
DEVELOPMENT OF A REAL-TIME SMARTWATCH ALGORITHM FOR

THE DETECTION OF GENERALIZED TONIC-CLONIC SEIZURES

by

Samyak Shah

A thesis submitted to Johns Hopkins University in conformity with the requirements for the

degree of Master of Science in Engineering

Baltimore, Maryland

May 2019

© Samyak Shah 2019

All rights reserved

ii

Abstract

Generalized Tonic Clonic Seizure (GTCS) detection has been an ongoing problem in the healthcare

industry. Algorithms and devices for this problem do exist on the market, but they either have poor

False Positive Rates, are expensive, or cannot be used as anything other than a seizure detector. There

is currently a need to provide a portable seizure detection algorithm that can meets patient demands. In

this thesis, we develop a two-stage end-to-end seizure detection algorithm that is implemented on an

Apple Watch, and validated on Epilepsy Monitoring Unit (EMU) patients. 124 features are extracted

from the collected dataset, after which 9 are empirically selected. We have provided mutual information

based feature selection methods that cannot yet be implemented on the watch due to computational

restrictions. In stage one we compare common anomaly detection methods of One Class SVM, SVDD,

Isolation Forest and Extended Isolation Forest over a thorough cross-validation to determine which is

ideal to use as an anomaly detector. Isolation Forest (Sensitivity: 0.9, FPR: 3.4/day, Latency: 69s) was

chosen despite the good sensitivity and latency of SVDD (Sensitivity: 1.0, FPR: 17.28/day, Latency:

8.9s) due to better implementation characteristics. During in-vivo testing, we record a sensitivity of

100% over 24 recorded tonic seizures with FPR: 1.29/day. To further limit false positive detections, a

second stage is incorporated to separate between true and false positives using deep learning methods.

We compare a Deep-LSTM, CNN-LSTM and TCN network. CNN-LSTM (Sensitivity: 0.93, FPR:

0.047/day) was finally used on the watch due to its tractable implementation, though TCN (Sensitivity:

1.0, FPR: 0/day) performed significantly better during cross-validation. During in-vivo testing, the 2-

stage algorithm showed sensitivity: 100%, FPR: 0.05/day over 2004 tracked hours and 12 seizures. The

mean latency was 62 seconds, which is on the threshold of clinical acceptability for this task.

Primary Reader: Dr. Nathan Crone

Secondary Readers: Dr. Gene Fridman, Dr. Shinji Watanabe

iii

Acknowledgements

The following people had a significant influence on this thesis: Dr. Nathan Crone, Mr. Michael

Chan, Mr. Maxwell Collard, Mr. Manar Alhamdy, Mr. Erie Gonzalez Gutierrez and Dr.

Gregory Krauss.

Additionally I would like to thank my thesis committee members Dr. Shinji Watanabe and Dr.

Gene Fridman for taking the time to read through and provide comments on this work.

I would also like to thank the nursing staff at Johns Hopkins University for the tireless work

they have done in data collection, the developers at the Technology Innovation Center that

developed the iOS architecture, and all the undergraduate students and interns that have

contributed in the development of this algorithm.

Finally I would like to thank my family and friends for giving me an unending supply of

support and inspiration.

iv

Contents

Introduction 1

Background 1

Scope 3

Aim 3

Data Collection and Storage 4

Users 4

Sensors and Collection Pipeline 4

Preprocessing 7

Offline Preprocessing Pipeline 7

Real-Time Preprocessing Pipeline 8

Features 10

Feature Extraction 10

Feature Selection 20
Naïve Mutual Information (MIFS) 21
Conditional Mutual Information (mMIFS-u) 24
Selection Results 30

Anomaly Detection 32

Detection Method Motivation 34

Anomaly Detection Theory 36

One Class Support Vector Machine (OCSVM) 36

Support Vector Data Description (SVDD) 54

Isolation Forest 62

Extended Isolation Forest 71

Implementation (Cross Validation and Tuning) 76

v

Evidence Accumulation (Smoothing) Filter 76

Performance Metrics 78

Dataset Split 78

Results 80

Offline Anomaly Detection 80
OCSVM 80
SVDD 82
IF 83
Extended IF 85
Summary 86

Real-Time Anomaly Detection 86
Implementation 86
Summary 87

Hybrid Model (2nd Stage) 89

Preprocessing 91

Offline Pipeline 91

Online Pipeline 94

Theory (2nd Stage) 95

Recurrent Networks 95

CNN-LSTM 102

TCN 105

Architecture 110

LSTM 111

CNN-LSTM 111

TCN 113

Results 116

Evaluation Metrics 116

Offline Cross Validation 117
LSTM 119

vi

CNN-LSTM 120
TCN 122
Summary 123

Real Time Detection 123
Watch Implementation 123

Conclusion 127

Limitations 127

Bibliography 129

Appendix 137

vii

List of Figures

Figure 1: mMIFS-u feature selection algorithm steps 1 and 2 28

Figure 2: mMIFS-u feature selection algorithm steps 3 and 4 29

Figure 3: SVM margin and decision boundary 37

Figure 4: SVM decision boundary showing two support vectors on margins 39

Figure 5: OCSVM implementation examples 53

Figure 6: SVDD implementation examples 58

Figure 7: Decision tree path lengths for anomaly and normal data point 66

Figure 8: Increase of mean tree height as a function of sample size 69

Figure 9: Vanilla Isolation Forest implementation example 72

Figure 10: Extended Isolation Forest implementation example 73

Figure 11: Anomaly detector output with accumulation filter over 10 seizures 77

Figure 12: Results of OCSVM cross-validation 81

Figure 13: Results of SVDD cross-validation 82

Figure 14: Results of Isolation Forest cross-validation 84

Figure 15: Results of Extended Isolation Forest cross-validation 85

Figure 16: Spectrogram of false positive and seizure 88

Figure 17: Seizure segment showing entire window and fine window 91

Figure 18: Filtered comparison for heart rates. 92

Figure 19: Unfolded RNN forward pass and error propagation 95

Figure 20: LSTM block internals 100

Figure 21: Convolutional Layer toy example 103

file:///C:/Users/Shahsquatch/Downloads/Thesis_local_v2_tnr.docx%23_Toc8182120
file:///C:/Users/Shahsquatch/Downloads/Thesis_local_v2_tnr.docx%23_Toc8182121
file:///C:/Users/Shahsquatch/Downloads/Thesis_local_v2_tnr.docx%23_Toc8182136

viii

Figure 22: Dilated causal convolutions 107

Figure 23: Residual Connection 108

Figure 24: Residual Block of TCN 110

Figure 25: LSTM architecture 111

Figure 26: CNN-LSTM architecture 112

Figure 27: TCN architecture 115

Figure 28: Accumulation Filter comparisons 118

Figure 29: Cross validation results for LSTM network] 119

Figure 30: Cross validation results for CNN-LSTM network 120

Figure 31: Cross validation results for TCN network 122

Figure 32: Data gap illustration on seizure data 126

ix

List of Tables

Table 1: Patient demographic breakdown for research phases ... 4

Table 2: List of all extracted features for offline analysis ... 20

Table 3: Algorithm for MIFS feature selection process .. 24

Table 4: Algorithm for mMIFS-u feature selection process .. 27

Table 5: MIFS and mMIFS-u feature selection results .. 30

Table 6: Selected Features Implementation Details ... 31

Table 7: Isolation tree algorithm... 70

Table 8: Isolation Forest algorithm ... 70

Table 9: Isolation Forest path length algorithm .. 71

Table 10: Extended Isolation tree algorithm ... 75

Table 11: Extended Isolation Forest path length algorithm ... 75

Table 12: OCSVM optimal performance characteristics (grid search) 81

Table 13: SVDD optimal performance characteristics (grid search) 83

Table 14: Isolation Forest optimal performance characteristics (grid search) 84

Table 15: Extended Isolation Forest optimal performance characteristics (grid search).......... 85

Table 16: Summary of optimal anomaly detectors... 86

Table 17: CNN-LSTM architecture summary... 113

Table 18: Optimal LSTM characteristics ... 119

Table 19: Optimal CNN-LSTM characteristics .. 121

Table 20: Optimal TCN characteristics.. 122

Table 21: Summary of performance characteristics for 2nd stage detector 123

x

Table 22: Full detection algorithm ... 124

Table 23: In-vivo statistics for 2nd stage detector .. 125

Table 24: Raw in-vivo statistics for 2nd stage detector .. 125

1

Introduction

Background

Epilepsy is a neurological disorder that actively affects 1.2% of the US population [1]and is characterized

by a paroxysmal alteration of neurological function due to abnormal and excessive synchronous brain

activity known as an "epileptic seizure"[2]. Though epilepsy will generally present with some form of

seizure, seizures are not always indicative of epilepsy. There are multiple subtypes of epileptic seizures,

usually classified by their clinical EEG characteristics [3]. The original classification scheme of seizure

types was developed in 1981, and was used for almost two decades. However that list was built on

concepts that no longer correspond to or accurately describe modern knowledge of seizures and epilepsy

[4]. The current classification system is shown in Figure 1 [5]. An expanded view is provided in the

appendix.

Figure 1: Simplified seizure sub-type diagram

All seizures are caused by abnormal electrical activity in the brain, with two main subtypes, focal and

generalized. Focal seizures occur when the abnormal electrical activity in the brain is localized to a limited

region. Generalized seizures will affect both cerebral hemispheres simultaneously at onset. Focal seizures

may sometimes generalize, which we define as secondary generalizing seizures. Other seizures to note

2

for this thesis are myoclonic (brief shock like jerks of a muscle or a group of muscles), hypermotor

(characterized by complex high amplitude movements of proximal segments of the body [6]), and focal

aware/unaware seizures (non-motor partial seizures will freeze the body for up to two minutes).

All seizures present with a varying level of altered consciousness When the abnormal activity involves

cortical and sub-cortical structures, as is the case with generalized tonic-clonic and absence seizures, loss

of consciousness can also occur [7]. Generalized tonic-clonic seizures (GTCS) in particular (characterized

by a stiffening in the tonic phase and a rhythmic jerking in the clonic phase) may lead to injuries,

emotional distress, and reduced quality of life. GTCS are also thought to be an indicative risk factor of

Sudden Unexpected Death in Epilepsy (SUDEP), especially if the patient is left unattended [8]–[10]. Due

to these difficulties, patient demands [11]–[14] and seizure under-reporting (particularly nighttime

seizures) [14], [15], there have been numerous seizure prediction/detection methods using both EEG and

non-EEG based modalities [9], [16]–[19].

Intracranial and Scalp EEG based detection is the gold standard for seizure detection, but have the

disadvantages of having being uncomfortable/obtrusive and invasive respectively. Other modalities like

surface EMG (sEMG), electrodermal activity (EDA), electrocardiogram (EKG) and accelerometer

(ACM) have shown promising results [17]. Due to the wide availability in common smartwatches ACM,

heart rate and gyroscope signals are attractive modality choices. Despite the primary disadvantages of

being limited to only detecting unhindered motor based seizures, they have been shown to effectively

detect GTCS, secondary generalized, myoclonic, clonic, tonic and hypermotor subtypes, achieving

sensitivities of 87.5% - 100% for GTCS at latencies ranging from 9-60s after clinical seizure onset. False

positives are still high with only one system reaching a false-positive rate of 0.2/day [17]. Both patients

and physicians require a maximum acceptable false positive rate of 0.14/day (once per week), and an

idealized false positive rate of 0.03/day (once per month) according to a comprehensive survey performed

3

on seizure detection systems [20]. Additionally, most systems are expensive, and have no secondary

purpose.

There is currently a need for a seizure detector high sensitivity and significantly higher specificity that

can be implemented in a commercial device.

Scope

This thesis covers the end-to-end development of the seizure detector, including preprocessing, feature

selection, model selection, cross-validation, implementation and testing. We will cover theory of the

selected models and attempt to prove mathematical justifications where necessary. Some more technical

proofs are omitted, but will be referenced. The focus of this thesis is on the algorithm for seizure detection,

not the implementation on the Apple Watch, and these sections are summarized for brevity.

Aim

The aim of this thesis is to develop a real-time watch-based, generalized tonic-clonic seizure detection

system that can be deployed in a commercial smartwatch with state-of-the-art results.

4

Data Collection and Storage

Users

There are two versions of the EpiWatch application, one with the detector implemented and one without.

The detector version is used in the EMU and Beta users. The non-detector version is used by the general

public. Both are able to record data, but in this thesis we shall only use data collected from either the

EMU or Beta users (non-epileptic). This is because we can verify the data we collect from these sources,

a task not possible with the general public.

We designate the users into 3 groups, corresponding to how our detector was developed. The groups are

not independent.

Table 1: Patient demographic breakdown for research phases

 Total Users EMU Beta

Anomaly Detector

Training and

Validation

62 58 4

Secondary Detector

Training
56 51 5

Secondary Detector
Validation

36 30 6

Sensors and Collection Pipeline

We have made use of several iterations of the Apple Watch throughout the lifetime of the EpiWatch

project. All of the watch versions (Series 1 – Series 4) have had a similar biosensor array, consisting of a

Photoplethysomgraphy (PPG) sensor and a triaxial accelerometer. There is a gyroscope sensor available,

however at present a public API does not exist. Other sensors (EKG, microphone, touch) are either too

new, or not necessary for our current algorithm.

5

The accelerometer data was sampled at the Nyquist frequency of 50Hz (No seizure should cause

vibrations in the tonic phase faster than 25Hz), and the heart rate data was calculated from the PPG sensor

approximately every five seconds. This calculation is done one the watch by proprietary Apple software,

so heart rate data can be sampled directly through the API. The data is stored on the watch in overlapping

1 minute segments, and periodically uploaded to our custom cloud storage unit. Each data point has an

associated time stamp at storage so it possible to align the heart rate and accelerometer samples during

detection and retrospective analysis. The overlapping data is necessary so that none of the data is

accidently lost if there is any delay during data upload, and typically ranges around 10 seconds. Any data

multiples in the overlap window are handled during preprocessing.

It is noted that in early versions of the Apple Watch (up until Series 3), there have been several issues

with missing accelerometer and heart rate data. This missing data could last from a few seconds to several

minutes, causing data gaps in recordings of both ‘normal’ activity and seizures. This was thought to be a

software issue, and has mostly been alleviated with the release of the Series 4. Occasional gaps in the

heart rate data coinciding with the tonic phase have still been observed, though this has likely been caused

by improper contact of the sensor to the wrist. Additionally, as some asymmetric seizures will generalize

to only side of the body, we would occasionally have seizure data with no valuable information. Seizures

like this were not included in this study.

Originally, data was stored as JSON files, referenced through a NoSQL (MongoDB) database hosted on

a local server. After the first 4 seizures, we updated to storing data as S3 binaries, referenced through a

Postgres SQL database. Each watch running the EpiWatch app has a unique identification number through

which data can be referenced. Data collected from users in the Epilepsy Monitoring Unit is stored in a

separate database from the general population in order to maintain data integrity, with each seizure being

cross-referenced by an epileptologist against a Video-EEG to determine validity, and create a dataset of

ground truth seizures.

6

The databases also store a plethora of relevant clinical information that are out of the scope of this project.

While most of these features are not directly relevant to a seizure detection algorithm at this time, some

may inform interesting trends in the long term that allow for a more personalized detector. Detection

information is also stored in the backend, though as of now, detection is only being offered to EMU

patients and Beta users the app. It is enabled through a tracking option on the interface, will

simultaneously alert both the user (through heavy vibrations and an alarm) and the primary caregiver

(through text SMS) upon being triggered.

The user will also be presented with a prompt lasting 15 seconds requesting confirmation. If there is an

affirmative or no response, this is followed by a clinically designed responsiveness test to measure

awareness throughout the seizure. Responsiveness is unlikely during a primary GTCS, though is possible

in secondary generalizing GTCS and other seizure subtypes. The detection time will be stored in the

database under the unique watch ID.

This seizure detection routine can also be manually triggered by the user, and this data will be stored

separately in the backend.

7

Preprocessing

Preprocessing is performed on the data before training to ensure consistency. This stage was necessary in

both offline (retrospective) analysis, and real-time detection.

Offline Preprocessing Pipeline

The data was stored in 1-minute segments with overlaps to avoid any losses. If there was a value conflict

on the same time sample, the second value was disregarded. Due to the data gaps that were possibly

present in the data, an initial sorting step was also necessary to ensure the pulled data was mostly

contiguous.

A loop was run through all the stored data. Any samples with time stamps separated by more than 100

milliseconds were cut and separated, leading to a set of shorter contiguous segments. Any segment less

than 10 seconds in total length was discarded. 10 seconds is chosen as the threshold because some features

will be calculated over a sliding window where the minimum length is 10 seconds. All heart rate samples

are correspondingly grouped into the segments by time stamp. Each segment is saved independently

according to a user and segment id.

Due to the different sampling rates between HR and accelerometer data, many accelerometer data points

that do not have a corresponding HR value. During feature extraction, heart rate interpolation is performed

by assigning the last available heart rate value to each point (zero-order hold interpolation scheme). In

cases where no previous heart rate value is available, the mean value of 80 bpm is used.

This segmentation was not performed on the seizure data (this was excluded by cutting any segments

contained in the seizure timestamps provided and verified by an epileptologist), as for semi-supervised

8

methods like Isolation Forest, Extended Isolation Forest, OCSVM and SVDD it was not necessary to use

the seizure data for training. They would be needed during training, but we run the segments sequentially

through the detectors to simulate real-time detection. While data gaps did exist in some seizures segments

that could affect sensitivity and latency, they were rare and sporadic.

The accelerometer sample was then digitally high pass filtered with a cutoff frequency of 0.5Hz (2nd order

Butterworth) to remove the gravitational effect as well as any other low frequency trends. A low pass

filter with a cutoff frequency of 20Hz (4th order Butterworth) was also used to any remove high frequency

noise and spiking artefacts. This filter was IIR (Transposed-Direct-Form II Structure), applied in one

direction. While our application is pseudo-real time, this is a causal filter, and can be extended to real-

time applications.

A final zero order hold interpolation was performed on the accelerometer data to ensure a uniform 50Hz

sampling rate. This uniformization is necessary for extraction of any spectral features, and the data may

still contain points that are too close together due to overlaps or data gaps below 100 milliseconds.

Real-Time Preprocessing Pipeline

On the watch, preprocessing is all completed in pseudo-real time. Data is sampled from the sensors into

two buffer arrays for accelerometer and heart rate respectively. These arrays are grouped into 1 second

blocks. Every 5 seconds, the collected blocks are processed by the detection algorithm. Each block is first

filtered (with the same filter coefficients as in the retrospective method), and then interpolated using a

zero-order hold scheme.

Then feature extraction is performed. Note that in the retrospective case, window features are calculated

on a sliding window of 10 seconds. In real-time, 5 second payloads are passed to the detector, all block

9

features are extracted exclusively from the 1 second blocks. A dynamically updating circular buffer of 10

seconds is created to hold data for windowed feature extraction. They are updated by popping old data

once the buffer length passes 500 samples (corresponding to 10 seconds at 50 Hz sampling rate), and

pushing any incoming samples.

Heart rate features that require windowed data are also implemented using a similar buffering approach.

As HR has a lower sampling rate, an equal buffer size corresponds to samples much further back in time.

Thus windows for HR features can be much longer without causing memory concerns.

Note that data-gaps cannot be handled in real-time. Any gaps will cause artefacts due to both filtering and

interpolation. For windowed features, the last known 10 second interval will be used. If the data gaps are

too big, they will collectively culminate in erroneous predictions from the detector.

10

Features

Feature Extraction

A number of possible features were developed to extract from the data in the offline. Features were

calculated from either a window, or a 1 second block. Motivation for selecting these features was either

from use cases in time-series tasks (Activity Recognition, EEG-based seizure detection, Quantitative

Finance), and intuition. These features are only implemented in offline pipeline. Only a subset will be

implemented on the watch.

Heart Rate Features

Current Heart Rate

A low-cost time series feature to implement that is extremely telling. Most GTCS will have a significant

increase in instantaneous heart rate (to between 140 and 180 bpm) for a short period of time that

corresponds to the tonic and clonic phases.

Mean Heart Rate Difference

Heart rate changes in magnitude happen in the matter of seconds. The heart rate derivative feature

captures the weighted mean of the heart rate derivative in a 30 second window. The weighted mean is to

account for sampling inconsistencies.

HR Mean =
1

𝑇
∑𝛥𝑡𝑖𝛥𝐻𝑅𝑖

𝑖

Where 𝑇 = ∑ 𝛥𝑡𝑖𝑖 , 𝛥𝐻𝑅𝑖 is the difference between any two consecutive HR samples, and 𝛥𝑡𝑖 is the

corresponding difference in time.

11

Median Heart Rate Difference

This is a custom feature built on comparing the median heart rate between two long long, non-overlapping

windows. It gives a more stable insight on heart rate changes, and is a robust solution to data gaps. Start

with two user defined parameters of far-window length 𝑡𝑓 and near-window length 𝑡𝑛 in seconds, with

the current time defined by 𝑡. This feature is calculated by

HR Median(𝑡𝑠 , 𝑡𝑓)

= median(HR samples from 𝑡 − 𝑡𝑠 to 𝑡) − median(HR samples from 𝑡 − 𝑡𝑓 to 𝑡

− 𝑡𝑠)

Heart Rate Latency

During GTCS, we often witness heart rate data drops in the high activity regions. This is likely caused by

lack of consistent contact between the PPG sensor and the skin. Knowing that they can occur, we can use

these data drops as a potential feature called heart rate latency. We calculate heart rate latency is a

weighted average of the time difference between heart rate samples.

Temporal Features

Mean L2 – Norm

Also known as the Euclidean norm of the signal. It is easy to implement in a real-time environment, and

gives an idea of the total energy of the signal. The mean L2 should markedly increase during GTCS.

Given accelerometer data matrix 𝑨 ∈ ℝ𝑁×3 , where a single accelerometer sample is represented by

column 𝑖, 𝑨𝑖 = [𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3] , and the columns stands for the 𝑥, 𝑦, 𝑧 samples, the mean L2 norm is given

by

Mean =
1

𝑁
∑(∑𝐴𝑖𝑗

2

𝑗

)

1
2

𝑖

12

Line Crossing Rate

This feature corresponds to the total count of sign changes signal accumulates within a certain period of

time. Alternatively it is thought of as the amount of times the signal has crossed the 0 line. It is a simplified

measure of the frequency of a signal. GTCS have a characteristic frequency pattern starting at 8 Hz in the

tonic phase before slowing to about 1.5 Hz in the clonic phase [21]. This produces a characteristic

descending frequency chirp that may be recognized by temporal classifiers using this feature. Taking 𝑨 ∈

ℝ𝑁×3 as an accelerometer data matrix, LC rate can be formulated for one axis as

LC =
1

2𝑇
∑|𝑠𝑖𝑔𝑛(𝐴𝑖𝑗) − 𝑠𝑖𝑔𝑛(𝐴(𝑖−1)𝑗)|

𝑁

𝑖=2

Where 𝑇 is the window size. This gives the line crossings for one of the accelerometer directions per unit

of time. LC rates for the orthogonal axes must be calculated independently. We halve the values because

we accumulated line crossings count is implicitly doubled when using the sign() function. We also set a

threshold on the line crossing amplitude to mitigate effects of low amplitude noise.

Mean Line Crossing Rate Derivative

This is a filtered measure of the derivative of the line-crossing rate, often referred to as the velocity or

divergence of the signal. Mean LC Rate a metric commonly used in quantitative finance, calculated by

computing the difference between the short term and long-term exponential moving average (EMA) of a

signal. A flat signal will have a low divergence, but a stable long term signal with jittery short term

characteristics (tonic phase of a seizure after the segment has been filtered to remove any drift) will have

have a correspondingly high divergence. This feature is also calculated individually for each axis in the

accelerometer. Taking the accelerometer data matrix as 𝑨 ∈ ℝ𝑁×3

13

LCD =
1

𝑁 − 1
∑[𝛼𝑠𝐴𝑖𝑗 + (1 − 𝛼𝑠)𝐴(𝑖−1)𝑗] − [𝛼𝑙𝐴𝑖𝑗 + (1 − 𝛼𝑙)𝐴(𝑖−1)𝑗]

𝑁

𝑖=2

where 𝛼𝑠 is the coefficient for the short term EMA, and 𝛼𝑙 is the coefficient for long term EMA. Note we

eventually take the average over the window size.

Percentile

This feature returns the value of the data at the 𝑛𝑡ℎ percentile. It is an easy feature to implement, and can

give an idea of the amplitude distribution. In a high pass filtered signal (centered), 50th percentile will

almost always return 0 during seizure segments. The edge percentiles (i.e 90th or 10th) for the same

segment will return higher/lower values.

