1024 respectively. It is evident
from the plots that SVRG-HT outperforms the other competitors in terms of the
convergence rate over all settings.
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Table 3.1: Comparison of optimal relative estimation errors among the three algo-
rithms in all settings on the simulated data. We denote (n,b)1 = (10000,1) and
(n,b)2 = (200,50). SVRG-HT achieves comparable result with FG-HT, both of
which outperforms SG-HT over all settings.

Method
σ = 0 σ = 1

Σij = 0.1 Σij = 0.5 Σij = 0.1 Σij = 0.5
(n,b)1 (n,b)2 (n,b)1 (n,b)2 (n,b)1 (n,b)2 (n,b)1 (n,b)2

FG-HT < 10−20 < 10−20 0.00851 0.02940

SG-HT < 10−20 < 10−20 < 10−20 0.13885 0.02490 0.06412 0.21676 0.18764

SVRG-HT < 10−20 < 10−20 < 10−20 < 10−20 0.00968 0.00970 0.02614 0.02823

We see from Figure 3.1 that SVRG-HT outperforms the other competitors in

terms of the convergence rate in all settings. While FG-HT also enjoys linear con-

verge guarantees, its computational cost at each iteration is n times larger than that

of SVRG-HT. Consequently, its performance is much worse than that of SVRG-HT.

Besides, we also see that SG-HT converges slower than SVRG-HT in all settings.

This is because the largest eigenvalue of any 500 by 500 submatrix of the covari-

ance matrix is large (larger than 50 or 250) such that the underlying design matrix

violates the Restricted Isometry Property (RIP) required by SG-HT. On the other

hand, Table 3.1 indicates that the optimal estimation error of SVRG-HT is compa-

rable to FG-HT, both of which outperform SG-HT, especially in noisy settings. It

is important to note that with the optimal step size, the estimation of FG-HT usu-

ally becomes stable after > 105 passes, while the estimation of SVRG-HT usually

becomes stable within a few dozen to a few hundred passes, which validates the

significant improvement of SVRG-HT over FG-HT in terms of the computational

cost.
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3.5.2 Real Data

We adopt a subset of RCV1 dataset with 9625 documents and 29992 distinct

words, including the classes of “C15”, “ECAT”, “GCAT”, and “MCAT” [69]. We

apply logistic regression to perform a binary classification for all classes, each of

which uses 5000 documents for training, i.e., nb = 5000 and d = 29992, with the

same proportion of documents from each class, and the rest for testing. We illus-

trate the computational performance of FG-HT, SG-HT, and SVRG-HT in two dif-

ferent settings: Setting (1) has (n,b) = (5000,1); Setting (2) has (n,b) = (100,50). We

choose k = 200 and m = n for both settings. For all three algorithms, we plot their

objective values and provide the optimal classification errors averaged over 10 dif-

ferent runs using random data separations. Figure 3.2 demonstrates the compu-

tational performance for “C15” on the training dataset, and the other classes have

similar performance. The horizontal axis corresponds to the number of passes over

the entire training dataset. The vertical axis corresponds to the ratio of current ob-

jective value over the initial objective value using θ̃(0) = 0. Similar to the synthetic

data, SVRG-HT outperforms the other competitors in terms of the convergence

rate in both settings.

We further provide the optimal misclassification rates of all classes for the three

algorithms in Table 3.2, where the optimal step size η for each algorithm is cho-

sen from a sequence of values {1/25,1/26, . . . ,1/214}. Similar to the synthetic data

again, the optimalmisclassification rate of SVRG-HT is comparable to FG-HT, both
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of which outperform SG-HT. The estimation of FG-HT generally requires > 106

passes to become stable, while the estimation of SVRG-HT generally requires a

few hundred to a few thousand passes to be stable, which validates the signifi-

cant improvement of SVRG-HT over FG-HT on this real dataset in terms of the

computational cost.

0 1 2 3 4 5

0.03

0.1 

0.3 

1   

SVRG-HT FG-HT SG-HT

×103

(a) (n,b) = (5000,1)
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Figure 3.2: Comparison among the three algorithms in two different settings on
the training dataset of RCV1 for the class “C15”. The horizontal axis corresponds
to the number of passes over the entire training dataset. The vertical axis corre-
sponds to the ratio of current objective value over the initial objective. It is evident
from the plots that SVRG-HT outperforms the other competitors in both settings.

Table 3.2: Comparison of optimal classification errors on the test dataset of RCV1
among the three algorithms for both settings and all four classes. We denote
(n,b)1 = (5000,1) and (n,b)2 = (100,50). SVRG-HT achieves comparable result
with FG-HT, both of which outperform SG-HT over all settings.

C15 ECAT GCAT MCAT

(n,b)1 (n,b)2 (n,b)1 (n,b)2 (n,b)1 (n,b)2 (n,b)1 (n,b)2
FG-HT 0.02844 0.05581 0.03028 0.05703

SG-HT 0.03259 0.03361 0.06851 0.07179 0.06263 0.09142 0.07638 0.08228

SVRG-HT 0.02826 0.02867 0.05628 0.05631 0.03354 0.03444 0.05877 0.05927
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3.5.3 `0-Norm/SVRG-HT vs. `1-Norm/Prox-SVRG

We further discuss the empirical performance of sparsity induced problems us-

ing the `0-norm and the `1-norm respectively. Specifically, we consider the sparse

linear regression problem (3.2.2) for the `0-constrained problem and the following

`1-regularized problem,

min
θ∈Rd

1

n

n∑

i=1

1

b
‖ySi −ASi∗θ‖22 +λ‖θ‖1, (3.5.1)

where λ > 0 is a regularization parameter. The `0-constrained problem (3.2.2)

is solved by SVRG-HT, and the `1-regularized problem (3.5.1) is solved by Prox-

SVRG [57]. We follow the same settings as in Section 3.5.1 for data generation and

the choice of parameters for SVRG-HT. For the `1-regularized problem (3.5.1), we

choose an optimal regularization parameter λ from a sequence of values {1/22,1/24,

1/26, . . . ,1/220}, which returns the optimal relative estimation error ‖θ̃(106)−θ∗‖2/‖θ∗‖2.

Table 3.3: Comparison of optimal relative estimation errors between (3.2.2) and
(3.5.1) in all settings on the synthetic data. We denote (n,b)1 = (10000,1) and
(n,b)2 = (200,50).

Method
σ = 0 σ = 1

Σij = 0.1 Σij = 0.5 Σij = 0.1 Σij = 0.5
(n,b)1 (n,b)2 (n,b)1 (n,b)2 (n,b)1 (n,b)2 (n,b)1 (n,b)2

`0-norm < 10−20 < 10−20 < 10−20 < 10−20 0.00968 0.00970 0.02614 0.02823

`1-norm ≈ 10−6 ≈ 10−7 ≈ 10−6 ≈ 10−7 0.01715 0.01306 0.08475 0.08177

Table 3.3 provides the optimal estimation errors in all settings, each of which is

averaged over 50 different runs. We observe that the `0-norm problem uniformly
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outperforms the `1-norm problem in terms of statistical accuracy. Besides, it is im-

portant to note that we only need to tune the step size η for the `0-norm problem

(3.2.2), which is insensitive in different settings, and the sparsity parameter k is

fixed throughout. On the other hand, for the `1-norm problem (3.5.1), we need to

tune both the step size η and the regularization parameter λ to obtain the optimal

estimation, which require much more tuning efforts. Moreover, we observe that

SVRG-HT converges faster than Prox-SVRG, where SVRG-HT typically requires a

few dozen to a few hundred passes of data to converge. This is because SVRG-HT

always guarantees the solution sparsity, and the restricted strong convexity en-

ables the fast convergence. In contrast, Prox-SVRG requires a few thousand passes

of data to converge, because Prox-SVRG often yields dense solutions, especially at

the first few iterations.

3.6 Discussion

We provide a summary of comparison between our proposed algorithm SVRG-

HT with FG-HT [1] and SG-HT [2] in Table 3.4. We want to remark that though

the computational complexity of SG-HT may seem lower than SVRG-HT, the RSC

and RSS conditions of SG-HT are very restrictive, and it generally converges much

slower than SVRG-HT in practice.

SVRG-HT is closely related to some recent work on stochastic optimization al-
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Table 3.4: Comparison with FG-HT [1] and SG-HT [2]. Our contributions are man-
ifold: (1) less restrictive assumptions on the RSC and RSS conditions than SG-HT;
(2) improving the iteration complexity and computational complexity over FG-
HT; and (3) improving the statistical performance over SG-HT. We only provide
the statistical error of sparse linear regression for illustration.

Method Restrictions on κs Ite. Complexity Comp. Complexity Statistical Error

FG-HT No: κs bounded O(κs log(1/ε)) O (nκs · log(1/ε)) O
(
σ
√
k∗ logd/(nb)

)

SG-HT Yes: κs ≤ 4
3 O(log(1/ε)) O (log(1/ε)) O

(
σ
√
k∗ logd/b

)

SVRG-HT No: κs bounded O(log(1/ε)) O ([n+κs] · log(1/ε)) O
(
σ
√
k∗ logd/(nb)

)

gorithms, including Prox-SVRG [57], stochastic averaging gradient (SAG) [58] and

stochastic dual coordinate ascent (SDCA, [59]). However, the focus in these pre-

vious works has been on establishing global linear convergence for optimization

problems involving strongly convex objective with a convex constraint, whereas

SVRG-HT guarantees linear convergence for optimization problems involving a

non-strongly convex objective with nonconvex cardinality constraint.

Other related work includes nonconvex regularized M-estimators proposed in

[32]. In particular, the following nonconvex optimization problem is considered

in [32]:

min
θ
F (θ) +Pλ,γ (θ) subject to ‖θ‖1 ≤ R, (3.6.1)

where Pλ,γ (θ) is a nonconvex regularization function with tuning parameters λ

and γ ; Popular choices for Pλ,γ (θ) are the SCAD andMCP regularization functions

studied in [19, 20]. It is shown in [32] that under restricted strong convexity and
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restricted strong smoothness conditions, similar to those studied here, the prox-

imal gradient descent attains linear convergence to approximate global optima

with optimal estimation accuracy. Accordingly, one could adopt the Prox-SVRG

to solve (3.6.1) in a stochastic fashion, and trim the analyses in [57] and [32] to es-

tablish similar convergence guarantees. We remark, however, that Problem (3.6.1)

involves three tuning parameters, λ, γ , and R which, in practice, requires a large

amount of tuning effort to attain good empirical performance. In contrast, Prob-

lem (4.3.1) involves a single tuning parameter, k, which makes tuning more effi-

cient.

3.7 Proofs of Main Results

We present the proofs of our main theoretical results in this section.

3.7.1 Proof of Theorem 3.3.7

Part 1: We first demonstrate (3.3.6) and (3.3.7). let v = θ(t) − ηg (t)I (θ(t)) and I =

I ∗ ∪ I (t) ∪ I (t+1), where I ∗ = supp(θ∗), I (t) = supp(θ(t)) and I (t+1) = supp(θ(t+1)).
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Conditioning on θ(t), we have the following expectation:

E‖v −θ∗‖22 = E‖θ(t) − ηg (t)I (θ(t))−θ∗‖22

= E‖θ(t) −θ∗‖22 + η2E‖g
(t)
I (θ(t))‖22 − 2η〈θ(t) −θ∗,Eg (t)I (θ(t))〉

= E‖θ(t) −θ∗‖22 + η2E‖g
(t)
I (θ(t))‖22 − 2η〈θ(t) −θ∗,∇IF (θ(t))〉

≤ E‖θ(t) −θ∗‖22 + η2E‖g
(t)
I (θ(t))‖22 − 2η

[
F (θ(t))−F (θ∗)

]

≤ E‖θ(t) −θ∗‖22 − 2η
[
F (θ(t))−F (θ∗)

]

+12η2ρ+s
[
F (θ(t))−F (θ∗) +F (θ̃)−F (θ∗)

]
+3η2‖∇IF (θ∗)‖22

= E‖θ(t) −θ∗‖22 − 2η(1− 6ηρ+s )
[
F (θ(t))−F (θ∗)

]

+12η2ρ+s
[
F (θ̃)−F (θ∗)

]
+3η2‖∇IF (θ∗)‖22, (3.7.1)

where the first inequality follows from the convexity of F (θ) and the second in-

equality follows from Lemma 3.3.5.

Since θ(t+1) = θ
(t+1)
k = vk , i.e. θ

(t+1) is the best k-sparse approximation of v, then

we have the following from Lemma 3.3.3

‖θ(t+1) −θ∗‖22 ≤
(
1+

2
√
k∗√

k − k∗

)
· ‖v −θ∗‖22. (3.7.2)

112



CHAPTER 3. NONCONVEX SPARSE LEARNING

Let α = 1+ 2
√
k∗√

k−k∗ . Combining (3.7.1) and (3.7.2), we have

E‖θ(t+1) −θ∗‖22 ≤ αE‖θ(t) −θ∗‖22 − 2αη(1− 6ηρ+s )
[
F (θ(t))−F (θ∗)

]

+12αη2ρ+s
[
F (θ̃)−F (θ∗)

]
+3αη2‖∇IF (θ∗)‖22. (3.7.3)

Notice that θ̃ = θ(0) = θ̃(r−1). By summing (3.7.3) over t = 0,1, . . . ,m − 1 and taking

expectation with respect to all t’s, we have

E‖θ(m) −θ∗‖22 +
2η(1− 6ηρ+s )(αm − 1)

α − 1 E

[
F (θ̃(r))−F (θ∗)

]

≤ αmE‖θ̃(r−1) −θ∗‖22 +
12η2ρ+s (α

m − 1)
α − 1 E

[
F (θ̃(r−1))−F (θ∗)

]
+
3η2(αm − 1)

α − 1 E‖∇IF (θ∗)‖22

≤ 2αm

ρ−s
E

[
F (θ̃(r−1))−F (θ∗)

]
+
12η2ρ+s (α

m − 1)
α − 1 E

[
F (θ̃(r−1))−F (θ∗)

]

+
3η2(αm − 1)

α − 1 ‖∇ĨF (θ∗)‖22, (3.7.4)

where the last inequality follows from the RSC condition (3.3.1) and the definition

of Ĩ . It further follows from (3.7.4)

E

[
F (θ̃(r))−F (θ∗)

]
≤

(
αm(α − 1)

ηρ−s (1− 6ηρ+s )(αm − 1)
+

6ηρ+s
1− 6ηρ+s

)
E

[
F (θ̃(r−1))−F (θ∗)

]

+
3η

2(1− 6ηρ+s )
‖∇ĨF (θ∗)‖22. (3.7.5)

Let β =
αm(α−1)

ηρ−s (1−6ηρ+s )(αm−1) +
6ηρ+s

1−6ηρ+s and apply (3.7.5) recursively, then we have the

desired bound (3.3.6) when β ≤ 3
4 .
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We then demonstrate (3.3.7). The RSC condition implies

F (θ∗) ≤ F (θ̃(r)) + 〈∇F (θ∗),θ∗ − θ̃(r)〉 − ρ
−
s

2
‖θ̃(r) −θ∗‖22. (3.7.6)

Let ζ =
(
5
6

)r [F (θ̃(0))−F (θ∗)
]
+

6η
(1−6ηρ+s )‖∇ĨF (θ∗)‖22. Combining (3.3.6) and (3.7.6),

we have

E

[
F (θ̃(r))− ζ

]
≤ F (θ∗) ≤ E

[
F (θ̃(r)) + 〈∇F (θ∗),θ∗ − θ̃(r)〉 − ρ

−
s

2
‖θ̃(r) −θ∗‖22

]
. (3.7.7)

Using the duality of norms, we have

E〈∇F (θ∗),θ∗ − θ̃(r)〉 ≤ ‖∇F (θ∗)‖∞E‖θ̃(r) −θ∗‖1

≤
√
s‖∇F (θ∗)‖∞E‖θ̃(r) −θ∗‖2. (3.7.8)

Combining (3.7.7), (3.7.8), and (E[x])2 ≤ E[x2], we have

ρ−s
2
(E‖θ̃(r) −θ∗‖2)2 ≤

√
s‖∇F (θ∗)‖∞E‖θ̃(r) −θ∗‖2 + ζ. (3.7.9)

Let a = E‖θ̃(r) − θ∗‖2, then (3.7.9) is equivalent to solving the following quadratic

function of a:

ρ−s
2
a2 −
√
s‖∇F (θ∗)‖∞a− ζ ≤ 0,
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which yields the bound (3.3.7).

Now we show that with k, η and m specified in the theorem, we guarantee

β ≤ 3
4 . More specifically, let η ≤ C3

ρ+s
≤ 1

18ρ+s
, then we have

6ηρ+s
1− 6ηρ+s

≤ 6C3

1− 6C3
≤ 1

2
.

If k ≥ C1κ
2
s k
∗ and η ≥ C2

ρ+s
with C2 ≤ C3, then we have α ≤ 1+ 2√

C1−1·κs
and

αm(α − 1)
ηρ−s (1− 6ηρ+s )(αm − 1)

≤
2√

C1−1·κs
2C2
3κs

(
1− (1 + 2√

C1−1·κs
)−m

)

=
3

C2

√
C1 − 1

(
1− (1 + 2√

C1−1·κs
)−m

) . (3.7.10)

Then (3.7.10) is guaranteed to be strictly smaller than 1
2 if we have

m ≥ log1+ 2√
C1−1·κs

C2

√
C1 − 1

C2

√
C1 − 1− 6

. (3.7.11)

Using the the fact that ln(1 + x) > x/2 for x ∈ (0,1), it follows that

log1+ 2√
C1−1·κs

C2

√
C1 − 1

C2

√
C1 − 1− 6

=
log C2

√
C1−1

C2
√
C1−1−6

log1+ 2√
C1−1·κs

≤ log
C2

√
C1 − 1

C2

√
C1 − 1− 6

·
√
C1 − 1 ·κs.
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Then (3.7.11) holds if m satisfies

m ≥ log
C2

√
C1 − 1

C2

√
C1 − 1− 6

·
√
C1 − 1 ·κs

If we choose C1 = 1612, C2 =
1
20 , C3 =

1
18 and C4 = 222, then we have β ≤ 3

4 .

Part 2: Next, we demonstrate (3.3.8) and (3.3.9). It follows from (3.3.6)

E

[
F (θ̃(r))−F (θ∗)

]
− 6η

(1− 6ηρ+s )
‖∇ĨF (θ∗)‖22 ≤

(
3

4

)r [
F (θ̃(0))−F (θ∗)

]
. (3.7.12)

Let ξ1, ξ2, ξ3, . . . be a non-negative sequence of random variables, which is defined

as

ξr
∆
=max

{
F (θ̃(r))−F (θ∗)− 6η

(1− 6ηρ+s )
‖∇ĨF (θ∗)‖22, 0

}
.

For a fixed ε > 0, it follows from Markov’s Inequality and (3.7.12)

P (ξr ≥ ε) ≤
Eξr
ε
≤

(
3
4

)r [F (θ̃(0))−F (θ∗)
]

ε
. (3.7.13)

Given δ ∈ (0,1), let the R.H.S. of (3.7.13) be no greater than δ, which requires

r ≥ log
( 34 )

−1
F (θ̃(0))−F (θ∗)

εδ
.
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Therefore, we have that if r =
⌈
4log

(
F (θ̃(0))−F (θ∗)

εδ

)⌉
, then (3.3.8) holds with proba-

bility at least 1− δ. Finally, (3.3.9) holds by combining (3.3.7) and (3.3.8).

3.7.2 Proof of Corollary 3.3.10

For sparse linear model, we have ∇F (θ∗) = A>z/(nb). Since z has i.i.d. N (0,σ2)

entries, then A>∗jz/(nb) ∼ N (0,σ2‖A∗j‖22/(nb)2) for any j ∈ [d]. Using Mill’s Inequal-

ity for tail bounds of the normal distribution (Theorem 4.7 in [70]), we have

P




∣∣∣∣∣∣∣

A>∗jz

nb

∣∣∣∣∣∣∣
> 2σ

√
logd

nb


 = P




∣∣∣∣∣∣∣

A>∗jz

σ‖A∗j‖2

∣∣∣∣∣∣∣
> 2

√
nb logd

‖A∗j‖2


 ≤ ‖A∗j‖2

√
1

2πnb logd
exp


−4

nb logd

‖A∗j‖22


 .

Using union bound and the assumption
maxj ‖A∗j‖2√

nb
≤ 1, this implies

P




∥∥∥∥∥∥∥

A>∗jz

nb

∥∥∥∥∥∥∥∞
> 2σ

√
logd

nb


 ≤

d−4√
2π logd

.

Then with probability at least 1− 1√
2π logd

· d−4, we have

‖∇F (θ∗)‖∞ ≤
∥∥∥∥∥
A>z
nb

∥∥∥∥∥∞
≤ 2σ

√
logd

nb
. (3.7.14)

Conditioning on (3.7.14), we have

‖∇ĨF (θ∗)‖22 ≤ s‖∇F (θ∗)‖2∞ ≤
4σ2s logd

nb
. (3.7.15)
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We have from Lemma 3.3.9 that s = 2k+k∗ = (2C5 +1)k∗ for some constant C5 when

n and b are large enough. Given ε > 0 and δ ∈ (0,1), if

r ≥ 4log

(F (θ̃(0))−F (θ∗)
εδ

)
,

and ε = O
(
σ

√
k∗ logd
nb

)
, then with probability at least 1 − δ − 1√

2π logd
· d−4, we have

from (3.3.9), (3.7.14), and (3.7.15)

‖θ̃(r) −θ∗‖2 ≤ c3σ
√
k∗ logd
nb

, (3.7.16)

where c3 is a constant. This completes the proof.

3.7.3 Proof of Corollary 3.3.14

The only difference between the proof of Corollary 3.3.14 and the proof of

Corollary 3.3.10 is the upper bounds of ‖∇F (θ∗)‖∞ and ‖∇ĨF (θ∗)‖22. When {Ai∗}nbi=1

are independent sub-Gaussian vectors, it follows from [32] that F (θ) and {fi(θ)}ni=1

satisfy (3.3.13). Besides, there exist constants c4, c5, and c6, such that with proba-

bility at least 1− c4d−c5 , we have

‖∇F (θ∗)‖∞ ≤ c6
√

logd

nb
. (3.7.17)
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Conditioning on (3.7.17), we have

‖∇ĨF (θ∗)‖22 ≤ s‖∇F (θ∗)‖2∞ ≤
c26s logd

nb
. (3.7.18)

The rest of the proof follows immediately from the proof of Corollary 3.3.10.

3.7.4 Proof of Theorem 3.4.1

Recall from (3.3.4) that g (t)(θ(t)) = ∇fit (θ(t)) − ∇fit (θ̃) +∇F (θ̃). We also denote

u = θ(t)−ηh(t)I (θ(t)), where h(t)(θ(t)) = ∇fit (θ(t′))−∇fit (θ̃)+∇F (θ̃) and t′ is the actual

evaluation used at the t-th iteration. Then we have

E‖u −θ∗‖22 = E‖θ(t) − ηh(t)I (θ(t))−θ∗‖22

= E

[
‖θ(t) −θ∗‖22 + η2‖h

(t)
I (θ(t))‖22 − 2η〈θ(t) −θ∗,h(t)I (θ(t))〉

]
(3.7.19)

We first bound E‖h(t)I (θ(t))‖22 in terms of E‖g (t)I (θ(t))‖22 as

E‖h(t)I (θ(t))‖22 ≤ 2E
[
‖h(t)I (θ(t))− g (t)I (θ(t))‖22 + ‖g

(t)
I (θ(t))‖22

]

= 2E
[
‖∇I fit (θ(t))−∇I fit (θ(t′))‖22 + ‖g

(t)
I (θ(t))‖22

]

≤ 2(ρ+s )
2ς

t−1∑

j=t′
E‖θ(j+1)

et −θ(j)
et ‖2 +2E‖g (t)I (θ(t))‖22

≤ 2(ρ+s )
2
∆ςη2

t−1∑

j=t′
E‖h(j)I (θ(j))‖2 +2E‖g (t)I (θ(t))‖22,
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where the first inequality is from ‖a‖22 ≤ 2‖a − b‖22 + 2‖b‖22 for any vector a and b,

the second inequality is from the definition of ς, triangle inequality, and ‖fi(θ) −

fi(θ
′)‖2 ≤ ρ+s ‖θ − θ′‖2 implied by the RSS condition [71], and the last inequality is

from the definition of ∆. Take the summation of the inequality above from t = 0 to

m− 1, we have

m−1∑

t=0

E‖h(t)I (θ(t))‖22 ≤
m−1∑

t=0


2(ρ

+
s )

2
∆ςη2

t−1∑

j=t′
E‖h(j)I (θ(j))‖2 +2E‖g (t)I (θ(t))‖22




≤ 2(ρ+s )
2
∆ς2η2

m−1∑

t=0

E‖h(t)I (θ(t))‖22 +
m−1∑

t=0

E‖g (t)I (θ(t))‖22,

where the second inequality is from the definition of ς. The inequality above im-

plies

m−1∑

t=0

E‖h(t)I (θ(t))‖22 ≤
2

1− 2ρ+2s ∆ς2η2

m−1∑

t=0

E‖g (t)I (θ(t))‖22. (3.7.20)

Next, we bound E〈θ(t) −θ∗,h(t)I (θ(t))〉. This can be written as

E〈θ∗ −θ(t),h
(t)
I (θ(t))〉 = E〈θ∗ −θ(t),∇I fit (θ(t′))〉

= E〈θ∗ −θ(t′),∇I fit (θ(t′))〉+
t−1∑

j=t′
E〈θ(j) −θ(j+1),∇I fit (θ(j))〉

+

t−1∑

j=t′
E〈θ(j) −θ(j+1),∇I fit (θ(t′))−∇I fit (θ(j))〉. (3.7.21)
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From the convexity of fit , we have

E〈θ∗ −θ(t′),∇I fit (θ(t′))〉 ≤ E

[
fit (θ

∗)− fit (θ(t′))
]
. (3.7.22)

Besides, the RSS condition implies

t−1∑

j=t′
E〈θ(j) −θ(j+1),∇I fij (θ(j))〉 ≤

t−1∑

j=t′
E

[
fit (θ

(j))− fit (θ(j+1)) +
ρ+s
2
‖θ(j) −θ(j+1)‖22

]

≤ E

[
fit (θ

(t′))− fit (θ(t))A
]
+
ρ+s ∆

2

t−1∑

j=t′
E‖θ(j) −θ(j+1)‖22. (3.7.23)

Moreover, we have

t−1∑

j=t′
E〈θ(j) −θ(j+1),∇I fit (θ(t′))−∇I fit (θ(j))〉

≤ E




t−1∑

j=t′
‖θ(j)

et −θ
(j+1)
et ‖2 · ‖∇I fit (θ(t′))−∇I fit (θ(j))‖2




≤ E




t−1∑

j=t′
‖θ(j)

et −θ
(j+1)
et ‖2 ·

j−1∑

l=t′
‖∇I fit (θ(l))−∇I fit (θ(l+1))‖2




≤ E




t−1∑

j=t′

j−1∑

l=t′

ρ+s
2

(
‖θ(j)

et −θ
(j+1)
et ‖2 + ‖θ(l)

et −θ
(l+1)
et ‖2

)

≤ ρ
+
s ∆(ς − 1)

2

t−1∑

j=t′
E‖θ(j) −θ(j+1)‖22, (3.7.24)

where the first inequality is from Cauchy-Schwarz inequality, the second inequal-

ity is from the triangle inequality, the third inequality is from the RSS condition
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and the inequality of arithmetic and geometric means, and the last inequality is

from a counting argument.

Combining (3.7.21) – (3.7.24), we have

E〈θ(t) −θ∗,h(t)I (θ(t))〉 ≥ E


F (θ(t) −F (θ∗)− ρ+s ∆ςη2

t−1∑

j=t′
E‖θ(j) −θ(j+1)‖22


 . (3.7.25)

Combing (3.7.19), (3.7.20), and (3.7.25), we have

E‖u −θ∗‖22 ≤E
[
‖θ(t) −θ∗‖22 + η2‖h

(t)
I (θ(t))‖22

− 2η
(
F (θ(t) −F (θ∗)

)
+ ρ+s ∆ςη

2
t−1∑

j=t′
‖h(j)I (θ(j))‖22

]
.

(3.7.26)

The rest of the proof follows analogously from the proof of Theorem 3.3.7. Specif-

ically, by summing (3.7.26) over t = 0,1, . . . ,m − 1, taking expectation with respect

to all t’s, and combining Lemma 3.3.3, Lemma 3.3.5, and (3.7.25), we have

E‖θ(m) −θ∗‖22 +
2η (1− 12ρ+s ηΓ) (αm − 1)

α − 1 E

[
F (θ̃(r))−F (θ∗)

]

≤
(
2αm

ρ−s
+
24ρ+s η

2
Γ(αm − 1)
α − 1

)
E

[
F (θ̃(r−1))−F (θ∗)

]

+
6η2Γ(αm − 1)

α − 1 ‖∇ĨF (θ∗)‖22, (3.7.27)
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where α = 1+ 2
√
k∗√

k−k∗ and Γ =
1+ρ+s ∆ς

2η

1−2ρ+2s ∆ς2η2
. It further follows from (3.7.27)

E

[
F (θ̃(r))−F (θ∗)

]
≤

(
αm(α − 1)

ηρ−s (1− 12ηρ+s Γ)(αm − 1)
+

12ηρ+s Γ

1− 12ηρ+s Γ

)
E

[
F (θ̃(r−1))−F (θ∗)

]

+
3ηΓ

1− 12ηρ+s Γ
‖∇ĨF (θ∗)‖22. (3.7.28)

Finally,
αm(α−1)

ηρ−s (1−12ηρ+s Γ)(αm−1) +
12ηρ+s Γ

1−12ηρ+s Γ ≤
5
6 holds with the same choices of constants

C1 to C4 as in Theorem 3.3.7 and C5 =
1
2 .
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Chapter 4

Alternating Optimization for Matrix

Factorization

This chapter introduces our novel computational theory on alternating opti-

mization for matrix factorization. By investigating the data generating process

(underlying statistical models) of matrix factorization problems, we show that the

resulting nonconvex optimization problem shows strong bi-convexity and smooth-

ness over. Therefore, by exploiting such hidden convex structures, we establish

new computational and statistical theory for a broad family of alternating opti-

mization algorithms.
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4.1 Background

Let M∗ ∈ R
m×n be a rank k matrix with k much smaller than m and n. Our

goal is to estimate M∗ based on partial observations of its entries. For example,

matrix completion is based on a subsample of M∗’s entries, while matrix sensing

is based on linear measurements 〈Ai ,M∗〉, where i ∈ {1, . . . ,d} with d much smaller

than mn and Ai is the sensing matrix. In the past decade, significant progress

has been made on the recovery of low rank matrix [72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 66, 87, 88, 67, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

99, 100, 101, 102, 103, 104]. Among these works, most are based upon convex

relaxation with nuclear norm constraint or regularization. Nevertheless, solving

these convex optimization problems can be computationally prohibitive in high

dimensional regimes with large m and n [105]. A computationally more efficient

alternative is nonconvex optimization. In particular, we reparameterize the m × n

matrix variable M in the optimization problem as UV> with U ∈ Rm×k and V ∈

R
n×k , and optimize overU andV . Such a reparametrization automatically enforces

the low rank structure and leads to low computational cost per iteration. Due to

this reason, the nonconvex approach is widely used in large scale applications such

as recommendation systems or collaborative filtering [106, 107].

Despite the superior empirical performance of the nonconvex approach, the

understanding of its theoretical guarantees is rather limited in comparison with

the convex relaxation approach. The classical nonconvex optimization theory can
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only show its sublinear convergence to local optima. But many empirical results

have corroborated its exceptional computational performance and convergence to

global optima. Only until recently has there been theoretical analysis of the block

coordinate descent-type nonconvex optimization algorithm, which is known as al-

ternating minimization [94, 96, 97, 98]. In particular, the existing results show

that, provided a proper initialization, the alternating minimization algorithm at-

tains a linear rate of convergence to a global optimum U ∗ ∈ Rm×k and V ∗ ∈ Rn×k ,

which satisfy M∗ = U ∗V ∗>. Meanwhile, [77, 78] establish the convergence of the

gradient-type methods, and [99] further establish the convergence of a broad class

of nonconvex optimization algorithms including both gradient-type and block co-

ordinate descent-type methods. However, [77, 78, 99] only establish the asymp-

totic convergence for an infinite number of iterations, rather than the explicit rate

of convergence. Besides these works, [76, 79, 95] consider projected gradient-type

methods, which optimize over the matrix variableM ∈ Rm×n rather than U ∈ Rm×k

and V ∈ Rn×k . These methods involve calculating the top k singular vectors of an

m× n matrix at each iteration. For k much smaller than m and n, they incur much

higher computational cost per iteration than the aforementioned methods that op-

timize over U and V . All these works, except [99], focus on specific algorithms,

while [99] do not establish the explicit optimization rate of convergence.

