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Abstract
Although the cost of high-throughput technologies has decreased dramati-

cally, it is still expensive to obtain a large number of biological replicates. On

the other hand, with the wide adoption of high-throughput biology, multiple

related genomic datasests are often available. The first two chapters tackle the

challenging problem of borrowing information across multiple datasets, allowing

context specificity, and overcoming the exponential growth of parameter space

simultaneously to improve signal detection for noisy genomic data . Chapter 1

proposes a flexible Bayesian hierarchical mixture model to capture the latent

correlation structures embedded in the data, named as “correlation motifs”, and

utilizes that piece of information to improve signal detection. The application is

illustrated by differential gene expression detection when the expression datasets

have only a small number of replicate samples. Chapter 2 demonstrates that a

generalized version of the correlation motif approach can also help detect allele-

specific protein-DNA binding from ChIP-seq data, which often suffers from low

statistical power due to the limited number of sequence reads mapped to het-

erozygote SNPs. For both cases, the correlation motif approach substantially

improves signal detection for low-signal-to-noise ratio data.

Moreover, the current high-throughput technologies such as immunopre-

cipitation (ChIP) with high-throughput sequencing (ChIP-seq) or tiling array

hybridization (ChIP-chip) for studying protein-DNA interactions are “high-

throughput” in terms of mapping a given type of transcription factor (TF)

genome-widely. Nevertheless, mapping genome-wide binding sites of all TFs
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in all biological contexts is a critical step toward understanding gene regula-

tion. From this perspective, ChIP-seq and ChIP-chip are low-throughput with

respect to surveying many TFs. Recent advances in genome-wide chromatin

profiling, including development of technologies such as DNase-seq, FAIRE-seq

and ChIP-seq for histone modifications, make it possible to predict in vivo TF

binding sites by analyzing chromatin features at computationally determined

DNA motif sites for many TFs simultaneously. Chapter 3 compares different

models and discusses various issues arising from this new approach.
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3.1 Correlation between TF binding and chromatin features. (a) Hi-

stone modification H3K27ac ChIP-seq and DNase-seq profiles at

a MYC motif site are shown along with ChIP-seq data for TF

MYC in two cell lines K562 and Huvec. The profiles shown are

read counts in 100bp sliding windows at 25bp resolution. MYC

binding can be inferred from the H3K27ac and DNase data. In

this example, the motif site is bound by MYC in the K562 cell

line but not in the Huvec cell line. The cell-type specific binding

is correlated with the cell-type specific H3K27ac and DNase I hy-

persensitivity. In the K562 H3K27ac track, MYC binding leads

to nucleosome displacement. As a result, the binding site is sur-

rounded by two nucleosomes carrying the H3K27ac signals (He

and others (2010)), causing the dip shape in the signal curve.

In the K562 DNase track, the peak reflects the chromatin ac-

cessibility due to TF binding. (b) Pearson correlation coeffi-

cients between different types of chromatin data and the actual

MYC ChIP-seq binding intensities in K562 across all MYC mo-

tif sites. Certain chromatin features (e.g., H3K27ac, H3K4me2,

H3K4me3, H3K9ac, DNase and FAIRE) clearly correlate with

MYC binding. (c) A scatter plot demonstrating the correlation

between H3K27ac and MYC ChIP-seq binding intensities in K562

across all MYC motif sites. Each dot is a motif site. The bind-

ing intensities are normalized and log2 transformed read counts.

‘Cor’: Pearson correlation coefficient. (d) Correlation between
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Chapter 1

Correlation Motif Model for
Differential Gene Expression
Detection

1.1 Introduction

Detecting differentially expressed genes is a basic task in the analysis of gene

expression data. The state-of-the-art solutions to this problem, such as limma

(Smyth, 2004), SAM (Tusher and others , 2001), edgeR (Robinson and Smyth,

2007, 2008) and DESeq (Anders and Huber, 2010), are mostly designed for

analyzing data from a single experiment or study. With 1,000,000+ samples

stored in public databases such as Gene Expression Omnibus (GEO), it is now

very common for scientists to have data from multiple related experiments or

studies. An emerging problem is how one can integrate data from multiple

studies to more effectively analyze differential expression.

One example that motivated this article is a study of the vertebrate Sonic

Hedgehog (SHH) signaling pathway. SHH is a signaling protein that can bind to

PTCH1, a receptor protein in cell membrane (Figure 1.1(a)). PTCH1 can inter-

act with another membrane protein SMO to repress its activity. In the absence
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Figure 1.1: (a) A cartoon illustration of the SHH pathway. (b) A numerical
example of the data generating model. There exist four motifs in the dataset,
with the abundance π = (0.2, 0.23, 0.18, 0.39). Each row of the Q matrix rep-
resents a motif and each column corresponds to a study. The gray scale of the
cells in π and Q illustrates the probability value. Given π and Q, each gene
is assigned a motif indicator bg. For instance, the fifth gene belongs to motif
2. Next, the configuration of the fifth gene, [a51, a52, a53, a54, a55], is generated
according to q2 = (0.02, 0.15, 0.78, 0.92, 0.89). As a result, the fifth gene is dif-
ferentially expressed in study 2,4 and 5. Finally, the moderated t-statistic t5d
within each study d is produced according to the configuration a5d.

2



of SHH, PTCH1 keeps SMO inactive. The presence of SHH will repress PTCH1

and activate SMO. The active SMO triggers a signaling cascade by modulat-

ing activities of three transcription factors, GLI1, GLI2 and GLI3, which in

turn will induce or repress the expression of hundreds of downstream target

genes. The SHH pathway is one of the core signaling pathways in vertebrate

development. It is associated with multiple types of tumors and birth defects

(Ingham and McMahon, 2001; Villavicencio and others , 2000). To elucidate the

underlying mechanism linking this pathway to diseases, multiple studies have

been performed in different contexts to identify genes whose transcriptional ac-

tivities are modulated by SHH signaling. Some studies perturb the SHH signal

in different tissues by knocking out or over-expressing the pathway’s key signal

transduction components such as SHH, PTCH1 and SMO, while others com-

pare disease samples with corresponding controls. Table 1.1 contains eight such

datasets in mice originally generated and compiled by Tenzen and others , 2006

and Mao and others , 2006. Each dataset involves a comparison of genome-wide

expression profiles between two different sample types. These data were all

collected using Affymetrix Mouse Expression Set 430 arrays. The questions of

biological interest include (1) which genes are controlled by the SHH signal in

each dataset, (2) which genes are the core targets that respond to the SHH sig-

nal irrespective of tissue type and developmental stage, and (3) which genes are

context-specific targets and are modulated by the SHH signal only in certain

conditions. For simplicity, below we will call each dataset a study .

One simple approach to analyze these data is to analyze each study sepa-

rately using existing state-of-the-art methods such as limma (Smyth, 2004) or

SAM (Tusher and others , 2001). This approach is not ideal as it may fail to
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Study ID Condition 1 (case) Sample No. Condition 2 (control) Sample No. Reference
1 8somites smo 3 8somites wt 3 Tenzen and others (2006)
2 8somites ptc 3 8somites wt 3 Tenzen and others (2006)
3 13somites ptc 3 13somites wt 3 Tenzen and others (2006)
4 head shh 3 head wt 3 Tenzen and others (2006)
5 limb shh 3 limb wt 3 Tenzen and others (2006)
6 Medulloblastoma tumor 3 Medulloblastoma control 2 Mao and others (2006)
7 BCC tumor 3 BCC control 3 Mao and others (2006)
8 13somites smo 3 13somites wt 3 Tenzen and others (2006)

Table 1.1: SHH microarray data description. 8somites and 13somites indicate
two different developmental stages of embryos; smo indicates mice with mutant
Smo; ptc stands for mice with mutant Ptch1; wt means wild type; shh represents
Shh mutant. Medulloblastoma and BCC (basal cell carcinoma) are two types
of tumors.

detect genes with low fold changes but consistently differential in many or all

studies.

Modeling all data jointly may allow one to borrow information across studies

to improve the analysis. A simple model to combine data is to assume that each

gene is either differential in all studies or non-differential in all studies (Conlon

and others , 2006). This concordance model may help with identifying genes

with small but consistent expression changes in all studies. However, it ignores

the reality that activities of many important genes are tissue- or time-specific.

This method will only produce a single gene list that reports and ranks genes in

the same way for all studies. It cannot prioritize genes differently for different

studies to account for context-specificity.

A more flexible approach is to consider all possible differential expression

patterns. Suppose there are D studies and each gene can either be differential

or non-differential in each study, there will be 2D possible differential expression

patterns. One can model the data as a mixture of 2D different gene classes. This

allows one to deal with context-specificity. However, an obvious drawback is that
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as the number of studies increases, the number of possible patterns increases

exponentially. Thus the model does not scale well with the increasing D.

Here, we propose a new method, CorMotif , for jointly analyzing multiple

studies to improve differential expression detection. This method is both flexible

for handling context-specificity and scalable to increasing study number. The

key idea is to use a small number of latent probability vectors called “correla-

tion motifs” to model the major correlation patterns among the studies. The

motifs essentially group genes into clusters based on their differential expression

patterns, and the differential gene detection is coupled with the clustering.

Previously, Kendziorski and others (2003) proposed a method for analyzing

differential expression involving multiple biological conditions. This method,

abbreviated as “eb1” hereinafter, requires users to specify all possible differ-

ential patterns, and the data are then modeled accordingly. If a user applies

this method to detect differential expression between two conditions in mul-

tiple studies and wants to accommodate all possible differential patterns, the

user has to enumerate all 2D possible patterns, leading to the exponential com-

plexity problem. Similar to Kendziorski and others (2003), Jensen and others

(2009) developed a hierarchical Bayesian model and a Markov Chain Monte

Carlo (MCMC) algorithm to analyze multiple conditions, again with exponen-

tial complexity due to requirement of enumerating all possible patterns. Ruan

and Yuan (2011) generalized Kendziorski and others (2003) to a model that can

integrate information from multiple studies where each study may involve com-

parisons of multiple conditions. Within each study, this method enumerates all

possible combinatorial patterns among multiple conditions (again exponential

complexity). Across studies, differential expression patterns are assumed to be
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concordant; that is, each gene is assumed to have the same differential pat-

tern in all studies. The concordance assumption does not allow study-specific

differential expression.

Scharpf and others (2009) proposed a fully Bayesian framework, XDE, for

cross-study differential expression analysis. It offers two implementations. The

“Single-Indicator” implementation uses a concordance model by assuming that

each gene’s differential state is the same across all studies. The “Multiple-

Indicator” implementation allows study-specific differential expression. How-

ever, it assumes that all genes have the same prior probability to be differential

within the same study, and the differential states of each gene in different stud-

ies are a priori independent. Conceptually, these assumptions are similar to a

CorMotif model with a single cluster, which often is insufficient to capture the

heterogeneity among genes since the cross-study correlation pattern may vary

from one gene to another (see details later). XDE does not have the exponential

complexity problem, but it uses MCMC for posterior inference and is very slow

computationally.

To capture the heterogeneity among genes, Yuan and Kendziorski (2006)

developed a method for simultaneous clustering and differential expression anal-

ysis. Similar to CorMotif , this method also assumes that genes belong to multi-

ple clusters, and different clusters have different propensities to show differential

expression. However, Yuan and Kendziorski (2006) only considered detecting

differential expression between two conditions in one study. Although one may

conceptually extend this approach to handle multiple studies by combining it

with the model developed by Kendziorski and others (2003), such a simple ex-

tension would lead to a model (called “eb10best” hereinafter) in which genes
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are assumed to fall into multiple clusters and each cluster is a mixture of 2D

differential patterns. As a result, the complexity of the parameter space would

become O(K ∗ 2D), where K is the number of clusters.

In summary, none of the tools discussed above allows one to integrate infor-

mation from multiple studies and also addresses study-specificity, heterogeneity

among genes, and exponential complexity at the same time. These are the is-

sues CorMotif attempts to solve. We organize this article as follows. Section

1.2 introduces the CorMotif model and algorithm. Section 1.3 uses simulations

to demonstrate the approach. In Section 1.4, CorMotif will be applied to the

SHH data. Section 1.5 will provide remarks and discussions. Here, we focus on

discussing CorMotif for microarray data since it was motivated by the microar-

ray analysis in the SHH study. However, the idea behind CorMotif is general,

and it should be straight-forward to develop a similar framework for RNA-seq

data. The link of the CorMotif R package is listed in Section 1.6, and the

supplementary materials are laid out in Section 1.7.

1.2 Methods

1.2.1 Data Structure and Preprocessing

Suppose there are G genes and D microarray studies. Each study d compares

two biological conditions (e.g., cancer vs. normal), and each condition l has ndl

replicate samples. Different studies may be related, but they can compare dif-

ferent biological conditions. Let xgdlj denote the normalized and appropriately

transformed expression value of gene g in study d, condition l and replicate j.

In this article, all microarray data were normalized and log-transformed using
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RMA (Irizarry and others , 2003). The collection of all observed data is

X = {xgdlj : g = 1, . . . , G; d = 1, . . . , D; l = 1, 2; j = 1, . . . , ndl} .

Each gene can be differentially expressed in some, all, or none of the studies.

Let agd = 1 or 0 indicate whether gene g is differentially expressed in study d or

not. A = (agd)G×D is a G×D matrix that contains all agds. Given the observed

data X, one is interested in inferring A.

CorMotif first applies limma (Smyth, 2004) to each study separately. Define

x̄gdl =
∑
j xgdlj/ndl, nd = nd1 + nd2 and vd = 1

nd1
+ 1

nd2
. For gene g and study d,

compute the mean expression difference ygd = x̄gd1 − x̄gd2 and sample variance

s2gd =
∑
l

∑
j(xgdlj − x̄gdl)

2/(nd − 2). The limma approach assumes that ygds

and s2gds within each study d follow a hierarchical model: (1) [ygd|µgd, σ2
gd] ∼

N(µgd, vdσ
2
gd), (2) µgd = 0 if agd = 0, (3) [µgd|agd = 1, σ2

gd] ∼ N(0, wdσ
2
gd),

(4) [s2gd|σ2
gd] ∼

σ2
gd

nd−2
χ2
nd−2, and (5) [ 1

σ2
gd

] ∼ 1
n0ds

2
0d
χ2
n0d

. Here wd, n0d and s20d

are unknown parameters. Their values can be estimated using the procedure

described in Smyth (2004). This hierarchical model allows one to pool infor-

mation across genes to stabilize the variance estimates. Smyth (2004) shows

that it can significantly improve differential gene detection when the sample

size nd is small. For each study d, limma produces a moderated t-statistic

for each gene g, computed as tgd = ygd/
√
vds̃2gd, where s̃2gd =

n0ds
2
0d+(nd−2)s2gd
n0d+nd−2

.

This statistic summarizes gene g’s differential expression information in study

d. Under this model, when gene g is not differentially expressed in study d (i.e.,

agd = 0), tgd follows a t-distribution tn0d+nd−2; when agd = 1, tgd follows a scaled

t-distribution (1 + wd/vd)
1/2tn0d+nd−2 (Smyth, 2004).

Next, we arrange all tgds into a matrix T = (tgd)G×D. CorMotif will then

use T instead of the raw expression values X to infer A.
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1.2.2 Correlation Motif Model

Organize the differential expression states of gene g into a vector ag = [ag1, ag2, · · · , agD].

For D studies, ag has 2D possible configurations. A simple way to describe the

correlation among studies is to document the empirical frequency of observing

each of the 2D configurations of ag among all genes. This is because f(ag),

the joint distribution of [ag1, ag2, · · · , agD], is known once the probability of ob-

serving each configuration is given. This joint distribution will determine how

agds from different studies are correlated. While simple, this approach is not

scalable since it requires O(2D) parameters and the parameter space expands

exponentially with increasing D.

To avoid this limitation, CorMotif adopts a hierarchical mixture model

(Figure 1.1(b)). The model assumes that genes fall into K different classes

(K � 2D), and the moderated t-statistics T = (tgd)G×D are viewed as gener-

ated as follows.

• First, each gene g is randomly and independently assigned a class label bg

according to probability π = (π1, ..., πK). Here, πk ≡ Pr(bg = k) is the

prior probability that a gene belongs to class k, and
∑
k πk = 1.

• Second, given genes’ class labels (i.e., bgs), genes’ differential expression

states agds are generated independently according to probabilities qkd ≡

Pr(agd = 1|bg = k). For genes in the same class k, ags are generated using

the same probabilities qk = (qk1, ..., qkD).

• Third, given the differential expression states agds, genes’ moderated t-

statistics tgds are generated independently according to fd1(tgd) = f(tgd|agd =
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1) ∼ (1 + wd/vd)
1/2tn0d+nd−2 or fd0(tgd) = f(tgd|agd = 0) ∼ tn0d+nd−2.

Let B = (b1, ..., bG) be the class membership for all genes. Organize qk into

a matrix Q = (qT1 , · · · , qTK)T = (qkd)K×D. Let δ(·) be an indicator function:

δ(·) = 1 if its argument is true, and δ(·) = 0 otherwise. Based on the above

model, the joint probability distribution of A, B and T conditional on π and

Q is:

Pr(T ,A,B|π,Q) =
G∏
g=1

K∏
k=1

{πk
D∏
d=1

[qkdfd1(tgd)]
agd [(1− qkd)fd0(tgd)]1−agd}δ(bg=k)

(1.1)

According to this model, each gene class k is associated with a vector qk

whose elements are the prior probabilities of a gene in this class to be differential

in studies 1, . . . , D. Each qk represents a probabilistic differential expression

pattern and therefore is called a “motif”. Since qkds are probabilities, genes in

the same class can have different ag configurations. On the other hand, genes

from the same class share the same qk, and hence their differential expression

configuration ags tend to be similar. Genes in different classes have different

qks, and their ags also tend to be different. Essentially, our model groups genes

into K clusters based on ag. However, unlike an usual clustering algorithm,

here ags are unknown.

Despite the assumption that agds are a priori independent conditional on the

class label bg, agds are no longer independent once the class label bg is integrated

out. To see this, consider the prior probability that a gene is differentially ex-

pressed in all studies. Based on our model, Pr(ag = [1, · · · , 1]) =
∑
k(πk

∏
d qkd).

A priori, the probability for a gene to be differential in study d is Pr(agd =

1) =
∑
k πkqkd. If agds from different studies are independent, one would expect
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Pr(ag = [1, · · · , 1]) =
∏
d Pr(agd = 1) =

∏
d(
∑
k πkqkd) which is clearly different

from
∑
k(πk

∏
d qkd). This explains why the hierarchical mixture model above

can be used to describe the correlation among multiple studies. Since the mix-

ture of qks provides the key to model the cross-study correlation, each vector

qk is also called a “correlation motif”.

A model with K correlation motifs requires O(KD) parameters in total.

Usually, a smallK (� 2D) is sufficient to capture the major correlation structure

in the real data. Therefore, our method can be easily scaled up to deal with

large D scenarios. When 0 < qkd < 1, each qk will be able to generate all 2D

configurations with non-zero probabilities. Thus, our model also retains the

flexibility to allow all 2D configurations of ag to occur at individual gene level.

1.2.3 Statistical Inference

In reality, only T is observed. π and Q are unknown parameters. A and B are

unobserved missing data. To infer the unknowns from T , we first assume that

K is given and introduce a Dirichlet prior Dir(2, ..., 2) for π and a Beta prior

B(2, 2) for qkd such that:

Pr(π,Q,A,B|T ) ∝
G∏
g=1

K∏
k=1

{πk
D∏
d=1

[qkdfd1(tgd)]
agd [(1− qkd)fd0(tgd)]1−agd}δ(bg=k)

∗
K∏
k=1

πk
K∏
k=1

D∏
d=1

qkd(1− qkd) (1.2)

Based on the above posterior distribution, an expectation-maximization (EM)

algorithm can be derived to search for the posterior mode of π and Q (Gelman

and others , 2004). We chose the Dirichlet distribution Dir(2, ..., 2) instead of

Dir(1, ..., 1) as prior since the mode of a Dirichlet distribution Dir(α1, ..., αK)
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for themth component is (αm−1)/(
∑K
k=1 αk−K), which is zero when αm = 1 and

not defined when all αks are equal to one. As a result, in the EM iterations, when

a motif is associated with very few genes such that
∑G
g=1E(δ(bg = m)|T , π̂, Q̂) is

close to zero, the estimate of πm will become close to zero if we use Dir(1, ..., 1).

This will make the algorithm numerically unstable since the EM is implemented

at logarithm scale (i.e., log(πm) instead of πm is used in the implementation to

avoid underflow when multiplying multiple probabilities). The same reason

explains why B(2, 2) was chosen as the prior for qkd.

Using the estimated π̂ and Q̂, one can then compute E(agd|T , π̂, Q̂) =

Pr(agd = 1|T , π̂, Q̂), the posterior probability that gene g is differentially ex-

pressed in study d. Next, we rank order genes in each study separately using

Pr(agd = 1|T , π̂, Q̂). The ranked lists can be used to choose follow-up targets.

Users can also provide a posterior probability cutoff to dichotomize genes into

differential or non-differential genes in each study. The default cutoff is 0.5.

In order to choose the motif number K, we use Bayesian Information Crite-

rion (BIC). Details of the EM algorithm and BIC computation are provided in

the Supplementary Materials Section 1.7.

CorMotif improves the differential expression detection by integrating in-

formation both across studies and across genes. Pr(agd = 1|T , π̂, Q̂) can

be decomposed as
∑K
k=1 Pr(agd = 1|T , π̂, Q̂, bg = k) ∗ Pr(bg = k|T , π̂, Q̂).

Here, Pr(bg = k|T , π̂, Q̂) is determined by jointly evaluating gene g’s expres-

sion data in all studies, and Pr(agd = 1|T , π̂, Q̂, bg = k) contains information

specific to study d. According to Bayes’ theorem, Pr(agd = 1|T , π̂, Q̂, bg =

k) ∝ Pr(tgd|agd = 1, Q̂, bg = k) × Pr(agd = 1|π̂, Q̂, bg = k). tgd in the

first term that contains expression information for a given gene g in study
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d. To compute its denominator, the limma approach also utilized information

across genes to help with estimating the variance. Meanwhile, the second term

Pr(agd = 1|π̂, Q̂, bg = k) involves prior probabilities given by the correlation

motifs (i.e., q̂ks) which are estimated by examining data from all genes. Ow-

ing to this two-way information pooling (i.e., across both studies and genes),

CorMotif uses information more effectively than methods based on only a sin-

gle gene or a single study. This is especially useful for analyzing studies with

relatively weak signal-to-noise ratio.

1.3 Simulations

1.3.1 Compared Methods

We compared CorMotif with six other methods: separate limma, all concord ,

full motif , SAM , eb1 , eb10best . We did not compare the method in Jensen

and others (2009) as no software was available for this method. The sepa-

rate limma approach analyzes each study separately using limma. The mod-

erated t-statistics in each study are assumed to be a mixture of tn0d+nd−2 and

(1 + wd/vd)
1/2tn0d+nd−2. To better evaluate the gain from data integration, we

matched this analysis to CorMotif as much as possible by running an EM algo-

rithm similar to CorMotif to compute the posterior probability for differential

expression using 0.5 as default cutoff. Conceptually, this makes separate limma

equivalent to CorMotif with a single cluster (K = 1), and the analysis pro-

duces the same gene ranking as limma in each study. All concord assumes

that a gene is either differentially expressed in all studies or non-differential

in all studies (i.e., ag = [1, 1, . . . , 1] or [0, 0, . . . , 0]). Conditional on ag, the
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model for tgd remains the same as CorMotif and limma. Full motif assumes

that genes fall into 2D classes, corresponding to the 2D possible ag configura-

tions. It can be viewed as a saturated version of the CorMotif model. All

the other methods are applied to xgdljs directly. SAM (Tusher and others ,

2001) processes each study separately, whereas eb1 and eb10best analyze all

studies jointly. The eb1 method corresponds to the R package EBarrays with

lognormal-normal (LNN) and one cluster assumption (Kendziorski and others ,

2003). The eb10best method is EBarrays with lognormal-normal and multiple

cluster assumption, and the cluster number is chosen as the one with the lowest

AIC among 1 to 10 (Yuan and Kendziorski, 2006). We also tried XDE (Scharpf

and others , 2009). However, it took extremely long computing time, usually 24

hours on a machine with 2.7GHz CPU and 4Gb RAM for 1000 iterations, for

an analysis involving four studies. Moreover, 1000 iterations usually were not

enough for XDE to converge for an analysis consisting of four studies, which

was the smallest data we analyzed here. Therefore, XDE will not be compared

hereinafter. eb10best failed to work when it was used to jointly analyze ≥ 7

studies. Full motif and eb1 failed when a dataset was composed of 20 studies.