Variance (Hjorth Activity)

Variance provides a statistical method of measuring the variation from the mean in the data. Defined on

a signal it is also known as Hjorth activity, and represents the signal power (0th spectral moment). It

indicates the surface of the power spectrum in the frequency domain [22]. Seizures will generally provide

high Hjorth activity in both tonic and clonic phases. Letting 𝑨 ∈ ℝ𝑁×3 represent the accelerometer data

matrix, and 𝝁 ∈ ℝ3×1 represent the corresponding axis means, the variance along any individual

accelerometer axis is calculated by

Var =
∑ (𝐴𝑖𝑗 − 𝜇𝑗)

2

𝑖

𝑁

Standard Deviation

14

This feature Similar to variance in that it provides a metric of dispersion in the signal. Unlike variance, it

has the advantage of being defined in the units of the variable we are observing. It is calculated by taking

the square root of the variance.

Normalized Jerk

This feature is the normalized rate of change of acceleration, implemented to capture the direction

changes and high acceleration that is present during GTCS, particularly during the tonic phase. We

believe this may help with distinguishing seizures from similar rhythmic activities like running. Knowing

accelerometer readings return acceleration data, and taking the acceleration data matrix as 𝑨 ∈ ℝ𝑁×3,

Jerk =
1

𝑁
(∑(

𝐴𝑖𝑗 − 𝐴(𝑖−1)𝑗

𝛥𝑡𝑖
)

2

𝑁

𝑖

)

1
2

where 𝛥𝑡𝑖 represents the time difference between the sample 𝐴𝑖𝑗 and 𝐴(𝑖−1)𝑗.

Hjorth Mobility

Mobility can be interpreted as the standard deviation of the power spectrum of a signal along the

frequency axis. It is also known as the 2nd spectral moment [22]. To calculate, we take 𝑨 ∈ ℝ𝑁×3 to be

the accelerometer data matrix, with 𝑨:𝒋 defining the 𝑗𝑡ℎ column, and Var(⋅) as a function that calculates

the variance. 𝑨:𝒋
′ is the discrete derivative of the vector 𝑨:𝒋, calculated as

𝐴𝑖𝑗−𝐴(𝑖−1)𝑗

𝛥𝑡𝑖
.

Mobility = √
Var(𝑨:𝒋

′)

Var(𝑨:𝒋)

Hjorth Complexity

15

Complexity (4th spectral moment) is a dimensionless parameter, signifying the similarity of a signal to a

pure sine wave [22]. This feature was created due to the oscillatory nature of characteristic GTCS. A

variety real time tasks like walking, running and brushing of teeth will carry a similar oscillatory signal,

potentially leading to more false positives that will have to be standard. Taking Mobility(⋅) as a function

that calculates mobility,

Complexity =
Mobility(𝑨:𝒋

′)

Mobility(𝑨:𝒋)

Note all the Hjorth parameters calculate spectral statistics in the time-domain, and are a low-cost

alternative to calculating specific spectral features through explicitly defining the power spectral density

matrix.

Root Mean Square Energy

Also known as the quadratic mean, it is defined as the square root of the arithmetic mean of the squared

signal values. It is a commonly used statistic in EEG feature extraction [23], as well as in electrical

engineering. It gives a sense of the absolute magnitude of the average value of a signal. One again, we

calculate it individually for each axis

RMS = (
∑ (𝐴𝑖𝑗)

2

𝑖

𝑁
)

1
2

Line Length

Defined as the running sum of absolute differences between consecutive samples in a predefined window.

This feature has been used successfully in EEG based seizure detection [24], and is an approximation of

16

the fractal dimension of a signal [25]. This makes it efficient in detecting signal transients, motivating

our use case.

Line Length = ∑|𝐴𝑖𝑗 − 𝐴(𝑖−1)𝑗|

𝑁

𝑖

Magnitude Area

This feature gives an estimate on the area under the signal envelope. It is a commonly used feature with

accelerometer data, and has been used previously for activity recognition tasks [26]. While good for

seizure detection, it will also capture other vigorous activity leading to additional false positives.

SMA = ∑|𝐴𝑖𝑗|
𝑖

Energy

This feature is similar to magnitude area. Is defined as the area under the squared magnitude of the signal.

Due to the squared term inside the sum, higher magnitudes will be amplified compared to lower

magnitudes. It is a common feature in signal processing.

Energy = ∑𝐴𝑖𝑗
2

𝑖

Normalized Energy

Due to imperfect sampling of our seizure, we use a normalized energy to allow comparison of signals

with varying lengths.

17

Normalized Energy =
1

𝑁
∑𝐴𝑖𝑗

2

𝑖

Skewness

Skewness is a higher order statistical feature which represents the symmetry of the signal amplidude

probability density function (PDF). It is also known as the 3rd standardized moment. A perfectly

symmetrical function will have skewness 0. Any time series with a few small values and many large

values (left tail) will have negative skewness, while many small values and a few large values (right tail)

will have positive skewness. We use standardized moment for scale invariance. Taking 𝜇𝑗 , 𝜎𝑗 as the

arithmetic mean and standard deviation of 𝑨:𝒋 respectively

Skewness = 𝐸 [(
𝑨:𝒋 − 𝜇𝑗

𝜎𝑗

)

3

] =
1

𝑁𝜎𝑗
3 ∑(𝑨:𝒋 − 𝜇𝑗)

3
𝑁

𝑖

Kurtosis

This is a higher order statistical feature which represents the ‘peakedness’ of the signal amplitude PDF.

It is also known as the 4th standardized moment. A kurtosis value close to three will indicate Gaussian-

like peakedness. Sharper peaks will correspond to higher kurtosis values. Taking 𝜇𝑗, 𝜎𝑗 as the arithmetic

mean and standard deviation of 𝑨:𝒋 respectively

Kurtosis = 𝐸 [(
𝑨:𝒋 − 𝜇𝑗

𝜎𝑗

)

4

] =
1

𝑁𝜎𝑗
4 ∑(𝑨:𝒋 − 𝜇𝑗)

4
𝑁

𝑖

Spectral Features

18

All spectral features are derived from a power spectral density (PSD) of a signal, estimated using Welch’s

method. The PSD shows the power of the signal at varying frequencies. We use Welch’s method as it

mitigates noise estimations in the frequency domain, and it is generally a good non-parametric approach

that can be employed as a baseline. In formulas we represent it by the vector 𝑷 ∈ ℝ𝐹, where 𝐹 is the

number of frequencies in the PSD.

Dominant Frequency

This feature finds the frequency value corresponding highest power in the PSD. Oscillation frequencies

during tonic and clonic phases are well characterized during GTCS, and contain a descending chirp which

may help temporal classifiers correctly determine whether a segment of data is a seizure or not. The

dominant frequency may provide information in this regard.

Spectral Edge Frequency

A popular feature in EEG monitoring [27], comparable to the percentile measurement in the time domain.

SEF determines the frequency below which x percent of the total signal power is located. To calculate,

we can run a running sum on PSD vector 𝑷 ∈ ℝ𝐹, until we reach the required spectral edge value 𝛼 ∈

[0,1]. The frequency we stop on is the SEF

SEF = 𝑓𝑠 ,

where 𝑓𝑠 is maximum frequency value that satisfies

∑𝑃𝑖

𝑓𝑠

𝑖=0

≤ 𝛼

Spectral Band Power

19

Measures the power of a signal in a chosen frequency band. Band power is another popular feature in

EEG monitoring. Given user input frequencies of 𝑓𝑙 , 𝑓ℎ, where 𝑓𝑙 ≤ 𝑓ℎ

SpectralBP = ∑ 𝑃𝑖

𝑓ℎ

𝑖=𝑓𝑙

Spectral Centroid

This feature indicates the “center of mass” of the PSD. It is calculated by performing a weighted sum

over all frequency values in 𝑷. Note when calculating the spectral centroid, 𝑖 defines individual frequency

values, with 𝑃𝑖 being the corresponding power.

Spectral Centroid = ∑
𝑖𝑃𝑖

∑ 𝑃𝑗𝑗
𝑖

Spectral Entropy

Calculates the complexity of a signal by taking the entropy over its PDF. Entropy is an information

theoretical concept that determines the uncertainty in some stochastic source. White noise will have

highest spectral entropy, while all the power being focused on a single frequency will have a spectral

entropy of 0. We will cover entropy in more detail during the feature selection section. To determine the

PDF of 𝑷, we normalize. Defining 𝑷𝒏 ∈ ℝ𝐹 as the normalized PSD, and setting it elementwise by 𝑃𝑛𝑖
=

𝑃𝑖

∑ 𝑃𝑗𝑗

Spectral Entropy = −∑𝑃𝑛𝑖
𝑙𝑛 𝑃𝑛𝑖

𝑖

20

We calculate 124 features in total, all derived from this base feature set. The feature names are given in

table 2. Some features were additionally smoothed through exponential average filters, and the

corresponding 𝛼 −parameter of these filters is provided in the title. Any features without an asterisk (*)

must be calculated once for each accelerometer axis

Table 2: List of all extracted features for offline analysis

Temporal Acc Spectral Acc Heart Rate

L2 Norm* Dominant Frequency Current Heart Rate*

Percentile (25) Band Power 0-20 Hz Heart Rate Latency*

Percentile (50) Band Power 0-2 Hz Mean HR Derivative*

Percentile (75) Band Power 2-4 Hz Delta Median (30, 120)*

Jerk Band Power 4-6 Hz Delta Median (60, 120)*

Variance Band Power 6-8 Hz Delta Median (60, 180)*

Standard Deviation Band Power 8-10 Hz

Mobility Band Power 10-12 Hz

Complexity Band Power 12-14 Hz

RMS Band Power 14-16 Hz

Line Length Band Power 16-18 Hz
Magnitude Area Band Power 18-20 Hz

Energy Spectral Edge (0.1)

Normalized Energy Spectral Edge (0.5)

Skewness Spectral Edge (0.85)

Kurtosis Spectral Edge (0.9)

LC Rate (LCR) Spectral Edge (0.95)

LC Rate Derivative (LCRD) Spectral Centroid

Smoothed LCRD 𝛼 = 0.02 Spectral Entropy

Smoothed LCRD 𝛼 = 0.002

Smoothed LCRD 𝛼 = 0.0002

Feature Selection

During original algorithm implementation, features were selected by hand. We visualized normal and

seizure data while visualizing corresponding feature activations. Features that appeared most informative

were selected. Retrospectively it was decided to perform an information theory based feature selection

process for future algorithm iterations. Two such methods are described in this section.

21

Naïve Mutual Information (MIFS)

While the goal of classifiers is to best approximate a function to accurately predict labels of novel patterns,

the limited amount of data will often cause the classifier to overfit to the data in practice. Additionally, a

large number of features will significantly slow down the learning process. By judiciously selecting only

the relevant features, we can both reduce overfitting, and increase computational speed of both training

and classification.

Most of the existing feature selection algorithms can be separated into two methods, filter [28]–[30] and

wrapper [28], [31]. Filter methods will select features independently from any learning algorithm, using

statistics derived from the training data like distance, information and consistency. Wrapper methods use

an exhaustive approach with a predetermined classifier to evaluate performance of varying subsets of

features. This often leads to superior performance, at the expense of efficiency. Due to computational

restrictions, we have decided to use a filter method for our feature selection, with mutual information

being the selection statistic derived from the dataset.

In general, classifiers can be considered to be systems that use information in the input data to remove

uncertainty of output class selection. While some classifiers perform remarkably well, all real-world

implementations will have some form of residual uncertainty, stemming from either insufficient or

inefficient data. Of the two, inefficient data is easier to remedy, and can be done by choosing either more

features (with the trade-off of higher complexity) or more informative features. To make sure all the data

we are using is efficient, we take a further look at the concept of uncertainty.

‘Uncertainty’ can be quantified by an information theoretic concept called entropy. If 𝐶 is the set of

classes {𝑐1, … , 𝑐𝑁}, and 𝑃(𝑐𝑖) is the prior probability for each class, entropy is calculated by

22

𝐻(𝐶) = −∑𝑃(𝑐𝑖) 𝑙𝑜𝑔 𝑃(𝑐𝑖)

𝑁

𝑖=1

When given a set of feature vectors 𝐹 with 𝑀 individual feature vectors 𝑓 we can define conditional

entropy as

𝐻(𝐶|𝐹) = −∑𝑃(𝑓)(∑𝑃(𝑐𝑖|𝑓𝑗) 𝑙𝑜𝑔 𝑃(𝑐𝑖|𝑓𝑗

𝑁

𝑖=1

)

𝑀

𝑗=1

Here, 𝑃(𝑐|𝑓) is the conditional probability of a class given an input vector. In the case of continuous

variables, the sum will be replaced with an integral. In general, conditional entropy will be lower than the

initial entropy as we are providing additional information. Conditional entropy will be equal to initial

entropy only when there is general independence between feature and output class, 𝑃(𝑐, 𝑓) = 𝑃(𝑐)𝑃(𝑓).

We define mutual information 𝐼(𝐶; 𝐹) as the amount by which uncertainty is decreased by adding the

extra information. Note that it is a symmetric metric.

𝐼(𝐶;𝐹) = 𝐼(𝐹; 𝐶) = 𝐻(𝐶) − 𝐻(𝐶|𝐹) = 𝐻(𝐹) − 𝐻(𝐹|𝐶)

𝐼(𝐶; 𝐹) = 𝐼(𝐹; 𝐶) = ∑∑ 𝑃(𝑐, 𝑓) 𝑙𝑜𝑔
𝑃(𝑐, 𝑓)

𝑃(𝑐)𝑃(𝑓)
𝐹𝐶

Note that this form is similar to the Kullback Liebler (KL) divergence, and indeed can be written as

𝐼(𝐶; 𝐹) = 𝐷𝐾𝐿(𝑃(𝑐, 𝑓) || 𝑃(𝑐) ⊗ 𝑃(𝑓)) , where ⊗ is the tensor product. We informally write this

quantity as 𝐷𝐾𝐿(𝑃(𝑐, 𝑓) || 𝑃(𝑐)𝑃(𝑓)) . Mutual Information measures the “bumpiness” of the joint

distribution. Qualitatively, joint probability functions that are flat in the limit will tend to 0 for mutual

information, while “bumpier” joint probabilities (indicating higher general correlation) will have higher

mutual information. If both 𝐶 and 𝐹 were independent, then 𝑃(𝑐, 𝑓) = 𝑃(𝑐)𝑃(𝑓), and thus 𝐼(𝐶; 𝐹) = 0.

23

The motivation for choosing mutual information as the similarity metric was due to its capability of

measuring a general dependence (both linear and non-linear) between two variables. As an example,

consider an XOR function of two input variables with equal probabilities for possible inputs. The

correlation between any one of the two input variables and the output variable will be 0, as 𝐶𝑜𝑟𝑟 ∝

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) = 0, because 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌) [See Appendix]. However, when

calculating the mutual information between the input vector and the output, we are left with 1 bit. In other

words, the input vector determines the output variable with no ambiguity. Though 𝑋1 is pairwise

independent of 𝑌 and 𝑋2 is pairwise independent of 𝑌, the vector (𝑋1, 𝑋2) still uniquely determines 𝑌.

General independence implies linear independence, but not vice-versa, and MI is a measure of general

dependence, especially useful for non-trivial probability densities [32].

After initial preprocessing, we have 124 computed features, which is infeasible to deploy on hardware

(as well as adding unnecessary complexity). Given the set of features 𝐹, we want to select a subset 𝑆,

|𝑆| < |𝐹|, wherein the selected features are maximally informative about the class.

Calculating the mutual information for every possible feature vector is computationally impractical,

forcing us to consider approximate solutions, like the mutual information based feature selection (MIFS)

algorithm [32].

MIFS works by calculating MI with only individual features, like 𝐼(𝑓; 𝑐) and 𝐼(𝑓; 𝑓′), instead of with the

feature vectors as a feasible approximation. The algorithm takes a greedy approach to feature selection.

Given a set of selected features, it selects the next best feature based on maximizing the MI with the class

variable, and then minimizing the average MI of the new feature when compared to the already selected

feature set. The motivation here is to not pick dependent features, even though they may give good class

24

information. A 𝛽 parameter is chosen to regulate the importance of this redundancy penalizing term,

leading to the loss function:

ℒ(𝑓; 𝐶, 𝑆) = 𝐼(𝐶; 𝑓) − 𝛽 ∑ 𝐼(𝑓; 𝑠)
𝑠∈𝑆

Table 3: Algorithm for MIFS feature selection process

Algorithm 1: MIFS

1. Set 𝐹 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡 and 𝑆 ← {∅}, initialize 𝑘, 𝛽

2. for 𝑓 in 𝐹:

3. Compute 𝐼(𝐶; 𝑓) and store

4. end

5. Identify feature 𝑓 that maximizes 𝐼(𝐶; 𝑓)

6. Set 𝐹 ← 𝐹\{𝑓}, 𝑆 ← {𝑓}
7. while |𝑆| < 𝑘:
8. for all features 𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆:

9. compute 𝐼(𝑓; 𝑠) and store

10. end

11. Identify feature 𝑓 that maximizes 𝐼(𝐶; 𝑓) − 𝛽 ∑ 𝐼(𝑓; 𝑠)𝑠∈𝑆

12. Set 𝐹 ← 𝐹\{𝑓}, 𝑆 ← {𝑓}
13. end

14. Output selected features set 𝑆

In practice, it was found that 𝛽 = 1 is often optimal, though there is not any theoretical justification to

back this claim [33].

Conditional Mutual Information (mMIFS-u)

A more sophisticated method of feature selection can be obtained by observing conditional mutual

information. The definition of conditional mutual information, similar to the definition of conditional

probabilities, is

𝐼(𝐶; 𝑓𝑖|𝑓𝑠) = 𝐻(𝑓𝑖|𝑓𝑠) − 𝐻(𝑓𝑖|𝐶, 𝑓𝑠))

25

𝐶 represents the class variable, while the 𝑓’s represent feature vectors. Conditional independence denotes

the mutual information of two variables conditioned on the third, with the right-hand side following from

the definition of conditionality (analogous to probability).

To develop a greedy feature selection method, we must find a computationally friendly method of

calculating conditional mutual information 𝐼(𝐶; 𝑓𝑖|𝑓𝑠) [28]. We begin by proving two propositions

Proposition 1: The conditional mutual information can be represented as

𝐼(𝐶; 𝑓𝑖|𝑓𝑠) = 𝐼(𝐶; 𝑓𝑖) − [𝐼(𝑓𝑖; 𝑓𝑠) − 𝐼(𝑓𝑖 ; 𝑓𝑠|𝐶)].

Proof:

𝐼(𝐶; 𝑓𝑖) − [𝐼(𝑓𝑖; 𝑓𝑠) − 𝐼(𝑓𝑖; 𝑓𝑠|𝐶)]

= 𝐻(𝐶) − 𝐻(𝐶|𝑓𝑖) − [𝐻(𝑓𝑖) − 𝐻(𝑓𝑖|𝑓𝑠)] + 𝐻(𝑓𝑖|𝐶) − 𝐻(𝑓𝑖|𝑓𝑠 , 𝐶)

= 𝐻(𝐶) − 𝐻(𝐶|𝑓𝑖) − 𝐻(𝑓𝑖) + 𝐻(𝑓𝑖|𝑓𝑠) + 𝐻(𝑓𝑖|𝐶) − 𝐻(𝑓𝑖|𝑓𝑠 , 𝐶)

= 𝐻(𝑓𝑖|𝑓𝑠) − 𝐻(𝑓𝑖|𝑓𝑠 , 𝐶) + 𝐻(𝐶) − 𝐻(𝐶|𝑓𝑖) − [𝐻(𝑓𝑖) − 𝐻(𝑓𝑖|𝐶)]

= 𝐼(𝐶; 𝑓𝑖) − 𝐼(𝐶;𝑓𝑖) + 𝐻(𝑓𝑖|𝑓𝑠) − 𝐻(𝑓𝑖|𝑓𝑠 , 𝐶)

= 𝐼(𝐶; 𝑓𝑖|𝑓𝑠)

Proposition 2: The ratio of entropy of 𝑓𝑠 and MI between 𝑓𝑠 and 𝑓𝑖 is not dependent on conditioning by

the class variable.

𝐻(𝑓𝑠|𝐶)

𝐼(𝑓𝑖; 𝑓𝑠|𝐶)
=

𝐻(𝑓𝑠)

𝐼(𝑓𝑖 ; 𝑓𝑠)

Translated to seizure detection, this assumption would hold as no matter if the data is coming from a

seizure or not, the ratio of entropy and mutual information will hold.

26

Using proposition 1 and 2

𝐼(𝐶; 𝑓𝑖|𝑓𝑠) = 𝐼(𝐶; 𝑓𝑖) − [𝐼(𝑓𝑖 ; 𝑓𝑠) − 𝐼(𝑓𝑖 ; 𝑓𝑠|𝐶)]

= 𝐼(𝐶;𝑓𝑖) − [𝐼(𝑓𝑖 ; 𝑓𝑠) −
𝐼(𝑓𝑖; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐻(𝑓𝑠|𝐶)]

= 𝐼(𝐶;𝑓𝑖) − [
𝐼(𝑓𝑖 ; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐻(𝑓𝑠) −

𝐼(𝑓𝑖 ; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐻(𝑓𝑠|𝐶)]

= 𝐼(𝐶;𝑓𝑖) −
𝐼(𝑓𝑖 ; 𝑓𝑠)

𝐻(𝑓𝑠)
(𝐻(𝑓𝑠) − 𝐻(𝑓𝑠|𝐶))

= 𝐼(𝐶;𝑓𝑖) −
𝐼(𝑓𝑖 ; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐼(𝑓𝑠; 𝐶)

In this form, we see how conditional mutual information measures the information of each new feature

relative to a class, whilst penalizing a weighted dependency term. To pick the best feature, the

optimization would be

𝑓 = 𝑚𝑎𝑥
𝑓𝑖∈𝐹\𝑆

{𝐼(𝐶, 𝑓𝑖) − 𝑚𝑎𝑥
𝑓𝑠∈𝑆

𝐼(𝑓𝑖; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐼(𝐶, 𝑓𝑠)}

where 𝐹 is the initial feature set, and 𝑆 is the feature subset. The form of this feature selection method is

identical to the naïve case, except now the weighting parameter is automatically updated through the

conditional mutual information.

27

Table 4: Algorithm for mMIFS-u feature selection process

Algorithm 2: mMIFS-U

1. Set 𝐹 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡 and 𝑆 ← {∅}; initialize 𝑘; initialize 𝑚𝑖_𝑐𝑙𝑎𝑠𝑠_𝑠𝑡𝑜𝑟𝑒 array

2. for 𝑓 in 𝐹:

3. Compute 𝐼(𝐶; 𝑓) and append to 𝑚𝑖_𝑐𝑙𝑎𝑠𝑠_𝑠𝑡𝑜𝑟𝑒

4. end

5. Identify feature 𝑓 that maximizes 𝐼(𝐶; 𝑓)

6. Set 𝐹 ← 𝐹\{𝑓}, 𝑆 ← {𝑓}
7. Intialize entropy storage array 𝐻_𝑠𝑡𝑜𝑟𝑒 of size 𝑘

8. 𝐻_𝑠𝑡𝑜𝑟𝑒[0] ← Calculate entropy 𝐻(𝑓)

9. Initialize 𝑘 × |𝐹| matrix 𝑚𝑖_𝑓𝑒𝑎𝑡_𝑠𝑡𝑜𝑟𝑒

10. while |𝑆| < 𝑘:
11. for ind_f, f in enumerate (all features 𝑓 ∈ 𝐹):
12. 𝑚𝑖_𝑓𝑒𝑎𝑡_𝑠𝑡𝑜𝑟𝑒[|𝑆| − 1][𝑖𝑛𝑑_𝑓] ← 𝐼(𝑓𝑖; 𝑓𝑠𝑛𝑒𝑤

) , where 𝑓𝑠𝑛𝑒𝑤
 is the latest selected

feature

13. end

14. Initialize outer maximization array 𝑜𝑢𝑡𝑒𝑟_𝑎𝑟𝑟

15. for ind_f, f in enumerate(all features 𝑓 ∈ 𝐹):

16. Initialize inner maximization array 𝑖𝑛𝑛𝑒𝑟_𝑎𝑟𝑟

17. for ind_s, s in enumerate(all features 𝑠 ∈ 𝑆):

18. compute
𝑚𝑖_𝑓𝑒𝑎𝑡_𝑠𝑡𝑜𝑟𝑒[𝑖𝑛𝑑_𝑠][𝑖𝑛𝑑_𝑓]

𝐻_𝑠𝑡𝑜𝑟𝑒[𝑠]
 𝑚𝑖_𝑐𝑙𝑎𝑠𝑠_𝑠𝑡𝑜𝑟𝑒[𝑠] and append to 𝑖𝑛𝑛𝑒𝑟_𝑎𝑟𝑟

19. end

20. 𝑖𝑛𝑛_𝑚𝑎𝑥_𝑣𝑎𝑙 ← Maximum value of 𝑖𝑛𝑛𝑒𝑟_𝑎𝑟𝑟

21. append 𝑚𝑖_𝑐𝑙𝑎𝑠𝑠_𝑠𝑡𝑜𝑟𝑒[𝑖𝑛𝑑_𝑓] − 𝑖𝑛𝑛𝑒𝑟_𝑚𝑎𝑥_𝑣𝑎𝑙 to 𝑜𝑢𝑡𝑒𝑟_𝑎𝑟𝑟

22. end

23. Identify index and corresponding feature 𝑓 maximizing 𝑜𝑢𝑡𝑒𝑟_𝑎𝑟𝑟

24. Set 𝐹 ← 𝐹\{𝑓}, 𝑆 ← {𝑓}
25. end

26. Output selected features set 𝑆

Increases in speed can be gained through parallelization, especially in feature sets with a higher

cardinality. Selection of the first and second features are illustrated in Figures 2 and 3 The first feature is

selected through the highest mutual information value against the class variables. This is Delta Median

(30, 180). Next we calculate the self-entropy of all the feature. This array will be stored in cache and

reused during each feature selection loop. Using the mutual information between class variables, features,

and entropy values, we next calculate the weighted redundancy term for each feature with the Delta

Median (30, 180). Finally, we use the derived formula to calculate the conditional mutual information for

the entire feature set, showing us the best second feature is heart rate. We recursively perform these

calculations until we reach our chosen feature subset cardinality.

