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Abstract

Sudden cardiac death is the most common cause of death in United States.

Primary prevention implantable cardioverter defibrillators (ICDs) have been

the first line to reduce mortality for high-risk patients. Previous work of identi-

fying subjects at greater risk is neither sensitive nor specific. The development

of more reliable predictors that could help identify patients that could benefit

from these devices is of both academic and public health interest.

In this thesis, we study the time series data of both electrocardiogram

(ECG) and oxygen saturation (SaO2) signals from patients who received ICD

implantation. This sutdy is part of Prospective Observational Study of Im-

plantable CardioverterDefibrillators (PROSE-ICD).

The features for each subject are generated from some statistics of the

ECG and SaO2 signals respectively. For ECG signal, the analysis is from

both geometry and dynamics perspective. For SaO2 signal, multivariate and

dynamics analysis is applied. Our results showed an overall accuracy of 93.2%

for patient classification, with no bias towards healthy or HF patients. Further

analysis does not show a clear relationship between ECG and SaO2 signals.
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Chapter 1

Introduction

1.1 Physiological Signal Fundamentals

1.1.1 Electrocardiogram

An electrocardiogram (ECG) is a test that measures the electrical activity of the

heartbeat. It is a plot of voltage versus time which is recorded by electrodes

placed on the skin. For tens of years, ECG is one of the fastest and simplest

ways to evaluate the heart.

As shown in Fig. 1.1, there are three main components to an ECG: the P

wave, which represents atrial depolarization; the QRS complex, which in turn

includes Q, R and S waves, corresponds to the depolarization of the right and

left ventricles; and the T wave, which represents electrical recovery or the

return to a resting state of the ventricles.

The orderly pattern of depolarization of an ECG conveys a large amount of

important information about the structure and function of the heart. Moreover,

the development of acquisition systems during the past decades has enabled

the recording of ECG signal over a long period of time which could be used
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Figure 1.1: ECG of a normal heartbeat (Wikipedia, 2019a)

to detect infrequent abnormalities. Therefore, an ECG signal can be used

to diagnose several kind of arrhythmia (Rajpurkar et al., 2017; Owis et al.,

2002), damage to the heart’s muscle cells (De Capua, Meduri, and Morello,

2010), heart attack (Leijdekkers and Gay, 2008; Acharya et al., 2017) and other

anomalies. It is also used to measure the effects of heart drugs (Johannesen

et al., 2014) and the function of implanted pacemakers (Jiang and Mangharam,

2011), etc.

A more detailed discussion of the medical uses and interpretation of ECG

is beyond the scope of this thesis.

1.1.2 Oxygen Saturation

Oxygen saturation (SaO2) is the fraction of hemoglobin binding sites occupied

by oxygen relative to total hemoglobin in the blood. Normal blood oxygen
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levels in healthy individuals are 95-100 percent, and tends to maintain around

96 percent. If the SaO2 (arterial oxygen saturation) value is below 90 percent, it

is considered low and the cause of hypoxemia (indicated by cyanosis) (Mayo

Clinic, 2018). Blood oxygen saturation levels below 80 percent may impair

organ function, such as the brain and heart. Continued low oxygen levels may

lead to cardiac or respiratory arrest (Wikipedia, 2019b). A summary of the

effects of decreased oxygen saturation is in Table 1.1.

85% and above No impairment
65% and below Impaired mental function
55% and below Loss of consciousness

Table 1.1: Effects of SaO2.

Oxygen saturation can be measured in different tissues: venous oxygen

saturation (SvO2), tissue oxygen saturation (StO2), and eripheral oxygen satu-

ration (SpO2). SpO2 can be measured with a pulse oximeter device which clips

to the body, usually a fingertip. SpO2 is thought to be a good approximation

of SaO2.

Oxygen saturation levels have been shown to be closely correlated to a

variety of diseases, including heart failure (Madsen, Nielsen, and Christiansen,

2000; Ohlsson et al., 2001), sleep apnea (Alvarez et al., 2010; Roebuck et al.,

2013; Marcos et al., 2012), vascular complications (Keller, 2009; Lohman et al.,

2013), and so on. Although the limitation of oxygen saturation decrease its

value as a single diagnostic tool (Netzer et al., 2001), the easy accessibility and

high accuracy make it an important complementary noninvasive measurement

in the diagnosis of the above diseases.
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1.2 Problem Statement

1.2.1 Background

Implantable cardioverter defibrillators (ICDs) are useful in preventing sudden

death in patients with ventricular tachycardia or fibrillation. Studies have

shown ICD’s important role in preventing cardiac arrest in high-risk patients

who haven’t had, but are at risk for, life-threatening ventricular arrhythmias.

However, only a small portion of patients could benefit from implantable ICDs,

and the selection of patients for ICD implantation based on ejection fraction

criteria lacks sensitivity and specificity (Gehi, Haas, and Fuster, 2005). As a

result, there is substantial interest in finding reliable and efficient predictors

that could identify patients who could benefit from primary-prevention ICD

implantation.

1.2.2 Study Sample and Dataset

The data comes from the project Prospective Observational Study of Im-

plantable Cardioverter Defibrillators (PROSE-ICD), which is a prospective

observation study of patients undergoing ICD implantation. The study is

being carried out in four medical centers: Johns Hopkins Hospital, University

of Maryland Hospital, Washington Hospital Center, and Virginia Common-

wealth University Hospital.

