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Abstract 
 

The characteristic motor symptoms of Parkinson disease (PD) are primarily 

the result of the progressive loss of dopaminergic (DA) neurons of the substantia nigra 

(SN). The common genetic variants responsible for sporadic PD, the mechanisms by 

which these variants exert their effects, and the origins of the preferential 

degeneration of SN DA neurons remain largely unknown.  

We first aimed to identify common, non-coding PD-associated variants. We 

examined the chromatin of embryonic midbrain DA neurons and identified >100,000 

regions of open chromatin, many of which are transcriptional enhancers, as 

demonstrated by a series of transgenic reporter assays. Among these enhancers, one, 

in intron 4 of the familial PD gene SNCA, directed reporter expression in 

catecholaminergic neurons from transgenic mice and zebrafish. Sequencing this 

enhancer in 986 PD patients and 992 controls revealed two common variants, 

rs2583959 and rs2737024, associated with elevated PD risk.  

We next assessed how these and other common disease-associated variants 

influence transcription and disease risk. We developed a regulatory vocabulary of 

midbrain DA neurons to identify key transcription factors (TFs) and ranked >7,000 

disease-associated variants on their capacity to disrupt TF binding. We tested ~20 

prioritized variants using in vitro luciferase reporter assays. Established neuronal cell 

culture models are not valid cellular surrogates for embryonic DA neurons and 

resisted in vitro validation. Instead, we employed alternative strategies for evaluating 

TF and protein binding disruption, like protein binding arrays. Additionally, we 
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characterized an embryonic mouse-derived SN DA neuron cell culture model, SN4741, 

and evaluated its potential as a cellular surrogate for testing our variant predictions.  

 Finally, we queried the developmental origins of the preferential degeneration 

of SN DA neurons in PD. We examined single-cell transcriptomes from ~1,200 

midbrain DA neurons in a mouse model of PD and characterized subpopulations of 

neurons, genes, and pathways disrupted in PD at an early post-natal time point. The 

PD mutation induces precocious maturation of neuroblasts into mature SN neurons, 

accompanied by striking dysregulation of genes involved in mitochondrial function. 

We propose a model suggesting a developmental origin of PD involving disrupted 

mitochondrial dynamics altering neuron maturation in key populations of DA 

neurons.  
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Chapter 1: Introduction 
1.1 A model complex disease: Parkinson disease 

Parkinson disease is the second most common neurodegenerative disease, 

affecting 1% of the population over the age of 601. It is characterized by progressive 

motor symptoms, like tremor, bradykinesia, rigidity, and postural instability2. It is 

often preceded, over the course of decades, by a variety of non-motor phenotypes like 

insomnia, REM sleep disorders, depression and anxiety, anosmia, and constipation3. 

These motor symptoms are primarily the result of the degeneration of dopaminergic 

(DA) neurons, particularly in the substantia nigra4. This degeneration of nigral DA 

neurons and the presence of protein aggregates of α-synuclein, called Lewy bodies, are 

the pathological hallmarks of Parkinson disease (Figure 1.1).  

Parkinson disease is a complex disease, likely arising from a combination of 

environmental and genetic factors. In terms of the genetic causes, both familial and 

sporadic forms exist, with familial cases representing less than 15% of cases5. Of these 

familial cases, 30% can be attributed to highly penetrant, monogenic mutations6. Both 

autosomal dominant (e.g.: SNCA7, LRRK28,9, and VPS3510) and autosomal recessive 

(e.g.: PARKIN11, DJ-112, PINK113) mutations have been identified. Interestingly, at 

the SNCA locus, in addition to six autosomal dominant missense mutations causing 

disease7,14–18, duplications19 and triplications20 of the gene results in disease, with the 

severity of the phenotype and age of onset commensurate with the number of gene 

copies21.  

Sporadic Parkinson disease is more common than familial forms of the disease 

and often exhibits a later onset of phenotypes (familial age: 59.3 ± 11.3 vs sporadic 
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age: 66.5 ± 11.8)22. For sporadic cases, there exists a genetic component of risk, with a 

narrow-sense heritability of ~0.209 (95% confidence interval [CI]: 0.148-0.271)23. 

Genome-wide association studies (GWASs) have been applied to elucidate the genetic 

basis of sporadic Parkinson disease and has implicated approximately 90 loci in 

conferring risk, finding both novel loci but those containing many of the familial 

Parkinson disease genes24. For example, the most significant signal in sporadic 

Parkinson disease has consistently been located at the SNCA locus (odds ratio (OR) = 

0.760, p-value = 4.16x10-73)25, which given its role in Lewy bodies and the pathogenesis 

of Parkinson disease suggests common mechanisms are fundamental to both familial 

and sporadic forms.  

Unfortunately, given the reliance of GWAS on linkage disequilibrium (LD), the 

causative variants at the implicated loci and the genes they disrupt are obscured. 

Further confounding the study of these loci, the majority of GWAS-implicated variants 

fall in non-coding sequences26, where the mechanism by which they confer risk is less 

straightforward than in coding variants. To begin prioritizing non-coding variants at 

GWAS implicated loci, functional fine-mapping has often been employed27. Here, the 

lead variant indicted by GWAS plus those in high LD are intersected with genomic 

annotations, like ChIP-seq, to identify variants that are more likely to be functional 

(Figure 1.2). Underlying this technique is the assumption that these non-coding 

variants confer risk by altering gene expression through disruption of a functional 

non-coding element, particularly enhancers.  
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1.2 Enhancers and transcriptional regulation 

Enhancers are a cis-acting, non-protein coding DNA element that regulate 

gene transcription. Enhancers were first described in 1981, when a fragment of non-

coding DNA from the SV40 viral genome was observed to increase transcription of a 

reporter gene in HeLa cells by several hundred-fold28. Early studies into the general 

properties of enhancers found them to boost transcription of target genes in a tissue-

specific manner that is irrespective of orientation (e.g.: forward strand or reverse 

strand), distance, or position relative to the target gene28. Gene regulation by 

enhancers is highly dynamic across cell state (e.g.: cell type, developmental time, 

environmental or genetic perturbation)29,30 and each gene is often under the regulation 

of multiple enhancers31,32, each at various strengths of activity. This combinatory 

control allows for the intricacy and complexity of gene expression patterns. 

 Enhancers achieve this intricate transcriptional regulation largely through 

three mechanisms: transcription factor binding, DNA looping, and chromatin 

accessibility changes.  

 At the sequence level, enhancers contain transcription factor binding sites33. 

The number of sites34, the affinity of transcription factors for that sequence35, and the 

availability of transcription factors to bind these motifs all modulate an enhancer’s 

activity36. Classically, it was believed that the transcription factors recruited to the 

enhancer would interact with RNA polymerase II at the target gene promoter to 

initiate gene transcription37,38. Recently, it has been suggested that the polymerase 

initiates transcription in the absence of the transcription factors or enhancer, but 
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instead is paused and requires the transcription factors and enhancer to promote 

transcriptional elongation39,40.  

 Regardless the model, there is a requirement for the enhancer to interact with 

its cognate gene promoter. This is achieved through DNA looping41,42. There is a higher 

order 3D structure of DNA that regulates gene expression through the formation of 

loops in which an enhancer is brought into close physical proximity to its target 

promoter43. This DNA looping structure is formed and maintained by the cohesin 

complex44,45 and the contacts between the enhancer and the promoter are likely 

bridged by the Mediator complex46. Alterations in the chromatin conformation, either 

by the formation or dissolution of different complements of DNA loops, allow for the 

dynamic regulation of gene expression42,47.  

 The compaction of the chromatin is also an important factor in regulating 

transcription. DNA is packaged tightly around histone octamers at regular 146bp 

intervals to form nucleosomes48. This packaging not only compacts the DNA into the 

nucleus but it also regulates gene activity by restricting transcription factor binding 

and therefore, transcription. For an enhancer to function, the underlying DNA 

containing the transcription factor binding sites must be made accessible49,50. 

Chromatin accessibility can be modulated by pioneering transcription factors and 

DNA remodelling proteins in a cell type specific manner51. Pioneer transcription 

factors are a class of proteins that have a strong DNA binding affinity which are able 

to recognize their motifs even when the sequence is partially occluded by the histone 

packaging52,53. Once bound, pioneer transcription factors can recruit chromatin 

remodelers or other transcription factors to promote DNA accessibility54–56. Chromatin 

remodellers are ATP-dependent proteins that shuffle or remove histones to establish 
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nucleosome-free DNA that is accessible to non-pioneering transcription factors or 

other DNA binding proteins, like RNA polymerase II57. Only once the DNA is 

accessible, looped such that open enhancers are brought into proximity with their 

target promoters, and bound by transcription factors and other complexes, effectively 

regulated transcription can be realized (summarized in Figure 1.3).  

1.3 Regulatory variation and human phenotypes  

 While protein-coding mutations have traditionally been the focus of searches 

for disease-associated variation, non-coding, regulatory variation is frequently the 

culprit in both rare, Mendelian and common, complex diseases.  

 An early example of disease-causing mutations disrupting enhancer element 

activity is in ß-thalassaemia, where translocations and deletions of a series of 

enhancers upstream of the ß-globin gene cluster (the locus control region) ablates ß-

globin gene expression, leading to disease58. We see another classic example of rare 

enhancer variants leading to disease in autosomal dominant pre-axial polydactyly. 

Here, point mutations in an enhancer of SHH, located over 1Mb away in an intron of 

a neighbouring gene59, disrupt the expression of SHH in the developing limb bud, 

disrupting the normal morphogen gradient specifying digit location along the antero-

posterior axis60. Rare, highly penetrant point mutations in enhancers have been 

identified in other disorders like mutations in PTF1A in pancreatic agenesis61, de novo 

mutations in PAX6 in aniridia62,63, and TBX5 in congenital heart defects64.  

 There are also examples of common variants impacting variants and 

contributing to disease, as in a common variant occurring in an enhancer in intron 1 

of RET that increases risk for Hirschsprung disease in a sex-specific manner65. Many 
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common enhancer variants associated with common disease have been identified by 

GWAS. GWAS have identified thousands of risk loci, many of which do not contain 

protein-coding causal variants26,66, suggesting a role for regulatory variants in 

conferring disease risk. These non-coding variants can be prioritized through 

intersections with disease-relevant, tissue-specific enhancer catalogues combined 

with mechanistic studies to identify the causative SNP at a locus. By these methods, 

common obesity-associate enhancer variants were found to regulate IRX3 

expression67,68. Similarly, genetic fine-mapping studies in combination with genetic 

editing experiments identified an enhancer variant of EDN1 that is associated with 

five vascular diseases, as identified by GWAS69.  

While these success stories exist, our ability to prioritize variants through 

intersections with enhancer catalogues are limited by our ability to identify 

enhancers; the specificity of enhancers to tissue types, developmental time, 

pathological status, and environmental conditions, remain barriers to prioritizing the 

causative non-coding variant at many GWAS-identified loci.  

1.4 Identifying and validating enhancers  

Unlike with coding sequences, we cannot reliably predict enhancers from DNA 

sequence alone. Machine learning algorithms have recently been employed to attempt 

to learn enhancer sequence composition in order to predict enhancers from sequence 

alone70–74. These algorithms are still limited in their predictions, especially given the 

lack of quality training sets and the complexity of the sequence encoded by degenerate 

and combinatorial transcription factor binding site sequences. Sequence conservation 

has also been used to predict enhancers under the expectation that enhancers are 
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functional elements and therefore will be conserved across species at higher rates 

than background, non-functional, non-coding DNA75–79. This approach has been 

effective in finding a variety of enhancers however, fails to identify a large proportion 

of functional non-coding sequences and also misses enhancers that are recent in the 

human evolutionary history80–82.  

Most enhancer searches have shifted away from sequence analysis and have 

instead focused on molecular methods to identifying enhancers. These methods 

generally rely on exploiting the properties of enhancers to aid their searches.  

Exploiting that enhancers are bound by transcription factors, ChIP-seq 

(chromatin immunoprecipitation) is used to assay transcription factor binding sites 

genome-wide, a proportion of which will be enhancers83. Often ChIP-seq is also used 

to pull down against histone marks characteristic of enhancers (e.g.: H3K27Ac and 

H3K4me1)84–86 or enhancer associated proteins, like EP300, a transcriptional 

activator87,88.  

We can also exploit the requirement of enhancers to physically interact with 

target promoters as a means to identify enhancers. Using chromatin conformation 

capture techniques, we can identify sequences that physically interact with a 

promoter. Using 4C-seq, we can use a promoter of interest as the anchor/viewpoint 

and identify all sequences that interact with it, likely including enhancers89. On a 

larger scale, we can perform promoter-capture HiC to identify all sequences 

interacting with all promoters90,91, under the assumption that a large fraction of non-

coding interacting sequences are likely to be enhancers.  
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The increased chromatin accessibility in active enhancers is the main feature 

currently being exploited to identify enhancers genome-wide. Classic methods of 

probing DNA accessibility include DNase I hypersensitivity site sequencing (DNaseI-

seq)92,93 and FAIRE-seq (formaldehyde-assisted isolation of regulatory elements)94. 

DNaseI-seq relies on open chromatin being more susceptible to degradation by 

DNaseI. FAIRE-seq relies on open chromatin being more readily solubilized after 

crosslinking and sonication. 

Both of these methods have successfully identified extensive catalogues of 

enhancers however, they both rely on assaying a large number of cells (on the order 

of tens of millions). This cell number requirement often precludes the study of rare 

populations of cells or in studying specific cell types rather than a whole tissue. As 

such, these techniques are often limited to use in cell culture models, in order to meet 

the input requirements, prohibiting the study of enhancers in their in vivo context, or 

in assaying across developmental time or in an appropriate or perturbed environment.  

To overcome these limitations, the assay of transposase accessible chromatin 

with sequencing, ATAC-seq, has recently been developed95. Like DNaseI-seq and 

FAIRE-seq, ATAC-seq relies on a specific property of open chromatin for assay, 

specifically that open chromatin is more susceptible to fragmentation by a hyperactive 

transposase. With this method, the cell input requirements are orders of magnitude 

less, requiring 500 to 50,000 cells, with the ability to assay open chromatin in single-

cells also now a possibility. 

None of these methods for identifying enhancers solely identify enhancers – 

other sequences of the genome may interact with transcription factors or DNA-binding 
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proteins, or are in contact with a promoter, or reside in open chromatin. Once we have 

generated these catalogues, there remains the burden of proof in verifying these 

sequences as capable of regulating transcription.  

The main methods to validating enhancer activity generally rely on assaying 

reporter activity, in which the candidate enhancer sequence is placed upstream of a 

minimal reporter that directs expression of a reporter gene. In cell culture, this is 

often a luciferase assay. Luciferase assays use the firefly luciferase and renilla genes 

to quantitatively measure fluorescence activity being directed by a putative 

enhancer96. This is a medium throughput assay with dozens of enhancers routinely 

tested at once. Scaling this up, massively parallel reporter assays (MPRAs) are a 

related, higher throughput assay, where instead of measuring luciferase fluorescent 

activity, the transcription of a reporter gene is measured by RNA-seq, allowing the 

assay of tens of thousands of sequences simultaneously97–100.  

Both of these methods are in vitro, transient expression assays. As such, they 

are unable to assess the cell type specificity of enhancer activity, are limited to 

assaying a single cell type and cannot assess the impact of developmental time or 

environmental perturbation on enhancer activity. Reporter assays in transgenic 

animals overcome these issues. These assays usually involve random integration of 

an enhancer-promoter-reporter construct into the animal’s genome. Often, the 

reporters used in in vivo reporter models are lacZ expression with ß-gal staining (“blue 

mice”)101,102 or fluorescence activity – often used in zebrafish given their relative 

translucency throughout development103.  
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These assays allow for the measurement of enhancer activity across 

developmental time, tissues, and perturbation. These assays are informative for the 

deep understanding of an enhancer but do not scale well to assaying large numbers of 

enhancers simultaneously. Unfortunately, neither the in vitro or in vivo reporter 

assays generally measure enhancer activity using the endogenous locus or promoter 

and as such do not preserve one of the core principles enhancers use in regulating 

gene expression: chromatin looping.  

A recent method in probing enhancer activity seeks to overcome these 

limitations through genome editing at the endogenous locus, usually by CRISPR-

Cas9104–106. Here, the native locus is edited to disrupt an enhancer, either by modifying 

the chromatin state107, introducing a variant67,108,109 or through its wholesale 

deletion110,111, and changes to gene expression and chromatin conformation are 

measured. If the editing occurs in an in vivo model, the animal model can be examined 

for disease-related phenotypes and disease susceptibility can be tested. This method 

of validating enhancer activity remains low throughput but is commonly used in 

confirming enhancer activity or in assessing the effect of an enhancer variant on the 

cognate gene expression in vivo.  

1.5 Evaluating gene expression 

Enhancers regulate gene expression. Our ability to measure gene expression 

is fundamental to our understanding of how DNA gives rise to phenotypes. To 

measure gene expression, we can examine either the ultimate gene product, proteins, 

or we can consider the intermediary product, RNA.  
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Proteins are the culmination of all regulatory steps from transcription to 

translation and are the ultimate agents conferring phenotypes. Common strategies 

for measuring protein abundance include antibody-based methods, including western 

blot112,113 and enzyme-linked immunosorbent assay (ELISA)114, or spectrometry-based 

methods, like liquid chromatography mass spectrometry (LC/MS)115. While these 

methods are able to measure protein abundance with high sensitivity, they can be low 

throughput, rely on the availability and specificity of an appropriate antibody against 

the protein of interest (western, ELISA), are technically demanding (LC/MS), or 

require a large amount of sample (e.g.: western blots can require ~10-100µg of total 

protein116) precluding measurement of protein levels for rare populations of cells117.  

Measuring RNA levels avoid these issues but relies on the assumption that 

transcript levels correlate with protein levels, which has been called into 

question118,119. However, measuring the transcriptome is the favoured method for 

evaluating gene expression due to the relative ease of the protocols, the scale of data 

generated, and the low input requirements (i.e.: as low as single cells). Methods for 

measuring RNA levels, from low- to high-throughput, include northern blot120, RT-

qPCR121–123, microarrays124–126, and RNA-seq127–131. RNA-seq is a relatively new 

technology that generally involves RNA conversion to cDNA and ligation of 

sequencing adapters followed by next generation sequencing. The reads are aligned 

to either the transcriptome or genome and gene expression is quantified, novel 

splicing events or isoforms are uncovered, and non-coding RNAs (e.g.: miRNAs, 

lncRNAs, eRNAs) are identified132. RNA-seq allows for the quantification and 

comparison of transcripts across cell types, tissues, individuals, time points, disease 

state or, environmental perturbation with high sensitivity. However, bulk RNA-seq is 
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limited to measuring average gene expression across pools of cells, potentially 

masking subpopulations of cells. In response to this shortcoming, new protocols for 

quantifying RNA expression in single cells were developed.  

 The invention of single-cell RNA-seq (scRNA-seq)133–137 has allowed for the 

measurement of transcripts from hundreds to thousands of single cells 

simultaneously, enabling the in-depth analysis of heterogeneous populations of cells. 

scRNA-seq involves the isolation of single cells (either though cell sorting138, 

combinatorial indexing139, or droplet-based techniques137), reverse transcription of 

extracted RNA into cDNA, and the production of sequencing-ready libraries with 

unique barcodes for each cell for deconvolution post-sequencing. Each cell’s sequences 

are aligned and quantified and sparse matrices of cells by gene expression are 

generated to summarize the expression data. The gene expression data is sparse given 

the low efficiency of RNA capture coupled with the low expression of many genes140. 

This scarcity of data is mitigated by the collection of a large number of cells; there is 

a tradeoff in analysing sparse data from many cells versus analysing very deep data 

from just a few samples. Once the expression is quantified across all cells, cells are 

clustered using dimensionality-reduction algorithms (e.g.: PCA141, tSNE142, UMAP143) 

into subpopulations of related cells. From these clusters, marker genes of each can be 

identified, subpopulations of cells can be assigned to biological functions or anatomical 

regions, and genes differentially expressed between clusters are identified.  

1.6 Applying scRNA-seq to biological questions  

With this technology in hand, scRNA-seq has been rapidly applied to a variety 

of biological questions. scRNA-seq has been used to uncover tissue and cellular 
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heterogeneity, identify and profile rare cell types, and compare healthy and diseased 

tissues.  

In one of the first demonstrations of scRNA-seq, the fledgling technology was 

applied to examining cancer, focusing on circulating tumour cells in a melanoma 

patient135. This marked the beginning of a slew of studies into tumoural heterogeneity 

and microenvironment, markers of disease progression or metastasis, and response to 

therapy using scRNA-seq. For example, common brain tumours, glioblastoma and 

medulloblastoma, were examined for intratumoural heterogeneity. Researchers 

identified four cellular subtypes in glioblastoma tumours and three clusters of distinct 

cells in medulloblastoma tumours144,145. Each tumour is composed of each of the 

subtypes and depending on the composition and degree of heterogeneity within a 

tumour, survival was influenced146. Like tumours, brains are incredibly complex and 

highly heterogeneous; even within a brain region, there is a large diversity of cell 

types, both neuronal and non-neuronal. scRNA-seq has been used to identify cellular 

subtypes in a variety of brain regions, like the cortex and hippocampus where 

researchers identified 47 clusters147, the temporal lobe148, and the midbrain149. Specific 

types of neurons and support cells have been assayed as well to find subtypes within 

these restricted populations. For example subsets of oligodendrocytes150 and 

dopaminergic neurons151 have been identified.  

These studies have used scRNA-seq to better understand cell type composition 

within a tissue. Even when assaying tissues that have been studied extensively, 

scRNA-seq can identify novel cell populations. In the case of blood dendritic cells and 

monocytes, which had been canonically classified into six subtypes, scRNA-seq 

suggests there are instead ten subtypes152. One of these subtypes was a novel 
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progenitor population, making up just 0.02% of cells assayed, which while rare, could 

be exploited as a new therapeutic target. Similarly, in the lung epithelia, a novel, rare 

population of cells, composed of pulmonary ionocytes, was identified by scRNA-

seq153,154. Interesting, this population of cells, representing less than 1% of airway 

epithelial cells, express high levels of CFTR, suggesting that this rare, previously 

unidentified cell population may be involved in cystic fibrosis pathogenesis.  

Clearly, scRNA-seq is an important technology in understanding disease. 

Many studies have used scRNA-seq to compare the diseased and healthy state in order 

to understand the molecular mechanisms of disease pathogenesis and progression. In 

one example, single cells were isolated from the lungs of control and influenza-treated 

mice and the host and viral transcriptomes were measured155. Doing so, nine clusters 

of cells, corresponding to the major classes of cells expected, were observed. 

Unexpectedly, each cluster of cells contained cells with high rates of viral infection, 

where previously it had been believed that only certain subpopulations of cells carried 

the burden of infection156,157. Another example comparing healthy and diseased tissues 

involved the comparison of failing and non-failing heart transcriptomes158. This 

comparison identified subpopulations of cardiomyocytes that execute a 

dedifferentiation transcriptomic profile in the disease-state, suggesting an effort for 

these cells to regenerate following stress. A subsequent paper compared 

cardiomyocytes in failing hearts and in hearts that are stressed but not yet failing, to 

examine the molecular basis of that transition159. These two studies indicate the value 

in using scRNA-seq to identify populations of cells implicated in disease.  

Bringing together all of these use cases for scRNA-seq, we can turn to a study 

that used scRNA-seq to characterize the heterogeneity of cell types in the entorhinal 
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cortex in the context of Alzheimer disease (AD)160. In this study, they identify 

subpopulations of microglia, astrocytes, neurons, oligodendrocytes, oligodendrocyte 

progenitors, and endothelial cells in the entorhinal cortex. Some of these clusters were 

novel and originated exclusively from AD brains, suggesting extensive transcriptional 

changes as a result of the disease. Examining these disease-specific clusters, groups 

of dysregulated genes, particularly transcription factor networks, are implicated in 

regulating cell fate transitions between healthy and AD subpopulations. This study 

exemplifies the power of scRNA-seq in defining the cellular heterogeneity of tissues, 

identifying new and rare cell subtypes, in the context of disease to better understand 

the mechanisms underlying pathogenesis and disease progression.  

1.7 The transcriptional origins of sporadic Parkinson disease 

We can consider sporadic Parkinson disease to be the result of variation 

leading to aberrant transcription ultimately leading to the preferential degeneration 

of midbrain dopaminergic neurons. To investigate this process, I set out to investigate 

each of these steps in depth.  

I was motivated to identify non-coding variants that are responsible for 

elevating Parkinson disease risk. In Chapter 2, I identify enhancers in midbrain 

dopaminergic neurons and focus on a novel midbrain-specific enhancer of SNCA and 

within it, reveal two common Parkinson disease-associated variants.  

I also wanted to investigate how disease-associated non-coding variants alter 

transcription in modulating risk. In Chapter 3, I identify important transcription 

factors for midbrain dopaminergic neurons and predict how thousands of variants 

associated with risk for a variety of neurodegenerative and neuropsychiatric disorders 
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alter their binding. In evaluating these predictions, I explore the suitability of a 

variety of in vitro cellular surrogates, particularly focusing on how appropriate an 

immortalized mouse substantia nigra cell line is as a surrogate for in vitro assays.  

Finally, I was curious about the predisposition of dopaminergic neurons of the 

substantia nigra to preferentially degenerate in Parkinson disease. In Chapter 4, I 

evaluate the transcriptomes of developing dopaminergic neurons of the midbrain in 

the context of a mouse model of Parkinson disease. I identify subpopulations of 

neurons of early postnatal dopaminergic neurons, including a novel population of 

substantia nigra neurons. Additionally, in comparing the diseased and healthy states, 

I observe striking dysregulation of mitochondria that we hypothesize underlies the 

precocious differentiation of neuroblasts into mature substantia nigra neurons.  

Overall, I examine how alterations in DNA sequence, transcription factor 

binding, and transcription culminate in risk for Parkinson disease.  
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1.8 Figures 

 
 

Figure 1.1: The pathological hallmarks of Parkinson disease 

 

There are two pathological hallmarks of Parkinson disease primarily responsible for 

the motor symptoms: the selective degeneration of midbrain dopaminergic neurons in 

the substantia nigra and the appearance of protein aggregates of alpha-synuclein, 

called Lewy bodies. 
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Figure 1.2: Genomic annotations can be used to prioritize GWAS-implicated 
variants 

 

After a GWAS is performed, the results can be summarized on a Manhattan plot, 

where each variant evaluated is plotted against the significance of its association with 

the trait. Examining each significant locus more closely, the magnitude of association 

for each SNP in the genomic region and the LD relationship with the lead SNP is 

examined and statistically likely causative variants are identified. This analysis can 

be augmented by the inclusion of functional annotations. In this example, the lead 

SNP (purple diamond) and four others in high LD (red dots) are the most statistically 

significant variants however, the two variants to the left also overlap a functional 

element (pink box) and are therefore more likely to be causative and are prioritized 

for functional follow-up.  
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Figure 1.3: Enhancers regulate transcription 

 

Chromatin accessibility, conformation, and transcription factor binding are factors 

influencing enhancer activity. In its inactive state, chromatin is tightly compacted 

around nucleosomes (grey circles), and as such is inaccessible for protein binding. For 

enhancers to be active, nucleosomes must be disassembled or shuffled out of the region 

such that the DNA is accessible. Through the actions of cohesin (pink hoop) and 

mediator (green cloud), an enhancer is brought into proximity with its target promoter 

through chromatin looping. To form this bridge between the enhancer and promoter, 

the mediator complex interacts with both the paused RNA polymerase II and 

transcription factors (green, purple, orange, and red circles) that are bound to short 

sequence motifs at the enhancer (stripes in the black box). Once in proximity, current 

models suggest that the enhancer promotes gene expression by signaling RNA 

polymerase II (blue), already bound at the gene’s promoter, to exit its paused state 

and begin transcriptional elongation.  
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Chapter 2: Chromatin-based analyses of 
dopaminergic neurons1 

2.1 Applying chromatin data to investigate non-coding variation in 

Parkinson disease 

Parkinson disease (PD) is a common progressive neurodegenerative disorder 

characterized by preferential and extensive degeneration of dopaminergic (DA) 

neurons in the substantia nigra4,161. This loss of midbrain (MB) DA neurons disrupts 

the nigrostriatal pathway and results in the movement phenotypes observed in PD. 

While this disorder affects approximately 1% of people over 70 years old worldwide162, 

the mechanisms underlying genetic risk of sporadic PD in the population remains 

largely unknown. Familial cases of PD with known pathogenic mutations are better 

understood but account for ≤10% of PD cases163.  

The α-synuclein gene (SNCA) is commonly disrupted in familial PD through 

missense mutations predicted to promote misfolding7,15,16 or genomic multiplications, 

resulting in an over-expression paradigm20. The SNCA locus has also been shown by 

genome-wide association studies (GWAS) to harbour common variation modulating 

risk of sporadic PD25. In the same way, common variation at over 40 additional loci 

have been implicated in PD23, but the genes modulated and causal variants 

responsible for elevating risk remain largely undetermined.  

                                                      
1 This work has been published in the American Journal of Human Genetics and adapted for use in this thesis. 
McClymont, S.A. et al. (2018). Parkinson-associated SNCA enhancer variants revealed by open chromatin in mouse 
dopamine neurons. The American Journal of Human Genetics, 103:874-892237. 
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That most GWAS-implicated variants are non-coding26 is a major source of this 

uncertainty, obstructing the identification of: 1) the causative variant at a locus; 2) 

the context in which the variation is acting and; 3) the mechanism by which a variant 

asserts its effect on disease risk.  

