
DEVELOPMENT OF A REAL-TIME SMARTWATCH ALGORITHM FOR 

THE DETECTION OF GENERALIZED TONIC-CLONIC SEIZURES 

 

by 

 

Samyak Shah 

 

 

 

A thesis submitted to Johns Hopkins University in conformity with the requirements for the 

degree of Master of Science in Engineering 

 

Baltimore, Maryland 

May 2019 

 

 

 

 

© Samyak Shah 2019 

All rights reserved 

 



ii 

 

Abstract 

Generalized Tonic Clonic Seizure (GTCS) detection has been an ongoing problem in the healthcare 

industry. Algorithms and devices for this problem do exist on the market, but they either have poor 

False Positive Rates, are expensive, or cannot be used as anything other than a seizure detector.  There 

is currently a need to provide a portable seizure detection algorithm that can meets patient demands. In 

this thesis, we develop a two-stage end-to-end seizure detection algorithm that is implemented on an 

Apple Watch, and validated on Epilepsy Monitoring Unit (EMU) patients. 124 features are extracted 

from the collected dataset, after which 9 are empirically selected. We have provided mutual information 

based feature selection methods that cannot yet be implemented on the watch due to computational 

restrictions. In stage one we compare common anomaly detection methods of One Class SVM, SVDD, 

Isolation Forest and Extended Isolation Forest over a thorough cross-validation to determine which is 

ideal to use as an anomaly detector. Isolation Forest (Sensitivity: 0.9, FPR: 3.4/day, Latency: 69s) was 

chosen despite the good sensitivity and latency of SVDD (Sensitivity: 1.0, FPR: 17.28/day, Latency: 

8.9s) due to better implementation characteristics. During in-vivo testing, we record a sensitivity of 

100% over 24 recorded tonic seizures with FPR: 1.29/day. To further limit false positive detections, a 

second stage is incorporated to separate between true and false positives using deep learning methods. 

We compare a Deep-LSTM, CNN-LSTM and TCN network. CNN-LSTM (Sensitivity: 0.93, FPR: 

0.047/day) was finally used on the watch due to its tractable implementation, though TCN (Sensitivity: 

1.0, FPR: 0/day) performed significantly better during cross-validation. During in-vivo testing, the 2-

stage algorithm showed sensitivity: 100%, FPR: 0.05/day over 2004 tracked hours and 12 seizures. The 

mean latency was 62 seconds, which is on the threshold of clinical acceptability for this task. 
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Introduction 

Background 

Epilepsy is a neurological disorder that actively affects 1.2% of the US population [1]and is characterized 

by a paroxysmal alteration of neurological function due to abnormal and excessive synchronous brain 

activity known as an "epileptic seizure"[2]. Though epilepsy will generally present with some form of 

seizure, seizures are not always indicative of epilepsy. There are multiple subtypes of epileptic seizures, 

usually classified by their clinical EEG characteristics [3]. The original classification scheme of seizure 

types was developed in 1981, and was used for almost two decades. However that list was built on 

concepts that no longer correspond to or accurately describe modern knowledge of seizures and epilepsy 

[4]. The current classification system is shown in Figure 1 [5]. An expanded view is provided in the 

appendix. 

 

Figure 1: Simplified seizure sub-type diagram 

 

All seizures are caused by abnormal electrical activity in the brain, with two main subtypes, focal and 

generalized. Focal seizures occur when the abnormal electrical activity in the brain is localized to a limited 

region. Generalized seizures will affect both cerebral hemispheres simultaneously at onset. Focal seizures 

may sometimes generalize, which we define as secondary generalizing seizures. Other seizures to note 
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for this thesis are myoclonic (brief shock like jerks of a muscle or a group of muscles), hypermotor 

(characterized by complex high amplitude movements of proximal segments of the body [6]), and focal 

aware/unaware seizures (non-motor partial seizures will freeze the body for up to two minutes). 

 

All seizures present with a varying level of altered consciousness When the abnormal activity involves 

cortical and sub-cortical structures, as is the case with generalized tonic-clonic and absence seizures, loss 

of consciousness can also occur [7]. Generalized tonic-clonic seizures (GTCS) in particular (characterized 

by a stiffening in the tonic phase and a rhythmic jerking in the clonic phase) may lead to injuries, 

emotional distress, and reduced quality of life. GTCS are also thought to be an indicative risk factor of 

Sudden Unexpected Death in Epilepsy (SUDEP), especially if the patient is left unattended [8]–[10]. Due 

to these difficulties, patient demands [11]–[14] and seizure under-reporting (particularly nighttime 

seizures) [14], [15], there have been numerous seizure prediction/detection methods using both EEG and 

non-EEG based modalities [9], [16]–[19]. 

 

Intracranial and Scalp EEG based detection is the gold standard for seizure detection, but have the 

disadvantages of having being uncomfortable/obtrusive and invasive respectively. Other modalities like 

surface EMG (sEMG), electrodermal activity (EDA), electrocardiogram (EKG) and accelerometer 

(ACM) have shown promising results [17]. Due to the wide availability in common smartwatches ACM, 

heart rate and gyroscope signals are attractive modality choices. Despite the primary disadvantages of 

being limited to only detecting unhindered motor based seizures, they have been shown to effectively 

detect GTCS, secondary generalized, myoclonic, clonic, tonic and hypermotor subtypes, achieving 

sensitivities of 87.5% - 100% for GTCS at latencies ranging from 9-60s after clinical seizure onset. False 

positives are still high with only one system reaching a false-positive rate of 0.2/day [17]. Both patients 

and physicians require a maximum acceptable false positive rate of 0.14/day (once per week), and an 

idealized false positive rate of 0.03/day (once per month) according to a comprehensive survey performed 
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on seizure detection systems [20]. Additionally, most systems are expensive, and have no secondary 

purpose. 

 

There is currently a need for a seizure detector high sensitivity and significantly higher specificity that 

can be implemented in a commercial device.  

 

Scope 

This thesis covers the end-to-end development of the seizure detector, including preprocessing, feature 

selection, model selection, cross-validation, implementation and testing. We will cover theory of the 

selected models and attempt to prove mathematical justifications where necessary. Some more technical 

proofs are omitted, but will be referenced. The focus of this thesis is on the algorithm for seizure detection, 

not the implementation on the Apple Watch, and these sections are summarized for brevity. 

 

Aim 

The aim of this thesis is to develop a real-time watch-based, generalized tonic-clonic seizure detection 

system that can be deployed in a commercial smartwatch with state-of-the-art results. 
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Data Collection and Storage 

Users 

There are two versions of the EpiWatch application, one with the detector implemented and one without. 

The detector version is used in the EMU and Beta users. The non-detector version is used by the general 

public. Both are able to record data, but in this thesis we shall only use data collected from either the 

EMU or Beta users (non-epileptic). This is because we can verify the data we collect from these sources, 

a task not possible with the general public.  

 

We designate the users into 3 groups, corresponding to how our detector was developed. The groups are 

not independent. 

 

Table 1: Patient demographic breakdown for research phases 

 Total Users EMU Beta 

Anomaly Detector 

Training and 

Validation 

62 58 4 

Secondary Detector 

Training 
56 51 5 

Secondary Detector 
Validation 

36 30 6 

   

Sensors and Collection Pipeline 

We have made use of several iterations of the Apple Watch throughout the lifetime of the EpiWatch 

project. All of the watch versions (Series 1 – Series 4) have had a similar biosensor array, consisting of a 

Photoplethysomgraphy (PPG) sensor and a triaxial accelerometer. There is a gyroscope sensor available, 

however at present a public API does not exist. Other sensors (EKG, microphone, touch) are either too 

new, or not necessary for our current algorithm. 
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The accelerometer data was sampled at the Nyquist frequency of 50Hz (No seizure should cause 

vibrations in the tonic phase faster than 25Hz), and the heart rate data was calculated from the PPG sensor 

approximately every five seconds. This calculation is done one the watch by proprietary Apple software, 

so heart rate data can be sampled directly through the API. The data is stored on the watch in overlapping 

1 minute segments, and periodically uploaded to our custom cloud storage unit. Each data point has an 

associated time stamp at storage so it possible to align the heart rate and accelerometer samples during 

detection and retrospective analysis. The overlapping data is necessary so that none of the data is 

accidently lost if there is any delay during data upload, and typically ranges around 10 seconds. Any data 

multiples in the overlap window are handled during preprocessing. 

 

It is noted that in early versions of the Apple Watch (up until Series 3), there have been several issues 

with missing accelerometer and heart rate data. This missing data could last from a few seconds to several 

minutes, causing data gaps in recordings of both ‘normal’ activity and seizures. This was thought to be a 

software issue, and has mostly been alleviated with the release of the Series 4. Occasional gaps in the 

heart rate data coinciding with the tonic phase have still been observed, though this has likely been caused 

by improper contact of the sensor to the wrist. Additionally, as some asymmetric seizures will generalize 

to only side of the body, we would occasionally have seizure data with no valuable information. Seizures 

like this were not included in this study.   

 

Originally, data was stored as JSON files, referenced through a NoSQL (MongoDB) database hosted on 

a local server. After the first 4 seizures, we updated to storing data as S3 binaries, referenced through a 

Postgres SQL database. Each watch running the EpiWatch app has a unique identification number through 

which data can be referenced. Data collected from users in the Epilepsy Monitoring Unit is stored in a 

separate database from the general population in order to maintain data integrity, with each seizure being 

cross-referenced by an epileptologist against a Video-EEG to determine validity, and create a dataset of 

ground truth seizures.  
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The databases also store a plethora of relevant clinical information that are out of the scope of this project. 

While most of these features are not directly relevant to a seizure detection algorithm at this time, some 

may inform interesting trends in the long term that allow for a more personalized detector. Detection 

information is also stored in the backend, though as of now, detection is only being offered to EMU 

patients and Beta users the app. It is enabled through a tracking option on the interface, will 

simultaneously alert both the user (through heavy vibrations and an alarm) and the primary caregiver 

(through text SMS) upon being triggered.  

 

The user will also be presented with a prompt lasting 15 seconds requesting confirmation. If there is an 

affirmative or no response, this is followed by a clinically designed responsiveness test to measure 

awareness throughout the seizure. Responsiveness is unlikely during a primary GTCS, though is possible 

in secondary generalizing GTCS and other seizure subtypes. The detection time will be stored in the 

database under the unique watch ID. 

 

This seizure detection routine can also be manually triggered by the user, and this data will be stored 

separately in the backend.  
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Preprocessing 

Preprocessing is performed on the data before training to ensure consistency. This stage was necessary in 

both offline (retrospective) analysis, and real-time detection.  

 

Offline Preprocessing Pipeline 

The data was stored in 1-minute segments with overlaps to avoid any losses. If there was a value conflict 

on the same time sample, the second value was disregarded. Due to the data gaps that were possibly 

present in the data, an initial sorting step was also necessary to ensure the pulled data was mostly 

contiguous. 

 

A loop was run through all the stored data. Any samples with time stamps separated by more than 100 

milliseconds were cut and separated, leading to a set of shorter contiguous segments. Any segment less 

than 10 seconds in total length was discarded. 10 seconds is chosen as the threshold because some features 

will be calculated over a sliding window where the minimum length is 10 seconds. All heart rate samples 

are correspondingly grouped into the segments by time stamp. Each segment is saved independently 

according to a user and segment id.  

 

Due to the different sampling rates between HR and accelerometer data, many accelerometer data points 

that do not have a corresponding HR value. During feature extraction, heart rate interpolation is performed 

by assigning the last available heart rate value to each point (zero-order hold interpolation scheme). In 

cases where no previous heart rate value is available, the mean value of 80 bpm is used. 

 

This segmentation was not performed on the seizure data (this was excluded by cutting any segments 

contained in the seizure timestamps provided and verified by an epileptologist), as for semi-supervised 
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methods like Isolation Forest, Extended Isolation Forest, OCSVM and SVDD it was not necessary to use 

the seizure data for training. They would be needed during training, but we run the segments sequentially 

through the detectors to simulate real-time detection. While data gaps did exist in some seizures segments 

that could affect sensitivity and latency, they were rare and sporadic. 

 

The accelerometer sample was then digitally high pass filtered with a cutoff frequency of 0.5Hz (2nd order 

Butterworth) to remove the gravitational effect as well as any other low frequency trends. A low pass 

filter with a cutoff frequency of 20Hz (4th order Butterworth) was also used to any remove high frequency 

noise and spiking artefacts. This filter was IIR (Transposed-Direct-Form II Structure), applied in one 

direction. While our application is pseudo-real time, this is a causal filter, and can be extended to real-

time applications. 

 

A final zero order hold interpolation was performed on the accelerometer data to ensure a uniform 50Hz 

sampling rate. This uniformization is necessary for extraction of any spectral features, and the data may 

still contain points that are too close together due to overlaps or data gaps below 100 milliseconds. 

 

Real-Time Preprocessing Pipeline 

On the watch, preprocessing is all completed in pseudo-real time. Data is sampled from the sensors into 

two buffer arrays for accelerometer and heart rate respectively. These arrays are grouped into 1 second 

blocks. Every 5 seconds, the collected blocks are processed by the detection algorithm. Each block is first 

filtered (with the same filter coefficients as in the retrospective method), and then interpolated using a 

zero-order hold scheme. 

 

Then feature extraction is performed. Note that in the retrospective case, window features are calculated 

on a sliding window of 10 seconds. In real-time, 5 second payloads are passed to the detector, all block 
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features are extracted exclusively from the 1 second blocks. A dynamically updating circular buffer of 10 

seconds is created to hold data for windowed feature extraction. They are updated by popping old data 

once the buffer length passes 500 samples (corresponding to 10 seconds at 50 Hz sampling rate), and 

pushing any incoming samples. 

 

Heart rate features that require windowed data are also implemented using a similar buffering approach. 

As HR has a lower sampling rate, an equal buffer size corresponds to samples much further back in time. 

Thus windows for HR features can be much longer without causing memory concerns. 

 

Note that data-gaps cannot be handled in real-time. Any gaps will cause artefacts due to both filtering and 

interpolation. For windowed features, the last known 10 second interval will be used. If the data gaps are 

too big, they will collectively culminate in erroneous predictions from the detector. 
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Features 

Feature Extraction 

A number of possible features were developed to extract from the data in the offline. Features were 

calculated from either a window, or a 1 second block. Motivation for selecting these features was either 

from use cases in time-series tasks (Activity Recognition, EEG-based seizure detection, Quantitative 

Finance), and intuition. These features are only implemented in offline pipeline. Only a subset will be 

implemented on the watch. 

 

Heart Rate Features 

Current Heart Rate 

A low-cost time series feature to implement that is extremely telling. Most GTCS will have a significant 

increase in instantaneous heart rate (to between 140 and 180 bpm) for a short period of time that 

corresponds to the tonic and clonic phases. 

 

Mean Heart Rate Difference 

Heart rate changes in magnitude happen in the matter of seconds. The heart rate derivative feature 

captures the weighted mean of the heart rate derivative in a 30 second window. The weighted mean is to 

account for sampling inconsistencies. 

 

HR Mean =
1

𝑇
∑𝛥𝑡𝑖𝛥𝐻𝑅𝑖

𝑖

 

 

Where 𝑇 = ∑ 𝛥𝑡𝑖𝑖 , 𝛥𝐻𝑅𝑖  is the difference between any two consecutive HR samples, and 𝛥𝑡𝑖  is the 

corresponding difference in time. 



11 

 

Median Heart Rate Difference 

This is a custom feature built on comparing the median heart rate between two long long, non-overlapping 

windows. It gives a more stable insight on heart rate changes, and is a robust solution to data gaps. Start 

with two user defined parameters of far-window length 𝑡𝑓 and near-window length 𝑡𝑛 in seconds, with 

the current time defined by 𝑡. This feature is calculated by 

 

HR Median(𝑡𝑠 , 𝑡𝑓)

= median(HR samples from 𝑡 − 𝑡𝑠  to 𝑡) − median(HR samples from 𝑡 − 𝑡𝑓 to 𝑡

− 𝑡𝑠) 

 

Heart Rate Latency 

During GTCS, we often witness heart rate data drops in the high activity regions. This is likely caused by 

lack of consistent contact between the PPG sensor and the skin. Knowing that they can occur, we can use 

these data drops as a potential feature called heart rate latency. We calculate heart rate latency is a 

weighted average of the time difference between heart rate samples.  

 

Temporal Features 

Mean L2 – Norm 

Also known as the Euclidean norm of the signal. It is easy to implement in a real-time environment, and 

gives an idea of the total energy of the signal. The mean L2 should markedly increase during GTCS. 

Given accelerometer data matrix 𝑨 ∈ ℝ𝑁×3 , where a single accelerometer sample is represented by 

column 𝑖, 𝑨𝑖 = [𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3] , and the columns stands for the 𝑥, 𝑦, 𝑧 samples, the mean L2 norm is given 

by 

Mean =
1

𝑁
∑(∑𝐴𝑖𝑗

2

𝑗

)

1
2

𝑖
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Line Crossing Rate 

This feature corresponds to the total count of sign changes signal accumulates within a certain period of 

time. Alternatively it is thought of as the amount of times the signal has crossed the 0 line. It is a simplified 

measure of the frequency of a signal. GTCS have a characteristic frequency pattern starting at 8 Hz in the 

tonic phase before slowing to about 1.5 Hz in the clonic phase [21]. This produces a characteristic 

descending frequency chirp that may be recognized by temporal classifiers using this feature. Taking 𝑨 ∈

ℝ𝑁×3 as an accelerometer data matrix, LC rate can be formulated for one axis as 

 

LC =
1

2𝑇
∑|𝑠𝑖𝑔𝑛(𝐴𝑖𝑗) − 𝑠𝑖𝑔𝑛(𝐴(𝑖−1)𝑗)|

𝑁

𝑖=2

 

 

Where 𝑇 is the window size. This gives the line crossings for one of the accelerometer directions per unit 

of time. LC rates for the orthogonal axes must be calculated independently. We halve the values because 

we accumulated line crossings count is implicitly doubled when using the sign() function. We also set a 

threshold on the line crossing amplitude to mitigate effects of low amplitude noise.  

 

Mean Line Crossing Rate Derivative 

This is a filtered measure of the derivative of the line-crossing rate, often referred to as the velocity or 

divergence of the signal. Mean LC Rate a metric commonly used in quantitative finance, calculated by 

computing the difference between the short term and long-term exponential moving average (EMA) of a 

signal. A flat signal will have a low divergence, but a stable long term signal with jittery short term 

characteristics (tonic phase of a seizure after the segment has been filtered to remove any drift) will have 

have a correspondingly high divergence. This feature is also calculated individually for each axis in the 

accelerometer. Taking the accelerometer data matrix as 𝑨 ∈ ℝ𝑁×3 
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LCD =
1

𝑁 − 1
∑[𝛼𝑠𝐴𝑖𝑗 + (1 − 𝛼𝑠)𝐴(𝑖−1)𝑗] − [𝛼𝑙𝐴𝑖𝑗 + (1 − 𝛼𝑙)𝐴(𝑖−1)𝑗]

𝑁

𝑖=2

 

 

where 𝛼𝑠 is the coefficient for the short term EMA, and 𝛼𝑙 is the coefficient for long term EMA. Note we 

eventually take the average over the window size.  

 

Percentile 

This feature returns the value of the data at the 𝑛𝑡ℎ percentile. It is an easy feature to implement, and can 

give an idea of the amplitude distribution. In a high pass filtered signal (centered), 50th percentile will 

almost always return 0 during seizure segments. The edge percentiles (i.e 90th or 10th) for the same 

segment will return higher/lower values. 

 

Variance (Hjorth Activity) 

Variance provides a statistical method of measuring the variation from the mean in the data. Defined on 

a signal it is also known as Hjorth activity, and represents the signal power (0th spectral moment). It 

indicates the surface of the power spectrum in the frequency domain [22]. Seizures will generally provide 

high Hjorth activity in both tonic and clonic phases. Letting 𝑨 ∈ ℝ𝑁×3 represent the accelerometer data 

matrix, and 𝝁 ∈ ℝ3×1  represent the corresponding axis means, the variance along any individual 

accelerometer axis is calculated by 

 

Var =
∑ (𝐴𝑖𝑗 − 𝜇𝑗)

2

𝑖

𝑁
 

 

Standard Deviation 
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This feature Similar to variance in that it provides a metric of dispersion in the signal. Unlike variance, it 

has the advantage of being defined in the units of the variable we are observing. It is calculated by taking 

the square root of the variance. 

 

Normalized Jerk 

This feature is the normalized rate of change of acceleration, implemented to capture the direction 

changes and high acceleration that is present during GTCS, particularly during the tonic phase. We 

believe this may help with distinguishing seizures from similar rhythmic activities like running. Knowing 

accelerometer readings return acceleration data, and taking the acceleration data matrix as 𝑨 ∈ ℝ𝑁×3, 

 

Jerk =
1

𝑁
(∑(

𝐴𝑖𝑗 − 𝐴(𝑖−1)𝑗

𝛥𝑡𝑖
)

2

 

𝑁

𝑖

)

1
2

 

 

where 𝛥𝑡𝑖 represents the time difference between the sample 𝐴𝑖𝑗 and 𝐴(𝑖−1)𝑗. 

 

Hjorth Mobility 

Mobility can be interpreted as the standard deviation of the power spectrum of a signal along the 

frequency axis. It is also known as the 2nd spectral moment [22]. To calculate, we take 𝑨 ∈ ℝ𝑁×3 to be 

the accelerometer data matrix, with 𝑨:𝒋 defining the 𝑗𝑡ℎ column, and Var(⋅) as a function that calculates 

the variance. 𝑨:𝒋
′  is the discrete derivative of the vector 𝑨:𝒋, calculated as 

𝐴𝑖𝑗−𝐴(𝑖−1)𝑗

𝛥𝑡𝑖
. 

 

Mobility = √
Var(𝑨:𝒋

′ )

Var(𝑨:𝒋)
 

 

Hjorth Complexity 
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Complexity (4th spectral moment) is a dimensionless parameter, signifying the similarity of a signal to a 

pure sine wave [22]. This feature was created due to the oscillatory nature of characteristic GTCS. A 

variety real time tasks like walking, running and brushing of teeth will carry a similar oscillatory signal, 

potentially leading to more false positives that will have to be standard. Taking Mobility(⋅) as a function 

that calculates mobility, 

 

Complexity =
Mobility(𝑨:𝒋

′ )

Mobility(𝑨:𝒋)
 

 

Note all the Hjorth parameters calculate spectral statistics in the time-domain, and are a low-cost 

alternative to calculating specific spectral features through explicitly defining the power spectral density 

matrix. 

 

Root Mean Square Energy 

Also known as the quadratic mean, it is defined as the square root of the arithmetic mean of the squared 

signal values. It is a commonly used statistic in EEG feature extraction [23], as well as in electrical 

engineering. It gives a sense of the absolute magnitude of the average value of a signal. One again, we 

calculate it individually for each axis 

 

RMS = (
∑ (𝐴𝑖𝑗)

2

𝑖

𝑁
)

1
2

 

 

Line Length 

Defined as the running sum of absolute differences between consecutive samples in a predefined window. 

This feature has been used successfully in EEG based seizure detection [24], and is an approximation of 
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the fractal dimension of a signal [25]. This makes it efficient in detecting signal transients, motivating 

our use case. 