In this chapter, we propose a new theory for analyzing a broad class of noncon-

vex optimization algorithms for low rankmatrix estimation. The core of our theory
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is the notion of inexact first order oracle. Based on the inexact first order oracle, we

establish sufficiently conditions under which the iteration sequences converge ge-

ometrically to the global optima. For both matrix sensing and completion, a direct

consequence of our threoy is that, a broad family of nonconvex optimization algo-

rithms, including gradient descent, block coordinate gradient descent, and block

coordinate minimization, attain linear rates of convergence to the true low rank

matrices U ∗ and V ∗. In particular, our proposed theory covers alternating mini-

mization as a special case and recovers the results of [94, 96, 97, 98] under suit-

able conditions. Meanwhile, our approach covers gradient-type methods, which

are also widely used in practice [108, 109, 107, 110, 90, 111]. To the best of our

knowledge, our analysis is the first one that establishes exact recovery guarantees

and geometric rates of convergence for a broad family of nonconvexmatrix sensing

and completion algorithms.

To achieve maximum generality, our unified analysis significantly differs from

previous works. In detail, [94, 96, 97, 98] view alternating minimization as an ap-

proximate power method. However, their point of view relies on the closed form

solution of each iteration of alternating minimization, which makes it difficult to

generalize to other algorithms, e.g., gradient-type methods. Meanwhile, [99] take

a geometric point of view. In detail, they show that the global optimum of the

optimization problem is the unique stationary point within its neighborhood and

thus a broad class of algorithms succeed. However, such geometric analysis of
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the objective function does not characterize the convergence rate of specific algo-

rithms towards the stationary point. Unlike existing results, we analyze noncon-

vex optimization algorithms as approximate convex counterparts. For example,

our analysis views alternating minimization on a nonconvex objective function as

an approximate block coordinate minimization on some convex objective func-

tion. We use the key quantity, the inexact first order oracle, to characterize such

a perturbation effect, which results from the local nonconvexity at intermediate

solutions. This eventually allows us to establish explicit rate of convergence in an

analogous way as existing convex optimization analysis.

Our proposed inexact first order oracle is closely related to a series previous

work on inexact or approximate gradient descent algorithms: [112, 113, 114, 115,

116, 117, 118]. Different from these existing results focusing on convex minimiza-

tion, we show that the inexact first order oracle can also sharply captures the evo-

lution of generic optimization algorithms even with the presence of nonconvexity.

More recently, [119, 120, 121] respectively analyze the Wirtinger Flow algorithm

for phase retrieval, the expectation maximization (EM) Algorithm for latent vari-

able models, and the gradient descent algorithm for sparse coding based on a sim-

ilar idea to ours. Though their analysis exploits similar nonconvex structures, they

work on completely different problems, and the delivered technical results are also

fundamentally different.

A conference version of this chapter was presented in the Annual Conference
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on Neural Information Processing Systems 2015 [11]. During our conference ver-

sion was under review, similar work was released on arXiv.org by [122, 123, 124,

125]. These works focus on symmetric positive semidefinite low rank matrix fac-

torization problems. In contrast, our proposed methodologies and theory do not

require the symmetry and positive semidefiniteness, and therefore can be applied

to rectangular low rank matrix factorization problems.

The rest of this section is organized as follows. In Section 4.2, we review the

matrix sensing problems, and then introduce a general class of nonconvex opti-

mization algorithms. In Section 4.3, we present the convergence analysis of the

algorithms. In Section 4.4, we lay out the proof. In Section 4.5, we extend the

proposed methodology and theory to the matrix completion problems. In Section

4.6, we provide numerical experiments. All supplementary proof is provided in

Appendix C.

Notation: For v = (v1, . . . , vd)
T ∈ Rd , we define the vector `q norm as ‖v‖qq =

∑
j v
q
j .

We define ei as an indicator vector, where the i-th entry is one, and all other entries

are zero. For a matrix A ∈ R
m×n, we use A∗j = (A1j , ...,Amj )

> to denote the j-th

column of A, and Ai∗ = (Ai1, ...,Ain)
> to denote the i-th row of A. Let σmax(A) and

σmin(A) be the largest and smallest nonzero singular values of A. We define the

following matrix norms: ‖A‖2F =
∑
j ‖A∗j‖22, ‖A‖2 = σmax(A). Moreover, we define

‖A‖∗ to be the sum of all singular values of A. We define as the Moore-Penrose

pseudoinverse of A as A†. Given another matrix B ∈ R
m×n, we define the inner
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product as 〈A,B〉 = ∑
i,j AijBij . For a bivariate function f (u,v), we define ∇uf (u,v)

to be the gradient with respect to u. Moreover, we use the common notations of

Ω(·), O(·), and o(·) to characterize the asymptotics of two real sequences.

4.2 Matrix Sensing

We start with the matrix sensing problem. LetM∗ ∈ Rm×n be the unknown low

rank matrix of interest. We have d sensing matrices Ai ∈ Rm×n with i ∈ {1, . . . ,d}.

Our goal is to estimate M∗ based on bi = 〈Ai ,M∗〉 in the high dimensional regime

with d much smaller than mn. Under such a regime, a common assumption is

rank(M∗) = k �min{d,m,n}. Existing approaches generally recoverM∗ by solving

the following convex optimization problem

min
M∈Rm×n

‖M‖∗ subject to b =A(M), (4.2.1)

where b = [b1, ..., bd]
> ∈ Rd , and A(M) : Rm×n→ R

d is an operator defined as

A(M) = [〈A1,M〉, ...,〈Ai ,M〉]> ∈ Rd . (4.2.2)

Existing convex optimization algorithms for solving (4.2.1) are computationally

inefficient, since they incur high per-iteration computational cost and only attain

sublinear rates of convergence to the global optimum [94, 105]. Therefore in large
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scale settings, we usually consider the following nonconvex optimization problem

instead

min
U∈Rm×k ,V∈Rn×k

F (U,V ), where F (U,V ) =
1

2
‖b −A(UV>)‖22. (4.2.3)

The reparametrization of M = UV>, though making the problem in (4.2.3) non-

convex, significantly improves the computational efficiency. Existing literature

[106, 107, 108, 109, 107, 110, 90, 111] has established convincing evidence that

(4.2.3) can be effectively solved by a broad variety of gradient-based nonconvex

optimization algorithms, including gradient descent, alternating exact minimiza-

tion (i.e., alternating least squares or block coordinate minimization), as well as

alternating gradient descent (i.e., block coordinate gradient descent), as illustrated

in Algorithm 7.

It is worth noting that the QR decomposition and rank k singular value decom-

position in Algorithm 7 can be accomplished efficiently. In particular, the QR de-

composition can be accomplished in O(k2max{m,n}) operations, while the rank k

singular value decomposition can be accomplished in O(kmn) operations. In fact,

the QR decomposition is not necessary for particular update schemes, e.g., [94]

prove that the alternating exact minimization update schemes with or without the

QR decomposition are equivalent.
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Algorithm 7:A family of nonconvex optimization algorithms for matrix sens-
ing. Here (U,D,V )← KSVD(M) is the rank k singular value decomposition
of M . D is a diagonal matrix containing the top k singular values of M in
decreasing order, and U and V contain the corresponding top k left and right
singular vectors of M . (V ,RV )← QR(V ) is the QR decomposition, where V
is the corresponding orthonormal matrix and RV is the corresponding upper
triangular matrix.

Input: {bi}di=1, {Ai}di=1
Parameter: Step size η, Total number of iterations T

(U
(0)
,D(0),V

(0)
)← KSVD(

∑d
i=1 biAi), V

(0)← V
(0)
D(0), U (0)←U

(0)
D(0)

For t← 0,1, ...,T − 1
Alternating Exact Minimization : V (t+0.5)← argminV F (U

(t)
,V )

(V
(t+1)

,R
(t+0.5)

V
)←QR(V (t+0.5))

Alternating Gradient Descent : V (t+0.5)← V (t) − η∇VF (U
(t)
,V (t))

(V
(t+1)

,R
(t+0.5)

V
)←QR(V (t+0.5)), U (t)←U

(t)
R
(t+0.5)>
V

Gradient Descent : V (t+0.5)← V (t) − η∇VF (U
(t)
,V (t))

(V
(t+1)

,R
(t+0.5)

V
)←QR(V (t+0.5)), U (t+1)←U

(t)
R
(t+0.5)>
V



Updating V

Alternating Exact Minimization : U (t+0.5)← argminU F (U,V
(t+1)

)

(U
(t+1)

,R
(t+0.5)

U
)←QR(U (t+0.5))

Alternating Gradient Descent : U (t+0.5)←U (t) − η∇UF (U (t),V
(t+1)

)

(U
(t+1)

,R
(t+0.5)

U
)←QR(U (t+0.5)), V (t+1)← V

t+1
R
(t+0.5)>
U

Gradient Descent : U (t+0.5)←U (t) − η∇UF (U (t),V
(t)
)

(U
(t+1)

,R
(t+0.5)

U
)←QR(U (t+0.5)), V (t+1)← V

t
R
(t+0.5)>
U



Updating U

Return: M (T )←U (T−0.5)V
(T )>

(for gradient descent we use U
(T )
V (T )>)

4.3 Convergence Analysis

We analyze the convergence of the algorithms illustrated in Section 4.2. Be-

fore we present the main results, we first introduce a unified analytical framework

based on a key quantity named the approximate first order oracle. Such a uni-

fied framework equips our theory with the maximum generality. Without loss of
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generality, we assume m ≤ n throughout the rest of this chapter.

4.3.1 Main Idea

We first provide an intuitive explanation for the success of nonconvex opti-

mization algorithms, which forms the basis of our later analysis of the main re-

sults in §4. Recall that (4.2.3) can be written as a special instance of the following

optimization problem,

min
U∈Rm×k ,V∈Rn×k

f (U,V ). (4.3.1)

A key observation is that, given fixed U , f (U, ·) is strongly convex and smooth in

V under suitable conditions, and the same also holds for U given fixed V corre-

spondingly. For the convenience of discussion, we summarize this observation in

the following technical condition, which will be later verified for matrix sensing

and completion under suitable conditions.

Assumption 4.3.1 (Strong Biconvexity and Bismoothness). There exist universal con-

stants µ+ > 0 and µ− > 0 such that

µ−
2
‖U ′ −U‖2F ≤ f (U ′,V )− f (U,V )− 〈U ′ −U,∇U f (U,V )〉 ≤ µ+

2
‖U ′ −U‖2F for all U,U ′,

µ−
2
‖V ′ −V ‖2F ≤ f (U,V ′)− f (U,V )− 〈V ′ −V ,∇V f (U,V )〉 ≤ µ+

2
‖V ′ −V ‖2F for all V ,V ′.
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4.3.1.1 Ideal First Order Oracle

To ease presentation, we assume thatU ∗ and V ∗ are the unique global minimiz-

ers to the generic optimization problem in (4.3.1). Assuming that U ∗ is given, we

can obtain V ∗ by

V ∗ = argmin
V∈Rn×k

f (U ∗,V ). (4.3.2)

Assumption 4.3.1 implies the objective function in (4.3.2) is strongly convex and

smooth. Hence, we can choose any gradient-based algorithm to obtain V ∗. For

example, we can directly solve for V ∗ in

∇V f (U ∗,V ) = 0, (4.3.3)

or iteratively solve for V ∗ using gradient descent, i.e.,

V (t) = V (t−1) − η∇V f (U ∗,V (t−1)), (4.3.4)

where η is a step size. Taking gradient descent as an example, we can invoke

classical convex optimization results [126] to prove that

‖V (t) −V ∗‖F ≤ κ‖V (t−1) −V ∗‖F for all t = 0,1,2, . . . ,
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where κ ∈ (0,1) and only depends on µ+ and µ− in Assumption 4.3.1. For notational

simplicity, we call ∇V f (U ∗,V (t−1)) the ideal first order oracle, since we do not know

U ∗ in practice.

4.3.1.2 Inexact First Order Oracle

Though the ideal first order oracle is not accessible in practice, it provides

us insights to analyze nonconvex optimization algorithms. Taking gradient de-

scent as an example, at the t-th iteration, we take a gradient descent step over V

based on ∇V f (U,V (t−1)). Now we can treat ∇V f (U,V (t−1)) as an approximation of

∇V f (U ∗,V (t−1)), where the approximation error comes from approximating U ∗ by

U . Then the relationship between ∇V f (U ∗,V (t−1)) and ∇V f (U,V (t−1)) is similar to

that between gradient and approximate gradient in existing literature on convex

optimization. For simplicity, we call ∇V f (U,V (t−1)) the inexact first order oracle.

To characterize the difference between ∇V f (U ∗,V (t−1)) and ∇V f (U,V (t−1)), we

define the approximation error of the inexact first order oracle as

E(V ,V ′,U ) = ‖∇V f (U ∗,V ′)−∇V f (U,V ′)‖F, (4.3.5)

where V ′ is the current decision variable for evaluating the gradient. In the above

example, it holds for V ′ = V (t−1). Later we will illustrate that E(V ,V ′,U ) is critical

to our analysis. In the above example of alternating gradient descent, we will prove
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later that for V (t) = V (t−1) − η∇V f (U,V (t−1)), we have

‖V (t) −V ∗‖F ≤ κ‖V (t−1) −V ∗‖F +
2

µ+
E(V (t),V (t−1),U ). (4.3.6)

In other words, E(V (t),V (t−1),U ) captures the perturbation effect by employing

the inexact first order oracle ∇V f (U,V (t−1)) instead of the ideal first order oracle

∇V f (U ∗,V (t−1)). For V (t+1) = argminV f (U,V ), we will prove that

‖V (t) −V ∗‖F ≤
1

µ−
E(V (t),V (t),U ). (4.3.7)

According to the update schemes shown in Algorithms 7 and 8, for alternating

exact minimization, we set U = U (t) in (4.3.7), while for gradient descent or alter-

nating gradient descent, we set U = U (t−1) or U = U (t) in (4.3.6) respectively. Due

to symmetry, similar results also hold for ‖U (t) −U ∗‖F.

To establish the geometric rate of convergence towards the global minima U ∗

and V ∗, it remains to establish upper bounds for the approximate error of the

inexact first oder oracle. Taking gradient decent as an example, we will prove that

given an appropriate initial solution, we have

2

µ+
E(V (t),V (t−1),U (t−1)) ≤ α‖U (t−1) −U ∗‖F (4.3.8)

for some α ∈ (0,1− κ). Combining with (4.3.6) (where we take U = U (t−1)), (4.3.8)
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further implies

‖V (t) −V ∗‖F ≤ κ‖V (t−1) −V ∗‖F +α‖U (t−1) −U ∗‖F. (4.3.9)

Correspondingly, similar results hold for ‖U (t) −U ∗‖F, i.e.,

‖U (t) −U ∗‖F ≤ κ‖U (t−1) −U ∗‖F +α‖V (t−1) −V ∗‖F. (4.3.10)

Combining (4.3.9) and (4.3.10) we then establish the contraction

max{‖V (t) −V ∗‖F,‖U (t) −U ∗‖F} ≤ (α +κ) ·max{‖V (t−1) −V ∗‖F,‖U (t−1) −U ∗‖F},

which further implies the geometric convergence, since α ∈ (0,1−κ). Respectively,

we can establish similar results for alternating exact minimization and alternating

gradient descent. Based upon such a unified analysis, we now present the main

results.

4.3.2 Main Results

Before presenting the main results, we first introduce an assumption known as

the restricted isometry property (RIP). Recall that k is the rank of the target low

rank matrixM∗.

Assumption 4.3.2 (Restricted Isometry Property). The linear operator A(·) : Rm×n→
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R
d defined in (4.2.2) satisfies 2k-RIP with parameter δ2k ∈ (0,1), i.e., for all ∆ ∈

R
m×n such that rank(∆) ≤ 2k, it holds that

(1− δ2k)‖∆‖2F ≤ ‖A(∆)‖22 ≤ (1 + δ2k)‖∆‖2F.

Several random matrix ensembles satisfy 2k-RIP for a sufficiently large d with

high probability. For example, suppose that each entry of Ai is independently

drawn from a sub-Gaussian distribution, A(·) satisfies 2k-RIP with parameter δ2k

with high probability for d =Ω(δ−22k kn logn).

The following theorem establishes the geometric rate of convergence of the

nonconvex optimization algorithms summarized in Algorithm 7.

Theorem 4.3.3. Assume there exists a sufficiently small constant C1 such thatA(·)

satisfies 2k-RIP with δ2k ≤ C1/k, and the largest and smallest nonzero singular val-

ues of M∗ are constants, which do not scale with (d,m,n,k). For any pre-specified

precision ε, there exist an η and universal constants C2 and C3 such that for all

T ≥ C2 log(C3/ε), we have ‖M (T ) −M∗‖F ≤ ε.

The proof of Theorems 4.3.3 is provided in Section 4.4.2, Section 4.4.3, and

Section 4.4.4. Theorem 4.3.3 implies that all three nonconvex optimization algo-

rithms converge geometrically to the global optimum. Moreover, assuming that

each entry of Ai is independently drawn from a sub-Gaussian distribution with

mean zero and variance proxy one, our result further suggests that, to achieve ex-
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act low rank matrix recovery, our algorithm requires the number of measurements

d to satisfy

d =Ω(k3n logn), (4.3.11)

since we assume that δ2k ≤ C1/k. This sample complexity result matches the state-

of-the-art result for nonconvex optimizationmethods, which is established by [94].

In comparison with their result, which only covers the alternating exact minimiza-

tion algorithm, our results holds for a broader variety of nonconvex optimization

algorithms.

Note that the sample complexity in (4.3.11) depends on a polynomial of
σmax(M

∗)
σmin(M∗)

,

which is treated as a constant in our chapter. If we allow
σmax(M

∗)
σmin(M∗)

to increase, we

can plug the nonconvex optimization algorithms into the multi-stage framework

proposed by [94]. Following similar lines to the proof of Theorem 4.3.3, we can

derive a new sample complexity, which is independent of
σmax(M

∗)
σmin(M∗)

. See more details

in [94].

4.4 Proof of Main Results

We sketch the proof of Theorems 4.3.3. The proof of all related lemmas are

provided in Appendix C. For notational simplicity, let σ1 = σmax(M
∗) and σk =

σmin(M
∗). Recall the nonconvex optimization algorithms are symmetric about the
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updates of U and V . Hence, the following lemmas for the update of V also hold

for updating U . We omit some statements for conciseness. Theorem 4.5.2 can be

proved in a similar manner, and its proof is provided in Appendix C.5.

Before presenting the proof, we first introduce the following lemma, which

verifies Assumption 4.3.1.

Lemma 4.4.1. Suppose that A(·) satisfies 2k-RIP with parameter δ2k . Given an

arbitrary orthonormal matrix U ∈ Rm×k , for any V , V ′ ∈ Rn×k , we have

1+ δ2k
2
‖V ′ −V ‖2F ≥ F (U,V ′)−F (U,V )− 〈∇VF (U,V ),V ′ −V 〉 ≥ 1− δ2k

2
‖V ′ −V ‖2F.

The proof of Lemma 4.4.1 is provided in Appendix C.1.1. Lemma 4.4.1 implies

that F (U, ·) is strongly convex and smooth in V given a fixed orthonormal matrix

U , as specified in Assumption 4.3.1. Equipped with Lemma 4.4.1, we now lay out

the proof for each update scheme in Algorithm 7.

4.4.1 Rotation Issue

Given a factorization ofM∗ = U
∗
V ∗>, we can equivalently represent it as M∗ =

U
∗
newV

∗>
new, where

U
∗
new =U

∗
Onew and V ∗>new = V ∗>Onew

140



CHAPTER 4. MATRIX FACTORIZATION

for an arbitrary unitary matrix Onew ∈ Rk×k . This implies that directly calculating

‖U −U ∗‖F is not desirable and the algorithm may converge to an arbitrary factor-

ization ofM∗.

To address this issue, existing analysis usually chooses subspace distances to

evaluate the difference between subspaces spanned by columns of U
∗
and U , be-

cause these subspaces are invariant to rotations [94]. For example, letU⊥ ∈ Rm×(m−k)

denote the orthonormal complement to U , we can choose the subspace distance as

‖U>⊥U
∗‖F. For any Onew ∈ Rk×k such that O>newOnew = Ik , we have

‖U>⊥U
∗
new‖F = ‖U

>
⊥U
∗
Onew‖F = ‖U

>
⊥U
∗‖F.

In this chapter, we consider a different subspace distance defined as

min
O>O=Ik

‖U −U ∗O‖F. (4.4.1)

We can verify that (4.4.1) is also invariant to rotation. The next lemma shows that

(4.4.1) is equivalent to ‖U>⊥U
∗‖F.

Lemma 4.4.2. Given two orthonormal matrices U ∈ Rm×k and U ∗ ∈ Rm×k , we have

‖U>⊥U
∗‖F ≤ min

O>O=I
‖U −U ∗O‖F ≤

√
2‖U>⊥U

∗‖F.

The proof of Lemma 4.4.2 is provided in [127], therefore omitted. Equipped
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with Lemma 4.4.2, our convergence analysis guarantees that there always exists a

factorization ofM∗ satisfying the desired computational properties for each itera-

tion (See Lemma 4.4.5, Corollaries 4.4.7 and 4.4.8). Similarly, the above argument

can also be generalized to gradient descent and alternating gradient descent algo-

rithms.

4.4.2 Proof of Theorem 4.3.3 (Alternating Exact Min-

imization)

Proof. Throughout the proof for alternating exact minimization, we define a con-

stant ξ ∈ (1,∞) to simplify the notation. Moreover, we assume that at the t-th

iteration, there exists a matrix factorization ofM∗

M∗ =U
∗(t)
V ∗(t)>,

where U
∗(t) ∈ Rm×k is an orthonormal matrix. We define the approximation error

of the inexact first order oracle as

E(V (t+0.5),V (t+0.5),U
(t)
) = ‖∇VF (U

∗(t)
,V (t+0.5))−∇VF (U

(t)
,V (t+0.5))‖F.

The following lemma establishes an upper bound for the approximation error of

the approximation first order oracle under suitable conditions.
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Lemma 4.4.3. Suppose that δ2k and U
(t)

satisfy

δ2k ≤
(1− δ2k)2σk

12ξk(1 + δ2k)σ1
and ‖U (t) −U ∗(t)‖F ≤

(1− δ2k)σk
4ξ(1 + δ2k)σ1

. (4.4.2)

Then we have

E(V (t+0.5),V (t+0.5),U
(t)
) ≤ (1− δ2k)σk

2ξ
‖U (t) −U ∗(t)‖F.

The proof of Lemma 4.4.3 is provided in Appendix C.1.2. Lemma 4.4.3 shows

that the approximation error of the inexact first order oracle for updating V di-

minishes with the estimation error of U
(t)
, when U

(t)
is sufficiently close to U

∗(t)
.

The following lemma quantifies the progress of an exact minimization step using

the inexact first order oracle.

Lemma 4.4.4. We have

‖V (t+0.5) −V ∗(t)‖F ≤
1

1− δ2k
E(V (t+0.5),V (t+0.5),U

(t)
).

The proof of Lemma 4.4.4 is provided in Appendix C.1.3. Lemma 4.4.4 illus-

trates that the estimation error of V (t+0.5) diminishes with the approximation error

of the inexact first order oracle. The following lemma characterizes the effect of

the renormalization step using QR decomposition, i.e., the relationship between

V (t+0.5) and V
(t+1)

in terms of the estimation error.
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Lemma 4.4.5. Suppose that V (t+0.5) satisfies

‖V (t+0.5) −V ∗(t)‖F ≤
σk
4
. (4.4.3)

Then there exists a factorization of M∗ = U ∗(t+1)V
∗(t+1)

such that V
∗(t+0.5) ∈ Rn×k is

an orthonormal matrix, and satisfies

‖V (t+1) −V ∗(t+1)‖F ≤
2

σk
‖V (t+0.5) −V ∗(t)‖F.

The proof of Lemma 4.4.5 is provided in Appendix C.1.4. The next lemma

quantifies the accuracy of the initialization U
(0)
.

Lemma 4.4.6. Suppose that δ2k satisfies

δ2k ≤
(1− δ2k)2σ4

k

192ξ2k(1 + δ2k)2σ
4
1

. (4.4.4)

Then there exists a factorization of M∗ = U
∗(0)
V ∗(0)> such that U

∗(0) ∈ Rm×k is an

orthonormal matrix, and satisfies

‖U (0) −U ∗‖F ≤
(1− δ2k)σk

4ξ(1 + δ2k)σ1
.

The proof of Lemma 4.4.6 is provided in Appendix C.1.5. Lemma 4.4.6 implies

that the initial solution U
(0)

attains a sufficiently small estimation error.
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Combining Lemmas 4.4.3, 4.4.4, and 4.4.5, we obtain the following corollary

for a complete iteration of updating V .

Corollary 4.4.7. Suppose that δ2k and U
(t)

satisfy

δ2k ≤
(1− δ2k)2σ4

k

192ξ2k(1 + δ2k)2σ
4
1

and ‖U (t) −U ∗(t)‖F ≤
(1− δ2k)σk

4ξ(1 + δ2k)σ1
. (4.4.5)

We then have

‖V (t+1) −V ∗(t+1)‖F ≤
(1− δ2k)σk

4ξ(1 + δ2k)σ1
.

Moreover, we also have

‖V (t+1) −V ∗(t+1)‖F ≤
1

ξ
‖U (t) −U ∗(t)‖F and ‖V (t+0.5) −V ∗(t)‖F ≤

σk
2ξ
‖U (t) −U ∗(t)‖F.

The proof of Corollary 4.4.7 is provided in Appendix C.1.6. Since the alter-

nating exact minimization algorithm updates U and V in a symmetric manner,

we can establish similar results for a complete iteration of updating U in the next

corollary.

Corollary 4.4.8. Suppose that δ2k and V
(t+1)

satisfy

δ2k ≤
(1− δ2k)2σ4

k

192ξ2k(1 + δ2k)2σ
4
1

and ‖V (t+1) −V ∗(t+1)‖F ≤
(1− δ2k)σk

4ξ(1 + δ2k)σ1
. (4.4.6)

145



CHAPTER 4. MATRIX FACTORIZATION

Then there exists a factorization ofM∗ =U
∗(t+1)

V ∗(t+1)> suchU
∗(t+1)

is an orthonor-

mal matrix, and satisfies

‖U (t+1) −U ∗(t+1)‖F ≤
(1− δ2k)σk

4ξ(1 + δ2k)σ1
.

Moreover, we also have

‖U (t+1) −U ∗(t+1)‖F ≤
1

ξ
‖V (t+1) −V ∗(t+1)‖F and ‖U (t+0.5) −U ∗(t+1)‖F ≤

σk
2ξ
‖V (t+1) −V ∗(t+1)‖F.

The proof of Corollary 4.4.8 directly follows Appendix C.1.6, and is therefore

omitted.

We then proceed with the proof of Theorem 4.3.3 for alternating exact mini-

mization. Lemma 4.4.6 ensures that (4.4.5) of Corollary 4.4.7 holds for U
(0)
. Then

Corollary 4.4.7 ensures that (4.4.6) of Corollary 4.4.8 holds for V
(1)
. By induction,

Corollaries 4.4.7 and 4.4.8 can be applied recursively for all T iterations. Thus we

obtain

‖V (T ) −V ∗(T )‖F ≤
1

ξ
‖U (T−1) −U ∗(T−1)‖F ≤

1

ξ2
‖V (T−1) −V ∗(T−1)‖F

≤ · · · ≤ 1

ξ2T−1
‖U (0) −U ∗(0)‖F ≤

(1− δ2k)σk
4ξ2T (1 + δ2k)σ1

, (4.4.7)

where the last inequality comes from Lemma 4.4.6. Therefore, for a pre-specified
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accuracy ε, we need at most

T =

⌈
1

2
log

(
(1− δ2k)σk

2ε(1 + δ2k)σ1

)
log−1ξ

⌉
(4.4.8)

iterations such that

‖V (T ) −V ∗(T )‖F ≤
(1− δ2k)σk

4ξ2T (1 + δ2k)σ1
≤ ε
2
. (4.4.9)

Moreover, Corollary 4.4.8 implies

‖U (T−0.5) −U ∗(T )‖F ≤
σk
2ξ
‖V (T ) −V ∗(T )‖F ≤

(1− δ2k)σ2
k

8ξ2T+1(1 + δ2k)σ1
,

where the last inequality comes from (4.4.7). Therefore, we need at most

T =



1

2
log

(
(1− δ2k)σ2

k

4ξε(1 + δ2k)

)
log−1ξ




(4.4.10)

iterations such that

‖U (T−0.5) −U ∗‖F ≤
(1− δ2k)σ2

k

8ξ2T+1(1 + δ2k)σ1
≤ ε

2σ1
. (4.4.11)
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Then combining (4.4.9) and (4.4.11), we obtain

‖M (T ) −M∗‖ = ‖U (T−0.5)V
(T )> −U ∗(T )V ∗(T )>‖F

= ‖U (T−0.5)V
(T )> −U ∗(T )V (T )>

+U ∗(T )V
(T )> −U ∗(T )V ∗(T )>‖F

≤ ‖V (T )‖2‖U (T−0.5) −U ∗(T )‖F + ‖U ∗(T )‖2‖V
(T ) −V ∗(T )‖F ≤ ε, (4.4.12)

where the last inequality comes from ‖V (T )‖2 = 1 (since V
(T )

is orthonormal) and

‖U ∗‖2 = ‖M∗‖2 = σ1 (since U ∗(T )V
∗(T )>

=M∗ and V
∗(T )

is orthonormal). Thus com-

bining (4.4.8) and (4.4.10) with (4.4.12), we complete the proof.

4.4.3 Proof of Theorem4.3.3 (AlternatingGradientDe-

scent)

Proof. Throughout the proof for alternating gradient descent, we define a suffi-

ciently large constant ξ . Moreover, we assume that at the t-th iteration, there

exists a matrix factorization ofM∗

M∗ =U
∗(t)
V ∗(t)>,
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where U
∗(t) ∈ Rm×k is an orthonormal matrix. We define the approximation error

of the inexact first order oracle as

E(V (t+0.5),V (t),U
(t)
) = ‖∇VF (U

(t)
,V (t))−∇VF (U

∗(t)
,V (t))‖F.

The first lemma is parallel to Lemma 4.4.3 for alternating exact minimization.

Lemma 4.4.9. Suppose that δ2k , U
(t)
, and V (t) satisfy

δ2k ≤
(1− δ2k)σk
24ξkσ1

, ‖U (t) −U ∗(t)‖F ≤
σ2
k

4ξσ2
1

, and ‖V (t) −V ∗(t)‖F ≤
σ1
√
k

2
. (4.4.13)

Then we have

E(V (t+0.5),V (t),U
(t)
) ≤ (1 + δ2k)σk

ξ
‖U (t) −U ∗(t)‖F.

The proof of Lemma 4.4.9 is provided in Appendix C.2.1. Lemma 4.4.9 illus-

trates that the approximation error of the inexact first order oracle diminishes with

the estimation error of U
(t)
, when U

(t)
and V (t) are sufficiently close to U

∗(t)
and

V ∗(t).

Lemma 4.4.10. Suppose that the step size parameter η satisfies

η =
1

1+ δ2k
. (4.4.14)
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Then we have

‖V (t+0.5) −V ∗‖F ≤
√
δ2k‖V (t) −V ∗‖F +

2

1+ δ2k
E(V (t+0.5),V (t),U

(t)
).

The proof of Lemma 4.4.10 is provided in Appendix C.2.2. Lemma 4.4.10 char-

acterizes the progress of a gradient descent step with a pre-specified fixed step

size. A more practical option is adaptively selecting η using the backtracking line

search procedure, and similar results can be guaranteed. See [126] for details. The

following lemma characterizes the effect of the renormalization step using QR de-

composition.

