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Abstract                                                                             

  

Pressure sensitive adhesive (PSAs) are ubiquitous polymers employed as 

adhesives tapes and sticky notes. PSAs adhere on a substrate after the application 

of a light pressure and are widely used in many industries such as electronic, 

medical, or consumer products. In some situations, it is necessary for the PSA 

make or maintain a bond in a in a humid environment or even underwater. 

Similarly, PSAs need to adhere to a broad range of surfaces, including skin which 

can be very compliant. The objective of this work is to understand how the 

surface and rheological properties of two PSAs are affected by exposure to water 

as well as to develop model soft substrate to study the effect of substrate 

compliance on adhesion. 

In Chapter 1 the characterization of two PSAs: poly(2-Ethylhexyl 

acrylate) and poly(2-Ethylhexyl acrylate-co-AA), is presented. The two PSAs are 

almost identical, except that one of the two contains 5 wt% of acrylic acid as a 

comonomer. The objective of the work is to understand how the presence of 5 

wt% of AA affects the properties of the PSA. We characterize the underwater 

surface properties of the two PSAs using the contact angle measurements to 

determine the surface energy and surface pKa. The surface zeta potential to 

determine the effect of the solution pH on the charge. We then use these 
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measurements to interpret separate probe-tack adhesion measurements. Our 

measurements show that the acrylic acid comonomer significantly affects the 

properties of the PSAs, especially under wet condition where it deprotonates.  

In chapter 2, we reports on the synthesis and characterization of the 

surface and bulk properties of  poly(dimethyl siloxane) (PDMS) with different 

degree of crosslinking. The objective of the work is to study adhesion of PSAs on 

compliant substrates. To do so, we selected PDMS as a model compliant substrate 

and report on the change in surface and mechanical properties of PDMS for 

different degree of crosslinking. Our measurements show a direct relationship 

between the concentration of crosslinking agent and the elastic modulus (as 

measured by shear rheology). We also characterized the surface properties of 

PDMS after an oxygen plasma treatment. We show that stable contact angle 

measurements are obtained after extraction of unreacted oligomers. 
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Introduction                                                                      

 

Pressure sensitive adhesive (PSA) is a class of polymer that become tacky 

upon the application of a slight external stress1. PSA ubiquitous in many fields 

such as the electronical industry, medicine industry, and drug delivery2. For 

example, PSAs are used in manufacturing, wound dressing, medical patches that 

release drug via the skin3. Furthermore, PSAs can be easily removed without 

leaving residues on the substrate surface, for example in tapes and post-it notes.  

Generally, the adhesive properties of PSAs are studied in dry 

environments as they are detached from a rigid substrate. Under these conditions, 

all the deformation during the detachment occurs in the PSA, and the surrounding 

environment does not affect the adhesion properties. However, for many practical 

situations, for example for medical adhesives, the substrate is soft and wet, and 

the environment is humid or even completely wet with variable pH. 

Unfortunately, there are only limited scientific reports addressing how water, and 

more generally challenging environmental conditions, affects the performance of 

PSAs4-6.  For example, consider medical adhesives who need to adhere to skin 

(compliant) and maintain a bond under water. Adhesion on soft substrates differs 
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from the adhesion on rigid ones as energy during debonding is also dissipated 

within the substrate and not only on the adhesive7.  

Here we investigate the properties of two acrylic PSAs. Acrylic-based 

PSAs are one of the most common class of PSAs, and generally consist of a 

crosslinked copolymer where the comonomers are selected to control the glass 

transition temperature (Tg) and the degree of entanglement8, 9. We aim to 

understand how does the PSA underwater surface properties are affected by the 

pH of bulk, and in turn how do the changes in surface properties influence the 

PSA adhesion. We also report on preliminary experiments aimed at developing a 

soft probe that will be employed to study adhesion of PSAs on compliant 

substrates. Throughout this work, several techniques are employed to investigate 

the surface change of the PSA in different pH conditions such as contact angle 

measurements, probe tack measurements, surface energy determination, and 

surface zeta potential measurement.  
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Chapter I    

Characterization of surface properties of PSA in 

different pH solution 

*Note: Most of the results, writing, and figures have been published 

in10 . Most experiments have been performed in collaboration with 

Preetika Karnal and Anushka Jha. 

1.1 Introduction 

This Chapter reports on the characterization of the surface properties of 

two PSAs in different pH solutions. Surface properties lead to an interfacial bond, 

for example through van der Waals forces. In addition, for PSAs rate-dependent 

viscoelastic dissipation in the bulk can amplify, by orders of magnitude, the 

energy required to detach the adhesive from the substrate. In fact, due to bulk 

dissipation some PSAs can sustain very large strains (>100%) prior to failure.7 

When PSAs are immersed in water, both the surface and bulk properties could 

change. For example, water can affect the adhesion of PSAs through different 

mechanisms. For instance, when surfaces bond together, fluid can remain trapped 

in the gaps and crevices between surfaces and an additional force might be 

necessary to squeeze the fluid out, or alternatively fluid can remain trapped 

sparsely between the surfaces. According to the visible−IR sum-frequency-
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generation spectroscopy (SFG), report about the PDMS-sapphire interface points 

out the existence of trapped water in heterogeneous contact region at the interface. 

Additionally, Defante et al.11 found that hydrophobic polymer coatings will 

rearrange at boundaries which also attribute to trapped water when contact with a 

hydrophobic PDMS surface in wet conditions. Except for water trapping, 

chemical adsorption could also play an important role at underwater interface. 

Zhang et al.12 reported evidence of chemisorbed interfacial water in the contact 

region between a fused silica substrate and a film of poly(methyl silsesquioxane). 

Evidence suggests that water diffused through the interface rather than the bulk, 

forming hydrogen bonds with the polymer at the surface13. Therefore, surface 

properties such as the wettability and roughness of both surfaces would play an 

important role in underwater adhesion. 

 

In addition to possible trapped water at in the contact region, the pH of the 

bulk solution could also influence adhesion. We would expect that the effect of 

pH would be more pronounced if the PSA contains acid or base groups. The PSAs 

investigated here are poly(2-Ethylhexyl acrylate) and poly(2-Ethylhexyl acrylate-

co-acrylic acid). The latter contains 5-wt%t acrylic acid as a comonomer and is 

abbreviated as 5% PSA, while former is pure 2-EHA polymer of the same 

molecular weight, is abbreviated as 0% PSA. The only difference is the presence 

of acrylic acid, which we would expect causes a pH-responsive adhesion 

behavior. More importantly, acrylic acid is commonly employed as a comonomer, 
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therefore it is important to understand how its presence affects underwater 

adhesion. 