 

Line Length = ∑|𝐴𝑖𝑗 − 𝐴(𝑖−1)𝑗|

𝑁

𝑖

 

 

Magnitude Area 

This feature gives an estimate on the area under the signal envelope. It is a commonly used feature with 

accelerometer data, and has been used previously for activity recognition tasks [26]. While good for 

seizure detection, it will also capture other vigorous activity leading to additional false positives. 

 

SMA = ∑|𝐴𝑖𝑗|
𝑖

 

 

Energy 

This feature is similar to magnitude area. Is defined as the area under the squared magnitude of the signal. 

Due to the squared term inside the sum, higher magnitudes will be amplified compared to lower 

magnitudes. It is a common feature in signal processing.  

 

Energy = ∑𝐴𝑖𝑗
2

𝑖

 

 

Normalized Energy 

Due to imperfect sampling of our seizure, we use a normalized energy to allow comparison of signals 

with varying lengths. 
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Normalized Energy =
1

𝑁
∑𝐴𝑖𝑗

2

𝑖

 

 

Skewness  

Skewness is a higher order statistical feature which represents the symmetry of the signal amplidude 

probability density function (PDF). It is also known as the 3rd standardized moment. A perfectly 

symmetrical function will have skewness 0. Any time series with a few small values and many large 

values (left tail) will have negative skewness, while many small values and a few large values (right tail) 

will have positive skewness. We use standardized moment for scale invariance. Taking 𝜇𝑗 , 𝜎𝑗  as the 

arithmetic mean and standard deviation of 𝑨:𝒋 respectively 

 

Skewness = 𝐸 [(
𝑨:𝒋 − 𝜇𝑗

𝜎𝑗

)

3

] =
1

𝑁𝜎𝑗
3 ∑(𝑨:𝒋 − 𝜇𝑗)

3
𝑁

𝑖

 

 

Kurtosis 

This is a higher order statistical feature which represents the ‘peakedness’ of the signal amplitude PDF. 

It is also known as the 4th standardized moment. A kurtosis value close to three will indicate Gaussian-

like peakedness. Sharper peaks will correspond to higher kurtosis values. Taking 𝜇𝑗, 𝜎𝑗 as the arithmetic 

mean and standard deviation of 𝑨:𝒋 respectively 

 

Kurtosis = 𝐸 [(
𝑨:𝒋 − 𝜇𝑗

𝜎𝑗

)

4

] =
1

𝑁𝜎𝑗
4 ∑(𝑨:𝒋 − 𝜇𝑗)

4
𝑁

𝑖

 

 

Spectral Features 
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All spectral features are derived from a power spectral density (PSD) of a signal, estimated using Welch’s 

method. The PSD shows the power of the signal at varying frequencies. We use Welch’s method as it 

mitigates noise estimations in the frequency domain, and it is generally a good non-parametric approach 

that can be employed as a baseline. In formulas we represent it by the vector 𝑷 ∈ ℝ𝐹, where 𝐹 is the 

number of frequencies in the PSD. 

 

Dominant Frequency 

This feature finds the frequency value corresponding highest power in the PSD. Oscillation frequencies 

during tonic and clonic phases are well characterized during GTCS, and contain a descending chirp which 

may help temporal classifiers correctly determine whether a segment of data is a seizure or not. The 

dominant frequency may provide information in this regard.  

 

Spectral Edge Frequency 

A popular feature in EEG monitoring [27], comparable to the percentile measurement in the time domain. 

SEF determines the frequency below which x percent of the total signal power is located. To calculate, 

we can run a running sum on PSD vector 𝑷 ∈ ℝ𝐹, until we reach the required spectral edge value 𝛼 ∈

[0,1]. The frequency we stop on is the SEF 

 

SEF = 𝑓𝑠 , 

where 𝑓𝑠  is maximum frequency value that satisfies 

∑𝑃𝑖

𝑓𝑠

𝑖=0

≤ 𝛼 

 

Spectral Band Power 
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Measures the power of a signal in a chosen frequency band. Band power is another popular feature in 

EEG monitoring. Given user input frequencies of 𝑓𝑙 , 𝑓ℎ, where 𝑓𝑙 ≤ 𝑓ℎ 

 

SpectralBP = ∑ 𝑃𝑖

𝑓ℎ

𝑖=𝑓𝑙

 

 

Spectral Centroid 

This feature indicates the “center of mass” of the PSD. It is calculated by performing a weighted sum 

over all frequency values in 𝑷. Note when calculating the spectral centroid, 𝑖 defines individual frequency 

values, with 𝑃𝑖 being the corresponding power. 

 

Spectral Centroid = ∑
𝑖𝑃𝑖

∑ 𝑃𝑗𝑗
𝑖

 

 

Spectral Entropy 

Calculates the complexity of a signal by taking the entropy over its PDF. Entropy is an information 

theoretical concept that determines the uncertainty in some stochastic source. White noise will have 

highest spectral entropy, while all the power being focused on a single frequency will have a spectral 

entropy of 0. We will cover entropy in more detail during the feature selection section. To determine the 

PDF of 𝑷, we normalize. Defining 𝑷𝒏 ∈ ℝ𝐹 as the normalized PSD, and setting it elementwise by 𝑃𝑛𝑖
=

𝑃𝑖

∑ 𝑃𝑗𝑗
 

 

Spectral Entropy = −∑𝑃𝑛𝑖
𝑙𝑛 𝑃𝑛𝑖

𝑖
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We calculate 124 features in total, all derived from this base feature set. The feature names are given in 

table 2. Some features were additionally smoothed through exponential average filters, and the 

corresponding 𝛼 −parameter of these filters is provided in the title. Any features without an asterisk (*) 

must be calculated once for each accelerometer axis 

 

Table 2: List of all extracted features for offline analysis 

Temporal Acc Spectral Acc Heart Rate 

L2 Norm* Dominant Frequency Current Heart Rate* 

Percentile (25) Band Power 0-20 Hz Heart Rate Latency* 

Percentile (50) Band Power 0-2 Hz Mean HR Derivative* 

Percentile (75) Band Power 2-4 Hz Delta Median (30, 120)* 

Jerk Band Power 4-6 Hz Delta Median (60, 120)* 

Variance Band Power 6-8 Hz Delta Median (60, 180)* 

Standard Deviation Band Power 8-10 Hz  

Mobility Band Power 10-12 Hz  

Complexity Band Power 12-14 Hz  

RMS Band Power 14-16 Hz  

Line Length Band Power 16-18 Hz  
Magnitude Area Band Power 18-20 Hz  

Energy Spectral Edge (0.1)  

Normalized Energy Spectral Edge (0.5)  

Skewness Spectral Edge (0.85)  

Kurtosis Spectral Edge (0.9)  

LC Rate (LCR) Spectral Edge (0.95)  

LC Rate Derivative (LCRD) Spectral Centroid  

Smoothed LCRD 𝛼 = 0.02 Spectral Entropy  

Smoothed LCRD 𝛼 = 0.002   

Smoothed LCRD 𝛼 = 0.0002   

 

Feature Selection 

During original algorithm implementation, features were selected by hand. We visualized normal and 

seizure data while visualizing corresponding feature activations. Features that appeared most informative 

were selected. Retrospectively it was decided to perform an information theory based feature selection 

process for future algorithm iterations. Two such methods are described in this section. 
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Naïve Mutual Information (MIFS) 

While the goal of classifiers is to best approximate a function to accurately predict labels of novel patterns, 

the limited amount of data will often cause the classifier to overfit to the data in practice. Additionally, a 

large number of features will significantly slow down the learning process. By judiciously selecting only 

the relevant features, we can both reduce overfitting, and increase computational speed of both training 

and classification. 

 

Most of the existing feature selection algorithms can be separated into two methods, filter [28]–[30] and 

wrapper [28], [31]. Filter methods will select features independently from any learning algorithm, using 

statistics derived from the training data like distance, information and consistency. Wrapper methods use 

an exhaustive approach with a predetermined classifier to evaluate performance of varying subsets of 

features. This often leads to superior performance, at the expense of efficiency. Due to computational 

restrictions, we have decided to use a filter method for our feature selection, with mutual information 

being the selection statistic derived from the dataset.  

 

In general, classifiers can be considered to be systems that use information in the input data to remove 

uncertainty of output class selection. While some classifiers perform remarkably well, all real-world 

implementations will have some form of residual uncertainty, stemming from either insufficient or 

inefficient data. Of the two, inefficient data is easier to remedy, and can be done by choosing either more 

features (with the trade-off of higher complexity) or more informative features. To make sure all the data 

we are using is efficient, we take a further look at the concept of uncertainty. 

 

‘Uncertainty’ can be quantified by an information theoretic concept called entropy. If 𝐶 is the set of 

classes {𝑐1, … , 𝑐𝑁}, and 𝑃(𝑐𝑖) is the prior probability for each class, entropy is calculated by 
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𝐻(𝐶) = −∑𝑃(𝑐𝑖) 𝑙𝑜𝑔 𝑃(𝑐𝑖)

𝑁

𝑖=1

 

 

When given a set of feature vectors 𝐹 with 𝑀 individual feature vectors 𝑓 we can define conditional 

entropy as 

 

𝐻(𝐶|𝐹) = −∑𝑃(𝑓)(∑𝑃(𝑐𝑖|𝑓𝑗) 𝑙𝑜𝑔 𝑃(𝑐𝑖|𝑓𝑗

𝑁

𝑖=1

)

𝑀

𝑗=1

 

 

Here, 𝑃(𝑐|𝑓) is the conditional probability of a class given an input vector. In the case of continuous 

variables, the sum will be replaced with an integral. In general, conditional entropy will be lower than the 

initial entropy as we are providing additional information. Conditional entropy will be equal to initial 

entropy only when there is general independence between feature and output class, 𝑃(𝑐, 𝑓) = 𝑃(𝑐)𝑃(𝑓). 

We define mutual information 𝐼(𝐶; 𝐹) as the amount by which uncertainty is decreased by adding the 

extra information. Note that it is a symmetric metric. 

 

𝐼(𝐶;𝐹) = 𝐼(𝐹; 𝐶) = 𝐻(𝐶) − 𝐻(𝐶|𝐹) = 𝐻(𝐹) − 𝐻(𝐹|𝐶) 

𝐼(𝐶; 𝐹) = 𝐼(𝐹; 𝐶) = ∑∑ 𝑃(𝑐, 𝑓) 𝑙𝑜𝑔
𝑃(𝑐, 𝑓)

𝑃(𝑐)𝑃(𝑓)
𝐹𝐶

 

 

Note that this form is similar to the Kullback Liebler (KL) divergence, and indeed can be written as 

𝐼(𝐶; 𝐹) = 𝐷𝐾𝐿(𝑃(𝑐, 𝑓) || 𝑃(𝑐) ⊗ 𝑃(𝑓)) , where ⊗   is the tensor product. We informally write this 

quantity as 𝐷𝐾𝐿(𝑃(𝑐, 𝑓) || 𝑃(𝑐)𝑃(𝑓)) . Mutual Information measures the “bumpiness” of the joint 

distribution. Qualitatively, joint probability functions that are flat in the limit will tend to 0 for mutual 

information, while “bumpier” joint probabilities (indicating higher general correlation) will have higher 

mutual information. If both 𝐶 and 𝐹 were independent, then 𝑃(𝑐, 𝑓) = 𝑃(𝑐)𝑃(𝑓), and thus 𝐼(𝐶; 𝐹) = 0. 
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The motivation for choosing mutual information as the similarity metric was due to its capability of 

measuring a general dependence (both linear and non-linear) between two variables. As an example, 

consider an XOR function of two input variables with equal probabilities for possible inputs. The 

correlation between any one of the two input variables and the output variable will be 0, as 𝐶𝑜𝑟𝑟 ∝

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) = 0, because 𝐸(𝑋𝑌)  =  𝐸(𝑋)𝐸(𝑌) [See Appendix]. However, when 

calculating the mutual information between the input vector and the output, we are left with 1 bit. In other 

words, the input vector determines the output variable with no ambiguity. Though 𝑋1  is pairwise 

independent of 𝑌 and 𝑋2 is pairwise independent of 𝑌, the vector (𝑋1, 𝑋2) still uniquely determines 𝑌. 

General independence implies linear independence, but not vice-versa, and MI is a measure of general 

dependence, especially useful for non-trivial probability densities [32].   

 

After initial preprocessing, we have 124 computed features, which is infeasible to deploy on hardware 

(as well as adding unnecessary complexity). Given the set of features 𝐹, we want to select a subset 𝑆, 

|𝑆| < |𝐹|, wherein the selected features are maximally informative about the class.  

 

Calculating the mutual information for every possible feature vector is computationally impractical, 

forcing us to consider approximate solutions, like the mutual information based feature selection (MIFS) 

algorithm [32]. 

 

MIFS works by calculating MI with only individual features, like 𝐼(𝑓; 𝑐) and 𝐼(𝑓; 𝑓′), instead of with the 

feature vectors as a feasible approximation. The algorithm takes a greedy approach to feature selection. 

Given a set of selected features, it selects the next best feature based on maximizing the MI with the class 

variable, and then minimizing the average MI of the new feature when compared to the already selected 

feature set. The motivation here is to not pick dependent features, even though they may give good class 
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information. A 𝛽 parameter is chosen to regulate the importance of this redundancy penalizing term, 

leading to the loss function: 

 

ℒ(𝑓; 𝐶, 𝑆) = 𝐼(𝐶; 𝑓) − 𝛽 ∑ 𝐼(𝑓; 𝑠)
𝑠∈𝑆

 

 

Table 3: Algorithm for MIFS feature selection process 

Algorithm 1: MIFS 

1. Set 𝐹 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡 and 𝑆 ← {∅}, initialize 𝑘, 𝛽 

2. for 𝑓 in 𝐹: 

3.     Compute 𝐼(𝐶; 𝑓) and store 

4. end 

5. Identify feature 𝑓 that maximizes 𝐼(𝐶; 𝑓) 

6. Set 𝐹 ← 𝐹\{𝑓}, 𝑆 ← {𝑓} 
7. while |𝑆| < 𝑘: 
8.     for all features 𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆:  

9.         compute 𝐼(𝑓; 𝑠) and store 

10.     end 

11.     Identify feature 𝑓 that maximizes 𝐼(𝐶; 𝑓) − 𝛽 ∑ 𝐼(𝑓; 𝑠)𝑠∈𝑆  

12.     Set 𝐹 ← 𝐹\{𝑓}, 𝑆 ← {𝑓} 
13. end 

14. Output selected features set 𝑆 

 

In practice, it was found that 𝛽 = 1 is often optimal, though there is not any theoretical justification to 

back this claim [33]. 

 

Conditional Mutual Information (mMIFS-u) 

A more sophisticated method of feature selection can be obtained by observing conditional mutual 

information. The definition of conditional mutual information, similar to the definition of conditional 

probabilities, is 

 

𝐼(𝐶; 𝑓𝑖|𝑓𝑠) = 𝐻(𝑓𝑖|𝑓𝑠) − 𝐻(𝑓𝑖|𝐶, 𝑓𝑠)) 
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𝐶 represents the class variable, while the 𝑓’s represent feature vectors. Conditional independence denotes 

the mutual information of two variables conditioned on the third, with the right-hand side following from 

the definition of conditionality (analogous to probability). 

 

To develop a greedy feature selection method, we must find a computationally friendly method of 

calculating conditional mutual information 𝐼(𝐶; 𝑓𝑖|𝑓𝑠) [28]. We begin by proving two propositions 

 

Proposition 1: The conditional mutual information can be represented as  

𝐼(𝐶; 𝑓𝑖|𝑓𝑠) = 𝐼(𝐶; 𝑓𝑖) − [𝐼(𝑓𝑖; 𝑓𝑠) − 𝐼(𝑓𝑖 ; 𝑓𝑠|𝐶)]. 

Proof:  

    

𝐼(𝐶; 𝑓𝑖) − [𝐼(𝑓𝑖; 𝑓𝑠) − 𝐼(𝑓𝑖; 𝑓𝑠|𝐶)] 

= 𝐻(𝐶) − 𝐻(𝐶|𝑓𝑖) − [𝐻(𝑓𝑖) − 𝐻(𝑓𝑖|𝑓𝑠)] + 𝐻(𝑓𝑖|𝐶) − 𝐻(𝑓𝑖|𝑓𝑠 , 𝐶) 

= 𝐻(𝐶) − 𝐻(𝐶|𝑓𝑖) − 𝐻(𝑓𝑖) + 𝐻(𝑓𝑖|𝑓𝑠) + 𝐻(𝑓𝑖|𝐶) − 𝐻(𝑓𝑖|𝑓𝑠 , 𝐶) 

= 𝐻(𝑓𝑖|𝑓𝑠) − 𝐻(𝑓𝑖|𝑓𝑠 , 𝐶) + 𝐻(𝐶) − 𝐻(𝐶|𝑓𝑖) − [𝐻(𝑓𝑖) − 𝐻(𝑓𝑖|𝐶)] 

= 𝐼(𝐶; 𝑓𝑖) − 𝐼(𝐶;𝑓𝑖) + 𝐻(𝑓𝑖|𝑓𝑠) − 𝐻(𝑓𝑖|𝑓𝑠 , 𝐶) 

= 𝐼(𝐶; 𝑓𝑖|𝑓𝑠)  

 

Proposition 2: The ratio of entropy of 𝑓𝑠 and MI between 𝑓𝑠 and 𝑓𝑖 is not dependent on conditioning by 

the class variable. 

 

𝐻(𝑓𝑠|𝐶)

𝐼(𝑓𝑖; 𝑓𝑠|𝐶)
=

𝐻(𝑓𝑠)

𝐼(𝑓𝑖 ; 𝑓𝑠)
 

 

Translated to seizure detection, this assumption would hold as no matter if the data is coming from a 

seizure or not, the ratio of entropy and mutual information will hold. 
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Using proposition 1 and 2 

 

𝐼(𝐶; 𝑓𝑖|𝑓𝑠) = 𝐼(𝐶; 𝑓𝑖) − [𝐼(𝑓𝑖 ; 𝑓𝑠) − 𝐼(𝑓𝑖 ; 𝑓𝑠|𝐶)] 

= 𝐼(𝐶;𝑓𝑖) − [𝐼(𝑓𝑖 ; 𝑓𝑠) −
𝐼(𝑓𝑖; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐻(𝑓𝑠|𝐶)] 

= 𝐼(𝐶;𝑓𝑖) − [
𝐼(𝑓𝑖 ; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐻(𝑓𝑠) −

𝐼(𝑓𝑖 ; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐻(𝑓𝑠|𝐶)] 

= 𝐼(𝐶;𝑓𝑖) −
𝐼(𝑓𝑖 ; 𝑓𝑠)

𝐻(𝑓𝑠)
(𝐻(𝑓𝑠) − 𝐻(𝑓𝑠|𝐶)) 

= 𝐼(𝐶;𝑓𝑖) −
𝐼(𝑓𝑖 ; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐼(𝑓𝑠; 𝐶) 

 

In this form, we see how conditional mutual information measures the information of each new feature 

relative to a class, whilst penalizing a weighted dependency term. To pick the best feature, the 

optimization would be 

 

𝑓 = 𝑚𝑎𝑥
𝑓𝑖∈𝐹\𝑆

{𝐼(𝐶, 𝑓𝑖) − 𝑚𝑎𝑥
𝑓𝑠∈𝑆

𝐼(𝑓𝑖; 𝑓𝑠)

𝐻(𝑓𝑠)
𝐼(𝐶, 𝑓𝑠)} 

 

where 𝐹 is the initial feature set, and 𝑆 is the feature subset. The form of this feature selection method is 

identical to the naïve case, except now the weighting parameter is automatically updated through the 

conditional mutual information. 
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Table 4: Algorithm for mMIFS-u feature selection process 

Algorithm 2: mMIFS-U 

1. Set 𝐹 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡 and 𝑆 ← {∅}; initialize 𝑘; initialize 𝑚𝑖_𝑐𝑙𝑎𝑠𝑠_𝑠𝑡𝑜𝑟𝑒 array 

2. for 𝑓 in 𝐹: 

3.     Compute 𝐼(𝐶; 𝑓) and append to 𝑚𝑖_𝑐𝑙𝑎𝑠𝑠_𝑠𝑡𝑜𝑟𝑒 

4. end 

5. Identify feature 𝑓 that maximizes 𝐼(𝐶; 𝑓) 

6. Set 𝐹 ← 𝐹\{𝑓}, 𝑆 ← {𝑓} 
7. Intialize entropy storage array 𝐻_𝑠𝑡𝑜𝑟𝑒 of size 𝑘 

8. 𝐻_𝑠𝑡𝑜𝑟𝑒[0] ← Calculate entropy 𝐻(𝑓) 

9. Initialize 𝑘 × |𝐹| matrix 𝑚𝑖_𝑓𝑒𝑎𝑡_𝑠𝑡𝑜𝑟𝑒 

10. while |𝑆| < 𝑘: 
11.     for ind_f, f in enumerate (all features 𝑓 ∈ 𝐹): 
12.         𝑚𝑖_𝑓𝑒𝑎𝑡_𝑠𝑡𝑜𝑟𝑒[|𝑆| − 1][𝑖𝑛𝑑_𝑓]  ← 𝐼(𝑓𝑖; 𝑓𝑠𝑛𝑒𝑤

) , where 𝑓𝑠𝑛𝑒𝑤
 is the latest selected 

feature 

13.     end 

14.     Initialize outer maximization array 𝑜𝑢𝑡𝑒𝑟_𝑎𝑟𝑟 

15.     for ind_f, f in enumerate(all features 𝑓 ∈ 𝐹): 

16.         Initialize inner maximization array 𝑖𝑛𝑛𝑒𝑟_𝑎𝑟𝑟 

17.         for ind_s, s in enumerate(all features 𝑠 ∈ 𝑆):  

18.             compute 
𝑚𝑖_𝑓𝑒𝑎𝑡_𝑠𝑡𝑜𝑟𝑒[𝑖𝑛𝑑_𝑠][𝑖𝑛𝑑_𝑓]

𝐻_𝑠𝑡𝑜𝑟𝑒[𝑠]
 𝑚𝑖_𝑐𝑙𝑎𝑠𝑠_𝑠𝑡𝑜𝑟𝑒[𝑠] and append to 𝑖𝑛𝑛𝑒𝑟_𝑎𝑟𝑟 

19.         end 

20.         𝑖𝑛𝑛_𝑚𝑎𝑥_𝑣𝑎𝑙 ← Maximum value of 𝑖𝑛𝑛𝑒𝑟_𝑎𝑟𝑟 

21.         append 𝑚𝑖_𝑐𝑙𝑎𝑠𝑠_𝑠𝑡𝑜𝑟𝑒[𝑖𝑛𝑑_𝑓] − 𝑖𝑛𝑛𝑒𝑟_𝑚𝑎𝑥_𝑣𝑎𝑙 to 𝑜𝑢𝑡𝑒𝑟_𝑎𝑟𝑟 

22.     end 

23.     Identify index and corresponding feature 𝑓 maximizing 𝑜𝑢𝑡𝑒𝑟_𝑎𝑟𝑟 

24.     Set 𝐹 ← 𝐹\{𝑓}, 𝑆 ← {𝑓} 
25. end 

26. Output selected features set 𝑆 

 

 

Increases in speed can be gained through parallelization, especially in feature sets with a higher 

cardinality. Selection of the first and second features are illustrated in Figures 2 and 3 The first feature is 

selected through the highest mutual information value against the class variables. This is Delta Median 

(30, 180). Next we calculate the self-entropy of all the feature. This array will be stored in cache and 

reused during each feature selection loop. Using the mutual information between class variables, features,  

and entropy values, we next calculate the weighted redundancy term for each feature with the Delta 

Median (30, 180). Finally, we use the derived formula to calculate the conditional mutual information for 

the entire feature set, showing us the best second feature is heart rate. We recursively perform these 

calculations until we reach our chosen feature subset cardinality. 
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Figure 2: mMIFS-u feature selection algorithm applied in the context of seizure detection. a) shows the mutual 

information of all features with the class variable. b) shows the self-entropy of each feature 
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Figure 3: mMIFS-u feature selection algorithm applied in the context of seizure detection. a) shows the weighted 
redundancy term of all features compared to selected feature subset (Delta Median (30, 180)). b) shows final 

conditional entropy of all features 
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We selected 9 features using MIFS and mMIFS-u. These 9 features are shown from most informatic to 

least informatic according to the 2 algorithms. We choose 𝛽 = 0.001 to prevent over-penalization of 

redundancy which was giving us too many uninformative features. 