Lemma 4.4.11. Suppose that V (t+0.5) satisfies

‖V (t+0.5) −V ∗(t)‖F ≤
σk
4
. (4.4.15)

Then there exists a factorization of M∗ = U ∗(t+1)V
∗(t+1)

such that V
∗(t+1) ∈ Rn×k is

an orthonormal matrix, and

‖V (t+1) −V ∗(t+1)‖F ≤
2

σk
‖V (t+0.5) −V ∗(t)‖F,

‖U (t) −U ∗(t+1)‖F ≤
3σ1
σk
‖V (t+0.5) −V ∗(t)‖F +σ1‖U

(t) −U ∗(t)‖F,

The proof of Lemma 4.4.11 is provided in Appendix C.2.3. The next lemma

quantifies the accuracy of the initial solutions.
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Lemma 4.4.12. Suppose that δ2k satisfies

δ2k ≤
σ6
k

192ξ2kσ6
1

. (4.4.16)

Then we have

‖U (0) −U ∗(0)‖F ≤
σ2
k

4ξσ2
1

and ‖V (0) −V ∗(0)‖F ≤
σ2
k

2ξσ1
≤ σ1
√
k

2
.

The proof of Lemma 4.4.12 is provided in Appendix C.2.4. Lemma 4.4.12 in-

dicates that the initial solutions U
(0)

and V (0) attain sufficiently small estimation

errors.

Combining Lemmas 4.4.9, 4.4.10, 4.4.5, , we obtain the following corollary for

a complete iteration of updating V .

Corollary 4.4.13. Suppose that δ2k , U
(t)
, and V (t) satisfy

δ2k ≤
σ6
k

192ξ2kσ6
1

, ‖U (t) −U ∗(t)‖F ≤
σ2
k

4ξσ2
1

, and ‖V (t) −V ∗(t)‖F ≤
σ2
k

2ξσ1
. (4.4.17)

We then have

‖V (t+1) −V ∗(t+1)‖F ≤
σ2
k

4ξσ2
1

and ‖U (t) −U ∗(t+1)‖F ≤
σ2
k

2ξσ1
.

151



CHAPTER 4. MATRIX FACTORIZATION

Moreover, we have

‖V (t+0.5) −V ∗(t)‖F ≤
√
δ2k‖V (t) −V ∗(t)‖F +

2σk
ξ
‖U (t) −U ∗(t)‖F, (4.4.18)

‖V (t+1) −V ∗(t+1)‖F ≤
2
√
δ2k
σk
‖V (t) −V ∗(t)‖F +

4

ξ
‖U (t) −U ∗(t)‖F, (4.4.19)

‖U (t) −U ∗(t+1)‖F ≤
3σ1
√
δ2k

σk
‖V (t) −V ∗(t)‖F +

(
6

ξ
+1

)
σ1‖U

(t) −U ∗(t)‖F. (4.4.20)

The proof of Corollary 4.4.13 is provided in Appendix C.2.5. Since the alter-

nating gradient descent algorithm updates U and V in a symmetric manner, we

can establish similar results for a complete iteration of updating U in the next

corollary.

Corollary 4.4.14. Suppose that δ2k , V
(t+1)

, and U (t) satisfy

δ2k ≤
σ6
k

192ξ2kσ6
1

, ‖V (t+1) −V ∗(t+1)‖F ≤
σ2
k

4ξσ2
1

, and ‖U (t) −U ∗(t+1)‖F ≤
σ2
k

2ξσ1
.

(4.4.21)

We then have

‖U (t+1) −U ∗(t+1)‖F ≤
σ2
k

4ξσ2
1

and ‖V (t+1) −V ∗(t+1)‖F ≤
σ2
k

2ξσ1
.
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Moreover, we have

‖U (t+0.5) −U ∗(t+1)‖F ≤
√
δ2k‖U (t) −U ∗(t+1)‖F +

2σk
ξ
‖V (t+1) −V ∗(t+1)‖F, (4.4.22)

‖U (t+1) −U ∗(t+1)‖F ≤
2
√
δ2k
σk
‖U (t) −U ∗(t+1)‖F +

4

ξ
‖V (t+1) −V ∗(t+1)‖F, (4.4.23)

‖V (t+1) −V ∗(t+1)‖F ≤
3σ1
√
δ2k

σk
‖U (t) −U ∗(t+1)‖F

+
(
6

ξ
+1

)
σ1‖V

(t+1) −V ∗(t+1)‖F. (4.4.24)

The proof of Corollary 4.4.14 directly follows Appendix C.2.5, and is therefore

omitted.

Now we proceed with the proof of Theorem 4.3.3 for alternating gradient de-

scent. Recall that Lemma 4.4.12 ensures that (4.4.17) of Corollary 4.4.13 holds

for U
(0)

and V (0). Then Corollary 4.4.13 ensures that (4.4.21) of Corollary 4.4.14

holds for U (0) and V
(1)
. By induction, Corollaries 4.4.7 and 4.4.8 can be applied

recursively for all T iterations. For notational simplicity, we write (4.4.18)-(4.4.24)
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as

‖V (t+0.5) −V ∗(t)‖F ≤ α1‖V (t) −V ∗(t)‖F +γ1σ1‖U
(t) −U ∗(t)‖F, (4.4.25)

σ1‖V
(t+1) −V ∗(t+1)‖F ≤ α2‖V (t) −V ∗(t)‖F +γ2σ1‖U

(t) −U ∗(t)‖F, (4.4.26)

‖U (t+0.5) −U ∗(t+1)‖F ≤ α3‖U (t) −U ∗(t+1)‖F +γ3σ1‖V
(t+1) −V ∗(t+1)‖F, (4.4.27)

σ1‖U
(t+1) −U ∗(t+1)‖F ≤ α4‖U (t) −U ∗(t+1)‖F +γ4σ1‖V

(t+1) −V ∗(t+1)‖F, (4.4.28)

‖U (t) −U ∗(t+1)‖F ≤ α5‖V (t) −V ∗(t)‖F +γ5σ1‖U
(t) −U ∗(t)‖F, (4.4.29)

‖V (t+1) −V ∗(t+1)‖F ≤ α6‖U (t) −U ∗(t+1)‖F +γ6σ1‖V
(t+1) −V ∗(t+1)‖F. (4.4.30)

Note that we have γ5,γ6 ∈ (1,2), but α1,...,α6, γ1,..., and γ4 can be sufficiently small

as long as ξ is sufficiently large. We then have

‖U (t+1) −U ∗(t+2)‖F
(i)
≤α5‖V (t+1) −V ∗(t+1)‖F +γ5σ1‖U

(t+1) −U ∗(t+1)‖F
(ii)
≤ α5α6‖U (t) −U ∗(t+1)‖F +α5γ6σ1‖V

(t+1) −V ∗(t+1)‖F +γ5σ1‖U
(t+1) −U ∗(t+1)‖F

(iii)
≤ (α5α6 +γ5α4)‖U (t) −U ∗(t+1)‖F + (γ5γ4σ1 +α5γ6)σ1‖V

(t+1) −V ∗(t+1)‖F
(iv)
≤ (α5α6 +γ5α4)‖U (t) −U ∗(t+1)‖F + (γ5γ4σ1 +α5γ6)α2‖V (t) −V ∗(t)‖F

+ (γ5γ4σ1 +α5γ6)γ2σ1‖U
(t) −U ∗(t)‖F, (4.4.31)

where (i) comes from (4.4.29), (ii) comes from (4.4.30), (iii) comes from (4.4.28),
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and (iv) comes from (4.4.26). Similarly, we can obtain

‖V (t+1) −V ∗(t+1)‖F ≤ α6‖U (t) −U ∗(t+1)‖F +γ6α2‖V (t) −V ∗(t)‖F

+γ6γ2σ1‖U
(t) −U ∗(t)‖F, (4.4.32)

σ1‖U
(t+1) −U ∗(t+1)‖F ≤ α4‖U (t) −U ∗(t+1)‖F +γ4α2‖V (t) −V ∗(t)‖F

+γ4γ2σ1‖U
(t) −U ∗(t)‖F (4.4.33)

‖U (t+0.5) −U ∗(t+1)‖F ≤ α3‖U (t) −U ∗(t+1)‖F +γ3α2‖V (t) −V ∗(t)‖F

+γ3γ2σ1‖U
(t) −U ∗(t)‖F. (4.4.34)

For simplicity, we define

φV (t+1) = ‖V (t+1) −V ∗(t+1)‖F, φV (t+0.5) = ‖V (t+0.5) −V ∗(t)‖F, φV (t+1) = σ1‖V
(t+1) −V ∗(t+1)‖F,

φU (t+1) = ‖U (t+1) −U ∗(t+2)‖F, φU (t+0.5) = ‖U (t+0.5) −U ∗(t+1)‖F, φU (t+1) = σ1‖U
(t+1) −U ∗(t+1)‖F.

Then combining (4.4.25), (4.4.26) with (4.4.31)–(4.4.34), we obtain

max
{
φV (t+1) ,φV (t+0.5) ,φ

V
(t+1) ,φU (t+1) ,φU (t+0.5) ,φ

U
(t+1)

}

≤ βmax
{
φV (t) ,φU (t) ,φ

U
(t)

}
, (4.4.35)
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where β is a contraction coefficient defined as

β =max{α5α6 +γ5α4,α6,α4,α3}+max{α1,α2, (γ5γ4σ1 +α5γ6),γ6α2,γ4α2,γ3α2}

+max{γ1,γ2, (γ5γ4σ1 +α5γ6)γ2,γ6γ2,γ4γ2,γ3γ2}.

Thenwe can choose ξ as a sufficiently large constant such that β < 1. By recursively

applying (4.4.35) for t = 0, ...,T , we obtain

max
{
φV (T ) ,φV (T−0.5) ,φ

V
(T ) ,φU (T ) ,φU (T−0.5) ,φ

U
(T )

}
≤ βmax

{
φV (T−1) ,φU (T−1) ,φ

U
(T−1)

}

≤ β2max
{
φV (T−2) ,φU (T−2) ,φ

U
(T−2)

}
≤ ... ≤ βT max

{
φV (0) ,φU (0) ,φ

U
(0)

}
.

By Corollary 4.4.13, we obtain

‖U (0) −U ∗(1)‖F ≤
3σ1
√
δ2k

σk
‖V (0) −V ∗(0)‖F +

(
6

ξ
+1

)
σ1‖U

(0) −U ∗(0)‖F
(i)
≤ 3σ1
σk
· σ3

k

12ξσ3
1

· σ
2
k

2ξσ1
+
(
6

ξ
+1

) σ2
k

4ξσ1

(ii)
=

σ4
k

8ξ2σ3
1

+
3σ2

k

2ξ2σ1
+

σ2
k

4ξσ1

(iii)
≤ σ2

k

2ξσ1
, (4.4.36)

where (i) and (ii) come from Lemma 4.4.12, and (iii) comes from the definition of

ξ and σ1 ≥ σk . Combining (4.4.36) with Lemma 4.4.12, we have

{
φV (0) ,φU (0) ,φ

U
(0)

}
≤max

{ σ2
k

2ξσ1
,
σ2
k

4ξσ2
1

}
.
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Then we need at most

T =



log

(
max

{ σ2
k

ξσ1
,
σ2
k

2ξσ2
1

,
σ2
k

ξ
,
σ2
k

2ξσ1

}
· 1
ε

)
log−1(β−1)




iterations such that

‖V (T ) −V ∗‖F ≤ βT max
{ σ2

k

2ξσ1
,
σ2
k

4ξσ2
1

}
≤ ε
2
and ‖U (T ) −U ∗‖F ≤ βT max

{ σ2
k

2ξσ1
,
σ2
k

4ξσ2
1

}
≤ ε

2σ1
.

We then follow similar lines to (4.4.12) in Section 4.4.2, and show ‖M (T )−M∗‖F ≤ ε,

which completes the proof.

4.4.4 Proof of Theorem 4.3.3 (Gradient Descent)

Proof. The convergence analysis of the gradient descent algorithm is similar to that

of the alternating gradient descent. The only difference is that for updating U , the

gradient descent algorithm employs V = V
(t)

instead of V = V
(t+1)

to calculate the

gradient at U = U (t). Then everything else directly follows Section 4.4.3, and is

therefore omitted.

4.5 Extensions to Matrix Completion

We then extend our methodology and theory to matrix completion problems.

Let M∗ ∈ Rm×n be the unknown low rank matrix of interest. We observe a subset
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of the entries ofM∗, namely,W ⊆ {1, . . . ,m} × {1, . . . ,n}. We assume thatW is drawn

uniformly at random, i.e., M∗i,j is observed independently with probability ρ̄ ∈

(0,1]. To exactly recover M∗, a common assumption is the incoherence of M∗,

which will be specified later. A popular approach for recoveringM∗ is to solve the

following convex optimization problem

min
M∈Rm×n

‖M‖∗ subject to PW (M∗) = PW (M), (4.5.1)

where PW (M) : Rm×n→ R
m×n is an operator defined as

[PW (M)]ij =



Mij if (i, j) ∈W ,

0 otherwise.

Similar to matrix sensing, existing algorithms for solving (4.5.1) are computation-

ally inefficient. Hence, in practice we usually consider the following nonconvex

optimization problem

min
U∈Rm×k ,V∈Rn×k

FW (U,V ), where FW (U,V ) =
1

2
‖PW (M∗)−PW (UV>)‖2F. (4.5.2)

Similar to matrix sensing, (4.5.2) can also be efficiently solved by gradient-based

algorithms illustrated in Algorithm 8. For the convenience of later convergence

analysis, we partition the observation setW into 2T + 1 subsetsW0,...,W2T by Al-

gorithm 10. However, in practice we do not need the partition scheme, i.e., we
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simply setW0 = · · · =W2T =W .

Algorithm 8:A family of nonconvex optimization algorithms for matrix com-
pletion. The incoherence factorization algorithm IF(·) is illustrated in Algo-
rithm 9, and the partition algorithm Partition(·), which is proposed by [98], is
provided in Algorithm 10 of Appendix C.3 for the sake of completeness. The
initialization procedures INTU (·) and INTU (·) are provided in Algorithm 11
and Algorithm 12 of Appendix C.4 for the sake of completeness. Here FW (·)
is defined in (4.5.2).

Input: PW (M∗) Parameter: Step size η, Total number of iterations T
({Wt}2Tt=0, ρ̃)← Partition(W ), PW0

(M̃)←PW0
(M∗), and M̃ij ← 0 for all

(i, j) <W0 (U
(0)
,V (0))← INTU (M̃), (V

(0)
,U (0))← INTV (M̃) For

t← 0,1, ....,T − 1
Alternating Exact Minimization : V (t+0.5)← argminV FW2t+1

(U
(t)
,V )

(V
(t+1)

,R
(t+0.5)

V
)← IF(V (t+0.5))

Alternating Gradient Descent : V (t+0.5)← V (t) − η∇VFW2t+1
(U

(t)
,V (t))

(V
(t+1)

,R
(t+0.5)

V
)← IF(V (t+0.5)), U (t)←U

(t)
R
(t+0.5)>
V

Gradient Descent : V (t+0.5)← V (t) − η∇VFW2t+1
(U

(t)
,V (t))

(V
(t+1)

,R
(t+0.5)

V
)← IF(V (t+0.5)), U (t+1)←U

(t)
R
(t+0.5)>
V



Updating V

Alternating Exact Minimization : U (t+0.5)← argminU FW2t+2
(U,V

(t+1)
)

(U
(t+1)

,R
(t+0.5)

U
)← IF(U (t+0.5))

Alternating Gradient Descent : U (t+0.5)←U (t) − η∇UFW2t+2
(U (t),V

(t+1)
)

(U
(t+1)

,R
(t+0.5)

U
)← IF(U (t+0.5)), V (t+1)← V

(t+1)
R
(t+0.5)>
U

Gradient Descent : U (t+0.5)←U (t) − η∇UFW2t+2
(U (t),V

(t)
)

(U
(t+1)

,R
(t+0.5)

U
)← IF(U (t+0.5)), V (t+1)← V

(t)
R
(t+0.5)>
U



Updating U

Return: M (T )←U (T−0.5)V
(T )>

(for gradient descent we use U
(T )
V (T )>)

Before we present the convergence analysis, we first introduce an assumption

known as the incoherence property.

Assumption 4.5.1 (Incoherence Property). The target rank k matrix M∗ is incoher-

ent with parameter µ, i.e., given the rank k singular value decomposition of M∗ =
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Algorithm 9: The incoherence factorization algorithm for matrix completion.
It guarantees that the solutions satisfy the incoherence condition throughout
all iterations.

Input: W in

r←Number of rows ofW in

k←Number of columns ofW in

Parameter: Incoherence parameter µ

(W
in
,Rin

W
)←QR(W in)

W̃ ← argmin
W

‖W −W in‖2F subject to max
j
‖Wj∗‖2 ≤ µ

√
k/r

W out← W̃Rin
W (W

out
,R

tmp

W
)←QR(W out)

Rout
W

=W
out>

W in

Return: W
out
,Rout

W

U
∗
Σ
∗V
∗>
, we have

max
i
‖U ∗i∗‖2 ≤ µ

√
k

m
and max

j
‖V ∗j∗‖2 ≤ µ

√
k

n
.

Roughly speaking, the incoherence assumption guarantees that each entry of

M∗ contains similar amount of information, which makes it feasible to complete

M∗ when its entries are missing uniformly at random. The following theorem

establishes the iteration complexity and the estimation error under the Frobenius

norm.

Theorem 4.5.2. Suppose that there exists a universal constant C4 such that ρ̄ sat-

isfies

ρ̄ ≥ C4µ
2k3 logn log(1/ε)

m
, (4.5.3)
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where ε is the pre-specified precision. Then there exist an η and universal con-

stants C5 and C6 such that for any T ≥ C5 log(C6/ε), we have ‖M (T ) −M‖F ≤ ε with

high probability.

The proof of Theorem 4.5.2 is provided in Appendices C.5.1, C.5.2, and C.5.3.

Theorem 4.5.2 implies that all three nonconvex optimization algorithms converge

to the global optimum at a geometric rate. Furthermore, our results indicate that

the completion of the true low rank matrixM∗ up to ε-accuracy requires the entry

observation probability ρ̄ to satisfy

ρ̄ =Ω(µ2k3 logn log(1/ε)/m). (4.5.4)

This result matches the result established by [96], which is the state-of-the-art re-

sult for alternating minimization. Moreover, our analysis covers three nonconvex

optimization algorithms.

In fact, the sample complexity in (4.5.4) depends on a polynomial of
σmax(M

∗)
σmin(M∗)

,

which is a constant since in this chapter we assume that σmax(M
∗) and σmin(M

∗) are

constants. If we allow
σmax(M

∗)
σmin(M∗)

to increase, we can replace the QR decomposition

in Algorithm 9 with the smooth QR decomposition proposed by [98] and achieve a

dependency of log
(
σmax(M

∗)
σmin(M∗)

)
on the condition number with a more involved proof.

See more details in [98]. However, in this chapter, our primary focus is on the de-

pendency on k, n andm, rather than optimizing over the dependency on condition
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number.

4.6 Numerical Experiments

We present numerical experiments to support our theoretical analysis. We first

consider a matrix sensing problem with m = 30, n = 40, and k = 5. We vary d from

300 to 900. Each entry of Ai ’s are independent sampled from N (0,1). We then

generate M = UV>, where Ũ ∈ Rm×k and Ṽ ∈ Rn×k are two matrices with all their

entries independently sampled from N (0,1/k). We then generate d measurements

by bi = 〈Ai ,M〉 for i = 1, ...,d. Figure 4.1 illustrates the empirical performance of

the alternating exact minimization and alternating gradient descent algorithms for

a single realization. The step size for the alternating gradient descent algorithm

is determined by the backtracking line search procedure. We see that both algo-

rithms attain linear rate of convergence for d = 600 and d = 900. Both algorithms

fail for d = 300, because d = 300 is below the minimum requirement of sample

complexity for the exact matrix recovery.

We then consider a matrix completion problem with m = 1000, n = 50, and

k = 5. We vary ρ̄ from 0.025 to 0.1. We then generate M = UV>, where Ũ ∈ Rm×k

and Ṽ ∈ Rn×k are two matrices with all their entries independently sampled from

N (0,1/k). The observation set is generated uniformly at random with probability

ρ̄. Figure 4.2 illustrates the empirical performance of the alternating exact mini-
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(a) Alternating Exact Minimization Algorithm
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(b) Alternating Gradient Descent Algorithm

Figure 4.1: Two illustrative examples for matrix sensing. The vertical axis corre-
sponds to estimation error ‖M (t) −M‖F. The horizontal axis corresponds to num-
bers of iterations. Both the alternating exact minimization and alternating gradi-
ent descent algorithms attain linear rate of convergence for d = 600 and d = 900.
But both algorithms fail for d = 300, because the sample size is not large enough
to guarantee proper initial solutions.

mization and alternating gradient descent algorithms for a single realization. The

step size for the alternating gradient descent algorithm is determined by the back-

tracking line search procedure. We see that both algorithms attain linear rate of

convergence for ρ̄ = 0.05 and ρ̄ = 0.1. Both algorithms fail for ρ̄ = 0.025, because

the entry observation probability is below the minimum requirement of sample

complexity for the exact matrix recovery.
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(a) Alternating Exact Minimization Algorithm
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Figure 4.2: Two illustrative examples for matrix completion. The vertical axis cor-
responds to estimation error ‖M (t)−M‖F. The horizontal axis corresponds to num-
bers of iterations. Both the alternating exact minimization and alternating gradi-
ent descent algorithms attain linear rate of convergence for ρ̄ = 0.05 and ρ̄ = 0.1.
But both algorithms fail for ρ̄ = 0.025, because the entry observation probability is
not large enough to guarantee proper initial solutions.
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Conclusions

We propose a new class of model-based nonconvex optimization algorithms

for solving various machine learning problems, including high dimensional sparse

learning and matrix factorization. By analyzing data generating process of the un-

derlying statistical distribution, we exploit the hidden convexity behind the non-

convex optimization problem to tackle computational challenges. Specifically, we

show two types of hidden convexity: Restricted Strong Convexity in Chapters 2

and 3 as well as Strong Bi-convexity in Chapter 4. Different from the worse-case

analysis in existing optimization and computational theory, our theoretical anal-

ysis shows that with high probability, our proposed algorithms attain linear con-

vergence to global or approximately global optima, which enjoys strong statistical

guarantees.

Moreover, by investigating the gap between convex and nonconvex approaches,
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we show that the convex approaches may lead to sub-optimal statistical perfor-

mance. Specifically, in Chapter 2, we show that Lasso only attains suboptimal sta-

tistical rates of convergence in parameter estimation for sparse linear regression.

In contrast, the nonconvex approaches attains the optimal performance.

In summary, our proposed model-based nonconvex optimization framework is

a systematic approach for designing and analyzing algorithms to learn from large-

scale data.
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Appendix A

Supporting Proof for Chapter 2

A.1 Computational Complexity Comparison

We first show that the computational complexity of each proximal gradient

iteration is O(nd). At the t-th iteration, we calculate

θ(t+1) = Sλ/L
(
θ(t+1) − 1

Ln
X>

(
y(t) −Xθ(t)

))
,

where L is the step size parameter. Thus, the computational complexity is O(ns +

nd + d + d) = O(nd), where s = ‖θ(t)‖0 ≤ d.

We then show that the overall computational complexity of each coordinate

minimization iteration is only O(n). Suppose we maintain ỹ(t) = X∗\jθ
(t)
\j for the
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t-th iteration. Then we calculate θ
(t+1)
j by

θ
(t+1)
j = θ̃

(t)
j ·1{|θ̃(t)j |≥γλ} +

Sλ(θ̃(t)
j )

1− 1/γ ·1{|θ̃(t)j |<γλ}, (A.1.1)

where θ̃
(t)
j = 1

nX
>
∗j (y − ỹ(t)). Thus, the computational complexity of (A.1.1) is O(n).

Once we have θ̃
(t)
j , we obtain ỹ(t+1) for the (t +1) iteration by

ỹ(t+1) = ỹ(t) +X∗j(θ
(t+1)
j −θ(t)

j ),

and the computational complexity is also O(n). Thus the overall computational

complexity is O(n). For proximal coordinate gradient algorithms, the coordinate

gradient can be computed using a similar strategy, and therefore its overall com-

putational complexity is also O(n) for each iteration.

A.2 The MCP regularizer

Throughout our analysis, we frequently use the following properties of the

MCP regularizer.

Lemma A.2.1. For the MCP regularizer, h(·) and h′(·) satisfy:

(R.1) For any a > b ≥ 0, we have

−α(a− b) ≤ h′λ(a)− h′λ(b) ≤ 0,
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where α = 1/γ ≥ 0;

(R.2) For some γ > 0 and ∀ a ≥ 0, we have h′λ(a) ∈ [−λ,0] if a ≤ λγ , and h′λ(a) = −λ

otherwise;

(R.3) hλ(·) and h′λ(·) pass through the origin, i.e., hλ(0) = 0 and h′λ(0) = 0;

(R.4) For ∀ a ≥ 0, we have |h′λ1(a)− h
′
λ2
(a)| ≤ |λ1 −λ2|.

The proof of Lemma A.2.1 is straightforward, and therefore omitted. Note that

all above properties also hold for Lasso, i.e., γ =∞ and hλ(·) = 0.

A.3 Lemmas for Computational Theory

A.3.1 Proof of Lemma 2.3.4

Proof. Since L(θ) is twice differentiable and ‖θ −θ′‖0 ≤ s, by the mean value theo-

rem, we have

L(θ′)−L(θ)− (θ′ −θ)>∇L(θ) = 1

2
(θ′ −θ)>∇2L(θ̃)(θ′ −θ), (A.3.1)

where θ̃ = (1− β)θ′ + βθ for some β ∈ (0,1). By Definition 2.3.3, we have

ρ−(s)
2
‖θ′ −θ‖22 ≤

1

2
(θ′ −θ)>∇2L(θ̃)(θ′ −θ) ≤ ρ+(s)

2
‖θ′ −θ‖22. (A.3.2)
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Combining (A.3.1) with (A.3.2), we have

ρ−(s)
2
‖θ′ −θ‖22 ≤ L(θ′)−L(θ)− (θ′ −θ)>∇L(θ) ≤

ρ+(s)

2
‖θ′ −θ‖22. (A.3.3)

By (R.1) in Assumption A.2.1, we have

−α
2
‖θ′ −θ‖22 ≤Hλ(θ′)−Hλ(θ)− (θ′ −θ)>∇Hλ(θ) ≤ 0. (A.3.4)

Combining (A.3.3) with (A.3.4), we have

ρ−(s)−α
2

‖θ′ −θ‖22 ≤ L̃λ(θ′)− L̃λ(θ)− (θ′ −θ)>∇L̃λ(θ) (A.3.5)

≤ ρ+(s)
2
‖θ′ −θ‖22.

By the convexity of ‖θ‖1, we have

‖θ′‖1 ≥ ‖θ‖1 + (θ′ −θ)>ξ (A.3.6)

for any ξ ∈ ∂‖θ‖1. Combining (A.3.6) with (A.3.5), we obtain

Fλ(θ′) ≥ Fλ(θ) + (θ′ −θ)>(∇L̃λ(θ) +λξ) +
ρ−(s)
2
‖θ′ −θ‖22.
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A.3.2 Proof of Lemma 2.7.1

Proof. By Lemma 2.7.8, we have

Fλ(w(t+1,k−1))−Fλ(w(t+1,k)) ≥ ν−(1)
2

(w
(t+1,k−1)
k −w(t+1,k)

k )2

=
ν−(1)
2

(θ
(t+1)
k −θ(t)

k )2,

which further implies

Fλ(θ(t))−Fλ(θ(t+1)) =

s∑

k=1

[Fλ(w(t+1,k−1))−Fλ(w(t+1,k))]

≥ ν−(1)
2
‖θ(t) −θ(t+1)‖22.

A.3.3 Proof of Lemma 2.7.2

Proof. We first analyze the gap for the proximal coordinate gradient descent. Let

θ ∈ Rd be a vector satisfying θA = 0. By the restricted convexity of Fλ(θ), we have

Fλ(θ) ≥ Fλ(θ(t+1)) + (∇AL̃λ(θ(t+1)) +λξ
(t+1)
A )>(θ −θ(t+1)) (A.3.7)

+
ρ̃−(s)
2
‖θ −θ(t+1)‖22,
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where ξ
(t+1)
A satisfies the optimality condition of the proximal coordinate gradient

descent,

∇Vλ,k,L(θ(t+1)
k ;w(t+1,k−1)) +λξ (t+1)k = 0 for any k ∈ A. (A.3.8)

By setting θA = 0 and minimizing both sides of (A.3.7) over θA, we obtain

Fλ(θ(t+1))−Fλ(θ) ≤
1

2ρ̃−(s)
‖∇AL̃λ(θ(t+1)) +λξ

(t+1)
A ‖22 (A.3.9)

(i)
=

1

2ρ̃−(s)

s∑

k=1

‖∇kL̃λ(θ(t+1))−∇Vλ,k,L(θ(t+1)
k ;w(t+1,k−1))‖22

(ii)
≤ ρ2+(s)

2ρ̃−(s)

s∑

k=1

‖θ(t+1) −w(t+1,k−1)‖22 ≤
sρ2+(s)

2ρ̃−(s)
‖θ(t+1) −θ(t)‖22,

where (i) comes from (A.3.8), and (ii) comes from∇Vλ,k,L(θ(t+1)
k ;w(t+1,k−1)) = ∇L̃λ(w(t+1,k−1))

and the restricted smoothness of L̃λ(θ).

For the exact coordinateminimization, we have∇Vλ,k,L(θ(t+1)
k ;w(t+1,k−1)) = ∇Yλ,k(θ(t+1)

k ;w(t+1,k−

Thus, (A.3.9) also holds.
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A.3.4 Proof of Lemma 2.7.8

Proof. For the proximal coordinate gradient descent, we have

Fλ(θ) = Vλ,k,L(θk ;θ) +λ|θk |+λ‖θ\k‖1, (A.3.10)

Fλ(w) ≤ Vλ,k,L(wk ;θ) +λ|θ′k |+λ‖θ\k‖1. (A.3.11)

Since Vλ,k,L(θk ;θ) is strongly convex in θk , we have

Vλ,k,L(θk ;θ)−Vλ,k,L(wk ;θ) (A.3.12)

≥ (θk −wk)∇Vλ,k,L(wk ;θ) +
L

2
(wk −θk)2.

By the convexity of the absolute value function, we have

|θk | − |wk | ≥ (θk −wk)ξk , (A.3.13)

where ξk ∈ ∂|wk | satisfies the optimality condition of the proximal coordinate gra-

dient descent,

∇Vλ,k,L(wk ;θ) +λξk = 0. (A.3.14)
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Subtracting (A.3.10) by (A.3.11), we have

Fλ(θ)−Fλ(w) ≥ Vλ,k,L(θk ;θ)−Vλ,k,L(wk ;θ) +λ|θk | −λ|wk |
(i)
≥(θk −wk)(∇Vλ,k,L(wk ;θ) +λξk) +

L

2
(wk −θk)2

(ii)
≥ L

2
(wk −θk)2.

where (i) comes from (A.3.12) and (A.3.13), and (ii) comes from (A.3.14).

For the exact coordinate minimization, we only need to slightly trim the above

analysis. Specifically, we replace Vλ,k,L(wk ;θ) with

Yλ,k(wk ;θ) = L̃λ(wk ,θ\k).

Since L̃λ(θ) is restrictedly convex, we have

Yλ,k(θk ;θ)−Yλ,k(wk ;θ) ≥ (θk −wk)∇Yλ,k(θ′k ;θ) +
ρ̃−(1)
2

(wk −θk)2.

Eventually, we obtain

Fλ(w)−Fλ(θ) ≥
ρ̃−(1)
2

(wk −θk)2.

We then proceed to analyze the descent for the proximal coordinate gradient
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descent when θk = 0 and |∇kL̃λ(θ)| ≥ (1 + δ)λ. Then we have

|wk | = |Sλ/L(−∇kL̃λ(θ)/L)| ≥
δλ

L
,

where the last inequality comes from the definition of the soft thresholding func-

tion. Thus, we obtain

Fλ(θ)−Fλ(w) ≥
L

2
w2
k ≥

δ2λ2

2L
.

For the exact coordinate minimization, we construct an auxiliary solution w′

by a proximal coordinate gradient descent iteration using L = ρ+(1). Since w is

obtained by the exact minimization, we have

Fλ(θ)−Fλ(w) ≥ Fλ(θ)−Fλ(w′) ≥
δ2λ2

2ρ+(1)
.