1.2 Materials and methods 

1.2.1 Material and sample preparation 

PSA synthesis  

 Model pressure sensitive adhesives based on copolymers of 2-ethylhexyl 

acrylate (2-EHA) and acrylic or homopolymers of 2-ethylhexyl acrylate (2-EHA) 

were synthesized in a water bath (Launderometer, Atlas) where the 

polymerization is initiated and occurs at 60°C with continued agitation for 24 

hours. After polymerization, bottles are cooled to room temperature and the 

polymer solutions are used for pressure sensitive adhesives. PSA samples are then 

analyzed by conventional GPC against polystyrene molecular weight standards 

using THF as the solvent and eluent. A sample with a composition of 88 mol% of 

2-Ethylhexyl acrylate and 12 mol% of Acrylic Acid having a weight average 

molecular weight (Mw) of 1,200,000 g/mol was selected for the totality of the 

results showed in this work and a sample of 100 mol% of 2-Ethylhexyl acrylate 

having a weight average molecular weight (Mw) of 1,200,000 g/mol used as 

control. Table 1 summarizes detailed GPC characterization of the PSA. An acrylic 

acid content of 12 mol% (5 wt%) was selected to represent common typical 

acrylic PSA. 
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Table 1. Composition and molecular weight result of selected PSAs. Results are averages from duplicate 

injections. Mn = Number-average molecular weight, Mw = Weight-average molecular weight, Mp = 

Molecular weight at signal peak, Đ = Dispersity = Mw/Mn (Previously known as polydispersity index) 

PSA 
Composition Mn Mw Mp Đ 

2-EHA (wt%) AA (wt%) g/mol g/mol g/mol  

5%AA 95 5 286667 1199002 1175371 4 

0%AA 100 0 104000 1200000 1100000 11.6 

 

The PSA solutions are then coated on a release liner, dried in a convection 

oven at an average temperature of 150°F, followed by exposure to UV at a set 

total adsorbed dose of UV-B light = 400 mJ/cm2 (directly measured using a power 

puck radiometer) using a processor from Fusion UV-systems for crosslinking, and 

used as transfer tapes for further evaluation.  Dry PSA films of thickness 25 m 

are then transferred on PET release liner for adhesion testing. For rheology 

measurements, stacks of the same material are used.  

Buffer solutions preparation 

One PBS tablet (Sigma Aldrich) was dissolved in 500mL deionized water 

to get a PBS solution with 4mM phosphate buffer, 1mM potassium chloride, and 

55mM sodium chloride. Deionized water (>18.2 MΩ•cm) was obtained from 

EMD Milli-Q® Integral Water Purification System. To generate the buffer 

solution, 10ml of the 4mM stock solution was diluted in 400 ml deionized water 

to obtain 0.1 mM phosphate buffer solution. NaOH solution (~pH13) and HCl 

solution (~pH1) were added into this 0.1 mM buffer solution to adjust pH from 3 

to 12. The pH of all solutions was monitored with a Mettler Toledo MP220 pH 

meter. All pH buffer solutions were stored in sealed bag filled with nitrogen and 
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stored without direct light exposure. pH of the buffer solutions was measured 

again prior to any measurement.  

 

1.2.2 Contact angle measurements 

Contact angles of fluids drop on PSA sample were measured by a 

goniometer (FTA 125, First Ten Angstroms). A 10 µL sessile droplet is placed on 

the surface of the PSAs. Advancing and receding contact angles are measured by 

injecting or retracting fluid from the deposited sessile droplet by syringe pump via 

a glass capillary needle. The flow rate of fluids is fixed at 20 µL/min. Advancing 

contact angle is measured first, followed by the receding contact angle. Capillary 

needle, syringe and plastic tube which is applied to connect needle and syringe are 

kept in RBS solution for 24 hours and then rinsed with deionized water, dried by 

nitrogen, rinsed with the probe fluid and filled with the probe fluid. Every data 

point is repeated at least 3 times and average values are reported along with their 

standard deviations. 
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Figure.1 A. (Upper one) Schematic of ideal advancing and receding contact 

angle measurement. B. (Bottom one) Real experimental result of dynamic 

contact angle measurement. The Probe liquid used here is pH4 buffer solution. 

The advancing angle plateau is clear while receding angle is kind of ambiguous.  
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A theoretical advancing and receding contact angle measurement process 

is shown in fig.1 A. In fig. 1A, the plateau regions 3 and 5 represent the 

advancing and receding contact angles, respectively. However, the real 

experimental result shown in fig. 1B is usually be more complex: the advancing 

contact angle plateau is easily to recognizable, while receding plateau is typically 

harder to distinguish.  The absence of a clear plateau during the receding contact 

angle measurements might be due to the adsorption of fluid molecules on the 

substrate surface. Thus, in this research, advancing contact angle is defined as the 

corresponding plateau angle in the volume-angle plot while the receding contact 

angle is defined as the contact angle of the droplet at the moment that the droplet 

contact line starts to move. 

Contact angle hysteresis was also performed on plasma treated PDMS, as 

discussed in Chapter 2 following the same protocol as described here.  

 

1.2.3 Determination of the surface energy of the PSAs 

Calculating surface energy from contact angle measurement is a widely 

used method developed by Fowkes et al14, 15. Fowkes’ method is based on Young’s 

equation, where an equilibrium multi-phases system (vapor-solid-liquid) is 

assumed. The contact angle is determined by interfacial tensions:  

   (1) 

where 𝛾1 is the surface energy of PSA in air, 𝛾3 is the interfacial tension of 

pH solution in air, 𝛾13 is the surface energy of PSA in water and 𝜃13 is the contact 

3 13 1 13cos   = −
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angle of pH solution drop on PSA surface in air. The equilibrium film pressure of 

adsorbed vapor on the solid surface (𝜋𝑒), is generally small and has been 

neglected14. In equation (number needed), 𝛾3 and the contact angle 𝜃13 is measured 

from contact angle and pendant drop measurements, while 𝛾13  and 𝛾1  (two 

unknowns) are not directly measurable from a single contact angle measurement. 