1.3.2 Model-based Simulations

We first tested CorMotif using simulations. In simulation 1, we generated

10,000 genes and four studies according to the four differential patterns in Fig-

ure 1.2(a,b): 100 genes were differentially expressed in all four studies (ag =

[1, 1, 1, 1]); 400 genes were differential only in studies 1 and 2 ([1, 1, 0, 0]); 400

genes were differential only in studies 2 and 3 ([0, 1, 1, 0]); 9100 genes were

non-differential ([0, 0, 0, 0]). Each study had six samples: three cases and three
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controls. The variances σ2
gds were simulated from a scaled inverse chi-square

distribution n0ds
2
0d/χ

2(n0d), where n0d = 4 and s20d = 0.02. Given σ2
gd, the ex-

pression values were generated using xgdlj ∼ N(0, σ2
gd). Whenever agd = 1, we

drew µgd from N(0, w0d ∗ σ2
gd) where w0d = 4, and µgd was then added to the

expression values of the three cases (i.e., xgd1js).

CorMotif was fit with the motif number K varying from 1 to 10. The K

with the lowest BIC was chosen as the final motif number. In this way, four mo-

tifs were reported, and they were very similar to the true underlying differential

patterns (Figure 1.2 (c)). To examine if CorMotif can improve gene ranking,

for each study d we counted the number of true differential genes (true posi-

tives), TPd(r), among the top r ranked genes for each method, and we plotted

TPd(r) versus r in Figure 1.2 (q,r,s,t). CorMotif consistently performed among

the best in all studies. For instance, CorMotif identified 361 true differential

genes among its top 500 gene list in study 1 (Figure 1.2(q)). This performance

was almost the same as the saturated model full motif , which identified 362

true positives among the top 500 genes. Among the other methods, eb10best

identified 341, all concord identified 292, and the others identified fewer than

292 true positives among the top 500 genes. Thus, CorMotif detected at least

23.6% more true positives compared to any other method except full motif and

eb10best . Both full motif and eb10best have the problem of exponentially grow-

ing parameter space and will break down when the study number D is large. In

addition, eb10best only identified 360 true positives among the top 1000 genes,

whereas CorMotif identified 419, representing a 16.4% improvement.

In CorMotif , we labeled genes as differential if the posterior probability

Pr(agd = 1|T , π̂, Q̂) > 0.5. Similarly, for separate limma, all concord , full
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Figure 1.2: Results for the model assumption based simulations. Also see Sup-
plementary Figure 1.4. (a),(e),(i),(m) Motif patterns for simulations 1-4. The
Q of the true motifs in the simulated data. (b),(f),(j),(n) The true number of
genes belonging to each motif in the simulated data (i.e., π ∗G). (c),(g),(k),(o)
The estimated Q̂ from the learned motifs. (d),(h),(l),(p) The estimated number
of genes belonging to each learned motif (i.e., π̂ ∗G). It can be seen that motif
patterns learned by CorMotif are similar to the true underlying motif patterns.
(q)-(t) Gene ranking performance of different methods in simulation 1. TPd(r),
the number of genes that are truly differentially expressed in study d among the
top r ranked genes by a given method, is plotted against the rank cutoff r.
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Method Motif pattern c(0, 0, 0, 0) c(0, 1, 1, 0) c(1, 1, 0, 0) c(1, 1, 1, 1)
CorMotif c(0, 0, 0, 0) 9072 161 165 16

c(0, 1, 1, 0) 3 168 3 7
c(1, 1, 0, 0) 3 2 151 6
c(1, 1, 1, 1) 0 1 0 33

other 22 68 81 38
separate limma c(0, 0, 0, 0) 9035 144 144 16

c(0, 1, 1, 0) 0 68 0 5
c(1, 1, 0, 0) 0 0 57 6
c(1, 1, 1, 1) 0 0 0 4

other 65 188 199 69
all concord c(0, 0, 0, 0) 9095 236 236 20

c(0, 1, 1, 0) 0 0 0 0
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 5 164 164 80

other 0 0 0 0
full motif c(0, 0, 0, 0) 9072 161 164 16

c(0, 1, 1, 0) 4 172 4 7
c(1, 1, 0, 0) 3 2 155 6
c(1, 1, 1, 1) 0 1 0 35

other 21 64 77 36
eb1 c(0, 0, 0, 0) 62 0 2 0

c(0, 1, 1, 0) 2178 30 22 3
c(1, 1, 0, 0) 569 7 12 0
c(1, 1, 1, 1) 753 34 32 64

others 5538 329 332 33
eb10best c(0, 0, 0, 0) 0 0 0 1

c(0, 1, 1, 0) 316 220 16 10
c(1, 1, 0, 0) 180 23 226 10
c(1, 1, 1, 1) 5789 77 52 63

other 2815 80 106 16
SAM c(0, 0, 0, 0) 9099 256 279 48

c(0, 1, 1, 0) 0 20 0 3
c(1, 1, 0, 0) 0 0 9 2
c(1, 1, 1, 1) 0 0 0 1

other 1 124 112 46

Table 1.2: Confusion matrix for simulation 1. The column labels indicate the
true underlying patterns and the row labels represent the reported configura-
tions at gene level. For CorMotif , separate limma, all concord , full motif , eb1
and eb10best , differential expression in each study is determined using their de-
fault posterior probability cutoff 0.5. For SAM , q-value cutoff 0.1 was used to
call differential expression. This yields similar number of correct classifications
for pattern [0, 0, 0, 0] compared with CorMotif.
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motif , eb1 and eb10best , differential expression was determined using their de-

fault posterior probability cutoff 0.5. For SAM , q-value cutoff 0.1 was used

to call differential expression. At this cutoff, SAM reported similar number of

genes with ag = [0, 0, 0, 0] (i.e., non-differential in all studies) compared with

CorMotif. This allowed us to meaningfully compare SAM and CorMotif in

terms of their ability to find differential genes. The confusion matrix in Table

1.2 shows that CorMotif was better at characterizing genes’ true differential

configurations compared to most other methods. For instance, among the 400

[0, 1, 1, 0], 400 [1, 1, 0, 0] and 100 [1, 1, 1, 1] genes, CorMotif correctly reported

differential label agd in all four studies for 168, 151 and 33 genes respectively.

In contrast, separate limma only unmistakenly labeled 68, 57 and 4 genes re-

spectively. All concord requires genes to have the same differential status in

all studies. As such, it lacks the flexibility to handle study-specific differential

expression. It correctly identified 80 out of 100 [1, 1, 1, 1] genes, but none of

the [0, 1, 1, 0] and [1, 1, 0, 0] genes were correctly labeled as study-specific. With

the default cutoff, eb1 and eb10best only labeled 62 and 0 out of 9100 [0, 0, 0, 0]

genes as completely non-differential, compared to 9072 labeled by CorMotif .

In other words, eb1 and eb10best reported more false positive differential ex-

pression events. At the same time, fewer [0, 1, 1, 0] and [1, 1, 0, 0] genes were

correctly identified by eb1 (30 and 12 vs. 168 and 151 by CorMotif ). Similarly,

SAM was also poor at identifying the differential expression patterns [1, 1, 1, 1],

[1, 1, 0, 0] and [0, 1, 1, 0]. Among all the methods, only full motif performed

slightly better than CorMotif . Even so, CorMotif was able to perform close to

this saturated model. Adding up the diagonal elements in the confusion ma-

trix for each method, CorMotif unmistakenly assigned ag labels to 9424 genes,
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whereas this number was 9164 for separate limma, 9175 for all concord , 9434

for full motif , 168 for eb1 , 509 for eb10best , and 9129 for SAM .

Using a similar approach, we performed simulations 2-4 which involved dif-

ferent study numbers and differential expression patterns shown in Figure 1.2(e-

p). The complete results are shown in Supplemental Material Figure 1.4 and

Tables 1.4 to 1.6. The conclusions were similar to simulation 1. In particular,

simulation 4 had 20 studies. full motif , eb1 and eb10best all failed to run on

this data.

1.3.3 Simulations Based on Real Data

In real data, the distributions for xgdljs may deviate from our model assump-

tions. Therefore, we further evaluated CorMotif using simulations that re-

tained the real data noise structure. In simulation 5, 24 Human U133 Plus 2.0

Affymetrix microarray samples were downloaded from four GEO experiments.

Each experiment corresponds to a different tissue and consists of six biological

replicates (Supplemental Table 1.7). After RMA normalization, replicate sam-

ples in each experiment were split into three “cases” and three “controls”. We

then spiked in differential signals by adding random N(0, 1) deviates to the three

cases according to patterns shown in Figure 1.5 (a-b). Data simulated in this

way were able to keep the background characteristics in real data. Simulation 5

is similar to simulations 1 and 2. CorMotif again recovered the underlying dif-

ferential patterns. It showed comparable differential gene detection performance

to full motif and outperformed the other methods (Supplemental Figure 1.5 (e-

h), Table 1.8). In a similar fashion, we performed simulations 6 and 7 based on

real data (Supplemental Methods and Table 1.7). These two simulations have
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the same differential signal patterns as simulations 3 and 4, respectively. Here,

the motifs reported by CorMotif differ slightly from the underlying truth, but

all the major correlation patterns were captured by the reported motifs. Once

again, CorMotif performed the best in terms of differential gene detection (Sup-

plemental Figure 1.5, Tables 1.9,1.10), and eb1 , eb10best and full motif failed

to run when the study number increased (when they failed, their results were

not shown).

1.3.4 Motifs Are Parsimonious Representation of True
Correlation Structures

As we use probability vectors to serve as motifs, it is possible that multiple

weak patterns can be merged into a single motif. For instance, two comple-

mentary patterns [1,1,0,0] and [0,0,1,1] each with n genes can be absorbed into

a single motif with qk = (0.5, 0.5, 0.5, 0.5) having 2n genes. To illustrate, we

conducted simulations 8-10 which were composed of the same samples as in

simulation 5 and various proportions of differential expression patterns (Sup-

plemental Figure 1.6). In simulation 9 (Figure 1.6 (i-l)), the relative abundance

of two complementary block motifs ([1,1,0,0] and [0,0,1,1]) was small compared

to the concordance motif [1,1,1,1], and they were absorbed into a single motif.

In simulations 5, 8 and 10 (Figure 1.6 (a-h),(m-p)), the complementary block

motifs were more abundant, and the program successfully identified them as

separate motifs. In general, we observed that weaker patterns were more likely

to be merged than patterns with abundant data support. In all cases, however,

CorMotif still provided the best gene ranking results compared to other meth-

ods (Supplemental Figure 1.7). Supplemental Figures 1.6 and 1.7 also show that
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the higher the proportions of study-specific motifs (e.g., [1,1,0,0] and [0,0,1,1]),

the better CorMotif will perform compared to the concordance analysis (i.e.,

all concord) in terms of ranking genes in each study. Together, the analyses

here demonstrate that the correlation motifs only represent a parsimonious rep-

resentation of the correlation structure supported by the available data. One

should not expect CorMotif to always recover all the true underlying clusters

exactly. In spite of this, our simulations show that CorMotif can still effectively

utilize the correlation among studies to improve differential gene detection.

1.4 Application to the Sonic Hedgehog (Shh)

Signaling Data Sets

We used CorMotif to analyze the SHH data in Table 1.1 Datasets 1 and 2

compare SMO mutant mice with wild type mice (wt) and PTCH1 mutant with

wild type, respectively, in the 8 somite stage of developing embryos. Dataset 3

compares PTCH1 mutant with wild type in 13 somite stage. Datasets 4 and 5

compare SHH mutant with wild type in developing head and limb, respectively.

Datasets 6 and 7 study gene expression changes in two SHH-related tumors,

medulloblastoma and basal cell carcinoma (BCC), compared to normal samples

(control). Dataset 8 compares SMO mutant with wild type in the 13 somite

stage of developing embryos. CorMotif was applied to datasets 1-7. Dataset 8

was reserved for testing.

Five motifs were discovered (Figure 1.3(a,b)). Motif 1 mainly represents

background. Motif 2 contains genes that have high probability to be differential

in all studies. Genes in motif 3 tend to be differential in most studies except for

the two involving PTCH1 mutant (i.e., studies 2 and 3). Most genes in motif 4
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Figure 1.3: Results for the SHH data. (a)-(b) Motif patterns learned from
the SHH data. (c) Gene ranking performance for SHH study 1. The genes
differentially expressed in dataset 8 (13somites smo vs. 13somites wt) were
obtained using separate limma. They were used as the gold standard. TPd(r),
the number of genes in dataset 1 that are truly differentially expressed among
the top r ranked genes by each method, is plotted against the rank cutoff r. (d)
Differential status claimed by each method for known SHH pathway genes. Dark
blue indicates differential expression and light grey represents non-differential
expression.
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are not differential in the two studies involving the SHH mutant (i.e., studies 4

and 5) but tend to be differential in all other studies. Motif 5 mainly represents

genes with differential expression in tumors (i.e., studies 6 and 7) but not in

embryonic development (i.e., studies 1-5). In general, looking at the columns in

Figure 1.3(a), the two studies involving tumors (6,7) are more similar to each

other compared to other studies. The two PTCH1 mutant studies (2,3) are

also relatively similar, and the same trend holds true for the two SHH mutant

studies (4,5).

In this real data analysis, no comprehensive truth is available for evaluating

differential expression calls. Without comprehensive knowledge about the true

differential expression states of all genes in all cell types, we can only perform a

partial evaluation based on existing knowledge. In this regard, we used dataset

8 as a test. Similar to dataset 1, this dataset compares SMO mutant with

wild type. One expects that differential genes in these two datasets should be

largely similar. Therefore, we used the top 217 differentially expressed genes

detected by separate limma (at the posterior probability cutoff 0.5) in dataset 8

as gold standard to evaluate the gene ranking performance of different methods

in dataset 1. Figure 1.3(c) shows that CorMotif again performed similar to full

motif and outperformed all other methods. eb10best failed to run here. We

note that since dataset 8 and datasets 2-7 represent more different biological

contexts, one cannot use it as gold standard for evaluating these other datasets.

Finally, we examined well-studied SHH responsive target genes. Gli1, Ptch1,

Ptch2, Hhip and Rab34 are known to be regulated by SHH signaling in somites

and developing limb (Vokes and others , 2007, 2008). Therefore, we expect

these genes to be differential in studies 1, 2, 3 and 5. Figure 1.3(d) shows that
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Table 1.3: Ranks of known SHH target genes by each method in the SHH
analysis.

Gene name Analysis Method Study 1 Study 2 Study 3 Study 4 Study 5 Study 6 Study 7
Gli1 separate limma 6 7 16 9 7 1369 515

CorMotif 5 6 7 7 6 930 324
all concord 9 9 9 9 9 9 9

full motif 5 7 7 4 5 809 308
SAM 7 6 17 9 10 1627 583

eb1 33396 25 36 24 24 1828 720
Ptch1 separate limma 7 19 4 4 2 783 19

CorMotif 6 20 8 4 3 495 12
all concord 5 5 5 5 5 5 5

full motif 7 16 4 3 2 409 14
SAM 6 18 5 4 2 964 25

eb1 13455 8 6 9 4 1464 289
Ptch2 separate limma 273 607 9996 1527 458 2530 117

CorMotif 140 437 462 356 264 1848 69
all concord 40 40 40 40 40 40 40

full motif 145 450 482 285 256 1686 70
SAM 303 630 9066 1431 468 2488 95

eb1 7331 579 838 727 433 418 161
Hhip separate limma 105 25 31 580 2964 13452 6

CorMotif 61 19 27 264 652 9259 2
all concord 22 22 22 22 22 22 22

full motif 58 22 28 249 632 8529 2
SAM 107 24 20 597 2903 16223 7

eb1 6111 32 10 353 326 7462 131
Rab34 separate limma 927 553 299 577 396 15782 241

CorMotif 324 401 164 176 261 10418 150
all concord 160 160 160 160 160 160 160

full motif 386 372 139 194 274 9546 151
SAM 953 613 450 619 430 15923 171

eb1 1371 1333 1042 1130 1074 12564 1019
Hand2 separate limma 34351 11862 6647 6061 196 20672 44939

CorMotif 3601 3394 2794 1036 544 13371 17909
all concord 4987 4987 4987 4987 4987 4987 4987

full motif 3327 3021 2460 917 550 12585 14457
SAM 34455 12375 8381 6582 207 22592 44945

eb1 28270 2191 3040 1650 571 23269 33457
Hoxd13 separate limma 6805 7572 1893 10644 12 26047 9676

CorMotif 1990 2371 1746 1223 93 15204 5734
all concord 933 933 933 933 933 933 933

full motif 1943 2490 1246 1064 88 14041 4722
SAM 6724 7763 2684 10553 12 27578 8579

eb1 6919 804 696 641 14 26742 12464
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CorMotif , all concord and full motif were able to correctly identify differential

expression of these genes in all these studies, whereas separate limma, SAM

and eb1 failed to do so (they missed some cases). Table 1.3 also shows that

in many studies, CorMotif , all concord and full motif provided better rank

for these genes compared to separate limma, SAM and eb1 . Hand2 is known

to be a target of SHH signaling in developing limb but not in somites (Vokes

and others , 2008). While separate limma, CorMotif , full motif and SAM can

correctly identify this, all concord and eb1 failed to do so. For all concord , since

Hand2 was not differential in studies 1-4, 6 and 7, the method thinks that this

gene is not differential in any study. Similarly, Hoxd13 is a limb specific target

of SHH signaling (Vokes and others , 2008). While the other methods correctly

identified this, all concord failed again by claiming it to be differential in all

studies. In all the genes examined, only CorMotif and full motif were able

to correctly identify all known differential states. Together, our analyses show

that CorMotif offers unique advantage over the other methods in the integrative

analysis of multiple gene expression studies.

1.5 Discussion

In summary, we have proposed a flexible and scalable approach for integrative

analysis of differential gene expression in multiple studies. Using a few proba-

bility vectors instead of 2D dichotomous vectors to characterize the differential

expression patterns provides the key to circumvent the challenge of exponential

growth of parameter space as the study number increases. The probabilistic

nature of the motifs also allows all 2D differential patterns to occur in the data
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at indiviual gene level.

The motif matrix Q can be viewed in two different ways. On one hand,

each row of Q represents a cluster of genes with similar differential expression

patterns across studies. Having many different motifs in Q is an indication

that a concordance model, such as all concord , may not be sufficient to describe

the correlation structure in the data. On the other hand, each column of Q

represents differential expression propensities of different gene classes in a given

study. If two columns are similar, the corresponding studies share similar differ-

ential expression profiles (e.g., studies 6 and 7 in the SHH data are more similar

to each other compared to the other studies in the same data).

CorMotif is computationally efficient. It took ∼ 0.5 hour to analyze the

SHH data for a given K, and 5.19 hours in total to run all Ks from 1 to 10. As

a comparison, both eb10best and XDE failed, and eb1 took 2.51 hours. separate

limma (2.09 minutes) and SAM (1.71 minutes) were faster since each single

study was processed separately each time. The relative efficiency of CorMotif

is partly because we simplified the computation by modeling the moderated

t-statistics tgd instead of the raw expression values xgdljs. In addition, we used

EM instead of the more time-consuming MCMC to fit the model. Despite

these simplifications, our results show that the present model robustly performs

comparable or better than the alternative methods. A potential future work is

to couple the correlation motif idea with more sophisticated models for the raw

data xgdlj and explore whether the analysis can be improved further.

The correlation motif framework is general. Conceptually, one can mod-

ify the data generating distributions fd0 and fd1 to accommodate other data

types, and use the same framework for a variety of meta-analysis problems. For
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example, with appropriate modification to fd0s and fd1s, the correlation motif

idea should be directly applicable to RNA-seq data. Nevertheless, a systematic

treatment of RNA-seq analysis is beyond the scope of this paper.

1.6 Software

CorMotif is freely available as an R package in Bioconductor:

http://www.bioconductor.org/packages/release/bioc/html/Cormotif.html.

1.7 The Supplementary Materials for Cormotif

1.7.1 The EM Algorithm used in Cormotif

This section presents the EM algorithm used to search for posterior mode of

π̂ and Q̂ of the distribution Pr(π,Q|T ) =
∑
A,B Pr(π,Q,A,B|T ). In the

EM algorithm, A and B are missing data. The algorithm iterates between the

E-step and the M-step.

In the E-step, one evaluates the Q-function Q(π,Q|π̂old, Q̂old) which is de-

fined as Eold[lnPr(π,Q,A,B|T )]. Here the expectation is taken with respect to

distribution Pr(A,B|T , π̂old, Q̂old), abbreviated as Prold(A,B), where π̂old, Q̂old

are the parameter estimates obtained from the last iteration.

We have

lnPr(π,Q,A,B|T ) =
G∑
g=1

K∑
k=1

δ(bg = k) lnπk

+
G∑
g=1

K∑
k=1

δ(bg = k)

{
D∑
d=1

agd[ln qkd + ln fd1(xgd)]

}

+
G∑
g=1

K∑
k=1

δ(bg = k)

{
D∑
d=1

(1− agd)[ln(1− qkd) + ln fd0(xgd)]

}
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+
K∑
k=1

lnπk +
K∑
k=1

D∑
d=1

[ln qkd + ln(1− qkd)] + constant (1.3)

Therefore,

Q(π,Q|π̂old, Q̂old) = Eold[lnPr(π,Q,A,B|T )]

=
G∑
g=1

K∑
k=1

lnπkEold(δ(bg = k))

+
G∑
g=1

K∑
k=1

D∑
d=1

[ln qkd + ln fd1(xgd)]Eold(δ(bg = k)agd)

+
G∑
g=1

K∑
k=1

D∑
d=1

[ln(1− qkd) + ln fd0(xgd)]Eold(δ(bg = k)(1− agd))

+
K∑
k=1

lnπk +
K∑
k=1

D∑
d=1

[ln qkd + ln(1− qkd)] + constant

(1.4)

In the M-step, one finds π andQ that maximize the Q-functionQ(π,Q|π̂old, Q̂old).

Denote them as π̂new and Q̂new and they will be used in next iteration.

By solving

∂Q(π,Q|π̂old, Q̂old)

∂πk
= 0 (1.5)

∂Q(π,Q|π̂old, Q̂old)

∂qkd
= 0 (1.6)

We have

π̂newk =

∑G
g=1 Prold(bg = k) + 1

G+K
(1.7)

q̂newkd =

∑G
g=1 Prold(bg = k, agd = 1) + 1∑G

g=1 Prold(bg = k) + 2
(1.8)
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In the formulae above, Prold(bg = k) and Prold(bg = k, agd = 1) can be

computed as below

Prold(bg = k) =
π̂
(old)
k

∏D
d=1[q̂

(old)
kd fd1(tgd) + (1− q̂(old)kd )fd0(tgd)]∑K

l=1 π̂
(old)
l

∏D
d=1[q̂

(old)
ld fd1(tgd) + (1− q̂(old)ld )fd0(tgd)]

(1.9)

Prold(bg = k, agd = 1) = Prold(agd = 1|bg = k) ∗ Prold(bg = k)

=
q̂
(old)
kd fd1(tgd)

q̂
(old)
kd fd1(tgd) + (1− q̂(old)kd )fd0(tgd)

Prold(bg = k)

(1.10)

Therefore, we can iteratively use the EM algorithm to obtain the estimates

for π and Q.

