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Abstract

After wide adoption of hydraulic fracking and renewable energy in the late 2000s, North America has

seen a large influx of low-cost natural gas and increased renewable energy, both becoming main sources

of electricity generation. The electricity market’s reliance on natural gas increases its exposure to volatile

natural gas prices. This paper investigates the economic resilience of the North American electricity market

due to different renewable energy policies and natural gas price shocks. Under these price shock scenarios,

the electricity market’s resilience is measured the time required to recover the deviation from total sys-

tem cost incurred by electricity market players relative to the business-as-usual scenario. Using the North

American Electricity Model (NANELM), a partial equilibrium model that describes the behavior of electricity

producers and transmission operators, we can measure the resilience and observe the behavior of genera-

tors and transmission operators. Although the electricity market reacts differently to different price shock

scenarios, they show that the market is under-prepared for sudden changes in natural gas prices and current

infrastructure prevents recovery back to the business-as-usual electricity prices.
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1 Motivation

1.1 The Changing Energy Landscape

With Earth’s climate changing, new energy technologies rising, fuel supply shifting, and energy policies

emerging and disappearing, the North American energy landscape will have to adapt to meet these compli-

cations.

With more utility-scale renewable energy generation connecting to the grid, modern power plants like

solar and wind have the ability to produce electricity for little to no cost, making them economically compet-

itive with existing fuel-burning power plants on the market. However, renewable generation is not guaran-

teed for all hours and relying on intermittent generation to form the majority of the generation mix exposes

consumers and regions to higher volatility of prices [1][2].

In addition to new types of generation, innovations in acquiring and extracting energy commodities, like

oil and gas, provide uncertainty in the supply of fuel for power generation in North America. In fact, the late

2000s saw a sudden change in energy prices when natural gas producers adopted hydraulic fracking. US

natural gas production skyrocketed in the last decade as fracking became a more cost effective and efficient

way to extract the fuel. Natural gas producers tapped into oil reservoirs stuck between shale slitstones and

went on to increase the US share of shale gas from 5% in 2008 to almost 50% in 2014[3] [4]. Figure 1 shows

the historical and projected growth of shale gas and tight oil production starting in 2008, which is projected

to grow without diminishing up to 2040. During the late 2000s, this increase in natural gas supply lowered

the price of natural gas dramatically and ignited investments in new natural gas power plant capacities. In

2018, this led to the first instance of natural gas power plant capacity surpassing coal power plant capacity

in the US [5]. As seen in Figure 2, the last few decades have seen a steady increase in new combined cycle

capacity and a decrease in coal electricity generating capacity.
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Figure 1: Historic and Projected Growth of Natural Gas Production in the US [4]

Beyond balancing changing electricity production and growing energy consumption, federal and state

governments have turned to policies to reduce the harmful effects of greenhouse gasses, leading to retiring

fossil fuel plants. With all these changing factors in the energy landscape, how can we best invest in electricity

infrastructure to maintain electricity market stability?

Figure 2: Coal vs Natural Gas Combined Cycle Electricity Generating Capacity [5]

1.2 Objective

The North American energy industry has invested heavily in natural gas infrastructure since the rise of

fracking. However, there still lies inherent uncertainty in the future supply of natural gas; namely, there is

no guarantee the price of natural gas will stay low for the next few decades.
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This paper investigates the economic resilience of the North American electricity markets under natural

gas price shock scenarios. Under each scenario, a price shock perturbs the system in 2030 from the business-

as-usual scenario and two factors are observed to measure the system’s resiliency performance: the change

in system cost and the time it takes the deviated system cost to return to the baseline scenario. The goal is

to assess the magnitude of change and how long it takes for the North American electricity grid and market

to recover.

1.3 Electricity Infrastructure and Its Effect on Electricity Prices

Electricity infrastructure includes generation (power plants) and transmission lines. Each region differs in

its production and connectivity to other regions. For example, Quebec’s hydroelectric dams produce most of

the region’s electricity, more than enough to transmit across the border to the US, whereas North and South

Carolina rely heavily on coal and natural gas to produce electricity [6]. These differences in fuel mix set the

regional electricity price, also known as locational marginal price (LMP)[7].

In North America, the locational marginal price is determined by the last unit of electricity cleared on the

market, either produced by a local power plant or imported through transmission. On the generation side,

power plants are selected to produce electricity based on their selling price and they are selected until all

demand is met. An example of this can be seen in Figure 3, where plant types A-C are chosen to generate

at their capacity and only part of plant type D is chosen to meet this demand. The LMP of this particular

demand is then set by the marginal cost of plant D for this region.
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Figure 3: Market Clearing Example in from the New England Independent System Operator [9]

1.4 Electricity Infrastructure and Its Effect on Regional Resilience

This close connection between the regional price of electricity and the producer’s marginal cost shows the

important relationship between electricity infrastructure and the region’s electricity price volatility, especially

when changes occur to the system. With long-term uncertainties in energy resources, a region’s price could

change drastically. Regions with a more diverse set of energy infrastructure usually fare better when changes

occur in their system [13]. An increase in the price of coal could lower coal plant electricity production in

the region, but with a varied electricity infrastructure, the region has the choice of shifting their production

elsewhere, or even importing from other regions [1].

Though regions in North America are starting to see more variety in their production, most regions

still rely heavily on a few dominant fuel types. In Canada, over 50% of their electricity is produced by

hydroelectric plants; while in Southeastern United States, coal and natural gas plants powers homes and

offices. This narrow set of fuel types leaves regions susceptible to high volatility in electricity price if their

respective plant costs increase.
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This study focuses on investigating how the electricity market reacts to natural gas price volatility. Similar

to the fracking boom in 2008, a particular scenario depicts a sharp decrease in natural gas price. However,

the opposite could occur in the future. In another scenario, gas supply is lower than predicted and natural

gas prices see an sharp increase. With these two possible outcomes, the need to measure any region’s ability

to adapt to a new normal is paramount.