 

Selection Results 

Table 5: MIFS and mMIFS-u feature selection results 

MIFS (𝜷 = 𝟎.𝟎𝟎𝟏) mMIFS-u 

Delta Median (30, 180) Delta Median (30, 180) 
Heart Rate Heart Rate 

[Win.] Band Power 18-20Hz Delta median (60, 120) 

[Win.] Line Crossing rate (x) [Win.] Band Power 16-18Hz 

Mean HR derivative [Win.] Line Crossing rate (x) 

Delta median (60, 120) Jerk (x) 

Kurtosis (y) Delta median (30, 120) 

Kurtosis (x) Delta median(60, 180) 

Kurtosis (z) [Win.] Band Power 8-10Hz 

 

Note that most of the features are not shared between the two algorithms. In the initial mutual information 

calculation, it is seen that the heart rate features are highly informative but are concurrently also highly 

dependent. Also note that the 𝑥-axis seems most informative. Despite this mMIFS-u still seems to favor 

heart rate features, especially delta median. Perhaps most interestingly, all three kurtosis values have been 

selected by MIFS. As kurtosis seems to be one of the most uninformative features according to Figure 

2a, it stands to reason that it is highly independent from the other selected features and from kurtosis on 

other axes. To evaluate these features selection methods, the selected features would need to be tested on 

classification algorithms and compared.  

 

At the beginning of this project no information theory based feature selection was performed. Instead 

features were chosen empirically by comparing trends on a custom-built visualization system. There were 

also system constraints limiting our choices on early watches. Due to the 15% CPU ceiling, it was not 

possible to calculate the PSD matrix in real-time without significantly hindering detection latency. This 
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ruled out any spectral features at that time, despite their high performance. With the release of a more 

powerful CPU in the Series 4, in addition to the availability of optimized libraries on iOS, spectral features 

will be available in the future iterations of the algorithm.   

 

The following 9 features were chosen and implemented. Coincidentally, a few of the features correspond 

to those selected by MIFS, including HR, HR derivative and LC rate. A comparison of feature 

implementations between Swift (iOS) and Python (Offline) is provided. 

 

Table 6: Selected Features Implementation Details 

Feature Offline Implementation Real-Time Implementation 

Current Heart 

Rate 

Zero order hold interpolation. Mean is 

taken to calculate heart rate per 

second. In the case of no heart rate, 80 

bpm average is used. 

Causal nearest neighbors interpolation 

on the last available heart rate is used. 

In the case of multiple heart rates in the 

span of 1 second, the average is used. 

If no data is available, 0 is returned 

(will only occur before first sample) 

Heart rate 

derivative 

Computes a heart rate derivative 

estimate by finding the average 

derivative between samples within a 
30 second sliding window. Due to the 

variation in sampling, mean value is 

weighted by 𝛥𝑡 between HR samples. 

If less than 2 samples in a 30 second 

sliding window, 0 is returned. 

 

Running circular buffer of 120 samples 

is implemented. Samples categorized 

by timestamp to be in the past 30 
seconds is used for calculation. Same 

derivative and normalization as in the 

offline implementation. If less than 2 

samples in the 30 second window, 0 is 

returned. 

L2-Norm 

Accelerometer 

Computes mean L2 Norm of the 

accelerometer data in each 1 second 

block. Gives an indication of the 

energy in the signal. 

Computes mean of L2 Norm on each 1 

second block. 

X, Y, Z Line 

Crossing Rate 

Computes LC rate on a sliding 

window size of 10 seconds. An 
empirically determined threshold of 

0.05 has to be passed for a sign 

change to register as a line crossing to 

avoid spurious movements. 

Compute LC on 10 second window as 

in offline implementation.  10 second 
window is implemented as circular 

buffer of 500 samples. 

X, Y, Z Line 

Crossing Rate 

Derivative 

Short term parameter 𝛼𝑠 = 0.05 and 

long-term parameter 𝛼𝑙 = 0.005. 

Difference is taken between the two 

EMA values, and the mean is taken 

over all values in the sliding 10 

second window to find feature. 

Compute the two moving averages on 

a 10 second window implemented as a 

circular buffer. Identical 

implementation to offline case. 
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Anomaly Detection 

In development of this seizure detector, careful examination of our data and product constraints were 

performed to evaluate candidate models. As GTCS are a rare occurrence, the dataset was highly 

unbalanced. At the time of training, there were approximately 2000 total usable hours. Of this, there were 

ten validated GTCS, totaling 30 minutes. This sort of imbalance is commonly solved by anomaly 

detection algorithms, many of which have had successful applications in fields such as bank fraud, 

structural defects, and textual errors [34]. Outliers are categorized as either [35]: 

 

1. Global (Point Anomaly): Objects that deviate significantly from the rest of the data set, i.e. 

Meteors hitting earth 

2. Contextual Anomaly: Objects that deviate significantly from the data set based on a selected 

context, i.e. Snow fall in the summer 

3. Collective Anoomaly: A subset of objects collectively deviate significantly from the whole 

dataset, even if individual objects may not be outliers, i.e. DDoS attacks 

 

Due to the rare and aggressive nature of GTCS, it is a global outlier, which leads to the challenge of 

finding an appropriate measurement of deviation from the standard dataset. This leads to the plethora of 

anomaly detection algorithms, which are also classified into three overarching types [34]: 

 

• Type I: For datasets where there is no prior knowledge of the data, algorithms must determine 

a method of classifying the data according to some metric in feature space. Boundaries can be 

formed around groups, and defined as normal or anomalous. Test points are classified as outliers 

if they are not inside the normal regions. This is an unsupervised learning mechanism and most 

algorithms (generally clustering) assume anomalies and normal data have some distinct 

separation in feature space. 



33 

 

 

• Type II:  If we have a dataset that is labelled, we can create a classifier that will group all the 

points according to their labels. This is also known as supervised learning. A new test point in 

feature space can then be classified according to some classifier decision rule. The available data 

(both normal and anomalous) should define the underlying distribution, or the classifier may be 

prone to overfitting.  

 

• Type III:  In many cases of anomaly detection, the ratio of anomalous to normal data will be 

small. As the a large amount of normal data should approximately describe the support of all 

possible normal points in feature space, it is easier to use an algorithm that defines this support. 

This known as semi-supervised learning, where we only train on normal data points. Any test 

samples falling inside the boundary will be classified as normal, whilst all other points will be 

classified as anomalies. 

 

As we had a labelled dataset, we were going to either be creating a Type II or a Type III detection method. 

There are three general approaches to solving our problem. 

 

1. In a naïve approach of creating a Type II detector, we could weight the classes and make our 

model preferential to the minority class. As a simple example, we could create a logistic 

regression model, and weight it towards the seizure class. 

 

2. We could use undersampling, oversampling or a combination of both. There are many 

techniques already implemented in libraries like random undersampling, ADASYN, and 

SMOTE/ENN (Synthetic over sampling followed by Edited Nearest Neighbours used to pare 

down and centralize the anomalous data points). These techniques, along with manual synthetic 

data generation methods (rotation, translation, and dilation of feature vectors) are valid ideas 
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that have worked in other domains [36], but will not be the focus of this thesis. In this approach, 

the new dataset would then be used to create another Type II algorithm. 

 

3. Instead of trying to balance the dataset, we can try and just predict the outlier class using anomaly 

detection techniques. There have been a variety of anomaly detection methods available over 

the years, and they have the advantage of not trying to sample from an underlying distribution 

of data to forcefully balance a dataset, and have shown very good results in applications like 

intrusion detection, system health monitoring, fraud detection and fault detection in complex 

operating environments. This would be a Type III algorithm. 

 

In this thesis, we have decided to approach the problem of seizure detection from the perspective of 

anomaly detection due to the robustness it can provide, especially when we move on to detecting more 

subtle seizure subtypes like FUS. Additionally there have been decent results in literature [37] using 

similar sensor stacks (though detection generally occurs retrospectively). 

 

Detection Method Motivation 

We have explored 5 different anomaly detection methods in this thesis to apply to our problem. 

 

SVM/OCSVM: Support Vector Machines have been widely used in classification tasks and can show 

surprisingly good performance. It has a high complexity (between 𝑂(𝑛2) and 𝑂(𝑛3)) especially if you 

use kernel-SVM, but can still provide a good baseline for our other classifiers. Note as we are using SVM 

for anomaly detection, we will use a slight variation called One-Class SVM (OCSVM). 
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SVDD: Support Vector Data Description (SVDD) has a similar problem setup to SVM, but instead of 

attempting to generate a hyperplane, to separate points, it generates a hypersphere. This makes it well-

suited to anomaly detection tasks, and it has been used in literature to good effect [38], [39]. 

 

Isolation Forest: As we eventually want a real time detection mechanism implemented on a portable 

device, the low complexity and memory requirement of the isolation forest stood out. It performs best on 

low sample sizes during training, has inherently low bias and variance, and any dependencies between 

features will not affect its performance. 

 

Extended Isolation Forest: A natural extension to isolation forests, which can cause artefacts in certain 

areas of the search space, due to the orthogonal nature of how splits are made. The extended isolation 

forest takes advantage of the high dimensionality of the data by creating random hyperplane splits across 

the search-space rather than only splitting on certain feature values. 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

Anomaly Detection Theory 

One Class Support Vector Machine (OCSVM) 

A well-known technique in classification is Support Vector Machines (SVM) created by Vapnik [40]. As 

it is easily implemented and available, we use it as a baseline for future algorithms. Like most pattern 

recognition functions, SVM aims to find a pattern in the training set (𝒙1, 𝑦1),… , (𝒙𝑙 , 𝑦𝑙) ∈ ℝ𝐷 × {±1}, 

where 𝐷 is the dimensionality of the input space and define a decision function 𝑓(⋅) whereby it can 

correctly classify a new sample 𝑓(𝒙) = 𝑦 generated from the same underlying process as the training set. 

SVM’s accomplish this task be creating an optimal hyper-plane between all training samples 

corresponding to the two classes 𝑦 = +1 and 𝑦 = −1. 

 

First define the family of hyperplanes that SVM can model. Defining 𝒘 ∈ ℝ𝐷 

as the weight vector normal to the hyperplane, and 𝒙 ∈ ℝ𝐷 a point in 𝐷-dimensional space, we see that 

𝒘 ⋅ 𝒙 = 0 will describe the locust of points defining the hyperplane passing through the origin that is 

orthogonal to 𝒘. Extending this to the general case, we can define all hyperplanes as 𝒘 ⋅ 𝒙 = 𝑏, or 

equivalently 𝒘 ⋅ 𝒙 + 𝑏 = 0, where 𝑏 ∈ ℝ is the bias term. This is the definition of the general hyperplane 

equation [41]. 

 

All point will then lie on either side of this hyperplane. 𝒘 ⋅ 𝒃 < 0 will refer to points on the origin side of 

the hyperplane which we will classify as −1, whilst 𝒘 ⋅ 𝒙 + 𝑏 > 0 will refer to points on the opposite 

side, which we will classify as +1. The corresponding decision function is then 𝑓(𝑥) = 𝑠𝑖𝑔𝑛((𝒘 ⋅ 𝒙) +

𝑏).  
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Linearly separable datasets will have an infinite number of hyperplanes that can perfectly separate them. 

To find the best separating hyperplane, we try to maximize the distance from the decision surface to the 

closest data point. This distance is also known as the margin. 

 

Functional Margin: We can naively determine a margin with respect to a training example as  𝑚̂𝑖 =

𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏). This will always be positive (both 𝑦𝑖 and 𝒘 ⋅ 𝒙 + 𝑏 will both simultaneously be either 

positive or negative). From the definition of margin in the previous paragraph, the functional margin can 

be defined as the minimum margin 

 

𝑚̂ = min
𝑖=1…𝑁

𝑚̂𝑖  

where 𝑁 is the number of data points. The issue with the functional margin is that 𝑐𝒘 ⋅ 𝒙 = 𝑐𝑏 and 𝒘 ⋅

𝒙 = 𝑏 define the same hyperplane. It follows that we can set 𝑚̂𝑖 = 𝑦𝑖(𝑐𝒘 ⋅ 𝒙 + 𝑐𝑏) to be as arbitrarily 

large as we want to without violating the problem formulation. 

 

Figure 4: SVM margin and decision boundary 
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Geometric Margin: As 𝑐 can be set to any arbitrary number, we set it to scale the functional margin of 

the points that determine 𝑚̂. For those points lying closest to the decision plane, also known as the support 

vectors, 𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏) = 1. We are fixing 𝑐 to make this true. Note that 1 is used as a reference only due 

to mathematical convenience and we could have used any other positive real number. 

 

Our new decision rule for all points is 

 

𝑦𝑖 = {
−1    𝑖𝑓 𝒘 ⋅ 𝒙𝒊 + 𝑏 ≤ −1
+1    𝑖𝑓 𝒘 ⋅ 𝒙𝒊 + 𝑏 ≥ +1

 

𝑶𝑹 

𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) ≥ 1 

 

Note how this rule does not allow any points inside the margin. This means that the training data we 

provide must be linearly separable, otherwise this setup will fail. We will soon introduce a method to 

relax this constraint. 
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We define 𝑥1 and 𝑥2 as two points on the margins. As the goal is to maximize the margin, the closest 

points to the hyperplane from both classes will be equidistant, so can assume {𝒙𝟏, −1} and {𝒙𝟐, +1}.  

 

𝒘 ⋅ 𝒙𝟏 + 𝑏 = −1 

𝒘 ⋅ 𝒙𝟐 + 𝑏 = 1 

∴ 𝒘(𝒙𝟐 − 𝒙𝟏) = 2 

 

𝒙𝟐 − 𝒙𝟏 will traverse the margin, though it will not necessarily be orthogonal to the hyperplane. Since 𝒘 

is orthogonal to the hyperplane, the projection of 𝒙𝟐 − 𝒙𝟏 onto 𝒘 will give us the length of the margin. 

 

margin =
𝒘

‖𝒘‖
(𝒙𝟐 − 𝒙𝟏) =

2

‖𝒘‖
 

 

Figure 5: SVM decision boundary showing two support vectors on margins 
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The optimization problem can now be setup as 

 

max
𝒘,𝑏

2

‖𝒘‖
 

s. t.   𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1 ≥ 0  

 

As numerically optimization packages are typically setup to minimize convex functions, we turn this 

maximization into a minimization problem.  

 

min
𝒘,𝑏

1

2
‖𝒘‖𝟐 

𝑠. 𝑡.   𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1 ≥ 0, ∀𝑖 ∈ ℕ 

 

Note that as ‖𝒘‖ will be a strictly positive number, and as squaring is a monotonic operator, this is valid. 

We square ‖𝒘‖ to get rid of the 
1

2
 coefficient when taking the derivative in the future. 

 

We can incorporate the constraint into our minimization by setting up a Lagrangrian 

 

ℒ(𝒘, 𝑏) =
1

2
‖𝒘‖𝟐 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] 

𝛼𝑖 ≥ 0, ∀𝑖 ∈ ℕ 

 

The primal optimization is then 

 

𝑝∗ = min
𝒘,𝑏

max
𝛼𝑖≥0

1

2
‖𝒘‖𝟐 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] 
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It is readily seen how the Lagrangian enforces our constraint in the primal form. Since we are searching 

for the 𝛼𝑖 values that maximize the objective function, if the constraint is met, all of the 𝛼𝑖 = 0 in the case 

of non-support vectors and (𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1) = 0 in the case of the support vectors. Optimization will 

once again reduce the objective to 𝑚𝑖𝑛
𝒘,𝑏

1

2
‖𝒘‖𝟐 . If one or more of the constraints are violated, the 

corresponding 𝛼𝑖 ’s of those points will tend to ∞ , causing the objective to go to ∞ . Since we are 

eventually minimizing with respect to 𝒘, 𝑏, the solution will always contain appropriate values to enforce 

(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1 ≥ 0) to prevent this from happening.  

 

We define the dual formulation of this problem as  

 

𝑑∗ = max
𝛼𝑖≥0

 min
𝒘,𝑏

1

2
‖𝒘‖𝟐 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] 

 

We motivate the dual by first defining weak duality, which states that for any general problem (not 

necessarily convex), 𝑝∗ ≥ 𝑑∗. This is also known as the minimax inequality.  

 

Proof: For any function 𝜙 of vector variables 𝑥, 𝑦 

 

𝐃𝐞𝐟𝐢𝐧𝐞 𝑔(𝑥) ≜ min
𝑦

𝜙(𝑥, 𝑦) 

𝑔(𝑥) ≤ 𝜙(𝑥, 𝑦) 

max
𝑥

𝑔(𝑥) ≤ max
𝑥

𝜙(𝑥, 𝑦) 

max
𝑥

min
𝑦

𝜙(𝑥, 𝑦) ≤ max
𝑥

𝜙(𝑥, 𝑦) 

max
𝑥

min
𝑦

𝜙(𝑥, 𝑦) ≤ min
𝑦

max
𝑥

𝜙(𝑥, 𝑦) 
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Note that as 𝑚𝑖𝑛
𝒘,𝑏

1

2
‖𝒘‖𝟐 − ∑ 𝛼𝑖𝒊 [(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] is a pointwise minimization of affine functions, 

it is concave [42]. Since we maximize over 𝛼𝑖 ′𝑠 in the next step, the dual problem will always be a convex 

optimization [43].   

 

We define 𝑝∗ − 𝑑∗ as the duality gap, which will always be positive in the case of weak duality. We 

define a 0 duality gap as strong duality, meaning the solving the primal gives us the same answer as 

solving the dual. From Boyd [42], we know that strong duality holds if the chosen parameters meet the 

Karush-Kuhn-Tucker (KKT) conditions [42]–[44] identified below in the context of our problem 

1. Stationarity: 𝛻𝑤ℒ(𝒘, 𝑏, 𝛼) = 0 and 
𝜕ℒ(𝒘,𝑏,𝛼)

𝜕𝑏
= 0 

2. Dual Feasibility: 𝛼𝑖 ≥ 0 

3. Primal Feasibility: (𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1) ≥ 0 

4. Complementary Slackness: 𝛼𝑖(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1) = 0 

 

From [44], we see that by solving the optimization such that it meets the KKT conditions, we can assume 

strong duality, defined as where optimizing both the primal and dual will give the same solution, 𝑝∗ =

𝑑∗. We have already met conditions 2, 3 and 4 in the setup. Finally notice how if we take solve the inner 

optimization of the dual, we will satisfy condition 1. 

 

𝜕

𝜕𝒘
ℒ(𝒘, 𝑏, 𝛼) = 𝒘 − ∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑖

= 0 

∴ 𝒘 = ∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑖

 

 

𝜕

𝜕𝑏
ℒ(𝒘, 𝑏, 𝛼) = 0 − ∑𝛼𝑖𝑦𝑖

𝑖

= 0 
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∴ ∑𝛼𝑖𝑦𝑖

𝑖

= 0 

 

We can then simplify the dual problem using these solutions 

 

1

2
‖𝒘‖𝟐 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] 

=
1

2
𝒘 ⋅ 𝒘 − ∑𝛼𝑖

𝒊

𝑦𝑖𝒘 ⋅ 𝒙𝒊 − 𝑏 ∑𝛼𝑖

𝒊

𝑦𝑖 + ∑𝛼𝑖

𝒊

  

=
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 − ∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 − 𝑏 ∑𝛼𝑖

𝒊

𝑦𝑖 + ∑𝛼𝑖

𝒊

 

= ∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 

 

Leading to our final dual form: 

 

𝑚𝑎𝑥
𝛼𝑖

∑ 𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 

𝑠. 𝑡. 𝑎𝑖 ≥ 0 

     ∑𝛼𝑖𝑦𝑖

𝑖

= 0  

 

This can now be solved using numerical optimization algorithms such as SMO [43]–[45], a commonly 

used algorithm to solve quadratic programming problems. Proof of SMO is out of the scope of this thesis, 

though it is implemented by multiple Quadratic Programming Solvers and SVM libraries. Note that the 

program will return us optimal for 𝛼𝑖, most of which will be 0 (only support vectors will have non-zero 

𝛼𝑖 ′𝑠). We can use these to calculate 𝒘, and then use the complementary slackness condition to calculate 
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𝑏. Then for any new test point, we can classify it according to 𝑦𝑡𝑒𝑠𝑡 = 𝑠𝑖𝑔𝑛(𝒘⊤𝒙 + 𝑏). By convention, 

any point that falls on the hyperplane boundary will generally go to the positive class [46]. 

 

Soft-Margin SVM (Non-separable case) 

With the current derivation of SVM, the optimization will fail if the data is non-separable. Additionally, 

any separable data with outliers will dramatically shift the decision hyperplane. In this case we can add 

in some slack parameters to relax the strict separability condition, leading our optimization problem to 

become 

 

min
𝜉,𝒘,𝑏

1

2
‖𝒘‖𝟐 + 𝐶 ∑𝜉𝑖

𝒊

 

𝑠. 𝑡.   𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1 ≥ 𝜉𝑖 

       𝜉𝑖 ≥ 0, ∀𝑖 ∈ ℕ 

 

The 𝐶 parameter controls relative weighting on the penalizing term, and can be set during tuning. High 

𝐶 values will force the SVM to strictly enforce the margins, whilst small values will allow for more miss-

classification. Also note the constraint on 𝜉𝑖. Only points that break the margin will have a value for 𝜉𝑖, 

with points on the correct side of the margin having 𝜉𝑖 = 0. This is known as hinge loss and it is non-

differentiable. Primal solutions can make use of the sub-gradient, whilst dual solutions will result in a 

quadratic problem. This formulation is known as L1-SVM, and enforces sparsity in the solution. L1-SVM 

can be used in deep learning models using sub gradient descent, or we could make the hinge loss 

differentiable by using an L2-SVM with an objective of 𝑚𝑖𝑛
𝜉,𝒘,𝑏

1

2
‖𝒘‖𝟐 + 𝐶 ∑ 𝜉𝑖

2
𝒊  [47]. 

