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Abstract

The existence of new particles and interactions could potentially address

fundamental questions about our universe, for example, the nature of dark

matter. If dark matter couples, even feebly, to the Standard Model, then new

particles mediating this interaction could be produced in accelerator-based

experiments. This dissertation describes the search for such mediators in

a proton-proton collider, the LHC. The search is performed in a low-mass

regime that has not been explored before, where these new mediator particles

would couple weakly to the Standard Model quarks. Signal candidates will be

recoiling against initial state radiation or ISR. The presence of ISR ensures that

events in data will have enough energy to satisfy the trigger requirements that

prevent saturation of the data bandwidth. The ISR also gives the resonance a

large Lorentz boost, so that its decay products are highly collimated inside a

single jet of hadrons. The distribution of the jet mass is probed for a potential

narrow peaking signal over a smoothly falling background. No evidence

for such dark matter mediator resonances is observed within the mass range

of 50–450 GeV and the most stringent constraints to date are placed within

50–300 GeV.
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Chapter 1

Motivation

The idea that gave rise to the study of particle physics is that all matter is com-

posed of the most basic and indivisible particles. The successive discoveries

of these elementary particles which began in the late 1890s prompted new

questions about their properties and interactions. We now know that particles

can be arranged in a manner that resembles the arrangement of chemical

elements in the Periodic Table. Instead of listing the element symbol, atomic

number and recurring chemical properties, one can list the spin, mass and

fundamental quantum numbers of each particle. These properties are sum-

marized in a theory framework called the Standard Model (SM) of Particle

Physics. The Standard Model is capable of explaining how these particles

interact and thereby of predicting particle phenomena that can be observed

in experiments. However, as precise as it seems to be, the SM cannot explain

all of the phenomena observed in our universe and still leaves questions

unanswered.

One of the greatest outstanding questions is the nature of dark matter

(DM), which makes up most of the amount of matter in our universe, is
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approximately inert and, contrary to ordinary matter, non-luminous. Astro-

nomical and cosmological measurements provide incontrovertible evidence

of its existence, but little is known about its composition and physical prop-

erties. Modern particle physics hypothesizes that dark matter has a particle

nature, like ordinary matter. This has motivated extension theories of the

SM that provide possible particle DM candidates. Many of these theories are

well-motivated because the existence of these candidates would solve other

unanswered questions in particle physics. However, the range of masses of

the particle DM candidate spans over almost 45 orders of magnitude. No

single search technique can cover such a parameter range, so one should first

select a plausible range of masses that facilitates detection.

The production mechanism of DM provides a good starting point for

categorizing DM models. A popular hypothesis is that DM was produced

through interactions with the bath of ordinary matter that filled the early

Universe. In this scenario, DM particles and SM particles were in thermal

equilibrium and the strength of their interactions determined the current

abundance of dark matter, known as the thermal relic abundance. Using the

thermal relic abundance, one can work backwards and discover a constrained

mass range for possible DM candidates. The weakly interacting massive

particle, or WIMP, is among the most promising candidates. A WIMP is an

electrically neutral and stable particle, with a mass in the range from a few

GeV to the electroweak scale, and with a thermal relic abundance set by weak-

scale annihilations. The mass and coupling1 ranges of WIMPs could allow

their production at a TeV-scale collider, and are thus most relevant for the
1A coupling parameter denotes the strength of the interaction.
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interpretation of collider results and the results of this thesis.

Particle colliders could produce DM particles in their collisions because

they can reach a very high energy and high intensity scale. A commonly tested

scenario in hadron colliders is the production of a DM mediator that has a

measurable coupling to SM quarks [1, 2]. Its decay into a quark-antiquark pair

leaves a signature that consists of two collimated sprays of particles, called

particle jets. The mass of these jets can be measured and, for collision events

where the DM mediator is produced, its value will be around the mass of the

mediator. However, the occurrence of this signal would be rare. Most of the

collision events that exhibit the same particle signature will be produced by

spurious jets that did not originate from the decay of a massive particle. These

jets constitute the background jets and the distribution of their mass values is

continuous. The main task of this search is to identify the DM mediator signal

as a resonance peak in the mass spectrum of the dijet pair.

Current and past searches for such resonance peaks in the dijet mass

distribution have obtained null-results in most of the available mass range,

recently reaching the TeV scale. Thus, current experiments look to extending

the search to lower couplings. In the low-coupling parameter space, the

DM mediator will couple very weakly with the SM quarks increasing the

likelihood for the signal to be hidden under large background processes. One

can take advantage of the unprecedented high-energy proton-proton collisions

of the Large Hadron Collider (LHC) in Switzerland to search in this region.

Searches at the LHC have excluded resonances that couple to quarks with

masses between 1.0 and 7.6 TeV [3, 4], in a region of 0.1 < g′q < 1.0, where g′q
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represents the coupling of the resonance to quarks. However, below masses

of 1 TeV their sensitivity is limited by the large background rate. The main

experimental difficulties originate from the large increase in the cross section

of multijet backgrounds at small resonance masses, and the more restrictive

requirements in the hardware selection algorithm (trigger). The latter are

needed to reduce the data recording rate because of limited resources for event

processing and storage. To overcome this limitation, trigger-level analyses

that record only partial event information and can set lower trigger thresholds,

have placed limits on resonances with masses of 300–1000 GeV [4–8].

In this dissertation, we study a complimentary technique to access the low-

mass regime. It concentrates on the mass region of 50–450 GeV, exploring for

the first time masses below 140 GeV. We look for dijet resonances that would

be produced with significant initial-state radiation (ISR) from quark/gluon

radiation. The presence of ISR ensures that the events have enough energy

to satisfy the trigger requirement, either by the ISR or by the resonance itself.

The recoiling ISR also gives the resonance a high Lorentz boost, so that its

decay results in a highly collimated particle jet signature. This strategy allows

us to search for resonances in a coupling and mass regime to which previous

searches were insensitive.

The ISR triggering technique is not only capable of probing low-mass DM

mediators but also highly-energetic hadronic decays of known SM resonances

in the 50–150 GeV range, such as the Higgs boson H. The SM Higgs boson,

predicted independently in Refs. [9–11], solves the long-standing puzzle of

the mechanism behind the mass generation of the massive mediators of the
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weak force, the W and Z bosons, and the fermions. Following the discovery of

a new Higgs-like particle in 2012, it has become a matter of precision to check

that the properties of this particle are consistent with the SM predictions. A

promising way of hunting for deviations from the SM, which may point to new

physics, is by measuring the kinematic properties of the Higgs-like particle.

For example, new heavy particles can modify the Higgs boson coupling to

the top quark and consequently its kinematic spectrum at high energy. The

second part of this thesis concerns the identification of low-mass hadronic

decays of the Higgs boson when this is produced with high Lorentz boost.

To understand the challenges of accessing the low-mass regime, we must

first develop the intuition that leads to the modern description of jet recon-

struction and identification at a hadron collider. The remaining chapters in

this dissertation are as follows:

• In Chapter 2, we provide an overview of the theoretical background

behind the search for resonances that couple to quarks. This includes

a description of the structure of the SM, the phenomenology of proton

collisions as described by the SM and the limitations of the SM, in par-

ticular those related to our understanding of dark matter. We conclude

with a discussion on how to test simplified models of dark matter at the

LHC.

• In Chapter 3, we summarize the particle detection setup, the LHC de-

sign and its performance during the last proton run. We describe the

Compact Muon Solenoid (CMS) detector and its sub-systems that iden-

tify outgoing particles from the collisions. Particle identification in any
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of these sub-systems is based on the basic principle that when particles

go through matter, they interact with it and leave a signal. The signal

can be used to infer properties of the outgoing particles: its position,

energy deposits and momentum. Finally, we describe the methods used

to provide a description of the particles reconstructed in an event.

• In Chapter 4 we focus on the reconstruction of hadronic signatures in

the detector. We describe the algorithms that cluster hadronic energy de-

posits into particle-jets and how these are calibrated in data. The second

part of this chapter focuses on the identification of the hadronic decays

of highly-energetic resonances, that are reconstructed and merged into

single large-radius jets. We detail the methods and identification ob-

servables that exploit the radiation pattern inside the jets. We derive a

method that prevents any of the large-radius jet identification observ-

ables from distorting the jet mass distribution. Finally, we describe the

calibration of these techniques in data.

• In Chapter 5, we present the search strategy for low-mass resonances

that couple to quarks. We present an overview of the online and offline

event selection, that aims to identify a highly energetic jet with two-

prong substructure. We then describe how we estimate the contribution

of background processes that mimic the event signature of our signal

in the detector. The main background process in this search is the pro-

duction of spurious jets in the detector and its contribution is estimated

with a novel data-driven method. Finally, we present the results of this

search and their interpretation within the framework of a DM mediator.
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This search was performed using data collected by the CMS detector at

the LHC in 2016-2017. It is described in an abbreviated form by the CMS

Collaboration as two separate papers [12, 13].

• In Chapter 6 we apply a similar analysis strategy to measure highly

energetic decays of the 125.1 GeV Higgs boson. The H candidates are

required to have a high Lorentz boost to meet the restrictive trigger

criteria and are reconstructed as single large-radius jets. We explore

methods of identification of Higgs-like jets that exploit the radiation

pattern and color properties of the jets. This chapter is based on the

work appearing in Ref. [14]

• Finally, in Chapter 7, we summarize the results presented here and give

an outlook on how using ISR in the event signature can help uncover

other hidden signatures in LHC data.
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Chapter 2

Theoretical Background

2.1 The Standard Model

The SM provides a formal description of the particles and the dynamics of

their interactions via a quantum field theory [15–19].

In this theory, particles are quantum matter fields: wave functions, ψ(x),

that take some value for every point x in the space-time. They are character-

ized by quantum numbers, such as their mass, m, and their spin, s. Fermions,

with half-integer spin, follow Bose-Einstein statistics, while bosons, with

integer spin, follow Fermi-Dirac statistics [20].

The structure of the SM is encoded in a Lagrangian density, LSM. The

Lagrangian density depends on one or more fields and contains terms that

describe free fields and others that describe interactions. The interaction terms

in the SM Lagrangian describe the fundamental interactions as mediated by

fields.

Fields in the SM respect Lorentz symmetries and thus must be invariant

under translations, rotations and boosts on the space-time [21]. Furthermore,
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they must be gauge invariant. Gauge invariance allows for the additional

degrees of freedom, that correspond to the mediator gauge bosons, to be

introduced in the SM Lagrangian. It implies that the observables derived from

the Lagrangian will remain invariant under local transformations, ψ(x) →
U(x)ψ(x), where the transformations U(x) form Lie groups. Examples of

the groups considered in the SM are U(N), that describes N-dimensional

rotations, and SU(N), that imposes the additional condition of tracelessness.

In this section, we describe each of the gauge fields included in the SM

Lagrangian. To show how interactions arise from the gauge principle, we first

discuss the kinematics of the free fields and introduce the electromagnetic

interaction as the simplest case.

2.1.1 The electromagnetic interaction

For a free field ψ of spin 1/2 and mass m, the Dirac equation of motion can be

written as:

(iγµ∂µ − m)ψ(x) = 0, 1 (2.1)

1In h = c = 1 units
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where ψ(x) is the four-component spinor 2 representing the field wave-

function, γµ are the Dirac matrices corresponding to the space-time coor-

dinates xµ3, and ∂µ ≡ ∂
∂xµ . The solutions to this equation are plane waves

propagating in the positive and negative time directions. The latter can be

also interpreted as anti-particles propagating forwards in time.

The corresponding Lagrangian density for this free field is given by:

Lfree = ψ̄(x)(iγµ∂µ − m)ψ(x). (2.2)

If we introduce an electromagnetic field, Aµ(x), the equations of motion are

described by Maxwell’s equations. Under no external currents, these are:

∂µFµν = 0, (2.3)

where, Fµν = ∂µ Aν − ∂ν Aµ is the antisymmetric field tensor for Aµ(x).

The Lagrangian corresponding to Eq. 2.3, LEM = −1
4 FµνFµν, obeys local

U(1) symmetry. This means that both ψ(x) and Aµ are invariant under the

2A spinor field describes a particle of spin s, where s is an integer or half-integer. This
field has four components and is defined via a set of γ matrices. We can use the following
representation for the γ matrices:

γ0 =

(
I 0
0 I

)
and,γi =

(
0 σi

−σi 0

)
,

where I denotes a 2 × 2 identity matrix, 0 denotes a 2 × 2 null matrix, and the σi are the Pauli
spin matrices.

3xµ is a Lorentzian “four-vector”: x0 = ct, x1 = x, x2 = y, x3 = z
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unitary transformations:

ψ(x) → eiQψθ(x)ψ(x), (2.4)

Aµ(x) → Aµ(x) +
1
q

∂µθ(x). (2.5)

In order for the Lagrangian to be invariant under this symmetry, the

derivative operator, ∂µ, needs to be replaced with the covariant derivative:

∂µ → Dµ = ∂µ − iqe Aµ. This replacement introduces the following interaction

term in the Lagrangian:

LEM = qψ(x)Aµγµψ(x). (2.6)

Here, the field Aµ corresponds to a massless spin-1 gauge boson that is coupled

to the fermion field via a coupling constant q. In quantum electrodynamics

(QED), the gauge boson Aµ is the massless photon, γ, and q is the electric

charge of the fermion. If a mass term, 1
2 m2Aµ Aµ, is added, this would spoil

the gauge invariance. This situation will be discussed later in Sec. 2.1.4.

Within the QED model, all allowed processes occur due to photons and

fermions propagating between space-time coordinates and photon-fermion

interactions. Experimentally, these interactions (and any other interactions in

quantum field theory) can be studied by measuring observable decay rates

or scattering cross sections. For this, we need to consider the probability

of interaction or transition amplitude ⟨ψ f |Hint|ψi⟩, between the initial state

|ψi⟩ and the final state |ψ f ⟩. Here, Hint is the interaction Hamiltonian that

can be derived for any Lagrangian density L, for example LEM. Measurable

quantities such as scattering cross sections are proportional to the magnitude
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squared of the transition amplitude, also called matrix element.

To evaluate the matrix element, we take the time-ordered series expansion

in terms of the interaction strength or coupling g. If g ≪ 1, the series converges

quickly and it is sufficient to consider only the first few terms. Most of the

calculations used in colliders are known to next-to-leading order (NLO), i.e.

truncated at order g2, or even next-to-next-to-leading order (NNLO), truncated

at order g3. Each term in the perturbation expansion is represented as a

pictogram which is called a Feynman diagram. The basic vertex used in QED

to construct fermion-photon interactions is shown in Fig. 2.1. The vertices and

propagators are specified by the form of the interaction Lagrangian. In the

following, we will derive similar basic vertices for the remaining fundamental

interactions in the SM.

2.1.2 The strong interaction

The strong interaction acts on quarks, spin 1/2 particles that carry color charge.

It is described by the theory of quantum chromodynamics (QCD). Gluons

are the mediator particles in QCD, they are massless spin 1 particles that also

carry color charge and can thus couple to each other.

QCD arises from the invariance of the Lagrangian under the SU(3)C gauge

group, which leads to color charge conservation in the strong interactions. A

quark spinor field has three components: Ψ(x) = (ψr, ψg, ψb), where r, g, b are

colors. It transforms under this group as:

ψ(x) → exp(igsθ
aTa)ψ(x). (2.7)

12



Figure 2.1: Basic QED diagrams, the top figure shows the basic vertex for QED while
the bottom diagrams show process such as a fermion propagating between vertices
and a fermion-photon interaction.
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Here, Ta are the eight generators of the group represented by the matrices

λa: Ta = 1
2 λa, θa are the associated rotation angles and gs denotes the strong

coupling strength.

To keep gauge invariance, the covariant derivative can be written as: ∂µ →
Dµ = ∂µ − igsGa

µTa. Ga
µ are the eight gluon fields that must transform as:

Ga
µ → Ga

µ − ∂µθa − gs fbcaθbGb
µ. The last term arises from the non-abelian

nature of QCD, and implies that the Ta generators do not commute but are

instead related through the following relationship: [Ta, Tb] = i fabcTc. This

expression can be simplified by writing the gluon octet as Gµ = Ga
µTa.

The Lagrangian density describing a quark field of mass m can be written

as:

LQCD = −1
4

Ga,µνGa
µν + ψ̄(iγµDµ + m)ψ, (2.8)

where Ga
muν = ∂µGa

ν − ∂νGa
µ + igs fabcGb

µGc
ν is the gluon field strength tensor.

The presence of the structure constants, fabc, implies that gluons carry color

charge, as anticipated earlier, and thus interact with each other. The basic

vertices of QCD are shown in Fig. 2.2 and include three- and four-point self-

coupling gluon vertices.

QCD and renormalization In quantum field theory, calculations that in-

volve high energy corrections to vertices and propagators may contain terms

with ultraviolet divergences. These are divergences that arise from Feynman

diagrams that are associated with unconstrained energy, or, equivalently with

phenomena at very small distances, e.g. when considering the corrections

to the quark self-energy. These can be addressed through a renormalization

14



Figure 2.2: Basic QCD vertices for a quark-gluon interaction and gluon self-
interactions.
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scheme, by adding counter terms that absorb these infinities. Lagrangians in

the SM are renormalizable since they only need a finite number of counter

terms to keep all observables finite. Here, we will only focus on the renormal-

ization of the strong coupling constant. This has important consequences on

the behavior of quarks and gluons and its experimental detection.

The strong coupling constant, αs = g2
s /4π, acquires a non-trivial energy

scale dependence because of quantum corrections, such as corrections to the

quark and gluon self-energies. After renormalization, the scale dependence of

the coupling is described by:

αs =
12π

(32 − n f ) ln(µ2
R/λ2

QCD)
, (2.9)

where µ2
R is the energy renormalization scale equal to the momentum transfer

Q2, n f is the number of fermions and the QCD scale parameter λQCD is an

experimentally determined cutoff. When setting n f = 5 and using the energy

scale µR near the Z boson mass (90 GeV), λQCD takes a value of approximately

0.2 GeV. This conveys the general rule that perturbative QCD calculations

only provide the evolution of an observable at an arbitrary scale, here µR.

From a quick look at the evolution of αs one can already observe two

important features of QCD. The first is that the coupling decreases with higher

energy. As µR → ∞ and at very small distances, the coupling tends towards

zero and quarks can be treated as free particles. This is the phenomenon of

asymptotic freedom. The second is related to the coupling increasing at higher

distance or lower energy. At very low energies, below λQCD, the coupling is

too strong to allow perturbative calculations. In the regime, where αS > 1, the
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theory becomes non-perturbative, necessitating different types of techniques

to understand QCD in this regime. Fig. 2.3 shows the scaling behavior of αs

across a large range of momenta.

Colorless hadrons Since free quarks have not been observed in experiments

and QCD has a long-range behavior 4 , the color charge is hypothesized to

be confined. That is, quarks cannot be isolated and are only observed in

bound colorless states known as hadrons. Hadrons are colorless and can be

composed of a quark-antiquark pair (mesons) or three quarks (baryons). The

theory description and experimental behavior of hadrons will be explained in

Sec. 2.2.3 and the following two chapters.

2.1.3 The weak interactions

The third and final force described in the SM is the weak force. The weak

interaction couples leptons with charged neutrinos, and allows a quark to

change its flavor5 (e.g. couples up and down quarks). Three massive gauge

bosons mediate these interactions, the charged W+ and W− bosons and the

neutral Z boson.

Since it was experimentally observed that weak interactions do not con-

serve parity (P) [23], the symmetry that flips the sign of one spatial coordinate,

4i.e. if one takes a heavy probe quark and an antiquark separated by a large distance, the
force between them does not fall off with distance.

5There are six flavors of quarks: up (u), down(d), charm(c), strange(s), top(t), bottom(b).
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Figure 2.3: Summary of measurements of the strong coupling constant, αs, as a
function of the energy scale Q. The scaling predicted from perturbative QCD theory
is compared to experimental measurements in different processes and energy regimes.
The value of αs decreases as the energy scale increases, reflecting the asymptotic
freedom behavior of QCD. Figure extracted from [22].
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we describe them by a chiral gauge theory. 6 In this theory, the weak interac-

tion vertex includes not only a vector coupling (P=-1) but also an axial vector

coupling (P=1). To distinguish the left- and right-chiral components of the

Dirac spinors, we can introduce the γ5 operator, γ5 = iγ0γ1γ2γ3, with parity

eigenvalues ±1. The operators 1
2(1 ± γ5) project the left-handed, ψL, and

right-handed ψR components of a spinor.

The weak interaction is symmetric under the SU(2)L non-abelian group.

The SU(2)L transformations are described by three angles θj(x) so that left-

handed fields transform as: ψL → exp( i
2 θjτj)ψ

L. Right-handed fields ψR

remain invariant. The τj =
σj
2 matrices are related to the three Pauli matrices

and called the generators of the SU(2)L group.

We can group left-handed states into doublets:
(

νL
ℓL

)
for leptons and

(
qL
q′L

)
for quarks.

States that transform under SU(2)L are charged under a new quantum

number: the weak isospin I = 1
2 . Its projection is I3 = +1/2 for νL, qL and

I3 = −1/2 for ℓL, q′L. The right-handed fermions are uncharged under SU(2)L,

they have I = I3 = 0 and form singlets. Thus, ψR
l = eR, µR, τR for leptons,

and ψR
q = uR, dR, cR, sR, tR, bR for quarks.

Imposing the local gauge invariance via the covariant derivative:

∂µ → ∂µ − i
g
2

τjW j,µ, (2.10)

6Here, the term chiral refers to how a particle’s quantum mechanical wave function
behaves with respect to its mirror image. The spin of a particle may be used to define a
handedness, or helicity, for that particle, which, in the case of a massless particle, is the same
as chirality. The helicity of a particle is positive (“right-handed”) if the direction of its spin is
the same as the direction of its motion. It is negative (“left-handed”) if the directions of spin
and motion are opposite.

19



requires a triplet of gauge boson fields: W j,µ. These can be associated to the

two charged vector boson fields that mediate the weak force:

W±µ =
1√
2
(W1,µ ∓ iW2,µ). (2.11)

The third boson predicted by SU(2)L gauge invariance, W3,µ, is a neutral

gauge boson. Since the electromagnetic force is also mediated by a neutral

gauge boson, the photon, the presence of W3,µ suggests the unification of the

electromagnetic and weak forces.

The electroweak theory contains two interactions associated with the

SU(2)L gauge field W3,µ and a new U(1)Y gauge field B. Here, we have

introduced a new quantum number, the weak hypercharge Y. Y is the same

for both components of the SU(2)L doublets, so that the left handed doublets

are invariant by both SU(2)L and U(1)Y. The observed electric charges of the

fermions are then related to the weak hypercharge Y and weak isospin by

Q = I3 + Y/2.

Invariance under SU(2)L×U(1)Y leads to the covariant derivative:

DL
µ = ∂µ − igW i,µτi − i

2
g′YBµ, (2.12)

for the left-handed terms and:

DR
µ = ∂µ −

i
2

g′YBµ, (2.13)

for the right-handed terms. The coupling strengths of SU(2)L and U(1)Y are

given by g and g′, respectively.
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Figure 2.4: Basic vertices for massless terms in electroweak interactions. The interac-
tions between the vector gauge bosons: photons, W and Z bosons are shown in the
bottom panel.

One can change basis using a linear transformation given by:(
W3,µ

Bµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Zµ

Aµ

)
, (2.14)

such that Zµ only couples to isospin and Aµ only couples to charge. Since

Q = g sin θW = g′ cos θW , the Weinberg angle θW = tan−1(g′/g) determines

the relative coupling strengths of the electromagnetic and weak interactions.

Ignoring mass terms and the Higgs sector, the electroweak (EW) La-

grangian for electron and electron neutrino interactions is:

LEW = − 1
4

Wa
µνWa,µν − 1

4
BµνBµν + iψ̄L /∂ψL + iν̄R

e /∂νR
e + iēR /∂eR. (2.15)

The field strength tensors are Wa
µν and Bµν. The basic vertices for the massless

terms in electroweak interactions are shown in Fig. 2.4.
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2.1.4 The electroweak symmetry-breaking

So far we have not considered mass terms for the W and Z bosons in the elec-

troweak Lagrangian. This is because these terms break the gauge symmetry.

For a boson Vµ, that transforms under U(1) such that Vµ → Vµ + 1
g ∂µθ, the

mass term is described by: LVmass = −1
2 m2

VVµVµ. This Lagrangian transforms

under U(1) as:

LVmass → −1
2

m2
VVµVµ − 1

2g2 m2
V(∂µθ)(∂µθ)− 1

g2 m2
VVµ(∂

µθ) (2.16)

and breaks the gauge symmetry. In a similar way, the masses of W and Z bosons

would break SU(2)L×U(1)Y symmetry.

Similarly, we have not yet introduced quadratic mass terms for fermions.

The fermion mass terms of the form:

−m(ψ̄RψL + ψ̄LψR), (2.17)

cannot be gauge invariant since only left-handed fields transform under

SU(2)L.

These problems can be treated by introducing two complex scalar fields

arranged in a weak isospin complex doublet:

ϕ =
1√
2

(
ϕ†

1 + iϕ†
2

ϕ3 + iϕ†
4

)
. (2.18)

The Lagrangian density for this scalar field is:

Lϕ = (∂µϕ)†(∂µϕ)− V(ϕ). (2.19)
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The potential, V(ϕ), takes the form: V(ϕ) = µ2(ϕ†ϕ) + λ|ϕ†ϕ|2. This is the

most general form of the potential that is invariant under SU(2)L×U(1)Y

symmetry.

This potential has a degenerate global minimum at ϕ†ϕ = v2

2 = −µ2/2λ

with µ2 < 0. A continuum of ground states exist and we must pick an

arbitrary vacuum state to fall into. If we choose the vacuum expectation

value v =
√
−µ2/2λ and, through gauge rotations, we fix ⟨ϕ1,2,4⟩ = 0, we can

rewrite the doublet as:

ϕ =
1√
2

(
0

v + H

)
. (2.20)

Here we expanded ϕ3 = v + H, with H being the real Higgs field with mass

MH = µ
√

2. This choice is called the unitary gauge and spontaneously breaks

the symmetry.

The presence of a non-zero vacuum field leads to the existence of a mass

term for W and Z bosons. By expanding (∂µϕ)†(∂µϕ) in Eq 2.19 we introduce

the following terms in the Lagrangian:

v2

8

(
g2(W1

µW1,µ + W2
µW2,µ) + (g′Bµ − gW3

µ)
2
)

. (2.21)

With this mechanism, the charged vector W bosons obtain their masses from

mW = vg
2 , the neutral Z boson obtains mZ = mW

cos θW
and the photon is massless

mA = 0.

The mass of the fermions is also introduced through spontaneous symme-

try breaking [24, 25]. For each fermion field, the Yukawa interaction is then

given by:

LYukawa = −g f vψ̄ψ − g f ψ̄Hψ. (2.22)
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Figure 2.5: Basic vertices for the couplings of the Higgs boson field with fermions ( f ),
vector bosons (W± or Z), or self-interactions.

Here, the first term is identified with the mass of the fermion g f v and the

second term corresponds to the interaction of the fermion with the Higgs field.

The coupling strength of the fermions to the Higgs doublet g f is proportional

to the mass of the particle and can be different for each fermion. The basic

vertex interactions of the Higgs boson with fermions and massive gauge

bosons are shown in Fig. 2.5. The mechanism of Electroweak Spontaneous

Symmetry Breaking is further detailed in Refs. [9–11, 26, 27].

Summary The SM describes the dynamics and interactions of fundamental

particles under the SU(3)C × SU(2)L × U(1)Y symmetry group. Electroweak

interactions are invariant under SU(2)L × U(1)Y and mediated by W/Z/γ

bosons, while the strong interactions are invariant under SU(3)C and mediate
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Table 2.1: Summary of the SM fermions and the action of the SM gauge symmetry
group. The left- and right-handed chirality fields are represented by subscripts L and
R. The electric charge is given by Q = I3 + Y/2.

U(1)Y SU(2)L rep. SU(3)C rep.
Left-handed quark qL 1/6 2 3
Right-handed up quark uR 2/3 1 3
Right-handed down quark dR −1/3 1 3
Left-handed lepton ℓL −1/2 2 1
Right-handed lepton (charged) ℓR 1 1 1
Right-handed lepton (neutrino) νR 0 1 1

processes that involve color charged particles. Table 2.1 summarizes the

interactions of the particles, by showing the representations in which the

matter fields (quarks and leptons) transform under the SM symmetry group.

The particle content of the SM is summarized in the “Particle Table”, which

was referred to in Chapter 1 and shown in Fig 2.6. The table is color-coded

by the three known generations of quarks and leptons, and shows the electric

charge, relevant couplings and masses of each particle. It also shows each

of the gauge mediators and the Higgs boson, which is associated with the

mechanism that gives mass to the elementary particles.
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Figure 2.6: Particle content of the Standard Model. The table shows the SM gauge
bosons and the fermions. For each particle species values of its mass, electrical charge
and spin are also shown. Figure adapted from [28].
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2.2 The Standard Model in Hadron Colliders

Although the structure of the SM can be concisely summarized in a Lagrangian,

predicting the processes that arise from this structure is quite complex. The

challenging nature of perturbative calculations, the high energy scale, and

the complexity of composite hadron collisions make analytic predictions

infeasible. Thus, to predict the behavior of scattering processes at a hadron

collider, such as the LHC, we typically use Monte Carlo (MC) simulation.

For a given scattering process, pp → XX, we generate a large number N of

events. Each event is normalized to the calculated cross section of the process

at a given order. The simulated events are used in a variety of contexts, and

their properties are often compared to collision data in frequency distributions

(histograms). Given the finite nature of N, the MC distributions will have

statistical fluctuations that are minimized by making N as large as needed.

In the following, we describe the elements needed to characterize a pp → X

scattering process, and thus a Monte Carlo simulation at the LHC.

2.2.1 Parton distribution functions

The nature of the colliding protons complicates the calculation of the cross

section of a scattering process. Protons are bound states of two up quarks and

one down quark (uud). They are bound together by gluons, which produce

short lived qq̄ pairs of all flavors. Any of these particle constituents, referred

to as partons, may be initial states for the hard scatter interaction in a pp

collision. The relative fractions of a parton in the proton may vary, depending

on the energy scale Q2 with which the proton is probed. To parametrize the
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probability of probing initial state partons with particular momenta when

two protons collide, we use Parton Distribution Functions (PDFs), fi(x, Q2).

These specify the probability of finding a parton of species i = g, u, d, ... with

a fraction x of the proton’s momentum.

The description of protons in terms of PDFs follows from the factorization

theorem in QCD [29]. This theorem takes into account the breakdown of per-

turbative QCD, which we expect at low energy scales. It allows us to decouple

the cross section calculation into a hard-scattering component, that describes

the interaction of ab → X with perturbation theory, and a non-perturbative

component, described by the PDFs of the partons a, b. This factorization

depends on an arbitrary energy scale that defines the lower bound for interac-

tions to be considered part of the hard-scattering, the factorization scale µ2
F.

This allows us to describe the cross section for a pp collision process by:

σ(pp → XX) =
∫ 1

0
dxadxb ∑

a,b
fa(xa, µ2

F) fb(xb, µ2
F)σ(ab → X)(Q2, µ2

F). (2.23)

In this expression, the sum is performed over all the incoming partons a, b

and integrated over the allowed momenta.

One can quantitatively predict the dependence of the PDFs on the energy

scale using the Dokshitser-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution

equations [30–32], which evolve the PDFs from one scale to another. But

the variation of the PDF as a function of x, for a given scale, cannot be done

analytically. Instead, it is constrained empirically from many experimental

data. In this thesis we use the NNPDF3.0 PDF set [33], shown for example in

Fig. 2.7.
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Figure 2.7: The parton distribution functions for protons at µ2
F = 104 GeV2. At higher

momenta and low x, the gluon PDF is enhanced. Figure reproduced from [33].
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2.2.2 Hard scattering

The hard-scattering component of the cross section is calculated at finite order

in perturbation theory, for an energy scale above µ2
F. The matrix element

calculation uses all the relevant parameters of the field theory, including

the renormalization scale µR, up to which the theory is defined. Although

such calculations can be done analytically for the simplest processes, tools in

MC generators such as MADGRAPH [34, 35] and Powheg [36–38] automatize the

process. These generators have several stages but often start by importance

sampling events, such that events occur with a probability proportional to

the phase space and the matrix element. This step is simple at leading order

(LO), but becomes complicated at higher orders, such as next-to-leading order

(NLO), when cancellations between real and virtual corrections need to be

accounted for.