GWAS are inherently biologically agnostic and their exploitation of linkage 

disequilibrium (LD) structure frequently results in many variants being implicated at 

any one locus, with no one variant prioritized over those in LD. One method to 

prioritize non-coding variants is to examine the chromatin status at that locus26,164,165. 

Accessible chromatin is more likely to be functional and variants therein may impact 

that activity, more so than those variants residing in inaccessible chromatin. Recent 

studies have prioritized neuropsychiatric variants through examination of the 

chromatin status of iPSC-derived neurons or post-mortem whole brain tissues166,167. 

However, chromatin accessibility is dynamic, often varying across cell types and 

developmental time, therefore understanding and isolating the in vivo cellular context 

in which variation acts is critical to increase our ability to prioritize variants and 

query their methods of action26,168–170.  

Exploiting the preferential vulnerability of MB DA neurons in PD, we have 

prioritized DA neurons as the biological context in which a fraction of PD-associated 

variation likely acts. DA neurons in other brain regions, such as the forebrain (FB), 

provide a related substrate that is less vulnerable to loss in PD. We sought to use 

chromatin data from ex vivo populations of DA neurons to investigate the 

contributions of non-coding variation to PD risk. To maximize the specificity of the 

biological context, we generated chromatin signatures of purified mouse MB and FB 

DA neurons. We examined the resulting regulatory regions for their ability to direct 
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in vivo reporter expression and developed a regulatory sequence vocabulary specific 

to DA neurons. In doing so, we identified a novel MB DA regulatory element that falls 

within intron 4 of SNCA and demonstrate its ability to direct reporter expression in 

catecholaminergic neurons of transgenic mice and zebrafish. Furthermore, this 

enhancer harbours two common variants falling in a haplotype that we determine to 

be associated with PD risk. We demonstrate these enhancer variants impact protein 

binding and we propose a model for how the variants and the haplotype at large 

contribute to SNCA regulatory control. This work illustrates the power of cell context-

dependent guided searches for the identification of disease associated and functional 

non-coding variation. 

2.2 ATAC-seq identifies open chromatin in midbrain and forebrain 

dopaminergic neurons 

To identify open chromatin regions (OCRs) in DA neurons, we performed 

ATAC-seq95 on ~50,000 fluorescent-activated cell sorting (FACS)-isolated cells (per 

replicate) from microdissected regions of the MB and FB of embryonic day 15.5 (E15.5) 

Tg(Th-EGFP)DJ76Gsat BAC transgenic mice171 (Figure 2.1A). This mouse line 

expresses EGFP under the control of the tyrosine hydroxylase (Th) locus, labeling 

catecholaminergic neurons (i.e.: DA, noradrenergic, and adrenergic neurons). To 

confirm capture of the corresponding catecholaminergic neurons, we performed RT-

qPCR on the isolated reporter-labeled cells, establishing them to be enriched for DA 

neuronal markers relative to unlabeled populations from the same dissected tissues 

(Supplementary Figure 2.1).  
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To evaluate the ATAC-seq libraries, we examined in silico quality control 

measures (Supplementary Figure 2.2), evaluated the called peaks and read pile-ups 

with the Integrative Genomics Viewer (IGV)172,173, and quantified the correlation 

between brain regions and within replicates. A representative browser trace at the Th 

locus in both MB and FB libraries is presented in Figure 2.1B. Replicates are well 

correlated: MB library replicates have an average correlation of 0.72 (Figure 2.1C), 

and FB replicates are more correlated at r = 0.86 (Figure 2.1D). Given the robust 

correlation between replicates, we pooled all reads from the same brain region and 

called peaks on this unified set to increase our power to detect regions of open 

chromatin. As a result, we identified 104,217 regions of open chromatin in the MB DA 

neurons and 87,862 regions in the FB. MB and FB libraries are moderately well 

correlated (average r = 0.64; Supplementary Figure 2.3), with approximately 60% 

of MB OCRs also represented in the FB libraries. 

To assess these catalogues for characteristics of functionality, we examined the 

sequence constraint underlying the called regions of open chromatin, excluding peaks 

that overlap promoters. Promoters are typically accessible93 and thus, we aimed to 

reduce the inflation of sequence conservation due to highly conserved promoter-

overlapping ATAC-seq peaks. Despite removal of these highly conserved peaks, we 

observed a high degree of sequence constraint underlying open chromatin peaks 

compared to background (Figure 2.1E). The fact that elements in these libraries of 

putative cis-regulatory elements (CREs) are constrained, highlights their likely 

functional significance.  

To further examine the OCR catalogues for biological relevance, we explored 

the gene ontology (GO) terms of nearby genes. While CREs are not restricted to acting 
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solely on the nearest gene, this restriction is often used as a proxy in the absence of 

other information. To bolster our predictions, we have also generated bulk RNA-seq 

data on these same populations of sorted cells (Supplementary Figure 2.4) and used 

these data to examine the GO terms of the nearest expressed gene (RPKM ≥ 1). While 

still imperfect, implementing this as a proxy for function results in GO terms enriched 

for neuronal functions in both MB and FB OCR catalogues (Figure 2.1F, G). Thus, 

we establish these OCR catalogues are enriched for putative CREs likely directing the 

expression of genes with key roles in neuronal biology.  

2.3 Candidate regulatory regions are capable of directing expression 

in vivo  

Although our OCR catalogues appear to be enriched for functional elements on 

the basis of sequence conservation and GO, both of these metrics are indirect 

surrogates for true measures of function. To more directly measure the biological 

relevance of the catalogues and to identify enhancers, we assessed the capability of 

the candidate CREs to direct expression in vivo. 

We took advantage of the large repository of elements that have already been 

tested in lacZ reporter assays in vivo and catalogued in the VISTA enhancer 

browser174 (accessed September 4, 2016). Overlap between our catalogues and all 

2,387 elements in the VISTA enhancer browser, which were scored for their ability to 

direct lacZ reporter expression in E11.5 mice, was quantified (Supplementary Table 

2.1). Of the 1,264 elements in VISTA identified as enhancers, 786 were present in the 

MB catalogue and 719 were present in the FB catalogue (Figure 2.2A). Examining 

the overlap of the FB and MB catalogues with enhancers demonstrated to direct 
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expression in either non-neuronal or neuronal tissues, we observed that 42-47% of 

enhancers reported to direct expression in non-neuronal tissues are present in the 

catalogues. By contrast, 71-76% of enhancers that direct expression in one or more 

regions of the brain overlapped the FB and MB catalogues (Figure 2.2B) confirming 

an abundance of brain enhancers in our catalogues. Stratifying these confirmed 

neuronal enhancers on the basis of their expression patterns in VISTA, we observed 

an abundance of MB-specific enhancers in our MB catalogue, and an abundance of 

FB-specific enhancers in our FB catalogue, with 77% of MB- and FB-specific 

enhancers in VISTA captured in our MB and FB catalogues, respectively (Figure 

2.2C). Collectively, these data establish that our region-specific OCR catalogues 

capture region-specific, active CREs with high efficiency.  

To extend our assessment of the biological activity of sequences within these 

OCR catalogues, we focused on an additional five candidate CREs not already tested 

in the VISTA browser and evaluated their ability to act as enhancers in lacZ reporter 

mice and in transgenic zebrafish TdTomato reporter assays. All five regions were 

represented by robust peaks in both the MB and FB catalogues (Supplementary 

Figure 2.5). Two regions, one in the first intron of Kcnq3 and the other downstream 

of Foxg1, were additionally prioritized using H3K27Ac ChIP-seq from a variety of 

tissues from E11.5 and E15.5 embryonic mice, seeking to limit our selection to 

candidate enhancers predicted to have neuronal-specific activity. The remaining three 

candidate CREs were selected on their proximity to genes important in DA neuron 

biology. We selected sequences at Foxa2 and Nr4a2, as both are key transcription 

factors (TFs) in the development and maintenance of DA neurons175–178. The final 

region, located in an intron of Crhr1, was selected as this locus has been implicated in 
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PD by GWAS25 and our group has recently prioritized this gene as a candidate for PD 

risk179. All selected sequences were lifted over to hg19, facilitating the identification 

and assay of their corresponding human sequence intervals. 

When tested in transgenic reporter mice at E11.5 (Supplementary Figure 

2.5), two of the five regions (those near KCNQ3 and FOXA2) were validated as 

enhancers (Figure 2.2D, H). Recognizing that a disparity exists between the 

developmental time at which we generated the catalogues (E15.5) and when the mice 

were assayed (E11.5), which may compromise validation rates, we also assayed each 

sequence across multiple time points in zebrafish. All assayed regions except that at 

KCNQ3 directed reporter expression in mosaic transgenic zebrafish (Figure 2.2E, F, 

G, H). All five regions displayed enhancer activity in vivo in neuronal tissues in one 

or both transgenic assays. Our transgenic animal experiments corroborate the results 

of the retrospective VISTA enhancer browser intersection; implying that our OCR 

catalogues are biologically active and enriched for sequences capable of driving neural 

expression in vivo.  

2.4 A midbrain-specific enhancer directs expression in 

catecholaminergic neuron populations  

Having established the biological robustness of the OCR catalogue, we moved 

to exploit these data to investigate how non-coding variation therein may be 

contributing to PD risk. We established two complementary strategies. First we 

sought globally to examine the overlap of PD GWAS SNPs23,25 and those in LD (r2>0.8) 

with our DA OCR catalogues. In doing so, we identify 129 unique PD-associated 

variants at 20 GWAS associated loci that are present in one or both of our OCR 
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catalogues (34 specifically overlap the MB catalogue, 14 specifically overlap the FB 

catalogue, and 81 overlap both).  

Second, we examined the chromatin landscape surrounding familial PD genes, 

focusing on those with no obvious overlaps in the first strategy. In this, we turned our 

attention to the SNCA locus. Despite this locus being the most significant hit in PD 

GWASs23,25, the LD structure surrounding the lead SNP (rs356182) is such that no 

variants in LD are apparent at our r2 cut-off and the lead SNP itself is not overlapped 

by either our MB or FB catalogue. Given α-synuclein’s established role in PD 

pathogenesis and the strength of GWAS signal at SNCA, we prioritized this locus for 

a closer, more targeted, inspection.  

We first noted that Snca expression differs significantly between the MB and 

FB DA neurons in our bulk RNA-seq (Figure 2.3B). Examining the chromatin 

accessibility at the Snca locus, the MB and FB are largely the same with the exception 

of one robust peak in intron 4 (mm9: chr6:60,742,503-60,744,726) that is present in 

the MB and completely absent in the FB (Figure 2.3A). DNase hypersensitivity site 

(DHS) linkage93,180 suggests that this putative CRE interacts with the SNCA 

promoter. Given the MB-specificity of this putative CRE and indications that it 

interacts with the SNCA promoter, we anticipated that this region may be a driving 

force behind the MB-specific expression of Snca.  

To test this hypothesis, we assayed whether the central portion of this putative 

CRE, when lifted over to hg19 (chr4:90,721,063-90,722,122), is capable of directing 

appropriate reporter expression in transgenic zebrafish and mouse reporter assays. 

Stable transgenesis of zebrafish indicates that this CRE directs reporter expression 
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at 72 hours post fertilization in the locus coeruleus, a key population of 

catecholaminergic neurons preferentially degenerated in PD181, and along the 

catecholaminergic tract through the hindbrain, which is largely composed of DA 

neurons182 (Figure 2.3C). Additionally, we observe reporter expression throughout 

the diencephalic catecholaminergic cluster with projections to the subpallium, which 

is analogous to mammalian dopaminergic projections from the ventral midbrain to 

the striatum183. Reporter expression in these transgenic zebrafish is largely consistent 

with an enhancer active in catecholaminergic populations.  

To further evaluate this CRE in a mammalian system, we generated lacZ 

reporter mice and examined reporter activity across developmental time. Whole 

mount E12.5 reporter mice indicate this enhancer directs exquisitely restricted 

expression in Th+ populations, including the dorsal root ganglia, extending into the 

sympathetic chain, and throughout the cranial nerves (particularly the trigeminal). 

Additional diffuse staining is noted throughout the MB and FB (Figure 2.3D). 

Specifically examining the brains of lacZ animals at E15.5, reporter expression is 

identified in the MB and hypothalamus, with strong expression through the 

amygdala/piriform cortex and along the anterior portion of the sympathetic chain 

(Figure 2.3E); similar reporter patterns are seen at P7 (Figure 2.3F). At P30, we 

detect reporter activity in the amygdala, hypothalamus, thalamus, periaqueductal 

grey area, brain stem, and importantly, in the substantia nigra and ventral tegmental 

area (Figure 2.3G). By contrast, in aged lacZ reporter mice (574 days old, ~19 

months), we only detect strong reporter expression in the brain stem and observe 

weak reporter expression in the amygdala (Figure 2.3H). Collectively, the regions in 

which we detect reporter activity reflect those compromised in PD; Lewy bodies 
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(aggregates of α-synuclein) have been detected in the locus coeruleus, sympathetic 

chain, amygdala, hypothalamus, ventral tegmental area, periaqueductal grey area of 

PD patients184–188, and critically the preferential degradation of the substantia nigra 

is the pathological hallmark of PD progression4. This enhancer directs region-specific 

appropriate expression throughout development in key locations concordant with 

SNCA activity in PD pathogenesis.  

2.5 Enhancer variants are significantly associated with Parkinson 

disease risk  

Following confirmation of this CRE’s regulatory activity in brain regions 

associated with PD, we next inspected this sequence for PD-associated variation. We 

sequenced across this interval in 986 PD patients and 992 controls and identified 14 

variants (Supplementary Table 2.2), 4 of which were common and present in both 

cases and controls with a minor allele frequency greater than 5%. Of these, two tightly 

linked variants (r2 = 0.934; Supplementary Table 2.3), rs2737024 (OR = 1.25, 95% 

CI = 1.09-1.44, p-value = 0.002) and rs2583959 (OR = 1.22, 95% CI = 1.06-1.40, p-value 

= 0.005), were significantly associated with PD (Table 2.1). These data support a role 

for variation within the enhancer in conferring PD risk.  

Finally, we set out to refine the haplotype structure and understand how this 

identified variation may be interacting with other variants at this locus. A panel of 

common variants had previously been genotyped across SNCA and PD-associated 

haplotypes were identified189. After genotyping our patients and controls for a subset 

of this panel of variants in addition to all enhancer-associated variants identified by 

sequencing (Supplementary Table 2.4), we identified a single haplotype that was 
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significantly associated with PD (p-value = 0.003), with a higher observed frequency 

in PD patients (28.3%) compared to controls (23.4%; Table 2.2). This haplotype 

implicates some of the same variants as in Guella et al.189 (rs356220, rs737029) but 

also implicates rs356225 and rs356168, and the two enhancer-associated variants. 

Additionally, within the 1000 Genomes data, we observe that moderate LD structure 

exists between the lead GWAS variant (rs356182) and the enhancer variants (r2 = 

0.418, D’ = 0.745) in the general European population. Despite the moderate LD, the 

risk allele of rs356182 falls in the PD-associated haplotype that we identify 94% of the 

time. Thus, it is likely that at least part of the risk captured by rs356182 can be 

attributed to these enhancer variants and the implicated haplotype reported here. 

Further, this does not preclude additional variants from being present and 

contributing to the risk captured by the lead SNP, as the rs356182 risk allele can 

occur in the absence of the enhancer associated variants (i.e.: ~31% of EUR individuals 

with the rs356182 risk allele do not carry the risk alleles of the PD-associated 

enhancer variants). A schematic of the variants, open chromatin regions, chromatin 

interactions93,180, and LD structure at this locus is presented in Figure 2.4. Of the 

variants whose minor alleles define this PD-associated haplotype, including rs356182, 

only the two enhancer associated variants and rs2737029 are identified as eQTLs for 

SNCA expression in any tissue in the GTEx database. Collectively, these data identify 

a catecholaminergic enhancer harbouring common variation that is part of a larger 

haplotype associated with PD risk, likely by modulating SNCA activity. 

2.6 Deleting the disease-associated enhancer 

  To confirm that this enhancer governs expression of SNCA, we deleted the 

enhancer in the SK-N-SH human neuroblastoma cell line, which is often used as an 
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in vitro model of DA neurons190, with the goal of quantifying expression changes of 

nearby genes following the enhancer deletion. We designed four guide RNA pairs on 

either side of the enhancer, along with a repair template for co-transfection to allow 

for screening and selection of enhancer-deletion clones. The repair template contained 

a fluorescent marker, mCherry, for screening, and a selectable blasticidin-resistance 

cassette, all bound by loxP sites and arms of homology, to promote homology-directed 

repair following double-strand break by CRISPR-Cas9 (Figure 2.5A).  

Unfortunately, upon transfection of the necessary plasmids for the enhancer 

deletion, the majority of transfected cells died within 24 hours, while control cells did 

not (mock transfection, transfection of the repair template alone). We considered the 

possibility that the strong SV40 promoter directing expression of the blasticidin-

resistance gene might be interfering with transcription of SNCA at this locus and 

over-expressing toxic SNCA products; as such, we also generated an empty repair 

template, containing just the loxP sites and arms of homology for co-transfection with 

our guide RNA combinations (Figure 2.5A). Under these conditions, we continue to 

observe massive cell death within 24 hours of transfection of the editing components. 

These experiments indicate either a technical issue with editing SK-N-SH cells, which 

we have tried to control for, or that this locus is required for cell viability in cell 

culture.  

To address this possibility, we have turned to an in vivo model and have 

generated enhancer deletion mouse lines, where we designed a pair of guide RNAs 

against the endogenous mouse Snca enhancer locus (Figure 2.5B). These edited mice 

appear to be viable and healthy. With this model, we will extract MB DA neurons and 

assess the impact of the enhancer deletion on Snca expression. Additionally, with this 
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in vivo model in hand, we can assay more complex phenotypes and examine the mice 

for PD risk and susceptibility. We will be treating the mice with lipopolysaccharide, 

an inflammatory agent known to induce Parkinson-like phenotypes in mice191,192, and 

assessing the mice for a variety of movement phenotypes, using the rotarod or pole-

descent tests, and evaluating by histology the degree of degeneration of MB DA 

neurons as compared to non-enhancer deleted mice (Figure 2.5C). These experiments 

are designed to illuminate the role of this disease-associated enhancer in both 

regulating cognate gene expression and in modulating the risk of Parkinson disease. 

2.7 Discussion 

The identification and prioritization of biologically pertinent non-coding 

variation associated with disease remains challenging. Recent studies by our and 

other groups have emphasized the importance of cellular context in the identification 

of sequences harbouring biologically pertinent variation and the genes they regulate. 

To this end, we used chromatin signatures from ex vivo isolated DA neurons to reveal 

biologically active sequences that harbour non-coding variation contributing to PD 

risk. We generated robust OCR catalogues for both MB and FB DA neurons, confirmed 

their capacity to act as enhancers, and notably, identified two variants located within 

a MB-specific enhancer that are associated with an increase in PD risk.  

In contrast to strategies predicated solely on dissection of post-mortem tissues 

or on the differentiation of cultured cells, we leveraged the use of transgenic reporter 

mice to specifically isolate Th-expressing neurons from discrete neuroanatomical (FB 

and MB) domains. While our approach assays a more refined population of DA 

neurons than would be achieved via gross dissection, recent single-cell RNA-seq 
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analyses of these same cells make clear that even within these highly restricted MB 

and FB populations there exist two primary cellular phenotypes179. The “homogenous” 

MB and FB populations each are comprised of an immature neuroblast population 

and a more mature, domain specific, post-mitotic population of DA neurons. As such, 

our OCR catalogues capture the chromatin accessibility from both of these states. 

These catalogues are demonstrably biologically relevant for our purposes, but future 

studies requiring even greater homogeneity may wish to consider single-cell ATAC-

seq to refine these domains further193.  

In our in silico validation of the catalogues, we established them to be enriched 

for both sequence constraint and biological relevance in a manner consistent with 

function and their FB/MB origin. Furthermore, these sequences are frequently 

domain appropriate enhancers, with each catalogue capturing a large fraction (77%) 

of previously validated MB and FB enhancers. Although an abundance of regions are 

shown to direct neuronal expression compared to those annotated as negative or non-

neuronal, it is interesting to note that almost half of the sequences previously 

documented not to direct expression in vivo are also represented in one or both of our 

catalogues.  

Given the frequently dynamic nature of CRE activity, this overlap with 

negative regions likely results from temporal differences in these assays. Our data 

indicates these regions are accessible at E15.5 but the lacZ reporter assays were 

carried out at E11.5; regions that have been annotated as negative at E11.5 may be 

active at later time points and, as such, appear in our catalogues. As we moved from 

these unbiased functional comparisons to more highly selected ones, the potential 

impact of temporal differences became more pronounced. In mouse transgenic 
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reporter assays, two of five assayed putative CREs direct detectable expression of lacZ 

in neuronal populations. Consistent with the temporally dynamic nature of CREs, 

when these same regions are tested in zebrafish across multiple developmental time 

points, we observe four of the five sequences to act as neuronal enhancers.  

Taken collectively, these data establish a robust biological platform in which 

PD-associated variation can be evaluated. To this end, an obvious candidate to 

interrogate was an apparent MB-specific open chromatin domain within intron 4 of 

the known PD-associated gene, SNCA. We assayed the activity of this putative CRE 

in zebrafish and across the life course of mice and found it to be active in key 

catecholaminergic structures injured in PD (e.g.: the substantia nigra and locus 

coeruleus), from mid-gestation until at least P30. Thereafter, the utilization of this 

enhancer in the brain is diminished and by late life appears restricted to the 

brainstem and amygdala. By the time of clinical presentation, PD patients have 

already lost a significant proportion (≥30%) of their nigral DA neurons4,194; the 

observed biology of this CRE is consistent with a progressive pathogenic influence 

acting early in life, rendering these populations preferentially vulnerable to loss over 

an extensive period of time. 

Sequencing this interval in PD cases and controls revealed two common 

variants (rs2737024 and rs2583959) therein, individually associated with an 

increased risk of PD. Furthermore, we identify a larger haplotype containing these 

variants, also significantly associated with PD risk. While none of the other SNPs in 

this haplotype overlap with CREs identified in the DA neuron catalogues, variant 

rs356168 has significant functional evidence of its activity and contribution to PD 

risk109. The same DHS correlation analysis93,180 that suggests an interaction between 
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the SNCA promoter and our identified CRE, also suggests an interaction between the 

SNCA promoter and the rs356168 variant. Additionally, ChIA-PET data180,195 

indicates that sequence encompassing this variant may interact with our enhancer, 

suggesting a potential co-operative mode of action; a paradigm recently proposed by 

Gupta and colleagues69 at the EDN1 locus. We propose that the variants within the 

enhancer, independently or in concert with other variation within the identified 

haplotype, may act throughout the lifespan to render key populations of 

catecholaminergic neurons vulnerable, thus increasing PD risk in individuals 

harbouring this variation.  

This work emphasizes the value of biologically informed, cell context-

dependent guided searches for the identification of disease associated and functional 

non-coding variation. Given the extent of non-coding GWAS-identified variation, the 

need for strategies to prioritize variants for functional follow-up is greater than ever. 

Here, we generate chromatin accessibility data from purified populations of DA 

neurons to generate catalogues of putative CREs. We have demonstrated how these 

data can be used to reveal non-coding variation contributing to PD risk; focusing on a 

single region of open chromatin at the SNCA locus, we uncover PD-associated 

variation therein and propose a model through which this sequence can contribute to 

normal DA neuronal biology and PD risk. There remains a plethora of information 

still to be explored in these catalogues, either through further single locus 

investigations or through massively parallel assays. For example, our MB DA neuron 

OCR catalogue overlaps variants at 20 of 49 (41%) PD-associated loci23,25, all of which 

can be investigated further for their mechanisms by which they impact PD risk. Our 

work establishes a powerful paradigm, leveraging transgenic model systems to 
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systematically generate cell type specific chromatin accessibility data and reveal 

disease-associated variation, in a manner that can be progressively guided by 

improved biological understanding.  
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2.8 Methods 

Animal husbandry 

Tg(Th-EGFP)DJ76Gsat mice (Th-EGFP) were generated by the GENSAT 

Project196 and purchased through the Mutant Mouse Resource and Research Centers 

Repository. Colony maintenance matings were between hemizygous male Th-EGFP 

mice and female Swiss Webster (SW) mice, obtained from Charles River Laboratories. 

This same mating scheme was used to establish timed matings, generating litters for 

assay; day on which vaginal plug is observed, E0.5. Adult AB zebrafish lines were 

maintained in system water according to standard methods197. All work involving 

mice and zebrafish (husbandry, colony maintenance, procedures, and euthanasia) 

were reviewed and pre-approved by the institutional care and use committee. 

Neural dissociation and FACS  

Pregnant SW mice were euthanized at E15.5 and the embryos were removed 

and immediately placed in chilled Eagle’s Minimum Essential Media (EMEM) on ice. 

Embryos were decapitated and brains were removed into Hank’s Balanced Salt 

Solution without Mg2+ and Ca2+ (HBSS w/o) on ice. Under a fluorescent microscope, 

EGFP+ brains were identified and microdissected to yield the desired forebrain (FB) 

and midbrain (MB) regions desired. Microdissected regions were placed in fresh HBSS 

w/o on ice, and pooled per litter for dissociation.  

Pooled brain regions were dissociated using the Papain Dissociation System 

(Worthington Biochemical Corporation). The tissue was dissociated in the papain 

solution for 30 minutes at 37°C, with gentle trituration every 10 minutes using a 

sterile Pasteur pipette. Following dissociation, cells were passed through a 40µm cell 
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strainer into a 50mL conical, centrifuged for 5 minutes at 300g, resuspended in 

albumin-inhibitor solution containing DNase, applied to a discontinuous density 

gradient, and centrifuged for 6 minutes at 70g. The resulting cell pellet was 

resuspended in HBSS with Mg2+ and Ca2+ and submitted to fluorescent-activated cell 

sorting (FACS). Aliquots of 50,000 EGFP+ cells were sorted directly into 300µL HBSS 

with Mg2+ and Ca2+ with 10% FBS for ATAC-seq. Aliquots containing ≥50,000 EGFP+ 

cells were sorted into kit-provided lysis buffer for RNA-seq. This procedure was 

repeated such that a single aliquot of cells from each region per litter were submitted 

to either ATAC-seq or bulk RNA-seq three times over for each region.  

ATAC-seq library preparation and quantification 

ATAC-seq library preparation generally follows the steps as set out in the 

original ATAC-seq paper95 with minor modifications. Aliquots of 50,000 EGFP+ cells 

were centrifuged for 5 minutes at 4°C and 500g, washed with 50µL of chilled PBS and 

centrifuged again for 5 minutes at 4°C and 500g. The cell pellet was resuspended in 

lysis buffer, as set out in the protocol, and cells were left to lyse for 5 minutes at 4°C 

before being centrifuged for 10 minutes at 4°C at 500g. The resulting nuclei pellet was 

tagmented, as written, using the transposase from the Nextera DNA Library 

Preparation Kit. Following transposition, DNA was purified with the MinElute 

Reaction Clean-up Kit (Qiagen) and eluted in 10µL elution buffer.  

Libraries were amplified according to the original ATAC-seq protocol95. The 

qPCR surveillance steps were modified such that the additional number of cycles of 

amplification were calculated as ¼ maximum intensity, so as to limit PCR duplication 

rates in the final libraries. Amplified libraries were purified with Ampure XP beads 
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(Beckman Coulter) following the Nextera DNA Library Prep Protocol Guide. Libraries 

were quantified using the Qubit dsDNA High Sensitivity Assay (Invitrogen) in 

combination with the Agilent 2100 Bioanalyzer using the High Sensitivity DNA Assay 

(Agilent). 

ATAC-seq sequencing, alignment, and peak calling 

Individual ATAC-seq libraries were sequenced on the Illumina MiSeq to a 

minimum depth of 15 million, 2x75bp reads per library.  

Quality of sequencing was evaluated using FastQC (v0.11.2). Reads were 

aligned to mm9 using Bowtie2198 (v2.2.5), under --local mode. Reads aligning to the 

mitochondrial genome, unknown and random chromosomes, and PCR duplicates were 

removed prior to peak calling (SAMtools199). Peaks were called on individual libraries 

and on a concatenated file combining all MB or all FB libraries (“Joint”) using 

MACS2200 (v2.1.1.20160309) “callpeak” with options: --nomodel --nolambda -B -f 

BAMPE --gsize mm --keep-dup all. Peaks overlapping blacklisted regions called by 

ENCODE and in the original ATAC-seq paper were removed95,195. Peaks were 

examined for their genomic distribution using CEAS in the Cistrome pipeline201,202. 

The fragment lengths were extracted from the SAM files and plotted using a custom 

script. Mouse (mm9) transcriptional start site (TSS) co-ordinates were extracted from 

the UCSC Genome Browser203 and deepTools204 was used to quantify the pileup of 

reads over TSSs. 

RNA-seq library preparation and quantification 

Total RNA was extracted using the Purelink RNA Micro Kit (Invitrogen). 

Following FACS isolation into kit-provided lysis buffer, samples were homogenized 
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and RNA extraction proceeded using manufacturer’s recommendations. Total RNA 

integrity was determined using the Agilent 2100 Bioanalyzer using the RNA Pico Kit 

(Agilent). RNA samples were sent to the Sidney Kimmel Comprehensive Cancer 

Center Next Generation Sequencing Core at Johns Hopkins for library preparation, 

using the Ovation RNA-Seq System V2 (Nugen), and sequencing. 