 

To solve the L1-SVM formulation, we follow the same process as the original SVM. Setting up the 

Lagrangian, 
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ℒ(𝒘, 𝑏, 𝜉, 𝛼, 𝑟) =
1

2
‖𝒘‖𝟐 + 𝐶 ∑𝜉𝑖

𝒊

− ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) + 𝜉𝑖 − 1)] − ∑𝑟𝑖𝜉𝑖

𝒊

 

 

Optimizing the Lagrangian w.r.t 𝒘, 𝑏, 𝜉, 

 

𝜕

𝜕𝒘
ℒ(𝒘, 𝑏, 𝜉, 𝛼, 𝑟) = 𝒘 − ∑𝛼𝑖𝑦𝑖𝒙𝒊

𝑖

= 0 

∴ 𝒘 = ∑ 𝛼𝑖𝑦𝑖𝒙𝑖

𝑖

 

𝜕

𝜕𝑏
ℒ(𝒘, 𝑏, 𝛼) = 0− ∑ 𝛼𝑖𝑦𝑖

𝑖

= 0 

∴ ∑𝛼𝑖𝑦𝑖

𝑖

= 0 

𝜕

𝜕𝝃
ℒ(𝒘, 𝑏, 𝜉, 𝛼, 𝑟) =  𝐶 − 𝛼𝑖 − 𝑟𝑖 = 0 

∴ 𝐶 = 𝛼𝑖 + 𝑟𝑖 

 

Substituting and rearranging the Lagrangian 

 

1

2
‖𝒘‖𝟐 + 𝐶 ∑𝜉𝑖

𝒊

− ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) + 𝜉𝑖 − 1)] − ∑ 𝑟𝑖𝜉𝑖

𝒊

 

=
1

2
‖𝒘‖𝟐 + ∑𝛼𝑖𝜉𝑖

𝒊

+ ∑𝑟𝑖𝜉𝑖

𝒊

− ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] − ∑𝛼𝑖𝜉𝑖

𝒊

− ∑𝑟𝑖𝜉𝑖

𝒊

 

=
1

2
𝒘 ⋅ 𝒘 − ∑𝛼𝑖

𝒊

[(𝑦𝑖(𝒘 ⋅ 𝒙𝒊 + 𝑏) − 1)] 

=
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 − ∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 − 𝑏 ∑𝛼𝑖

𝒊

𝑦𝑖 + ∑𝛼𝑖

𝒊
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= ∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 

 

Note that this is exactly the same Lagrangian that we got in the hard-margin SVM. The difference will 

be in the constraints, as we now have 𝐶 = 𝛼𝑖 + 𝑟𝑖 . With the knowledge that 𝛼𝑖 ≥ 0 and 𝑟𝑖 ≥ 0 (from the 

dual feasibility KKT condition), we can deduce that 0 ≤ 𝛼𝑖 ≤ 𝐶, as 𝐶 − 𝑟𝑖 = 𝛼𝑖 must be true. This leads 

to the final dual setup 

 

max
𝛼

∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊 ⋅ 𝒙𝒋 

𝑠. 𝑡.   0 ≤ 𝛼𝑖 ≤ 𝐶,∀𝑖 ∈ ℕ 

        ∑ 𝛼𝑖𝑦𝑖

𝑖

= 0 

 

This dual problem can once again be solved using a quadratic program, but this time will not break if the 

dataset is not linearly separable. As before, once the boundary is made, to test a new point, we use 𝑦𝑡𝑒𝑠𝑡 =

𝑠𝑖𝑔𝑛(𝒘⊤𝒙 + 𝑏), with any point on the boundary going to the +1 class. 

 

Kernel Methods 

Due to how SVMs are setup, they have the ability to find non-linear hyperplanes by projecting the data 

and performing the optimization in a higher dimensional space. This is known as the kernel trick. To 

investigate this, let’s say we have a 1-dimensional dataset, where each value 𝑥 ∈ ℝ. Let’s also assume 

that the dataset is non-linearly separable, but if we transform all the points to the 2D space with 𝜙(𝑥) =

(𝑥, 𝑥2), it is linearly separable. We can simply project all of the points to this 2D space, and perform the 

entire optimization there, essentially solving 
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max
𝛼

∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋) 

𝑠. 𝑡.   0 ≤ 𝛼𝑖 ≤ 𝐶,∀𝑖 ∈ ℕ 

        ∑𝛼𝑖𝑦𝑖

𝑖

= 0 

 

After solving the Quadratic Program, we will use 

 

𝑦𝑡𝑒𝑠𝑡 = sign(𝒘 ⋅ 𝜙(𝒙𝑡𝑒𝑠𝑡) + 𝑏) 

= sign(∑𝛼𝑖𝑦𝑖𝜙(𝒙𝑖) ⋅
𝑖

𝜙(𝒙𝑡𝑒𝑠𝑡) + 𝑏) 

 

as a decision rule, where we were able to substitute 𝒘 = ∑ 𝛼𝑖𝑦𝑖𝜙(𝒙𝑖)𝑖  to form an inner product in the 

transformed space. Projecting every variable to a higher dimensional space and then computing the dot 

product is inefficient. There exists a family of functions called kernels that can compute the inner product 

in a higher dimensional feature space at a low cost. As all of the 𝒙 values involved in optimization and 

testing are used in inner products, this is an efficient way of computing non-linear decision boundaries 

for your dataset.  

 

For a kernel to be valid, it has to obey Mercer’s condition, which states that for any kernel, it is necessary 

and sufficient that for {𝑥1, … , 𝑥𝑚}, (𝑚 < ∞), the corresponding kernel matrix is symmetric and positive 

semi-definite [43], [44], [48]. You can build your own kernel and then test these conditions 

retrospectively to test for validity, but this is often tricky due to the difficulty of testing for positive semi-

definiteness.  
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Another option is to create kernels by construction. As a simple example, take two vectors 𝒙 = (𝑥1, 𝑥2), 

and 𝒚 = (𝑦1, 𝑦2), giving the inner product 𝒙⊤𝒚 = (𝑥1𝑦1, 𝑥2𝑦2). If we square this dot product, we will get 

pairwise multiplications of each term (𝒙⊤𝒚)2 = 𝑥1
2𝑦1

2 + 𝑥1𝑥2𝑦1𝑦2 + 𝑥1𝑥2𝑦1𝑦2 + 𝑥2
2𝑦2

2. This is the same 

as projecting the vectors to a a quadratic feature space, 𝜙(𝒙) = (𝑥1
2, 𝑥1𝑥2, 𝑥2𝑥1, 𝑥2

2) , 𝜙(𝒚) = (𝑦1
2,

𝑦1𝑦2,  𝑦2𝑦1,  𝑦2
2) . Note how (𝒙⊤𝒚)2 = 𝜙(𝒙) ⋅  𝜙(𝒚) . We call 𝐾(𝒙, 𝒚) = (𝒙⊤𝒚)2  a kernel function. It 

calculates the value of the dot product in the quadratic space without having to actually transform 𝒙 and 

𝒚 to the quadratic space. 

 

This may seem like a vacuous step, but we can extend the notion to 𝑛-dimensional inputs with 𝑚-degree 

polynomials. If we redefine the input vectors to be 𝒙 = (𝑥1, … , 𝑥𝑛), and 𝒚 = (𝑦1, … , 𝑦𝑛), we can describe 

a generalized 𝑚’th degree polynomial kernel to be 

 

𝐾(𝒙, 𝒚) = (𝒙⊤𝒚)𝑚 = (∑𝑥𝑖𝑦𝑖

𝑖

)

𝑚

= ∑ 𝑥𝑖1
𝑥𝑖2

… 𝑥𝑖𝑚
𝑖1,𝑖2,…,𝑖𝑚

𝑦𝑖1
𝑦𝑖2

… 𝑦𝑖𝑚
 

 

This is the dot product in the 𝑚’th polynomial space, and is relatively easy to calculate, whilst calculating 

the actual vector projections in that space become extremely complex. The kernel mentioned above is 

known as the polynomial kernel with no offset. The most popular kernels to start off with are 

 

• Polynomial: 𝐾(𝒙, 𝒚) = (𝒙⊤𝒚 + 𝑏)𝑚  

• Sigmoid: 𝐾(𝒙, 𝒚) = (𝛼𝒙⊤𝒚 + 𝑐) 

• Radial Basis Function (Gaussian): 𝐾(𝒙, 𝒚) = 𝑒𝑥𝑝 (−
‖𝒙−𝒚‖2

2𝜎2 ) 

 

Note there are many more valid kernels available. The Gaussian RBF kernel is especially popular as a 

baseline due to its characteristics of stationarity (or translation invariance, 𝐾(𝒙, 𝒚) = 𝐾(𝒙 + 𝒄, 𝒚 + 𝒄)), 
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and isotropicity (scaling by the 𝜎 parameter occurs by the same amount in all directions). They also work 

well in practice and are very easy to tune (only 1 parameter in the search space), compared to other 

kernels. 

 

Nu-SVM 

There is another possible realization of a soft-margin SVM known as 𝜈-SVM [49], [50]. Instead of 𝐶, we 

use a new parameter 𝜈 ∈ (0,1] that will set an upper and lower bound on the number of support vectors 

on the wrong side of the hyperplane. As it is similar to 𝐶-SVM, we start with the primal objective 

 

min
𝒘,𝑏,𝜉,𝜌

1

2
‖𝒘‖2 − 𝜈𝜌 +

1

𝑁
∑𝜉𝑖

𝑖

 

𝑠. 𝑡.   𝑦𝑖(𝒘 ⋅ 𝝓(𝒙𝒊) + 𝑏) ≥ 𝜌 − 𝜉𝑖 , ∀𝑖 ∈ ℕ 

       𝜉𝑖 ≥ 0, 𝜌 ≥ 0 

 

We can see from the first constraint that the parameter 𝜌 sets the margin of the SVM, and in this case that 

margin will be 
2𝜌

‖𝒘‖
. Only points inside this margin will be penalized according to the constraint. This was 

not possible in the 𝐶-SVM, where points were penalized as soon as they broke the set geometric margin 

of 1. Additionally note how by tuning the parameter 𝜈 we can encourage 𝜌 to grow faster. The increase 

in 𝜌 will be counteracted by a commensurate increase in 𝜉𝑖 which will be penalized. This is how the 

tension in this optimization is setup.  

 

It has several important properties, proved in [49], but they are not going to be covered in this thesis as 

both types of soft margin SVM have similar classification powers, and the justification of the primal from 

first principles is more involved. Once the primal has been found as shown above, we follow the same 

steps as with 𝐶-SVM to obtain the following dual [50]. 
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min
𝜶

1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋) 

𝑠. 𝑡.   0 ≤ 𝛼𝑖 ≤
1

𝑁
, ∀𝑖 

        ∑𝛼𝑖𝑦𝑖

𝑖

= 0 

        ∑𝛼𝑖

𝑖

≥ 𝜈 

 

with the decision function 𝑦𝑡𝑒𝑠𝑡 = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝜙(𝒙𝑖) ⋅𝑖 𝜙(𝒙𝑡𝑒𝑠𝑡) + 𝑏). As before, it’s the same objective 

and evaluation function, with some adjustments to the constraints. 

 

The main advantage of 𝜈-SVM is that the 𝜈 parameter to define a specific number of support vectors that 

you may want. This can help in data classification tasks. Additionally, 𝜈-SVM has also been implemented 

in many common libraries. In practice, 𝜈 -SVM has been known to be slightly trickier to tune in 

comparison with 𝐶-SVM, and both show similar results if tuned properly.  

 

One-Class SVM 

In cases of anomaly detection, using SVMs as we have derived them in the previous sections can lead to 

inaccurate decision boundaries, as the underlying distribution of the anomaly data will not be well 

represented in our training set. Scholkopf et. al. [46] addressed this issue by slightly modifying the 

original SVM formulation. The strategy was to map the feature values to some kernel space, and then 

find a separating hyperplane that separates them from the origin with maximum margin. This will create 

a decision function that will capture most of the data points within a small region in input space, labelling 

any test point that falls into that region as +1. Any point that falls outside of that region will be set as -1.  
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Due to the large sampling of normal data, we can assume that it represents the support reasonably well, 

and as such anything outside will be classified as an anomaly. We will walk through the setup of this type 

of SVM, but due to its similarities with the previous sections, certain steps will be omitted.  

 

We begin with the primal. Since we want to maximize the margin from the origin, we decide to exclude 

the bias term 𝑏 as then the hyperplane is guaranteed to pass through the origin. Like in the 𝜈-SVM setup, 

we set a free parameter 𝜌  for the margin, and 𝜈 ∈ (0,1] will be a hyperparameter that controls the 

penalization term for points that break the margin. A 𝜈 → 1 will allow for a lot of slack, whilst 𝜈 → 0 will 

correspond to a hard margin setup. Also note the lack of 𝑦𝑖 term, as we are only training with positive 

samples. 

 

min
𝒘,𝝃,𝜌

1

2
‖𝒘‖2 +

1

𝜈𝑁
∑𝜉𝑖

𝑖

− 𝜌 

𝑠. 𝑡.   𝒘 ⋅ 𝜙(𝒙𝒊) ≥ 𝜌 − 𝜉𝑖 , 

        𝜉𝑖 ≥ 0, ∀𝑖 ∈ ℕ 

 

With this decision boundary, we will expect that most of the training data will be mapped to +1 with the 

decision function 𝑠𝑖𝑔𝑛(𝒘 ⋅ 𝜙(𝒙) − 𝜌). The Lagrangian can be setup as 

 

ℒ(𝒘, 𝝃, 𝜶, 𝜷, 𝜌) = min
𝒘,𝝃,𝜌

1

2
‖𝒘‖2 +

1

𝜈𝑁
∑𝜉𝑖

𝑖

− 𝜌 − ∑𝛼𝑖(𝒘 ⋅ 𝜙(𝒙𝒊) − 𝜌 + 𝜉𝑖)

𝑖

− ∑𝛽𝑖𝜉𝑖

𝑖

 

 

With the derivatives 

 

𝜕

𝜕𝒘
ℒ(𝒘, 𝝃, 𝜶, 𝜷, 𝜌) = 𝒘 − ∑𝛼𝑖𝜙(𝒙𝒊)

𝑖

= 0 
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∴ 𝒘 = ∑𝛼𝑖𝜙(𝒙𝑖)

𝑖

 

𝜕

𝜕𝝃
ℒ(𝒘, 𝝃, 𝜶,𝜷, 𝜌) =

1

𝜈𝑁
− 𝛼𝑖 − 𝛽𝑖 = 0 

∴ 𝛼𝑖 =
1

𝜈𝑁
− 𝛽𝑖  

𝜕

𝜕𝜌
ℒ(𝒘, 𝝃, 𝜶, 𝜷, 𝜌) = −1 + ∑𝛼𝑖

𝑖

 

∴ ∑𝛼𝑖

𝑖

= 1 

 

From the KKT conditions, we know 𝛼𝑖 , 𝛽𝑖 ≥ 0, and using this we can simplify the middle inequality to 

0 ≤ 𝛼𝑖 ≤
1

𝜈𝑁
. Substituting these values back into the objective, we can simplify it 

 

1

2
𝒘 ⋅ 𝒘 +

1

𝜈𝑁
∑𝜉𝑖

𝑖

− 𝜌 − ∑𝛼𝑖(𝒘 ⋅ 𝜙(𝒙𝒊) − 𝜌 + 𝜉𝑖)

𝑖

− ∑𝛽𝑖𝜉𝑖

𝑖

 

=
1

2
∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

+
1

𝜈𝑁
∑𝜉𝑖

𝑖

− ∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

− ∑𝛼𝑖𝜉𝑖

𝑖

− ∑𝛽𝑖𝜉𝑖

𝑖

 

= −
1

2
∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

+ ∑
1

𝜈𝑁
𝜉𝑖

𝑖

− ∑(𝛼𝑖 + 𝛽𝑖)𝜉𝑖

𝑖

 

= −
1

2
∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

 

 

With this objective, the dual can now be written as 

 

min
𝜶

1

2
∑𝛼𝑖𝛼𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋)

𝑖,𝑗

 

s. t.   0 ≤ 𝛼𝑖 ≤
1

𝜈𝑁
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       ∑𝛼𝑖

𝑖

= 1 

 

with the decision function sign(𝒘 ⋅ 𝜙(𝒙) − 𝜌) 

 

From [43], and the complementary slackness KKT conditions, we know that the support vectors will only 

exist when 0 < 𝛼𝑖 <
1

𝜈𝑁
 (Not the strict inequalities). We also know that on the support vectors, 𝜉𝑖 = 0. 

So to find 𝜌, we find our support vectors from our quadratic program, then use 𝜌 = (𝒘 ⋅ 𝜙(𝒙𝒊)) =

∑ 𝛼𝑗𝐾(𝒙𝒊, 𝒙𝒋)𝑗 .  

 

Finally, notice how like all SVM methods, we can use the kernel trick to project the data into higher 

dimensional space. For one-class SVM RBF is generally a good choice for a kernel as it will give an 

enclosed boundary to define support of your data. 

 

 

Figure 6: OCSVM implementation examples. Colored bands show distance of points from the boundary, with white 
being anything inside the boundary. a) shows OCSVM with a linear kernel on a 2D dataset. Notice how the boundary 
separates the dataset from the origin. b) shows same kernel with a higher slack, allowing more points to break the 
boundary. c) shows same dataset with an RBF kernel 
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Support Vector Data Description (SVDD) 

As in one-class SVM, support vector data description aims to be targeted towards anomaly detection by 

describing the support of a distribution of the given data [51]. The strategy of SVDD is not to attempt to 

model the perfect support of the target dataset. Rather, we model a spherically shaped boundary around 

the target set, and minimize the radius of this sphere to maximize the possibility of outlier detection. 

 

We approach the problem in a similar manner to other support vector problems. First define a training set 

of only “normal” data datapoints {𝒙𝟏, … , 𝒙𝒏}, 𝑛 ∈ ℕ for which we want to find the support. We then also 

assume that the data has some (ideally equal) variance in all of the feature dimensions of the input. This 

is an important assumption as if we model on a thin dataset, there will be a lot of room inside the sphere 

for anomalies to be captured. We then define a hypersphere with center 𝒄 and radius 𝑅 > 0, with the goal 

of SVDD being to minimize this sphere whilst demanding it contain all training samples.  

 

As in the soft margin SVM, we will add some slack to the constraints to ensure that our optimization is 

possible. This gives the primal 

 

min
𝑅

𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

 

𝑠. 𝑡.   ‖𝒙𝒊 − 𝒄‖2 ≤ 𝑅2 + 𝜉𝑖 , 

        𝜉𝑖 ≥ 0, ∀𝑖 ∈ ℕ 

 

Note once more how the slack parameter creates the optimization problem we are searching for. It relaxes 

the constraint of every datapoint being inside the hypersphere, however the further away a datapoint is, 

the more it is penalized.  

 

The corresponding Lagrangian formulation is 
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ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖) = 𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

− ∑𝛼𝑖[(‖𝒙𝒊 − 𝒄‖2) + 𝑅2 + 𝜉𝑖]

𝑖

− ∑𝛾𝑖𝜉𝑖

𝑖

 

= 𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

− ∑𝛼𝑖[(𝒙𝒊 ⋅ 𝒙𝒊 − 2𝒄 ⋅ 𝒙𝒊 + 𝒄 ⋅ 𝒄) + 𝑅2 + 𝜉𝑖]

𝑖

− ∑𝛾𝑖𝜉𝑖

𝑖

 

 

Where according to the KKT conditions, 𝛼𝑖 ≥ 0, 𝛾𝑖 ≥ 0. In the dual, we minimize the Lagrangian w.r.t. 

𝑅, 𝒄 and 𝜉𝑖. 

 

𝜕ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖)

𝜕𝑅
= 2𝑅 − 2𝑅 (∑𝛼𝑖

𝑖

) = 0 

∴ ∑𝛼𝑖

𝑖

= 1 

𝜕ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖)

𝜕𝒄
= 2∑𝛼𝑖𝑥𝑖

𝑖

− 2𝒄∑𝛼𝑖

𝑖

= 0 

∴ 𝒄 =
∑ 𝛼𝑖𝒙𝒊𝑖

∑ 𝛼𝑖𝑖

= ∑𝛼𝑖𝒙𝒊

𝑖

 

𝜕ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖)

𝜕𝜉𝑖

= 𝐶 − 𝛼𝑖 − 𝛾𝑖 = 0 

 

Note that in the last partial, we take the derivative w.r.t. a single 𝜉𝑖. This is why the summation does not 

matter, all other terms in the sum except for this single 𝜉𝑖 will be constant. Substituting these formulations 

back into our original Lagrangian 

 

ℒ(𝑅, 𝒂, 𝛼𝑖 , 𝛾𝑖 , 𝜉𝑖) = 𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

− ∑𝛼𝑖[(𝒙𝒊 ⋅ 𝒙𝒊 − 2𝒄 ⋅ 𝒙𝒊 + 𝒄 ⋅ 𝒄) + 𝑅2 + 𝜉𝑖]

𝑖

− ∑𝛾𝑖𝜉𝑖

𝑖

 

= 𝑅2 + ∑𝛼𝑖𝜉𝑖

𝑖

+ ∑𝛾𝑖𝜉𝑖

𝑖

− ∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊 − 2𝒄 ⋅ 𝒙𝒊 + 𝒄 ⋅ 𝒄)

𝑖

− 𝑅2 − ∑𝛼𝑖𝜉𝑖

𝑖

− ∑𝛾𝑖𝜉𝑖

𝑖
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= −∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊)

𝑖

+ 2∑𝛼𝑖(𝒄 ⋅ 𝒙𝒊)

𝑖

− 𝒄 ⋅ 𝒄 

= ∑ 𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊)

𝑖

− ∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

  

 

Since we know that  𝛼𝑖 = 𝐶 − 𝛾𝑖, 𝛼𝑖 ≥ 0, 𝛾𝑖 ≥ 0, we can incorporate all this information into a single 

inequality, 0 ≤ 𝛼𝑖 ≤ 𝐶. The dual quadratic program can thus be written as 

 

min
𝜶

∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

− ∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊)

𝑖

 

𝑠. 𝑡.    0 ≤ 𝛼𝑖 ≤ 𝐶 

        ∑𝛼𝑖

𝑖

= 1 

 

As in soft-margin SVM, from the complementary slackness KKT conditions, we know that the Lagrange 

multiplier will be 0 when the data point satisfies the constraint, and maximized when the constraint is 

broken. Any support vector will have a value that is in between 0 and the maximum. As 𝛼𝑖 is bounded by 

𝐶, we know that all support vectors will have a 0 < 𝛼𝑖 < 𝐶. Note the strict inequality in this case. 