The population set includes ICD recipients between 18 and 80 years old

who have either ischemic or nonischemic cardiomyopathy. The detailed

criteria for inclusion could be found in (Cheng et al., 2013). All patients
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have received successful ICD implantation. Prior ICD placement, all patients

undergo a comprehensive evaluation including history and physical exami-

nation, ECG evaluation, cardiac imaging, and blood sampling. Patients are

evaluated every 6 months and after every known ICD shock for additional

ECG and blood sampling.

The available dataset consists of ECG and SaO2 data from 484 patients.

The patients have been labeled as healthy (388/484) or suffering from heart

failure (HF) (96/484). Each patient’s data consists of several hours of ECG

(∼ 106 sampling points and ∼ 104 heartbeats) and SaO2 (∼ 104 sampling

points) signals collected in the same period of time. By checking the quality

of data, we found that some snippets of time series are noisy or even purely

noise. The data preprocessing phase includes data denoising and automatic

segmentation of ECG time series into individual heartbeats.

1.2.3 Objectives

In this study, the goal is to predict each patient’s future trend as healthy or

HF based only on ECG and SaO2 time series signals. This would help to

develop a reliable, inexpensive and noninvasive method to identify patients

to receive primary prevention ICD implantation, and therefore better assist

clinical diagnosis and treatment.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 presents

geometric and dynamics analysis of ECG signal. Chapter 3 presents results on
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SaO2 signal with both multivariate and dynamics analysis. In Chapter 4, all

features from previous sections are ensembled and the patient classification

is performed. Also, a discussion on the relationship between ECG and SaO2

signals is presented. Conclusions of this study are presented in Chapter 5.
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Chapter 2

ECG Time Series Modeling

2.1 ECG Segmentation

Accurate ECG segmentation is essential to automatic ECG analysis. By seg-

menting ECG signal into individual waveform features, it allows extracting

informative features which can be used to detect abnormal heartbeats. A vari-

ety of segmentation methods have been proposed and validated, including

time warping (Vullings, Verhaegen, and Verbruggen, 1998; Vullings, Verhae-

gen, and Verbruggen, 1997), hidden Markov model(Andreao, Dorizzi, and

Boudy, 2006), EM algorithm(Hughes, Roberts, and Tarassenko, 2004), etc. In

general, ECG segmentation is the first and most complicated step in automatic

analysis.

The ECG data provided consists of tens of thousands of individual heart-

beats for each patient. The proposed methods analyze the dynamics of individ-

ual heartbeats, so initial signal must be segmented into individual heartbeats

(R-R interval). This avoids the difficulty to extract waveform features for each

heartbeat but only detection of R peak. However, this is still challenging for a
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variety of reasons. First, the sampling quality is often low, with substantial

noise appearing and disappearing across time. Second, it is typically the case

that the end of the time series signal is severely corrupted, and no meaningful

data is captured in this region. A similar phenomenon often occurs at the start

of the signal. These problems with the data necessitate a careful data cleaning

stage prior to applying a segmentation algorithm.

Algorithm 1 Heartbeats Segmentation
Input: ECG time series

1: Divide the whole time series into large chunks (e.g., 1000).
2: for each chunk do
3: Threshold based on the largest value in the chunk to find potential R

peaks.
4: end for
5: Compute the R-R interval d for each potential R peak to the next one.
6: Determine the smallest and largest R-R peak intervals s and l allowed

based on the median of all the d’s.
7: while ∃d /∈ [s, l] do
8: if d > l then ▷ deal with peaks too far away
9: Search R peaks between

10: else if d < s then ▷ deal with peaks too close
11: Compare the derivative of peaks to find true R peaks.
12: end if
13: end while

Our procedure for segmenting the raw ECG data begins with removing

the initial 5% and final 20% of the time series for each patient, since these

regions of the signal were often very noisy or corrupted. The percentages 5%

and 20% were chosen somewhat arbitrarily, and some patients had additional

portions of the beginning and end of their time series discarded after this

initial pruning stage. The segmentation algorithm is shown in Alg.1. After

pruning of the data, each time series was segmented into individual heatbeats
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by searching for local maxima in the time series corresponding to the R peak

in the data. The local maxima of the signal are detected by thresholding the

amplitude, and intervals between local maxima are checked to avoid cases

with large T wave (too short interval) or small R peak (too long interval). We

distinguish R peak and T wave by comparing the first derivative (slope) of the

peak. Finally, individual heartbeats are extracted as the regions demarcated

by these local maxima and then normalized to the same length (D = 110) with

interpolation. An example of the original data and a heartbeat segmented

from that data appear in Figure 2.1.

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0.5

1

1.5

2

2.5
10

-4

0 20 40 60 80 100 120

-1

-0.5

0

0.5

1

1.5

2
10

-4

Figure 2.1: (a)An example ECG signal. The first 1000 recorded measurements are displayed. The full signal has
length 3948750. A segmented heartbeat with length normalized is shown in (b). The method for segmenting the
data searches for the R peak, which is why the heartbeat shown begins and ends with an R peak.