1.5 Measuring Resilience

Resiliency has been defined differently thoughout the energy industry. Some metrics, like total days of power

outage or generation loss, are used to assess the short-term resiliency [13][15][16]. However, these metrics

do not inform us of long-term effects in the system. Instead, understanding the system’s adaptability is more

appropriate. As price shocks shift the system equilibrium, the goal is to understand how regions in North

America can adapt without drastically increasing the regional system costs. Furthermore, understanding the

time it takes for a region to return to its previous state is also an important metric for assessing the system’s

resiliency.

For this paper, the metric of resilience is the change in the overall system cost relative to the base case by

a particular price shock scenario (scen).

Rscen =

ZZ

t,reg

c(t, reg)


LMPscen(t, reg)� LMPbase(t, reg)

�
dtdreg (1)

where Rscen is the resiliency metric represented by the change in the regional system cost in $ due to

a particular price shock scenario, c(t) is the consumption at year t, LMP (t, reg) is the locational marginal

price at year t and in region reg. This metric measures the economic deviation from the base case due

to different supply shocks and/or policy enforcement scenarios. It is important to note that this metric is

unbounded, meaning that the sign of the metric also plays an important role. A positive deviation indicates

an increase in system cost; conversely, a negative deviation indicates a decrease in system cost.

Other than the change in system cost, understanding how long it takes for a region to adjust its course

back to the baseline shows the system’s ability to adapt quickly. This can be measured by looking at the

time taken to return to the projected baseline cost. As the system cost recovers from the price shock, the

probability of the system returning exactly back to the baseline cost is low; therefore, any recovering system

cost that is within 1% of the original baseline system cost is considered to have returned to normal. The time
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taken to recovery is given by the follow equation:

Tscen(reg) = trecover(reg)� tshock(reg) 8reg, scen (2)

where Tscen is the time in years it takes for a region to return back to the baseline system costs within 1%

after inducing a supply shock scenario, trecover is the year that the scenario locational marginal price returns

to the base case system cost, and tshock is the year that these shocks are induced to the whole system which

is 2030 for our model. Although this metric is specific to this model, a two-factored approach to assessing

resilience has been used in other long term planning models [14][25].

Figure 4: Example of Measuring Resilience with NANELM
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2 Model Data and Data Manipulation

2.1 Traditional Energy Modeling

For the last two decades, long-term energy planning models have been the backbone for providing insight

and guiding decisions in investments for grid scale energy infrastructure expansion. Traditional energy

models look solely at the electricity market to provide insight on how to make decisions, without considering

commodities endogenously. For the most part, a basic economic energy model’s constraints and parameters

can be modeled as a mixed integer linear program [19]. However, with the rising complexity of energy

markets, understanding the interconnections between market players is imperative to provide insight on

how best to make investments for the future [20].

Encapsulating different energy markets proves to be quite difficult in traditional energy modeling with

optimization techniques like mixed integer linear programming. Firstly, modeling physical properties like

generation, consumption, transmission, and policies of all the different market players contains nonlinear

relationships. Secondly, the complexities involved in modeling market interactions make traditional opti-

mization techniques undesirable [21].

To combat these difficulties in a mixed market structure, this model employs the use of mixed comple-

mentarity modeling.

2.2 Mixed Complementarity Problems

Mixed complementarity problems (MCP) have been imperative in many important modeling classes like

Nash-Cournot games and location marginal pricing equilibria [7][21][19]. In terms of energy modeling,

complementarity models generalize the Linear Programs, Quadratic Programs, and Convex Nonlinear Pro-

grams with the use of Karush-Kuhn Tucker Conditions (KKT Conditions). A particular emphasis on convexity

in the constraint space and objective function must be made to ensure that the problem formulated will

guarantee an optimal solution with the use of KKT Conditions [21][22][23].

To illustrate a complementarity problem, we take a generic optimization problem and express it as a

complementarity problem. Given a generic optimization problem with m inequality constraints, n equality

constraints, and an objective function f(x):
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Minimizex f(x)

s.t.

gi(x)  0 8i = 1, ...,m (↵i)

hj(x) = 0 8j = 1, ..., n (�i)

With the help of KKT conditions capturing the primal problem and Lagrange multipliers acting as the

dual variables, this problem is equivalent to this complementarity problem:

rf(x) +
mX

i=1

↵irgi(x) +
nX

j=1

�jrhj(x) = 0 8i, j

↵i � 0 8i

gi(x) � 0 8i

↵igi(x) = 0 8i

hj(x) = 0 8j

�j is free 8j

For simplicity, one can combine the KKT condition for inequalities by simply using the ? operator:

rf(x) +
mX

i=1

↵irgi(x) +
nX

j=1

�jrhj(x) = 0 8i, j

0  gi(x) ? ↵i � 0 8i

hj(x) = 0 8j

�j is free 8j

Note that problem is not formulated with a clear objective function nor with the general structure of an

optimization problem. Instead the primal and dual problem are incorporated into a system of KKT conditions.

A mixed complementarity model’s power lies in the ability to combine optimization problems. In the case

of energy models, each producer and transporter’s objective and constraints can be expressed in this tidy

formulation.
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3 The Model

The North American Electricity Model (NANELM) is a long term capacity expansion model with a partial

equilibrium approach, capturing two different market players: producers and transmission operators. The

ultimate goal for this model is be coupled with its sister models, like the North American Natural Gas Model

(NANGAM) [24]. With this structure, the models can solve simultaneously and provide endogenous natural

gas and electricity projections to enhance decision making on both markets [26].