 

We can calculate 𝒄 from the derived equation when setting the partial derivatives. We can calculate 𝑅2 

by computing the distance from a support vector to 𝒄 

 

𝑅2 = ‖𝒙𝑺𝑽 − 𝒄‖2 

= 𝒙𝑺𝑽 ⋅ 𝒙𝑺𝑽 − 2𝒄 ⋅ 𝒙𝒔𝒗 + 𝒄 ⋅ 𝒄 

= 𝒙𝑺𝑽 ⋅ 𝒙𝑺𝑽 − 2∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝑺𝑽)

𝑖

+ ∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗
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At evaluation time, we compute the distance of a new point to the 𝒄, and classify it accordingly. If it is 

inside the hypersphere then it is not an anomaly, otherwise it is. The decision function is 

 

𝑦𝑡𝑒𝑠𝑡 = sign(−(‖𝒙𝒕𝒆𝒔𝒕 − 𝒄‖2 − 𝑅2)) 

= sign(−(𝒙𝑺𝑽 ⋅ 𝒙𝑺𝑽 − 2∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝑺𝑽)

𝑖

+ ∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

− 𝑅2)) 

 

Note again how all of the 𝒙 vectors appear as dot products, meaning we can also use the kernel trick with 

SVDD [51]. The 𝜈 version of SVDD can also be derived in a similar manner. We do not go through all 

the steps as they are identical to 𝐶-SVDD. Starting with the primal 

 

min
𝑅

𝑅2 +
1

𝜈𝑁
∑𝜉𝑖

𝑖

 

𝑠. 𝑡.   ‖𝒙𝒊 − 𝒄‖2 ≤ 𝑅2 + 𝜉𝑖 , 

        𝜉𝑖 ≥ 0, ∀𝑖 ∈ ℕ 

 

After setting up the Lagrangian, taking the partials, substituting, and defining the new constraints, we are 

left with the quadratic dual equation [46] 

 

min
𝜶

∑𝛼𝑖𝛼𝑗(𝒙𝒊 ⋅ 𝒙𝒋)

𝑖,𝑗

− ∑𝛼𝑖(𝒙𝒊 ⋅ 𝒙𝒊)

𝑖

 

s. t.    0 ≤ 𝛼𝑖 ≤
1

𝜈𝑁
 

        ∑𝛼𝑖

𝑖

= 1 
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The same decision function as before can be used for testing new data points. 

 

Figure 7: SVDD implementation example. OCSVM implementation examples. Colored bands show distance of 
points from the boundary, with white being anything inside the boundary. a) shows a vanilla SVDD with low slack. 
B) shows vanilla SVDD with higher slack, allowing more points to break the boundary. 

 

SVM Implementations  

SVM 

When implementing SVM using quadratic programming solvers, it is often necessary to rearrange the 

data into a standard form that the solver will understand. In this thesis we used the quadratic programming 

solver cvxopt, which uses an interior-point method to solve the QP [52], [53]. Cvxopt expects the program 

to come in the form 

 

min
𝒙

1

2
𝑥⊤𝑃𝑥 + 𝑞⊤𝑥 

s. t.  𝐺𝑥 ≤ ℎ 

      𝐴𝑥 = 𝑏 

 

To conform, we vectorize our objective function. For the soft-margin SVM, it would be 
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max
𝛼

∑𝛼𝑖

𝒊

−
1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋) 

= min
𝛼

1

2
∑𝛼𝑖

𝒊,𝒋

𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝒙𝒊) ⋅ 𝜙(𝒙𝒋) − ∑ 𝛼𝑖

𝒊

 

= min
𝜶

1

2
∑𝜶⊤

𝒊,𝒋

𝑷𝜶 + (−𝕀)⊤𝜶 

where 𝜶 ∈ ℝ𝑁×1, 𝑷 ∈ ℝ𝑁×𝑁 , 𝕀 ∈ ℝ𝑁×1. 

 

𝒙⊤ = 𝜶⊤ = [𝛼1,… , 𝛼𝑁] 

𝒒⊤ = 𝕀⊤ = [1, 1, … ,1] 

𝑷 = [
𝑦1𝑦1𝐾(𝑥1, 𝑥1) … 𝑦1𝑦𝑁𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝑦𝑁𝑦1𝐾(𝑥𝑁 , 𝑥1) … 𝑦𝑁𝑦𝑁𝐾(𝑥𝑁 , 𝑥𝑁)

] 

 

Note that to calculate the kernel matrix is tricky as we need to calculate half of the kernel values 

individually (All kernels are symmetric from Mercer’s condition). This is one of the limitations of SVM 

as it will grow in a polynomial complexity. 

 

The constraints are more challenging as we have an upper and lower bound on the inequality. To meet 

the constraint we create a large matrix 𝑮 that matches the inequalities −𝛼𝑖 ≤ 0, 𝛼𝑖 ≤ 𝐶,∀𝑖. The equality 

constraint can just be vectorized. Here 𝑮 ∈ ℝ2𝑁×𝑁, 𝒉 ∈ ℝ2𝑁×1 

 

𝑮 =

[
 
 
 
 
 
−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1 ]

 
 
 
 
 

 

𝒉⊤ = [0, … ,0, 𝐶,… , 𝐶] 
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In this way the equation 𝑮𝜶 ≤ 𝒉 will meet every inequality necessary. For the final inequality, we set up 

the vector of labels 𝑨 ∈ ℝ1×N corresponding to ±1, and 𝑏 = 0 so that. 

 

𝑨𝜶 = 𝑏 

 

OC-SVM 

For OC-SVM we follow the same procedure to end up with the matrices 

 

𝑷 = [
𝐾(𝑥1, 𝑥1) … 𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝐾(𝑥𝑁 , 𝑥1) … 𝐾(𝑥𝑁 , 𝑥𝑁)

] 

𝒒⊤ = [0,0, … ,0] 

𝑮 =

[
 
 
 
 
 
−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1 ]

 
 
 
 
 

 

𝒉⊤ = [0, … ,0,
1

𝜈𝑁
, … ,

1

𝜈𝑁
] 

𝑨 = [1,1,… ,1] 

𝑏 = 1 

 

SVDD 

𝑷 = 2 [
𝐾(𝑥1, 𝑥1) … 𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝐾(𝑥𝑁 , 𝑥1) … 𝐾(𝑥𝑁 , 𝑥𝑁)

] 

𝒒 = −diag(𝑿 ⋅ 𝑿⊤) 
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𝑮 =

[
 
 
 
 
 
−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −1
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1 ]

 
 
 
 
 

 

𝒉⊤ = [0, … ,0,
1

𝜈𝑁
, … ,

1

𝜈𝑁
] 

𝑨 = [1,1, … ,1] 

𝑏 = 1 

 

Limitations of Support Vector Method 

The biggest limitation with SVM lie in regard to the choice of kernel. Once the kernel is chosen, the user 

can only tune the error parameter, with the kernel hiding a lot of potentially critical information. Research 

is currently ongoing on choosing the ideal kernel for any particular problem, though the RBF kernel has 

been thought to be a good starting point for most datasets as it is stationary, isotropic and smooth.  

 

SVM’s can also sensitive to overfitting given specific kernels [54]. RBF’s are especially notorious for 

this, as given a large enough 𝛾 parameter (or small 𝜎), it can individually capture every positive point in 

the training set, leading to terrible generalization. The decisions are also “hard”, in that a point is either 

an anomaly or it isn’t. Many other deep learning and statistical methods can give likelihoods of class 

memberships for finer control. 

 

Finally, complexity is a concern for SVM, in both training and testing. The complexity will depend on 

the type of SVM and kernel, though typical kernel SVM’s will have a complexity between 𝑂(𝑛2) and 

𝑂(𝑛3) for training [55], and 𝑂(𝑛𝑆𝑉𝑑) for runtime, where 𝑛𝑆𝑉 is the number of support vectors and 𝑑 is 

the dimensionality (number of features) [56]. SVM’s are limited by the size of the dataset as storing the 

kernel matrix will scale quadratically with the number of data points. The traditional algorithm is 
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infeasible in that scenario, however there have been some approximation methods (Nystrom 

approximation [57], Random Kitchen Sinks [58], and subsampling [59]) 

 

Isolation Forest 

Decision trees are a popular machine learning algorithm due to their feature value scaling and 

transformation invariance, robustness against feature dependencies, and model interpretability. They are 

as close as we can get to an off-the-shelf data mining algorithm. 

 

There are a number of conventional greedy methods generally used to grow decision trees, like ID3 

(Iterative Dichotomiser 3), C4.5 and CART. Each has been built upon the foundations of the former, and 

CART is currently the most commonly implemented algorithm. All trees are built by starting off with a 

dataset of features and a classification or regression variable 𝐶. By iterating over each feature in the 

feature set and calculating a measure of uncertainty as to correctly predicting the 𝐶, the algorithm can 

decide upon the best feature to split that dataset. This uncertainty calculation and splitting is then 

recursively performed until we can separate 𝐶 completely.  

 

ID3 uses entropy −∑ 𝑃(𝑐𝑖) 𝑙𝑜𝑔 𝑃(𝑐𝑖)
𝑁
𝑖=1 , and information gain (KL-Divergence) as a splitting criterion, 

and can only be used on nominal data. The splits do not have to be binary, i.e. a selected feature 𝑓𝑖 with 

nominal values {Sunny, Rainy, Windy} can be split 3 ways. C4.5 performs splits on the greatest gain 

ratio, and can be performed on both nominal and continuous data. CART performs splits based on the 

Gini diversity index (1− ∑ 𝑃𝑖
2

𝑖 ), and the decision CART decision trees are always binary. A few other 

differences between CART and C4.5 include pruning methods (simplifying decision trees to prevent 

overfitting, CART uses cost-complexity), and how each algorithm handles datasets with corrupted values, 

but they are out of the scope of this thesis [60].  
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In general, decision trees that are grown to have a large number of levels will have a overfit to a 

complicated decision boundary, leading to low bias but high variance. In decision, trees this can be 

mitigated either by pruning or bootstrap aggregation (bagging). 

 

Consider a dataset 𝑍 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑁 , 𝑦𝑁)}, where the 𝑥𝑖’s are inputs, and the 𝑦𝑖’s are outputs. 

We can fit a model 𝑓(⋅) to this dataset, and obtain a prediction 𝑓(𝑥) for a particular 𝑥. This prediction 

will have high variance, but bagging will average this prediction over a collection of bootstrap (subsample 

with replacement) samples from the dataset. This makes use of both the inherent randomness of the 

dataset, and the low bias of the estimator. For each bootstrap subsample 𝑍∗𝑏, 𝑏 = 1,2, … , 𝐵 we fit an 

estimator 𝑓∗𝑏(𝑥), and then calculate the bagging estimate 

 

𝑓𝑏𝑎𝑔(𝑥) =
1

𝐵
∑𝑓∗𝑏(𝑥)

𝐵

𝑏=1

 

 

Note that this is just the Monte Carlo approximation of the expectation of the estimator 𝐸𝑆̂[𝑓
∗(𝑥)], where 

𝑓∗(⋅) is an estimator fit to 𝑍∗ = {(𝑥1
∗, 𝑦1

∗), (𝑥2
∗, 𝑦2

∗),… , (𝑥𝑁
∗ , 𝑦𝑁

∗ )}, with each (𝑥𝑖
∗, 𝑦𝑖

∗) ~ 𝑆̂. 𝑆̂ is the uniform 

distribution of the tuples (𝑥𝑖 , 𝑦𝑖) from the original dataset. In other words, bagging finds the average 

estimator, and the low bias of the individual estimators ensures that as 𝐵 → ∞, we will get a well 

generalized (low-variance) model. This explanation was for regression random forests. In classification 

forests, you can use the same idea to create a voting system, where the class with the majority of 

estimators should be chosen.  

 

Proof of Variance Decrease: In the case of the estimators being independent, let each estimator be 

represented by random variable 𝑋𝑖, with variance 𝜎2. We know the value of the average estimator is 

1

𝐵
∑ 𝑋𝑖

𝐵
𝑖=1 , and want to find the variance of this average estimator.  
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Var(
1

𝐵
∑ 𝑋𝑖

𝐵

𝑖=1

) = 𝐸 [(
1

𝐵
∑𝑋𝑖

𝐵

𝑖=1

)

2

] − 𝐸 [
1

𝐵
∑𝑋𝑖

𝐵

𝑖=1

]

2

 

=
1

𝐵2

(

 
 

𝐸 [∑𝑋𝑖
2

𝑖

] + 𝐸

[
 
 
 

∑𝑋𝑖𝑋𝑗

𝑖,𝑗
𝑖≠𝑗 ]

 
 
 

)

 
 

−
1

𝐵2

(

 
 

∑𝐸[𝑋𝑖]
2

𝑖

+ ∑𝐸[𝑋𝑖]𝐸[𝑋𝑗]
𝑖,𝑗
𝑖≠𝑗 )

 
 

 

=
1

𝐵2

(

 
 

∑𝐸[𝑋𝑖
2]

𝑖

− ∑𝐸[𝑋𝑖]
2

𝑖

+ ∑𝐸[𝑋𝑖𝑋𝑗]
𝑖,𝑗
𝑖≠𝑗

− ∑𝐸[𝑋𝑖]𝐸[𝑋𝑗]
𝑖,𝑗
𝑖≠𝑗 )

 
 

 

=
1

𝐵2

(

 
 

∑𝑉𝑎𝑟(𝑋𝑖)

𝑖

+ ∑𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)
𝑖,𝑗
𝑖≠𝑗 )

 
 

 

=
𝐵𝜎2

𝐵2
=

𝜎2

𝐵
 

 

As such if the estimators are truly independent, then as we increase the amount of estimators in the forest 

(𝐵 → ∞), our variance will tend to 0 in the limit. However, if we make splits using a specific information 

criteria, the trees will be somewhat correlated, which will lead to a change in variance of the average 

estimator. If we take the pairwise correlation between our estimators to be 𝜌, this would lead to a variance 

of 𝜌𝜎2 +
1−𝜌

𝐵
𝜎2 

 

Var(
1

𝐵
∑𝑋𝑖

𝐵

𝑖=1

) =
1

𝐵2

(

 
 

∑Var(𝑋𝑖)

𝑖

+ ∑Cov(𝑋𝑖 , 𝑋𝑗)
𝑖,𝑗
𝑖≠𝑗 )

 
 

 

=
1

𝐵2
(𝐵𝜎2 + 𝐵(𝐵 − 1)𝜌𝜎2) =

1

𝐵2
(𝐵2𝜎2𝜌 + 𝐵(1 − 𝜌)𝜎2) 
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= 𝜌𝜎2 +
1− 𝜌

𝐵
𝜎2  

 

As 𝐵 → ∞, the variance will remain at 𝜌𝜎2. Correspondingly, bagging will only make sense if we can 

ensure that the trees are created independently. In random forests this is achieved by randomly selecting 

variables to split on at each node. Typically people will randomly select a subset 𝑆 < 𝐹 of features and 

then “greedily” pick the feature with the best information gain. From literature, random forests typically 

converge around 200-400 trees, and for classification forests, the general subset size is √|𝐹|, with a 

minimum size of 1 [61], [62]. 

  

Whilst random forest is typically used for classification problems, a similar algorithm called isolation 

forest can be used for anomaly detection. Whilst anomaly detection models do exist, Many anomaly-

detection models still attempt to train on the normal data without profiling the anomalies leading to 

extremely high false positive rates, and can be constrained to lower dimensional data due to the high 

computational complexity. 

 

The isolation forest algorithm, initially described by Liu et. al in 2008 [63], [64] attempts to address both 

these problems by taking advantage of the characteristics of anomalies  

 

1. They are in the minority 

2. They will be far away in feature space from normal instances 

 

Since they are so “few and different”, the theory is that anomalies will be easy to isolate in a decision tree 

during testing. By measuring the path lengths of inputs, we will be able to effectively distinguish as to 

whether a data point is an anomaly (short path), or normal (long path). 

 



66 

 

 

Figure 8: Decision tree path lengths for anomaly (orange) and normal data point (blue). Note how the anomaly path 
length is much shorter. 

 

To understand why isolation forests do so well, we first define the issues of swamping and masking that 

can occur whilst attempting anomaly detection with highly imbalanced datasets. Swamping occurs when 

you wrongly classify anomalies as normal data points. It typically occurs when anomalies are too close 

to normal points in feature space, increasing the number of edges traversed through the tree to separate 

that instance. Masking occurs when there are high density anomaly clusters in the dataset, concealing the 

fact that they are anomalies as isolating these points will return long pathlengths. 

 

Isolation forests address these issues by training estimators on small subsets of the data. This will mitigate 

both the swamping (Even if anomalies are close to normal points in feature space, they will be on the 

outskirts of the data cluster. Small sample sizes will reduce the amounts of anomalies on the outskirts, 

leading to shorter isolation path lengths), and masking (Smaller sample size will result in fewer anomalies 

in the dataset, reducing the size of anomaly clusters that may have formed). 
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To maintain pairwise independencies of each estimator in the forest and aggregated model variance, splits 

on nodes will be made at a randomly selected feature and threshold value. Due to the threshold splitting 

each node will have exactly two child nodes, each of which will be either an external (leaf) or internal 

node. This means the estimators in an isolation forest are proper binary trees. The recursive splits at nodes 

will continue until we can either perfectly separate the data (assuming distinct data points) or until the 

tree has grown to a predetermined maximum height.  

 

The low memory requirement is now also apparent. As the worst-case stopping condition of the tree is 

when we can separate each datapoint we know there are 𝑛 external nodes. By induction, we can prove 

that a tree with 𝑛 external nodes will have 𝑛 − 1 internal nodes, giving 2𝑛 − 1 nodes in total.  

 

𝐁𝐚𝐬𝐞 𝐂𝐚𝐬𝐞: 

𝑁 = 1, 1 ext node 

𝑁 = 2, 1 ext node, 2 int nodes 

𝐈𝐧𝐝𝐮𝐜𝐭𝐢𝐯𝐞 𝐂𝐚𝐬𝐞: 

Assume binary tree with 𝑘 ext nodes has 𝑘 − 1 int nodes 

Prove that binary tree with 𝑘 + 1 𝑒xt nodes has 𝑘 𝑖nt nodes 

Start with tree with 𝑘 + 1 ext nodes 

Remove a leaf and its sibling,now you have tree with 𝑘 ext nodes 

From assumption,new tree will have 𝑘 − 1 int nodes 

Add orginal leaves back in, you now have 𝑘 − 1+ 1 = 𝑘 int nodes 

This proves proposition in inductive case 

 

This means that the number of parameters in the Isolation Forest is bounded, and scales linearly with the 

data (𝑂(𝑛)).  
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To score each data point, a unique path length is calculated. Using just the average path length to calculate 

the anomaly is a naïve approach as they are not normalized, and thus cannot be compared. A better 

approach would be a aggregation, such as the notion of expected unsuccessful path length from BST 

theory [65]: 

 

𝑐̅(𝑛) = 2𝐻𝑛−1 −
2(𝑛 − 1)

𝑛
 

 

where 𝑐̅(𝑛) can be thought of as the average path length to one of the external nodes, and 𝐻𝑛 is the 

harmonic number as seen in the proof. This will scale accordingly with the path lengths, making it 

possible for us to normalize properly. As a note, estimated growth of tree height 𝑙𝑜𝑔2 𝑛 or average tree 

height could have been used as well, though it has been difficult to find an analytical answer for the latter, 

with a popular approximation being 𝛼 𝑙𝑛 𝑛 − 𝛽 𝑙𝑛 𝑙𝑛 𝑛, where 𝛼 ≈ 4.31107, and 𝛽 ≈
3

2 𝑙𝑛(𝛼/2)
 [66]. The 

proof of this approximation is beyond the scope of this thesis. In any case, average unsuccessful path 

length is the normalization factor most commonly used in Isolation Forest implementations. 

 

To bound the values of the score between 0 and 1, the following score function is used, where 𝐸(ℎ(𝑥)) 

is the average path length throughout the forest. 

 

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))

𝑐̅(𝑛)  

 

As 𝐸(ℎ(𝑥)) → 0, 𝑠(𝑥, 𝑛) → 1  

As 𝐸(ℎ(𝑥)) → 𝑐̅(𝑛), 𝑠(𝑥, 𝑛) → 0.5 

As 𝐸(ℎ(𝑥)) → 𝑛 − 1, 𝑠(𝑥, 𝑛) → 0 
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Anomalies will correspond to higher score values as they will have a lower 𝐸(ℎ(𝑥)). We choose 𝑛 − 1 

as our upper bound because that is the maximum height a tree can reach given it is strictly binary.  

 

When growing isolation trees, the height will be bounded by the average height of a tree given sample 

size 𝑛. This is because we expect anomalies to be much lower than the average tree height, so we can 

save on computational complexity. As no exact analytical formula exists for average height of binary 

trees, the original paper had decided to use an approximation made by Knuth [67] of 𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2 𝑛). In 

most implementations, this is the approximation used to bound tree height. Note this is very close to the 

minimum tree height 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2 𝑛), it is still justified as trees are grown on data that consists of majority 

“normal” points and anomalies should still be filtered out well before path lengths of 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2 𝑛). 

 

 

Figure 9: Increase of mean tree height as a function of sample size using 2 approximations. We provide minimum 
height as the lower bound. 

 

For large sample sizes and anomalies that are close to the dataset, we feel it would be better to bound 

using the new average tree length. At large sample sizes with anomalies close to normal data, Knuth’s 

approximation may prematurely declare some anomalies to be normal. This alteration will be especially 

relevant in future algorithms where we attempt to isolate seizures much closer to “normal” activity. 
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Any leaf nodes that have residual data that needs to be classified during testing can be taken as subtrees, 

and the average path length 𝑐̅(𝑛) of that subtree can be added on during calculation of the score.  

 

Finally isolation forest has a time complexity of 𝑂(𝐵𝑛𝑠𝑎𝑚𝑝 𝑙𝑜𝑔2 𝑛𝑠𝑎𝑚𝑝)  for training and 

𝑂(𝑁𝐵 𝑙𝑜𝑔2 𝑛𝑠𝑎𝑚𝑝) for testing, where N is the total number of test samples, 𝑛𝑠𝑎𝑚𝑝 is the subsampling 

size, and 𝐵 is the number of estimators. This is because we cap the height limit of the trees at 𝑙𝑜𝑔2 𝑛. 

Literature has shown training times of 7.6 seconds for 𝑛𝑠𝑎𝑚𝑝 = 256 and 11.9 seconds for 𝑛𝑠𝑎𝑚𝑝 = 16384 

[63]. The pseudo-code to create an isolation forest is provided based on [63]. 