28

Figure 2: mMIFS-u feature selection algorithm applied in the context of seizure detection. a) shows the mutual

information of all features with the class variable. b) shows the self-entropy of each feature

29

Figure 3: mMIFS-u feature selection algorithm applied in the context of seizure detection. a) shows the weighted
redundancy term of all features compared to selected feature subset (Delta Median (30, 180)). b) shows final

conditional entropy of all features

30

We selected 9 features using MIFS and mMIFS-u. These 9 features are shown from most informatic to

least informatic according to the 2 algorithms. We choose 𝛽 = 0.001 to prevent over-penalization of

redundancy which was giving us too many uninformative features.

Selection Results

Table 5: MIFS and mMIFS-u feature selection results

MIFS (𝜷 = 𝟎.𝟎𝟎𝟏) mMIFS-u

Delta Median (30, 180) Delta Median (30, 180)
Heart Rate Heart Rate

[Win.] Band Power 18-20Hz Delta median (60, 120)

[Win.] Line Crossing rate (x) [Win.] Band Power 16-18Hz

Mean HR derivative [Win.] Line Crossing rate (x)

Delta median (60, 120) Jerk (x)

Kurtosis (y) Delta median (30, 120)

Kurtosis (x) Delta median(60, 180)

Kurtosis (z) [Win.] Band Power 8-10Hz

Note that most of the features are not shared between the two algorithms. In the initial mutual information

calculation, it is seen that the heart rate features are highly informative but are concurrently also highly

dependent. Also note that the 𝑥-axis seems most informative. Despite this mMIFS-u still seems to favor

heart rate features, especially delta median. Perhaps most interestingly, all three kurtosis values have been

selected by MIFS. As kurtosis seems to be one of the most uninformative features according to Figure

2a, it stands to reason that it is highly independent from the other selected features and from kurtosis on

other axes. To evaluate these features selection methods, the selected features would need to be tested on

classification algorithms and compared.

At the beginning of this project no information theory based feature selection was performed. Instead

features were chosen empirically by comparing trends on a custom-built visualization system. There were

also system constraints limiting our choices on early watches. Due to the 15% CPU ceiling, it was not

possible to calculate the PSD matrix in real-time without significantly hindering detection latency. This

31

ruled out any spectral features at that time, despite their high performance. With the release of a more

powerful CPU in the Series 4, in addition to the availability of optimized libraries on iOS, spectral features

will be available in the future iterations of the algorithm.

The following 9 features were chosen and implemented. Coincidentally, a few of the features correspond

to those selected by MIFS, including HR, HR derivative and LC rate. A comparison of feature

implementations between Swift (iOS) and Python (Offline) is provided.

Table 6: Selected Features Implementation Details

Feature Offline Implementation Real-Time Implementation

Current Heart

Rate

Zero order hold interpolation. Mean is

taken to calculate heart rate per

second. In the case of no heart rate, 80

bpm average is used.

Causal nearest neighbors interpolation

on the last available heart rate is used.

In the case of multiple heart rates in the

span of 1 second, the average is used.

If no data is available, 0 is returned

(will only occur before first sample)

Heart rate

derivative

Computes a heart rate derivative

estimate by finding the average

derivative between samples within a
30 second sliding window. Due to the

variation in sampling, mean value is

weighted by 𝛥𝑡 between HR samples.

If less than 2 samples in a 30 second

sliding window, 0 is returned.

Running circular buffer of 120 samples

is implemented. Samples categorized

by timestamp to be in the past 30
seconds is used for calculation. Same

derivative and normalization as in the

offline implementation. If less than 2

samples in the 30 second window, 0 is

returned.

L2-Norm

Accelerometer

Computes mean L2 Norm of the

accelerometer data in each 1 second

block. Gives an indication of the

energy in the signal.

Computes mean of L2 Norm on each 1

second block.

X, Y, Z Line

Crossing Rate

Computes LC rate on a sliding

window size of 10 seconds. An
empirically determined threshold of

0.05 has to be passed for a sign

change to register as a line crossing to

avoid spurious movements.

Compute LC on 10 second window as

in offline implementation. 10 second
window is implemented as circular

buffer of 500 samples.

X, Y, Z Line

Crossing Rate

Derivative

Short term parameter 𝛼𝑠 = 0.05 and

long-term parameter 𝛼𝑙 = 0.005.

Difference is taken between the two

EMA values, and the mean is taken

over all values in the sliding 10

second window to find feature.

Compute the two moving averages on

a 10 second window implemented as a

circular buffer. Identical

implementation to offline case.

32

Anomaly Detection

In development of this seizure detector, careful examination of our data and product constraints were

performed to evaluate candidate models. As GTCS are a rare occurrence, the dataset was highly

unbalanced. At the time of training, there were approximately 2000 total usable hours. Of this, there were

ten validated GTCS, totaling 30 minutes. This sort of imbalance is commonly solved by anomaly

detection algorithms, many of which have had successful applications in fields such as bank fraud,

structural defects, and textual errors [34]. Outliers are categorized as either [35]:

1. Global (Point Anomaly): Objects that deviate significantly from the rest of the data set, i.e.

Meteors hitting earth

2. Contextual Anomaly: Objects that deviate significantly from the data set based on a selected

context, i.e. Snow fall in the summer

3. Collective Anoomaly: A subset of objects collectively deviate significantly from the whole

dataset, even if individual objects may not be outliers, i.e. DDoS attacks

Due to the rare and aggressive nature of GTCS, it is a global outlier, which leads to the challenge of

finding an appropriate measurement of deviation from the standard dataset. This leads to the plethora of

anomaly detection algorithms, which are also classified into three overarching types [34]:

• Type I: For datasets where there is no prior knowledge of the data, algorithms must determine

a method of classifying the data according to some metric in feature space. Boundaries can be

formed around groups, and defined as normal or anomalous. Test points are classified as outliers

if they are not inside the normal regions. This is an unsupervised learning mechanism and most

algorithms (generally clustering) assume anomalies and normal data have some distinct

separation in feature space.

33

• Type II: If we have a dataset that is labelled, we can create a classifier that will group all the

points according to their labels. This is also known as supervised learning. A new test point in

feature space can then be classified according to some classifier decision rule. The available data

(both normal and anomalous) should define the underlying distribution, or the classifier may be

prone to overfitting.

• Type III: In many cases of anomaly detection, the ratio of anomalous to normal data will be

small. As the a large amount of normal data should approximately describe the support of all

possible normal points in feature space, it is easier to use an algorithm that defines this support.

This known as semi-supervised learning, where we only train on normal data points. Any test

samples falling inside the boundary will be classified as normal, whilst all other points will be

classified as anomalies.

As we had a labelled dataset, we were going to either be creating a Type II or a Type III detection method.

There are three general approaches to solving our problem.

1. In a naïve approach of creating a Type II detector, we could weight the classes and make our

model preferential to the minority class. As a simple example, we could create a logistic

regression model, and weight it towards the seizure class.

2. We could use undersampling, oversampling or a combination of both. There are many

techniques already implemented in libraries like random undersampling, ADASYN, and

SMOTE/ENN (Synthetic over sampling followed by Edited Nearest Neighbours used to pare

down and centralize the anomalous data points). These techniques, along with manual synthetic

data generation methods (rotation, translation, and dilation of feature vectors) are valid ideas

34

that have worked in other domains [36], but will not be the focus of this thesis. In this approach,

the new dataset would then be used to create another Type II algorithm.

3. Instead of trying to balance the dataset, we can try and just predict the outlier class using anomaly

detection techniques. There have been a variety of anomaly detection methods available over

the years, and they have the advantage of not trying to sample from an underlying distribution

of data to forcefully balance a dataset, and have shown very good results in applications like

intrusion detection, system health monitoring, fraud detection and fault detection in complex

operating environments. This would be a Type III algorithm.

In this thesis, we have decided to approach the problem of seizure detection from the perspective of

anomaly detection due to the robustness it can provide, especially when we move on to detecting more

subtle seizure subtypes like FUS. Additionally there have been decent results in literature [37] using

similar sensor stacks (though detection generally occurs retrospectively).

Detection Method Motivation

We have explored 5 different anomaly detection methods in this thesis to apply to our problem.

SVM/OCSVM: Support Vector Machines have been widely used in classification tasks and can show

surprisingly good performance. It has a high complexity (between 𝑂(𝑛2) and 𝑂(𝑛3)) especially if you

use kernel-SVM, but can still provide a good baseline for our other classifiers. Note as we are using SVM

for anomaly detection, we will use a slight variation called One-Class SVM (OCSVM).

35

SVDD: Support Vector Data Description (SVDD) has a similar problem setup to SVM, but instead of

attempting to generate a hyperplane, to separate points, it generates a hypersphere. This makes it well-

suited to anomaly detection tasks, and it has been used in literature to good effect [38], [39].

Isolation Forest: As we eventually want a real time detection mechanism implemented on a portable

device, the low complexity and memory requirement of the isolation forest stood out. It performs best on

low sample sizes during training, has inherently low bias and variance, and any dependencies between

features will not affect its performance.

Extended Isolation Forest: A natural extension to isolation forests, which can cause artefacts in certain

areas of the search space, due to the orthogonal nature of how splits are made. The extended isolation

forest takes advantage of the high dimensionality of the data by creating random hyperplane splits across

the search-space rather than only splitting on certain feature values.

36

Anomaly Detection Theory

One Class Support Vector Machine (OCSVM)

A well-known technique in classification is Support Vector Machines (SVM) created by Vapnik [40]. As

it is easily implemented and available, we use it as a baseline for future algorithms. Like most pattern

recognition functions, SVM aims to find a pattern in the training set (𝒙1, 𝑦1),… , (𝒙𝑙 , 𝑦𝑙) ∈ ℝ𝐷 × {±1},

where 𝐷 is the dimensionality of the input space and define a decision function 𝑓(⋅) whereby it can

correctly classify a new sample 𝑓(𝒙) = 𝑦 generated from the same underlying process as the training set.

SVM’s accomplish this task be creating an optimal hyper-plane between all training samples

corresponding to the two classes 𝑦 = +1 and 𝑦 = −1.

First define the family of hyperplanes that SVM can model. Defining 𝒘 ∈ ℝ𝐷

as the weight vector normal to the hyperplane, and 𝒙 ∈ ℝ𝐷 a point in 𝐷-dimensional space, we see that

𝒘 ⋅ 𝒙 = 0 will describe the locust of points defining the hyperplane passing through the origin that is

orthogonal to 𝒘. Extending this to the general case, we can define all hyperplanes as 𝒘 ⋅ 𝒙 = 𝑏, or

equivalently 𝒘 ⋅ 𝒙 + 𝑏 = 0, where 𝑏 ∈ ℝ is the bias term. This is the definition of the general hyperplane

equation [41].

All point will then lie on either side of this hyperplane. 𝒘 ⋅ 𝒃 < 0 will refer to points on the origin side of

the hyperplane which we will classify as −1, whilst 𝒘 ⋅ 𝒙 + 𝑏 > 0 will refer to points on the opposite

side, which we will classify as +1. The corresponding decision function is then 𝑓(𝑥) = 𝑠𝑖𝑔𝑛((𝒘 ⋅ 𝒙) +

𝑏).

37

Linearly separable datasets will have an infinite number of hyperplanes that can perfectly separate them.

To find the best separating hyperplane, we try to maximize the distance from the decision surface to the

closest data point. This distance is also known as the margin.

Functional Margin: We can naively determine a margin with respect to a training example as 𝑚̂𝑖 =

𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏). This will always be positive (both 𝑦𝑖 and 𝒘 ⋅ 𝒙 + 𝑏 will both simultaneously be either

positive or negative). From the definition of margin in the previous paragraph, the functional margin can

be defined as the minimum margin

𝑚̂ = min
𝑖=1…𝑁

𝑚̂𝑖

where 𝑁 is the number of data points. The issue with the functional margin is that 𝑐𝒘 ⋅ 𝒙 = 𝑐𝑏 and 𝒘 ⋅

𝒙 = 𝑏 define the same hyperplane. It follows that we can set 𝑚̂𝑖 = 𝑦𝑖(𝑐𝒘 ⋅ 𝒙 + 𝑐𝑏) to be as arbitrarily

large as we want to without violating the problem formulation.

Figure 4: SVM margin and decision boundary

38

Geometric Margin: As 𝑐 can be set to any arbitrary number, we set it to scale the functional margin of

the points that determine 𝑚̂. For those points lying closest to the decision plane, also known as the support

vectors, 𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏) = 1. We are fixing 𝑐 to make this true. Note that 1 is used as a reference only due

to mathematical convenience and we could have used any other positive real number.

Our new decision rule for all points is

𝑦𝑖 = {
−1 𝑖𝑓 𝒘 ⋅ 𝒙𝒊 + 𝑏 ≤ −1
+1 𝑖𝑓 𝒘 ⋅ 𝒙𝒊 + 𝑏 ≥ +1

𝑶𝑹

𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) ≥ 1

Note how this rule does not allow any points inside the margin. This means that the training data we

provide must be linearly separable, otherwise this setup will fail. We will soon introduce a method to

relax this constraint.

39

We define 𝑥1 and 𝑥2 as two points on the margins. As the goal is to maximize the margin, the closest

points to the hyperplane from both classes will be equidistant, so can assume {𝒙𝟏, −1} and {𝒙𝟐, +1}.

𝒘 ⋅ 𝒙𝟏 + 𝑏 = −1

𝒘 ⋅ 𝒙𝟐 + 𝑏 = 1

∴ 𝒘(𝒙𝟐 − 𝒙𝟏) = 2

𝒙𝟐 − 𝒙𝟏 will traverse the margin, though it will not necessarily be orthogonal to the hyperplane. Since 𝒘

is orthogonal to the hyperplane, the projection of 𝒙𝟐 − 𝒙𝟏 onto 𝒘 will give us the length of the margin.

margin =
𝒘

‖𝒘‖
(𝒙𝟐 − 𝒙𝟏) =

2

‖𝒘‖

Figure 5: SVM decision boundary showing two support vectors on margins

40

The optimization problem can now be setup as

max
𝒘,𝑏

2

‖𝒘‖

s. t. 𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1 ≥ 0

As numerically optimization packages are typically setup to minimize convex functions, we turn this

maximization into a minimization problem.

min
𝒘,𝑏

1

2
‖𝒘‖𝟐

𝑠. 𝑡. 𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1 ≥ 0, ∀𝑖 ∈ ℕ

Note that as ‖𝒘‖ will be a strictly positive number, and as squaring is a monotonic operator, this is valid.

We square ‖𝒘‖ to get rid of the
1

2
 coefficient when taking the derivative in the future.

We can incorporate the constraint into our minimization by setting up a Lagrangrian

ℒ(𝒘, 𝑏) =
1

2
‖𝒘‖𝟐 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)]

𝛼𝑖 ≥ 0, ∀𝑖 ∈ ℕ

The primal optimization is then

𝑝∗ = min
𝒘,𝑏

max
𝛼𝑖≥0

1

2
‖𝒘‖𝟐 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)]

41

It is readily seen how the Lagrangian enforces our constraint in the primal form. Since we are searching

for the 𝛼𝑖 values that maximize the objective function, if the constraint is met, all of the 𝛼𝑖 = 0 in the case

of non-support vectors and (𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1) = 0 in the case of the support vectors. Optimization will

once again reduce the objective to 𝑚𝑖𝑛
𝒘,𝑏

1

2
‖𝒘‖𝟐 . If one or more of the constraints are violated, the

corresponding 𝛼𝑖 ’s of those points will tend to ∞ , causing the objective to go to ∞ . Since we are

eventually minimizing with respect to 𝒘, 𝑏, the solution will always contain appropriate values to enforce

(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1 ≥ 0) to prevent this from happening.

We define the dual formulation of this problem as

𝑑∗ = max
𝛼𝑖≥0

 min
𝒘,𝑏

1

2
‖𝒘‖𝟐 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)]

We motivate the dual by first defining weak duality, which states that for any general problem (not

necessarily convex), 𝑝∗ ≥ 𝑑∗. This is also known as the minimax inequality.

Proof: For any function 𝜙 of vector variables 𝑥, 𝑦

𝐃𝐞𝐟𝐢𝐧𝐞 𝑔(𝑥) ≜ min
𝑦

𝜙(𝑥, 𝑦)

𝑔(𝑥) ≤ 𝜙(𝑥, 𝑦)

max
𝑥

𝑔(𝑥) ≤ max
𝑥

𝜙(𝑥, 𝑦)

max
𝑥

min
𝑦

𝜙(𝑥, 𝑦) ≤ max
𝑥

𝜙(𝑥, 𝑦)

max
𝑥

min
𝑦

𝜙(𝑥, 𝑦) ≤ min
𝑦

max
𝑥

𝜙(𝑥, 𝑦)

42

Note that as 𝑚𝑖𝑛
𝒘,𝑏

1

2
‖𝒘‖𝟐 − ∑ 𝛼𝑖𝒊 [(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] is a pointwise minimization of affine functions,

it is concave [42]. Since we maximize over 𝛼𝑖 ′𝑠 in the next step, the dual problem will always be a convex

optimization [43].

We define 𝑝∗ − 𝑑∗ as the duality gap, which will always be positive in the case of weak duality. We

define a 0 duality gap as strong duality, meaning the solving the primal gives us the same answer as

solving the dual. From Boyd [42], we know that strong duality holds if the chosen parameters meet the

Karush-Kuhn-Tucker (KKT) conditions [42]–[44] identified below in the context of our problem

1. Stationarity: 𝛻𝑤ℒ(𝒘, 𝑏, 𝛼) = 0 and
𝜕ℒ(𝒘,𝑏,𝛼)

𝜕𝑏
= 0

2. Dual Feasibility: 𝛼𝑖 ≥ 0

3. Primal Feasibility: (𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1) ≥ 0

4. Complementary Slackness: 𝛼𝑖(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1) = 0

From [44], we see that by solving the optimization such that it meets the KKT conditions, we can assume

strong duality, defined as where optimizing both the primal and dual will give the same solution, 𝑝∗ =

𝑑∗. We have already met conditions 2, 3 and 4 in the setup. Finally notice how if we take solve the inner

optimization of the dual, we will satisfy condition 1.

𝜕

𝜕𝒘
ℒ(𝒘, 𝑏, 𝛼) = 𝒘 − ∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑖

= 0

∴ 𝒘 = ∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑖

𝜕

𝜕𝑏
ℒ(𝒘, 𝑏, 𝛼) = 0 − ∑𝛼𝑖𝑦𝑖

𝑖

= 0

43

∴ ∑𝛼𝑖𝑦𝑖

𝑖

= 0

We can then simplify the dual problem using these solutions

1

2
‖𝒘‖𝟐 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)]

=
1

2
𝒘 ⋅ 𝒘 − ∑𝛼𝑖

𝒊

𝑦𝑖𝒘 ⋅ 𝒙𝒊 − 𝑏 ∑𝛼𝑖

𝒊

𝑦𝑖 + ∑𝛼𝑖

𝒊

=
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 − ∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 − 𝑏 ∑𝛼𝑖

𝒊

𝑦𝑖 + ∑𝛼𝑖

𝒊

= ∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋

Leading to our final dual form:

𝑚𝑎𝑥
𝛼𝑖

∑ 𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋

𝑠. 𝑡. 𝑎𝑖 ≥ 0

 ∑𝛼𝑖𝑦𝑖

𝑖

= 0

This can now be solved using numerical optimization algorithms such as SMO [43]–[45], a commonly

used algorithm to solve quadratic programming problems. Proof of SMO is out of the scope of this thesis,

though it is implemented by multiple Quadratic Programming Solvers and SVM libraries. Note that the

program will return us optimal for 𝛼𝑖, most of which will be 0 (only support vectors will have non-zero

𝛼𝑖 ′𝑠). We can use these to calculate 𝒘, and then use the complementary slackness condition to calculate

44

𝑏. Then for any new test point, we can classify it according to 𝑦𝑡𝑒𝑠𝑡 = 𝑠𝑖𝑔𝑛(𝒘⊤𝒙 + 𝑏). By convention,

any point that falls on the hyperplane boundary will generally go to the positive class [46].

Soft-Margin SVM (Non-separable case)

With the current derivation of SVM, the optimization will fail if the data is non-separable. Additionally,

any separable data with outliers will dramatically shift the decision hyperplane. In this case we can add

in some slack parameters to relax the strict separability condition, leading our optimization problem to

become

min
𝜉,𝒘,𝑏

1

2
‖𝒘‖𝟐 + 𝐶 ∑𝜉𝑖

𝒊

𝑠. 𝑡. 𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1 ≥ 𝜉𝑖

 𝜉𝑖 ≥ 0, ∀𝑖 ∈ ℕ

The 𝐶 parameter controls relative weighting on the penalizing term, and can be set during tuning. High

𝐶 values will force the SVM to strictly enforce the margins, whilst small values will allow for more miss-

classification. Also note the constraint on 𝜉𝑖. Only points that break the margin will have a value for 𝜉𝑖,

with points on the correct side of the margin having 𝜉𝑖 = 0. This is known as hinge loss and it is non-

differentiable. Primal solutions can make use of the sub-gradient, whilst dual solutions will result in a

quadratic problem. This formulation is known as L1-SVM, and enforces sparsity in the solution. L1-SVM

can be used in deep learning models using sub gradient descent, or we could make the hinge loss

differentiable by using an L2-SVM with an objective of 𝑚𝑖𝑛
𝜉,𝒘,𝑏

1

2
‖𝒘‖𝟐 + 𝐶 ∑ 𝜉𝑖

2
𝒊 [47].

To solve the L1-SVM formulation, we follow the same process as the original SVM. Setting up the

Lagrangian,

45

ℒ(𝒘, 𝑏, 𝜉, 𝛼, 𝑟) =
1

2
‖𝒘‖𝟐 + 𝐶 ∑𝜉𝑖

𝒊

− ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) + 𝜉𝑖 − 1)] − ∑𝑟𝑖𝜉𝑖

𝒊

Optimizing the Lagrangian w.r.t 𝒘, 𝑏, 𝜉,

𝜕

𝜕𝒘
ℒ(𝒘, 𝑏, 𝜉, 𝛼, 𝑟) = 𝒘 − ∑𝛼𝑖𝑦𝑖𝒙𝒊

𝑖

= 0

∴ 𝒘 = ∑ 𝛼𝑖𝑦𝑖𝒙𝑖

𝑖

𝜕

𝜕𝑏
ℒ(𝒘, 𝑏, 𝛼) = 0− ∑ 𝛼𝑖𝑦𝑖

𝑖

= 0

∴ ∑𝛼𝑖𝑦𝑖

𝑖

= 0

𝜕

𝜕𝝃
ℒ(𝒘, 𝑏, 𝜉, 𝛼, 𝑟) = 𝐶 − 𝛼𝑖 − 𝑟𝑖 = 0

∴ 𝐶 = 𝛼𝑖 + 𝑟𝑖

Substituting and rearranging the Lagrangian

1

2
‖𝒘‖𝟐 + 𝐶 ∑𝜉𝑖

𝒊

− ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) + 𝜉𝑖 − 1)] − ∑ 𝑟𝑖𝜉𝑖

𝒊

=
1

2
‖𝒘‖𝟐 + ∑𝛼𝑖𝜉𝑖

𝒊

+ ∑𝑟𝑖𝜉𝑖

𝒊

− ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] − ∑𝛼𝑖𝜉𝑖

𝒊

− ∑𝑟𝑖𝜉𝑖

𝒊

=
1

2
𝒘 ⋅ 𝒘 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)]

=
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 − ∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 − 𝑏 ∑𝛼𝑖

𝒊

𝑦𝑖 + ∑𝛼𝑖

𝒊

46

= ∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋

Note that this is exactly the same Lagrangian that we got in the hard-margin SVM. The difference will

be in the constraints, as we now have 𝐶 = 𝛼𝑖 + 𝑟𝑖 . With the knowledge that 𝛼𝑖 ≥ 0 and 𝑟𝑖 ≥ 0 (from the

dual feasibility KKT condition), we can deduce that 0 ≤ 𝛼𝑖 ≤ 𝐶, as 𝐶 − 𝑟𝑖 = 𝛼𝑖 must be true. This leads

to the final dual setup

max
𝛼

∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶,∀𝑖 ∈ ℕ

 ∑ 𝛼𝑖𝑦𝑖

𝑖

= 0

This dual problem can once again be solved using a quadratic program, but this time will not break if the

dataset is not linearly separable. As before, once the boundary is made, to test a new point, we use 𝑦𝑡𝑒𝑠𝑡 =

𝑠𝑖𝑔𝑛(𝒘⊤𝒙 + 𝑏), with any point on the boundary going to the +1 class.