NANELM splits the continent into 19 regions: 13 in the US, 5 in Mexico, and Canada. For both the US

and Mexico, NANELM regions are aggregated to reflect identical groupings of regions within both the US

Energy Information Administration and Mexico’s Secretaria de Energia [6][8]. Even though the regions are

not as precise as every state or province in North America, the level of detail still gives significant insights

on the future of generation, consumption and transmission of electricity on the continent. All the data used

in NANELM originates from 2016 databases from EIA and SENER [6][8]. Figure 3 and 6 show 13 regions in

the US and the 5 in Mexico with 1 other remaining representing Canada.

Figure 5: NANELM US Regions
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Figure 6: NANELM Mexican Regions [24]

Each region has its own generation mix and NANELM aggregates its generation capacity into 15 different

generation types:
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Table 1: NANELM Generation Types

Generation Type NANELM Abreviation

Conventional Steam Coal COALF

Petroleum Liquids OILF

Natural Gas Fired Combined Cycle CCGF

Natural Gas Fired Combustion Turbine CTGF

Natural Gas Steam Turbine STGF

Nuclear NUCF

Wood/Wood Waste Biomass BIOF

Conventional Hydroelectric AHYD

Onshore Wind Turbine WIND

Solar Photovoltaic PV

Geothermal GTHM

Cogeneration COGEN

Fluidized bed FB

Solar Thermal ST

Kinetic Energy KE

The data for this model can be separated in four different categories:

1. Supply (Electricity Generation)

2. Demand (Electricity Consumption)

3. Trade (Electricity Transmission)

4. Policies (Energy Policies)

3.1 Supply

Although not every generation and technology type is represented in NANELM, the model includes 15 dif-

ferent generation types that cover 97.2% of the US generation mix and 99.2% of the Mexican generation

mix [6]. Canada is a net exporter of electricity to the US and is modeled as a production node, connected

to the four regions in the US. For NANELM’s 15 different technology types, the model takes into account

generation capacity, heat rates, fuel costs, fixed investment costs, and operations and maintenance costs for
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each individual plants reported in EIA and SENER [6] [8]. The individual plants are then aggregated into

the 19 different regions and modeled as 19 different production nodes with different generation mixes and

different costs. The model determines regional production based on regional cost of production (marginal

and fixed), and production capacity.

3.2 Demand

Similar to the supply, the hourly demand is aggregated into 19 different regions in NANELM. Instead of

clearing the energy market for every hour, the annual consumption is aggregated and sorted into a load

duration curve (Figure 7) and separated into 11 equally incremented segments for every year (Figure 8).

Below is an example of the load duration curve for New York State.

Figure 7: Continuous Load Duration Curve for NY Figure 8: Discretized Load Duration Curve for NY

In addition to modeling the demand in each time segment. The change in demand from 2016-2050 is

modeled exogenously by extracting the demand forecast from EIA’s Annual Energy Outlook and SENER [6]

[8].

3.3 Trade

Instead of modeling individual transmission lines, trade is modeled as regions sending power to other re-

gions. The aggregate transmission capacity is summed over the region to other regions and each region-to-

region capacity was found through EIA [6]. NANELM uses the fixed investment costs per megawatt-mile

provided by the Western Electricity Coordinating Council database [10].

3.4 Policies

The state-level renewable portfolio standard are modeled alongside the physical portions of the market to

represent current energy policies. Of all the renewable energy policies, Renewable Portfolio Standards data
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is the one type of energy policy that is comprehensive across all regions in the model [35]

3.5 Sets, Parameters, Variables

Variables in the model are described in all upper case (VAR) and sets, parameters, and known values in the

model are described in lower case (par).