RNA-seq sequencing, alignment, and transcript quantification  

Libraries were pooled and sequenced on Illumina’s HiSeq 2500 in Rapid Run 

mode with 2x100bp reads to an average depth of >90 million reads per library. Quality 

of sequencing was evaluated using FastQC. FASTQ files were aligned to mm9 using 

HISAT2205 (v2.0.1-beta) with --dta specified.  

Aligned reads from individual samples were quantified against a reference 

transcriptome using the Rsubread package206–208 (v1.22.3) function “featureCounts” 

with the following options: isPairedEnd = TRUE, requireBothEndsMapped = TRUE, 

isGTFAnnotationFile = TRUE, useMetaFeature = TRUE. The GENCODE vM9 GTF 

was downloaded209 (date: March 30, 2016) and lifted over from the mm10 to the mm9 

genome using CrossMap (v0.2.2) with default parameters210. This was used for 

quantification, in which gene-level raw counts were converted to RPKM values and 

means for each region were calculated. 

RNA-seq and ATAC-seq relationship  

The highest 1,000 expressed genes and the lowest 1,000 expressed genes 

(RPKM ≥ 1) in both the MB and FB were identified and their transcriptional start 

sites (Ensembl) extracted from the UCSC Table Browser203. Intervals of 1, 10, and 

100kb surrounding these TSSs were intersected with the ATAC-seq libraries, and the 
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overlap quantified211 and plotted. These same TSSs were provided to deepTools204, and 

the ATAC-seq signal over these highest and lowest expressed genes was quantified 

and plotted. Additionally, the 1,000 highest and lowest ATAC-seq peaks (by q-value) 

were extracted and the expression of the nearest gene was quantified and plotted as 

a final metric to relate the RNA-seq and ATAC-seq datasets.  

cDNA synthesis and RT-qPCR for DA neuron markers 

RNA was extracted using the RNeasy Mini Kit (Qiagen), after sorting 50,000 

cells directly into Buffer RLT. Aliquots of 50,000 non-fluorescing cells were also 

collected and processed in parallel. 100ng of each RNA sample was submitted to first 

strand cDNA synthesis using the SuperScript III First-Strand Synthesis System for 

RT-PCR (Invitrogen), following the Oligo(dT) method.  

Primers (Supplementary Table 2.5) were designed using Primer-BLAST212 

under default parameters with the requirement for exon-exon junction spanning 

specified. qPCR was performed using Power SYBR Green Master Mix (Applied 

Biosystems). Reactions were run in triplicate, following default SYBR Green Standard 

cycle specifications on the Viia7 Real-Time PCR System (Applied Biosystems). 

Relative quantification followed the 2-ΔΔCT method, normalizing results to Actb in the 

EGFP- aliquot of cells for each region, respectively.  

Correlation analysis between regions and within replicates 

Peaks from all six ATAC-seq libraries and the two “Joint” ATAC-seq libraries 

were concatenated together, sorted on the basis of chromosomal location, merged into 

a unified peak set211, and converted to Simplified Annotation Format. Reads from each 

BAM file overlapping this unified peak set were quantified with the Rsubread package 
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“featureCounts” command, with the following options: isPairedEnd = TRUE, 

requireBothEndsMapped = FALSE. Read counts were normalized for each library 

using conditional quantile normalization213, accounting for library size, peak length, 

and peak GC content. Pearson correlation co-efficients were calculated from this 

normalized count matrix and visualized using corrplot214 and RColorBrewer215 and 

LSD216.  

Sequence constraint analysis 

Average phastCons217 were calculated for the “Joint” peak file for both the MB 

and FB libraries using Cistrome202. Beforehand, peaks with overlap of exons or 

promoters (defined here as +/-2,000bp from the transcriptional start site) were 

removed. The exon and promoter BED files were downloaded from the UCSC table 

browser203 (Mouse genome; mm9 assembly; Genes and Gene Predictions; RefSeq 

Genes track using the table refGene).  

Gene ontology of nearest expressed gene 

The Genomic Regions Enrichment of Annotations Tool218 (GREAT; v3.0.0) 

predicted the GO term enrichment in the catalogues. Beforehand, peaks were 

processed to: a) remove peaks overlapping commonly open regions; b) select the top 

20,000 peaks and; c) overlap the nearest expressed gene’s transcriptional start site 

(TSS).  

First, regions that are commonly open were defined as those regions of the 

genome that are open in >30% of ENCODE DNase hypersensitivity site (DHS) assays 

in mouse tissues. These ubiquitously open regions were removed from the peak files. 

Next, to limit the number of regions submitted to GREAT such that the binomial 
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distribution for calculating fold enrichment values was still valid, peak files were 

limited to the top 20,000 peaks on the basis of q-value.  

Finally, in order to limit ourselves to the nearest expressed gene, we supplied 

a list of the TSSs of the nearest expressed gene that are in the GREAT database. Only 

genes that are in this list with RPKM > 1 were considered as expressed. The nearest 

expressed gene to each of the top 20,000 peaks was identified. Each peak is associated 

with its nearest expressed gene and to ensure that GREAT only considered these 

nearest genes for analysis, we submitted these nearest expressed gene’s TSSs as a 

proxy for each peak. These proxy peaks were submitted to GREAT using the NCBI 

build 37 (mm9) assembly, under whole genome background regions, with the single 

nearest gene as the association rule, including curated regulatory domains.  

Quantification of overlap between CRE catalogues and the VISTA Enhancer 

Browser 

All elements tested in vivo were downloaded from the VISTA Enhancer 

Browser on September 4, 2016. These regions were stratified into those annotated as 

positive or negative. BED co-ordinates of these regions were extracted and intersected 

with the ATAC-seq catalogues. Positive regions were further stratified into those with 

annotations for only forebrain, only midbrain, only hindbrain, combinations of regions 

(“Multiple regions”), all three regions (“Whole brain”), summing to the “Neuronal” 

category, or were annotated as positive but driving expression in none of those three 

regions (“Non-neuronal”).  
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Testing five putative CREs for in vivo reporter activity 

Prioritized regions were PCR amplified (Supplementary Table 2.5) from 

human gDNA and cloned into either pENTR for mouse lacZ assays (Invitrogen) or 

pDONR221 for zebrafish assays (Invitrogen). Regions were sequence validated and 

LR cloned (Invitrogen) into either an hsp68-lacZ vector or pXIG vector, with a 

TdTomato cassette in place of GFP.  

Generation of transgenic mice and E11.5 embryo staining was performed as 

previously described78,101,219 using FVB strain mice. Embryos expressing the lacZ 

reporter gene were scored and annotated for their expression patterns by multiple 

curators. For a construct to be considered positive, a minimum of three embryos per 

construct were required to demonstrate reporter activity in the same tissue. Mouse 

transient transgenic assays were approved by the Lawrence Berkeley National 

Laboratory Animal Welfare and Research Committee. 

Generation of transgenic zebrafish was performed as previously described103 in 

AB zebrafish. At 3 days post fertilization (dpf) and 5dpf, reporter expression patterns 

were evaluated. For a construct to be considered as positive, ≥25% of mosaic embryos 

had to display reporter activity in one or more anatomical structures. Positive 

zebrafish were quantified for reporter activity in five anatomical regions (forebrain, 

midbrain, hindbrain, amacrine cells, spinal cord).  

Intersection of CRE catalogues and PD-associated GWAS variants 

Lead SNPs from the two most recent meta-analyses23,25 were submitted to 

rAggr and SNPs in LD were identified (1000 Genomes, Phase 3, EUR populations; 

minimum MAF = 0.05, r2 ≥ 0.8; maximum distance 5,000kb). These variants were 
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intersected211 with the CRE catalogues, after they were lifted over to hg19 co-

ordinates, and the overlap extracted and quantified.  

In vivo validation of the MB-specific enhancer 

The MB-specific peak was PCR amplified (Supplementary Table 2.5) from 

human genomic DNA and TA cloned into pCR8 (Invitrogen). Regions were sequence 

validated and LR cloned (Invitrogen) into either an hsp68-lacZ vector or a modified 

pXIG vector, with a TdTomato cassette in place of GFP.  

For zebrafish transgenesis, the modified pXIG vector was injected into 1-2 cell 

stage embryos as previously described103 in AB zebrafish. TdTomato reporter 

expression was assayed at 72 hours post fertilization (hpf) and 5dpf; mosaic embryos 

positive for TdTomato expression were selected and raised to adulthood and founders 

were identified. Progeny of founders were screened at 72hpf for reporter activity.  

For mouse transgenesis, the generated hsp68-lacZ vector was purified in a 

double CsCl gradient (Lofstrand Labs Ltd) and stable mouse transgenesis was 

performed in C57BL/6 mice by Cyagen Biosciences Inc. Multiple founder lines were 

generated. For lacZ staining, embryos were collected at E12.5, and mouse brains were 

isolated at E15.5, P7, P30, and P574. Brains were roughly sectioned in 1mm sections 

at P7 and P30 and animals were perfused at P574 and fixed brains were sectioned 

(200µm) with a vibratome. Specimens were subsequently fixed for 2 hours on ice in 

1% formaldehyde, 0.2% glutaraldehyde, 0.02% Igepal CA-630 in PBS. Following 

fixation, tissues were permeabilized over 3x15 minute washes in 2mM MgCl2 and 

0.02% Igepal CA-630 in PBS at room temperature. Embryos/tissues were incubated 

overnight at 37°C in staining solution, containing 320µg/mL X-Gal in N,N-dimethyl 
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formamide, 12mM K-ferricyanide, 12mM K-ferrocyanide, 0.002% Igepal CA-630, 

4mM MgCl2 in PBS. Specimens were washed in 0.2% Igepal CA-630 in PBS over 2x30 

minutes and finally stored in 4% formaldehyde, 100mM sodium phosphate, and 10% 

methanol.  

Sequencing and genotyping PD patients and controls at SNCA 

A total of 986 individuals with PD and 992 controls who were seen at the Mayo 

Clinic in Jacksonville, FL were sequenced across the putative enhancer and genotyped 

for 25 variants across the SNCA locus. The variants chosen for genotyping were 

confirming those identified by sequencing of the enhancer as well as assessing those 

identified in Guella et al189. For PD cases, median age at blood draw was 69 years 

(Range: 28-97 years), median age at PD onset was 67 years (Range: 28-97 years), and 

631 cases (64.0%) were male. Median age at blood draw in controls was 67 years 

(Range: 18-92 years) and 415 subjects (41.8%) were male. Individuals with PD were 

diagnosed using standard clinical criteria220. All subjects are unrelated non-Hispanic 

Caucasians of European descent. The Mayo Clinic Institutional Review Board 

approved the study and all subjects provided written informed consent. 

Genomic DNA was extracted from whole blood using the Autogen FlexStar. 

Sanger sequencing of the enhancer region was performed bidirectionally using the 

ABI 3730xl DNA analyzer (Applied Biosystems) standard protocol. Sequence data was 

analyzed using SeqScape (v2.5; Applied Biosystems). Statistical analyses were 

performed using both SAS and R221. Of the variants identified within the enhancer, 

only those with minor allele frequency greater than 5% were evaluated for association 

with PD in single-variant analysis. Associations between individual variants and PD 
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were evaluated using logistic regression models, adjusted for age at blood draw and 

sex, and where variants were considered, under an additive model (i.e. effect of each 

additional minor allele). Odds ratios and 95% confidence intervals were estimated and 

a Bonferroni correction for multiple testing, due to the four common variants that 

were evaluated for association with PD, was utilized in single-variant analysis, after 

which p-values ≤ 0.0125 were considered as statistically significant. 

Genotyping the 25 SNPs across the SNCA locus was performed using the 

iPLEX Gold protocol on the MassARRAY System and analysed with TYPER 4.0 

software (Agena Bioscience). For the 25 SNPs genotyped across the SNCA locus, all 

genotype call rates were >95% and there was no evidence for departure from Hardy-

Weinberg equilibrium (all χ2 p-values > 0.05 after Bonferroni correction). Haplotype 

frequencies in cases and controls was estimated using the haplo.stats package222 

function “haplo.group”. Associations between haplotypes and risk of PD were 

evaluated using score tests of association223 using the “haplo.score” function. Tests 

were adjusted for age at blood draw and sex, haplotypes occurring in less than 1% of 

subjects were excluded, and only individuals with no missing genotype calls for any 

variants were included. A Bonferroni correction for multiple testing was applied, after 

which p-values ≤ 0.0042 were considered as statistically significant, due to the 12 

different common haplotypes that were observed and tested for association with PD 

risk.  

LD structure/r2 values at the SNCA locus in the 1000 Genomes EUR 

population were extracted from LDlink224 using the LDmatrix tool and plotted using 

R. The chromatin structure at SNCA was extracted from the 3D Genome Browser180, 

querying POLR2A binding in MCF-7 cells at the SNCA promoter.  
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Generating enhancer knock-out cell lines and mice 

SNCA deletion cell line 

SK-N-SH neuroblastoma cells were grown in high glucose Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 1X penicillin and streptomycin, and 10% 

fetal bovine serum. Cells were maintained at 37°C, 5% CO2. 

Guide RNA sequences flanking the lifted over enhancer (hg19) were designed 

with CHOPCHOP225–227 and double stranded oligonucleotides with BbsI/BsaI 

compatible overhangs were synthesized by Integrated DNA Technologies (1F – 

GAAGGGACTCCTTGCTTGA; 3F – GTTGAAATCAAAGTAGTAGT; 1R – 

CTGGGAGCACAATTGGCCC; 2R – GAGCTGTGATAACCACTAA; 3R – 

TGGATTAGAACCACTGCTA; 4R - ATAACCACTAATGTTCCCT). Guides were cloned 

in pairs (1F-2R, 1F-4R, 3F-1R, 3F-3R) into a modified PX458 vector228 (pSpCas9(BB)-

2A-GFP (PX458), a gift from Feng Zhang; Addgene plasmid #: 48138), in which a 

second guide RNA scaffold sequence with BsaI restriction sites was inserted into 

PX458 by restriction digest with KpnI and XbaI.  

A repair template in a pUC57 backbone was ordered from GENEWIZ, 

containing arms of homology matching hg19: chr4:90,720,863-90,721,062 and 

chr4:90,722,123-90,722,322, two loxP sites and a custom multiple cloning site. This 

represents the “empty” repair template. This was modified by standard Gibson 

assembly229 and restriction cloning to further contain a blasticidin resistance cassette 

(pCMV/Bsd; Invitrogen #V51020), a T2A site (CMV-Cas9-2A-RFP; Sigma Aldrich 

#CAS9RFPP), and an mCherry fluorescence cassette (pmCherry; Takara #632522).  
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SK-N-SH neuroblastoma cells were plated at 300,000 cells/well in a 6-well 

plate. The cells were lipofected with the guide RNA plasmid along with a linearized 

repair template (SapI) the following day using the standard Lipofectamine 2000 

protocol (Invitrogen). Each well was transfected with 3.0µg of DNA – 1.5µg of the 

guide/Cas9 plasmid and 1.5µg of either repair template. Matching repair template 

only control and no DNA control wells were also included.  

SNCA deletion mice 

Enhancer deletion mice were generated as previously described by Watkins-

Chow et al.230, with minor modifications. RNA oligonucleotide guides corresponding 

to flanking region of interest were synthesized (Integrated DNA Technologies) (3F – 

TAATTTCTACTCTTGTAGATTGTTATTTAAAAGACATGTTTCT and 4R -

TAATTTCTACTCTTGTAGATCAGTGCCTATAAAGGGACTACTC). Guides and 

CPF1 protein (Integrated DNA Technologies) were diluted in Opti-MEM media 

(Thermo-Fisher Scientific) to a final concentration of 2µM (each guide) and 5ng/µl 

CPF1 protein. A total of 50µl of guide-CPF1 solution was electroporated into roughly 

150 C57BL/6J × FVB/N F1 hybrid zygotes, using a Nepa21 electroporator (Nepa Gene 

Co., Ltd., Japan) using manufacture’s recommended pulse conditions. Hybrid zygotes 

were subsequently allowed to rest for 30-60min at 5%CO2, and washed in M2 media 

(Sigma Aldrich) prior to being implanted using standard embryo transfer surgery 

protocols. Resulting founder mice were screened for deletion alleles using the flanking 

PCR primers TTGCAGTGCTGACAATAGGC and CTGGAGCCTGAGAGAAGTGT. 
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Data sharing and accessibility 

ATAC-sequencing, RNA-sequencing and related data is available at the Gene 

Expression Omnibus (GEO) under the accession number GSE122450.  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122450
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2.9 Figures and supplementary materials 

Figure 2.1: Preliminary validation of ATAC-seq catalogues generated from ex 
vivo DA neurons 

 

(A) The midbrain (MB) and forebrain (FB) of E15.5 brains from Tg(Th-

EGFP)DJ76Gsat mice are microdissected, dissociated, and isolated by FACS. (B) Read 

pile-up and called peaks for the MB and FB libraries at the Th locus. (C, D) Chromatin 

accessibility, genome-wide, is correlated between replicates. (E) The sequences 

underlying MB and FB peaks display a high degree of evolutionary sequence 

constraint as measured by PhastCon scores. (F, G) Gene ontology terms of the nearest 

expressed genes to all peaks in both the MB and FB reflect the neuronal origin and 

function of these catalogues.  
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Figure 2.2: Validation of the putative CRE catalogues in vivo 

 

(A) Of the elements annotated in VISTA as having enhancer activity, 62% and 56% of 

these are represented in the MB and FB catalogues, respectively. (B) An abundance 

of open chromatin regions in the MB and FB catalogues overlap confirmed neuronal 

enhancers (≥70%). (C) Stratifying neuronal enhancers, MB- and FB-specific 

enhancers are enriched in our MB and FB catalogues, respectively. (D-H) Testing five 

prioritized putative CREs in vivo identifies five neuronal enhancers. (D) A putative 

CRE in intron 1 of KCNQ3 directs expression in the midbrain, hindbrain, and neural 

tube of E11.5 lacZ reporter mice. It fails to direct expression in a transgenic zebrafish 

assay at either 3 or 5 days post fertilization (dpf); reporter expression present in ≤25% 

of mosaics. (E, F, G) Putative CREs downstream of FOXG1, upstream of NR4A2, and 

in an intron of CRHR1 fail to direct expression in transgenic mice, however, they 

direct robust neuronal appropriate expression in transgenic zebrafish reporter assays 

(scored for expression in MB, FB, amacrine cells (AC), hindbrain (HB), spinal cord 

(SC)). (H) A putative CRE downstream of FOXA2 directs neuronal expression in both 

transgenic mice and zebrafish assays. N mosaic zebrafish scored: ≥ 141 for 3dpf, ≥ 119 

for 5dpf. All constructs have since been deposited in the VISTA database, under the 

hs numbers supplied. 
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Figure 2.3: A MB-specific enhancer directs expression in catecholaminergic 
populations of neurons known to Parkinson disease biology 

 

(A) IGV track indicating the location of the MB-specific region of open chromatin, 

located in intron 4 of Snca. (B) Snca is differentially expressed between the MB and 

FB DA neurons. Red bar is the mean expression of the four replicates (black dots). (C) 

At 72 hours post fertilization (hpf), stable transgenic zebrafish reporter assays 

indicate this putative CRE is capable of directing reporter expression in key 

catecholaminergic neuronal populations, including the locus coeruleus (LC), the 

catecholaminergic tract (CT) of the hindbrain, and the diencephalic cluster (DC) with 

projections to the subpallium (SP). (D-G) Further studies in lacZ reporter assays in 

embryonic (E) and post-natal (P) mice indicate dynamic enhancer usage across 

developmental time. (D) This enhancer directs expression throughout the MB, FB, 

dorsal root ganglia (DRG), sympathetic chain (SC), and cranial nerves (CN) of E12.5 

mice. (E) By E15.5, reporter expression is observed in the amygdala and/or piriform 

cortex (AM/PC), sympathetic chain, MB, and hypothalamus (Hyp). (F) Patterns of 

reporter expression at P7 reflect those seen at E15.5. (G) Reporter activity is observed 

at P30 in the amygdala, hypothalamus and thalamus (Thal), brain stem (BS), 

substantia nigra (SN), ventral tegmental area (VTA), and the periaqueductal grey 

area (PAG). (H) In aged mice (P574), reporter expression is detected robustly in the 

brain stem and faintly in the amygdala. 
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Figure 2.4: A schematic of the chromatin interactions, LD structure, 
variation, and open chromatin at the SNCA locus 

 

Publicly available DNase hypersensitivity site (DHS) linkage analysis suggest that 

the promoter of SNCA possibly interacts with the identified MB-specific enhancer, the 

lead GWAS variant (rs356182), and a previously functionally validated variant 

(rs356168). ChIA-PET data suggests the MB-specific enhancer may interact with 

variant rs356168. Open chromatin data from DA neurons do not overlap with any 

variants at this locus/haplotype other than at the MB-specific enhancer. LD analysis 

at this locus indicates that despite the low LD structure between the lead GWAS 

variant (rs356182) and the enhancer associated variants (rs2737024 and rs2583959), 

the variants are in the same haplotype. As such the GWAS signal may, at least in 

part, be flagging the identified enhancer-associated variants. 
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Figure 2.5: Enhancer deletion experiments and proposed phenotyping 

 

(A) In SK-N-SH cells, the enhancer was modified by one of four guide RNA 

combinations (arrows) and exploiting homology directed repair, was replaced with one 

of two repair templates. The first repair template contained a blasticidin-resistance 

cassette (BlastR) as a selectable marker and a fluorescent marker (mCherry) for 

screening. These were flanked by loxP sites (purple triangles) and arms of homology 

(dashed crosses). The alternative repair template contained solely the arms of 

homology and the loxP sites. These deletions resulted in cell death. (B) We also deleted 

the enhancer in vivo at the endogenous mouse Snca locus. (C) These enhancer deletion 

mice and matched non-deleted controls will be subjected to an LPS injection paradigm, 

where movement phenotypes will be assessed at the day of injection and at one month, 

two months, and 6 months. At six months, the mice will be sacrificed and their brains 

will be examined by histology for degeneration of midbrain dopaminergic neurons.  
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Table 2.1: Two tightly linked SNPs within the enhancer are significantly 
associated with PD risk 

Variant MA MAF in PD 
cases (N=986) 

MAF in controls 
(N=992) 

Association with PD 
OR (95% CI) p-value 

rs7684892 A 0.063 0.069 0.93 (0.72-1.20) 0.562 
rs17016188 C 0.082 0.061 1.35 (1.04-1.75) 0.023 
rs2583959 G 0.317 0.271 1.22 (1.06-1.40)    0.005 * 
rs2737024 G 0.319 0.270 1.25 (1.09-1.44)    0.002 * 
MA = minor allele; MAF = minor allele frequency; OR = odds ratio; CI = confidence interval 
Only variants with MAF > 0.05 were considered 
ORs, 95% CIs, and p-values result from additive logistic regression models adjusted for age at blood draw and sex 
p-values ≤ 0.0125 were considered as statistically significant after applying a Bonferroni correction for multiple testing (*) 

 
 

Table 2.2: A single haplotype, containing the minor alleles of the implicated 
SNPs, is significantly associated with PD risk 
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1 C C A G T T C A C T G C 0.015 0.027 0.012 
2 C G A A T T T A C T G C 0.092 0.110 0.029 
3 C C A G C C C A C T A T 0.039 0.048 0.184 
4 T C A G T T C A C T G C 0.037 0.040 0.480 
5 C G A A T T C A C T G C 0.380 0.397 0.593 
6 T C A G T T T A C T G C 0.010 0.011 0.698 
7 C G A A T C C G G T G C 0.009 0.012 0.944 
8 C C A G T C C G G T G C 0.016 0.015 0.768 
9 T C G G C C C A C T A T 0.021 0.017 0.360 
10 T C G G T C C A C C G C 0.014 0.009 0.189 
11 T C G G C C C A C C G C 0.057 0.044 0.124 
12 T C A G T C C G G T G C 0.283 0.234    0.003 * 

Only haplotypes with frequency ≥ 0.01 were considered 
Black boxes indicate the minor allele in Europeans 
p-values result from score tests for association, performed under an additive model, adjusted for age at blood draw and sex 
p-values ≤ 0.0042 were considered as statistically significant after applying a Bonferroni correction for multiple testing (*) 
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Supplementary Figure 2.1: RT-qPCR of key DA neuron markers 

 

Expression of key DA neuron markers (Pitx3, Th, Slc6a3) in MB FACS-isolated (A) 

and FB FACS-isolated (B) cells confirms isolation of purified MB and FB DA neurons. 

Error bars represent the fold change range after incorporation of the standard 

deviation values (n = 3 technical replicates). 
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Supplementary Figure 2.2: in silico quality control metrics for the ATAC-
seq libraries 

 

(A) Sequencing statistics for the ATAC-seq libraries indicate all six libraries are of 

sufficient quality. (B) The genomic distribution of ATAC-seq peaks indicate a 

preference for promoters and intergenic regions. (C) The fragment length distribution 

of the ATAC-seq libraries indicate the presence of a nucleosome ladder (with one 

nucleosome fragments, perhaps, being selected against in the bead clean-up). (D) All 

ATAC-seq libraries display an abundance of reads overlapping gene promoters, 

genome-wide. 
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Supplementary Figure 2.3: Correlation analysis of all ATAC-seq libraries 

 

Genome-wide correlation within replicates (red boxed areas) and between brain 

regions indicate there is strong correlation within a brain region across replicates, 

with correlation to a lesser extent between brain regions. 
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Supplementary Figure 2.4 Relating RNA-seq and ATAC-seq data 

 

Broad analyses indicate that highly expressed genes are under greater regulatory 

control, in that there are more proximal regulatory elements (A, B) and their 

promoters are more open (C) compared to lowly expressed genes. (D) Additionally, the 

genes closest to the strongest ATAC-seq peaks are more highly expressed than those 

adjacent the weakest peaks. 
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Supplementary Figure 2.5: All lacZ reporter mice and the mouse genomic 
locations of the putative CREs 

 

All transgenic mouse embryos assayed for lacZ reporter activity for each of the five 

putative CREs tested in vivo (left) and the genomic location and context of those 

putative CREs (right). MB: Black track, FB: Green track. Red peaks in yellow boxes: 

The putative CREs that were lifted over to hg19 and tested in vivo. 
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Supplementary Table 2.1: Summary of counts and percent overlap with the 
VISTA enhancer browser, related to Figure 2.2A-C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    Counts  Percentage 
        VISTA MB FB   MB FB  

Positive  1264 786 719  62 57 
          
 Neuronal   652 498 465  76 71 
  Forebrain  191 137 147  72 77 
  Midbrain  104 80 65  77 63 
  Hindbrain 94 66 58  70 62 

  
Multiple 
regions 156 126 112  81 72 

  Whole brain 107 89 83  83 78 
          
 Non-neuronal  612 288 254  47 42 
          

Negative   1123 538 529   48 47 
TOTAL     2387 1324 1248   55 52 
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Supplementary Table 2.2: Allele and genotype counts and frequencies 
in PD cases and controls of all variants identified by sequencing within 
the intronic SNCA enhancer 

 
      Allele counts (frequency)   Genotype counts (frequency) 

Variant MA  Population Minor allele Major allele   Homozygous 
Minor Heterozygous Homozygous 