To solve this problem, Fowkes15, Owens and Wendt, Girifalco and Good16 raised 

different theories succesively based on the same idea of the partition of the surface 

energy into individual components. Owens’ equation is one of the most frequently 

used:   

   (2) 

    

Combining equation (number needed), we get: 

   (3) 

To solve this system of equations with two unknows, two liquids including 

one polar and one apolar should be chosen to reduce numerical error. Here, I 

chose water and diiodomethane (Alfa Aesar) as our liquids to measure surface 

energy of PSA in air. To measure surface energy of PSA in pH solution, I chose 

pH buffer solution drop (fluid A) and diidomethane (fluid B). The surface tension 

of the fluids is measured from a pendant drop in air. The reported value17 of 

deionized water is 72.8 mJ/m2. For pH buffer solution, the effect of pH on surface 

tension is not significant and I obtain 73±1 mJ/m2, in agreement with literature 

reports17.  The measured average surface tension15 of diiodomethane is 47±1 

1 1 1

d p  = +

13 1 3 1 3 1 32 2d d p p      = + − −

13
3 1 3 1 3

cos 1

2

d d p p
    

+
= +
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mJ/m2 while reported value18 is 50.8 mJ/m2. In water, the surface tension of 

diiodomethane decreased to 39±1 mJ/m2. Based on Fowkes’ method15, the 

dispersion and polar surface tension of diiodomethane we used was calculated to 

be 45 ±1 mJ/m2 and 2±1 mJ/m2, respectively. All following calculation involving 

the surface tension of diiodomethane uses these measured values. 

1.2.4 Probe Tack measurements 

Experimental protocol. A custom-built normal and lateral multifunctional 

force microscope (MFM)19 is used for probe tack measurements. For the 

measurements, an OTS coated spherical (plano-convex) lens is mounted on the 

lens holder attached to the cantilever of the instrument. Fiber optic reflection is 

used to measure the spring deflection, and is calibrated before each experiment. 

The PSA films are cut into 15mm x 15mm sized samples. After cutting, the PET 

release liner is removed, and a sample is placed gently onto a cleaned and dry 46 

x 27mm glass slide (Ted Pella). A weighted roller (2kg) is then rolled 20 times 

onto the sample to remove any trapped air bubbles from the PSA-glass slide 

interface and apply a high contact pressure. The PSA sample is then mounted on 

the MFM and held in place by screwing a rectangular holder on top of the PSA-

coated glass slide. During a probe tack measurement, the cantilever is lowered at 

a velocity of 50 m/s until it applies a 10 mN normal force to the sample, and is 

held at 10mN using a force feedback loop for a dwell time of 100s. Subsequently 

the cantilever is retracted at 50 m/s. Throughout approach, dwell, and debonding 

images are captured at 70 frames per seconds with an inverted microscope with a 

5x objective. The procedure for probe-tack tests in air and in aqueous solutions 
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are identical, except that for measurements in aqueous solutions the solution is 

placed on the sample and contained in the MFM bath 10 minutes prior to contact 

formation. The measurements are performed at room temperature (approximately 

23°C) and at less than 50% relative humidity. Each measurement is repeated three 

times and the reported values represent the average and standard deviation. 

Image analysis. Probe tack contact images are processed using ImageJ 

software (National Institutes of Health, NIH). To process the images during dwell, 

the out of contact background image is first subtracted from the contact images in 

aqueous solution, followed by a thresholding and noise reduction steps to improve 

visualization of the contact area. Subsequently, the images are converted into 

binary and analyzed through MATLAB to quantify the contact area by calculating 

the number of black pixels and scaling it by area to number of pixel ratio to find 

actual image area.  

 

1.2.5 Surface Zeta Potential measurements 

PSA samples were cut into small 7 mm x 4 mm strips and attached to the 

sample holder for the measurement of surface zeta potential (SZP) using Malvern 

Zetasizer NanoZS surface zeta potential accessory (ZEN1020). Sulfate latex 

particles of 100nm (Thermo Fisher Scientific) are then dispersed in solutions of 

different pH. The accessory is immersed in the solutions for SZP measurements. 

Sulfate latex particles have a stable negative zeta potential of -20 to -50 mV over 

pH3-pH11.  OTS coated glass sheets were cut into small strips of 7mmx4mm and 

attached to the sample holder using 3M VHB tape for SZP measurements. The 
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Zetasizer software uses phase analysis light scattering (PALS)20  to obtain the zeta 

potential of the tracer particles at different distances from the surface of interest 

(125, 250, 375 and 500 µm) using the Smoluchowski equation (𝑈𝐸 =
𝜀𝜁

𝜂
), where 

the electrophoretic mobility of the particles 𝑈𝐸 is converted into the zeta potential 

𝜁 of the particle, and 𝜀 is the dielectric constant of the fluid while 𝜂 is the 

viscosity of the fluid. This method is based on the Doppler effect and dynamic 

light scattering. In the solution, when the tracer particles whose surface is charged 

moving under the effect of electronic field generated by the surface (PSAs surface 

in our case), the incoming light will be scattered by those moving particles. 

According to the Doppler effect, after scattering, the frequency of outgoing light 

would change due to particle movement. As a result, frequency shift of incoming 

and outcoming light is linear to the potential difference between trace and 

surface20. 

The software then fits the apparent tracer zeta potential as a function of 

distance to a straight line where the intercept is the apparent zeta potential of the 

particle very close to the surface. From these measurements, the zeta potential of 

the surface is obtained from the difference between the zeta potential of the 

particle far from the surface from the zeta potential of the particles close to the 

surface (𝜁𝑠𝑢𝑟𝑓𝑎𝑐𝑒, = 𝜁𝑡𝑟𝑎𝑐𝑒𝑟,𝑡𝑟𝑢𝑒 − 𝜁𝑡𝑟𝑎𝑐𝑒𝑟,𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 ). Each measurement is 

repeated thrice and average value is reported along with the standard deviation.  