1.7.2 Bayesian Information Criterion (BIC) for Choos-
ing k

BIC is computed as

BIC(K) = −2 ∗ lnPr(T |π,Q) + (K − 1 +K ∗D) ∗ lnG (1.11)

= −2 ∗
G∑
g=1

ln

[
K∑
k=1

{πk
D∏
d=1

[qkdfd1(tgd) + (1− qkd)fd0(tgd)]}
]

+(K − 1 +K ∗D) ∗ lnG

BIC for different values of K are calculated and the K corresponding to the

model that achieves the smallest BIC is chosen. Here K is the number of motifs

in the data and K − 1 is the number of parameters for π. KD is the number

of parameters involved in Q. G is the gene number.
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1.7.3 Data for Real Data Based Simulations

Simulations 5-10 were based on real data characteristics. Each simulation con-

tained multiple studies, and each study was composed of six samples from the

same GEO experiment with the same biological condition as detailed in Ta-

ble 1.7. The six samples were further split into three pseudo cases and three

pseudo controls. They were used as the simulated background since one does

not expect differential signals between replicate samples. We then spiked in dif-

ferential signals by adding random N(0, 1) numbers to the three cases according

to the patterns shown in Figures 1.5 (a-b,i-j,q-r) and 1.6(a-b,e-f,i-j,m-n). Data

simulated in this way were able to keep the background characteristics in real

data.
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(h) Simulation 3 Study 5
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(i) Simulation 4 Study 1
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(k) Simulation 4 Study 6
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Figure 1.4: Gene ranking performance for simulations 2, 3 and 4. TPd(r),
the number of genes that are truly differentially expressed in study d among
the top r ranked genes by a given method, is plotted against the rank cutoff
r. Simulations 3 and 4 contain more than four studies, and results for four
representative studies are shown. (a)-(d) Simulation 2. (e)-(h) Simulation 3.
Studies 1 and 2 are representative for patterns in studies 1, 2 and 7, 8; studies
3 and 5 are representative for patterns in studies 3 to 6. (i)-(l) Simulation 4.
Studies 1 and 2 are representative for patterns in studies 1-5 and 16-20; studies
6 and 11 are representative for patterns in studies 6-15.
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Figure 1.5: Motif patterns and gene ranking performance for simulations 5,
6 and 7. (a)-(d) True and estimated motif patterns for simulation 5. (e)-(h)
Gene ranking performance for simulation 5. (i-l) Motif patterns for simulation
6. (m-p) Gene ranking performance for simulation 6. (q-t) Motif patterns for
simulation 7. (u)-(x) Gene ranking performance for simulation 7.
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Figure 1.6: Motif patterns for simulations 5, 8, 9 and 10. (a),(e),(i),(m) The
Q for the true underlying motifs in the simulated data. (b),(f),(j),(n) The
true number of genes belonging to each motif in the simulated data (i.e., π ∗
G). (c),(g),(k),(o) The estimated Q̂ for the learned motifs. (d),(h),(l),(p) The
estimated number of genes belonging to each learned motif (i.e., π̂ ∗G). In the
Q pattern graph (columns 1 and 3), each row indicates a motif pattern and
each column represents a study. The gray scale of the cell (k, d) demonstrates
the probability of differential expression in study d for pattern k. Each row of
the bar chart for (π ∗ G) corresponds to the motif pattern in the same row of
the Q graph. The motif patterns learned by CorMotif are similar to the true
underlying motif patterns. It can be seen that complementary block motifs,
such as [1,1,0,0] and [0,0,1,1], are not likely to be absorbed into merged motifs
if their relative proportions are not low.
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Figure 1.7: Gene ranking performance for simulations 5, 8, 9 and 10. TPd(r),
the number of genes that are truly differentially expressed in study d among
the top r ranked genes by a given method, is plotted against the rank cutoff
r. (a)-(d) Simulation 5. (e)-(h) Simulation 8. (i)-(l) Simulation 9. (m)-(p)
Simulation 10.
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Table 1.4: Confusion matrix for simulation 2. The column labels indicate the
true underlying patterns and the row labels represent the learned configurations.

Method Motif pattern c(0, 0, 0, 0) c(0, 0, 1, 1) c(1, 1, 0, 0) c(1, 1, 1, 1)
Cormotif c(0, 0, 0, 0) 9069 122 99 54

c(0, 0, 1, 1) 7 127 0 30
c(1, 1, 0, 0) 3 0 153 29
c(1, 1, 1, 1) 0 1 1 89

other 21 50 47 98
separate limma c(0, 0, 0, 0) 9024 112 89 58

c(0, 0, 1, 1) 1 44 0 13
c(1, 1, 0, 0) 0 0 57 17
c(1, 1, 1, 1) 0 0 0 8

other 75 144 154 204
all concord c(0, 0, 0, 0) 9094 180 166 76

c(0, 0, 1, 1) 0 0 0 0
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 6 120 134 224

other 0 0 0 0
full motif c(0, 0, 0, 0) 9069 122 99 54

c(0, 0, 1, 1) 7 130 0 33
c(1, 1, 0, 0) 5 0 160 29
c(1, 1, 1, 1) 0 1 1 99

other 19 47 40 85
eb1 c(0, 0, 0, 0) 4693 20 8 5

c(0, 0, 1, 1) 376 65 1 8
c(1, 1, 0, 0) 474 1 74 10
c(1, 1, 1, 1) 365 131 132 238

other 3192 83 85 39
eb10best c(0, 0, 0, 0) 0 0 0 0

c(0, 0, 1, 1) 79 188 1 30
c(1, 1, 0, 0) 68 0 202 31
c(1, 1, 1, 1) 7793 105 87 223

other 1160 7 10 16
SAM c(0, 0, 0, 0) 9095 209 236 193

c(0, 0, 1, 1) 0 7 0 6
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 0 0 0 0

other 5 84 64 101
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Table 1.5: Confusion matrix for simulation 3. The column labels indicate the
true underlying patterns and the row labels represent the learned configurations.

Method Motif pattern Motif1 Motif2 Motif3 Motif4 Motif5
CorMotif Motif1 9189 28 48 50 4

Motif2 0 68 0 0 4
Motif3 0 1 65 0 5
Motif4 0 2 0 97 6
Motif5 0 0 0 0 27
other 11 101 87 53 154

separate limma Motif1 9076 24 36 43 3
Motif2 0 2 0 0 0
Motif3 0 0 2 0 0
Motif4 0 0 0 3 1
Motif5 0 0 0 0 0
other 124 174 162 154 196

all concord Motif1 9200 96 117 94 5
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 104 83 106 195
other 0 0 0 0 0

full motif Motif1 9185 28 46 49 4
Motif2 0 63 0 0 3
Motif3 0 0 51 0 4
Motif4 0 2 0 89 3
Motif5 0 0 0 0 14
other 15 107 103 62 172

eb1 Motif1 748 0 1 1 0
Motif2 273 2 0 0 0
Motif3 4 0 1 0 0
Motif4 47 0 0 0 0
Motif5 1239 157 149 170 183
other 6889 41 49 29 17

SAM Motif1 9200 139 170 165 134
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 0 61 30 35 66
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Table 1.6: Confusion matrix for simulation 4. The column labels indicate the
true underlying patterns and the row labels represent the learned configurations.

Method Motif pattern Motif1 Motif2 Motif3 Motif4 Motif5
CorMotif Motif1 9198 4 5 2 0

Motif2 0 29 0 0 0
Motif3 0 0 20 0 0
Motif4 0 0 0 22 0
Motif5 0 0 0 0 4
other 2 167 175 176 196

separate limma Motif1 8907 1 3 1 0
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 293 199 197 199 200

all concord Motif1 9200 58 69 69 0
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 142 131 131 200
other 0 0 0 0 0

SAM Motif1 9197 64 66 92 23
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 3 136 134 108 177

Table 1.7: GEO data used for real data based simulations.

Simulation ID Study ID GEO Sample Id GEO series number Sample No. Sample type
Simulations 5-10 1 GSM366065 - GSM366070 GSE14668 6 Liver tissue of liver donor
Simulations 5-10 2 GSM550623 - GSM550628 GSE22138 6 Uveal Melanoma primary tumor tissue
Simulations 5-10 3 GSM553482 - GSM553487 GSE22224 6 Peripheral blood mononuclear cells of healthy volunteer
Simulations 5-10 4 GSM494634 - GSM494639 GSE33356 6 Normal lung tissue
Simulations 6-7 5 GSM909644- GSM909649 GSE37069 6 Blood samples from controls
Simulations 6-7 6 GSM909650 - GSM909655 GSE37069 6 Blood samples from controls
Simulations 6-7 7 GSM909656- GSM909661 GSE37069 6 Blood samples from controls
Simulations 6-7 8 GSM909662 - GSM909667 GSE37069 6 Blood samples from controls
Simulations 6-7 9 GSM90968 - GSM909673 GSE37069 6 Blood samples from controls
Simulations 6-7 10 GSM909674- GSM909679 GSE37069 6 Blood samples from controls

Simulation 7 11 GSM376428 - GSM376433 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 12 GSM376434- GSM376439 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 13 GSM376440 - GSM376445 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 14 GSM376446 - GSM376451 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 15 GSM376452 - GSM376457 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 16 GSM376458 - GSM376463 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 17 GSM376464 - GSM376469 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 18 GSM376470 - GSM376475 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 19 GSM376476 - GSM376481 GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 20 GSM376482 - GSM376487 GSE15061 6 Non-leukemia bone marrow samples
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Table 1.8: Confusion matrix for simulation 5. The column labels indicate the
true underlying patterns and the row labels represent the learned configurations.

Method Motif pattern c(0, 0, 0, 0) c(0, 0, 1, 1) c(1, 1, 0, 0) c(1, 1, 1, 1)
CorMotif c(0, 0, 0, 0) 53670 108 164 20

c(0, 0, 1, 1) 6 286 0 18
c(1, 1, 0, 0) 29 0 200 6
c(1, 1, 1, 1) 0 0 0 31

other 70 6 36 25
separate limma c(0, 0, 0, 0) 53615 121 171 24

c(0, 0, 1, 1) 0 79 0 8
c(1, 1, 0, 0) 0 0 46 3
c(1, 1, 1, 1) 0 0 0 1

other 160 200 183 64
all concord c(0, 0, 0, 0) 53748 187 255 26

c(0, 0, 1, 1) 0 0 0 0
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 27 213 145 74

other 0 0 0 0
full motif c(0, 0, 0, 0) 53671 108 165 20

c(0, 0, 1, 1) 5 286 0 18
c(1, 1, 0, 0) 30 0 201 6
c(1, 1, 1, 1) 0 0 1 36

other 69 6 33 20
eb1 c(0, 0, 0, 0) 49817 190 188 23

c(0, 0, 1, 1) 161 103 0 12
c(1, 1, 0, 0) 244 0 66 8
c(1, 1, 1, 1) 11 0 0 7

other 3542 107 146 50
eb10best c(0, 0, 0, 0) 51731 109 125 36

c(0, 0, 1, 1) 5 232 0 6
c(1, 1, 0, 0) 12 0 169 4
c(1, 1, 1, 1) 0 0 0 16

other 2027 59 106 38
SAM c(0, 0, 0, 0) 53773 283 398 83

c(0, 0, 1, 1) 0 0 0 0
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 0 0 0 0

other 2 117 2 17
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Table 1.9: Confusion matrix for simulation 6. The column labels indicate the
true underlying patterns and the row labels represent the learned configurations.

Method Motif pattern Motif1 Motif2 Motif3 Motif4 Motif5
CorMotif Motif1 53600 15 11 15 1

Motif2 0 169 0 1 4
Motif3 4 1 147 0 2
Motif4 1 3 0 178 7
Motif5 0 1 0 1 170
other 270 11 42 5 16

separate limma Motif1 53340 21 12 22 5
Motif2 0 16 0 0 4
Motif3 0 0 14 0 2
Motif4 0 0 0 17 1
Motif5 0 0 0 0 0
other 535 163 174 161 188

all concord Motif1 43 36 49 4
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 17 157 164 151 196
other 0 0 0 0 0

full motif Motif1 53578 15 11 13 1
Motif2 0 156 0 0 2
Motif3 3 0 146 0 1
Motif4 1 2 0 166 4
Motif5 0 0 0 0 136
other 293 27 43 21 56

eb1 Motif1 47986 24 14 18 0
Motif2 3 47 0 0 5
Motif3 23 1 42 0 1
Motif4 10 0 0 69 1
Motif5 3 0 0 0 38
other 5850 128 144 113 155

SAM Motif1 53851 120 138 116 89
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 24 80 62 84 111

39



Table 1.10: Confusion matrix for simulation 7. The column labels indicate the
true underlying patterns and the row labels represent the learned configurations.

Method Motif pattern Motif1 Motif2 Motif3 Motif4 Motif5
CorMotif Motif1 52442 3 5 4 1

Motif2 6 188 0 0 1
Motif3 10 0 156 0 0
Motif4 5 0 0 187 10
Motif5 0 0 0 0 165
other 1412 9 39 9 23

separate limma Motif1 51999 7 24 5 4
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 1876 193 176 195 196

all concord Motif1 53859 27 49 18 3
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 16 173 151 182 197
other 0 0 0 0 0

SAM Motif1 53812 108 145 110 100
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 63 92 55 90 100
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Chapter 2

Integrative Analysis of
Allele-specificity of
Protein-DNA Interactions in
Multiple ChIP-seq Datasets

1

2.1 Introduction

In a diploid organism, each somatic cell has two copies of the genome. At

certain genomic loci, gene expression, DNA methylation, transcription factor

(TF) binding or histone modification (HM) can be allele-specific. In other

words, the two alleles can behave differently. These phenomena, also known

as allele-specific expression (ASE), allele-specific DNA methylation (ASM) and

allele-specific binding (ASB, including both allele-specific TF binding and allele-

specific histone modifications), can contribute to phenotypic diversity and may

1A modified version of this chapter has been published: Wei YY∗, Li X∗, Wang Q, Ji
HK(2012) iASeq: Integrating Multiple ChIP-seq Datasets for Detecting Allele-specific Bind-
ing. BMC Genomics. 13:681. Highly accessed.(∗ joint first authors.) doi: 10.1186/1471-
2164-13-681
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play important roles in adaptive evolution (Bell and Beck (2009); Graze and

others (2012); Knight (2004)). Many allele-specific (AS) events have been

found to correlate with variants in genomic sequences (Chen and others (2012);

McDaniell and others (2010); Kasowski and others (2010); Kerkel and others

(2008); Morley and others (2004); Schilling and others (2009); Tycko (2010);

Zhang and others (2009)). Comprehensively characterizing allele-specificity

therefore can help with linking genotypes to phenotypes. Abnormal AS events

have also been linked to various diseases (Cui and others (2003); Holt and others

(2011); Heap and others (2010); Tuch and others (2010)). For instance, loss of

imprinting in IGF2 has been associated with increased risk of colorectal can-

cer (Cui and others (2003)). This again highlights the importance of studying

allele-specificity.

Early methods for analyzing AS events rely on low-throughput technologies

such as real time quantitative PCR (Bell and Beck (2009)). Later, applica-

tion of SNP arrays has made the AS analysis high-throughput (Ben-David and

others (2011); Lo and others (2003); Palacios and others (2009); Serre and oth-

ers (2008)). More recently, the rapidly evolving high-throughput sequencing

technologies opened the door to produce digital read-out of AS events genome-

wide without being constrained by any specific array design (Chen and others

(2011); McDaniell and others (2010); Montgomery and others (2010); Pickrell

and others (2010); Heap and others (2010); Ju and others (2011); Tang and

others (2011); Tuch and others (2010)). This brings many new opportunities

as well as analytical challenges.

ChIP-seq, a technology that couples chromatin immunoprecipitation with
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high-throughput sequencing, has become the state-of-the-art approach for map-

ping genome-wide TF binding sites and HMs (Barski and others (2007); Johnson

and others (2007); Mikkelsen and others (2007); Robertson and others (2007)).

However, so far the value of this technology for studying ASB has not been fully

utilized. Detecting ASB from a single ChIP-seq dataset often suffers from low

statistical power. This is because only a small fraction of reads in each ChIP-seq

sample are mapped to heterozygote SNPs, and only these reads are informative

for inferring allele-specificity. To make the ChIP-seq based ASB analysis more

useful, it is important to have either experimental or analytical innovations to

increase the power for detecting allele-specificity.

ChIP-seq data in public domains grow rapidly. A recently developed database

hmChIP, for instance, has compiled over 450 human and mouse ChIP-seq datasets

representing approximately 2000 samples from 140+ different TFs and HMs

(Chen and others (2011)). The large volume of data provides a new oppor-

tunity to improve detection of ASB. Conceptually, an integrative analysis of

ChIP-seq data for different TFs and HMs from the same individual and cell

type may allow one to discover the synergistic correlation patterns of allele-

specificity among different proteins. These correlation patterns can then be

utilized to integrate information from multiple datasets to improve the ASB

detection. For example, if the allelic imbalance of TF A and HM B always

co-occur, then analyzing their ChIP-seq data jointly will increase the effective

number of reads available for allelic inference which will then increase the sta-

tistical power. Unfortunately, existing data analysis tools cannot deal with

this emerging opportunity. Methods available for analyzing ASE or ASB using

the next-generation sequencing data are all designed for analyzing one dataset
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at a time. While a few methods are developed for solving problems such as

read mapping biases (Degner and others (2009)), construction of individual-

ized genome sequences (Rozowsky and others (2011)), and combining multiple

SNPs in the same gene to infer ASE (Skelly and others (2011)), no methods and

software tools are available for jointly analyzing multiple ChIP-seq datasets to-

gether to discover synergy patterns of allele-specificity among multiple proteins

and then use the correlation patterns to increase the power of ASB detection

by borrowing information across datasets.

In this chapter, we present an integrated solution to this problem by de-

veloping a new approach, iASeq, for jointly analyzing allele-specificity in mul-

tiple ChIP-seq datasets. iASeq uses a Bayesian hierarchical mixture model

to describe unknown correlation patterns of allele-specificity among multiple

datasets. These patterns can be discovered automatically from the data by fit-

ting the model using an Expectation-Maximization (EM) algorithm. Using the

identified correlation patterns, the model allows one to integrate information

from multiple datasets to improve the ASB detection. Applying this approach,

we analyzed 40 ENCODE (ENCODE Consortium (2004)) ChIP-seq datasets

in GM12878 cells, representing a total of 77 samples from 34 TFs and HMs.

The analysis demonstrates the ability of iASeq to automatically integrate infor-

mation from multiple datasets to significantly improve the detection of allelic

imbalance. iASeq is implemented as an R package which is freely available from

Bioconductor.
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2.2 Methods

2.2.1 Data Structure

Suppose there are D ChIP-seq datasets generated using cells from the same

individual and the same cell type. Each dataset d corresponds to one TF or

HM, and has Jd replicate samples (Figure 2.1a). Different datasets represent

different TFs or HMs, or data generated by different labs. For the individual

in question, assume one is interested in analyzing I heterozygote SNPs with

known genotypes. We want to know whether the two alleles of each SNP be-

have differently in each dataset, and how the AS events are correlated among

datasets. For each SNP, the allele consistent with the reference genome is called

the reference allele, and the other allele is called the non-reference allele.

After read mapping and data preprocessing (see Supplemental Methods Sec-

tion 2.6), we count reads for each allele at each heterozygote SNP. For SNP i,

dataset d and replicate sample j, let xidj and yidj be the read counts for the

reference allele and non-reference allele respectively. Let nidj = xidj +yidj be the

total read count (See Figure 2.1a for a toy example). Protein-DNA binding can

be skewed to the reference allele (SR), skewed to the non-reference allele (SN),

or not allele-specific (NS). We use a binary variable bid to indicate whether SNP

i is SR (bid = 1) or not (bid = 0) in dataset d. If bid = 1, then SNP i is assumed

to be SR in all replicate samples in dataset d. Similarly, we introduce another

binary indicator cid to indicate whether SNP i is SN or not in dataset d. bid and

cid cannot be equal to one at the same time. If bid = 0 and cid = 0, then SNP i is

NS in dataset d. The configuration at each SNP i can be described by two vec-

tors Bi = (bi1, · · · , biD) and Ci = (ci1, · · · , ciD) (See Figure 2.1d for a cartoon
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Figure 2.1: The iASeq model (a) An example of the data structure. Each row
represents a SNP and each column corresponds to either the reference allele
(R) or the non-reference allele (N) read counts from a ChIP-seq sample. iASeq
assumes the following data generating process. (b) First, SNPs belong to K+ 1
classes with different ASB patterns. For each SNP, a class label ai is randomly
assigned according to a class abundance π. Given the class label, a configuration
[bid, cid] is generated for each SNP in each dataset according to V k and W k.
(c) Next, a skewing probability pidj is generated for each SNP i, dataset d and
replicate sample j based on [bid, cid]. The distribution of pidj for NS SNPs in each
sample follows a Beta distribution (blue lines). pidjs for SR SNPs are uniformly
distributed in the interval [pdj0, 1] where pdj0 is the mean of the background Beta
distribution (dark blue lines). pidjs for SN SNPs are uniformly distributed in the
interval [0, pdj0] (light blue lines). (d) Finally, given the configuration [bid, cid],
skewing probability pidj and a total read count nidj for SNP i, dataset d and
sample j, the read count for each allele is generated according to a binomial
distribution. The length of the bar represents the read count,orange for the
non-reference allele and red for the reference allele.
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illustration). Based on these notations, (xidj, yidj), or equivalently (xidj, nidj),

are the observed data for SNP i in sample (d, j), whereas the indicators bid and

cid are unobserved.

2.2.2 Main Intuition and Challenge

Our primary goal is to infer for each SNP whether there is allelic imbalance in

each dataset. This is equivalent to inferring bid and cid. A simple solution to

this problem is to analyze each individual dataset separately, but this approach

has low statistical power since the counts (xidj, nidj) usually are small.

If one knows how different datasets are correlated in terms of allelic imbal-

ance, this knowledge may be used to improve the data analysis. For instance,

if the allelic imbalance of two proteins A and B are closely correlated, then ob-

serving skewed read counts for protein A will provide information for inferring

the allelic imbalance of protein B. Integrating the data from both A and B will

increase the effective number of reads available for statistical inference, which

will then lead to increased statistical power.

In reality, how different proteins are correlated is usually unknown. How-

ever, one may learn it by studying the data from many SNPs. Each SNP

has three possible states in each dataset: SR, SN and NS. For D datasets,

there are 3D possible configurations in total. From studying many SNPs, one

can know the relative frequencies (or mixing proportions) of these 3D configu-

rations. The mixing proportions will tell how different datasets are correlated.