Kernel Methods

Due to how SVMs are setup, they have the ability to find non-linear hyperplanes by projecting the data

and performing the optimization in a higher dimensional space. This is known as the kernel trick. To

investigate this, let’s say we have a 1-dimensional dataset, where each value 𝑥 ∈ ℝ. Let’s also assume

that the dataset is non-linearly separable, but if we transform all the points to the 2D space with 𝜙(𝑥) =

(𝑥, 𝑥2), it is linearly separable. We can simply project all of the points to this 2D space, and perform the

entire optimization there, essentially solving

47

max
𝛼

∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶,∀𝑖 ∈ ℕ

 ∑𝛼𝑖𝑦𝑖

𝑖

= 0

After solving the Quadratic Program, we will use

𝑦𝑡𝑒𝑠𝑡 = sign(𝒘 ⋅ 𝜙(𝒙𝑡𝑒𝑠𝑡) + 𝑏)

= sign(∑𝛼𝑖𝑦𝑖𝜙(𝒙𝑖) ⋅
𝑖

𝜙(𝒙𝑡𝑒𝑠𝑡) + 𝑏)

as a decision rule, where we were able to substitute 𝒘 = ∑ 𝛼𝑖𝑦𝑖𝜙(𝒙𝑖)𝑖 to form an inner product in the

transformed space. Projecting every variable to a higher dimensional space and then computing the dot

product is inefficient. There exists a family of functions called kernels that can compute the inner product

in a higher dimensional feature space at a low cost. As all of the 𝒙 values involved in optimization and

testing are used in inner products, this is an efficient way of computing non-linear decision boundaries

for your dataset.

For a kernel to be valid, it has to obey Mercer’s condition, which states that for any kernel, it is necessary

and sufficient that for {𝑥1, … , 𝑥𝑚}, (𝑚 < ∞), the corresponding kernel matrix is symmetric and positive

semi-definite [43], [44], [48]. You can build your own kernel and then test these conditions

retrospectively to test for validity, but this is often tricky due to the difficulty of testing for positive semi-

definiteness.

48

Another option is to create kernels by construction. As a simple example, take two vectors 𝒙 = (𝑥1, 𝑥2),

and 𝒚 = (𝑦1, 𝑦2), giving the inner product 𝒙⊤𝒚 = (𝑥1𝑦1, 𝑥2𝑦2). If we square this dot product, we will get

pairwise multiplications of each term (𝒙⊤𝒚)2 = 𝑥1
2𝑦1

2 + 𝑥1𝑥2𝑦1𝑦2 + 𝑥1𝑥2𝑦1𝑦2 + 𝑥2
2𝑦2

2. This is the same

as projecting the vectors to a a quadratic feature space, 𝜙(𝒙) = (𝑥1
2, 𝑥1𝑥2, 𝑥2𝑥1, 𝑥2

2) , 𝜙(𝒚) = (𝑦1
2,

𝑦1𝑦2, 𝑦2𝑦1, 𝑦2
2) . Note how (𝒙⊤𝒚)2 = 𝜙(𝒙) ⋅ 𝜙(𝒚) . We call 𝐾(𝒙, 𝒚) = (𝒙⊤𝒚)2 a kernel function. It

calculates the value of the dot product in the quadratic space without having to actually transform 𝒙 and

𝒚 to the quadratic space.

This may seem like a vacuous step, but we can extend the notion to 𝑛-dimensional inputs with 𝑚-degree

polynomials. If we redefine the input vectors to be 𝒙 = (𝑥1, … , 𝑥𝑛), and 𝒚 = (𝑦1, … , 𝑦𝑛), we can describe

a generalized 𝑚’th degree polynomial kernel to be

𝐾(𝒙, 𝒚) = (𝒙⊤𝒚)𝑚 = (∑𝑥𝑖𝑦𝑖

𝑖

)

𝑚

= ∑ 𝑥𝑖1
𝑥𝑖2

… 𝑥𝑖𝑚
𝑖1,𝑖2,…,𝑖𝑚

𝑦𝑖1
𝑦𝑖2

… 𝑦𝑖𝑚

This is the dot product in the 𝑚’th polynomial space, and is relatively easy to calculate, whilst calculating

the actual vector projections in that space become extremely complex. The kernel mentioned above is

known as the polynomial kernel with no offset. The most popular kernels to start off with are

• Polynomial: 𝐾(𝒙, 𝒚) = (𝒙⊤𝒚 + 𝑏)𝑚

• Sigmoid: 𝐾(𝒙, 𝒚) = (𝛼𝒙⊤𝒚 + 𝑐)

• Radial Basis Function (Gaussian): 𝐾(𝒙, 𝒚) = 𝑒𝑥𝑝 (−
‖𝒙−𝒚‖2

2𝜎2)

Note there are many more valid kernels available. The Gaussian RBF kernel is especially popular as a

baseline due to its characteristics of stationarity (or translation invariance, 𝐾(𝒙, 𝒚) = 𝐾(𝒙 + 𝒄, 𝒚 + 𝒄)),

49

and isotropicity (scaling by the 𝜎 parameter occurs by the same amount in all directions). They also work

well in practice and are very easy to tune (only 1 parameter in the search space), compared to other

kernels.

Nu-SVM

There is another possible realization of a soft-margin SVM known as 𝜈-SVM [49], [50]. Instead of 𝐶, we

use a new parameter 𝜈 ∈ (0,1] that will set an upper and lower bound on the number of support vectors

on the wrong side of the hyperplane. As it is similar to 𝐶-SVM, we start with the primal objective

min
𝒘,𝑏,𝜉,𝜌

1

2
‖𝒘‖2 − 𝜈𝜌 +

1

𝑁
∑𝜉𝑖

𝑖

𝑠. 𝑡. 𝑦𝑖(𝒘 ⋅ 𝝓(𝒙𝒊) + 𝑏) ≥ 𝜌 − 𝜉𝑖 , ∀𝑖 ∈ ℕ

 𝜉𝑖 ≥ 0, 𝜌 ≥ 0

We can see from the first constraint that the parameter 𝜌 sets the margin of the SVM, and in this case that

margin will be
2𝜌

‖𝒘‖
. Only points inside this margin will be penalized according to the constraint. This was

not possible in the 𝐶-SVM, where points were penalized as soon as they broke the set geometric margin

of 1. Additionally note how by tuning the parameter 𝜈 we can encourage 𝜌 to grow faster. The increase

in 𝜌 will be counteracted by a commensurate increase in 𝜉𝑖 which will be penalized. This is how the

tension in this optimization is setup.

It has several important properties, proved in [49], but they are not going to be covered in this thesis as

both types of soft margin SVM have similar classification powers, and the justification of the primal from

first principles is more involved. Once the primal has been found as shown above, we follow the same

steps as with 𝐶-SVM to obtain the following dual [50].

50

min
𝜶

1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤
1

𝑁
, ∀𝑖

 ∑𝛼𝑖𝑦𝑖

𝑖

= 0

 ∑𝛼𝑖

𝑖

≥ 𝜈

with the decision function 𝑦𝑡𝑒𝑠𝑡 = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝜙(𝒙𝑖) ⋅𝑖 𝜙(𝒙𝑡𝑒𝑠𝑡) + 𝑏). As before, it’s the same objective

and evaluation function, with some adjustments to the constraints.

The main advantage of 𝜈-SVM is that the 𝜈 parameter to define a specific number of support vectors that

you may want. This can help in data classification tasks. Additionally, 𝜈-SVM has also been implemented

in many common libraries. In practice, 𝜈 -SVM has been known to be slightly trickier to tune in

comparison with 𝐶-SVM, and both show similar results if tuned properly.

One-Class SVM

In cases of anomaly detection, using SVMs as we have derived them in the previous sections can lead to

inaccurate decision boundaries, as the underlying distribution of the anomaly data will not be well

represented in our training set. Scholkopf et. al. [46] addressed this issue by slightly modifying the

original SVM formulation. The strategy was to map the feature values to some kernel space, and then

find a separating hyperplane that separates them from the origin with maximum margin. This will create

a decision function that will capture most of the data points within a small region in input space, labelling

any test point that falls into that region as +1. Any point that falls outside of that region will be set as -1.

51

Due to the large sampling of normal data, we can assume that it represents the support reasonably well,

and as such anything outside will be classified as an anomaly. We will walk through the setup of this type

of SVM, but due to its similarities with the previous sections, certain steps will be omitted.

We begin with the primal. Since we want to maximize the margin from the origin, we decide to exclude

the bias term 𝑏 as then the hyperplane is guaranteed to pass through the origin. Like in the 𝜈-SVM setup,

we set a free parameter 𝜌 for the margin, and 𝜈 ∈ (0,1] will be a hyperparameter that controls the

penalization term for points that break the margin. A 𝜈 → 1 will allow for a lot of slack, whilst 𝜈 → 0 will

correspond to a hard margin setup. Also note the lack of 𝑦𝑖 term, as we are only training with positive

samples.

min
𝒘,𝝃,𝜌

1

2
‖𝒘‖2 +

1

𝜈𝑁
∑𝜉𝑖

𝑖

− 𝜌

𝑠. 𝑡. 𝒘 ⋅ 𝜙(𝒙𝒊) ≥ 𝜌 − 𝜉𝑖 ,

 𝜉𝑖 ≥ 0, ∀𝑖 ∈ ℕ

With this decision boundary, we will expect that most of the training data will be mapped to +1 with the

decision function 𝑠𝑖𝑔𝑛(𝒘 ⋅ 𝜙(𝒙) − 𝜌). The Lagrangian can be setup as

ℒ(𝒘, 𝝃, 𝜶, 𝜷, 𝜌) = min
𝒘,𝝃,𝜌

1

2
‖𝒘‖2 +

1

𝜈𝑁
∑𝜉𝑖

𝑖

− 𝜌 − ∑𝛼𝑖(𝒘 ⋅ 𝜙(𝒙𝒊) − 𝜌 + 𝜉𝑖)

𝑖

− ∑𝛽𝑖𝜉𝑖

𝑖

With the derivatives

𝜕

𝜕𝒘
ℒ(𝒘, 𝝃, 𝜶, 𝜷, 𝜌) = 𝒘 − ∑𝛼𝑖𝜙(𝒙𝒊)

𝑖

= 0

52

∴ 𝒘 = ∑𝛼𝑖𝜙(𝒙𝑖)

𝑖

𝜕

𝜕𝝃
ℒ(𝒘, 𝝃, 𝜶,𝜷, 𝜌) =

1

𝜈𝑁
− 𝛼𝑖 − 𝛽𝑖 = 0

∴ 𝛼𝑖 =
1

𝜈𝑁
− 𝛽𝑖

𝜕

𝜕𝜌
ℒ(𝒘, 𝝃, 𝜶, 𝜷, 𝜌) = −1 + ∑𝛼𝑖

𝑖

∴ ∑𝛼𝑖

𝑖

= 1

From the KKT conditions, we know 𝛼𝑖 , 𝛽𝑖 ≥ 0, and using this we can simplify the middle inequality to

0 ≤ 𝛼𝑖 ≤
1

𝜈𝑁
. Substituting these values back into the objective, we can simplify it

1

2
𝒘 ⋅ 𝒘 +

1

𝜈𝑁
∑𝜉𝑖

𝑖

− 𝜌 − ∑𝛼𝑖(𝒘 ⋅ 𝜙(𝒙𝒊) − 𝜌 + 𝜉𝑖)

𝑖

− ∑𝛽𝑖𝜉𝑖

𝑖

=
1

2
∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

+
1

𝜈𝑁
∑𝜉𝑖

𝑖

− ∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

− ∑𝛼𝑖𝜉𝑖

𝑖

− ∑𝛽𝑖𝜉𝑖

𝑖

= −
1

2
∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

+ ∑
1

𝜈𝑁
𝜉𝑖

𝑖

− ∑(𝛼𝑖 + 𝛽𝑖)𝜉𝑖

𝑖

= −
1

2
∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

With this objective, the dual can now be written as

min
𝜶

1

2
∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

s. t. 0 ≤ 𝛼𝑖 ≤
1

𝜈𝑁

53

 ∑𝛼𝑖

𝑖

= 1

with the decision function sign(𝒘 ⋅ 𝜙(𝒙) − 𝜌)

From [43], and the complementary slackness KKT conditions, we know that the support vectors will only

exist when 0 < 𝛼𝑖 <
1

𝜈𝑁
 (Not the strict inequalities). We also know that on the support vectors, 𝜉𝑖 = 0.

So to find 𝜌, we find our support vectors from our quadratic program, then use 𝜌 = (𝒘 ⋅ 𝜙(𝒙𝒊)) =

∑ 𝛼𝑗𝐾(𝒙𝒊, 𝒙𝒋)𝑗 .

Finally, notice how like all SVM methods, we can use the kernel trick to project the data into higher

dimensional space. For one-class SVM RBF is generally a good choice for a kernel as it will give an

enclosed boundary to define support of your data.

Figure 6: OCSVM implementation examples. Colored bands show distance of points from the boundary, with white
being anything inside the boundary. a) shows OCSVM with a linear kernel on a 2D dataset. Notice how the boundary
separates the dataset from the origin. b) shows same kernel with a higher slack, allowing more points to break the
boundary. c) shows same dataset with an RBF kernel

54

Support Vector Data Description (SVDD)

As in one-class SVM, support vector data description aims to be targeted towards anomaly detection by

describing the support of a distribution of the given data [51]. The strategy of SVDD is not to attempt to

model the perfect support of the target dataset. Rather, we model a spherically shaped boundary around

the target set, and minimize the radius of this sphere to maximize the possibility of outlier detection.

We approach the problem in a similar manner to other support vector problems. First define a training set

of only “normal” data datapoints {𝒙𝟏, … , 𝒙𝒏}, 𝑛 ∈ ℕ for which we want to find the support. We then also

assume that the data has some (ideally equal) variance in all of the feature dimensions of the input. This

is an important assumption as if we model on a thin dataset, there will be a lot of room inside the sphere

for anomalies to be captured. We then define a hypersphere with center 𝒄 and radius 𝑅 > 0, with the goal

of SVDD being to minimize this sphere whilst demanding it contain all training samples.

As in the soft margin SVM, we will add some slack to the constraints to ensure that our optimization is

possible. This gives the primal

min
𝑅

𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

𝑠. 𝑡. ‖𝒙𝒊 − 𝒄‖2 ≤ 𝑅2 + 𝜉𝑖 ,

 𝜉𝑖 ≥ 0, ∀𝑖 ∈ ℕ

Note once more how the slack parameter creates the optimization problem we are searching for. It relaxes

the constraint of every datapoint being inside the hypersphere, however the further away a datapoint is,

the more it is penalized.

The corresponding Lagrangian formulation is

55

ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖) = 𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

− ∑𝛼𝑖[(‖𝒙𝒊 − 𝒄‖2) + 𝑅2 + 𝜉𝑖]

𝑖

− ∑𝛾𝑖𝜉𝑖

𝑖

= 𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

− ∑𝛼𝑖[(𝒙𝒊 ⋅ 𝒙𝒊 − 2𝒄 ⋅ 𝒙𝒊 + 𝒄 ⋅ 𝒄) + 𝑅2 + 𝜉𝑖]

𝑖

− ∑𝛾𝑖𝜉𝑖

𝑖

Where according to the KKT conditions, 𝛼𝑖 ≥ 0, 𝛾𝑖 ≥ 0. In the dual, we minimize the Lagrangian w.r.t.

𝑅, 𝒄 and 𝜉𝑖.

𝜕ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖)

𝜕𝑅
= 2𝑅 − 2𝑅 (∑𝛼𝑖

𝑖

) = 0

∴ ∑𝛼𝑖

𝑖

= 1

𝜕ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖)

𝜕𝒄
= 2∑𝛼𝑖𝑥𝑖

𝑖

− 2𝒄∑𝛼𝑖

𝑖

= 0

∴ 𝒄 =
∑ 𝛼𝑖𝒙𝒊𝑖

∑ 𝛼𝑖𝑖

= ∑𝛼𝑖𝒙𝒊

𝑖

𝜕ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖)

𝜕𝜉𝑖

= 𝐶 − 𝛼𝑖 − 𝛾𝑖 = 0

Note that in the last partial, we take the derivative w.r.t. a single 𝜉𝑖. This is why the summation does not

matter, all other terms in the sum except for this single 𝜉𝑖 will be constant. Substituting these formulations

back into our original Lagrangian

ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖) = 𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

− ∑𝛼𝑖[(𝒙𝒊 ⋅ 𝒙𝒊 − 2𝒄 ⋅ 𝒙𝒊 + 𝒄 ⋅ 𝒄) + 𝑅2 + 𝜉𝑖]

𝑖

− ∑𝛾𝑖𝜉𝑖

𝑖

= 𝑅2 + ∑𝛼𝑖𝜉𝑖

𝑖

+ ∑𝛾𝑖𝜉𝑖

𝑖

− ∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊 − 2𝒄 ⋅ 𝒙𝒊 + 𝒄 ⋅ 𝒄)

𝑖

− 𝑅2 − ∑𝛼𝑖𝜉𝑖

𝑖

− ∑𝛾𝑖𝜉𝑖

𝑖

56

= −∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊)

𝑖

+ 2∑𝛼𝑖(𝒄 ⋅ 𝒙𝒊)

𝑖

− 𝒄 ⋅ 𝒄

= ∑ 𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊)

𝑖

− ∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

Since we know that 𝛼𝑖 = 𝐶 − 𝛾𝑖, 𝛼𝑖 ≥ 0, 𝛾𝑖 ≥ 0, we can incorporate all this information into a single

inequality, 0 ≤ 𝛼𝑖 ≤ 𝐶. The dual quadratic program can thus be written as

min
𝜶

∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

− ∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊)

𝑖

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶

 ∑𝛼𝑖

𝑖

= 1

As in soft-margin SVM, from the complementary slackness KKT conditions, we know that the Lagrange

multiplier will be 0 when the data point satisfies the constraint, and maximized when the constraint is

broken. Any support vector will have a value that is in between 0 and the maximum. As 𝛼𝑖 is bounded by

𝐶, we know that all support vectors will have a 0 < 𝛼𝑖 < 𝐶. Note the strict inequality in this case.

We can calculate 𝒄 from the derived equation when setting the partial derivatives. We can calculate 𝑅2

by computing the distance from a support vector to 𝒄

𝑅2 = ‖𝒙𝑺𝑽 − 𝒄‖2

= 𝒙𝑺𝑽 ⋅ 𝒙𝑺𝑽 − 2𝒄 ⋅ 𝒙𝒔𝒗 + 𝒄 ⋅ 𝒄

= 𝒙𝑺𝑽 ⋅ 𝒙𝑺𝑽 − 2∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝑺𝑽)

𝑖

+ ∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

57

At evaluation time, we compute the distance of a new point to the 𝒄, and classify it accordingly. If it is

inside the hypersphere then it is not an anomaly, otherwise it is. The decision function is

𝑦𝑡𝑒𝑠𝑡 = sign(−(‖𝒙𝒕𝒆𝒔𝒕 − 𝒄‖2 − 𝑅2))

= sign(−(𝒙𝑺𝑽 ⋅ 𝒙𝑺𝑽 − 2∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝑺𝑽)

𝑖

+ ∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

− 𝑅2))

Note again how all of the 𝒙 vectors appear as dot products, meaning we can also use the kernel trick with

SVDD [51]. The 𝜈 version of SVDD can also be derived in a similar manner. We do not go through all

the steps as they are identical to 𝐶-SVDD. Starting with the primal

min
𝑅

𝑅2 +
1

𝜈𝑁
∑𝜉𝑖

𝑖

𝑠. 𝑡. ‖𝒙𝒊 − 𝒄‖2 ≤ 𝑅2 + 𝜉𝑖 ,

 𝜉𝑖 ≥ 0, ∀𝑖 ∈ ℕ

After setting up the Lagrangian, taking the partials, substituting, and defining the new constraints, we are

left with the quadratic dual equation [46]

min
𝜶

∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

− ∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊)

𝑖

s. t. 0 ≤ 𝛼𝑖 ≤
1

𝜈𝑁

 ∑𝛼𝑖

𝑖

= 1

58

The same decision function as before can be used for testing new data points.

Figure 7: SVDD implementation example. OCSVM implementation examples. Colored bands show distance of
points from the boundary, with white being anything inside the boundary. a) shows a vanilla SVDD with low slack.
B) shows vanilla SVDD with higher slack, allowing more points to break the boundary.

SVM Implementations

SVM

When implementing SVM using quadratic programming solvers, it is often necessary to rearrange the

data into a standard form that the solver will understand. In this thesis we used the quadratic programming

solver cvxopt, which uses an interior-point method to solve the QP [52], [53]. Cvxopt expects the program

to come in the form

min
𝒙

1

2
𝑥⊤𝑃𝑥 + 𝑞⊤𝑥

s. t. 𝐺𝑥 ≤ ℎ

 𝐴𝑥 = 𝑏

To conform, we vectorize our objective function. For the soft-margin SVM, it would be

59

max
𝛼

∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

= min
𝛼

1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋) − ∑ 𝛼𝑖

𝒊

= min
𝜶

1

2
∑𝜶⊤

𝒊,𝒋

𝑷𝜶 + (−𝕀)⊤𝜶

where 𝜶 ∈ ℝ𝑁×1, 𝑷 ∈ ℝ𝑁×𝑁 , 𝕀 ∈ ℝ𝑁×1.

𝒙⊤ = 𝜶⊤ = [𝛼1,… , 𝛼𝑁]

𝒒⊤ = 𝕀⊤ = [1, 1, … ,1]

𝑷 = [
𝑦1𝑦1𝐾(𝑥1, 𝑥1) … 𝑦1𝑦𝑁𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝑦𝑁𝑦1𝐾(𝑥𝑁 , 𝑥1) … 𝑦𝑁𝑦𝑁𝐾(𝑥𝑁 , 𝑥𝑁)

]

Note that to calculate the kernel matrix is tricky as we need to calculate half of the kernel values

individually (All kernels are symmetric from Mercer’s condition). This is one of the limitations of SVM

as it will grow in a polynomial complexity.

The constraints are more challenging as we have an upper and lower bound on the inequality. To meet

the constraint we create a large matrix 𝑮 that matches the inequalities −𝛼𝑖 ≤ 0, 𝛼𝑖 ≤ 𝐶,∀𝑖. The equality

constraint can just be vectorized. Here 𝑮 ∈ ℝ2𝑁×𝑁, 𝒉 ∈ ℝ2𝑁×1

𝑮 =

[

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1]

𝒉⊤ = [0, … ,0, 𝐶,… , 𝐶]

60

In this way the equation 𝑮𝜶 ≤ 𝒉 will meet every inequality necessary. For the final inequality, we set up

the vector of labels 𝑨 ∈ ℝ1×N corresponding to ±1, and 𝑏 = 0 so that.