Major 

rs537518252 A Control 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 
  PD 1 (0.1%) 1909 (99.9%)  0 (0%) 1 (0.1%) 954 (99.9%) 

rs78789649 A Control 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 
  PD 1 (0.1%) 1909 (99.9%)  0 (0%) 1 (0.1%) 954 (99.9%) 

rs112174335 C Control 2 (0.1%) 1908 (99.9%)  0 (0%) 2 (0.2%) 953 (99.8%) 
  PD 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 

rs28720123 T Control 4 (0.2%) 1906 (99.8%)  0 (0%) 4 (0.4%) 951 (99.6%) 
  PD 1 (0.1%) 1909 (99.9%)  0 (0%) 1 (0.1%) 954 (99.9%) 

rs2737024 G Control 515 (27%) 1395 (73%)  76 (8%) 363 (38%) 516 (54%) 
  PD 609 (31.9%) 1301 (68.1%)  105 (11%) 399 (41.8%) 451 (47.2%) 

chr4:90721581 T>C C Control 1 (0.1%) 1909 (99.9%)  0 (0%) 1 (0.1%) 954 (99.9%) 
  PD 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 

rs2583959 G Control 518 (27.1%) 1390 (72.9%)  89 (9.3%) 340 (35.6%) 525 (55%) 
  PD 606 (31.7%) 1304 (68.3%)  105 (11%) 396 (41.5%) 454 (47.5%) 

chr4:90721702 G>A T Control 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 
  PD 1 (0.1%) 1909 (99.9%)  0 (0%) 1 (0.1%) 954 (99.9%) 

chr4:90721760 T>- - Control 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 
  PD 1 (0.1%) 1909 (99.9%)  0 (0%) 1 (0.1%) 954 (99.9%) 

rs189903574 A Control 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 
  PD 1 (0.1%) 1909 (99.9%)  0 (0%) 1 (0.1%) 954 (99.9%) 

rs17016188 C Control 116 (6.1%) 1794 (93.9%)  4 (0.4%) 108 (11.3%) 843 (88.3%) 
  PD 156 (8.2%) 1754 (91.8%)  5 (0.5%) 146 (15.3%) 804 (84.2%) 

rs28536191 G Control 2 (0.1%) 1908 (99.9%)  0 (0%) 2 (0.2%) 953 (99.8%) 
  PD 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 

chr4:90721974 T>A A Control 0 (0%) 1910 (100%)  0 (0%) 0 (0%) 955 (100%) 
  PD 1 (0.1%) 1909 (99.9%)  0 (0%) 1 (0.1%) 954 (99.9%) 

rs7684892 A Control 131 (6.9%) 1777 (93.1%)  9 (0.9%) 113 (11.8%) 832 (87.2%) 
    PD 121 (6.3%) 1789 (93.7%)   3 (0.3%) 115 (12%) 837 (87.6%) 
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Supplementary Table 2.3: r2 values measuring linkage disequilibrium between SNCA variants in controls 
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rs10018362 0.185 0.14 0.02 0.137 0.417 0.018 0.547 0.534 0.008 0.242 0.039 0.004 0.046 0.017 <0.001 
rs2737029 ---- 0.663 0.523 0.672 0.101 0.07 0.103 0.096 0.002 0.096 0.498 0.001 0.542 0.003 0.001 
rs356168 ---- ---- 0.675 0.985 0.085 0.063 0.078 0.078 0.001 0.072 0.307 0.001 0.341 0.002 0.001 
rs356220 ---- ---- ---- 0.686 0.12 0.03 0.002 0.002 0.002 0.101 0.373 <0.001 0.411 0.003 0.002 
rs356225 ---- ---- ---- ---- 0.082 0.062 0.078 0.078 0.001 0.073 0.31 0.001 0.344 0.002 0.001 
rs3857057 ---- ---- ---- ---- ---- 0.007 0.023 0.023 0.014 0.583 0.025 <0.001 0.028 0.027 <0.001 
rs62306323 ---- ---- ---- ---- ---- ---- 0.01 0.006 <0.001 0.008 0.047 <0.001 0.05 <0.001 0.001 
rs7689942 ---- ---- ---- ---- ---- ---- ---- 0.974 <0.001 0.005 0.022 0.007 0.026 <0.001 <0.001 
rs7684892 ---- ---- ---- ---- ---- ---- ---- ---- <0.001 0.005 0.021 0.007 0.023 <0.001 <0.001 
rs28536191 ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.016 <0.001 <0.001 <0.001 0.5 <0.001 
rs17016188 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.019 <0.001 0.024 0.033 <0.001 
rs2583959 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- <0.001 0.934 0.001 <0.001 
chr4:90721581 T>C ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- <0.001 <0.001 <0.001 
rs2737024 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.001 <0.001 
rs28720123 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- <0.001 
rs112174335 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 
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Supplementary Table 2.4: Allele and genotype counts and frequencies in PD 
cases and controls of all variants genotyped from the Guella et al. panel 

 

      Allele counts (frequency)  Genotype counts (frequency) 

Variant MA  Population Minor 
allele Major allele  Homozygous 

Minor Heterozygous Homozygous 
Major 

rs10018362 C Control 213 (11.1%) 1709 (88.9%)   9 (0.9%) 195 (20.3%) 757 (78.8%) 

  PD 228 (12.1%) 1656 (87.9%)  7 (0.7%) 214 (22.7%) 721 (76.5%) 

rs2737029 C Control 864 (41.1%) 1240 (58.9%)  161 (15.3%) 542 (51.5%) 349 (33.2%) 

  PD 869 (46.2%) 1011 (53.8%)  208 (22.1%) 453 (48.2%) 279 (29.7%) 

rs356168 G Control 910 (47.2%) 1016 (52.8%)  227 (23.6%) 456 (47.4%) 280 (29.1%) 

  PD 965 (51.2%) 919 (48.8%)  246 (26.1%) 473 (50.2%) 223 (23.7%) 

rs356220 T Control 734 (38.1%) 1190 (61.9%)  159 (16.5%) 416 (43.2%) 387 (40.2%) 

  PD 827 (43.9%) 1055 (56.1%)  190 (20.2%) 447 (47.5%) 304 (32.3%) 

rs356225 C Control 904 (47%) 1018 (53%)  223 (23.2%) 458 (47.7%) 280 (29.1%) 

  PD 966 (51.3%) 918 (48.7%)  246 (26.1%) 474 (50.3%) 222 (23.6%) 

rs3857057 G Control 137 (7.1%) 1791 (92.9%)  7 (0.7%) 123 (12.8%) 834 (86.5%) 

  PD 179 (9.5%) 1705 (90.5%)  4 (0.4%) 171 (18.2%) 767 (81.4%) 

rs62306323 T Control 241 (12.6%) 1667 (87.4%)  19 (2%) 203 (21.3%) 732 (76.7%) 

  PD 205 (10.9%) 1679 (89.1%)  10 (1.1%) 185 (19.6%) 747 (79.3%) 

rs7689942 T Control 125 (6.5%) 1801 (93.5%)  5 (0.5%) 115 (11.9%) 843 (87.5%) 

    PD 117 (6.2%) 1767 (93.8%)  2 (0.2%) 113 (12%) 827 (87.8%) 
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Supplementary Table 2.5 : Primer sequences used for qPCR and cloning for in vivo reporter assays 

Characterizing mouse DA neurons by qPCR 

 Forward Reverse 
Expected 
amplicon mm9 co-ordinates 

Pitx3 ACGCACTAGACCTCCCTCCAT GCTTCTTCTTCAGAGAGCCGT 203 Pitx3 exons 1, 2, 3 

Th CTGTCCACGTCCCCAAGGTTCA CAATGGGTTCCCAGGTTCCG 147 Th exons 1, 2 

Slc6a3 GAGGCCCGATAAGAGCTCAAG CCTTCTTCTTCGACTGCCTCC 111 Slc6a3 exons 1, 2 

Actb TGGCTCCTAGCACCATGAAG AGCTCAGTAACAGTCCGCCTA 188 Actb exons 5. 6 

     
Testing five putative CREs in in vivo reporter assays 

 Forward Reverse 
Expected 
amplicon hg19 co-ordinates 

KCNQ3 ATAAAGCAAGTGACCGGGGA GGCTGCTCTTGAGACATTCG 2744 chr8:133425146-133427889 

FOXG1 CGGCAAAGGAACATGGAGAG TCACATCCAGGGCCAAGAAT 2188 chr14:29242870-29245057 

NR4A2 ATCAGCCTGTGTCCTGTTCT AAGGAAGGGGCAGCTTAGAG 2447 chr2:157255824-157258270 

CRHR1 CAGGACTATGACGGCTGACT GGAACACACCCTCTCCATCA 1691 chr17:43889821-43891511 

FOXA2 GTCTGATGTTCGTTCACCCAG GCCGTTTTAAGCATTGGGAA 3288 chr20:22382513-22385800 

     
Testing the SNCA enhancer in in vivo reporter assays 

 Forward Reverse 
Expected 
amplicon hg19 co-ordinates 

SNCA GGACTCCTTGCTTGAAGGAAAAAT AGACAAAAGGAGTGCATTGATGT 1060 chr4:90,721,063-90,722,122 

https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=675162397_3hSLSmmJVHqCJbtqqAA8LtZcDf0J&db=mm9&position=uc008hsl.1&hgPcrResult=pack
https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=675162397_3hSLSmmJVHqCJbtqqAA8LtZcDf0J&db=mm9&position=uc009koi.1&hgPcrResult=pack
https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=675162397_3hSLSmmJVHqCJbtqqAA8LtZcDf0J&db=mm9&position=uc007rdn.1&hgPcrResult=pack
https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=675162397_3hSLSmmJVHqCJbtqqAA8LtZcDf0J&db=mm9&position=uc009ajk.1&hgPcrResult=pack
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&position=chr8:133425146-133427889
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&position=chr14:29242870-29245057
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&position=chr2:157255824-157258270
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&position=chr17:43889821-43891511
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&position=chr20:22382513-22385800
https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=675123957_7jmB0uO0owFO3PTXr4BzRVMwDzDw&db=hg19&position=chr4%3A90721063-90722122
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Chapter 3: Transcription factors and non-coding 
variants that disrupt their binding in dopaminergic 
neurons 
3.1 Interrogating non-coding variants and their role in disease 

 The majority of variants implicated in disease by genome-wide association 

studies are non-coding26,66. These variants are predicted to impact regulatory 

functioning of non-coding elements, like enhancers, likely through disrupting the 

binding sites of transcription factors (TFs) and other DNA-binding proteins. Learning 

the TFs active in a cell type and examining how disease-associated non-coding 

variants disrupt their activity are important for improving our understanding of 

disease.  

 Unlike with coding mutations, our ability to predict the consequences of non-

coding variation is limited. There are a variety of algorithms and software available 

to predict how coding variants will impact the structure of a protein (like CADD, 

PolyPhen, and SIFT231–233), as we have an accurate understanding of the genetic code 

(“vocabulary”) underlying protein specification. We do not have these vocabularies for 

regulatory element function. As such, there have been many efforts to learn the 

sequence control underlying regulatory element functioning, especially enhancers234–

236.  

One such effort, gapped-kmer support-vector machine (gkm-SVM73), has been 

developed by our group to begin elucidating the sequence basis of regulatory control, 

using a machine-learning algorithm. This algorithm and a related method, 

deltaSVM169, can be used in combination to predict TFs important to regulatory 



77 
 

control and anticipate how variants may impact those TFs’ binding. Functional 

validation of the predictions of variant effect is commonly performed using in vitro 

reporter assays, like luciferase assay.  

To begin predict how Parkinson disease (PD) associated variants might alter 

transcription and confer risk for PD, we first developed a regulatory vocabulary for 

midbrain (MB) dopaminergic (DA) neurons and identified four TFs conferring 

regulatory activity in these cells. With this vocabulary, we scored >7,000 variants 

associated with neurodegenerative and neuropsychiatric traits for their capacity to 

disrupt TF binding. We selected >20 of these sequences for validation by luciferase 

assay however, this has proved a challenge considering the cell-specificity of enhancer 

activity and the lack of DA neuronal cell culture models. We turn to a cell type agnostic 

approach, protein-binding arrays, as an alternative to luciferase for evaluating how 

variants impact protein binding. In a preliminary test of this technique, we identified 

four proteins, NOVA1, PEG10, SNRPA, and CHMP5, whose binding may be impacted 

by the SNCA enhancer variants. Finally, we have performed preliminary 

characterization of a possible in vitro cell surrogate, SN4741 cells, using karyotyping, 

and single-cell RNA-seq.  

3.2 Candidate regulatory elements are enriched for transcription 

factor motifs active in dopaminergic neurons2  

To identify sequence modules (kmers) predicted to contribute regulatory 

activity in MB and forebrain (FB) DA neurons, we applied the machine learning 

                                                      
2 This section and associated methods have been published in the American Journal of Human Genetics and 
adapted for use in this thesis. McClymont, S.A. et al. (2018). Parkinson-associated SNCA enhancer variants 
revealed by open chromatin in mouse dopamine neurons. The American Journal of Human Genetics, 103:874-892237. 
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algorithm, gkm-SVM73 to the MB DA neuron ATAC-seq catalogues237 generated in 

Chapter 2. The resulting regulatory vocabularies of kmers had high predictive power 

(auROCMB = 0.915, auROCFB = 0.927). We rank ordered and collapsed related kmers 

to reveal motifs enriched in the open chromatin regions (OCRs) and their 

corresponding TFs (Figure 3.1A, E, I, M). In the MB, the four most enriched motifs 

correspond to Rfx1, Foxa2, Ascl2, and Nr4a2.  

Given the degeneracy of binding motifs within TF families, we consulted the 

bulk RNA-seq data for each of the implicated TF families and examined the relative 

expression levels to prioritize which TFs are most likely producing the observed motif 

enrichments (Figure 3.1B, F, J, N). For example, the reported DNA binding domain 

is highly conserved between RFX family members and as a result the predicted 

sequence motif for each is highly similar238,239, thus we must use other means to 

identify which family member is likely acting in these cells. While no member of the 

Rfx family has been canonically associated with MB DA neurons, we anticipate Rfx3 

and Rfx7, as the two highest expressed Rfx genes, to likely be active in MB DA neurons 

and driving this motif enrichment (Figure 3.1B). Foxa1, and more specifically, Foxa2 

are both known to DA neuron biology175,240 and both are highly expressed in the MB 

DA neurons (Figure 3.1F). Regarding enrichment for the Ascl family, Ascl1 is known 

to be involved in DA neuron biogenesis241 and is more highly expressed than any other 

TF in the family (Figure 3.1J). Finally, Nr4a2 is both canonically associated with DA 

neurons and required for their development178; we observe it to be highly expressed in 

MB DA neurons (Figure 3.1N). Examining the sequences underlying the OCR 

catalogues, we identified TF families known and unknown to DA neuron biology and 

further refined the TF associations using expression data.  
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We also examined the qualities that differentiate MB OCRs from FB OCRs by 

examining the sequences underlying MB-specific and FB-specific regions. We 

developed a vocabulary that discriminates MB and FB regions with high predictive 

power (auROC = 0.926) and identified kmers enriched in MB-specific peaks where the 

top corresponding TFs are Foxa1/2 and Nr4a2 (Supplementary Figure 3.1). We 

confirmed this MB bias by again considering the bulk RNA-seq for these genes. As 

expected, these TFs are more highly expressed in the MB where Nr4a2 is present at 

12-fold higher levels in the MB (135 RPKM in the MB vs 11 RPKM in the FB) and 

Foxa1/2 are not expressed in the FB, but are present in the MB (Foxa1: 28 RPKM, 

Foxa2: 7 RPKM). Not only do we identify Foxa1/2 and Nr4a2 as more active in MB 

DA neurons than in the FB, we did so solely by comparing their role in the vocabulary 

of MB-specific OCRs versus FB-specific OCRs. 

In a parallel strategy to identify TFs actively engaging the DNA in MB DA 

neurons, we performed TF footprinting in a single deeply sequenced MB ATAC-seq 

library. Doing so, we confirm that two of the TFs prioritized by gkm-SVM leave robust 

footprints. The motif corresponding to Rfx-binding results in a dearth of cuts directly 

over predicted binding sites (Figure 3.1C). The same can be seen to a lesser extent 

for the motif corresponding to Foxa1/2 (Figure 3.1G). By contrast, motifs 

corresponding to Ascl1 or Nr4a2 fail to leave a robust mark on the chromatin 

availability (Figure 3.1K, O). It has been noted that nuclear receptors, like Nr4a2, 

only transiently interact with DNA242, and as a result, it may be that the short DNA 

residence time fails to result in a robust footprint detectable by transposition. These 

footprinting data substantiate the claim that the Rfx family of TFs and Foxa1/2 are 

active in MB DA neuron CREs.  
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We confirmed that these sequences are indeed enriched in the catalogues by 

examining the pileup of reads overlapping all genome-wide predicted motif binding 

sites for each motif identified by gkm-SVM. We see an abundance of reads over 

predicted binding sites of all four motifs (Figure 3.1D, H, L, P), with the strongest 

enrichment overlapping Rfx and Ascl1 motif sites (Figure 3.1D, L). Despite the less 

robust footprint generated at the Ascl1, this TF clearly underlies a larger than 

expected proportion of OCRs in the MB catalogue.  

The integration of a support vector machine learning algorithm as applied to 

the sequences underlying OCRs with footprinting analysis in the same chromatin 

substrate powerfully identifies TFs that are important for DA neuron biology and 

suggests the Rfx family of TFs, Foxa1/2, Ascl1, and Nr4a2 are actively influencing 

gene expression in the MB DA neurons.  

3.3 Predicting and testing the effects of regulatory variants  

Next, we sought to use this vocabulary to predict the effect of disease-

associated variants on enhancer functioning. We collected the lead SNPs plus those 

in high linkage disequilibrium (LD; r2 ≥ 0.8) from five genome-wide association studies 

(GWAS) for neurodegenerative and neuropsychiatric traits: Alzheimer disease243, 

epilepsy244, PD25, progressive supranuclear palsy245, and schizophrenia246 

(summarized in Supplementary Table 3.1). These variants were filtered for 

duplicates and those that are unable to be scored by deltaSVM (eg: multiallelic SNPs), 

after which a total of 7,719 variants were scored by deltaSVM for their impact based 

on the MB and FB DA neuron vocabularies. This calculation compares the gkm-SVM 

scores of the alternative and reference alleles and sums across the surrounding 
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sequence to predict the consequence of the variant on regulatory activity. The 

distribution of these scores are shown in Figure 3.2A. We observe a long right tail, 

representing variants that are predicted to be highly influential in TF binding.  

 The top variant identified by deltaSVM is rs1498232, associated with 

schizophrenia, which is predicted to be highly damaging to TF binding in both the MB 

and FB vocabularies (deltaSVMMB: -22.347, deltaSVMFB: -19.506). How deltaSVM 

sums the variant impact using the MB vocabulary is demonstrated in Figure 3.2B. 

This variant is predicted to be highly damaging to a RFX binding site (Figure 3.2C). 

There are ten SNPs in high LD (r2 >0.8), none of which are predicted by deltaSVM to 

strongly alter regulatory function (Figure 3.2D). Using other vocabularies our group 

has generated to assess the cell-type specificity of this variants effects, we scored these 

same variants for disrupting activity in a lymphoblastoid cell line247 (GM12878) and 

melanocytes248 (melanA). These variants are not scored as altering regulatory function 

(Figure 3.2E, F).  

We sought to test these variants using luciferase in the SK-N-SH 

neuroblastoma cell line. We cloned 500bp fragments centred on the variant to be 

tested (Figure 3.2G) upstream of a minimal E1B promoter in a luciferase expression 

vector77, containing either the reference or alternate allele. Just one of the constructs, 

and not that predicted by deltaSVM, exceeded background levels of regulatory activity 

(Figure 3.2H). The one construct exceeding background levels did not validate in a 

replication experiment (data not shown). This was disappointing but perhaps 

unsurprising given that these variants fall in a gene desert and none overlap an OCR 

in either MB or FB DA neurons. To increase the a priori probability of the variants 
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falling in an active regulatory region, we next restricted ourselves to testing variants 

that are highly rated as damaging that fall in ATAC-seq peaks.  

 Of the 7,719 variants scored by deltaSVM, 275 variants overlap either a FB or 

MB peak. Many of these variants overlap with promoters and were removed from our 

analysis, leaving 137 variants overlapping an OCR. The distribution of these scores 

(Figure 3.3A) largely reflects the distribution of the variants as a whole and remains 

skewed. We selected ten peaks containing the top 11 scored disease-associated 

variants (Figure 3.3B). A schematic of the peak locations, the intersecting variants, 

and the nearest gene is indicated in Figure 3.3C. Centering on the variants, we cloned 

500bp fragments containing the risk and non-risk alleles for these regions and 

performed luciferase reporter assay. Again, no construct exceeded background levels 

of activity (Figure 3.3D).  

 While unlikely, it could be that none of the selected sequences direct enhancer 

activity. To test this, we assayed the OCR in intron 4 of SNCA that we had already 

demonstrated to have enhancer activity in vivo in Chapter 2. We cloned the exact 

enhancer region that was tested in vivo, containing the risk and non-risk haplotypes. 

After performing luciferase assay on these constructs, again we observe no enhancer 

activity (Figure 3E). This result indicated to us that there is likely an underlying 

issue with the in vitro reporter assay – we observe no enhancer activity in a sequence 

that is demonstrably an enhancer in vivo.  

To address this, we have performed a variety of troubleshooting steps, like 

changing the promoters upstream of the luciferase reporter (E1B, TATA, SV40, 

SYN1), the promoters upstream of the renilla reporter (CMV, SV40), the lipofection 
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method (lipofectamine 3000, 2000), how the vectors are cloned (Gateway cloning, 

restriction cloning), the orientation and size of the constructs (forward and reverse, 

full enhancer and restricted to a central portion), and importantly, the cell line in 

which the construct is being tested (SK-N-SH, SH-SY-5Y, Neuro2A). No change has 

reliably demonstrated the SNCA sequence to drive expression in vitro (data not 

shown).  

 We believe these results represent a fundamental problem with these in vitro 

assays – the cells in which we are testing are not the correct cellular surrogate for 

embryonic MB DA neurons. We observed the exquisite restriction of the enhancer 

activity of the SNCA sequence in Chapter 2, it is likely that the immortalized cell 

lines are poor proxies and do not represent the restricted cell types that this enhancer 

is active in.  

3.4 Protein binding arrays are a viable alternative validation 

strategy3  

We turned to parallel strategies for assaying the effects of variants on enhancer 

activity that do not rely on cell surrogates. For a cell agnostic assay, we turned to 

protein binding arrays249. To verify the utility of this assay, we examined the proteins 

whose binding is disrupted by the SNCA enhancer variants.  

We assayed differential protein binding at the PD-associated variants at SNCA 

for >16,000 proteins249. In doing so, we identify five proteins whose binding is robustly 

                                                      
3 This section and associated methods have been published in the American Journal of Human Genetics and 
adapted for use in this thesis. McClymont, S.A. et al. (2018). Parkinson-associated SNCA enhancer variants 
revealed by open chromatin in mouse dopamine neurons. The American Journal of Human Genetics, 103:874-892237. 
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impacted by these implicated variants: NOVA1, APOBEC3C, PEG10, SNRPA, and 

CHMP5 (Figure 3.4A, B, C). Of these, all are expressed at appreciable levels in both 

MB and FB DA neurons (Figure 3.4D), excluding APOBEC3C (RPKM ≤ 1). Of the 

remaining four proteins, three (PEG10, SNRPA, and CHMP5) demonstrate an 

increased binding affinity for the minor risk allele over the major allele; this direction 

of effect is consistent with the over-expression paradigm by which SNCA confers PD 

risk20. Interestingly, CHMP5 is the sole protein we identify whose binding affinity is 

impacted by variant rs2583959, and our group has recently implicated one of its 

family members, CHMP7, in conferring PD risk179, perhaps indicating a role for this 

family of proteins in PD. Although no single protein stands out, the increased affinity 

for the risk alleles of the identified enhancer variants by proteins expressed in DA 

neurons is consistent with a potential mechanistic contribution to SNCA expression 

and therefore, PD risk. 

This was a promising result indicating to us that protein binding arrays are 

appropriate as an alternative strategy for luciferase to assess how enhancer variants 

affect TF binding and thus alter enhancer activity and gene expression. However, 

these assays are inherently synthetic as they occur in the absence of a cellular 

environment and only test small fragments of DNA not in their larger endogenous 

sequence context. While this method has been demonstrably successful and we will 

continue to use protein binding arrays to assay enhancer variants in the absence of a 

better test, we continue to search for a more appropriate cellular surrogate in which 

to perform our in vitro reporter assays.  
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3.5 The suitability of in vitro dopaminergic neuron surrogates: the 

SN4741 cell line 

 We have identified the cell line SN4741 as a likely in vitro cell surrogate. 

SN4741 cells are derived from E13.5 mouse DA neurons from the substantia nigra 

and contain a SV40Tag that directs the differentiation when the cell culture is shifted 

to 39°C250. We performed preliminary expression analysis by RT-qPCR to confirm 

expression of a variety of DA neuron markers. We observed increases of these markers 

under the higher temperature condition, indicating the cells are indeed differentiating 

towards a more DA state (Figure 3.5A).  

 With this promising result, we moved forward to more deeply characterize 

these cells to assess their suitability as in vitro surrogates for in vivo MB DA neurons. 

First, we performed karyotyping analysis on 20 cells to assess the chromatin 

complement of these cells (representative karyogram in Figure 3.5B). Interestingly, 

SN4741 cells appear to be an unstable triploid line (Figure 3.5C), with a variety of 

marker chromosomes. None of the 20 cells assessed had the same chromosome 

complement. This is concerning for the viability of these cells as a surrogate for a 

variety of reasons. The biggest being if the cells are genetically unstable, there may 

be large experimental batch effects as the cell populations shift across divisions.  

 To assess the consistency of the differentiation protocol, we compared the 

transcriptomes from ≥17,000 cells in the permissive (37°C) and non-permissive (39°C) 

states. Cluster analysis indicates a separation of the cells at each temperature 

(Figure 3.5D). This separation of cells by temperature is accompanied by changes to 

the cell cycle, with cells at the permissive (37°C) temperature containing cells in either 
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G2M or S phase, while cells at the non-permissive temperature (39°C) are mostly 

differentiated and in G1 phase (Figure 3.5E, F). In expression analysis, we observe 

that markers of proliferation, like Ki-67, are exclusively expressed in cells at the 

permissive temperature (Figure 3.5G), corroborating the cell cycle analysis. SN4741 

cells, when shifted to the non-permissive temperature, appear to robustly 

differentiate.  

 However, in examining expression of a variety of DA neuron markers, we fail 

to detect expression in either the permissive or non-permissive temperature. Markers, 

including Th, Nr4a2, and Slc6a3 have few to no reads assigned to them (Figure 3.5H, 

I, J). It appears that while these cells are differentiating when shifted to the non-

permissive temperature, we are unable to confirm these cells are entering a DA 

trajectory when doing so.  

3.6 Discussion  

As GWASs are applied to ever more common diseases, methods to identify non-

coding variants contributing to risk through altering regulatory activity are needed. 

Machine learning algorithms, like the one we apply here, are being explored as a 

method for predicting TFs active in a cell type and how variants might impact their 

binding. Here, we use the machine learning algorithm, gkm-SVM, to predict TFs 

active in MB DA neurons and use this vocabulary to rank >7,000 variants for their 

capacity to alter regulatory functioning. Our ability to validate these predictions is 

limited as a result of the cell type specific action of enhancers, as demonstrated by our 

luciferase assay experiments. We explored cell type agnostic approaches, like protein 

binding arrays, to great success. In testing the SNCA enhancer variants for their 
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effect on protein binding, we identified five proteins whose binding is affected, three 

of which, PEG10, SNRPA, and CHMP5, display greater affinity for the risk allele. 

Finally, we explored the suitability of the SN4741 cell line as a surrogate for in vivo 

embryonic MB DA neurons.  

In examining the sequence composition underlying the ATAC-seq peaks, we 

illuminate powerful vocabularies for both FB and MB DA neuron transcriptional 

regulatory control. Machine learning using gkm-SVM prioritizes four transcription 

factor families (Rfx, Foxa1/2, Nr4a2, Ascl1/2) as those conveying significant regulatory 

potential in the CRE catalogues. Of these, the Rfx family had not previously been 

implicated in DA neuron biology. Although several of the Rfx family members have 

been annotated as having expression in the cerebellum or fetal brain238, a role 

specifically in MB DA neurons has not previously been appreciated. By contrast, 

Nr4a2 is canonically associated with MB DA neurons177,178, is highly expressed in this 

population (139 RPKM), and was prioritized as a TF conferring regulatory potential 

in these cells; however, TF footprinting fails to provide evidence supporting its 

activity. We postulate that this lack of footprint may reflect the transient DNA 

binding dynamics of Nr4a2. Transcription factors with short DNA residence times 

often fail to reveal footprints, and nuclear receptors, such as Nr4a2, have markedly 

transient DNA interactions242.  

 We apply this vocabulary to predict how variants identified by GWASs 

conferring risk for Alzheimer disease, epilepsy, PD, progressive supranuclear palsy, 

or schizophrenia might impact regulatory activity. We prioritized >20 variants for 

validation using two strategies for prioritization; first, we examined the highest 

ranked variant and ten variants in LD and next, we examined the regulatory 



88 
 

functioning of ten MB OCRs containing highly ranked disrupting variants. Despite 

the variety of variants tested, none exceeded background levels of activity. We 

hypothesize this is the result of highly restricted enhancer activity of the regions being 

assayed and supporting this hypothesis, the sequence at SNCA that we previously 

identified as an enhancer in vivo, fails to direct reporter activity in vitro. While we 

have explored alternative strategies for interrogating enhancer variant functioning, 

ideally an in vitro cellular surrogate will be identified.  

 Towards this, we have begun characterizing the embryonic MB DA-derived 

neuronal cell line, SN4741. While initial qPCR results were promising, deeper 

characterization suggests these cells are an unstable triploid cell line that are perhaps 

not as DA as hoped. scRNA-seq in these cells fails to detect activity of key DA neuron 

markers, especially Th. However, scRNA-seq collects very sparse matrices of 

information and it may be that these markers are lowly expressed and escape 

detection by scRNA-seq. RT-qPCR is far more sensitive and those results do 

demonstrate a shift towards a DA trajectory with a shift in temperature. To assess 

how well these cells might match the ex vivo MB DA neurons, we have performed bulk 

RNA-seq and ATAC-seq at both temperatures. We have begun to explore changes 

induced by the temperature shift, but importantly, we will be focusing on comparing 

the transcriptomes and chromatin landscape of the ex vivo MB DA neurons to this cell 

line.  
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3.7 Methods  

Regulatory vocabulary development 

We applied the machine learning algorithm gkm-SVM73 to the MB and FB 

catalogues generated in Chapter 2, under default settings. We trained on the 

sequences underlying the summits ±250bp of non-ubiquitously open, top 10,000 peaks 

by signal intensity, versus five negative sets, matched for GC content, length, and 

repeat content. Weights across all five tests were averaged for all 10-mers. 