A.3.5 Proof of Lemma 2.7.3

Proof. Before we proceed, we first introduce the following lemma.
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Lemma A.3.1. Suppose Assumption (2.3.5) holds. If θ
λ
satisfies

‖θλS‖0 ≤ s̃ and Kλ(θ
λ
) = 0,

then θ
λ
is a unique sparse local optimum to (2.1.1).

The proof of Lemma is provided in Appendix A.3.13. We then proceed with

the proof. We consider a sequence of auxiliary solutions obtained by the proximal

gradient algorithm. The details for generating such a sequence are provided in

[31]. By Theorem 5.1 in [31], we know that such a sequence of solutions converges

to a sparse local optimum θ
λ
. By Lemma A.3.1, we know that the sparse local

optimum is unique.

A.3.6 Proof of Lemma 2.7.4

Proof. Before we proceed, we first introduce the following lemma.

Lemma A.3.2. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. For any λ ≥ λN ,

if θ satisfies

‖θS‖0 ≤ s and Fλ(θ) ≤ Fλ(θ∗) +
4λ2s∗

ρ̃−(s∗ + s)
, (A.3.15)
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where s ≤ 2s̃, then we have

‖θ −θ∗‖2 ≤
9λ
√
s∗

ρ̃−(s∗ + s)
and ‖θ −θ∗‖1 ≤

25λs∗

ρ̃−(s∗ + s)
.

The proof of Lemma A.3.2 is provided in Appendix A.3.7. Lemma A.3.2 char-

acterizes the estimation errors of any sufficiently sparse solution with a sufficiently

small objective value.

When the inner loop terminates, we have the output solution as θ̂ = θ(t+1).

Since both the exact coordinate minimization and proximal coordinate gradient

descent iterations always decrease the objective value, we have

Fλ(θ(t+1)) ≤ Fλ(θ∗) +
4λ2s∗

ρ̃−(s∗ +2s̃)
. (A.3.16)

By (A.3.9) in Appendix A.3.3, we have shown

‖∇AL̃λ(θ(t+1)) +λξ
(t+1)
A ‖22 ≤ (s∗ +2s̃)ρ2+(s

∗ +2s̃)‖θ(t+1) −θ(t)‖22. (A.3.17)

Since Assumption 2.3.7 holds and ρ̃−(1) ≤ ν+(1), we have

‖θ(t+1) −θ(t)‖22 ≤ τ2λ2 ≤
δ2λ2

(s∗ +2s̃)ρ2+(s∗ +2s̃)
. (A.3.18)

Combining (A.3.17) with (A.3.18), we have θ(t+1) satisfying the approximate KKT
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condition over the active set,

min
ξA∈∂‖θ(t+1)A ‖1

‖∇AL̃λ(θ(t+1)) +λξA‖∞ ≤ ‖∇AL̃λ(θ(t+1)) +λξ
(t+1)
A ‖2 ≤ δλ.

We now proceed to characterize the sparsity of θ̂ = θ(t+1) by exploiting the above

approximate KKT condition. By Assumption 2.3.1, we have λ ≥ 4‖∇L̃λ(θ∗)‖∞,

which implies

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ∗)| ≥ λ/4, j ∈ S ∩A

}∣∣∣ = 0. (A.3.19)

We then consider an arbitrary set S ′ such that

S ′ =
{
j
∣∣∣ |∇j L̃λ(θ̂)−∇j L̃λ(θ∗)| ≥ λ/2, j ∈ S ∩A

}
.

Let s′ = |S ′ |. There exists a v ∈ Rd such that

‖v‖∞ = 1, ‖v‖0 ≤ s′, and s′λ/2 ≤ v>(∇L̃λ(θ̂)−∇L̃λ(θ∗)). (A.3.20)

By Cauchy-Schwarz inequality, (A.3.20) implies

s′λ
2
≤ ‖v‖2‖∇L̃λ(θ̂)−∇L̃λ(θ∗)‖2 ≤

√
s′‖∇L̃λ(θ̂)−∇L̃λ(θ∗)‖2 (A.3.21)

(i)
≤ρ+(s∗ +2s̃)

√
s′‖θ̂ −θ∗‖2

(ii)
≤ ρ+(s∗ +2s̃)

√
s′

9λ
√
s∗

ρ̃−(s∗ +2s̃)
,
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where (i) comes from the restricted smoothness of L̃λ(θ), and (ii) comes from

(A.3.16) and Lemma A.3.2. (A.3.21) further implies

√
s′ ≤ 18ρ+(s

∗ +2s̃)
√
s∗

ρ̃−(s∗ +2s̃)
. (A.3.22)

Since S ′ is arbitrary defined, by simple manipulation, (A.3.22) implies

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ̂)−∇j L̃λ(θ∗)| ≥ λ/2, j ∈ S ∩A

}∣∣∣ ≤ 364κ2s∗. (A.3.23)

Combining (A.3.19) with (A.3.23), we have

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ̂)| ≥ 3λ/4, j ∈ S ∩A

}∣∣∣ (A.3.24)

≤
∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ∗)| ≥ λ/4, j ∈ S ∩A

}∣∣∣

+
∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ̂)−∇j L̃λ(θ∗)| ≥ λ/2, j ∈ S ∩A

}∣∣∣ ≤ 364κ2s∗ < s̃,

where the last inequality comes from Assumption 2.3.5. Since we require δ ≤ 1/8

in Assumption 2.3.7, (A.3.24) implies that for any u ∈ Rd satisfying ‖u‖∞ ≤ 1, we

have

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ̂) + δλuj | ≥ 7λ/8, j ∈ S ∩A

}∣∣∣ ≤ s̃.
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Then for any j ∈ S ∩A satisfying |∇j L̃λ(θ̂)+δλuj | ≤ 7λ/8, there exists a ξj such that

|ξj | ≤ 1 and ∇j L̃λ(θ̂) + δλuj +λξj = 0,

which further implies θ̂j = 0. Thus, we must have ‖θ̂S‖0 ≤ s̃.

A.3.7 Proof of Lemma A.3.2

Proof. For notational simplicity, we define ∆ = θ −θ∗. We first rewrite (A.3.15) as

λ‖θ∗‖1 −λ‖θ‖1 +
4λ2s∗

ρ̃−(s∗ + s)
≥ L̃λ(θ)− L̃λ(θ∗). (A.3.25)

By the restricted convexity of L̃λ(θ), we have

L̃λ(θ)− L̃λ(θ∗)−
ρ̃−(s∗ + s)

2
‖∆‖22 (A.3.26)

(i)
≥∆>S [∇SL(θ∗) +∇SHλ(θ∗)] +∆

>
S∇SL(θ

∗)

(ii)
≥ −‖∆S‖1‖∇L(θ∗)‖∞ − ‖∆S‖1‖∇L(θ∗)‖∞ − ‖∆S‖1‖∇SHλ(θ∗)‖∞,

where (i) comes from ∇SHλ(θ∗) = 0 by (R.3) of Lemma A.2.1, and (ii) comes from

Hölder’s inequality. Assumption 2.3.1 and (R.2) of Lemma A.2.1 imply

‖∇L(θ∗)‖∞ ≤
λ

4
and ‖∇SHλ(θ∗)‖∞ ≤ λ. (A.3.27)
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Combining (A.3.26) with (A.3.27), we obtain

L̃λ(θ)− L̃λ(θ∗) ≥ −
5λ

4
‖∆S‖1 −

λ

4
‖∆S‖1 +

ρ̃−(s∗ + s)
2

‖∆‖22. (A.3.28)

Plugging (A.3.28) and

‖θ∗‖1 − ‖θ‖1 = ‖θ∗S‖1 − (‖θS‖1 + ‖∆S‖1) ≤ ‖∆S‖1 − ‖∆S‖1

into (A.3.25), we obtain

9λ

4
‖∆S‖1 +

4λ2s∗

ρ̃−(s∗ + s)
≥ 3λ

4
‖∆S‖1 +

ρ̃−(s∗ + s)
2

‖∆‖22. (A.3.29)

We consider the first case: ρ̃−(s∗ + s)‖∆‖1 > 16λs∗. Then we have

5λ

2
‖∆S‖1 ≥

λ

2
‖∆S‖1 +

ρ̃−(s∗ + s)
2

‖∆‖22. (A.3.30)

By simple manipulation, (A.3.30) implies

ρ̃−(s∗ + s)
2

‖∆‖22 ≤
5λ

2
‖∆S‖1 ≤

5λ

2

√
s∗‖∆S‖2 ≤

5λ

2

√
s∗‖∆‖2, (A.3.31)
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where the second inequality comes from the fact that ∆S only contains s∗ entries.

By simple manipulation, (A.3.31) further implies

‖∆‖2 ≤
5λ
√
s∗

ρ̃−(s∗ + s)
. (A.3.32)

Meanwhile, (A.3.30) also implies

‖∆S‖1 ≤ 5‖∆S‖1. (A.3.33)

Combining (A.3.32) with (A.3.33), we obtain

‖∆‖1 ≤ 5‖∆S‖1 ≤ 5
√
s∗‖∆S‖2 ≤ 5

√
s∗‖∆‖2 ≤

25λs∗

ρ̃−(s∗ + s)
. (A.3.34)

We consider the second case: ρ̃−(s∗ + s)‖∆‖1 ≤ 16λs∗. Then (A.3.29) implies

‖∆‖2 ≤
9λ
√
s∗

ρ̃−(s∗ + s)
.

Combining two cases, we obtain

‖∆‖2 ≤
9λ
√
s∗

ρ̃−(s∗ + s)
and ‖∆‖1 ≤

25λs∗

ρ̃−(s∗ + s)
.
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A.3.8 Proof of Lemma 2.7.5

Proof. By Assumption 2.3.1, we have λ ≥ 4‖∇L̃λ(θ∗)‖∞, which implies

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ∗)| ≥ λ/4, j ∈ S ∩A

}∣∣∣ = 0. (A.3.35)

We then consider an arbitrary set S ′ such that

S ′ =
{
j
∣∣∣ |∇j L̃λ(θ[0])−∇j L̃λ(θ∗)| ≥ λ/2, j ∈ S

}
.

Let s′ = |S ′ |. Then there exists a v ∈ Rd such that

‖v‖∞ = 1, ‖v‖0 ≤ s′, and s′λ/2 ≤ v>(∇L̃λ(θ[0])−∇L̃λ(θ∗)). (A.3.36)

By Cauchy-Schwarz inequality, (A.3.36) implies

s′λ
2
≤ ‖v‖2‖∇L̃λ(θ[0])−∇L̃λ(θ∗)‖2 ≤

√
s′‖∇L̃λ(θ[0])−∇L̃λ(θ∗)‖2 (A.3.37)

(i)
≤ρ+(s∗ +2s̃)

√
s′‖θ[0] −θ∗‖2

(ii)
≤ ρ+(s∗ +2s̃)

√
s′

9λ
√
s∗

ρ̃−(s∗ +2s̃)
,

where (i) comes from the restricted smoothness of L̃λ(θ), and (ii) comes from

Lemma A.3.2. By simple manipulation, (A.3.37) is rewritten as

√
s′ ≤ 18ρ+(s

∗ +2s̃)
√
s∗

ρ̃−(s∗ +2s̃)
. (A.3.38)
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Since S ′ is arbitrary defined, by simple manipulation, (A.3.22) implies

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ[0])−∇j L̃λ(θ∗)| ≥ λ/2, j ∈ S ∩A

}∣∣∣ ≤ 364κ2s∗. (A.3.39)

Combining (A.3.35) with (A.3.39), we have

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ[0])| ≥ 3λ/4, j ∈ S ∩A

}∣∣∣ (A.3.40)

≤
∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ∗)| ≥ λ/4, j ∈ S ∩A

}∣∣∣

+
∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ[0])−∇j L̃λ(θ∗)| ≥ λ/2, j ∈ S ∩A

}∣∣∣ ≤ 364κ2s∗ < s̃,

where the last inequality comes from Assumption 2.3.5. Since Assumption 2.3.7

requires ϕ ≤ 1/8, we have (1 −ϕ)λ > 3λ/4. Thus, (A.3.40) implies that the strong

rule selects at most s̃ irrelevant coordinates.

A.3.9 Proof of Lemma 2.7.6

Proof. Before we proceed, we first introduce the following lemmas.

Lemma A.3.3. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. For any λ ≥ λN ,

if θ satisfies

‖θS‖0 ≤ s̃ and Fλ(θ) ≤ Fλ(θ∗) +
4λ2s∗

ρ̃−(s∗ + s̃)
, (A.3.41)
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then we have ‖[Tλ,L(θ)]S‖0 ≤ s̃.

The proof of Lemma A.3.3 is provided in Appendix A.3.10. Since θ[m+0.5] sat-

isfies (A.3.41) for all m = 0,1,2, ..., by Lemma A.3.3, we have ‖w[m+0.5]

S ‖0 ≤ s̃ for all

m = 0,1,2, ....

Lemma A.3.4. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. For every active

set updating iteration, if we select a coordinate as

km = argmaxk∈Am |∇kL̃λ(θ
[m+0.5])|,

then we have

km = argmin
k
Qλ,k,L(Tλ,k,L(θ[m+0.5]);θ[m+0.5]).

The proof of Lemma A.3.4 is provided in Appendix A.3.11. Lemma A.3.4 guar-

antees that our selected coordinate km leads to a sufficient descent in the objective

value. Thus, we have

Fλ(θ[m+0.5])−Fλ(θ[m+1]) (A.3.42)

≥ Fλ(θ[m+0.5])−Qλ,km,L(θ
[m+1]
km

;θ[m+0.5])

≥ Fλ(θ[m+0.5])− 1

|Bm|
∑

k∈Bm
Qλ,k,L(w[m+0.5]

k ;θ[m+0.5]),
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where Bm =
{
k | w[m+1]

k , 0 or θ
[m+0.5]
k , 0

}
and |Bm| ≤ s∗ + 2s̃. By rearranging

(A.3.42), we obtain

Fλ(θ[m+0.5])−Fλ(θ[m+1]) ≥ 1

s∗ +2s̃

[
Fλ(θ[m+0.5])−Jλ,L(w[m+1];θ[m+0.5])

]
.

A.3.10 Proof of Lemma A.3.3

Proof. We define an auxiliary solution

θ̃ = θ − 1

L
∇L̃λ(θ) = θ −

1

L
∇L̃λ(θ∗) +

1

L
(∇L̃λ(θ)−∇L̃λ(θ∗)).

For notational simplicity, we denote ∆ = θ −θ∗. We first consider

∣∣∣
{
j ∈ S |θj | ≥ L−1λ/4

}∣∣∣ ≤
∣∣∣
{
j ∈ S

∣∣∣ |∆j | ≥ L−1λ/4
}∣∣∣ (A.3.43)

≤ 4L

λ
‖∆S‖1 ≤

4L

λ
‖∆‖1 ≤

100Ls∗

ρ̃−(s∗ + s̃)
,

where the last inequality comes from Lemma A.3.2. By Assumption 2.3.1, we have

‖∇L̃λ(θ∗)‖∞,2 ≤ λ/4, which implies

∣∣∣
{
j ∈ S

∣∣∣ |∇j L̃λ(θ∗)| ≥ λ/4
}∣∣∣ = 0. (A.3.44)
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Recall in Appendix A.3.6, we have shown that

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ)| ≥

λ

2
, j ∈ S ∩A

}∣∣∣ ≤ 364κ2s∗. (A.3.45)

Combining (A.3.43) and (A.3.44) with (A.3.45), we have

∣∣∣
{
j ∈ S

∣∣∣ |θ̃j | ≥ L−1λ
}∣∣∣ ≤

∣∣∣
{
j ∈ S

∣∣∣θj | ≥ L−1λ/4
}∣∣∣ (A.3.46)

+
∣∣∣
{
j ∈ S

∣∣∣∇j L̃λ(θ∗)| ≥ λ/4
}∣∣∣+

∣∣∣
{
j
∣∣∣ |∇j L̃λ(θ)| ≥ λ/2, j ∈ S ∩A

}∣∣∣

≤
(
364κ2 +

100Ls∗

ρ̃−(s∗ + s̃)

)
s∗ ≤ s̃,

where the last inequality comes from L ≤ ρ+(s∗ + 2s̃) and Assumption 2.3.5. By

definition of the soft thresholding operator, we have [Tλ,L(θ)]j = Sλ/L(θ̃j ). Thus,

(A.3.46) further implies ‖[Tλ,L(θ)]S‖0 ≤ s̃.

A.3.11 Proof of Lemma A.3.4

Proof. Suppose there exists a coordinate k such that

θ
[m+0.5]
k = 0 and |∇kL̃λ(θ[m+0.5])| ≥ (1 + δ)λ. (A.3.47)

We conduct a proximal coordinate gradient descent iteration over the coordinate

k, and obtain an auxiliary solution w
[m+1]
k . Since w

[m+1]
k is obtained by the proximal
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coordinate gradient descent over the coordinate k, we have

w
[m+1]
k = argmin

wk

Qλ,k,L(wk ;θ[m+0.5]). (A.3.48)

We then derive an upper bound for Qλ,k,L(w[m+1]
k ;θ[m+0.5]). We consider

Qλ,k,L(w[m+1]
k ;θ[m+0.5]) = λ|w[m+1]

k |+λ‖θ[m+0.5]
\k ‖1 + L̃λ(θ[m+0.5]) (A.3.49)

+ (w
[m+1]
k −θ[m+0.5]

k )∇kL̃λ(θ[m+0.5]) +
L

2
(w

[m+1]
k −θ[m+0.5]

k )2.

By the convexity of the absolute value function, we have

|θ[m+0.5]
k | ≥ |w[m+1]

k |+ (θ
[m+0.5]
k −w[m+1]

k )ξk , (A.3.50)

where ξk ∈ ∂|w[m+1]
k | satisfies the optimality condition of (A.3.48), i.e.,

w
[m+1]
k −θ[m+0.5]

k +
1

L
∇kL̃λ(θ[m+0.5]) +

λ

L
ξk = 0 (A.3.51)

for some ξk ∈ ∂|w[m+1]
k |. Combining (A.3.50) with (A.3.49), we have

Qλ,k,L(w[m+1]
k ;θ[m+0.5])−Fλ(θ[m+0.5]) (A.3.52)

≤ (w
[m+1]
k −θ[m+0.5]

k )(∇kL̃λ(θ[m+0.5]) +λξk) +
L

2
(w

[m+1]
k −θ[m+0.5]

k )2

(i)
=−L

2
(w

[m+1]
k −θ[m+0.5]

k )2
(ii)
≤ −δ

2λ2

2L
,
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where (i) comes from (A.3.51) and (ii) comes from Lemma 2.7.8 and (A.3.47).

Assume that there exists another coordinate j with θ
[m+0.5]
j = 0 such that

|∇kL̃λ(θ[m+0.5])| > |∇j L̃λ(θ[m+0.5])|. (A.3.53)

Similarly, we conduct a proximal coordinate gradient descent iteration over the

coordinate j , and obtain an auxiliary solution w
[m+1]
j . By definition of the soft

thresholding function, we rewrite w
[m+1]
k and w

[m+1]
j as

w
[m+1]
k = −zk

L
∇kL̃λ(θ[m+0.5]) and w

[m+1]
j = −

zj

L
∇j L̃λ(θ[m+0.5]),

where zk and zj are defined as

zk = 1− λ

|∇kL̃λ(θ[m+0.5])|
and zj = 1− λ

|∇j L̃λ(θ[m+0.5])|
.

By (A.3.53), we know zk ≥ zj . Moreover, we define

z =
|∇j L̃λ(θ[m+0.5])|
|∇kL̃λ(θ[m+0.5])|

· zj and w̃
[m+1]
k = − z

L
∇kL̃λ(θ[m+0.5]). (A.3.54)
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Note that we have |w̃[m+1]
k | = |w[m+1]

j |. We then consider

Qλ,k,L(w̃[m+1]
k ;θ[m+0.5])− L̃λ(θ[m+0.5])

= − z
L
|∇kL̃λ(θ[m+0.5])|2 + L

2
|w̃[m+1]
k |2 +λ|w̃[m+1]

k |+λ‖θ[m+0.5]
\k ‖1

(i)
=−

zj

L
|∇kL̃λ(θ[m+0.5])| · |∇j L̃λ(θ[m+0.5])|+ L

2
|w̃[m+1]
k |2 +λ|w̃[m+1]

k |+λ‖θ[m+0.5]
\k ‖1

(ii)
< −

zj

L
|∇j L̃λ(θ[m+0.5])|2 + L

2
|w[m+1]
j |2 +λ|w[m+1]

j |+λ‖θ[m+0.5]
\k ‖1

= Qλ,k,L(w[m+1]
j ;θ[m+0.5])− L̃λ(θ[m+0.5]),

where (i) comes from (A.3.54) and (ii) comes from (A.3.47). We then have

Qλ,k,L(w[m+1]
k ;θ[m+0.5]) ≤ Qλ,k,L(w̃[m+1]

k ;θ[m+0.5]) (A.3.55)

≤ Qλ,j,L(w[m+1]
j ;θ[m+0.5]),

where the last inequality comes from (A.3.48). Thus, (A.3.55) guarantees

Qλ,km,L(w
[m+0.5]
km

;θ[m+0.5]) = min
j∈Am
Qλ,j,L(w[m+1]

j ;θ[m+0.5]), (A.3.56)

where km = argmaxk∈Am |∇L̃k(θ)
[m+0.5]|.

For any j ∈ Am, we construct two auxiliary solutions w[m+1] and v[m+1],

w
[m+1]
j = argmin

vj

Qλ,j,L(vj ;θ[m+0.5]) and v
[m+1]
j = argmin

vj

Fλ(vj ,θ[m+0.5]
\j ).
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Recall θ[m+0.5] is the output solution of the previous inner loop, i.e, θ[m+0.5] = θ(t+1).

By the restricted convexity of Fλ(θ), we have

Fλ(θ(t+1))−Fλ(v[m+1]
j ,θ

(t+1)
\j )

≤
(∇j L̃λ(θ(t+1)) +λξj )

2

2ρ̃−(1)
≤ ‖∇AL̃λ(θ

(t+1)) +λξA‖22
2ρ̃−(1)

,

for some ξA ∈ ∂‖θ(t+1)
A ‖1. Since the inner loop terminates when ‖θ(t+1) − θ(t)‖22 ≤

τ2λ2, we have

Fλ(θ(t+1))−Fλ(v[m+1]
j ,θ

(t+1)
\j ) (A.3.57)

≤ (s∗ +2s̃)ρ2+(s
∗ +2s̃)‖θ(t+1) −θ(t)‖22
2ρ̃−(1)

≤ δ
2λ2

2L
,

where the last equality comes from Assumption 2.3.7. Thus, (A.3.57) implies

Qλ,j,L(w[m+1]
j ;θ[m+0.5])−Fλ(θ[m+0.5]) (A.3.58)

≥ Fλ(θ(t+1))−Fλ(v[m+1]
j ,θ

(t+1)
\j ) ≥ −δ

2λ2

2L
.

Since j is arbitrarily selected from Am, by (A.3.52) and (A.3.58), we have

Qλ,km,L(w
[m+0.5]
km

;θ[m+0.5]) ≤ min
j∈Am
Qλ,j,L(w[m+1]

j ;θ[m+0.5]). (A.3.59)
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Combining (A.3.56) with (A.3.59), we have

Qλ,km,L(w
[m+0.5]
km

;θ[m+0.5]) = min
j
Qλ,j,L(w[m+1]

j ;θ[m+0.5]).

A.3.12 Proof of Lemma 2.7.7

Proof. Define Dm = {w | w ∈ Rd , wBm = 0}, we have

Jλ,L(w[m+1];θ[m+0.5]) = min
w∈Dm

Jλ,L(w;θ[m+0.5]) = min
w∈Dm

L̃λ(θ[m+0.5])

+ (w−θ[m+0.5])>∇L̃λ(θ[m+0.5]) +λ‖w‖1 +
L

2
‖w−θ[m+0.5]‖22

≤ min
w∈Dm

Fλ(w) +
(L− ρ−(s∗ +2s̃))

2
‖w−θ[m+0.5]‖22,

where the last inequality coms from the restricted convexity of L̃λ(θ), i.e.,

L̃λ(w) ≤ L̃λ(θ[m+0.5]) + (w−θ[m+0.5])>∇L̃λ(θ[m+0.5]) +
ρ−(s∗ +2s̃)

2
‖w−θ[m+0.5]‖22.
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Let w = zθ
λ
+ (1− z)θ[m+0.5]) for z ∈ [0,1]. Then we have

Jλ,L(w[m+1];θ[m+0.5]) (A.3.60)

≤ min
z∈[0,1]

Fλ(zθ
λ
+ (1− z)θ[m+0.5]) +

z2(L− ρ−(s∗ +2s̃))

2
‖θλ −θ[m+0.5]‖22

≤ Fλ(θ[m+0.5]) + min
z∈[0,1]

z[Fλ(θ
λ
)−Fλ(θ[m+0.5])]

+
(z2L− zρ−(s∗ +2s̃))

2
‖θλ −θ[m+0.5]‖22,

where the last inequality comes from the restricted convexity of Fλ(θ), i.e.,

Fλ(zθ
λ
+ (1− z)θ[m+0.5]) +

z(1− z)ρ−(s∗ +2s̃)

2
‖θλ −θ[m+0.5]‖22

≤ zFλ(θ
λ
) + (1− z)Fλ(θ[m+0.5]).

By the restricted convexity of Fλ(θ), we have

‖θλ −θ[m+0.5]‖22 ≤
2[Fλ(θ[m+0.5])−Fλ(θ

λ
)]

ρ−(s∗ +2s̃)
. (A.3.61)

Combining (A.3.61) with (A.3.60), we obtain

Jλ,L(w[m+1];θ(t))−Fλ(θ[m+0.5]) (A.3.62)

≤ min
z∈[0,1]

(
z2L

ρ−(s∗ +2s̃)
− 2z

)
[Fλ(θ[m+0.5])−Fλ(θ

λ
)].
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By setting z = ρ̃−(s∗ +2s̃)/L, we minimize the R.H.S of (A.3.62) and obtain

Fλ(θ[m+0.5])−Jλ,L(w[m+1];θ(t)) ≥ ρ̃−(s
∗ +2s̃)

L
[Fλ(θ[m+0.5])−Fλ(θ

λ
)].

A.3.13 Proof of Lemma A.3.1

Proof. We prove the uniqueness of θ
λ
by contradiction. Assume that there exist

two different local optima θ
λ
and θ̃λ. Let ξ̄ ∈ ∂‖θλ‖1 and ξ̃ ∈ ∂‖θ̃λ‖1 be two sub-

gradient vectors satisfying

∇L̃λ(θ
λ
) +λξ̄ = 0 and ∇L̃λ(θ̃λ) +λξ̃ = 0. (A.3.63)

By the restricted strong convexity of Fλ(θ), we obtain

Fλ(θ
λ
) ≥ Fλ(θ̃λ) + (θ

λ − θ̃λ)>(∇L̃λ(θ̃λ) +λξ̃) +
ρ̃−(s∗ +2s̃)

2
‖θλ − θ̃λ‖22,

Fλ(θ̃λ) ≥ Fλ(θ
λ
) + (θ̃λ −θλ)>(∇L̄λ(θ̃λ) +λξ̄) +

ρ̃−(s∗ +2s̃)

2
‖θλ − θ̃λ‖22,

since ‖θλS‖0 ≤ s̃ and ‖θ̃λS‖0 ≤ s̃. Combining the above two inequalities with (A.3.63),

we have ‖θλ − θ̃λ‖22 = 0 implying θ
λ
= θ̃λ. That is contradicted by our assumption.

Thus, the local optimum θ
λ
is unique.
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A.3.14 Proof of Lemma 2.3.11

Proof. For notational simplicity, we define ∆ = θ −θ∗. Let ξ̃ ∈ ∂‖θ‖1 be a subgradi-

ent vector satisfying

KλK−1(θ) = ‖∇L̃λK−1(θ) +λK−1ξ̃‖∞.

We then consider the following decomposition

KλK (θ) ≤ ‖∇L̃λK (θ) +λK ξ̃‖∞ (A.3.64)

≤ ‖∇L̃λK−1(θ) +λK−1ξ̃‖∞ + ‖λK ξ̃ −λK−1ξ̃‖∞

+ ‖∇HλK (θ)−∇HλK−1(θ)‖∞
(i)
≤δK−1λK−1 +3(1− η)λK−1

(ii)
≤ λK

4
,

where (i) comes from (R.4) in Lemma A.2.1, and (ii) comes from δK−1 ≤ 1/8 and

1− η ≤ 1/24 in Assumption 2.3.1.

We then proceed to characterize the statistical error of θ in terms of λK . For

notational simplicity, we omit the index K and denote λK by λ. Since (A.3.64)

implies that θ satisfies the approximate KKT condition for λ, then by the restricted

convexity of L̃λ(θ), we have

Fλ(θ∗)−
ρ̃−(s∗ + s̃)

2
‖∆‖22 ≥ Fλ(θ)−∆>(∇L̃λ(θ) +λξ̃) (A.3.65)

(i)
≥Fλ(θ)− ‖∇L̃λ(θ) +λξ̃‖∞ · ‖∆‖1

(ii)
≥ Fλ(θ)−

λ

4
‖∆‖1,
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where (i) comes from Hölder’s inequality and (ii) comes from (A.3.64). We then

rewrite (A.3.65) as

λ‖θ∗‖1 −λ‖θ‖1 +
λ

4
‖∆‖1 ≥ L̃λ(θ)− L̃λ(θ∗) +

ρ̃−(s∗ + s̃)
2

‖∆‖22. (A.3.66)

By the restricted convexity of L̃λ(θ) again, we have

L̃λ(θ)− L̃λ(θ∗)−
ρ̃−(s∗ + s̃)

2
‖∆‖22 ≥ ∆

>∇L̃λ(θ∗) (A.3.67)

(i)
=∆
>
S∇SL(θ∗) +∆

>
S∇SL(θ

∗) +∆
>
S∇SHλ(θ∗)

(ii)
≥ −‖∆S‖1‖∇L(θ∗)‖∞ − ‖∆S‖1‖∇L(θ∗)‖∞ − ‖∆S‖1‖∇SHλ(θ∗)‖∞,

where (i) comes from ∇SHλ(θ∗) = 0 by (R.3) of Lemma A.2.1, and (ii) comes from

Hölder’s inequality. Assumption 2.3.1 and (R.2) of Lemma A.2.1 imply

‖∇L(θ∗)‖∞ ≤ λ/4 and ‖∇SHλ(θ∗)‖∞ ≤ λ. (A.3.68)

Combining (A.3.67) with (A.3.68), we obtain

L̃λ(θ)− L̃λ(θ∗) ≥ −
3

2
λ‖∆S‖1 −

λ

2
‖∆S‖1 + ρ̃−(s∗ + s̃)‖∆‖22. (A.3.69)
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Plugging (A.3.69) and

‖θ∗‖1 − ‖θ‖1 = ‖θ∗S‖1 − (‖θS‖1 + ‖∆S‖1) ≤ ‖∆S‖1 − ‖∆S‖1

into (A.3.66), we obtain

11λ

4
‖∆S‖1 ≥

λ

4
‖∆S‖1 + ρ̃−(s∗ + s̃)‖∆‖22. (A.3.70)

By simple manipulation, (A.3.70) implies

ρ̃−(s
∗ + s̃)‖∆‖22 ≤

11λ

4
‖∆S‖1 ≤

11λ

4

√
s∗‖∆S‖2 ≤

11λ

4

√
s∗‖∆‖2, (A.3.71)

where the second inequality comes from the fact that ∆S only contains s∗ rows. By

simple manipulation again, (A.3.71) implies

‖∆‖2 ≤
11λ
√
s∗

4ρ̃−(s∗ + s̃)
. (A.3.72)

Meanwhile, (A.3.70) also implies

‖∆S‖1 ≤ 11‖∆S‖1. (A.3.73)
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Combining (A.3.72) with (A.3.73), we obtain

‖∆‖1 ≤ 11‖∆S‖1 ≤ 11
√
s∗‖∆S‖2 ≤ 11

√
s∗‖∆‖2 ≤

31λs∗

ρ̃−(s∗ + s̃)
. (A.3.74)

Plugging (A.3.74) and (A.3.72) into (A.3.65), we have

Fλ(θ)−Fλ(θ∗) ≤ δλ‖∆‖1 ≤
4λ2s∗

ρ̃−(s∗ + s̃)
.