2.2 Learning the Geometry of ECG data

Once the data has been pruned and segmented, it is possible to do analysis

of the resulting collection of heartbeats. Our approach is to consider these

heartbeats as data in some high dimensional space, which can be analyzed

using statistical learning and dimension reduction. We think of the data gen-

erated by a patient as a time series of heartbeats {xi}n
i=1 ⊂ RD, where D is the
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length of a heartbeat, and n is the number of segmented heartbeats. Visual

inspection suggests that the space of possible heartbeats may be intrinsically

low-dimensional, depending on only a small number of (unobserved) pa-

rameters. To investigate this, we constructed data-dependent embeddings

of sample of heartbeats from RD into R3 for purposes of visualization. We

consider embedding linearly with principal component analysis (PCA), and

also nonlinearly by embedding with the eigenvectors of a graph Laplacian;

Figures 2.2 and 2.3 show these embeddings.
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(a) 3-dimensional embedding with top three principal
components.
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(b) Plot of the singular values of the heartbeat data.

Figure 2.2: Random heartbeats are linearly embedded into 3 dimensions by projecting onto the top three eigen-
vectors of the covariance matrix of the mean-centered data i.e. the top three principal components. There is some
separation between the healthy and HF patients in the linear embedding. The decay of the singular values of the
data show some decay, but the data does not appear to live close to a low-dimensional subspace, as even the 50th

singular value is nontrivial.

2.2.1 Semi-supervised Graph Classification

One method for labeling a patient as healthy or HF consists in embedding

labeled and unlabeled heartbeats from both healthy and HF patients in a

common low-dimensional space, and using labeled heartbeats to classify

unlabeled heartbeats by proximity. This idea is a form of semisupervised

13
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(a) 3-dimensional embedding with top three eigenvec-
tors of the Laplacian
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(b) Plot of the eigenvalues of the graph Laplacian.
Figure 2.3: Random heartbeats represented according to the second, third, and fourth principal eigenvectors of
the normalized symmetric graph Laplacian. We see that the data is, with one outlier, quite localized on this three
dimensional surface. Moreover, the healthy and HF beats seem to cluster well. We see from the plot of the eigen-
vectors of the graph Laplacian that the data is approximately low-dimensional, but not with dimension less than
say, 20. However, the convergence of the eigenvectors of the Laplacian to 1 is much more rapid than the decay of
the singular values toward 0. Though these are not comparable, this suggests that the correlations in the data are
nonlinear.

learning on graphs (Belkin and Niyogi, 2002; Belkin and Niyogi, 2004; Szlam,

Maggioni, and Coifman, 2008), and bears some resemblance to the method

of non-local means (Buades, Coll, and Morel, 2005a; Buades, Coll, and Morel,

2005b). An example of an embedding with the top eigenvectors of the graph

Laplacian appear in Figure 2.4.

This semi-supervised classification method proceeds as follows. A set of

healthy and HF patients are selected as a test set. The goal is to label the

heartbeats for these patients. A training set consisting of heartbeats, both

healthy and HF, are sampled from patients not among the training patients.

Labels for the training set are provided, while labels for the test set are not.

All heartbeats are concatenated into a single data matrix. All heartbeats are

embedded into Rm according to the Laplacian eigenmaps algorithm, where

the weight matrix is constructed with Euclidean distances. Each unlabeled
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Figure 2.4: The heartbeats are embedded into R3, and labeled 0 (blue) for healthy heartbeats and 1 (yellow) for HF
heartbeats. In the semisupervised labeling method, we use training points (’x’ marks), validating data (’o’ marks)
and testing data (filled ’o’ marks). The localization of the colors suggests that a simple classification of healthy or HF
based on nearest neighbor in the embedded space may lead to a reasonable classification of heartbeats as healthy or
HF. Indeed, using the labels of a heartbeat’s nearest neighbors in the low dimensional embedding provides relative
good classification accuracy, as indicated in Figure 2.5.

heartbeat is labeled as the most common label among the k nearest neighbors

in the embedded domain, excluding heartbeats coming from the same patient

as the heartbeat under classification. Once a heartbeat is labeled, a patient

may be labeled according to the most common label of their heartbeats.

More precisely, we are given a set of patients Ztest that we want to classify

as healthy or HF. These patients consist of a collection of heartbeats Xtest that

we want to classify as healthy or HF. Let Xvalidate be heartbeats belonging to pa-

tients disjoint from those in Ztest. Let Xtrain be heartbeats from patients disjoint
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Algorithm 2 Linear Heartbeat Labeling
Input: Xtrain, Xvalidate, Xtest; Ytrain, Ytest; K, k, m, ϵ
Output: Ŷvalidate, Ŷtest.

1: Set X = Xtrain ∪ Xvalidate ∪ Xtest.
2: Compute the principal components of X, i.e. the eigenvectors of XTX, call

them u1, ..., uD.
3: Project X onto its top m principal components; call the embedded data X̃.
4: For each point x∗ in the validation set, compute its k nearest neighbor

among the training data in X̃. Call these nearest neighbors x1, ..., xk.
5: Label Ŷvalidate(x∗) = mode({Ytrain(x1), Ytrain(x2), ..., Ytrain(xk)}).
6: For each point x∗∗ in the test set, compute its k nearest neighbor among

the training data in X̃. Call these nearest neighbors x∗1 , ..., x∗k .
7: Label Ŷtest(x∗∗) = mode({Ytrain(x∗1), Ytrain(x∗2), ..., Ytrain(x∗k )}).

from those in Xvalidate and Xtest. We have access to the labels for the heartbeats

in Xtrain and Xvalidate, call these labels Ytrain and Yvalidate, respectively. Our

main semisupervised algorithm estimates Ytest, the labels for the heartbeats of

the test patients Ztest. The labels of Ztest are subsequently estimated from Ŷtest.