All 10-mers with weight ≥1.50 were clustered on sequence similarity using 

Starcode251, using sphere clustering with distance set to 3. clustalOmega252 aligned 

the sequences within these clusters and MEME253, under default parameters, 

excepting -dna -maxw 12, generated position weight matrices (PWMs) of these aligned 

clusters. Tomtom254, querying the Jolma 2013, JASPAR Core 2014, and Uniprobe 

mouse databases, identified the top transcription factors corresponding to these 

PWMs, under default parameters excepting -no-ssc -min-overlap 5 -evalue -thresh 

10.0.  

The same procedure was used to identify transcription factors specifically 

conveying regulatory potential in the MB library relative to the FB library, except 

during gkm-SVM training, the positive set was specified as the top 10,000 non-

ubiquitously open MB summits and the negative set was specified to be the top 10,000 

non-ubiquitously open FB summits, both ±250bp. 
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Transcription factor footprinting  

A single MB ATAC-seq library was sequenced on the Illumina HiSeq in Rapid 

Run mode with 2x100bp reads, to a depth of ≥350 million paired-end reads. Analysis 

was performed as described in Chapter 2. CENTIPEDE255 was used to identify 

footprints. Sequences underlying the deeply sequenced MB library peaks, less those 

ubiquitously open, were extracted. FIMO256, with options --text --parse-genomic-coord, 

identified all locations underlying ATAC-seq peaks of the motifs identified above. 

Additionally, conservation data from 30-way vertebrate phastCons was considered in 

the CENTIPEDE calculations; for each PWM site, those with mean conservation score 

greater than 0.9 were considered. Finally, the BAM file read end co-ordinates were 

adjusted in response to the shift in co-ordinates due to the transposase insertion257. 

As such, following the original ATAC-seq method95, reads were adjusted +4bp on the 

positive strand and -5bp on the negative strand.  

Genome-wide read pileup over predicted motif sites 

FIMO, as above, was used to identify all co-ordinates genome wide of the 

identified motifs. deepTools204 “bamCoverage” tool was run under default conditions, 

to convert the deeply sequenced MB library BAM to bigwig format. Following this, a 

matrix file was generated with “computeMatrix”, with options --referencePoint center 

-b 1000 -a 1000 -bs 50 specified. Finally, “plotHeatmap” was used to generate plots 

indicating ATAC-seq read pileup over predicted motif sites.  
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deltaSVM predictions of variant effect  

Selecting variants  

Lead variants from GWASs on Alzheimer disease243, epilepsy244, PD25, 

progressive supranuclear palsy245, and schizophrenia246 were downloaded from the 

NHGRI-EBI GWAS Catalog258. Proxy variants in high LD (r2 ≥ 0.8) were collected with 

rAggr, querying: 1000 Genomes phase 3 (Oct 2014) CEU+FIN+GBR+IBS+TSI 

populations for variants with minimum minor allele frequency of 0.001 and a 

maximum distance of 500kb from the lead SNP.  

Scoring variants 

 Identified variants were submitted to the deltaSVM perl script169. FASTA files 

were generated containing the 19bp sequence context centred on the variant, either 

containing the reference or alternate allele. The MB DA neuron vocabulary was used 

to score the variants. Vocabularies from GM12878 lymphoblastoid cells247 and melanA 

cells248 were also used to score variants, as negative controls.  

Motif analysis  

 The damaging effect of the variants on TF binding was predicted with 

motifbreakR259. Querying the MotifDb collection of protein-DNA binding motifs260, 

variants with a predicted damaging effect with p-value ≤ 1x10-8 were considered.  
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Validation of deltaSVM predictions of effect 

Cloning of prioritized sequences  

Primers (Supplementary Table 3.2) were designed using Primer-BLAST212 

under default parameters with the requirement that the primers fall within 400bp on 

either side of the variant. Sequences were PCR amplified from human genomic DNA 

extracted from lymphoblastoid cell lines that were heterozygous for each variant, 

identified from the 1000 Genomes Project, provided by the Coriell Institute (HG03832, 

HG01883, HG00187, HG03193, and HG03690). PCR amplicons were BP cloned 

(Gateway; Invitrogen #11789020) into pDONR221 (Invitrogen) and transformed. 

Plasmid sequences were confirmed by diagnostic digest (BsrGI) and Sanger 

sequencing. QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent #210518) 

was used to remove unwanted variation and, when necessary, to induce the 

alternative alleles. Sequences were LR cloned (Gateway; Invitrogen #11791020) into 

the E1B promoter luciferase vector77. Final vectors were quantified with the Qubit 

dsDNA Broad Range Assay (Invitrogen) and standardized to 500ng/µL.  

Cell culture of SK-N-SH cells  

 SK-N-SH cells were cultured in EMEM with 10% FBS and 1X penicillin and 

streptomycin for at least three passages before assay. For luciferase assay, cells were 

plated at a density of 100,000 cells per well in a 24-well plate and lipofected the 

following day. 
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Lipofection 

Each well was lipofected with 500ng of the luciferase reporter plasmid 

containing the putative enhancers and 10ng of CMV-RL renilla expression vector 

(Promega #E2261) using 0.75µl Lipofectamine 3000 per well (Life Technologies 

#L3000015). Three to four biological replicates and two to four technical replicates 

were performed for each construct.  

Luciferase activity assay 

48 hours post-lipofection, cells were lysed and lysates were collected for assay 

with the Dual-Luciferase Reporter Assay System (Promega # E1960). Luciferase and 

renilla activity was measured with the Tecan GENiosPro Microplate Reader (Tecan 

Group Ltd.) luminometer with automatic injectors. Within samples, the luciferase 

activity was normalized to renilla activity. Across samples, luciferase activity was 

further normalized to the average luciferase activity of the empty pE1B plasmids 

(containing a single basepair between the Gateway arms).  

Protein array testing differential binding 

HuProt v3.1 human proteome microarrays printed on the PATH surface 

containing >16,000 unique proteins representing 12,586 genes (CDI laboratories)249 

were blocked with 25mM HEPES pH 8.0, 50mM potassium glutamate, 8mM MgCl2, 

3mM DTT, 10% glycerol, 0.1% Triton X-100, 3% BSA on an orbital shaker at 4oC for 

≥3 hours. Allele specific protein-DNA binding interactions were identified through 

dye-swap competition of major and minor alleles labeled with either Cy3 or Cy5. DNA 

fragments for rs2737024 and rs2583959 were synthesized with the SNP for each allele 
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flanked by 15 nucleotides of the upstream and downstream sequence and a common 

priming site at the 3’ end (Supplementary Table 3.3). 

The dsDNA fragments were created by separately annealing a primer 

containing a Cy3 or Cy5 label and adding Klenow (NEB) with dNTP to fill-in the 

complementary strand for each allele261. Cy3 labeled major allele was mixed with Cy5 

labeled minor allele (each at 40nM) in 1x hybridization buffer (10mM Tris-Cl pH 8.0, 

50mM KCl, 1mM MgCl2, 1mM DTT, 5% glycerol, 10µM ZnCl2, 3mg/mL BSA) and 

added to an array, dyes were then swapped for each allele and the mixture was then 

added to a second array. DNA was allowed to bind overnight at 4oC on an orbital 

shaker with protection from light. Chips were washed once with cold 1xTBST (0.1% 

Triton X-100) for 5 minutes at 4oC, rinsed, and dried in the centrifuge. Cy5 and Cy3 

images were taken separately on a Genepix 4000B scanner and, after alignment to 

the GAL file, individual spot intensities were extracted using the Genepix Pro 

software. 

Allele specific interactions were identified through dye swap analysis. The 

ratio of major/minor allele binding was calculated using the duplicate spot average 

median foreground signal for each protein according to the following equation: 

 

 

Mean intensity was calculated by averaging the foreground signal for the Cy3 

and Cy5 channels of the major and minor alleles. MA plots were made for each allele 

using the calculated mean intensity and the log ratio of the major/minor allele. 

𝑙𝑙𝑙𝑙𝑙𝑙2�
𝐶𝐶𝐶𝐶3𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚 ∗ 𝐶𝐶𝐶𝐶5𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚
𝐶𝐶𝐶𝐶3𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚 ∗ 𝐶𝐶𝐶𝐶5𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚
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SN4741 characterization  

Cell culture of SN4741 cells  

 SN4741 cells were cultured in high glucose DMEM with 10% FBS and 1X 

penicillin and streptomycin at 37°C. To induce differentiation, 24 hours after the cells 

were passaged, the flask was moved to differentiation media (high glucose DMEM 

with 0.5% FBS) and were cultured at 39°C for 48 hours.  

cDNA synthesis and RT-qPCR for DA neuron markers 

RNA was extracted using the RNeasy Mini Kit (Qiagen). Each RNA sample 

was submitted to first strand cDNA synthesis using the SuperScript III First-Strand 

Synthesis System for RT-PCR (Invitrogen), following the Oligo(dT) method.  

Primers (Supplementary Table 3.4) were designed using Primer-BLAST212 

under default parameters with the requirement for exon-exon junction spanning 

specified. qPCR was performed using Power SYBR Green Master Mix (Applied 

Biosystems). Reactions were run in triplicate, following default SYBR Green Standard 

cycle specifications on the Viia7 Real-Time PCR System (Applied Biosystems). 

Relative quantification followed the 2-ΔΔCT method, normalizing results to Actb in the 

samples at the non-permissive temperature. 

Karyotyping 

G-banded karyotyping was performed by WiCell on twenty cells. Resulting 

karyograms were quantified and the karyotypes were summarized and plotted.  
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Single-cell RNA-seq 

 Cells at both the permissive and non-permissive temperatures were 

trypsinized and scRNA-seq libraries were generated following the Chromium 10X 

pipeline. Four replicates at each temperature across 17,000 cells were assayed.  

 scRNA-seq analysis was performed with Seurat. Cells were filtered to remove 

stressed/dying cells (% of reads mapping to the mitochondria > 15%) and empty 

droplets and doublets (number of unique genes detected less than 200 or greater than 

6,000). Cells were normalized using `SCTransform()` and the effect of percent 

mitochondrial reads and the sequence depth was corrected for. Principal component 

(PC) analysis was performed and a PC cut-off was identified using `JackStraw()` and 

`ElbowPlot()`. UMAP clustering using this PC cutoff and a minimum distance of 0.001 

was used for dimensionality reduction.  

 Cells were scored for their stage in the cell cycle using `CellCycleScoring()` on 

cell cycle genes provided by Seurat (`cc.genes`). Expression was plotted on a log scale 

with `VlnPlot()` for a variety of proliferation and DA neuron markers (shown: Mki67, 

Th, Nr4a2, Slc6a3).  
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3.8 Figures and supplementary materials 

Figure 3.1: Identification of transcription factors (TFs) important to DA 
neurons 

 

(A) The kmer predicted to have the greatest regulatory potential underlying MB 

ATAC-seq peaks corresponds to the Rfx family of TFs. (B) RNA-seq quantification in 

these same cells indicates this enrichment is likely due to Rfx3 or Rfx7 activity. 

Examining the ATAC-seq signal over predicted binding sites reveals a robust TF 

footprint (C) and a general enrichment of reads overlapping Rfx sites genome-wide 

(D). (E-H) Similarly, a kmer corresponding to the TFs Foxa1/2 have similar evidence 

for their activity. (I-J) The third ranked motif likely corresponds to Ascl1, and while 

it fails to leave a robust TF footprint (K), there is clear enrichment of ATAC-seq signal 

overlapping genome-wide predicted Ascl1 binding sites (L). (M, N) Nr4a2, canonically 

associated with DA neuron biology, is identified as a highly expressed TF likely 

contributing to the regulatory potential of the putative CREs however, it fails to leave 

a TF footprint in the cut-site patterns around predicted motif sites (O) and is only 

mildly enriched for ATAC-seq reads over its predicted binding sites (P). 
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Figure 3.2: Investigating rs4988232 for an effect on enhancer activity  

 

(A) The distribution of gkm-SVM scores for all disease-associated variants scored in 

the midbrain and forebrain. (B) The schizophrenia-associated variant, rs4988232, is 

the top variant ranked by deltaSVM as highly damaging. (C) This variant is predicted 

to disrupt an RFX binding site. (D) None of the other variants in high LD (r2 ≥ 0.8) 

are predicted to be nearly as damaging as rs4988232. (E, F) When these variants are 

scored with deltaSVM using a different cell type vocabulary, this locus is not predicted 

to be damaging to transcription factor binding. (G) 500bp centred on each variant was 

cloned for luciferase assay (red: top ranked variant). (H) Luciferase activity for the 

reference and alternative alleles of each variant. The top predicted variant does not 

validate, and nine of the ten constructs do not appear to direct reporter activity above 

background levels.  
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Figure 3.3: Investigating the top variants falling in midbrain open chromatin 
regions for their effect on enhancer activity 

 

(A) The distribution of gkm-SVM scores for all disease-associated variants that 

overlap an open chromatin region in the midbrain. (B) Summary of the deltaSVM 

scores for the top eleven variants that fall in midbrain open chromatin regions. (C) 

Schematic of the variants, the open chromatin regions and genes that they overlap. 

(D) None of the tested variants, either as the reference or alternate allele, exceed 

background levels of reporter activity (“EMPTY”). (E) Even the enhancer at SNCA, 

containing either the reference sequence (non-risk) or the haplotype containing the 

two risk variants, fails to direct robust reporter activity in the SK-N-SH cell line. 
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Figure 3.4: Identification of proteins whose binding is impacted by the 
implicated PD-risk SNPs 

 

(A, B) MA plots for both rs2737024 and rs2583959 indicating the magnitude of the 

effect of the minor and major allele on binding. Cut-off for differential binding: 

log2(major/minor) ≥ 1.5 or ≤ -1.5. (A) NOVA1 and APOBEC3C (green circles) bind at 

rs2737024 with greater affinity for the major allele, while PEG10 and SNRPA (red 

circles) have a greater affinity for the minor allele. (B) CHMP5 (red circle) has a 

greater affinity for the minor allele of rs2583959. (C) Representative images of the 

protein binding for each of the differentially bound proteins. (D) Expression analysis 

in the MB and FB DA neurons for each of the differentially bound proteins indicate 

Nova1, Peg10, Snrpa, and Chmp5 to be highly expressed in these populations, while 

none of the Apobec family member genes are expressed (RPKMs ≤ 1, data not shown). 

Red bar is the mean expression of the four replicates (black dots). 
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Figure 3.5: Initial characterization of the SN4741 cell line suggests it is an 
unstable, triploid cell line that express markers of differentiation but not of 
dopaminergic neurons 

 

(A) RT-qPCR indicates the cells, when shifted a non-permissive temperature, begin to 

express markers of dopaminergic neurons at high levels. (B) A representative 

karyogram of SN4741 cells, indicating the likely triploid nature of the cells. Also 

shown are the marker chromosomes. (C) Summary of the karyotypes of 20 SN4741 

cells demonstrating the instability of aneuploidy in these cells. (D) scRNA-seq at the 

permissive and non-permissive temperature indicates the cells at each temperature 

are transcriptionally distinct. (E, F) Shifting the cells to the non-permissive 

temperature is accompanied by a shift in cell cycle stage from G2M and S phase to 

primarily G1 phase. (G) A marker of proliferation, Mki-67, is only expressed at the 

permissive temperature, corroborating the cell cycle analysis shift. (H) There is no 

detected expression of tyrosine hydroxylase, Th, at either temperature. (I, J) Other 

markers of DA neurons, Nr4a2 (I) and Slc6a3 (J) are also not detected, calling into 

question the dopaminergic nature of these cells.  
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Supplementary Figure 3.1: Motif analysis identifies transcription factors 
(TFs) important specifically for MB regulatory potential 

 

(A-D) The motifs with the greatest regulatory potential specific to the MB and the 

potential TF matching that motif were identified. (E-H) Expression analysis of these 

identified TFs confirm the sequence based analysis for Foxa1 (E), Foxa2 (F), and 

Nr4a2 (H). Foxd3 (G), while prioritized on the basis of sequence composition, is not 

expressed in MB or FB DA neurons (≤1 PKM) and was likely identified as a 

consequence of the sequence degeneracy within TF families.  
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Supplementary Table 3.1: Summarizing the disease-associated variants 
collected for scoring by deltaSVM 

Disorder # of lead 
SNPs 

# of LD 
friend SNPs PMID 

Alzheimer disease 19 916 24162737 
Epilepsy 4 317 25087078 
Parkinson disease 26 3,700 25064009 
Progressive supranuclear palsy 7 3,304 21685912 
Schizophrenia 98 3,785 25056061 
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Supplementary Table 3.2: Primer sequences used to clone the constructs for 
luciferase assay (bold: BP Gateway arms) 

  
Variant   Primer sequence Product 

size 

To
p 

va
ri

an
t s

co
re

d 
by

 d
el

ta
SV

M
 p

lu
s 

th
os

e 
in

 h
ig

h 
LD

 rs56335113 F GGGGACAAGTTTGTACAAAAAAGCAGGCTAGTGATCATAGGGATTCTGAGCCC 
471 

R GGGGACCACTTTGTACAAGAAAGCTGGGTGAGGGAGTTTACCCTGAAGGAG 

rs2015244 F GGGGACAAGTTTGTACAAAAAAGCAGGCTTTCCCACCAGCTCTTCTGTTC 
552 

R GGGGACCACTTTGTACAAGAAAGCTGGGTTGGATTCAGTGTTGAGGGATGG 

rs12740833 F GGGGACAAGTTTGTACAAAAAAGCAGGCTGGAGGAAGCAGGAAGTCTCAC 
532 

R GGGGACCACTTTGTACAAGAAAGCTGGGTCCATCTGCTCTCCGGTTCAT 

rs267700 F GGGGACAAGTTTGTACAAAAAAGCAGGCTCCTGGAACACCTAGATTCCTGAG 
471 

R GGGGACCACTTTGTACAAGAAAGCTGGGTTCTGAAGGCTGGTTTGTTCATTC 

rs1009080 F GGGGACAAGTTTGTACAAAAAAGCAGGCTGAGCTCCACGTGTTCTTGGT 
506 

R GGGGACCACTTTGTACAAGAAAGCTGGGTCCAAATGCTGGAACGCTGAG 

rs4949526 F GGGGACAAGTTTGTACAAAAAAGCAGGCTCCCAAGTGCCCTGATGGTTTA 
578 

R GGGGACCACTTTGTACAAGAAAGCTGGGTGCACTAGAAGCAGGGCCATT 

rs267698 F GGGGACAAGTTTGTACAAAAAAGCAGGCTGGGAGGGACCATTCCCAAAG 
474 

R GGGGACCACTTTGTACAAGAAAGCTGGGTAGGACTGAGCTTGTGATGGC 

rs1498232 F GGGGACAAGTTTGTACAAAAAAGCAGGCTGCGGGACCTTGGTAGTGAA 
494 

R GGGGACCACTTTGTACAAGAAAGCTGGGTACGCCTCCCTGATTTTCGTTA 

rs12044736 F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACTCTGTCATGCCCCTACT 
472 

R GGGGACCACTTTGTACAAGAAAGCTGGGTACCAGCTGATTATGCAGTGTG 

rs2008141 F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATCAGCCACCACTGTCTGC 
628 

R GGGGACCACTTTGTACAAGAAAGCTGGGTGACATGGCTAGAGGACATGC 

To
p 

va
ri

an
ts

 b
y 

de
lta

SV
M

 in
 M

B 
op

en
 ch

ro
m

at
in

 re
gi

on
s rs35946436 F GGGGACAAGTTTGTACAAAAAAGCAGGCTGGGCTGGGGAAGGTTAAACA 

517 
R GGGGACCACTTTGTACAAGAAAGCTGGGTGTTACACACTCAGCCCCACA 

rs2890072 F GGGGACAAGTTTGTACAAAAAAGCAGGCTAGGAGTTCCCTCCCTTAAGAC 
702 

R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTCCTAGGGACACAGGACTT 

rs72799113 F GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAGGTCAGCAGATGTCAGAA 
587 

R GGGGACCACTTTGTACAAGAAAGCTGGGTCAAACATCCTCGTTTCGCTTGT 

rs1555398 F GGGGACAAGTTTGTACAAAAAAGCAGGCTAATGGGCTGGAAAGGCTTCG 
614 

R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGTGCACCCCTGATCTT 

rs56043078 F GGGGACAAGTTTGTACAAAAAAGCAGGCTTGAAGGAGGGACTCGGGAAG 
655 

R GGGGACCACTTTGTACAAGAAAGCTGGGTAACCGTTTTCTGTGGAACCC 

rs2299319 F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGCTTCTGACCAAACCCTGTC 
561 

R GGGGACCACTTTGTACAAGAAAGCTGGGTCCCTATCCCCATTCGGTCTTT 

rs9271182/ 
rs9271179 

F GGGGACAAGTTTGTACAAAAAAGCAGGCTGTACTTAGTATTGGTGGGGGAGAA 
488 

R GGGGACCACTTTGTACAAGAAAGCTGGGTTGGGCTTTGAATTTAGGCAGAAC 

rs34096562 F GGGGACAAGTTTGTACAAAAAAGCAGGCTAAATTCCCCCTAAACAAACACCG 
632 

R GGGGACCACTTTGTACAAGAAAGCTGGGTTACAGTCTCACTGTGGGGAAAAT 

rs12656571 F GGGGACAAGTTTGTACAAAAAAGCAGGCTAGGCAGCTGAAACATTAGCCT 
513 

R GGGGACCACTTTGTACAAGAAAGCTGGGTAGAAAACCCAAGATGCACATTAGT 

rs6904764 F GGGGACAAGTTTGTACAAAAAAGCAGGCTTGGGGAAACCTCTACTTTTGGAT 
529 

R GGGGACCACTTTGTACAAGAAAGCTGGGTTCCAGTGTTCTTACGAAAGGC 
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Supplementary Table 3.3: Primer sequences used for protein binding assays 

 
rs2737024-maj acatcacattgtcctAttacattcttgcccaACCCTATAGTGAGTGCTATTA 
rs2737024-min acatcacattgtcctGttacattcttgcccaACCCTATAGTGAGTGCTATTA 
rs2583959-maj ctttgttaataaatcCttgtataaaccccacACCCTATAGTGAGTGCTATT 
rs2583959-min ctttgttaataaatcGttgtataaaccccacACCCTATAGTGAGTGCTATT 

 

Supplementary Table 3.4: RT-qPCR primers for testing expression of 
dopaminergic neuron markers 

Marker Forward Reverse 
Th CTGTCCACGTCCCCAAGGTTCA CAATGGGTTCCCAGGTTCCG 
Actb TGGCTCCTAGCACCATGAAG AGCTCAGTAACAGTCCGCCTA 
Foxa2 CCCTACGCCAAATGAACTCG GTTCTGCCGGTAGAAAGGGA 
Nr4a2 GTGTTCAGGCGCAGTATGG TGGCAGTAATTTCAGTGTTGGT 
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Chapter 4: The developmental origins of Parkinson 
disease 
4.1 Investigating the pathogenesis of Parkinson disease by single-cell 

RNA-seq 

Parkinson disease (PD) is the second most common neurodegenerative disease 

and is characterized by progressive motor phenotypes, including resting tremor, 

bradykinesia, rigidity, and postural instability2. These symptoms are largely the effect 

of substantial degeneration of midbrain dopaminergic (DA) neurons, specifically those 

in the substantia nigra4. This preferential degeneration and the appearance of protein 

aggregates of α-synuclein, in the form of Lewy bodies, are the pathological hallmarks 

of PD. How these protein aggregates result in cell death and why these processes 

might preferentially affect the DA neurons of the substantia nigra is not well 

understood.  

 PD can also present with a variety of non-motor phenotypes, including 

anosmia, constipation, and REM sleep disorders, which often precede the motor 

phenotypes by years to decades3,262. This prodromal phase of PD suggests that 

neurodegeneration is occurring long before the clinical presentation of PD. Supporting 

this, by the time that movement phenotypes become apparent and a clinical diagnosis 

is made, up to 40-60% of DA neurons of the substantia nigra have already been lost4. 

It is therefore important to examine early time points, before the neurodegeneration 

has become apparent, in order to elucidate the mechanisms that lead to the 

preferential loss of nigral DA neurons.  
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 Using a mouse model of PD, we set out to characterize populations of midbrain 

DA neurons at an early post-natal time point and identify subpopulations, genes, and 

pathways disrupted in PD. First, to examine the early development of DA neuron cell 

type subpopulations, we performed single-cell RNA-seq (scRNA-seq) on populations of 

wildtype DA neurons at both embryonic day E15.5 and post-natal day P7. This 

analysis defined the heterogeneity of DA populations over developmental time in the 

brain, revealing the development of distinct populations of mature DA neurons by P7. 

Next, at this early post-natal time point, we compared midbrain DA neurons in a 

mouse model of PD and identify differences. We find that, even this early in 

development, there are significant alterations in neural differentiation, gene 

expression, and mitochondrial function. Finally, we present a model to unify these 

observations, suggesting PD is a disorder that begins to manifest during early neuron 

development and maturation. 

4.2 Characterizing E15.5 and P7 dopaminergic neurons in wildtype 

mice4 

In order to characterize DA neuros, we performed scRNA-seq on cells isolated 

from distinct anatomical locations of the mouse brain over developmental time. We 

used fluorescence-activated cell sorting (FACS) to retrieve single DA neurons from the 

Tg(Th-EGFP)DJ76Gsat BAC transgenic mouse line (Th:eGFP), which expresses 

EGFP under the control of the tyrosine hydroxylase locus171. We microdissected both 

midbrain (MB) and forebrain (FB) from E15.5 mice, extending our analyses to MB, 

                                                      
4 This section and associated methods have been published in the American Journal of Human Genetics and 
adapted for use in this thesis. Hook, P. W. et al. Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs 
Candidate Gene Selection for Sporadic Parkinson Disease. Am. J. Hum. Genet. 102, 427–446 (2018)151. 
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FB, and olfactory bulb (OB) in P7 mice (Figure 4.1A). Brains from four and five mice 

were pooled for E15.5 and P7, respectively. E15.5 and P7 time points were chosen 

based on their representation of stable MB DA populations, either after neuron birth 

(E15.5) or between periods of programmed cell death (P7)263 (Figure 4.1A). 

To assess the transcriptomes of these tissues and time points, we sequenced 

~95 cells from each, using the Smart-Seq2 protocol138, for a total of 473 single cells 

sequenced to an average depth of ∼8×105 50-bp paired-end fragments per cell. We 

performed standard quality control and filtered cells for total mass, total number of 

mRNAs, and total number of expressed genes per cell. We then used principle 

component analysis (PCA) in order to identify and remove cells representing 

oligodendrocytes and other support cells. After this filtering, 396 cells remained 

for downstream analysis.  

With this data, we set out to identify clusters of single cells within time points 

and anatomical regions. First, to compare embryonic and post-natal DA neuron 

development, we analysed all cells collected. Doing so, we find that E15.5 cells from 

both MB and FB largely cluster together (Figure 4.1B), supporting the notion that 

they are less differentiated. By contrast, cells isolated at P7 mostly cluster by 

anatomical region, suggesting progressive functional divergence with time (Figure 

4.1B). We performed recursive analysis of each of these clusters to identify 

subpopulations therein. This revealed a total of 13 clusters (E15.5 FB1-2, MB1-2; P7 

OB1-3, FB1-2, MB1-4; Figure 4.1C), demonstrating the diversity of DA neuron 

subtypes and their progressive differentiation across developmental time.  
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With subpopulations of DA neurons defined by our data, we set out to assign a 

biological identity to each cluster. To do this, we identified differentially expressed 

genes between clusters within each time point, then identified marker genes for each 

cluster within each time point (summarized in Table 4.1). Among the four clusters 

identified at E15.5, two were represented in t-SNE space as a single large group that 

included cells from both MB and FB (E15.MB1, E15.FB1), leaving two smaller clusters 

that were comprised solely of MB or FB cells (Figure 4.1D). Both E15.MB1 and 

E15.FB1 show markers consistent with neuroblast populations264–272. The isolated MB 

cluster (E15.MB2) specifically expressed Foxa1, Lmx1a, Pitx3, and Nr4a2 and thus 

likely represents a post-mitotic DA neuron population273. Similarly, the discrete 

E15.FB2 cluster expressed markers of post-mitotic FB/hypothalamic neurons, 

including Six3, Six3os1, Sst, and Npy274–278 (Figure 4.1E). These embryonic data did 

not discriminate between cells populating known domains of DA neurons, such as the 

substantia nigra (SN) or ventral tegmental area (VTA). 

By contrast, P7 cells mostly cluster by anatomical region and each region has 

defined subsets (Figure 4.1F). Focusing specifically on the midbrain DA neurons, we 

identified four P7 MB DA subset clusters (Figure 4.1G). Marker gene analysis 

confirmed that three of the clusters correspond to DA neurons from the VTA (Otx2 

and Neurod6279,280; P7.MB1), the periaqueductal gray area (PAG; Vip and Pnoc149,281–

283; P7.MB3), and the SN (Sox6, Aldh1a7, Ndnf, Serpine2, Rbp4, and Fgf20149,279,284,285; 

P7.MB4). These data are consistent with recent scRNA-seq studies of similar 

populations149,283. The only cluster without a readily assigned identity was P7.MB2. 

This population of P7 MB DA neurons is likely a neuroblast-like population based on 

marker gene analysis149,286–290. Like the overlapping E15.MB1 and E15.FB1 clusters, 
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this cluster preferentially expresses markers of neuronal precursors, differentiation, 

or maturation. Additionally, this cluster exhibits gene expression consistent with 

embryonic mouse neuroblast populations149 as well as cell division and neuron 

development286–290. 