3.5.1 Sets

Set Name Set Descrption

tec All Electricity Producing Technologies

reg North American Regions

t Model Time Periods

tsg Model Time Segments of Each Year

3.5.2 Parameters

Variable Name Variable Description Variable Sets Variable Units

map reg Regional Connectivity (to region, from region) reg,regg Binary

auf Reference Availability Utilization Factor of Technology tec Percentage

rsrv Reserves Requirements at Region reg,t MWh

dur Time Duration of Time Segment tsg hours

rps Renewable Portfolio Standards at Region reg,t Percentage

cap pow Power Capacity Limit: of technology tec,regg MW

cap ene Energy Capacity Limit: of technology tec,regg,t MWh

cap flow Base year Transmission Capacity Limit: Flow at region reg,regg MW

dem ele Reference Demand for Electricity (regg,tsg,t) MWh/h

dem cng Change in Consumption of Region w.r.t. 2016 reg,t percentage

c trp Cost of Transporting Electricity (to region, from region) reg,regg
$

MWh

cpr tec Model Cost of Technology reg,tec,tsg,t
$

MWh

cpr tec low Model Cost of Technology with Low Gas Price reg,tec,tsg,t
$

MWh

cpr tec high Model Cost of Technology with High Gas Price reg,tec,tsg,t
$

MWh

fc tec Reference Investment Cost for Technology tec,reg
$

MW

fc trp Reference Investment Cost for Line at region reg,regg
$

MW
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3.5.3 Variables

Variable Name Variable Description Variable Sets Variable Units

LMP Locational Marginal Price reg,tsg,t
$

MWh

QEXP POW Exports of Electricity from Region reg,tsg,t MWh

QIMP POW Imports of Electricity to Region reg,tsg,t MWh

QC POW Power Consumption reg,tsg,t MW

QC ENE Energy Consumption reg,tsg,t MWh

RNT POW Rent of Capacity for Power Production of Technology tec,regg,tsg,t
$

MW

RNT ENE Rent of Capacity for Energy Production of Technology tec,regg,t
$

MWh

RNT RSRV Rent of Reserves Requirements regg,tsg,t
$

MW

RNT FLOW Rent of Capacity Limit of Flow at region reg,regg,tsg,t
$

MW

RNT RPS Rent of meeting Renewable Policy Standards of Region reg,t
$

MW

POW Power Production of Technology tec,regg,tsg,t MW

QFLOW Power Flow to Region reg,regg,tsg,t MWh

INV TEC New capacity for Technology tec,regg,t MW

INV TRP New Capacity for Line at Region reg,regg,t MW

3.6 Complementarity Formulation

3.6.1 Producers

1. KKT condition for the marginal production for producers (8tec, reg, tsg, t)

0  POW (tec, reg, tsg, t) ?
⇥
cpr tec(tec, regg, tsg, t) +RNT POW (tec, regg, tsg, t)

+dur(tsg)RNT ELE(tec, regg, t) + dur(tsg)rps(reg, t)RNT RPS(reg, t)

� LMP (reg, tsg, t)
⇤
� 0

2. KKT condition for the technology capacity expansion for producers (8tec, reg, t 2 vnt)

0  INV TEC(tec, regg, t) ?
X

t2vnt

fc tec(reg, regg, tsg, t)�
X

tsg,t2vnt

auf(tec, reg, tsg, t)RNT POW (reg, regg, tsg, t)

�
X

tsg,t2vnt

auf(tec, reg, tsg, t)RNT RSRV (reg, tsg, t) � 0
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3. Power Capacity

0  RNT POW (tec, regg, tsg, t) ?
X

t

(aufreg,tec,tsg,t)(cap powreg,tec)

+
X

t2vnt

(auftec,reg,tsg,t)(INV TECreg,tec,t)�
X

t

POWreg,tec,tsg,t

�
� 0

4. Total consumption of power at region (8reg, tsg, t)

0  QC POW (reg, tsg, t) ?
⇥
QC POW (reg, tsg, t)� dem ele(reg, tsg, t)

⇤
� 0

5. Total consumption of energy at region (8reg, t)

0  QC ENE(reg, t) ?
⇥
QC ENE(reg, t)�

X

tsg

(QC POW (reg, tsg, t)
⇤
� 0

6. Energy Capacity (8tec, reg, t)

0  RNT ENE(tec, regg, t) ? cap ene(tec, reg, t�
X

tsg

(durtsg)(POW (tec, reg, tsg, t)) � 0

7. Energy Reserves (8reg, tsg)

0  RNT RSRV ?
X

tec

X

t

auf(tec, reg, tsg, t)cap pow(tec, reg) +
X

tec

X

t

auf(tec, reg, tsg, t)INV TEC(tec, reg)

� dem ele(reg, tsg, t)(1 + rsrv(regg, t)) � 0

8. Renewable Energy Portfolio (8reg, t)

0  RNT RPS(tec, reg, t) ?
X

tec2rtec

X

tsg

dur(tsg)POW (tec, reg, tsg, t)

� rps(reg, t)

 
X

tec

X

tsg

dur(tsg)POW (tec, reg, rsg, t)

!
� 0

3.6.2 Transporters

9. KKT condition for marginal transmission for transporters (8reg, regg, tsg, t)

0  QFLOW (reg, regg, tsg, t) ? c trp(reg, regg, tsg, t)+RNT FLOW (reg, regg, tsg, t)

+ (LMP (reg, tsg, t)� LMP (regg, tsg, t)) � 0
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10. KKT Condition for the line capacity expansion for transporters (8reg, regg, t 2 vnt)

0  INV TRP ?
X

t2vnt

fc trp(reg, regg, tsg, t)�
X

tsg,t2vnt

RNT FLOW (reg, regg, tsg, t) � 0

11. Exports of electricity from region (8reg, tsg, t)

QEXP POW (reg, tsg, t)�
X

reg2map reg

QFLOW (reg, regg, tsg, t) = 0

QEXP POW (reg, tsg, t) is free

12. Imports of electricity from region (8reg, tsg, t)

QIMP POW (reg, tsg, t)�
X

reg2map reg

QFLOW (regg, reg, tsg, t) = 0

QIMP POW (reg, tsg, t) is free

13. Flow Capacity (8reg, regg)

0  RNT FLOW (reg, regg, tsg, t) ? dur(tsg)cap flow(reg, regg)+

durtsg

X

t2vnt

⇣
INV TRPreg,regg,t + INV TRPregg,reg,t

⌘
�QFLOW (reg, regg, tsg, t) � 0

3.6.3 Market Clearing for the System

14. Energy balance (8reg, tsg, t)

X

tec2mreg prd

(POWreg,tec,tsg,t)�QC POWreg,tsg,t �
X

reg2map reg

(QFLOWreg,regg,tsg,t)

+
X

reg2map reg

(QFLOWregg,reg,tsg,t)�Q
EXP,POW

reg,tsg,t
+Q

IMP,POW

reg,tsg,t
= 0

LMP (reg, tsg, t)is free

4 Price Shock Scenarios

To simulate the volatility of natural gas prices, the model runs four types of price shock scenarios as seen in

Table 2. Each of the four scenarios is taken from the US Energy Information Administration’s Annual Energy

Outlook [27]. To simulate the price changes, the fuel costs for natural gas producers either experience a
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spike or drop in price after 2030. This is modeled by multiplying a percentage increase/decrease each year

after 2030 for the marginal cost of gas. For the high renewable portfolio standard, a similar strategy is

employed. Current levels of renewable standards for each region and year are multiplied by a percentage

increase, reflecting the high renewable portfolio standard scenario.