𝑨𝜶 = 𝑏

OC-SVM

For OC-SVM we follow the same procedure to end up with the matrices

𝑷 = [
𝐾(𝑥1, 𝑥1) … 𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝐾(𝑥𝑁 , 𝑥1) … 𝐾(𝑥𝑁 , 𝑥𝑁)

]

𝒒⊤ = [0,0, … ,0]

𝑮 =

[

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1]

𝒉⊤ = [0, … ,0,
1

𝜈𝑁
, … ,

1

𝜈𝑁
]

𝑨 = [1,1,… ,1]

𝑏 = 1

SVDD

𝑷 = 2 [
𝐾(𝑥1, 𝑥1) … 𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝐾(𝑥𝑁 , 𝑥1) … 𝐾(𝑥𝑁 , 𝑥𝑁)

]

𝒒 = −diag(𝑿 ⋅ 𝑿⊤)

61

𝑮 =

[

−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1]

𝒉⊤ = [0, … ,0,
1

𝜈𝑁
, … ,

1

𝜈𝑁
]

𝑨 = [1,1, … ,1]

𝑏 = 1

Limitations of Support Vector Method

The biggest limitation with SVM lie in regard to the choice of kernel. Once the kernel is chosen, the user

can only tune the error parameter, with the kernel hiding a lot of potentially critical information. Research

is currently ongoing on choosing the ideal kernel for any particular problem, though the RBF kernel has

been thought to be a good starting point for most datasets as it is stationary, isotropic and smooth.

SVM’s can also sensitive to overfitting given specific kernels [54]. RBF’s are especially notorious for

this, as given a large enough 𝛾 parameter (or small 𝜎), it can individually capture every positive point in

the training set, leading to terrible generalization. The decisions are also “hard”, in that a point is either

an anomaly or it isn’t. Many other deep learning and statistical methods can give likelihoods of class

memberships for finer control.

Finally, complexity is a concern for SVM, in both training and testing. The complexity will depend on

the type of SVM and kernel, though typical kernel SVM’s will have a complexity between 𝑂(𝑛2) and

𝑂(𝑛3) for training [55], and 𝑂(𝑛𝑆𝑉𝑑) for runtime, where 𝑛𝑆𝑉 is the number of support vectors and 𝑑 is

the dimensionality (number of features) [56]. SVM’s are limited by the size of the dataset as storing the

kernel matrix will scale quadratically with the number of data points. The traditional algorithm is

62

infeasible in that scenario, however there have been some approximation methods (Nystrom

approximation [57], Random Kitchen Sinks [58], and subsampling [59])

Isolation Forest

Decision trees are a popular machine learning algorithm due to their feature value scaling and

transformation invariance, robustness against feature dependencies, and model interpretability. They are

as close as we can get to an off-the-shelf data mining algorithm.

There are a number of conventional greedy methods generally used to grow decision trees, like ID3

(Iterative Dichotomiser 3), C4.5 and CART. Each has been built upon the foundations of the former, and

CART is currently the most commonly implemented algorithm. All trees are built by starting off with a

dataset of features and a classification or regression variable 𝐶. By iterating over each feature in the

feature set and calculating a measure of uncertainty as to correctly predicting the 𝐶, the algorithm can

decide upon the best feature to split that dataset. This uncertainty calculation and splitting is then

recursively performed until we can separate 𝐶 completely.

ID3 uses entropy −∑ 𝑃(𝑐𝑖) 𝑙𝑜𝑔 𝑃(𝑐𝑖)
𝑁
𝑖=1 , and information gain (KL-Divergence) as a splitting criterion,

and can only be used on nominal data. The splits do not have to be binary, i.e. a selected feature 𝑓𝑖 with

nominal values {Sunny, Rainy, Windy} can be split 3 ways. C4.5 performs splits on the greatest gain

ratio, and can be performed on both nominal and continuous data. CART performs splits based on the

Gini diversity index (1− ∑ 𝑃𝑖
2

𝑖), and the decision CART decision trees are always binary. A few other

differences between CART and C4.5 include pruning methods (simplifying decision trees to prevent

overfitting, CART uses cost-complexity), and how each algorithm handles datasets with corrupted values,

but they are out of the scope of this thesis [60].

63

In general, decision trees that are grown to have a large number of levels will have a overfit to a

complicated decision boundary, leading to low bias but high variance. In decision, trees this can be

mitigated either by pruning or bootstrap aggregation (bagging).

Consider a dataset 𝑍 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑁 , 𝑦𝑁)}, where the 𝑥𝑖’s are inputs, and the 𝑦𝑖’s are outputs.

We can fit a model 𝑓(⋅) to this dataset, and obtain a prediction 𝑓(𝑥) for a particular 𝑥. This prediction

will have high variance, but bagging will average this prediction over a collection of bootstrap (subsample

with replacement) samples from the dataset. This makes use of both the inherent randomness of the

dataset, and the low bias of the estimator. For each bootstrap subsample 𝑍∗𝑏, 𝑏 = 1,2, … , 𝐵 we fit an

estimator 𝑓∗𝑏(𝑥), and then calculate the bagging estimate

𝑓𝑏𝑎𝑔(𝑥) =
1

𝐵
∑𝑓∗𝑏(𝑥)

𝐵

𝑏=1

Note that this is just the Monte Carlo approximation of the expectation of the estimator 𝐸𝑆̂[𝑓
∗(𝑥)], where

𝑓∗(⋅) is an estimator fit to 𝑍∗ = {(𝑥1
∗, 𝑦1

∗), (𝑥2
∗, 𝑦2

∗),… , (𝑥𝑁
∗ , 𝑦𝑁

∗)}, with each (𝑥𝑖
∗, 𝑦𝑖

∗) ~ 𝑆̂. 𝑆̂ is the uniform

distribution of the tuples (𝑥𝑖 , 𝑦𝑖) from the original dataset. In other words, bagging finds the average

estimator, and the low bias of the individual estimators ensures that as 𝐵 → ∞, we will get a well

generalized (low-variance) model. This explanation was for regression random forests. In classification

forests, you can use the same idea to create a voting system, where the class with the majority of

estimators should be chosen.

Proof of Variance Decrease: In the case of the estimators being independent, let each estimator be

represented by random variable 𝑋𝑖, with variance 𝜎2. We know the value of the average estimator is

1

𝐵
∑ 𝑋𝑖

𝐵
𝑖=1 , and want to find the variance of this average estimator.

64

Var(
1

𝐵
∑ 𝑋𝑖

𝐵

𝑖=1

) = 𝐸 [(
1

𝐵
∑𝑋𝑖

𝐵

𝑖=1

)

2

] − 𝐸 [
1

𝐵
∑𝑋𝑖

𝐵

𝑖=1

]

2

=
1

𝐵2

(

𝐸 [∑𝑋𝑖
2

𝑖

] + 𝐸

[

∑𝑋𝑖𝑋𝑗

𝑖,𝑗
𝑖≠𝑗]

)

−
1

𝐵2

(

∑𝐸[𝑋𝑖]
2

𝑖

+ ∑𝐸[𝑋𝑖]𝐸[𝑋𝑗]
𝑖,𝑗
𝑖≠𝑗)

=
1

𝐵2

(

∑𝐸[𝑋𝑖
2]

𝑖

− ∑𝐸[𝑋𝑖]
2

𝑖

+ ∑𝐸[𝑋𝑖𝑋𝑗]
𝑖,𝑗
𝑖≠𝑗

− ∑𝐸[𝑋𝑖]𝐸[𝑋𝑗]
𝑖,𝑗
𝑖≠𝑗)

=
1

𝐵2

(

∑𝑉𝑎𝑟(𝑋𝑖)

𝑖

+ ∑𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)
𝑖,𝑗
𝑖≠𝑗)

=
𝐵𝜎2

𝐵2
=

𝜎2

𝐵

As such if the estimators are truly independent, then as we increase the amount of estimators in the forest

(𝐵 → ∞), our variance will tend to 0 in the limit. However, if we make splits using a specific information

criteria, the trees will be somewhat correlated, which will lead to a change in variance of the average

estimator. If we take the pairwise correlation between our estimators to be 𝜌, this would lead to a variance

of 𝜌𝜎2 +
1−𝜌

𝐵
𝜎2

Var(
1

𝐵
∑𝑋𝑖

𝐵

𝑖=1

) =
1

𝐵2

(

∑Var(𝑋𝑖)

𝑖

+ ∑Cov(𝑋𝑖 , 𝑋𝑗)
𝑖,𝑗
𝑖≠𝑗)

=
1

𝐵2
(𝐵𝜎2 + 𝐵(𝐵 − 1)𝜌𝜎2) =

1

𝐵2
(𝐵2𝜎2𝜌 + 𝐵(1 − 𝜌)𝜎2)

65

= 𝜌𝜎2 +
1− 𝜌

𝐵
𝜎2

As 𝐵 → ∞, the variance will remain at 𝜌𝜎2. Correspondingly, bagging will only make sense if we can

ensure that the trees are created independently. In random forests this is achieved by randomly selecting

variables to split on at each node. Typically people will randomly select a subset 𝑆 < 𝐹 of features and

then “greedily” pick the feature with the best information gain. From literature, random forests typically

converge around 200-400 trees, and for classification forests, the general subset size is √|𝐹|, with a

minimum size of 1 [61], [62].

Whilst random forest is typically used for classification problems, a similar algorithm called isolation

forest can be used for anomaly detection. Whilst anomaly detection models do exist, Many anomaly-

detection models still attempt to train on the normal data without profiling the anomalies leading to

extremely high false positive rates, and can be constrained to lower dimensional data due to the high

computational complexity.

The isolation forest algorithm, initially described by Liu et. al in 2008 [63], [64] attempts to address both

these problems by taking advantage of the characteristics of anomalies

1. They are in the minority

2. They will be far away in feature space from normal instances

Since they are so “few and different”, the theory is that anomalies will be easy to isolate in a decision tree

during testing. By measuring the path lengths of inputs, we will be able to effectively distinguish as to

whether a data point is an anomaly (short path), or normal (long path).

66

Figure 8: Decision tree path lengths for anomaly (orange) and normal data point (blue). Note how the anomaly path
length is much shorter.

To understand why isolation forests do so well, we first define the issues of swamping and masking that

can occur whilst attempting anomaly detection with highly imbalanced datasets. Swamping occurs when

you wrongly classify anomalies as normal data points. It typically occurs when anomalies are too close

to normal points in feature space, increasing the number of edges traversed through the tree to separate

that instance. Masking occurs when there are high density anomaly clusters in the dataset, concealing the

fact that they are anomalies as isolating these points will return long pathlengths.

Isolation forests address these issues by training estimators on small subsets of the data. This will mitigate

both the swamping (Even if anomalies are close to normal points in feature space, they will be on the

outskirts of the data cluster. Small sample sizes will reduce the amounts of anomalies on the outskirts,

leading to shorter isolation path lengths), and masking (Smaller sample size will result in fewer anomalies

in the dataset, reducing the size of anomaly clusters that may have formed).

67

To maintain pairwise independencies of each estimator in the forest and aggregated model variance, splits

on nodes will be made at a randomly selected feature and threshold value. Due to the threshold splitting

each node will have exactly two child nodes, each of which will be either an external (leaf) or internal

node. This means the estimators in an isolation forest are proper binary trees. The recursive splits at nodes

will continue until we can either perfectly separate the data (assuming distinct data points) or until the

tree has grown to a predetermined maximum height.

The low memory requirement is now also apparent. As the worst-case stopping condition of the tree is

when we can separate each datapoint we know there are 𝑛 external nodes. By induction, we can prove

that a tree with 𝑛 external nodes will have 𝑛 − 1 internal nodes, giving 2𝑛 − 1 nodes in total.

𝐁𝐚𝐬𝐞 𝐂𝐚𝐬𝐞:

𝑁 = 1, 1 ext node

𝑁 = 2, 1 ext node, 2 int nodes

𝐈𝐧𝐝𝐮𝐜𝐭𝐢𝐯𝐞 𝐂𝐚𝐬𝐞:

Assume binary tree with 𝑘 ext nodes has 𝑘 − 1 int nodes

Prove that binary tree with 𝑘 + 1 𝑒xt nodes has 𝑘 𝑖nt nodes

Start with tree with 𝑘 + 1 ext nodes

Remove a leaf and its sibling,now you have tree with 𝑘 ext nodes

From assumption,new tree will have 𝑘 − 1 int nodes

Add orginal leaves back in, you now have 𝑘 − 1+ 1 = 𝑘 int nodes

This proves proposition in inductive case

This means that the number of parameters in the Isolation Forest is bounded, and scales linearly with the

data (𝑂(𝑛)).

68

To score each data point, a unique path length is calculated. Using just the average path length to calculate

the anomaly is a naïve approach as they are not normalized, and thus cannot be compared. A better

approach would be a aggregation, such as the notion of expected unsuccessful path length from BST

theory [65]:

𝑐̅(𝑛) = 2𝐻𝑛−1 −
2(𝑛 − 1)

𝑛

where 𝑐̅(𝑛) can be thought of as the average path length to one of the external nodes, and 𝐻𝑛 is the

harmonic number as seen in the proof. This will scale accordingly with the path lengths, making it

possible for us to normalize properly. As a note, estimated growth of tree height 𝑙𝑜𝑔2 𝑛 or average tree

height could have been used as well, though it has been difficult to find an analytical answer for the latter,

with a popular approximation being 𝛼 𝑙𝑛 𝑛 − 𝛽 𝑙𝑛 𝑙𝑛 𝑛, where 𝛼 ≈ 4.31107, and 𝛽 ≈
3

2 𝑙𝑛(𝛼/2)
 [66]. The

proof of this approximation is beyond the scope of this thesis. In any case, average unsuccessful path

length is the normalization factor most commonly used in Isolation Forest implementations.

To bound the values of the score between 0 and 1, the following score function is used, where 𝐸(ℎ(𝑥))

is the average path length throughout the forest.

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))

𝑐̅(𝑛)

As 𝐸(ℎ(𝑥)) → 0, 𝑠(𝑥, 𝑛) → 1

As 𝐸(ℎ(𝑥)) → 𝑐̅(𝑛), 𝑠(𝑥, 𝑛) → 0.5

As 𝐸(ℎ(𝑥)) → 𝑛 − 1, 𝑠(𝑥, 𝑛) → 0

69

Anomalies will correspond to higher score values as they will have a lower 𝐸(ℎ(𝑥)). We choose 𝑛 − 1

as our upper bound because that is the maximum height a tree can reach given it is strictly binary.

When growing isolation trees, the height will be bounded by the average height of a tree given sample

size 𝑛. This is because we expect anomalies to be much lower than the average tree height, so we can

save on computational complexity. As no exact analytical formula exists for average height of binary

trees, the original paper had decided to use an approximation made by Knuth [67] of 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2 𝑛). In

most implementations, this is the approximation used to bound tree height. Note this is very close to the

minimum tree height 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2 𝑛), it is still justified as trees are grown on data that consists of majority

“normal” points and anomalies should still be filtered out well before path lengths of 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2 𝑛).

Figure 9: Increase of mean tree height as a function of sample size using 2 approximations. We provide minimum
height as the lower bound.

For large sample sizes and anomalies that are close to the dataset, we feel it would be better to bound

using the new average tree length. At large sample sizes with anomalies close to normal data, Knuth’s

approximation may prematurely declare some anomalies to be normal. This alteration will be especially

relevant in future algorithms where we attempt to isolate seizures much closer to “normal” activity.

70

Any leaf nodes that have residual data that needs to be classified during testing can be taken as subtrees,

and the average path length 𝑐̅(𝑛) of that subtree can be added on during calculation of the score.

Finally isolation forest has a time complexity of 𝑂(𝐵𝑛𝑠𝑎𝑚𝑝 𝑙𝑜𝑔2 𝑛𝑠𝑎𝑚𝑝) for training and

𝑂(𝑁𝐵 𝑙𝑜𝑔2 𝑛𝑠𝑎𝑚𝑝) for testing, where N is the total number of test samples, 𝑛𝑠𝑎𝑚𝑝 is the subsampling

size, and 𝐵 is the number of estimators. This is because we cap the height limit of the trees at 𝑙𝑜𝑔2 𝑛.

Literature has shown training times of 7.6 seconds for 𝑛𝑠𝑎𝑚𝑝 = 256 and 11.9 seconds for 𝑛𝑠𝑎𝑚𝑝 = 16384

[63]. The pseudo-code to create an isolation forest is provided based on [63].

Table 7: Isolation tree algorithm

Algorithm 3: iTree(𝑿, 𝒆, 𝒍)

Inputs: 𝑋 – input data, 𝑒 – current tree height, 𝑙 – height limit

Output: an iTree

1. if 𝑒 ≥ 𝑙 or |𝑋| ≤ 1:

2. return 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒{𝑆𝑖𝑧𝑒 ← |𝑋|}
3. else:

4. let 𝑄 be a list of features in 𝑋

5. select random feature in 𝑞 ∈ 𝑄

6. find max and min values of 𝑞, then uniformly sample threshold value 𝑝

7. 𝑋𝑙 ←filter all elements in 𝑋 where 𝑞 < 𝑝

8. 𝑋𝑟 ←filter all elements in 𝑋 where 𝑞 ≥ 𝑝

9. return 𝑖𝑛𝑡_𝑛𝑜𝑑𝑒{𝐿 ← 𝑖𝑇𝑟𝑒𝑒(𝑋𝑙 , 𝑒 + 1, 𝑙), 𝑅 ← 𝑖𝑇𝑟𝑒𝑒(𝑋𝑟 , 𝑒 + 1, 𝑙), 𝑠𝑝𝑙𝑖𝑡𝑓𝑒𝑎𝑡 ←

𝑞, 𝑠𝑝𝑙𝑖𝑡𝑣𝑎𝑙𝑢𝑒 ← 𝑝

10. end if

Table 8: Isolation Forest algorithm

Algorithm 4: iForest(X, 𝒕,𝝍)

Inputs: 𝑋 – input data, 𝑡 – number of trees, 𝜓 – subsampling size

Output: a forest of 𝑡 iTrees

1. Initialize empty set 𝐹𝑜𝑟𝑒𝑠𝑡

2. set height limit 𝑙 = 𝑐𝑒𝑖𝑙(log2𝜓)

3. for 𝑖 = 1 to 𝑡:

4. 𝑋′ ← 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒(𝑋,𝜓)

5. 𝐹𝑜𝑟𝑒𝑠𝑡 ← 𝐹𝑜𝑟𝑒𝑠𝑡 ∪ 𝑖𝑇𝑟𝑒𝑒(𝑋′, 0, 𝑙)

6. end for

7. return 𝐹𝑜𝑟𝑒𝑠𝑡

71

Table 9: Isolation Forest path length algorithm

Algorithm 5: PathLength(𝒙,𝑻, 𝒆)

Inputs: 𝑥 – a test data point, 𝑇 – an iTree, 𝑒 – current path length

Output: path length of 𝑥

1. initialize 𝑒 = 0

2. if 𝑇 is external node:

3. return 𝑒 + 𝑐̅(𝑇. 𝑠𝑖𝑧𝑒)

4. end if

5. 𝑎 ← 𝑇. 𝑠𝑝𝑙𝑖𝑡𝑓𝑒𝑎𝑡

6. if 𝑥𝑎 < 𝑇. 𝑠𝑝𝑙𝑖𝑡𝑣𝑎𝑙𝑢𝑒:

7. return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝐿, 𝑒 + 1)

8. else if 𝑥𝑎 ≥ 𝑇. 𝑠𝑝𝑙𝑖𝑡𝑣𝑎𝑙𝑢𝑒:

9. return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝑅, 𝑒 + 1)

10. end if

Extended Isolation Forest

In isolation forests, branch cuts are made on random thresholds on random features. It can be visualized

as a decision tree, but alternatively it can also be thought of as separating the points with hyperplanes in

feature space. As an example if we take a dataset 𝒁 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛 , 𝑦𝑛)}, where 𝑥 and 𝑦 are

features of each data point. Each isolation tree is grown by randomly picking one of those features on

each iteration, and then randomly make a cut on a random threshold in that feature. This amounts to

randomly drawing orthogonal hyperplanes in your feature space.

In general, these cuts will happen more often in places where the data is greatly clustered as the isolation

forest attempts to isolate each data point. As the branches are constrained to be made on features, there

will be concentrated regions in space that have a lot of cuts through them despite containing no data

points. When averaging over many such trees this will create artefacts in the decision function, biasing

the algorithm into classifying points in these regions as normal when they are not. An example is shown

below on a sample data set adopted from the work of Hariri et. al [68].

72

Figure 10: Vanilla Isolation Forest implementation on a toy dataset showing presence of artefacts. a) shows the cuts
for a single isolation tree. Note the perpendicular cuts extend to interfere with the space in the opposing corners. b)
shows the resulting score map over all values in the space. Note the presence of highly normal regions in the upper
right and bottom left corners that should be classified as anomalies.

In order to combat this phenomenon, extended isolation forests branch across features, effectively

choosing a random hyperplane in the vicinity of the dataset to cut on [68]. With this strategy, there will

never be any concentrated focusing of branches in any region of the feature space except in areas of high

data density. Implementing the extended isolation forest with full extension on the original data shows a

more intuitive determination of the data distribution, extending radially from the high-density regions

adopted from Hariri et. al [68].

73

Figure 11: Extended Isolation Forest implementation on a toy dataset. a) shows the cuts for a single extended

isolation tree. Note there is no concentration of cuts in any region except around the datapoints. b) shows the
resulting score map over all values in the space. Notice how anomaly scores now extend radially around the
datasets as we would expect.

To determine the hyperplane, we require the slope value 𝒘 and the bias value 𝒃. This is similar to the

SVM setup where we define the equation of the hyperplane. We constrain ‖𝒘‖ = 1, and randomize it’s

direction by selecting its value randomly over a 𝐷 -dimensional unit hypersphere, where 𝐷 is the

dimensionality of the feature space. During implementation this can be achieved by a number of methods

including rejection sampling [69], trigonometry method, and coordinate method[69]. A more elegant

method is to sample 𝒘 ~ 𝒩(𝟎, 𝑰), where 𝑰 is the identity matrix.

Proof: First let 𝑿 ~ 𝒩(𝟎, 𝑰). For any orthogonal matrix 𝑸 , 𝑸𝑿 ~ 𝓝(𝟎, 𝑰) . This is because of the

property of orthogonal matrices 𝑸⊤𝑸 = 𝑸𝑸⊤ = 𝑰. Additionally, as 𝒩(𝟎, 𝑰) has an inner product in the

exponent, (𝑸𝑿)⊤𝑸𝑿 = 𝑿⊤𝑸⊤𝑸𝑿 = 𝑿⊤𝑿 . As orthogonal matrices are unitary transformations, the

distribution of 𝑿 is rotationally invariant, and is only dependent on the length (𝑿⊤𝑿). To limit the length,

we set 𝒀 =
𝑿

‖𝑿‖
. Since we have already shown that 𝑿 is invariant to rotations, so is 𝒀. 𝑸𝒀 =

𝑸𝑿

‖𝑸𝑿‖
=

𝑸𝑿

‖𝑿‖
.

74

Since 𝑸 is orthogonal, ‖𝑸𝒀‖=1. Hence as we have shown rotational invariance whilst maintaining

length, proving that we are uniformly sampling from a unit sphere.

During implementation, each component of 𝒘 can be sampled independently from 𝒩(0,1). To choose

the bias 𝒃 we sample each component uniformly. In order to ensure we aren’t slicing too far from the

dataset, we select from each of the available feature ranges. We finally define our plane as the set of all

points that satisfy

(𝒙 − 𝒃) ⋅ 𝒘 = 0

To make our branches, we just cut on this hyperplane all points that satisfy (𝒙𝒊 − 𝒃) ⋅ 𝒘 > 0 will be

passed to the right subtree, whilst all other points will be passed to the left.

Extension Levels

It is noted that in the example above with a 2D feature space, a vanilla isolation forest can be made by

applying a random binary mask to 𝒘 and then renormalizing [68]. The hyperplane is then normal to either

one or the other feature, where the bias value will act as the threshold. This can be extended to 𝑛-

dimensions, as it is always possible to apply a random binary mask where 𝑁 − 1 components are 0. This

is defined as Extension Level 0. In 𝑛-dimensional feature space, we can extend this concept by applying

binary masks with up to 𝑁 − 1 randomly chosen components components being 0. As such we can go

from 0 to 𝑁 − 1 extension levels, defining the amount of features to cut across when defining our random

hyperplane.

In the case of data that has equal variance in all feature dimensions, the fully extended method will reduce

the artefacts produced from the random splitting at lower levels. However if there is low variance in

certain dimensions, it may be better to reduce the extension level to reduce computational overhead. To

75

incorporate extension levels, the user can be asked to provide an extension number 𝑁𝐸𝑋 during training.

A random binary mask can then be made with 𝑁 − 𝑁𝐸𝑋 1’s, then take the Hadamard product with 𝒘.

The differences with the standard isolation forest mainly pertain to how the trees are generated. The

hyperplane splitting method is added, as is the binary mask for the extension level. Otherwise, everything

else (Bagging, Score function), remains the same [68].