1.3 Results and discussion 

1.3.1 Contact angle and surface energy 
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The advancing and receding water contact angles of the pH buffer 

solutions on both PSAs are shown in Table 2. The water advancing contact angle 

on both PSAs is around  at all pH. The receding contact angle on 0% 

AA is constant across different pH around . A large contact angle 

hysteresis of  is observed for both PSAs. We only observe a pH 

dependence on the receding contact angle of the 5% PSA samples, where the 

receding angle decreases from  to when the pH increases from 

pH3 to pH11. In the absence of AA groups (0%AA), the surface is not pH 

responsive and there is no sensitivity of the contact angle to the pH of the probe 

fluid (advancing and receding). When the contact line of a buffer droplet 

advances it makes contact with a surface that was initially dry and unaffected by 

the pH. In contrast, when the contact line recedes it moves on a surface that was 

in contact with the buffer solution, which can explain why the receding contact 

angle varies with pH but not the advancing angle.  For the receding angle on 

5%AA we see a plateau region at 3<pH< 6, and a sharp decrease in the contact 

angles in the region 6 < pH <12. We suspect that acrylic acid groups on the 

surface of 5%AA will deprotonate as the pH increases and affect contact angle 

measurements. Note that the roughness of PSAs sample also plays an important 

role on the contact angle hysteresis. Even in the absence of carboxyl groups, 

0%AA still has a large contact angle hysteresis (that is not pH dependent). 

Finally, rheology measurements show that the elastic modulus of the PSAs 

sample is around 10-100 kPa, which means that elastocapillarity effects could 

alter the contact angle measurements and their interpretation.21, 22 Fortunately, for 

124o

adv =

62o

rec =

60o

adv rec − 

62o

rec = 47o

rec =
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a macroscopic droplet (mm), this phenomenon has a very limited effect on contact 

angle measurements, even for surfaces as soft as the PSAs investigated here. 

Calculating surface energy from contact angle measurement is a widely 

used method developed by Fowkes, Owens, et al14, 15. Fowkes’ method is based on 

Young’s equation, where an equilibrium multi-phases system (vapor-solid-liquid) 

is assumed. The contact angle is determined by interfacial tensions:  

   (4) 

where 𝛾1 is the surface energy of PSA in air, 𝛾3 is the interfacial tension of 

pH solution in air, 𝛾13 is the surface energy of PSA in water and 𝜃13 is the contact 

angle of pH solution drop on PSA surface in air. The equilibrium film pressure of 

adsorbed vapor on the solid surface (𝜋𝑒), is generally small and has been 

neglected14. In equation (S8), 𝛾3 and the contact angle 𝜃13 is measured from contact 

angle and pendant drop measurements, while 𝛾13  and 𝛾1  (two unknowns) are not 

directly measurable from a single contact angle measurement. To solve this 

problem, Fowkes15, Owens and Wendt, Girifalco and Good16 raised different 

theories succesively based on the same idea of the partition of the surface energy 

into individual components. Owens’ equation is one of the most frequently used:   

   (5) 

   (6) 

Combining equation S8, S9 and S10, we get: 

   (7) 

3 13 1 13cos   = −

1 1 1

d p  = +

13 1 3 1 3 1 32 2d d p p      = + − −

13
3 1 3 1 3

cos 1

2

d d p p
    

+
= +
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To solve this system of equations with two unknows, two liquids including 

one polar and one apolar should be chosen to reduce numerical error. Here, we 

chose water and diiodomethane as our liquids to measure surface energy of PSA in 

air. To measure surface energy of PSA in pH solution, we chose pH buffer solution 

drop (fluid A) and diidomethane (fluid B). Based on advancing angles we 

obtain 𝛾1=7±2 mJ/m2 for 5%AA  and 8±2 mJ/m2 for 0%AA, clearly the values are 

unrealistically low because of surface roughness. The contact angles and surface 

energy values of both PSAs at different pH are shown in Table 2 and Table 3. 

 

 

Table 2. Receding (Rec) and advancing (Adv) contact angle (θ) measurements with probe fluid A: pH 

buffer solution and probe fluid B: diiodomethane on 5%AA and 0%AA.  

 

pH 

Contact angles in degrees 

 
Fluid A 

pH drops 

Fluid B 

Diiodomethane 

 𝟏𝟑
𝑨𝒅𝒗

 𝟏𝟑
𝑹𝒆𝒄

 𝟏𝟑
𝑨𝒅𝒗

 𝟏𝟑
𝑹𝒆𝒄

 

5%AA 

3 125±2 62±5 

100±6 30±2 
6 123±1 62±3 

8 126±1 56±6 

11 124±1 47±1 

0%AA 

3 123±3 64±1 

102±5 32±2 
6 124±3 61±2 

8 124±1 62±2 

11 123±1 62±1 
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Table 3. Surface energy in air and in water calculated from contact angle measurement. 3= water (pH 

buffer solution), Rec=calculated from receding angle, Adv= calculated from advancing angle, d= 

dispersion component, p= polar component. 

 pH 

Surface energy of PSA (mJ/m2) 

From receding contact angles  From advancing contact angles  

𝜸𝟏
𝑹𝒆𝒄,𝒅

 𝜸𝟏
𝑹𝒆𝒄,𝒑

 𝜸𝟏
𝑹𝒆𝒄 𝜸𝟏𝟑

𝑹𝒆𝒄 𝜸𝟏
𝑨𝒅𝒗,𝒅

 𝜸𝟏
𝑨𝒅𝒗,𝒑

 𝜸𝟏
𝑨𝒅𝒗 𝜸𝟏𝟑

𝑨𝒅𝒗 

5% AA 

3 32 14 47±3 13±3 7 0 7±2 49±2 

6 32 15 47±2 12±2 7 0 7±1 47±1 

8 31 19 50±3 9±3 7 0 7±1 50±1 

11 27 27 54±1 4±1 7 0 7±1 48±1 

0% AA 

3 32 13 45±2 14±2 8 0 8±1 47±1 

6 32 15 47±1 11±1 8 0 8±2 48±2 

8 32 14 46±1 12±1 8 0 8±2 48±2 

11 30 15 45±1 11±1 8 0 8±1 47±1 

 

 

1.3.2 Contact angle titration and pKa of carboxyl group on the surface 

Based on the pH dependence of the receding angles on 5%AA, we perform 

a pH titration analysis to calculate the apparent pKa of the PSA, as shown in Figure 

2. I hypothesize that the acrylic acid group is deprotonated at high pH and 

protonated at lower pH, a difference that is captured by the receding contact angle 

measurements. This analysis is based on the method from Bain23. We consider the 

PSA surface as a composite surface consisting of surfaces with protonated and 

deprotonated carboxyl group separately. According to Cassie’s law24, the contact 

angle of different pH buffer solution on this composite surface is expressed by: 