 

Table 7: Isolation tree algorithm 

Algorithm 3: iTree(𝑿, 𝒆, 𝒍) 

Inputs: 𝑋 – input data, 𝑒 – current tree height, 𝑙 – height limit 

Output: an iTree  

1. if 𝑒 ≥ 𝑙 or |𝑋| ≤ 1: 

2.     return 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒{𝑆𝑖𝑧𝑒 ← |𝑋|} 
3. else: 

4.     let 𝑄 be a list of features in 𝑋 

5.     select random feature in 𝑞 ∈ 𝑄 

6.     find max and min values of 𝑞, then uniformly sample threshold value 𝑝 

7.     𝑋𝑙 ←filter all elements in 𝑋 where 𝑞 < 𝑝 

8.     𝑋𝑟 ←filter all elements in 𝑋 where 𝑞 ≥ 𝑝 

9.     return 𝑖𝑛𝑡_𝑛𝑜𝑑𝑒{𝐿 ← 𝑖𝑇𝑟𝑒𝑒(𝑋𝑙 , 𝑒 + 1, 𝑙), 𝑅 ← 𝑖𝑇𝑟𝑒𝑒(𝑋𝑟 , 𝑒 + 1, 𝑙), 𝑠𝑝𝑙𝑖𝑡𝑓𝑒𝑎𝑡 ←

𝑞, 𝑠𝑝𝑙𝑖𝑡𝑣𝑎𝑙𝑢𝑒 ← 𝑝 

10. end if 

 

Table 8: Isolation Forest algorithm 

Algorithm 4: iForest(X, 𝒕,𝝍) 

Inputs: 𝑋 – input data, 𝑡 – number of trees, 𝜓 – subsampling size 

Output: a forest of 𝑡 iTrees 

1. Initialize empty set 𝐹𝑜𝑟𝑒𝑠𝑡 

2. set height limit 𝑙 = 𝑐𝑒𝑖𝑙(log2𝜓) 

3. for 𝑖 = 1 to 𝑡: 

4.     𝑋′ ← 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒(𝑋,𝜓) 

5.     𝐹𝑜𝑟𝑒𝑠𝑡 ← 𝐹𝑜𝑟𝑒𝑠𝑡 ∪ 𝑖𝑇𝑟𝑒𝑒(𝑋′, 0, 𝑙) 

6. end for 

7. return 𝐹𝑜𝑟𝑒𝑠𝑡  
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Table 9: Isolation Forest path length algorithm 

Algorithm 5: PathLength(𝒙,𝑻, 𝒆) 

Inputs: 𝑥 – a test data point, 𝑇 – an iTree, 𝑒 – current path length 

Output: path length of 𝑥 

1. initialize 𝑒 = 0 

2. if 𝑇 is external node: 

3.     return 𝑒 + 𝑐̅(𝑇. 𝑠𝑖𝑧𝑒) 

4. end if 

5. 𝑎 ← 𝑇. 𝑠𝑝𝑙𝑖𝑡𝑓𝑒𝑎𝑡 

6. if 𝑥𝑎 < 𝑇. 𝑠𝑝𝑙𝑖𝑡𝑣𝑎𝑙𝑢𝑒: 

7.     return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝐿, 𝑒 + 1) 

8. else if 𝑥𝑎 ≥ 𝑇. 𝑠𝑝𝑙𝑖𝑡𝑣𝑎𝑙𝑢𝑒: 

9.     return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝑅, 𝑒 + 1) 

10. end if 

 

 

Extended Isolation Forest 

In isolation forests, branch cuts are made on random thresholds on random features. It can be visualized 

as a decision tree, but alternatively it can also be thought of as separating the points with hyperplanes in 

feature space. As an example if we take a dataset 𝒁 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛 , 𝑦𝑛)}, where 𝑥 and 𝑦 are 

features of each data point. Each isolation tree is grown by randomly picking one of those features on 

each iteration, and then randomly make a cut on a random threshold in that feature. This amounts to 

randomly drawing orthogonal hyperplanes in your feature space. 

 

In general, these cuts will happen more often in places where the data is greatly clustered as the isolation 

forest attempts to isolate each data point. As the branches are constrained to be made on features, there 

will be concentrated regions in space that have a lot of cuts through them despite containing no data 

points. When averaging over many such trees this will create artefacts in the decision function, biasing 

the algorithm into classifying points in these regions as normal when they are not. An example is shown 

below on a sample data set adopted from the work of Hariri et. al [68]. 
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Figure 10: Vanilla Isolation Forest implementation on a toy dataset showing presence of artefacts. a) shows the cuts 
for a single isolation tree. Note the perpendicular cuts extend to interfere with the space in the opposing corners. b) 
shows the resulting score map over all values in the space. Note the presence of highly normal regions in the upper 
right and bottom left corners that should be classified as anomalies. 

 

In order to combat this phenomenon, extended isolation forests branch across features, effectively 

choosing a random hyperplane in the vicinity of the dataset to cut on [68]. With this strategy, there will 

never be any concentrated focusing of branches in any region of the feature space except in areas of high 

data density. Implementing the extended isolation forest with full extension on the original data shows a 

more intuitive determination of the data distribution, extending radially from the high-density regions 

adopted from Hariri et. al [68]. 
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Figure 11: Extended Isolation Forest implementation on a toy dataset. a) shows the cuts for a single extended 

isolation tree. Note there is no concentration of cuts in any region except around the datapoints. b) shows the 
resulting score map over all values in the space. Notice how anomaly scores now extend radially around the 
datasets as we would expect. 

 

To determine the hyperplane, we require the slope value 𝒘 and the bias value 𝒃. This is similar to the 

SVM setup where we define the equation of the hyperplane. We constrain ‖𝒘‖ = 1, and randomize it’s 

direction by selecting its value randomly over a 𝐷 -dimensional unit hypersphere, where 𝐷  is the 

dimensionality of the feature space. During implementation this can be achieved by a number of methods 

including rejection sampling [69], trigonometry method, and coordinate method[69]. A more elegant 

method is to sample 𝒘 ~ 𝒩(𝟎, 𝑰), where 𝑰 is the identity matrix. 

 

Proof: First let 𝑿 ~ 𝒩(𝟎, 𝑰).  For any orthogonal matrix 𝑸 , 𝑸𝑿 ~ 𝓝(𝟎, 𝑰) . This is because of the 

property of orthogonal matrices 𝑸⊤𝑸 = 𝑸𝑸⊤ = 𝑰. Additionally, as 𝒩(𝟎, 𝑰) has an inner product in the 

exponent, (𝑸𝑿)⊤𝑸𝑿 = 𝑿⊤𝑸⊤𝑸𝑿 = 𝑿⊤𝑿 . As orthogonal matrices are unitary transformations, the 

distribution of 𝑿 is rotationally invariant, and is only dependent on the length (𝑿⊤𝑿). To limit the length, 

we set 𝒀 =
𝑿

‖𝑿‖
. Since we have already shown that 𝑿 is invariant to rotations, so is 𝒀. 𝑸𝒀 =

𝑸𝑿

‖𝑸𝑿‖
=

𝑸𝑿

‖𝑿‖
. 
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Since 𝑸  is orthogonal, ‖𝑸𝒀‖=1. Hence as we have shown rotational invariance whilst maintaining 

length, proving that we are uniformly sampling from a unit sphere.  

 

During implementation, each component of 𝒘 can be sampled independently from 𝒩(0,1). To choose 

the bias 𝒃 we sample each component uniformly. In order to ensure we aren’t slicing too far from the 

dataset, we select from each of the available feature ranges. We finally define our plane as the set of all 

points that satisfy  

(𝒙 − 𝒃) ⋅ 𝒘 = 0 

 

To make our branches, we just cut on this hyperplane all points that satisfy (𝒙𝒊 − 𝒃) ⋅ 𝒘 > 0 will be 

passed to the right subtree, whilst all other points will be passed to the left. 

 

Extension Levels 

It is noted that in the example above with a 2D feature space, a vanilla isolation forest can be made by 

applying a random binary mask to 𝒘 and then renormalizing [68]. The hyperplane is then normal to either 

one or the other feature, where the bias value will act as the threshold. This can be extended to 𝑛-

dimensions, as it is always possible to apply a random binary mask where 𝑁 − 1 components are 0. This 

is defined as Extension Level 0. In 𝑛-dimensional feature space, we can extend this concept by applying 

binary masks with up to 𝑁 − 1 randomly chosen components components being 0. As such we can go 

from 0 to 𝑁 − 1 extension levels, defining the amount of features to cut across when defining our random 

hyperplane.  

 

In the case of data that has equal variance in all feature dimensions, the fully extended method will reduce 

the artefacts produced from the random splitting at lower levels. However if there is low variance in 

certain dimensions, it may be better to reduce the extension level to reduce computational overhead. To 
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incorporate extension levels, the user can be asked to provide an extension number 𝑁𝐸𝑋 during training. 

A random binary mask can then be made with 𝑁 − 𝑁𝐸𝑋 1’s, then take the Hadamard product with 𝒘. 

 

The differences with the standard isolation forest mainly pertain to how the trees are generated. The 

hyperplane splitting method is added, as is the binary mask for the extension level. Otherwise, everything 

else (Bagging, Score function), remains the same [68].  

 

Table 10: Extended Isolation tree algorithm 

Algorithm 6: Extended iTree(𝑿, 𝒆, 𝒍, 𝒆𝒙𝒕) 

Inputs: 𝑋 – input data, 𝑒 – current tree height, 𝑙 – height limit, 𝑒𝑥𝑡 – extension level 

Output: an iTree  

1. if 𝑒 ≥ 𝑙 or |𝑋| ≤ 1: 

2.     return 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒{𝑆𝑖𝑧𝑒 ← |𝑋|} 
3. else: 

4.     randomly select a normal vector 𝑛 ∈ ℝ|𝑋| from a unit hypersphere 

5.     Randomly select an intercept vector 𝑏 ∈ ℝ|𝑋| inside the extrema values of each individual 

feature 

6.     Randomly set 𝑒𝑥𝑡 coordinates of 𝑛 to 0 

7.     𝑋𝑙 ←filter all elements in 𝑋 where (𝑋 − 𝑏) ⋅ 𝑛 ≤ 0 

8.     𝑋𝑟 ←filter all elements in 𝑋 where (𝑋 − 𝑏) ⋅ 𝑛 > 0 

9.     return 𝑖𝑛𝑡_𝑛𝑜𝑑𝑒{𝐿 ← 𝑖𝑇𝑟𝑒𝑒(𝑋𝑙 , 𝑒 + 1, 𝑙), 𝑅 ← 𝑖𝑇𝑟𝑒𝑒(𝑋𝑟 , 𝑒 + 1, 𝑙), 𝑁𝑜𝑟𝑚𝑎𝑙 ←
𝑛, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ← 𝑏 

10. end if 

 

Table 11: Extended Isolation Forest path length algorithm 

Algorithm 7: PathLength(𝒙,𝑻, 𝒆) 

Inputs: 𝑥 – a test data point, 𝑇 – an iTree, 𝑒 – current path length 

Output: path length of 𝑥 

1. initialize 𝑒 = 0 

2. if 𝑇 is external node: 

3.     return 𝑒 + 𝑐̅(𝑇. 𝑠𝑖𝑧𝑒) 

4. end if 

5. 𝑛 ← 𝑇. 𝑁𝑜𝑟𝑚𝑎𝑙 
6. 𝑏 ← 𝑇. 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

7. if 𝑥𝑎(𝑋 − 𝑏) ⋅ 𝑛 ≤ 0: 

8.     return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝐿, 𝑒 + 1) 

9. else if (𝑋 − 𝑏) ⋅ 𝑛 > 0 

10.     return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝑅, 𝑒 + 1) 

11. end if 
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Implementation (Cross Validation and Tuning) 

Evidence Accumulation (Smoothing) Filter 

All of the anomaly detection techniques discussed in this section output a hard class label of 0 or 1, 

depending on whether it thinks a data-point is an anomaly. To smoothen the output, we pass all detection 

values through a first order Infinite Impulse Response (IIR) filter. This is a real-time low pass filter that 

will make the detector more robust to any transient anomalies. The detector will only conclude that a 

seizure is occurring after enough consecutive evidence has been accumulated. This robustness comes at 

the trade-off with latency. This is an acceptable trade-off in our application, as we have determined a 

clinical window of approximately 1 minute after onset within which to alert the user. The filter will have 

a user-defined hyperparameter 𝛼 which will also have to be tuned for during cross-validation. Define 

𝑥(𝑡) to be the output of a classifier at time 𝑡. Define 𝑦(𝑡) to be the output of the filter. 

 

𝑦(𝑡) = 𝛼𝑥(𝑡) + (1 − 𝛼)𝑦(𝑡 − 1) 

 

Note that we will still need to define a threshold. This will be determined from the ROC curve after 

optimal hyperparameters have been obtained.  

 

To determine the ROC curve during one of the cross-validation folds, we first run the outputs of an 

algorithm that has classified seizure data through the smoothing filter. An example of algorithm output 

(black) and smoothing filter output (red) is shown for 10 seizures.  
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Figure 12: Anomaly detector output with accumulation filter over 10 seizures with the binary detection outputs 

(black) and corresponding accumulation filter outputs (red) are provided. 

 

The maximum value of the smoothed detections for each detection is calculated and stored in an array. 

We then set our initial threshold slightly below the minimum value of this array, guaranteeing 100% 

sensitivity of our detector. The amount below the minimum value is set by a user-defined parameter 𝛥𝑡 =

0.025.  

 

Our maximum threshold value will be similarly set by running all the non-seizure samples through the 

algorithm and smoothing filter, then calculating the maximum value reached, and setting the threshold 

𝛥𝑡 above it. This guarantees 0% False Positive Rate.  

 

We then test then test the detector for all thresholds between the min and max, separated by 𝛥𝑡. This 

covers the entire ROC curve. If thresholds are too far, this interval may be increased to save on time. Note 

when testing the detector, the algorithm outputs are run through a custom filter prediction function that 
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incorporates a 10-minute refractory period after detection. No detections can occur in this time. 10 

minutes was decided upon after consulting with physicians.  

 

Performance Metrics 

The performance metrics for each anomaly detection algorithm are sensitivty, false positive rate (FPR) 

and latency. An ROC curve can be generated by varying the threshold as done previously. 

FPR is calculated by  

detections in dataset

length of dataset in days
 

 

Sensitivity is calculated by  

seizures detected

total seizures
 

 

The Area Above ROC (AAROC) value can then be calculated as a performance metric by using numerical 

integration with the composite trapezoidal rule. As we are expressing FPR in days, AAROC value will 

have units (/day). A smaller AAROC value corresponds to a better detector. Finally we also calculate a 

latency value defined as the time difference between the clinical onset of the seizure (set by physician) 

till detection.  

 

Dataset Split 

At the time of training, we had approximately 1630 total usable hours of data, determined from the 

number of blocks obtained after the preprocessing and feature extraction steps. We want to randomly 

separate this data into equal training and testing sets, whilst maintaining the temporal integrity of each 

segment.  
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This is done by initializing a training and testing array, and appending random segments from the dataset 

without replacement to either array. Every time a segment is appended, the length of each array is 

recalculated. The next segment is appended to the smaller array. In this way, we end up with a training 

and testing array of approximately 815 hours each. 

 

In order to test the model appropriately, a good estimation of the false positive rate must be determined. 

We will calculate the false positive rate per day by running the detector through a contiguous array of 

these data segments, simulating a user wearing the watch in the real world. 

 

𝑛-fold cross-validation is performed entirely on the training dataset. We split the training dataset into 𝑛 

folds by randomly choosing segment indices and appending then to an array until the desired length of 
𝑁

𝑛
 

is reached, where 𝑁 is the total length of the training dataset. This is performed 𝑛 times, once for each 

fold. During cross validation, all segments not indexed in the fold (length 𝑁 − 𝑛) are used to train the 

classifier, whilst the segment within the fold (length 𝑛) is used to test the classifier. Once the optimal 

hyperparameters have been selected from the grid search, we retrain and then test the algorithm using 

these parameters on the original train/test split. 
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Results 

Offline Anomaly Detection 

For each model, 4 graphs will be presented. The first will be the grid-search graph, where each pairwise 

parameter selection will have an averaged AAROC over 5 fold cross-validation. The selected 

hyperparameters are then used to train a new classifier, and 3 other graphs show the performance 

characteristics of this final classifier. The table will show performance characteristics for the classifier 

created during the grid-search. 

 

OCSVM 

Initially, the quadratic program was solved using a numerical QP solver in Python (see SVM 

implementation section). Whilst it gave correct results, it was an unoptimized implementation. For faster 

results in cross-validation and ROC curve calculations, the sci-kit learn library was used. This library has 

the same problem formulation implemented in C, avoiding the slow and memory intensive Python 

Interpreter. 

 

Cross validation was performed over with 𝑛 = 5, leading to testing folds of approximately 160 hours. To 

prevent any one feature from dominating over any another, we perform standardized scaling (z-score 

normalization) to the data before training and testing. This feature scaling is especially important as we 

are using the RBF kernel. 
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Figure 13: Results of OCSVM. a) shows the grid-search and cross-validation results. b) shows the ROC curve at 
the optimal hyperparameters. c) shows the sensitivity-FPR tradeoff. d) shows the latency-FPR tradeoff 

 

Table 12: OCSVM optimal performance characteristics (grid search) 

Optimal nu 0.0031623 

Optimal alpha 0.1211528 

Optimal AAROC 14.8608/day 

 

OCSVM was used as a baseline to measure our worst performance. We note that whilst sensitivity and 

latency are acceptable, the false positive rate at almost 29.3/day is too high for our required performance 

characteristics. A reason for this may be because we could not use the entire dataset to perform training 

on OCSVM as it was too big for the matrix multiplications to handle. Instead we randomly selected 
1

5
 of 

the dataset (1 × 106 samples). It is possible that many false positives were missed during training, which 

would correspond to these characteristics. We expect a similar performance for SVDD. In future iterations 
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of the algorithm, it may be better to filter data using another algorithm that can train with the entire dataset 

(forest-based methods), and then use this selected subset to train the SVM methods.  

 

SVDD 

No SVDD library currently exists for Python, so we built a custom SVDD implementation. It was 

designed to mirror the functionality of the OCSVM sci-kit learn implementation, without Cython 

optimizations. As mentioned in the SVM implementations section, the cvxopt library was the QP solver 

used to solve the dual optimization problem. 

 

 
 

  

Figure 14: Results of SVDD. a) shows the grid-search and cross-validation results. b) shows the ROC curve at the 
optimal hyperparameters. c) shows the sensitivity-FPR tradeoff. d) shows the latency-FPR tradeoff 
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Table 13: SVDD optimal performance characteristics (grid search) 

Optimal nu 0.0001 

Optimal alpha 0.1212 

Optimal AAROC 8.640 

 

The SVDD latency is a very at 8.9 seconds with the optimal detector. Notice on the latency chart that 

there are negative numbers. This means that the seizure was detected before our clinical start marker. 

Generally this can only occur if the detector is classifying too many points as seizures. If this is the case, 

we should see a proportionally high false positive rate. Interestingly, the false positive rate is at 18.4/day, 

at 100% sensitivity. This performance is far superior than the OCSVM. Though the false positive rate is 

still too high, we can attempt to tune it in future iterations by sacrificing some latency. SVDD seems like 

a method we should investigate in future development. 

 

IF 

We used the native sci-kit learn implementation of isolation forest. This provided an optimized 

implementation of the algorithm, with other convenience parameters that we could tune. We chose 200 

estimators as recommended in literature. We wanted to give the forest an opportunity to see all the data, 

and thus chose subsampling size according to 

 

𝑓𝑙𝑜𝑜𝑟 (𝑐𝑠 × 𝑓𝑙𝑜𝑜𝑟 (
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠
)) 

 

where 𝑐𝑠 is the detector sampling factor. We set this value to 1.2. This leads to a subsampling size of 

approximately 14,000 during cross-validation.  
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Figure 15: Results of Isolation Forest. a) shows the grid-search and cross-validation results. b) shows the ROC 
curve at the optimal hyperparameters. c) shows the sensitivity-FPR tradeoff. d) shows the latency-FPR tradeoff 

Table 14: Isolation Forest optimal performance characteristics (grid search) 

Contamination 0.0075 

Optimal alpha 0.0464 

Optimal AAROC 3.1018/day 

 

With an AAROC of best classifier in terms of both sensitivity and false positive rate by a margin. It has 

a high latency of just over 60 seconds, but that is just on the edge of our clinical window. We can decrease 

the threshold with a tradeoff of a higher false positive rate if require faster detection. 
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Extended IF 

The extended isolation forest algorithm was implemented following [68]. The corresponding changes 

were made to the isolation tree and the score function. Extension level was maximized at 8. The same 

subsampling size as the isolation forest was used. 

 

 
 

  

Figure 16: Results of Extended Isolation Forest. a) shows the grid-search and cross-validation results. b) shows the 
ROC curve at the optimal hyperparameters. c) shows the sensitivity-FPR tradeoff. d) shows the latency-FPR 
tradeoff 

Table 15: Extended Isolation Forest optimal performance characteristics (grid search) 

Contamination 0.0010 

Optimal alpha 0.0178 

Optimal AAROC 5.8061/day 
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This is perhaps the most surprising result. We expected the extended isolation forest to perform better 

than the isolation forest, but that does not seem to be the case. Whilst it may provide a higher sensitivity, 

it provides a much higher false positive rate and a latency more than double that of the Isolation Forest. 

The high latency makes sense as the optimal alpha value is more than half that of the isolation forest. A 

possible reason for why the false positive rate is so high is seen when we attempt to run the seizures 

through the EIF and compare to IF output. It seems EIF is more sensitive to the features compared to the 

isolation forest. This is a result of the chosen parameters, and it could be that our grid search was not wide 

enough. It still outperforms the support vector classifiers in terms of both false positive rate and latency. 

 

Summary 

Table 16: Summary of optimal anomaly detectors 

Model Sensitivity FPR (/day) Latency (s) 

OC SVM 0.9 29.3 53.7 

SVDD 1.0 17.28 8.9 

IF 0.9 3.2 69.0 

EIF (Ext = 8) 1.0 5.0 90.4 

 

Upon looking at the results, the isolation forest model was selected to be implemented on the Apple 

Watch due to the low false positive rate and latency a latency near the clinical window. SVDD was a 

possible choice, but it is computationally complex in comparison, and implementation would require 

careful optimization. Additionally, the isolation forest algorithm has a much better false positive rate, 

though admittedly the latency is markedly worse.   

 

Real-Time Anomaly Detection 

Implementation 

To port the model all of the nodes, children, and threshold values for each iTree are placed in a JSON file 

that can be saved inside the application. 
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Then the structure of each tree was rebuilt in Swift, using the values saved inside the JSON file. All other 

relevant parameters like filter coefficients, threshold, window lengths, etc. are also included in this JSON 

file. In this way, any time we retrain the detector, we do not have to alter the Swift implementation.  

 

Summary 

Once implemented, the detection algorithm was run for approximately 10 months in the EMU for 

validation. All validation metrics were collected from EMU data, though beta users also used the app to 

see FPR in ambulatory environments.  

 

In Apple Watch Series 1, EMU sensitivity was approximately 90%, whilst the False Positive Rate was 

approximately 2/day. We say approximately as due to large data drops, it was often difficult to determine 

if a False Negative was due to the algorithm or due to lack of data. 

 

After transitioning to Series 3/4, the data drop issue was reduced. Over 2000 hours tracked after 

transitioning, we recorded a sensitivity of 100% with a FPR of 1.29/day with 24 seizures detected. It is 

noted that false positives often closely mimicked seizure activity, and were commonly caused by activities 

involving oscillatory hand motion (washing hands, tapping, clapping, waving etc.). Additionally, despite 

being highly informative, it is still unclear how much heart rate features affect detection. Many false 

positives occurred with a constant resting heart rate, though some (especially detections where the patient 

had stood up) had a small heart rate increases due to homeostasis.  

 

False positive rates for ambulatory users was an average of 3 per day. Common activities triggering the 

detector were driving, running and weightlifting. The latter two activities are more challenging due to 

heart rate increase, but it is noted that they lack a descending chirp in the frequency domain. 
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Figure 17: Spectrogram of false positive and seizure. a) shows the false positive. Notice the constant frequency 
pattern and the corresponding harmonics. b) shows a seizure. Notice the descending ‘chirp’ characteristic. 
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Hybrid Model (2nd Stage) 

Current state-of-the-art watch-based seizure detection systems show comparable results to the Isolation 

Forest algorithm. Empatica’s Embrace is one such system, with a recent publication showing results of 

100% sensitivity and an FAR of 0.4/day [70] during an inpatient study with 135 patients (40 seizures), 

though they have not released any information on the latency of their system.  