For instance, let [s1, s2, · · · , sD] be the skewness configuration of a SNP in the D

datasets. If the mixing proportions for three configurations [NS,NS, · · · , NS],

[SR, SR, · · · , SR] and [SN, SN, · · · , SN ] are 0.9, 0.05 and 0.05, then no other
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configurations exist in the data and all datasets are perfectly correlated in terms

of the allelic imbalance. In other words, at a particular SNP, if one dataset is

SR, then all the other datasets are also SR. If one is SN, then all the others

are also SN. On the other hand, if other configurations have non-zero mixing

proportions, then not all datasets are perfectly correlated, and at a particular

SNP, one allows the possibility that only a subset of datasets are correlated. For

instance, if the mixing proportion for a configuration [SR, SR,NS, · · · , NS] is

0.03, then there will be 3% of SNPs that are skewed to the reference allele in the

first two datasets but not skewed in the other datasets. Therefore, knowing the

mixing proportions of all 3D configurations will tell one the correlation structure

in the data. This knowledge can then be used to improve statistical inference at

each individual SNP by facilitating information sharing across datasets. For ex-

ample, if the configuration [SR, SR, SN ] has a much higher mixing proportion

than [SR, SR,NS], then observing strong skewness towards the reference allele

of a SNP in the first two datasets will imply that, a priori, the SNP is highly

likely to be skewed to the non-reference allele in the third dataset and has much

lower probability to be non-skewed for both alleles. The principle here is the

same as the principle represented by the Bayesian hierarchical models in the

statistical literature.

A limitation of this approach is that one has to enumerate all 3D AS con-

figurations in order to describe the correlation. As the number of datasets

increases, the number of possible configurations increases exponentially. Thus

this approach does not scale well with the increasing D. Later, in our analysis

of GM12878 data, D = 40 and 3D > 1019. This simple approach is clearly

intractable.
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To circumvent the difficulty of documenting the frequencies of all 3D con-

figurations, iASeq employs a technique that can describe the major correlation

patterns in the data using a few probability vectors whose values vary from 0

to 1 rather than being dichotomous (i.e., 0 or 1). This approach significantly

reduces the model complexity but keeps the flexibility to account for all 3D con-

figurations. It is easily scalable to increasing dataset number. The correlation

structure in the model can then be used to improve the statistical inference of

allelic imbalance at each SNP in each individual dataset.

2.2.3 Probability Model

iASeq is based on the Bayesian hierarchical mixture model below that uses

several probability vectors to describe the major correlation patterns among

multiple datasets (Figure 2.1). The model assumes that SNPs can be grouped

into K + 1 classes with different allele-specificity patterns (K � 3D), and the

observed data are viewed as generated as follows:

• First, a class label ai is randomly assigned to each SNP i according to

a probability vector π = (π0, π1, · · · , πK). Here, πk = Pr(ai = k) is the

prior probability to assign a SNP to class k.
∑
k πk = 1.

• If the class label ai = 0, then Bi = (0, · · · , 0) and Ci = (0, · · · , 0). In

other words, all SNPs in class 0 are background SNPs, and they are NS

in all datasets. If ai = k and k 6= 0, then SNP i can be skewed, and

its [bid; cid]s in different datasets are generated independently according

to the following probabilities: Pr(bid = 1, cid = 0|ai = k) = vkd and

Pr(bid = 0, cid = 1|ai = k) = wkd. We assume vkd+wkd < 1, i.e., Pr(bid =

49



0, cid = 0|ai = k) = 1 − vkd − wkd > 0. The model implies that each

class is associated with two vectors of probabilities V k = (vk1, · · · , vkD)

and W k = (wk1, · · · , wkD). For SNPs in class k, Bi and Ci are generated

according to the probabilities in V k and W k.

• Next, the observed read counts are generated based on the AS config-

urations specified by Bis and Cis. Consider SNP i and dataset d. If

bid = 1, then (xidj, nidj) in each replicate sample (d, j) is generated ac-

cording to a probability distribution Pr(xidj, nidj|bid = 1, cid = 0) =

Pr(nidj|bid = 1, cid = 0)Pr(xidj|nidj, bid = 1, cid = 0) ≡ Pr(nidj)fidj1(xidj).

Here we assume that the marginal distribution of nidj does not depend

on bid and cid, and we use fidj1(xidj) to denote the conditional distribu-

tion Pr(xidj|nidj, bid = 1, cid = 0). Data in different replicate samples

are assumed to be generated independently. Similarly, if cid = 1, then

(xidj, nidj)s are generated according to Pr(xidj, nidj|bid = 0, cid = 1) =

Pr(nidj)fidj2(xidj). If bid = 0 and cid = 0, then (xidj, nidj)s are generated

according to Pr(xidj, nidj|bid = 0, cid = 0) = Pr(nidj)fidj0(xidj).

For SNP i and dataset d, we organize data from all replicates j = 1, · · · , Jd

into X id = (xid1, · · · , xidJd) and N id = (nid1, · · · , nidJd). For SNP i, X i =

(X i1, · · · ,X iD) and N i = (N i1, · · · ,N iD) contain data from all datasets. The

final observed data are X = (X1, · · · ,XI) and N = (N 1, · · · ,N I) which are

the ensemble of data from all SNPs.

Let A = (a1, · · · , aI) be the collection of class membership indictors of all

SNPs, and let B = (B1, · · · ,BI) and C = (C1, · · · ,CI) be the SR and SN
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indictors for all SNPs. A, B and C are the unobserved missing data one wants

to infer.

Organize the probability vectors V k and W k from different classes into two

matrices V K×D = (V T
1 , · · · ,V T

K)T andWK×D = (W T
1 , · · · ,W T

K)T . V ,W , and

the probability vector π that describes the class abundance are the unknown

model parameters. K is assumed to be fixed. The choice of K and specification

of data generating distributions Pr(nidj), fidj0(xidj), fidj1(xidj) and fidj2(xidj) will

be discussed later.

Based on this model, each SNP class k (k 6= 0) is associated with two

vectors of probabilities V k and W k which characterize the allelic imbalance

preferences in different datasets for SNPs belonging to class k. For example, if

a class has [V k;W k] = [(0.8, 0.7, 0.1, 0.1); (0.1, 0.1, 0.8, 0.1)], then SNPs in this

class have high probability to be SR in datasets 1 and 2, and high probability

to be SN in dataset 3, but they have low probability to be allele-specific in

dataset 4. Since V k and W k are probabilities rather than 0-1 vectors, each

class k can generate all 3D AS configurations. Therefore, SNPs in the same

class are not required to have the same AS configuration (e.g., a class can have

one SNP with configuration [SR, SR,NS,NS] while at the same time another

SNP with configuration [SR,NS, SR,NS]), although they usually have similar

AS configurations because SNPs in the same class are all generated using the

same probability vectors. Meanwhile, there are K different classes, and each

class has a different [V k;W k] which specifies a different preference to generate

the skewing configurations. Thus, whereas SNPs in the same class tend to

have similar [Bi;Ci] configurations, SNPs from different classes tend to have

very different configurations. Conceptually, this is similar to a model-based
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clustering analysis in which SNPs are grouped into K + 1 clusters based on

their [Bi;Ci] configurations. However, an important difference here is that

[Bi;Ci]s are unknown.

Our model assumes that [bid; cid]s of the same SNP in different datasets are

a priori independent conditional on the class membership ai. However, [bid; cid]s

from different datasets are not independent marginally if one integrates out

the class label ai. For example, the marginal probability Pr([bid; cid] = [1; 0]) =∑
k Pr([bid; cid] = [1; 0]|ai = k)Pr(ai = k) =

∑K
k=1 πkvkd. On the other hand, the

joint probability Pr([Bi;Ci] = [(1, 1, · · · , 1); (0, 0, · · · , 0)]) =
∑K
k=1 πk(

∏
d vkd),

which is clearly different from the product of the marginals
∏
d Pr([bid; cid] =

[1; 0]) =
∏
d(
∑K
k=1 πkvkd). This explains why our model can be used to describe

the correlation among multiple datasets despite the conditional independence

assumption. Intuitively, if one views the model as a clustering analysis of SNPs

based on [Bi;Ci], then each cluster will represent a co-occurrence pattern of

allele-specificity across multiple proteins. The marginal correlation among mul-

tiple datasets is described by multiple clusters, whereas within each cluster the

data in different datasets are generated independently. In real data, a small K

(i.e., a small number of SNP classes) usually is sufficient to describe the major

correlation structure among datasets. Using π, V and W to describe the cor-

relation among datasets only requires O(KD) parameters, which is significantly

less complex than O(3D) parameters. At the same time, the iASeq model still

provides the flexibility to accommodate all 3D possible [Bi;Ci] configurations

as all of them have non-zero probability to occur.
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2.2.4 Data Generating Distributions

To fully specify the model, one also needs to specify the data generating distri-

butions Pr(xidj, nidj|bid, cid) = Pr(nidj)Pr(xidj|nidj, bid, cid). The primary goal of

iASeq is to infer whether two alleles are different. We assume that information

on allele-specificity is only contained in Pr(xidj|nidj, bid, cid), and therefore the

exact form of Pr(nidj), i.e., the marginal probability distribution of the total

read count, is irrelevant for our purpose. As such, we mainly focus on mod-

eling the conditional distribution of xidj given nidj, bid and cid, i.e., the three

distributions fidj0(x), fidj1(x) and fidj2(x).

iASeq models these distributions hierarchically in two steps. First, xidj is

assumed to follow a binomial distribution xidj|nidj, pidj ∼ Bin(nidj, pidj), where

pidj is the probability that a read generated at SNP i in sample (d, j) represents

the reference allele. Next, we model pidj depending on the values of bid and cid.

If bid = 0 and cid = 0, SNP i is NS in dataset d. In this case, we assume that

pidj follows a Beta distribution Beta(αdj, βdj) with mean pdj0 = αdj/(αdj + βdj).

Note that a simpler model for pidj would be to set it to a constant pdj0 which

reflects the background ratio of read counts between two alleles. However, pre-

vious studies have shown that many background SNPs can have pidj slightly

different from the average background pdj0 even though they do not have bio-

logically meaningful allele-specificity Skelly and others (2011). As a result, a

constant pdj0 is not sufficient to describe the background variation. For this

reason, we adopt the Beta distribution to describe pidj instead of setting it to

a constant (See the blue lines illustrated for f(pidj|bid = 0, cid = 0) in Figure

2.1c). In the ideal world, the mean of the Beta distribution, pdj0, would be
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equal to 0.5. However, in reality pdj0 may be slightly different from 0.5 due to

various sources of read mapping biases. For example, allowing the same number

of mismatches, reads from the reference allele are easier to be mapped back to

the reference genome than reads from the non-reference allele. Therefore, in

iASeq pdj0 may take values different from 0.5. Indeed, it is determined by the

parameters αdj and βdj in the Beta distribution which are estimated from the

data using a moment matching approach (see Supplemental Method in Section

2.6). Once estimated, αdj, βdj and pdj0 are treated as fixed and known param-

eters. Based on the model for pidj, we integrate out all possible values of pidj

to obtain the distribution of xidj conditional on bid = 0 and cid = 0, which is a

beta-binomial distribution:

fidj0(xidj) = Pr(xidj|nidj, bid = 0, cid = 0)

=
∫ 1

0
Pr(xidj|nidj, pidj, bid = 0, cid = 0)f(pidj|bid = 0, cid = 0)dpidj

=
C
xidj
nidj

B(αdj, βdj)

∫ 1

0
pxidj+αdj−1(1− p)nidj−xidj+βdj−1dp

=
C
xidj
nidjB(xidj + αdj, nidj − xidj + βdj)

B(αdj, βdj)
(2.1)

Here Ck
n is the binomial coefficients “n choose k”, and B(., .) is the beta function.

If bid = 1 and cid = 0, SNP i is SR in dataset d. In this case, we assume that

pidj follows a uniform distribution U [pdj0, 1](See the dark blue lines illustrated for

f(pidj|bid = 1, cid = 0) in Figure 2.1c). Here pdj0 = αdj/(αdj + βdj) is defined as

above. After integrating out pidj, the distribution of xidj conditional on bid = 1

and cid = 0 is

fidj1(xidj) = Pr(xidj|nidj, bid = 1, cid = 0)
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=
∫ 1

0
Pr(xidj|nidj, pidj, bid = 1, cid = 0)f(pidj|bid = 1, cid = 0)dpidj

=
C
xidj
nidj

1− pdj0

∫ 1

pdj0

pxidj(1− p)nidj−xidjdp (2.2)

If bid = 0 and cid = 1, SNP i is SN in dataset d, and we assume that pidj

follows a uniform distribution U [0, pdj0] (See the light blue lines illustrated for

f(pidj|bid = 0, cid = 1) in Figure 2.1c). After integrating out pidj, the distribution

of xidj conditional on bid = 0 and cid = 1 is

fidj2(xidj) = Pr(xidj|nidj, bid = 0, cid = 1)

=
∫ 1

0
f(xidj|nidj, pidj, bid = 0, cid = 1)f(pidj|bid = 0, cid = 1)dpidj

=
C
xidj
nidj

pdj0

∫ pdj0

0
pxidj(1− p)nidj−xidjdp (2.3)

2.2.5 Joint Probabilities and Model Fitting

Based on the model above, the complete data likelihood can be derived as:

Pr(X,N ,A,B,C|π,V ,W ) = Pr(N )Pr(X,A,B,C|N ,π,V ,W ) (2.4)

= Pr(N )
I∏
i=1

Pr(X i, ai,Bi,Ci|N i,π,V ,W )

Define Lid0 =
∏Jd
j=1 fidj0(xidj), Lid1 =

∏Jd
j=1 fidj1(xidj) and Lid2 =

∏Jd
j=1 fidj2(xidj).

Define δ(.) to be an indicator function. δ(.) = 1 if its argument is true, and

δ(.) = 0 otherwise. We have

Pr(X i, ai,Bi,Ci|N i,π,V ,W )

= Pr(ai|π)
D∏
d=1

Pr(bid, cid|ai,V ,W )Pr(X id|N id, ai, bid, cid)
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= {π0
D∏
d=1

Lid0}δ(ai=0)
K∏
k=1

{πk
D∏
d=1

[vkdLid1]
bid [wkdLid2]

cid

[(1− vkd − wkd)Lid0]1−bid−cid}δ(ai=k) (2.5)

To infer π, V andW , we employ a Bayesian approach by imposing a Dirich-

let prior D(η, · · · , η) on π and imposing independent Dirichlet priors D(η, η, η)

on all triplets (vkd, wkd, 1 − vkd − wkd). The joint posterior distribution of un-

known parameters and indicators given the observed data is:

Pr(A,B,C,π,V ,W |X,N ) ∝ Pr(X,N ,A,B,C|π,V ,W )f(π,V ,W )

∝
I∏
i=1

Pr(X i, ai,Bi,Ci|N i,π,V ,W ) (2.6)

{
K∏
k=0

πη−1k }{
K∏
k=1

D∏
d=1

vη−1kd wη−1kd (1− vkd − wkd)η−1}

Conditional on the observed data, Pr(N) is a constant that does not contain

parameters of interest, therefore it is absorbed into a proportionality constant

not shown in the formula above. Using this joint posterior, an EM algorithm

can be derived to search for posterior mode (π̂, V̂ , Ŵ ) of Pr(π,V ,W |X,N ) =∑
A,B,C Pr(A,B,C,π,V ,W |X,N ) in which the missing indictorsA,B and

C are all integrated out (see Supplemental Method 2.6.4).

For the Dirichlet prior, we use η = 2 (See Supplemental Method 2.6.3 for

a discussion on the choice of parameter for the Dirichlet prior). In the EM

algorithm, we assume that the class number K is given. In order to choose

the optimal K, we run the algorithm multiple times using different values of

K. We choose the best K using the Bayesian Information Criterion (BIC) (see

Supplemental Method 2.6.5).
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2.2.6 Statistical Inference of Allele-specificity

The estimated π, V and W can describe the correlation patterns of allele-

specificity among datasets. Given π, V andW , one can infer whether SNP i be-

longs to class k based on the posterior probability Pr(ai = k|X i,N i,π,V ,W ).

One can then infer whether each SNP i is skewed in each individual dataset d

based on the posterior probability

Pr(bid, cid|X i,N i,π,V ,W ) =
∑
ai Pr(ai, bid, cid|X i,N i,π,V ,W )

after summing over all possible values of ai. Note that

Pr(bid, cid|X i,N i,π,V ,W ) (2.7)

=
∑
k

Pr(ai = k|X i,N i,π,V ,W )Pr(bid, cid|ai = k,X i,N i,π,V ,W )

Define

P̃id = max {Pr(bid = 1, cid = 0|X i,N i,π,V ,W ), P r(bid = 0, cid = 1|X i,N i,π,V ,W )}(2.8)

Using P̃id, SNPs can be rank ordered for biologists to choose candidates to design

follow-up studies. For each top ranked SNP, one can determine its skewing

direction by comparing Pr(bid = 1, cid = 0|X i,N i,π,V ,W ) and Pr(bid =

0, cid = 1|X i,N i,π,V ,W ). The one with the larger value determines the

direction. Finally, the posterior probabilities of top N SNPs can be converted

to an estimate of false discovery rate (FDR) using FDR(N) =
∑
i∈top N SNPs(1−

P̃id)/N .

Formula 2.8 shows that two types of information contribute to

Pr(bid, cid|X i,N i,π,V ,W ): (1) Pr(ai = k|X i,N i,π,V ,W ), which is

determined using information from all D datasets, and (2) Pr(bid, cid|ai =
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k,X i,N i,π,V ,W ), which only uses information specific to dataset d con-

ditional on π, V and W . Thus for each particular dataset d, the dataset-

specific information is weighted by information obtained from other datasets

to determine the SNP ranking. Intuitively, if allelic imbalance in two datasets

are correlated, then observing an AS event in one dataset will suggest that a

relatively weak skewing event observed at the same SNP in the other dataset

is very likely to be a true AS event. In contrast, if no AS event is observed

in one dataset, then a relatively weak skewing event observed at the same

SNP in the other dataset is likely to be a false positive. This is the under-

lying nature of using Pr(ai = k|X i,N i,π,V ,W ) to re-weigh information in

Pr(bid, cid|ai = k,X i,N i,π,V ,W ), and it provides the foundation for improv-

ing SNP ranking by borrowing information across datasets. In real applications,

π, V ,W are unknown, and they are replaced by the posterior mode obtained

from the EM algorithm.

2.3 Results

2.3.1 GM12878 Data and Preprocessing

We collected 40 ENCODE Consortium (2012) ChIP-seq datasets with a total of

77 samples together with a genomic DNA sample in GM12878 lymphoblastoid

cells. GM12878 is a female and is one of the most extensively studied cell lines

in ENCODE. Within each dataset, the number of replicate samples varied from

1 to 3. We downloaded the raw sequence reads of all 78 samples and mapped

them to human genome (hg18) (see details in Section 2.6). We removed repeated

sequences from the ChIP-seq datasets to avoid PCR duplicates, which may skew
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the determination of allelic biases. In other words, if multiple reads have exactly

the same sequence, only one copy is retained. We obtained the genotype data

for GM12878 from

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot data/release/2010 07/trio/snps.

As previously described in Degner and others (2009), there are two different

types of read mapping biases that may affect the analysis of AS events: the

reference bias and the inherent bias. The reference bias often occurs when one

maps sequence reads to a reference genome. If one allows the same number

of mismatches in the alignment, a read from the non-reference allele is less

likely to be mapped back to the reference genome compared to a read from

the reference allele, since the non-reference read has one more mismatch to the

reference genome. This phenomenon is known as the reference bias. This type

of bias, if it exists, is automatically taken care of by the iASeq model through

the parameter pdj0 which models the background skewing probability and is

estimated using all reads mapped to heterozygote SNPs in each sample. If there

is reference mapping bias, pdj0 will take a value different from 0.5 to adjust for

the bias. One may remove reference bias before the analysis by masking SNPs

in the reference genome during the alignment or by aligning reads to a diploid

personal genome. This situation will also be automatically recognized by iASeq

through the estimation of pdj0 from the data (if there is no bias, pdj0 = 0.5).

Therefore, regardless of whether the reference bias has been removed from the

data in the preprocessing or not, the iASeq model is able to automatically handle

it and adjust the inference accordingly.

The intrinsic bias is a different type of bias. As shown by Degner and

others (2009), even if the reference bias is removed (e.g., by masking SNPs
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in the reference genome), the inherent bias still exists. For example, suppose

sequence 1 (e.g., xxxAxxx) and sequence 2(e.g., xxxTxxx) are two reads that

differ only in one position (i.e., A/T). It is possible that sequence 1 is easier to

be mapped back to its correct location in the genome than sequence 2 if the

second sequence has many repeats in the genome. This bias reflects the inherent

characteristics of the genome and cannot be removed by masking variants in

the reference genome or by mapping reads to a diploid personal genome. In the

above example, masking A and T in the original reads is also not a solution,

since a priori one does not know which position in a read corresponds to a

SNP position and therefore should be masked without first aligning the read to

the genome. When a heterozygote SNP has inherent bias, one allele will have

higher read counts than the other even if the two alleles have the same binding

level. To avoid this bias, we used the approach described in Pickrell and others

(2010); Degner and others (2009) to remove SNPs with the inherent bias.

We began with 1,704,166 heterozygote SNPs and filtered out 149,996 (8.8%)

SNPs with inherent bias. Next, we eliminated SNPs that were not bound by

any TF or associated with any HM in any dataset (see Supplemental Methods

Section 2.6.1 for details). After applying these filters, 94,519 heterozygote SNPs

remained. These 94,519 SNPs were then analyzed by iASeq.

2.3.2 A Simulation Study

Before we apply iASeq to the real data, we first tested its performance in sim-

ulations that took into account real data characteristics. Our simulations kept

the same design as the real GM12878 ChIP-seq data, with the same number

of datasets and the same number of replicates within each dataset, except

60



that the genomic DNA sample was not used here since we knew the truth

in the simulations and did not need genomic DNA as a control for poten-

tial bias. To create the simulation data, we first applied iASeq to the real

GM12878 data to identify 86,353 SNPs that were not skewed in any dataset

using Pr(ai = 0|X i,N i,π,V ,W ) > 0.5 as cutoff. To mimic the real back-

ground noise, these SNPs were resampled by a bootstrap procedure to create

the background SNPs in the simulations, and we kept the read counts (xidj, nidj)

of each background SNP as is in the simulated data. Next, we simulated ASB

SNPs and added them to the background. Simulations were carried out under

two different scenarios (Figure 2.2).

• Scenario 1: Two types of ASB SNPs (classes 1 and 2) were created in

addition to the background SNPs (class 0). The SNP number for class

0, 1, and 2 was 85,069, 4,725 and 4,725 respectively. Thus the true πk

for the three classes was 0.90, 0.05 and 0.05 respectively. SNPs in class 1

were SR in datasets 1 to 30 (i.e., their bid = 1 for d = 1, · · · , 30). SNPs

in class 2 were SN in datasets 1 to 30 (i.e., cid = 1 for d = 1, · · · , 30). In

datasets 31 to 40, no SNPs had allelic imbalance. Class 2 can be viewed as

the mirror image of class 1. This symmetric design reflects the symmetry

of allele-specificity, that is, the skewing to the reference allele and to the

non-reference allele is approximately symmetric. The class abundance

(0.90,0.05,0.05) roughly matched the abundance observed in the analysis

of real GM12878 data.

• Scenario 2: Four correlation patterns (classes 1-4) were created in addition

to the background class (class 0). Class 1 and class 2 were the same
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Figure 2.2: Simulation design and patterns discovered by iASeq (a) The true
ASB patterns in simulation 1. Two non-background patterns were simulated
in addition to the background pattern and shown here. Each row in the plot
represents a SNP class, and each column represents a dataset. The color in
the cell (k, d) demonstrates the SR or SN probability in class k and dataset
d. Black means skewed, and white means not skewed. (b) The BIC values
for different class number K in simulation 1. (c) Patterns discovered by iASeq
in simulation 1. The plot shows the estimated V and W when K = 2. The
numbers shown under π are the estimated number of SNPs in each class (i.e.,
π̂k∗ the total number of SNPs). The numbers shown under ai are the number
of SNPs identified for the corresponding class using the posterior probability
Pr(ai = k|X i,N i,π,V ,W ) > 0.9 as cutoff. (d) The true ASB patterns in
simulation 2. Four non-background patterns were simulated in addition to the
background pattern and shown here. (e) The BIC values for different class
number K in simulation 2. (f) The patterns discovered by iASeq in simulation
2. 62



as in simulation 1. Classes 3 and 4 were two new patterns. SNPs in

class 3 were SR in datasets 21-40, and SN in datasets 1-10. Class 4 was

the mirror image of class 3. The abundance of the classes 0 to 4 was

(0.90,0.025,0.025,0.025,0.025).