Table 2: Price Shock Scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Low Gas Price Yes No Yes No

High Gas Price No Yes No Yes

High RPS No No Yes Yes

Fixed Investment Up to 2030 Yes Yes No No

4.1 Baseline and Reference Case

To measure the model results, a baseline case is needed to assess the system’s resiliency under these scenar-

ios. This case is a business-as-usual case with the current generation, consumption and transmission schemes

along with the existing energy policies in place. NANELM’s base case is calibrated with the data from US

Energy Information Administration, Mexico’s Energy Secretaria de Energie, and Canada’s National Energy

Board.

NANELM is equipped with the necessary features to provide insight on the progression of electricity in-

frastructure development. The calibration process focuses on accurately representing regional generation

mix, future capacity investment in generating plants and transmission lines, and the net transmission be-

tween the regions. The calibration process for both players in the market, transmission operators and plant

operators, requires manual adjustments to their respective marginal, fixed, and investment costs, and capac-

ity parameters.

4.2 Scenario 1: Low Gas Price

With new techniques increasing the ability to recover raw natural gas, the past decade has seen the energy

industry reacting to the sudden influx of cheap natural gas. This increase in supply is projected to play a

role, but the availability of natural gas may change over the next few decades [27].

In this particular scenario, the availability of natural gas supply increases after 2030. This scenario depicts

new technological advances in drilling, production, and even experimentation in natural gas refinement that

allow for an increase in natural gas relative to the reference case. With the extra supply of natural gas, the
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price in this scenario after 2030 drop at most to 20% relative to the base case [27].

In order to compare it to the baseline scenario, we fix the investments to all energy infrastructure from

2016 up to 2030. This can be seen in Figure 9, showing the percentage increase and decrease in natural gas

prices relative to the base case.

Figure 9: NANELM Gas Price Shock Scenarios: High and Low Scenarios

4.3 Scenario 2: High Gas Price

Unlike the previous scenario, the low gas supply scenario assumes a decrease in natural gas supply which

corresponds to a drop in price. This scenario depicts the forecast of natural gas supply to be bleaker than

imagined with the prices increasing to 12% above the reference case starting in 2030 [27]. Similar to the

previous scenario, we fix the investments to all energy infrastructure from 2016 up to 2030.

4.4 Scenario 3+4: High/Low Gas Price + High Renewable Portfolio Standard

In addition to the fluctuations in gas supply, renewables are coming online at a high rate due to clean

energy policies and climate change. This scenario assumes 20% of all electricity production originates from

renewable energy sources by 2020 and 50% by 2050. This increase in renewable production is enforced by

a percent change to the existing renewable portfolio standard in each region and can be seen in Equation

8 in the model formulation. Therefore, regions with existing renewables energy goals will see an increase

in their RPS. On the other hand, the regions with little to no renewables generation mandates will not be

affected, but the overall system RPS reaches 20% by 2020 and 50% by 2050.
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This high RPS scenario combined the high and low gas price scenarios with high renewable portfolio

standards (RPS) completes the four total price shock scenarios for this model. Here, the investment is not

fixed to the baseline scenarios because additional investment in renewables is required prior to 2030.

Figure 10: NANELM Renewable Portfolio Standard: High and Current Scenarios
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5 Results and Discussion

5.1 Baseline

For this study, the baseline is the business-as-usual scenario with no price shocks. All resiliency metrics will

use this scenario as to their baseline. In addition to the resiliency metric, NANELM shows how producers

and transmission operators react under all scenarios.

Figure 11 shows the baseline net transmission and the regional marginal prices for each region in 2030 to

illustrate how each region in the US interact with each other without any disturbance to the price of natural

gas. Each scenario is compared to the baseline flows in 2030, the year that the shocks are introduced. The

arrows in the figure represent the net flows from one region to another, but not all net flows in the system

are present. Subsequent flow charts will be represented as a percentage of the original flow. For example,

100% indicates that the flows in a scenario maintain 100% of the baseline flows.

Figure 11: Base Case Net Transmission (in TWh) and Locational Marginal Prices (in $
MWh) in 2030

Using the resiliency metric described in Equation 1 and 2, the system’s ability to recover from the sudden

change in natural gas price can be measured across all scenarios. As seen in Figure 12, the total system

costs vary across all regions relative. Other than the low gas price scenario, the other three scenarios see an

increase in system cost.
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Figure 12: Total US System Deviation in $ Under Different Shock Scenarios

This increase in system cost can be seen in Figure 13. The two gas price shock only scenarios show fewer

perturbations than the high renewable scenarios.

Figure 13: Total US System Cost from 2016-2050 Under Different Shock Scenarios (Rscen)
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Figure 14: Total Regional System Cost from 2016-2050 Under Different Shock Scenarios (Rscen(reg)

Figure 14 shows that the lower a region’s cost deviates from the base case, the more resilient the region

is. For example, New England and New York appear to be more resilient than California or Texas. This will

be further discussed in individual scenarios. In addition to witnessing the volatility in LMP for each scenario,

the differences in investment are also key in understanding how each region recovers after the shock in

supply.

5.2 Scenario 1: Low Gas Price

Given that the natural gas fuel cost falls so abruptly in this scenario, it is clear that the regions with existing

higher gas capacity benefit from this increase in natural gas supply in the short term. The marginal cost of

electricity produced by natural gas drops, and regions with high natural gas plant capacities are able to meet

demand at a lower cost. Regions like the Carolinas reap immediate benefits and increase their production

by 4% in 2030 and up to 17% by 2040. Notably, this price drop encourages regions like New England, the

Southwest and the Mid-Atlantic to invest in new natural gas capacities.