An example of the different QCD NLO corrections is given in Fig. 2.8.

The production of Z bosons via quark-antiquark fusion is defined by the

hard process where no extra quark or gluons are produced. Higher-order

corrections that include additional real emissions of gluons are shown at LO

(NLO), these are proportional to αs(α2
s ). While these higher order QCD terms

generally yield the most important corrections, higher order electroweak (EW)

corrections are also important for precise measurements.

2.2.3 Parton shower and jets

At the scale of the hard interaction, there are only a few partons. Due to the

confinement property of QCD, the partons in the initial and final state of
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Figure 2.8: The production of Z bosons via quark-antiquark fusion (top-left) and its
higher order QCD corrections for virtual (top-right) and real (bottom) contributions.
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the hard scatter will split7. Such splittings include quark or gluon emission:

q → qg, g → qq, g → gg. These emissions occur iteratively with decreasing

energy scale and develop the parton shower (PS).

We can relate the (n+ 1)-parton (post-emission) cross-section to the n−parton

(pre-emission) cross-section for the initial (final) states:

dσn+1 ∼ dσndPc(z, Q2), (2.24)

where dPc(z, Q2) is the probability that a parton c will split into two par-

tons at a scale Q2, with parton ci carrying a fraction of momentum z of the

original parton’s momentum. In a similar way to PDFs, one can define are

Altarelli-Parisi splitting functions [30], Pc→ci , that describe the possible parton

branchings for a parton c 8 .

The PS evolution follows by the iterative implementation of Eq. 2.24. MC

parton shower models, such as Pythia [39] or Herwig [40], provide a useful

description of this regime via the construction of Sudakov form factors, which

represent the probability that a parton does not undergo a splitting process

between two energy scales. These take the form of:

∆c(q2, q′2) = exp

{
− ∑

d∈q,g

∫ q′

q

dq2

q2

∫ zmax

zmin

dz
αs

2π

1
2

Pcd(z)

}
, (2.25)

for two scales q2 and q′2. The PS simulation of the final-state radiation (FSR)

operates by following a forward evolution whereby partons initially at a

7As the hard-scatter partons exit the interaction the coupling will increase with their
separation. This increases the probability to radiating gluons, which in turn radiate qq̄ pairs
and so on

8For example, the splitting function for q → qg is: Pq→qg = C f

(
1+z2

1−z

)
, where C f = 4/3.

This implies that the cross section grows for z → 1 and θ → 0, i.e. soft and collinear splittings.
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scale Q2 emit radiation at the scale q′2, determined by sampling ∆c(Q2, q′2)

in Eq. 2.25. Initial state radiation (ISR) showers are those that develop on an

incoming parton of the hard scatter and are modeled in the same way as FSR

showers except that they evolve backwards from the hard scattering.

The parton splittings are repeated until all the partons have reached a

certain energy scale near Q2
0 = ΛQCD. Below this scale (usually around 1

GeV), color confinement effects become important and partons evolve into

color-neutral hadrons, preventing further splitting. This process is modeled

non-perturbatively and is called hadronization.

Hadronization models in MC generators follow the Lund string model [41]

to determine the overall multiplicity of the final state particles. The Lund

string interprets the QCD field lines between quarks as massless strings that

store potential energy. When a string is sufficiently stretched, it breaks and

splits the system, leading to the production of a quark-antiquark pair. The

implementation of this process is iterative and is tuned to match data observa-

tions. Results in this thesis follow the PS models by Pythia 8.230 [39].

When the endpoints of the hadronic shower reach the detector, they appear

as collimated sprays of particles. These are clustered into particle jets. The

algorithms used to cluster, reconstruct and identify jets in an event are detailed

in Chapter 4.

Other objects are also produced in association with the final states that

result from the hard-scatter. These are called the underlying event (UE). They

can result from the fragmentation of beam remnants or the interaction between
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the remaining partons of the protons that accompany the hard scattering. Mod-

eling the UE is complicated because of the combination of perturbative and

non-perturbative processes. In MC generators, it is simulated using pertur-

bative models that are tuned to match the particle multiplicities observed in

data. In this thesis, the Pythia parameters for the underlying event description

are set with the CP5 tune as described in Ref. [42]. Since it contributes to extra

low-energy particles in the event, the UE also impacts jet reconstruction as

described in Chapter 4.

As a summary, the simulation process of a pp collision event in MC is

illustrated in Fig. 2.9.

2.3 Beyond the Standard Model

The Standard Model was formulated fifty years ago and its predictive power

is immense. Collider measurements of the cross-sections for various known

production processes, spanning over 10 orders of magnitude, have been

shown to be consistent with the theoretical predictions [43]. These have

significantly improved our understanding of physics at the TeV energy scale.

Moreover, the discovery of the Higgs boson in 2012 confirmed the role of this

particle as a fundamental scalar boson and opened an experimental program

to characterize its properties [44, 45].

In spite of this success, the SM conceptual picture of the Universe is not

complete and leaves open questions, such as:

• The failure to provide a description of gravity.
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Figure 2.9: Illustration of the Monte Carlo simulation process of a pp collision event.
The end result of the hard-scatter + fragmentation + hadronization (ovals) process is
shown in the top, indicated by arrows. The gluons emitted from the incident partons
constitute the starting point of the initial state radiation (ISR). The ISR-emitted gluons
also hadronize but this process is omitted to avoid cluttering.
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• The nature of non-luminous dark matter, whose existence has manifested

in astrophysical and cosmological observations.

• The nature of dark energy, that accounts for 68% of the energy budget

of the universe and has been suggested by CMB measurements, galaxy

clusters and other measurements of the universe’s expansion rate [46,

47].

• The observed matter-antimatter symmetry in the universe that cannot

be explained by the SM CP violation and baryon number violation [48].

• The masses of neutrinos, which are hypothesized to be massless and

only left-handed in the SM, but have been shown to be non-zero from

neutrino oscillation observations [49].

• The smallness of the electroweak scale v (about 240 GeV), which is much

lower than the Planck mass around 1019 GeV. This fine-tuning is also

called the hierarchy problem.

There have been a multitude of proposals of beyond the Standard Model

(BSM) theories of particles and fields that attempt to solve some of these

remaining mysteries. In this thesis, we explore a generic signature in proton-

proton collisions that could probe certain extensions of the SM. In particular,

we focus on models that could provide a leptophobic candidate for a vector

mediator that would couple to quarks [50]. This candidate falls within the

description of a WIMP dark matter mediator candidate between SM particles

and dark matter. In the next sections, we give a short overview of our current
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understanding of dark matter with an emphasis on WIMPs and its current

constraints from colliders.

2.3.1 Dark matter

The visible universe consists of baryons (or normal matter) and radiation

(photons, or light). The invisible universe consists of neutrinos but, most

importantly, of dark matter. Dark matter (DM) is a non-baryonic type of matter

that represents a quarter of the energy budget of the universe. Understanding

the nature of dark matter is one of the most important quests in modern

physics.

So far what we know about that dark matter is the following:

• DM has gravitational mass. One of the first pieces of evidence of DM came

from the discovery that the movement of luminous matter (gas, stars

and galaxies) was inconsistent with the motion calculated from their

brightness. In 1933, measurements of relative velocities of galaxies in the

Coma cluster pointed to the a large amount of internal kinetic energy in

the cluster. For the structure to be dynamically stable, the gravitational

potential energy required was 20 times what would have been inferred

from the luminous matter alone [51]. This indicated the presence of

non-luminous matter.

• DM is important for structure formation of the universe Measurements of

the galactic rotational curves also gave us hints of the presence of dark

matter. In 1970, Vera Rubin et.al. measured the rotation velocities of

stars and gas clouds with respect to their distance to the center of the
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host spiral galaxies, v(r). To a fair approximation, assuming Newtonian

gravity and a two-body system in equilibrium, we expect a behavior

of the type: v(r) =
√

GM(r)/r. In particular, for outer-radius stars,

that would perceive a mass density much lower than the central mass

density, we expect v(r) ∝ 1/
√

r. Instead, it was observed that v(r)

increases in r and eventually plateaus, as shown in Fig. 2.10 [52]. The

observed rotational curves v(r) are well-described by a 3 component fit:

the visible disk, a gas cloud, and a dark halo. A non-zero component

of the dark halo, DM, is needed to support this fast rotation and to, in

short, keep galaxies and galaxy clusters from flying apart.

• DM is abundant The abundance of dark matter Ωc can be obtained

from cosmological measurements of the cosmic microwave background

(CMB) temperature anisotropies. The CMB measures the remnant of

photons after their decoupling from matter in the early universe, i.e. at

the time when free electrons and protons started forming electrically

neutral hydrogen atoms, allowing photons to travel freely [53, 54].

The power spectrum of the CMB is mostly isotropic but it has anisotropies

at the level of about 1 part in 100,000, these are driven by matter

anisotropies at the time of decoupling. The spectrum is modified when

there are two matter populations (SM and DM) as opposed to one (SM),

and one (DM) feels the pull of gravity but not the electromagnetic push

from light rays. Different modes, each with their characteristic length

scales, oscillate at frequencies that depend on the gravitational poten-

tial set by the dark matter abundance; the amplitude of each mode at
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Figure 2.10: Rotation curve for the spiral galaxy NGC 3198. The curve labeled disk
shows the expected rotation curve if the surface density distribution followed the
surface brightness distribution of the galaxy. The curve labeled gas is the contribution
to the rotation curve from the observed gas. Together, the gas and disk cannot
reproduce the observed flat rotation curve at large radii. Figure reproduced from [52].
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recombination can therefore be turned into a measurement of Ωc.

The latest results show that Ωch2 = 0.1200 ± 0.0012, where h is the

Hubble parameter in units of 100km s−1Mpc [22, 47]. This represents ap-

proximately 25% of all matter in the universe, with a relative uncertainty

of about 2%.

Given the incontrovertible evidence in favor of the existence of DM, there

is a spirited hunt to discover its nature and there is no shortage of ideas on

what this might be. Serious candidates have been proposed with a mass range

that covers up to 75 orders of magnitude, from 10−5eV (10−71 solar masses) to

104 solar masses. Among these, some of the most popular are non-baryonic

candidates, which are either undetected elementary particles or new particles

with non-standard properties. They can be characterized by how they came

to exist in large quantity since the Early Universe, and also by how easy they

are to detect.

A very plausible hypothesis for the production of dark matter is that it

consists of thermal relics of the Big Bang (much like the photons of the CMB).

The term relics refers to particles left over when their annihilation reactions

were no longer efficient. This implies that when the universe expanded, DM

fell out of thermodynamic equilibrium with other fields. The decoupling of

the DM field from the hot and dense thermal bath in the universe is called

freeze-out. If DM decoupling occurred by freeze-out, then DM was in thermal

equilibrium with the SM and must have interacted with SM particles at some

energy scale.

One popular candidate of thermal-DM is the Weakly Interactive Massive
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Particle (WIMP). WIMP candidates have the following properties:

• weakly interacting: they must have a small coupling with the SM. The

WIMP interaction is assumed to occur at or around the weak force scale

(∼ 0.1 − 1 TeV).

• stable: or at least long-lived to still be abundant.

• massive: or massive enough to be cold or non-relativistic at the time of

structure formation. The WIMP mass is assumed to be in the GeV range.

The SM neutrino could satisfy some of the requirements for a WIMP,

since at least two types of neutrinos are known to be massive. However,

constraints on the neutrino mass restrict Ωch2 ≤ 0.0062, at most 2% of the

energy associated with DM.

We can calculate the expected abundance of thermal relics with two simple

assumptions on the interaction strength and mass for a WIMP. It turns out

that a stable particle of mass near 100 GeV and interacting with the strength

of the weak force will leave a relic density of Ωch20.1. That is, it will leave just

about the right amount of “leftovers” to account for the observed dark matter

density. This coincidence is sometimes popularized as the “WIMP Miracle”.

An additional feature of WIMPs is that they appear naturally in many

model frameworks designed to understand the weak force, including su-

persymmetric theories, theories with extra spatial dimensions, and others.

In particular, an exhaustive search for theories in supersymmetry (SUSY)

has been and still is being pursued in colliders. These introduce a bosonic

(fermionic) partner for every fermion (boson) and along with providing a
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WIMP candidate 9 , they yield a solution to the hierarchy problem by alleviat-

ing the fine-tuning of fundamental parameters [55].

Other models suggest various types of particle DM that also solve other

problems in particle physics. Such is the case of sterile neutrinos, neutrinos

that do not couple to the Z boson and provide a mechanism for neutrino mass

generation; or axions, new light scalar fields that solve the question of why

there is no evidence of CP violation in QCD. This is not an exhaustive list and

detailed notes can be found in [56].

2.3.2 Dark matter constraints in colliders

If one assumes a weak coupling of particle DM with the SM, there are three

mechanisms for its detection:

• via indirect detection of DM annihilation via resonances in cosmic ray

energy distributions (protons, electrons, photons...);

• via direct detection of DM scattering against atomic nuclei;

• or via pair production from SM particle annihilation.

These are summarized in Fig. 2.11. The latter is the detection mode that

particle colliders follow.

The literature of the DM models probed in colliders can be divided into

two extremes. Fully specified, self-consistent models, such as SUSY, that pro-

vide specific features that can be exploited in narrowly targeted searches, or,

9A popular candidate is the lightest neutralino, a supersymmetric particle that behaves
similar to a neutrino. It tends to have masses at the weak scale (100 GeV - 1 TeV) and is stable.
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Figure 2.11: Schematic of particle dark matter detection channels. From left-to-right
DM is produced from SM particle annihilation, top-to-bottom DM scatters against
atomic nuclei and from right-to-left DM annihilates into SM particles.

simplified models, that make as few assumptions as possible on the underly-

ing theory and depend only on a few components to capture broad collider

signatures. A third class of models, called portal-models, considers the direct

decay of Z or Higgs bosons into DM particles [57]. However, the probabil-

ity of the decay of the Z boson into invisible particles, i.e. its partial width

of Z → νν, is already constrained at the 10−3 level. Similarly, couplings of

DM particles to the SM Higgs boson are constrained by measurements of the

branching ratio of h → χχ̄ < 0.34 [58].

In this thesis, we explore a very generic collider signature: a SM quark-

antiquark pair in the final state. Thus, here we explore constraints on a class

of simplified models where the DM is a particle annihilating to SM fermions

via a new gauge boson mediator. This mediator, called Z’, is under U(1) gauge

symmetry. A representative Feynman diagram for this process is shown in

Fig. 2.12.
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Figure 2.12: Feynman diagram showing the pair production of DM particles (χ) with
mass mχ from the anhilation of SM particles. In this simplified model, the interaction
is mediated by a U(1) gauge boson called Z’ with mass m′

Z. The cross section and
kinematics depend upon the mediator and DM masses, and the mediator couplings
gq′ and gDM. Figure reproduced from [1].

We focus on a spin-1 Z’ mediator with universal coupling to all quarks,

gq′ , and vector or axial-vector couplings to DM, gDM. These massive spin-1

bosons are nearly ubiquitous in extension theories of the SM, so Z’ bosons as

the mediators connect a wide class of models. The corresponding interaction

Lagrangian, for a vector coupling, is:

Lvector = gq′ ∑
q=u,d,s,c,b,t

Z′
µq̄γµq + gDMZ′

µχ̄γµχ (2.26)

Just as neutrinos do, DM particles would pass invisibly through the detec-

tor. To detect this invisible signature an additional SM interaction is required,

the most common addition is ISR radiated from the incoming quarks. The

experimental signature of this process usually consists on large missing mo-

mentum pmiss
T (from the invisible particles) and the ISR radiation deposited

in the detector (typically from a gluon, a photon or Z boson). This collider
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search is commonly known as pmiss
T + X.

Because invisible particles have feeble interactions with the colliding par-

tons, and thus low production cross sections, the pmiss
T + X searches need

precise estimates of the pmiss
T shapes of the background processes, especially

in the low-pmiss
T regions. With no excesses observed, these searches set con-

straints on the production cross section of invisible particles, typically ranging

from 0.5 pb to 2 fb, depending on the pmiss
T threshold [59]. These constraints

can be used to set exclusion limits on the interactions between the mediator

and the SM coupling (e.g. gq′), under specific sets of model assumptions. For

example, for vector mediators, masses of up to 1.5âĂŞ1.9 TeV are ruled out

for an invisible coupling of gDM = 1 and gq′ = 0.25.

In this thesis, we do not explore this signature but, instead, we probe these

interactions without actually producing invisible particles. For example, if the

mediator particle can be produced via interactions with quarks, it may also

decay into quarks. Thus, we focus on the decay of the Z’ boson back into a

quark-antiquark pair as shown in Fig. 2.13. These two quarks hadronize into

jets in the detector. Further details of this search will be given in Chapter 5.
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Figure 2.13: Feynman diagram showing the decay of the Z’ boson back into a pair of
SM quarks. The coupling of this mediator to quarks is assumed to be universal and
denoted as gq′ .
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Chapter 3

Experimental setup

There are two common methods to study particle interactions at high energy

and high intensity. Both require the use of a particle accelerator so that a

particle beam reaches a given energy. Then, we can either point the beam into

a thin target of nuclei or collide two particle beams together. In this study we

focus on collisions of two proton beams in a circular accelerator. Protons are

stable, abundant, and most importantly they are heavy enough to lose kinetic

energy to synchrotron radiation far more slowly than electrons.

In this chapter, we describe in detail the phenomenology of proton-proton

collisions at the LHC. We first detail the design of the accelerator and of the

CMS experiment that records these collisions and provides the data used in

this thesis. We discuss the sub-detector systems of the experiment that are

carefully layered and designed to identify different types of particles. Part of

the discussion is focused on the inner tracker detector system, that precisely

identifies the position of outgoing charged particles from proton collisions.

Finally, we detail how the full event reconstruction is performed.
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3.1 The design of the Large Hadron Collider

The CERN Large Hadron Collider (LHC) is a circular particle collider, with 27

km in circumference and placed approximately 45 m to 170 m underneath the

Switzerland/France border. It was designed to accelerate two proton beams

to an energy of 7 TeV and collide them at a center of mass energy
√

s = 14 TeV.

During its first run (Run I: 2010-2012), the LHC was able to deliver collisions at
√

s = 7 TeV and during its second run (Run II: 2015-2018) it achieved
√

s = 13

TeV collisions. The target energy will finally be achieved in the next upcoming

run (Run 3: 2020-2023). In addition to protons, the LHC also collides heavy

ions (Pb) at a lower energy of approximately 2.7 TeV. This thesis only uses

proton-proton collision data taken in a sub-period of Run 2 (2016-2017).

The discovery power of the LHC lies on the unprecedented energy and

intensity of its proton collisions: the large number of high-energy events

collected do not only allow for precise SM measurements but also open a

window to probe new physics coupled very weakly to the SM.

To reach a high energy regime, the protons in the LHC are accelerated step

by step through an injection chain. This chain is illustrated in Fig. 3.1. The

proton source that initiates the chain simply comes from hydrogen molecules

which are ionized and stripped of electrons with an electric field. These

protons are accelerated to a kinetic energy of 50 MeV by a linear accelerator,

the Linac2. The beams of protons are then injected into a series of synchrotron

accelerators, the Proton Synchrotron Booster (PSB), the Proton Synchrotron

(PS) and the Super Proton Synchrotron (SPS) that increase their energy to 1.4

GeV, 25 GeV, and 450 GeV. Finally two beams enter the LHC at two different
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Figure 3.1: The CERN accelerator complex. Protons are injected into the LHC acceler-
ator ring (dark blue) by a chain of intermediate accelerators that begins in LINAC2
(violet). Reprinted from Reference [60].

places circulating in opposite directions.

Inside the LHC, each beam is accelerated by eight super-conducting radio-

frequency (RF) cavities. These exert 400 MHz oscillating electric fields parallel

to the beam line. The physical and temporal design of the RF system creates

bunches of protons, corresponding to nodes of the oscillating field. The

proton bunches are effectively shaped by the oscillating RF field: protons in a

bunch behind (ahead) of those particles at the center of the bunches will be
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accelerated (decelerated) so as to be pushed back into the center of the bunch.

Each bunch is approximately 7.5 cm in length and has around 120 billion

protons; the bunches are moving at nearly the speed of light, and their leading

edges are separated by 25 ns. The bunch-spacing is not only determined by

the conditions at the LHC but also by what the detectors surrounding the

collision points can tolerate. A 25 ns bunch spacing translates to a maximal pp

collision rate of 40 MHz. A different bunch structure may push the detectors

at the interaction points beyond their detection and data acquisition limits.

The LHC uses super-conducting NbTi dipoles to generate a magnetic field

that bends the proton beams as they travel around the ring. The magnets are

cooled down to 2 K using super-fluid helium, and their generated magnetic

field is between 0.54 and 8.33 T. Besides the 1238 dipole magnets, there are

also a number of quadrupole magnets that are used to focus the beams into a

tiny spot as they approach collision.

The proton beams intersect in eight places along the LHC, four of which are

instrumented by detectors: CMS, ATLAS, LHCb and ALICE. In the interaction

region, two beams share a common beam pipe of approximately 130 m in

length. To avoid undesired parasitic collisions from the protons in the bunch,

there is a dedicated crossing angle between proton beams. The proton beams

are finally dumped at Point 6 using a deflecting magnet complex in both

horizontal and vertical directions.

The performance of the collider can be measured in terms of the center of

mass energy and the number of collision events recorded per unit time. For a
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given process with cross section σ(pp → X), the latter is given by:

N = σ
∫

Ldt = σLint, (3.1)

where L is the instantaneous luminosity and Lint the integrated luminosity.

Since σ is fixed, varying the luminosity allows to increase N.

The luminosity depends on:

L =
N2

b nb frevγr

4πϵβ∗ F, (3.2)

where Nb is the number of particles per bunch, nb is the number of colliding

bunches per beam, frev is the frequency of revolution, γr is the gamma factor

E/m of the beam, ϵn is the emittance of the beam, β∗ is the beta function

at the collision point, and F is the factor that accounts for the cross angle

at the point of interaction. The instantaneous luminosity, of units cms2s−1,

can be thought of as the outgoing flux of particles per unit area and time,

after a bunch crossing with successful pp collisions. Since Nb are modified in

collisions1, L varies over time.

At the LHC, the design collision energy is 14 TeV and the designed instan-

taneous luminosity is 1034 cm2s−1. Its delivered luminosity during Run 2,

at 13 TeV of center-of-mass energy, is shown in Fig. 3.2. A common unit for

luminosity is the barn (b), one barn is 10−24 cm−2. The size of the datasets

collected by the LHC experiments are such that the femtobarn (fb), 10−39 cm−2.

The inverse femtobarn (fb−1) is a measurement of particle-collision events

per femtobarn. The integrated luminosity during the period of 2016-2017 is

1For example, a dominant source of loss of protons in the beam is due to the burn-off in
collision.
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Figure 3.2: Cumulative delivered luminosity in the CMS experiment versus time for
2015-2018 (pp data only). These plots use the final approved physics calibrations for
all years. The results in this thesis use data from 2016(orange) and 2017 (light blue)
data-taking. Reprinted from Reference [61].

77 fb−1and from 2016-2018 is 132 fb−1.

To maximize the probability of having a hard scatter proton-proton interac-

tion the bunches are filled with a large number of protons. This results in more

than one interaction per bunch crossing, known as in-time pileup. Furthermore,

since the bunch spacing is only 25 ns, fractions of energy from neighboring

bunch crossings, before or after the current one, can still be left-out leading

to out-of-time pileup. That is, at one instant several parts of the detectors may

be looking at particles from different bunch crossings. This represents an

experimental challenge in the event reconstruction. A summary of the average

number of interactions per bunch crossing can be found in Fig. 3.3.
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Figure 3.3: Mean number of inelastic interactions per bunch crossing for the 2016 (or-
ange) and 2017 (teal) pp run at 13 TeV. The mean number of interactions per crossing
corresponds to the mean of the Poisson distribution of the number of interactions
per crossing calculated for each bunch. It is calculated from the instantaneous per
bunch luminosity as µ = Lbunchxσinel/ fr, where Lbunch is the per bunch instantaneous
luminosity, σinel is the inelastic cross section which we take to be 69.2 mb for 13 TeV
collisions, and fr is the LHC revolution frequency. The mean number per bunch
crossing and year of inelastic interactions is provided in the legend. Figure reprinted
from Reference [62].
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3.2 The Compact Muon Solenoid detector

The Compact Muon Solenoid (CMS) is one of two multi-purpose particle

detectors built at the LHC, the other is named ATLAS. Both have the broad

physics goals of discovering and studying the properties of the Higgs boson,

and searching for new phenomena at high energies. Both apparati have a

cylindrical shape that encapsulates the interaction point and follows a lay-

ered design of sub-detectors. These sub-detectors systems are specialized to

identify different kind of particles that result from the hard-scatter proton

interaction. The particles that can be easily identified because of their mass,

charge, or decay of length properties are: muons, electrons, photons, and

charged and neutral hadrons. Other particles can be reconstructed by iden-

tifying the products of its decay in the detector, e.g. the leptonic decay of τ

leptons. Neutrinos escape the detector but its presence can be inferred by

accounting for the total energy in the collision, as explained below.

A cut-away view of the experiment and its sub-detectors is shown in

Fig. 3.4. There are four main sub-systems: the silicon tracker, that measures

the tracks of charged particles, the electromagnetic calorimeter, that measures

the energy of electrons and photons, the hadron calorimeter, that measures the

energy of charged and neutral hadrons, and the muon detectors, that identify

and measure the momentum of muons.

The central feature of CMS is a super-conducting solenoid of 6 m internal

diameter, that provides a magnetic field of 3.8 T inside its volume. The

magnetic field is essential for bending the trajectory of charged particles, and

thus allowing the precise measurement of their momenta and charge. The
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Figure 3.4: A perspective view of the CMS detector. At the center are the silicon
pixel and strip trackers. Surrounding the tracker components are the electromagnetic
hadronic calorimeters. The barrel hadronic calorimeter is separated into inner and
outer regions by the super-conducting solenoid. The hadronic calorimeter endcaps
are organized as near and far components to provide better coverage of radiation
deposited at larger pseudorapidity (as defined in the text). The muon chambers and
the steel yoke of the magnetic field are located at the outermost layers of the detector.
Figure reprinted from Reference [63].
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space inside the coil is large enough to accommodate for the tracker and

calorimetry sub-systems, thereby reducing the amount of material in front

of the calorimeters. This is what makes CMS a “compact” apparatus. The

return field outside the solenoid is also large enough to saturate 1.5 m of iron,

allowing the integration of muon sub-detectors in between.

The (r, θ, ϕ) coordinate system adopted by CMS is centered at the inter-

action point and measured with respect to the z axis. It is shown in Fig. 3.5.

Here, z is along the beam axis, x is pointing inwards towards the LHC ring

and y is pointing upward. ϕ is the azimuthal angle measured from x in the

plane transverse to z.

The polar angle, θ, is measured from the z axis and defines the pseudo-

rapidity η = −ln tan(θ/2) = 1
2 ln |⃗v|+vz

|⃗v|−vz
. This quantity is invariant under

z−boosts. Another boost-invariant quantity largely used in the kinematic

description of particles, is the transverse momentum vector p⃗T = (px, py) and,

in particular, its magnitude pT. The CMS detector has full coverage in the

azimuthal direction (0 < ϕ < 2π) and partial but good coverage in the polar

direction (up to −5 < η < 5).

3.2.1 Tracker

The tracker is the first layer of the detector that outgoing particles from the

collisions encounter and is also the busiest. Because a large number of charged

particles emerge from the interaction region, the particle hit density per unit

area in each sub-layer is the greatest2. The purpose of the tracker is to precisely

2For a luminosity of 1034 cm2s−1, an average of 1000 particles go through the tracker in
each bunch crossing.
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Figure 3.5: Coordinate system adopted by the CMS detector. Figure reprinted from
Reference [63].

reconstruct their trajectories or tracks. It exploits the fact that charged particles

lose energy by ionization when moving through matter.

The CMS tracker design features high granularity, high precision and

fast response in identifying tracks and attributing them to the correct bunch

crossing. The tracking volume is composed by a small silicon pixel detector

and a surrounding large silicon strip tracker. Both occupy a cylinder of 5.8 m

in length and 2.5 m in diameter. They also operate in a similar way: when

charged particles pass through the detector, they ionize the silicon. The

deposited charge drifts through the sensor to an electrode, then the analog

signal recorded by the electrode is digitized, buffered and read out.

The pixel detector is closest to the interaction point and is composed of

three barrel layers and two forward disks, located at each of the cylinder, that

extend the acceptance to |η| < 2.5. It provides three-dimensional position

measurements of the hits based on the interaction of charged particles with

the sensors. In 2017, the pixel detector was replaced with four layers in the

barrel region and three disks in the forward region. The surrounding strip
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Figure 3.6: Detailed drawing of the locations of the subsystems of the Phase-0 CMS
tracker. Each line represents a detector module. Double lines indicate double-sided
modules (explained later in the text). Both the Pixel and the Strip modules are
represented here, the latter labeled as TID,TIB,TEC and TOB. The Pixel detector is
the innermost part and is surrounded by the outer tracker layers. Figure reproduced
from [63].

tracker is composed of ten layers of micro-strip detectors in the barrel region

and twelve in the forward region and provides a two-dimensional position

measurement. We discuss details of these sub-detectors below. The design

shown in Fig. 3.6 refers to the Phase-0 version of the tracker.

Pixel detector The design of the pixel detector is strongly driven by figures

of merit in tracking: a good momentum and impact parameter resolution. The

latter needs a precise single-point estimate in r − ϕ and is important for the

reconstruction of secondary vertices, i.e. those not coming from the primary

interaction point. The pixel layers in CMS are able to provide a single-point

position resolution of approximately 10 µm in the r − ϕ plane and 20 − 40µm

in the longitudinal coordinate z(r).
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Figure 3.7: Structure of the pixel detector modules (a) and exploded view of a barrel
module (b) [64]. Each module consists of a detector diode array (sensor) bump-
bonded to readout chips that amplifies the signal.

The CMS pixel detector contains modules that are designed in the follow-

ing way. Rectangular arrays of highly segmented silicon diodes of approxi-

mately 285 µm of thickness, are bump-bonded to corresponding readout chips

(ROCs). There are 8 or 16 ROCs, each of which have 52× 80 pixel sensors. The

pixel sensors themselves measure 100×150 (µm2). The upper layer of each

module consists of a High Density Interconnect (HDI) printed circuit board

that distributes the signal and power to the chips. The HDI is also equipped

with a Token Bit Manager (TBM) chip that controls the readout of the ROCs.

This arrangement is shown in Fig. 3.7.

A voltage is applied across the module so that when a charged particle

passes through and creates electron-hole pairs in the silicon bulk, the charges

drift to the front of the module and are collected by the ROC. Although the

charge is collected by individual pixels, the ROC measures the distribution

of charge across neighboring pixels. From this shape, we can determine the
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Figure 3.8: Sketch of the CMS pixel detector and examples of the local coordinate
systems with respect to the global coordinate system. It is generally arranged into
barrel layers (green) and endcap disks (pink). Figure reproduced from [65].

position of the hit to a precision of tens of microns (one order of magnitude

smaller than the pixel size).

Sensor modules are arranged in a barrel region (BPIX) and forward disks

(FPIX), as shown in Fig. 3.8. The BPIX is constructed as two 53 cm-long half-

barrels, that contain carbon fiber ladders of thickness 0.24 mm on which the

sensor modules are mounted. The orientation of the modules on each ladder

alternates so that modules are facing towards or away from the interaction

point. The FPIX detector sections at each end of the BPIX are split vertically

down the middle into two half-cylinders so that the detector can be installed

around the beam-pipe.
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Figure 3.9: Comparison of the Phase-0 and Phase-1 pixel detectors. The left panel
shows the conceptual layout of the different layers and disks in the Phase-0 and
Phase-1 configurations, and the right panel compares the pixel barrel layers in a
transverse-oblique view. Figure reproduced from [66].

In 2017, the detector was upgraded by moving the inner layer closer to

the interaction point, from r = 4.4 cm to r = 2.9 cm, and adding a new outer

layer at r = 16 cm and new disks in the forward region. This new design is

referred as the Phase-1 version and its differences with respect to Phase-0 are

shown in Fig. 3.9. Furthermore, since the increase in luminosity can cause

inefficiencies in the internal ROC buffers, the capabilities of the readout chip

were also improved to cope with a luminosity of 2 × 1034 cm2 s−1.