We consider nearest neighbor classification with the dimension reduced both

linearly and nonlinearly.

A patient is then classified as healthy or HF according to the majority rule

of her heartbeats’ labels. Thus, we compute Ẑtest simply from Ŷtest. We note

that the algorithm has dependencies on K, k, m, ϵ. Choosing these to maximize

the accuracy of the labels of Ŷvalidate performs a kind of cross validation, which

we employ. Some typical results the accuracy of estimating Ztest with Ẑtest

appear in Figure 2.5. These results show m, k varying, but ϵ = .05 fixed and K

to be the number of data points, so that the graph is fully connected. Similar

results hold for ϵ = .01, .15, .20, .25.
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Algorithm 3 Nonlinear Heartbeat Labeling
Input: Xtrain, Xvalidate, Xtest; Ytrain, Ytest; K, k, m, ϵ
Output: Ŷvalidate, Ŷtest.

1: Set X = Xtrain ∪ Xvalidate ∪ Xtest.
2: Form the K nearest neighbors graph G on X with distances given by the

Euclidean distance.
3: Form the graph Laplacian L of G with scale parameter ϵ.
4: Compute the m principal eigenvectors of L, call them Φ1, ..., Φm.
5: For each point x∗ in the validation set, compute its k nearest neighbor

among the training data in the embedded space determined by Φ1, ..., Φm.
Call these nearest neighbors x1, ..., xk.

6: Label Ŷvalidate(x∗) = mode({Ytrain(x1), Ytrain(x2), ..., Ytrain(xk)}).
7: For each point x∗∗ in the test set, compute its k nearest neighbor among

the training data in the embedded space determined by Φ1, ..., Φm. Call
these nearest neighbors x∗1 , ..., x∗k .

8: Label Ŷtest(x∗∗) = mode({Ytrain(x∗1), Ytrain(x∗2), ..., Ytrain(x∗k )}).
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space. Optimal accuracy is 76.87%.
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Figure 2.5: Classification accuracy of the proposed methods are shown, with variation depending on the number of
eigenvectors used in the low dimensional embedding, along with the number of nearest neighbors used to classify.
1000 trials of training and testing sets are shown, with results averaged. Results are fairly consistent after a sufficient
number of eigenvectors are used. The optimal choice of parameters for the linear embedding slightly improves over
classifying in the ambient space, while using nonlinear embedding improves over linear embedding by .75%.

With an appropriately chosen number of eigenvectors used in the low-

dimensional embedding, d, and number of nearest neighbors, k, both the

linear and nonlinear methods exceed 78% in accuracy, with the nonlinear

method performing better.
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2.2.2 Space of All Heartbeats

Instead of using manifold learning to classify patients as healthy or at risk

of heart failure, one can analyze the space of all possible heartbeats. For

simplicity, we will refer the space of all heartbeats to "global" space. Natural

clusters may form in this space, and it is interesting to observe the trajectories

of a single patient in this larger space.

We first consider 3-dimensional linear and nonlinear embeddings of a

random sample of heartbeats. The graph we consider is fully connected, so

we are limited in the number of beats we can consider in a single sample. We

consider 10000 randomly sampled healthy and HF heartbeats, for a total of

40000 samples. We then embed the data according to the top three principal

directions and the top three eigenvectors of the graph Laplacian; these images

are in Figure 2.6.
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Figure 2.6: Whether the data is embedded linearly or nonlinearly, there is obvious separation between healthy and
HF beats. This global separation suggests the value in the proposed semisupervised manifold learning method.
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It is also of interest to observe the healthy and HF embedding spaces sepa-

rately. To do so, we take samples of only healthy or HF patients, and compute

the low-dimensional embeddings. Example embedded datasets are in Fig-

ures 2.7 and 2.8, respectively. Notice that the shapes of the embeddings are

comparable to those in Figure 2.6, despite the completely different sampling

methods used.
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Figure 2.7: The healthy data forms a relatively compact cluster in the linear embedding, but there is substantial
variation in the nonlinear embedding. Outliers appear to be present in both cases.
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(b) Nonlinear embedding of random HF heartbeat sam-
ple.

Figure 2.8: The HF data appears compact in both the linear and nonlinear embeddings.

We also consider mapping the trajectory of the heartbeats of a single patient.
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To do so, we take a random sample of 10000 training heartbeats, as well as

1000 samples from the time series of a single patient, and embed them jointly.

We then observe the patient’s trajectory in the larger embedding; illustrations

for both linear and nonlinear embeddings are in Figure 2.9.
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(b) Linear embedding of trajectory of a patient without
training heartbeats.
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(c) Nonlinear embedding of trajectory of a patient sur-
rounded by training heartbeats. The patient is localized
within the larger heartbeat space.
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(d) Linear embedding of trajectory of a patient without
training heartbeats.