   (8) 

where 𝜃13 is apparent contact angle of pH buffer solution (3) on 5%AA PSA 

surface(1), 𝛼RCOO- and 𝛼RCOOH are pH dependent area fractions of deprotonated and 

13cos cos cosRCOOH RCOOHRCOO RCOO
    − −= +
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protonated PSA surface respectively.  𝜃RCOO- and 𝜃RCOOH are the contact angles of 

water on completely deprotonated PSA surface and completely protonated PSA 

surface respectively 𝜃RCOO- and 𝜃RCOOH are measured by using extreme high (pH11) 

or low pH (pH3) solution as drop liquid. Since carboxyl group is distributed 

uniformly on the PSA surface, the area fractions 𝛼RCOO- and 𝛼RCOOH are equivalent 

to molar fractions of deprotonated and protonated carboxyl group and can be 

written as: 

   (9) 

Thus, for binary composite surface, obviously we have 𝛼RCOO-+𝛼RCOOH=1, 

where 𝛼RCOO- is also called dissociation ratio and equation S3 becomes: 

   (10) 

For monoprotic acid, the definition of dissociation constant Ka is: 

   (11) 

Combine equation S4 and S6: 

   (12) 

In S5, since 𝜃13, 𝜃RCOO
- and 𝜃RCOOH are all measurable, the dissociation ratio 

of carboxyl group in our PSA sample at different pH is easy to be determined. Thus, 

by plotting pH verses dissociation ratio and performing regression, we can obtain 

the pKa of carboxyl group on the surface. 
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Using this analysis, we obtain an apparent pKa for  5%AA of 8.7 ± 0.2. 

We show the titration points and regression curve in Figure 2 and compare them 

with 0%AA. The pKa of monomer acrylic acid is 4.25 at room temperature, which 

is significantly lower than the apparent pKa of acrylic acid in co-polymerized in 

p(2-EHA). However, several studies have observed an apparent pKa ~8 of 

carboxylic acid SAMs in aqueous solution25-27. One possible explanation is that 

due to dissociation of the surface carboxylic acid groups, the pH at the surface of 

PSA would be lower than the bulk pH27. The real proton concentration near the 

surface is higher than the bulk and can be approximated as a Boltzmann’s 

distribution, which means that the intrinsic pKa of the PSA is likely lower than the 

apparent pKa. For instance, the pKa can be estimated as 7.3 using the Nernst 

equation at an interpolated surface zeta potential of -80mV at pH 8.7. This effect 

will be detailly discussed later. Additionally, the hydrophobic effect exerted by 

the adjacent carbon chain group might also contribute to the pKa shift. For 

example, researchers found that with decrease in composition of carboxylic acid 

in a mixture of HS(CH2)10CO2H and HS(CH2)10CH3 SAMs on gold from 100% to 

14%, the apparent pKa shifted from pH6 to pH928. In addition, Wasserman et al.29 

investigated the acidity of carboxyl groups within a mixture of alkylsiloxane 

monolayers and showed that the acidity of the carboxyl groups in the monolayer 

decreased when the fraction of methyl groups increased. This result can be 

explained by the placement of the acid moiety in an increasingly hydrophobic 

environment. Urry et al.30 also observed similar effect on protein with aspartic 

acid group. When the molar fraction of aspartic acid decreases, the fraction of the 
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protein that is non-polar part increases and the pKa of aspartic acid shifts from 

around pH4 to pH6. Urry attributes the pKa shift to apolar-polar repulsive 

interaction between aspartic acid and other ammonia acid. With the combined 

effect of difference in surface and bulk pH and positive shift in pKa with lower 

percentage of carboxylic acid groups compared to non-polar groups, the high 

apparent pKa of 8.7 for 5%AA PSA is reasonable. 

 

Figure 2. Receding contact angle of pH buffer drops measured on 5% AA PSA (filled) and 0% AA 

PSA(open). When pH is larger than 6, angle on 5% starts to increase and angle on 0% is approximately 

constant.  Solid line is pH titration curve of receding contact angle on 5% AA PSA. Plateau region is at 

extreme pH (pH<6 and pH>12) and the increasing region is in the middle region (6<pH<12).  

 

 

1.3.3 Surface zeta potential and intrinsic pKa 

We measured the surface zeta potential (SZP) of the PSAs as well as that 

of an OTS coated glass slide using dynamic light scattering (Figure 3). The 
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measurements rely on sulfate latex probe particles, which are stable over the 

range of pH investigated. We observe that the SZP of 0%AA is nearly constant at 

-48 mV and shows little to no variation with pH. The SZP of the OTS probe also 

does not change much with pH, although it shows some variation from –15  6 

mV at pH3 to -52  7 mV at pH11. In the absence of carboxylate groups, there is 

a net negative charge on both the surface of 0%AA and of OTS. Hydroxide ions 

preferentially adsorb on hydrophobic surfaces (such as OTS and P(2-EHA)) in 

water leading to a negative surface potential.31, 32 In contrast to 0%AA and OTS, 

the SZP of the 5%AA is a strong function of pH, ranging from -1  32 mV at pH3 

to -100  7 mV at pH11. Based on these measurements the surface charge density 

estimated by Grahame equation33 changes from 0.01 C/cm2 at pH3 to -2.1 

C/cm2 at pH11. Likely the SZP becoming more negative with an increase in pH 

is due to deprotonation of the AA comonomer present on the surface leaving 

negatively charged COO- groups on the surface. Zimmermann et al. reached a 

similar conclusion when studying polystyrene-polyacrylic acid block co-

polymers, and suggested that the pH dependence of the surface charge was due to 

the dissociation of carboxylic acid groups present on the surface.34  
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Figure 3. Surface Zeta Potential of (a) 5% AA PSA (b) 0% AA PSA and (c) OTS probe at different pH. 

Dotted lines are to guide the eye. 