Strip detector After traversing the pixel layers, the charged particles enter

the silicon strip system. Strip detectors measure the position of a traversing

particle in one direction. They are formed by segmenting the pn-junction in

one direction, effectively dividing the detector in several diodes. The silicon

strips are used at larger radii from the interaction point, where there is a

reduction in number of hits per area. The strips used in the tracker have a

typical cell size of 10cm × 80µm to ensure that the single strip occupancy is
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low. In the outer tracking region the cell size increases by making the strips

longer and allowing for a wider strip separation.

The detector consists of several regions: the tracker inner barrel and discs

(TIB/TID), the outer barrel (TOB) and the tracker endcaps (TEC). The TIB/TID

deliver four measurements of a particle trajectory in the r − ϕ direction and

cover r < 55 cm and |z| < 118 cm. They provide single position measurements

with a resolution of approximately 13 − 38 µm. The TOB (TEC) consists of six

(nine) layers providing measurements also in the r − ϕ direction, both with

a resolution of approximately 18 − 48µm. To provide the measurement of a

second coordinate a second strip detector module is mounted back-to-back

in some cases. These are called stereo modules and are rotated on a stereo

angle of 100 mrad with respect to regular modules. The hits from these two

modules provide a measurement of z in the barrel and r on the disks.

The tracking system has to maximize the number of measurement points

for each particle trajectory while keeping the material budget at a minimum.

The amount of interacting material can be measured in terms of radiation

length X0, which corresponds to the distance over which the energy of a

charged particle is reduced by a factor of e. Fig. 3.10 shows that the total

thickness of the tracker is between 0.4 and 1.8 radiation lengths X0.

3.2.2 Calorimeters

Calorimeters are detectors that stop most of the particles of a particular kind,

and measure the energy that these deposit. There are two type of calorimeters

installed in CMS: the electromagnetic calorimeter (ECAL), that is used to
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Figure 3.10: Total thickness t of the tracker material traversed by a particle produced
at the nominal interaction point, as a function of pseudorapidity η, expressed in units
of radiation length X0. Figure reproduced from [67].

measure the energy of electromagnetic particles such as electrons and photons

and the hadronic calorimeter (HCAL) that is used to detect energy deposits

from charged and neutral hadrons.

Electromagnetic calorimeter The electromagnetic calorimeter (ECAL) is a

calorimeter that is just outside the tracker and within the super-conducting

solenoid volume. Its main function is to measure the energy of light particles

through the production of scintillation light from electromagnetic cascades.

These cascades can be produced directly by charged electrons or by photons,

which have no charge but can produce electron-positron pairs or directly

interact with an electron in the calorimeter.

The ECAL is composed of lead-tungstate (PbWO4) crystals that are mounted

in the barrel and endcap and provide coverage up to |η| < 3.0. These crystals
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are very dense (8.28g/cm3) and have a short radiation length (0.89 cm). The

decay time of the scintillation light is also short, so that most of the light is

emitted within the 25 ns bunch spacing of the LHC. The blue-green light

(420-430 nm) that the crystals emit is proportional to the energy of the particle.

It is converted to electric current by avalanche photo-diodes (vacuum photo-

triodes) in the barrel (endcaps), which provide an amplification factor of 50

(10). The efficiency of the photo-detectors is such that a particle depositing 1

MeV of of energy yields around 4.5 photoelectrons.

The crystal material also causes about two thirds of the hadrons to start

showering in the ECAL. In particular, the decay of highly energetic neutral

pions into photons, π0 → γγ, may merge into a single crystal. To differentiate

between one- and two-photon deposits, a two-layer lead absorber and silicon

strip sensor detector is located between the endcaps and the interaction point.

This finer-grained detector is called pre-shower and enhances the capabilities

to identify a photon-initiated shower in the lead. This is possible by resolving

the shower of incident photons in the silicon strips, that have a resolution of

1 − 10 mm. The layout of the detector is shown in Fig. 3.11.

The ECAL barrel energy resolution for electrons is measured in an electron

test beam to be [68]:

σE

E
=

2.8%√
E/GeV

⊕ 12%
E/GeV

⊕ 0.3%, (3.3)

where the three contributions are the stochastic, noise, and constant terms.

The actual energy resolution for electrons and photons is measured in CMS

using data from decays of known particles into electrons and photons, such as
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Figure 3.11: Layout of the CMS ECAL, showing the barrel modules (green), the two
endcaps (blue), and the pre-shower detectors (red). The ECAL barrel coverage is
up to |eta| < 1.479 and the endcaps extend the coverage up to 1.479 < |eta| < 3.0.
The pre-shower fiducial area is approximately 1.65 < |eta| < 2.6. Figure reproduced
from [63].

Z → e+e− and h → γγ. These measurements result in an energy resolution of

1 − 3% similar for electrons and photons [69, 70].

Hadronic calorimeter Heavier particles, such as hadrons, pass through the

ECAL depositing little energy. Its energy is measured in the hadronic calorime-

ter that surrounds the ECAL. The hadronic calorimeter (HCAL) is designed as

a sampling calorimeter, not all of the energy is measured. It consists of several

alternating layers of brass absorber and plastic scintillator.

When hadrons pass through the HCAL, they interact with brass nuclei,

lose their energy and produce more and lower energy hadrons. The energy

of the particles in the hadronic shower is measured by the scintillator layers.

The scintillation light is converted by wavelength-shifting fibers embedded

in the scintillator tiles and channeled to photo-detectors via clear fibers. The

photo-detectors (hybrid photo-diodes) are designed to operate in high axial
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magnetic fields.

The barrel (HB) and endcap (HE) components, inside the solenoid, provide

coverage up to |η| < 3.0. The dimensions of the absorber layers, whose

thickness ranges from 40 to 75 mm, are limited by the constraint that the HB

and HE be inside the solenoid 1.77m < r < 2.95m. To augment the number

of interaction lengths, additional layers of scintillator are placed outside the

solenoid. This tail-catcher in the outer barrel region, labeled HO, ensures

that hadronic showers are sampled with nearly eleven hadronic interaction

lengths. Finally, to capture radiation that travels almost parallel to the beam

line, a forward component (HF) is situated at ±11m of the interaction point

and provides coverage up to |η| < 5.0. The HO uses the steel return yoke as

the absorber, instead of brass, while the HF consists of a steel absorber plates,

read out by photo-multiplier tubes. The layout of the detector is shown in

Fig. 3.12.

The signals from the HCAL subsystems are grouped so as to define

calorimeter towers. These correspond to a small segment in ∆η × ∆ϕ. The

HCAL energy resolution has been determined in test beams using single pions

and found to be [71]:
σE

E
=

110%√
E/GeV

⊕ 9%, (3.4)

with a typical readout noise of 200 MeV per tower.

3.2.3 Muon chambers

The final and outermost detector layers are the muon chambers. Due to

the large amount of material preceding the muon system (∼ 16 hadronic
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Figure 3.12: Layout of one quadrant of the CMS HCAL, showing the barrel compo-
nent (HB), the endcap (HB), the forward (HF) and the outer calorimeters (HO). The
slight overlap of the detectors in eta ensures hermeticity. Figure reproduced from [63].

radiation lengths) the punch-through of hadronic particles in the muon system

is negligible. Muons, in the other hand, are too heavy to be stopped by the

ECAL but not heavy enough to be stopped by the HCAL.

The muon system in CMS is composed of gaseous detectors sandwiched

among the layers of steel flux-return yoke that allow a traversing muon to be

detected at multiple points along the track path. They all operate the same

principle: as the muons transverse the gas they knock electrons of gas atoms.

The electrons are collected by wires or strips and provide a measurement of

the energy of the muon.

Drift tube (DT) chambers and cathode strip chambers (CSC) detect muons

in the regions |η| < 1.2 and 0.9 < |η| < 2.4, respectively. These are comple-

mented by a system of resistive plate chambers that cover a range of |η| < 1.6.

The layout of the detectors is shown in Fig. 3.13.
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Figure 3.13: Layout of one quadrant of the CMS muon system. The drift tube stations
(DTs) are labeled MB (“Muon Barrel”), the cathode strip chambers (CSCs) are labeled
ME (“Muon Endcap”). The resistive plate chambers (RPCs) are mounted in both the
barrel and endcaps of CMS where they are labeled RB and RE respectively. Figure
reproduced from [72].

The drift chambers provide a timing resolution of a few nanoseconds that

allows the muon system readout to be assigned to a bunch crossing. They also

provide measurements of the r-ϕ (r-z) position with a resolution of 78-120 µm

(140-390 µm) [72]. The CSCs can operate at the high rates and non-uniform

magnetic field in the endcaps and their resolution varies from 40 to 152 µm.

The spatial resolution of the RPC hits is worse than the DTs and CSCs, but the

timing resolution improves the efficiency to record interesting muon events.

3.2.4 Trigger and data acquisition

The cross sections of interesting SM processes are several orders of magnitude

below the inclusive pp cross section at the LHC, as shown in Fig 3.14. To

produce a significant number of rare and interesting collision events, the LHC
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Figure 3.14: Standard Model cross sections at hadron colliders as a function of the ma-
chine center of mass energy,

√
s. Interesting SM processes such as the pair production

of top quarks, or the production of the Higgs boson have cross sections several orders
of magnitude below the inclusive pp cross section. Figure reproduced from [73].

collides proton beams every 25 ns (equivalent to 40 MHz). Only a small

fraction of these events will be of interest, and only a small fraction of them

can be recorded. The maximum rate of the data acquisition and storage system

is of the order of 1 kHz, so the data needs to be reduced by a factor of 106.

This reduction needs to be achieved while maintaining the largest possible

acceptance of interesting physics signals. This is the role of the hardware

selection algorithm, called trigger.

The CMS experiment uses a two-tiered trigger system. The first tier, known

as the Level 1 (L1) trigger, is composed of custom hardware processors. It
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uses incomplete detector information from the calorimeters and muon system

to select events in a time interval of less than 4 µs. The second tier, known

as the high-level trigger (HLT), consists of a farm of processors running a

version of the full event reconstruction software optimized for fast processing.

It further reduces the event rate from around 100 kHz to less than 1 kHz before

data storage. The final selected data rate is 400 Hz and corresponds to a total

reduction of 99.9975%.

Level 1 Trigger The L1 trigger makes fast decisions using field programmable

gate arrays (FPGAs) and application specific integrated circuits (ASICs). The

latter are typically used when limitations like high radiation doses prevent the

use of FPGAs. The L1 selection algorithm is composed of trigger primitives (TP).

These are simple objects reconstructed from signals of individual detector

systems: calorimeter towers of energy deposits and hits on the muon stations.

The signals from the inner tracker are not included in the L1 decision because

their readout and reconstruction algorithms are too slow to fit into the 4µs L1

time window.

The TP information is combined using regional algorithms that operate

in limited spatial regions of the detector. These place quality selections on

calorimeter towers, and aggregate them into clusters of energy deposits. For

muon primitives, a simple segment-finding and tracking algorithm produces

muon tracks. These objects are compared by the global calorimeter trigger and

the muon trigger. They determine whether there are sufficient good-quality

calorimeter or muon objects to accept the event. In case the event passes the

L1 trigger algorithms, also called seeds, the full detector is read out producing
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an output at a rate of 100 kHz.

High Level Trigger The HLT software is responsible for reducing the data

rate to 400 MHz. It consists of a streamlined version of the offline reconstruc-

tion algorithms that run on a CPU farm. It exploits the same software used

for offline event reconstruction but optimizes it in order to comply with the

strict time requirements of around 300 ms. The total amount of data for a

bunch-crossing is on the order of 1 Megabyte (MB) per event [63].

The HLT also consists of a series of paths, or algorithms, that must quickly

make a decision about whether or not to accept or reject an event for stor-

age. But, unlike the L1 trigger, the HLT paths make use of the full detector

information including the inner tracker. Each path is a sequence of reconstruc-

tion modules (producers) and filtering modules (filters). Producers usually

perform a given calculation and generate new information, while filters typ-

ically select events based on the properties of a given physics object (e.g.

high-pT jets). The offline reconstruction of these objects will be detailed below.

Data Storage If an event passes the HLT, it is transferred to the storage

manager. It is stored locally on disk and eventually transferred to the Tier-0

computing center, which performs a first pass of offline event reconstruction.

The processed data is transferred to several Tier-1 centers for storage, where

data can be re-processed with improved calibrations at a later stage. Data

analysis and generation of MC simulated events happens primarily at Tier-2

centers, which provide limited disk space, and no tape archiving.

Processing of data almost always occurs promptly but it can be delayed
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and sent to other data streams. The scouting data stream reduces the event

size from the default of 1 MB to 10-1.5 kilobyte (kB). This allows to increase

the recorded event rate and thus increase physics signal acceptance. This data

stream is particularly useful to explore new physics channels that need very

low trigger thresholds. The parking data stream sends the full raw events

from the scouting stream directly to tape without performing reconstruction.

This provides a complementary set of collision events to perform new physics

analyses or improve the existing ones.

3.3 Detector response simulation

The detector response to particles produced in collisions is simulated with the

GEANT4 software package [74, 75]. GEANT4 is interfaced with the particle-level

events, simulated by MC event generators that include the matrix element,

hard-scattering and parton shower, as described in Sec 2.2.

GEANT4 implements an accurate simulation of the passage of particles

through matter. It can therefore simulate the passage of particles through the

magnetic field, the energy deposited in the detector when the particles interact

with the detector material, and the evolution of any showers of particles pro-

duced in these interactions. The simulation contains an accurate description of

the detector geometry configuration, the behavior of the sensitive elements in

the sub-detectors, hit collections and the modeling of the readout electronics

response. In order to account for the effect of pileup, multiple simulated

proton-proton collisions are overlaid into a single event. The algorithms used
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to reconstruct the event signatures, described in Sec. 3.6, are the same in sim-

ulation and data. Finally, a full emulation of the trigger system (L1+HLT) is

added to mimic the event selection process.
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3.4 Reconstruction in the Inner tracker

Before providing a description of the full event reconstruction in CMS, we

focus on describing the reconstruction in the inner tracker. Identifying the

position hits in the silicon sensors is the first step in processing the signals

from the inner tracker prior to track reconstruction. We begin with a thorough

description of the sensors and the radiation damage that they sustain, being

the detectors closest to the interaction point. The simulation of this radiation

damage is crucial to maintain accurate hit position estimates and good resolu-

tion throughout the lifetime of the detector. We describe its implementation

and usage in the CMS pixel hit reconstruction. Finally, we briefly describe the

trajectory and vertex reconstruction.

3.4.1 Pixel sensors

The pixel silicon sensor design in CMS consists of an n-type bulk silicon, where

electrons are loosely bound and the majority are carriers. A p-n junction is

formed at the back side of the n-bulk by implanting high positive (n+) dose

regions. The other side is implanted with acceptor impurities (p+). In the

p-n junction, electrons from the n-type side and holes from the p-type side

diffuse across the interface until thermal equilibrium is reached. By applying

an external potential, from the p-side (-) to the n-side (+), called “reverse bias”,

the free charge is swept and the depletion zone grows, with only a small

leakage current flowing. That depleted n-type zone is the tracking sensor. A

sketch of this design is shown in Fig. 3.15.

When a charged particle traverses the depletion zone and ionizes atoms
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Figure 3.15: Illustration of the sensor charge collection and sharing in the CMS pixel
barrel sensor array. The sensor array is made from an n-doped bulk silicon wafer of
approximately 300 µm thickness. One side of the wafer is implanted with acceptor
impurities at much larger density (labeled p+). The other side is implanted with an
array of donor implants of high density (labeled n+). The n+ implants are metalized
and held at a high enough voltage so that all free charge is swept out of the sensor
leaving a non-zero electric field across detector (fully depleted). If the applied voltage
is too small, the field will vanish in part of the bulk (partly depleted). When a charge
particle traverses the detector, electron hole pairs are created. The electrons drift
under influence of the field to the n+ implants and the holes drift to the p+ implant.
To improve the position resolution the charge should be collected by at least two
pixels. This is possible when the charge drifts induced by the Lorentz force in the
presence of the magnetic field.
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along its track, there is no free charge present to extinguish the liberated elec-

trons and holes. They drift along the external electric field and deposit charge

in the electrodes on the opposing surfaces. The analog pulse height is read by

the electronics. Pixels with a signal greater than a tunable readout threshold

(usually around 1500 Qe) are read out. These pixels are then aggregated with

adjacent signals to form pixel clusters, which also obey readout thresholds

(approx. 4000 Qe).

Tracks that enter the sensor at an angle (as seen in Fig. 3.15) deposit charge

in several pixels. This is because the drift of the electrons and holes in the

sensors gets influenced by the magnetic field B of CMS in the direction E × B.

The resulting Lorentz drift leads to the spreading of the collected signal charge

over more than one pixel. Charge sharing between neighboring pixels, due to

Lorentz drift or tilted sensor position, is a favorable process. This is because

single-pixel clusters can achieve a fixed resolution of pitch/
√

12, 3 while two-

pixel clusters or larger can use charge interpolation to estimate the position.

Charge interpolation leads to an improvement of the position resolution.

3.4.2 Radiation damage simulation

The operation of silicon detectors so close to the interaction point results in

the degradation of the sensor properties. Radiation damage in silicon can be

3This assumption can be derived from the average difference between the “real” impact
position xr and the measured impact position xm = 0, in a pixel with pitch size p, hit by a
uniform density of particles D(x) = 1:

σ2
position =

∫
−p/2 p/2(xr − xm)2D(xr)dxr∫

−p/2 p/2D(xr)dxr
=

p2

12
.
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caused by non-ionizing interactions from heavy particles and nuclei. These

modify the sensor bulk and can: (1) alter the collected charge, (2) increase the

leakage current and (3) change the operational voltage [76, 77].

The main modification to the sensor bulk comes from the displacement of

a silicon atom out of its lattice site that results in a silicon interstitial state and

a leftover vacancy. Both can migrate through the sensor and form clusters and

point defects in the silicon lattice, that have energy levels in the middle of the

forbidden gap. When activated and occupied, these states act as trapping sites

and reduce the collected charge. They further act as recombination/generation

centers and lead to an increase in the sensor leakage current. This increase is

proportional to the fluence received, Ileak ∝ Φ, and translates to an increase in

noise.

Finally, the effective doping concentration, the difference of all donor-

like states and all acceptor-like states, can change. Before irradiation, the

depletion region grows from the back side of the sensor towards the pixel n+

implant. After irradiation, the effective doping concentration decreases with

increasing fluence until the sensor bulk undergoes space-charge sign inversion

(or type inversion) from n-type to p-type. The depletion region behavior is

now p-material like and grows from the n+ implant towards the back side of

the sensor. This is shown in Fig. 3.16. Further irradiation leads to a gradual

increase of the depletion voltage. These effects can be further complicated by the

temperature history, since the thermal motion in the silicon lattice leads to an

annealing current that causes new defects to be formed or existing defects to

dissociate, canceling the damage into the lattice.
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Figure 3.16: A simplified cross sectional view of a sensor array before (left) and
after a radiation exposure of more than 1013 charged hadrons per cm2 (right). The
radiation exposure produces lattice defects which, on balance, create acceptor states.
The doping density of the bulk material changes from n- to p-. This process is called
type inversion. The profile of the electric field across the diode is also shown in the
bottom panels. Figure reproduced from Reference [78].

In order to improve the simulation of charged-particle interactions and

the track reconstruction, it is crucial to model the impact of radiation damage.

A general parameterization should model the change of the electric field

distribution in the silicon bulk and the signal loss with the accumulated

luminosity. CMS makes use of a stand-alone simulation PixelAV [78, 79] that

is independent from the full CMS simulation and reconstruction framework

CMSSW [80].

PixelAV simulates the passage of a pion (π) through the sensor and incor-

porates the following elements:

• Charge deposition: An accurate model of charge deposition by primary
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hadronic tracks uses the “exact” π − e elastic cross sections of Bich-

sel [81], that depend on the electron energy, to determine the π mean

free path. This model takes into account the number of electron-hole

pairs produced when the scattered electrons or “delta rays” lose energy,

assuming that it takes 3.68 eV in energy to produce a pair.

• Electric field: A realistic three-dimensional electric field profile resulting

from the simultaneous solution of Poisson’s Equation, carrier continuity

equations, and various charge transport models is generated with the

TCAD package [79]. By taking as input the pixel cell geometry description

and material properties, TCAD predicts a non-uniform spatial distribution

of space-charge density for computing charge propagation inside the

sensor bulk.

• Charge transport: The electrons and holes produced by the primary

hadron drift to the sensor implants under the influence of the internal

electric field and the external magnetic field. This drift depends on the

electric field (E) and temperature.

• Charge trapping: When charge carriers are trapped they are captured

for periods of time that are long as compared with the integrating time of

the pre-amplifiers and are not detected with full efficiency. This trapping

time is incorporated in the simulation by halting the propagation of that

charge carrier according to the effective trapping times measured in [82].

The trapping constants used for electrons and holes in CMS simulation

are tuned to measurements from data of the charge collection vs depth.
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For each event, the simulation outputs the coordinates of the pion entry and

direction, the generated number of electron-hole pairs, and a set of collected

electrons and the induced signals from trapped charge. The final step, which

is performed by a separate analysis code, includes a simplified simulation of

the analog response of the ROC after adding noise to the signal.

The results of the PixelAV simulation are mainly used to predict cluster

shapes. These cluster shapes are produced for different incident tracks with

angles α and β with respect to the local-x and y-axes (as shown in Fig. 3.17). In

particular, these shapes can be projected into the x− and y−local coordinates

and these projection shapes are called “1D-templates” [65]. The 1D-templates

take into account the sensor geometry and are produced under certain con-

ditions of radiation fluence, temperature, bias voltage and magnetic field.

They are produced about every few fb−1just after installation, when type

inversion occurs, and later about every 10 fb−1following periods of annealing

or changes in the detector parameters after calibration. For example, for the

Run-2 2017 run period this amounted to a database of 12 1D-templates.

The a-priori cluster shape information stored in the PixelAV templates is

used to improve the resolution of the hit reconstruction, as detailed below.

However, they can be also used to re-weight the digitized cluster charge

profile generated by the standard CMS simulation so that they agree with the

observed clusters after irradiation [65].
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Figure 3.17: (a) Deposition of charge into a barrel module by a track having angles
α and β with respect to the local x− and y−axes of a barrel module. (b) A pixel
cluster example at η = 1.83 for a barrel hit. The charge deposition in each pixel is
shown in thousands of electrons. Numbers shown in green are below the readout
threshold and not included in the cluster. The dotted teal line indicates the track
projection in the module plane and the red cross shows the true hit position. The x−
and y−projections are also shown as 1D-arrays. The coordinates of the boundaries
between the first and second pixels (xF/yF) and next-to-last and last pixels (xL/yL)
and the charges of the first and last pixels Px/y

F/L are also shown. Figure reprinted from
Reference [78].

3.4.3 Hit position estimates

If there is no radiation damage, all of the information about a cluster’s position

can be inferred using the pitch size of the pixel, the signals of the head and

tail pixels of the cluster, and the track angles. In the local x−direction, for

example, the reconstructed hit coordinates are given by [83]:

xrec =
xF + xL

2
+

Px
L − Px

F
Px

L + Px
F
× Wx

eff(cot α)

2
− ∆x

2
. (3.5)

Here, xF(xL) are the coordinates of the boundaries between the first and

second (next-to-last and last) pixels, Wx
eff are the total charge widths in the

end pixels which depends on the track angles, Px/y
F/L are the signals in the first

and last pixels of the x−projection and ∆x is the maximum Lorentz-drift. A
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similar expression, that depends on cot β, is applied in the y-direction. This

technique, called the “standard reconstruction”, is valid for a first-pass of the

hit reconstruction algorithm but is prone to biases and worse resolutions after

radiation exposure.

Instead, the hit position is inferred by fitting the charge distribution of the

pixels in the cluster to the pre-determined templates from PixelAV [78, 84].

The so-called “template technique” implicitly incorporates all of the relevant

detector physics, such as Lorentz drift and charge loss and trapping, into the

templates. For a given track with incident angles α and β on a pixel module, it

compares the cluster projections produced by the track to the pre-determined

cluster 1D-templates. The hit position is given by the x and y coordinates

which minimize the χ2 comparison. The pixel hit resolution for irradiated

sensors improves with the template technique when compared to the standard

technique [84]. Since this technique requires knowledge of the track angles it

is only used in the second-pass of the hit reconstruction algorithm.

Figure 3.18 shows the resolution for pixel hits in layer 2 (disk 2) of the

barrel (forward) inner detector. The residuals are extracted from a triplet

method where the measured hit position in a layer is compared with the

extrapolated position from neighboring layers [85]. A helix based on the hits

on the neighboring layers and the momentum of the track is extrapolated to

that layer. The distance between the track extrapolation and the measured

hit position is called the residual and is given by ∆x = xtrack − xmeas. The

residuals shown in Fig. 3.18 show a resolution of the order of 10µm in r − ϕ

and 20-30µm in z.
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Figure 3.18: Hit residuals for layer 2 and disk 2 of the inner tracker. The residuals
are computed using the triplet method: tracks with pixel hits in layers 1, 2 and 3 are
re-fitted excluding the hit on layer 2, and the distribution of residuals between the
measured and interpolated hit position from the re-fitted track is obtained. The stan-
dard deviation obtained from fitting the residual distribution provides an estimate of
the hit resolution. Here, “template reconstruction” refers to the method to reconstruct
hit positions taking into account a detailed cluster shape simulation predicted by
PixelAV. Figures extracted from [85].
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Figure 3.19: Illustrations of a pixel cluster example without loss of hits (left) and
truncated (right). The x− and y− projections that contain the information of the
charge on the head and tail pixels loose information about the cluster shape when the
cluster is truncated.

Truncated clusters Both the standard and template techniques rely on the

complete measurement of the pixel clusters. However, the cluster shape can be

mismeasured due to presence of dead pixels or bad detector elements. This re-

sults in a biased measurement of the hit position, as the x− and y−projections

get truncated and mis-measure the edge charge. This is illustrated in Fig-

ure 3.19. The same bias effect is seen in clusters containing physical-edge

pixels where the side of the “truncation” of the cluster is known.

In order to improve the resolution and reduce the bias on the hit position

measurement, a 2D-template approach can be used. This approach attempts

to use the full 2D information of the deposited charges in the cluster, instead of

only the x− and y−projections. Since it is time and memory consuming, this

algorithm should only be applied in the last step of track reconstruction and to

truncated clusters. In order for it to be applied it requires to know whether a

cluster is on the physical-edge of if it is a poorly reconstructed cluster. For the

latter, one can use the information from the templates to apply requirements

on the expected length of the cluster and on the ratio of the measured cluster

charge over the expected total charge. If a cluster is shorter or contains less
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charge than expected, one can try to use the 2D information to infer the hit

position.

The 2D-template algorithm also uses the pre-determined cluster shapes

from PixelAV to perform a χ2 fit, given a track with angles α and β. However,

since the cluster is only partially reconstructed, one needs to take a guess at

which physical-edge an odd cluster is likely truncated, or, for even clusters,

one can rely on the side that provides the best χ2 fit. This guessing is of course

not needed for edge clusters, for which the physical-edge of truncation is

known.

We tested the 2D-algorithm in a sample of events with edge pixel clusters,

for both data and MC, as shown in Fig. 3.20. It was found that improves the

resolution of edge-y hits by 20% for layers 2-4 of the barrel. The algorithm was

implemented in the reconstruction chain for the re-processing champaign of

2017 data and MC. However, since it is difficult to find a sample of events in

data and MC that fully validates the resolution of broken or damaged clusters,

the algorithm now runs only on edge clusters and not broken clusters. Other

developments that include the simulation of bad detector components will be

able to provide a sample of events to test these conditions in the future.

3.4.4 Tracking

Tracks in the inner tracker are found using an iterative inside-out approach,

with a combinatorial track finder based on Kalman filtering [86]. The process

starts with at least three hits, which can be pixel hits or double-strip hits (two

3D-hits), and an estimate of the origin of the trajectory i.e. of the collision
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Figure 3.20: Hit residuals for physical-edge-y clusters in the layers 2 and 3 of the barrel
inner tracker. The top panel shows residuals using the 1D-template reconstruction,
which uses x− and y−projections of pre-determined cluster shapes to determine the
hit position. The bottom panel shows residuals that use the full 2D information to
fit the pre-determined cluster shapes to predict the hit position. These residuals in
the z−direction were computed using a track re-fitting method. The method drops
hits from a given layer, re-fits the track, and computes the residual by comparing the
hit position from the re-fitted track with respect to the measured hit position. The
resolution is improved by at least 20% in both layers, although edge clusters only
represent in average 3% of the total number of clusters in an event.
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point. These are used to define seeds that are needed to later identify an

initial trajectory to extrapolate. A Kalman filter algorithm [86, 87] evolves

the track seeds through the rest of the tracker, and the parameters of each

trajectory are estimated by an iterative Kalman filter and smoother fit. Charged

particles follow helical paths inside the magnetic field so its trajectories are

described by five parameters. These are: the curvature, the azimuthal angle

(ϕ0), λ = cot θ, the impact parameter or minimum r of the track (d0), and the

minimum |z| of track (z0). Finally, track quality flags determined based on

various selection criteria are used to keep or reject found tracks. The average

track-reconstruction efficiency for promptly-produced charged particles with

pT > 0.9 GeV is 94% for |η| < 0.9 and 85% for 0.9 < |η| < 2.5 [67].

3.4.5 Vertexing

The precise identification of primary event vertices is needed to assign tracks

to collisions and determine the event kinematics. Secondary vertices are

instead needed to identify long-lived particles like heavy flavor hadrons and

τ leptons that will decay inside the detector.

The primary vertex (PV) reconstruction makes use of the available tracks

that are consistent with being produced promptly in the primary interaction

region. These tracks are clustered taking into account their z-coordinates at

their point of closest approach to the center of the beam spot. That is, the

clustering in z is done on the basis that tracks in a cluster are most likely to

arise from a single PV [67]. An adaptive fit algorithm [88] is used to determine

the vertex for each cluster, where the parameters of the fit are the three spatial
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coordinates of the vertex. The PV resolution depends strongly on the number

of tracks used to fit the vertex and the pT of those tracks. For a jet-enriched

sample, the resolution is around 10µm in x and 12µm in z for primary vertices

that use at least 50 tracks [67].

Secondary vertices (SV) are reconstructed with the inclusive vertex fitter

(IVF) [89] using as input all the tracks in the event with pT > 0.8 GeV and

d0 < 0.3cm. After a first fit to the complete set of tracks the ones compatible

with the vertex candidate are removed. Then, a track is discarded from the

secondary vertex if it is more compatible with the primary vertex, e.g. based

on the ∆R between the track and the SV flight direction. Finally, the secondary

vertices can be re-fitted with the adaptive fit algorithm.

The precise determination of SVs is crucial for heavy flavor tagging such

as b-jet tagging. The SV reconstruction efficiency for jets is defined as the

number of jets containing a reconstructed secondary vertex divided by the

total number of jets. For jets with pT > 20 GeV in events with pair production

of top quarks (which almost always decay to b quarks), the efficiency for

reconstructing a secondary vertex for b (udsg) jets is about 75% (12%) [89].
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3.5 Alignment and Calibration

The detector alignment is a key ingredient in translating the local information

recorded by the detectors to the global description of the event. CMS has a

powerful framework for alignment and calibration, which is based on dedi-

cated “skims”, or subsets of data samples [90, 91]. Depending on the needs of

the specific workflow, these samples can be selected offline, at reconstruction

level, or directly online, at the HLT event. Some important offline alignment

workflows are: the energy calibration of the ECAL response (single channel

and overall energy scale calibration), the measurement and correction of the

tracker orientation with respect to the magnetic field, and the tracker module

alignment. Beyond the data workflows, the stability of the position of the

large structures over time can be controlled with relatively small amounts of

data or via a system of infrared lasers [91].

As an example, we describe the alignment of tracker modules, which is able

to provide a complete set of parameters describing its location and geometrical

properties [92]. The alignment step is crucial for track reconstruction because

if the assumed positions of the silicon modules differ from the true positions,

as seen in Fig. 3.21, the track-hit residual distributions will be broadened.