Figure 2.9: The trajectory of a single patient’s time series is relatively well-localized in the ambient embedding, but
does show some time-correlated variation.
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2.3 Modeling ECG Dynamics with Markov Model

A number of previous studies have shown the difference in dynamics of

physiological signals from healthy and unhealthy patients(Buchman, 2002;

Ivanov et al., 1996). Statistical analysis of the hidden dynamics (Goldberger,

1990; Ivanov et al., 1999; DeMazumder et al., 2016) revealed that healthy

subjects are dynamically stable over a wide range of timescale. On the other

hand, automatic ECG analysis has been applied to facilitate decision making

and reduce costs as early as 1970s. However, its sensitivity has been limited

in the cases of ST elevation myocardial infarction (STEMI). Recent advances

in machine learning has enabled great improvement of performance in many

difficult problems in this area (Rajpurkar et al., 2017; Voisin et al., 2018).

The proposed manifold learning method detailed and evaluated in Section

2.2 essentially characterizes a heartbeat as depending on a small number of

parameters that lie near a low-dimensional manifold. Evaluating a patient

as healthy or unhealthy was determined based on local proximity in this

manifold embedding, and hence depended essentially on the typical shape of

a patient’s heartbeat. An alternative characterization of a patient as healthy or

in danger of heart failure is to study the dynamics of a patient’s heartbeats, and

make predictions on the wellness of a patient based on subsequent dynamical

statistics. One advantage of analyzing the dynamics of heartbeats, compared

to manifold learning, is that dynamical analysis explicitly accounts for the

time-evolving nature of the heartbeats. Whereas the manifold learning method

discards the time structure, we propose a method that incorporate this time

structure into statistics on the data.
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We consider modeling a patient’s heartbeat state H as a Markov model,

in which their space of heartbeats is partitioned into a set of possible states,

C1, C2, ..., CK. One can then discuss the probabilities of transitioning from

cluster Ci to Cj as encoding a transition probability on H. This yields a

Markov transition matrix P ∈ RK×K, where Pij corresponds to the probability

of transitioning from state Ci to Cj. The empirical matrices P generated by

different patients can then be used for classification. As in Section 2.2, we

consider two finite state space in the Markov model: one consists of heartbeats

of a single patient ("local" heartbeat space), the other consists of heartbeats

from all possible patients ("global" heartbeat space). The goal is to find useful

features that could capture the ECG dynamics and facilitate decision making.

2.3.1 Local Heartbeat Space

The predictability of the above Markov chain model (the transition matrix P) is

evaluated by comparing with naive transition matrix P̄ where each row is the

stationary distribution π. The motivation for comparing with the stationary

distribution π is as follows. Under mild assumptions, a Markov chain has

a stationary distribution π ∈ R1×K such that πP = π. This encodes the

long-term probability of being at a given state: for any initial distribution

π0, limt→∞ π0Pt = π. We run the following tests to validate the proposed

model. For each patient, we train a Markov transition matrix P using the first

half of the time series and compute the stationary distribution π which is used

to construct the transition matrix P̄. Divide the second half of the time series

equally into small pieces with 10 heartbeats, and compute the log likelihood
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for each piece using P and P̄ respectively. The result shows that for all patients,

log likelihood computed from P is greater than P̄ for most pieces, suggesting

that the Markov chain model could effectively capture the dynamics of the

random process.

We consider two tests on the long-term dynamics of a patient’s heartbeats,

by examining the second (Fiedler) eigenvalue, λ2 of the Markov transition matrix

P, and also the stationary distribution π of the Markov transition matrix P on

H. The motivation for considering λ2 < 1 is that this quantity governs the

mixing time of the Markov process, in the sense that the rate of convergence

of the chain towards its stationary distribution is exponential with base λ2

(Sinclair and Jerrum, 1989). So, the smaller λ2 is, the more rapidly the Markov

chain is mixing. We hypothesized that healthy patients would take less time

to converge since their dynamics more stable, and therefore π would be more

concentrated in the case of HF patients. We thus consider using ∥π∥∞ to

discriminate between healthy and unhealthy patients. We consider a simply

binary classifier for distinguishing between healthy and HF patients, based

on λ2 and ∥π∥∞ being above or below a given threshold. Receiver operating

characteristic (ROC) curves for these classifiers appear in Figure 2.10.

The area under the ROC curves (AUC) for classifying based on λ2 is

small, and illustrate poor classification performance. However, the AUC for

classifying based on ∥π∥∞ indicates a better performance. These tests were run

on time series from 59 healthy and 59 HF patients. For each patient with data

{xi}N
i=1, we cluster the heartbeats with K-means. We chose K = 20 to allow for

many clusters of varying sizes. We then build the Markov transition matrix
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(a) ROC curve corresponding to classifying based on λ2.
Area under ROC curve is 0.627.

(b) ROC curve corresponding to classifying based on
∥π∥∞. Area under ROC curve is 0.734.

Figure 2.10: The ROC curve with classifier λ2 and ∥π∥∞ in local heartbeats space.

by setting Pij = |{t | xt ∈ Ci, xt+1 ∈ Cj}|. We then randomize this matrix

by adding a small perturbation to avoid the case of missing observations,

and normalize this weight matrix to be row stochastic, i.e. Markovian. In

this way, each patient’s dynamics is characterized by one Markov matrix P.

We threshold on λ2 and ∥π∥∞ respectively to distinguish the two groups of

patients.