A.4 Lemmas for General Loss Functions

A.5 Proof of Lemma 2.4.3

Proof. For notational simplicity, we denote θrelax by θ and write F̃λ(θ) = L(θ) +

λ‖θ‖1. Let ξ̃ ∈ ∂‖θ‖1 be a subgradient vector satisfying

‖∇L(θ) +λξ̃‖∞ = min
ξ∈∂‖θ‖1

‖∇L(θ) +λξ‖∞.
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For notational simplicity, we define ∆ = θ∗ − θ. Since F̃λ(θ) is a convex function,

we have

F̃λ(θ∗) ≥ F̃λ(θ)−∆>(∇L(θ) +λξ̃) (A.5.1)

≥ F̃λ(θ)− ‖∆‖1‖∇L(θ) +λξ̃‖∞ ≥ F̃λ(θ)−
λ

8
‖∆‖1,

where the second inequality comes from Hölder’s inequality, and the last inequal-

ity comes from (2.4.6).

To establish the statistical properties of θ, we need to verify that θ satisfies

‖θ −θ∗‖2 ≤ R such that the restricted strong convexity holds for θ. We prove it by

contradiction. We first assume ‖θ −θ∗‖2 ≥ R. Then there exists some z ∈ (0,1) such

that

θ̃ = (1− z)θ + zθ∗ and ‖θ̃ −θ∗‖2 = R. (A.5.2)

Then by the convexity of F̃λ(θ) again, (A.5.1) and (A.5.2) imply

F̃λ(θ̃) ≤ (1− z)F̃λ(θ) + zF̃λ(θ∗) (A.5.3)

≤ (1− z)F̃λ(θ∗) +
(1− z)λ

8
‖∆‖1 + zF̃λ(θ∗) ≤ F̃λ(θ∗) +

λ

8
‖∆̃‖1,
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where the last inequality comes from the fact

‖∆̃‖1 = ‖θ̃ −θ∗‖1 = ‖(1− z)θ + zθ∗ −θ∗‖1 = (1− z)‖∆‖1.

By simple manipulation, we can rewrite (A.5.3) as

L(θ̃)−L(θ∗) ≤ λ‖θ∗‖1 −λ‖θ̃‖1 +
λ

8
‖∆̃‖1. (A.5.4)

By the convexity of L(θ), we have

L(θ̃)−L(θ∗) ≥ ∆̃
>∇L(θ∗) (A.5.5)

≥ −‖∆̃‖1‖∇L(θ∗)‖∞ ≥ −
λ

8
‖∆S‖1 −

λ

8
‖∆S‖1,

where the last inequality comes from our assumption λ ≥ 8‖∇L(θ∗)‖∞. By the

decomposability of the `1 norm, we have

‖θ∗‖1 − ‖θ‖1 +
1

8
‖∆̃‖1 (A.5.6)

= ‖θ∗S‖1 − (‖θS‖1 + ‖∆S‖1) +
1

8
‖∆̃S‖1 +

1

8
‖∆̃S‖1

≤ 9

8
‖∆S‖1 − (1− δ)‖∆̃S‖1 ≤

9

8
‖∆̃S‖1 −

7

8
‖∆̃S‖1.
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Combining (A.5.4) with (A.5.5) and (A.5.6), we obtain

‖∆̃S‖1 ≤
5

3
‖∆̃S‖1. (A.5.7)

To establish the statistical properties of θ̃, we define the following sets:

S0 =
{
j
∣∣∣∣ j ∈ S ,

∑
k∈S 1{|θ̃k |≥|θ̃j |} ≤ s̃

}
,

S1 =
{
j
∣∣∣∣ j ∈ S \S0,

∑
k∈S\S0 1{|θ̃k |≥|θ̃j |} ≤ s̃

}
,

S2 =
{
j
∣∣∣∣ j ∈ S \ (S0 ∪S1),

∑
k∈S\(S0∪S1)1{|θ̃k |≥|θ̃j |} ≤ s̃

}
,

S3 =
{
j
∣∣∣∣ j ∈ S \ (S0 ∪S1 ∪S2),

∑
k∈S\(S0∪S1∪S2)1{|θ̃k |≥|θ̃j |} ≤ s̃

}
, ....

Before we proceed with the proof, we introduce the following lemma.

Lemma A.5.1 (Lemma 6.9 in [128]). Let b1 ≥ b2 ≥ ... ≥ 0. For s ∈ {1,2, ...}, we have

√∑
j≥i+1 b

2
j ≤

∑∞
k=1

√∑(k+1)s
j=ks+1 b

2
j ≤
√
s
∑∞
k=1 bj .

The proof of Lemma A.5.1 is provided in [128], and therefore is omitted. By

Lemma A.5.1 and (A.5.7), we have

∑

j≥1
‖∆̃Sj ‖1 ≤

1√
s̃
‖∆̃S‖1 ≤

5

3

√
s∗

s̃
‖∆̃S‖2 ≤

5

3

√
s∗

s̃
‖∆̃A‖2,

where A = S ∪ S0. By definition of the largest sparse eigenvalue and Assumption
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2.3.5, given θ̈ = zθ̃ + (1− z)θ∗ for any z ∈ [0,1] and j ≥ 1, we have

∣∣∣∣∆̃>Sj∇
2
SjAL(θ̈)∆̃A

∣∣∣∣ ≤ ρ+(s∗ + s̃)‖∆̃Sj ‖2‖∆̃A‖2,

which further implies

|∆̃>A∇
2
AAL(θ̈)∆̃A| ≤

∑
j≥1 |∆̃>Sj∇

2
SjAL(θ̈)∆̃A| (A.5.8)

=
5ρ+(s

∗ +2s̃)

3
‖∆̃A‖22

√
s∗

s̃
.

By definition of the smallest sparse eigenvalue and Assumption 2.3.5, we have

∆̃
>
A∇2AAL(θ̈)∆̃A
‖∆̃A‖22

≥ ρ−(s∗ + s̃). (A.5.9)

Combining (A.5.8) with (A.5.9), we have

|∆̃>A∇
2
AAL(θ̈)∆̃A| ≤

5ρ+(s
∗ + s̃)

3ρ−(s∗ + s̃)

√
s∗

s̃
∆̃
>
A∇2AAL(θ̈)∆̃A,

which further implies

|∆̃>A∇
2
AAL(θ̈)∆̃A|

|∆̃>A∇2AAL(θ̈)∆̃A|
≤ 5ρ+(s

∗ + s̃)
3ρ−(s∗ + s̃)

√
s∗

s̃
.
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Eventually, we have

∆
>∇2L(θ̈)∆
‖∆A‖22

≥

1−

|∆̃>A∇
2
AAL(θ̈)∆̃A|

|∆̃>A∇2AAL(θ̈)∆̃A|


ρ−(s

∗ + s̃)

≥

1−

9ρ+(s
∗ + s̃)

7ρ−(s∗ + s̃)

√
s∗

s̃


ρ−(s∗ + s̃) ≥

7ρ−(s∗ + s̃)
8

, (A.5.10)

where the last inequality comes from Assumption 2.3.5. Then by the mean value

theorem, we choose some z such that

L(θ̃)−L(θ∗)− ∆̃>∇L(θ∗) = 1

2
∆̃
>∇2L(θ̈)∆̃ ≥ 7ρ−(s∗ + s̃)

16
‖∆̃S‖22,

which implies

L(θ̃)−L(θ∗) ≥ ∆̃
>∇L(θ∗) + 7ρ−(s∗ + s̃)

16
‖∆̃A‖22

≥ 7ρ−(s∗ + s̃)
16

‖∆̃A‖22 −
λ

8
‖∆̃S‖1 −

λ

8
‖∆̃S‖1.

Then by (A.5.4) and (A.5.6), we have

ρ−(s
∗ + s̃)‖∆̃S‖22 ≤ ρ−(s∗ + s̃)‖∆̃A‖22 ≤

20

7
λ‖∆S‖1

≤ 20

7

√
s∗λ‖∆S‖2 ≤

20

7

√
s∗λ‖∆A‖2,
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which further implies

‖∆S‖2 ≤ ‖∆A‖2 ≤
20
√
s∗λ

7ρ−(s∗ + s̃)
and ‖∆S‖1 ≤

20s∗λ
7ρ−(s∗ + s̃)

. (A.5.11)

By Lemma A.5.1, (A.5.11) implies

‖∆̃A‖2 ≤
‖∆̃S‖1√
s∗
≤ 5‖∆̃S‖1

3
√
s∗

=
24
√
s∗λ

5ρ−(s∗ + s̃)
.

Combining the above results, we have

‖∆̃‖2 =
√
‖∆̃A‖22 + ‖∆̃A‖22 ≤

17
√
s∗λ

3ρ−(s∗ + s̃)
< R.

where the last inequality comes from the intial condition of θ. This conflicts with

our assumption ‖∆̃‖2 = R. Therefore we must have ‖θ−θ∗‖2 ≤ R. Consequently, we

repeat the above proof for θ, and obtain

‖∆‖2 ≤
17
√
s∗λ

3ρ−(s∗ + s̃)
and ‖∆‖1 = ‖∆S‖1 + ‖∆S‖1 ≤

23
√
s∗λ

3ρ−(s∗ + s̃)
.

We now characterize the sparsity of θ. By Assumption 2.3.1 and the intial

condition of θ, we have λ = 2λN ≥ 8‖∇L(θ∗)‖∞, which further implies

∣∣∣
{
j
∣∣∣ |∇jL(θ∗)| ≥ λ/8, j ∈ S

}∣∣∣ = 0. (A.5.12)
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We then consider an arbitrary set S ′ such that

S ′ =
{
j
∣∣∣ |∇jL(θ)−∇jL(θ∗)| ≥ 5λ/8, j ∈ S

}
.

Let s′ = |S ′ |. Then there exists v such that

‖v‖∞ = 1, ‖v‖0 ≤ s′, and 5s′λ/8 ≤ v>(∇L(θ)−∇L(θ∗)).

Since L(θ) is twice differentiable, then by the mean value theorem, there exists

some z1 ∈ [0,1] such that

θ̈ = z1θ + (1− z1)θ∗ and ∇L(θ)−∇L(θ∗) = ∇2L(θ̈)∆.

Then we have

5s′λ
8
≤ v>∇2L(θ̈)∆ ≤

√
v>∇2L(θ̈)v

√
∆>∇2L(θ̈)∆.
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Since we have ‖v‖0 ≤ s′, then we obtain

3s′λ
4
≤

√
ρ+(s′)

√
s′
√
∆>(∇L(θ)−∇L(θ∗))

≤
√
ρ+(s′)

√
s′
√
‖∆‖1 · ‖∇L(θ)−∇L(θ∗)‖∞

≤
√
ρ+(s′)

√
s′
√
‖∆‖1(‖∇L(θ)‖∞ + ‖∇L(θ∗)‖∞)

≤
√
ρ+(s′)

√
s′
√
‖∆‖1(‖∇L(θ)−λξ‖∞ +λ‖ξ̃‖∞ + ‖∇L(θ∗)‖∞)

≤
√
ρ+(s′)

√
s′

√
115s∗λ2

12ρ−(s∗ + s̃)
.

By simple manipulation, we have 5
√
s′

8 ≤
√
ρ+(s′)

√
115s∗

12ρ−(s∗+s̃)
, which implies s′ ≤

184ρ+(s
′)

15ρ−(s∗+s̃)
· s∗.

Since S ′ is arbitrary defined, by simple manipulation, we have

∣∣∣
{
j
∣∣∣ |∇jL(θ)−∇jL(θ∗)| ≥ 5λ/8, j ∈ S

}∣∣∣ ≤ 13κs∗ < s̃. (A.5.13)

Thus, (A.5.12) and (A.5.13) imply

∣∣∣
{
j
∣∣∣ |∇jL(θ̂) +

λ

8
uj | ≥ 7λ/8, j ∈ S ∩A

}∣∣∣ ≤ s̃

for any u ∈ Rd satisfying ‖u‖∞ ≤ 1. Then there exists a ξj ∈ R satisfying

|ξj | ≤ 1 and ∇j L̃λ(θ̂) +λuj /8+λξj = 0,
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for any j ∈ S ∩A satisfying |∇jL(θ̂) + λuj /8| ≤ 7λ/8. This further implies θj = 0.

Thus, we have ‖θA‖0 ≤ s̃.

Since θ is sufficiently sparse, we know that the restricted convexity holds for θ

and θ∗. Then we refine our analysis for θ. By the restricted convexity of F̃λ(θ), we

have

F̃λ(θ∗)−
ρ−(s∗ + s̃)

2
‖∆‖22 (A.5.14)

≥ F̃λ(θ)−∆>(∇L(θ) +λξ̃) ≥ F̃λ(θ)−
λ

8
‖∆‖1.

By simple manipulation, we rewrite (A.5.14) as

L(θ)−L(θ∗) ≤ λ‖θ∗‖1 −λ‖θ‖1 +
λ

8
‖∆‖1.

By the restricted convexity of L(θ), we have

L(θ)−L(θ∗)− ρ−(s∗ + s̃)‖∆‖22 ≥ −
λ

8
‖∆S‖1 −

λ

8
‖∆S‖1, (A.5.15)

where the last inequality comes from our assumption λ ≥ 8‖∇L(θ∗)‖∞. By the
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decomposability of the `1 norm, we have

‖θ∗‖1 − ‖θ‖1 +
1

8
‖∆‖1 (A.5.16)

= ‖θ∗S‖1 − (‖θS‖1 + ‖∆S‖1) +
1

8
‖∆S‖1 +

1

8
‖∆S‖1

≤ 9

8
‖∆S‖1 − (1− δ)‖∆S‖1 ≤

9

8
‖∆S‖1 −

7

8
‖∆S‖1,

where the last inequality comes from δ < 1/8 in Assumption 2.3.1. Combining

(A.5.7) and (A.5.4) with (A.5.15) and (A.5.16), we obtain

ρ−(s
∗ + s̃)‖∆‖22 ≤

5λ

4
‖∆S‖1 ≤

5λ
√
s∗

4
‖∆S‖2 ≤

5λ
√
s∗

4
‖∆S‖2,

which implies that

‖∆‖2 ≤
5λ
√
s∗

4ρ−(s∗ + s̃)
and ‖∆S‖1 ≤

√
s∗‖∆S‖2 ≤

5λs∗

4ρ−(s∗ + s̃)
.

By (A.5.7), we further have

‖∆‖1 ≤
8

3
‖∆S‖1 ≤

10λs∗

3ρ−(s∗ + s̃)
. (A.5.17)

Plugging (A.5.17) into (A.5.14), we have

F̃λ(θ∗) ≥ F̃λ(θ) +
8λ2s∗

7ρ−(s∗ + s̃)
.
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By the concavity of Hλ(θ) and Hölder’s inequality, we have

Hλ(θrelax) ≤Hλ(θ∗) + (θrelax −θ∗)>∇Hλ(θ∗)

≤Hλ(θ∗) + ‖θrelax −θ∗‖1‖∇Hλ(θ∗)‖∞.

Since we have ‖Hλ(θ)‖∞ ≤ λ, by Lemma 2.4.3, we have

Hλ(θrelax) ≤Hλ(θ∗) +λ‖θrelax −θ∗‖1 ≤Hλ(θ∗) +4λ0 .

SinceFλ0(θ) = F̃λ0(θ)+Hλ0(θ), by Lemma 2.4.3 again, we haveFλ0(θrelax) ≤ Fλ(θ∗)+

4λ0 . Thus, θrelax is a proper initial solution for solving (2.1.1) with λ0 by PICASSO.
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A.6 Proof of Theorem 2.7.9

Proof. Let ξ̃ ∈ ∂‖θ‖1 be a subgradient vector satisfyingKλ(θ) = ‖∇L̃λ(θ)+λξ̃‖∞. By

the restricted convexity of L̃λ′ (θ), we have

Fλ′ (θ)−Fλ′ (θ
λ′
) ≤ (θ −θλ

′
)>(∇L(θ) +∇Hλ′ (θ) +λ′ξ̃) (A.6.1)

= (θ −θλ
′
)>(∇L(θ) +∇Hλ(θ)

+λξ̃ −λξ̃ +λ′ξ̃ −∇Hλ(θ) +∇Hλ′ (θ))
(i)
≤‖θ −θλ

′
‖1(‖∇L(θ) +∇Hλ(θ) +λξ̃‖∞

+ (λ−λ′) + ‖∇Hλ(θ)−∇Hλ′ (θ)‖∞)
(ii)
≤ (Kλ(θ) + 3(λ−λ′))‖θ −θλ

′
‖1,

where (i) comes from Hölder’s inequality and ‖ξ̃‖∞ ≤ 1, and (ii) comes from (R.3)

of Lemma A.2.1. Meanwhile, since we have

‖θλ
′

S ‖0 ≤ s̃, Kλ′ (θ
λ′
) = 0 ≤ λ′/4, ‖θS‖0 ≤ s̃, and Kλ(θ) ≤ λ/4,

following similar lines to the proof of Theorem 2.3.11, we have

‖θλ
′
−θ∗‖1 ≤

25λ′s∗

ρ̃−(s∗ + s̃)
and ‖θ −θ∗‖1 ≤

25λs∗

ρ̃−(s∗ + s̃)
,
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which further implies

‖θ −θλ
′
‖1 ≤ ‖θ∗ −θ‖1 + ‖θ∗ −θ

λ′‖1 ≤
50(λ+λ′)s∗

ρ̃−(s∗ + s̃)
. (A.6.2)

Plugging (A.6.2) into (A.6.1), we obtain

Fλ′ (θ)−Fλ′ (θ
λ′
) ≤ 50(Kλ(θ) + 3(λ−λ′))(λ+λ′)s∗

ρ̃−(s∗ + s̃)
.

A.7 Lemmas for Statistical Theory

A.8 Proof of Theorem 2.3.14

Before we proceed with the main proof, we first introduce the following lem-

mas.

Lemma A.8.1. Suppose Assumptions 2.3.1, 2.3.5, and 2.3.7 hold. Then we have

‖θ̂{N } −θ∗‖2 = O


‖∇S1L(θ∗)‖2
ρ̃−(s∗ +2s̃)

︸         ︷︷         ︸
V1

+
λ
√
|S2|

ρ̃−(s∗ + s̃)︸     ︷︷     ︸
V2

+
δNλ
√
s∗

ρ̃−(s∗ + s̃)︸     ︷︷     ︸
V3


,

where S1 = {j | |θ∗j | ≥ γλN } and S ∗2 = {j | 0 < |θ∗j | < γλN }.
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The proof of Lemma A.8.1 is provided in Appendix A.10. Lemma A.8.1 divides

the estimation error of θ̂{N } into three parts: V1 is the error for strong signals; V2

is the error for weak signals; V3 is the optimization error.

Lemma A.8.2. Suppose Assumption 2.3.5 holds, X satisfies the column normal-

ization condition, and the observation noise ε ∼ N (0,σ2I ) is Gaussian. We then

have

P



1

n
‖X>∗S1ε‖2 ≥ 3σ

√
ρ+(|S1|) · |S1|

n


 ≤ 2exp(−2|S1|) .

LemmaA.8.2 is a direct result of Hanson-Wright inequality [129], and therefore

its proof is omitted. Lemma A.8.2 characterizes the large deviation properties of

‖∇S1L(θ∗)‖2 in Lemma A.8.1 for sparse linear regression.

We the proceed with the main proof. For notational simplicity, we omit the

index N and denote θ̂{N }, λN , and δN by θ̂, λ, and δ respectively. If we choose a

sufficiently small δ such that δ ≤ 1
40
√
s∗
, then we apply Lemmas A.8.1 and A.8.2,

and obtain

‖∆̂‖2 ≤
3
√
|S1|σ

ρ̃−(s∗ +2s̃)

√
ρ+(|S1|) · |S1|

n
+

3λ
√
|S2|

ρ̃−(s∗ +2s̃)
+

0.3λ

ρ̃−(s∗ +2s̃)
.

Since all above results rely on Assumptions 2.3.1 and 2.3.5, by Lemma 2.3.13, we
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have

‖∆̂‖2 ≤
15

√
|S1|σ
ψ`

√
ρ+(|S1|)|S1|

n
+
(96

√
|S2|+10)σ

ψ`

√
logd

n

with probability at least 1− 2exp(−2logd)− 2exp(−2 · |S1|).

A.9 Proof of Lemma 2.3.13

Proof. By Lemma 2.7.10, we have

‖∇L(θ∗)‖∞ = ‖1
n
X>(y −Xθ∗)‖∞ =

1

n
‖X>ε‖∞. (A.9.1)

Since we take λ = 8σ
√
logd/n, combining (A.9.1) with Lemma 2.7.10, we obtain

P (λ ≥ 4‖∇L(θ∗)‖∞) ≤ 1− 2

d2
.

Moreover, for any v ∈ Rd and ‖v‖0 ≤ s, ‖v‖1 ≤
√
s‖v‖2. Then (2.3.5) implies

‖Xv‖22
n
≥ ψ`‖v‖22 −γ`

s logd

n
‖v‖22. (A.9.2)

By simple manipulation, (A.9.2) implies

‖Xv‖22
n
≥ 3ψ`

4
‖v‖22 (A.9.3)
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for n large enough such that γ`
s logd
n ≤ ψ`

4 . Similarly, (2.3.5) implies

‖Xv‖22
n
≤ 5ψu

4
‖v‖22 (A.9.4)

for n large enough such that γu
s logd
n ≤ ψu

4 . Since v is an arbitrary sparse vector, for

α ≤ ψ`/4, (A.9.3) and (A.9.4) guarantee

ρ̃−(s) = ρ−(s)−α ≥ ψ`/2 and ρ+(s) = ρ−(s) ≤ 5ψu/4. (A.9.5)

Let s = s∗ +2s̃. (A.9.5) implies

484κ2 +100κ ≤ 484 · 25ψ
2
u

4ψ2
`

+100 · 5ψu
2ψ`

.

Then we can choose C1 as C1 = 3025 · ψ
2
u

ψ2
`

+ 250 · ψuψ` such that s̃ = C1s
∗ ≥ (484κ2 +

100κ)s∗. Meanwhile, we need a large enough n satisfying

logd

n
≤ ψ`
4γ`(s∗ +2C1s∗)

and
logd

n
≤ ψu
4γus∗ +2C1s∗

.

Moreover, we have

λ0 = ‖
1

n
Xy‖∞ ≤ ‖

1

n
X>Xθ∗‖∞ + ‖1

n
X>ε‖∞

≤ ‖1
n
X>X‖1‖θ∗‖∞ +OP


σ

√
logd

n


 .
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Given ‖1nX>X‖1 = O(d) and ‖θ∗‖∞ = O(d), for large enough n, we have

λ0 = OP(d2) and N =
logλ0/λN

logη
= OP

(
log

(
d2

σ

√
n

logd

))
= OP(logd).

A.10 Proof of Lemma A.8.1

Proof. For notational simplicity, we omit the index N and denote θ̂{N }, λN , and δN

by θ̂, λ, and δ respectively. We define ∆̂ = θ̂ − θ∗. Let ξ̂ ∈ ∂‖θ̂‖1 be a subgradient

vector satisfying Kλ(θ̂) = ‖∇L̃λ(θ̂)+λξ̂‖∞ ≤ δλ. Then by the restricted convexity of

Fλ(θ), we have

Fλ(θ̂) ≥ Fλ(θ∗) + ∆̂
>(∇L̃λ(θ∗) +λξ̃) +

ρ̃−(s∗ + s̃)
2

‖∆̂‖22, (A.10.1)

Fλ(θ∗) ≥ Fλ(θ̂)− ∆̂>(∇L̃λ(θ̂) +λξ̂) +
ρ̃−(s∗ + s̃)

2
‖∆̂‖22, (A.10.2)

where ξ̃ ∈ ∂‖θ∗‖1. Combining (A.10.1) with (A.10.2), we have

ρ̃−(s
∗ +2s̃)‖∆̂‖22 ≤ ‖∆̂‖1‖∇L̃λ(θ̂) +λξ̂‖∞ − ∆̂>(∇L(θ∗) +∇Hλ(θ∗) +λξ̃)

≤ |∆̂>(∇L(θ∗) +∇Hλ(θ∗) +λξ̃)|︸                               ︷︷                               ︸
V0

+δλ‖∆̂‖1︸  ︷︷  ︸
V4

. (A.10.3)
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[Bounding V0] We consider the following decomposition

|∆̂>(∇L(θ∗) +∇Hλ(θ∗) +λξ̃)|

≤∑
A∈{S1,S2,S} |∆̂

>
A(∇AL(θ∗) +∇AHλ(θ∗) +λξ̃A)|,

where S1 = {j | |θ∗j | ≥ γλ} and S2 = {j | 0 < |θ∗j | < γλ}. For S , we have ‖∇SL(θ∗)‖∞ ≤

λ/4 and ∇SHλ(θ∗) = 0. Thus, there exists some ξ̃S ∈ ∂‖θ∗S‖1 such that ∇SL(θ∗) +

∇SHλ(θ∗) +λξ̃S = 0, which implies

|∆̂>(∇SL(θ∗) +∇SHλ(θ∗) +λξ̃S )| = 0. (A.10.4)

For all j ∈ S1, we have |θ∗j | > γλ and |θj | is smooth at θj = θ
∗
j . Thus, by (R.2) of

Lemma A.2.1, we have ∇S1Hλ(θ∗) +λξ̃S1 = 0, which implies

|∆̂>S1(∇S1L(θ
∗) +∇S1Hλ(θ∗) +λξ̃S1)| = |∆̂>S1∇S1L(θ

∗)| (A.10.5)

≤ ‖∆̂S1‖2‖∇S1L(θ∗)‖2 ≤ ‖∆̂‖2‖∇S1L(θ∗)‖2.

We then consider S2. Then we have

|∆̂>S2(∇S2L(θ
∗) +∇S2Hλ(θ∗) +λξ̃S2)| (A.10.6)

≤ ‖∆̂S2‖1(‖∇S2L(θ∗)‖∞ + ‖∇S2Hλ(θ∗)‖∞ + ‖λξ̃S2‖∞) ≤ 3λ
√
|S2|‖∆̂‖2.

216



APPENDIX A. SUPPORTING PROOF FOR CHAPTER 2

Combining (A.10.4) and (A.10.5) with (A.10.6), we have

V0 ≤ ‖∇S1L(θ∗)‖2‖∆̂‖2 +3λ
√
|S2|‖∆̂‖2. (A.10.7)

[Bounding V4] We then proceed to bound V4. Since θ satisfies the approximate

KKT condition, by Theorem 2.3.11, we have ‖∆̂‖1 ≤ 11
√
s∗‖∆̂‖2. Thus, by (A.10.7)

into (A.10.3), we have

ρ̃−(s
∗ + s̃)‖∆̂‖22 ≤ ‖∇S1L(θ∗)‖2‖∆̂‖2 +3λ

√
|S2|‖∆̂‖2 +11δλ

√
s∗‖∆̂‖2.

Solving the above inequality, we complete the proof.

A.11 Proof of Lemma 2.7.11

Proof. We then proceed to establish the error bound of the oracle estimator under

the `∞ norm. Since Lemma 2.3.13 guarantees that ρ−(s) > 0, (2.3.7) is a strongly

convex problem over θS with a unique optimum

θ̂o
S = (X>∗SX∗S )

−1X>∗Sy. (A.11.1)
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Then conditioning on the event E1 =
{
‖X>ε‖∞/n ≤ 2σ

√
logd/n

}
, we rewrite (A.11.1)

as

‖θ̂o
S −θ∗S‖∞ = ‖(X>∗SX∗S )−1X>∗S (y −Ey)‖∞ (A.11.2)

= ‖(X>∗SX∗S )−1X>∗Sε‖∞ ≤
1

ρ−(s∗)n
‖X>∗Sε‖∞ ≤

2σ

ρ−(s∗)

√
logd

n
.

Since θ∗ satisfies (2.3.8), (A.11.2) implies

min
j∈S
|θ̂o
j | =min

j∈S
|θ̂o
j −θ∗j +θ∗j | ≥min

j∈S
|θ∗j | − ‖θ̂o

S −θ∗S‖∞ (A.11.3)

≥
(
C5γ −

2

ρ−(s∗)

)
σ

√
logd

n
≥

(
C5γ −

4

ψ`

)
σ

√
logd

n
,

where the last inequality comes from Lemma 2.3.13. Taking C5 = 8+ 4
γψ`

, (A.11.3)

implies

min
j∈S
|θ̂o
j | ≥

(
C5γ −

4

ψ`

)
σ

√
logd

n
≥ 8γσ

√
logd

n
= γλ,

where the last equality comes from γ ≥ 4/ψ`. Then by (R.2) of Lemma A.2.1, we

have

∇SHλ(θ̂o) +λ∇‖θ̂o
S‖1 = 0. (A.11.4)
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Combining (A.11.4) with the optimality condition of (2.3.7), we have

1

n
X∗S (y −Xθ̂o) +∇SHλ(θ̂o) +λ∇‖θ̂o

S‖1 = 0. (A.11.5)

A.12 Proof of Lemma 2.7.12

Proof. We consider the decomposition

‖X>∗S (y −Xθ̂
o)‖∞ = ‖X>∗S (y −X∗S θ̂

o
S )‖∞ (A.12.1)

= ‖X>∗S [X∗Sθ
∗
S + ε +X∗S (X

>
∗SX∗S )

−1X>∗S (X∗Sθ
∗
S + ε)]‖∞

= ‖X>∗S (I −X∗S (X
>
∗SX∗S )

−1X>∗S )ε‖∞ ≤ ‖U>∗Sε‖∞,

whereU = X>(I−X∗S (X>∗SX∗S )−1X>∗S ). Conditioning on the event E2 =
{
‖U>ε‖∞/n ≤

2σ
√
logd/n

}
, (A.12.1) implies

1

n
‖X>∗S (y −Xθ̂

o)‖∞ ≤
λ

4
. (A.12.2)
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By (R.3) of Lemma A.2.1, we have ∇Hλ(θ̂o
S ) = 0. Since |θj | is non-differentiable at

θj = 0, then (A.12.2) implies that there exists some ξ̂oS ∈ ∂‖θ̂
o
S‖1 such that

1

n
X>∗S (y −Xθ̂

o) +∇SHλ(θ̂o) +λξ̂oS = 0. (A.12.3)
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Appendix B

Supporting Proof for Chapter 3

B.1 Proof of Lemma 3.3.3

For notational convenience, denote θ′ =Hk(θ). Let supp(θ∗) = I ∗, supp(θ) = I ,

supp(θ′) = I ′, and θ′′ = θ − θ′ with supp(θ′′) = I ′′. Clearly we have I ′ ∪ I ′′ = I ,

I ′ ∩I ′′ = ∅, and ‖θ‖22 = ‖θ′‖22 + ‖θ′′‖22. Then we have

‖θ′ −θ∗‖22 − ‖θ −θ∗‖22 = ‖θ′‖22 − 2〈θ′,θ∗〉 − ‖θ‖22 +2〈θ,θ∗〉

= 2〈θ′′,θ∗〉 − ‖θ′′‖22. (B.1.1)

If 2〈θ′′,θ∗〉 − ‖θ′′‖22 ≤ 0, then (3.3.3) holds naturally. From this point on, we will

discuss the situation when 2〈θ′′,θ∗〉 − ‖θ′′‖22 > 0.

Let I ∗ ∩ I ′ = I ∗1 and I ∗ ∩ I ′′ = I ∗2, and denote (θ∗)I ∗1 = θ∗1, (θ∗)I ∗2 = θ∗2,
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(θ′)I ∗1 = θ1∗, and (θ′′)I ∗2 = θ2∗. Then we have

2〈θ′′,θ∗〉 − ‖θ′′‖22 = 2〈θ2∗,θ∗2〉 − ‖θ′′‖22

≤ 2〈θ2∗,θ∗2〉 − ‖θ2∗‖22 ≤ 2‖θ2∗‖2‖θ∗2‖2 − ‖θ2∗‖22. (B.1.2)

Let |supp(θ2∗)| = |I ∗2| = k∗∗ and θ2,max = ‖θ2∗‖∞, then consequently we have ‖θ2∗‖2 =

m ·θ2,max for some m ∈ [1,
√
k∗∗]. Notice that we are interested in 1 ≤ k∗∗ ≤ k∗, since

(3.3.3) holds naturally if k∗∗ = 0. In terms of ‖θ∗2‖2, the R.H.S. of (B.1.2) is maxi-

mized in the following three cases.

Case 1: m = 1, if ‖θ∗2‖2 ≤ θ2,max;

Case 2: m = ‖θ
∗2‖2

θ2,max
, if θ2,max < ‖θ∗2‖2 <

√
k∗∗θ2,max, ;

Case 3: m =
√
k∗∗, if ‖θ∗2‖2 ≥

√
k∗∗θ2,max.