Standard alignment algorithms perform a χ2 minimization fit of the measured

position of the hit and the expected position; the latter has as free parameters

the position and rotation of the tracker modules. The tracker alignment task is

to perform a unique fit to ∼ 24000 sensors, which results in more than 200000

free parameters. The target precision is ∼ 10µm, which can be achieved with

less than 1 fb−1of data. In order to validate the aligned geometry, muonic

89



Figure 3.21: A simplified illustration of tracker alignment. The left panel shows the
actual position of the detector during data taking, with a track traversing the detector
and leaving 4 hits in the modules. The right panel shows the assumed position of the
detector, with the second module from the top assumed to be to the left of its actual
position. In this case, the position of the predicted hits shown in red is biased. Figure
taken from [92].

decays of Z bosons can be measured both in data and simulation. The invariant

mass distributions from aligned data are expected to align to the known value

of the mass of the Z boson. [91]
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3.6 Reconstruction of particles in an event

3.6.1 Particle flow algorithm

Once an event passes the HLT selection, signals from the different subsystems

are recorded. These signals can be particles hits in the tracker or muon

systems, or deposited energies in the calorimeters. Since a collision event will

contain a high particle multiplicity, a dedicated algorithm is used to build the

global description of an event. This event algorithm, the CMS particle-flow

(PF) algorithm [93], reconstructs and identifies individual particles with an

optimized combination of information from the various CMS sub-detectors.

An individual PF particle candidate can be identified as either: an electron,

a photon, a charged or neutral hadron or a muon. Each of these particles yields

a specific signature in the detector: electrons and photons leave a cluster in the

ECAL but not the HCAL, hadrons may initiate a shower in the ECAL but they

are fully absorbed in the HCAL, while muons traverse the calorimeters with

little or no interactions and produce hits in the muon detectors. Furthermore,

the presence of the magnetic field bends the trajectories of all charged particles

and allows the electric charges and momenta of these particles to be measured.

This simplified view is summarized in Fig. 3.22, which displays a sketch of a

transverse slice of the CMS detector.

The PF algorithm links multiple detector signals together into a single

PF candidate. It associates inner charged tracks from the silicon tracker to

calorimeter clusters and muon tracks, based on their proximity in the r −
ϕ plane. It proceeds by “subtracting” objects from the event in order of
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Figure 3.22: A sketch of the specific particle interactions in a transverse slice of the
CMS detector, from the beam interaction region to the muon detector. The muon
and the charged pion are positively charged, and the electron is negatively charged.
Figure reproduced from [93].
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decreasing reconstruction accuracy. The subtraction starts from muons and is

followed by electrons, isolated photons and charged hadrons, such that neutral

hadrons and non-isolated photons are built from calorimeter clusters that are

not compatible with any tracks. In this section, we describe the reconstruction

of each of the PF particles following the subtraction sequence present in the

PF algorithm. The PF elements that make up each these identified particles

are masked against further processing in the corresponding PF block, i.e. are

not used as building elements for other particles.

3.6.2 Muons

Muon reconstruction links inner tracks and muon spectrometer hits. The

latter allows muons to be identified with high efficiency over the full detector

acceptance. Three different muon types can be reconstructed:

• Stand-alone muons: they rely solely on muon chamber hits, which are

clustered to form muon-track segments.

• Global muons: they match stand-alone muons with tracks in the inner

tracker. The hits from the inner track and from the stand-alone-muon

track are combined and fit to form a global-muon track.

• Tracker muons: they are reconstructed inside-out and rely on the extrapo-

lation of an inner track to the muon system.

Given the high efficiency of the inner track and muon segment reconstruction,

about 99% of the muons produced within the geometrical acceptance of the
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muon system are reconstructed either as a global muon or a tracker muon and

very often as both [93].

The identification of muons proceeds by a set of selections based on the

global and tracker muon properties. In this thesis, we use a tight-selection to

identify muons from Z and W boson decays. This selection requires a global-

muon track with a χ2/Ndof < 10, to ensure a good track fit, and at least one

hit in the muon detectors. In addition, the candidate should be a tracker muon

with at least two matched muon segments in different muon stations and an

inner track reconstructed from at least five inner-tracking layers, including

one pixel detector layer [93].

To adequately reject hadrons that would be misidentified as muons an

isolation criteria is applied. The muon isolation is computed as the sum of the

transverse energy of the particles inside a cone of radius ∆R = 0.3 around the

muon direction divided by the muon transverse momentum. The isolation

is required to be lower than 0.1, i.e. the sum of the pT tracks and calorimeter

energy deposits should not exceed 10% of the muon pT. Muons inside jets, for

example those from semileptonic heavy-flavor decays, would be non-isolated.

To reject charged hadrons misidentified as non-isolated muons e.g. because of

punch-through, it is required either that at least three matching track segments

be found in the muon detectors, or that the calorimeter deposits associated

with the track be compatible with the muon hypothesis.

An event sample containing decays of Z → µ+µ− is used to evaluate

the prompt muon identification/isolation efficiency. From this data sample,

corrections (known as scale factors) are derived: SF = ϵData
ϵMC

. Scale factors
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account for differences in the efficiency ϵ in data and simulation, where the

efficiency is defined from the fraction of correctly identified/isolated muons.

To find the efficiency, the tag-and-probe method is used. This method applies

strict selection criteria are applied on one of the two decay muons, called

tag, and the second muon, the probe, is used for the efficiency measurements.

Both muons are required to form a system with invariant mass consistent

with a di-muon resonance. The number of Z → µµ events in each category is

measured by fitting the invariant mass distribution. The efficiency is defined

as the fraction of probe electrons satisfying the tested criteria: ϵ =
Npass

Npass+fail
.

The muon reconstruction and identification efficiency is greater than 96% and

measured as a function of the muon pT and η as described in [72].

3.6.3 Electrons and isolated photons

Both the electron and photon reconstruction are based on energy deposits on

the ECAL. These can be spread laterally over several crystals and are thus

clustered together. To suppress noise in the calorimeters, the PF algorithm

only considers cells with energies above a given threshold, this procedure is

referred to as “zero suppression”. The energy of photons is obtained directly

from the ECAL measurement, corrected for zero-suppression effects. Electron

reconstruction combines the corresponding ECAL cluster with an associated

track. Due to the large amount of material in the tracker, electrons will often

lose a significant amount of energy through bremsstrahlung photons before

reaching the ECAL. To gather all the radiated energy, the energy of the electron

and of possible bremsstrahlung photons in a window in η and ϕ is grouped
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into a super-cluster. For electron tracks the Gaussian Sum Filter (GSF) [94] is

used to fit the track, instead of the Kalman Filter (KF). This method allows for

sudden and substantial energy losses along the trajectory.

The ratio between the HCAL and ECAL energy deposits is used as a

discrimination variable to ensure optimal energy containment for electron and

photon showers. For ECAL-based electron and photon candidates, the sum

of the energies measured in the HCAL cells with a distance ∆R < 0.15 to the

super-cluster must not exceed 10% of the super-cluster energy [72]. Photon

candidates are retained if they are isolated from other tracks and calorimeter

clusters in the event. Electron candidates must satisfy extra identification (ID)

criteria in order to reject hadron or photon backgrounds. These may arise

from neutral hadrons or photons whose energy is overlapped with a charged

hadron, or from electrons that are originated from a photon conversion. The

electron ID criteria includes requirements on the amount of energy radiated

off the GSF track, the GSF χ2 and number of hits.

Similarly to the muons, scale factors that correct for differences between

data and MC efficiencies for the electron or photon IDs are derived using

a data sample with Z → e+e− decays [95]. In this thesis, we only identify

electrons and photons for veto-purposes in the event selection.

3.6.4 Hadrons and non-isolated photons

Once muons, and isolated electrons and photons are identified, the remaining

particles are used to identify hadrons. These may appear as charged hadrons

(e.g. π±, K± or protons), neutral hadrons (e.g. K0 or neutrons), non-isolated
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photons (e.g. from π0 decays), or more rarely as muons from heavy hadron

decays.

Photons and neutral hadrons are associated to track-less ECAL and HCAL

clusters respectively, i.e. these clusters are not linked to any tracks within the

tracker acceptance (|η| < 2.5). The precedence of assigning ECAL clusters

to photons is due to the observation that, in hadronic jets, neutral hadrons

only leave 3% of the jet energy in the ECAL. Beyond the tracker acceptance

this statement is no longer justified, so linked ECAL and HCAL clusters

are assigned to neutral hadrons and ECAL clusters without such a link are

assigned to photons. Charged hadrons are associated to the remaining HCAL

clusters that can be linked to tracks and these may in turn be linked to the

remaining ECAL clusters. The energy of charged hadrons is determined

from a combination of their momentum measured in the tracker and the

matching ECAL and HCAL energy deposits, corrected for zero-suppression

effects and for the response function of the calorimeters to hadronic showers.

This response function is initially obtained from calibration measurements in

test beam data but ultimately refined by simulating a large sample of single

hadrons in the detector.

The experimental signature of hadrons are particle-jets, as explained in

Sec. 2.2.3. The methods for clustering, calibration and identification of these

hadronic jets will be described in the next chapter, as this is one of the crucial

steps in the search for hadronic decaying resonances.
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3.6.5 Missing momentum

The PF missing transverse momentum vector is defined as the negative vec-

torial sum of the transverse momenta of all the PF particles identified in the

event:

⃗Emiss
T = −∑

p
p⃗T (3.6)

and its magnitude is referred to as pmiss
T . Because of conservation of momen-

tum, in a perfectly reconstructed event, non-zero pmiss
T implies the presence

particles that escape the detector, such as neutrinos or DM candidates. How-

ever, the pmiss
T reconstruction is sensitive to detector malfunctions and various

reconstruction effects. These can result in mismeasurements of the particle

momentum and misidentifications of particles which in turn result in not

genuine pmiss
T . The performance of pmiss

T reconstruction can be assessed for

example using events where an identified Z boson decay to leptons is present.

While there is no genuine pmiss
T in these events, it can be induced by removing

the vector boson from the event reconstruction. Since the energy and momen-

tum of the Z boson is well understood, the scale and resolution of pmiss
T can be

measured as a function of the energy scale of the event [96].
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Chapter 4

Reconstruction and Identification
of hadronic particles

When studying high-energy proton collisions one often has to consider pro-

cesses where quarks are gluons are present. These can be originated either

from the decay of heavy resonances, or other decay chains emitting partons

or, finally, from a high energy QCD parton radiated in the initial or final state.

However, these partons are not directly observed in the final state. The succes-

sive splittings associated with parton shower and hadronization transform

them into a cluster of collimated particles. These particles are recombined into

a hadronic jet, with the aim of reconstructing the original parton.

Jets can be seen as proxies to the high-energy quarks and gluons produced

in a collision. However, this picture is over-simplified since there is no way

to tell whether two particles are part of the same jet or belong to the same jet.

Furthermore, due to higher order corrections in QCD the definition of partons

may include real or virtual contributions. Thus, a robust and unambiguous

definition of a jet is needed, i.e. a well-defined procedure that tells how to

cluster and reconstruct the jets from the set of hadrons in the final state of the
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collision.

In this chapter, we describe the algorithms for clustering, reconstruction

and calibration of these jets in the CMS detector. We also describe the pileup

removal algorithm that is designed to identify and subtract contributions from

a different interaction vertex, by eliminating uncorrelated radiation from jets.

We then describe methods used for heavy flavor jet identification and, finally,

we venture into a description of various aspects of jet substructure. Jet sub-

structure consists of a set of tools that exploit information from the radiation

pattern inside the jets. They can be used, for example, to identify the hadronic

decays of highly boosted particles which can be merged and reconstructed

into a single large jet. In preparation for Chapter 5, we will emphasize in the

tools for the identification of an energetic low mass Z’ mediator decaying into

a quark-antiquark pair.

4.1 Jet clustering and reconstruction

The precise definition of a jet is dependent on the algorithm used to cluster

particles. For a clustering algorithm to be robust, it should be infrared and

collinear (IRC) safe, where “infrared” refers to the low-energy limit. That is,

the resulting jets should be insensitive to arbitrarily low energy particles and

small-angle splittings. If an algorithm is collinear unsafe, the splitting of a

higher energy (hard) particle will result in the altering of the number and

contents of the jets. A similar problem arises for an infrared unsafe algorithm

when a lower energy (soft) gluon is added to the system. IRC safety is a useful

theoretical requirement for making calculations in perturbative-QCD.
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Cone-type algorithms, that sum the momenta of all particles within a cone

with fixed size, are not IRC safe. Instead, LHC experiments use sequential

recombination algorithms to which the generalized-kT family belongs [97–99].

These assume that particles inside jets will have small differences in transverse

momenta, and therefore group particles based on momentum space. The result

are jets that have fluctuating areas in (η, ϕ) space.

The family of generalized-kT algorithms is built under the following criteria.

Given a set of particle candidates in an event, we can define an inter-particle

distance measure dij and a beam distance diB:

dij = min{p2k
T,i, p2k

T,j}
∆R2

R
, (4.1)

diB = p2k
T,i, (4.2)

where ∆R2 = ∆ϕ2 + ∆y2, k and R are tunable parameters, and B refers to the

beam axis. Iteratively, we can find the smallest distance among all dij and diB:

• If the smallest distance is a diB, then the particle i is removed and added

to the set of candidate jets.

• If the smallest is a dij, then the particles i and j are removed from the list

and recombined into a new object k.

This process is repeated until all particles are exhausted. When the inter-

particle distances are such that ∆Rij > R, the beam distance becomes smaller

than the inter-particle distance and objects are no longer recombined, making

R a typical measure of the size of the jet, called the jet radius.

The jet size determines the susceptibility of a jet to soft radiation. A larger
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jet radius is important as it allows the jet to capture enough of the hadronized

particles for the accurate calculation of the mass and energy of the jet. How-

ever, a smaller jet radius is useful in reducing the amount of the underlying

event and pileup captured by the jet, preventing the overestimation of the jets

mass and energy.

In Equations. 4.2, the parameter k controls the dependence of the distance

measure dij with the momentum of the final state particles and thereby the

sequence of clustering. The original kTalgorithm, uses k = 1 and clusters soft

and collinear particles first. The Cambridge-Aachen algorithm (CA) [99], with

k = 0, prioritizes particles in the clustering solely by their angular proximity.

Finally, the anti-kTalgorithm (AK) [97], with k = 1, combines the hardest

particles first. The latter also results in nearly perfect conical jets, as seen in

Fig. 4.1.

From Equations. 4.2, it can also be seen that, for any value of k, collinear

splittings (∆R → 0) lead to dij → 0. Similarly, additional soft final state

particles may be recombined as part of a jet at any stage in the clustering,

but will have no impact on the output of the remainder of the clustering

history, since their momentum contribution will be small. Thus, Equations 4.2

parameterize a class of IRC-safe jet algorithms.

Jet clustering algorithms can be applied to any set of topological objects.

These include simulated particles before and after the parton shower, energy

measurements and reconstructed tracks. In CMS, the inputs to jet clustering

algorithms are PF candidates and the algorithms are implemented using the

Fast-Jet library [100]. In this thesis, we use three types of jet collections: jets
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Figure 4.1: Examples of the effect of different sequential algorithms applied to the
same event: the kTalgorithm (top), the Cambridge-Aachen (bottom-left) and the anti-
kTalgorithm (bottom-right). The colored regions correspond to the area in (η, ϕ) of
the different reconstructed jets. Figures reprinted from [97].
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clustered with the anti-kTalgorithm with distance parameters of R = 0.4, 0.8,

and referred to AK4 and AK8 jets, respectively; and jets clustered with the

Cambridge-Aachen algorithm with R = 1.5, referred to as CA15 jets.

4.1.1 Jet calibration

Like all experimentally-reconstructed objects, jets need to be calibrated in

order to have the correct energy scale that matches the detector response: this

is the aim of the jet energy corrections (JEC) [101]. The jet energy corrections

are calculated using MC simulation, and are then adjusted for data using a

combination of several channels and data-driven methods. This calibration is

performed in a series of steps

1. A first correction is derived to account for the additional contributions

to the jet energy and momentum due to pileup.

It is parameterized as a function of the jet pT and η and two pileup

observables: the event wide pileup density ρ and the jet area A ∼ πR2.

For the last two calculations, a uniform distribution of non-physical

particles (ghosts) with infinitesimal momenta is added. The active area of

a jet is defined as the number of ghosts clustered in the jet. Physically, this

definition mimics the effect of pileup in the sense that pileup particles

are uniformly distributed, in the limit where their pT becomes infinitely

small. Similarly, the event quantity ρ can be computed with ghosts and

is a measure of the median jet pT per area.

The correction is derived from simulation with and without pileup

overlay. Residual differences between data and detector simulation are
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also derived using data events collected with a random, or zero-bias,

trigger. As these events are not triggered by any specific energy deposit,

their main sources of energy deposits are detector noise and pileup.

2. After jets have been corrected for the pileup offset, the simulated re-

sponse corrections are applied. These account for biases in the detector

response by using the GEANT4 simulation of the detector.

The corrections are derived from a simulated sample of multijet events

produced by quantum chromodynamics, also called QCD multijet events

throughout the text. In this sample of events, two jet collections are

computed: PF jets, that use reconstructed PF candidates, and “truth” jets,

that use the particle collection produced after the hard scattering and

parton shower simulation. The energy scale of the reconstructed PF jets

is corrected to match that of truth jets, as a function of the jet pT and η.

3. The last two corrections are applied to both data and simulation. A third

pT−dependent scale factor is applied only to data to correct for residual

differences between the real detector and the CMS detector simulation

and event reconstruction.

These corrections are determined using X+jet events: Z(→ ℓℓ)+jet, γ+jet,

and dijet events. The basic idea, in all the considered topologies, is

to exploit the transverse momentum balance, at hard-scattering level,

between the jet to be calibrated and a reference well-measured object X

(the Z boson, the photon or the jet).

The final uncertainties on the jet energy scale are below 3% across the
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phase space considered by most analyses (pT > 30 GeV and |η| < 5.0), owing

to the excellent performance of the particle flow reconstruction.

Finally, these corrections can improve the estimation of pmiss
T , by propagat-

ing them in the following way:

p⃗ miss
T ↦→ p⃗ miss

T + ∑
j∈ jets

(
p⃗ j,corr.

T − p⃗ j,raw
T

)
, (4.3)

where p⃗ j,raw
T refers to the uncorrected pmiss

T as defined in Eq. 3.6, and the sum

is over jets with pT > 15 GeV.

4.1.2 Heavy flavor jet ID

A crucial part of the LHC physics program is the identification of the parton

that gives rise to a jet. In particular, jets from bottom quarks or charm quarks

(heavy-flavor jets) are usually present in the decay of heavy SM particles such

as top quarks (t → Wb) and Higgs boson decays (h → bb̄). In the context of

this thesis, the identification of b−jets is useful to select events that contain a

top quark; these events are used for the calibration of jet substructure tools as

it will be detailed below.

Since we cannot directly access the quantum numbers of the heavy-flavor

parton that induces a jet, we instead measure a number of jet-related observ-

ables that are connected to the hadronization properties of a b or c quark.

For instance, the hadronization of the bottom quark involves the production

of b hadron, that has a relatively large lifetime of 10−12 seconds and a large

Lorentz factor. This results in the production of a jet with a secondary vertex

that is displaced several millimeters ∼ 5 mm with respect to the interaction
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Figure 4.2: An illustration of the decay of a b quark, along with the definition of
the secondary vertex (SV) and the impact parameter (IP). The presence of a SV is
a distinct signature of B hadron decays, which have a long lifetime of about 1.5 ps.
Algorithms used for b− tagging use various input parameters related to the SV or
charged particle tracks that originate from the B hadron decay. Figure reprinted
from [89].

point. This topology is illustrated in Fig. 4.2.

The idea of b/c-tagging is to use a combination of discriminating variables

to build an discriminator that distinguishes b/c jets from u/d/s/g jets. Those

jets that are associated to discriminator values above certain thresholds are

taken to be tagged as a certain flavor. The discriminating variables are related

to the existence and properties of tracks from charged particles and vertices

associated to primary or the secondary vertices. Examples of these variables

are the impact parameter of the SV, presence of soft leptons (to account for

semi-leptonic decays of the b hadron b → µ−νµc), the average track multiplic-

ity or the invariant mass of the tracks. CMS uses the Combined Secondary

Vertex (CSVv2) tagger [89], which combines nineteen characteristics of the jet

with a multivariate technique. In this thesis, we consider a jet as b−tagged if

the discriminator value of the CSVv2 > 0.54. The efficiency of this threshold,
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Figure 4.3: Distribution of the CSVv2 (left) discriminator values for jets of different
flavors in tt̄ events. The distribution is normalized to unit area. In the right panel,
the CSVv2 discriminator distribution is shown in data for a dijet sample enriched
with g → bb̄ events. The simulated contributions of each jet flavor are shown with
different colors. The total number of entries in the simulation is normalized to the
number of observed entries in data. Figures reprinted from Ref. [89].

or “working point”, is around 65% for b−jet identification, with a misidentifi-

cation rate of 1% for light quark and gluon jets. Figure 4.3 compares the CSVv2

response in data and simulation. The scale factors to correct this distribution

are derived in b−enriched samples, such as tt̄ events, where the b−quarks

from the top quark decays are used, or gluon splitting g → bb̄ events, that are

selected by triggering on a non-isolated soft-muon coming from the decay of

one of the b−hadrons.

4.1.3 Pileup mitigation

To mitigate the impact of particles arising from pileup, a pileup mitigation

algorithm is used. In general, these type of algorithms utilize three basic

pieces of information to identify pileup: the event-wide pileup density, vertex

information from charged tracks, and the local distribution of pileup with

respect to particles from the primary or leading vertex (PV or LV). That is, they
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can exploit either global information from the event or local topological infor-

mation from the jet. In this thesis, we use the pileup per-particle identification

algorithm (PUPPI) [62, 102], which combines both pieces of information.

The PUPPI algorithm operates at the PF candidate level, before any clus-

tering is performed. It calculates a weight in a range from 0 to 1 for each

particle. The weight is applied to the four-momentum of each particle, such

that pµ
i → wi × pµ

i . The ideal weight is 1 for leading vertex particles and 0 for

pileup particles. This weighting method allows for experimental information,

such as tracking, vertexing and timing information, to be included.

For charged particles, the weight is based on tracking and vertexing infor-

mation, that is available in the central region |η| < 2.5. All charged particles

used in the fit to the LV are assigned a weight wi = 1 and charged particles

associated with other reconstructed collision vertices, referred to as pileup

(PU) vertices, are assigned a weight wi = 0. If charged particles are not associ-

ated with any vertex, a weight wi = 1 is assigned if dz, the distance of closest

approach to the LV along the z axis, is smaller than 0.3 cm.; a weight of 0 is

assigned in other scenarios. 1

Neutral particles, require the definition of a shape that attempts to distin-

guish parton shower-like radiation from pile-up-like radiation. This shape,

αi, is defined for every particle i in the event. The shape is calculated from

the pT and the angular distance to nearby particles, and, in CMS, is defined

1The threshold of 0.3 cm is in accordance with 15 standard deviations of the measured
vertex reconstruction resolution in z direction.
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Figure 4.4: The distribution of the PUPPI shape αi used in CMS for particles i: for
charged particles associated with the LV (red triangles), charged particles associated
with PU vertices (blue circles), and neutral particles (black crosses) for |η| < 2.5.
The distribution is shown for both data and simulation and normalized to unity.
Reprinted from Reference [62].

as [62]:

αi = log ∑
j ̸=i,∆Rij<R0

(
pT,j

∆Rij

)2{
for |ηi| < 2.5, j are charged particles from LV.
for |ηi| > 2.5, j are all kinds of reconstructed particles.

(4.4)

where j are other particles, Rmin, R0 are tunable parameters. The distribution

is expected to be larger for LV particles than PU particles, as PU radiation is

uniformly distributed, whereas LV radiation is centered around hard partons.

The distribution of αi, determined for PF particles in CMS, is shown in Fig. 4.4.

To translate αi of each particle into a probability, charged particles assigned

to PU vertices are used to generate the expected PU distribution in an event.

From this expected distribution a median and root-mean-square (RMS) of the

α values are computed, and compared to αi using the following approximation:
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signed χ2
i =

(αi − ᾱPU)|αi − ᾱPU|
σ2 , (4.5)

where ᾱPU and σ are the median and RMS of the charged PU αi distribution.

This expression measures how far αi fluctuates from the pileup median. If the

signed χ2
i is large, the particle most likely originates from the LV.

To assign a weight, it is noted that, since the PU distribution of α looks

Gaussian-like, χ2
i should follow a χ2 distribution with 1 degree of freedom.

Then, we can define the PUPPI weight as:

wi = Fχ2,Ndof=1(χ
2
i ), (4.6)

where F is the cumulative distribution function of the χ2 distribution. Almost

all pile-up particles have values within a few standard deviations of the

median and are assigned small weights. Values that deviate far from the

charged pile-up are indicative of a hard scatter, and these particles are assigned

large weights.

The performance of pileup removal algorithms is evaluated in the context

of the reconstruction of jets and missing transverse momentum, and the calcu-

lation of jet substructure observables, which will be detailed below. The PUPPI

algorithm is extensively used in CMS because it shows the best performance

for jet mass and substructure observables, i.e. the least dependence on PU

interactions among different pileup removal algorithms [62].
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4.2 Jet substructure

The two-body hadronic decay of heavy resonances at rest usually results in an

event topology where two small-radius jets are recoiling back to back. However,

when these particles are produced with high energy and sufficiently large

transverse momentum in the laboratory frame, the momenta of their decay

daughters increases and their angular separation ∆R becomes smaller. This is

illustrated in Fig. 4.5.

Figure 4.5: Illustration of the hadronic decay of a resonance X in the laboratory frame.
Their two-body decay results in two hadronic small-radius jets that are recoiling back
to back (left). When the transverse momentum of the resonance X is large, its decays
are very collimated and the outgoing quarks are not sufficiently separated relative
to each other to be resolved into individual jets (right). The small opening angle
between the decay products leads to fully-merged particle decays.

In this boosted regime, the opening angle between the daughter quarks

depends on the momentum of the parent particle pT and its mass M:

∆R ∼ 2M
pT

. (4.7)

2

2This rule of thumb can be derived from the invariant mass m of the products of the
resonance decay. For a two-body quark decay we have:

M2 = (p1 + p2)
2 ≈ 2E1E2(1 − cos θ12) ≈ E2z(1 − z)θ2

12, forθ12 ≪ 1. (4.8)
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This means, that for pT > 2M/R, the decay products may become suffi-

ciently collimated to be reconstructed into a single jet with radius R. Small-

radius jets, such as AK4 jets, will begin to overlap and this may reduce the

efficiency of reconstructing each of the decay products. Thus, larger-radius

jets must be used. In this thesis, AK8 jets with parameter radius R = 0.8 and

CA15 jets with parameter radius R = 1.5 are used. CA15 jets are used to

reconstruct higher mass boosted resonances, e.g. with mass above 300 GeV.

This is because a heavier resonance with the same transverse momentum

has a lower Lorentz boost and a larger radius jet is required to contain its

hadronization products.

Having reconstructed these jets, an important task is then to distinguish

these hadronic two-body decays from the dominant non-resonant QCD multi-

jet production, i.e. from the hadronization of light quarks and gluons, which

may also be reconstructed in this large-R jet topology. There are two main

handles for its identification: the jet mass and the jet substructure observables,

that exploit differences in the radiation patterns of the jets. In the following,

we explore these handles, as well as the tools used for their calibration in

experimental data.

Where, z and (1 − z) are the energy fractions carried by the two almost massless quarks, p1,2
and E1,2 are their four-momenta and energies; and, θ12 is the angle between the quarks with
respect to the direction of motion of the resonance that corresponds roughly to the distance
∆R between the quarks in the (η − ϕ) plane. The second approximation holds for symmetric
decays (z = 1/2) in the boosted kinematic regime (pT ≪ m). Then we have:

∆R =
M
E

1√
z(1 − z)

≈ 2M
pT

(4.9)

113



4.2.1 Jet grooming

The drawback of using large-radius jets are unwanted contributions from

the underlying event and pileup. Their net effect are UE/PU hadrons which

are spatially overlapped with hadrons from the final state. This complicates

the jet finding and worsens the resolution in substructure quantities, such

as the jet mass. While pileup mitigation techniques, such as PUPPI, can

help to eliminate uncorrelated radiation from the jets by subtracting non-

PV contributions, grooming techniques can help to remove unwanted soft-

radiation, thereby reducing the contamination effects. A combination of these

techniques leads to the best overall performance.

Jet grooming is an additional “post-processing” treatment of large radius

jets, where radiation is systematically removed from the jet. Grooming al-

gorithms often target soft and wide-angle radiation, which is not associated

with the underlying hard substructure. There are two main algorithms used

by CMS: trimming and soft-drop [103, 104]. They both rely on the same pro-

cedure: re-clustering the constituents of a jet, e.g. the PF candidates, while

rejecting soft/wide-angle radiation.

For trimming, the kTalgorithm is used to re-cluster the constituents into

subjets (smaller-radius jets), which have a characteristic radius called Rsub <

R. Those subjets with a momentum fraction f < fcut are removed, and the

remaining subjets are assembled into the trimmed jet. In CMS, trimming is

used at the trigger level, as it will be detailed in the next chapter.

For soft-drop, the CA algorithm is used to re-cluster the constituents but

the algorithm imposes a condition on the 2 → 1 subjet clustering step, by
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going backwards in the sequence in which the particles were combined. At

each node of the CA-clustering tree, the transverse momentum fraction of the

softer particle with respect to the merged system:

z =
min(p1

T, p2
T)

p1
T + p2

T
(4.10)

is used as a criteria to determine the scale of the soft radiation, and the angular

distance ∆R12 between the two particles is used as a criteria for identifying

wide-angle radiation. Here, pi
T refers to the pT of the i-th subjet of the node.

The softer branch of the node is removed unless it satisfies the condition:

z > zcut

(
∆R12

R

)β

, (4.11)

where zcut and the angular exponent β are tunable parameters. In CMS, soft-

drop is used at the reconstruction level, where these parameters are fixed

to zcut = 0.1 and β = 0. The parameter β controls the grooming profile

as a function of the subjet angular separation; for = 0, the algorithm is

independent of subjet separation, and is equivalent to the modified mass-drop

tagger (mMDT) detailed in [105]. The remaining constituents are combined

to make the groomed or soft-drop jet.

Soft-drop has the benefit of performing jet grooming in a theoretically safer

way [104, 106] with a constant behavior across different clustering distance

parameters R and pT, which is not true for other grooming algorithms such

as the pruning technique [107, 108]. The jet observables computed after

applying the soft-drop algorithm exhibit a pileup dependence and therefore it

is applied to jets whose momenta has been weighted by the PUPPI algorithm.

115



Throughout this thesis, the usage of soft-drop is abbreviated as SD.

4.2.2 Jet mass

The simplest way to distinguish a boosted hadronically-decaying resonance

from the hadronization products of light quarks and gluons is through the

invariant mass of its decay products; in a contamination-free environment

this would correspond to the jet mass, defined as the mass of the sum of the

four-momenta of the constituents inside the jet. In particular, the jet mass

generated by QCD radiation should be typically lower than that generated by

the hadronic decay of heavy resonances.

However, in practice, the plain jet mass is very sensitive to contamination

from soft and wide angle emissions. This is because the mass of generic quark

and gluon jets, i.e. from QCD events, is set by the radiation of gluons from the

hard portion of the jet. The probability that a gluon is radiated increases as its

energy or angle of emission decreases (soft or collinear radiation, respectively).

Hence, the probability of having m = 0 vanishes since many soft and/or

collinear gluons will be radiated [109]. Above m/pT ≈ 0.1, there is an overall

decrease in the jet mass spectrum as the dominant contributions come from

gluon emissions with high energy or at large angles. The appearance of a

large peak at low mass is referred to as a “Sudakov peak” [105].

To separate the hard part of the jet from the soft contributions, the groomed

jet mass is used, in our case the SD-jet mass: mSD. By applying the SD

algorithm, soft parts of a jet are removed. This results in a dramatically

reduced Sudakov peak in the distribution of the jet mass for QCD events
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and in a general reduction of the jet mass values. Conversely, the algorithm

preserves the mass of jets from heavy boson decays. The effect of grooming

the mass distribution of light-quark gluon jets is shown in Figure 4.6. The

pT dependence of the groomed jet mass is also shown in Figure 4.7. Finally, a

comparison of the groomed jet mass shape between signal and background

jets is shown in Figure 4.8.