We also consider two tests on the short-term dynamics. Similarly, we

would use the above transition matrix P to compute the statistics for the

second half of the time series. Here we use log-likelihood as the statistics to

model the random process:

τ =
1

T − 1
log

T−1

∏
t=1

P(id(xt), id(xt+1))

=
1

T − 1

T−1

∑
t=1

log P(id(xt), id(xt+1))

, since this quantity characterize the probability of seeing a specific trajectory.

The entire time series is equally divided into small pieces of size T, and τ is
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computed for each piece. Afterwards, we compute the mean µ and standard

deviation σ of the τ’s for all pieces for one patient. The ROC curves by

thresholding on µ and σ are shown in Fig. 2.11 .

(a) ROC curve corresponding to classifying based on µ.
Area under ROC curve is 0.712.

(b) ROC curve corresponding to classifying based on σ.
Area under ROC curve is 0.730.

Figure 2.11: The ROC curve with classifier µ and σ of τ in local heartbeats space.

The algorithm is specified in Alg. 4. The performance of all four statistics

is summarized in Table . The accuracy is from linear support vector machine

(SVM) and 5-fold cross-validation.

Statistics accuracy AUC
λ2 0.593 0.627

∥π∥∞ 0.678 0.734
µ 0.644 0.712
σ 0.678 0.730

Table 2.1: Performance of statistics in local heartbeat space
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Algorithm 4 Classifier based on dynamics in local heartbeat space
Input: Time series {xi}N

i=1 for each patient, K, T
Output: λ2,π, µ, σ for each patient.

1: Take the time series data of one patient, cut it into two parts with equal
length.

2: Use the first half as training set. Do k-means with K = 20 and return the
centroid of each cluster {Ci}K

i=1. Construct the Markov transition matrix
P ∈ RK×K. Randomize P by adding a small perturbation 10−6 I, and then
normalize each row.

3: Compute λ2 and π of P.
4: Use the second half as testing set. Assign label {idi}N

i=1 to each heartbeat
based on its distance to {Ci}K

i=1.
5: Divide the testing set equally into ⌊ N

2T ⌋ fragments of equal size T = 10
and within fragment i, we compute

τi = log10

T−1

∏
t=1

P(id(xt), id(xt+1))

=
T−1

∑
t=1

log10 P(id(xt), id(xt+1))

and the mean µ and standard deviation σ of the vector
[
τ1 · · · τ⌊ N

2T ⌋
]
.

2.3.2 Global Heartbeat Space

The above experiments could also be done in global heartbeat space. The

global heartbeat space is constructed by sampling a large number of heartbeats

from all patients. One key difference in global heartbeat space is that the

distance metric we used is correlation, not Euclidean as in local heartbeat

space:

d(x, y) = 1 − (x − x̄)T(y − ȳ)√
(x − x̄)T(x − x̄)

√
(y − ȳ)T(y − ȳ)

(2.1)
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Euclidean distance is sensitive to translation which makes the heartbeats

from one patient concentrate in only a few clusters, or even one and thus the

Markov chain could not model the transitions between different states.

Algorithm 5 Classifier based on dynamics in global heartbeat space
Input: Time series {xi}N

i=1 for each patient, K, T
Output: λ2,π, µ, σ, γ for each patient.

1: Load time series signals of all patients. For each patient, divide the time
series equally into two parts.

2: Use the first half of time series from each patient to construct a global
heartbeat space H. Do k-means with K = 50 and return the centroid of
each cluster {Ci}K

i=1.
3: For each patient, construct the Markov transition matrix P ∈ RK×K with

the first half of time series. Randomize P by adding a small perturbation
10−6 I, and normalize each row.

4: Compute λ2 and π of P.
5: Divide the second half of the time series equally into ⌊ N

2T ⌋ fragments of
equal size T = 10. Within fragment i, compute

τi = log10

T−1

∏
t=1

P(id(xt), id(xt+1))

=
T−1

∑
t=1

log10 P(id(xt), id(xt+1))

and the mean µ, standard deviation σ and skewness γ of the vector[
τ1 · · · τ⌊ N

2T ⌋
]
.

We found that the performance of σ is poor, so instead we plot the perfor-

mance of skewness γ. The ROC curves of the four statistics are shown in Fig.

2.12 and Fig. 2.13.
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(a) ROC curve corresponding to classifying based on λ2.
Area under ROC curve is 0.672.

(b) ROC curve corresponding to classifying based on
∥π∥∞. Area under ROC curve is 0.688.

Figure 2.12: The ROC curve with classifier λ2 and ∥π∥∞ in global heartbeats space.

(a) ROC curve corresponding to classifying based on µ.
Area under ROC curve is 0.704.

(b) ROC curve corresponding to classifying based on γ.
Area under ROC curve is 0.726.

Figure 2.13: The ROC curve with classifier µ and γ of τ in global heartbeats space.
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Chapter 3

SaO2 Data Analysis

Oxygen saturation has been proposed as an useful tool to provide cardiores-

piratory information due to its low cost, convenience and ability to provide

immediate and continuous values. However, important technical limitations,

lack of interpretation of data, as well as lack of sensitivity all decrease the

value of oxygen saturation as a single diagnostic tool (Netzer et al., 2001;

Mower et al., 1996; DeMeulenaere, 2007; Sinex, 1999; Hayes and Smith, 2001;

Runciman et al., 1993). Therefore, the oxygen saturation data cannot replace

the ECG as the sole standard for patient selection in ICD implantation, but

rather provide additional and complementary information to better identify

patient set.