Case 1: If ‖θ∗2‖2 ≤ θ2,max, then the R.H.S. of (B.1.2) is maximized when m = 1,

i.e. θ2∗ has only one nonzero element θ2,max. From (B.1.2), we have

2〈θ′′,θ∗〉 − ‖θ′′‖22 ≤ 2θ2,max‖θ∗2‖2 −θ2
2,max ≤ 2θ2

2,max −θ2
2,max = θ

2
2,max. (B.1.3)

Denote θ1,min as the smallest element of θ1∗ (in magnitude), which indicates that

|θ1,min| ≥ |θ2,max| as θ′ contains the largest k entries and θ′′ contains the smallest
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d − k entries of θ. For ‖θ −θ∗‖22, we have

‖θ −θ∗‖22 = ‖θ′ −θ∗1‖22 + ‖θ′′ −θ∗2‖22

= ‖θ(I ∗1)C‖22 + ‖θI ∗1 −θ∗1‖22 + ‖θ∗2‖22 − (2〈θ′′,θ∗〉 − ‖θ′′‖22) (B.1.4)

≥ (k − k∗ + k∗∗)θ2
1,min −θ2

2,max, (B.1.5)

where the last inequality follows from the fact that θ(I ∗1)C has k − k∗ + k∗∗ entries

larger than θ1,min (in magnitude). Combining (B.1.1), (B.1.3), and (B.1.5), we have

‖θ′ −θ∗‖22 − ‖θ −θ∗‖22
‖θ −θ∗‖22

≤
θ2
2,max

(k − k∗ + k∗∗)θ2
1,min −θ2

2,max

≤
θ2
2,max

(k − k∗ + k∗∗)θ2
2,max −θ2

2,max

≤ 1

k − k∗ . (B.1.6)

Case 2: If θ2,max < ‖θ∗2‖2 <
√
k∗∗θ2,max, then the R.H.S. of (B.1.2) is maximized

when m = ‖θ
∗2‖2

θ2,max
. From (B.1.2), we have

2〈θ′′,θ∗〉 − ‖θ′′‖22 ≤ 2
√
k∗∗θ2,max ·mθ2,max −θ2

2,max ≤ k∗∗θ2
2,max. (B.1.7)

From (B.1.4), we have

‖θ −θ∗‖22 ≥ (k − k∗ + k∗∗)θ2
1,min +m

2θ2
2,max −θ2

2,max ≥ (k − k∗ + k∗∗)θ2
1,min. (B.1.8)
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Combining (B.1.1), (B.1.7), and (B.1.8), we have

‖θ′ −θ∗‖22 − ‖θ −θ∗‖22
‖θ −θ∗‖22

≤
k∗∗θ2

2,max

(k − k∗ + k∗∗)θ2
1,min

≤ k∗∗

k − k∗ + k∗∗ . (B.1.9)

Case 3: If ‖θ∗2‖2 ≥
√
k∗∗θ2,max, then the R.H.S. of (B.1.2) is maximized when

m =
√
k∗∗. Let ‖θ∗2‖2 = γθ2,max for some γ ≥

√
k∗∗. From (B.1.2), we have

2〈θ′′,θ∗〉 − ‖θ′′‖22 ≤ 2γ
√
k∗∗θ2

2,max − k∗∗θ2
2,max. (B.1.10)

From (B.1.4), we have

‖θ −θ∗‖22 ≥ (k − k∗ + k∗∗)θ2
1,min +γ

2θ2
2,max −γ

√
k∗∗θ2

2,max + k
∗∗θ2

2,max. (B.1.11)

Combining (B.1.1), (B.1.10), and (B.1.11), we have

‖θ′ −θ∗‖22 − ‖θ −θ∗‖22
‖θ −θ∗‖22

≤
2γ
√
k∗∗θ2

2,max − k∗∗θ2
2,max

(k − k∗ + k∗∗)θ2
1,min +γ

2θ2
2,max −γ

√
k∗∗θ2

2,max + k
∗∗θ2

2,max

≤ 2γ
√
k∗∗ − k∗∗

k − k∗ +2k∗∗ +γ2 − 2γ
√
k∗∗
. (B.1.12)

Inspecting the R.H.S. of (B.1.12) carefully, we can see that it is either a bell shape

function or a monotone decreasing function when γ ≥
√
k∗∗. Setting the first

derivative of the R.H.S. in terms of γ to zero, we have γ = 1
2

√
k∗∗+

√
k − k∗ + 5

4k
∗∗ (the

other root is smaller than
√
k∗∗). Denoting γ∗ =max{

√
k∗∗, 12

√
k∗∗+

√
k − k∗ + 5

4k
∗∗} and
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plugging it into the R.H.S. of (B.1.12), we have

‖θ′ −θ∗‖22 − ‖θ −θ∗‖22
‖θ −θ∗‖22

≤max



k∗∗

k − k∗ + k∗∗ ,
2
√
k∗∗

2
√
k − k∗ + 5

4k
∗∗ −
√
k∗∗


. (B.1.13)

Combining (B.1.6), (B.1.9), and (B.1.13), and taking k > k∗ and k∗ ≥ k∗∗ ≥ 1 into

consideration, we have

max



1

k − k∗ ,
k∗∗

k − k∗ + k∗∗ ,
2
√
k∗∗

2
√
k − k∗ + 5

4k
∗∗ −
√
k∗∗


≤ 2

√
k∗∗

2
√
k − k∗ + 5

4k
∗∗ −
√
k∗∗

≤ 2
√
k∗

2
√
k − k∗ −

√
k∗
≤ 2
√
k∗√

k − k∗
,

which finishes the proof.

B.2 Proof of Lemma 3.3.5

It is straightforward that the stochastic variance reduced gradient (3.3.4) satis-

fies

Eg (t)(θ(t)) = E∇fit (θ(t))−E∇fit (θ̃) + µ̃ = ∇F (θ(t)).

Thus g (t)(θ(t)) is a unbiased estimator of ∇F (θ(t)) and the first claim is verified.

225



APPENDIX B. SUPPORTING PROOF FOR CHAPTER 3

Next, we bound E‖g (t)I (θ(t))‖22. For any i ∈ [n] and θ with supp(θ) ⊆ I , consider

φi(θ) = fi(θ)− fi(θ∗)− 〈∇fi(θ∗),θ −θ∗〉.

Since ∇φi(θ∗) = ∇fi(θ∗)−∇fi(θ∗) = 0, we have φi(θ
∗) = minθφi(θ), which implies

0 = φi(θ
∗) ≤min

η
φi(θ − η∇Iφi(θ)) ≤min

η
φi(θ)− η‖∇Iφi(θ)‖22 +

ρ+s η
2

2
‖∇Iφi(θ)‖22

= φi(θ)−
1

2ρ+s
‖∇Iφi(θ)‖22, (B.2.1)

where the second inequality follows from the RSS condition and the last equality

follows from the fact that η = 1/ρ+s minimizes the function. From (B.2.1), we have

‖∇I fi(θ)−∇I fi(θ∗)‖22 ≤ 2ρ+s [fi(θ)− fi(θ∗)− 〈∇I fi(θ∗),θ −θ∗〉] . (B.2.2)

Since the sampling of i from [n] is uniform, we have from (B.2.2)

E‖∇I fi(θ)−∇I fi(θ∗)‖22 =
1

n

n∑

i=1

‖∇I fi(θ)−∇I fi(θ∗)‖22

≤ 2ρ+s [F (θ)−F (θ∗)− 〈∇IF (θ∗),θ −θ∗〉]

≤ 2ρ+s [F (θ)−F (θ∗) + |〈∇IF (θ∗),θ −θ∗〉|]

≤ 4ρ+s [F (θ)−F (θ∗)] , (B.2.3)

where the last inequality is from the convexity of F (θ).
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By the definition of g
(t)
I in (3.3.4), we can verify the second claim as

E‖g (t)I (θ(t))‖22 ≤ 3E‖
[
∇I fit (θ̃)−∇I fit (θ∗)

]
−∇IF (θ̃) +∇IF (θ∗)‖22

+3E‖∇I fit (θ(t))−∇I fit (θ∗)‖22 +3‖∇IF (θ∗)‖22

≤ 3E‖∇I fit (θ(t))−∇I fit (θ∗)‖22 +3E‖∇I fit (θ̃)−∇I fit (θ∗)‖22 +3‖∇IF (θ∗)‖22

≤ 12ρ+s
[
F (θ(t))−F (θ∗) +F (θ̃)−F (θ∗)

]
+3‖∇IF (θ∗)‖22, (B.2.4)

where the first inequality follows from ‖a+b+c‖22 ≤ 3‖a‖22+3‖b‖22+3‖c‖22, the second

inequality follows from E‖x−Ex‖22 ≤ E‖x‖22 with E

[
∇I fit (θ̃)−∇I fit (θ∗)

]
= ∇IF (θ̃)−

∇IF (θ∗), and the last inequality follows from (B.2.3).

B.3 Proof of Lemma 3.3.9

For any θ,θ′ ∈ R
d in sparse linear model, we have ∇2F (θ) = A>A and there

exists some θ′′ such that

F (θ)−F (θ′)− 〈∇F (θ′),θ −θ′〉 = 1

2
(θ −θ′)>∇2F (θ′′)(θ −θ′) = 1

2
‖A(θ −θ′)‖22,

where ‖θ − θ′‖0 ≤ 2k ≤ s. Let v = θ − θ′, then ‖v‖0 ≤ s and ‖v‖21 ≤ s‖v‖22. From

(3.3.10), we have

‖Av‖22
nb

≥ ψ1‖v‖22 −ϕ1
s logd

nb
‖v‖22 and

‖ASi∗v‖22
b

≤ ψ2‖v‖22 +ϕ2
s logd

b
‖v‖22,∀i ∈ [n].
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The inequality above further imply

ρ−s = inf
‖v‖0≤s

‖Av‖22
nb‖v‖22

≥ ψ1 −ϕ1
s logd

nb
and

ρ+s = sup
‖v‖0≤s,i∈[n]

‖ASi∗v‖22
b‖v‖22

≤ ψ2 +ϕ2
s logd

b
. (B.3.1)

If b ≥ ϕ2s logd
ψ2

and n ≥ 2ϕ1ψ2
ψ1ϕ2

, then we have nb ≥ 2ϕ1s logd
ψ1

. Combining these with

(B.3.1), we have

ρ−s ≥
1

2
ψ1, and ρ

+
s ≤ 2ψ2.

This implies κs =
ρ+s
ρ−s
≤ 4ψ2

ψ1
. Then there exists some C5 ≥ 16C1ψ

2
2

ψ2
1

such that

k = C5k
∗ ≥ C1κ

2
s k
∗.

B.4 Proof of Lemma 3.3.18

Let Θ = UΣV> and Θ
∗ = U ∗Σ∗V ∗> be the singular value decomposition of

Θ and Θ
∗ respectively. Since Σ and Σ

∗ are diagonal, if k > k∗, we have from

Lemma 3.3.3

‖Rk(Σ)−Σ∗‖2F ≤
(
1+

2
√
k∗√

k − k∗

)
‖Σ−Σ∗‖2F . (B.4.1)
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Then we have

‖Rk(Θ)−Θ∗‖2F − ‖Θ −Θ∗‖2F = ‖Rk(Θ)‖2F − ‖Θ‖2F +2〈Θ −Rk(Θ),Θ∗〉

= ‖Rk(Σ)‖2F − ‖Σ‖2F +2〈Θ −Rk(Θ),Θ∗〉≤‖Rk(Σ)‖2F − ‖Σ‖2F +2

k∗∑

i=1

σi(Θ −Rk(Θ)) ·σi(Θ∗)

= ‖Rk(Σ)‖2F − ‖Σ‖2F +2

k∗∑

i=1

(σi(Θ)−σi(Rk(Θ))) ·σi(Θ∗) = ‖Rk(Σ)−Σ∗‖2F − ‖Σ−Σ∗‖2F

≤ 2
√
k∗√

k − k∗
· ‖Σ−Σ∗‖2F≤

2
√
k∗√

k − k∗
· ‖Θ −Θ∗‖2F ,

where the first and last inequalities are from 〈A,B〉 ≤∑min{rank(A),rank(B)}
i=1 σi(A) ·σi(B)

for matrices A,B ∈ Rd×p and the second inequality is from (B.4.1). This finishes the

proof.

229



Appendix C

Supporting Proof for Chapter 4

C.1 Lemmas for Theorem 4.3.3 (Alternating

Exact Minimization)

C.1.1 Proof of Lemma 4.4.1

Proof. For notational convenience, we omit the index t in U
∗(t)

and V ∗(t), and de-

note them by U
∗
and V ∗ respectively. Then we define two nk ×nk matrices

S (t) =




S
(t)
11 · · · S

(t)
1k

...
. . .

...

S
(t)
k1 · · · S

(t)
kk




with S
(t)
pq =

d∑

i=1

AiU
(t)
∗pU

(t)>
∗q A>i ,
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G(t) =




G
(t)
11 · · · G

(t)
1k

...
. . .

...

G
(t)
k1 · · · G

(t)
kk




with G
(t)
pq =

d∑

i=1

AiU
∗
∗pU

∗>
∗q A

>
i

for 1 ≤ p,q ≤ k. Note that S (t) and G(t) are essentially the partial Hessian matrices

∇2VF (U
(t)
,V ) and ∇2VF (U

∗
,V ) for a vectorized V , i.e., vec(V ) ∈ R

nk . Before we

proceed with the main proof, we first introduce the following lemma.

Lemma C.1.1. Suppose that A(·) satisfies 2k-RIP with parameter δ2k . We then

have

1+ δ2k ≥ σmax(S
(t)) ≥ σmin(S

(t)) ≥ 1− δ2k .

The proof of Lemma C.1.1 is provided in Appendix C.1.7. Note that Lemma

C.1.1 is also applicable G(t), since G(t) shares the same structure with S (t).

We then proceed with the proof of Lemma 4.4.1. Given a fixed U , F (U,V ) is a

quadratic function of V . Therefore we have

F (U,V ′) = F (U,V )

+ 〈∇VF (U,V ),V ′ −V 〉+ 〈vec(V ′)− vec(V ),∇2VF(U,V ) (vec(V ′)− vec(V ))〉,
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which further implies implies

F (U,V ′)−F (U,V )− 〈∇FV (U,V ),V ′ −V 〉 ≤ σmax(∇2VF(U,V ))‖V ′ −V ‖2F

F (U,V ′)−F (U,V )− 〈∇FV (U,V ),V ′ −V 〉 ≥ σmin(∇2VF(U,V ))‖V ′ −V ‖2F.

Then we can verify that ∇2VF(U,V ) also shares the same structure with S (t). Thus

applying Lemma C.1.1 to the above two inequalities, we complete the proof.

C.1.2 Proof of Lemma 4.4.3

Proof. For notational convenience, we omit the index t in U
∗(t)

and V ∗(t), and de-

note them by U
∗
and V ∗ respectively. We define two nk ×nk matrices

J (t) =




J
(t)
11 · · · J

(t)
1k

...
. . .

...

J
(t)
k1 · · · J

(t)
kk




with J
(t)
pq =

d∑

i=1

AiU
(t)
∗pU

∗>
∗q A

>
i ,

K (t) =




K
(t)
11 · · · K

(t)
1k

...
. . .

...

K
(t)
k1 · · · K

(t)
kk




with K
(t)
pq =U

(t)>
∗p U

∗
∗qIn
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for 1 ≤ p,q ≤ k. Before we proceed with the main proof, we first introduce the

following lemmas.

Lemma C.1.2. Suppose that A(·) satisfies 2k-RIP with parameter δ2k . We then

have

‖S (t)K (t) − J (t)‖2 ≤ 3δ2k
√
k‖U (t) −U ∗‖F.

The proof of Lemma C.1.2 is provided in Appendix C.1.8. Note that Lemma

C.1.2 is also applicable to G(t)K (t)− J (t), since G(t) and S (t) share the same structure.

Lemma C.1.3. Given F ∈ Rk×k , we define a nk ×nk matrix

F =




F11In · · · F1kIn

...
. . .

...

Fk1In · · · FkkIn




.

For any V ∈ Rn×k , let v = vec(V ) ∈ Rnk , then we have ‖Fv‖2 = ‖FV>‖F.

Proof. By linear algebra, we have

[FV ]ij = F
>
i∗Vj∗ =

k∑

`=1

Fi`Vj` =
k∑

`=1

Fi`I
>
∗`V∗`,

which completes the proof.

We then proceed with the proof of Lemma 4.4.3. Since bi = tr(V ∗>AiU ∗), then
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we rewrite F (U,V ) as

F (U,V ) =
1

2

d∑

i=1

(
tr(V>AiU )− bi

)2
=
1

2

d∑

i=1

( k∑

j=1

V>j∗AiU ∗j −
k∑

j=1

V ∗>j∗ AiU
∗
∗j

)2
.

For notational simplicity, we define v = vec(V ). Since V (t+0.5) minimizesF (U
(t)
,V ),

we have

vec
(
∇VF (U

(t)
,V (t+0.5))

)
= S (t)v(t+0.5) − J (t)v∗ = 0.

Solving the above system of equations, we obtain

v(t+0.5) = (S (t))−1J (t)v∗. (C.1.1)

Meanwhile, we have

vec(∇VF (U
∗
,V (t+0.5))) = G(t)v(t+0.5) −G(t)v∗

= G(t)(S (t))−1J (t)v∗ −G(t)v∗ = G(t)
(
(S (t))−1J (t) − Ink

)
v∗, (C.1.2)

where the second equality come from (C.1.1). By triangle inequality, (C.1.2) fur-
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ther implies

‖((S (t))−1J (t) − Ink)v∗‖2 ≤ ‖(K (t) − Ink)v∗‖2 + ‖(S (t))−1(J (t) − S (t)K (t))v∗‖2

≤ ‖(U (t)>
U
∗ − Ik)V ∗>‖F + ‖(S (t))−1‖2‖(J (t) − S (t)K (t))v∗‖2

≤ ‖U (t)>
U
∗ − Ik‖F‖V ∗‖2 + ‖(S (t))−1‖2‖(J (t) − S (t)K (t))v∗‖2,

(C.1.3)

where the second inequality comes from Lemma C.1.3. Plugging (C.1.3) into

(C.1.2), we have

‖vec(∇VF (U
∗
,V (t+0.5)))‖2 ≤ ‖G(t)‖2‖((S (t))−1J (t) − Ink)v∗‖2

(i)
≤(1 + δ2k)(σ1‖U

(t)>
U
∗ − Ik‖2 + ‖(S (t))−1‖2‖S (t)K (t) − J (t)‖2σ1

√
k)

(ii)
≤ (1 + δ2k)σ1

(
‖(U (t) −U ∗)>(U (t) −U ∗)‖F +

3δ2kk

1− δ2k
‖U (t) −U ∗‖F

)

(iii)
≤ (1 + δ2k)σ1

(
‖U (t) −U ∗‖2F +

3δ2kk

1− δ2k
‖U (t) −U ∗‖F

) (iv)
≤ (1− δ2k)σk

2ξ
‖U ∗ −U (t)‖F,

where (i) comes from Lemma C.1.1 and ‖V ∗‖2 = ‖M∗‖ = σ1 and ‖V ∗‖F = ‖v∗‖2 ≤

σ1
√
k, (ii) comes from Lemmas C.1.1 and C.1.2, (iii) from Cauchy-Schwartz in-

equality, and (iv) comes from (4.4.2). Since we have ∇VF (U
(t)
,V (t+0.5)) = 0, we

further btain

E(V (t+0.5),V (t+0.5),U
(t)
) ≤ (1− δ2k)σk

2ξ
‖U ∗ −U (t)‖F,
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which completes the proof.

C.1.3 Proof of Lemma 4.4.4

Proof. For notational convenience, we omit the index t in U
∗(t)

and V ∗(t), and de-

note them by U
∗
and V ∗ respectively. By the strong convexity of F (U

∗
, ·), we have

F (U
∗
,V ∗)− 1− δ2k

2
‖V (t+0.5) −V ∗‖2F ≥ F (U

∗
,V (t+0.5))

+ 〈∇VF (U
∗
,V (t+0.5)),V ∗ −V (t+0.5)〉. (C.1.4)

By the strong convexity of F (U
∗
, ·) again, we have

F (U
∗
,V (t+0.5)) ≥ F (U

∗
,V ∗) + 〈∇VF (U

∗
,V ∗),V ∗ −V (t+0.5)〉+ 1− δ2k

2
‖V (t+0.5) −V ∗‖2F

≥ F (U
∗
,V ∗) +

1− δ2k
2
‖V (t+0.5) −V ∗‖2F, (C.1.5)

where the last inequality comes from the optimality condition ofV ∗ = argminV F (U
∗
,V ),

i.e.

〈∇VF (U
∗
,V ∗),V (t+0.5) −V ∗〉 ≥ 0.
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Meanwhile, since V (t+0.5) minimizes F (U
(t)
, ·), we have the optimality condition

〈∇VF (U
(t)
,V (t+0.5)),V ∗ −V (t+0.5)〉 ≥ 0,

which further implies

〈∇VF (U
∗
,V (t+0.5)),V ∗ −V (t+0.5)〉

≥ 〈∇VF (U
∗
,V (t+0.5))−∇VF (U

(t)
,V (t+0.5)),V ∗ −V (t+0.5)〉. (C.1.6)

Combining (C.1.4) and (C.1.5) with (C.1.6), we obtain

‖V (t+0.5) −V ∗‖2 ≤
1

1− δ2k
E(V (t+0.5),V (t+0.5),U

(t)
),

which completes the proof.

C.1.4 Proof of Lemma 4.4.5

Proof. Before we proceed with the proof, we first introduce the following lemma.

Lemma C.1.4. Suppose that A∗ ∈ R
n×k is a rank k matrix. Let E ∈ R

n×k satisfy

‖E‖2‖A∗†‖2 < 1. Then given a QR decomposition (A∗ + E) = QR, there exists a fac-
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torization of A∗ =Q∗O∗ such that Q∗ ∈ Rn×k is an orthonormal matrix, and satisfies

‖Q −Q∗‖F ≤
√
2‖A∗†‖2‖E‖F

1− ‖E‖2‖A∗†‖2
.

The proof of Lemma C.1.4 is provided in [127], therefore omitted.

We then proceed with the proof of Lemma 4.4.5. We consider A∗ = V ∗(t) and

E = V (t+0.5) −V ∗(t) in Lemma C.1.4 respectively. We can verify that

‖V (t+0.5) −V ∗(t)‖2‖V ∗(t)†‖2 ≤
‖V (t+0.5) −V ∗(t)‖F

σk
≤ 1

4
.

Then there exists a V ∗(t) = V
∗(t+1)

O∗ such that V
∗(t+1)

is an orthonormal matrix, and

satisfies

‖V ∗(t+0.5) −V ∗(t+1)‖F ≤ 2‖V ∗(t)†‖2‖V (t+0.5) −V ∗(t)‖F ≤
2

σk
‖V (t+0.5) −V ∗(t)‖F.

C.1.5 Proof of Lemma 4.4.6

Proof. Before we proceed with the main proof, we first introduce the following

lemma.

Lemma C.1.5. Let b =A(M∗),M is a rank-k matrix, andA is a linear measurement
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operator that satisfies 2k-RIP with constant δ2k < 1/3. Let X(t+1) be the (t + 1)-th

step iterate of SVP, then we have

‖A(X(t+1))− b‖22 ≤ ‖A(M∗)− b‖22 +2δ2k‖A(X(t))− b‖22

The proof of Lemma C.1.5 is provided in [79], therefore omitted. We then

explain the implication of LemmaC.1.5. [79] show thatX(t+1) is obtained by taking

a projected gradient iteration over X(t) using step size 1
1+δ2k

. Then taking X(t) = 0,

we have

X(t+1) =
U

(0)
Σ
(0)
V

(0)>

1+ δ2k
.

Then Lemma C.1.5 implies

∥∥∥∥∥A
(
U

(0)
Σ
(0)
V

(0)>

1+ δ2k
−M∗

)∥∥∥∥∥
2

2

≤ 4δ2k‖A(M∗)‖22. (C.1.7)

Since A(·) satisfies 2k-RIP, then (C.1.7) further implies

∥∥∥∥∥
U

(0)
Σ
(0)
V

(0)>

1+ δ2k
−M∗

∥∥∥∥∥

2

F

≤ 4δ2k(1 + 3δ2k)‖M∗‖2F. (C.1.8)

We then project each column of M∗ into the subspace spanned by {U (0)
∗i }ki=1, and
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obtain

‖U (0)
U

(0)>
M∗ −M∗‖2F ≤ 6δ2k‖M∗‖2F.

Let U
(0)
⊥ denote the orthonormal complement of U

(0)
, i.e.,

U
(0)>
⊥ U

(0)
⊥ = In−k and U

(0)>
⊥ U

(0)
= 0.

Then given a compact singular value decomposition ofM∗ = Ũ ∗D̃∗Ṽ ∗>, we have

6δ2kkσ
2
1

σ2
k

≥ ‖(U (0)
U

(0)> − In)Ũ ∗‖2F = ‖U
(0)>
⊥ Ũ ∗‖2F.

Thus Lemma 4.4.2 guarantees that for O∗ = argminO>O=Ik
‖U (0) − Ũ ∗O‖F, we have

‖U (0) − Ũ ∗O∗‖F ≤
√
2‖U (0)>

⊥ Ũ ∗‖F ≤ 2
√
3δ2kk ·

σ1
σk
.

We define U
∗(0)

= Ũ ∗O∗. Then combining the above inequality with (4.4.4), we

have

‖U (0) −U ∗(0)‖F ≤
(1− δ2k)σk

4ξ(1 + δ2k)σ1
.

Meanwhile, we define V ∗(0) = Ṽ ∗D̃∗O∗. Then we have U
∗(0)
V ∗(0)> = Ũ ∗OO∗>D̃∗Ṽ ∗ =

M∗.
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C.1.6 Proof of Corollary 4.4.7

Proof. Since (4.4.5) ensures that (4.4.2) of Lemma 4.4.3 holds, then we have

‖V (t+0.5) −V ∗(t)‖F ≤
1

1− δ2k
E(V (t+0.5),V (t+0.5),U

(t)
)
(i)
≤ 1

1− δ2k
· (1− δ2k)σk

2ξ
‖U (t) −U ∗(t)‖F

(ii)
≤ 1

1− δ2k
· (1− δ2k)σk

2ξ
· (1− δ2k)σk
4ξ(1 + δ2k)σ1

≤
(

(1− δ2k)σk
8ξ2(1 + δ2k)σ1

)
σk

(iii)
≤ σk

4
, (C.1.9)

where (i) comes from Lemma 4.4.4, (ii) comes from (4.4.5), and (iii) comes from

the definition of ξ and σk ≤ σ1. Since (C.1.9) ensures that (4.4.3) of Lemma 4.4.5

holds for V (t+0.5), then we obtain

‖V (t+1) −V ∗(t+1)‖F ≤
2

σk
‖V (t+0.5) −V ∗(t)‖F

(i)
≤ 1

ξ
‖U (t) −U ∗(t)‖F

(ii)
≤ (1− δ2k)σk

4ξ(1 + δ2k)σ1
, (C.1.10)

where (i) comes from (C.1.9), and (ii) comes from the definition of ξ and (4.4.5).

241



APPENDIX C. SUPPORTING PROOF FOR CHAPTER 4

C.1.7 Proof of Lemma C.1.1

Proof. We consider an arbitrary W ∈ R
n×k such that ‖W ‖F = 1. Let w = vec(W ).

Then we have

w>Bw =

k∑

p,q=1

W>∗pS
(t)
pqW∗p =

k∑

p,q=1

W>∗p

( d∑

i=1

AiU
(t)
∗pU

(t)>
∗q A>i

)
W∗q

=

d∑

i=1

( k∑

p=1

W>∗pAiU
(t)
∗p

)( k∑

q=1

W>∗qAiU
(t)
∗q

)
=

n∑

i=1

tr(W>AiU
(t)
)2 = ‖A(U (t)

W>)‖22.

Since A(·) satisfies 2k-RIP, then we have

‖A(U (t)
W>)‖22 ≥ (1− δ2k)‖U

(t)
W>‖F = (1− δ2k)‖W ‖F = 1− δ2k ,

‖A(U (t)
W>)‖22 ≤ (1 + δ2k)‖U

(t)
W>‖F = (1+ δ2k)‖W ‖F = 1+ δ2k .

SinceW is arbitrary, then we have

σmin(S
(t)) = min

‖w‖2=1
w>S (t)w ≥ 1− δ2k and σmax(S

(t)) = max
‖w‖2=1

w>S (t)w ≤ 1+ δ2k .

C.1.8 Proof of Lemma C.1.2

Proof. For notational convenience, we omit the index t in U
∗(t)

and V ∗(t), and de-

note them by U
∗
and V ∗ respectively. Before we proceed with the main proof, we

242



APPENDIX C. SUPPORTING PROOF FOR CHAPTER 4

first introduce the following lemma.

Lemma C.1.6. Suppose A(·) satisfies 2k-RIP. For any U, U ′ ∈ R
m×k and V , V ′ ∈

R
n×k , we have

|〈A(UV>),A(U ′V ′>)〉 − 〈U>U ′,V>V ′〉| ≤ 3δ2k‖UV>‖F · ‖U ′V ′>‖F.

The proof of Lemma C.1.6 is provided in [94], and hence omitted.

We now proceed with the proof of Lemma C.1.2. We consider arbitraryW,Z ∈

R
n×k such that ‖W ‖F = ‖Z‖F = 1. Let w = vec(W ) and z = vec(Z). Then we have

w>(S (t)K (t) − J (t))z =
k∑

p,q=1

W>∗p[S
(t)K (t) − J (t)]pqZ∗q.

We consider a decomposition

[S (t)K (t) − J (t)]pq =
k∑

`=1

S
(t)
p`K

(t)
`q − J

(t)
pq =

k∑

`=1

S
(t)
p`U

(t)>
∗` U

∗
∗qIn − J

(t)
pq

=

k∑

`=1

U
∗>
∗q U

(t)
∗`

d∑

i=1

AiU
(t)
∗pU

(t)
∗` A

>
i − J

(t)
pq

=

k∑

`=1

AiU
∗>
∗q U

(t)
∗`

d∑

i=1

U
(t)
∗pU

(t)
∗` A

>
i −

d∑

i=1

AiU
(t)
∗pU

∗
∗qA
>
i

=

d∑

i=1

AiU
(t)
∗pU

∗
∗q(U

(t)
U

(t)> − In)A>i .
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which further implies

w>(S (t)K (t) − J (t))z =
∑

p,q

W>∗p

( d∑

i=1

AiU
(t)
∗pU

∗
∗q(U

(t)
U

(t)> − Im)A>i
)
Z∗q

=

d∑

i=1

∑

p,q

W>∗pAiU
(t)
∗pU

∗
∗q(U

(t)
U

(t)> − Im)A>i Z∗q

=

d∑

i=1

tr(W>AiU
(t)
) tr

(
Z>Ai(U

(t)
U

(t)> − Im)U
∗)
. (C.1.11)

Since A(·) satisfies 2k-RIP, then by Lemma C.1.6, we obtain

w>(S (t)K (t) − J (t))z ≤ tr
(
U
∗
(U

(t)
U

(t)> − Im)U
(t)
W>Z

)

+3δ2k‖U
(t)
W>‖F‖(U

(t)
U

(t)> − Im)U
∗
Z>‖F

(i)
≤3δ2k‖W ‖F

√
‖U ∗>(U (t)

U
(t)> − Im)U

∗‖F‖Z>Z‖F, (C.1.12)

where the last inequality comes from (U
(t)
U

(t)> − Im)U
(t)

= 0. Let U
(t)
⊥ ∈ R

m−k

denote the orthogonal complement to U
(t)

such that U
(t)>

U
(t)
⊥ = 0 and U

(t)>
⊥ U

(t)
⊥ =

Im−k . Then we have

Im −U
(t)
U

(t)>
=U

(t)
⊥ U

(t)>
⊥ ,
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which implies

√
‖U ∗>(U (t)

U
(t)> − Im)U

∗‖F =
√
‖U ∗>U (t)

⊥ U
(t)>
⊥ U

∗‖F ≤ ‖U
(t)>
⊥ U

∗‖F

= ‖U (t)>
⊥ U

(t) −U (t)>
⊥ U

∗‖F ≤ ‖U
(t) −U ∗‖F. (C.1.13)

Combining (C.1.12) with (C.1.13), we obtain

w>(S (t)K (t) − J (t))z ≤ 3δ2k
√
k‖U (t) −U ∗‖F. (C.1.14)

SinceW and Z are arbitrary, then (C.1.14) implies

σmax(S
(t)K (t) − J (t)) = max

‖w‖2=1,‖z‖2=1
w>(S (t)K (t) − J (t))w ≤ 3δ2k

√
k‖U (t) −U ∗‖F,

which completes the proof.
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C.2 Lemmas for Theorem 4.3.3 (Alternating

Gradient Descent)

C.2.1 Proof of Lemma 4.4.9

Proof. For notational convenience, we omit the index t in U
∗(t)

and V ∗(t), and de-

note them by U
∗
and V ∗ respectively. We have

vec(∇VF (U
(t)
,V (t))) = S (t)v(t) − J (t)v∗ and vec(∇VF (U

∗
,V (t))) = G(t)v(t) −G(t)v∗.