Figure 4.6: Shape of the ungroomed jet mass mu and the groomed jet mass mg, equiv-
alent to mSD in the text. The distributions are shown for inclusive multijet events in
data and simulation (PYTHIA8 and HERWIG++). Figures reprinted from Reference [109].
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Figure 4.7: Shape of the groomed jet mass mSD, shown for light quark and gluon
jets, from simulated QCD multijet events. The distributions are normalized to unity
and shown for different pTranges and different radius parameters, for AK8 (left) and
CA15 (right) jets. The grooming procedure tends to lower the jet mass values for QCD
and reduces the Sudakov peak, so that the distribution is mostly smoothly falling.
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Figure 4.8: Comparison of the shape of the groomed jet mass mSD for signal
(W/Z/h(qq)) and background (QCD multijet) AK8 jets, in simulation. In the right,
the mass distribution of the top quark jets has two peaks since not all its decay prod-
ucts will be merged within a jet radius of R = 0.8. Partially-merged W(qq) decays
from the top quark correspond to a mass window between 60 and 100 GeV. Figures
reprinted from Reference [110].

An extra but important feature of the grooming procedure is that it reduces

the sensitivity to non-perturbative contributions and “non-global” logarithms.

The latter appear in the perturbative calculations of the jet mass. They arise

from radiation that exits the jet re-radiating soft gluons back into the jet.

Although it is currently unknown how to fully account for these non-global

logarithms in the perturbative integrals, its effects can be reduced through

grooming, thereby allowing for more exact predictions of the jet mass in the

perturbative regime.

Simulation level corrections for the jet mass scale In CMS, the mSD values

are corrected by a pT and η dependent factor to ensure a jet mass distribution

that is centered on the nominal resonance mass. These corrections are derived

in simulated events where W bosons that decay into a pair quarks are matched
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to a large cone size jet. Two type of corrections are derived:

• Generator-level correction: That accounts for a small shift in the particle-

level vector boson mass when compared to the nominal value of the W

boson mass, 80.4 GeV.

• Reconstruction-level correction: That accounts for differences between

the particle-level jet mass and the reconstructed jet mass, and is applied

separately for jets in the barrel and endcaps regions.

The shift in generated soft-drop mass at lower pT is of the order of 2-3% while

the difference between reconstructed and generated soft-drop mass is a 5-

10% effect. The mass shift introduced at generator level is corrected by a fit

to mPDG/mgen as a function of jet pT, where mPDG = 80.4 GeV and mgen is

the fitted mean of the generator level mass. To correct for the residual shift

between generator and reconstruction level, a fit to (mgen/mreco), where mreco

is the reconstructed jet mass. The distribution and corresponding fits for the

two weights is shown in Fig. 4.9.

4.2.3 Jet ρ

In addition to the jet mass, it is useful to introduce another observable that

characterizes correlations in jet substructure with the jet mass and pT: the jet

ρ [105]. This dimensionless variable is defined as:

ρ = log
m2

p2
T

. (4.12)
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Figure 4.9: Fit to mPDG/mgen as a function of jet pT (left), where mPDG = 80.4 GeV
and Mgen is the fitted mean of the generator level mass and (Mreco − Mgen)/Mreco
(right), where Mreco is the reconstructed soft-drop mass, as a function of jet pT in two
η bins.

3

The advantage of the ρ observable over the groomed mass is its invariance

under boosts along the jet direction, i.e. under a change in the jet pT. This

invariance is present in the perturbative mass regime, where the contributions

scale as (mSD/pT). This behavior is shown in Fig. 4.10, where the distribution

of ρ for simulated QCD multijet events varies very slowly as a function of pT,

contrary to the behavior of the jet mass shown in Fig. 4.7.

In general, the region of interest in ρ is determined by an upper or lower

boundary. At low masses, non-perturbative effects are large and not well

modeled in simulation, this region is avoided by a lower bound on ρ. The

upper bound in ρ, that corresponds to higher jet masses, is imposed to avoid

3Note that some definitions of ρ factor out the dependence jet distance parameter R,
ρ = log m2

p2
TR2 . To enforce consistency with past CMS results, we leave out the radius parameter,

and instead account for different R values by varying the selection on ρ for different jet radius
sizes.
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Figure 4.10: Shape of the jet ρ = log m2

p2
T

shown for QCD multijet events. The distribu-
tions are normalized to unity and shown for different pT ranges and different radius
parameters, for AK8 (left) and CA15 (right) jets.

instabilities because the cone size of the jets becomes insufficient to provide

complete cont ainment of the jet radiation.

4.2.4 Two-prong substructure

Along with the jet-mass, other observables are used to distinguish hadroni-

cally decaying heavy resonances such as prong-taggers. These aim to identify

the multi-pronged structure of a heavy resonance decay. Examples of these

observables include N− subjettiness ratios τij [111] and energy correlation

functions (ECFs) [112]. These are usually constructed using power counting

techniques, from a basis of IRC safe observables that probe an N−prong sub-

structure within a jet. 4 Power counting [113] can predict which combinations

of observables are optimally sensitive to specific parametric features within a

jet and can elucidate the underlying physics probed by the observables.

4A general IRC safe observable, insensitive to the emission of soft or collinear gluons, can
be constructed using all energy deposits and angular information of a hard scattering event.
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N-subjettiness

The N-subjettiness (τN) is a measure of the compatibility of a jet with an N-axis

hypothesis. It is defined as:

τN = ∑
1≤i≤nJ

zi min{∆Rβ
i1, ..., ∆Rβ

iN}, (4.13)

where zi refers again to the energy fraction, and ∆RiK refers to the angular

separation between the constituent i and the subjet axis K in the jet. A small

τN indicates a high degree of compatibility with the N-axis hypothesis. In

particular, the ratio of “2− subjettiness” to “1− subjettiness” (τ2/τ1 = τ21) is

designed to take small values for a jet with well-resolved 2-prong substructure,

and has therefore, excellent capability at separating jets originating from

boosted W/Z/Z′/h(qq) bosons from QCD jets.

The N− subjettiness (τN) divides a jet into N sectors and correlates the

particles in each sector with their corresponding axis. Thus, the definition of

N-subjettiness requires an implicit definition of appropriate N-subjettiness

axes, which can led to different behaviors of the observable.

Energy correlation functions

Energy correlation functions measure the correlation of the positions of hard

particles in a jet [114]. They were first introduced in [112] as observables that

would correlate 2 pairwise angles among n particles within a jet. In [114], this

definition was generalized to v pairwise angles to introduce more flexibility

in the angular scaling. They are denoted by veβ
n, where the subscript n denotes

the number of particles to be correlated and β is an angular exponent that can
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be used to adjust the weighting of the pairwise angle.

A generalized definition of the ECFs for a jet j is given by:

veβ
n = ∑

1≤i1<i2<...<in≤n
zi1zi2 ...zin × min

{
v

∏
m=1

∆Rβ
st

⏐⏐⏐s < t ∈ i1, i2, ..., in

}
(4.14)

where zi represents the energy fraction of the constituent i in the jet, and ∆Rst

is the angular separation between constituents s and t.

Using these generalized correlators, it is possible to apply power counting

to identify new jet substructure observables. For boosted vector boson tag-

ging, ratios between the 2-point and 3-point (with its three variants) energy

correlation functions can provide a well motivated tagger. For a 2-point (1e2)

and 3-point (2e3) correlations, and β = 1, these observables are defined as:

1e2 = ∑
1≤i<j≤n

zizj∆Rij, (4.15)

2e3 = ∑
1≤i<j<k≤n

zizjzk min{∆Rij∆Rik, ∆Rij∆Rjk, ∆Rik∆Rjk}, (4.16)

where zi represents the energy fraction of the constituent i in the jet, and ∆Rij

is the angular separation between constituents i and j.

To distinguish a two-prong structure, the observable N1
2 is defined as:

N1
2 = 2e3

(1e2)2 . (4.17)

This dimensionless variable is boost invariant, as two angular factors appear

in both the numerator and denominator. Its definition is motivated by the

behavior of 1e2 and 2e3 for light and quark gluons and signal jets:

• QCD jets, dominated by either soft or collinear radiation, exhibit a single
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scaling: 2e3 ∼ (1e2)
2.

• Two-prong signal jets have larger 2-point correlations: 2e3 ≪ (1e2)
2.

Figure 4.11 shows the shapes of N1
2 and τ21. N1

2 has smaller values for

signal jets and higher values for background QCD jets. This variable exhibits

τ21-like behavior and similar discrimination but does not rely on the definition

of axes within the jet. In this thesis, the calculation of N1
2 is based on the PF jet

constituents after application of the SD grooming algorithm to the jet.
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Figure 4.11: Shape of the groomed Nβ=1
2 and ungroomed τ21 distributions in simu-

lated two-prong W→ qq boson jets (W+jets) and light quark and gluon jets (QCD).
The comparison is shown for AK8 (top) and CA15 (bottom) jets.
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Other two-prong taggers

An alternative approach to observables derived from an analytic, first-principles

understanding of jet substructure is the development of Machine Learning

(ML) classification algorithms. These allow for the construction of discrimina-

tors that can exploit low-level (high-dimensional) inputs, such as the proper-

ties of the constituents of a jet. In particular, jet taggers can be trained using

supervised learning. This means that large datasets, that are available from MC

simulation and have a known type or origin, can be used to tell the algorithm

which jets correspond to signal and which to background.

In CMS, the Deep-AK8 [110] and Particle-Net [115, 116] taggers were re-

cently developed as multi-class classifiers for the identification of hadronically

decaying particles. These taggers were trained to distinguish five main cate-

gories of heavy resonance jets: W/Z/H/t/other. Although the architecture

of these networks differs, the inputs that they use are similar. These are the

measured properties of up to 100 jet constituent particles such as their pT, the

energy deposit, the charge, the angular separation between the particle and

the jet axis or the subjet axes, etc. The usage of lower-level variables allows

better exploitation of the high granularity of the CMS detector. For two-prong

W tagging, this also leads to a significant improvement in performance in sim-

ulation when compared to the usage of τ21 as shown in Refs. [110, 116]. These

developments are somewhat recent and are not used in the search presented

in the next chapter.
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Merged bb̄ tagging

While b−tagging in busy hadronic environments plays an important role for

final state signatures with b−jets, it is a key challenge to identify the merged

bb̄ signature. This final state is useful to identify boosted decays of the Higgs

boson, that has the largest branching fraction to the h → bb̄ decay of about

60%, as well as boosted decays of the Z boson (Z → bb̄).

In the boosted regime there are two approaches to identify jets that likely

originate from the merging of the fragmentation products of two b quarks:

• Rely on subjet b-tagging, where the CSVv2 algorithm described in

Sec. 4.1.2 is applied to two small-radius AK4 jets. At high-pT, however,

when the subjets start to merge, the ‘standard’ b−tagging techniques

start to break down due to the overlap in the charged tracks and SVs

used when computing the subjet b−tag discriminants.

• Develop dedicated algorithms that are based on deep neural networks

or multivariate techniques and attempt to fully exploit the strong corre-

lations between the B hadron flight directions and the energy flows of

the two decay products.

In CMS, the latter strategy is preferred and a discriminant based on a

deep neural network is used. It is referred to as the deep double-b tagger

(DDBT) [89, 117]. The algorithm takes as inputs several high-level observables

that characterize the distinct properties of B hadrons and their momentum

directions in relation to the two subjet candidate axes, as well as low-level track

and vertex observables. When compared to the subjet b−tagging approach,
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the DDBT improves the h → bb̄ tagging efficiency by a factor of about 2 for

the same detector conditions and QCD misidentification probability [117].

4.2.5 Mass decorrelation

Jet features used for tagging are often correlated with the resonant feature, i.e.

the jet mass. This correlation is present in both jet prong-tagging observables

as well as in ML jet classifiers, where the latter can extract features that are

correlated to the mass to improve the discrimination power. This means

that a fixed-value requirement on these observables will distort the jet mass

distribution differently depending on the jet pT. In particular, for inclusive jet

production i.e. QCD jets, the shape of the jet mass will no longer be smoothly

falling but will resemble the resonance jet mass distribution, as shown in

Fig. 4.12.

Figure 4.12: Illustration of the distortion or sculpting of the shape of the inclusive jet
mass distribution after a selection on an observable X that is correlated with the jet
mass and pT. The jet mass shape of the background (light blue) becomes similar to
that of the resonant signal (gray) after a selection on the tagger. This complicates
background predictions on searches or measurements that use the jet mass as the main
observable. For example, those that rely on a side-band prediction in the jet mass
around the resonance mass or those that rely on a smoothly falling shape constrained
by a similar shape in a signal-depleted region.
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This “sculpting” behavior is undesirable in analyses where the jet mass is

the main observable. These searches or measurements often need to estimate

the background contribution from data and require predictable and smooth

transitions from signal-depleted regions to signal regions. Furthermore, even

if a background prediction was available, fitting a resonant peak on top of

a sculpted background would increase the systematic uncertainties on the

multijet background and reduce the sensitivity of the analysis.

In the following, we describe one technique to decorrelate jet observables

from the jet mass and pT that is called designed decorrelated tagger or DDT.

This technique was first derived for the τ21 observable in Ref. [118] and its

generalization to any observable and background efficiency is one of the

main results of this thesis. The development of decorrelated jet substructure

taggers is an active field and a description of other techniques can be found in

Refs. [116, 118–122].

Jet mass correlation We begin by considering the correlations present in

prong-taggers such as τ21 and N1
2 . These are shown for simulated QCD

multijet events in Figures 4.13 and 4.14 with respect to the jet ρ for different pT

ranges. The correlations are drawn in a “violin plot” style, where the central

black dots represent the mean value of τ21 or N1
2 in each jet ρ bin. We can

already observe that, when compared to τ21, the observable N1
2 is more stable

with respect to the jet mass and pT.

Designed decorrelated tagger (DDT) The DDT method relies in profiling

the linear relationship between τ21 and the jet ρ, as seen in Fig. 4.13. This
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Figure 4.13: Violin plot showing the correlations between the τ21 observable and the
jet ρ for inclusive jet production (simulated QCD events) and for different pT ranges
from 450 GeV to 750 GeV. The black dot shows the mean value of τ21 in each jet ρ bin.
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Figure 4.14: Violin plot showing the correlations between the N1
2 observable and the

jet ρ for inclusive jet production (simulated QCD events) and for different pT ranges
from 450 GeV to 750 GeV. The black dot shows the mean value of N1

2 in each jet ρ bin.

130



dependence can be exploited to perform a linear transformation, that removes

the mean bias of τ21 with respect to ρ.

In practice, when this method was studied in [118, 123], the jet scaling

variable: ρDDT = log( m2

pT×1GeV) was used. The linear transformation of τ21 →
τDDT

21 is given by:

τDDT
21 = τ21 − M × ρDDT (4.18)

where M = 0.063 is a constant. To obtain M, a linear fit is performed to the

simulated τ21 profile in the range of ρDDT ∈ [1.5, 4.0]. This range of ρDDT

is within the region of interest of simulated QCD events, as explained in

Sec. 4.2.3. Figure 4.15 shows how the DDT transformation removes most of

the linear correlation of τ21 with ρ.

Fixed-efficiency regression The original DDT transform proposes a linear

transformation with the jet mass to remove the mean bias of an observable,

but such a relationship will not always be linear and is not applicable to every

observable.

To generalize this concept, the decorrelation procedure is no longer ap-

plied along the profile (50% quantile) of the distribution but instead along a

fixed quantile. The quantile should correspond to the inclusive background

efficiency, ϵbkg, at which the selection on a given observable will be applied.

For example, a search may want to perform a selection on a jet observable

Y that only keeps 5% of the QCD multijet background, i.e. ϵbkg = 5%. By

definition, the 5% quantile of Y corresponds to the cut value that divides the

multijet events into groups with 5 and 95% of background efficiency. This is

131



Figure 4.15: Violin plot showing the correlations between the τDDT
21 observable and

the jet ρ for inclusive jet production and for different pT ranges from 450 GeV to 750
GeV. The black dots show the profile or mean value of τDDT

21 in each jet ρ bin. Since this
variable is obtained with respect to a linear fit to ρDDT instead of ρ, the decorrelation
is not perfect but is greatly reduced in the region of interest.
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illustrated for the jet N1
2 observable in Fig. 4.16. This cut value, however, will

vary as a function of the jet ρ and pT.

Figure 4.16: Quantile for the jet N1
2 in simulated multijet events. The left panel shows

a distribution of N1
2 while the right panel shows a violin plot on the correlation of N1

2
with respect to ρ. The blue points represent the 5% quantile while the black points
represent the mean or 50% quantile. A threshold selection on N2 on the 5% quantile
will result on a selection of events in the blue shaded regions. However, given the
correlation with the jet ρ, for a fixed quantile the shaded region will vary depending
on the jet ρ value.

We can explore the variation of the cut value by building a fine map, in

jet ρ and pT, of the ϵbkg quantile of N1
2 : Xϵbkg . This binned map is shown for

ϵbkg = 5% in Fig. 4.17.

Thus, for a certain fixed ϵbkg, we can define the following transformation

from N1
2 → N1,DDT

2 .

N1,DDT
2 = N1

2 − Xϵbkg , (4.19)

where Xϵbkg is the ϵbkg percentile of the N1
2 distribution in simulated QCD

multijet events. The selection N1,DDT
2 < 0, or equivalently N1

2 < Xϵbkg , yields

a constant ϵbkg of simulated QCD multijet events.

By definition, this transformation takes into account any variation of the
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Figure 4.17: Variation of the X5% of the jet N1
2 observable, as a function of the jet ρ

and pT. This map is built from simulated multijet events and uses a coarse binning of
the jet ρ and jet pT variables.

cut with respect to the jet ρ. This is seen in Fig. 4.18, where the violin plot of

the N1,DDT
2 variable shows a flat behavior for the quantile corresponding to

the transformation. A drawback of this method is that the decorrelation is

only perfect for the given working point or ϵbkg for which the Xϵbkg map is

derived.

Figure 4.18: Violin plot showing the correlations between the N1,DDT
2 observable and

the jet ρ for inclusive jet production and for different pT ranges from 500 GeV to 800
GeV. The black dots shows the profile or mean value of τDDT

21 while the blue dots
show the 5% quantile, in each jet ρ bin. Since the N1,DDT

2 transformation was derived
for a 5% background efficiency, there is no variation on the blue dots across the entire
jet ρ range. This leads to a perfect decorrelation in simulation.

The N1,DDT
2 is effectively only a translation of the original jet N1

2 observable,
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and thus a similar discrimination performance is expected. The distributions

of both observables are shown in Fig. 4.19 for ϵbkg = 5%.

Figure 4.19: Distributions of the jet N1
2 observable (left) and N1,DDT

2 (right) in two-
prong signal and background jets. Figures referenced from [117].

Smooth N1,DDT
2 The binned transformation map shown in Fig. 4.17 is dis-

cretized. To ensure that the full differential variation of N1
2 , or any other

variable, is exploited, the distribution of Xϵbkg can be smoothed. Three smooth-

ing approaches were studied: (a) a k-Nearest neighbor (kNN) approach, (b)

a Gaussian filter, and (c) a “detector-smearing” approach that generates a

thousand times more the original number of simulated events and smears

them to account for detector effects. While the techniques used in (a) and (b)

are straight-forward methods employed in image processing, they are limited

by the number of events available in the QCD multijet simulation which are

used to create the transformation map. The detector-smearing approach aims

to overcome this potential pitfall by generating many more events at particle-

level, and smearing the distributions of N1
2 and jet ρ. In this technique, both

jet observables are multiplied by a random number drawn from a Gaussian

distribution, such that the smeared jet matches the resolution obtained from
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fully simulated events. The advantage of this method over the kNN approach

is that it allows better control of the smoothness of the transformation map

while maintaining similar performance in terms of the amount of jet mass

decorrelation. However, its implementation is time consuming, whereas for

example a Gaussian filter is much faster and easier to implement. Thus, the

later methods should be preferred in most of the use-cases. Examples of the

smooth N1,DDT
2 map are given in Fig. 4.20.

)2

T
/p2

SD
 = ln(mρ

7− 6− 5− 4− 3− 2−

 (
G

eV
)

Tp

500

600

700

800

900

1000

(5
%

)
X

0

0.05

0.1

0.15

0.2

0.25

CMS Simulation Preliminary

Multijet events

)2

T
/p2

SD
 = ln(mρ

7− 6− 5− 4− 3− 2−

 (
G

eV
)

Tp

500

600

700

800

900

1000

(5
%

)
X

0

0.05

0.1

0.15

0.2

0.25

CMS Simulation Preliminary

Multijet events

Figure 4.20: Smoothed map of the variation of the X5% quantile for the jet N1
2 observ-

able, as a function of the jet ρ and pT. This map is built from simulated multijet events
and uses a fine binning of the jet ρ and jet pT variables. It is further smoothed with a
k-Nearest neighbor approach (left) and a detector-smearing approach (right).

Performance in simulation In Refs. [117, 122], the Jensen-Shannon diver-

gence [124] was used as a figure of merit to quantify the sculpting of the jet

mass distribution. This metric is a symmetric version of the Kullback-Leibler

divergence [125] and provides a metric for the similarity of the shape between
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distributions. 5 The JSD values for a mass decorrelated jet tagger should be

lower than for a standard jet tagger. In both independent studies, it was ob-

served that the generalization of the DDT method, e.g. the N1,DDT
2 observable

keeps a smoothly falling shape of the jet mass distribution. Furthermore, when

compared to other available methods, it is seen to lead to the greatest degree

of mass-decorrelation and lowest values of JSD. This is seen in Fig. 4.21.

Summary The fixed-efficiency regression method generalizes the central

concept behind DDT, thereby making the method admissible to any fixed

background efficiency. When the transformation is applied, a perfect decorre-

lation should be expected at a given ϵbkg.

It is worth noting that this method is not only applicable to jet-prong

observables. A similar procedure can be applied to the discriminator score

which is the output of ML-based classifiers. This has in fact been recently

done for the Deep-AK8 tagger with a similar mass decorrelation performance

achieved [116]. The simplicity of this decorrelation method has an advantage

over other ML decorrelation techniques such as adversarial training [119],

5The Jensen-Shannon divergence (JSD) was used to measure the difference between the
normalized mass distributions of the background jets passing and failing a jet tagger cut:

JSD ≡ JSD(
Npass

bkg (m)

∑i Npass
bkg,i(m)

∥
Nfail

bkg(m)

∑i Nfail
bkg,i(m)

), (4.20)

using bins in m between 50 GeV and 300 GeV in increments of 5 GeV. Here, JSD is defined as:

JSD(P∥Q) =
1
2
(KL(P∥M) + KL(Q∥M)) , with M =

P + Q
2

. (4.21)

KL(P∥Q) = −∑i Pi logn

(
Qi
Pi

)
, is the Kullback-Leibler divergence that measures the relative

entropy of P with respect to Q, and cand therefore be used to quantify the similarity between
discrete distributions P and Q.
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Figure 4.21: Comparison of the mass decorrelation performance of the N1,DDT
2 observ-

able with respect to other W-tagging algorithms in CMS. Left: The JSD as a function of
successively tighter selections (expressed in terms of ϵbkg) for the various algorithms.
Lower values of JSD indicate larger similarity of the mass shape in QCD multijet
events passing and failing the selection on the tagging algorithm. Right: The shape
of the soft-drop jet mass distribution for background jets with 600 < pT < 1000 GeV,
inclusively and after a selection by each algorithm. The working point chosen corre-
sponds to ϵsig = 50%. Since N1,DDT

2 it is computed for a fixed background efficiency
instead of a fixed signal efficiency, the shape of the jet mass after the selection does
not perfectly match the smoothly falling shape of the inclusive selection. but is very
close. Figures referenced from [117].
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which is not robust or easy to implement.

In the next chapter, the N1,DDT
2 observable is used as the main jet tagger to

identify a two-prong signal. The selection N1,DDT
2 < 0 yields a constant QCD

background efficiency across the ρ and pT range of the search, and preserves

the shape of the jet mass distribution used in the search.

139



4.2.6 Validation in data

Prior to the usage of the any of the jet substructure tools presented in this Chap-

ter, we must verify the performance in data. The corrections to be obtained

are related to the response of the jet mass distribution and the efficiency of a

two-prong tagger cut. A data sample enriched in lepton+jets tt̄ production is

used, that is, where one top quark decays leptonically t → W(ℓν)b and the

other decays hadronically t → W(qq)b. The leptonic top quark candidate is

selected by identifying a high pT lepton, more concretely a muon, and a b−jet

and the fully-merged hadronic W jet can be studied in data. The hadronic

jet is reconstructed as an AK8 jet with pT > 200 GeV. To identify W jets, a

two-prong substructure cut is used, e.g. N1,DDT
2 < 0, events in this sample

determine the “passing” region. The “failing” region is composed of events

with N1,DDT
2 > 0 values. Large-radius jets in the passing region show a peak

at the W mass in the jet mass distribution, as shown in Figure 4.22.

A simultaneous fit to the two samples can be performed to extract the

tagging efficiency of a merged W boson jet, its jet mass scale, and the resolution

in simulation and in data. The peak of the W mass in the passing region can

be used to determine the scale and resolution of the jet mass. The Jet Mass

Scale (JMS) is defined as the ratio of the mean of the distribution in data vs

simulation:

JMS =
< mData >

< mMC >
, (4.22)
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Figure 4.22: Distributions of the soft-drop jet mass that pass (left) and fail (right)
the N1,DDT

2 selection. Data, corresponding to 2017 data taking, is shown in black
points and simulation is shown in the shaded regions. A large peak is seen around
the W mass (80.4 GeV) in the passing region and less so in the failing region, this
corresponds to merged hadronic decays of the W boson. In the failing region there
is a second and less pronounced bump around the top quark mass (175 GeV) that
correspond to fully merged decays of the top quark, where the b−jet is close enough
to the hadronic W boson jet.

while, the Jet Mass Resolution (JMR) is obtained from the width of the distri-

bution:

JMS =
σ(mData)

σ(mMC)
. (4.23)

To account for residual differences in the efficiency of the two-prong tagger

between data and simulation, the failing region is also taken into account and

a scale factor is defined:

SF =
ϵData(N1,DDT

2 > 0)

ϵMC(N1,DDT
2 > 0)

. (4.24)

Each of these corrections are obtained from a simultaneous fit to the passing
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and failing regions that have the following partial likelihoods:

Lpass = ∏
i
[NW · ϵ · f sig

pass(mj) + N2 · f bkg
pass(mj) + NST

pass · f ST
pass + NWjets

pass · f Wjets
pass ]

Lfail = ∏
i
[NW · (1 − ϵ) · f sig

fail(mj) + N2 · f bkg
fail (mj) + NST

fail · f ST
fail + NWjets

fail · f Wjets
fail ],

where NW is the number real W-jets, N2 is the number of combinatorial back-

ground events passing and failing the N1,DDT
2 cut respectively, Ni and fi with

i = ST,W jets are the normalizations and models of the minor backgrounds in

this sample. The shapes and normalizations of the minor backgrounds are

fixed to what is given by simulations, while the floating parameters of the

fit are the rates NW , N2, and the mean and sigma of the W-mass distribution

defined in f sig
pass(mj) and f sig

fail(mj). The post-fit shapes are shown in Figs. 4.23

for different data taking periods, for an N1,DDT
2 selection with ϵbkg = 5%.

The scale factors are measured separately for the two data taking periods

considered in this thesis and shown in Table 4.1. The excellent performance

of the PF algorithm results in a JMR of about 10%. The absolute response

and the resolution are well described by the simulation, within 1% for the

JMS and about 6% for the JMR, which is about the same size as the statistical

uncertainty of this measurement.

Table 4.1: Scale factors for the W-tagging efficiency, the JMS and the JMR.

Run-period N1,DDT
2 selection Jet mass scale Jet mass resolution

2016 0.891±0.066 1.000±0.006 1.110±0.060
2017 0.896±0.088 0.989±0.006 1.082±0.067
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Figure 4.23: Soft-drop jet mass distributions that pass (left) and fail (right) the N1,DDT
2

selection, at 5% background efficiency, in the semileptonic tt̄ sample. Data corre-
sponds to 2016 (top) and 2017 (bottom) data taking periods. Note that for 2016, pre-fit
and post-fit models are shown, while only post-fit is shown for 2017.
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As the semileptonic tt̄ sample does not contain a large population of

very energetic jets, an additional systematic uncertainty can be computed to

account for the extrapolation to very high pT jets. This additional uncertainty

is estimated to be 0.5% per 100 GeV, based on a study of fitting the jet mass

distributions of pT-binned samples of merged top quark jets with pT > 350

GeV [13]. In total, the jet mass scale uncertainty increases with jet pT, ranging

from 1.2% at 450 GeV to 2.1% at 800 GeV.
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Chapter 5

Search for a low mass resonance
decaying into quarks

In this chapter, we discuss the search for vector resonances decaying to quark-

antiquark pairs. The search focuses on resonances with masses below 450 GeV

and a natural width small relative to the detector’s mass resolution.

As the resonance mass decreases, there is a large increase in the cross

section of multijet backgrounds and high energy trigger thresholds are needed

to reduce the data recording rate. The energy of the resonance hadronic decay

products is therefore not sufficient to meet the trigger requirements. This

leads to a loss of sensitivity in dijet searches for resonance masses below 1 TeV.

However, a sufficiently light resonance can be triggered when produced in

association with initial state radiation. The ISR constraint provides enough

energy in the event to satisfy the trigger, either by the ISR jet or by the reso-

nance itself. Furthermore, the minimum pT of the resonance in this regime

is sufficiently high that the hadronization products of the daughter quarks

merge and are reconstructed as a single, large-radius jet. This topology is

illustrated in Fig. 5.1.
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Figure 5.1: An s-channel Z’ mediator resonance produced in association with an ISR
jet.

We interpret the results of this search within the framework of a lepto-

phobic vector resonance (Z’) model. This model includes a new U(1) gauge

sector and a new vector boson Z’. As anticipated in Sec. 2.3.2, these type of

low-mass Z’ models are especially appealing as a potential mediator between

the standard model and the dark sector. Furthermore, they can constrain other

extension theories of the SM, such as models with new gauge symmetries,

amongst others [126–135] Such models can avoid flavor constraints if the cou-

plings to quarks are the same for each generation. Here, we consider a simple

extension to the SM with a single extra Z’ boson which couples exclusively

and equally to all quarks by adding the Lagrangian term:

L ∼ g′qq̄γµqZ′
µ, (5.1)

where g′q is the coupling to quarks, and q and q̄ are the quark fields.

Previous results from dijet searches can be summarized in the g′q coupling-

mass plane. The latest results from searches at the LHC experiments have

excluded resonance masses between 1.0 and 7.6 TeV [3, 4]. For masses between

0.45 and 1 TeV, limits on resonances have been set by trigger-level analyses
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Figure 5.2: Limits on the universal coupling g′q between a leptophobic ZIJôóš boson
and quarks for various dijet analyses from UA2, CDF/D0 and CMS experiments that
aim both lower and higher Z’ masses. Also shown are indirect constraints on g′q from
the Υ and Z boson widths, which are valid for all values of ΓZ/MZ. This figure is
reproduced and simplified from Ref. [136].

that record only partial event information and perform searches in the dijet

mass spectrum with lower trigger thresholds [4–7]. A rough summary of the

previous results, obtained by the UA2, CDF/D0, and CMS experiments is

given in Fig. 5.2. The figure roughly illustrates most of the excluded mass and

coupling range but emphasizes that for masses below 140 GeV no exclusions

have been placed since the UA2 experiment. A detailed analysis of the most

recent CMS results can be found in Ref. [136] and a full picture, including the

results of this search, will be shown at the end of this Chapter.

5.1 Event simulation and selection

In this section, we describe how events with boosted Z’ candidates are simu-

lated and selected.
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The main criteria in this search is the selection of a high-pT large radius jet.

The most energetic jet in the event is assumed to correspond to the Z′ → qq

system, and is reconstructed as a single AK8 or CA15 jet. The search using 2016

data only used AK8 jets and probed resonances with masses up to 300 GeV,

while the 2017 search extended the mass region up to 450 GeV by using larger-

radius CA15 jets. In the 2017 search, the AK8 jets provide better sensitivity

for signal mass hypotheses below 175 GeV, while the CA15 jets provide better

sensitivity at mass hypotheses above 175 GeV. The large radius jet is required

to have the two-prong substructure expected from the Z’ signal.

From these simple statements we can identify the main processes that

would mimic our signal, i.e. the background processes of this search:

• Inclusive jet production or QCD multijet: The cross section of this

process increases as the jet mass decreases which makes it the dominant

background in the low-mass regime. The hadronization products of

light quarks and gluons produced in pp collisions can easily be clustered

together in a single large radius jet. Grooming and jet substructure

observables can help lower the QCD contribution and distinguish a

two-prong jet, as explained in Sec. 4.2.