As introduced in Chapter 1, SaO2 tends to remain constant around 96%. A

closer look reveals that the SaO2 samples take 21 discrete values in the range

between 80 and 100, with fewer samples under 90. By checking the available

dataset, we also found that there are SaO2 samples with values near 0. We

would like to treat these points as outliers due to measurement instruments

and overlook these samples. For each patient, the number of samples in a
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typical SaO2 time series is at the order of 104.

3.1 Nonparametric Statistical Analysis

The intuition of performing multivariate analysis of SaO2 data stems from two

aspects. First, previous studies have revealed that the levels and significant

changes of oxygen saturation are closely related to certain kinds of cardiores-

piratory diseases, such as sleep apena, breathing disorder, and pickwickian

syndrome (Lloyd-Owen et al., 1999; Javaheri et al., 1999; Olson, Ambrogetti,

and Gyulay, 1999). In addition, common statistics from time and frequency

domain analyses of blood oxygen saturation recordings have shown to be

simple and accurate in the diagnosis of obstructive sleep apnea (Alvarez et al.,

2010).

We consider first to fourth order statistical moments in the time domain

(Alvarez et al., 2010):

M1 = E[x] = µ =
1
N

N

∑
n=1

xn (3.1)

M2 = E[(x − µ)2] (3.2)

M3 =
1
σ3 E[(x − µ)3] (3.3)

M4 =
1
σ4 E[(x − µ)4] (3.4)

I.e., we use arithmetic mean (M1), variance (M2), skewness (M3), and kurtosis

(M4) in the time domain which were derived from each SaO2 recording to

quantify central tendency, amount of dispersion, symmetry/asymmetry, and
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(a) ROC curve of arithmetic mean. AUC = 0.737. (b) ROC curve of variance. AUC = 0.835.

(c) ROC curve of skewness. AUC = 0.716. (d) ROC curve of kurtosis. AUC = 0.774.
Figure 3.1: ROC curves of first to fourth order statistics in the time domain.

tail extremity, respectively. We found that healthy subjects have higher arith-

metic mean and kurtosis but lower variance and skewness. This is consistent

with the intuition that healthy subjects have higher SaO2 levels and lower fluc-

tuation and asymmetry. The ROC curve of all four statistics in time-domain

are shown in Fig. 3.1.

The difference in time domain statistics suggest that it might be helpful

to use the (empirical) probability mass function and cumulative distribution

function of data as feature vector. We applied k-nearest neighbors combined

with 100 repeated random sub-sampling validation on the patient set, with an
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average accuracy of 73.8% and 74.0% respectively.

3.2 Dynamics of SaO2 with Markov Chain

In Section 2.3 we have introduced how to model the ECG dynamics with

Markov chain, where the state space is constructed by clusters of heartbeats in

RD. Similar method could be applied to model the dynamics of SaO2 signal

as well. Here we consider the "global" SaO2 space consisting of all possible

SaO2 values which is one-dimensional. It is natural to choose K = 20 for the

global SaO2 space since there are 21 discrete values with few samples with

values under 90. The log likelihood is computed for pieces of length T = 10.

Afterwards, the first to third order moments are computed for all the τ’s,

and ROC curves are plotted for each of the three moments respectively. The

algorithm is specified in Alg. 6.

We hypothesized that the dynamics for healthy subjects is more stable since

the SaO2 values maintain at a high level. As a result, the Markov transition

matrix built from earlier time could better model the dynamics in the future

and thus the mean of log likelihood is higher for healthy subjects. For the same

reason, we also hypothesized that the log likelihood for healthy subjects will

slightly fluctuate around the mean and the skewness will be lower. As shown

in Fig. 3.2, the mean and skewness of log-likelihood show good performance

while the standard deviation performs poorly and thus not plotted here.

34



Algorithm 6 Classifier based on dynamics in global SaO2 space
Input: SaO2 time series {xi}N

i=1 for each patient, K, T
Output: λ2,π, µ, σ, γ for each patient.

1: Load time series signals of all patients. For each patient, divide the time
series equally into two parts.

2: Use the first half of time series from each patient to construct a global
SaO2 space H. Do k-means with K = 20 and return the centroid of each
cluster {Ci}K

i=1.
3: For each patient, construct the Markov transition matrix P ∈ RK×K with

the first half of time series. Randomize P by adding a small perturbation
10−6 I, and normalize each row.

4: Divide the second half of the time series equally into ⌊ N
2T ⌋ fragments of

equal size T = 10. Within fragment i, compute

τi = log10

T−1

∏
t=1

P(id(xt), id(xt+1))

=
T−1

∑
t=1

log10 P(id(xt), id(xt+1))

and the mean µ, standard deviation σ and skewness γ of the vector[
τ1 · · · τ⌊ N

2T ⌋
]
.

(a) ROC curve corresponding to classifying based on µ.
Area under ROC curve is 0.860.

(b) ROC curve corresponding to classifying based on γ.
Area under ROC curve is 0.804

Figure 3.2: The ROC curve with classifier µ and γ of τ.
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Chapter 4

Patient Identification with
Physiological Signals

4.1 Feature Selection

From previous chapters, we have found statistics for ECG and SaO2 signals

respectively. Therefore, for each subject, we could ensemble all predictive

statistics to represent each patient as a vector. We included all features from

previous sections that have AUC higher than 0.7. Each patient is represented

by a feature vector x = [x1 . . . x12], where each xi is shown in Table. 4.1.