Given the simulated [Bi;Ci] configurations, we then simulated the read

count data for ASB SNPs as described in detail in Supplemental Methods S.6.6.

Simulations done in this way was able to keep the major characteristics of real

data while allowing us to benchmark the performance of different methods since

we knew the truth.

We applied iASeq to both simulations. In both cases, iASeq was able to

identify the correct number of SNP classes using BIC (Figures 2.2a,b,d,e). Fig-

ures 2.2c and f show that the ASB patterns reported by iASeq matched the true

patterns well. In order to test whether iASeq can improve the statistical power

of detecting SNPs with allelic imbalance, we compared the SNP ranking pro-

vided by iASeq with rankings provided by five other methods that analyze each

dataset separately (Figure 2.3). In iASeq, SNPs were ranked in each dataset

d according to the posterior probability P̃id defined by Formula 2.8. Since we

know the truth, we can count how many of the top N SNPs were true positives.

Here the true positives were defined as SNPs that were truly allele-specific and

also had the skewing direction correctly inferred. The five single-dataset based

methods for ranking SNPs include a deviation statistic d , naive z statistic, naive

Bayes statistic, empirical Bayes statistic and single dataset EM . These meth-

ods were applied to each individual dataset. For each dataset d, we merged

data from all replicates to obtain xid =
∑Jd
j=1 xidj and nid =

∑Jd
j=1 nidj. We then
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computed the statistics used for SNP ranking as described below.

1. Deviation statistic (d): SNPs were ranked based on |xid/nid − pd0|. Here

we estimated pd0 = 1
I′

∑
i:nid 6=0 pid = 1

I′
∑
i:nid 6=0

xid
nid

, where I ′ is the number

of SNPs for which nid 6= 0.

2. Naive z statistic (z): SNPs were ranked based on |xid/nid−pd0|√
(pd0∗(1−pd0)/nid)

. Here

pd0 was estimated as in the deviation statistic d .

3. Naive Bayes statistic (b): SNPs were ranked using |(xid+2∗p̃d0)/(nid+2)−

p̃d0|. Here p̃d0 = 1
I

∑
i
xid+2∗pd0
nid+2

where pd0 was estimated as in the deviation

statistic d . The implicit assumption here is that xid|pid ∼ Bin(nid, pid)

and pid ∼ Beta(αd, βd) with αd = 2p̃d0 and βd = 2(1− p̃d0). The posterior

mean of pid is used to construct the ranking statistic.

4. Empirical Bayes statistic (B): SNPs were ranked using |(xid + α̂d)/(nid +

α̂d + β̂d) − p̌d0|. We estimated p̌d0 = α̂d

α̂d+β̂d
. The implicit assumption is

the same as the naive Bayes statistic, but now we estimate αd and βd

based on the observed data using the method of moments as in iASeq (see

Supplemental Method Section 2.6.2).

5. Single dataset EM (singleEM): We fitted a mixture model of SR, SN and

NS with distributions fidjp(·), p = 0, 1, 2 and mixing probabilities vd, wd

and 1 − vd − wd for each dataset d without considering other datasets.

SNPs were ranked using a posterior probability similar to P̃id, but now

determined based on information in dataset d only (see Supplemental

Method Section 2.6.7 for details).
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Figure 2.3: The Receiver Operating Characteristic (ROC) curves for simulations
(a)-(c) We plot the number of true allele-specific SNPs (i.e., true positives, TP)
among the top q ranked SNPs in each dataset against the rank cutoff q. Results
for different methods in three representative datasets in simulation 1 are shown.
Results in all other datasets were similar. (d) For each ranking method and
each dataset, we computed the area under the ROC curve (AUC) using the
2000 top ranked SNPs. dAUC, the proportion of improvement of AUC brought
by iASeq over the best AUC obtained from the single-dataset based methods,
was computed for each dataset. dAUC > 0 means iASeq brings improvement.
The distribution of dAUC in all 40 datasets is shown for simulation 1. (e)-(g)
Results in three representative datasets from simulation 2. Results in all other
datasets were similar. (h) The distribution of dAUC in all 40 datasets is shown
for simulation 2.
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Figure 2.3 compares the number of true positives, TPd(q), in the top q SNPs

reported by each method in each dataset d. In Figures 2.3a-c and e-g, TPd(q)

is plotted as a function of q in a few representative datasets. These plots show

that iASeq outperformed all single-dataset based methods, and it was able to

substantially improve the power for detecting allele-specificity.

In general, the observed differences between iASeq and the d, z, b and B

statistics could be caused by many factors such as use of different statisti-

cal models, ranking statistics, or methods for parameter estimation. However,

the comparison between iASeq and the single dataset EM represents a well-

controlled comparison since these two methods used exactly the same distri-

butional assumptions and parameter estimation methods. The only difference

between them was that iASeq used information from multiple datasets whereas

singleEM was based on one dataset only. This well-controlled comparison shows

that jointly modeling multiple datasets is able to improve the allelic inference.

To examine whether iASeq was able to bring improvement in all datasets, we

computed the Area under the Receiver Operating Characteristic (ROC) curves

(AUC) for each method in each dataset using the top 2000 ranked SNPs. In each

dataset, we computed the proportion of improvement in terms of AUC brought

by iASeq over the best single-dataset based ranking method (i.e., dAUC =

AUCiAseq−AUCbestsingle

AUCbestsingle
). dAUC > 0 means iASeq is able to bring improvement.

Figures 2.3d and h show the distribution of dAUC across all 40 datasets as a

histogram. The results show that iASeq was able to improve the SNP ranking

in almost all datasets.

In Figure 2.4, we converted the iASeq posterior probabilities of top N SNPs

to FDR estimates and plotted the estimated FDR against the true FDR. The
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Figure 2.4: Estimated FDR against true FDR in simulations (a)-(d) Results for
four representative datasets in simulation 1. (e)-(h) Results for four represen-
tative datasets in simulation 2. Results for all other datasets were similar.

figure shows that iASeq was able to provide reasonable FDR estimates as well.

Shown in the figure are a few representative datasets. Results in all other

datasets were similar.

2.3.3 Analysis of real data

Our simulation study demonstrates the ability of iASeq to discover correlation

patterns of allele-specificity and improve the detection of skewed SNPs. Next,

we applied iASeq to analyze the 41 real datasets (78 samples) in GM12878

cells. In real data, we do not have comprehensive knowledge about the truth.

Therefore, unlike simulations, we were not able to assess the FDR estimates.

For this reason, we mainly focused on analyzing the correlation patterns of

allele-specificity and testing whether iASeq can improve the SNP ranking.
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Correlation patterns of allele-specificity

Figure 2.5a shows the BIC in the real data. Based on BIC, the optimal K

was 2. In other words, in addition to the background class (k = 0), iASeq

discovered two other SNP classes, representing different allele-specificity pat-

terns. For these two non-background classes, πk was estimated to be 0.0696 and

0.0691 respectively, suggesting that they cover 6.96% and 6.91% of the analyzed

SNPs. Due to the background noises, not all SNPs in these two classes can be

confidently detected. At the 0.90 posterior probability cutoff, iASeq reported

1868 and 2138 SNPs for classes 1 and 2 respectively (Figure 2.5b). Note that

our simulations had similar settings as the real data analysis, and they showed

that iASeq was able to discover more than two patterns if they are supported

by the data. Therefore our discovery of two correlation patterns here is likely

driven by the data, that is, the information in the data is only sufficient for sup-

porting robust discovery of two patterns. Figures 2.5b and c show the posterior

mode of V k and W k for the two non-background classes. It turned out that

these two classes corresponded to two global directions of allele-specificity, SR

and SN, respectively. Since the assignment of reference or non-reference allele

depends on the reference genome, the assignment per se is not of biological in-

terest. However, recall that GM12878 is a single person, therefore at each single

SNP, the nucleotide representing the reference or non-reference allele is the same

across all datasets analyzed here. Given this fact, what these results essentially

tell is that at each single SNP, most TFs and HMs in our analysis were highly

correlated in terms of allele-specificity, and if they are skewed, they tend to be

skewed toward the same direction (i.e., the same allele).For instance, for SNPs
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Figure 2.5: Correlation patterns of allele-specificity among different TFs and
HMs in GM12878 cells discovered by iASeq (a) The BIC values for different class
number K. The BIC achieves the minimum at K = 2. (b) The estimated V and
W when K = 2. Each row corresponds to a class. Each column represents a
dataset. The color in the cell (k, d) represents the SR or SN probability in class
k and dataset d. From white to dark, the probability increases from 0 to 1. The
bar plot and the numbers shown under π are the estimated number of SNPs in
each class (i.e., π̂k∗ the total number of SNPs). The bar plot and the numbers
shown under ai are the number of SNPs identified for the corresponding class
using the posterior probability Pr(ai = k|X i,N i,π,V ,W ) > 0.9 as cutoff.
(c) A closer look at V and W in a number of representative datasets. The
barplots show the estimated SR and SN probabilities vkd and wkd in a number
of selected datasets. Left: the skewing probabilities in class 1. Right: the
skewing probabilities in class 2. The height of each bar represents the SR or SN
probability.
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in class 1, both H3K4me3 (from the Broad Institute) and H3K27ac (Broad)

had high probability to be SR, with (vkd, wkd) equal to (0.9337,0.0070) and

(0.9730,0.0041) respectively (Figure 2.5c). The probability that one is SR and

the other one is SN was small. Similarly, for SNPs in class 2, both H3K4me3 and

H3K27ac were highly likely to be SN simultaneously ((vkd, wkd)=(0.0061,0.9835)

for H3K4me3 (Broad) and (0.0040,0.9897) for H3K27ac (Broad)). While the al-

lelic imbalance of most TFs and HMs were highly correlated, H3K27me3, a HM

involved in gene repression, was an exception. In both non-background classes,

H3K27me3 had much lower skewing probabilities compared to the other pro-

teins (Figure 2.5c). Within each class, the difference in the skewing probability

between the two alleles was also much weaker for H3K27me3 as compared to

the other proteins. For instance, in class 1, while most other proteins showed

strong preference to be skewed toward the reference allele, H3K27me3 can be

skewed to the reference allele at some SNPs and skewed to the non-reference

allele at many other SNPs. Therefore, the allelic imbalance in H3K27me3 is

not strongly correlated with the allelic imbalance of the other proteins analyzed

here. For the genomic DNA which was used as control here, the skewing prob-

abilities (vkd, wkd) in both classes were fairly low as shown in Figure 2.5b-c. In

both classes, the probability for not being skewed in the genomic DNA (i.e.,

1− vkd−wkd) was bigger than 0.95. This indicates that the high probability of

skewing observed in the other datasets was not an artifact.

The coordinated allelic imbalance of different proteins toward the same allele

has also been observed in a recent study (Reddy and others (2012)). In that

study, the authors analyzed AS of 24 TFs and found that when multiple TFs

bind to the same SNP, they frequently bind to the same allele. Moreover, those
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Figure 2.6: The ROC curves with chrX-npa SNPs as gold standard in the
GM12878 analysis. We plot the number of non-pseudoautosomal region X chro-
mosome SNPs, denoted by TPd(q), among the top q ranked SNPs in dataset d
as a function of the rank cutoff q for each method. (a)-(g) Results in 7 repre-
sentative datasets. (h) In each dataset, we computed the area under the ROC
curve (AUC) using the 2000 top ranked SNPs for each method. dAUC, the pro-
portion of improvement of AUC brought by iASeq over the best AUC from the
single-dataset based methods, was computed for each dataset. The distribution
of dAUC in all 40 datasets is shown.

authors did not observe any pair of TFs that regularly bind the same position on

alternate alleles. Our observation here therefore is consistent with their finding.

Increased power for detecting allele-specificity compared with single
dataset analysis

We ranked SNPs based on the posterior probabilities P̃id in each dataset. The

iASeq ranking was compared with the rankings provided by the five single-

dataset based methods described above. Since we do not know the truth, we

used two types of independent information as gold standard to benchmark the

ranking results.
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First, we evaluated different methods by counting how many of their top

ranked SNPs were located in the non-pseudoautosomal regions of chromosome

X (chrX-npa) (Figure 2.6). GM12878 is a female lymphoblastoid cell line. In

GM12878, SNPs in chrX-npa are expected to be allele-specific due to cells

rapidly become clonal in culture leading to a skewed X-inactivation (McDaniell

and others (2010); Kucera and others (2011); Reddy and others (2012)). There-

fore, given a fixed number of top SNPs, the more chrX-npa SNPs one can

find, the more powerful a method is. Figure 2.6 shows that iASeq clearly in-

creased the power for detecting allele-specificity in each dataset compared to

the single-dataset based analysis. For example, Figure 2.6 a shows that in the

H3K27ac dataset generated by the Broad Institute, iASeq was able to identify

122 chrX-npa SNPs among the top 500 SNPs. This represents 126% improve-

ment compared to singleEM , the best single-dataset based ranking method in

that dataset, which only identified 54 chrX-npa SNPs. Figures 2.6a-g show

results in a few representative datasets. Figure 2.6h shows the distribution of

dAUC (i.e., the proportion of improvement of AUC by iASeq over the best

single-dataset based ranking method in each dataset) in all 40 datasets. These

plots clearly show that iASeq outperformed all single-dataset based methods in

all datasets and the average improvement in AUC was 354%.

Second, we evaluated different methods by using independent RNA-seq data.

From RNA-seq, one can identify exonic ASE SNPs and use them as gold stan-

dard. We collected one RNA-seq datasets in GM12878 from the California

Institute of Technology (Caltech). We identified the top 400 exonic ASE SNPs

using the naive Bayes statistics. Using the other methods to identify the gold

standard ASE SNPs produced similar results which, for simplicity, will not be
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Figure 2.7: The ROC curves in GM12878 data using Caltech RNA-seq ASE
SNPs as gold standard. We plot TPd(q), the number of true allele-specific
SNPs among the top q ranked SNPs in dataset d, against the rank cutoff q for
each method. The true allele-specific SNPs are defined as SNPs that have ≥ 1
RNA-seq exonic ASE SNPs in their 10kb neighborhood. (a)-(g) Results in 7
representative datasets. (h) In each dataset, we computed the area under the
ROC curve (AUC) using the 2000 top ranked SNPs for each method. dAUC,
the proportion of improvement of AUC brought by iASeq over the best AUC
from the single-dataset based methods, was computed for each dataset. The
distribution of dAUC in all 40 datasets is shown.
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shown here. Based on these exonic ASE SNPs, we defined a SNP in our ChIP-

seq analysis as truly allele-specific if there was an exonic ASE SNP in its Xkb

neighborhood. Here we tried both X = 10kb and X = 1kb (data now shown)

and obtained similar results. Below we illustrate the results using X = 10kb

as an example. Among the 94,519 SNPs analyzed in the ChIP-seq data, 20,526

had one or more exonic SNPs within its 10kb neighborhood and therefore could

potentially be linked to an exonic ASE SNP. Figure 2.7 compare rankings of

these SNPs provided by different methods in terms of how many of the top

ranked SNPs are true positives (i.e., associated with ASE). iASeq again outper-

formed all the other single-dataset based ranking methods. For instance, based

on the Caltech gold standard, iASeq on average identified 144% more true pos-

itive SNPs among the top 500 SNPs (Figure 2.7a-g). The average improvement

in terms of AUC (i.e., dAUC) across all 40 datasets was 148% (Figure 2.7h).

To ensure that the increased statistical power was not completely attributed

to X chromosome SNPs, we repeated the benchmark analysis based on RNA-

seq using only SNPs in autosomal chromosomes, and we obtained similar results

(Figure 2.8). This shows that the increased power is not only contributed by

chrX SNPs.

Comparisons with other methods

Most existing studies on allele-specificity were conducted using in-house data

analysis pipelines. A tool developed by Skelly et al. (Skelly and others (2011))

and AlleleSeq (Rozowsky and others (2011)) are two software tools accessible to

third-party users for AS analysis. The method proposed by Skelly et al. (Skelly

and others (2011)) is designed for analyzing ASE in RNA-seq data. It first fits a
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Figure 2.8: The ROC curves in GM12878 data using Caltech RNA-seq autoso-
mal ASE SNPs as gold standard. We plot TPd(q), the number of true allele-
specific SNPs among the top q ranked autosomal SNPs in dataset d, against
the rank cutoff q for each method. The true allele-specific SNPs are defined as
autosomal SNPs that have ≥ 1 RNA-seq exonic ASE SNPs in their 10kb neigh-
borhood. (a)-(g) Results in 7 representative datasets. (h) In each dataset, we
computed the area under the ROC curve (AUC) using the 2000 top ranked SNPs
for each method. dAUC, the proportion of improvement of AUC brought by
iASeq over the best AUC from the single-dataset based methods, was computed
for each dataset. The distribution of dAUC in all 40 datasets is shown.
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background model using genomic DNA and then feeds the estimated parameters

into a Bayesian model that combines information from multiple SNPs within

a gene to infer ASE. When we applied this method to analyzing the GM12878

ChIP-seq data, two problems occurred. First, the method uses Markov Chain

Monte Carlo (MCMC) to fit the background model from the genomic DNA

which, as alerted by Skelly and others (2011), is well-known for its slow speed

and difficulties for users to monitor the convergence. Our genomic DNA data

had 94,519 SNPs which covered 12,417 genes. Running this algorithm on this

data using the parameter settings recommended by Skelly and others (2011)

on a machine with 2.7 GHz CPU and 4 Gb RAM took more than 60 days.

Second, after feeding the background model parameters obtained from the first

step to the inference model in the second step, the algorithm stopped execution

after a few iterations. This is because the original model was developed for

deeply sequenced RNA-seq rather than ChIP-seq, where the average read count

covering a heterozygote SNP in a ChIP-seq dataset is only 0.64. As a result,

the model developed in Skelly and others (2011) did not fit the real data in

ChIP-seq experiments. This lack-of-fit caused the program to stop early, likely

due to the abnormally fitted parameters causing various computation problems

(e.g., overflow). For this reason, although the method proposed by Skelly and

others (2011) represents an advanced solution for analyzing RNA-seq ASE, it

cannot be directly used to analyze ASB in ChIP-seq data without significantly

redesigning the model and algorithm. For this reason, it is not further compared

here.

AlleleSeq (Rozowsky and others (2011)) is another tool for AS analysis. It

has been used to analyze ASB of several TFs in GM12878 (Rozowsky and others
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Gold ChrX All Caltech ASE Autosomal Caltech ASE
standard exonic SNPs exonic SNPs
TF Td AlleleSeq iASeq Td AlleleSeq iASeq Td AlleleSeq iASeq
YaleCFOS 41 3 4 9 5 3 9 5 3
YaleMYC 122 9 22 39 5 10 38 5 10
YaleJUND 289 13 31 24 4 8 23 4 7
YaleMAX 105 3 18 18 3 1 18 3 2
YalePolIII 25 2 2 0 0 0 0 0 0

Table 2.1: Comparison of iASeq and AlleleSeq. Column 1: TF name. Column
2: Td is the number of AlleleSeq reported ASB SNPs. Columns 3-4: the number
of non-pseudoautosomal region X chromosome SNPs among the top Td allele-
specific SNPs reported by AlleleSeq and iASeq. Column 5: Td is the number
of AlleleSeq reported ASB SNPs that had an exonic SNP within their 10kb
neighborhood. Columns 6-7 show among the top Td allele-specific SNPs reported
by AlleleSeq and iASeq, how many SNPs had ≥ 1 exonic ASE SNP in their
10kb neighborhood according to the Caltech RNA-seq experiment. Column
8: Td is the number of AlleleSeq reported autosomal ASB SNPs that had an
exonic SNP within their 10kb neighborhood. Columns 9-10 show among the top
Td autosomal allele-specific SNPs reported by AlleleSeq and iASeq, how many
SNPs had ≥ 1 exonic ASE SNP in their 10kb neighborhood according to the
Caltech RNA-seq experiment.
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(2011)). AlleleSeq is more focused on the preprocessing step. Its pipeline first

constructs a diploid personal genome sequence according to family trio data

and then maps ChIP-seq reads to this personal genome. After removing various

biases, the method then analyzes allele-specificity in each individual ChIP-seq

dataset separately. Rozowsky and others (2011) applied AlleleSeq to analyze

7 different TF datasets in GM12878, among them 5 were also included in our

iASeq analysis. We compared iASeq and AlleleSeq using these same 5 datasets.

We first obtained the ASB SNPs reported by AlleleSeq from Rozowsky and

others (2011). Let Td denote the number of reported ASB SNPs for each TF

dataset d. We next obtained the top Td SNPs ranked by iASeq. We then

compared these two methods based on how many of their top Td SNPs were

in chrX-npa, and how many of them were associated with exonic ASE SNPs

determined by RNA-seq. We also performed the comparison after excluding

the chromosome X SNPs. Table 2.1 shows that iASeq either outperformed or

performed comparable to AlleleSeq in all datasets. Sometimes, the improvement

was substantial (e.g., YaleMYC).

2.4 Discussion

In summary, we have proposed a Bayesian hierarchical mixture model iASeq

to integrate multiple ChIP-seq datasets for analyzing allele-specificity. The pri-

mary goal of iASeq is to increase the statistical power of AS detection, and it

does so by taking the advantage of correlations among datasets. Since the cor-

relation structure may not be known before the data analysis, iASeq learns it

from the data automatically. Application of iASeq to the ENCODE GM12878
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data shows that allelic imbalance of most analyzed TFs and HMs have strong

preference to be skewed toward the same direction. Analysis of both the sim-

ulated and real data show the effectiveness of iASeq to improve detection of

allele-specificity compared to single-dataset based methods.

2.4.1 Interpretation of the correlation patterns

When analyzing the real data in GM12878, iASeq found two non-background

AS patterns, representing two opposite directions of allelic imbalance. Since

the assignment of reference and non-reference allele depends on the reference

genome, whether a SNP is skewed toward reference or non-reference allele per

se does not have direct biological meaning. What these two patterns essen-

tially suggest is that the allelic imbalances of multiple proteins at a single SNP

are correlated and have high preference to be skewed toward the same allele.

In other words, the two patterns should be viewed as a pair and interpreted

together.

In general, although one may view different allelic imbalance patterns in

iASeq as different clusters of SNPs, these clusters only describe the similarities

among SNPs in terms of their skewness directions, rather than the similarities

in terms of their functions. The direction is defined using the reference/non-

reference allele. The reference or non-reference allele for different SNPs can have

different meanings (e.g., for one SNP, the maternal allele may be the reference

allele, whereas for another SNP the paternal allele may be the reference allele).

Therefore within each cluster, even though SNPs have similar skewness pattern,

they are not necessarily functionally related to each other. One should not

confuse the SNP clusters here with the clusters obtained from the traditional
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gene expression microarray data analysis, where co-expressed genes in a cluster

often have similar functions. In iASeq, the clusters only serve as a tool to

describe the correlation structure among different datasets (i.e., proteins), rather

than the functional correlation among different SNPs. The correlation patterns

among datasets are used by iASeq to inform one how to integrate information

across datasets (i.e., which datasets are highly correlated and therefore can

borrow information from each other) to improve detection of AS events for each

individual SNP and dataset. In order to understand functions of the detected AS

events, one needs to further correlate the iASeq results with other information

(e.g., one may determine the parent-of-origin of each SNP first and then study

various phenomena such as imprinting).