• W and Z + jets: When the W or Z bosons are produced in association

with an ISR jet, the event signature will exactly mimic the Z’ signal.

Large radius jets coming from the hadronization products of the W and

Z boson will also have a two-prong substructure consistent with the

signal. The main handle to identify these backgrounds is the jet mass,

for which these processes will exhibit a peak at the W and Z pole masses,
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respectively.

• Top quark production: The semi-leptonic of fully hadronic decay of

a top quark in association with a jet (Single t) or the decay a pair of

top quarks (tt̄) can mimic a large-radius jet signature. The two-prong

substructure selection can help lower the contribution from these events.

5.1.1 Simulation

To estimate the behavior and contribution of the three main background

processes and the Z’ signal, MC generators are used to produce simulated

datasets. The generation of simulated events includes the matrix-element, par-

ton shower and detector response elements described in Sections 2.2 and 3.3.

The Z’+jet(s) signal events are generated at leading order (LO) with the

MADGRAPH5_aMC@NLO 2.4.3 generator [35], for various mass hypotheses in

the range 50–450 GeV. The events are generated with one or two jets in the

matrix element calculations and a parton-level filter requires the scalar sum

of transverse energies of all the jets in the event (HT) to satisfy the condition

HT > 400 GeV. These signal events generally satisfy the event topology with

the presence of large ISR.

The MADGRAPH5 generator is also used to simulate background processes,

including multijet, Z+jets, and W+jets events, at LO accuracy. The POWHEG

2.0 [36–38] generator at next-to-leading order (NLO) precision is used to model

the tt̄ and single top quark processes. The generators used for signal and

background processes are interfaced with PYTHIA 8.230 [39] to simulate parton

showering and hadronization. The PYTHIA parameters for the underlying
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event description are set with the CP5 tune as described in Ref. [42]. The parton

distribution function set NNPDF3.1 [33] is used to produce all simulated

samples.

The generation of W+jets and Z+jets processes at LO accuracy is purely due

to technical constraints, owing to the large number of simulated events needed

to accurately describe W and Z processes. Their cross sections include higher-

order QCD and electroweak (EW) differential corrections, as a function of the

boson pT, to improve the modeling of high-pT W and Z bosons events [137–

141]. The NLO QCD and EW corrections to the cross sections for the Z’ boson

signal do not yet exist. The NLO QCD corrections to the Z boson cross section

are assumed to be valid for the Z’ boson, within the pT range of this analysis,

and are applied to the signal events. However, since the EW couplings of the

Z’ could differ from those of the Z boson, the NLO EW corrections are not

applied to the signal events.

5.1.2 Online selection

Data events are first selected with the L1 trigger system by requiring a single

jet topology or large hadronic deposits. At the HLT level, a combination of

several online signatures is required for the trigger selection. All of these

signatures require that the total hadronic transverse energy in the event (HT)

or the AK8 jet pT exceed a certain threshold, this threshold is around 1050 GeV

and 500 GeV, respectively. In addition, soft radiation remnants are removed

with the jet trimming technique [103] before the mass selection. This allows

the jet pT thresholds to be reduced to around 400 GeV while triggering at a
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similar rate, thereby improving the signal acceptance.

Since the online environment and reconstruction are limited as compared

to the offline reconstruction, we do not expect the trigger efficiency to be a

step function at each of the trigger thresholds. Instead, we define a trigger

efficiency that depends both on the jet mass and the jet pT as:

ϵtrigger(m, pT) =
Npass trigger

N
. (5.2)

The efficiency is measured in data events that are triggered by single muon

triggers and contain one or more high-pT jets. We use single muon triggers

because they have lower thresholds and their efficiencies are close to 1 in this

part of the phase-space. We then require events to have at least one jet with

pT > 180 GeV and |η| < 2.5. Figure 5.3 shows the efficiency measured as a

function of jet mass and pT for the 2016 data taking year.

In general, the trigger selection efficiency is greater than 95% for events

with at least one jet with |η| < 2.5, jet mass greater than 50 GeV and pT >

500 GeV. This measurement, however, varies within data taking periods.

For example, the trimmed jet mass triggers were not available early in the

2017 data collection, corresponding to the first 4.8 fb1 of data recorded. This

condition motivated the use of a higher pT threshold for the analysis of 2017

data. Table 5.1 shows the different pT lower bounds that determine events for

which the trigger selection is greater than 95% efficient.

Figure 5.4 shows the efficiency as a function of jet mass for both AK8 and

CA15 jets in 2017 for the given pT thresholds. Jets that are reconstructed offline

as the larger CA15 jet also use online triggers that reconstruct the jet with a
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Figure 5.3: Measured trigger efficiency of the combination of single jet and high HT
triggers as a function of the AK8 jet pT and jet soft drop mass for the 2016 data taking
period. The trigger is above 90% efficient above mSD > 50 GeV and pT > 500 GeV.

Table 5.1: Lower bound thresholds on the jet pT determined by the measured trigger
efficiency in each data taking period, and for the different large jets used in this search.

Run-period AK8 CA15
2016 500 GeV -
2017 525 GeV 550 GeV
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Figure 5.4: High-level trigger efficiency as a function of the soft-drop jet mass (mSD)
for AK8 jets with pT > 525 GeV (blue squares) and CA15 jets with pT > 575 GeV (red
circles). The trigger selection is > 95% efficient for 2017 data for both cone sizes and is
applied to AK8 jets with masses between 50 and 275 GeV and CA15 jets with masses
between 150 and 450 GeV. For jet masses above 200 GeV, the trigger efficiency for the
larger CA15 jet decreases slightly. This is due to events for which a reconstructed
jet passing the CA15 jet selection does not satisfy the AK8 jet selection at the trigger
level.

smaller radius AK8 jet. This leads to a slight decrease in the trigger efficiency

for high jet masses. This decrease is due to events for which the jet passes

the CA15 jet selection but fails the trigger-level AK8 jet pT and trimmed mass

requirements.

5.1.3 Offline selection

To reduce backgrounds from SM electroweak processes, events are vetoed if

they contain isolated electrons, isolated muons, or hadronically decaying τ

leptons with pT > 10, 10, or 18 GeV and |η| < 2.5, 2.4, or 2.3, respectively. For

electrons and muons, the isolation criteria require that the pileup-corrected
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sum of the pT of charged hadrons and neutral particles surrounding the lepton

divided by the lepton pT be less than approximately 15 or 25%, respectively, as

described in Sections. 3.6.3 and 3.6.2. Tau leptons, reconstructed by combining

information from charged hadrons and π0 candidates, are required to satisfy

the loose working point of a multivariate-based identification discriminant

that combines information on the isolation and lifetime of the tau lepton [142].

The remaining offline selection aims to identify the signal jets using jet

substructure. As explained in Sec. 4.2.1, jets are identified using the soft-drop

algorithm, the pT invariant variable ρ and the decorrelated version of N1
2 :

N1,DDT
2 . The soft-drop jet mass, that preserves the masses of merged W/Z/Z′

jets and reduces the mass of QCD jets, is the main observable of this search.

To avoid departure from the pT invariance and the non-perturbative region of

QCD, only events with jets in the range −5.5 < ρ < −2.0 (−4.7 < ρ < −1.0)

are considered for the AK8 (CA15) jets (see Sec. 4.2.3). This results in a pT

dependence of the mSD range under study.

Finally, jets are required to have N1,DDT
2 < 0. This selection rejects 95% of

the multijet background independently of the jet mass and pT. Events failing

this requirement, with N1,DDT
2 > 0, are used in the background estimate from

data described in the next section.
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5.2 Background estimate

The background is dominated by QCD multijet events with smaller contri-

butions from W(q′q)+jets, Z(qq)+jets, and top quark processes. Backgrounds

from other EW processes are found to be negligible.

Top quark contribution The contributions from top pair and single top

quark production are obtained from simulation. Scale factors correct for:

• the overall top quark background normalization, that accounts for the

overall agreement for data and MC in a tt̄ dominated region; and,

• the N1,DDT
2 mistag efficiency for jets originating from top quark decays,

which corrects the efficiency as modeled in simulation for a top quark to

pass the substructure selection.

These corrections are computed from a dedicated tt̄-enriched control region

in data, in which an isolated high-pT muon is required. The control sample

consists of events with an energetic muon, a leading AK8 or CA15 jet with

pT > 400 GeV, and an additional b−tagged AK4 jet that is separated from

the leading large radius jet by ∆R > 0.8. Using the same candidate jet re-

quirements that define the signal selection, N1,DDT
2 pass and fail regions are

constructed in both data and simulation. Both the absolute normalization

and the N1,DDT
2 efficiency of the tt̄ contribution are allowed to vary without

prior constraint from the simulation expectation, but are constrained to vary

identically in the tt̄ control region and the signal region in the simultaneous fit.

This allows to constrain in situ the background expectation and N1,DDT
2 mistag

155



 (GeV)
SD

-leading jet m
T

p
40 60 80 100 120 140 160 180 200

E
ve

nt
s

1

10

210

310 +jetstt
)+jetsνW(l

single-t

W+jets
Z+jets
VV(4q)

Z(ll)+jets
Data
MC uncert. (stat.)

 (13 TeV)-141.1 fbCMS Preliminary

 (GeV)
SD

-leading jet m
T

p
40 60 80 100 120 140 160 180 200D

at
a/

S
im

ul
at

io
n

0

2

4 MC uncert. (stat.)  (GeV)
SD

-leading jet m
T

p
40 60 80 100 120 140 160 180 200

E
ve

nt
s

1

10

210

+jetstt
single-t

)+jetsνW(l

Z(ll)+jets
Z+jets
VV(4q)

W+jets
Data
MC uncert. (stat.)

 (13 TeV)-141.1 fbCMS Preliminary

 (GeV)
SD

-leading jet m
T

p
40 60 80 100 120 140 160 180 200D

at
a/

S
im

ul
at

io
n

0

2

4 MC uncert. (stat.)

Figure 5.5: Jet mass distributions in the single muon control sample that fail (left)
and pass (right) the N1,DDT

2 selection. Due to the relatively low statistics in the control
sample, the inclusive event counts are used to constrain the tt̄ contribution in the
signal region.

efficiency of this process. The data and MC distributions of the jet mass in this

control sample are shown in Fig. 5.5.

W/Z + jets contribution The W+jets and Z+jets backgrounds are modeled

using simulation. Their cross sections are corrected for NLO QCD and EW

effects, following Refs. [137, 139–141].

Multijet contribution The main background in the passing region, QCD

multijet production, has a nontrivial jet mass shape that is difficult to model

parametrically and depends on the jet pT. Therefore, we constrain it using a

signal-depleted region in data. Because of the decorrelation of N1,DDT
2 from

ρ and pT, the QCD jet mass distributions for events passing and failing the

N1,DDT
2 selection exhibit the same smoothly falling shape. This is shown for

simulated events in Fig. 5.6.

Given this similarity in shape, we can use the jet mass distribution of
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Figure 5.6: Jet mass distributions in the signal region that fail (blue) and pass (red)
the N1,DDT

2 selection. The distributions are normalized to unity and are shown for
different pT ranges: [500-600] GeV (left), [600-700] GeV (center), [700-800] GeV (right).
Because of the decorrelation procedure, that varies the N1

2 cut so that the background
efficiency is fixed for any value of the jet mass and pT, the shape of the jet mass is the
same in the passing and failing region in simulation.

events failing the selection to constrain the jet mass distribution of QCD

events passing the selection as:

nQCD
pass = Rp/f nQCD

fail , (5.3)

where nQCD
pass and nQCD

fail are the number of passing and failing events in a given

mSD, pT bin, and Rp/f is the “pass-to-fail ratio”.

The fraction of events, p, passing the N1,DDT
2 selection in simulated QCD

multijet events is, by construction, 5% irrespective of ρ and pT. Therefore, the

correction Rp/f is flat at p = 5% and f = 95% in the QCD background simula-

tion. To account for residual differences between data and simulation, Rp/f is

allowed to deviate from a constant. This procedure is illustrated schematically

in Fig. 5.7.

This deviation is modeled by parametrizing Rp/f as a function of ρ and pT
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Figure 5.7: A schematic of the background estimation method. The pass-to-fail ratio,
Rp/f, is defined from the events passing and failing the N1,DDT

2 selection. The variable
N1,DDT

2 is constructed so that, for simulated multijet events, Rp/f is constant at p = 5%
and f = 95% (left). To account for residual differences between data and simulation,
Rp/f is extracted by performing a two-dimensional fit to data in (ρ, pT) space (right).

and expanding it in a Bernstein polynomial basis of the form:

Rp/f(ρ, pT) = p/f
nρ

∑
k=0

npT

∑
ℓ=0

akℓbℓ,npT
(pT)bk,nρ

(ρ), (5.4)

where akℓ are the polynomial coefficients, and

bν,n(x) =
(

n
ν

)
xν (1 − x)n−ν (5.5)

is a polynomial of degree n in the Bernstein basis. The Bernstein basis is

chosen over a standard polynomial because, with the variable x bounded

between 0 and 1, it is more stable numerically and the function is nonnegative.

With the exception of a00, which is fixed to unity by choice, the coefficients

akℓ and p are unconstrained and determined together with the signal yield

from a simultaneous fit to the data events passing and failing the N1,DDT
2

selection. The minimum number of coefficients needed to model the Rp/f

shape is determined using a Fisher F-test on data [143]. The test is performed
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by iteratively comparing two parametrizations of the Rp/f, one with higher

polynomial order than the other, and computing the expected change in the

log likelihood, i.e. using the goodness-of-fit as the F-statistic. 1 2

To determine whether the polynomial order is sufficient, we compare the

F-statistic observed in data to that computed from a set of simulated samples

generated from the default fit model and fit with the higher order polynomial

using the background-only fit. If one provides a significantly better fit (p-value

<5%) 3 , we choose that as the new default.

1A test statistic is a quantity calculated from our sample of data. Its value can be used to
estimate how probable is the result that we observe with respect to some null hypothesis. The
goodness-of-fit (GOF) test is used to test the null hypothesis that the data follows a specified
distribution, e.g. the distribution given by the background estimate.

The GOF test statistic is given by [22, 144]:

−2 log λ = 2
nbins

∑
j

=
(

f j − dj + dj log(dj/ f j)
)

, (5.6)

where dj is the data in the j-th bin and f j is the prediction in the j-th bin. It asymptotically
follows a chi-squared distribution with degrees of freedom and is an appropriate metric
for the GOF of maximum likelihood fits using a Poisson likelihood, such as the one in this
chapter.

2An F-test is any statistical test in which the test statistic is distributed according to
the F-distribution under the null hypothesis. A random variate X of the F-distribution
with parameters (d1, d2) arises as the ratio of two appropriately scaled chi-squared variates:
X = U1/d1

U2/d2
, where U1 and U2 are independent and follow chi-squared distributions with d1

and d2 degrees of freedom respectively.
In our case, we have two fit models, 1 and 2, where model1 has p1 parameters and is “nested”

within model2 with p2 parameters (p2 > p1). The chi-squared variates are determined from
the expected changed in the goodness of fit test statistic. Thus, to determine whether model2
gives a significantly better fit to the data, we compute the F-statistic as:

F =
−2 log(λ1/λ2)/(p2 − p1)

−2 log λ2/nbins − p2)
, (5.7)

where nbins is the number of bins, −2 log λi is the goodness-of-fit test statistic for a model i.
3Under the null hypothesis that model2 does not provide a significantly better fit than model1,

F will have an F−distribution with (p2 − p1, p2 − nbins) degrees of freedom. The p-value is
the area in the tail of this F−distribution, i.e. a statement about the evidence against a null
hypothesis. We may reject the null hypothesis if F from data is greater than the critical value
of the F−distribution with probability α = 0.05, i.e. p-value <5%.
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Figure 5.8: Pass-to-fail ratio, Rp/f(ρ(mSD, pT)), defined from the ratio of events pass-
ing and failing the N1,DDT

2 selection. The Rp/f shown in orange is derived for AK8
jets using 41.1 fb−1of data collected in 2017 and corresponds to a polynomial in the
Bernstein basis of third order in pT and fifth order in ρ. In simulation, shown in blue,
the Rp/f is constant at p = 5% and f = 95%.

As the magnitude of the data-to-simulation discrepancies can vary among

the data samples and their corresponding simulation samples, the F-test is

performed independently for each data taking year and jet cone size. The

optimal parametrization found for each data sample is the following:

2016 (AK8 jets) nρ = 4, npT = 3
2017 (AK8 jets) nρ = 3, npT = 5
2017 (CA15 jets) nρ = 2, npT = 5

The result of the fit is a slow variation of Rp/f over the mSD–pT plane, with

p bounded between 4.5–6.5%. The parametric shape of Rp/f derived from data

for the AK8 jet analysis in 2017 is shown in Fig. 5.8.
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The fact that Rp/f varies slowly across the mSD–pT domain is essential, since

it allows one to estimate the background under a narrow signal resonance

based on the events across the whole jet mass range.

5.2.1 Likelihood fit

A binned maximum likelihood fit to the shape of the observed mSD distribution

is performed using the sum of the Z’ signal,W,Z,tt̄, and multijet contributions.

We search for a signal from a Z’ resonance in the mass range from 50 to 450 GeV

and take the signal shapes directly from simulation. The fit is performed

simultaneously in the passing and failing regions of five (four) pT categories

for AK8 (CA15) jets, as well as in the passing and failing components of the

tt̄-enriched control region. The boundaries of the pT categories are chosen so

that approximately the same number of events are used to constrain Rp/f in

each pT bin.

The likelihood 4 for the signal extraction can be written as:

L(data|µ, θ) = ∏
i,j

Poisson
(

Ndata
fail,i,j|NQCD

fail,i,j + Ntt̄
fail,i,j + NV

fail,i,j + µNZ′(qq)
fail,i,j

)

× ∏
i,j

Poisson
(

Ndata
pass,i,j|NQCD

pass,i,j + Ntt̄
pass,i,j + NV

pass,i,j + µNZ′(qq)
pass,i,j

)
×L1µ CR(data|µ, θ)× Constraint(θ|θ̄, δθ) , (5.8)

where:
4A function f (x) can describe the probability density for the observable x for a single

event. The probability density function refers to the value of f as a function of x, a data point.
The likelihood function refers to the value of f as a function of the parameters µ, θ given a
fixed value of x. A maximum likelihood estimate of the parameters µ, θ are the values for
which L(data|µ, θ) has a global maximum.
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• Ndata
fail,i,j (Ndata

pass,i,j) is the observed number of events in the ith mSD bin and

jth pT bin of the failing (passing) region,

• Nprocess
fail,i,j (Nprocess

pass,i,j ) is the expected number of events for each background

or signal process in the ith mSD bin and jth pT bin of the failing (passing)

region,

• µ is the Z’ signal strength modifier, 5

• Poisson(x|y) = yxe−y/x!,

• L1µ CR(data|µ, θ) is the likelihood for the single muon control region,

which takes on a very similar Poisson counting experiment form, and

• Constraint(θ|θ̄, δθ) is the constraint term for the nuisance parameters.

Nuisance parameters, denoted by θ, are parameters whose values are not

taken as known a priori but rather must be fitted from the data. The nuisance

parameters in the last term model the effects of systematic uncertainties. These

are constrained in the fit and detailed in the next section. However, note that

some of the nuisance parameters do not have an additional constraint in the fit,

namely: the multijet QCD yields in the failing category NQCD
fail,i,j, the Bernstein

coefficients of the QCD transfer factor ak,ℓ, and the tt̄-related scale factors.
5In order to test a signal model, we assume a signal plus background hypothesis (H1). This

test hypothesis includes the new physical process (e.g. the Z’ signal). The null hypothesis
(H0) describes the known physical process, i.e. the SM background only hypothesis.

The signal strength modifier is defined as the ratio:

µ =
σobs
σSM

and acts as a multiplicative factor on the signal cross-section appearing in the signal-plus-
background hypothesis, i.e that assuming SM and the Z’ signal. The null hypothesis cor-
responds to the case where µ = 0, and the alternate signal-plus-background hypothesis
corresponds to µ = 1.
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5.3 Systematic Uncertainties

The dominant uncertainty in this analysis is the uncertainty in the fit for

Rp/f, as described in Eq. 5.4 (1–3%), arising from the parameters akℓ, and the

statistical uncertainty on the data in the N1,DDT
2 < 0 region.

The systematic uncertainties in the shapes and normalization of the W and

Z boson backgrounds and the signal are correlated since they are affected by

similar systematic effects. The uncertainties in the jet mass scale and resolution,

and the N1,DDT
2 selection efficiency, are estimated using an independent sample

of merged W boson jets in semileptonic tt̄ events in data. The derivation of

these scale factors and uncertainties was described in Sec. 4.2.6. This efficiency

of the N1,DDT
2 < 0 requirement is used to correct overall yields for resonant

backgrounds obtained from simulation in the signal region. The uncertainty

on this scale factor is in the order of 6-10%. The jet mass resolution has an

uncertainty of 10% and jet mass scale uncertainty is below 1%. The variation

of the jet mass scale with jet pT is also studied using large cone size jets,

where all the decay products of the top quark are contained in a single jet. By

performing simultaneous fits to data and simulation of this peak binned in pT,

a small (1%) variation in jet mass scale is observed and applied in the fit as an

additional pT−dependent nuisance parameter. These scale factors determine

the initial shape and normalization of the jet mass distribution for the W, Z

boson, and signal but they are further constrained in the fit to data because of

the presence of the W and Z resonances in the jet mass distribution.

To account for potential deviations due to missing higher-order corrections,

uncertainties are applied to the W and Z boson yields. These uncertainties
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increase with the jet pT and are correlated per pT bin. An additional system-

atic uncertainty is included to account for potential differences between the

W and Z boson higher-order corrections (NLO EW W/Z decorrelation). The

uncertainties associated with the modeling of the Z’ boson pT spectrum when

considering extra jets in the generation and similar NLO QCD corrections

to the Z boson are propagated to the overall normalization of the Z’ signal.

Finally, uncertainties associated with the jet energy resolution [101], trigger

efficiency (2%), variations in the amount of pileup (1–2%) and the integrated

luminosity determination (2-2.3%) [145] are also applied to the W, Z, and Z’

boson signal yields.

A quantitative summary of the systematic effects considered for signal and

W/Z boson background processes is given in Table 5.2.

5.3.1 Fit validation

In order to validate the robustness of the fit and its associated systematic

uncertainties, we perform a goodness-of-fit test and signal injection studies

on background-only fits that estimate the possible bias on the background

estimate due to the presence of a signal. We generate pseudo-experiments,

with and without the injection of simulated signal, and then fit with the

signal plus background model, for different values of the Z’ boson mass. No

significant bias in the fitted signal strength is observed; specifically, the means

of the differences between the fitted and injected signal strengths divided by

the fitted uncertainty are found to be less than 15%.

As a further test of the Rp/f fit robustness, we split the subset of events
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Table 5.2: Summary of the uncertainties for signal (Z’), W/Z boson and multijet
background processes. The reported ranges denote a variation of the uncertainty
across pT bins, from 500/525 to 1500 GeV (AK8 jets) and from 575 to 1500 GeV (CA15
jets). The symbol △ denotes uncorrelated uncertainties for each pT bin. For the
uncertainties related to the jet mass scale and resolution, the reported percentage
reflects a one standard deviation effect on the nominal jet mass shape. Three dots (—)
indicates that the uncertainty does not apply.

Uncertainty source Sample Systematic Uncertainty
AK8 2016 AK8 2017 CA15 2017

Statistical
QCD pass-fail ratio (data correction) Multijet 1–3% 1–4% 1–4%
tt̄ normalization and misidentification tt̄ 2–10% 2–8% 2–8%

Systematic
Simulation sample size W/Z/Z’/tt̄ — 1–12% 1–12%
N1,DDT

2 selection efficiency W/Z/Z’ 9% 10% 7%
Jet mass scale W/Z/Z’ 0.5% 1% 1%
Jet mass resolution W/Z/Z’ 10% 10% 7%
Jet mass scale (% / (pT [GeV]/100)) △ W/Z/Z’ 0.5–2% 0.5–2% 0.5–2%
Jet energy scale and resolution W/Z/Z’ 10% 1–7% 1–7%
Other experimental uncertainties W/Z/Z’ 0.5–2% 0.5–2% 0.5–2%

Theoretical
NLO EW corrections△ W/Z 15–35% 15–35% 15–35%
NLO QCD corrections W/Z/Z’ 10% 10% 10%
NLO EW W/Z decorrelation△ W/Z 5–15% 5–15% 5–15%

failing the N1,DDT
2 selection into two smaller subsets mimicking the passing

and failing selection in the data fit. The mimicked passing-like events also

reject 95% of the QCD background events in the failing region. We repeat our

background estimation procedure on this selection and use the coefficients akℓ

from this fit to generate pseudo-experiments. We then fit the data with the

signal plus background model and find the biases in the fitted signal strength

to be negligible.
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5.4 Results

The number of observed events is consistent with the predicted background

from SM processes. Figures 5.9, 5.10 and 5.11 show the mSD distributions for

data in the passing region with the fitted SM background for the different

jets and data taking periods. The number of observed events is consistent

with the predicted background from SM processes. For AK8 jets, the W and Z

boson contributions are clearly visible as a merged peak in the data, while for

CA15 jets, due to the ρ selection and increased QCD background, the W/Z

contributions are only visible in the lower pT categories.
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Figure 5.9: Jet mSD distribution for each pT category of the fit in the 2016 AK8 jet data
sample. Data are shown by the black points. The multijet background prediction,
including uncertainties, is shown by the shaded bands. Contributions from the W and
Z bosons, and top quark background processes are shown as well. A hypothetical Z’
boson signal with a mass of 135 GeV is also indicated. In the bottom panel, the ratio of
the data to its statistical uncertainty, after subtracting the non-resonant backgrounds,
is shown. The scale on the x-axis differs for each pT range due to the kinematic
selection on ρ.
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Figure 5.10: Jet mSD distribution for each pT category of the fit in the 2017 AK8 jet
data sample. Data are shown by the black points. The multijet background prediction,
including uncertainties, is shown by the shaded bands. Contributions from the W and
Z bosons, and top quark background processes are shown as well. A hypothetical Z’
boson signal with a mass of 110 GeV is also indicated. In the bottom panel, the ratio of
the data to its statistical uncertainty, after subtracting the non-resonant backgrounds,
is shown.
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Figure 5.11: Jet mSD distribution for each pT category of the fit in the 2017 CA15
jet data sample, from 575 to 1500 GeV. Data are shown by the black points. The
multijet background prediction, including uncertainties, is shown by the shaded
bands. Smaller contributions from the W and Z bosons, and top quark background
processes are shown as well. A hypothetical Z’ boson signal with a mass of 210 GeV
is also indicated. In the bottom panel, the ratio of the data to its statistical uncertainty,
after subtracting the non-resonant backgrounds, is shown.
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5.4.1 Limits on Z’ boson coupling to quarks

In the absence of an excess compatible with our signal hypothesis, we use the

results of the fit to set 95% confidence level (CL) upper limits of the Z’ boson

coupling to quarks g
′
q.

Upper limits are computed using the modified frequentist approach for

CL, taking the profile likelihood ratio 6 as the test statistic [146, 147] in the

asymptotic approximation [148]. 7

6The profile likelihood ratio test statistic qµ is defined for an analysis-specific likelihood L:

qµ = −2 ln
L(d|µ, ˆ̂θ)
L(d|µ̂, θ̂)

.

In the numerator, θ̂ are the values that maximize L for the assumed µ. The denominator is
maximized in an unconstrained way, i.e. the full set of parameters µ̂, θ̂ are the true maximum
likelihood estimators. The likelihood ratio in Equation 6 is used to measure the compatibility
of the data with an non-negative signal strength smaller than the hypothesis µ.

7The exclusion of a signal hypothesis is an important statement in the search for new
physics. Once a signal is excluded, the exclusion regime is no longer considered to be
important to be searched for. Therefore, in order to reduce the likelihood of excluding signal
hypotheses that a search is not a-priori sensitive to, the CLs statistic is used in the LHC
experiments.

The CLs statistic is defined as the ratio of the confidence levels of the signal-plus-
background hypothesis, CLs+b, to the background only hypothesis CLb(µ):

CLs(µ) =
CLs+b(µ)

CLb(µ)
.

The confidence levels CLs+b and CLb are the probabilities to obtain a value of the test
statistic qµ, as low or lower than the observed value qobs

µ , under the corresponding hypothesis:

CLs+b(µ) = P1(qµ < qobs
µ |H1) =

∫ ∞

qobs
µ

dqµ f (qµ|µ) = pµ,

CLb(µ) = P0(qµ < qobs
µ |H1) =

∫ ∞

qobs
µ

dqµ f (qµ|µ = 0) = p0

Here:

• pµ and p0: are the p-values for each hypothesis, and,

• f (qµ|µ) is the probability distribution function.
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Limits on g
′
q as a function of the Z’ boson mass are shown in Fig. 5.12. The

results are shown for the independent data samples of each running period

2016 and 2017. Coupling values above the solid curves are excluded at the

95% CL.
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Figure 5.12: Upper limits at 95% C.L. on the coupling g′q as a function of the resonance
mass for a leptophobic Z’ boson that couples only to quarks. The limits based on the
2016 analysis are shown in the left and those based on the 2017 analysis are shown in
the right. The observed limits (solid), expected limits (dashed), and their variation at
the 1 and 2 standard deviation levels (shaded bands) are shown. In the right plot, the
vertical line at 175 GeV corresponds to the transition between the AK8 and CA15 jet
selections.

We summarize the results of this search in the mass vs. coupling plane in

Fig. 5.13. For masses between 50 and 220 GeV, the most restrictive limits for

this search are obtained from the statistical combination of the upper limits set

by the 2016 and 2017 data sets using AK8 jets. For the mass range between 175

and 220 GeV, this combination is as sensitive as that obtained from the limits

set by the 2016 AK8 jet and 2017 CA15 jet searches. The limits correspond

A given signal hypothesis with µ = 1 is considered excluded at 95% CL when CLs ≤ 0.05.
This prescription for exclusion, CLs ≤ α, is generally a stronger requirement than the standard
prescription, pµ ≤ α. This metric is also used to compute upper limits. These measure the
amount of excluded region in the theory’s parameter space resulting from the negative results
of a search for a new signal.
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to a total integrated luminosity of 77.0fb−1. For higher masses, between 220

and 450 GeV, the most stringent limits come from the analysis of 2017 data

using CA15 jets, corresponding to an integrated luminosity of 41.1fb−1. The

sensitivity is driven by the multijet background uncertainty on the parametric

fit of Rp/f, which is modeled with different polynomial orders for the 2016 and

2017 data sets. In 2017 a loss of sensitivity of 20%, relative to the results set by

the 2016 search [12], is observed, due to the higher pT threshold determined

by the trigger turn-on for the 2017 data set.
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Figure 5.13: Upper limits at 95% CL on the coupling g′q as a function of the resonance
mass for a leptophobic Z’ boson that couples only to quarks. The limits are based
on the statistical combination of 2016 and 2017 results. The observed limits (solid),
expected limits (dashed), and their variation at the 1 and 2 standard deviation levels
(shaded bands) are shown. For masses between 50 and 220 GeV the limits correspond
to a Z’ boson reconstructed in AK8 jets using 77.0fb−1of statistically combined data
from 2016 and 2017. For masses above 220 up to 450 GeV, the results correspond to a
Z’ resonance reconstructed in CA15 jets using 41.1fb−1of data collected in 2017.

A local excess in the observed limit over the expected limit, corresponding

to 2.9 standard deviations, was observed at a Z’ mass hypothesis near 115

GeV in the 2016 analysis with 35.9fb−1of integrated luminosity. This excess

is not confirmed by the 2017 analysis, where the local observed p-value for
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a Z’ boson mass of 115 GeV is 0.5 and the data agrees with the prediction.

The combined observed limit with the full 2016 and 2017 dataset at a Z’ mass

hypothesis of 115 GeV in Fig. 5.13, corresponds to 2.2 standard deviations

from the background-only expectation.

5.4.2 Sensitivity with respect to other results

Figure 5.14 shows the limits on g′q for the current search and other dijet

searches performed at the UA2, CDF/D0, ATLAS and CMS experiments. In

the mass range between 50 and 300 GeV this analysis places the most sensitive

limits to date. Above 300 GeV the most sensitive limits are set by the searches

for dijet resonances in the non-boosted regime produced in association with

a jet [8] or with a photon [149]. The sensitivity of the CA15 jet analysis is

lower than that reached with the non-boosted dijet searches due to the lack of

a dedicated CA15 jet trigger-level selection.