Table 10: Extended Isolation tree algorithm

Algorithm 6: Extended iTree(𝑿, 𝒆, 𝒍, 𝒆𝒙𝒕)

Inputs: 𝑋 – input data, 𝑒 – current tree height, 𝑙 – height limit, 𝑒𝑥𝑡 – extension level

Output: an iTree

1. if 𝑒 ≥ 𝑙 or |𝑋| ≤ 1:

2. return 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒{𝑆𝑖𝑧𝑒 ← |𝑋|}
3. else:

4. randomly select a normal vector 𝑛 ∈ ℝ|𝑋| from a unit hypersphere

5. Randomly select an intercept vector 𝑏 ∈ ℝ|𝑋| inside the extrema values of each individual

feature

6. Randomly set 𝑒𝑥𝑡 coordinates of 𝑛 to 0

7. 𝑋𝑙 ←filter all elements in 𝑋 where (𝑋 − 𝑏) ⋅ 𝑛 ≤ 0

8. 𝑋𝑟 ←filter all elements in 𝑋 where (𝑋 − 𝑏) ⋅ 𝑛 > 0

9. return 𝑖𝑛𝑡_𝑛𝑜𝑑𝑒{𝐿 ← 𝑖𝑇𝑟𝑒𝑒(𝑋𝑙 , 𝑒 + 1, 𝑙), 𝑅 ← 𝑖𝑇𝑟𝑒𝑒(𝑋𝑟 , 𝑒 + 1, 𝑙), 𝑁𝑜𝑟𝑚𝑎𝑙 ←
𝑛, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ← 𝑏

10. end if

Table 11: Extended Isolation Forest path length algorithm

Algorithm 7: PathLength(𝒙,𝑻, 𝒆)

Inputs: 𝑥 – a test data point, 𝑇 – an iTree, 𝑒 – current path length

Output: path length of 𝑥

1. initialize 𝑒 = 0

2. if 𝑇 is external node:

3. return 𝑒 + 𝑐̅(𝑇. 𝑠𝑖𝑧𝑒)

4. end if

5. 𝑛 ← 𝑇. 𝑁𝑜𝑟𝑚𝑎𝑙
6. 𝑏 ← 𝑇. 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

7. if 𝑥𝑎(𝑋 − 𝑏) ⋅ 𝑛 ≤ 0:

8. return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝐿, 𝑒 + 1)

9. else if (𝑋 − 𝑏) ⋅ 𝑛 > 0

10. return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝑅, 𝑒 + 1)

11. end if

76

Implementation (Cross Validation and Tuning)

Evidence Accumulation (Smoothing) Filter

All of the anomaly detection techniques discussed in this section output a hard class label of 0 or 1,

depending on whether it thinks a data-point is an anomaly. To smoothen the output, we pass all detection

values through a first order Infinite Impulse Response (IIR) filter. This is a real-time low pass filter that

will make the detector more robust to any transient anomalies. The detector will only conclude that a

seizure is occurring after enough consecutive evidence has been accumulated. This robustness comes at

the trade-off with latency. This is an acceptable trade-off in our application, as we have determined a

clinical window of approximately 1 minute after onset within which to alert the user. The filter will have

a user-defined hyperparameter 𝛼 which will also have to be tuned for during cross-validation. Define

𝑥(𝑡) to be the output of a classifier at time 𝑡. Define 𝑦(𝑡) to be the output of the filter.

𝑦(𝑡) = 𝛼𝑥(𝑡) + (1 − 𝛼)𝑦(𝑡 − 1)

Note that we will still need to define a threshold. This will be determined from the ROC curve after

optimal hyperparameters have been obtained.

To determine the ROC curve during one of the cross-validation folds, we first run the outputs of an

algorithm that has classified seizure data through the smoothing filter. An example of algorithm output

(black) and smoothing filter output (red) is shown for 10 seizures.

77

Figure 12: Anomaly detector output with accumulation filter over 10 seizures with the binary detection outputs

(black) and corresponding accumulation filter outputs (red) are provided.

The maximum value of the smoothed detections for each detection is calculated and stored in an array.

We then set our initial threshold slightly below the minimum value of this array, guaranteeing 100%

sensitivity of our detector. The amount below the minimum value is set by a user-defined parameter 𝛥𝑡 =

0.025.

Our maximum threshold value will be similarly set by running all the non-seizure samples through the

algorithm and smoothing filter, then calculating the maximum value reached, and setting the threshold

𝛥𝑡 above it. This guarantees 0% False Positive Rate.

We then test then test the detector for all thresholds between the min and max, separated by 𝛥𝑡. This

covers the entire ROC curve. If thresholds are too far, this interval may be increased to save on time. Note

when testing the detector, the algorithm outputs are run through a custom filter prediction function that

78

incorporates a 10-minute refractory period after detection. No detections can occur in this time. 10

minutes was decided upon after consulting with physicians.

Performance Metrics

The performance metrics for each anomaly detection algorithm are sensitivty, false positive rate (FPR)

and latency. An ROC curve can be generated by varying the threshold as done previously.

FPR is calculated by

detections in dataset

length of dataset in days

Sensitivity is calculated by

seizures detected

total seizures

The Area Above ROC (AAROC) value can then be calculated as a performance metric by using numerical

integration with the composite trapezoidal rule. As we are expressing FPR in days, AAROC value will

have units (/day). A smaller AAROC value corresponds to a better detector. Finally we also calculate a

latency value defined as the time difference between the clinical onset of the seizure (set by physician)

till detection.

Dataset Split

At the time of training, we had approximately 1630 total usable hours of data, determined from the

number of blocks obtained after the preprocessing and feature extraction steps. We want to randomly

separate this data into equal training and testing sets, whilst maintaining the temporal integrity of each

segment.

79

This is done by initializing a training and testing array, and appending random segments from the dataset

without replacement to either array. Every time a segment is appended, the length of each array is

recalculated. The next segment is appended to the smaller array. In this way, we end up with a training

and testing array of approximately 815 hours each.

In order to test the model appropriately, a good estimation of the false positive rate must be determined.

We will calculate the false positive rate per day by running the detector through a contiguous array of

these data segments, simulating a user wearing the watch in the real world.

𝑛-fold cross-validation is performed entirely on the training dataset. We split the training dataset into 𝑛

folds by randomly choosing segment indices and appending then to an array until the desired length of
𝑁

𝑛

is reached, where 𝑁 is the total length of the training dataset. This is performed 𝑛 times, once for each

fold. During cross validation, all segments not indexed in the fold (length 𝑁 − 𝑛) are used to train the

classifier, whilst the segment within the fold (length 𝑛) is used to test the classifier. Once the optimal

hyperparameters have been selected from the grid search, we retrain and then test the algorithm using

these parameters on the original train/test split.

80

Results

Offline Anomaly Detection

For each model, 4 graphs will be presented. The first will be the grid-search graph, where each pairwise

parameter selection will have an averaged AAROC over 5 fold cross-validation. The selected

hyperparameters are then used to train a new classifier, and 3 other graphs show the performance

characteristics of this final classifier. The table will show performance characteristics for the classifier

created during the grid-search.

OCSVM

Initially, the quadratic program was solved using a numerical QP solver in Python (see SVM

implementation section). Whilst it gave correct results, it was an unoptimized implementation. For faster

results in cross-validation and ROC curve calculations, the sci-kit learn library was used. This library has

the same problem formulation implemented in C, avoiding the slow and memory intensive Python

Interpreter.

Cross validation was performed over with 𝑛 = 5, leading to testing folds of approximately 160 hours. To

prevent any one feature from dominating over any another, we perform standardized scaling (z-score

normalization) to the data before training and testing. This feature scaling is especially important as we

are using the RBF kernel.

81

Figure 13: Results of OCSVM. a) shows the grid-search and cross-validation results. b) shows the ROC curve at
the optimal hyperparameters. c) shows the sensitivity-FPR tradeoff. d) shows the latency-FPR tradeoff

Table 12: OCSVM optimal performance characteristics (grid search)

Optimal nu 0.0031623

Optimal alpha 0.1211528

Optimal AAROC 14.8608/day

OCSVM was used as a baseline to measure our worst performance. We note that whilst sensitivity and

latency are acceptable, the false positive rate at almost 29.3/day is too high for our required performance

characteristics. A reason for this may be because we could not use the entire dataset to perform training

on OCSVM as it was too big for the matrix multiplications to handle. Instead we randomly selected
1

5
 of

the dataset (1 × 106 samples). It is possible that many false positives were missed during training, which

would correspond to these characteristics. We expect a similar performance for SVDD. In future iterations

82

of the algorithm, it may be better to filter data using another algorithm that can train with the entire dataset

(forest-based methods), and then use this selected subset to train the SVM methods.

SVDD

No SVDD library currently exists for Python, so we built a custom SVDD implementation. It was

designed to mirror the functionality of the OCSVM sci-kit learn implementation, without Cython

optimizations. As mentioned in the SVM implementations section, the cvxopt library was the QP solver

used to solve the dual optimization problem.

Figure 14: Results of SVDD. a) shows the grid-search and cross-validation results. b) shows the ROC curve at the
optimal hyperparameters. c) shows the sensitivity-FPR tradeoff. d) shows the latency-FPR tradeoff

83

Table 13: SVDD optimal performance characteristics (grid search)

Optimal nu 0.0001

Optimal alpha 0.1212

Optimal AAROC 8.640

The SVDD latency is a very at 8.9 seconds with the optimal detector. Notice on the latency chart that

there are negative numbers. This means that the seizure was detected before our clinical start marker.

Generally this can only occur if the detector is classifying too many points as seizures. If this is the case,

we should see a proportionally high false positive rate. Interestingly, the false positive rate is at 18.4/day,

at 100% sensitivity. This performance is far superior than the OCSVM. Though the false positive rate is

still too high, we can attempt to tune it in future iterations by sacrificing some latency. SVDD seems like

a method we should investigate in future development.

IF

We used the native sci-kit learn implementation of isolation forest. This provided an optimized

implementation of the algorithm, with other convenience parameters that we could tune. We chose 200

estimators as recommended in literature. We wanted to give the forest an opportunity to see all the data,

and thus chose subsampling size according to

𝑓𝑙𝑜𝑜𝑟 (𝑐𝑠 × 𝑓𝑙𝑜𝑜𝑟 (
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠
))

where 𝑐𝑠 is the detector sampling factor. We set this value to 1.2. This leads to a subsampling size of

approximately 14,000 during cross-validation.

84

Figure 15: Results of Isolation Forest. a) shows the grid-search and cross-validation results. b) shows the ROC
curve at the optimal hyperparameters. c) shows the sensitivity-FPR tradeoff. d) shows the latency-FPR tradeoff

Table 14: Isolation Forest optimal performance characteristics (grid search)

Contamination 0.0075

Optimal alpha 0.0464

Optimal AAROC 3.1018/day

With an AAROC of best classifier in terms of both sensitivity and false positive rate by a margin. It has

a high latency of just over 60 seconds, but that is just on the edge of our clinical window. We can decrease

the threshold with a tradeoff of a higher false positive rate if require faster detection.

85

Extended IF

The extended isolation forest algorithm was implemented following [68]. The corresponding changes

were made to the isolation tree and the score function. Extension level was maximized at 8. The same

subsampling size as the isolation forest was used.

Figure 16: Results of Extended Isolation Forest. a) shows the grid-search and cross-validation results. b) shows the
ROC curve at the optimal hyperparameters. c) shows the sensitivity-FPR tradeoff. d) shows the latency-FPR
tradeoff

Table 15: Extended Isolation Forest optimal performance characteristics (grid search)

Contamination 0.0010

Optimal alpha 0.0178

Optimal AAROC 5.8061/day

86

This is perhaps the most surprising result. We expected the extended isolation forest to perform better

than the isolation forest, but that does not seem to be the case. Whilst it may provide a higher sensitivity,

it provides a much higher false positive rate and a latency more than double that of the Isolation Forest.

The high latency makes sense as the optimal alpha value is more than half that of the isolation forest. A

possible reason for why the false positive rate is so high is seen when we attempt to run the seizures

through the EIF and compare to IF output. It seems EIF is more sensitive to the features compared to the

isolation forest. This is a result of the chosen parameters, and it could be that our grid search was not wide

enough. It still outperforms the support vector classifiers in terms of both false positive rate and latency.

Summary

Table 16: Summary of optimal anomaly detectors

Model Sensitivity FPR (/day) Latency (s)

OC SVM 0.9 29.3 53.7

SVDD 1.0 17.28 8.9

IF 0.9 3.2 69.0

EIF (Ext = 8) 1.0 5.0 90.4

Upon looking at the results, the isolation forest model was selected to be implemented on the Apple

Watch due to the low false positive rate and latency a latency near the clinical window. SVDD was a

possible choice, but it is computationally complex in comparison, and implementation would require

careful optimization. Additionally, the isolation forest algorithm has a much better false positive rate,

though admittedly the latency is markedly worse.

Real-Time Anomaly Detection

Implementation

To port the model all of the nodes, children, and threshold values for each iTree are placed in a JSON file

that can be saved inside the application.

87

Then the structure of each tree was rebuilt in Swift, using the values saved inside the JSON file. All other

relevant parameters like filter coefficients, threshold, window lengths, etc. are also included in this JSON

file. In this way, any time we retrain the detector, we do not have to alter the Swift implementation.

Summary

Once implemented, the detection algorithm was run for approximately 10 months in the EMU for

validation. All validation metrics were collected from EMU data, though beta users also used the app to

see FPR in ambulatory environments.

In Apple Watch Series 1, EMU sensitivity was approximately 90%, whilst the False Positive Rate was

approximately 2/day. We say approximately as due to large data drops, it was often difficult to determine

if a False Negative was due to the algorithm or due to lack of data.

After transitioning to Series 3/4, the data drop issue was reduced. Over 2000 hours tracked after

transitioning, we recorded a sensitivity of 100% with a FPR of 1.29/day with 24 seizures detected. It is

noted that false positives often closely mimicked seizure activity, and were commonly caused by activities

involving oscillatory hand motion (washing hands, tapping, clapping, waving etc.). Additionally, despite

being highly informative, it is still unclear how much heart rate features affect detection. Many false

positives occurred with a constant resting heart rate, though some (especially detections where the patient

had stood up) had a small heart rate increases due to homeostasis.

False positive rates for ambulatory users was an average of 3 per day. Common activities triggering the

detector were driving, running and weightlifting. The latter two activities are more challenging due to

heart rate increase, but it is noted that they lack a descending chirp in the frequency domain.

88

Figure 17: Spectrogram of false positive and seizure. a) shows the false positive. Notice the constant frequency
pattern and the corresponding harmonics. b) shows a seizure. Notice the descending ‘chirp’ characteristic.

89

Hybrid Model (2nd Stage)

Current state-of-the-art watch-based seizure detection systems show comparable results to the Isolation

Forest algorithm. Empatica’s Embrace is one such system, with a recent publication showing results of

100% sensitivity and an FAR of 0.4/day [70] during an inpatient study with 135 patients (40 seizures),

though they have not released any information on the latency of their system.

According to a comprehensive user and physician survey [13], the maximum acceptable false positive

rate for seizure detection systems is 0.14/day, or 1 false positive per week. An ideal system would have

one false positive for every true positive [13]. This is hard to quantify as seizure frequencies vary

significantly per patient, but we estimate it to be approximately 1 false positive every month (0.03/day).

There are at least two areas of the isolation forest algorithm which can be improved upon

1. Our selected features are suboptimal for the task of distinguishing between GTCS and False

Positives.

2. The isolation forest algorithm does not consider the temporal evolution of the seizure.

Noting that dataset imbalance is mitigated if we are separating between IF false positives and seizures,

our proposed strategy is to create a classifier that distinguishes between seizures and false positives after

the original detector has identified an anomaly. This is similar to model stacking, except here the original

detector acts as an indicator for the 2nd stage.

To address the 2 issues discussed above, we decided neural networks would be an ideal solution. During

training, deep learning models learn features that best separate the provided classes. We limit model

selection to those with long-term memory, ensuring that temporal information is regarded during

classification. The three models considered are

90

• Long Short-Term Memory (LSTM) Network

• Temporal Convolutional Network (TCN)

• CNN-LSTM

91

Preprocessing

Offline Pipeline

All anomaly detections are stored as a timestamp in the backend. A dataset of false positives is generated

by pulling a 10-minute data segment around the detections (4 minutes before, 6 minutes after). Any data

overlap conflicts are handled by taking the value with the earlier timestamp. All pulled false positive data

is from EMU users only. Data from the beta users will be used in future iterations of the algorithm for

ambulatory detection.

We stagger the segment as detection time is not centered within the high activity region. As some seizures

subtypes mimic characteristics of GTCS, we remove all other seizure types (FUS, Hypermotor) from the

false positive data. All GTCS segments were selected after validation by a physician using a video EEG

and pulled as 10 minute segments. These segments were further fine-tuned to include only the tonic clonic

portion, whose durations varied from 48 seconds to 3 minutes, demonstrating the variability of seizure

lengths. A seizure segment and fine tuning window are shown in the Figure below.

Figure 18: Seizure segment showing entire window and fine window. Blue line corresponds to isolation forest
detection time.

All of the data segments are then interpolated using linear interpolation at 100Hz. Linear interpolation

was chosen instead of uniformization because heart is generally slow varying, and is more likely to make

92

the gradual increase shown in linear interpolation rather than the steep jumps with uniformization. Unless

there was a samples present, the edges of the windows were padded using nearest neighbour interpolation.

Other interpolation methods such as simple and exponential moving averages were experimented with,

but eventually disregarded. Simple Moving averages lag too far behind the heart rate, whilst the

exponential moving averages seem to approximate linear interpolation. A number of these averages can

be seen in Figure 19. Additionally, there is an optimized vDSP framework for Swift which natively

implements Linear interpolation, simplifying algorithm implementation.

Figure 19: Filter comparison for heart rates. We have compared exponential average filters with 𝛼 = 0.2, 0.4, and
0.6, as well as simple moving average with window sizes of 10 and 20 samples

Filtering for the accelerometer data is performed on all segments, using a digital high pass filter with a

cutoff frequency of 0.5Hz (2nd order Butterworth) to remove the gravitational effect as well as any other

low frequency trends. A low pass filter with a cutoff frequency of 20Hz (4th order Butterworth) was also

used to any remove high frequency noise and spiking artefacts. This filter was IIR (Transposed-Direct-

Form II Structure), applied in one direction. The heart rate data was not filtered.

93

At the time of training, there were 192 useable false positives stored in the backend, alongside 22

validated seizures. This amounted to 31 hours of false positive data and 36 minutes of seizure data. To

allow enough time to understand the seizure temporal characteristics, we decided to use a sliding window

size of 45 seconds (4500 samples). Seizures can last up to 90 seconds,\]but specific characteristics like

the chirp signal can still be captured within this 45 second window. The overlap of consecutive windows

was uniquely determined for both seizure (99% overlap) and false positive data (90% overlap) such that

there was a balanced number of windows (approximately 25000) for each class (oversampling). Initially

it was thought that the high overlap and relatively small dataset would cause any model to overfit.

However during preliminary testing it was discovered there is good generalization if the network is

shallow with appropriate regularization.

To center the data and ensure similar scaling of the features we performed z-score standardization on each

window, with the standardization parameters derived over the entire dataset. Note that standardization is

not strictly necessary for all neural networks. In any network that exclusively contains linear operations

of the input, rescaling of the input vector can effectively be undone by changing the corresponding

weights and biases.

Standardization is used because it provides better weight initializations and faster convergence during

backpropagation using gradient descent. After standardization, all features will be 0 centered. As initial

weights and biases in neural networks are selected to be small values (all networks in this thesis initialize

weights and biases uniformly between -0.05 and -0.05), is likely that the initial hyperplane dictated by

these weights pass close to the origin.

If the data was not centered, these initial hyperplanes will likely miss the data entirely, significantly

affecting training speed. The primary disadvantage of standardization is alteration of the original dataset,

94

reducing the information available for the network to make a decision. As a workaround you could

transform the initial weights rather than the inputs, but this is more involved.

All the standardized data is then used to train the neural networks. During testing, we attempt to replicate

the online pipeline, and pass data in chunks of 45 seconds with a 5 second lag. The entire sequence will

be passed to find the maximum value the accumulation filter reaches, and that value will be used in cross

validation.

Online Pipeline

We save the standardization values in the JSON file containing all other parameters that is uploaded to

the watch. An additional running buffer of 2250 samples (45 seconds x 50 Hz) is implemented to store

45 seconds worth of data. This buffer will constantly update as new data comes in, until the isolation

forest detector detects an anomaly. At that point, the buffer is passed through a linear interpolation

function (vDSP_vlint), after which 45 seconds worth is taken. Should the data not cover 45 seconds, the

edges are handled using nearest neighbor interpolation. The interpolated data is filtered using identical

coefficients to the offline case, standardized, then passed to the neural network for classification. The data

in the running buffer will be updated and passed to the network in 5 second lag intervals for 2 minutes

after Isolation Forest detection. This lag interval is required to remain under the 15% CPU constraint. All

outputs are then passed through the evidence accumulation filter which will alert the user if a specified

threshold is passed within the 2-minute time-frame. If not, the detection is assumed to be a false positive,

and the entire pipeline is reset.

95

Theory (2nd Stage)

Recurrent Networks

Recurrent Neural Network

In a traditional neural network, we assume that all of the inputs and outputs are independent of one

another. This is not always true, with common exceptions coming in language modelling. There is a

similar dependence of inputs in seizure data, leading to the need of a strategy that can encode the temporal

dependencies of the input. Recurrent neural networks can do this by encoding the memory of all the inputs

that have been calculated so far. We provide a small example below. Let 𝑿 ∈ ℝ4×4500 be an input window

to our network. Let 𝑥𝑡 ∈ ℝ4×1 be a single data point with 𝑥, 𝑦, 𝑧 and HR features at time 𝑡. An RNN could

then be thought of as follows.

Figure 20: Unfolded RNN forward pass and error propagation

96

This form is known as a many-to-many RNN, so called because we have multiple inputs and multiple

outputs. There are other forms as well, though the concepts of forward and backpropagation remain

largely the same.

𝑥𝑖 ∈ ℝ4×1

𝑊 ∈ ℝ100×4

𝑈 ∈ ℝ100×100

ℎ𝑖 ∈ ℝ100×1

𝑉 ∈ ℝ2×100

𝑜𝑖 ∈ ℝ2×1

During forward propagation, we multiply the inputs by the relative weights, and pass the resulting

multiplication through any activation functions. As an example, we give the forward propagation in the

very last layer:

𝑜𝑇 = softmax(𝑉ℎ𝑇)

ℎ𝑇 = tanh(𝑈ℎ𝑇−1 + 𝑊𝑥𝑇)

Recursively, we can calculate all of the hidden units and the matrix multiplications that they consist of

till the very beginning of the sequence. Note that the same 𝑈,𝑉 and 𝑊 are being used during each

timestep. This greatly reduces the number of parameters in the model, however it also means we cannot

parallelize the training process as we can with CNN models.

To calculate weight updates, we can backpropagate. We define our loss function to be cross entropy loss.

This loss gives us the notion of how close our estimated distribution and true distribution is. In the case

of only two variables like in seizures, it is known as binary cross entropy. Suppose we have a model that

97

predicts for a seizure or false positive for a specific timestep 𝑡 and gives an output (𝑜𝑡1, 𝑜𝑡2), where 𝑜𝑡1 is

the probability of a seizure and 𝑜𝑡2 is the probability of a false positive. Let’s say for the same timestep

we have a ground truth value of (𝑦𝑡1, 𝑦𝑡2), where either 𝑦𝑡1 or 𝑦𝑡2 will be exclusively 1. The cross entropy

at that point is

ℒ(𝑦𝑡 , 𝑜𝑡) = −∑𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖

Note a ground truth will cause one of the 𝑦𝑡𝑖 values to be 1 while the others are 0. Also note that if the

probabilities 𝑜𝑡𝑖 = 𝑦𝑡𝑖 ∀𝑖, then ℒ(𝑦𝑡, 𝑜𝑡) = 𝐻(𝑦𝑡), because cross-entropy can be thought of as ℒ(𝑦𝑡 , 𝑜𝑡) =

𝐻(𝑦𝑡) + 𝐷𝐾𝐿(𝑦𝑡||𝑜𝑡)

Proof:

− ∑𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖

− 𝐻(𝑦𝑡)

= −∑𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖

+ ∑𝑦𝑡𝑖 log𝑦𝑡𝑖

𝑖

= ∑−𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖

+ 𝑦𝑡𝑖 log 𝑦𝑡𝑖

= ∑𝑦𝑡𝑖(log𝑦𝑡𝑖 − log𝑜𝑡𝑖)

𝑖

= ∑𝑦𝑡𝑖 log
𝑦𝑡𝑖

𝑜𝑡𝑖
𝑖

= 𝐷𝐾𝐿(𝑦𝑡||𝑜𝑡)

From the inclusion of KL-Divergence, it is readily apparent how cross entropy measures the similarity of

distributions true and estimated distributions. In the case of our RNN, note we have multiple outputs. In

98

this case, we will treat the whole sequence as one training example, and simply add up the cross-entropy

error at each output.