Our observation that different proteins prefer to be skewed in the same di-

rection is consistent with a recent observation reported in Reddy and others

(2012) that AS of 24 different TFs are skewed toward the same allele. A num-

ber of factors could contribute to the observed correlation. First, biologically

it is plausible that functionally related HMs and TFs have correlated allele-

specificity. For instance, both H3K4me2 and H3K4me3 are markers for active

transcription. Therefore, for a specific SNP, if the reference allele is associated

with a gene with active transcription but the non-reference allele is not, then it

is very likely that both H3K4me2 and H3K4me3 will be skewed toward the ref-

erence allele. For another SNP, if the non-reference allele is transcribed but the

reference allele is not, then both H3K4me2 and H3K4me3 will have high prob-

ability to be skewed toward the non-reference allele. In the genome, H3K4me2

and H3K4me3 are skewed toward reference allele for some SNPs, and skewed

toward non-reference allele for some other SNPs. Therefore the skewed SNPs
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could naturally fall into two clusters, representing two opposite AS directions.

Second, as pointed out by Reddy and others (2012), the coordinated AS could

also occur as a result of the difference in the chromatin landscape between the

two alleles. For instance, if the chromatin on one allele is more open and ac-

cessible, it could increase the overall binding probability of multiple different

proteins, leading to correlated allelic skewing.

While our results show that most analyzed TFs/HMs tend to be skewed

toward the same direction, these results do not imply that these proteins are

perfectly correlated in terms of allele-specificity at each and every SNP. In iASeq,

the correlation patterns V k and W k are probabilistic patterns rather than 0-1

vectors. Each correlation class k can generate all 3D AS configurations. For

instance, for a class with [V k;W k] = [(0.9, 0.9, 0.9, 0.1); (0.1, 0.1, 0.1, 0.1)], it is

possible to have one SNP with configuration [SR, SR,NS,NS] and at the same

time another SNP with configuration [SR,NS, SR,NS]. Therefore, SNPs in

the same class are not required to have the same AS configuration, even though

they tend to have similar AS configurations. The probabilistic patterns are used

here to provide a parsimonious description of the complex correlation structure

in the data, so that one can circumvent the difficulty of handling 3D AS con-

figurations whose complexity increases exponentially. As a consequence of us-

ing this parsimonious model, multiple weak correlation patterns without strong

enough data support could be merged into a bigger class. For instance, consider

two AS patterns [V k;W k] = [(1, 1, 0, 0); (0, 0, 0, 0)] (i.e., [SR,SR,NS,NS]) and

[V k;W k] = [(0, 0, 1, 1); (0, 0, 0, 0)] (i.e., [NS,NS,SR,SR]). Suppose both patterns

are equally likely to occur in the data. If each pattern is only associated with

a small number of SNPs, then a parsimonious model will prefer merging them
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together into one single class with [V k;W k] = [(0.5, 0.5, 0.5, 0.5); (0, 0, 0, 0)].

For this reason, iASeq only discovers correlation patterns that have sufficient

data support so that they can be distinguished from other patterns. It will not

report weak patterns, which could be real but do not have enough data support

to allow them to be robustly recovered. For users, this means that at the cluster

level, they may not be able to see weak but real AS correlation patterns if these

patterns are not associated with enough number of SNPs. On the other hand,

for the purpose of inferring whether or not each SNP is allele-specific in each

dataset, these parsimonious correlation patterns are sufficient for describing the

correlation structure in the data and serving as a prior to guide the information

sharing across datasets. The information sharing will lead the increased ASB

detection power, and the eventual AS configuration at each individual SNP will

be determined by the posterior probabilities of (bid, cid) (i.e., P̃id) rather than

the cluster-level prior probabilities [V k;W k]. Therefore, in the final AS calls,

the model still allows each SNP to have its own AS configuration which may

not necessarily be the same as the AS configurations of other SNPs from the

same cluster.

Consistent with Reddy and others (2012), in the two non-background AS

patterns discovered here, proteins skewed toward the same direction did not

always correspond to known protein-protein interactions. As pointed out by

Reddy and others (2012), this could happen as a result of allelic imbalances

of different proteins being caused by a common underlying factor such as al-

lelic difference in chromatin landscape. It could also reflect unknown protein-

protein interactions. For iASeq specifically, there is a third reason, that is,
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multiple small patterns can be merged into a bigger probabilistic class as de-

scribed before. For example, because of the use of probabilistic patterns, two

patterns [SR,SR,NS,NS] and [NS,NS,SR,SR] may be merged into a single SNP

class (e.g., [V k;W k] = [(0.5, 0.5, 0.5, 0.5); (0, 0, 0, 0)]). As a result, only looking

at the pattern represented by [V k;W k], one cannot tell the details of protein-

protein interactions, such as these interactions only exist between datasets 1

and 2, or between 3 and 4, but not between the other pairs of datasets. What

one can tell from this merged pattern is that, when the allelic imbalance occurs

in these four datasets, they will be skewed toward the same direction, i.e., the

reference allele in this example.

In summary, while the correlation patterns in iASeq provide some insights

on the correlation of allelic imbalance among different datasets, one should not

over-interpret them. The primary goal of these patterns is to describe the cor-

relation structure in the data so that information from different datasets can be

shared in a principled way to increase the power of statistical inference. This

also points to an important difference between this study and previous stud-

ies that reported coordinated allele-specificity among multiple proteins. The

previous studies only reported the correlation as a biological finding, but did

not provide a statistical method to further utilize the correlation structure to

improve the statistical inference. In contrast, iASeq provides a general and rig-

orous statistical method that utilizes the automatically discovered correlation

patterns to increase the statistical power of AS detection. As such, it represents

a novel development for the analysis of allele-specificity.
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2.4.2 Model, algorithm, and possible extensions

Unlike tools such as AlleleSeq which mainly focus on the preprocessing steps

for the AS analysis (e.g., construction of diploid personal genome), iASeq is de-

veloped as a general model working downstream of the preprocessing pipelines.

The input data for iASeq are the read counts in the format shown in Figure

2.1a. With this design, iASeq can be easily coupled with different data pre-

processing protocols. For instance, some investigators may map their reads to

a reference genome, while others may map their reads to a diploid personal

genome. Both types of investigators can use iASeq to integrate information

from multiple datasets once they obtained the allelic read counts.

In iASeq, we used an EM algorithm to find the posterior mode of parameters

and carried out statistical inference accordingly. In principle, one may also use

a full Bayesian approach and Markov Chain Monte Carlo (MCMC) to perform

the posterior inference. However, since MCMC usually takes much longer to run

for a big dataset and it is not easy for users to monitor convergence, we decided

to use the posterior mode and EM-based approach in our implementation. For

analyzing the GM12878 data with 94,519 SNPs, iASeq took 5 hours to run

the EM algorithm to fit a single model with K = 1 on a machine with 2.7

GHz CPU and 4Gb RAM. To fit a single model with K = 10 on the same

machine, the EM took 16 hours. Running the EM for all 10 Ks between 1

and 10 on a single core took 4.6 days. However, when we run these 10 jobs

in parallel on 10 cluster nodes, we were able to select the best model within

1 day. Therefore, running the algorithm on a single machine is a little time-

consuming, but the computation time can be reduced by parallelization. Also,
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our analysis of GM12878 data indicates that the optimal K in that real data

was 2. For a K not extremely large, even if running the full BIC selection on

a single machine takes some time, it usually requires less than a week, which is

acceptable compared to the time devoted to preparing samples and generating

data.

In principle, the statistical model developed in iASeq may also be applied to

analyze other types of AS events, such as ASE and ASM. In the future, we plan

to improve the model by incorporating information from the spatial correlation

among closely located SNPs. For example, for the ASE analysis, one may jointly

model SNPs from the same gene, similar to Skelly and others (2011).

2.4.3 Implications on future studies

The analysis of AS events using the high-throughput sequencing data frequently

faces the problem of low statistical power due to the limited amount of infor-

mation available at heterozygote SNPs. One way to increase the power is to

increase the sequencing depth for one data type (e.g., MYC ChIP-seq). An al-

ternative approach is to spend the same amount of money to generate data for

multiple different but related data types (e.g., ChIP-seq for MYC, H3K4me1,

H3K4me3, etc.), each with a lower coverage. One can then integrate the mul-

tiple datasets to increase the statistical power of allele-specificity analysis. The

merit of the second approach is that one can collect multiple different types

of information which might be useful for other purposes (e.g., in addition to

studying MYC binding using MYC ChIP-seq, one may couple H3K4me1 ChIP-

seq data with DNA motif information to locate active enhancers and predict

binding sites of other TFs in the genome). If the second approach is used in the
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study design, then iASeq will offer a flexible, powerful and scalable framework

for better analyzing the AS events in the data. As ChIP-seq data continue

to grow rapidly, this integrative approach will allow us to use the data more

efficiently to characterize the allele-specificity.

2.5 Software

iASeq is freely available as an R package in Bioconductor:

http://www.bioconductor.org/packages/release/bioc/html/iASeq.html

2.6 Supplementary Materials

2.6.1 Data preprocessing

Data collection

Both ChIP-seq and RNA-seq data for GM12878 cells were downloaded from

the ENCODE Project Consortium (2012). The datasets used in the analysis

are summarized in Additional File 2 at http://www.biomedcentral.com/1471-

2164/13/681/additional. For each ChIP-seq sample, we downloaded the FASTQ

file and mapped the raw sequence reads to human genome (hg18) using MAQ

(Version 0.7.1) with default parameters Li and others (2008). Uniquely mapped

reads with the mapping quality score above 0 were extracted.

Heterozygote SNP collection, bias filtering and protein binding fil-
tering

The genotype data for GM12878 was retrieved from the

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot data/release/2010 07/trio/snps.

A total of 1,704,166 heterozygote SNPs were obtained. As shown by Degner and
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others (2009), in addition to the reference mapping bias (i.e., reference alleles

are easier to be mapped back), certain SNPs have intrinsic biases toward one of

the alleles. For these SNPs, genomic DNA extracted computationally from one

allele (not necessarily the reference allele) is intrinsically easier to be mapped

back compared to DNA extracted from the other allele. Using the method de-

scribed in Degner and others (2009); Pickrell and others (2010), we identified

and removed these 149,996 intrinsically biased SNPs. Next, we called ChIPseq

peaks for each dataset using CisGenome (Ji and others (2008)) at 1% FDR

level and retained only those heterozygous SNPs without intrinsic bias located

in the protein binding regions in at least one dataset. After these two steps of

filtering, 94,519 SNPs were included in our subsequent analysis.

Collection of exonic SNPs and ASE SNPs

The exonic ASE SNPs were used as one of our gold standards to evaluate iASeq

and other methods. To determine which SNPs are exonic, we downloaded the

hg18 Ensemble gene annotation file Homo sapiens.NCBI36.54.gtf from

ftp://ftp.ensembl.org/pub/release-54/gtf/homo sapiens/.

Exonic SNPs were annotated using the exonic regions from the gene anno-

tation file. The exonic ASE SNPs were determined using RNA-seq. For a given

RNA-seq dataset, the naive Bayes statistic was calculated for each exonic SNP.

The top 400 exonic SNPs (6.61% of the total 6051 exonic SNPs) ranked based

on the naive Bayes statistic were called as exonic ASE SNPs. Subsequently, in

the analysis of ChIP-seq data, a SNP was claimed to be a true positive if there

was an exonic ASE SNP within its Xkb neighborhood. Results for X=10kb and

results for X=1kb gave similar results, and only results for X=10kb are shown.
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2.6.2 Method of moment for estimating parameters in
the Beta distribution

For a Beta distribution Beta(α, β), the mean is α/(α + β), and the vari-

ance is αβ/(α + β)2(α + β + 1). For sample (d, j), each SNP has a pidj

which can be roughly estimated as p̂idj = (xidj + 2 ∗ p(0)dj0)/(nidj + 2). Here

p
(0)
dj0 = 1

I
(0)
d

∑
i:nidj 6=0 xidj/nidj, and I

(0)
d is the number of SNPs in dataset d for

which nidj 6= 0. Let pdj0 =
∑
i p̂idj/I, and vdj = 1

I−1
∑
i(pidj − p̂dj0)2. By match-

ing pdj0 and vdj to the theoretical mean and variance of a Beta distribution, we

obtain

α̂dj = pdj0 ∗ [
pdj0(1− pdj0)

vdj
− 1] (2.9)

β̂dj = (1− pdj0) ∗ [
pdj0(1− pdj0)

vdj
− 1] (2.10)

In principle, one may develop a more sophisticated algorithm to estimate α

and β by fitting beta-binomial distributions to xidj|nidj, but the computation

will be more involved. Therefore we did not pursue this solution and instead

used the simple method described above to approximately estimate α and β.

2.6.3 Parameter choice for the Dirichlet prior

Although η = 1 can specify an uniform prior and seems to be a natural

choice, it will make the EM algorithm numerically unstable. This is because

the EM searches for posterior mode and is implemented on log scale. The

mode of a Dirichlet distribution D(η1, · · · , ηM) for the m-th component is (ηm−

1)/
∑M
l=1(ηl − 1). It is not defined if all ηms are equal to one. As a result, if

η = 1 is used as the prior, and when the expectation of the counts
∑
i δ(ai = k),
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∑
i δ(ai = k)bid or

∑
i δ(ai = k)cid in the E-step of the algorithm is close to zero,

then the algorithm can easily lose its numerical stability due to issues such as

log(0) and ill-defined posterior mode. These issues can be avoided by using

η = 2 which still imposes a relatively non-informative prior.

2.6.4 The EM algorithm used in iASeq

This section presents the EM algorithm used to search for posterior mode

(π̂, V̂ , Ŵ ) of the distribution:

Pr(π,V ,W |X,N ) =
∑
A,B,C Pr(A,B,C,π,V ,W |X,N ). In the EM

algorithm, A, B and C are the missing data. The algorithm iterates between

an E-step and an M-step.

In the E-step, one evaluates the Q-function Q(π,V ,W |π̂old, V̂ old, Ŵ old)

which is defined as Eold[lnPr(A,B,C,π,V ,W |X,N )]. Here the expectation

is taken with respect to probability distribution Pr(A,B,C|X,N , π̂old, V̂ old, Ŵ old),

abbreviated as Prold(A,B,C), where π̂old, V̂ old and Ŵ old are the parameter

estimates obtained from the last iteration.

When we use η = 2 in the Dirichlet priors for π, V and W , we have

lnPr(A,B,C,π,V ,W |X,N )

=
I∑
i=1

{δ(ai = 0)(lnπ0 +
D∑
d=1

lnLid0)

+
K∑
k=1

δ(ai = k)[ln πk +
D∑
d=1

bid(ln vkd + lnLid1) +
D∑
d=1

cid(lnwkd + lnLid2)

+
D∑
d=1

(1− bid − cid)(ln(1− vkd − wkd) + lnLid0)]}
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+
K∑
k=0

lnπk +
K∑
k=1

D∑
d=1

[ln vkd + lnwkd + ln(1− vkd − wkd)]

+ constant (2.11)

Therefore,

Q(π,V ,W |π̂old, V̂ old, Ŵ old) (2.12)

= Eold[lnPr(A,B,C,π,V ,W |X,N )]

=
K∑
k=0

{
I∑
i=1

Eold[δ(ai = k)] + 1} lnπk +
K∑
k=1

D∑
d=1

{(
I∑
i=1

Eold[δ(ai = k)bid] + 1) ln vkd

+ (
I∑
i=1

Eold[δ(ai = k)cid] + 1) lnwkd

+ +(
I∑
i=1

Eold[δ(ai = k)(1− bid − cid)] + 1) ln(1− vkd − wkd)}+ constant

In the M-step, one finds π, V and W that maximize the Q-function

Q(π,V ,W |π̂old, V̂ old, Ŵ old). Denote them by π̂new, V̂ new and Ŵ new.

These will give the new parameter estimates.

By solving

∂Q(π,V ,W |π̂old, V̂ old, Ŵ old)

∂πk
= 0 (2.13)

∂Q(π,V ,W |π̂old, V̂ old, Ŵ old)

∂vkd
= 0 (2.14)

∂Q(π,V ,W |π̂old, V̂ old, Ŵ old)

∂wkd
= 0 (2.15)

We have

π̂newk =

∑I
i=1 Prold(ai = k) + 1

I +K + 1
(2.16)

v̂newkd =

∑I
i=1 Prold(ai = k, bid = 1) + 1∑I

i=1 Prold(ai = k) + 3
(2.17)
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ŵnewkd =

∑I
i=1 Prold(ai = k, cid = 1) + 1∑I

i=1 Prold(ai = k) + 3
(2.18)

In the formulas above, Prold(ai = k), Prold(ai = k, bid = 1) and Prold(ai =

k, cid = 1) are computed as follows. To compute Prold(ai = k) = Pr(ai =

k|X i,N i, π̂
old, V̂ old, Ŵ old), recall

Pr(ai|X i,N i,π,V ,W ) = Pr(X i, ai|N i,π,V ,W )/Pr(X i|N i,π,V ,W )

(2.19)

Since

Pr(X i, ai|N i,π,V ,W ) =
∑
Bi,C i

Pr(X i, ai,Bi,Ci|N i,π,V ,W ) (2.20)

= {π0
D∏
d=1

Lid0}δ(ai=0)
K∏
k=1

{πk
D∏
d=1

[vkdLid1 + wkdLid2 + (1− vkd − wkd)Lid0]}δ(ai=k)

and

Pr(X i|N i,π,V ,W ) =
∑
ai

Pr(X i, ai|N i,π,V ,W ) (2.21)

= π0
D∏
d=1

Lid0 +
K∑
k=1

{πk
D∏
d=1

[vkdLid1 + wkdLid2 + (1− vkd − wkd)Lid0]}

Therefore, Prold(ai = k) can be computed by replacing π, V and W with

π̂old, V̂ old and Ŵ old.

Prold(ai = k, bid = 1) = Prold(ai = k)Prold(bid = 1|ai = k). Prold(ai = k)

is computed as above. However,Pr(bid, cid|ai = k,X i,N i,π,V ,W ) can be

computed as

Pr(bid, cid,X i|ai = k,N i,π,V ,W )

Pr(X i|ai = k,N i,π,V ,W )

91



=
Pr(bid, cid,X id|ai = k,N i,π,V ,W )∑

bid,cid Pr(bid, cid,X id|ai = k,N i,π,V ,W )

=
[vkdLid1]

bid [wkdLid2]
cid [(1− vkd − wkd)Lid0]1−bid−cid

vkdLid1 + wkdLid2 + (1− vkd − wkd)Lid0
(2.22)

Prold(bid = 1|ai = k) and Prold(cid = 1|ai = k) can be obtained by plugging

in π̂old, V̂ old and Ŵ old into the formula above to replace π, V and W .

2.6.5 Bayesian Information Criterion (BIC) for choosing
K

We compute BIC as

BIC(K) = −2 ∗ ln{
I∏
i=1

Pr(X i|N i,π,V ,W )}+ (K + 2 ∗K ∗D) ∗ ln I

= −2 ∗
I∑
i=1

ln

[
π0

D∏
d=1

Lid0 +
K∑
k=1

{πk
D∏
d=1

[vkdLid1 + wkdLid2 + (1− vkd − wkd)Lid0]}
]

+K(2D + 1) ln I (2.23)

We calculate BIC for different values of K, and choose the K with the smallest

BIC. Here K+1 is the number of classes. K is also the number of parameters in

π. 2KD is the number of parameters involved in V and W . I is the SNP num-

ber. Strictly speaking, the data likelihood also involve terms Pr(N i|π,V ,W ).

However, based on our assumption, these terms do not depend on K, π, V

and W , and can be reduced to Pr(N i). They can be viewed as constants for

the purpose of choosing the optimal K. We do not include them in the BIC

computation.
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2.6.6 Data generation in simulation studies

To simulate a ASB SNP i, we first sampled a SNP from the 8166 non-background

SNPs in the real GM12878 data. Here the non-background SNPs in the real

data were determined by iASeq using Pr(ai = 0|X i,N i,π,V ,W ) < 0.5 as

cutoff. Additionally, we also sampled a SNP from the 86,353 background SNPs

in the real GM12878 data. Next, with these two real SNPs in hand, we went

through each dataset d to generate the read counts for the simulated SNP. If

[bid, cid] = [0, 0], then we used the background SNP’s read count data (xidj, nidj)

in sample (d, j) to serve as the data of the simulated SNP in dataset d sample

j. If [bid, cid] = [1, 0], then we used the non-background SNP’s read count data

to simulate read counts as follows. For each replicate sample j in dataset d, we

obtained the observed total read count nidj for the non-background SNP. We

then randomly drew a number pidj from U [pdj0, 1], where pdj0 is the mean of
xidj
nidj

over all background SNPs in the same sample (d, j). Subsequently, we simu-

lated xidj from a binomial distribution Bin(nidj, pidj) to serve as the simulated

SNP’s data in dataset d and sample j. If [bid, cid] = [0, 1], we applied a similar

procedure but the pidj was drawn from U [0, pdj0].

2.6.7 The single dataset based EM analysis

This approach analyzes each dataset separately. Let Xd = (X1d, · · · ,XId)

and N d = (N 1d, · · · ,N Id) be the data from dataset d. We assumed that in

each dataset d, a SNP i can be SR (bid = 1), SN (cid = 1) or NS (bid = 0

and cid = 0) with probability (vd, wd, 1 − vd − wd). Let Bd = (b1d, · · · , bId)

and Cd = (c1d, · · · , cId) be the ensemble of all ASB indicators in dataset d.
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Adopting the same distributional assumption as in Equations 1-3 in the main

mainuscript, the complete data likelihood can be derived as:

Pr(Xd,N d,Bd,Cd|vd, wd)Pr(N d)Pr(Xd,Bd,Cd|N d, vd, wd)

= Pr(N d)
I∏
i=1

{[vdLid1]bid [wdLid2]
cid [(1− vd − wd)Lid0](1−bid−cid)} (2.24)

By imposing a Dirichlet prior D(2, 2, 2) on (vd, wd, 1− vd − wd), we obtain the

posterior distribution of the unknown parameters and missing indicators:

Pr(Bd,Cd, vd, wd|Xd,N d) (2.25)

∝
I∏
i=1

{[vdLid1]bid [wdLid2]
cid [(1− vd − wd)Lid0](1−bid−cid)}vdwd(1− vd − wd)

An EM algorithm can be similarly derived as in iASeq to estimate the param-

eters vd and wd by searching for the posterior mode of Pr(vd, wd|Xd,N d).