 

With the surface zeta potential result, we can further discuss the charge 

density on the surface.  To simplify the problem, we can assume the buffer 
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solution only consist of 1:1 electrolytes and then classic Gouy-Chapman model 

gives the relationship between charge density and potential: 

                                          (13) 

Where σ is surface charge density, I is ionic strength. In addition, 

dissociation ratio which is the ratio of charged groups and all carboxyl groups is 

defined as: 

                             (14) 

Here the NS is the total number density of carboxyl group and e is 

elementary charge. Furthermore,  Boltzmann distribution of proton gives:  

                                              (15) 

Where the subscribe “b” stands for the concentration in the bulk phase 

while “i” for the interfacial concentration. Combine equations (13-15), take 

logarithm to both sides and assume that I (ionic strength) is small enough ( ) 

and SZP is lower than or around -50mV, those equations can be simplified as: 

            (17) 

Assume surface zeta potential approximately equals surface potential: 

                   (18)  
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From this equation, it’s very clear that surface zeta potential is negatively 

proportional to pH which is consistence to the experimental observation. The 

slope of experiment is -15mV per unit pH which agrees with equation 18(-17mV 

per unit pH), too. From fig. 3, when pH~3, the surface zeta potential is around 0. 

If we plug this into equation 18 and assume that eNS is around 0.1 to 0.01C/m2, 

then we can give a estimation of pKa as 5, which is very close to free acrylic acid.. 

This estimation might contains several shortcomings. For example, despite of the 

deprotonation, the adsorption of ions from the bulk solution to the surface that can 

also influence the potential-pH curve. Even though the model is not very 

completed, deprotonation mechanism can still explain lots of experiments 

observations.    

 

1.3.4 Adhesion of PSA  

Data in this section comes from Ref10. We performed debonding 

measurements in aqueous solution of pH3-pH11(Figure 4a,b) for the two PSAs by 

probe tack. Note that we introduce water prior to contact formation. As shown in 

Figure 4a, we do not observe a significant effect of the environment (air, pH) on 

the debonding of the PSA without AA (0%AA).  

In contrast, incorporating 5% AA to the PSA leads to debonding forces 

that are very sensitive to their environment (Figure 4b). First, we see that at pH3, 

the maximum force of debonding is comparable to that in air. Then, as the pH 

increases to pH6, pH8 and pH11, the maximum debonding force decreases and is 
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lower than the one measured in air. In fact, at pH 11 the debonding curve for the 

two PSAs are nearly identical. 

Beyond the peak force, at pH11 0%AA has a broader force curve 

(detachment occurs over a longer period of time) than 5%AA . While in air the 

addition of AA as a comonomer leads to a peak debonding force that  is 1.4 times 

larger, at pH 8 and pH 11 the peak forces are still larger but much closer to the 

one measured for 0%AA. In summary, for underwater and air measurements, the 

addition of 5 wt% of acrylic acid comonomer to poly-(2EHA) increases the 

maximum debonding force, except at pH11. For measurements at pH11 the 

maximum debonding forces for the two PSAs are comparable. 

 

Figure 4. Force curve of a) 0% PSA b) 5% PSA in different circumstance measured by probe tack 

measurement. 

1.4 Conclusion 

I investigated the effect of pH of solution on the surface functionalization 

and characterized deprotonation of the surface by multiple techniques including 

probe tack, contact angle and surface zeta potential measurement. Contact angle 

result present a titration curve with pH change. The pKa of acrylic acid is derived 
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from the titration curve and its bias from the acrylic acid monomer is explained by 

hydrophobic circumstance and the hydrogen ions distribution. Surface zeta 

potential of 5% PSA shows approximate linear decreasing with pH increasing. 

This phenomenon is discussed from the Gouy-Chapman model and several 

assumptions and the surface energy and surface zeta potential are consistence to 

each other based on this theory. Probe tack result give an insight into mechanism 

of adhesion of PSA underwater.  
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Chapter II  

Preparation and characterization of PDMS 

2.1 Introduction  

PDMS (poly dimethylsiloxane) is a common elastomer employed in 

medicine, biology research, as well as in soft lithography. PDMS is commercially 

available and sold as a two-part kit containing two agents, agent A which is the 

prepolymer of PDMS and agent B that is the cross-linker. PDMS is prepared by 

mixing those two agents in specific weight ratio and then curing the mixture at a 

temperature around 350K35. Due to its bio-compatibility36-38, PDMS is widely 

applied in topologic control of cell fate39, bioreactor and microchannels40, 

biochemical stimuli41 and immunoassays42 etc. Apart from biological application, 

PDMS is also an excellent material in electronic skin study43 and skin tissue 

composite44 mimic. Another key advantage of PDMS is that its surface chemistry 

can be easily modified by vapor plasma treatment45 and its bulk rheology property 

is also tunable by changing stoichiometry of the two components46. Because both 

surface modification and bulk rheology property can significantly influence the 

performance of PDMS in fields introduced above47. 

In our research, PDMS is used as a soft probe lens to perform probe tack 

on PSA samples, giving insight into the effect of probe stiffness on the contact 
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mechanism, experiments mainly conducted by my colleagues Preetika Karnal and 

Anushka Jha. The Young’s modulus or elastic modulus is the simplest metric to 

characterize stiffness, and for PDMS it’s mainly determined by stoichiometry or 

the weight ratio of agent A agent B (later this stoichiometry ratio is defined as 

ratio n). The mechanism behind the role of the ratio n in determining the modulus 

of PDMS is that the cross-linkers connect macromolecules into a three-

dimensional polymeric network during the curing process, which is also called 

cross-linking reaction46. Wang et al.48 measured the elastic modulus by a custom-

built compression test apparatus and their result is shown in table 4. Pham et al. 49 

used uniaxial tensile testing and shear rheology method to measure elastic 

modulus of PDMS and their results are in table 5. Considering that PDMS elastic 

modulus depends on manufacturer and preparing condition (like curing 

temperature and curing duration), we measured the elastic modulus of all PDMS 

samples with different n ratio by shear rheology measurement, and later use the 

PDMS to prepare soft probes. 

Table 4. Elastic modulus measured by compression test, Wang et al. 

n rat io E/MPa 

 5 3.59±0.11 

7 2.91±0.036 

10 2.61±0.021 

16.7 1.21±0.069 

25 0.98±0.037 

33 0.56±0.021 
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Table 5. Elastic modulus measured by uniaxial tensile testing and shear rheology, Pham et al. 

n rat io E/kPa 

20 400 

40 40 

50 15 

60 5 

 

 

Except for stiffness, the surface modification and hydrophobicity of 

PDMS probes are also variables investigated. The as cured PDMS is naturally 

hydrophobic with a water contact angle of around 110 degree35, 50, 51. We 

performed oxygen plasma treatment on PDMS probes to make the probe surface 

hydrophilic52. Both hydrophobic probe and hydrophilic probe are used to do the 

probe tack measurements. However, plasma treated PDMS elastomer will 

gradually lose its hydrophilicity in air53, making the result less reliable. Thus, the 

investigation of hydrophobicity recovery of hydrophilic PDMS is necessary. 