Therefore, we further obtain

‖∇VF (U
(t)
,V (t))−∇VF (U

∗
,V (t))‖F

= ‖(S (t) − J (t))(v(t) − v∗) + (S (t) − J (t))v∗ + (J (t) −G(t))(v(t) − v∗)‖2

≤ ‖(S (t) − J (t))(v(t) − v∗)‖2 + ‖(S (t) − J (t))v∗‖2 + ‖(J (t) −G(t))(v(t) − v∗)‖2

≤ ‖S (t)‖2 · ‖((S (t))−1J (t) − Ink)(v(t) − v∗)‖2 + ‖S (t)‖2 · ‖((S (t))−1J (t) − Ink)v∗‖2

+ ‖G‖2 · ‖((G(t))−1J (t) − Ink)(v(t) − v∗)‖2. (C.2.1)

Recall that Lemma C.1.2 is also applicable to G(t)K (t) − J (t). Since we have

‖V (t) −V ∗‖2 ≤ ‖V (t) −V ∗‖F = ‖v(t) − v∗‖2 ≤ σ1,
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following similar lines to Appendix C.1.2, we can show

‖((S (t))−1J (t) − Imn)v∗‖2 ≤ σ1
(
‖U (t) −U ∗‖2F +

3δ2kk

1− δ2k
‖U (t) −U ∗‖F

)
,

‖((G(t))−1J (t) − Imn)(v(t) − v∗)‖2 ≤ σ1
(
‖U (t) −U ∗‖2F +

3δ2kk

1− δ2k
‖U (t) −U ∗‖F

)
,

‖((S (t))−1J (t) − Imn)(v(t) − v∗)‖2 ≤ σ1
(
‖U (t) −U ∗‖2F +

3δ2kk

1− δ2k
‖U (t) −U ∗‖F

)
.

Combining the above three inequalities with (C.2.1), we have

‖∇VF (U
(t)
,V (t))−∇VF (U

∗
,V (t))‖F

≤ 2(1+ δ2k)σ1

(
‖U (t) −U ∗‖2F +

3δ2kk

1− δ2k
‖U (t) −U ∗‖F

)
. (C.2.2)

Since U
(t)
, δ2k , and ξ satisfy (4.4.13), then (C.2.2) further implies

E(V (t+0.5),V (t),U
(t)
) = ‖∇VF (U

(t)
,V (t))−∇VF (U

∗
,V (t))‖F ≤

(1 + δ2k)σk
ξ

‖U (t) −U ∗‖F,

which completes the proof.
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C.2.2 Proof of Lemma 4.4.10

Proof. For notational convenience, we omit the index t in U
∗(t)

and V ∗(t), and de-

note them by U
∗
and V ∗ respectively. By the strong convexity of F (U

∗
, ·), we have

F (U
∗
,V ∗)− 1− δ2k

2
‖V (t) −V ∗‖2F ≥ F (U

∗
,V (t)) + 〈∇VF (U

∗
,V (t)),V ∗ −V (t)〉

= F (U
∗
,V (t)) + 〈∇VF (U

∗
,V (t)),V (t+0.5) −V (t)〉

+ 〈∇VF (U
∗
,V (t)),V ∗ −V (t+0.5)〉. (C.2.3)

Meanwhile, we define

Q(V ;U
∗
,V (t)) = F (U

∗
,V (t)) + 〈∇VF (U

∗
,V (t)),V −V (t)〉+ 1

2η
‖V −V (t)‖2F.

Since η satisfies (4.4.14) and F (U
∗
,V ) is strongly smooth in V for a fixed orthonor-

mal U
∗
, we have

Q(V ;U
∗
,V (t)) ≥ F (U

∗
,V (t)).

Combining the above two inequalities, we obtain

F (U
∗
,V (t)) + 〈∇VF (U

∗
,V (t)),V (t+0.5) −V (t)〉 = Q(V (t+0.5);U

∗
,V (t))− 1

2η
‖V (t+0.5) −V (t)‖2F

≥ F (U
∗
,V (t+0.5))− 1

2η
‖V (t+0.5) −V (t)‖2F. (C.2.4)
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Moreover, by the strong convexity of F (U
∗
, ·) again, we have

F (U
∗
,V (t+0.5)) ≥ F (U

∗
,V ∗) + 〈∇VF (U

∗
,V ∗),V (t+0.5) −V ∗〉+ 1− δ2k

2
‖V (t+0.5) −V ∗‖2F

≥ F (U
∗
,V ∗) +

1− δ2k
2
‖V (t+0.5) −V ∗‖2F, (C.2.5)

where the second equalities comes from the optimality condition ofV ∗ = argminV F (U
∗
,V ),

i.e.

〈∇VF (U
∗
,V ∗),V (t+0.5) −V ∗〉 ≥ 0.

Combining (C.2.3) and (C.2.4) with (C.2.5), we obtain

F (U
∗
,V (t)) + 〈∇VF (U

∗
,V (t)),V (t+0.5) −V (t)〉

≥ F (U
∗
,V ∗) +

1− δ2k
2
‖V (t+0.5) −V ∗‖2F −

1

2η
‖V (t+0.5) −V (t)‖2F. (C.2.6)

On the other hand, since V (t+0.5) minimizes Q(V ;U
∗
,V (t)), we have

0 ≤ 〈∇Q(V (t+0.5);U
∗
,V (t)),V ∗ −V (t+0.5)〉

≤ 〈∇VF (U
∗
,V (t)),V ∗ −V (t+0.5)〉+ (1+ δ2k)〈V (t+0.5) −V (t),V ∗ −V (t+0.5)〉. (C.2.7)
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Meanwhile, we have

〈∇VF (U
∗
,V (t)),V ∗ −V (t+0.5)〉

= 〈∇VF (U
(t)
,V (t)),V ∗ −V (t+0.5)〉 − E(V (t+0.5),V (t),U

(t)
)‖V ∗ −V (t+0.5)‖2

≥ (1 + δ2k)〈V (t) −V (t+0.5),V ∗ −V (t+0.5)〉 − E(V (t+0.5),V (t),U
(t)
)‖V ∗ −V (t+0.5)‖2

= (1+ δ2k)〈V (t) −V (t+0.5),V ∗ −V (t)〉+ 1

2η
‖V (t) −V (t+0.5)‖2F

−E(V (t+0.5),V (t),U
(t)
)‖V ∗ −V (t+0.5)‖2. (C.2.8)

Combining (C.2.7) with (C.2.8), we obtain

2〈V (t) −V (t+0.5),V ∗ −V (t)〉 ≤ −η(1− δ2k)‖V (t) −V ∗‖22 − η(1− δ2k)‖V (t+0.5) −V ∗‖22

− ‖V (t+0.5) −V (t)‖22 + E(V (t+0.5),V (t),U
(t)
)‖V ∗ −V (t+0.5)‖2. (C.2.9)

Therefore, combining (C.2.6) with (C.2.9), we obtain

‖V (t+0.5) −V ∗‖2F ≤ ‖V (t+0.5) −V (t) +V (t) −V ∗‖2F

= ‖V (t+0.5) −V (t)‖2F + ‖V (t) −V ∗‖2F +2〈V (t+0.5) −V (t),V (t) −V ∗〉

≤ 2η‖V (t) −V ∗‖2F − η(1− δ2k)‖V (t+0.5) −V ∗‖2F

−E(V (t+0.5),V (t),U
(t)
)‖V ∗ −V (t+0.5)‖2.
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Rearranging the above inequality, we obtain

‖V (t+0.5) −V ∗‖F ≤
√
δ2k‖V (t) −V ∗‖F +

2

1+ δ2k
E(V (t+0.5),V (t),U

(t)
),

which completes the proof.

C.2.3 Proof of Lemma 4.4.11

Proof. Before we proceed with the main proof, we first introduce the following

lemma.

Lemma C.2.1. For any matrix U,Ũ ∈ Rm×k and V ,Ṽ ∈ Rn×k , we have

‖UV> − ŨṼ>‖F ≤ ‖U‖2‖V − Ṽ ‖+ ‖Ṽ ‖2‖U − Ũ‖F.

Proof. By linear algebra, we have

‖UV> − ŨṼ>‖F = ‖UV> −UṼ> +UṼ> − ŨṼ>‖F

≤ ‖UV> −UṼ>‖F + ‖UṼ> − ŨṼ>‖F

≤ ‖U‖2‖V − Ṽ ‖F + ‖Ṽ ‖2‖U − Ũ‖F.
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We then proceed with the proof of Lemma 4.4.11. By Lemma C.2.1, we have

‖R(t+0.5)

V
−V ∗(t+1)>V ∗(t)‖F = ‖V

(t+0.5)>
V (t+0.5) −V ∗(t+1)>V ∗(t)‖F

≤ ‖V (t+0.5)‖2‖V (t+0.5) −V ∗(t)‖F + ‖V ∗(t)‖2‖V
(t+0.5) −V ∗(t+1)‖F

≤ ‖V (t+0.5) −V ∗(t)‖F +
2σ1
σk
‖V (t+0.5) −V ∗(t)‖F, (C.2.10)

where the last inequality comes from Lemma 4.4.5. Moreover, we define U ∗(t+1) =

U
∗(t)

(V
∗(t+1)>

V ∗(t))>. Then we can verify

U ∗(t+1)V
∗(t+1)

=U
∗(t)
V ∗(t)>V

∗(t+1)
V
∗(t+1)>

=M∗V
∗(t+1)

V
∗(t+1)>

=M∗,

where the last equality holds, since V
∗(t+1)

V
∗(t+1)>

is exactly the projection matrix

for the row space ofM∗. Thus by Lemma C.2.1, we have

‖U (t+1) −U ∗(t+1)‖F = ‖U
(t)
R
(t+0.5)>
V

−U ∗(t)(V ∗(t+1)>V ∗(t))>‖F

≤ ‖U (t)‖2‖R(t+0.5)

V
−V ∗(t+1)>V ∗(t)‖F + ‖V

∗(t+1)>
V ∗(t)‖2‖U

(t) −U ∗(t)‖F

≤
(
1+

2σ1
σk

)
‖V (t+0.5) −V ∗(t)‖F +σ1‖U

(t) −U ∗(t)‖F,

where the last inequality comes from (C.2.10), ‖V ∗(t+1)‖2 = 1, ‖U (t)‖2 = 1, and

‖V ∗(t)‖2 = σ1.
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C.2.4 Proof of Lemma 4.4.12

Proof. Following similar lines to Appendix C.1.5, we have

‖U (0) −U ∗(0)‖F ≤
σ2
k

4ξσ2
1

. (C.2.11)

In Appendix C.1.5, we have already shown

∥∥∥∥∥
U

(0)
Σ
(0)
V

(0)>

1+ δ2k
−M∗

∥∥∥∥∥
F

≤ 2
√
δ2k(1 + 3δ2k)‖Σ

∗‖F. (C.2.12)

Then by Lemma C.2.1 we have

∥∥∥∥∥
U

(0)
Σ
(0)

1+ δ2k
−V ∗(0)

∥∥∥∥∥
F

=

∥∥∥∥∥
U

(0)>
U

(0)
Σ
(0)
V

(0)>

1+ δ2k
−U ∗(0)>M∗

∥∥∥∥∥
F

≤ ‖U (0)‖2
∥∥∥∥∥
U

(0)
Σ
(0)
V

(0)>

1+ δ2k
−M∗

∥∥∥∥∥
F

+ ‖M∗‖2‖U
(0) −U ∗(0)‖F

≤ 2
√
δ2kk(1 + 3δ2k)σ1 +

σ2
k

4ξσ1
1

, (C.2.13)
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where the last inequality comes from (C.2.11), (C.2.12), ‖M∗‖2 = σ1, and ‖U
(0)‖2 =

1. By triangle inequality, we further have

‖U (0)
Σ
(0) −V ∗(0)‖F ≤ (1 + δ2k)

∥∥∥∥∥
U

(0)
Σ
(0)

1+ δ2k
−V ∗(0)

∥∥∥∥∥
F

+ δ2k‖V ∗(0)‖F
(i)
≤(1 + δ2k)

(
2
√
δ2kk(1 + 3δ2k)σ1 +

σ2
k

4ξσ1

)
+ δ2kσ1

√
k

(ii)
≤

(
σ3
k

9σ3
1ξ

+
σ2
k

3σ3
1ξ

2
+

σ3
k

192ξ3σ2
1

)
σ1

(iii)
≤ σ2

k

2ξσ1
,

where (i) comes from (C.2.13) and ‖V ∗(0)‖F = ‖M∗‖F ≤ σ1
√
k, (ii) comes from (4.4.16),

and (iii) comes from the definition of ξ and σ1 ≥ σk .

C.2.5 Proof of Corollary 4.4.13

Proof. Since (4.4.17) ensures that (4.4.13) of Lemma 4.4.9 holds, we have

‖V (t+0.5) −V ∗(t)‖F ≤
√
δ2k‖V (t) −V ∗(t)‖F +

2

1+ δ2k
E(V (t+0.5),V (t),U

(t)
)

(i)
≤
√
δ2k‖V (t) −V ∗(t)‖F +

2

1+ δ2k
· (1 + δ2k)σk

ξ
‖U (t) −U ∗(t)‖F

(ii)
≤ σ2

k

12ξσ2
1

‖V (t) −V ∗(t)‖F +
2σk
ξ
‖U (t) −U ∗(t)‖F

(iii)
≤ σ2

k

12ξσ2
1

· σ
2
k

2ξσ1
+
2σk
ξ
· σ

2
k

4ξσ2
1

(iv)
≤ 13σ3

k

24ξ2σ2
1

(v)
≤ σk

4
, (C.2.14)

where (i) comes from Lemma 4.4.10, (ii) and (iii) come from (4.4.17), and (iv) and

(v) come from the definition of ξ and σk ≤ σ1. Since (C.2.14) ensures that (4.4.3) of
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Lemma 4.4.5, then we obtain

‖V (t+1) −V ∗(t+1)‖F ≤
2

σk
‖V (t+0.5) −V ∗(t)‖F

(i)
≤ 2
√
δ2k
σk
‖V (t) −V ∗(t)‖F +

4

ξ
‖U (t) −U ∗(t)‖F

(ii)
≤

(
σk

3ξσ1
+
4

ξ

)
· σ

2
k

4ξσ2
1

(iii)
≤ σ2

k

4ξσ2
1

, (C.2.15)

where (i) and (ii) come from (C.2.14), and (iii) comes from the definition of ξ and

σ1 > σk . Moreover, since (C.2.14) ensures that (4.4.15) of Lemma 4.4.11 holds, then

we have

‖U (t) −U ∗(t+1)‖F ≤
3σ1
σk
‖V (t+0.5) −V ∗(t)‖F +σ1‖U

(t) −U ∗(t)‖F
(i)
≤ 3σ1

√
δ2k

σk
‖V (t) −V ∗(t)‖F +

(
6

ξ
+1

)
σ1‖U

(t) −U ∗(t)‖F
(ii)
≤ 3σ1
σk
· σ3

k

12ξσ3
1

· σ
2
k

2ξσ1
+
(
6

ξ
+1

)
· σ

2
k

4ξσ1

=



σ2
k

4ξ2σ2
1

+
3

ξ
+
1

2



σ2
k

2ξσ1

(iii)
≤ σ2

k

2ξσ1
,

where (i) comes from (C.2.14), (ii) comes from (4.4.17), and (iii) comes from the

definition of ξ and σ1 ≥ σk .
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C.3 Partition Algorithm for Matrix Comple-

tion

Algorithm 10: The observation set partition algorithm for matrix completion.
It guarantees the independence among all 2T +1 output observation sets.

Input: W , ρ̄

ρ̃ = 1− (1− ρ̄) 1
2T+1

For t← 0, ....,2T

ρ̃t =
(mn)!ρ̄t+1(1− ρ̄)mn−t−1
ρ̄(mn− t − 1)!(t +1)!

W0 = ∅, ...,W2T = ∅
For every (i, j) ∈W

Sample t from {0, ...,2T } with probability {ρ̃0, ..., ρ̃2T }
Sample (w/o replacement) a set B such that |B| = t from {0, ...,2T } with
equal probability
Add (i, j) toW` for all ` ∈ B

Return: {Wt}2Tt=0, ρ̃

C.4 Initialization Procedures forMatrix Com-

pletion

C.5 Proof of Theorem 4.5.2

We present the technical proof for matrix completion. Before we proceed with

the main proof, we first introduce the following lemma.
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Algorithm 11: The initialization procedure INTU (·) for matrix completion.
It guarantees that the initial solutions satisfy the incoherence condition
throughout all iterations.

Input: M̃
Parameter: Incoherence parameter µ
(Ũ , D̃, Ṽ )← KSVD(M̃)

Ũ tmp← argmin
U

‖U − Ũ‖2F subject to max
i
‖Ui∗‖2 ≤ µ

√
k/m

(U
out
,Rout

U
)←QR(Ũ tmp)

Ṽ tmp← argmin
V
‖V − Ṽ tmp‖2F subject to max

j
‖Vj∗‖2 ≤ µ

√
k/n

(V
out
,Rout

V
)←QR(Ṽ tmp)

V out = V
out

(U
out>

M̃V
out

)>

Return: U
out

, V out

Algorithm 12: The initialization procedure INTV (·) for matrix completion.
It guarantees that the initial solutions satisfy the incoherence condition
throughout all iterations.

Input: M̃
Parameter: Incoherence parameter µ
(Ũ , D̃, Ṽ )← KSVD(M̃)

Ṽ tmp← argmin
V
‖V − Ṽ ‖2F subject to max

j
‖Vj∗‖2 ≤ µ

√
k/n

(V
out
,Rout

V
)←QR(Ṽ tmp)

Ũ tmp← argmin
U

‖U − Ũ tmp‖2F subject to max
i
‖Ui∗‖2 ≤ µ

√
k/m

(U
out
,Rout

U
)←QR(Ũ tmp)

Uout =U
out

(U
out>

M̃V
out

)

Return: V
out

, Uout

Lemma C.5.1. [[98]] Suppose that the entry observation probability ρ̄ ofW satis-

fies (4.5.3). Then the output sets {Wt}2Tt=0, of Algorithm 10 are equivalent to 2T +1

observation sets, which are independently generated with the entry observation
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probability

ρ̃ ≥ C7µ
2k3 logn

m
(C.5.1)

for some constant C7.

See [98] for the proof of Lemma C.5.1. Lemma C.5.1 ensures the independence

among all observation sets generated by Algorithm 10. To make the convergence

analysis for matrix completion comparable to that for matrix sensing, we rescale

both the objective function FW and step size η by the entry observation probability

ρ̃ of each individual set, which is also obtained by Algorithm 10. In particular, we

define

F̃W (U,V ) =
1

2ρ̃
‖PW (UV>)−PW (M∗)‖2F and η̃ = ρ̃η. (C.5.2)

For notational simplicity, we assume that at the t-th iteration, there exists a matrix

factorization ofM∗ as

M∗ =U
∗(t)
V ∗(t)>,

where U
∗(t) ∈ Rm×k is an orthonormal matrix. Then we define several nk × nk ma-

258



APPENDIX C. SUPPORTING PROOF FOR CHAPTER 4

trices

S (t) =




S
(t)
11 · · · S

(t)
1k

...
. . .

...

S
(t)
k1 · · · S

(t)
kk




with S
(t)
pq =




1

ρ̃

∑

i:(i,1)∈W2t+1

U
(t)
ipU

(t)
iq · · · 0

...
. . .

...

0 · · · 1

ρ̃

∑

i:(i,n)∈W2t+1

U
(t)
ipU

(t)
iq




,

G(t) =




G
(t)
11 · · · G

(t)
1k

...
. . .

...

G
(t)
k1 · · · G

(t)
kk




with G
(t)
pq =




1

ρ̃

∑

i:(i,1)∈W2t+1

U
∗(t)
ip U

∗(t)
iq · · · 0

...
. . .

...

0 · · · 1

ρ̃

∑

i:(i,n)∈W2t+1

U
∗(t)
ip U

∗(t)
iq




,

J (t) =




J
(t)
11 · · · J

(t)
1k

...
. . .

...

J
(t)
k1 · · · J

(t)
kk




with J
(t)
pq =




1

ρ̃

∑

i:(i,1)∈W2t+1

U
(t)
ipU

∗(t)
iq · · · 0

...
. . .

...

0 · · · 1

ρ̃

∑

i:(i,n)∈W2t+1

U
(t)
ipU

∗(t)
iq




,

K (t) =




K
(t)
11 · · · K

(t)
1k

...
. . .

...

K
(t)
k1 · · · K

(t)
kk




with K
(t)
pq =U

(t)>
∗p U

∗(t)
∗q In,

where 1 ≤ p,q ≤ k. Note that S (t) andG(t) are the partial Hessianmatrices∇2V F̃W2t+1
(U

(t)
,V )
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and ∇2V F̃W2t+1
(U
∗(t)
,V ) with respect to a vectorized V , i.e., vec(V ).

C.5.1 Proof of Theorem 4.5.2 (Alternating Exact Min-

imization)

Proof. Throughout the proof for alternating exact minimization, we define a con-

stant ξ ∈ (2,∞) to simplify the notation. We define the approximation error of the

inexact first order oracle as

E(V (t+0.5),V (t+0.5),U
(t)
) = ‖∇V F̃W2t+1

(U
∗(t)
,V (t+0.5))−∇V F̃W2t+1

(U
(t)
,V (t+0.5))‖F.

To simplify our later analysis, we first introduce the following event.

E (t)U =

‖U
(t) −U ∗(t)‖F ≤

(1− δ2k)σk
4ξ(1 + δ2k)σ1

and max
i
‖U (t)

i∗ ‖2 ≤ 2µ

√
k

m

 .

We then present two important consequences of E (t)U .

Lemma C.5.2. Suppose that E (t)U holds, and ρ̃ satisfies (C.5.1). Then we have

P

(
1+ δ2k ≥ σmax(S

(t)) ≥ σmin(S
(t)) ≥ 1− δ2k

)
≥ 1−n−3,
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where δ2k is some constant satisfying

δ2k ≤
σ6
k

192ξ2kσ6
1

. (C.5.3)

The proof of Lemma C.5.2 is provided in Appendix C.6.1. Lemma C.5.2 is

also applicable to G(t), since G(t) shares the same structure with S (t), and U
∗(t)

is

incoherent with parameter µ.

Lemma C.5.3. Suppose that E (t)U holds, and ρ̃ satisfies (C.5.1). Then for an inco-

herent V with parameter 3σ1µ, we have

P

(
‖(S (t)K (t) − J (t)) · vec(V )‖2 ≤ 3kσ1δ2k‖U

(t) −U ∗(t)‖F
)
≥ 1−n−3,

where δ2k is defined in (C.5.3).

The proof of Lemma C.5.3 is provided in Appendix C.6.2. Note that Lemma

C.5.3 is also applicable to ‖(G(t)K (t)−J (t))·vec(V )‖2, sinceG(t) shares the same struc-

ture with S (t), and U
∗(t)

is incoherent with parameter µ.

We then introduce another two events:

E (t)U,1 = {1+ δ2k ≥ σmax(S
(t)) ≥ σmin(S

(t)) ≥ 1− δ2k},

E (t)U,2 = {1+ δ2k ≥ σmax(G
(t)) ≥ σmin(G

(t)) ≥ 1− δ2k},

where δ2k is defined in E (t)U . By Lemmas C.5.2, we can verify that E (t)U implies E (t)U,1
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and E (t)U,2 with probability at least 1 − 2n−3. The next lemma shows that E (t)U,1 and

E (t)U,2 imply the strong convexity and smoothness of F̃W2t+1
(U,V ) in V at U = U

(t)

and U
∗(t)

.

Lemma C.5.4. Suppose that E (t)U,1 and E (t)U,2 hold. Then for any V , V ′ ∈ R
n×k , we

have

1+ δ2k
2
‖V ′ −V ‖2F ≥ F̃W2t+1

(U
(t)
,V ′)−FW2t+1

(U
(t)
,V )

− 〈∇V F̃W2t+1
(U

(t)
,V ),V ′ −V 〉 ≥ 1− δ2k

2
‖V ′ −V ‖2F,

1+ δ2k
2
‖V ′ −V ‖2F ≥ F̃W2t+1

(U
∗(t)
,V ′)−FW2t+1

(U
∗(t)
,V )

− 〈∇V F̃W2t+1
(U
∗(t)
,V ),V ′ −V 〉 ≥ 1− δ2k

2
‖V ′ −V ‖2F.

Since S (t) and G(t) are essentially the partial Hessian matrices ∇2V F̃W2t+1
(U

(t)
,V )

and ∇2V F̃W2t+1
(U
∗(t)
,V ), the proof of C.5.4 directly follows Appendix C.1.1, and is

therefore omitted.

We then introduce another two events:

E (t)U,3 = {‖(S (t)K (t) − J (t)) · vec(V ∗(t))‖2 ≤ 3kσ1δ2k‖U
(t) −U ∗(t)‖F},

E (t)U,4 = {‖(G(t)K (t) − J (t)) · vec(V ∗(t))‖2 ≤ 3kσ1δ2k‖U
(t) −U ∗(t)‖F},

where δ2k is defined in E (t)U . We can verify that E (t)U implies E (t)U,3 and E (t)U,4 with

probability at least 1−2n−3 by showing the incoherence of V ∗(t). More specifically,
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let V ∗(t) = V
∗(t)
R
∗(t)
V denote the QR decomposition of V ∗(t). We have

‖V ∗(t)j∗ ‖2 = ‖R
∗(t)>
V V ∗(t)>ej‖2 ≤ ‖R∗(t)V ‖2‖V ∗(t)>ej‖2 ≤ σ1‖V

∗(t)
j∗ ‖2 ≤ σ1µ

√
k

n
. (C.5.4)

Then Lemma C.5.3 are applicable to E (t)U,3 and E
(t)
U,4.

We then introduce the following key lemmas, which will be used in the main

proof.

Lemma C.5.5. Suppose that E (t)U , E (t)U,1,..., and E
(t)
U,4 hold. We then have

E(V (t+0.5),V (t+0.5),U
(t)
) ≤ (1− δ2k)σk

2ξ
‖U (t) −U ∗(t)‖F.

Lemma C.5.5 shows that the approximation error of the inexact first order or-

acle for updating V diminishes with the estimation error of U (t), when U (t) is suf-

ficiently close to U ∗(t). It is analogous to Lemma 4.4.3 in the analysis of matrix

sensing, and its proof directly follows C.1.2, and is therefore omitted.

Lemma C.5.6. Suppose that E (t)U , E (t)U,1,..., and E
(t)
U,4 hold. We then have

‖V (t+0.5) −V ∗(t)‖F ≤
1

1− δ2k
E(V (t+0.5),V (t),U

(t)
).

Lemma C.5.6 illustrates that the estimation error of V (t+0.5) diminishes with

the approximation error of the inexact first order oracle. It is analogous to Lemma

4.4.4 in the analysis of matrix sensing, and its proof directly follows Appendix
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C.1.3, and is therefore omitted.

Lemma C.5.7. Suppose that V (t+0.5) satisfies

‖V (t+0.5) −V ∗(t)‖F ≤
σk
8
. (C.5.5)

Then there exists a factorization of M∗ = U ∗(t+1)V
∗(t+1)>

such that V
∗(t+1) ∈ Rn×k is

an orthonormal matrix, and satisfies

max
j
‖V (t+1)

j∗ ‖2 ≤ 2µ

√
2k

n
and ‖V (t+1) −V ∗(t+1)‖F ≤

4

σk
‖V (t+0.5) −V ∗‖F.

The proof of Lemma C.5.7 is provided in Appendix C.6.3. Lemma C.5.7 en-

sures that the incoherence factorization enforces V
(t+1)

to be incoherent with pa-

rameter 2µ.

Lemma C.5.8. Suppose that ρ̃ satisfies (C.5.1). Then E (0)U holds with high proba-

bility.

The proof of Lemma C.5.8 is provided in Appendix C.6.4. Lemma C.5.8 shows

that the initial solution U
(0)

is incoherent with parameter 2µ, while achieving a

sufficiently small estimation error with high probability. It is analogous to Lemma

4.4.6 for matrix sensing.

Combining Lemmas C.5.5, C.5.6, and C.5.7, we obtain the next corollary for a

complete iteration of updating V .
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Corollary C.5.9. Suppose that E (t)U holds. Then

E (t)V =

‖V
(t+1) −V ∗(t+1)‖F ≤

(1− δ2k)σk
4ξ(1 + δ2k)σ1

and max
j
‖V (t+1)

j∗ ‖2 ≤ 2µ

√
k

m



holds with probability at least 1− 4n−3. Moreover, we have

‖V (t+1) −V ∗‖F ≤
2

ξ
‖U (t) −U ∗(t)‖F and ‖V (t+0.5) −V ∗(t)‖F ≤

σk
2ξ
‖U (t) −U ∗(t)‖F

with probability at least 1− 4n−3.

The proof of Corollary C.5.9 is provided in Appendix C.6.5. Since the alter-

nating exact minimization algorithm updates U and V in a symmetric manner,

we can establish similar results for a complete iteration of updating U in the next

corollary.

Corollary C.5.10. Suppose E (t)V holds. Then E (t+1)U holds with probability at least

1− 4n−3. Moreover, we have

‖U (t+1) −U ∗(t+1)‖F ≤
2

ξ
‖V (t+1) −V ∗(t+1)‖F and ‖U (t+0.5) −U ∗(t+1)‖F ≤

σk
2ξ
‖V (t+1) −V ∗(t+1)‖F

with probability at least 1− 4n−3.

The proof of Lemma C.5.10 directly follows Appendix C.6.5, and is therefore

omitted.
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We proceed with the proof of Theorem 4.5.2 conditioning on E (0)U . Similar to

Section 4.3.3, we can recursively apply Corollaries C.5.9 and C.5.10, and show

that {E (t)U }Tt=1 and {E (t)V }Tt=0 simultaneously hold with probability at least 1− 8Tn−3.

Then conditioning on all {E (t)U }Tt=0 and {E
(t)
V }Tt=0, we have

‖V (T ) −V ∗(T )‖F ≤
2

ξ
‖U (T−1) −U ∗(T−1)‖F ≤

(
2

ξ

)2
‖V (T−1) −V ∗(T−1)‖F

≤
(
2

ξ

)2T−1
‖U (0) −U ∗(0)‖F ≤

(
2

ξ

)2T
(1− δ2k)σk
8(1+ δ2k)σ1

, (C.5.6)

where the last inequality comes from the definition of E (0)U . Thus we only need

T =

⌈
1

2
log−1

(
ξ

2

)
log

(
(1− δ2k)σk
4(1+ δ2k)σ1

· 1
ε

)⌉

iterations such that

‖V (T ) −V ∗(T )‖F ≤
(
2

ξ

)2T
(1− δ2k)σk
8(1+ δ2k)σ1

≤ ε
2
. (C.5.7)

Meanwhile, by (C.5.7) and Corollary C.5.10, we have

‖U (T−0.5) −U ∗(T )‖F ≤
σk
2ξ
‖V (T ) −V ∗(T )‖F ≤

(
2

ξ

)2T (1− δ2k)σ2
k

16ξ(1 + δ2k)σ1
,
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where the last inequality comes from (C.5.6). Thus we only need

T =



1

2
log−1

(
ξ

2

)
log

(
(1− δ2k)σ2

k

8ξ(1 + δ2k)
· 1
ε

)

iterations such that

‖U (T−0.5) −U ∗(T )‖F ≤
(
2

ξ

)2T (1− δ2k)σ2
k

16ξ(1 + δ2k)σ1
≤ ε

2σ1
. (C.5.8)

We then combine (C.5.7) and (C.5.8) by following similar lines to Section 4.4.2,

and show

‖M (T ) −M∗‖F ≤ ε. (C.5.9)

The above analysis only depends on E (0)U . Because Lemma C.5.8 guarantees that

E (0)U holds with high probability, given T � n3, (C.5.9) also holds with high proba-

bility.