In the E-step, we compute the Q-function Q(vd, wd|v̂oldd , ŵoldd ). Since

lnPr(Bd,Cd, vd, wd|Xd,N d) =
I∑
i=1

{bid[ln vd + lnLid1] + cid[lnwd + lnLid2]

+ (1− bid − cid)[ln(1− vd − wd) + lnLid0]}+ ln vd

+ lnwd + ln(1− vd − wd) + constant (2.26)

We have

Q(vd, wd|v̂oldd , ŵoldd ) = Eold[lnPr(B
d,Cd, vd, wd|Xd,N d)] (2.27)

= {
I∑
i=1

Eold(bid) + 1} ln vd + {
I∑
i=1

Eold(cid) + 1} lnwd

+ {
I∑
i=1

Eold(1− bid − cid) + 1} ln(1− vd − wd) + constant
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In the M-step, we find vd and wd that maximize Q(vd, wd|v̂oldd , ŵoldd ). By

solving

∂Q(vd, wd|v̂oldd , ŵoldd )

∂vd
= 0 (2.28)

∂Q(vd, wd|v̂oldd , ŵoldd )

∂wd
= 0 (2.29)

We obtain

v̂newd =

∑I
i=1 Prold(bid = 1) + 1

I + 3
(2.30)

ŵnewd =

∑I
i=1 Prold(cid = 1) + 1

I + 3
(2.31)

Here

Prold(bid = 1) = Pr(bid = 1|X id,N id, v̂
old
d , ŵoldd )

=
Pr(bid = 1,X id|N id, v̂

old
d , ŵoldd )

Pr(X id|N id, v̂oldd , ŵoldd )

=
v̂oldd Lid1

v̂oldd Lid1 + ŵoldd Lid2 + (1− v̂oldd − ŵoldd )Lid0
(2.32)

Prold(cid = 1) = Pr(cid = 1|X id,N id, v̂
old
d , ŵoldd )

=
Pr(cid = 1,X id|N id, v̂

old
d , ŵoldd )

Pr(X id|N id, v̂oldd , ŵoldd )

=
ŵoldd Lid2

v̂oldd Lid1 + ŵoldd Lid2 + (1− v̂oldd − ŵoldd )Lid0
(2.33)

Using the posterior mode, one can similarly compute Pr(bid, cid|Xd,N d, vd, wd)

and P̃id to detect and rank AS SNPs.

95



Chapter 3

Global Mapping of Transcription
Factor Binding Sites by
Sequencing Chromatin
Surrogates

1

3.1 Introduction

One major goal of functional genomics is to comprehensively characterize the

regulatory circuitry behind coordinated spatial and temporal gene activities.

In order to achieve this goal, a critical step is to monitor downstream regula-

tory programs of all transcription factors (TFs). With the capability of mapping

genome-wide transcription factor binding sites (TFBSs), chromatin immunopre-

cipitation coupled with high-throughput sequencing (ChIP-seq) (Barski and oth-

ers (2007), Johnson and others (2007),Mikkelsen and others (2007),Robertson

1A modified version of this chapter has been published: Wei YY, Wu G, Ji HK (2013)
Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin States: A
Perspective on Experimental Design, Data Analysis, and Open Problems. Statistics in Bio-
sciences.5: 156-178. doi: 10.1007/s12561-012-9066-5
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and others (2007)) or tiling array hybridization (ChIP-chip) ( Cawley and others

(2004),Ren and others (2000) ) have become standard approaches for studying

gene regulation. Both technologies are now being widely used by investigators

world-wide as well as consortium projects such as the ENCODE ( Consortium

(2007)) , modENCODE (Celniker and others (2009)) and Epigenome Roadmap

(Bernstein and others (2010)) to map functional cis-regulatory elements. Al-

though ChIPx (i.e., ChIP-seq and ChIP-chip) offers the power to survey binding

sites genome-wide, a number of limitations make this technology low-throughput

with respect to surveying a large number of TFs. First, successful application

of ChIPx requires high-quality antibodies specifically recognizing the TF of in-

terest. Unfortunately for many TFs, ChIP-quality antibodies are not available.

Second, each individual ChIPx experiment can only analyze one TF in one cell

type. To analyze many TFs, one has to test to ensure sensitive antibodies, op-

timize the protocol, and perform experiments repeatedly, which is both costly

and labor intensive. For these reasons, currently it is unrealistic to use ChIPx to

directly monitor genome-wide TFBSs for all TFs. Therefore, the development

of innovative methods and technologies that allow high-throughput mapping of

in vivo TFBSs of all TFs is both important and urgently needed.

Computational predictions based on mapping DNA sequence motifs to genome

sequences offer an alternative approach to analyze TFBSs (Jensen and others

(2004),Ji and Wong (2006),Stormo (2000),Tompa and others (2005)). Predic-

tions based purely on DNA sequences, however, are known to have low speci-

ficity. In addition, in vivo TF binding is highly context-dependent. Without

further information, computationally determined motif sites cannot describe

the highly dynamic TF binding activities in different cell types and conditions.
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Recent technological advances have made it possible to analyze genome-wide

chromatin profiles (Barski and others (2007),Boyle and others (2008),Ernst and

Kellis (2010),Ernst and others (2011),He and others (2010),Heintzman and oth-

ers (2007),Hon and others (2009),Mikkelsen and others (2007),Song and others

(2011)). For example, a variety of histone modifications (HMs) (e.g., H3K27ac,

H3K4me1, H3K4me2, H3K4me3) can now be measured by ChIP-seq (Barski

and others (2007),Ernst and others (2011),He and others (2010),Heintzman

and others (2007)). Additionally, DNase-seq and FAIRE-seq have been devel-

oped for mapping DNase I hypersensitivity (DHS) and open chromatin (Boyle

and others (2008),Gaulton and others (2010),Song and others (2011)). Analy-

ses of data generated by these technologies show that many chromatin features

correlate with TF binding (Figure 3.1). As a result, HM ChIP-seq, DNase-

seq and FAIRE-seq can serve as a surrogate in place of TF ChIPx for map-

ping TFBSs (Boyle and others (2011),Cheng and others (2011),Pique-Regi and

others (2011),Whitington and others (2009),Won and others (2010)). Cou-

pling analyses of these surrogate data with computationally determined mo-

tif sites allows one to predict in vivo TF binding. This predictive approach

has several unique advantages. First, the requirement for antibodies is eas-

ier to satisfy, because ChIP-quality antibodies are available for many HMs,

and DNase-seq and FAIRE-seq do not require TF-specific antibodies. Second,

measurements offered by HM ChIP-seq, DNase-seq and FAIRE-seq are context-

dependent, hence TFBS predictions based on these data are specific to the bio-

logical contexts in question (Figure 3.1a). Third, this approach makes analysis
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of TFs high-throughput. Among the approximately 1400 human TFs, sequence-

specific DNA binding motifs have been determined for about 500 TFs by high-

throughput means such as protein microarrays (Hu and others (2009),Robasky

and Bulyk (2011),Sandelin and others (2004),Wingender and others (1996),Xie

and others (2010)). Thus, the predictive approach allows one to infer TFBSs

for hundreds of different TFs simultaneously in one assay. For these reasons,

predicting TFBSs based on sequencing chromatin surrogates offers a promising

new solution to the global analysis of gene regulation.

As a new approach, many open issues remain to be addressed. Examples

include what principles to follow when designing experiments, which guidelines

to use to choose informative surrogate data types, and what methods will an-

alyze the data optimally. For statisticians and computational scientists, it is

of interest to know what are the crucial analytical challenges and opportuni-

ties for developing new methodology. The purpose of this chapter is two-fold.

First, through an analysis of the ENCODE data, we will demonstrate some

basic characteristics of this approach which will shed light on several impor-

tant experimental design and data analysis issues. Second, we will use the data

to introduce several analytical challenges to investigators who are interested in

exploring this new field.

3.2 Key Questions

Our analyses were designed to shed light on the following questions.

(1) Overall prediction performance: what is the overall accuracy and

sensitivity for predicting TFBSs by using chromatin surrogates?
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Figure 3.1: Correlation between TF binding and chromatin features. (a) His-
tone modification H3K27ac ChIP-seq and DNase-seq profiles at a MYC motif
site are shown along with ChIP-seq data for TF MYC in two cell lines K562 and
Huvec. The profiles shown are read counts in 100bp sliding windows at 25bp
resolution. MYC binding can be inferred from the H3K27ac and DNase data.
In this example, the motif site is bound by MYC in the K562 cell line but not in
the Huvec cell line. The cell-type specific binding is correlated with the cell-type
specific H3K27ac and DNase I hypersensitivity. In the K562 H3K27ac track,
MYC binding leads to nucleosome displacement. As a result, the binding site
is surrounded by two nucleosomes carrying the H3K27ac signals (He and others
(2010)), causing the dip shape in the signal curve. In the K562 DNase track,
the peak reflects the chromatin accessibility due to TF binding. (b) Pearson
correlation coefficients between different types of chromatin data and the actual
MYC ChIP-seq binding intensities in K562 across all MYC motif sites. Certain
chromatin features (e.g., H3K27ac, H3K4me2, H3K4me3, H3K9ac, DNase and
FAIRE) clearly correlate with MYC binding. (c) A scatter plot demonstrat-
ing the correlation between H3K27ac and MYC ChIP-seq binding intensities
in K562 across all MYC motif sites. Each dot is a motif site. The binding
intensities are normalized and log2 transformed read counts. ‘Cor’: Pearson
correlation coefficient. (d) Correlation between DNase-seq and MYC ChIP-seq
binding intensities in K562. 100



(2) Best surrogate data type: which surrogate data type(s), individually

or in combination, can produce the best prediction performance?

(3) Supervised versus unsupervised learning: predictions can be made

by two different approaches. In the unsupervised approach, only surrogate chro-

matin data are collected. The TFBSs are then predicted based on analyzing the

surrogate data at the DNA motif sites. In the supervised approach, one collects

ChIP-seq data for at least one TF in addition to generating the surrogate chro-

matin data. One then uses these data to train a model to predict TFBSs based

on the surrogate data. The trained model will be applied to predict binding sites

of all other TFs. The supervised approach seems to use more information and

intuitively should outperform the unsupervised approach. Is this true? Should

one use the supervised approach or the unsupervised approach? For the super-

vised approach, is it possible to eliminate the need for generating the training

TF ChIP-seq data by coupling ones’ own surrogate data with TF ChIP-seq data

from other labs (e.g., existing data in public databases) to train a model, and

then apply the model to make predictions?

Answers to these questions have important implications to future studies.

They may help one to design future experiments to better allocate available

resources. Answers to (1) and (3) may help statisticians and computational

biologists to decide where to invest their efforts for developing the most needed

analytical tools.
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Table 3.1: Summary of surrogate chromatin data

Lab Data type K562 Gm12878 Description

Broad H3K27ac
√ √

acetylation of H3 Lysine 27
Broad H3K27me3

√ √
trimethylation of H3 Lysine 27

Broad H3K36me3
√ √

trimethylation of H3 Lysine 36
Broad H3K4me1

√ √
monomethylation of H3 Lysine 4

Broad H3K4me2
√ √

dimethylation of H3 Lysine 4
Broad H3K4me3

√ √
trimethylation of H3 Lysine 4

Broad H3K9ac
√ √

acetylation of H3 Lysine 9
Broad H3K9me1

√
monomethylation of H3 Lysine 9

Broad H4K20me1
√ √

monomethylation of H4 Lysine 20
Duke DNase (DHS)

√ √
DNase I hypersensitivity

UNC FAIRE
√ √

nucleosome-depleted regions

Available HM ChIP-seq, DNase-seq and FAIRE-seq data in the ENCODE con-
sortium for cell lines K562 and Gm12878 were analyzed. Each row is a dataset
containing 1-3 replicate samples.

Table 3.2: Summary of TF ChIP-seq data

Lab TF TF type K562 Gm12878

HudsonAlpha (HA) EGR1 activator
√ √

HudsonAlpha (HA) GABP activator
√ √

HudsonAlpha (HA) SRF activator
√ √

HudsonAlpha (HA) USF activator
√ √

HudsonAlpha (HA) NRSF repressor
√ √

Yale E2F4 activator
√

Yale E2F6 activator
√

UTA MYC activator
√ √

UTA CTCF insulator
√ √

We analyzed 9 different TFs from 3 different labs in the EN-
CODE consortium for cell lines K562 and Gm12878. Each row
is a dataset containing 1-3 replicate samples.
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3.3 Data

To answer these questions, we have analyzed 11 different surrogate data types

(Table 3.1), and constructed various models to predict binding sites of 9 different

TFs (Table 3.2). These data were generated by 6 different labs in the ENCODE

consortium and involved two different cell lines for which rich data are available:

K562 and Gm12878. The data analyzed represent those available to us from

ENCODE at the time the study was initiated, and only TFs with known DNA

binding motifs were considered.

Nine of the eleven surrogates are histone modifications. Among them,

H3K27ac, H3K4me1, H3K4me2, H3K4me3 and H3K9ac correlate with active

promoters or enhancers, whereas H3K27me3 is a mark for gene repression

(Barski and others (2007),Heintzman and others (2007),Wang and others (2008)).

H3K36me3 is enriched in the gene body of actively transcribed genes (Barski

and others (2007)). H4K20me1 and H3K9me1 have been previously linked to

repressive chromatin (Sims and others (2006)), but recent studies also found

correlation between these two HMs with active transcription (Barski and oth-

ers (2007)). As the current understanding of HM functions is incomplete, it

is possible that some HMs individually or in combination have unknown new

functions. Besides these nine HMs, our surrogates also included DNase I hyper-

sensitivity measured by DNase-seq, which is a signature for DNA binding by

trans-acting factors in place of canonical nucleosomes, and open chromatin mea-

sured by FAIRE-seq, which is a mark for nucleosome-depleted regions. Among

the nine TFs considered, NRSF is a repressor that inactivates neuronal gene

transcription in non-neuronal cells. CTCF is a protein that binds to insulators
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Figure 3.2: Area under the receiver operating characteristic curves for predicting
TFBSs in K562 based on single surrogate. (a) GABP; (b) E2F4; (c) NRSF; (d)
CTCF. Results for other TFs are in Supplemental Figure 3.9.

and may also serve as a transcriptional repressor. The other TFs all have roles

in activating gene expression.

Since analyses of the two cell lines have reached essentially the same con-

clusions, this chapter will use K562 as an example to demonstrate the main

results.

3.4 Which surrogates are informative predic-

tors individually?

We first investigated which surrogates (i.e., DHS, FAIRE, and various HMs)

are most informative for predicting TFBSs. We downloaded aligned ChIP-

seq, DNase-seq and FAIRE-seq reads (human genome build 36/hg18) from the

ENCODE website (http://genome.ucsc.edu/ENCODE/). Consider J surrogate

datasets. To predict binding sites of a TF, the DNA binding motif of the TF

was mapped to human genome by CisGenome (Ji and others (2008)) using the

default parameters. For each motif site s and surrogate dataset j, the normal-

ized read count xsj in a 500bp flanking window centered at the motif site was

obtained to represent the surrogate signal intensity (see Supplemental Method
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Section 3.10.1). For each motif site, the actual TF binding intensity ys was also

computed using the ENCODE ChIP-seq data for the TF (see Supplemental

Method Section 3.10.1). We used the surrogate signal intensities xsj to rank

order motif sites. Top ranked sites were predicted to be bound by the TF.

We varied the cutoff and evaluated the predictions using the actual TF bind-

ing intensities ys. For evaluation, motif sites with ys > 1 were treated as true

binding sites. Intuitively, ys > 1 means the log2 ratio between the normalized

ChIP and Input control read counts is bigger than one (or 2 fold enrichment).

Using these as gold standard, we obtained a curve for each surrogate data type

that describes the positive predictive values (PPV, i.e., the percentage of true

positives among top predictions) at varying cutoffs. We also computed the area

under the receiver operating characteristic curve (AUC) for each surrogate and

compared different surrogates in terms of AUC.

When each surrogate was used individually as the predictor, DHS performed

the best in most situations based on the global PPV curves and AUC (Figure

3.2, Figures 3.9, 3.10, Supplemental Table 3.4). Only for CTCF, FAIRE out-

performed DHS. Several HMs, including H3K27ac, H3K4me2, H3K4me3 and

H3K9ac also performed well in most but not all datasets. In general, the pre-

dictive power of HMs depends on the TF. H3K27ac, H3K4me2, H3K4me3 and

H3K9ac predicted TFBSs well for EGR1, GABP, SRF, USF, E2F4, E2F6 and

MYC (Figure 3.2, Figures 3.9, 3.10). However, for NRSF, H4K20me1 and

H3K9me1 performed better than the other HMs. For CTCF, H3K4me1 per-

formed the best among the tested HMs. These results are consistent with the

patterns we saw in supplemental Figure 3.11 where Pearson correlation between

the predictors xsj and the actual binding ys are compared.
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Figure 3.3: Positive predictive value curves for predicting TFBSs in K562 based
on single surrogate. The x axis is the number of the top ranked motif sites.
The y axis is the positive predictive value. (a) GABP; (b) E2F4; (c) MYC;
(d) NRSF; (e) CTCF. Only representative surrogates and TFs are shown. See
Supplemental Figure 3.12 for comprehensive results.
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The analysis above compares the prediction performance globally based on

all motif sites. We also examined the PPVs for the top ranked predictions

which are most likely to be picked up for follow-up experimental studies (Figure

3.3, Supplemental Figure 3.12). While DHS still performed the best in most

datasets, we found a few cases where other surrogates predicted TFBSs better

than DHS among the top predictions. For example, for MYC (i.e., c-Myc),

H3K27ac and H3K9ac performed better. For NRSF, H4K20me1 outperformed

DHS for top 800 motif sites. For CTCF, FAIRE and H4K20me1 performed the

best.

In summary, we found DNase I hypersensitivity to be the most consistently

accurate predictor for TFBSs, whereas the predictive power of HMs depend on

the TF-of-interest.

3.5 How do surrogates perform jointly?

Next, we asked whether using multiple surrogates together can improve pre-

diction. Let xs = (xs1, . . . , xsJ)T be the vector that contains all surrogate

intensities at motif site s, we constructed models that use xs to predict ys.

Before constructing any model, we first investigated whether binding sites of

each TF fall into different classes exhibiting different chromatin patterns. For

each TF, we clustered its bound motif sites (i.e., sites for which ys > 1) based

on xs. It turns out that for the same TF, most motif sites bound by the TF

share a similar pattern in xs (Supplemental Figure 3.13a). Next, for each TF,

we asked whether its motif sites have regionalized patterns of xs. In this regard,

we clustered all motif sites of the TF based on xs (Supplemental Figure 3.13b).
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We then examined whether the distribution of the motif sites in each cluster

are concentrated on certain genomic regions. However, we did not observe such

a phenomenon (Supplemental Figure 3.13c,d). Furthermore, we checked the

correlation between ys and each surrogate in each chromosome. We found that

the correlation patterns in different chromosomes were similar (Supplemental

Figure 3.14). Based on these explorations and due to considerations of compu-

tational efficiency, we decided not to construct regionalized prediction models

with varying forms or parameters for different genomic regions. Instead, for

each TF, we constructed models whose form and parameters remain the same

across the genome.

Eight prediction methods were tested, including one unsupervised approach

and seven supervised learning methods (Table 3.3; Supplemental Method Sec-

tion 3.10.2). The methods employed include both linear and non-linear models.

In the unsupervised approach, the first principal component (PC1) of xs was

computed using all motif sites. The motif sites were then rank ordered based on

PC1. Since the direction of unique PCs can only be determined up to a positive

or negative sign, motif sites were sorted based on PC1 and −PC1 separately.

Both rankings were tested, and the one with better prediction performance

was reported. In the supervised approach, the prediction model was trained

using ChIP-seq data for one TF and then applied to other TFs to make predic-

tions. The training methods include linear regression (L) using all surrogates

(AS) as predictors, principal component regression (PCR) using the first two

principal components of xss, classification and regression tree (CART), random

forest (RF), and support vector regression with linear (SVR L) and Gaussian
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(SVR G) kernels. For the linear regression, we also enumerated all combina-

tions of multiple surrogates (MS), identified the best subset of surrogates using

the Cp statistic, and then obtained the linear model based on the best surrogate

set (MS L). For the non-linear models, we did not analyze different surrogate

combinations since it would require a tremendous amount of computation time.

Interestingly, we found that even though the best methods based on multiple

or all surrogates improved predictions for some TFs compared to analyses based

on DHS alone, none of these methods consistently outperformed DHS for all

test TFs (Figure 3.4, Supplemental Figure 3.15). For instance, RF and SVR G

trained using EGR1 ChIP-seq data and all surrogates outperformed DHS for

E2F4 and E2F6, but performed worse than DHS for NRSF and CTCF. A recent

study based on an unsupervised approach has reported that adding HM ChIP-

seq did not improve the power for predicting TFBSs using DHS Pique-Regi

and others (2011). Our results are consistent with that observation. Different

from Pique-Regi and others (2011), however, our analyses here also examined a

number of supervised learning approaches. The analyses show that integrating

multiple surrogates by these supervised approaches did not improve predictions

consistently.

3.6 Supervised versus unsupervised learning

Ranking motif sites based on DHS alone is essentially an unsupervised approach.

Figure 3.4 and Supplemental Figure 3.15 show that when DHS is included in

the predictors, the gain of using all surrogates and supervised learning over

this simple unsupervised method is not universally guaranteed. We speculate
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Table 3.3: Methods used for prediction

Abbreviation Category Description

SS unsupervised Single surrogate
AS PC1 unsupervised All surrogates, the first principal component
MS L supervised The best subset of surrogates, linear regression
AS L supervised All surrogates, linear regression

AS PCR supervised All surrogates, principal component regression
AS CART supervised All surrogates, classification and regression tree

AS RF supervised All surrogates, random forest
AS SVR L supervised All surrogates, linear kernel support vector regression
AS SVR G supervised All surrogates, Gaussian kernel support vector regression

0 500 1000 2000 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) GABP(activator, HA)

size of list

P
P

V

0 500 1000 2000 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) E2f4(activator, Yale)

size of list

P
P

V

0 500 1000 2000 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) NRSF(repressor, HA)

size of list

P
P

V

0 500 1000 2000 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) CTCF(insulator, UTA)

size of list

P
P

V

AS_PC1

AS_PCR

AS_L

AS_CART

AS_RF

AS_SVR_G

AS_SVR_L

MS_L

Dnase

Faire

Figure 3.4: Positive predictive value curves for predicting TFBSs in K562 based
on models trained using EGR1. (a) Prediction for GABP; (b) prediction for
E2F4;(c) prediction for NRSF; (d) prediction for CTCF. Predition results for
other TFs are in Supplemental Figure 3.15. Using other TFs to train the model
produced similar results (data not shown).
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that part of the reason is that the supervised approach trains models using one

TF and applies it to another TF. Due to intrinsic differences between TFs, the

model may be optimized for the training TF, but may not be optimal for the test

TF. To examine whether this is the case, we compared two prediction scenarios.

In scenario 1, a prediction model was trained using surrogate and ChIP-seq data

for TF A in a subset of chromosomes (chromosomes 1-16). The model was then

applied to predict binding sites of TF A in other chromosomes (chromosomes

17-22 and X). The prediction performance was evaluated using ChIP-seq data

for TF A in the test chromosomes (Figures 3.16,3.17). In scenario 2, a prediction

model was trained using ChIP-seq data for TF A, and then applied to predict

binding sites of TF B. The prediction performance was evaluated using ChIP-seq

for TF B (Figure 3.4, Supplemental Figure 3.15). In scenario 1, the prediction

model trained using AS L, MS L, AS CART, AS RF,AS SVR L and AS SVR G

all performed better than using DHS alone, and supervised learning on average

performed better than unsupervised approaches. In contrast, in scenario 2,

supervised prediction based on all surrogates did not consistently outperform

DHS (e.g., compare NRSF and CTCF in Figure 3.4 and Supplemental Figure

3.15). This demonstrates that supervised learning was able to improve the

prediction for the training TF, but cannot guarantee an improvement when the

trained model is applied to another TF.

An investigator may decide to collect HM ChIP-seq data without DNase-

seq for other considerations (e.g., if one is primarily interested in studying HMs

and the budget does not allow additional DNase-seq). With only HMs as pre-

dictors, we observed similar phenomena, that is, the supervised approach did
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Figure 3.5: Positive predictive value curves for predicting TFBSs in K562 based
on models trained on EGR1 using only HM ChIP-seq data. (a) Prediction for
GABP; (b) prediction for E2F4; (c) prediction for NRSF; (d) prediction for
CTCF. Only representative methods and TFs are shown. See Supplemental
Figure 3.18 for comprehensive results.

not consistently outperform the unsupervised approach (Figure 3.5, Supple-

mental Figure 3.18). However, the difference in prediction accuracy between

the best supervised method and the best unsupervised method became much

bigger. For instance, RF and SVR G trained using EGR1 ChIP-seq data now

performed substantially better than the best unsupervised ranking based on

H3K27ac for predicting GABP, SRF, USF, E2F4 and E2F6. For predicting

NRSF and CTCF, RF and SVR G trained by EGR1 performed substantially

worse than unsupervised rankings based on H4K20me1.