As some regions increase their production capacities, others like Tennessee Valley and the Southeast

decrease their electricity production and decide to import from regions with increased electricity production

from natural gas power plants. As seen in Figure 15, Tennessee’s net import grew to over 1200% of the

baseline flows in 2030. This is due to the change in regional prices. Under these new conditions, Tennessee’s

regional electricity price across hours of the year is not competitive relative to the Carolinas’ regional price

of electricity; therefore, Tennessee imports more than it would during the baseline case.

Unsurprisingly in this scenario, most regions show a decrease in system cost due to the sudden influx of
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Figure 15: 2030 Ratios of Low Gas Price vs. Baseline Scenario LMPs and Transmission

gas supply. Figure 14 shows the deviations in system costs in billions of dollars from the baseline for each

region in the US (See Equation 1). It is clear that some regions have higher sensitivity to the price shock

than others.

Looking at the the total deviation from the baseline case, all regions reduce their overall system costs,

some more than others. Regions with higher natural gas capacities or regions that are connected to other

regions with higher natural gas capacities benefit the most. Cheaper gas prices result in an increase of natural

gas capacity across the east coast of the US along with lower locational marginal prices. Almost immediately

after the shock, a surge of natural gas investment increases, padding the natural gas contribution to the fuel

mix to over 50% at 2050. This scenario reduces the total system cost by $33 billion between 2016-2050,

as seen in Figure 13. Ultimately, this scenario’s total system cost never recovers to the baseline system cost,

but in this case, the system cost is lowered and the market players are spending less than they would at the

baseline case.

5.3 Scenario 2: High Gas Price

With a higher gas prices, the same regions that benefited from lower gas prices show the opposite reaction

to this scenario. Regions like the Southeast, the Carolinas, New England, and the Southwest see a decrease

in production ranging from a 9% decrease in New England production in 2040 to a 30% decrease in the

Southwest production. However, it would be wrong to assume that regions with high levels of natural gas
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Figure 16: Percentage Change of Production in Each Region Under Low Gas Supply Scenario

generation will see decreases in their production, since regional connectivity also play a role in maintaining

production.

Both Texas and the Mid-Atlantic have high natural gas plant capacities and yet they are able to maintain

similar levels production because of meeting neighboring region’s electricity demand. Regardless of the hike

in gas prices, Texas still trades at similar levels with Mexico despite the higher locational marginal price

and Mid-Atlantic maintains its total production by shifting their generation to other technology types. The

Mid-Atlantic benefits from having old coal plants and expanding renewables to help the lack of natural gas

production.

Figure 17: 2030 Ratios of High Gas Price vs. Baseline Scenario LMPs and Transmission

The regions with less reliance on natural gas end up having to produce more to make up for demand to

transmit to others. Regions like California, Tennessee, and New York see an increase in production relative
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to the base case because of their other generation capacities. For Tennessee, existing coal and oil fired plants

need to run at higher capacity to cover the base load for other regions like the Southeast. Though coal is a

traditional base load plant, oil is not traditionally used often due to its high fuel cost. It is important to note

that no investments in new capacity for neither coal nor oil were made in this scenario.

For New York and California, increased production is a combination of existing and newly invested re-

newable capacity that allows for more production. New York invests in more wind and California invests in

more solar.

Overall, the system cost increases by almost two times the system cost to $30 billion across all regions.

Natural gas plant expansion comes to a halt at 2030 and existing coal and oil plants pick up the slack.

Though some regions bounce back within 15-20 years after the price shock, this scenario’s total system cost

never returns to the baseline, leaving a higher price of electricity for the next 20 years after the price shock.

5.4 Scenario 3: Low Gas Price with High Renewables

This scenario includes conflicting forces. On the one hand, the addition of renewables increases the marginal

cost of electricity across all regions as the new capacities come into play; but on the other, the decrease in

prices mitigates the damage. This is evident when observing the locational marginal prices in Figures E.8.

For the most part, regions see an increase in locational marginal prices and tend to stay higher throughout

the scenario. However, some regions like New York, Texas and New England recover or come close to it.

Their ability to recover is evident in their production over the next few years.

New York, Texas and New England are the few regions that increase its production. New England trims

their natural gas electricity production and increases its renewable energy production, mainly in wind and

solar. Unlike New England, Texas’ renewable and gas investments both soar. This is due to increased trade

cross border to Mexico’s Northeastern region. However, Texas and New England do not recover but they fare

better than other regions that settled at a higher cost equilibrium. New York is the only region that recovers

to the baseline case.
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Figure 18: 2030 Ratios of Low Gas Price with High Renewables vs. Baseline Scenario LMPs and Transmission

In terms of transmission, Figure 15 shows that there are reversals in directions of net transmission under

this scenario, notably, between the Northwest region and the Central region. Due to the high encouragement

to inest in renewables combined with the already strict renewable energy mandates in Central, the high RPS

jolted investment in renewables, resulting in an average decrease in LMPs in 2030 and reversing the direction

of net flows between Central and the Northwest.

Similarly, the Carolinas and Mid-Atlantic also switch direction due to the increase of gas supply in the

Mid-Atlantic. The Mid-Atlantic is one of the few regions in the US yet to have a high RPS. In this scenario,

the Mid-Atlantic expands its natural gas capacity without strict renewable mandates like its neighbors. In

fact, it trims out coal production after 2035 and invests in new natural gas power plants. In addition to the

RPS increasing the rise of renewables, Figures D.4 and D.7 shows a dramatic dip in coal and natural gas

coming online.