Here, I measured the water contact angle on hydrophilic PDMS which is exposed 

in air at different time points and the contact angle is the indicator of 

hydrophilicity.   

Apart from surface modification, the presence of unreacted oligomer can 

also change the surface hydrophilicity and adhesion behavior of PDMS. Choi et 

al.54 found that the adhesion energy measured in JKR method of PDMS is 

different for extracted and unextracted sample.  Besides, it is also reported that 

extracted PDMS is more resistant to hydrophobic recovery or in another words, 
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more stable in air55.  Thus, I weighted every sample’s weight loss during 

extraction and calculated the weight loss percentage: 

                                            (19)   

By measuring weight loss percentage at different time points, we can 

monitor the time dependence of extraction effectiveness56.  

 As a summary, in this chapter, I characterized 1) chemical stoichiometry 

relationship with elastic modulus by shear rheology measurement; 2) 

hydrophilicity of oxygen plasma treated PDMS elastomer; 3) time dependence of 

hydrophobic recovery in air; 4) time dependence of extraction effectiveness. 

 

2.2 Materials and methods 

2.2.1 PDMS preparation and extraction 

The PDMS used in this research is purchased from Dow. PDMS elastomer 

is made by mixing the prepolymer agent (agent A) and the cross-linker agent 

(agent B). After stirring for at least 5 min, the well-mixed liquid mixture was left 

in vacuum chamber to remove the bubbles generated from stirring and then 

poured into mold to fix thickness (around 1.5mm). The de-bubbled mixture was 

put in oven at constant temperature of 75oC to cure overnight (more than 16 

hours). After curing, the sample was cut into 12mm circle using a punch. Then all 

samples were extracted by hexane for more than 6 hours to remove the extra 

oligomer or cross-linker. During the extraction process, the PDMS samples can 

w =
m
before

-m
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m
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adsorb large amount of hexane and swells significantly. The extracted samples 

can increase almost 50% in volume than before extraction. Next step I transferred 

samples into a mixture of ethanol-hexane to remove the hexane. The samples 

were first immersed in 1:1 volume ratio mixture (ethanol: hexane) for 5 minutes 

and then immersed in 2:1, 3:1, 4:1 mixture for 5 minutes for each kind of solvent. 

Finally, I transferred samples into pure ethanol and sonicated the samples for 15 

minutes. The reason for using ethanol-hexane mixture with gradually increased 

ethanol concentration instead of directly using pure ethanol, is that ethanol can 

remove hexane rapidly, making PDMS shrink immediately and then the whole 

polymer would have high risk of breaking. Gradually increase the concentration 

of ethanol can effectively avoid this problem. The PDMS samples were then dried 

for more than 12 hours at temperature around 80oC to remove ethanol residue. 

The weight of PDMS before and after extraction were record. 

2.2.2 Rheology measurement 

Rheological measurements were performed on PDMS with different ratio 

n by an AR1500ex rheometer (TA Instruments) with an 8mm diameter parallel 

plate geometry as the measuring system. The samples were trimmed into 8mm 

circle and around 1.5mm in thickness before measurement. A strain amplitude of 

1% was used in frequency sweep experiments (1-100 rad/s) to obtain the storage 

(𝐺′) and loss (𝐺′′) shear moduli of the PDMS sample and the normal force is kept 

as constant around 10N. The duration of each measurement was ~3 minutes. All 

the measurements were carried out at 22.4 C. Each measurement is repeated 

three times and the reported values represent the average and standard deviation. 
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2.2.3 Oxygen plasma treatment and hydrophobicity recovery 

Hydrophilic PDMS elastomer are functionalized by plasma treatment. 

Samples are exposed to O2 plasma for 5 s at 50 W in a homemade induction 

plasma reactor at 300 mTorr. Once functionalization ended, the water contact 

angle on one piece of PDMS was immediately measured and I started to timing. 

Other samples in same plasma treatment round were stored and naturally exposed 

to air. When the time goes to 5mins, 10mins, 30mins, 1hour, 4hour, 1 day, 3days, 

and 4days, water contact angle of samples with corresponding exposure duration 

were measured. The ratio n of PDMS used in hydrophobicity recovery experiment 

is 10. 

 

2.3 Results and discussion  

2.3.1 Time dependence of extraction 

The weight change over time of n10, n30 and n40 PDMS sample was 

monitored and the results are shown in table 5 and the weight loss percentage is 

plotted versus time in figure 5.  For all samples, longer extraction time gives 

higher weight loss percentage but for n10, the this effect is quite limited while for 

n30 and n40 long time extraction can significantly improve the effectiveness.  

The weight loss actually is the extra PDMS oligomer that didn’t crosslink 

to the network. For Sylgard 184, 10:1 is designed as stoichiometry balance thus 

n10 has very low extracted weight loss, which is also supported by reported 
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value56.  n10 reaches extraction equilibrium around 2h and 4h for n30 but for n40, 

we need longer extraction (more than 6h)  to determine suitable extraction time.  

The comparison between large and small n40 sample told us that small 

samples get higher extraction efficiency than larger one. The mechanism for 

extraction is diffusion and for large dimension, free oligomer take longer time to 

diffuse to surface. Thus, for larger sample, longer extraction time is necessary. 

 

Table. 6 Extraction effectiveness of n10, n30 and n40 PDMS samples. 𝑚𝑏𝑒𝑓𝑜𝑟𝑒  is the weight before 

extraction; 𝑚𝑎𝑓𝑡𝑒𝑟 is the weight after  extraction; ω =
𝑚𝑏𝑒𝑓𝑜𝑟𝑒−𝑚𝑎𝑓𝑡𝑒𝑟

𝑚𝑏𝑒𝑓𝑜𝑟𝑒
× 100% means the weight 

loss percentage.  n10 and n30 samples were measured from 1h to 5h with interval of 1h; 

n40 is from 2h to 6h with interval of 2h. 2 sets of n40 samples (large size and small size) 

were analyzed here to figure out the size effect.  