5.4.3 Translation to dark matter constraints

The results of this analysis can be used to constrain simplified models of DM.

Figure 5.15 shows the excluded values at 95% CL of mediator mass (mMed)

as a function of the dark matter particle mass (mDM) for vector mediators, in

simplified models that assume a leptophobic mediator that couples only to

quarks and DM particles [1, 2]. Limits are shown for a choice of universal

quark coupling g′q = 0.25 and a DM coupling gDM = 1.0. The difference in

limits between axial-vector and vector mediator couplings is small and thus

only constraints for the latter coupling scenario are shown.
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Figure 5.14: Upper limits on the universal coupling g′q between a leptophobic Z’
boson and quarks for various dijet analyses from UA2, CDF/D0, ATLAS and CMS.
The limits are shown in solid lines, with the excluded area above the lines. The hashed
areas show the direction of the excluded area from the observed limits. The grey
dashed lines show the g′q values at fixed values of Γ′

Z/M′
Z. Most of the analyses, with

the exception of Dijet χ and Broad Dijet, assume that the intrinsic width is negligible
compared to the experimental resolution, and hence are valid for Γ′

Z/M′
Z ≤ 10%.

The results of the search presented in this Chapter are shown in green (CMS Boosted
Dijet). Also shown are indirect constraints on g′q from the Υ and Z boson widths,
which are valid for all values of Γ′

Z/MZ. This figure is reproduced from Ref. [136].
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The excluded range of mediator mass (light blue) is between 50 and 450

GeV. In Fig. 5.15 the exclusion range above 300 GeV is superimposed with

results from searches in the non-boosted regime produced in association with a

jet (light red) [8]. The upper bound decreases to 240 GeV when mMed > 2mDM,

because the branching fraction (BR) to qq decreases as the BR to DM becomes

kinematically favorable. If mMed < 2mDM, the mediator cannot decay to DM

particles and the dijet cross section from the mediator model becomes identical

to that in the leptophobic Z’ model, meaning that the limits on the mediator

mass in Fig. 5.15 are identical to the limits on the Z’ mass with a coupling

gq′ = gq = 0.25. For axial-vector mediators, the excluded values of mediator

mass are expected to be identical to the excluded values in Fig. 5.15 when

mDM > mMed/2 or mDM = 0, with differences only expected in the transition

region mMed ≃ 2mDM. Additional limits (light violet, yellow) in Fig. 5.15 come

from traditional dijet searches [6].
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Figure 5.15: The 95% CL observed (solid) and expected (dashed) excluded regions in
the plane of dark matter particle mass (mDM) vs. mediator mass (mMed), for vector
mediators. The results are shown for dijet searches and different pmiss

T based DM
searches from CMS. A branching fraction of 100% is assumed for a leptophobic vector
mediator decaying to dijets. The exclusion is computed for a quark coupling choice
gq = 0.25 and for a dark matter coupling gDM = 1. The results of the search presented
in this chapter are shown in light blue. The excluded regions from the dijet resolved
analysis (Dijet + ISR) using early 2016 data [8] are also shown. Results are compared
to constraints from the cosmological relic density of DM (light gray) determined
from astrophysical measurements [150, 151] and MADDM version 2.0.6 [152, 153]
as described in Ref. [154]. It should also be noted that the absolute exclusion of the
different searches as well as their relative importance, will strongly depend on the
chosen coupling and model scenario. Therefore, the exclusion regions, relic density
contours, and unitarity curve shown in this plot are not applicable to other choices of
coupling values or model. This figure is reproduced from Ref. [136].
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Chapter 6

Triggering on boosted Higgs
bosons

The SM Higgs boson (H) is responsible for the electroweak symmetry breaking

and the mechanism from which elementary particles acquire mass. Following

the discovery of the 125.1 GeV Higgs-like particle at the LHC [44, 45], its

production has now been observed in all of its production modes and several

decay modes. One of the most important goals now is to precisely understand

all of its properties and its couplings to other particles. Any deviation from

the SM predictions would reveal the existence of new physics in the Higgs

sector.

Recently, there has been considerable interest in the measurement of Higgs

bosons produced with high-pT, where traditional channels have limited sensi-

tivity due to small production rates or branching fractions. This is because

new physics contributions could modify the tail of the kinematic spectrum

of the Higgs particle and give direct hints of new couplings to the Higgs

sector [155–158].
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Due to their large branching fraction1, the hadronic decays of the Higgs

boson can provide a starting point for high-pT H measurements. However,

the search for these decays in a hadron collider faces the same challenge as the

search presented in Chapter 5. It is impossible to trigger events in data because

of the overwhelming multijet SM background at low jet mass. Therefore, one

is led to consider the production of high-pT Higgs bosons in association with

a jet. As with the Z’+jet signature, the extra radiation ensures that the event

meets the restrictive trigger criteria. In this highly energetic regime, hadronic

decays of the Higgs boson can be reconstructed as single-large radius jets,

with the jet mass consistent with that of the observed Higgs boson [159].

The search for high-pT H(b̄b) events by the CMS Collaboration has already

demonstrated the experimental sensitivity of this hadronic channel [160, 161].

The latest result, using the full Run-2 integrated luminosity, observes an excess

of events above the background assuming no Higgs boson production with a

significance of 2.5 standard deviations, while the expectation is 0.7. It is worth

noting that the analysis strategy is similar to that presented in Sec. 5.1:

• it relies on the identification of the Higgs boson candidates reconstructed

as large-radius jets,

• the dominant multijet background contribution is estimated from data

by inverting the jet tagging requirement, which is designed to have

reduced correlation with jet mass and pT, and,

• the Higgs boson signal can be observed as a resonant peak on top of a
1The branching fraction is the ratio of particles which decay by an individual decay mode

with respect to the total number of particles which decay. For example, H → b̄b decays have
a branching ratio of B = 58.1%.

178



smoothly falling jet mass distribution.

The main difference, with respect to the search for Z′(qq) decays, is that, to

further distinguish the H(b̄b) candidates, the two-pronged jet is required to

have displaced tracks and decay vertices consistent with a merged H(b̄b)

decay, as briefly described in Sec. 4.2.4.

In view of these observations, we can take advantage of this analysis

strategy, which enables triggering on hadronically decaying Higgs bosons, to

expand the boosted Higgs program. In the following chapter, we explore the

possibility of using cross section measurements of boosted Higgs bosons to

jets to provide a constraint on a fundamental property of the Higgs: its total

width.

6.1 The SM Higgs width

The H boson is produced at a hadron collider via the interactions between

the quarks or the gluons in the collisions. The dominant modes are through

gluon fusion (ggH), weak vector boson fusion (VBF), associated production

with a weak vector boson (VH), and the associated production with two top

or bottom quarks (t̄tH and b̄bH respectively). The leading order diagrams of

these four important production mechanisms are given in Fig 6.1.

The cross section of each production mode will depend on the partonic

contribution of quarks and gluons, the center-of-mass energy and the Higgs

boson mass. Fig. 6.2 shows the expected production cross sections and the

expected decay mode branching ratios as a function of Higgs boson mass for
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Figure 6.1: Main leading order diagrams contributing to the Higgs boson production
at the LHC, shown for (a) ggH, (b) VBF, (c) WH or ZH, and (d) t̄tH and b̄bH.
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√
s = 13 TeV. The most abundant production channel at the LHC for a SM

125 GeV Higgs boson is via gluon fusion, while the most probable decay is

through H → b̄b decays.
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Figure 6.2: Minimal SM Higgs production and decay modes at the LHC [162].
In the left panel, the production cross sections at

√
s = 13 TeV are shown for

mH = 120–130 GeV. The right panel shows the decay Branching Fractions for
mH = 120–130 GeV.

The total width 2 of the SM Higgs boson for a mass of 125.1 GeV is predicted

to be ΓSM = 4.2 MeV. Measuring this property is of intrinsic interest because a

sizable deviation would directly indicate new physics. However, performing

this measurement is an experimental challenge because the H width is very

narrow compared to its mass.

2The total width Γ of a particle is directly related to its decay lifetime: a large decay width
leads to a short lifetime. The total width can be found by summing the particle’s partial
widths. The partial width of a given decay channel is nothing but the product of Γ and the
corresponding branching ratios.
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6.1.1 Constraints in hadron colliders

At the LHC, the Higgs boson width has been measured using two different

approaches.

The first is through the direct measurement of the Higgs mass line-shape

using the resonant Higgs decays to diphoton [163] and four lepton final states

(H → ZZ → ℓℓℓℓ) [164]. While this approach is directly sensitive to the Higgs

boson width, it is heavily limited by systematic uncertainties from lepton and

photon detector resolution. The current precision on ΓH using this approach

is 1.1 GeV, equivalent to 270 × ΓSM [164].

The second approach involves the comparison of the on- and off-shell 3

Higgs boson cross sections. In particular, it uses the interference of gluon

fusion production of the Higgs boson with gluon fusion production of di-

bosons. An interesting feature of this interference is that, while the amount of

Higgs-boson signal observed on the 125 GeV on-shell peak depends on the

Higgs boson width, the far off-shell signal is independent of it. This results on

a modification of the high mass distribution of the diboson mass spectrum,

which yields a constraint on the width4 . The extraction of the Higgs width

3Particles are said to be “on the mass shell”, or simply “on-shell” if their behavior satisfies
Einstein’s relationship between energy and momentum: E2 = p2 + m2. Virtual particles are
those that do not satisfy this relationship and thus do not have the right mass, they are said to
be “off-shell”. A virtual Higgs boson can be produced “off-shell”, at much larger mass than
125 GeV.

4This is plainly seen from the Breit-Wigner expression for a resonance with mass M [22]:

σ(s) ∼ Γ2M2

(s − M2)2 + M2Γ2 (6.1)

which (for a narrow resonance Γ/M ≪ 1) implies that the on-shell cross section is independent
of the width.
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in this manner requires a knowledge of the interference pattern, which in-

trinsically implies a SM-like behavior of the product of the couplings gggH

and gVVH across a large mass range. Further details of this approach and its

model-dependent limitations are discussed extensively in the literature [165–

177].

This approach has been applied using several diboson final states; most

recently, the four lepton final state [178] 5 . The current best measurement for

the total width using this approach is ΓH = 3.2+2.8
−2.2 MeV, while the expected

constraint based on simulation is ΓH = 4.1+5.0
−4.0 MeV [178]. Projections for

measuring the Higgs width in the four lepton channel alone at the High

Luminosity LHC (HL-LHC), with assumptions similar to the ones mentioned

above, suggest that, with 100 times more data, ΓH can be constrained with a

precision of ΓH = 4.2+1.5
−2.1 MeV (ATLAS) and ΓH = 4.1+1.0

−1.1 MeV (CMS) [179].

6.1.2 Constraints in lepton colliders

Model-independent measurements of the Higgs boson total width are possible

through the use of lepton-colliders. With a muon collider, the width can be

probed through the direct production of µ+µ− → h by a precise scan of

the center of mass energy about the Higgs boson total mass [180]. With an

electron–positron collider, the Higgs boson width can be measured through

the Higgs boson recoil approach whereby one measures the inclusive Higgs

5The analysis measures the cross section ratio, which depends linearly on ΓH :

σoff-shell
gg→H→ZZ

σon-shell
gg→H→ZZ

∼ mHΓH

(2mX)2 . (6.2)
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Figure 6.3: Feynman diagram for the Higgsstrahlung process given by e+e− → Zh
that dominates the Higgs boson production at

√
s=250 GeV in an electron linear

collider.

boson cross section [181, 182]. In this method, a Higgs boson is produced

through the ZH production mode (Fig. 6.3). The recoiling Z boson is identified

and through conservation of energy of the collision a missing mass can be

computed. The inclusive Z+Higgs boson cross section, σe+e−→ZH, can then be

deduced from the missing mass distribution.

From a measurement of the inclusive cross section, the Higgs boson width

can be determined as follows. Noting that the cross sections for the exclusive

final-state decays H → XX can be expressed as:

σZH(XX) = σe+e−→ZH × BRH→XX ∝ g2
hZZ

g2
HXX
ΓH

, (6.3)

and, that the total ZH cross section is proportional to the square of the coupling
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between the Higgs and Z bosons, g2
HZZ: σe+e−→ZH ∝ g2

HZZ, we have:

ΓH ∝ g2
HZZ

g2
HZZ

σe+e−→ZH(ZZ)
(6.4)

∝
(σe+e−→ZH)

2

σe+e−→ZH(ZZ)
(6.5)

∝
σe+e−→ZH

BR(H → ZZ)
∝

g2
HZZ

BR(H → ZZ)
. (6.6)

That is, we can extract ΓH by directly measuring the total ZH cross section

and correcting it by the branching ratio of H → ZZ. 6

In summary, to measure the width one would need e.g. the following ratio:

ΓH ∝
[σe+e−→ZH]

2

σe+e−→ZH(ZZ)
(6.8)

6.1.3 Analogy of the lepton collider measurement at the LHC

In this section, we explore the possibility of constraining ΓH at the LHC with

an analogy of the recoil measurement as used at a lepton collider. However,

we make two changes. First, in place of a recoiling Z boson, we study a Higgs +

jet(s) topology, as shown in Fig. 6.4. The ZH production mode is sub-dominant

at the LHC, in contrast to the lepton collider, and prevents a direct application

of the above approach that is sensitive to ΓH at the LHC. Second, we assume

that the recoiling jet(s) give sufficiently high energy to the Higgs boson such

6Note that we could have chosen another final state, e.g. H → XX. In that case we would
have:

ΓH ∝
g2

HXX
BR(H → XX)

(6.7)

185



Figure 6.4: Sample Feynman diagram contributing to the gluon fusion Higgs produc-
tion process at the LHC where the Higgs is recoiling against a jet.

that its decay products all fall into a single cone. We then reconstruct the

decay products as a single jet and extract the Higgs boson signal from this jet

by cutting as minimally as possible on the decay components.

With these modifications, we assume that we are able to perform a mea-

surement of the inclusive Higgs boson cross section in the boosted regime:

σgg→H. This assumption implies that we can constrain SM and possible BSM

Higgs decay modes. The latter is not always true, making this measurement

model dependent. Additionally, the purity of the Higgs boson signal extracted

from the reconstructed jet cone may affect the cross section measurement. The

definition of a pure H signal includes invisible and partially visible decays

that may not be captured in the jet cone. We leave the discussion of the extent

of this dependence and presence of a possible bias till the end of the chapter.

Under this assumption, however, we can write the cross section as pro-

portional to the gluon coupling: σgg→H ∝ g̃2
gg(pT)

7. Then, to arrive to a

7We have written the gluon coupling as g̃gg(pT) to make it clear that this is really an
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similar expression than Eq. 6.8, we need to consider three other cross section

measurements:

• the gluon fusion production of the boosted Higgs boson to b-quarks:

σgg→H(bb̄),

• the W boson associated production of the Higgs boson to b-quarks:

σW+H(bb̄), and

• the W boson associated production of the Higgs boson to W bosons:

σW+H(WW).

We have chosen these exclusive cross section measurements since the LHC

experiments have already explored these final states and set initial bounds on

their production.

We can constrain the Higgs boson width by computing a scale factor

µΓ = µH/µSM defined as:

µΓ = µ2
gg→H

µ2
WH→bb̄

µ2
ggH→bb̄ µW+H→WW

, with uncertainty (6.9)

δµ2
Γ = 4δµ2

gg→H + δµ2
W+H→WW + 4δµ2

W+H→bb̄ + 4δµ2
ggH→bb̄, (6.10)

Where δµ signifies the uncertainty on the respective scale factor. 8

To estimate the precision on the µΓ measurement, we take into account the

current and expected precision of these cross section measurements. If we

consider the latest measurements of the LHC data, with 36 fb−1of integrated

effective coupling which is dependent on the pT .
8These expressions can be derived as follows.

The Higgs to b-quark coupling can be written for two production modes, which have been
proven sensitive to b̄b decays: gluon fusion (gg → H) and W boson associated production
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luminosity, for W + H → b̄b [183, 184], W + H → WW [185, 186], and gg →
H → b̄b [160, 187], we find a 1σ uncertainty of 20%, 18% and 80%, respectively.

Projections on these uncertainties to a full 3000 fb−1 dataset, or equivalently

3 ab−1, which is expected with the HL-LHC, can be obtained from [188]. We

assume these uncertainties to be 9%, 5% and 25%, respectively. The missing

piece is a measurement of the inclusive cross section δµggH. In the following

two sections, we discuss the strategy to constrain this uncertainty and how

this can help us bound the total width of the Higgs boson.

(W + H). Following the narrow width assumption, the cross sections can be expressed as:

σgg→H(bb̄) ∝
g̃2

gg(pT)g2
bb̄

ΓH
, and (6.11)

σW+H(bb̄) ∝
g2

WW g2
bb̄

ΓH
, (6.12)

and their ratio yields:

σW+H(bb̄)

σgg→H(bb̄)
∝

g2
WW

g̃2
gg(pT)

(6.13)

Multiplying this by the inclusive cross section, we get:

σgg→H ×
σW+H(bb̄)

σgg→H(bb̄)
∝ g2

WW (6.14)

Moreover, for the W boson decay by W associated production, W + H → WW, the cross
section is proportional to the W boson coupling over the width:

σW+H(WW) ∝
g4

WW
ΓH

(6.15)

Thus, we can take ΓH and square the ratio from 6.14 to write the total Higgs boson width
as:

ΓH ∝
1

σW+H→WW
×
(

σgg→H × σW+H→bb̄
σgg→h→bb̄

)2

(6.16)
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6.2 Strategy for boosted Higgs boson measurements

Since our goal is to measure all the SM Higgs boson decay modes, we ulti-

mately aim to select Higgs bosons using only event and jet properties common

for all its decays. In practice, we can first utilize a basic selection that mimics

the selection used in the search for Z′(qq) resonances, presented in Chapter 5.

The main requirement in this analysis is for the Higgs to be produced at high

pT such that its decay products are collimated and reconstructed into one

single large radius jet. Beyond this selection, we have three main handles to

enhance the Higgs boson signal: the jet pT, the substructure of the jet, and the

jet mass.

All of these handles were already discussed in Chapter 4 but have different

effects on the purity of the H signal. A high-pT jet selection has a high level

of purity and does not add any model dependence. This is because the pT

spectrum of the Higgs boson is harder than the background, when a fixed

mass window is considered. In this study, we assume that advances in the

capabilities of the trigger system will allow a pT > 400 GeV threshold across

most of the LHC and HL-LHC running. A substructure jet-prong selection,

however, can enhance only certain decay modes, e.g. two-prong modes such

as H → b̄b or H → c̄c, while leaving out non-two-pronged decays such as

H → WW → qq′qq′. This leads us to consider other substructure observables

that enhance the radiation pattern of a color singlet like the Higgs particle.

Finally, the groomed jet mass still provides a very effective way to discriminate

the Higgs signal but its reconstruction can leave out partially-visible decays,

such as those with neutrinos in the final state like H → ττ.
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To address the last two observations, we can start by optimizing the jet

mass reconstruction. To include invisible particles present in Higgs boson

final states, we can utilize the missing transverse energy pmiss
T or MET. Adding

the pmiss
T to the jet will recover the lost energy and produce a better estimate of

the true Higgs boson properties. Thus, the first improvement to the analysis

strategy is to require our Higgs jet to be the leading jet in pjet+pmiss
T

T in the event.

To perform the vector addition of the jet and MET, we assume the missing

energy vector is aligned with the jet axis.

A complication to this procedure is that the MET resolution in events with

high energy jets is quite poor; Higgs decays without neutrinos in the final state

can still produce over 100 GeV of pmiss
T . Since this artificial pmiss

T would worsen

the mass resolution when it is added to the jet, we first perform a dedicated

regression for the true MET and utilize the regressed MET as our default

MET calculation. The regression is designed to remain model independent

and to eliminate artificial MET as efficiently as possible. Figure 6.5 shows a

comparison between the groomed mass for the Higgs jet and the jet mass as

computed using the jet - regressed MET combination.

The dominant multijet background can be further suppressed by using

information that captures the internal structure of the jet. While most SM

Higgs boson decays result in a jet consistent with either two (ex. H → qq̄),

three (ex. H → qqlν) or four (ex. H → qqqq) prongs, the multijet background

consists primarily of jets consistent with one prong. Thus, one can use a

jet-prong variable, such as τ21 to mitigate the multijet background. Figure 6.6

shows the discriminating power of this variable and its mass-decorrelated
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Figure 6.5: Comparison of the performance of the groomed mass (mSD) and the
reconstructed Higgs mass m(jet + MET). Those Higgs decays without genuine MET
(ex. H → gg) are unaffected by the new mass reconstruction, those with minimal
genuine MET (ex. H → bb̄) are improved slightly, and those with large genuine MET
(ex. H → ττ) are greatly improved.

version, τDDT
21 , for the various decay modes of the SM Higgs boson. It is

clear that the jet τ21 distinguishes H → b̄b, c̄c and even H → ττ decays,

but provides poor discrimination for four or three-pronged decays decays.

Therefore, the use of a single jet-prong variable would clearly result in a biased

measurement.

Moreover, the definition of an “N-prong” jet is ambiguous and can leave

out H → gg decays. To distinguish these type of background-like decays of the

Higgs boson from colored states of quarks and gluon jets, one can rely on the

color singlet nature of the Higgs jet. In particular, we study the performance

of collinear drop jet substructure observables, recently introduced in [189].

The purpose of these variables is to retain components of the soft radiation in

a jet while removing collinear radiation. Such observables can be exploited for

a study of the color radiation pattern of the particle initiating a jet. Thus, they
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Figure 6.6: τDDT
21 observable shown for the inclusive Higgs signal vs other back-

grounds (left) and for different SM Higgs decays (right). For decays other than
H → bb̄ or h → cc̄, the discriminant is not able to separate very well the signal from
the main multijet background.

could provide a handle to isolate the color singlet Higgs jet, without added

assumptions of its decay.

In Fig. 6.7, we test the performance of one of these variables, formed by

the ratio of the ungroomed mass of the jet vs the groomed mass:

mjet/mgroomed jet, (6.17)

using the soft-drop algorithm. For background QCD jets the mass-ratio distri-

bution is slightly harder than for signal Higgs jets since more soft radiation is

removed. This is only one example of color jet identification and no further

studies have been performed, but provide a hint on a possible new direction

for boosted particle tagging.

Finally, we also explore the use of machine learning to exploit particle level

information of the jet. We construct a deep neural network discriminant that
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Figure 6.7: Ratio of the ungroomed mass of the jet with respect to the groomed mass,
using the soft-drop algorithm. The two jet masses differ more for QCD background
decays leading to a discrimination favoring color-singlet jets.

employs jet particles, similar to those presented in Sec. 4.2.4. The details of its

architecture and performance can be found in Ref. [14]. For brevity, we refer to

this discriminant as the GRU classifier [190, 191]. We compare the background

rejection power of this algorithm to the τDDT
21 and jet mass-ratio observables

for different signal efficiencies in Fig. 6.8. The GRU classifier significantly

improves the Higgs boson signal efficiency for a fixed background efficiency

well beyond the critical point where ϵS =
√

ϵB.

Finally, we note that for each of these jet observables we apply a DDT

transformation, as detailed in Sec. 4.2.5, to prevent any distortion of the mass

spectrum after a jet substructure selection.

193



0.0 0.2 0.4 0.6 0.8 1.0
Background efficiency (QCD)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 e

ffi
cie

nc
y 

(g
gH

)
Boosted Higgs 
ggH
 pT > 400 GeV
 60 < mSD < 160 GeV

Jet 2/ DDT
1  

GRU 
Jet mass/ Jet mSD

m jet/m groomed DNN
Jet c = 2

1
GRU + mass DNN

S = B

Figure 6.8: Comparison of the performance for the different algorithms that identify
an inclusive SM Higgs boson signal against the dominant QCD multijet background.
The GRU and jet mass-ratio neural networks developed in this Chapter show im-
proved performance with respect to the baseline τDDT

21 selection.

6.3 Results

After a selection of events that follows the strategy detailed in the last Section,

i.e. high-pT jet, a jet mass reconstruction that includes the event’s pmiss
T , and

a jet substructure selection, we can extract the Higgs boson signal from a fit

to the jet mass distribution. Figure 6.9 shows the mass distribution after a

selection on the decorrelated versions of the jet τ21, jet-mass ratios and GRU

observables. All of the jet tagger selections are such that keep only 1% of the

multijet background. For our fit, we scale the MC events to the point that they

reach a total integrated luminosity of 3 ab−1, expected at the HL-LHC. Since

the aim of this study is to only provide a rough estimate of the sensitivity of the

boosted Higgs boson signal, we only use simulation to model small resonant
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Figure 6.9: Combined mass distribution of the inclusive Higgs signal extraction for
different tagger selections. The reconstructed Higgs jet mass distribution is shown
after a τDDT

21 , GRUDDT and decorrelated version of jet-mass ratio observable. The cuts
on all discriminants correspond to 1% of multijet background efficiency. The Higgs
signal (violet) is small and hidden by the background processes, but its significance is
illustrated in the bottom panel.

backgrounds and estimate the contribution of the main multijet background

with a simple polynomial fit. Finally, we use a SM Higgs boson simulation for

our signal extraction. Detailed descriptions of the uncertainties used in this fit

can be found in [14].

We express the results of the extracted signal from the fit in terms of the

1σ uncertainty on δµgg→H. Figure 6.10 shows the results of the inclusive limit

using various discriminators and working points. While the figure shows

various results under different assumptions and uncertainties on the fit, we can

focus on the upper bounds that indicate the sensitivity based on an estimate

of the multijet background known to the percent level. The application of

a combined GRUDDT and mass ratios discriminator gives a full factor of 2

improvement from the inclusive result.

Our benchmark result, with the combined GRU and mass ratios discrimi-

nant, gives us a 1σ bound on the inclusive cross section of δσ = 0.14 × σSM.

Using Eq. 6.9, this translates to a bound on the total width with an uncertainty

of δΓH < 1.4 MeV. This model-dependent bound assumes, roughly, a standard
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colliders. The various projected results range from 2% to 4.5% [181, 182, 192–194].
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model admixture of decays. Given the variation over decay modes, we find

that this bound can be applied to final states with varying admixture of heavy

vector-bosons, τ leptons, and quarks.

Considering the worst possible sensitivity over all decay modes, we find

that with the di-gluon final state we obtain an uncertainty on the total cross

section of 0.41 ×σSM. This corresponds to a width constraint of δΓH < 3.5 MeV.

These results are comparable to the ATLAS and CMS projected off-shell mea-

surements of the Higgs boson total width, which are found to be 1.6 MeV and

1 MeV respectively.

6.3.1 Model assumptions and bias

In this study we assume we can obtain bounds on the inclusive cross section

by extracting a SM Higgs boson signal from a large radius jet. This statement

implies three additional assumptions that can translate to model dependence

or bias in our measurement:

1. All objects from the Higgs boson decay, both with missing energy signa-

tures and visible signatures, occur within a single cone in the event.

This assumption may not always be true if Higgs decay products, such

as neutrinos or possible DM particles, escape detection. In our analysis,

we have attempted to recover these signals by including the missing

energy in the jet reconstruction. While we have only explicitly shown

this modified reconstruction helps recover H → ττ and H → WW∗

sensitivity, we believe this approach is broadly applicable to all semi-

visible decays.

197



In the instance where the Higgs boson decays completely invisibly this

analysis is not applicable anymore. The equivalent search for an invisibly

decaying Higgs boson would occur with a single jet recoiling against

missing energy. Projected results on the bounds of the Higgs boson

to invisible cross section, at the HL-LHC, range from roughly 1% to

4% [179, 195].

2. We treat all SM Higgs boson decays as a proxy for all signatures, includ-

ing possible BSM signatures.

While BSM signatures are not included in our signal model, we can

take background-like decays of the Higgs as a proxy for all visible

background-like BSM signatures. In this study, we have made a first

attempt at isolating H → gg decays by exploiting the color-singlet nature

of the Higgs boson through the mass-ratios selection. If we can isolate

background-like signals by using a universal property of the Higgs

boson then we can argue that other non-SM signatures that look like

background could be isolated with this approach. However, it remains

to be shown that SM Higgs boson decays covering a broad range of

signatures can really serve as a proxy for all visible signatures.

3. A SM Higgs jet substructure selection can improve the purity of our

measurement.

While this statement is true for a given Higgs boson decay, a selection

on a jet discriminant can introduce a bias in our measurement if the

properties exploited in the discriminant only appear in one particular

decay mode. We encourage then the development of Higgs boson jet
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identification methods with properties that are universal to all Higgs

boson decays.

In summary, we have performed a study of the sensitivity of the LHC to

all the decay modes of the Standard Model Higgs. We have assumed that

the inclusive Higgs boson cross section can be constrained by catching all the

Higgs boson decays in a high-pT jet cone. The analysis strategy to identify

these boosted Higgs decays to jets is similar to that presented in Chapter 5.

While our constraint is model dependent and may exclude new physics con-

tributions to the Higgs jet, it explores for the first time the reconstruction

and identification of all the SM Higgs boson decays, in particular the unex-

plored H → gg/WW/ττ hadronic decay modes. This study motivates a rich

program of exploring the Higgs boson at high pT in all the SM final states.
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Chapter 7

Summary

In this dissertation, we have demonstrated that hadronically decaying low

mass resonances can be triggered on by using initial state radiation jets in

the final event signature. In particular, we have shown that this triggering

approach can be used to search for a narrow vector resonance (Z’) decaying

into a quark-antiquark pair and reconstructed as a single jet, that it can allow

for the clear observation of a merged W and Z boson peak in the jet mass

distribution, the first of this type at the LHC, and, that the study of a boosted

resonance and an extra jet can allow for the study of highly energetic Higgs

bosons and their decays into jets. In this thesis, jet substructure techniques

have been employed to identify a jet containing a signal candidate over a

smoothly falling jet mass distribution in data. In particular, we have developed

a novel technique that prevents the distortion of the jet mass distribution after

a jet substructure selection. No significant excess above the standard model

prediction has been observed in the search for low-mass resonances and we

have set upper limits at 95% confidence level on the Z’ boson coupling to

quarks, g′q, as a function of the Z′ boson mass. We have excluded coupling
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values of g′q > 0.4 over the signal mass range from 50 to 450 GeV, with the

most stringent constraints set for masses below 250 GeV where we have

excluded coupling values of g′q > 0.2. For masses between 50 and 300 GeV

these are the most sensitive limits to date. Future searches for low mass

hadronically decaying resonances will greatly benefit from continued work

in the identification of large radius jets, such as machine-learning jet tagging

techniques, and a precise understanding of the W and Z boson contributions

and the jet mass scale and resolution. The ideas presented in this thesis to

identify boosted Higgs boson signatures are far from comprehensive but

constitute a step beyond the already explored properties of Higgs boson jets

that may allows to build a boosted Higgs exploration program at the LHC.
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tanik. “Field engineering by continuous hole injection in silicon de-
tectors irradiated with neutrons”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 497.2 (2003), pp. 440 –449. ISSN: 0168-9002. DOI:
https://doi.org/10.1016/S0168-9002(02)01927-7. URL: http://
www.sciencedirect.com/science/article/pii/S0168900202019277.

[83] S. Cucciarelli and D. Kotlinski. Pixel Hit Reconstruction. Tech. rep. 2004.

[84] Gavril Giurgiu, D. Fehling, P. Maksimovic, M. Swartz, and V. Chiochia.
“Pixel Hit Reconstruction with the CMS Detector”. In: (2008). arXiv:
0808.3804 [physics.ins-det].

[85] Benedikt Roland Vormwald. The CMS Phase-1 pixel detector – experience
and lessons learned from two years of operation. Tech. rep. CMS-CR-2019-
019. 07. Geneva: CERN, 2019. DOI: 10.1088/1748-0221/14/07/C07008.
URL: https://cds.cern.ch/record/2687017.

[86] P. Billoir and S. Qian. “Simultaneous pattern recognition and track fit-
ting by the Kalman filtering method”. In: Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 294.1 (1990), pp. 219 –228. ISSN: 0168-9002. DOI:
https://doi.org/10.1016/0168-9002(90)91835-Y. URL: http://www.
sciencedirect.com/science/article/pii/016890029091835Y.

[87] R. Fruehwirth. “Application of Kalman filtering to track and vertex
fitting”. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 262.2
(1987), pp. 444 –450. ISSN: 0168-9002. DOI: https :/ /doi . org/ 10.
1016/0168-9002(87)90887-4. URL: http://www.sciencedirect.com/
science/article/pii/0168900287908874.