These results indicate a unique opportunity; at post-natal day 7 there are DA 

neurons that are mature and present in their ultimate anatomical locations, but there 

also remains a group of still developing neuroblasts. Further investigation at this time 

point would allow us to compare the impact of PD mutations on the mature DA 

neurons and structures that persist through to adulthood, but also consider how the 

PD mutation might impact DA neural development.  

4.3 Characterizing P7 dopaminergic neurons in a mouse model of 

Parkinson disease  

To assess the early developmental origins of PD, we performed scRNA-seq on 

midbrain DA neurons in a mouse model of PD. The A53T mouse model (B6;C3-

Tg(Prnp-SNCA*A53T)83Vle/J; JAX: 004479)291 expresses mutant human SNCA 

under the direction of the mouse prion protein promoter. This mouse model 

recapitulates human PD phenotypes, like progressive movement impairments and α-

synuclein aggregates) and demonstrates an allele-dosage effect, with the age of onset 

earlier for homozygotes (14-15 months) than for hemizygotes (22-28 months)291. We 

bred this allele onto the Th:eGFP background to allow retrieval of DA neurons. On a 

wildtype, hemizygous, and homozygous A53T background (Supplementary Figure 

4.1), we microdissected the midbrain from two litters of P7 pups and collected 13,518 

single cells by FACS for scRNA-seq. 
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Cells from each genotype were processed with the 10X Genomics pipeline for 

cDNA generation and library preparation. Following sequencing, it became apparent 

that our cells had not made it through this process completely intact and exhibited 

high levels of ambient RNA. As a consequence of either FACS, the 10X platform, or a 

combination of subjecting our neurons to both, our libraries exhibited a low fraction 

of reads in cells (~30%). Following sequencing, we captured 2,430 cells, with ~170,000 

reads per cell. We further filtered these cells in order to remove empty droplets, 

doublets and multiplets, and stressed/dying cells by considering the number of unique 

genes, read depth, and percent of reads mapping to the mitochondria. Following 

filtering, 1,357 cells remained for analysis.  

We performed clustering analysis on these cells to identify subpopulations 

present in our samples. Doing so, we identify seven clusters (Figure 4.2A). 

Preliminary expression analysis suggested two of these clusters (clusters 5 and 6) 

display little evidence of Th or eGFP expression (Figure 4.2B, Supplementary 

Figure 4.7) and likely consist of contaminating cell types, with cluster 5 expressing 

high levels of oligodendrocyte and other support cell markers292–297 (Figure 4.2C, 

Supplementary Figure 4.6). Marker analysis of this contaminating cell cluster 

identifies genes enriched in this cluster (eg: Zic1, Nfib, Id2, Tcf4; Figure 4.2D)298–303, 

which in consultation with ISH slides from the Allen Mouse Brain Atlas304, suggest 

these are granule cells, likely from either the hippocampus or cerebellum 

(Supplementary Figure 4.8). Consequently, this cluster and the contaminating 

oligodendrocyte cluster were removed from further analysis.  

Considering only the remaining dopaminergic neurons, we sought to assign 

each cluster to a biological identity or anatomical region. We performed differential 
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gene expression analysis between clusters to identify markers genes for each cluster 

(Figure 4.2E-I, Table 4.2). Comparing these markers with marker genes established 

from the literature149,279–287 and our work on wildtype P7 DA neurons151, we were able 

to assign a cell type to each cluster, identifying clusters corresponding to: the VTA, a 

post-natal neuroblast population, two SN clusters (SN1 and SN2), and the PAG 

(Figure 4.3A, Supplementary Figure 4.9). We have begun to confirm these cluster 

assignments with single molecular RNA fluorescence in situ hybridization (smFISH) 

on brain sections from wildtype P7 mice, using the genes indicated in Figure 4.3B-I.  

Clusters 0, 2, and 4 – tentatively the VTA, SN1 and SN2 – are transcriptionally 

related to each other, sharing high expression of many markers genes (eg: Aldh1a1 

and Ddc, Figure 4.4A; extended in Supplementary Figure 4.9). Clusters 2 and 4 

especially, both assigned to the SN, are highly similar in their expression patterns. 

We had not previously observed a separation of SN DA neurons in our study of 

wildtype P7 MB DA neurons, perhaps due to the relatively few cells sequenced (n = 

80 MB neurons). With a combined 337 cells assigned to the SN clusters here, resolving 

nuanced differences becomes possible. Here, we observe cluster 2 (SN1) to exhibit 

higher expression of DA neuron markers, like Th and Slc6a3 (Figure 4.4A, 

Supplementary Figure 4.9), while cluster 4 (SN2) has restricted expression of DA 

neuron markers, like Pitx3 and Foxa1 (Supplementary Figure 4.9)175,177. We will use 

smFISH against the genes indicated in Figure 4.4B-D to confirm these subtle 

transcriptional differences between clusters 0, 2, and 4, paying particular focus to 

differences in spatial distribution of the two SN clusters.  
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4.4 The Parkinson disease mutation alters cell maturation, gene 

expression and mitochondrial dynamics  

Ultimately, our goal was to examine the effects of the A53T PD mutation on 

the transcriptomes of developing MB DA neurons. Towards this, first, we confirmed 

that the transgene is expressed at P7. Given the transgene incorporates the mouse 

Prnp 3’ and 5’ UTRs291 and the 3’ sequencing method employed by 10X Genomics137, 

reads belonging to the endogenous Prnp gene and the A53T transgene are 

indistinguishable. Thus, if the mutant transgene is active, we expect to see an 

apparent increase in Prnp expression in hemizygote and homozygote cells over 

wildtype. Indeed, we observe an increase in the number of cells with detectable Prnp 

expression between homozygote cells (79.2%) and wildtype cells (40.2%), with 

homozygotic cells expressing significantly higher levels (~3.3 fold increase) of Prnp 

(Figure 4.5A). 

Next, we examined how the presence of the A53T mutation impacts the 

distribution of cells among the subpopulations (Figure 4.5B), particularly focusing on 

alterations to the SN clusters, given the preferential degeneration of these neurons in 

PD. We observe approximately double the number of mutant cells in the two SN 

clusters and interestingly, given the physical interspersion of the post-natal 

neuroblast population with the SN151, we see approximately half as many neuroblast 

cells present in homozygous mutant cells. This alteration could indicate a precocious 

differentiation phenotype, with mutant neurons exiting the neuroblast stage and 

maturing into SN cells, a substantial difference to observe as early as P7. Additionally, 

we observe no apparent changes to the VTA cluster proportions by genotype, but do 

see an unexpected halving of cells in the PAG in homozygotes compared to wildtypes. 



119 
 

Quantifying cell proportion differences from scRNA-seq data is fraught with false 

positives, so we will validate these cell population differences by smFISH and quantify 

the number of cells in each cluster, comparing the three genotypes. 

 Finally, we sought to identify transcriptional differences between the 

genotypes resulting from the mutation on a cluster-specific and global basis. The two 

SN clusters had no significantly differentially expressed genes by genotype, however 

the neuroblast population had four genes downregulated, all mitochondrial (mt-Co3, 

mt-Nd1, mt-Atp6, and mt-Cytb; Figure 4.6A), and a single gene, Rtn3, upregulated 

(lnFC = 0.88, adjusted p-value = 0.016; Figure 4.6A, Table 4.3). Reticulon-3, Rtn3, is 

involved in the ER/secretory pathway and is likely involved in ER stress-mediated 

apoptosis via caspase signaling to the mitochondria. It has previously been implicated 

in Alzheimer disease, and it has been demonstrated that knockdown of RTN3 

increases ß-amyloid levels while overexpression decreases ß-amyloid levels305. 

The VTA, while appearing unaffected by the mutation in terms of cellular 

proportions, has 232 genes dysregulated, 27 down- and 185 upregulated (Table 4.3). 

Of the top genes upregulated in the mutant condition, we find many genes that have 

previously been implicated in PD or other neurodegenerative disorders; for example, 

the top upregulated gene is Cck (lnFC = 1.931, adjusted p-value = 3.74 x 10-3; Figure 

4.6B), whose expression has been associated with the visual hallucinations that 

sometimes co-occur with PD306,307. Resp18 is also significantly upregulated (lnFC = 

1.203, adjusted p-value = 8.43 x 10-6; Figure 4.6B), and its expression has previously 

been associated with PD – downregulation of RESP18 protected DA neurons against 

damage by MPTP, a chemical used in the modeling of PD, and its overexpression 

aggravated cell death in similar models308,309. Of the 27 genes downregulated, one, 
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Wsb1 (lnFC = -0.857, adjusted p-value = 1.89 x 10-4; Figure 4.6B) is present in Lewy 

bodies in LRRK2-associated PD and is involved in the ubiquitination and aggregation 

of LRRK2310. Another interesting downregulated gene is Gria2 (lnFC = -0.492, 

adjusted p-value = 1.53 x 10-4; Figure 4.6B), a subunit of an AMPA receptor, whose 

expression is associated with ALS, neurodevelopmental disorders, and addiction 

behaviours311,312. There are also 11 genes involved in the mitochondria and the 

electron transport chain that are significantly downregulated, which includes those 

genes that were downregulated in the neuroblast populations.  

To assess whether this mitochondrial dysregulation is a common phenomenon 

in the mutant cells and to increase our power to detect differences between the 

genotypes, we explored global transcriptomic differences by genotype, regardless of 

cluster. Doing so, we identify 388 dysregulated genes, with 91 downregulated genes 

and 297 genes that are upregulated (Table 4.3). Pathway analysis313 of these genes 

identifies the oxidative phosphorylation pathway as dysregulated with 37 

differentially expressed genes involved in this process. Interestingly, 12 of the 

dysregulated genes in the pathway are downregulated while the other 25 genes are 

upregulated (Figure 4.7A) and strikingly, whether the gene is encoded on the 

mitochondrial or nuclear genome correlates with the direction of dysregulation. Genes 

that are encoded on the mitochondrial genome are downregulated and those that are 

encoded on the nuclear genome are upregulated in the mutant cells. To our knowledge, 

this pattern of expression has not been observed in PD models before. Opposite to 

what we observe here, significant downregulation of nuclear-encoded genes, but not 

mitochondrial-encoded genes, has previously been observed in Alzheimer disease314. 

We will confirm these gene expression changes and those that are cluster-specific 
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through smFISH and will further examine mitochondrial function in the mutant mice. 

We will assess the mtDNA copy number to look for biogenesis defects, and use 

MitoTracker assays and cryoEM to examine mitochondrial size, number, location, and 

assess gross morphological characteristics.  

4.5 Discussion 

 Understanding the timing and predisposing causes of the degeneration of DA 

neurons of the substantia nigra remains challenging. Examination of developing or 

early post-natal neurons could illuminate processes occurring far before the 

neurodegeneration becomes apparent. Understanding these developmental origins of 

PD could yield new insights into PD pathogenesis and help inform early interventions 

for the management or prevention of PD. To this end, we assayed wildtype and mutant 

DA neurons in a mouse model of PD for transcriptional differences occurring at post-

natal day 7. Despite this early developmental stage, we identified a variety of 

subpopulations of midbrain DA neurons, discovered a potential 

maturation/differentiation defect, and uncovered extensive gene expression 

alterations implicating mitochondrial dysfunction. 

 Our strategy focused on assaying specifically the DA neurons of the midbrain, 

given their known role in the movement phenotypes of PD, in a mouse model of 

familial PD using FACS. However, it is not just the DA neurons of the substantia 

nigra that are degenerated in PD – many of the prodromal symptoms of PD are likely 

the result of degeneration of other classes of neurons (eg: serotonergic, GABAergic, 

glutamatergic) in structures throughout the brain315–318. Additionally, the 

degeneration of substantia nigra neurons in PD may not be a cell-autonomous process; 
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LRRK2, the most commonly mutated gene in PD, is expressed in microglia as well as 

DA neurons319–321. Thus, to get a more rich view of the cells that may be dysregulated 

in PD, performing scRNA-seq in unsorted, gross-dissected regions of the brain could 

yield greater insights into the mechanisms by which PD-predisposing mutations exert 

their effects on disease pathogenesis. This strategy would also eliminate the need to 

subject the cells to FACS, which could reduce the ambient RNA background that our 

study design suffered from, improving the yield of cells assessed.  

 In examining the proportions of cells in each cluster stratified by genotype, we 

observed an approximate doubling of cells present in the PAG and the two SN clusters, 

and a halving of cells present in the post-natal neuroblast cluster. It is interesting to 

observe an increase in SN neurons in the mutant mice, given PD is a 

neurodegenerative disease and by the time of presentation, patients have fewer DA 

neurons in the SN. In the development of DA neurons in the mouse, there still remains 

a wave of programmed cell death occurring between P10 and P30263. It may be that 

this precocious differentiation is depleting the neuroblast pool for recovery following 

this wave of cell death. We will be testing this hypothesis by inspecting the various 

cell proportions during and following this programmed cell death, and comparing the 

genotypes for alterations in subpopulation proportions.  

 Given the observed dysregulation of cellular proportions, we expected there to 

be gross changes in gene expression by genotype in a cluster specific- and global 

manner. For example, we see specific upregulation of Cck in mutant DA neurons in 

the VTA cluster and altered expression of a variety of other genes including several 

others already known to PD biology like Resp18 and Wsb1. Despite identifying no 

differentially expressed genes in the SN clusters, we do observe a handful of genes 
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that are up- and downregulated in the precursor neuroblast population, including 

several mitochondrial genes. This dysregulation is reflected in the mutant cells as a 

whole: there is global dysregulation of genes involved in the oxidative phosphorylation 

pathway.  

 Mitochondrial dysfunction has been extensively associated with sporadic, 

familial and environmentally-induced PD322–329. A long standing hypothesis implicates 

aberrant levels of reactive oxygen species with PD, focusing on the high energy 

demands of the substantia nigra as the source of the preferential degeneration of these 

neurons. In particular, disruptions to complex I of the electron transport chain have 

been associated with PD325,330,331. Here, at a very early developmental age, we observe 

a striking pattern of dysregulation of electron transport chain associated genes, 

involving all five complexes, in which the encoding genome determines the direction 

of dysregulation. This is novel, unusual expression pattern that could suggest a 

disconnect in communication between the mitochondria and the cell. One mechanism 

we are particularly interested in is mitochondrial fission and fusion. In a variety of 

models, α-synuclein over-expression has recently been demonstrated to produce 

fragmented mitochondria through disrupted fission and fusion processes332–335. 

Importantly, in the A53T mouse model of PD that we use here, fusion and fission 

defects have been previously observed, but only in late stages of the disease (i.e.: not 

detected at 6 months but present at 12 months)336.  

 A mitochondrial fission or fusion problem during DA neuron development leads 

us to a particularly compelling hypothesis to unify our observations of mitochondrial 

dysregulation and precocious/aberrant maturation of neuroblasts into substantia 

nigra neurons. In the process of neuronal differentiation, there is a switch from 
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glycolysis to oxidative phosphorylation for energy production and this shift is 

accompanied by changes in mitochondrial morphology, dependent on fission and 

fusion (Figure 4.8)337–339. Our observations would then suggest that mutant DA 

neurons early in development suffer from defects in mitochondrial dynamics that 

ultimately result in the precocious maturation of neuroblasts into SN neurons. We are 

actively assaying mitochondria and their dynamics in mutant DA neurons to pursue 

this hypothesis. If this fission/fusion mechanism is at the root of the early 

transcriptional, cellular and maturation defects we observe, it presents a lucrative 

target for modulation in early therapeutics for the prevention of PD.  

 That any differences are observed between PD mutant mice and their wildtype 

littermates at just post-natal day 7 is perhaps the most surprising result of these 

experiments. Despite months remaining before these mice begin to develop PD-related 

phenotypes, there are stark differences already present in midbrain DA neurons. 

These neurons will persist into adulthood, at which point the differences will become 

apparent and manifest in movement phenotypes. We suggest here a possible 

developmental origin for PD, a disease classically considered as a disease of ageing.  
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4.6 Methods 

Mouse husbandry  

E15.5 and P7 wildtype mice 

The Th:EGFP BAC transgenic mice (Tg(Th-EGFP)DJ76Gsat) used in this 

study were generated by the GENSAT Project171 and were purchased through the 

Mutant Mouse Resource & Research Centers (MMRRC) Repository. Mice were 

maintained on a Swiss Webster (SW) background with female SW mice obtained from 

Charles River Laboratories. The Tg(Th-EGFP)DJ76Gsat line was primarily 

maintained through matings between Th:EGFP-positive, hemizygous male mice and 

wild-type SW females (dams). Timed matings for cell isolation were similarly 

established between hemizygous male mice and wild-type SW females. The 

observation of a vaginal plug was defined as embryonic day 0.5 (E0.5). 

Mutant A53T mice 

B6;C3-Tg(Prnp-SNCA*A53T)83Vle/J mice (A53T; JAX strain: 004479)291 were 

obtained from Jackson Labs. The colony was maintained with hemizygous-

hemizygous matings. To generate the mouse litters for assay, a series of matings were 

performed. Hemizygous A53T mice were crossed with hemizygous DA neuron reporter 

mice, Tg(Th-EGFP)DJ76Gsat mice (Th-EGFP)171, and pups hemizygous for both 

alleles were retained. These mice were crossed with a homozygous Th-EGFP mouse, 

and male mice hemizygous for the A53T allele and homozygous for the Th-EGFP allele 

were selected. Finally, these male mice were crossed with a female A53T hemizygote, 

such that all pups will be hemizygous for the Th-EGFP allele and all three possible 

combinations of A53T alleles will be present (25% wildtype, 50% hemizygous, 25% 
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homozygous). This mating scheme is summarized in Supplementary Figure 4.1. All 

mouse procedures and husbandry were reviewed and approved by the institutional 

care and use committee.  

Neural dissociation and fluorescence-activated cell sorting (FACS) 

E15.5 and P7 wildtype mice 

At 15.5 days after the timed mating, pregnant dams were euthanized and the 

entire litter of E15.5 embryos were dissected out of the mother and immediately 

placed in chilled Eagle’s Minimum Essential Media (EMEM). Individual embryos 

were then decapitated and heads were placed in fresh EMEM on ice. Embryonic brains 

were removed and placed in Hank’s Balanced Salt Solution (HBSS) without Mg2+ and 

Ca2+ and manipulated while on ice. For P7 samples, the morning the pups were born 

was considered postnatal day 0 (P0). Once the mice were aged to P7, all the mice from 

the litter were euthanized and the brains were then quickly dissected and placed in 

HBSS without Mg2+ and Ca2+ on ice. The brains were immediately observed under a 

fluorescent stereomicroscope and EGFP+ brains were selected. EGFP+ regions of 

interest in the forebrain (hypothalamus) and the midbrain for both time points, and 

the olfactory bulbs at P7 were then dissected and placed in HBSS on ice. This process 

was repeated for each EGFP+ brain. Brain regions from four EGFP+ E15.5 mouse 

pups and from five EGFP+ P7 mice were pooled together for dissociation. 

Resected brain tissues were dissociated using papain (Papain Dissociation 

System, Worthington Biochemical Corporation; Cat#: LK003150) following the 

trehalose-enhanced protocol reported by Saxena et al.340 with the following 

modifications. The dissociation was carried out at 37°C in a sterile tissue culture 
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cabinet and RNase inhibitor was added to all solutions. During dissociation, all tissues 

at all time points were triturated every 10 min using a sterile Pasteur pipette. For 

E15.5 tissues, this was continued for no more than 40 min. For P7, this was continued 

for up to 1.5 hours or until the tissue appeared to be completely dissociated. 

Additionally, for P7 tissues, after dissociation but before cell sorting, the cell 

pellets were passed through a discontinuous density gradient in order to remove cell 

debris that could impede cell sorting. This gradient was adapted from the Worthington 

Papain Dissociation System kit. Briefly, after completion of dissociation according to 

the Saxena protocol340, the final cell pellet was resuspended in DNase dilute albumin-

inhibitor solution, layered on top of 5mL of albumin-inhibitor solution, and 

centrifuged at 70 × g for 6 min. The supernatant was then removed. 

For each time point-region condition, pellets were resuspended in 200μL of 

media without serum comprised of DMEM/F12 without phenol red, 5% trehalose 

(w/v), 25μM AP-V, 100μM kynurenic acid, and 10μL of 40U/μL RNase inhibitor 

(RNasin Plus RNase Inhibitor, Promega) at room temperature. The resuspended cells 

were then passed through a 40μM filter and introduced into a FACS machine 

(Beckman Coulter MoFlo Cell Sorter or Becton Dickinson FACSJazz). Viable cells 

were identified via propidium iodide staining, and individual neurons were sorted 

based on their fluorescence directly into lysis buffer in individual wells of 96-well 

plates for single-cell sequencing (2μL Smart-Seq2 lysis buffer + RNase inhibitor, 1μL 

oligo-dT primer, and 1μL dNTPs) according to Picelli et al138. Blank wells were used 

as negative controls for each plate collected. Upon completion of a sort, the plates were 

briefly spun in a tabletop microcentrifuge and snap-frozen on dry ice. Single-cell 

lysates were subsequently kept at −80°C until cDNA conversion. 
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Mutant A53T mice 

Neural dissociation was carried out using a modified Worthington dissociation 

system (Worthington Biochemical Corporation; Cat#: LK003150) in combination with 

a modified trehalose-enhanced dissociation protocol340, with minor modifications. P7 

pups were decapitated and their brains extracted and placed into Earle's Balanced 

Salt Solution (EBSS) with trehalose individually in a 6-well plate. Midbrain GFP+ 

regions were microdissected under a fluorescent microscope and transferred to 

Worthington papain solution containing DNaseI and an RNase inhibitor. In this 

solution, the tissue was macerated with a scalpel and placed in a 37°C, 5% CO2 

incubator. After 15 minutes, and every subsequent ten minutes for up to an hour, 

using a Pasteur pipette, the tissue in papain was triturated, until the tissue has been 

dissociated, as confirmed under a microscope. The dissociated neurons were pooled on 

the basis of their common A53T genotypes and transferred to a 15mL conical tube. To 

each sample, 75µL EBSS containing albumin-ovomucoid inhibitor, DNaseI, RNase 

inhibitor, and trehalose was added, and were centrifuged for 10 minutes at 100g. The 

supernatant was removed and the cells were resuspended in 150uL of the same EBSS 

solution and mechanically dissociated with a P200 pipette. Another 100uL of EBSS 

solution was added and mechanical dissociation continued with a P1000 pipette. Next, 

2.5mL of DMEM/F12 (without phenol red) with trehalose was added and centrifuged 

as before. The supernatant was discarded and another 200µL of EBSS solution is 

added and a final mechanical dissociation with a P200 pipette was carried out. 

Another 2.5mL of DMEM/F12 with trehalose is added and pelleted by centrifugation 

one final time.  
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These pellets were resuspended in 750μL ice-cold HBSS with calcium and 

magnesium and passed through a 40µm filter. A total of 13,518 GFP+, and therefore 

likely DA neurons, were sorted by FACS, with each genotype being sorted into a single 

well of a 96-well plate (wildtype: 5,314; hemizygous: 5,202; homozygous: 3,002), 

containing 10µL of cold PBS. Before submitting the samples to droplet formation by 

10X Genomics, the total volume in each well was brought to 35µL with PBS.  

Single-cell RNA-seq library preparation and sequencing 

E15.5 and P7 wildtype mice 

Library preparation and amplification of single-cell samples were performed 

using a modified version of the Smart-Seq2 protocol138. Briefly, 96-well plates of single 

cell lysates were thawed to 4°C, heated to 72°C for 3 min, then immediately placed on 

ice. Template switching first-strand cDNA synthesis was performed as described 

above using a 5′-biotinylated TSO oligo. cDNAs were amplified using 20 cycles of 

KAPA HiFi PCR and 5′-biotinylated ISPCR primer. Amplified cDNA was cleaned with 

a 1:1 ratio of Ampure XP beads and approximately 200pg was used for a one-quarter 

standard sized Nextera XT tagmentation reaction. Tagmented fragments were 

amplified for 14 cycles and dual indexes were added to each well to uniquely label 

each library. Concentrations were assessed with Quant-iT PicoGreen dsDNA Reagent 

(Invitrogen) and samples were diluted to ∼2nM and pooled. Pooled libraries were 

sequenced on the Illumina HiSeq 2500 platform to a target mean depth of ∼8.0 × 105 

50-bp paired-end fragments per cell at the Hopkins Genetics Research Core Facility. 
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Mutant A53T mice 

Following FACS, cells were assayed following the Chromium 10X pipeline137. 

Cell capture, cDNA generation, and library preparation were performed with the 

standard protocol for the Chromium Single Cell 3’ V2 reagent kit. Library quality and 

concentration was assessed with the High Sensitivity DNA assay on the Agilent 2100 

Bioanalyzer and the Qubit dsDNA High Sensitivity Assay (Invitrogen).  

Single-cell RNA-sequencing libraries were pooled and sequenced on the 

Illumina HiSeq 2500 and generated ~170,000 reads per cell.  

Preliminary single-cell RNA-seq data analysis  

E15.5 and P7 wildtype mice 

For all libraries, paired-end reads were aligned to the mouse reference genome 

(mm10) supplemented with the Th-EGFP+ transgene contig, using HISAT2205 with 

default parameters except: -p 8. Aligned reads from individual samples were 

quantified against a reference transcriptome (GENCODE vM8)209 supplemented with 

the addition of the EGFP transcript. Quantification was performed using cuffquant341 

with default parameters and the following additional arguments: --no-update-check -

p 8. Normalized expression estimates across all samples were obtained using 

cuffnorm341 with default parameters. 

Gene-level and isoform-level FPKM (fragments per kilobase of transcript per 

million) values produced by cuffquant341 and the normalized FPKM matrix from 

cuffnorm were used as input for the Monocle 2 single-cell RNA-seq framework342 in 

R/Bioconductor207. Genes were annotated using the Gencode vM8 release. A 
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CellDataSet (cds) was then created using Monocle 2 (v2.2.0)342 containing the gene 

FPKM table, gene annotations, and all available metadata for the sorted cells. All cells 

labeled as negative controls and empty wells were removed from the data. Relative 

FPKM values for each cell were converted to estimates of absolute mRNA counts per 

cell (RPC) using the Monocle 2 Census algorithm343 using the Monocle function 

“relative2abs().” After RPCs were inferred, a new cds was created using the estimated 

RNA copy numbers with the expression Family set to “negbinomial.size()” and a lower 

detection limit of 0.1 RPC. 

After expression estimates were inferred, the cds containing a total of 473 cells 

was run through Monocle 2's “detectGenes()” function with the minimum expression 

level set at 0.1 transcripts. The following filtering criteria were then imposed on the 

entire dataset: (1) Number of expressed genes: The number of expressed genes 

detected in each cell in the dataset was plotted and the high and low expressed gene 

thresholds were set based on observations of each distribution. Only those cells that 

expressed between 2,000 and 10,000 genes were retained. (2) Cell mass: Cells were 

then filtered based on the total mass of RNA in the cells calculated by Monocle 2. 

Again, the total mass of the cell was plotted and mass thresholds were set based on 

observations from each distribution. Only those cells with a total cell mass between 

100,000 and 1,300,000 fragments mapped were retained. (3) Total RNA copies per cell: 

Cells were then filtered based on the total number of RNA transcripts estimated for 

each cell. Again, the total RNA copies per cell was plotted and RNA transcript 

thresholds were set based on observations from each distribution. Only those cells 

with a total mRNA count between 1,000 and 40,000 RPCs were retained. 
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A total of 410 individual cells passed these initial filters. Outliers found in 

subsequent, reiterative analyses described below were analyzed and removed, 

resulting in a final cell number of 396. 

Mutant A53T mice 

Sequences were aligned to a modified mm10 genome using the CellRanger 

v3.0.1 pipeline. The mm10 genome was modified using `cellranger mkref` to include a 

custom GFP construct to allow for quantification of the dopaminergic fluorescent 

marker expression. Unique molecular identifier (UMI) counts were quantified per 

gene per cell (`cellranger count`) and aggregated (`cellranger aggr`) across samples 

with no normalization. Our data had a high background level of reads not in cells, 

possibly from the combination of FACS and the microfluidics of the 10X Genomics 

platform, and as such, our capture efficiency was low, with only 2,430 cells captured 

(wildtype: 896; hemizygous: 1,059; homozygous: 475). 

Using Seurat v3.1.1.9021, cells were examined for the number of genes 

expressed per cell, number of UMIs, and number of reads to identify empty droplets 

and doublets/multiplets (Supplementary Figure 4.2). Cells with less than 600 or 

more than 2,700 genes, those with greater than 10,000 UMIs assigned to the cell, and 

those with more than 40% of reads originating from the mitochondria were removed. 

A total of 1,357 cells made it through these filters (wildtype: 532; hemizygous: 600; 

homozygous: 225). 
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Normalization and cluster analysis 

E15.5 and P7 wildtype mice 

After initial filtering described above, the entire cds as well as subsets of the 

cds based on “age” and “region” of cells were created for recursive analysis. Regardless 

of how the data were subdivided, all data followed a similar downstream analysis 

workflow. 

The genes to be analyzed for each iteration were filtered based on the number 

of cells that expressed each gene. Genes were retained if they were expressed in >5% 

of the cells in the dataset being analyzed. These were designated “expressed_genes.” 