Extraction Durat ion/h 1 2 3 4 5 6 

n10 

𝑚𝑏𝑒𝑓𝑜𝑟𝑒/𝑚𝑔 149.6 155.5 166.7 140.0 158.1 

 𝑚𝑎𝑓𝑡𝑒𝑟/𝑚𝑔 144.7 149.4 160.2 134.1 151.3 

ω/% 3.3 3.9 3.9 4.2 4.3 

n30 

𝑚𝑏𝑒𝑓𝑜𝑟𝑒/𝑚𝑔 348.7 329.9 346.2 342.7 364.4 

 𝑚𝑎𝑓𝑡𝑒𝑟/𝑚𝑔 306.9 282.8 295.3 288.7 306.7 

ω/% 12.0 14.3 14.7 15.8 15.8 

n40 

(Small)  

𝑚𝑏𝑒𝑓𝑜𝑟𝑒/𝑚𝑔 

 

258.4 

 

164.5 

 

278.8 

𝑚𝑎𝑓𝑡𝑒𝑟/𝑚𝑔 199.7 121.8 199.1 

ω/% 22.7 26.0 28.6 

n40 

(Large) 

𝑚𝑏𝑒𝑓𝑜𝑟𝑒/𝑚𝑔 

 

965.1 

 

1026.5 

 

840.6 

𝑚𝑎𝑓𝑡𝑒𝑟/𝑚𝑔 817.9 840.1 656.7 

ω/% 15.3 18.2 21.9 
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Figure 5.  Weight loss percentage at different extraction duration for n10, n30, 

n40 PDMS sample. 

 

2.3.2 Rheology and elastic modulus of PDMS 

Storage shear modulus, loss shear modulus and the ratio of those two 

modulus (tanδ) are plotted versus angular velocity of the rotating plate (fig.5) and 

this result agrees with expectations. First, with increasing n or decreasing of the 

concentration of cross-linker, both storage shear modulus and loss shear modulus 

decreases while tanδ increases. tanδ represents a measure of damping in the 

material. In another words, higher tan δ indicates the viscoelastic material has a 

higher viscous components in the complex modulus. From the view of energy, 

higher tanδ also means during the process of deforming and recovering, the 
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material would dissipate more energy than those material with lower tanδ. 

Second, when the n is larger than 25 or 30, shear modulus of PDMS will not 

continue to decrease. For n30, n45 and n50, their modulus curves overlap with 

each other because their curing reaction completed imperfectly. When the 

concentration of cross linker is too low for the PDMS to form, extra PDMS 

monomer cannot form a polymer architecture and they are removed during the 

extraction step. That means that the real prepolymer/crosslinker ratio in PDMS for 

n30, n45 and n50 is not the n number obtained from the initial stoichiometry. This 

observation is also supported by the extraction weight loss. Weight loss 

percentage is larger for increasing n, for n<30, this ratio is around 10% to 15% 

while for n>30 sample, this number goes to 25% and even more, which means 

more monomer is wasted.  

Compared to shear modulus, elastic modulus or Young’s modulus is more 

commonly used to represent the stiffness of solid sample. Even though PDMS is 

not a perfect elastic material and its dynamic modulus is function of shear rate and 

angular velocity, the elastic modulus calculated from the method for ideal elastic 

material can still give the relative stiffness of PDMS with different n. Classic 

theory suggests that the material’s shear modulus (G), elastic modulus (E) and 

Poisson ratio (ν) follows the equation: 

                                                                      (19) 

And the shear moduli of viscoelastic material is the modulus of complex 

shear moduli: 

E = 2G(1+n )



 

 36 

                                                          (20) 

For PDMS, its Poisson ratio is very close to 0.5 (0.4995) so the Young’s 

modulus for PDMS with different n is estimated as: 

                                                            (21) 

Results is shown in fig.6. As the discussion above, the Young’s modulus 

dramatically decreases with increasing of n and stop at 30. For n>30 sample, they 

have similar young’s modulus.  

 

Figure.6 Rheology properties A. Storage modulus B. loss modulus and C. tanδ 

of different PDMS versus the angular velocity; D. elastic modulus versus ratio n. 

 

G = G* = (G ')2 + (G '')2

E = 3 (G ')2 + (G '')2
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2.3.3 Hydrophobicity recovery 

The hydrophobicity recovery results are also consistent with expectations. 

The longer exposure time will lead to the higher water contact angle or in another 

words, higher hydrophobicity. When the PDMS sample is just taken out of the 

plasma chamber, the contact angle is low, around 10 degrees. It’s necessary to 

mention that the contact angle measurement by Goniometers has high uncertainty 

when the contact angle is below 20 degrees. Generally, if the contact angle is  

smaller than 20 degrees, then the liquid is considered perfectly wetting for the 

given solid. Thus, we can draw the conclusion that hydrophilic PDMS lose its 

hydrophilicity after exposure for 30mins; between 1 hour and 4hours, the 

hydrophobicity of PDMS dramatically increases; after 3 days, the PDMS almost 

goes to initial hydrophobic state with water contact angle around 100 degree. 

Table 7. Water contact angle on oxygen plasma treated PDMS that exposed to air for different duration 

Exposure 

duration 

Water contact angle/ 

degree 

~0mins ~10 

5 mins 14.74 

10 mins 16.16 

30 mins 23.03 

1 hours 27.34 

4 hours 71.36 

1 day 78.52 

3 days 98.01 

4 days 99.54 
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Figure 7. Water contact angle on plasma treated PDMS time dependence curve. 

After oxygen plasma treatment, PDMS surface is hydrophilic functionalized but 

due to exposure to air, hydrophobicity would increase with exposure time. 

 

To ensure the reliability of probe tack measurement, after plasma 

treatment, the hydrophilic PDMS probe should be used in half hour or the surface 

energy of probe would change and additionally give a less accurate result of probe 

tack. 
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2.4 Conclusions 

 

To further dig into the soft probe contact, the bulk rheological 

measurements of the PDMS is performed. The relationship between cross linker 

concentration (n value) and the complex shear modulus is clarified. I also raised a 

new protocol for the soft PDMS purification to prevent the PDMS sample from 

breaking during the traditional extraction process. The surface hydrophobicity 

recovery is investigated to figure out how long that plasma treated PDMS can 

maintain hydrophilicity. 
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