[88] R Fruehwirth, Wolfgang Waltenberger, and Pascal Vanlaer. Adaptive
Vertex Fitting. Tech. rep. CMS-NOTE-2007-008. Geneva: CERN, 2007.
URL: https://cds.cern.ch/record/1027031.

[89] A.M. Sirunyan et al. “Identification of heavy-flavour jets with the CMS
detector in pp collisions at 13 TeV”. In: JINST 13.05 (2018), P05011. DOI:
10.1088/1748-0221/13/05/P05011. arXiv: 1712.07158 [physics.ins-det].

[90] Gianluca Cerminara. Alignment and Calibration of the CMS Detector.
Tech. rep. CMS-CR-2011-268. Geneva: CERN, 2011. URL: http://cds.
cern.ch/record/1399496.

210

https://doi.org/https://doi.org/10.1016/S0168-9002(02)01927-7
http://www.sciencedirect.com/science/article/pii/S0168900202019277
http://www.sciencedirect.com/science/article/pii/S0168900202019277
http://arxiv.org/abs/0808.3804
https://doi.org/10.1088/1748-0221/14/07/C07008
https://cds.cern.ch/record/2687017
https://doi.org/https://doi.org/10.1016/0168-9002(90)91835-Y
http://www.sciencedirect.com/science/article/pii/016890029091835Y
http://www.sciencedirect.com/science/article/pii/016890029091835Y
https://doi.org/https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/https://doi.org/10.1016/0168-9002(87)90887-4
http://www.sciencedirect.com/science/article/pii/0168900287908874
http://www.sciencedirect.com/science/article/pii/0168900287908874
https://cds.cern.ch/record/1027031
https://doi.org/10.1088/1748-0221/13/05/P05011
http://arxiv.org/abs/1712.07158
http://cds.cern.ch/record/1399496
http://cds.cern.ch/record/1399496


[91] Federico De Guio. CMS Alignement and Calibration workflows: lesson
learned and future plans. Tech. rep. CMS-CR-2014-335. Geneva: CERN,
2014. DOI: 10.1016/j.nuclphysbps.2015.09.143. URL: https://cds.
cern.ch/record/2121268.

[92] Jeffrey Roskes. “A boson learned from its context, and a boson learned
from its end”. PhD thesis. Baltimore, US: Johns Hopkins University,
2019.

[93] A.M. Sirunyan et al. “Particle-flow reconstruction and global event
description with the CMS detector”. In: JINST 12.10 (2017), P10003. DOI:
10.1088/1748-0221/12/10/P10003. arXiv: 1706.04965 [physics.ins-det].

[94] W Adam, R FrÃijhwirth, A Strandlie, and T Todorov. “Reconstruction
of electrons with the Gaussian-sum filter in the CMS tracker at the
LHC”. In: Journal of Physics G: Nuclear and Particle Physics 31.9 (2005),
N9. URL: http://stacks.iop.org/0954-3899/31/i=9/a=N01.

[95] S. Baffioni, C. Charlot, F. Ferri, D. Futyan, P. Meridiani, I. Puljak, C.
Rovelli, R. Salerno, and Y. Sirois. “Electron reconstruction in CMS”. In:
Eur. Phys. J. C 49 (2007), pp. 1099–1116. DOI: 10.1140/epjc/s10052-
006-0175-5.

[96] Albert M Sirunyan et al. “Performance of missing transverse momen-
tum reconstruction in proton-proton collisions at

√
s = 13 TeV using

the CMS detector”. In: JINST 14.07 (2019), P07004. DOI: 10.1088/1748-
0221/14/07/P07004. arXiv: 1903.06078 [hep-ex].

[97] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kt jet
clustering algorithm”. In: JHEP 04 (2008), p. 063. DOI: 10.1088/1126-
6708/2008/04/063. arXiv: 0802.1189 [hep-ph].

[98] Stephen D. Ellis and Davison E. Soper. “Successive combination jet al-
gorithm for hadron collisions”. In: Phys. Rev. D48 (1993), pp. 3160–3166.
DOI: 10.1103/PhysRevD.48.3160. arXiv: hep-ph/9305266 [hep-ph].

[99] Yuri L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber. “Better jet
clustering algorithms”. In: JHEP 08 (1997), p. 001. DOI: 10.1088/1126-
6708/1997/08/001. arXiv: hep-ph/9707323 [hep-ph].

[100] “FastJet User Manual”. In: Eur. Phys. J. C72 (2012), p. 1896. DOI: 10.
1140/epjc/s10052-012-1896-2. arXiv: 1111.6097 [hep-ph].

[101] Vardan Khachatryan et al. “Jet energy scale and resolution in the CMS
experiment in pp collisions at 8 TeV”. In: JINST 12.02 (2017), P02014.
DOI: 10.1088/1748-0221/12/02/P02014. arXiv: 1607.03663 [hep-ex].

211

https://doi.org/10.1016/j.nuclphysbps.2015.09.143
https://cds.cern.ch/record/2121268
https://cds.cern.ch/record/2121268
https://doi.org/10.1088/1748-0221/12/10/P10003
http://arxiv.org/abs/1706.04965
http://stacks.iop.org/0954-3899/31/i=9/a=N01
https://doi.org/10.1140/epjc/s10052-006-0175-5
https://doi.org/10.1140/epjc/s10052-006-0175-5
https://doi.org/10.1088/1748-0221/14/07/P07004
https://doi.org/10.1088/1748-0221/14/07/P07004
http://arxiv.org/abs/1903.06078
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
https://doi.org/10.1103/PhysRevD.48.3160
http://arxiv.org/abs/hep-ph/9305266
https://doi.org/10.1088/1126-6708/1997/08/001
https://doi.org/10.1088/1126-6708/1997/08/001
http://arxiv.org/abs/hep-ph/9707323
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
https://doi.org/10.1088/1748-0221/12/02/P02014
http://arxiv.org/abs/1607.03663


[102] Daniele Bertolini, Philip Harris, Matthew Low, and Nhan Tran. “Pileup
Per Particle Identification”. In: JHEP 10 (2014), p. 059. DOI: 10.1007/
JHEP10(2014)059. arXiv: 1407.6013 [hep-ph].

[103] D. Krohn, J. Thaler, and L. Wang. “Jet trimming”. In: JHEP 02 (2010),
p. 084. DOI: 10.1007/JHEP02(2010)084. arXiv: 0912.1342 [hep-ph].

[104] Andrew J. Larkoski, Simone Marzani, Gregory Soyez, and Jesse Thaler.
“Soft Drop”. In: JHEP 05 (2014), p. 146. DOI: 10.1007/JHEP05(2014)146.
arXiv: 1402.2657 [hep-ph].

[105] Mrinal Dasgupta, Alessandro Fregoso, Simone Marzani, and Gavin
P. Salam. “Towards an understanding of jet substructure”. In: JHEP
09 (2013), p. 029. DOI: 10.1007/JHEP09(2013)029. arXiv: 1307.0007
[hep-ph].

[106] Andrew J. Larkoski and Jesse Thaler. “Unsafe but Calculable: Ratios
of Angularities in Perturbative QCD”. In: JHEP 09 (2013), p. 137. DOI:
10.1007/JHEP09(2013)137. arXiv: 1307.1699 [hep-ph].

[107] Stephen D. Ellis, Christopher K. Vermilion, and Jonathan R. Walsh.
“Techniques for improved heavy particle searches with jet substruc-
ture”. In: Phys. Rev. D80 (2009), p. 051501. DOI: 10.1103/PhysRevD.80.
051501. arXiv: 0903.5081 [hep-ph].

[108] Stephen D. Ellis, Christopher K. Vermilion, and Jonathan R. Walsh.
“Recombination Algorithms and Jet Substructure: Pruning as a Tool
for Heavy Particle Searches”. In: Phys. Rev. D81 (2010), p. 094023. DOI:
10.1103/PhysRevD.81.094023. arXiv: 0912.0033 [hep-ph].

[109] Albert M. Sirunyan et al. “Measurements of the differential jet cross
section as a function of the jet mass in dijet events from proton-proton
collisions at

√
s = 13 TeV”. In: JHEP 11 (2018), p. 113. DOI: 10.1007/

JHEP11(2018)113. arXiv: 1807.05974 [hep-ex].

[110] Albert M Sirunyan et al. “Identification of heavy, energetic, hadroni-
cally decaying particles using machine-learning techniques”. In: (2020).
DOI: 10.1088/1748-0221/15/06/p06005. arXiv: 2004.08262 [hep-ex].

[111] Jesse Thaler and Ken Van Tilburg. “Identifying Boosted Objects with
N-subjettiness”. In: JHEP 03 (2011), p. 015. DOI: 10.1007/JHEP03(2011)
015. arXiv: 1011.2268 [hep-ph].

[112] Andrew J. Larkoski, Gavin P. Salam, and Jesse Thaler. “Energy Corre-
lation Functions for Jet Substructure”. In: JHEP 06 (2013), p. 108. DOI:
10.1007/JHEP06(2013)108. arXiv: 1305.0007 [hep-ph].

212

https://doi.org/10.1007/JHEP10(2014)059
https://doi.org/10.1007/JHEP10(2014)059
http://arxiv.org/abs/1407.6013
https://doi.org/10.1007/JHEP02(2010)084
http://arxiv.org/abs/0912.1342
https://doi.org/10.1007/JHEP05(2014)146
http://arxiv.org/abs/1402.2657
https://doi.org/10.1007/JHEP09(2013)029
http://arxiv.org/abs/1307.0007
http://arxiv.org/abs/1307.0007
https://doi.org/10.1007/JHEP09(2013)137
http://arxiv.org/abs/1307.1699
https://doi.org/10.1103/PhysRevD.80.051501
https://doi.org/10.1103/PhysRevD.80.051501
http://arxiv.org/abs/0903.5081
https://doi.org/10.1103/PhysRevD.81.094023
http://arxiv.org/abs/0912.0033
https://doi.org/10.1007/JHEP11(2018)113
https://doi.org/10.1007/JHEP11(2018)113
http://arxiv.org/abs/1807.05974
https://doi.org/10.1088/1748-0221/15/06/p06005
http://arxiv.org/abs/2004.08262
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1007/JHEP03(2011)015
http://arxiv.org/abs/1011.2268
https://doi.org/10.1007/JHEP06(2013)108
http://arxiv.org/abs/1305.0007


[113] Andrew J. Larkoski, Ian Moult, and Duff Neill. “Power Counting to
Better Jet Observables”. In: JHEP 12 (2014), p. 009. DOI: 10.1007/
JHEP12(2014)009. arXiv: 1409.6298 [hep-ph].

[114] Ian Moult, Lina Necib, and Jesse Thaler. “New Angles on Energy
Correlation Functions”. In: (2016). arXiv: 1609.07483 [hep-ph].

[115] Huilin Qu and Loukas Gouskos. “ParticleNet: Jet Tagging via Parti-
cle Clouds”. In: Phys. Rev. D 101.5 (2020), p. 056019. DOI: 10.1103/
PhysRevD.101.056019. arXiv: 1902.08570 [hep-ph].

[116] “Identification of highly Lorentz-boosted heavy particles using graph
neural networks and new mass decorrelation techniques”. In: (2020).
URL: http://cds.cern.ch/record/2707946.

[117] Performance of deep tagging algorithms for boosted double quark jet topology
in proton-proton collisions at 13 TeV with the Phase-0 CMS detector. CMS
Detector Performance Note CMS-DP-2018-046. 2018. URL: https://
cds.cern.ch/record/2630438.

[118] James Dolen, Philip Harris, Simone Marzani, Salvatore Rappoccio,
and Nhan Tran. “Thinking outside the ROCs: Designing Decorrelated
Taggers (DDT) for jet substructure”. In: (2016). arXiv: 1603 . 00027
[hep-ph].

[119] Chase Shimmin, Peter Sadowski, Pierre Baldi, Edison Weik, Daniel
Whiteson, Edward Goul, and Andreas SÃÿgaard. “Decorrelated Jet
Substructure Tagging using Adversarial Neural Networks”. In: Phys.
Rev. D 96.7 (2017), p. 074034. DOI: 10.1103/PhysRevD.96.074034. arXiv:
1703.03507 [hep-ex].

[120] J.A. Aguilar-Saavedra, Jack H. Collins, and Rashmish K. Mishra. “A
generic anti-QCD jet tagger”. In: JHEP 11 (2017), p. 163. DOI: 10.1007/
JHEP11(2017)163. arXiv: 1709.01087 [hep-ph].

[121] Ian Moult, Benjamin Nachman, and Duff Neill. “Convolved Substruc-
ture: Analytically Decorrelating Jet Substructure Observables”. In:
JHEP 05 (2018), p. 002. DOI: 10.1007/JHEP05(2018)002. arXiv: 1710.
06859 [hep-ph].

[122] Performance of mass-decorrelated jet substructure observables for hadronic
two-body decay tagging in ATLAS. Tech. rep. ATL-PHYS-PUB-2018-014.
Geneva: CERN, 2018. URL: https://cds.cern.ch/record/2630973.

213

https://doi.org/10.1007/JHEP12(2014)009
https://doi.org/10.1007/JHEP12(2014)009
http://arxiv.org/abs/1409.6298
http://arxiv.org/abs/1609.07483
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
http://arxiv.org/abs/1902.08570
http://cds.cern.ch/record/2707946
https://cds.cern.ch/record/2630438
https://cds.cern.ch/record/2630438
http://arxiv.org/abs/1603.00027
http://arxiv.org/abs/1603.00027
https://doi.org/10.1103/PhysRevD.96.074034
http://arxiv.org/abs/1703.03507
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
http://arxiv.org/abs/1709.01087
https://doi.org/10.1007/JHEP05(2018)002
http://arxiv.org/abs/1710.06859
http://arxiv.org/abs/1710.06859
https://cds.cern.ch/record/2630973


[123] Albert M Sirunyan et al. “Search for Low Mass Vector Resonances
Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at√

s = 13 TeV”. In: Phys. Rev. Lett. 119.11 (2017), p. 111802. DOI: 10.
1103/PhysRevLett.119.111802. arXiv: 1705.10532 [hep-ex].

[124] J. Lin. “Divergence measures based on the Shannon entropy”. In: IEEE
Transactions on Information Theory 37.1 (1991), pp. 145–151.

[125] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In:
Ann. Math. Statist. 22.1 (1951), pp. 79–86. DOI: 10.1214/aoms/1177729694.
URL: https://doi.org/10.1214/aoms/1177729694.

[126] E. Eichten, I. Hinchliffe, Kenneth D. Lane, and C. Quigg. “Super Col-
lider Physics”. In: Rev. Mod. Phys. 56 (1984), p. 579. DOI: 10.1103/
RevModPhys.56.579.

[127] U. Baur, I. Hinchliffe, and D. Zeppenfeld. “Excited Quark Production
at Hadron Colliders”. In: Int. J. Mod. Phys. A 2 (1987), p. 1285. DOI:
10.1142/S0217751X87000661.

[128] Paul H. Frampton and Sheldon L. Glashow. “Chiral Color: An Alter-
native to the standard model”. In: Phys. Lett. B 190 (1987), p. 157. DOI:
10.1016/0370-2693(87)90859-8.

[129] JoAnne L. Hewett and Thomas G. Rizzo. “Low-Energy Phenomenology
of Superstring Inspired E(6) Models”. In: Phys. Rept. 183 (1989), p. 193.
DOI: 10.1016/0370-1573(89)90071-9.

[130] U. Baur, M. Spira, and P. M. Zerwas. “Excited quark and lepton pro-
duction at hadron colliders”. In: Phys. Rev. D 42 (1990), p. 815. DOI:
10.1103/PhysRevD.42.815.

[131] Lisa Randall and Raman Sundrum. “An Alternative to compactifica-
tion”. In: Phys. Rev. Lett. 83 (1999), p. 4690. DOI: 10.1103/PhysRevLett.
83.4690. arXiv: hep-th/9906064 [hep-th].

[132] Schuyler Cullen, Maxim Perelstein, and Michael E. Peskin. “TeV strings
and collider probes of large extra dimensions”. In: Phys. Rev. D 62
(2000), p. 055012. DOI: 10.1103/PhysRevD.62.055012. arXiv: hep-
ph/0001166 [hep-ph].

[133] Luis A. Anchordoqui, Haim Goldberg, Dieter Lust, Satoshi Nawata,
Stephan Stieberger, and Tomasz R. Taylor. “Dijet signals for low mass
strings at the LHC”. In: Phys. Rev. Lett. 101 (2008), p. 241803. DOI:
10.1103/PhysRevLett.101.241803. arXiv: 0808.0497 [hep-ph].

214

https://doi.org/10.1103/PhysRevLett.119.111802
https://doi.org/10.1103/PhysRevLett.119.111802
http://arxiv.org/abs/1705.10532
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1103/RevModPhys.56.579
https://doi.org/10.1103/RevModPhys.56.579
https://doi.org/10.1142/S0217751X87000661
https://doi.org/10.1016/0370-2693(87)90859-8
https://doi.org/10.1016/0370-1573(89)90071-9
https://doi.org/10.1103/PhysRevD.42.815
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
http://arxiv.org/abs/hep-th/9906064
https://doi.org/10.1103/PhysRevD.62.055012
http://arxiv.org/abs/hep-ph/0001166
http://arxiv.org/abs/hep-ph/0001166
https://doi.org/10.1103/PhysRevLett.101.241803
http://arxiv.org/abs/0808.0497


[134] Tao Han, Ian Lewis, and Zhen Liu. “Colored Resonant Signals at the
LHC: Largest Rate and Simplest Topology”. In: JHEP 12 (2010), p. 085.
DOI: 10.1007/JHEP12(2010)085. arXiv: 1010.4309 [hep-ph].

[135] R. Sekhar Chivukula, Arsham Farzinnia, Elizabeth H. Simmons, and
Roshan Foadi. “Production of Massive Color-Octet Vector Bosons at
Next-to-Leading Order”. In: Phys. Rev. D 85 (2012), p. 054005. DOI:
10.1103/PhysRevD.85.054005. arXiv: 1111.7261 [hep-ph].

[136] CMS Collaboration. Summary of the CMS Exotica results for 13 TeV data.
2020. URL: https://twiki.cern.ch/twiki/bin/view/CMSPublic/
SummaryPlotsEXO13TeV.

[137] Albert M Sirunyan et al. “Search for dark matter produced with an
energetic jet or a hadronically decaying W or Z boson at

√
s = 13

TeV”. In: JHEP 07 (2017), p. 014. DOI: 10.1007/JHEP07(2017)014. arXiv:
1703.01651 [hep-ex].

[138] Stefan Kallweit, Jonas M. Lindert, Philipp Maierhöfer, Stefano Poz-
zorini, and Marek Schönherr. “NLO electroweak automation and pre-
cise predictions for W+multijet production at the LHC”. In: JHEP
04 (2015), p. 012. DOI: 10.1007/JHEP04(2015)012. arXiv: 1412.5157
[hep-ph].

[139] Stefan Kallweit, Jonas M. Lindert, Philipp Maierhöfer, Stefano Poz-
zorini, and Marek Schöherr. “NLO QCD+EW predictions for V+jets in-
cluding off-shell vector-boson decays and multijet merging”. In: JHEP
04 (2016), p. 021. DOI: 10.1007/JHEP04(2016)021. arXiv: 1511.08692
[hep-ph].

[140] Stefan Kallweit, Jonas M. Lindert, Stefano Pozzorini, Marek Schönherr,
and Philipp Maierhöfer. “NLO QCD+EW automation and precise
predictions for V+multijet production”. In: Proceedings, 50th Rencontres
de Moriond, QCD and high energy interactions. ARISF. ARISF, 2015, p. 121.
arXiv: 1505.05704 [hep-ph]. URL: https://inspirehep.net/record/
1372103/files/arXiv:1505.05704.pdf.

[141] J. M. Lindert et al. “Precise predictions for V + jets dark matter back-
grounds”. In: Eur. Phys. J. C 77 (2017), p. 829. DOI: 10.1140/epjc/
s10052-017-5389-1. arXiv: 1705.04664 [hep-ph].

215

https://doi.org/10.1007/JHEP12(2010)085
http://arxiv.org/abs/1010.4309
https://doi.org/10.1103/PhysRevD.85.054005
http://arxiv.org/abs/1111.7261
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV
https://doi.org/10.1007/JHEP07(2017)014
http://arxiv.org/abs/1703.01651
https://doi.org/10.1007/JHEP04(2015)012
http://arxiv.org/abs/1412.5157
http://arxiv.org/abs/1412.5157
https://doi.org/10.1007/JHEP04(2016)021
http://arxiv.org/abs/1511.08692
http://arxiv.org/abs/1511.08692
http://arxiv.org/abs/1505.05704
https://inspirehep.net/record/1372103/files/arXiv:1505.05704.pdf
https://inspirehep.net/record/1372103/files/arXiv:1505.05704.pdf
https://doi.org/10.1140/epjc/s10052-017-5389-1
https://doi.org/10.1140/epjc/s10052-017-5389-1
http://arxiv.org/abs/1705.04664


[142] A.M. Sirunyan et al. “Performance of reconstruction and identification
of τ leptons decaying to hadrons and ντ in pp collisions at

√
s = 13

TeV”. In: JINST 13.10 (2018), P10005. DOI: 10.1088/1748-0221/13/10/
P10005. arXiv: 1809.02816 [hep-ex].

[143] R. A Fisher. “On the Interpretation of χ2 from Contingency Tables,
and the Calculation of P”. In: J. Roy. Statis. Soc. 85 (1922), p. 87. ISSN:
09528385. DOI: 10.2307/2340521.

[144] Steve Baker and Robert D. Cousins. “Clarification of the use of CHI-
square and likelihood functions in fits to histograms”. In: Nuclear Instru-
ments and Methods in Physics Research 221.2 (1984), pp. 437 –442. ISSN:
0167-5087. DOI: https://doi.org/10.1016/0167-5087(84)90016-
4. URL: http://www.sciencedirect.com/science/article/pii/
0167508784900164.

[145] CMS Collaboration. CMS luminosity measurement for the 2017 data-taking
period at

√
s = 13 TeV. CMS Physics Analysis Summary. 2018. URL:

https://cds.cern.ch/record/2621960.

[146] T. Junk. “Confidence level computation for combining searches with
small statistics”. In: Nucl. Instrum. Meth. A 434 (1999), p. 435. DOI:
10.1016/S0168-9002(99)00498-2. arXiv: hep-ex/9902006 [hep-ex].

[147] A. L. Read. “Presentation of search results: the CLs technique”. In: J.
Phys. G 28 (2002), p. 2693. DOI: 10.1088/0954-3899/28/10/313.

[148] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. “Asymp-
totic formulae for likelihood-based tests of new physics”. In: Eur. Phys.
J. C 71 (2011), p. 1554. DOI: 10.1140/epjc/s10052-011-1554-0. arXiv:
1007.1727 [physics.data-an].

[149] Morad Aaboud et al. “Search for low-mass resonances decaying into
two jets and produced in association with a photon using pp collisions
at

√
s = 13 TeV with the ATLAS detector”. In: Phys. Lett. 795 (2019),

p. 56. DOI: 10.1016/j.physletb.2019.03.067. arXiv: 1901.10917
[hep-ex].

[150] D. N. Spergel et al. “Wilkinson Microwave Anisotropy Probe (WMAP)
three year results: implications for cosmology”. In: Astrophys. J. Suppl.
170 (2007), p. 377. DOI: 10.1086/513700. arXiv: astro-ph/0603449
[astro-ph].

216

https://doi.org/10.1088/1748-0221/13/10/P10005
https://doi.org/10.1088/1748-0221/13/10/P10005
http://arxiv.org/abs/1809.02816
https://doi.org/10.2307/2340521
https://doi.org/https://doi.org/10.1016/0167-5087(84)90016-4
https://doi.org/https://doi.org/10.1016/0167-5087(84)90016-4
http://www.sciencedirect.com/science/article/pii/0167508784900164
http://www.sciencedirect.com/science/article/pii/0167508784900164
https://cds.cern.ch/record/2621960
https://doi.org/10.1016/S0168-9002(99)00498-2
http://arxiv.org/abs/hep-ex/9902006
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1140/epjc/s10052-011-1554-0
http://arxiv.org/abs/1007.1727
https://doi.org/10.1016/j.physletb.2019.03.067
http://arxiv.org/abs/1901.10917
http://arxiv.org/abs/1901.10917
https://doi.org/10.1086/513700
http://arxiv.org/abs/astro-ph/0603449
http://arxiv.org/abs/astro-ph/0603449


[151] P. A. R. Ade et al. “Planck 2013 results. XVI. Cosmological param-
eters”. In: Astron. Astrophys. 571 (2014), A16. DOI: 10 . 1051 / 0004 -
6361/201321591. arXiv: 1303.5076 [astro-ph.CO].

[152] Mihailo Backovic, Kyoungchul Kong, and Mathew McCaskey. “MadDM
v.1.0: Computation of Dark Matter Relic Abundance Using MadGraph5”.
In: Phys. Dark Univ. 5 (2014), p. 18. DOI: 10.1016/j.dark.2014.04.001.
arXiv: 1308.4955 [hep-ph].

[153] Mihailo Backovic, Antony Martini, Olivier Mattelaer, Kyoungchul
Kong, and Gopolang Mohlabeng. “Direct detection of dark matter with
MadDM v.2.0”. In: Phys. Dark Univ. 9 (2015), p. 37. DOI: 10.1016/j.
dark.2015.09.001. arXiv: 1505.04190 [hep-ph].

[154] Tristan du Pree, Kristian Hahn, Philip Harris, and Christos Roskas.
“Cosmological constraints on Dark Matter models for collider searches”.
2016.

[155] Matthias Schlaffer, Michael Spannowsky, Michihisa Takeuchi, Andreas
Weiler, and Chris Wymant. “Boosted Higgs Shapes”. In: Eur. Phys. J.
C 74 (2014), p. 3120. DOI: 10.1140/epjc/s10052-014-3120-z. arXiv:
1405.4295 [hep-ph].

[156] Massimiliano Grazzini, Agnieszka Ilnicka, Michael Spira, and Marius
Wiesemann. “Effective Field Theory for Higgs properties parametri-
sation: the transverse momentum spectrum case”. In: 52nd Rencon-
tres de Moriond on QCD and high energy interactions. 2017, p. 23. arXiv:
1705.05143 [hep-ph].

[157] Massimiliano Grazzini, Agnieszka Ilnicka, Michael Spira, and Marius
Wiesemann. “Modeling BSM effects on the Higgs transverse-momentum
spectrum in an EFT approach”. In: JHEP 03 (2017), p. 115. DOI: 10.1007/
JHEP03(2017)115. arXiv: 1612.00283 [hep-ph].

[158] You-Ying Li, Rosy Nicolaidou, and Stathes Paganis. “Exclusion of
heavy, broad resonances from precise measurements of WZ and VH
final states at the LHC”. In: Eur. Phys. J. C 79.4 (2019), p. 348. DOI:
10.1140/epjc/s10052-019-6858-5. arXiv: 1904.03995 [hep-ph].

[159] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam. “Jet
Substructure as a New Higgs-Search Channel at the Large Hadron
Collider”. In: Phys. Rev. Lett. 100 (2008), p. 242001. DOI: 10.1103/
PhysRevLett.100.242001. arXiv: 0802.2470 [hep-ph].

217

https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
https://doi.org/10.1016/j.dark.2014.04.001
http://arxiv.org/abs/1308.4955
https://doi.org/10.1016/j.dark.2015.09.001
https://doi.org/10.1016/j.dark.2015.09.001
http://arxiv.org/abs/1505.04190
https://doi.org/10.1140/epjc/s10052-014-3120-z
http://arxiv.org/abs/1405.4295
http://arxiv.org/abs/1705.05143
https://doi.org/10.1007/JHEP03(2017)115
https://doi.org/10.1007/JHEP03(2017)115
http://arxiv.org/abs/1612.00283
https://doi.org/10.1140/epjc/s10052-019-6858-5
http://arxiv.org/abs/1904.03995
https://doi.org/10.1103/PhysRevLett.100.242001
https://doi.org/10.1103/PhysRevLett.100.242001
http://arxiv.org/abs/0802.2470


[160] Albert M Sirunyan et al. “Inclusive search for a highly boosted Higgs
boson decaying to a bottom quark-antiquark pair”. In: Phys. Rev. Lett.
120 (2018), p. 071802. DOI: 10.1103/PhysRevLett.120.071802. arXiv:
1709.05543 [hep-ex].

[161] Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-
antiquark pair at

√
s = 13 TeV with 137 fb−1. Tech. rep. CMS-PAS-HIG-

19-003. Geneva: CERN, 2020. URL: https://cds.cern.ch/record/
2714916.

[162] D. de Florian et al. “Handbook of LHC Higgs Cross Sections: 4. De-
ciphering the Nature of the Higgs Sector”. In: (2016). arXiv: 1610.
07922 [hep-ph]. URL: https://twiki.cern.ch/twiki/bin/view/
LHCPhysics/LHCHXSWG#SM_Higgs.

[163] Georges Aad et al. “Measurement of the Higgs boson mass from the
H → γγ and H → ZZ∗ → 4ℓ channels with the ATLAS detector using
25 fb−1 of pp collision data”. In: Phys. Rev. D 90.5 (2014), p. 052004. DOI:
10.1103/PhysRevD.90.052004. arXiv: 1406.3827 [hep-ex].

[164] Albert M Sirunyan et al. “Measurements of properties of the Higgs
boson decaying into the four-lepton final state in pp collisions at

√
s =

13 TeV”. In: JHEP 11 (2017), p. 047. DOI: 10.1007/JHEP11(2017)047.
arXiv: 1706.09936 [hep-ex].

[165] Nikolas Kauer and Giampiero Passarino. “Inadequacy of zero-width
approximation for a light Higgs boson signal”. In: JHEP 08 (2012),
p. 116. DOI: 10.1007/JHEP08(2012)116. arXiv: 1206.4803 [hep-ph].

[166] Fabrizio Caola and Kirill Melnikov. “Constraining the Higgs boson
width with ZZ production at the LHC”. In: Phys. Rev. D88 (2013),
p. 054024. DOI: 10 . 1103 / PhysRevD . 88 . 054024. arXiv: 1307 . 4935
[hep-ph].

[167] John M. Campbell, R. Keith Ellis, and Ciaran Williams. “Bounding
the Higgs width at the LHC using full analytic results for gg− >
e−e+µ−µ+”. In: JHEP 04 (2014), p. 060. DOI: 10.1007/JHEP04(2014)060.
arXiv: 1311.3589 [hep-ph].

[168] John M. Campbell, R. Keith Ellis, and Ciaran Williams. “Bounding the
Higgs width at the LHC: Complementary results from H → WW”. In:
Phys. Rev. D89.5 (2014), p. 053011. DOI: 10.1103/PhysRevD.89.053011.
arXiv: 1312.1628 [hep-ph].

218

https://doi.org/10.1103/PhysRevLett.120.071802
http://arxiv.org/abs/1709.05543
https://cds.cern.ch/record/2714916
https://cds.cern.ch/record/2714916
http://arxiv.org/abs/1610.07922
http://arxiv.org/abs/1610.07922
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG#SM_Higgs
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG#SM_Higgs
https://doi.org/10.1103/PhysRevD.90.052004
http://arxiv.org/abs/1406.3827
https://doi.org/10.1007/JHEP11(2017)047
http://arxiv.org/abs/1706.09936
https://doi.org/10.1007/JHEP08(2012)116
http://arxiv.org/abs/1206.4803
https://doi.org/10.1103/PhysRevD.88.054024
http://arxiv.org/abs/1307.4935
http://arxiv.org/abs/1307.4935
https://doi.org/10.1007/JHEP04(2014)060
http://arxiv.org/abs/1311.3589
https://doi.org/10.1103/PhysRevD.89.053011
http://arxiv.org/abs/1312.1628


[169] Christoph Englert, Yotam Soreq, and Michael Spannowsky. “Off-Shell
Higgs Coupling Measurements in BSM scenarios”. In: JHEP 05 (2015),
p. 145. DOI: 10.1007/JHEP05(2015)145. arXiv: 1410.5440 [hep-ph].

[170] Christoph Englert, Matthew McCullough, and Michael Spannowsky.
“Combining LEP and LHC to bound the Higgs Width”. In: Nucl. Phys.
B902 (2016), pp. 440–457. DOI: 10.1016/j.nuclphysb.2015.11.017.
arXiv: 1504.02458 [hep-ph].

[171] John M. Campbell, R. Keith Ellis, Elisabetta Furlan, and Raoul RÃűntsch.
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