Since the total number of features is small, we could simply use greedy

x1 ratio of healthy heartbeats
x2 ∥π∥∞ in local heartbeat space
x3 mean of log-likelihood in local heartbeat space
x4 standard deviation of log-likelihood in local heartbeat space
x5 mean of log-likelihood in global heartbeat space
x6 skewness of log-likelihood in global heartbeat space

x7, x8, x9, x10 first to fourth moment of SaO2 in time domain
x11 mean of log-likelihood in global SaO2 space
x12 skewness of log-likelihood in global SaO2 space

Table 4.1: Feature set used in patient classification.
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forward selection to find the optimal feature subset. The idea of the algorithm

is to start from an empty feature set and greedily search for the best feature

set with j components in each step, where j is the step number. The algorithm

is shown in Alg. 7.

Algorithm 7 Forward Selection

1: Initialize F = ∅
2: loop
3: for i = 1, . . . , n do
4: if i /∈ F then
5: Fi = F ∪ {i}
6: Use cross validation to evaluate feature set Fi
7: end if
8: end for
9: Set F to be the best feature subset found from all Fi’s.

10: end loop

The termination condition for the outer loop can be either F = {1, . . . , n}
or number of features selected reach the expectation.

We used logistic regression and 5-fold cross validation in the above forward

selection algorithm. With feature subset [x1, x2, x5, x12], we got the accuracy of

93.2%. Notice that the features are from geometry, dynamics of ECG as well

as dynamics of SaO2, which means that the information contained from these

statistics are complementary.

The confusion matrix is shown in Fig. 4.1. The algorithm performs well on

both healthy and HF subjects, with no bias towards any of the two classes.
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Figure 4.1: Confusion matrix of logistic regression on optimal feature set x = [x1, x2, x5, x12] with 5-fold cross
validation.

4.2 Regression Analysis of ECG and SaO2

Previous results suggest that the information contained in ECG and SaO2 time

series signals can enhance one another regarding the classification accuracy.

It is of interest to explore the relationships between the two signals, as they

are collected simultaneously. In this section we will discuss two regression

analysis done on these signals.

The first regression analysis is on the original ECG and SaO2 time series.

For each SaO2 sample, we will locate the corresponding ECG sample and find

the nearest R peak value. The result is shown in Fig. 4.2. For visualization

purpose, the SaO2 from healthy subjects are right shifted by 0.1. From the

figure we can see that for both healthy and HF subjects, each SaO2 value maps

to the ECG peak of 0.0012. However, for HF subjects, this is not the case when

oxygen saturation level is high. We also compute the mapping accuracy which

is defined as the ratio of number of samples with most ECG values divided

by the total number of samples for each SaO2 level. For healthy subjects the
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Figure 4.2: Relationship between oxygen saturation levels and heights of R peaks of ECG. The left vertical lines are
from HF subjects and right lines are from healthy subjects. Color bar corresponds to the number of samples. For
each oxygen saturation level, the ECG voltage with most number of samples is marked with red circle.

average mapping accuracy is 51.7% while for HF subjects the average is only

16.9%, which means that for healthy subjects the R peak heights are consistent

regardless of oxygen saturation level, while for HF subjects the relationship is

not clear. The clinical explanation of this result is not clear though.

The second regression is on the clusters of ECG and SaO2, both in global

space. For convenience we choose K = 20 for both data. The relationship is

not clear, as in Fig. 4.3.
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Figure 4.3: Regression analysis of clusters of ECG and SaO2. The color bar shows the number of samples. For each
cluster of ECG, the cluster of SaO2 with the largest number of samples is marked with red circle.
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Chapter 5

Discussion and Conclusion

The development of economic, reliable and non-invasive risk prediction meth-

ods of individuals for primary prevention ICD implantation is of clinical and

public healthy priority. The present study allowed us to identify patients who

would benefit the most from ICD implantation with non-invasive ECG and

oxygen saturation test.

Current strategies for risk stratification based on deterministic linear mea-

sures have demonstrated limited clinical utility (Rashba et al., 2006; Berger

et al., 1997; Grimm et al., 2003; Hohnloser et al., 2003). Large patient datasets

and novel machine learning methods have facilitated the development and

validation of new risk prediction models (Rajpurkar et al., 2017; Pourbabaee,

Roshtkhari, and Khorasani, 2017; Acharya et al., 2017), which are able to

perform more complicated tasks with higher accuracy. Our research combines

machine learning algorithms, stochastic processes and nonparametric statis-

tics into a cohesive measure which is robust and accurate in identification of

patients with high heart failure risk. Our findings on the nonlinear dynamics

are consistent with previous results on the same dataset (DeMazumder et al.,
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2016). The methods we introduced not only can be used to identify patients

who would benefit from ICD implantation, but have the potential to be widely

applied in other clinical problems.

A sensitivity, specificity and accuracy of 93.2% were reached. This could

not be achieved with any single approach. The optimal feature set outperforms

the accuracy of each single feature. Therefore, ECG and SaO2 data could

provide complementary information in the context of patient identification

and thus enhance diagnostic ability.
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