 

According to a comprehensive user and physician survey [13], the maximum acceptable false positive 

rate for seizure detection systems is 0.14/day, or 1 false positive per week. An ideal system would have 

one false positive for every true positive [13]. This is hard to quantify as seizure frequencies vary 

significantly per patient, but we estimate it to be approximately 1 false positive every month (0.03/day).   

 

There are at least two areas of the isolation forest algorithm which can be improved upon 

1. Our selected features are suboptimal for the task of distinguishing between GTCS and False 

Positives.  

2. The isolation forest algorithm does not consider the temporal evolution of the seizure. 

 

Noting that dataset imbalance is mitigated if we are separating between IF false positives and seizures, 

our proposed strategy is to create a classifier that distinguishes between seizures and false positives after 

the original detector has identified an anomaly. This is similar to model stacking, except here the original 

detector acts as an indicator for the 2nd stage. 

 

To address the 2 issues discussed above, we decided neural networks would be an ideal solution. During 

training, deep learning models learn features that best separate the provided classes. We limit model 

selection to those with long-term memory, ensuring that temporal information is regarded during 

classification. The three models considered are 
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• Long Short-Term Memory (LSTM) Network 

• Temporal Convolutional Network (TCN) 

• CNN-LSTM 
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Preprocessing 

Offline Pipeline 

All anomaly detections are stored as a timestamp in the backend. A dataset of false positives is generated 

by pulling a 10-minute data segment around the detections (4 minutes before, 6 minutes after). Any data 

overlap conflicts are handled by taking the value with the earlier timestamp. All pulled false positive data 

is from EMU users only. Data from the beta users will be used in future iterations of the algorithm for 

ambulatory detection. 

 

We stagger the segment as detection time is not centered within the high activity region. As some seizures 

subtypes mimic characteristics of GTCS, we remove all other seizure types (FUS, Hypermotor) from the 

false positive data. All GTCS segments were selected after validation by a physician using a video EEG 

and pulled as 10 minute segments. These segments were further fine-tuned to include only the tonic clonic 

portion, whose durations varied from 48 seconds to 3 minutes, demonstrating the variability of seizure 

lengths. A seizure segment and fine tuning window are shown in the Figure below. 

 

 

Figure 18: Seizure segment showing entire window and fine window. Blue line corresponds to isolation forest 
detection time. 

All of the data segments are then interpolated using linear interpolation at 100Hz. Linear interpolation 

was chosen instead of uniformization because heart is generally slow varying, and is more likely to make 
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the gradual increase shown in linear interpolation rather than the steep jumps with uniformization. Unless 

there was a samples present, the edges of the windows were padded using nearest neighbour interpolation.  

 

Other interpolation methods such as simple and exponential moving averages were experimented with, 

but eventually disregarded. Simple Moving averages lag too far behind the heart rate, whilst the 

exponential moving averages seem to approximate linear interpolation. A number of these averages can 

be seen in Figure 19. Additionally, there is an optimized vDSP framework for Swift which natively 

implements Linear interpolation, simplifying algorithm implementation.  

 

 

Figure 19: Filter comparison for heart rates. We have compared exponential average filters with 𝛼 = 0.2, 0.4, and 
0.6, as well as simple moving average with window sizes of 10 and 20 samples 

 

Filtering for the accelerometer data is performed on all segments, using a digital high pass filter with a 

cutoff frequency of 0.5Hz (2nd order Butterworth) to remove the gravitational effect as well as any other 

low frequency trends. A low pass filter with a cutoff frequency of 20Hz (4th order Butterworth) was also 

used to any remove high frequency noise and spiking artefacts. This filter was IIR (Transposed-Direct-

Form II Structure), applied in one direction. The heart rate data was not filtered.  
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At the time of training, there were 192 useable false positives stored in the backend, alongside 22 

validated seizures. This amounted to 31 hours of false positive data and 36 minutes of seizure data. To 

allow enough time to understand the seizure temporal characteristics, we decided to use a sliding window 

size of 45 seconds (4500 samples). Seizures can last up to 90 seconds,\]but specific characteristics like 

the chirp signal can still be captured within this 45 second window. The overlap of consecutive windows 

was uniquely determined for both seizure (99% overlap) and false positive data (90% overlap) such that 

there was a balanced number of windows  (approximately 25000) for each class (oversampling). Initially 

it was thought that the high overlap and relatively small dataset would cause any model to overfit. 

However during preliminary testing it was discovered there is good generalization if the network is 

shallow with appropriate regularization.  

 

To center the data and ensure similar scaling of the features we performed z-score standardization on each 

window, with the standardization parameters derived over the entire dataset. Note that standardization is 

not strictly necessary for all neural networks. In any network that exclusively contains linear operations 

of the input, rescaling of the input vector can effectively be undone by changing the corresponding 

weights and biases.  

 

Standardization is used because it provides better weight initializations and faster convergence during 

backpropagation using gradient descent. After standardization, all features will be 0 centered. As initial 

weights and biases in neural networks are selected to be small values (all networks in this thesis initialize 

weights and biases uniformly between -0.05 and -0.05), is likely that the initial hyperplane dictated by 

these weights pass close to the origin.  

 

If the data was not centered, these initial hyperplanes will likely miss the data entirely, significantly 

affecting training speed. The primary disadvantage of standardization is alteration of the original dataset, 
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reducing the information available for the network to make a decision. As a workaround you could 

transform the initial weights rather than the inputs, but this is more involved. 

 

All the standardized data is then used to train the neural networks. During testing, we attempt to replicate 

the online pipeline, and pass data in chunks of 45 seconds with a 5 second lag. The entire sequence will 

be passed to find the maximum value the accumulation filter reaches, and that value will be used in cross 

validation.  

 

Online Pipeline 

We save the standardization values in the JSON file containing all other parameters that is uploaded to 

the watch. An additional running buffer of 2250 samples (45 seconds x 50 Hz) is implemented to store 

45 seconds worth of data. This buffer will constantly update as new data comes in, until the isolation 

forest detector detects an anomaly. At that point, the buffer is passed through a linear interpolation 

function (vDSP_vlint), after which 45 seconds worth is taken. Should the data not cover 45 seconds, the 

edges are handled using nearest neighbor interpolation. The interpolated data is filtered using identical 

coefficients to the offline case, standardized, then passed to the neural network for classification. The data 

in the running buffer will be updated and passed to the network in 5 second lag intervals for 2 minutes 

after Isolation Forest detection. This lag interval is required to remain under the 15% CPU constraint. All 

outputs are then passed through the evidence accumulation filter which will alert the user if a specified 

threshold is passed within the 2-minute time-frame. If not, the detection is assumed to be a false positive, 

and the entire pipeline is reset. 
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Theory (2nd Stage) 

Recurrent Networks 

Recurrent Neural Network 

In a traditional neural network, we assume that all of the inputs and outputs are independent of one 

another. This is not always true, with common exceptions coming in language modelling. There is a 

similar dependence of inputs in seizure data, leading to the need of a strategy that can encode the temporal 

dependencies of the input. Recurrent neural networks can do this by encoding the memory of all the inputs 

that have been calculated so far. We provide a small example below. Let 𝑿 ∈ ℝ4×4500 be an input window 

to our network. Let 𝑥𝑡 ∈ ℝ4×1 be a single data point with 𝑥, 𝑦, 𝑧 and HR features at time 𝑡. An RNN could 

then be thought of as follows.   

 

 

 

Figure 20: Unfolded RNN forward pass and error propagation 
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This form is known as a many-to-many RNN, so called because we have multiple inputs and multiple 

outputs. There are other forms as well, though the concepts of forward and backpropagation remain 

largely the same. 

𝑥𝑖 ∈ ℝ4×1 

𝑊 ∈ ℝ100×4 

𝑈 ∈ ℝ100×100 

ℎ𝑖 ∈ ℝ100×1 

𝑉 ∈ ℝ2×100 

𝑜𝑖 ∈ ℝ2×1 

 

During forward propagation, we multiply the inputs by the relative weights, and pass the resulting 

multiplication through any activation functions. As an example, we give the forward propagation in the 

very last layer: 

 

𝑜𝑇 = softmax(𝑉ℎ𝑇) 

ℎ𝑇 = tanh(𝑈ℎ𝑇−1 + 𝑊𝑥𝑇) 

 

Recursively, we can calculate all of the hidden units and the matrix multiplications that they consist of 

till the very beginning of the sequence. Note that the same 𝑈,𝑉 and 𝑊 are being used during each 

timestep. This greatly reduces the number of parameters in the model, however it also means we cannot 

parallelize the training process as we can with CNN models.  

 

To calculate weight updates, we can backpropagate. We define our loss function to be cross entropy loss. 

This loss gives us the notion of how close our estimated distribution and true distribution is. In the case 

of only two variables like in seizures, it is known as binary cross entropy. Suppose we have a model that 
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predicts for a seizure or false positive for a specific timestep 𝑡 and gives an output (𝑜𝑡1, 𝑜𝑡2), where 𝑜𝑡1 is 

the probability of a seizure and 𝑜𝑡2 is the probability of a false positive. Let’s say for the same timestep 

we have a ground truth value of (𝑦𝑡1, 𝑦𝑡2), where either 𝑦𝑡1 or 𝑦𝑡2 will be exclusively 1. The cross entropy 

at that point is 

 

ℒ(𝑦𝑡 , 𝑜𝑡) = −∑𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖

 

 

Note a ground truth will cause one of the 𝑦𝑡𝑖 values to be 1 while the others are 0. Also note that if the 

probabilities 𝑜𝑡𝑖 = 𝑦𝑡𝑖  ∀𝑖, then ℒ(𝑦𝑡, 𝑜𝑡) = 𝐻(𝑦𝑡), because cross-entropy can be thought of as ℒ(𝑦𝑡 , 𝑜𝑡) =

𝐻(𝑦𝑡) + 𝐷𝐾𝐿(𝑦𝑡||𝑜𝑡) 

 

Proof: 

− ∑𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖

− 𝐻(𝑦𝑡) 

= −∑𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖

+ ∑𝑦𝑡𝑖 log𝑦𝑡𝑖

𝑖

 

= ∑−𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖

+ 𝑦𝑡𝑖 log 𝑦𝑡𝑖 

= ∑𝑦𝑡𝑖(log𝑦𝑡𝑖 − log𝑜𝑡𝑖)

𝑖

 

= ∑𝑦𝑡𝑖 log
𝑦𝑡𝑖

𝑜𝑡𝑖
𝑖

 

= 𝐷𝐾𝐿(𝑦𝑡||𝑜𝑡) 

 

From the inclusion of KL-Divergence, it is readily apparent how cross entropy measures the similarity of 

distributions true and estimated distributions. In the case of our RNN, note we have multiple outputs. In 
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this case, we will treat the whole sequence as one training example, and simply add up the cross-entropy 

error at each output. 

 

ℒ(𝑦, 𝑜) = −∑∑𝑦𝑡𝑖 log𝑜𝑡𝑖

𝑖𝑡

 

 

In the cases where we have a ground truth, this will simplify to 

 

ℒ(𝑦, 𝑜) = −∑𝑦𝑡 log𝑜𝑡

𝑡

 

 

where 𝑦𝑡 is the ground truth class at each timestep, while 𝑜𝑡 is the corresponding predicted probability 

for that class. 

 

Our goal is to calculate updates for 𝑈, 𝑉 and 𝑊. Since we are summing up all of the errors, it follows that 

the gradient update will be the sum of the gradients. i.e. if ℒ = ℒ𝑇 + ℒ𝑇−1 + ⋯+ ℒ0, then 
𝜕ℒ

𝜕𝑊
=

𝜕ℒ𝑇

𝜕𝑊
+

𝜕ℒ𝑇−1

𝜕𝑊
+ ⋯+

𝜕ℒ0

𝜕𝑊
= ∑

𝜕ℒ𝑡

𝜕𝑊𝑡 . We use the chain rule to calculate the gradients for the various matrices at a 

specific time point 𝑡. 

 

𝜕ℒ𝑡

𝜕𝑉
=

𝜕ℒ𝑡

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕𝑉
 

𝜕ℒ𝑡

𝜕𝑈
=

𝜕ℒ𝑡

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

∑
𝜕ℎ𝑡

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑈
 

𝑡

𝑘=0

 

𝜕ℒ𝑡

𝜕𝑊
=

𝜕ℒ𝑡

𝜕𝑜𝑡

𝜕𝑜𝑡

𝜕ℎ𝑡

∑
𝜕ℎ𝑡

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑊
 

𝑡

𝑘=0
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Consider here how the weight matrix 𝑉 only depends on a single state, while 𝑈 and 𝑊 will both depend 

on inputs from previous instances of themselves, leading to the recurrent use of the chain rule. Similar to 

the loss, we then take a sum over all time-points to calculate the total gradient. 

 

𝜕ℒ

𝜕𝑉
= ∑

𝜕ℒ𝑡

𝜕𝑉
𝑇

 

𝜕ℒ

𝜕𝑈
= ∑

𝜕ℒ𝑡

𝜕𝑈
𝑇

 

𝜕ℒ

𝜕𝑊
= ∑

𝜕ℒ𝑡

𝜕𝑊
𝑇

 

  

These gradients would then be used to update the weight matrices using some update rule, i.e. 𝑈 = 𝑈 −

𝜂
𝜕ℒ

𝜕𝑈
, where 𝜂 is the learning rate. While RNNs have memory, it is finite, with earlier layers contributing 

less than later layers due to the vanishing gradient effect.  

 

Further considering 
𝜕ℎ𝑡

𝜕ℎ𝑘
, we note that it will also have to be computed using the chain rule, as each ℎ𝑡 is 

only a function of ℎ𝑡−1. This will give long sequences of chained derivates, especially when calculating 

for the initial layers. From [71] we see that the Jacobians of the tanh(⋅) and sigmoid(⋅) are upper bounded 

by 1 and 
1

4
 respectively. This means as our chains of derivative multiplications get longer, the impact of 

that layer on the total gradient tends to 0. Depending on what activation functions we use, we can also 

have gradients that are consistently greater than 1. This will result in gradients tending to ∞, also resulting 

in a suboptimal learning strategy.  
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Long Short Term Memory (LSTM) Networks 

To propagate a constant gradient over longer time periods, we introduce a more complex structure to the 

RNN called LSTM networks. The main advancements of LSTM networks is the addition of learnable 

gating mechanisms that allow the network to learn long term dependencies within the data, while the 

overall structure of the network remains the same. They were originally introduced by Hochreiter and 

Schmidhuber [72], and have been used successfully in a variety of fields, especially NLP [73]. LSTMs 

introduce an intermediary memory cell that also has a recurrent connection that allows for the error to be 

propagated without being diminished, addressing the vanishing gradient problem of RNNs.  

 

 

Figure 21: LSTM block internals 
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The sizes of the different components are provided. 𝐵 is batch size, 𝐷 is dimensionality, and 𝐻 is the 

number of hidden units of the LSTM cell. In our use case, 𝐵 = 100, 𝐷 = 4, and 𝐻 = 100 in the case of 

a vanilla LSTM.  

 

𝑥𝑡 ∈ ℝ𝐵×𝐷 

𝑓𝑡 ∈ ℝ𝐵×𝐻 

𝑖𝑡 ∈ ℝ𝐻×𝐵 

𝑜𝑡 ∈ ℝ𝐻×𝐵 

ℎ𝑡 ∈ ℝ𝐵×𝐷 

𝑐𝑡 ∈ ℝ𝐻×𝐵 

 

The three gates of an LSTM are: 

 

Forget gate: Included in ‘vanilla’ LSTMs nowadays, they were originally introduced in 2000 by Gers et. 

al., to prevent unbounded growth of the cell state. The forget gate is there to be selective about what 

information we should remember by looking at a concatenation of the previous hidden state ℎ𝑡−1 and the 

current input 𝑥𝑡. After being passed through a learnable weight matrix 𝑊𝑓, the sigmoid function will 

output a value between 0 and 1 which will perform a Hadamard product (pointwise multiplication) with 

the cell state. 𝑊𝑓 ∈ ℝ𝐻×2𝐵 

 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡]) 

 

Input: We also allow the network to selectively add new information into our cell state. The sigmoid 

layer once again decides which values to update, but then this is directly pointwise multiplied with a new 

set of candidate cell states 𝑐𝑡̃  which are made by passing the concatenated input through a tanh(⋅) layer 
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rather than a sigmoid layer to force that values to be between -1 and 1. The result is added onto the 

currently existing cell state. 

 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡]) 

𝑐𝑡̃ = tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐̃𝑡 

 

Output: Finally we permit the network to selectively decide what information to output. This gives the 

network freedom to create dependencies between both long-term dependencies stored in the cell state, 

and recent, possible ephemeral information. The sigmoid is applied on a standardized version of the cell-

state which is passed through a tanh(⋅) function to compress it between -1 and 1. The output will also be 

the new hidden state of the LSTM cell. 

 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡]) 

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡) 

 

While LSTMs effectively handle the gradient vanishing problem, they are still susceptible to exploding 

gradients, and as such it is common to use gradient clipping when experimenting with different LSTM 

architectures. There are also several different variants on this LSTM architecture such as the addition of 

peephole connections [74] and the GRU [75]. 

 

CNN-LSTM 

While LSTMs will generally provide good performance, they were difficult to train and expensive in 

terms of training time due to lack of parallelization. Instead, we decided to add a deep convolutional 

network between the input data and LSTM for feature extraction. A CNN layer consists of performing a 
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convolution across the input space using randomly initialized kernel functions. The completed 

convolution will be referred to as a feature map, and each layer can have a user-defined number of feature 

maps of the data. As each feature map is computed on the same data, CNNs are highly efficient algorithms 

when parallelized. A simple example of a convolution with kernel [1, 1, 1] is given below. During 

implementation, all of these kernels will be initialized randomly. Note as we are working with a discrete 

input, the convolution is just a cumulative sum of the point wise multiplication for each convolutional 

window. 

 

 

Figure 22: Convolutional Layer toy example 

 

Convolutional networks are mostly used in image-based problems. In our case, we do not necessarily 

want convolutions between our features, but rather just across time. To implement this we use 1D 

convolutions. Consider our input dataset 𝑿 ∈ ℝ4500×4. We can take a kernel size (𝑘 × 4), and then slide 

that kernel across. This is a 1D convolution. In future iterations of the algorithm, it may make more sense 

to perform 2D convolutions to find features dependencies. Some seizure subtypes have subtle absolute 

feature data, but strong correlations between heart rate and accelerometer movement. 

 

After each convolutional layer, we often apply pooling layers. Max pooling, taking the maximum of 𝑛 

neighboring values in the feature map over the entire space, is the most common. It provides a 

regularization effect, transformation, rotation and scaling invariance, as well as dimension reduction.  
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Additionally, it has become common practice to apply batch normalization layers after each hidden layer 

to counteract Internal Covariate Shift (ICS). Learning theory is based on the assumption that all data (both 

training and testing) and independent and identically distributed (i.i.d.). We whiten our data before input, 

but as we propagate through the layers, the distribution of the features (covariates) will slowly begin to 

drift. This is known as ICS. The later layers will subsequently need to adapt to this drift, significantly 

slowing down learning [76].  

 

The idea of batch normalization is to restrict the activations of each layer to be to be standardized with 0 

mean and unit variance. The theory is that this will whiten the distribution after each layer, accelerating 

network training. In practice, such a strict restriction would hinder the expressive power of the network, 

so we add in learnable parameters 𝛾 and 𝛽 allowing the network some freedom in whitening the data. 

 

Taking 𝑿 = {𝑥1,… , 𝑥𝑛} to be one batch in our dataset, and 𝜖~0 for numerical stability, 

 

𝜇 ←
1

𝑚
∑𝑥𝑖

𝑖

 

𝜎2 ←
1

𝑚
∑(𝑥𝑖 − 𝜇)2

𝑖

 

𝑥𝑖 ←
𝑥𝑖 − 𝜇

√𝜎2 + 𝜖
 

BNγ,β = 𝛾𝑥𝑖 + 𝛽 

 

We also point out that while the ICS has been the commonly accepted reason behind batch normalization, 

recent work from Santurkar et. al. [77] suggests this is not the case. They conclude that while batch 

normalization does whiten layer outputs, its fundamental effect is to make a smoother optimization 

landscape, inducing more stable gradient behavior, and resulting in faster training.  
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Finally to further regularize our model, we also consider using dropout layers. While expressive systems 

allow us to generate complex decision functions, they will also have a tendency to overfit. Similar to 

bagging in decision trees, we can reduce variance by taking the average over a large number of networks. 

Unfortunately training this many networks is computationally infeasible. Instead we randomly drop out 

network neurons and their connections during training of each batch. This will prevent co-adaptation of 

neurons over time. When testing a new input, we take the average of all the neurons, multiplied by (1 −

𝑝), where 𝑝 is the probability of randomly dropping a neuron. In practice, this results in performance 

similar to averaging a large batch of networks [78]. Dropout regularization would be applied on top of 

the regularizing effects of both max-pooling and batch normalization. 

 

TCN 

Despite the efficacy of recurrent models in sequence modeling tasks, recent research has shown that 

CNNs can also achieve state-of-the-art accuracies on specific tasks. This raises the question as to whether 

Convolutional networks are successful due to a specific domain application, or because they can 

inherently be used in general sequence modeling applications.  

 

Let’s explore this problem with at a toy example. Suppose we are given an input sequence (𝑥0, … , 𝑥⊤) 

and wish to predict a corresponding output (𝑦0, … , 𝑦⊤) for each time point. In RNNs, there is a causal 

framework. All information to predict an output at a specific timepoint only uses information that has 

come previously. Thus to calculate 𝑦𝑡 , we must only use 𝑥0,… 𝑥⊤ . Additionally, since our goal is 

sequence modeling, note the second constraint that the output size must match that of the input.  

 

Generally CNNs will break both these constraints. Convolution kernels use data from the past and the 

future, and each convolution will shrink the dataset in the time dimension. To ensure causality, we define 
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a causal convolution [79], as a convolution where all inputs to kernels are coming strictly from the past. 

This architecture is similar to that of the time-delay network. To maintain the shape of the output, we use 

zero-padding on one side. 

 

A RNN-like CNN can now be defined. Unfortunately, covering long sequences with regular convolutions 

will result in a very deep architecture consisting of large features. In real-time applications, the network 

would have to either be optimized, distilled or otherwise compressed to allow for fast calculations. 