Overall, the cost of adding renewables this increases the system cost. For most regions, that increase of

marginal cost returns down to the baseline, meaning that the system does not have the ability to change

courses back to the baseline scenario once it is perturbed. That being said, the low gas price still results in

a lower change in system cost than the high gas scenario with a change of $14 trillion over the course of 20

year shock.
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5.5 Scenario 4: High Gas Price with High Renewables

It is no surprise that this scenario would create the largest deviations from the baseline scenario. Not only

are the regions trying to reach their renewable energy goals and invest in new renewable capacities to meet

mandates, but natural gas prices sharply increase. One can see in the LMP figure (Fig. E.8) that each region’s

locational marginal price jumps up and it rarely finds a way back down to the base case.

In terms of maintaining production, regions that have a variety of different fuels appear to deviate less

from the baseline case. Regions like New England, the Midwest, and California see a similar output in

production. On the other hand, this scenario proves to be tough on regions in the Southeast, Carolinas,

and Tennessee. These regions rely heavily on neighboring regions that have the ability to provide electricity.

However, the electricity produced from these other regions not from new renewables, but rather, existing

coal plants.

Figure 19: 2030 Ratios of High Gas Price with High Renewables vs. Baseline Scenario LMPs and Transmission

The Mid-Atlantic and the Mid-West fire up existing coal plants in 2030. There is a sudden increase in

coal while renewables continue to expand due to the RPS requirements. This squeezes natural gas and even

some nuclear out of the generation mix. It is important to note that even with a rise in coal production, the

levels in 2030 and beyond stay very closely to the current coal production.

Overall, the system shows the largest increase in system cost across most regions under this scenario,

almost a $155 billion increase from the base case. The areas that show vulnerability are regions that have

low capacities of non-natural gas generation and low diversity in generation types, leaving them highly

susceptible to natural gas price volatility. Unsurprisingly, the system does not return to the base level price

across all regions.
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6. CONCLUSION

6 Conclusion

Under these shock scenarios, the North American electricity market showed weakness in its ability to recover

economically.

Of all the scenarios, only the low gas price scenario provided a lower system cost and the grid stabilized

at a lower cost equilibrium. Cheaper gas prices resulted in the increased capacity of natural gas across the

east coast of the US along with lower locational marginal prices. Although the regions do not recover, this

scenario provides a lower total system costs, allowing producers and transmission operators to reduce their

cost further.

With the other cases, the system never returned to the baseline case. Under the high gas price case and

even the low gas with high renewables, some regions took more than 15-20 years to return to the baseline

case, while others simply settled at a high locational marginal price until 2050. Even more drastically, the

high gas price and high renewable portfolio standard scenario stressed regional flexibility to invest and

produce electricity. All regions but Florida and New York never returned back to their original state and

stayed at a high equilibrium, adjusting the total system cost by over 2.5 times the baseline scenario.

With the increased cost of natural gas, short term production shifts towards cheaper fuels like coal and

nuclear, to handle the shifted load, and more petroleum plants come online to help with peak loads. Despite

the price shock for natural gas, there is no capacity expansion for other non-renewables. The investment cost

for both nuclear and coal is simply too high and cannot compete with the investment costs of renewables.

This is particularly troubling for regions that currently rely heavily on natural gas, not only to cover the peak

loads, but to cover the base loads. Regions in the Southeastern part of the US are affected more because of

this reliance on gas, and transmission investments are also too expensive to lower system costs. The high

cost of transmission investment hinders the ability to expand and provides minimal flexibility to the grid.

Even within regions with high density load centers, the costs of building transmission lines outweigh the

benefits and is not optimal decision to lower the overall system cost.

Under these scenarios, our grid shows weakness in its flexibility. These perturbations in the price of just

one fuel source, send shock waves down the line indefinitely. This begs the question: what can be done to

make the grid flexible?

Future work for this model will investigate the relationship between other energy commodities and their

effect on marginal prices. A combination of other equilibrium models like The North American Natural Gas

Model (NANGAM) or the North American Crude Oil Model (NACOM) will provide an more detailed and in

depth understand on the origins of price volatility in the energy markets [24] [37].

More definition in certain regions like Canada would provide insight on their grid resiliency and compar-
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6. CONCLUSION

ing countries together. Another possible avenue is incorporating new electricity trends like demand response,

storage, and microgrids [36].
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A. MODEL FORMULATION

APPENDIX

A Model Formulation

A.1 Producer’s Optimization Formulation (8tec)

max
X

reg

X

tsg

X

t

⇥
LMP (reg, tsg, t)� (cpr tec(tec, regg, tsg, t)

⇤
POW (tec, regg, tsg, t)

�
X

reg

X

tec

X

tt>t

fc tec(tec, reg, tt)INV TEC(tec, reg, tt)

s.t.

1. Power Capacity (reg, tec, tsg)

X

t

(aufreg,tec,tsg,t)(cap powreg,tec)

+
X

t2vnt

(auf(tec, reg, tsg, t))(INV TEC(reg, tec, t)) (RNT POW )

� POWreg,tec,tsg,t � 0

2. Total consumption of energy at region (8reg, t)

QC ENE(reg, t)�
X

tsg

dur(tsg)(QC POW (reg, tsg, t) = 0 (QC POW ))

3. Energy Capacity (8tec, reg, t)

cap ene(tec, reg, t�
X

tsg

(durtsg)(POW (tec, reg, tsg, t)) � 0 (QC ENE)

A.2 Transmission Operator’s Optimization Formulation 8(reg, regg)

max
X

tsg

X

t

⇥
LMP (reg, tsg, t)� (LMP (regg, tsg, t)

⇤
QFLOW (reg, regg, tsg, t)

�
X

tt>t

fc trp(reg, regg, tt)INV TRP (reg, reg, tt)

s.t.
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A. MODEL FORMULATION

1. Exports of electricity from region (8reg, tsg, t)

QEXP POW (reg, tsg, t)�
X

reg2map reg

QFLOW (reg, regg, tsg, t) = 0 (RNT EXP ROW )