For example, when analyzing all cells collected together (n = 410), a gene had to be 

expressed in 20.5 cells (410 × 0.05 = 20.5) to be included in the analysis. In contrast, 

when analyzing P7 MB cells (n = 80), a gene had to be expressed in just four cells (80 

× 0.05 = 4). This was done to include genes that may define rare populations of cells 

that could be present in any given population. 

The data were prepared for Monocle analysis by retaining only the expressed 

genes that passed the filtering described above. Size factors were estimated using the 

Monocle 2 “estimateSizeFactors()” function. Dispersions were estimated using the 

“estimateDispersions()” function. 

Genes that have a high biological coefficient of variation (BCV) were identified 

by first calculating the BCV by dividing the standard deviation of expression for each 

expressed gene by the mean expression of each expressed gene. A dispersion table was 

then extracted using the “dispersionTable()” function from Monocle 2. Genes with a 
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mean expression > 0.5 transcripts and a “dispersion_empirical” ≥ 1.5∗dispersion_fit or 

2.0∗dispersion_fit were identified as “high variance genes.” 

PCA was run using the R “prcomp()” function on the centered and scaled log2 

expression values of the “high variance genes.” PC1 and PC2 were visualized to scan 

the data for outliers as well as bias in the PCs for age, region, or plates on which the 

cells were sequenced. If any visual outliers in the data were observed, those cells were 

removed from the original subsetted cds and all filtering steps above were repeated. 

Once there were no visual outliers in PC1 or PC2, a screeplot was used to determine 

the number of PCs that contributed most significantly to the variation in the data. 

This was manually determined by inspecting the screeplot and including only those 

PCs that occur before the leveling-off of the plot. 

Once the number of significant PCs was determined, t-SNE142 was used to 

embed chosen PC dimensions in a 2D space for visualization. This was done using the 

“tsne()” function available through the tsne package (v.0.1-3) in R with “whiten = 

FALSE.” The parameters “perplexity” and “max_iter” were tested with various values 

and set according to what was deemed to give the cleanest clustering of the data. 

After dimensionality reduction via t-SNE, the number of clusters was 

determined in an unbiased manner by fitting multiple Gaussian distributions over 

the 2D t-SNE projection coordinates using the R package ADPclust344. t-SNE plots 

were visualized using a custom R script. The number of genes expressed and the total 

mRNAs for each cluster were then compared. 
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Mutant A53T mice 

Single-cell RNA-seq data was processed using `SCTransform()` to normalize, 

find variable genes, and scale the data on each genotype separately. Doing so, we 

regressed out the effects of the proportion of reads mapping to the mitochondria and 

the replicate. To integrate the data, 3,000 variable features were selected 

(`SelectIntegrationFeatures()`) and integrated with the `PrepSCTIntegration()`, 

`FindIntegrationAnchors()`, and `IntegrateData()` functions.  

Principal component (PC) analysis was performed and the distribution of 

replicates and genotypes were examined to confirm the success of SCTransform and 

integration (Supplementary Figure 4.3). `JackStraw()` and `ElbowPlot()` were used 

in combination to determine the PC cut-off, PC21, for inclusion into further 

dimensionality reduction.  

t-SNE reduction was used to project the cell relationships onto two dimensions, 

using ̀ RunTSNE()` with perplexity = 50, ̀ FindNeighbors()`, and ̀ FindClusters()` with 

resolution = 0.2. Seven clusters were identified with 441, 220, 192, 181, 145, 139, and 

39 cells. Clusters were examined for whether they contained cells collected from both 

replicates and all genotypes (Supplementary Figure 4.4). Clusters were also 

examined for bias in percent mitochondrial reads, number of genes expressed, and 

sequencing depth (Supplementary Figure 4.5). Following confirmation of unbiased 

clustering, the active assay was changed to RNA and expression was normalized with 

`NormalizeData()`.   
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Estimating cell types 

E15.5 and P7 wildtype mice 

In order to find differentially expressed genes between brain DA populations 

at each age, the E15.5 and P7 datasets were annotated with regional cluster identity 

(“subset cluster”). Differential expression analysis was performed using the 

“differentialGeneTest()” function from Monocle 2 that uses a likelihood ratio test to 

compare a vector generalized additive model (VGAM) using a negative binomial 

family function to a reduced model in which one parameter of interest has been 

removed. In practice, the following model was fit: “∼subset.cluster” for E15.5 or P7 

dataset. Genes were called as significantly differentially expressed if they had a q 

value (Benjamini-Hochberg corrected p value) < 0.05. 

Mutant A53T mice 

 Clusters were examined for expression of general marker genes, including pan-

neuronal markers, oligodendrocyte/support cell markers (Supplementary Figure 

4.6), and markers of a variety of different neuronal subtypes (Supplementary 

Figure 4.7). Expression of a variety of known marker genes151 was evaluated and 

clusters were assigned to anatomical locations (Supplementary Figure 4.9). New 

markers of each region were identified using `FindMarkers()` where only positive 

markers present in over 25% of cells of that cluster, with an adjusted p-value less than 

0.05 under a Wilcoxon rank sum test, were considered (Table 4.2). To find markers 

specific to each cluster, these lists of differential genes were sorted by `pct.2`, so as to 

identify those differentially expressed genes not present in other clusters. These lists 

of genes in consultation with ISH data from the Allen Mouse Brain Atlas304 were used 
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to confirm the likely anatomical locations of the clusters, and in the case of 

contaminating cells (cluster 6), suggest the cells are granule cells (Supplementary 

Figure 4.8, Supplementary Figure 4.9).  

 Clusters not corresponding to dopaminergic neurons were removed from 

further analysis, leaving 1,179 dopaminergic neurons for analysis. 

Examining the effect of the mutant allele 

Mutant transgene expression 

 Expression of the endogenous mouse Prnp was evaluated and visualized. The 

A53T transgene was randomly inserted into the mouse genome and is bound by the 

UTRs of the mouse prion protein (Prnp)291. Since 10X Genomics technologies sequence 

from the 3’ end of the transcript, reads originating from the transgene and the 

endogenous mouse Prnp gene are indistinguishable. Were the transgene included in 

the genome assembly during alignment, multimapping reads from either of these loci 

would fail to align and no expression of either the transgene or the endogenous locus 

would be detected. As such, by not including the transgene in the reference assembly, 

reads mapping to both the transgene and the endogenous locus are assigned to the 

endogenous mouse Prnp locus. To confirm transgene expression, we simply look for 

an increase of reads mapping to the Prnp gene in the mutant cells over the levels 

detected in the wildtype cells. 
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Effect on cell proportions 

The percent of cells per genotype per cluster was calculated by dividing the 

number of cells in a cluster-genotype by the total number of cells in that genotype. 

Stacked barplots were generated. 

Differential gene analysis between genotypes 

 To identify differentially expressed genes between the genotypes, wildtype 

cells were compared against homozygous cells, using the `FindMarkers()` function on 

a per cluster basis and globally and significant genes with an adjusted p-value less 

than 0.1 under a Wilcoxon rank sum test were identified (Table 4.3).  

Pathway analysis 

 All genes up and downregulated overall were submitted to KEGG Search and 

Color Pathway Mapper313. Querying the mouse genome for associated pathways, all 

dysregulated genes were submitted and colour coded such that genes that are 

downregulated in the mutant cells are red, and those that are upregulated in the 

mutant cells are green.  

Data availability and sharing  

Single-cell RNA-sequencing data will be available at the Gene Expression 

Omnibus (GEO). All code and related documentation will be made available in a 

GitHub repository at https://github.com/sarahmcclymont/A53T_scRNAseq. An 

associated Shiny app is in development.  

  

https://github.com/sarahmcclymont/A53T_scRNAseq
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4.7 Figures and supplementary materials 

Figure 4.1: scRNA-seq identifies subpopulations of dopaminergic neurons at 
E15.5 and P7 

 

(A) A schematic of the scRNA-seq experimental procedures for isolating and 

sequencing EGFP+ cells from E15.5 and P7 DA neurons of the MB, FB and OB. 

Timeline adapted from Barallobre et al.263 (B) A t-distributed stochastic neighbour 

embedding (t-SNE) plot of all collected cells that passed quality control measures 

colored by regional identity. E15.5 cells cluster together while P7 cells cluster 

primarily by regional identity. (C) A t-SNE plot of all collected cells coloured by subset 

cluster identity. Through iterative analysis, time point-regions collected can be 

separated into 13 total subpopulations. (D) Focusing specifically on all E15.5 cells, 

coloured by regional identity, we observe an overlap of MB and FB clusters. (E) With 

marker gene analysis, we can assign functions to these clusters. There are two clusters 

made each solely of MB and FB neurons, which represent post-mitotic DA neurons 

however, there also remains a neuroblasts population, composed of both MB and FB 

cells. (F) Focusing on all P7 neurons collected, coloured by cluster identity, we observe 

nine subpopulations of cells that mostly cluster by regional identity. (G) Examining 

specifically the P7 MB neurons, there are four subpopulations of cells: the substantia 

nigra, the ventral tegmental area, the periaqueductal gray area, and a neuroblast-like 

population. 
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Figure 4.2: Seven transcriptionally distinct clusters of cells are identified 

 

(A) A tSNE plot indicating the seven clusters of neural subpopulations identified post-

filtering and quality control measures. (B) Clusters 0 through 4 have detectable levels 

of Th expression, indicating their dopaminergic functioning. Clusters 5 and 6 do not 

appear to express Th and are therefore likely to be contaminating cells. (C-I) The 

clusters are transcriptionally distinct from each other and marker genes can be 

identified and used to assign a biological identity to each cluster of cells.  
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Figure 4.3: All clusters are assigned a biological identity and marker genes of 
each are identified for functional validation by single-molecule RNA FISH 
(smFISH) 

 

(A) The seven clusters are assigned to be the ventral tegmental area (VTA), a post-

natal neuroblast population, two substantia nigra (SN) clusters, the periaqueductal 

grey area (PAG), and two contaminating cell types: support cells, like oligodendrocytes 

and microglia, and granule cells. (B) After removing these contaminating cells from 

analysis, the remaining clusters are all dopaminergic, with detectable Th expression. 

(C-I) Marker genes for each cluster that will be tested in wildtype P7 mice brain slices 

by smFISH to confirm the assigned biological identities and anatomical locations.  
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Figure 4.4: The VTA and two SN clusters are transcriptionally related and 
smFISH will be performed to assess their spatial relationships 

 

(A) All three clusters share elevated expression of Th, Ddc, and Aldh1a1. The 

expression of these three genes will be probed with smFISH to confirm the location of 

all three clusters. (B-D) Aldh1a1 will be used as a probe, along with each pair of genes 

plotted here, to isolate the locations of each cluster specifically. (B) The VTA cluster 

is expected to be Aldh1a1+, Meg3+, and Meis2-, to help separate the VTA expression 

patterns from the nearby neuroblast population that also has high expression of Meg3. 

(C) The SN1 cluster is expected to be Aldh1a1+, Slitrk4+, and Usp29-. Usp29 was 

selected as a probe in order to distinguish this cluster from the VTA, neuroblast and 

SN2 populations. (D) The SN2 cluster is expected to be positive for expression of 

Aldh1a1 and Lix1, but is not expected to express Chrnb3. This combination of probes 

should allow us to resolve the SN2 population while separating it from the VTA and 

SN1 clusters.  



145 
 

  



146 
 

 

 

Figure 4.5: The mutant α-synuclein transgene is expressed at post-natal day 
7 and alters dopaminergic neuron population proportions  

 

(A) The mutant transgene is expressed in increasing levels commensurate with the 

number of mutant alleles. (B) The proportions of cells in each cluster are altered in 

the mutant state. Importantly, the post-natal neuroblast population has half as many 

cells in the homozygous state as in the wildtype controls, and there is an approximate 

doubling of the populations of substantia nigra cells in the mutant mice, perhaps 

indicating a precocious maturation phenotype. The periaqueductal grey area 

population is also halved in mutant mice, while the VTA remains largely unchanged.  
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Figure 4.6: There is cluster-specific gene dysregulation of genes previously 
implicated in neurodegeneration  

 

(A) Rtn3, a gene previously implicated in ß-amyloid levels in Alzheimer disease, is the 

only significantly upregulated gene in mutant post-natal neuroblasts. Additionally 

four genes, like mt-Atp6, all involved in oxidative phosphorylation are downregulated 

in mutant neuroblasts. (B) The VTA has 232 significantly dysregulated genes. Cck 

and Resp18 are two upregulated genes in the mutant neurons and both are genes 

previously implicated in PD307–309. Only 27 genes are significantly downregulated, 

including Wsb1 and Gria2, which are interesting genes given their roles in Lewy body 

formation and ALS, respectively310–312.  
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Figure 4.7: There is striking and extensive transcriptional dysregulation of 
the oxidative phosphorylation pathway in the mutant dopaminergic neurons  

 

(A) A schematic indicating the genes downregulated (red) and upregulated (green) in 

the mutant state at each complex of the electron transport chain. 37 genes are 

dysregulated, including 12 downregulated and 25 upregulated genes. Strikingly, the 

genes that are downregulated are all mitochondrial-encoded while the genes that are 

upregulated are nuclear-encoded. (B) Examples of oxidative phosphorylation pathway 

genes that are significantly dysregulated in the mutant condition. mt-Nd5 and mt-

Cytb, encoded on the mitochondria, have lower expression in mutants, while Cox5a 

and Atp5b, encoded in the nucleus, have increased expression.  
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Figure 4.8: A mitochondrial fission or fusion defect could underlie the 
observed precocious maturation phenotype involving the neuroblasts and 
substantia nigra populations 

 

In the process of neural differentiation there is a switch in energy production from 

glycolysis to oxidative phosphorylation. This change is accompanied by changes in 

mitochondrial conformation – from long, branched mitochondria to small, fragmented 

mitochondria, and back again337–339. This morphological change is predicated on 

fission and fusion processes and therefore alterations to these dynamics could explain 

the maturation phenotype we observe.  
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Table 4.1: Marker gene expression analysis is used to assign identities to each 
of the clusters identified at E15.5 and P7 

 
Age Cluster Identity Selected markers  

E15.5 

FB1 Forebrain neuroblast Rnd3, Dlx1, Dlx2 

FB2 Post-mitotic forebrain DA neurons Six3, Six3os1, Sst, Npy 

MB1 Midbrain neuroblast Lhx9, Ebf1, Pax5, Nrg1 

MB2 Post-mitotic midbrain DA neurons Foxa1, Lmx1a, Pitx3, Nr4a2 

P7  

MB1 Ventral tegmental area (VTA) Otx2, Neurod6 

MB2 Post-natal neuroblast 
Fam19a2, Lhx9, Ldb2, Mab21l1, 
Tmem163, Meis1, Rmst, Crnde, 
Gm2694 

MB3 Periaqueductal grey area (PAG) Vip, Pnoc 

MB4 Substantia nigra (SN) Sox6, Aldh1a7, Ndnf, Serpine2, 
Rbp4, Fgf20 
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Table 4.2: Top six marker genes by foldchange difference per cluster 

 

Cluster Gene 
ln 

foldchange   

Percent 
of cells in 

cluster 

Percent of 
cells in all 

other clusters 
Adjusted p-

value 
Cl

us
te

r 0
 - 

VT
A Slc18a2 0.982  80.3% 33.3% 5.82E-61 

Epha5 0.950  88.4% 47.2% 1.72E-64 
Cck 0.928  69.4% 41.2% 6.58E-20 
Tenm1 0.921  89.6% 40.1% 2.36E-74 
Cadm1 0.809  95.7% 66.2% 1.09E-46 
Oprk1 0.803   55.1% 12.6% 1.17E-57 

Cl
us

te
r 1

 - 
N

eu
ro

bl
as

t 

Meis2 1.869  67.3% 5.5% 1.94E-121 
Sst 1.311  30.5% 8.3% 1.92E-17 
Rmst 1.149  90.0% 36.4% 8.32E-61 
Rbfox1 1.083  46.8% 5.5% 3.92E-62 
Cntn5 1.028  45.0% 5.3% 1.16E-60 
Mgat4c 0.932   60.0% 20.9% 3.75E-34 

Cl
us

te
r 2

 - 
SN

1 Slc6a3 1.420  66.7% 39.2% 2.79E-27 
Tuba1b 1.052  93.8% 76.2% 2.07E-47 
Hsp90aa1 0.979  97.9% 90.9% 2.52E-49 
Tubb2a 0.967  99.5% 91.8% 1.36E-47 
Th 0.964  76.6% 61.3% 5.79E-19 
Atp6v0e2 0.958   71.4% 50.5% 1.53E-19 

Cl
us

te
r 3

 - 
PA

G
 Vip 2.947  98.3% 33.0% 1.72E-108 

Ebf1 2.029  99.4% 32.1% 2.96E-106 
Fam19a1 1.201  90.6% 30.4% 3.65E-66 
Crhbp 1.130  39.8% 2.8% 1.31E-63 
Gipr 1.128  47.5% 2.0% 3.60E-93 
Dlk1 1.128   93.9% 49.4% 1.49E-44 

Cl
us

te
r 4

 - 
SN

2 Tmsb10 1.984  100.0% 91.2% 9.92E-79 
Atp5g1 1.802  97.9% 47.1% 1.16E-78 
Selenow 1.694  97.9% 55.6% 3.50E-73 
Atp5k 1.620  93.8% 34.2% 3.21E-70 
Cox6b1 1.589  97.2% 47.8% 8.80E-72 
Rpl41 1.582   100.0% 80.3% 1.65E-71 

Cl
us

te
r 5

 - 
O

lig
o Apoe 4.325  71.9% 7.7% 3.98E-102 

Fabp7 3.091  59.7% 4.6% 7.32E-95 
Bcan 2.873  70.5% 0.7% 3.96E-183 
Atp1a2 2.588  58.3% 2.0% 2.82E-122 
Sparcl1 2.458  35.3% 4.7% 9.59E-36 
Olig1 2.396   53.2% 0.6% 1.14E-132 

Cl
us

te
r 6

 - 
G

ra
nu

le
 ce

lls
 Nfib 2.137  100.0% 11.7% 4.82E-57 

Zic1 1.921  74.4% 1.4% 2.99E-130 
Fgfr1 1.721  79.5% 13.7% 2.14E-31 
Id2 1.641  79.5% 14.7% 2.43E-27 
Arpp21 1.619  79.5% 14.2% 1.48E-28 
Zfp536 1.612   79.5% 4.2% 5.47E-78 
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Table 4.3: Genes up- and downregulated globally and in a cluster-specific 
manner 

Cluster Gene ln foldchange 
  

Percent of 
cells in 
cluster 

Percent of cells 
in all other 

clusters 
Adjusted 

p-value 

Overall 

Prnp 1.191  79.2% 40.2% 9.82E-30 
Pgrmc1 0.960  88.0% 71.7% 5.54E-18 
Stmn4 0.910  86.3% 73.8% 8.29E-11 
Serinc1 0.876  87.4% 60.3% 2.50E-21 
Stmn3 0.851  96.7% 93.9% 6.68E-23 
Scg5 0.847  82.0% 76.5% 1.08E-07 
Atp6v0e2 0.840  77.0% 44.0% 6.85E-17 
Cst3 0.829  74.9% 62.8% 2.15E-07 
Fxyd6 0.824  87.4% 71.9% 1.41E-17 
Bsg 0.816  83.6% 69.8% 3.19E-13    …   
mt-Atp8 -0.683  73.2% 87.1% 6.62E-14 
Arglu1 -0.698  33.9% 64.3% 8.36E-10 
Ogt -0.755  33.3% 66.2% 6.27E-12 
Rmst -0.782  28.4% 58.6% 2.27E-08 
Gm42418 -0.784  32.2% 66.4% 1.03E-12 
Malat1 -0.787  69.9% 86.0% 1.20E-13 
Tia1 -0.793  25.7% 62.2% 4.82E-14 
AC149090.1 -0.868  45.4% 78.0% 4.81E-17 
Snhg11 -0.953  47.0% 80.8% 1.21E-22 
Meg3 -0.974  55.7% 84.8% 6.27E-25 

VTA 

Cck 1.931   82.5% 62.0% 3.74E-03 
Pgrmc1 1.422  93.7% 74.5% 6.04E-11 
Cst3 1.383  81.0% 62.0% 5.89E-06 
Stmn4 1.368  87.3% 78.3% 9.63E-08 
Bsg 1.315  87.3% 69.6% 1.70E-09 
Stmn3 1.297  95.2% 93.5% 2.58E-06 
Scg5 1.259  90.5% 76.1% 3.77E-08 
Fxyd6 1.227  90.5% 70.7% 5.46E-08 
Ly6h 1.224  96.8% 92.4% 3.20E-04 
Ndufc2 1.218  71.4% 39.7% 2.41E-06 

   …   
Tia1 -0.661  42.9% 78.8% 2.83E-03 
Snhg11 -0.667  77.8% 100.0% 4.40E-11 
Rbm5 -0.678  41.3% 74.5% 1.64E-03 
Carmil3 -0.704  30.2% 65.2% 9.82E-03 
Meg3 -0.745  84.1% 100.0% 1.06E-15 
Prpf4b -0.782  30.2% 61.4% 8.93E-03 
AC149090.1 -0.801  73.0% 95.1% 5.06E-07 
Arglu1 -0.844  38.1% 77.2% 5.60E-05 
Wsb1 -0.857  28.6% 66.8% 1.89E-04 
Gm42418 -0.896   39.7% 76.6% 4.27E-05 

Neuroblast 

Prnp 1.433   90.9% 48.0% 0.0004 
Rtn3 0.882  95.5% 68.6% 0.016 
mt-Co3 -0.644  95.5% 100.0% 0.063 
mt-Nd1 -0.680  90.9% 100.0% 0.034 
mt-Atp6 -0.734  95.5% 100.0% 0.005 
mt-Cytb -0.750  81.8% 99.0% 0.017 

PAG 

Nsg1 1.166   100.0% 63.2% 0.092 
Ctsl 1.086  87.5% 31.0% 0.023 
Tomm20 1.056  75.0% 21.8% 0.074 
Dlk1 0.968  100.0% 92.0% 0.005 
Cd24a 0.869  56.2% 5.7% 0.003 
AU040320 0.755  31.2% 1.1% 0.091 
Mtfp1 0.616  25.0% 0.0% 0.074 
Gm9803 0.590  37.5% 1.1% 0.005 
Cbr4 0.568  25.0% 0.0% 0.074 

SN 1 NA NA   NA NA NA 
SN2 Prnp 1.552   75.0% 34.0% 0.055 
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Supplementary Figure 4.1: Mating scheme to generate litters with 
fluorescently-labelled dopaminergic neurons and all three A53T genotypes  

 

Successive generations of matings were performed such that the final generation for 

assay were all hemizygous for the Th-GFP allele (green font) and were either wildtype 

(25%), hemizygous (50%), or homozygous (25%) for the A53T allele (red font).  
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Supplementary Figure 4.2: Quality control metrics used to filter scRNA-seq 
data 

 

(A) The number of unique genes in each cell, the number of molecules in a cell, and 

the percent of reads mapping to the mitochondria are plotted and filtering cut-offs are 

identified to exclude empty droplets, doublets, and low quality cells. (B) Following 

filtering using these empirically derived cut-offs, the distributions are again examined 

to confirm the filtering removed low quality cells from the analysis.  
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Supplementary Figure 4.3: Replicates and genotypes are well distributed 
across PC1 and PC2  

 

(A) PC1 and PC2 are visualized. (B) PC1 and PC2 are examined for bias in replicate 

distribution and (C) genotype distribution.  
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Supplementary Figure 4.4: Replicates and genotypes are present in each 
cluster  

 

(A) The clusters as projected onto PC1 and PC2 indicate that cluster 5 represents the 

group of cells that is separated from the main mass of cells. (B) The replicates are 

represented in each of the clusters. (C) Each of the three genotypes are present in all 

clusters.  
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Supplementary Figure 4.5: Assessing the clusters for bias in percent 
mitochondrial reads, number of reads and number of genes expressed per cell  

 

(A) Cluster 4 and the outlier cluster 5 have few cells with a high proportion of 

mitochondrial reads. (B) Number of reads and (C) unique genes expressed per cell are 

well distributed across the clusters, with clusters 2 and 5 having a lower number of 

each than the other clusters.  
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Supplementary Figure 4.6: Cluster 5 displays markers of support cells, like 
oligodendrocytes and astrocytes 

 

(A) Cluster 0, 1, 2, 3, 4, and 6 express pan-neuronal markers. Cluster 5 does not, 

instead expressing (B) markers of oligodendrocytes, (C) microglia, (D) astrocytes, and 

(E) glia.  
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Supplementary Figure 4.7: Cluster 6 is not dopaminergic and likely 
represents a contaminating cell type 

 

(A) Cluster 0 through 4 express Th and eGFP, which was the marker upon which the 

cells were sorted by FACS, at robust levels. Cluster 5, oligodendrocytes, and cluster 6 

appear to be contaminating cell types, which do not express eGFP. All clusters were 

evaluated for expression of markers of (B) dopaminergic345–348, (C) glutamatergic349–

351, (D) GABAergic352–354, (E) serotonergic355–357, and (F) cholinergic neurons358–360. 

Cluster 6 does not appear to be exclusively any one of these subtypes, but does express 

markers of glutamatergic and GABAergic neurons.  
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Supplementary Figure 4.8: The contaminating cluster 6 is likely to be 
granule cells  

 

Consulting the Allen Mouse Brain Atlas for in situ hybridization experiments on some 

of the top marker genes, Fgfr1, Tcf4, Id2, and Nfib, all display increased expression 

in granule cell layers, either in the hippocampus (Fgfr1, Tcf4) or in the cerebellum 

(Id2, Nfib). Experiment and slide identifiers in Supplementary Table 4.6. 
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Supplementary Figure 4.9: Expression of previously established marker 
genes was used to assign biological identities to each of the remaining clusters  

 

(A, B) Marker gene analysis easily identifies these clusters as (A) the periaqueductal 

grey area (PAG) and (B) a post-natal neuroblast population. (C, D) Discriminating the 

ventral tegmental area (VTA) from the remaining two clusters is challenging given 

some of the marker genes have shared expression patterns, but key genes like (C) 

Oprk1 and Lpl distinguish this cluster as the VTA. (D) The remaining two clusters 

are likely substantia nigra clusters (SN1 and SN2), as demonstrated by the high 

expression of Aldh1a1, Chrna6, and Slc6a3. Specific to the two SN clusters is Caln1 

and Gch1 expression. Distinguishing SN1 from SN2 is more difficult. However, we 

can detect differences like genes specific to SN2, like Pitx3 and Foxa1, while SN1 more 

highly expresses markers of DA neurons, like Slc6a3 (here), and Th and Ddc (seen in 

Figure 4.4). 



166 
 



167 
 

Supplementary Table 4.1: Experiment and image identifiers for the Allen Mouse Brain Atlas in situ hybridization 
slides used in assigning cluster six as granule neurons 

Gene Experiment ID Image ID URL 
Fgfr3 79588290 79593744 https://mouse.brain-map.org/experiment/siv?id=79588290&imageId=79593744 

Id2 71836806 71681421 https://mouse.brain-map.org/experiment/siv?id=71836806&imageId=71681421 

Tcf4 79488927 79454916 https://mouse.brain-map.org/experiment/siv?id=79488927&imageId=79454916 

Nfib 1555 101362638 https://mouse.brain-map.org/experiment/siv?id=1555&imageId=101362638 

 

  

https://mouse.brain-map.org/experiment/siv?id=79588290&imageId=79593744
https://mouse.brain-map.org/experiment/siv?id=71836806&imageId=71681421
https://mouse.brain-map.org/experiment/siv?id=79488927&imageId=79454916
https://mouse.brain-map.org/experiment/siv?id=1555&imageId=101362638
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Chapter 5: Conclusions 
5.1 Summary of significant findings  

Comprehensive evaluation of midbrain dopaminergic (DA) neurons is 

required for an improved understanding of the molecular mechanisms of Parkinson 

disease (PD) risk and progression. Here, we have examined the chromatin and 

transcriptional landscapes of midbrain DA neurons to extensively catalogue 

putative enhancers, identify transcription factors (TFs) important to gene 

expression regulation, uncover variants that disrupt enhancer functioning and TF 

binding, and detect significant alterations in gene expression, neuronal maturation, 

and mitochondrial function in the early disease state.  

 To identify and prioritize non-coding variants associated with PD, we first 

queried the chromatin of 50,000 midbrain and forebrain DA neurons. We identified 

>100,000 open chromatin regions that we assessed for functionality using in silico 

and in vivo means. One such region, in an intron of the familial PD gene, SNCA, 

directs reporter expression in catecholaminergic neurons throughout the mouse life 

course in key regions affected in PD. Not only does this enhancer direct disease-

appropriate expression, but in sequencing ~1,000 PD cases and controls, we 

demonstrate it to contain disease-associated variation. Two tightly linked common 

variants, rs2737024 and rs2583959, that fall in this enhancer are significantly 

associated with PD risk (odds ratio ~1.25, p-value = 0.002). 

 This finding is intriguing, not only because we identify novel disease-

associated enhancer variants near to a familial PD gene, but this also represents 

the possible benefit of a paradigm shift in how common disease variants are 
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identified. Typically, large genome-wide association studies uncover loci associated 

with disease but do not indict any one variant. Functional fine-mapping, in which 

these results are intersected with functional annotations, like those generated by 

ChIP-seq experiments, can be employed to prioritize variants that likely disrupt 

functional elements. Our strategy flips this paradigm – starting with a high quality, 

disease-relevant annotation dataset, we query these annotations and identify 

disease-associated variants by sequencing a relatively small number of cases and 

controls. 