C.5.2 Proof of Theorem 4.5.2 (Alternating Gradient

Descent)

Proof. Throughout the proof for alternating gradient descent, we define a suffi-

ciently large constant ξ . Moreover, we assume that at the t-th iteration, there
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exists a matrix factorization ofM∗ as

M∗ =U
∗(t)
V ∗(t)>,

where U
∗(t) ∈ Rm×k is an orthonormal matrix. We define the approximation error

of the inexact first order oracle as

E(V (t+0.5),V (t),U
(t)
) ≤ ‖F̃W2t+1

(U
(t)
,V (t))−∇V F̃W2t+1

(U
∗(t)
,V (t))‖F

To simplify our later analysis, we introduce the following event.

E (t)U =

max
i
‖U (t)

i∗ ‖2 ≤ 2µ

√
k

n
, ‖U (t) −U ∗(t)‖F ≤

σ2
k

4ξσ2
1

max
i
‖V (t)

j∗ ‖2 ≤ 2σ1µ

√
k

n
, and ‖V (t) −V ∗(t)‖F ≤

σ2
k

2ξσ1

.

As has been shown in Appendix C.5.1, E (t)U implies the following four events with

probability at least 1− 4n−3,

E (t)U,1 =
{
1+ δ2k ≥ σmax(S

(t)) ≥ σmin(S
(t)) ≥ 1− δ2k

}
,

E (t)U,2 =
{
1+ δ2k ≥ σmax(G

(t)) ≥ σmin(G
(t)) ≥ 1− δ2k

}
,

E (t)U,3 =
{
‖(S (t)K (t) − J (t)) · vec(V ∗(t))‖2 ≤ 3kσ1δ2k‖U

(t) −U ∗(t)‖F
}
,

E (t)U,4 =
{
‖(G(t)K (t) − J (t)) · vec(V ∗(t))‖2 ≤ 3kσ1δ2k‖U

(t) −U ∗(t)‖F
}
,
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where δ2k is defined in (C.5.3). In Appendix C.5.1, we also show that E (t)U,1 and E
(t)
U,2

imply the strong convexity and smoothness of F̃W2t+1
(U,V ) at U =U

(t)
and U

∗(t)
.

Moreover, we introduce the following two events,

E (t)U,5 =
{
‖(S (t)K (t) − J (t)) · vec(V (t) −V ∗(t))‖2 ≤ 3kσ1δ2k‖U

(t) −U ∗(t)‖F
}
,

E (t)U,6 =
{
‖(G(t)K (t) − J (t)) · vec(V (t) −V ∗(t))‖2 ≤ 3kσ1δ2k‖U

(t) −U ∗(t)‖F
}
,

where δ2k is defined in (C.5.3). We can verify that E (t)U implies E (t)U,5 and E (t)U,6 with

probability at least 1−2n−3 by showing the incoherence of V (t)−V ∗(t). More specif-

ically, we have

max
j
‖V (t)

j∗ −V
∗(t)
j∗ ‖2 ≤max

i
‖V (t)

j∗ ‖2 +max
j
‖V ∗(t)j∗ ‖2 ≤ 3σ1µ

√
k

n
,

where the last inequality follows the definition of E (t)U and the incoherence of V ∗(t)

as shown in (C.5.4). Then Lemma C.5.3 are applicable to E (t)U,5 and E
(t)
U,6

We then introduce the following key lemmas, which will be used in the main

proof.

Lemma C.5.11. Suppose that E (t)U , E (t)U,1, ..., and E
(t)
U,6 hold. Then we have

E(V (t+0.5),V (t),U
(t)
) ≤ (1 + δ2k)σk

ξ
‖U (t) −U ∗‖F.

Lemma C.5.11 shows that the approximation error of the inexact first order
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oracle for updating V diminishes with the estimation error of U (t), when U (t) is

sufficiently close to U ∗(t). It is analogous to Lemma 4.4.9 in the analysis of matrix

sensing, and its proof directly follows C.2.1, and is therefore omitted.

Lemma C.5.12. Suppose that E (t)U , E (t)U,1, ..., and E
(t)
U,6 hold. Meanwhile, the rescaled

step size parameter η̃ satisfies

η̃ =
1

1+ δ2k
.

Then we have

‖V (t+0.5) −V ∗(t)‖F ≤
√
δ2k‖V (t) −V ∗(t)‖F +

2

1+ δ2k
E(V (t+0.5),V (t),U

(t)
).

Lemma C.5.12 illustrates that the estimation error of V (t+0.5) diminishes with

the approximation error of the inexact first order oracle. It is analogous to Lemma

4.4.10 in the analysis of matrix sensing. Its proof directly follows Appendix C.2.2,

and is therefore omitted.

Lemma C.5.13. Suppose that V (t+0.5) satisfies

‖V (t+0.5) −V ∗(t)‖F ≤
σk
8
.
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We then have

max
j
‖V (t+1)

j∗ ‖2 ≤ 2µ

√
2k

n
and max

i
‖U (t+1)

i∗ ‖2 ≤ 2σ1µ

√
2k

m

Moreover, there exists a factorization ofM∗ =U ∗(t+1)V
∗(t+1)>

such that V
∗(t+1)

is an

orthonormal matrix, and

‖V (t+1) −V ∗(t)‖F ≤
4

σk
‖V (t+0.5) −V ∗(t)‖F,

‖U (t) −U ∗(t+1)‖F ≤
5σ1
σk
‖V (t+0.5) −V ∗(t)‖F +σ1‖U

(t) −U ∗(t)‖F.

The proof of Lemma C.5.7 is provided in Appendix C.7.1. Lemma C.5.13 guar-

antees that the incoherence factorization enforces V
(t+1)

and U (t) to be incoherent

with parameters 2µ and 2σ1µ respectively. The next lemma characterizes the esti-

mation error of the initial solutions.

Lemma C.5.14. Suppose that ρ̃ satisfies (C.5.1). Then E (0)U holds with high proba-

bility.

The proof of Lemma C.5.14 is provided in Appendix C.7.2. Lemma C.5.14

ensures that the initial solutions U (0), and V (0) are incoherent with parameters

2µ and 2σ1µ respectively, while achieving sufficiently small estimation errors with

high probability. It is analogous to Lemma 4.4.12 in the analysis of matrix sensing.

Combining Lemmas C.5.11, C.5.12, and C.5.7, we obtain the following corol-
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lary for a complete iteration of updating V .

Corollary C.5.15. Suppose that E (t)U holds. Then

E (t)V =

max
j
‖V (t)

j∗ ‖2 ≤ 2µ

√
k

m
, ‖V (t) −V ∗(t)‖F ≤

σ2
k

4ξσ2
1

,

max
i
‖U (t)

i∗ ‖2 ≤ 2σ1µ

√
k

m
, and ‖U (t) −U ∗(t+1)‖F ≤

σ2
k

2ξσ1



holds with probability at least 1− 6n−3. Moreover, we have

‖V (t+0.5) −V ∗(t)‖F ≤
√
δ2k‖V (t) −V ∗(t)‖F +

2σk
ξ
‖U (t) −U ∗(t)‖F, (C.5.10)

‖V (t+1) −V ∗(t)‖F ≤
4
√
δ2k
σk
‖V (t) −V ∗(t)‖F +

8

ξ
‖U (t) −U ∗(t)‖F, (C.5.11)

‖U (t) −U ∗(t+1)‖F ≤
5σ1
√
δ2k

σk
‖V (t) −V ∗(t)‖F +

(
10

ξ
+1

)
σ1‖U

(t) −U ∗(t)‖F, (C.5.12)

with probability at least 1− 6n−3.

The proof of Corollary C.5.15 is provided in Appendix C.7.3. Since the algo-

rithm updates U and V in a symmetric manner, we can establish similar results

for a complete iteration of updating U in the next corollary.

Corollary C.5.16. Suppose E (t)V holds. Then E (t+1)U holds with probability at least
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1− 6n−3. Moreover, we have

‖U (t+0.5) −U ∗(t+1)‖F ≤
√
δ2k‖U (t) −U ∗(t+1)‖F +

2σk
ξ
‖V (t+1) −V ∗(t+1)‖F, (C.5.13)

‖U (t+1) −U ∗(t+1)‖F ≤
4
√
δ2k
σk
‖U (t) −U ∗(t+1)‖F +

8

ξ
‖V (t+1) −V ∗(t+1)‖F, (C.5.14)

‖V (t+1) −V ∗(t+1)‖F ≤
5σ1
√
δ2k

σk
‖U (t) −U ∗(t+1)‖F +

(
10σ1
ξ

+1
)
‖V (t+1) −V ∗(t+1)‖F,

(C.5.15)

with probability at least 1− 6n−3.

The proof of Corollary C.5.16 directly follows Appendix C.7.3, and is therefore

omitted.

We then proceed with the proof of Theorem 4.5.2 conditioning on E (0)U . Similar

to Section 4.3.3, we can recursively apply Corollaries C.5.15 and C.5.16, and show

that {E (t)U }Tt=1 and {E
(t)
V }Tt=0 simultaneously hold with probability at least 1−12Tn−3.

For simplicity, we define

φV (t+1) = ‖V (t+1) −V ∗(t+1)‖F, φV (t+0.5) = ‖V (t+0.5) −V ∗(t)‖F, φV (t+1) = σ1‖V
(t+1) −V ∗(t+1)‖F,

φU (t+1) = ‖U (t+1) −U ∗(t+2)‖F, φU (t+0.5) = ‖U (t+0.5) −U ∗(t+1)‖F, φU (t+1) = σ1‖U
(t+1) −U ∗(t+1)‖F.

We then follow similar lines to Section 4.4.3 and Appendix C.5.1, and show that

‖M (T ) −M‖F ≤ ε with high probability.
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C.5.3 Proof of Theorem 4.5.2 (Gradient Descent)

Proof. The convergence analysis of the gradient descent algorithm is similar to

alternating gradient descent. The only difference is, for updating U , gradient de-

scent uses V = V
(t)

instead of V = V
(t+1)

to calculate the gradient atU =U (t). Then

everything else directly follows Appendix C.5.2, and is therefore omitted.

C.6 Lemmas for Theorem 4.5.2 (Alternating

Exact Minimization)

C.6.1 Proof of Lemma C.5.2

Proof. For notational convenience, we omit the index t in U
∗(t)

and V ∗(t), and de-

note them by U
∗
and V ∗ respectively. Before we proceed with the main proof, we

first introduce the following lemma.

Lemma C.6.1. Suppose that ρ̃ satisfies (C.5.1). For any z ∈ Rm and w ∈ Rn such

that
∑
i zi = 0, and a t ∈ {0, ...,2T }, there exists a universal constant C such that

∑

(i,j)∈Wt

ziwj ≤ Cm1/4n1/4ρ̃1/2‖z‖2‖w‖2

with probability at least 1−n−3.
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The proof of Lemma C.6.1 is provided in [77], and therefore omitted.

We then proceed with the proof of Lemma C.5.2. For j = 1, ..., k, we define S (j,t),

J (j,t), and K (j,t) as

S (j,t) =
1

ρ̃

∑

i:(i,j)∈W2t+1

U
(t)
i∗ U

(t)>
i∗ , J (j,t) =

1

ρ̃

∑

i:(i,j)∈W2t+1

U
(t)
i∗ U

∗>
i∗ , and K (j,t) =U

(t)>
U
∗
.

We then consider an arbitraryW ∈ Rn×k such that ‖W ‖F = 1 and w = vec(W ). Then

we have

max
j
σmax(S

(j,t)) ≥ w>S (t)w =
∑

j=1

W>j∗S
(j,t)Wj∗ ≥min

j
σmin(S

(j,t)). (C.6.1)

SinceW2t+1 is drawn uniformly at random, we can use mn independent Bernoulli

random variables δij ’s to describe W2t+1, i.e., δij
i.i.d.∼ Bernoulli(ρ̃) with δij = 1 de-

noting (i, j) ∈ W2t+1 and 0 denoting (i, j) < W2t+1. We then consider an arbitrary

z ∈ Rk with ‖z‖2 = 1, and define

Y = z>S (j,t)z =
1

ρ̃

∑

i:(i,j)∈W2t+1

(
z>U

(t)
i∗
)2

=
1

ρ̃

∑

i

δij
(
z>U

(t)
i∗
)2
.

Then we have

EY = z>U
(t)
U

(t)>
z = 1 and EY 2 =

1

ρ̃

∑

i

δij
(
z>U

(t)
i∗
)4 ≤ 4µ2k

mρ̃

∑

i

(
z>U

(t)
i∗
)2

=
4µ2k

mρ̃
,
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where the last inequality holds, since U
(t)

is incoherent with parameter 2µ. Simi-

larly, we can show

max
i

(
z>U

(t)
i∗
)2 ≤ 4µ2k

mρ̃
.

Thus by Bernstein’s inequality, we obtain

P (|Y −EY | ≥ δ2k) ≤ exp


−

3δ22k
6+2δ2k

mρ̃

4µ2k


 .

Since ρ̃ and δ2k satisfy (4.5.3) and (C.5.3), then for a sufficiently large C7, we have

P (|Y −EY | ≥ δ2k) ≤
1

n3
,

which implies that for any z and j , we have

P

(
1+ δ2k ≥ z>S (j,t)z ≥ 1− δ2k

)
≥ 1−n−3. (C.6.2)

Combining (C.6.2) with (C.6.1), we complete the proof.

276



APPENDIX C. SUPPORTING PROOF FOR CHAPTER 4

C.6.2 Proof of Lemma C.5.3

Proof. For notational convenience, we omit the index t in U
∗(t)

and V ∗(t), and de-

note them by U
∗
and V ∗ respectively. Let H (j,t) = S (j,t)K (j,t) − J (j,t). We have

H (j,t) =
1

ρ̃

∑

i:(i,j)∈W2t+1

U
(t)
i∗ U

(t)>
i∗ U

(t)>
U
∗ −U i∗U

>
i∗ =

1

ρ̃

∑

i:(i,j)∈W2t+1

H (i,j,t).

We consider an arbitrary Z ∈ R
n×k such that ‖Z‖F = 1. Let z = vec(Z) and v =

vec(V ). Since

∑

i

H (i,j,t) =U
(t)>

U
(t)
U

(t)>
U
∗ −U (t)>

U
∗
= 0,

then by Lemma C.6.1, we have

z>(S (t)K (t) − J (t))v =
∑

j

Z>∗j (S
(j,t)K (t) − J (j,t))Vj∗ ≤

1

ρ

∑

p,q

√∑

j

Z2
pj(Vjq)

2

√∑

i

[H (i,j,t)]2pq.

Meanwhile, we have

∑

i

[H (i,j,t)]2pq =
∑

i

(U
(t)
ip )

2(U
(t)>
i∗ U

(t)>
U
∗
∗q −U

∗
iq)

2 ≤max
i

(U
(t)
ip )

2
∑

i

(U
(t)>
i∗ U

(t)>
U
∗
∗q −U

∗
iq)

2

=max
i

(U
(t)
ip )

2(1− ‖U (t)>
U
∗
∗q‖22) ≤max

i
‖U (t)

i∗ ‖22(1− (U
(t)>
∗q U

∗
∗q)

2)

(i)
≤ 4µ2k

m
(1−U (t)>

∗q U
∗
∗q)(1 +U

(t)>
∗q U

∗
∗q)

(ii)
≤ 4µ2k

m
‖U ∗q −U

∗
∗q‖22 ≤

4
√
2µ2k

m
‖U (t) −U ∗‖2F,

277



APPENDIX C. SUPPORTING PROOF FOR CHAPTER 4

where (i) comes from the incoherence of U
(t)
, and (ii) comes from U

(t)>
∗q U

∗
∗q ≤

‖U (t)
∗q ‖2‖U

∗
∗q‖2 ≤ 1.

Combining the above inequalities, by the incoherence of V and Bernstein’s in-

equality, we have

z>(S (t)K (t) − J (t))v ≤
∑

p,q

4σ1µ
2k

mρ̃
‖U (t) −U ∗‖F‖Z∗p‖2 ≤ 3kσ1δ2k‖U

(t) −U ∗‖F

with probability at least 1−n−3, where the last inequality comes from the incoher-

ence of V ,
∑
p ‖Z∗p‖2 ≤

√
k, and a sufficiently large ρ̃. Since z is arbitrary, then we

have

P

(
‖(S (t)K (t) − J (t))v‖2 ≤ 3δ2kkσ1‖U

(t) −U ∗‖F
)
≥ 1−n−3,

which completes the proof.

C.6.3 Proof of Lemma C.5.7

Proof. Recall that we have W in = V (t+0.5) and V
(t+1)

=W out in Algorithm 9. Since

V (t+0.5) satisfies (4.4.5) of Lemma 4.4.5, then there exists a factorization of M∗ =

U ∗(t+0.5)V
∗(t+0.5)>

such that V
∗(t+0.5)

is an orthonormal matrix, and satisfies

‖W in −V ∗(t+0.5)‖F ≤
2

σk
‖W in −V ∗(t)‖F ≤

2

σk
· σk
8

=
1

4
. (C.6.3)
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Since the Frobenius norm projection is contractive, then we have

‖W̃ −V ∗(t+0.5)‖F ≤ ‖W
in −V ∗(t+0.5)‖F ≤

1

4
. (C.6.4)

Since V
∗(t+0.5)

is an orthonormal matrix, by Lemma C.1.4, we have

‖W out −V ∗(t+1)‖F ≤
√
2‖V ∗(t+0.5)†‖2‖W̃ −V

∗(t+0.5)‖F
1− ‖W in −V ∗(t+0.5)‖F‖V

∗(t+0.5)†‖2

≤ 2‖W̃ −V ∗(t+0.5)‖F ≤
1

2
, (C.6.5)

where V
∗(t+1)

= V
∗(t+0.5)

O for some unitary matrixO ∈ Rk×k , and the last inequality

comes from (C.6.4). Moreover, since V
∗(t+1)

is an orthonormal matrix, then we have

σmin(W̃ ) ≥ σmin(V
∗(t+1)

)− ‖W̃ −V ∗(t+1)‖F ≥ 1− 1
2
=
1

2
.

where the last inequality comes from (C.6.5). Since W
out

= W̃ (R
tmp

W̃
)−1, then we

have

‖W out
i∗ ‖2 ≤ ‖W

out>
ei‖2 = ‖(RW̃ )−1‖2‖W̃>ei‖2 ≤ σ−1min(W̃ )µ

√
k

n
≤ 2µ

√
k

n
.
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C.6.4 Proof of Lemma C.5.8

Proof. Before we proceed with the main proof, we first introduce the following

lemma.

Lemma C.6.2. Suppose that ρ̃ satisfies (C.5.1). Recall that Ũ , Σ̃, and Ṽ are defined

in Algorithm 8. There exists a universal constant C such that

‖ŨΣ̃Ṽ> −M∗‖2 = C
√

k

ρ̃
√
mn

with high probability.

The proof of Lemma C.6.2 is provided in [77], therefore omitted.

We then proceed with the proof of Lemma C.5.8. Since both ŨΣ̃Ṽ> andM∗ are

rank k matrices, then ŨΣ̃Ṽ −M∗ has at most rank 2k. Thus by Lemma C.6.2, we

have

‖ŨΣ̃Ṽ> −M∗‖2F ≤ 2k‖ŨΣ̃Ṽ> −M∗‖22 ≤
2Ck2

ρ
√
mn
‖M∗‖2F

≤ 2Ck3σ2
1

ρ̃
√
mn

≤ σ6
k (1− δ2k)

1024(1+ δ2k)σ
4
1ξ

2
(C.6.6)

with high probability, where the last inequality comes from (C.5.1) with

C7 ≥
2048(1+ δ2k)

2σ6
1ξ

2

µ2σ6
k (1− δ2k)2

.
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Suppose thatM∗ has a rank k singular value decompositionM∗ = Ũ ∗D̃∗Ṽ ∗>. Then

we have

‖ŨΣ̃Ṽ> −M∗‖2F = ‖Ũ ∗D̃∗Ṽ ∗> − ŨΣ̃Ṽ>‖2F

= ‖Ũ ∗D̃∗Ṽ ∗> − ŨŨ>Ũ ∗D̃∗Ṽ ∗> + ŨŨ>Ũ ∗D̃∗Ṽ ∗> − ŨΣ̃Ṽ>‖2F

= ‖(Im − ŨŨ>)Ũ ∗D̃∗Ṽ ∗> + Ũ(Ũ>Ũ ∗D̃∗Ṽ ∗> − Σ̃Ṽ>)‖2F

≥ ‖(Im − ŨŨT )Ũ ∗D̃∗Ṽ ∗>‖2F.

Let Ũ⊥ ∈ Rm×(m−k) denote the orthogonal complement to Ũ . Then we have

‖(Im − ŨŨT )Ũ ∗D̃∗Ṽ ∗>‖2F = ‖(Ũ⊥Ũ>⊥ )Ũ ∗D̃∗Ṽ ∗>‖22 = ‖Ũ>⊥ Ũ ∗D̃∗‖2F ≥
σ2
k

2
‖Ũ>⊥ Ũ ∗‖2F.

Thus Lemma 4.4.2 guarantees that for Õ = argminO>O=Ik
‖Ũ − Ũ ∗O‖F, we have

‖Ũ − Ũ ∗Õ‖F ≤
√
2‖Ũ>⊥ Ũ ∗‖F ≤

2

σk
‖ŨΣ̃Ṽ> −M∗‖F.

We define Ũ ∗tmp = Ũ ∗Õ. Then combining the above inequality with (C.6.6), we

have

‖Ũ − Ũ ∗tmp‖F ≤
2

σk
‖ŨΣ̃Ṽ> −M∗‖F ≤

σ2
k (1− δ2k)

16(1 + δ2k)σ
2
1ξ
.
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Since the Frobenius norm projection is contractive, then we have

‖Ũ tmp − Ũ ∗tmp‖F ≤ ‖Ũ − Ũ ∗tmp‖F ≤
σ2
k (1− δ2k)

16(1 + δ2k)σ
2
1ξ
≤ 1

16
, (C.6.7)

where the last inequality comes from the definition of ξ and σ1 ≥ σk . Since Ũ ∗tmp

is an orthonormal matrix, by Lemma C.1.4, we have

‖Uout −U ∗(0)‖F ≤
√
2Ũ ∗tmp†‖Ũ tmp − Ũ ∗tmp‖F

1− ‖Ũ tmp − Ũ ∗tmp‖F‖Ũ ∗tmp†‖2

≤ 2‖Ũ tmp − Ũ ∗tmp‖F ≤
σ2
k (1− δ2k)

8(1 + δ2k)σ
2
1ξ
≤ 1

8
, (C.6.8)

whereU
∗(0)

= Ũ ∗tmpÕtmp for some unitarymatrix Õtmp ∈ Rk×k such that ÕtmpÕtmp> =

Ik , and the last inequality comes from (C.6.7). Moreover, sinceU
∗(0)

is an orthonor-

mal matrix, then we have

σmin(Ũ
tmp) ≥ σmin(U

∗(0)
)− ‖Ũ tmp −V ∗(t+1)‖F ≥ 1− 1

8
=
7

8
,

where the last inequality comes from (C.6.7). Since U
out

= Ũ tmp(Rout
U

)−1, then we

have

‖Uout
i∗ ‖2 ≤ ‖U

out>
ei‖2 = ‖(Rout

U
)−1‖2‖Ũ>ei‖2 ≤ σ−1min(Ũ

tmp)µ

√
k

m
≤ 8µ

7

√
k

m
.

Moreover, we define V ∗(0) =M∗>U
∗(0)

. Then we have U
∗(0)
V ∗(0)> =U

∗(0)
U
∗(0)>

M∗ =

282



APPENDIX C. SUPPORTING PROOF FOR CHAPTER 4

M∗, where the last inequality comes from the fact that U
∗(0)
U
∗(0)>

is exactly the

projection matrix for the column space ofM∗.

C.6.5 Proof of Corollary C.5.9

Proof. Since E (t)U implies that E (t)U,1,..., and E
(t)
U,4 hold with probability at least 1−4n−3,

then combining Lemmas C.5.5 and C.5.6, we obtain

‖V (t+0.5) −V ∗(t)‖F ≤
σk
2ξ
‖U (t) −U ∗(t)‖F

(i)
≤ σk
2ξσ1

· σk(1− δ2k)
4(1 + δ2k)σ1

=
σ2
k (1− δ2k)

8(1 + δ2k)σ
2
1ξ

2

(ii)
≤ σk

8

with probability at least 1 − 4n−3, where (i) comes from the definition of E (t)U , and

(ii) comes from the definition of ξ and σ1 ≥ σk . Therefore Lemma C.5.7 implies

that V
(t+1)

is incoherent with parameter 2µ, and

‖V (t+1) −V ∗(t+1)‖F ≤
4

σk
‖V (t+0.5) −V ∗(t)‖F ≤

2

ξ
‖U (t) −U ∗(t)‖F ≤

σk(1− δ2k)
4(1 + δ2k)σ1

with probability at least 1−4n−3, where the last inequality comes from the defini-

tion of ξ and E (t)U .
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C.7 Lemmas for Theorem 4.5.2 (Alternating

Gradient Descent)

C.7.1 Proof of Lemma C.5.13

Proof. Recall that we have W in = V (t+0.5) and V
(t+1)

= W out in Algorithm 9. By

Lemma C.5.7, we can show

‖W out −V ∗(t+1)‖F ≤
4

σk
‖V (t+0.5) −V ∗(t)‖F. (C.7.1)

By Lemma C.2.1, we have

‖R(t+0.5)

V
−V ∗(t+1)>V ∗(t)‖F = ‖V

(t+1)>
V (t+0.5) −V ∗(t+1)>V ∗(t)‖F

≤ ‖V (t+1)‖2‖V (t+0.5) −V ∗(t)‖F + ‖V ∗(t)‖2‖V
(t+1) −V ∗(t+1)‖F

≤ ‖V (t+0.5) −V ∗(t)‖F +
4σ1
σk
‖V (t+0.5) −V ∗(t)‖F, (C.7.2)

where the last inequality comes from (C.7.1), ‖V (t+1)‖2 = 1, and ‖V ∗(t)‖2 = σ1. More-

over, we define U ∗(t+1) =U
∗(t)

(V
∗(t+1)>

V ∗(t))>. Then we can verify

U ∗(t+1)V
∗(t+1)

=U
∗(t)
V ∗(t)>V

∗(t+1)
V
∗(t+1)>

=M∗,
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where the last equality holds since V
∗(t+1)

V
∗(t+1)

is exactly the projection matrix

for the row space ofM∗. Thus we further have

‖U (t) −U ∗(t+1)‖F = ‖U
(t)
(V

(t+1)>
V (t+0.5))> −U ∗(t)(V ∗(t+1)>V ∗(t))>‖F

≤ ‖U (t)‖2‖R(t+0.5)

V
−V ∗(t+1)>V ∗(t)‖F + ‖V

∗(t+1)>
V ∗(t)‖2‖U

(t) −U ∗(t)‖F

≤ 5σ1
σk
‖V (t+0.5) −V ∗(t)‖F +σ1‖U

(t) −U ∗(t)‖F,

where the last inequality comes from (C.7.2), ‖U (t)‖2 = 1, ‖V ∗(t+1)>V ∗(t)‖2 = σ1, and

σ1 ≥ σk .

C.7.2 Proof of Lemma C.5.14

Proof. Following similar lines to Appendix C.6.4, we can obtain

max
i
‖U (0)

i∗ ‖2 ≤
8µ

7

√
k

m
, ‖U (0) −U ∗(0)‖F ≤

σ2
k

8ξσ2
1

, (C.7.3)

max
j
‖V (0)

j∗ ‖2 ≤
8µ

7

√
k

n
, ‖V (0) −V ∗(0)‖F ≤

σ2
k

8ξσ2
1

. (C.7.4)

Then by Lemma C.2.1, we have

‖U (0)>
M̃ −U ∗(0)>M∗‖F ≤ ‖U

(0)‖2‖M̃ −M∗‖F + ‖M∗‖2‖U
(0) −U ∗(0)‖F

≤ σ3
1

32ξσ2
k

+
σ2
k

8ξσ1
≤ 5σ2

k

32ξσ1
. (C.7.5)
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By Lemma C.2.1 again, we have

‖V (0)>
M̃>U

(0) −V ∗(0)>M∗>U ∗(0)‖F

≤ ‖V (0)‖2‖M̃>U
(0) −M∗>U ∗(0)‖F + ‖U

∗(0)>
M∗‖2‖V

(0) −V ∗(0)‖F

≤ 5σ2
k

32ξσ1
+

σ2
k

8ξσ1
≤ 9σ2

k

32ξσ1
, (C.7.6)

where the last inequality comes from (C.7.4) and (C.7.5), and ‖M∗‖2 = σ1. By

Lemma C.2.1 again, we have

‖V (0) −V ∗(0)‖F ≤ ‖V
(0)
V

(0)>
M̃>U

(0) −V ∗(0)V ∗(0)>M∗>U ∗(0)‖F

≤ ‖V (0)‖2‖V
(0)>

M̃>U
(0) −V ∗(0)>M∗>U ∗(0)‖F + ‖U

∗(0)>
M∗V

∗(0)‖2‖V
(0) −V ∗(0)‖F

≤ 9σ2
k

32ξσ1
+

σ2
k

8ξσ1
≤ 13σ2

k

32ξσ1
, (C.7.7)

where the last two inequalities come from (C.7.4), (C.7.7), and ‖U ∗(0)>M∗V ∗(0)‖2 ≤

σ1, the definition of ξ , and σ1 ≥ σk . Moreover, by the incoherence of V (0), we have

‖V (0)
j∗ ‖2 ≤ ‖V (0)>ej‖2 = ‖V

(0)>
M̃>U

(0)‖2‖V
(0)>

ei‖2

≤
(
‖V ∗(0)V ∗(0)>M∗>U ∗(0)‖2 + ‖V

(0)>
M̃>U

(0) −V ∗(0)V ∗(0)>M∗>U ∗(0)‖F
)
6µ

5

√
k

m

≤

1+

9σ2
k

32ξσ2
1



6σ1µ

5

√
k

m
≤ 41σ1µ

28

√
k

m
,
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where the last two inequalities come from (C.7.4), (C.7.7), the definition of ξ , and

σ1 ≥ σk

C.7.3 Proof of Corollary C.5.15

Proof. Since E (t)U implies that E (t)U,1,...,E
(t)
U,6 hold with probability 1−6n−3, then com-

bining Lemmas C.5.11 and C.5.12, we obtain

‖V (t+0.5) −V ∗(t)‖F ≤
√
δ2k‖V (t) −V ∗(t)‖F +

2

1+ δ2k
E(V (t+0.5),V (t),U

(t)
)

≤
√
δ2k‖V (t) −V ∗(t)‖F +

2σk
ξ
‖U (t) −U ∗(t)‖F

≤ σ3
k

12ξσ3
1

· σ
2
k

2ξσ1
+
2σ2

k

ξ

σk
4ξσ2

1

=
σ5
k

24ξ2σ4
1

+
σ3
k

2ξ2σ2
1

≤ σk
8

with probability 1−6n−3, where the last inequality comes from the definition of ξ

and σ1 ≥ σk . Thus by Lemma C.5.13, we have

‖V (t+1) −V ∗(t+1)‖F ≤
4
√
δ2k
σk
‖V (t) −V ∗(t)‖F +

8

ξ
‖U (t) −U ∗(t)‖F

≤ 4

σk




σ5
k

24ξ2σ4
1

+
σ3
k

2ξ2σ2
1


 =

σ4
k

6ξ2σ4
1

+
2σ2

k

ξ2σ2
1

≤ σ2
k

4ξσ2
1

,
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with probability 1−6n−3, where the last inequality comes from the definition of ξ

and σ1 ≥ σk . Moreover, by Lemma C.5.13 again, we have

‖U (t) −U ∗(t+1)‖F ≤
5σ1
√
δ2k

σk
‖V (t) −V ∗(t)‖F +

(
10

ξ
+1

)
σ1‖U

(t) −U ∗(t)‖F

≤ 5σ1
σk
· σ3

k

12ξσ3
1

· σ
2
k

2ξσ1
+
(
10

ξ
+1

)
σ1

σ2
k

4ξσ2
1

=
5σ4

k

24ξ2σ3
1

+
σ2
k

3ξσ1
≤ σ2

k

2ξσ1

with probability 1−6n−3, where the last inequality comes from the definition of ξ

and σ1 ≥ σk .
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