2. Imports of electricity from region (8reg, tsg, t)

QIMP POW (reg, tsg, t)�
X

reg2map reg

QFLOW (regg, reg, tsg, t) = 0 (RNT IMP ROW )

3. Flow Capacity (8reg, regg)

dur(tsg)cap flow(reg, regg)

+durtsg

X

t2vnt

⇣
INV TRPreg,regg,t + INV TRPregg,reg,t

⌘
(RNT EXP FLOW )

�QFLOW (reg, regg, tsg, t) � 0

A.3 Reserves, Market Clearing and Policies

1. Energy Reserves (8reg, tsg)

X

tec

X

t

auf(tec, reg, tsg, t)cap pow(tec, reg)

+
X

tec

X

t

auf(tec, reg, tsg, t)INV TEC(tec, reg) (RNT RSRV )

� dem ele(reg, tsg, t)(1 + rsrv(regg, t)) � 0

2. Renewable Energy Portfolio (8reg, t)

X

tec2rtec

X

tsg

dur(tsg)POW (tec, reg, tsg, t) (RNT RPS)

� rps(reg, t)(
X

tec

X

tsg

dur(tsg)POW (tec, reg, rsg, t)) � 0

3. Total consumption of power at region (8reg, tsg, t)

QC POW (reg, tsg, t)� dem ele(reg, tsg, t) � 0 (QC POW )
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B. LIST OF REGIONS IN NANELM

B List of Regions in NANELM

Table 3: Regions in NANELM

NANELM Regions NANELM Abrreviation Provinces/States Included

New England NE ME, NH, VT, RI, CT, MA

New York NY NY

Mid-Atlantic MA PA, NJ, DE, MD, OH, WV, VA, DC, KY,

Carolinas CAR NC, SC

SouthEast SE GA, AL, MS

Florida FL FL

Tennessee Valley Authority TVA TN

MidWest MW MN, WI, MI, IA, IL, IN, MO, LA

Central CE ND,SD, NE, KS, OK, AR

Texas TX TX

NorthWest NW WA, OR, ID, MT, WY, CO, UT, NV

SouthWest SW AZ, NM

California CA CA

Mexico Northwest
MNW Hermosillo, Cananea, Obregón,

Los Mochis, Culiacán, Mazatlán,

Mexico Northeast MNE

Juárez, Moctezuma, Chihuahua, Durango, Laguna,

Ŕıo Escondido, Nuevo Laredo, Reynosa, Matamoros,

Monterrey, Saltillo, Valles, Huasteca, Tamazunchale,

Nuevo Laredo, Reynosa, Matamoros, Güéme

Mexico Interior MIN Central

Mexico Interior West
MNW Querétaro, Tepic , Guadalajara, Aguascalientes,

San Luis Potośı, Salamanca, Manzanillo, Carapan

Mexico South-Southeast

MSW Poza Rica, Veracruz, Puebla, Acapulco,

Temascal, Coatzacoalcos, Tabasco, Grijalva,

Ixtepec, Lerma , Mérida, Cancún, Chetumal, Cozumel

Canada ROW All Canadian Provinces
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C. FUEL MIX UNDER EACH SCENARIO

C Fuel Mix Under Each Scenario

Figure C.1: 2016-2050 Fuel Mix Under High Gas Price Scenario

caption2016-2050 Fuel Mix Under Low Gas Price Scenario
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C. FUEL MIX UNDER EACH SCENARIO

Figure C.2: 2016-2050 Fuel Mix Under High Gas Price with High RPS Scenario

Figure C.3: 2016-2050 Fuel Mix Under Low Gas Price with High RPS Scenario
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D. CHANGES IN ELECTRICITY GENERATION FROM TECHNOLOGY TYPES (IN MWH) UNDER DIFFERENT
SCENARIOS

D Changes In Electricity Generation from Technology Types (in MWh)

Under Different Scenarios

Figure D.4: Coal Production Under Shock Scenarios

Figure D.5: New York Locational Marginal Prices
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D. CHANGES IN ELECTRICITY GENERATION FROM TECHNOLOGY TYPES (IN MWH) UNDER DIFFERENT
SCENARIOS

Figure D.6: Coal Production Under Shock Scenarios

Figure D.7: Natural Gas Production Under Shock Scenarios
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E. CHANGES IN LOCATIONAL MARGINAL PRICES IN THE US

E Changes in Locational Marginal Prices in the US

Figure E.8: New England Locational Marginal Prices

Figure E.9: New York Locational Marginal Prices
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E. CHANGES IN LOCATIONAL MARGINAL PRICES IN THE US

Figure E.10: Mid-Atlantic Locational Marginal Prices

Figure E.11: Carolinas Locational Marginal Prices
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E. CHANGES IN LOCATIONAL MARGINAL PRICES IN THE US

Figure E.12: Southeast Locational Marginal Prices

Figure E.13: Florida Locational Marginal Prices
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E. CHANGES IN LOCATIONAL MARGINAL PRICES IN THE US

Figure E.14: Tennessee Locational Marginal Prices

Figure E.15: Midwest Locational Marginal Prices
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E. CHANGES IN LOCATIONAL MARGINAL PRICES IN THE US

Figure E.16: Texas Locational Marginal Prices

Figure E.17: Central Locational Marginal Prices
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E. CHANGES IN LOCATIONAL MARGINAL PRICES IN THE US

Figure E.18: Northwest Locational Marginal Prices

Figure E.19: Southwest Locational Marginal Prices
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E. CHANGES IN LOCATIONAL MARGINAL PRICES IN THE US

Figure E.20: California Locational Marginal Prices
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