ℒ(𝑦, 𝑜) = −∑∑𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖𝑡

In the cases where we have a ground truth, this will simplify to

ℒ(𝑦, 𝑜) = −∑𝑦𝑡 log𝑜𝑡

𝑡

where 𝑦𝑡 is the ground truth class at each timestep, while 𝑜𝑡 is the corresponding predicted probability

for that class.

Our goal is to calculate updates for 𝑈, 𝑉 and 𝑊. Since we are summing up all of the errors, it follows that

the gradient update will be the sum of the gradients. i.e. if ℒ = ℒ𝑇 + ℒ𝑇−1 + ⋯+ ℒ0, then
𝜕ℒ

𝜕𝑊
=

𝜕ℒ𝑇

𝜕𝑊
+

𝜕ℒ𝑇−1

𝜕𝑊
+ ⋯+

𝜕ℒ0

𝜕𝑊
= ∑

𝜕ℒ𝑡

𝜕𝑊𝑡 . We use the chain rule to calculate the gradients for the various matrices at a

specific time point 𝑡.

𝜕ℒ𝑡

𝜕𝑉
=

𝜕ℒ𝑡

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕𝑉

𝜕ℒ𝑡

𝜕𝑈
=

𝜕ℒ𝑡

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

∑
𝜕ℎ𝑡

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑈

𝑡

𝑘=0

𝜕ℒ𝑡

𝜕𝑊
=

𝜕ℒ𝑡

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

∑
𝜕ℎ𝑡

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑊

𝑡

𝑘=0

99

Consider here how the weight matrix 𝑉 only depends on a single state, while 𝑈 and 𝑊 will both depend

on inputs from previous instances of themselves, leading to the recurrent use of the chain rule. Similar to

the loss, we then take a sum over all time-points to calculate the total gradient.

𝜕ℒ

𝜕𝑉
= ∑

𝜕ℒ𝑡

𝜕𝑉
𝑇

𝜕ℒ

𝜕𝑈
= ∑

𝜕ℒ𝑡

𝜕𝑈
𝑇

𝜕ℒ

𝜕𝑊
= ∑

𝜕ℒ𝑡

𝜕𝑊
𝑇

These gradients would then be used to update the weight matrices using some update rule, i.e. 𝑈 = 𝑈 −

𝜂
𝜕ℒ

𝜕𝑈
, where 𝜂 is the learning rate. While RNNs have memory, it is finite, with earlier layers contributing

less than later layers due to the vanishing gradient effect.

Further considering
𝜕ℎ𝑡

𝜕ℎ𝑘
, we note that it will also have to be computed using the chain rule, as each ℎ𝑡 is

only a function of ℎ𝑡−1. This will give long sequences of chained derivates, especially when calculating

for the initial layers. From [71] we see that the Jacobians of the tanh(⋅) and sigmoid(⋅) are upper bounded

by 1 and
1

4
 respectively. This means as our chains of derivative multiplications get longer, the impact of

that layer on the total gradient tends to 0. Depending on what activation functions we use, we can also

have gradients that are consistently greater than 1. This will result in gradients tending to ∞, also resulting

in a suboptimal learning strategy.

100

Long Short Term Memory (LSTM) Networks

To propagate a constant gradient over longer time periods, we introduce a more complex structure to the

RNN called LSTM networks. The main advancements of LSTM networks is the addition of learnable

gating mechanisms that allow the network to learn long term dependencies within the data, while the

overall structure of the network remains the same. They were originally introduced by Hochreiter and

Schmidhuber [72], and have been used successfully in a variety of fields, especially NLP [73]. LSTMs

introduce an intermediary memory cell that also has a recurrent connection that allows for the error to be

propagated without being diminished, addressing the vanishing gradient problem of RNNs.

Figure 21: LSTM block internals

101

The sizes of the different components are provided. 𝐵 is batch size, 𝐷 is dimensionality, and 𝐻 is the

number of hidden units of the LSTM cell. In our use case, 𝐵 = 100, 𝐷 = 4, and 𝐻 = 100 in the case of

a vanilla LSTM.

𝑥𝑡 ∈ ℝ𝐵×𝐷

𝑓𝑡 ∈ ℝ𝐵×𝐻

𝑖𝑡 ∈ ℝ𝐻×𝐵

𝑜𝑡 ∈ ℝ𝐻×𝐵

ℎ𝑡 ∈ ℝ𝐵×𝐷

𝑐𝑡 ∈ ℝ𝐻×𝐵

The three gates of an LSTM are:

Forget gate: Included in ‘vanilla’ LSTMs nowadays, they were originally introduced in 2000 by Gers et.

al., to prevent unbounded growth of the cell state. The forget gate is there to be selective about what

information we should remember by looking at a concatenation of the previous hidden state ℎ𝑡−1 and the

current input 𝑥𝑡. After being passed through a learnable weight matrix 𝑊𝑓, the sigmoid function will

output a value between 0 and 1 which will perform a Hadamard product (pointwise multiplication) with

the cell state. 𝑊𝑓 ∈ ℝ𝐻×2𝐵

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡])

Input: We also allow the network to selectively add new information into our cell state. The sigmoid

layer once again decides which values to update, but then this is directly pointwise multiplied with a new

set of candidate cell states 𝑐𝑡̃ which are made by passing the concatenated input through a tanh(⋅) layer

102

rather than a sigmoid layer to force that values to be between -1 and 1. The result is added onto the

currently existing cell state.

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡])

𝑐𝑡̃ = tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡])

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐̃𝑡

Output: Finally we permit the network to selectively decide what information to output. This gives the

network freedom to create dependencies between both long-term dependencies stored in the cell state,

and recent, possible ephemeral information. The sigmoid is applied on a standardized version of the cell-

state which is passed through a tanh(⋅) function to compress it between -1 and 1. The output will also be

the new hidden state of the LSTM cell.

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡])

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡)

While LSTMs effectively handle the gradient vanishing problem, they are still susceptible to exploding

gradients, and as such it is common to use gradient clipping when experimenting with different LSTM

architectures. There are also several different variants on this LSTM architecture such as the addition of

peephole connections [74] and the GRU [75].

CNN-LSTM

While LSTMs will generally provide good performance, they were difficult to train and expensive in

terms of training time due to lack of parallelization. Instead, we decided to add a deep convolutional

network between the input data and LSTM for feature extraction. A CNN layer consists of performing a

103

convolution across the input space using randomly initialized kernel functions. The completed

convolution will be referred to as a feature map, and each layer can have a user-defined number of feature

maps of the data. As each feature map is computed on the same data, CNNs are highly efficient algorithms

when parallelized. A simple example of a convolution with kernel [1, 1, 1] is given below. During

implementation, all of these kernels will be initialized randomly. Note as we are working with a discrete

input, the convolution is just a cumulative sum of the point wise multiplication for each convolutional

window.

Figure 22: Convolutional Layer toy example

Convolutional networks are mostly used in image-based problems. In our case, we do not necessarily

want convolutions between our features, but rather just across time. To implement this we use 1D

convolutions. Consider our input dataset 𝑿 ∈ ℝ4500×4. We can take a kernel size (𝑘 × 4), and then slide

that kernel across. This is a 1D convolution. In future iterations of the algorithm, it may make more sense

to perform 2D convolutions to find features dependencies. Some seizure subtypes have subtle absolute

feature data, but strong correlations between heart rate and accelerometer movement.

After each convolutional layer, we often apply pooling layers. Max pooling, taking the maximum of 𝑛

neighboring values in the feature map over the entire space, is the most common. It provides a

regularization effect, transformation, rotation and scaling invariance, as well as dimension reduction.

104

Additionally, it has become common practice to apply batch normalization layers after each hidden layer

to counteract Internal Covariate Shift (ICS). Learning theory is based on the assumption that all data (both

training and testing) and independent and identically distributed (i.i.d.). We whiten our data before input,

but as we propagate through the layers, the distribution of the features (covariates) will slowly begin to

drift. This is known as ICS. The later layers will subsequently need to adapt to this drift, significantly

slowing down learning [76].

The idea of batch normalization is to restrict the activations of each layer to be to be standardized with 0

mean and unit variance. The theory is that this will whiten the distribution after each layer, accelerating

network training. In practice, such a strict restriction would hinder the expressive power of the network,

so we add in learnable parameters 𝛾 and 𝛽 allowing the network some freedom in whitening the data.

Taking 𝑿 = {𝑥1,… , 𝑥𝑛} to be one batch in our dataset, and 𝜖~0 for numerical stability,

𝜇 ←
1

𝑚
∑𝑥𝑖

𝑖

𝜎2 ←
1

𝑚
∑(𝑥𝑖 − 𝜇)2

𝑖

𝑥𝑖 ←
𝑥𝑖 − 𝜇

√𝜎2 + 𝜖

BNγ,β = 𝛾𝑥𝑖 + 𝛽

We also point out that while the ICS has been the commonly accepted reason behind batch normalization,

recent work from Santurkar et. al. [77] suggests this is not the case. They conclude that while batch

normalization does whiten layer outputs, its fundamental effect is to make a smoother optimization

landscape, inducing more stable gradient behavior, and resulting in faster training.

105

Finally to further regularize our model, we also consider using dropout layers. While expressive systems

allow us to generate complex decision functions, they will also have a tendency to overfit. Similar to

bagging in decision trees, we can reduce variance by taking the average over a large number of networks.

Unfortunately training this many networks is computationally infeasible. Instead we randomly drop out

network neurons and their connections during training of each batch. This will prevent co-adaptation of

neurons over time. When testing a new input, we take the average of all the neurons, multiplied by (1 −

𝑝), where 𝑝 is the probability of randomly dropping a neuron. In practice, this results in performance

similar to averaging a large batch of networks [78]. Dropout regularization would be applied on top of

the regularizing effects of both max-pooling and batch normalization.

TCN

Despite the efficacy of recurrent models in sequence modeling tasks, recent research has shown that

CNNs can also achieve state-of-the-art accuracies on specific tasks. This raises the question as to whether

Convolutional networks are successful due to a specific domain application, or because they can

inherently be used in general sequence modeling applications.

Let’s explore this problem with at a toy example. Suppose we are given an input sequence (𝑥0, … , 𝑥⊤)

and wish to predict a corresponding output (𝑦0, … , 𝑦⊤) for each time point. In RNNs, there is a causal

framework. All information to predict an output at a specific timepoint only uses information that has

come previously. Thus to calculate 𝑦𝑡 , we must only use 𝑥0,… 𝑥⊤ . Additionally, since our goal is

sequence modeling, note the second constraint that the output size must match that of the input.

Generally CNNs will break both these constraints. Convolution kernels use data from the past and the

future, and each convolution will shrink the dataset in the time dimension. To ensure causality, we define

106

a causal convolution [79], as a convolution where all inputs to kernels are coming strictly from the past.

This architecture is similar to that of the time-delay network. To maintain the shape of the output, we use

zero-padding on one side.

A RNN-like CNN can now be defined. Unfortunately, covering long sequences with regular convolutions

will result in a very deep architecture consisting of large features. In real-time applications, the network

would have to either be optimized, distilled or otherwise compressed to allow for fast calculations.

Dilated Convolutions

Following the work of Wavenet [80], and Yu and Koltun [81] the original TCN authors [79] employed

dilated convolutions to exponentially increase the receptive field of neurons in later layers. We define

dilated convolutions as

𝐹(𝑠) = (𝒙 ∗𝑑 𝑓)(𝑠) = ∑𝑓(𝑖) ⋅ 𝒙𝑠−𝑑⋅𝑖

𝑘

𝑖=1

where 𝒙 ∈ ℝ𝑁 is our 1 dimensional input sequence, 𝑘 determines the kernel size, and 𝐹(𝑠) signifies the

𝑠𝑡ℎ element of our feature map 𝐹. Note the 𝑠 − 𝑑 ⋅ 𝑖 term that dilates the convolution. When 𝑑 = 1, a

dilated convolution is reduced to a normal convolution. An example of dilated convolutions can be seen

in Figure 23. Note how as we increase the dilation at each layer, the receptive field gets exponentially

larger. In the example, the receptive field of a neuron in the output layer is 16. In comparison if we had

used a regular convolutional network with the same strides and kernel sizes, the receptive field would be

5. We can increase or decrease the size of the receptive field by varying the filter size and the dilation

rate.

107

Figure 23: Dilated causal convolutions

To calculate the receptive field of the TCN, we look at the kernel size and dilation parameters at each

layer, and take a recursive sum. This formulation works under the assumption that each element of a

kernel will have receptive fields that either touch or overlap on the layer below. If they do not, there will

be gaps in the lower layers. Layer 0 will always have a dilation of 1 and kernel size of 1, as it is simply

the input sequence. Defining 𝑅𝐹(𝑙) as the receptive field at layer 𝑙,

𝑅𝐹(0) = 1

At each subsequent layer, the receptive field will be calculated by

𝑅𝐹(𝑙) = [𝐾(𝑙) − 1]𝑑(𝑙) + 𝑅𝐹(𝑙 − 1)

Note that in the setup of a standard TCN, each residual block will have the same convolutional layers

occurring twice.

108

Residual Block

During training of deep networks, there is empirical evidence that after a certain depth, network

performance saturates, and counterintuitively begins dropping [82]. Even more surprisingly, this

performance degradation is not due to model overfitting, as [82]–[84] all show an increase in training

error when performance begins to degrade. Theoretically, this should not happen any subnetwork placed

on top of some optimal shallow network has the expressive capabilities to learn an identity mapping. At

worst, deeper layers should maintain the performance of shallower layers.

A novel method called Residual learning [82], addresses this problem with the introduction of residual

skip connections. Instead of trying to make the higher subnetwork learn a residual mapping, we provide

it with an identity mapping, and allow it to create a residual mapping if it needs to add any extra

information. Mathematically, if the output of the optimal shallow network is 𝑥, and the output of the

higher subnetwork is 𝐹(𝑥), we add a connection directly routing 𝑥 across 𝐹(𝑥). The cumulative output

that is then propagated is 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. This is shown in Figure 24.

Figure 24: Residual Connection

109

Should the identity mapping be ideal for performance, it is easier for the network to optimize weights of

the subnetwork 𝐹(𝑥) to be 0, rather than trying to learn the identity mapping via backpropagation

through many non-linear layer stacks. As TCN’s will generally be deep networks to learn long

sequences, it is important that these residual connections are present. This is seen going through the 1x1

convolution in Figure 25. We use the 1x1 convolution to downsample the input should the need arise,

so that summation with the output is possible.

To counter the problem of vanishing/exploding gradient, weight normalization is used after every

dilated convolution layer. Weight normalization [85] is similar to batch normalization in that it

normalizes layer weights. Instead of normalizing the mean and standard deviation, weight

normalization normalizes based on each vector’s orientation and magnitude, essentially separating the

norm from the direction. It is calculated by reparametrizing the weight of each weight vector as

𝒘 =
𝑔

||𝒗||
𝒗

𝑔 and 𝒗 are then optimized through gradient descent. Weight normalization is more deterministic than

batch normalization, and is computationally simpler. From the original weight normalization paper, we

see that weight normalization is faster than batch normalization, though each performs better in specific

situations. Finally a dropout layer is also added to provide regularization to the network, leading to the

final residual block shown in Figure 25, as described in [79].

110

Figure 25: Residual Block of TCN

These residual blocks, when stacked on top of each other, are known as a Temporal Convolutional

Network.

111

Network Architectures and training

LSTM

We used a stacked LSTM model with dropout regularization (dropout rate: 0.2) applied on dense-layers

between the LSTM. We do not add dropout inside the LSTM blocks as if could encourage randomly

forgetting some long-term dependency. Each LSTM cell has a70 hidden units, culminating with a final

SoftMax layer for a probabilistic output decision. The learning rate was 0.02, with a categorical cross-

entropy loss function for backpropagation. Batch size was 100, and training accuracy converged to

approximately 88% within 10 epochs. The batch size for each update step was 100.

Figure 26: LSTM architecture

CNN-LSTM

To speed up LSTM training we decided to use a CNN as a feature extraction step. By design, CNN

computations can occur in parallel (same filter applied to multiple locations of the image at the same

time), leading to large processing time gains. The CNN will additionally serve as a feature extraction

mechanism which can be passed on to classical classification algorithms. The architecture is three 1D

CNNs with padding to maintain shape, batch normalization (on the feature axis), 1D max pooling (pool

size: 2) and dropout (dropout rate: 0.1). Two LSTMs (70 hidden units) were stacked onto the final CNN

layer, culminating with a softmax output. Batch size was 100, and validation accuracy converged to 93%

after 10 epochs. The batch size for each update step was 100.

112

Figure 27: CNN-LSTM architecture

113

Table 17: CNN-LSTM architecture summary

Layer
Kernel

Size
Stride Filters

Dropout

(%)

Hidden

Units

Output

Shape

Input - - - - - 4500 x 4

Conv 1D 2 1 8 - - 4500 x 8

Feature BN - - - - - 4500 x 8

Max Pool

1D
2 2 - - - 2250 x 8

Dropout - - - 0.1 - 2250 x 8

Conv 1D 2 1 16 - - 2250 x 16

Feature BN - - - - - 2250 x 16

Max Pool

1D
2 2 - - - 1125 x 16

Dropout - - - 0.1 - 1125 x 16

Conv 1D 2 1 16 - - 1125 x 16

Feature BN - - - - - 1125 x 16

Max Pool

1D
2 2 - - - 562 x 16

LSTM 1 - - - - 70 562 x 70

LSTM 2 - - - - 70 70

Dense - - - - - 2

TCN

We implemented a generic TCN in Keras following [79]. As weighted convolutions have not yet been

implemented in Keras, we have bypassed that layer in the residual blocks. We have also implemented

skip connections to add the outputs of every residual block to the final output. Skip connections can

alleviate the vanishing gradient problem, and enhance feature propagation in deep networks. They have

commonly been used in networks like DenseNets. In addition to these skip connections, the residual

blocks will still contain their own identity mapping functions.

114

We selected dilation values of [1, 2, 4, 8, 16, 32, 64]. We select stacks of 1 residual blocks for each

dilation value, with a dropout value of 0.05. All convolutional layer had 20 filters with a kernel size of

20. Together this setup led to each kernel element on the top layer to have a receptive field of 4827,

covering our entire sequence. The output layer was softmax for a probabilistic decision. Each model was

trained for 10 epochs within which validation accuracy converged to over 99% with the ADAM

optimizer. The batch size for each update step was 100.

115

Figure 28: TCN architecture

116

Results

Evaluation Metrics

ROC and precision-recall curves were used to evaluate the detector performance. We motivate the use of

a precision-recall curve as there will be a dataset imbalance during testing (48 False Positive Segments

to 4 seizure segments during each fold). The precision metric measures the posterior probability of a

segment being a seizure, given the detector saying it was. It answers the question, “how many detections

are relevant?”. Recall is a synonym for sensitivity, and answers the question “How many relevant

segments are detected?”.

Precision = 𝑃(𝑌 = 1| 𝑌̂ = 1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall = Sensitivity = 𝑃(𝑌̂ = 1|𝑌 = 1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

False Positive Rate = 𝑃(𝑌̂ = 1|𝑌 = 0) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

Note as this is a second stage detector, there was no need to calculate the false positive rate in a unit time.

We setup false positive rate as a percentage, and used in-vivo results from the isolation forest detector to

estimate the amount of false positives per unit time.

To evaluate the ideal threshold, we used a normal and weighted 𝐹1-score, a metric that scores the detector

at specific thresholds according to the harmonic mean of its precision and recall. The harmonic mean is

defined as the reciprocal of the arithmetic mean of the reciprocals of a given set of observations, and is

one of the three classical Pythagorean means. It is more natural to use harmonic mean here as precision

and recall share the same numerator. This leads to a higher punishment of extreme values. As a simple

117

example, if precision is 0 and recall is 1, the arithmetic mean would give 0.5, while the harmonic mean

would give 0.

𝐹1 = (
recall−1 + precision−1

2
)

−1

= 2 ⋅
precision ⋅ recall

precision + recall

Note in the traditional 𝐹1 score, both precision and recall are weighed equally. In general, we want to

place a higher emphasis on recall, due to the consequences of missing a seizure. This can be done by

using the 𝛽-weighted 𝐹 score.

𝐹𝛽 = (1 + 𝛽2) ⋅
precision ⋅ recall

(𝛽2 ⋅ precision) + recall

𝛽 > 1 will weigh recall higher than precision, while 𝛽 < 1 will weigh precision higher than recall. In our

experiments we use 𝛽 = 1.5. For all our experiments, we shall use either 𝐹1 or 𝐹𝛽 to set the threshold

value for our detector.

Offline Cross Validation

4-fold cross validation was performed on the dataset. During each fold, 48 windowed false positive

segments, and 4 windowed seizure segments were randomly sampled without replacement for testing.

The 144 remaining false positive segments and 18 seizure segments were used for testing. Note that there

are 2 randomly chosen seizures that will never be tested during cross-validation. We sample without

replacement so all seizures and false positives have a chance to be tested as an unseen example.

118

Accumulation Filter

A 1st order IIR filter is used to soften the output of the neural networks. This filter is identical to that used

in the anomaly detection stage of the algorithm.

𝑦(𝑡) = 𝛼𝑥(𝑡) + (1 − 𝛼)𝑦(𝑡 − 1)

As high detector outputs on false positive data is expected to be sporadic, the filter parameter was set to

𝛼 = 0.05. This heavy weighting towards the previous value will create a very slow filter, as seen in Figure

29. As seizures should have a near continual segment of high network outputs, a slow filter allows us to

set a threshold between the seizures and the false positives. If the filter is too fast, any short burst of

seizure like activity will cause the filtered output to hit the threshold.

Figure 29: Accumulation Filter comparisons

We will not do grid search to find the optimal value of the filter parameter. During cross validation, the

maximum attained value of the accumulation filter for each test segment is retained, and we can describe

our ROC and Precision Recall curves by varying the threshold across these maximum values. Note the

baseline curves in both ROC and Precision Recall graphs. These lines represent a baseline hypothesis

where you simply guess whether a specific event is a seizure or a false positive.

119

Each CV-ROC curve will also contain curves from every fold of the cross validation, as well as a standard

deviation region. There will be two mean ROC curves plotted. One will be the curve made from all the

data plotted on one chart. The other is a mean of the curves from each fold.

LSTM

The validation accuracy for LSTM converged to 89% within 10 epochs. Without GPU access, training

time was approximately 20 hours per fold on a CPU.

Figure 30: Cross validation results for LSTM network. a) shows a rug-plot and histogram of maximum values
reached by the accumulation filter for seizures and false positives. b) shows the corresponding ROC curve. c)
shows the precision-recall curve. d) shows the F1 and weighted F1 scores for varying thresholds.

Table 18: Optimal LSTM characteristics

Optimal Threshold 0.4053

Sensitivity 81.25%

Specificity 79.10%

120

LSTM results were encouraging as a baseline for this task. At an optimal configuration, a sensitivity of

approximately 80% is not acceptable in our application. If we lower the threshold to allow for 90%

accuracy, the false positive rate will be around 0.7, which translates to an estimated 0.903/day using our

in-vivo isolation forest results. With the additional increase in latency, it would be inefficient to

implement a secondary detection stage with these characteristics. We note the strict performance penalties

of the precision-recall curve on anomaly detection activities. Despite a good overall false positive rate,

the lack of true positives drive down the precision metric to 0.3. Since we require a idealized characteristic

of 1 false positive per seizure, an acceptable algorithm will require a precision of at least 0.5.

CNN-LSTM

The validation accuracy for CNN-LSTM converged to approximately 97% accuracy within 10 epochs

with a training time under 30 minutes per epoch on a CPU.

Figure 31: Cross validation results for CNN-LSTM network. a) shows a rug-plot and histogram of maximum
values reached by the accumulation filter for seizures and false positives. b) shows the corresponding ROC curve.
c) shows the precision-recall curve. d) shows the F1 and weighted F1 scores for varying thresholds.

121

Table 19: Optimal CNN-LSTM characteristics

Optimal Threshold 0.3696

Sensitivity 93.70%

Specificity 96.42%

With this specificity, we can expect a mean False Positive Rate of 0.04644/day. A sensitivity of over 93%

is an acceptable characteristic. We note that the two seizures that were not detected during cross validation

still reached maximum values of 0.22 and 0.28 respectively. Despite being atypical seizure sements, using

old sensor data with gaps, we think it likely that careful hyperparameter tuning and/or a deeper network

may allow for a higher AUC. It is also likely that with the newer watches, our sensitivity will be higher

than predicted here. From the precision recall curve, we see an optimal precision value above 0.5, meeting

our idealized expectation of a 1:1 seizure to false positive ratio. There are still three false positives that

are confidently identified as seizures. We cannot validate what activities they are as old Video EEG

records are not stored in our system, but from a spectrogram we see extended bands of activity that mimic

periodic activity (running, brushing teeth, weightlifting). Additionally, heart rate increase was marginal,

with none of the 3 crossing 100 bpm. This suggests we may have to find a method of increasing the

weighting of heart rate features in the network.