 

Dilated Convolutions 

Following the work of Wavenet [80], and Yu and Koltun [81] the original TCN authors [79] employed 

dilated convolutions to exponentially increase the receptive field of neurons in later layers. We define 

dilated convolutions as  

𝐹(𝑠) = (𝒙 ∗𝑑 𝑓)(𝑠) = ∑𝑓(𝑖) ⋅ 𝒙𝑠−𝑑⋅𝑖

𝑘

𝑖=1

 

where 𝒙 ∈ ℝ𝑁 is our 1 dimensional input sequence, 𝑘 determines the kernel size, and 𝐹(𝑠) signifies the 

𝑠𝑡ℎ element of our feature map 𝐹. Note the 𝑠 − 𝑑 ⋅ 𝑖 term that dilates the convolution. When 𝑑 = 1, a 

dilated convolution is reduced to a normal convolution. An example of dilated convolutions can be seen 

in Figure 23. Note how as we increase the dilation at each layer, the receptive field gets exponentially 

larger. In the example, the receptive field of a neuron in the output layer is 16. In comparison if we had 

used a regular convolutional network with the same strides and kernel sizes, the receptive field would be 

5. We can increase or decrease the size of the receptive field by varying the filter size and the dilation 

rate. 
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Figure 23: Dilated causal convolutions 

 

To calculate the receptive field of the TCN, we look at the kernel size and dilation parameters at each 

layer, and take a recursive sum. This formulation works under the assumption that each element of a 

kernel will have receptive fields that either touch or overlap on the layer below. If they do not, there will 

be gaps in the lower layers. Layer 0 will always have a dilation of 1 and kernel size of 1, as it is simply 

the input sequence. Defining 𝑅𝐹(𝑙) as the receptive field at layer 𝑙, 

 

𝑅𝐹(0) = 1 

 

At each subsequent layer, the receptive field will be calculated by  

 

𝑅𝐹(𝑙) = [𝐾(𝑙) − 1]𝑑(𝑙) + 𝑅𝐹(𝑙 − 1) 

 

Note that in the setup of a standard TCN, each residual block will have the same convolutional layers 

occurring twice.  
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Residual Block 

During training of deep networks, there is empirical evidence that after a certain depth, network 

performance saturates, and counterintuitively begins dropping [82]. Even more surprisingly, this 

performance degradation is not due to model overfitting, as [82]–[84]  all show an increase in training 

error when performance begins to degrade. Theoretically, this should not happen any subnetwork placed 

on top of some optimal shallow network has the expressive capabilities to learn an identity mapping. At 

worst, deeper layers should maintain the performance of shallower layers.  

 

A novel method called Residual learning [82], addresses this problem with the introduction of residual 

skip connections. Instead of trying to make the higher subnetwork learn a residual mapping, we provide 

it with an identity mapping, and allow it to create a residual mapping if it needs to add any extra 

information. Mathematically, if the output of the optimal shallow network is 𝑥, and the output of the 

higher subnetwork is 𝐹(𝑥), we add a connection directly routing 𝑥 across 𝐹(𝑥). The cumulative output 

that is then propagated is 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. This is shown in Figure 24.  

 

 

Figure 24: Residual Connection 
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Should the identity mapping be ideal for performance, it is easier for the network to optimize weights of 

the subnetwork 𝐹(𝑥) to be 0, rather than trying to learn the identity mapping via backpropagation 

through many non-linear layer stacks. As TCN’s will generally be deep networks to learn long 

sequences, it is important that these residual connections are present. This is seen going through the 1x1 

convolution in Figure 25. We use the 1x1 convolution to downsample the input should the need arise, 

so that summation with the output is possible.  

 

To counter the problem of vanishing/exploding gradient, weight normalization is used after every 

dilated convolution layer. Weight normalization [85] is similar to batch normalization in that it 

normalizes layer weights. Instead of normalizing the mean and standard deviation, weight 

normalization normalizes based on each vector’s orientation and magnitude, essentially separating the 

norm from the direction. It is calculated by reparametrizing the weight of each weight vector as  

𝒘 =
𝑔

||𝒗||
𝒗 

 

𝑔 and 𝒗 are then optimized through gradient descent. Weight normalization is more deterministic than 

batch normalization, and is computationally simpler. From the original weight normalization paper, we 

see that weight normalization is faster than batch normalization, though each performs better in specific 

situations. Finally a dropout layer is also added to provide regularization to the network, leading to the 

final residual block shown in Figure 25, as described in [79].  
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Figure 25: Residual Block of TCN 

These residual blocks, when stacked on top of each other, are known as a Temporal Convolutional 

Network. 
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Network Architectures and training 

LSTM 

We used a stacked LSTM model with dropout regularization (dropout rate: 0.2) applied on dense-layers 

between the LSTM. We do not add dropout inside the LSTM blocks as if could encourage randomly 

forgetting some long-term dependency. Each LSTM cell has a70 hidden units, culminating with a final 

SoftMax layer for a probabilistic output decision. The learning rate was 0.02, with a categorical cross-

entropy loss function for backpropagation. Batch size was 100, and training accuracy converged to 

approximately 88% within 10 epochs. The batch size for each update step was 100.  

 

 

Figure 26: LSTM architecture 

 

CNN-LSTM 

To speed up LSTM training we decided to use a CNN as a feature extraction step. By design, CNN 

computations can occur in parallel (same filter applied to multiple locations of the image at the same 

time), leading to large processing time gains. The CNN will additionally serve as a feature extraction 

mechanism which can be passed on to classical classification algorithms. The architecture is three 1D 

CNNs with padding to maintain shape, batch normalization (on the feature axis), 1D max pooling (pool 

size: 2) and dropout (dropout rate: 0.1). Two LSTMs (70 hidden units) were stacked onto the final CNN 

layer, culminating with a softmax output. Batch size was 100, and validation accuracy converged to 93% 

after 10 epochs. The batch size for each update step was 100. 
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Figure 27: CNN-LSTM architecture 
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Table 17: CNN-LSTM architecture summary 

Layer 
Kernel 

Size 
Stride Filters 

Dropout 

(%) 

Hidden 

Units 

Output 

Shape 

Input - - - - - 4500 x 4 

Conv 1D 2 1 8 - - 4500 x 8 

Feature BN - - - - - 4500 x 8 

Max Pool 

1D 
2 2 - - - 2250 x 8 

Dropout - - - 0.1 - 2250 x 8 

Conv 1D 2 1 16 - - 2250 x 16 

Feature BN - - - - - 2250 x 16 

Max Pool 

1D 
2 2 - - - 1125 x 16 

Dropout - - - 0.1 - 1125 x 16 

Conv 1D 2 1 16 - - 1125 x 16 

Feature BN - - - - - 1125 x 16 

Max Pool 

1D 
2 2 - - - 562 x 16 

LSTM 1 - - - - 70 562 x 70 

LSTM 2 - - - - 70 70 

Dense - - - - - 2 

 

TCN 

We implemented a generic TCN in Keras following [79]. As weighted convolutions have not yet been 

implemented in Keras, we have bypassed that layer in the residual blocks. We have also implemented 

skip connections to add the outputs of every residual block to the final output. Skip connections can 

alleviate the vanishing gradient problem, and enhance feature propagation in deep networks. They have 

commonly been used in networks like DenseNets. In addition to these skip connections, the residual 

blocks will still contain their own identity mapping functions. 
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We selected dilation values of [1, 2, 4, 8, 16, 32, 64]. We select stacks of 1 residual blocks for each 

dilation value, with a dropout value of 0.05. All convolutional layer had 20 filters with a kernel size of 

20. Together this setup led to each kernel element on the top layer to have a receptive field of 4827, 

covering our entire sequence. The output layer was softmax for a probabilistic decision. Each model was 

trained for 10 epochs within which validation accuracy converged to over 99% with the ADAM 

optimizer. The batch size for each update step was 100. 
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Figure 28: TCN architecture 
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Results 

Evaluation Metrics 

ROC and precision-recall curves were used to evaluate the detector performance. We motivate the use of 

a precision-recall curve as there will be a dataset imbalance during testing (48 False Positive Segments 

to 4 seizure segments during each fold). The precision metric measures the posterior probability of a 

segment being a seizure, given the detector saying it was. It answers the question, “how many detections 

are relevant?”. Recall is a synonym for sensitivity, and answers the question “How many relevant 

segments are detected?”.  

 

Precision = 𝑃(𝑌 = 1| 𝑌̂ = 1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall = Sensitivity = 𝑃(𝑌̂ = 1|𝑌 = 1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False Positive Rate = 𝑃(𝑌̂ = 1|𝑌 = 0) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

Note as this is a second stage detector, there was no need to calculate the false positive rate in a unit time. 

We setup false positive rate as a percentage, and used in-vivo results from the isolation forest detector to 

estimate the amount of false positives per unit time.  

 

To evaluate the ideal threshold, we used a normal and weighted 𝐹1-score, a metric that scores the detector 

at specific thresholds according to the harmonic mean of its precision and recall. The harmonic mean is 

defined as the reciprocal of the arithmetic mean of the reciprocals of a given set of observations, and is 

one of the three classical Pythagorean means. It is more natural to use harmonic mean here as precision 

and recall share the same numerator. This leads to a higher punishment of extreme values. As a simple 
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example, if precision is 0 and recall is 1, the arithmetic mean would give 0.5, while the harmonic mean 

would give 0. 

 

𝐹1 = (
recall−1 + precision−1

2
)

−1

= 2 ⋅
precision ⋅ recall

precision + recall
 

 

Note in the traditional 𝐹1 score, both precision and recall are weighed equally. In general, we want to 

place a higher emphasis on recall, due to the consequences of missing a seizure. This can be done by 

using the 𝛽-weighted 𝐹 score. 

 

𝐹𝛽 = (1 + 𝛽2) ⋅
precision ⋅ recall

(𝛽2 ⋅ precision) + recall
 

 

𝛽 > 1 will weigh recall higher than precision, while 𝛽 < 1 will weigh precision higher than recall. In our 

experiments we use 𝛽 = 1.5. For all our experiments, we shall use either 𝐹1 or 𝐹𝛽 to set the threshold 

value for our detector. 

 

Offline Cross Validation 

4-fold cross validation was performed on the dataset. During each fold, 48 windowed false positive 

segments, and 4 windowed seizure segments were randomly sampled without replacement for testing. 

The 144 remaining false positive segments and 18 seizure segments were used for testing. Note that there 

are 2 randomly chosen seizures that will never be tested during cross-validation. We sample without 

replacement so all seizures and false positives have a chance to be tested as an unseen example. 
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Accumulation Filter 

A 1st order IIR filter is used to soften the output of the neural networks. This filter is identical to that used 

in the anomaly detection stage of the algorithm.  

 

𝑦(𝑡) = 𝛼𝑥(𝑡) + (1 − 𝛼)𝑦(𝑡 − 1) 

 

As high detector outputs on false positive data is expected to be sporadic, the filter parameter was set to 

𝛼 = 0.05. This heavy weighting towards the previous value will create a very slow filter, as seen in Figure 

29. As seizures should have a near continual segment of high network outputs, a slow filter allows us to 

set a threshold between the seizures and the false positives. If the filter is too fast, any short burst of 

seizure like activity will cause the filtered output to hit the threshold. 

 

 

Figure 29: Accumulation Filter comparisons 

 

We will not do grid search to find the optimal value of the filter parameter. During cross validation, the 

maximum attained value of the accumulation filter for each test segment is retained, and we can describe 

our ROC and Precision Recall curves by varying the threshold across these maximum values. Note the 

baseline curves in both ROC and Precision Recall graphs. These lines represent a baseline hypothesis 

where you simply guess whether a specific event is a seizure or a false positive. 
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Each CV-ROC curve will also contain curves from every fold of the cross validation, as well as a standard 

deviation region. There will be two mean ROC curves plotted. One will be the curve made from all the 

data plotted on one chart. The other is a mean of the curves from each fold. 

 

LSTM 

The validation accuracy for LSTM converged to 89% within 10 epochs. Without GPU access, training 

time was approximately 20 hours per fold on a CPU.  

  

  

 
 

Figure 30: Cross validation results for LSTM network. a) shows a rug-plot and histogram of maximum values 
reached by the accumulation filter for seizures and false positives. b) shows the corresponding ROC curve. c) 
shows the precision-recall curve. d) shows the F1 and weighted F1 scores for varying thresholds. 

 

Table 18: Optimal LSTM characteristics 

Optimal Threshold 0.4053 

Sensitivity 81.25% 

Specificity 79.10% 
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LSTM results were encouraging as a baseline for this task. At an optimal configuration, a sensitivity of 

approximately 80% is not acceptable in our application. If we lower the threshold to allow for 90% 

accuracy, the false positive rate will be around 0.7, which translates to an estimated 0.903/day using our 

in-vivo isolation forest results. With the additional increase in latency, it would be inefficient to 

implement a secondary detection stage with these characteristics. We note the strict performance penalties 

of the precision-recall curve on anomaly detection activities. Despite a good overall false positive rate, 

the lack of true positives drive down the precision metric to 0.3. Since we require a idealized characteristic 

of 1 false positive per seizure, an acceptable algorithm will require a precision of at least 0.5. 

 

CNN-LSTM 

The validation accuracy for CNN-LSTM converged to approximately 97% accuracy within 10 epochs 

with a training time under 30 minutes per epoch on a CPU. 

  

  

Figure 31: Cross validation results for CNN-LSTM network. a) shows a rug-plot and histogram of maximum 
values reached by the accumulation filter for seizures and false positives. b) shows the corresponding ROC curve. 
c) shows the precision-recall curve. d) shows the F1 and weighted F1 scores for varying thresholds. 
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Table 19: Optimal CNN-LSTM characteristics 

Optimal Threshold 0.3696 

Sensitivity 93.70% 

Specificity 96.42% 

 

With this specificity, we can expect a mean False Positive Rate of 0.04644/day. A sensitivity of over 93% 

is an acceptable characteristic. We note that the two seizures that were not detected during cross validation 

still reached maximum values of 0.22 and 0.28 respectively. Despite being atypical seizure sements, using 

old sensor data with gaps, we think it likely that careful hyperparameter tuning and/or a deeper network 

may allow for a higher AUC. It is also likely that with the newer watches, our sensitivity will be higher 

than predicted here. From the precision recall curve, we see an optimal precision value above 0.5, meeting 

our idealized expectation of a 1:1 seizure to false positive ratio. There are still three false positives that 

are confidently identified as seizures. We cannot validate what activities they are as old Video EEG 

records are not stored in our system, but from a spectrogram we see extended bands of activity that mimic 

periodic activity (running, brushing teeth, weightlifting). Additionally, heart rate increase was marginal, 

with none of the 3 crossing 100 bpm. This suggests we may have to find a method of increasing the 

weighting of heart rate features in the network. 
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TCN 

The validation accuracy for TCN converged to 99% within 10 epochs. Training time was approximately 

1 hour per epoch on a CPU. 

  

  

Figure 32: Cross validation results for TCN network. a) shows a rug-plot and histogram of maximum values 

reached by the accumulation filter for seizures and false positives. b) shows the corresponding ROC curve. c) 
shows the precision-recall curve. d) shows the F1 and weighted F1 scores for varying thresholds. 

 

Table 20: Optimal TCN characteristics 

Optimal Threshold 0.48 

Sensitivity 100% 

Specificity 100% 

 

TCN shows perfect separation of seizures and false positives over 5-fold cross validation. To ensure 

overfitting was not occurring, numerous cross-validations were performed to verify these results. Three 

false positives are noticeable separate from the majority that are clustered around 0. The same false 

positives can be seen in the CNN-LSTM model across the threshold line. This suggests that the model is 

indeed learning about some inherent structure that allows for good separation. Additionally, we see that 

on average, maximum thresholds of seizure segments are higher on average (0.72) as compared to LSTM 
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(0.49) and CNN-LSTM (0.57). The model is considerably more sure that sections are seizures, as the 

confidence of output needs to be consecutively ~1 for almost 30 seconds to reach this value with our 

accumulation filter. This algorithm will significantly improve latency if implemented. 

Summary 

Table 21: Summary of performance characteristics for 2nd stage detector 

 Sensitivity Specificity AUC APC 

LSTM 81.25% 79.10% 0.87 0.4 

CNN-LSTM 93% 96% 0.94 0.61 

TCN 100% 100% 1 1 

 

Real Time Detection 

Watch Implementation 

Despite the impressive results from the TCN model, the dilated causal convolution layers were difficult 

to implement efficiently in Swift. There is a conversion tool available called CoreML assists in converting 

some common layers into a C++ wrapper around the low-level Metal Performance Shaders. The 

conversion allows for optimized processing of the data through the network, and uses the GPU on the 

target device if available. With some configuration, were able to convert CNN and LSTM layers from 

Keras to CoreML layers. For now we were not able to convert layers in PyTorch or Tensorflow as cycles 

have not yet been implemented. 

 

All 22 seizures and 192 false positives were windowed and used to train a final CNN-LSTM model in 

Keras. The weights and biases of all the layers were frozen, and then all the layers were converted into 

CoreML compatible layers and reassembled. The resulting model was imported into Swift. It expected 

an input vector of the shape (4500,4), and will give a corresponding probabilistic output of likelihood that 

the input segment is a seizure or False Positive. Together with the Isolation Forest detector, we can 

summarize the full detection algorithm. 
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Table 22: Full detection algorithm 

1. Buffers collect accelerometer and heart rate data constantly 

2. Every 5 seconds, 5 second buffer chunks are passed through the anomaly detector class, which 

filters the segments and extracts selected features 

3. Each 1 second chunk is passed to the isolation forest which calculates path lengths decides 

whether to classify it as an anomaly or not 

4. All outputs are passed through an accumulation filter that provides robustness against 

spurious detections. 

5. If accumulation filter passes a threshold of 1.55, the isolation forest processing pipeline shuts 

off. 

6. A running buffer of 45 seconds is interpolated, filtered and standardized, then passed through 

the CNN-LSTM which outputs a probability of the segment being a seizure. 

7. This output is passed through a secondary accumulation filter. If this filter passes a threshold 

of 0.40, the seizure detection protocol will be triggered. 

 

Note are that we set the threshold to 0.40 as it does not change the sensitivity of the detector but will 

make separating false positives easier. This can be adjusted to improve latency and sensitivity if required. 

 

In-Vivo Results 

Across all 30 patients, we tracked for a total of 2004 hours, giving an average of 65 hours per patient. We 

kept a track of the number of Isolation Forest detections, and the number CNN-LSTM detections that 

occurred, to evaluate performance against the initial stage. We also validated every detection with video 

EEG for standard reference. Latency was calculated from the beginning of convulsions. 
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Table 23: In-vivo statistics for 2nd stage detector 

Total Hours 

Tracked 

Average 

Hours per 

patient 

False 

Positives 

True 

Positives 

Total Forest 

Detections 

Mean Latency 

± std (s) 

2004 65 4 12 109 62 ± 10 

 

Table 24: Raw in-vivo statistics for 2nd stage detector 

  Detector Total 

  (+) (-)  

Video EEG 
(+) 12 0 12 

(-) 4 109 97 

Total  16 93 109 

 

Taking the Video EEG as a reference standard, we see a sensitivity of 100% over 12 seizures, and a 

specificity of 96.4% over 113 false positive detections from the isolation forest, corresponding to a false 

positive rate of 0.05 /day. This is in agreement with our expected false positive rate of 0.04644 /day 

estimated during cross validation. Our 95% Clopper-Pearson confidence intervals were (73.5%, 100%) 

for sensitivity and (91.1%, 99.0%) for specificity. The sensitivity interval is so wide because we only 

recorded 12 seizures. Latency is also on the threshold of being acceptable. It is noted that this latency is 

the same latency predicted in offline analysis of the isolation forest (mean 62 seconds), suggesting either 

the CNN-LSTM is classifying very quickly, or lack of accelerometer data gaps in the newer generation 

watches have caused quicker isolation forest detection. Additionally, it is noted that many seizures had 

heart rate gaps during the tonic phase. For seizures with no heart rate gaps, latency was averaged at 52 

seconds. This suggests that data gaps may still be affecting seizure detector performance. 
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Figure 33: Data gap illustration on seizure data. a) shows the heart rate dat. b) shows corresponding accelerometer 
data. 

 

Finally, the detector was also used by some Beta users to assess its efficacy in ambulatory individuals. 

The FPR was far lower than the original anomaly detector, and is quite surprising given no ambulatory 

data was used to train the CNN-LSTM. This suggests that the false positives from the EMU have 

characteristics that mimic ambulatory false positives. As before, the false positives were primarily from 

monotonous physical activity. 

 

 

 

 

 

 

 

 

 



127 

 

Conclusion 

We have introduced the first smartwatch-based tonic-clonic seizure detector in this thesis. Our method, 

an ensemble of isolation forest and CNN-LSTM detects anomalies in real time data, then classifies them 

as either seizures or false positives with a sensitivity of 100% CI (73.5%, 100%) and a specificity of 

96.4% CI (91.1%, 99.0%), corresponding to a false alarm rate of 0.05/24h at a latency of 62 seconds. This 

false alarm rate is state-of-the-art for commercial seizure detectors, and the latency is just inside the 

clinical window. We have covered feature extraction and selection using mutual information techniques 

and theory of various anomaly detection models showing the advantages of the isolation forest model. 

We have also covered the theory of various deep learning classification models and performed cross-

validation showing the efficacy of each model in classifying seizures and false positives. We provide a 

summary of how the algorithms and preprocessing pipeline were implemented in the Apple Watch, and 

in-vivo results testing our algorithm in EMU patients. Our results demonstrate quantitatively demonstrate 

the value of such a device in EMU settings and also the potential in ambulatory patients. 

 

Limitations 

Despite producing outstanding cross-validation results, we were not able to implement TCN’s on the 

Apple Watch. This by itself could greatly improve all metrics of the detector. Additionally, the high 

latency suggests a different approach may still be required for the anomaly detection stage. Seeing the 

success of incorporating causal temporal data into the classifier, a HMM may be a good baseline to begin 

with. We can also think of using deep learning for anomaly detection. Methods like AnoGAN and 

Autoencoders have shown promise. Another method would be to use the loss function of a one-class 

SVM or SVDD on a neural network. An issue with deep learning be CPU usage, but it would be possible 

to shorten window length, increase the time between processing windows (i.e. 10 seconds), or distill the 
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network. Finally, as seizures from the same patient always have extremely similar characteristics transfer 

learning may be possible for customized detectors as we collect more data. 
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Appendix 

Proof of XOR Uncorrelatedness 

Consider an XOR function with the inputs 𝑋1, 𝑋2 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), and output 𝑌. Trivially, 𝐸(𝑋1) =

𝐸(𝑋2) = 𝑝. Then, 𝐸(𝑌) = ∑𝑦𝑖𝑃(𝑌) = (0)(1− 𝑝)2 + (0)(1− 𝑝)𝑝 + (1)(1 − 𝑝)𝑝 + (1)𝑝2 = 𝑝2 + 𝑝 −

𝑝2 = 𝑝. To find 𝐸(𝑋1𝑌), we must first find the joint PDF 𝑃(𝑋1, 𝑌). This is done in the table below. 

 

𝑋1 = 0, 𝑌 = 0 𝑋1 = 1, 𝑌 = 0 𝑋1 = 0, 𝑌 = 1 𝑋1 = 1, 𝑌 = 1 

(1 − 𝑝)2 𝑝2 𝑝(1 − 𝑝) 𝑝(1 − 𝑝) 

  

Then, 𝐸(𝑋1𝑌) = ∑𝑃(𝑋1, 𝑌)𝑋1𝑌 = 𝑝 − 𝑝2. When we set 𝑝 = 0.5, we get that 𝐶𝑜𝑟𝑟(𝑋1, 𝑌) = 𝐸(𝑋1𝑌) −

𝐸(𝑋1)𝐸(𝑌) = 0.25− 0.25 = 0, meaning they are uncorrelated for equal probabilities. 

 

Proof of Mutual Information Formulation 

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑥, 𝑦)

𝑥∈𝒳

 

= − ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑦|𝑥) 𝑝(𝑥)

𝑥∈𝒳

 

= − ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑥)

𝑥∈𝒳

− ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑦|𝑥)

𝑥∈𝒳

 

= − ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝒳

− ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝒴

log 𝑝(𝑦|𝑥)

𝑥∈𝒳

 

= 𝐻(𝑋) + 𝐻(𝑌|𝑋) 
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Seizure Subtypes  
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