To further shed light on when the supervised methods can outperform the

unsupervised methods, we clustered the nine TFs based on the eleven surro-

gates. For each TF, the TF’s ChIP-seq data was used to group motif sites into

two classes: bound (ys > 1) and not bound (ys ≤ 1). The enrichment of the

surrogate signals in the bound class compared to the non-bound class were used

to cluster TFs (Supplemental Method Section 3.10.3). The TFs fall into two

distinct classes (Figure 3.6). The repressor and insulator proteins NRSF and

CTCF were clearly separated from the other TFs which can serve as transcrip-

tional activators. H3K9ac, H3K4me2, H3K4me3 and H3K27ac were clearly
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enriched in the bound motif sites for those activators but not for NRSF and

CTCF.

A careful examination of Figures 3.4, 3.5 and 3.6 reveals that whether or

not the supervised approach improves the unsupervised approach depends on

whether or not the training and test TFs are of similar types. For instance,

supervised models trained using EGR1 predicted GABP and E2F4 well as they

are in the same class (also see SRF, USF, E2F6 in Supplemental Figures 3.15,

3.18), but it did not perform so well for NRSF and CTCF. Interestingly, when

we attempted to predict CTCF using models trained by NRSF and only using

HMs as predictors, or predict NRSF using models trained by CTCF, supervised

learning improved the prediction performance a lot in both cases, compared to

predictions based on DHS and FAIRE (Supplemental Figure 3.19).

Figure 3.6 shows that DHS is enriched in bound motif sites for all TFs, con-

sistent with the observation that it is the most consistently accurate predictor

for all analyzed TFs. This also explains why we observed bigger differences be-

tween the best supervised prediction and the best single surrogate based ranking

in Figure 3.5 after excluding DHS from the predictors, compared with Figure

3.15 in which DHS was included as a predictor.

Together, our results suggest that the intrinsic differences among TFs are

an important reason why supervised learning based on all surrogates does not

guarantee a gain over the unsupervised ranking based on DHS alone. Therefore,

when developing future supervised learning methods for predicting TFBSs using

surrogate data, it is important to consider the heterogeneity of the TFs. One

may need to group TFs into different categories (e.g., activators, repressors,

etc.) so that TFs within each category have similar characteristics. One could
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Figure 3.7: Positive predictive value curves for prediction on EGR1 by models
trained using ChIP-seq data from different labs. (a) Models trained using GABP
(HudsonAlpha); (b) models trained using MYC (UTA); (c) models trained using
E2F4 (Yale). Only representative methods and training TFs are shown. See
Supplemental Figure 3.20 for comprehensive results.

then train a model for each category in order to take the full advantage of the

supervised learning, which may eventually lead to improved prediction accuracy.

3.7 Cross-lab prediction

Both unsupervised and supervised approaches require one to generate surrogate

data for the cell type of interest. For the supervised approach, one also needs to

collect training TF ChIP-seq data for different TF classes. If TF ChIP-seq data

for the same cell type are available in public databases, a natural question is

whether one can couple these public TF ChIP-seq data (typically generated by

a different lab) with his/her own surrogate data to train the prediction model,

thereby eliminating the needs for generating ones’ own TF ChIP-seq. In our

analyses, EGR1, GABP and NRSF came from one lab. E2F4 and E2F6 came

from another lab. Figure 3.5 and Supplemental Figures 3.15 and 3.18 show

that using the random forest and support vector regression trained by EGR1,

one achieved comparable or better prediction performance for predicting E2F4

and E2F6 as compared to predicting GABP and NRSF. Futhermore, when
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we attempted to predict binding sites for EGR1 by models trained using data

from different labs, including USF (HudsonAlpha), SRF (HudsonAlpha), GABP

(HudsonAlpha), MYC (UTA), E2F4 (Yale) and E2F6 (Yale), models trained by

data from different labs performed similarly (Figure 3.7, Supplemental Figure

3.7). Collectively, these suggest that cross-lab training is feasible, and as ChIP-

seq data in public domains continue to grow rapidly, the need to generate one’s

own training TF ChIP-seq data may be partially eliminated in future.

3.8 Sensitivity

Since DHS has robustly performed among the best, our subsequent analyses

were focused on DHS. To evaluate sensitivity, we analyzed ChIP-seq data for

each TF using CisGenomev2 algorithm Ji and others (2008) and called peaks

using 1% FDR as the cutoff. Peaks that contained the motif of the corresponding

TF were used as gold standard. In parallel, we ranked motif sites by DHS, used

the top ranked sites to predict TFBSs, and estimated the FDR among the

predicted sites by comparing their DHS signal distribution to the DHS signal

distribution at randomly chosen genomic loci (Supplemental Method Section

3.10.4). The receiver operating characteristics (ROC) in Figure 3.8 show that

at the 25% FDR level, the predictions were able to recover 50-90% of the ChIP-

seq peaks containing the motifs. SRF is an exception. For SRF, the data

were noisy and the lowest prediction FDR we can obtain was 58%. In practice,

this means that none of the predicted SRF binding sites can be claimed as

statistically significant. It should be noted that the ROC will change if peaks

and motif sites are called using different cutoffs, or if different motifs are used to
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Figure 3.8: Sensitivity against FDR plot. The x axis is the FDR of DHS at
candidate sites. The y axis is the percentage of gold standard motif peaks
discovered. “No. peaks” is the total number of gold standard peaks called by
CisGenome at FDR 1%. “Prop. motif peaks” is the proportion of gold standard
peaks containing motif sites, called as motif peaks. “No. motif peaks” is the
total number of motif peaks. (a) EGR1; (b) E2F4; (c) E2F6; (d) GABP; (e)
SRF; (f) USF; (g) MYC; (h) NRSF; (i) CTCF.
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make predictions. Therefore Figure 3.8 should be interpreted as a rough picture

of the sensitivity of the prediction approach.

3.9 Conclusions and Discussion

Through the analyses of ENCODE data, we have verified that TFBSs can be

predicted using chromatin surrogates with reasonable accuracy and sensitivity.

This approach offers an attractive alternative to ChIP-seq and ChIP-chip as it

allows one to survey many TFs together in one assay. Our analyses show that

DNase I hypersensitivity profiled by DNase-seq consistently performed among

the best as a predictor, whereas the performance of using a specific HM as the

predictor may depend on TFs. Thus if the available resources only allow one to

sequence one surrogate data type, one may consider DNase-seq.

When TF ChIP-seq data are available in addition to multiple types of sur-

rogate data, one may choose to use these data to train a prediction model and

then apply the model to predict binding sites for other TFs. Our analyses show

that the improvement the supervised learning can provide over the unsupervised

method is not significant when DHS is included as a predictor. When only HMs

are used as predictors, the gain of supervised learning over the unsupervised ap-

proach depends on whether the training and test TFs belong to similar classes.

If these two TFs have distinct properties (e.g., one is activator, whereas the

other one is repressor), then the supervised learning approach may not improve

over the unsupervised methods. Therefore, the advantage of supervised learn-

ing for HMs only is also not universally guaranteed. Investigators developing

such methods may need to develop different prediction models for different TF
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classes.

A recent study of 203 yeast TFs have shown that yeast TFs fall into two

categories: histone-sensitive TFs and histone-insensitive TFs (Cheng and others

(2011)). The target genes of histone-sensitive TFs have relatively higher HM

signals and are easier to be predicted using HMs. The histone-sensitive TFs are

also more likely to interact with chromatin modifiers and are enriched in the

upper layers of regulatory hierarchy. Whether these phenomena hold true in

human is an interesting problem. Our results suggest that human TFs are very

likely to fall into different categories as well. On the other hand, since we only

have data from a limited number of human TFs, including only one repressor

NRSF and one insulator binding protein CTCF, and since the knowledge of

the TF network in human is still incomplete as most human TFs do not have

ChIP data, we were not able to meaningfully examine the statistical association

between different TF categories and their ability to interact with histone modi-

fiers, or their positions in the regulatory hierarchy. These issues are worthwhile

to be re-examined in the future as sufficient data become available.

Our analyses did not use the curve shape information in the surrogate

chromatin data. Several studies show that DNase-seq and some HM ChIP-

seq profiles have characteristic footprints surrounding TFBSs. For instance,

many of these surrogates have a characteristic dip structure around the bona

fide binding sites (Figure 3.1a). Incorporating the shape information into the

prediction model may further increase the prediction power (Boyle and others

(2011),Pique-Regi and others (2011)).

Supervised learning requires training TF ChIP-seq data. As more ChIPx

data become available in public domains, it may be possible to couple these

119



public data with one’s own surrogate data to train the prediction models. This

may allow one to reduce the experimental cost.

The two applications of public ChIPx data highlights the value of compiling

such data. Importantly, methods for assessing data quality are needed to en-

sure that bad quality datasets will be excluded to avoid misleading supervised

learning or candidate site identification. Statistical methods that can integrate

the quality measures into the prediction pipeline may also be needed.

Predictions based on DNase-seq and other surrogate data are complementary

to ChIPx. ChIPx are still useful to accurately determine direct binding of a TF

of interest. When designing future experiments, one may couple DNase-seq for

surveying many TFs with relatively low accuracy and sensitivity with ChIP-seq

for analyzing selected TFs with high accuracy and sensitivity. With DNase-seq

available, one question that remains to be addressed but not discussed in this

paper is whether one can reduce the sequencing depth of the ChIP-seq library

but still keep similar sensitivity by integrating DNase-seq data into ChIP-seq

analysis. If so, this will allow one to reduce the experimental cost, which is

particularly useful if one wishes to analyze many TFs using ChIPx in detail, or

analyze the same TF in many different developmental time points or biological

conditions. For statisticians, this will create a need for new data integration

methods.

The observation that DHS alone predicted TFBSs reasonably well seems to

suggest that there is no much room for statisticians to develop new methods.

However, this is not true if one realizes that predicting TFBSs is not our final

goal. It remains unclear how one should resolve the one-motif-multiple-TF

ambiguity. Moreover, only a small fraction of binding sites are functional. How
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to identify the small subset of functional binding targets remains a significant

challenge. These examples show that research related to predicting TFBSs

by sequencing chromatin states is filled with unsolved open problems. Data

scientists will find this research to be both challenging and exciting.

3.10 Supplementary Materials

3.10.1 Supplemental Method 1: Data preprocessing

In order to predict TF binding based on chromatin surrogates at motif sites,

DNA binding motif of each TF was mapped to human genome using CisGenome

(Ji and others (2008)) with default parameter settings. For each TF, the corre-

sponding DNA binding motif was obtained from either TRANSFAC (Wingender

and others (1996)) or publication (Kim and others (2007)). Consider a single

TF. For each motif site s and surrogate dataset j, a normalized read count xsj

was computed to represent the signal intensity of HM, DNase I hypersensitivity

or open chromatin in a 500bp flanking window centered at the motif site. For

each motif site, the actual TF binding intensity ys was also computed using the

ChIP-seq dataset for the TF. Conceptually, our goal is to predict which motif

sites are bound by the TF based on xsjs. The predictions can be evaluated

based on ys.

To compute xsj and ys, sequence reads in each ChIP-seq sample were ex-

tended 150bp to 3’ end to approximately reconstruct the original DNA frag-

ments. Based on ENCODE annotations, 150bp reflects the most typical DNA

fragment length in these samples. After dividing the genome into 10bp non-

overlapping bins, the number of DNA fragments covering each bin was counted.
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Let Cijk be the raw count for bin i, dataset j and replicate k. Let Njk be

the total fragment count in sample (j, k). Normalize Cijk by cijk = Cijk ∗

min(j′,k′)Nj′k′/Njk, and transform the normalized value to bijk = log2(∆ + cijk).

∆ is an offset added to avoid log(0) and unstable estimate of fold changes when

cijk is small. Different values of ∆ (1, 5, and 10) were tried, and they produced

the same qualitative conclusions. In the paper, we only show results based on

∆ = 5 for simplicity. After obtaining bijks, replicates were averaged to obtain

aij =
∑
k bijk/nj. nj is the number of replicate samples in dataset j. If control

samples were available (e.g., Input controls in ChIP-seq experiments), control

read counts were subtracted from the ChIP read counts to obtain:

aij =
∑
k

bijk/nj −
∑
k

bij′k/nj′ . (3.1)

Here j′ indicates the control dataset corresponding to the ChIP dataset j. aij

provides a one number summary for each bin i and dataset j. Next, each motif

site was extended 250bp to both ends. The aijs within the 500bp window were

averaged to obtain xsj. ys was computed similarly.

3.10.2 Supplemental Method 2: Various prediction meth-
ods

We compared nine different methods for predicting TFBSs.

Unsupervised methods:

1. Single surrogate (SS): TFBSs are predicted based on each individual sur-

rogate. It was assumed that ys is a monotone function of xsj, and ranking

of motif sites based on xsj determines the ranking of motif sites based on

ys. Top ranked motif sites were predicted to be TFBSs.
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2. Principal component of all surrogates (AS PC1): Let xs = (xs1, . . . , xsJ)T

be the vector that contains the intensity values of all surrogates at motif

site s. The first principal component (PC1) (Jolliffe (2002)) of all xss was

computed and motif sites were ranked accordingly. Since the direction

of unique PCs can only be determined up to a positive or negative sign,

motif sites can be ranked based on either PC1 scores or minus one times

PC1. Both rankings were tested, and the ranking that produced better

results was reported.

Supervised methods:

1. Best subset of multiple surrogates, linear regression (MS L): Using a train-

ing TF ChIP-seq dataset, the following linear model ys = β0 + βj1xsj1 +

· · · + βjkxsjk + error is fit using a subset of surrogates (j1, · · · , jk). All

possible combinations of surrogates were enumerated and tested. The ex-

haustive search finds the best subset of surrogates using the Mallows’ Cp

as the selection criterion. The linear model based on the best surrogate

combination will be used as the final prediction model to predict TFBSs

for other TFs (R package leaps).

2. All surrogates, linear regression (AS L): Using a training TF ChIP-seq

dataset, a prediction model ys = β0 +
∑
j βjxsj + error was fit using all

surrogate data types. The trained model was used to predict TFBSs for

other TFs.

3. All surrogates, principal component regression (AS PCR): The first two

PCs (Jolliffe (2002)) of xss were used as covariates to fit a regression using
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a training TF ChIP-seq dataset: ys = β0 + β1PC1 + β2PC2 + error. The

trained model was used to predict TFBSs for other TFs.

4. All surrogates, CART (AS CART): Using a training TF ChIP-seq dataset

and all surrogates, a prediction model was trained using the classifica-

tion and regression tree algorithm (Hastie and others (2002)) (R package

rpart), which was then applied to make predictions for new TFs.

5. All surrogates, Random Forest (AS RF): The prediction model was trained

using all surrogates and random forest (Breman (2001) )(R package ran-

domForest).

6. All surrogates, linear kernel SVR (AS SVR L): The prediction model was

trained using all surrogates and support vector regression with a linear

kernel (Hastie and others (2002)),(R package e1071): K(x,x′) =< x,x′ >.

7. All surrogates, Gaussian kernel SVR (AS SVR G): The prediction model

was trained using all surrogates and support vector regression with a Gaus-

sian kernel (Hastie and others (2002)),(R package e1071).

To compare different methods, TF ChIP-seq was used as gold standard.

For instance, we train a model using TF A, say EGR1, and use the model to

predict binding sites of TF B, say GABP. We can then use TF B ChIP-seq

data to benchmark prediction performance. TF B motif sites with ys > 1 were

treated as true binding sites. For each prediction method, motif sites were rank

ordered based on the predicted TF binding intensities. The positive predictive

value (PPV) (i.e., the percentage of true positives among the top predictions)

was reported for the top N predictions, where N = 1, 2, · · · , etc. This created
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a curve showing the PPV as a function of N . Curves of different methods

were compared. The area under the receiver operating characteristic curves

(AUC) was also computed and compared across methods. In parallel, we also

computed and compared the Pearson correlation between ys (from the actual

TF B ChIP-seq data) and the predicted binding intensities for each prediction

model.

3.10.3 Supplemental Method 3: Clustering analysis

To generate Figure 3.6, we first took the average of xsj as computed in Sup-

plemental Method 1 over the TF bound motif sites (where the TF ChIP-seq

ys > 1) and the TF non-bound sites (where ys ≤ 1) respectively for TF t and

surrogate data type j. This created the average surrogate signals for the bound

and non-bound sites, denoted by utj and vtj respectively. Next, we subtracted

vtj from utj to obtain rtj = utj − vtj. Since xsj, utj and vtj were all on log2

scale, rtj describes the enrichment of the surrogate signals in the bound class

compared to the non-bound class for surrogate data type j and TF t. Using

rtjs, we then conducted a hierarchical clustering using Euclidean distance and

complete linkage, and the result is shown as a heat map.

3.10.4 Supplemental Method 4: Sensitivity analysis

For Figure 3.8, to calculate the false discovery rate (FDR) for each candidate

site, we need to learn the null distribution of DNase intensities. For that pur-

pose, we randomly sampled 1,000,000 loci without replacement from the whole

genome and used these loci as our null motif sites. Then we counted DNase

read numbers for the null motif sites in the same way as before, and obtained
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the background null distribution p0(x). For a given TF A and a candidate bind-

ing sites list, we ranked sites according to the decreasing order of DNase read

count. At each cutoff k of the rank list, we computed the p-value based on the

null distribution p0(x) and estimated the false discovery rate (FDR) using the

Benjamini-Hechberg procedure (Benjamini and Hochberg (1995)).
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Figure 3.9: Area under the receiver operating characteristic curves for predicting
TFBSs in K562 based on single surrogate. (a) EGR1; (b) GABP; (c) SRF; (d)
USF; (e) E2F4; (f) E2F6; (g) MYC; (h) NRSF; (i) CTCF.
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Figure 3.10: Positive predictive value curves for predicting TFBSs in K562
based on single surrogate over all motif sites’ ranges. The x axis is the number
of the top ranked motif sites. The y axis is the positive predictive value, i.e., the
percentage of true positives among the top predictions. (a) EGR1; (b) GABP;
(c) SRF; (d) USF; (e) E2F4; (f) E2F6; (g) MYC; (h) NRSF; (i) CTCF.
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Figure 3.11: Pearson correlation coefficients between the predictors and the
actual ChIP-seq binding intensity in K562. (a) EGR1; (b) GABP; (c) SRF; (d)
USF; (e) E2F4; (f) E2F6; (g) MYC; (h) NRSF; (i) CTCF.
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Figure 3.12: Positive predictive value curves for predicting TFBSs in K562 based
on single surrogate. The x axis is the number of the top ranked motif sites. The
y axis is the positive predictive value. (a) EGR1; (b) GABP; (c) SRF; (d) USF;
(e) E2F4; (f) E2F6; (g) MYC; (h) NRSF; (i) CTCF.
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Figure 3.13: K-means clustering of GABP motif sites based on chromatin sur-
rogate signals xs. (a) The GABP bound motif sites were clustered based on the
Euclidean distance. The plot shows results for k = 2 clusters. For each cluster
and each surrogate, the average signal across all motif sites is shown. (b) All
GABP motif sites (bound and non-bound) were clustered into k = 10 clusters
based on xs. The percentage of actually bound motif sites for each cluster is
shown in the brackets. Clusters 10 and 4 are enriched in true GABP binding
sites and both show patterns similar to (a), indicating that most bound motif
sites share a similar chromatin pattern. (c),(d) We cut the whole genome into
1Mbp non-overlaping bins. The relative enrichment of cluster k motif site in bin
j compared to the genome-wide proportion λjk is computed and plotted across
the genome for two representative clusters: (c) cluster 4, and (d) cluster 3.
Different chromosomes are concatenated together in the plots. The smoothing
splines for more stable estimates of λjk (red curve) are shown, which fluctuate
around 1 (blue line) across the genome with relatively mild fluctuation, indicat-
ing no strong regionalized distribution of motif sites. Other TFs and clusters
gave similar results (data not shown).
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Figure 3.14: Pearson correlation coefficients between GABP ChIP-seq binding
intensity and various chromatin surrogates across all GABP motif sites in each
chromosome. Different chromosomes show similar correlation patterns. GABP
is a representative example. Similar analyses were performed for all other TFs
and yielded similar results (data not shown).
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Figure 3.15: Positive predictive value curves for predicting TFBSs in K562
based on models trained using EGR1. (a) Prediction for GABP; (b) prediction
for SRF; (c) prediction for USF (d) prediction for E2F4; (e) prediction for E2F6;
(f) prediction for MYC; (g) prediction for NRSF; (h) prediction for CTCF. Using
other training and test TF pairs produced similar results (data not shown).
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Figure 3.16: Positive predictive values of prediction for chromosomes 17-22 and
chromosome X by models trained using chromosomes 1-16 for (a) GABP; (b)
NRSF; (c) CTCF. The training and test TFs are the same. Single surrogate
predictions by DNase and FAIRE are also added for comparison. The three
TFs shown are representative examples of all analyzed TFs.
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Figure 3.17: AUC of prediction for chromosomes 17-22 and chromosome X by
models trained using chromosomes 1-16 for (a) GABP; (b) NRSF; (c) CTCF.
The training and test TFs are the same. Single surrogate predictions by DNase
and FAIRE are also added for comparison. The three TFs shown are represen-
tative examples of all analyzed TFs.
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Figure 3.18: Positive predictive value curves for predicting TFBSs in K562 based
on models trained on EGR1 using only HM ChIP-seq data. (a) prediction for
GABP; (b) prediction for SRF; (c) prediction for USF (d) prediction for E2F4;
(e) prediction for E2F6; (f) prediction for MYC; (g) prediction for NRSF; (h)
prediction for CTCF.
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Figure 3.19: Positive predictive value curves for (a) prediction for NRSF by
models trained on CTCF using only HM ChIP-seqs and (b) prediction for CTCF
by models trained on NRSF using only HM ChIP-seqs. Single surrogate pre-
dictions by DNase and FAIRE are also added for comparison.
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Figure 3.20: Positive predictive value curves for prediction on EGR1 by mod-
els trained using ChIP-seq data from different labs. (a) Models trained using
GABP (HudsonAlpha); (b) models trained using SRF (HudsonAlpha); (c) mod-
els trained using USF (HudsonAlpha); (d) models trained using MYC (UTA);
(e) models trained using E2F4 (Yale); (f) models trained using E2F6 (Yale).
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Table 3.4: Top ranked surrogate data types based on AUC

TF rank1 rank2 rank3 rank4 rank5

EGR1 DNase H3K4me2 H3K4me3 H3K9ac H3K27ac
GABP DNase H3K4me3 H3K4me2 H3K27ac H3K9ac
SRF DNase H3K4me2 H3K4me3 FAIRE H3K27ac
USF DNase H3K4me2 H3K4me3 FAIRE H3K27ac
E2F4 DNase H3K27ac H3K9ac FAIRE H3K4me3
E2F6 DNase H3K4me2 H3K4me3 H3K9ac H3K27ac
MYC DNase H3K27ac H3K9ac H3K4me3 H3K4me2
NRSF DNase FAIRE H4K20me1 H3K9me1 H3K27me3
CTCF FAIRE DNase H3K4me1 H3K4me2 H3K4me3

We rank the surrogate data types in terms of AUC for predicting
TFBSs of each TF and list the top five surrogate data types.
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