122

TCN

The validation accuracy for TCN converged to 99% within 10 epochs. Training time was approximately

1 hour per epoch on a CPU.

Figure 32: Cross validation results for TCN network. a) shows a rug-plot and histogram of maximum values

reached by the accumulation filter for seizures and false positives. b) shows the corresponding ROC curve. c)
shows the precision-recall curve. d) shows the F1 and weighted F1 scores for varying thresholds.

Table 20: Optimal TCN characteristics

Optimal Threshold 0.48

Sensitivity 100%

Specificity 100%

TCN shows perfect separation of seizures and false positives over 5-fold cross validation. To ensure

overfitting was not occurring, numerous cross-validations were performed to verify these results. Three

false positives are noticeable separate from the majority that are clustered around 0. The same false

positives can be seen in the CNN-LSTM model across the threshold line. This suggests that the model is

indeed learning about some inherent structure that allows for good separation. Additionally, we see that

on average, maximum thresholds of seizure segments are higher on average (0.72) as compared to LSTM

123

(0.49) and CNN-LSTM (0.57). The model is considerably more sure that sections are seizures, as the

confidence of output needs to be consecutively ~1 for almost 30 seconds to reach this value with our

accumulation filter. This algorithm will significantly improve latency if implemented.

Summary

Table 21: Summary of performance characteristics for 2nd stage detector

 Sensitivity Specificity AUC APC

LSTM 81.25% 79.10% 0.87 0.4

CNN-LSTM 93% 96% 0.94 0.61

TCN 100% 100% 1 1

Real Time Detection

Watch Implementation

Despite the impressive results from the TCN model, the dilated causal convolution layers were difficult

to implement efficiently in Swift. There is a conversion tool available called CoreML assists in converting

some common layers into a C++ wrapper around the low-level Metal Performance Shaders. The

conversion allows for optimized processing of the data through the network, and uses the GPU on the

target device if available. With some configuration, were able to convert CNN and LSTM layers from

Keras to CoreML layers. For now we were not able to convert layers in PyTorch or Tensorflow as cycles

have not yet been implemented.

All 22 seizures and 192 false positives were windowed and used to train a final CNN-LSTM model in

Keras. The weights and biases of all the layers were frozen, and then all the layers were converted into

CoreML compatible layers and reassembled. The resulting model was imported into Swift. It expected

an input vector of the shape (4500,4), and will give a corresponding probabilistic output of likelihood that

the input segment is a seizure or False Positive. Together with the Isolation Forest detector, we can

summarize the full detection algorithm.

124

Table 22: Full detection algorithm

1. Buffers collect accelerometer and heart rate data constantly

2. Every 5 seconds, 5 second buffer chunks are passed through the anomaly detector class, which

filters the segments and extracts selected features

3. Each 1 second chunk is passed to the isolation forest which calculates path lengths decides

whether to classify it as an anomaly or not

4. All outputs are passed through an accumulation filter that provides robustness against

spurious detections.

5. If accumulation filter passes a threshold of 1.55, the isolation forest processing pipeline shuts

off.

6. A running buffer of 45 seconds is interpolated, filtered and standardized, then passed through

the CNN-LSTM which outputs a probability of the segment being a seizure.

7. This output is passed through a secondary accumulation filter. If this filter passes a threshold

of 0.40, the seizure detection protocol will be triggered.

Note are that we set the threshold to 0.40 as it does not change the sensitivity of the detector but will

make separating false positives easier. This can be adjusted to improve latency and sensitivity if required.

In-Vivo Results

Across all 30 patients, we tracked for a total of 2004 hours, giving an average of 65 hours per patient. We

kept a track of the number of Isolation Forest detections, and the number CNN-LSTM detections that

occurred, to evaluate performance against the initial stage. We also validated every detection with video

EEG for standard reference. Latency was calculated from the beginning of convulsions.

125

Table 23: In-vivo statistics for 2nd stage detector

Total Hours

Tracked

Average

Hours per

patient

False

Positives

True

Positives

Total Forest

Detections

Mean Latency

± std (s)

2004 65 4 12 109 62 ± 10

Table 24: Raw in-vivo statistics for 2nd stage detector

 Detector Total

 (+) (-)

Video EEG
(+) 12 0 12

(-) 4 109 97

Total 16 93 109

Taking the Video EEG as a reference standard, we see a sensitivity of 100% over 12 seizures, and a

specificity of 96.4% over 113 false positive detections from the isolation forest, corresponding to a false

positive rate of 0.05 /day. This is in agreement with our expected false positive rate of 0.04644 /day

estimated during cross validation. Our 95% Clopper-Pearson confidence intervals were (73.5%, 100%)

for sensitivity and (91.1%, 99.0%) for specificity. The sensitivity interval is so wide because we only

recorded 12 seizures. Latency is also on the threshold of being acceptable. It is noted that this latency is

the same latency predicted in offline analysis of the isolation forest (mean 62 seconds), suggesting either

the CNN-LSTM is classifying very quickly, or lack of accelerometer data gaps in the newer generation

watches have caused quicker isolation forest detection. Additionally, it is noted that many seizures had

heart rate gaps during the tonic phase. For seizures with no heart rate gaps, latency was averaged at 52

seconds. This suggests that data gaps may still be affecting seizure detector performance.

126

Figure 33: Data gap illustration on seizure data. a) shows the heart rate dat. b) shows corresponding accelerometer
data.

Finally, the detector was also used by some Beta users to assess its efficacy in ambulatory individuals.

The FPR was far lower than the original anomaly detector, and is quite surprising given no ambulatory

data was used to train the CNN-LSTM. This suggests that the false positives from the EMU have

characteristics that mimic ambulatory false positives. As before, the false positives were primarily from

monotonous physical activity.

127

Conclusion

We have introduced the first smartwatch-based tonic-clonic seizure detector in this thesis. Our method,

an ensemble of isolation forest and CNN-LSTM detects anomalies in real time data, then classifies them

as either seizures or false positives with a sensitivity of 100% CI (73.5%, 100%) and a specificity of

96.4% CI (91.1%, 99.0%), corresponding to a false alarm rate of 0.05/24h at a latency of 62 seconds. This

false alarm rate is state-of-the-art for commercial seizure detectors, and the latency is just inside the

clinical window. We have covered feature extraction and selection using mutual information techniques

and theory of various anomaly detection models showing the advantages of the isolation forest model.

We have also covered the theory of various deep learning classification models and performed cross-

validation showing the efficacy of each model in classifying seizures and false positives. We provide a

summary of how the algorithms and preprocessing pipeline were implemented in the Apple Watch, and

in-vivo results testing our algorithm in EMU patients. Our results demonstrate quantitatively demonstrate

the value of such a device in EMU settings and also the potential in ambulatory patients.

Limitations

Despite producing outstanding cross-validation results, we were not able to implement TCN’s on the

Apple Watch. This by itself could greatly improve all metrics of the detector. Additionally, the high

latency suggests a different approach may still be required for the anomaly detection stage. Seeing the

success of incorporating causal temporal data into the classifier, a HMM may be a good baseline to begin

with. We can also think of using deep learning for anomaly detection. Methods like AnoGAN and

Autoencoders have shown promise. Another method would be to use the loss function of a one-class

SVM or SVDD on a neural network. An issue with deep learning be CPU usage, but it would be possible

to shorten window length, increase the time between processing windows (i.e. 10 seconds), or distill the

128

network. Finally, as seizures from the same patient always have extremely similar characteristics transfer

learning may be possible for customized detectors as we collect more data.

129

Bibliography

[1] CDC, “Epilepsy Data and Statistics.” [Online]. Available:

https://www.cdc.gov/epilepsy/data/index.html.

[2] C. E. Stafstrom and L. Carmant, “Seizures and Epilepsy: An Overview for Neuroscientists,” Cold

Spring Harb. Perspect. Med., vol. 5, no. 6, pp. a022426–a022426, Jun. 2015.

[3] P. Kurle and P. Rutecki, “Seizures and Epilepsy,” in Neurology Secrets, Elsevier, 2010, pp. 315–

339.

[4] A. T. Berg et al., “Revised terminology and concepts for organization of seizures and epilepsies:

Report of the ILAE Commission on Classification and Terminology, 2005-2009,” Epilepsia, vol.

51, no. 4, pp. 676–685, Apr. 2010.

[5] R. S. Fisher et al., “Operational classification of seizure types by the International League

Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology,”

Epilepsia, vol. 58, no. 4, pp. 522–530, Apr. 2017.

[6] R. A. Machado, “Understanding Hyper Motor Seizures,” Epilepsy J., vol. 2, no. 2, 2016.

[7] A. E. Cavanna and F. Monaco, “Brain mechanisms of altered conscious states during epileptic

seizures,” Nat. Rev. Neurol., vol. 5, no. 5, pp. 267–276, May 2009.

[8] A. M. Pack, “SUDEP: What Are the Risk Factors? Do Seizures or Antiepileptic Drugs Contribute

to an Increased Risk?: SUDEP and Risk Factors,” Epilepsy Curr., vol. 12, no. 4, pp. 131–132,

Jul. 2012.

[9] S. Beniczky, I. Conradsen, O. Henning, M. Fabricius, and P. Wolf, “Automated real-time

detection of tonic-clonic seizures using a wearable EMG device,” Neurology, vol. 90, no. 5, pp.

e428–e434, Jan. 2018.

[10] T. Tomson, R. Surges, R. Delamont, S. Haywood, and D. C. Hesdorffer, “Who to target in

sudden unexpected death in epilepsy prevention and how? Risk factors, biomarkers, and

intervention study designs,” Epilepsia, vol. 57, pp. 4–16, Jan. 2016.

130

[11] A. Schulze-Bonhage et al., “Views of patients with epilepsy on seizure prediction devices,”

Epilepsy Behav., vol. 18, no. 4, pp. 388–396, Aug. 2010.

[12] C. Hoppe, M. Feldmann, B. Blachut, R. Surges, C. E. Elger, and C. Helmstaedter, “Novel

techniques for automated seizure registration: Patients’ wants and needs,” Epilepsy Behav., vol.

52, pp. 1–7, Nov. 2015.

[13] A. Van de Vel, K. Smets, K. Wouters, and B. Ceulemans, “Automated non-EEG based seizure

detection: Do users have a say?,” Epilepsy Behav., vol. 62, pp. 121–128, Sep. 2016.

[14] C. E. Elger and C. Hoppe, “Diagnostic challenges in epilepsy: seizure under-reporting and seizure

detection,” Lancet Neurol., vol. 17, no. 3, pp. 279–288, Mar. 2018.

[15] W. V. Paesschen, “The future of seizure detection,” Lancet Neurol., vol. 17, no. 3, pp. 200–202,

Mar. 2018.

[16] S. Beniczky, T. Polster, T. W. Kjaer, and H. Hjalgrim, “Detection of generalized tonic-clonic

seizures by a wireless wrist accelerometer: A prospective, multicenter study,” Epilepsia, vol. 54,

no. 4, pp. e58–e61, Apr. 2013.

[17] A. Ulate-Campos, F. Coughlin, M. Gaínza-Lein, I. S. Fernández, P. L. Pearl, and T.

Loddenkemper, “Automated seizure detection systems and their effectiveness for each type of

seizure,” Seizure, vol. 40, pp. 88–101, Aug. 2016.

[18] A. L. Patterson et al., “SmartWatch by SmartMonitor: Assessment of Seizure Detection Efficacy

for Various Seizure Types in Children, a Large Prospective Single-Center Study,” Pediatr.

Neurol., vol. 53, no. 4, pp. 309–311, Oct. 2015.

[19] S. Ramgopal et al., “Seizure detection, seizure prediction, and closed-loop warning systems in

epilepsy,” Epilepsy Behav., vol. 37, pp. 291–307, Aug. 2014.

[20] A. Van de Vel et al., “Non-EEG seizure detection systems and potential SUDEP prevention:

State of the art,” Seizure, vol. 41, pp. 141–153, Oct. 2016.

[21] R. Q. Quiroga, H. Garcia, and A. Rabinowicz, “Frequency evolution during tonic-clonic

seizures,” Electromyogr. Clin. Neurophysiol., vol. 42, no. 6, pp. 323–331, Sep. 2002.

131

[22] B. Hjorth, “EEG analysis based on time domain properties,” Electroencephalogr. Clin.

Neurophysiol., vol. 29, no. 3, pp. 306–310, Sep. 1970.

[23] H. Hindarto, M. Hariadi, and M. Purnomo, “EEG signal identification based on root mean square

and average power spectrum by using BackPropagation,” J. Theor. Appl. Inf. Technol., Aug.

2014.

[24] N. Koolen et al., “Line length as a robust method to detect high-activity events: Automated burst

detection in premature EEG recordings,” Clin. Neurophysiol., vol. 125, no. 10, pp. 1985–1994,

Oct. 2014.

[25] M. Affinito, M. Carrozzi, A. Accardo, and F. Bouquet, “Use of the fractal dimension for the

analysis of electroencephalographic time series,” Biol. Cybern., vol. 77, no. 5, pp. 339–350, Nov.

1997.

[26] I. Farkas and E. Doran, “Activity Recognition from acceleration data collected with a tri-axial

accelerometer,” ACTA Tech. Napoc. Electron. Telecommun., vol. 52, no. 2, 2011.

[27] S. Iranmanesh and E. Rodriguez-Villegas, “An Ultralow-Power Sleep Spindle Detection System

on Chip,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 4, pp. 858–866, 2017.

[28] J. Novovičová, P. Somol, M. Haindl, and P. Pudil, “Conditional Mutual Information Based

Feature Selection for Classification Task,” in Progress in Pattern Recognition, Image Analysis

and Applications, vol. 4756, L. Rueda, D. Mery, and J. Kittler, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2008, pp. 417–426.

[29] J. Biesiada and W. Duch, “Feature Selection for High-Dimensional Data — A Pearson

Redundancy Based Filter,” in Computer Recognition Systems 2, vol. 45, M. Kurzynski, E.

Puchala, M. Wozniak, and A. Zolnierek, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2007, pp. 242–249.

[30] M. Dash, K. Choi, P. Scheuermann, and Huan Liu, “Feature selection for clustering - a filter

solution,” in 2002 IEEE International Conference on Data Mining, 2002. Proceedings.,

Maebashi City, Japan, 2002, pp. 115–122.

132

[31] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell., vol. 97, no. 1–2,

pp. 273–324, Dec. 1997.

[32] R. Battiti, “Using mutual information for selecting features in supervised neural net learning,”

IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 537–550, Jul. 1994.

[33] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood maximisation: a

unifying framework for information theoretic feature selection,” J. Mach. Learn. Res., vol. 13,

no. 1, pp. 27–66, Feb. 2012.

[34] V. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artif. Intell. Rev., vol.

22, no. 2, pp. 85–126, Oct. 2004.

[35] “Outlier Detection,” Simon Fraser University.

[36] M. Delalandre, E. Valveny, T. Pridmore, and D. Karatzas, “Generation of synthetic documents

for performance evaluation of symbol recognition & spotting systems,” Int. J. Doc. Anal.

Recognit. IJDAR, vol. 13, no. 3, pp. 187–207, Sep. 2010.

[37] J. Lockman, R. S. Fisher, and D. M. Olson, “Detection of seizure-like movements using a wrist

accelerometer,” Epilepsy Behav., vol. 20, no. 4, pp. 638–641, Apr. 2011.

[38] J. Tian and H. Gu, “Anomaly detection combining one-class SVMs and particle swarm

optimization algorithms,” Nonlinear Dyn., vol. 61, no. 1–2, pp. 303–310, Jul. 2010.

[39] M. Nandan, S. S. Talathi, S. Myers, W. L. Ditto, P. P. Khargonekar, and P. R. Carney, “Support

vector machines for seizure detection in an animal model of chronic epilepsy,” J. Neural Eng.,

vol. 7, no. 3, p. 036001, Jun. 2010.

[40] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin

classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory -

COLT ’92, Pittsburgh, Pennsylvania, United States, 1992, pp. 144–152.

[41] M. de Berg, Ed., Computational geometry: algorithms and applications, 3rd ed. Berlin: Springer,

2008.

133

[42] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK ; New York: Cambridge

University Press, 2004.

[43] A. Ng, “Support Vector Machines.” Stanford.

[44] G. Gordon and R. Tibshirani, “Lecture 16: October 18.” UC Berkeley, 2012.

[45] J. Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector

Machines,” Adv. KERNEL METHODS - SUPPORT VECTOR Learn., 1998.

[46] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the

Support of a High-Dimensional Distribution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471,

Jul. 2001.

[47] Y. Tang, “Deep Learning using Linear Support Vector Machines,” ArXiv13060239 Cs Stat, Jun.

2013.

[48] C. A. Micchelli, Y. Xu, H. Zhang, and Gabor, “Universal Kernels,” J. Mach. Learn. Res., 2006.

[49] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New Support Vector

Algorithms,” Neural Comput., vol. 12, no. 5, pp. 1207–1245, May 2000.

[50] P.-H. Chen, C.-J. Lin, and B. Schölkopf, “A tutorial on ν-support vector machines: ν-SUPPORT

VECTOR MACHINES,” Appl. Stoch. Models Bus. Ind., vol. 21, no. 2, pp. 111–136, Mar. 2005.

[51] D. M. J. Tax and R. P. W. Duin, “Support Vector Data Description,” Mach. Learn., vol. 54, no. 1,

pp. 45–66, Jan. 2004.

[52] A. Geletu, “Quadratic Programming Problems - A review on algorithms and applications (Active-

set and interior point methods).”

[53] S. Sra, S. Nowozin, and S. J. Wright, Eds., Optimization for machine learning. Cambridge, Mass:

MIT Press, 2012.

[54] G. C. Cawley and N. L. C. Talbot, “On Over-fitting in Model Selection and subsequent selection

bias in performance evaluation,” J. Mach. Learn. Res., vol. 11, pp. 1079–2107, 2010.

[55] L. Bottou and C.-J. Lin, “Support Vector Machine Solvers,” 2006.

134

[56] M. Claesen, F. De Smet, J. A. K. Suykens, and B. De Moor, “Fast Prediction with SVM Models

Containing RBF Kernels,” ArXiv14030736 Cs Stat, Mar. 2014.

[57] C. K. I. Williams and M. Seeger, “Using the Nystrom method to speed up kernel machines,”

NIPS, vol. 13, 2000.

[58] A. Rahimi and B. Recht, “Random Features for Large-Scale Kernel Machines,” NIPS, vol. 20,

2007.

[59] A. Menon, “Large-Scale Support Vector Machines: Algorithms and Theory,” 2009.

[60] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, no. 1, pp. 1–37, Jan.

2008.

[61] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning: data mining,

inference, and prediction. 2009.

[62] B. A. Goldstein, A. E. Hubbard, A. Cutler, and L. F. Barcellos, “An application of Random

Forests to a genome-wide association dataset: Methodological considerations & new findings,”

BMC Genet., vol. 11, no. 1, p. 49, Dec. 2010.

[63] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in 2008 Eighth IEEE International

Conference on Data Mining, Pisa, Italy, 2008, pp. 413–422.

[64] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-Based Anomaly Detection,” ACM Trans.

Knowl. Discov. Data, vol. 6, no. 1, pp. 1–39, Mar. 2012.

[65] M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Data structures and algorithms in Java,

Sixth edition. Hoboken, NJ: Wiley, 2014.

[66] B. Reed, “The height of a random binary search tree,” J. ACM, vol. 50, no. 3, pp. 306–332, May

2003.

[67] D. E. Knuth, The art of computer programming, 3rd ed. Reading, Mass: Addison-Wesley, 1997.

[68] S. Hariri, M. C. Kind, and R. J. Brunner, “Extended Isolation Forest,” ArXiv181102141 Cs Stat,

Nov. 2018.

135

[69] J. Poland, “Three Different Algorithms for Generating Uniformly Distributed Random Points on

the N-Sphere,” Oct. 2000.

[70] G. Regalia, F. Onorati, M. Lai, C. Caborni, and R. W. Picard, “Multimodal wrist-worn devices

for seizure detection and advancing research: Focus on the Empatica wristbands,” Epilepsy Res.,

vol. 153, pp. 79–82, Jul. 2019.

[71] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,”

in ICML, Atlanta, GA, USA, June 16, vol. 28.

[72] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8,

pp. 1735–1780, 1997.

[73] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A Critical Review of Recurrent Neural Networks for

Sequence Learning,” ArXiv150600019 Cs, May 2015.

[74] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with lstm recurrent

networks,” J. Mach. Learn. Res., vol. 3, pp. 115–143, Mar. 2003.

[75] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical

Machine Translation,” ArXiv14061078 Cs Stat, Jun. 2014.

[76] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift,” ArXiv150203167 Cs, Feb. 2015.

[77] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How Does Batch Normalization Help

Optimization?,” ArXiv180511604 Cs Stat, May 2018.

[78] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving

neural networks by preventing co-adaptation of feature detectors,” ArXiv12070580 Cs, Jul. 2012.

[79] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of Generic Convolutional and

Recurrent Networks for Sequence Modeling,” ArXiv180301271 Cs, Mar. 2018.

[80] A. van den Oord et al., “WaveNet: A Generative Model for Raw Audio,” ArXiv160903499 Cs,

Sep. 2016.

136

[81] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated Convolutions,”

ArXiv151107122 Cs, Nov. 2015.

[82] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”

ArXiv151203385 Cs, Dec. 2015.

[83] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp.

5353–5360.

[84] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway Networks,” ArXiv150500387 Cs, May

2015.

[85] T. Salimans and D. P. Kingma, “Weight Normalization: A Simple Reparameterization to

Accelerate Training of Deep Neural Networks,” ArXiv160207868 Cs, Feb. 2016.

137

Appendix

Proof of XOR Uncorrelatedness

Consider an XOR function with the inputs 𝑋1, 𝑋2 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), and output 𝑌. Trivially, 𝐸(𝑋1) =

𝐸(𝑋2) = 𝑝. Then, 𝐸(𝑌) = ∑𝑦𝑖𝑃(𝑌) = (0)(1− 𝑝)2 + (0)(1− 𝑝)𝑝 + (1)(1 − 𝑝)𝑝 + (1)𝑝2 = 𝑝2 + 𝑝 −

𝑝2 = 𝑝. To find 𝐸(𝑋1𝑌), we must first find the joint PDF 𝑃(𝑋1, 𝑌). This is done in the table below.

𝑋1 = 0, 𝑌 = 0 𝑋1 = 1, 𝑌 = 0 𝑋1 = 0, 𝑌 = 1 𝑋1 = 1, 𝑌 = 1

(1 − 𝑝)2 𝑝2 𝑝(1 − 𝑝) 𝑝(1 − 𝑝)

Then, 𝐸(𝑋1𝑌) = ∑𝑃(𝑋1, 𝑌)𝑋1𝑌 = 𝑝 − 𝑝2. When we set 𝑝 = 0.5, we get that 𝐶𝑜𝑟𝑟(𝑋1, 𝑌) = 𝐸(𝑋1𝑌) −

𝐸(𝑋1)𝐸(𝑌) = 0.25− 0.25 = 0, meaning they are uncorrelated for equal probabilities.

Proof of Mutual Information Formulation

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑥, 𝑦)

𝑥∈𝒳

= − ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑦|𝑥) 𝑝(𝑥)

𝑥∈𝒳

= − ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑥)

𝑥∈𝒳

− ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑦|𝑥)

𝑥∈𝒳

= − ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝒳

− ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑦|𝑥)

𝑥∈𝒳

= 𝐻(𝑋) + 𝐻(𝑌|𝑋)

138

Seizure Subtypes

139

Biography

Samyak Shah was born in 1995 in India. He did his undergraduate work in the University of Glasgow,

where he majored in Biomedical Engineering. During his undergraduate studies, he spent a year in

California, studying Biomedical Engineering at the University of California at Irvine. He spent three

summer researching at InCube Labs in San Jose, and a summer interning at Philips Healthcare in San

Diego. For his undergraduate thesis, he worked on the localization of ferromagnetic particles using

GMR-based sensors under the guidance of Dr. Hadi Heidari. His paper “On-chip magnetoresistive

sensors for detection and localization of paramagnetic particles” is a result of that work. In 2017,

Samyak began his MSE in Biomedical Engineering with a concentration in Data Science at Johns

Hopkins university. He joined Dr. Nathan Crone’s lab to work on seizure detection using pattern

recognition. During his time at Johns Hopkins, he was also a teaching assistant for the Biomedical

Instrumentation course taught by Dr. Nitish Thakor.