 To uncover how these and other common variants associated with 

neurodegeneration and neuropsychiatric disorders disrupt gene expression and 

ultimately modulate disease risk, we employed a machine learning algorithm, gkm-

SVM, to learn the regulatory vocabulary of midbrain DA neurons. In combination 

with TF footprinting and bulk RNA-seq, we identify TFs that are actively engaging 

the DNA to influence gene expression in MB DA neurons. We identify Rfx3/5, 

Foxa1/2, Ascl1, and Nr4a2 as important to MB DA neurons. We use this regulatory 

vocabulary to predict how >7,000 disease-associated variants might impact TF and 

protein binding. These predictions have been challenging to validate given the cell-

type restricted activity of enhancers and the reliance on common validation 

strategies using in vitro cell surrogates. Prevented, as we were, from using standard 

luciferase assays to validate our predictions, we shifted our focus to protein-binding 

arrays and have identified four proteins, NOVA1, PEG10, SNRPA, and CHMP5, 

whose binding may be impacted by the SNCA enhancer variants.  

 The challenge of finding appropriate in vitro cellular surrogates for in vivo-

derived data is not unique to this study. Enhancer usage can be excessively 
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restricted by cell type, developmental time point, or environmental perturbation. As 

the field moves forward in querying increasingly more refined populations in vivo, 

the validity of using an in vitro cell surrogate not matched for those characteristics 

becomes untenable. One strategy to combat this limitation is to perform validation 

experiments in vivo, in the same cells as were queried. This strategy would be ideal 

in terms of the biological validity of the results but is not always feasible given the 

low throughput nature of many in vivo assays and the cell number requirements of 

many enhancer reporter assays. An alternative strategy is to find more appropriate 

in vitro cell surrogates. Here, we use ATAC-seq and bulk and single-cell RNA-seq 

(scRNA-seq) to judge the suitability of an immortalized mouse substantia nigra cell 

line, SN4741. Karyotyping suggests these cells are triploid and highly genetically 

complex. Preliminary scRNA-seq fails to confirm these cells as necessarily DA 

neurons, calling into question their suitability. We continue to assess these cells but 

also continue to search for alternative surrogates and may turn our focus to 

differentiated iPSCs.  

 Finally, we investigated the mechanisms underlying the preferential 

degeneration of DA neurons of the substantia nigra. We performed scRNA-seq in 

~1,300 midbrain DA neurons at an early post-natal time point in a mouse model of 

PD to assess the effects of the mutation on the transcriptomes of developing neurons. 

We identify five clusters of MB DA neurons, including a novel separation of two 

substantia nigra populations. The mutant allele has significant effects on the 

distribution of cells within the clusters, with half as many neuroblasts present in 

the homozygous mutant mice. This halving appears to be accompanied by a 

commensurate doubling of the number of mutant cells in the substantia nigra 
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clusters, likely indicating a precocious maturation defect of DA neurons in relevant 

and key populations in the pathogenesis of PD.  

 There is also significant cluster-specific and global gene dysregulation in the 

mutant state. Genes known to be involved in neurodegenerative diseases, including 

PD, are among the hundreds of genes identified as differentially expressed, but 

perhaps most strikingly, there is extensive dysregulation of genes involved in the 

oxidative phosphorylation pathway. Most interestingly, this dysregulated 

expression of mitochondria is dependent on the genome on which the implicated 

gene is encoded on. The mitochondrial-encoded genes of the electron transport chain 

are all downregulated, while the upregulated genes are all encoded in the nucleus. 

This is a novel pattern of transcriptional dysregulation in PD and we hypothesize 

this may indicate a mitochondrial fission or fusion dysfunction that underlies the 

neuronal maturation defect of neuroblasts into substantia nigra neurons. These 

observations suggest a developmental origin to the preferential degeneration of 

substantia nigra DA neurons in PD.  

5.2 Future directions 

We are eager to continue investigating each of these exciting results. In 

regards to the enhancer at SCNA containing disease-associated variants, we look 

forward to characterizing the enhancer-deletion mouse for molecular and gross 

motor phenotypes. To supplement these deletion studies, it would be worthwhile to 

study the reverse phenomenon and attempt an over-expression assay at the 

enhancer, perhaps through recruiting activating TFs or chromatin remodellers to 

the locus with CRISPR-activation experiments. Additionally, the chromatin assay 
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of midbrain DA neurons yielded a catalogue of over 100,000 open chromatin regions. 

We have examined six of these. There remains a myriad of information still to be 

explored in these catalogues, either through further single locus investigations, 

looking at any one of the other 100 some odd regions that we already know to overlap 

PD associated variation, or we are moving to massively parallel reporter assays 

(MPRA) to test many disease associated variants for function simultaneously. We 

are also exploring using promoter capture HiC (pcHiC) to assign open chromatin 

regions to their cognate genes.  

 Both MPRA and pcHiC have high cell number requirements for assay and as 

such, usually rely on in vitro modelling. We continue to search for accurate cell 

surrogates for our cell types of interest. We have focused our efforts on 

characterizing SN4741 cells with ATAC-seq, bulk RNA-seq, and scRNA-seq. This 

characterization strategy can be applied to a variety of cell lines to allow an 

empirical judgement as to the relatedness of the chromatin, TFs, and transcriptome 

to the in vivo system. While SN4741 cells are perhaps not as proximal to a DA state 

as we had hoped, we are currently investigating methods to improve the 

differentiation process, including longer differentiation time or supplementation 

with differentiation factors like retinoic acid.  

 Although we have examined the transcriptomes of midbrain DA neurons in 

a mouse model of PD, we have not yet examined the chromatin landscape of these 

neurons or how the disease state might alter this. We have presently optimized 

small-scale ATAC-seq to facilitate analysis of these neurons. This will allow us to 

assay enhancer usage and develop a TF vocabulary at post-natal time point and will 

also allow us to assess how changes in the chromatin are related to changes in the 
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transcriptome. This would be a rich source of data however it would likely be unable 

to elaborate on the mitochondrial phenotype, given the lack of nucleosomes in the 

mitochondrial genome. We have begun employing a variety of assays to examine the 

mitochondria in our mouse model of PD however, these are static evaluations of 

mitochondria. To investigate mitochondrial dynamics in an in vivo model, we can 

employ mouse models like the MitoMouse lines361, wherein the mitochondria are 

fluorescently-labelled for in vivo imaging. Ultimately, we hope an improved 

understanding of these mechanisms will allow us to modulate the progression or 

risk of PD.  

 Assaying the chromatin and transcriptomic landscapes of wildtype and 

mutant mice has proven effective for increasing our understanding of the biology of 

DA neurons and PD. We plan to extend these assays to other time points, cell types, 

and perturbations in order to expand our understanding. These strategies represent 

powerful paradigms for assaying restricted populations of cells in the wildtype and 

disease states. We believe that these approaches can be applied to a biological 

systems in order to provide insight into the molecular mechanisms of health and 

disease. 
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Chapter 6: Appendices 
6.1 The transcriptional targets of SOX9 in Type II Diabetes5 

Ultimately, both Type I and Type II diabetes result in a loss of functioning 

beta-cells. Current treatments, including insulin injections, transplantation of 

donor beta cells, and differentiation of stem cells are compromised by systemic 

complications, scarcity of donor tissues, and cost, respectively. An effective 

treatment for these diseases would ideally involve an increase in beta-cell mass. 

Thus exploring the induction of beta-cells endogenously from pancreatic progenitors 

is an alluring treatment target. However, the capacity for beta-cell neogenesis in 

mammals is controversial. Neogenesis of beta cells after partial ductal ligation has 

been seen in mice in some studies but not others362–367, and targeted ablation of beta 

cells in mice is resolved by proliferation and transdifferentiation368–372. Analysis of 

islets of adult humans with Type I diabetes that died from diabetic ketoacidosis 

showed that while beta cells continuously apoptosed, there remained beta cells 

present at death and no markers of proliferation, suggesting some capacity for 

neogenesis373,374. Conversely, zebrafish have an extraordinary capacity to regenerate 

beta cells by neogenesis after targeted ablation375,376 and we have identified the 

progenitor cell that contributes to beta-cell neogenesis in the zebrafish: centroacinar 

cells (CACs)377. 

CACs are terminal intercalated duct cells – they exist in acini, have long 

extensions, are connected by tight junctions so they can successfully line pancreatic 

ducts, and are Notch responsive377,378. In addition, they are known to express sox9b, 

                                                      
5 This work was performed jointly by Hannah E. Edelman and Sarah A. McClymont and is in preparation for 
submission for publication. 
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a homologue of human SOX9, and we have shown that following beta-cell ablation, 

these sox9b-expressing CACs are a source of regenerated beta cells379. Humans also 

have CACs – terminal intercalated duct cells that express SOX9380 and are Notch 

responsive381 – but their role in beta-cell neogenesis is unknown. Given the 

similarities between these cells in humans and zebrafish, by understanding the 

mechanisms behind beta-cell neogenesis via CACs in zebrafish, we may be able to 

exploit these same mechanisms in humans for use in diabetes treatment. 

Towards this end, an intriguing target to begin unravelling the mechanisms 

of beta-cell regeneration is SOX9. The importance of SOX9 in pancreatic identity382, 

ductal cell identity383, and pancreatic progenitor identity380 has already been 

established in mammals. Additionally, we recently found that Sox9b helps maintain 

the progenitor identity of CACs in zebrafish in that heterozygous loss of sox9b 

results in more efficient differentiation of CACs into beta cells after ablation379. 

Given its important role in pancreatic progenitor status across species, we are 

interested in understanding the transcriptional targets of SOX9 (and Sox9b) to 

elucidate the genetic program behind pancreatic progenitors and beta-cell 

neogenesis.  

We set out to identify effectors of SOX9 transcriptional activity in human 

pancreatic cells to reveal molecular mechanisms that drive beta-cell neogenesis 

using high-throughput sequencing methods. To do so, we utilized a human 

pancreatic adenocarcinoma line, PANC-1, that represents an undifferentiated, 

ductal pancreas cell population that can be induced to differentiate toward an 

endocrine fate384. To query the mechanisms of SOX9 regulation in these cells, we 

integrated RNA-seq and ChIP-seq to identify direct transcriptional targets of SOX9. 
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We found that SOX9 directly regulates EPCAM, which encodes a transmembrane 

protein expressed in stem and progenitor cells in many epithelial tissues385–388 and 

is an interesting target of future studies about pancreatic progenitor function. 

SOX9 modulates the transcription of proliferation and cilia genes in 

PANC-1 cells 

We took a two-step approach to identify direct transcriptional targets of 

SOX9 in PANC-1 cells; namely, RNA-seq following SOX9 knockdown and then 

ChIP-seq to identify SOX9 binding sites. To identify transcripts that are regulated 

by SOX9 activity, we performed RNA-seq in PANC-1 cells that had been transfected 

with either a SOX9 siRNA or a control siRNA. Following SOX9 siRNA transfection, 

SOX9 knockdown was confirmed using both Western blotting (Appendix Figure 

6.1A) and immunofluorescence of fixed cells (Appendix Figure 6.1B). To identify 

genes regulated by SOX9, we sequenced total RNA extracted from PANC-1 cells 

transfected with either control or SOX9 siRNA and identified genes that are 

differentially expressed between knockdown conditions. We identified 93 

differentially expressed genes with 60 genes upregulated and 33 downregulated 

(Appendix Figure 6.1C; Appendix Table 6.1).  

To confirm the identity of the top differentially expressed genes, we 

performed qRT-PCR in siRNA-treated PANC-1 cells for the top five up- and down-

regulated genes. In doing so, we confirmed the differential expression of these ten 

genes, except the downregulated gene SKIV2L (Appendix Figure 6.1D). While 

SKIV2L demonstrated the largest fold change of the downregulated genes, it was 

also nearest the acceptable p-value cut-off and thus may be a false positive.  
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In order to further validate the differential gene expression results, we 

analyzed publicly available RNA-seq data from 178 pancreatic adenocarcinoma 

samples in The Cancer Genome Atlas. In these samples, SOX9 is highly expressed 

and as such, we expected to observe directions of effect opposite to those observed in 

our induced knockdown experiments. We clustered our differentially expressed 

genes based on their expression patterns in the tumor samples and observe that in 

general, corroborating our knockdown studies, upregulated genes clustered together 

and were lowly expressed in the tumor samples, and downregulated genes clustered 

together and with SOX9 and are highly expressed (Appendix Figure 6.2A). 

Furthermore, at an individual gene level, we correlated SOX9 expression with each 

differentially expressed gene to examine how closely the genes are co-regulated in 

these tumor samples and observed there to be a high degree of correlation between 

the differentially expressed genes and SOX9 expression (Appendix 

Supplementary Table 6.1). For example, the upregulated gene with the strongest 

degree of negative correlation with SOX9 expression is CCDC13 (r = -0.50), 

bolstering our observation that SOX9 negatively regulates this gene (Appendix 

Figure 6.2B). Conversely, expression of the downregulated gene, ESRP1, is 

strongly positively correlated with SOX9 expression (r = 0.67), further suggesting 

that SOX9 positively regulates this gene’s expression (Appendix Figure 6.2C). 

Overall, these data serve to validate observations from our genome wide RNA-seq 

analyses and provide additional support for our observed transcriptional targets of 

SOX9. 

Finally, to assess the biological consequences of these differentially 

expressed genes, we explored their individual functions and gene ontology (GO) 
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terms. Genes that are down-regulated following SOX9 knockdown include genes 

with established roles in cancer motility (ESRP1389), cell-cell adhesion 

(TINAGL1390,391), obesity and insulin resistance (RGCC392), and cancer stem cell 

maintenance (EPCAM393). Down-regulated genes were collectively enriched for 

biological processes associated with Notch signaling and the negative regulation of 

proliferation (Appendix Figure 6.1E), suggesting a role for SOX9 in negatively 

regulating proliferation.  

As a whole, upregulated genes were enriched for processes associated with 

cilia development, assembly, and movement (Appendix Figure 6.1F), suggesting 

that SOX9 typically suppresses these processes. Interestingly, the most highly 

upregulated genes following SOX9 knockdown are LRRC6 and SPEF1, which have 

known roles in regulating primary cilia, important features of ductal epithelial 

cells394–396. In all, these observations may indicate that SOX9 serves to restrict the 

differentiation of pancreas progenitor cells toward an epithelial fate by promoting 

the expression of genes important for maintaining a progenitor status.  

SOX9 binding occurs primarily at transcription start sites and regulates 

pancreatic functions 

We next set out to identify putative SOX9-responsive regulatory regions, 

undertaking anti-SOX9 ChIP-seq. Following pull-down, sequencing, and alignment, 

our analysis identified 47,858 SOX9 binding sites in PANC-1 cells. We then analyzed 

the sequence underlying the top 1000 most significant SOX9 binding events to 

identify transcription factor motifs present at these sites. The top enriched motif 

was a “tail-to-tail” palindrome with high similarity to the SOX9 consensus motif 
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(Appendix Figure 6.3A). This result supports previous observations in 

chondrocytes that SOX9 can function as a homodimer397. The second highest 

enriched motif matched the binding sequence for FOS::JUN (Appendix Figure 

6.3B) which has been previously reported to bind in conjunction with SOX9 in 

chondrocytes398. Similar to findings from other groups399,400, we observe an 

enrichment of SOX9 binding events at gene promoters (8.8% of SOX9 peaks; 

Appendix Figure 6.3C), with diminishing proportions of SOX9 binding events 

occurring as the distance to the transcriptional start site increases (Appendix 

Figure 6.3D).  

Next, we sought to interrogate the potential functional outcome of SOX9 

binding in PANC-1 cells. We performed functional annotation of the genes proximal 

to SOX9 binding sites and found many GO biological processes that match with 

SOX9’s known roles (Appendix Figure 6.3E). These include: 1) endocrine pancreas 

development, reflecting the known function of SOX9 activity in the pancreas; 2) stem 

cell maintenance, reflecting the participation of SOX9 in maintaining pancreatic 

progenitor identity379 and; 3) ossification and osteoblast differentiation, which 

reflects known functions of SOX9 in bone development401,402. Taken collectively, 

these data suggest that SOX9 acts in PANC-1 cells to regulate target genes 

important to pancreas biology, in a manner consistent with previously reported 

modes of action in chondrocytes. 

Direct targets of SOX9 overlap with known pancreatic ductal genes 

 To narrow down the list of differentially expressed genes to those most 

biologically relevant, we combined three datasets: 1) SOX9 binding events from our 
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ChIP-seq experiment to identify direct binding targets of SOX9; 2) genes with 

enriched expression in ductal cells (versus acinar or endocrine cells) of the adult 

zebrafish pancreas403 and; 3) genes enriched in zebrafish CACs which can be used 

as CAC markers377. By combining these three data sets we sought to find genes that 

were not only direct targets of SOX9 – i.e. those that were differentially expressed 

following SOX9 knockdown and had a SOX9 binding site proximal to their promoter 

– but also relevant to the biology of the zebrafish pancreatic ductal cells, and 

specifically CACs, not just the molecular underpinnings of human PANC-1 cells. 

 We observed that the majority of genes upregulated with SOX9 knockdown 

are not direct targets of SOX9 (57% of all upregulated genes and 70% of the top ten 

are not bound by SOX9), while all but one of the top ten genes downregulated with 

SOX9 knockdown are direct targets (Appendix Table 6.2), and 64% of 

downregulated genes overall are bound. Several downregulated genes have enriched 

expression in pancreatic ductal cells while the only upregulated gene with ductal 

expression is LRRC6. Finally, EPCAM appears to be a promising candidate gene for 

further investigation because it is a direct target of SOX9, has enriched expression 

in zebrafish ductal cells, and is a marker of CACs (Appendix Table 6.2). 

SOX9 directly regulates expression of EPCAM 

 Given its promising expression in zebrafish pancreatic ductal cells, 

specifically CACs, we examined the relationship between SOX9 and EPCAM. 

EPCAM is a gene encoding a transmembrane protein that is a well-known marker 

of epithelium and has roles in the regulation of pancreas progenitor differentiation 

and cell adhesion385,393. Traces from our RNA-seq and ChIP-seq display the 
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decreased expression of EPCAM with SOX9 knockdown and a large SOX9 binding 

peak centered on the EPCAM transcriptional start site and promoter (Appendix 

Figure 6.4A). Additionally, we performed EPCAM and SOX9 antibody staining in 

PANC-1 cells transfected with either control or SOX9 siRNA. In control-transfected 

cells, SOX9 was expressed in all cell nuclei and EPCAM was expressed at the plasma 

membrane in all cells, albeit with varying intensity. Following SOX9 knockdown, 

SOX9 expression was reduced or absent in nuclei, and EPCAM expression was 

reduced or absent (Appendix Figure 6.4B). These results support the conclusion 

that SOX9 directly regulates EPCAM expression in PANC-1 cells. 

 Furthermore, as a preliminary validation of the relevance of this relationship 

in vivo, we examined the co-regulation of SOX9 and EPCAM in the TCGA pancreatic 

adenocarcinoma samples, as above. In doing so, we observe a strong positive 

correlation of SOX9 and EPCAM expression (r = 0.58; Appendix Figure 6.4C), 

suggesting that in vivo, as well as in vitro, SOX9 is a positive regulator of EPCAM 

expression.  

Discussion 

We previously demonstrated that Sox9b functions downstream of both Notch 

signaling and Retinoic Acid signaling in CACs379. All of these pathways are 

responsible for maintaining the progenitor identity of CACs. Because understanding 

the balance between progenitor maintenance and endocrine differentiation is 

central to characterizing beta-cell neogenesis, we sought to further elucidate the 

differentiation process by finding the downstream targets of Sox9b to better 



182 
 

understand how it functions as a central transcription factor in CAC progenitor 

identity. 

By performing RNA-seq and ChIP-seq on PANC-1 cells we were able to 

identify both direct targets (change in expression with SOX9 knockdown and SOX9 

binding peak near promoter) and indirect targets (change in expression with SOX9 

knockdown but no SOX9 binding peak) of SOX9. Because a number of the direct 

targets – like EpCAM and ESRP1 – are associated with epithelial cells, we wondered 

if a decrease in these genes results in an epithelial-to-mesenchymal transition 

(EMT) and this change in cell state alters the overall transcriptional profile of the 

PANC-1 cells. But simple EMT induction does not explain the changes in 

transcription we saw - looking at EMT markers by Western, IF, and qPCR showed 

that not only was there no EMT, but PANC-1 cells are already mesenchymal in 

nature before SOX9 knockdown (Appendix Supplementary Figure 6.1). So a 

change to a more mesenchymal phenotype is not responsible for the transcriptional 

differences seen in SOX9 knockdown. Because Sox9b is known to help CACs 

maintain their progenitor identity379, it is possible that knockdown of SOX9 in 

PANC-1 cells induces differentiation. This idea fits with our RNA-seq results – 

knockdown of SOX9 caused an increase in the expression of many ciliary genes 

which is a known consequence of differentiation404.  

GO analysis of genes downregulated with SOX9 knockdown showed that 

SOX9 is important for the positive regulation of Notch receptor targets. This aligns 

well with previous research, as the role of SOX9 in mediating the expression of 

downstream Notch signaling targets is well-established404–407. Understanding this 
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intricate cross-talk between SOX9 and Notch will be important to being able to 

manipulate progenitor differentiation to endocrine cells379,408.  

In comparison to previous work in other cell systems, we were able to easily 

see the SOX9 binding consensus sequence by pulling out the most enriched sequence 

at binding peaks – unlike the results of ChIP-seq performed in hair follicle stem 

cells400. They found that SOX9 was promiscuous in the sequences it bound to and 

never saw the consensus sequence. In addition, we saw that SOX9 preferentially 

bound to promoters, no matter the target gene, unlike what was seen in developing 

chondrocytes where SOX9 bound promoters for normal cellular functions and 

enhancers for chondrocyte-specific transcription409. These differences suggest that 

SOX9 may vary in how it acts as a transcription factor between different cell types. 

The direct targets of SOX9 that we found have some interesting connotations 

for both the ductal nature of CACs and their progenitor role. TINAGL1 is a 

matricellular protein that is known to bind integrins and laminins and is involved 

in both post-implantation development in the uterus391,410 and vascular smooth 

muscle adhesion390,411,412. Its homolog TINAG is important in tubulogenesis in the 

kidney413. CACs are known to line the branching ducts of the pancreas, so an 

extracellular molecule important for cell-adhesion (and the cell-cell signaling that 

goes along with it) makes biological sense for having an important SOX9-mediated 

role. ESRP1 is a regulator of splicing and is known for predicting favorable outcomes 

in cancer – i.e. its expression (and therefore splicing patterns of things like FGFR2) 

is thought to suppress cancer cell motility and therefore metastasis389,414–416. This 

would make biological sense in the context of CACs and regeneration – expression 

of Sox9b and therefore ESRP1 could promote the epithelial nature of CACs while 
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loss of these proteins would promote a more migratory, mesenchymal nature which 

is necessary for CACs to move to ablated islets and become endocrine cells. All of 

these genes would be interesting targets to follow up on by examining their 

expression in the zebrafish pancreas, developing knockouts, and assessing their 

importance in CAC maintenance and biology. 

Finally, we showed that SOX9 regulates the expression of EpCAM, a gene 

that encodes a single-pass transmembrane glycoprotein that localizes to tight 

junctions385. In addition to its role in cell adhesion, EpCAM can also undergo 

proteolytic cleavage to produce intra- and extracellular fragments that participate 

in signaling and transcriptional activation393. Although EpCAM is expressed 

broadly in epithelial tissues, higher expression is found in cells that are actively 

undergoing proliferation and differentiation events. Thus, EpCAM serves as a 

marker of stem and progenitor cell populations in the intestine, liver, and salivary 

gland386–388. It is also expressed in human and murine embryonic stem cells, where 

it may function upstream of the well-known pluripotency factors OCT4 and 

SOX2417,418. In the human fetal pancreas, EpCAM expression is enhanced in 

progenitor cells that are budding from the ductal epithelium to form new endocrine 

cells385. In the adult pancreas, it is most highly expressed in intercalated ducts385, 

which closely resemble CACs and have been proposed to serve as an endocrine 

progenitor population during regeneration378. Intriguingly, transgenic over-

expression of EpCAM in the mouse pancreas provokes the development of large 

endocrine islets419. Within the developing zebrafish liver EpCAM is expressed in 

Notch responsive progenitor cells called Biliary Epithelial Cells (BECs) that act as 

progenitors for hepatocytes during liver damage and development420,421. Many 



185 
 

parallels can be drawn between BECs and the CACs of the pancreas. These cell 

types both line ducts, and Notch signaling as well as Sox9 play an important role in 

maintaining the progenitor status of both. Using CRISPR-Cas9, we are developing 

our own EpCam knockout zebrafish with the same mutation as humans with 

congenital tufting enteropathy. We are hoping to use this knockout to examine the 

pancreatic and CAC phenotype when EpCam is lost. Because EpCAM is expressed 

in the mammalian pancreas and in the CACs of zebrafish, understanding how 

EpCAM acts downstream of Sox9 in the maintenance and identity of endocrine 

progenitor cells will help us better define the mechanisms behind endogenous 

increases in beta-cell mass. 

Materials and Methods 

RNA-seq library preparation and sequencing 

PANC-1 cells were transfected in 24-well plates with either 25 nM of control 

siRNA (Dharmacon catalog # D-001210-03-05) or 25 nM of SOX9 siRNA 

(Dharmacon catalog # M-021507-00-0005) using Lipofectamine 3000 (Thermo). 

After 48 hours, transfected cells were pooled (4 wells per replicate) and harvested, 

two replicates from each siRNA condition, and total RNA was isolated using a 

Qiagen RNeasy kit. RNA-seq libraries were created using the Illumina TruSeq 

Stranded Total RNA Sample Prep Kit. RNA-seq libraries were pooled and sequenced 

on the Illumina HiSeq 2000 to a minimum depth of 60 million 2x100 bp reads per 

library. 
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RNA-seq alignment, quantification, and analysis 

Reads were aligned to hg19 genome with HISAT2 (v2.0.5)205 and visualized 

with the Integrative Genomics Viewer172,173. Statistical analyses were performed 

using R221. Gene expression was quantified using the “featureCount” function of the 

Rsubread package (v1.28.1)206 to count read overlap with RefSeq genes. Genes with 

greater than one read across all four samples were submitted to DESeq2 (v1.18.1)422 

to identify genes differentially expressed across conditions 

(absolute(log2(foldchange)) > 1, adjusted p-value < 0.05). To generate the volcano 

plot, each gene’s log2(fold change) was plotted against the –log10(adjusted p-value), 

with genes meeting our criteria for significantly differentially expressed being 

plotted in red (upregulated) or blue (downregulated). Genes significantly up- and 

down-regulated were submitted to Enrichr423,424. The GO Biological Process was 

ranked on the basis of the combined score. Differentially expressed genes were 

annotated as being directly bound by SOX9 if there was a SOX9 binding event 

within 1kb (upstream or downstream) of the transcriptional start site (RefSeq, 

hg19).  

ChIP-seq library preparation and sequencing 

PANC-1 cells were grown in DMEM supplemented with 10% FBS at 37°C 

with 5.0% CO2 and passaged at 70-80% confluency. 2 biological replicates of ChIP-

seq were performed essentially as in Lee et al., 2006425. Briefly; approximately 2.0 X 

108 cells were crosslinked in 11% formaldehyde and stopped with 2.5 M glycine 

before being washed in 1X PBS, lysed, and sonicated for 35 minutes in a Bioruptor 

at 4°C to achieve a fragment size of approximately 200 bp. An input fraction was set 
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aside and the rest of the lysate was then incubated with 10 µg anti-SOX9 (AB5535, 

Millipore) overnight at 4°C. Antibody-bound chromatin was then purified using 

Protein G Dynabeads (Thermo) and crosslinking was reversed overnight at 65°C. 

ChIP-seq libraries were created using the Illumina TruSeq DNA Sample Prep Kit 

and quantified using Quant-iT PicoGreen dsDNA assay (Invitrogen). ChIP-seq 

libraries were pooled and sequenced on the Illumina HiSeq to a minimum depth of 

59 million, 1x50bp reads per library. 

ChIP-seq alignment, peak calling, and analysis 

Reads were aligned to hg19 with Bowtie2 (v2.2.5)198 in --local mode following 

TruSeq adapter removal and quality filtering with fastx toolkit (v0.0.14). Following 

alignment, reads with mapping score < MAPQ30, reads aligning to the 

mitochondria, and duplicate reads were removed with SAMtools (v1.3.1)199. ChIP-

seq replicates were combined and peaks were called on this joint file with MACS2 

(v2.1.1.20160309)200 using “callpeak”. Peaks with q-value >10-3 and those 

overlapping ENCODE blacklists were removed195. These peaks were annotated for 

their genomic location using CEAS (v1.0.0)201 of the Cistrome analysis pipeline202 

and the distance of each peak to the nearest gene’s transcriptional start site was 

quantified. The top 1000 most significant SOX9 peaks by q-value were submitted to 

SeqPos (v1.0.0) under default parameters. The top resulting position weight 

matrices were matched to motifs in the JASPAR database426. These same 1000 

peaks were submitted to GREAT (v3.0.0)218 under default settings except that the 

association rule was expanded such that “proximal” was defined as 5kb both 

upstream and downstream. The top 20 GO Biological Process terms by binomial 

rank were chosen for display and manually grouped by function. 
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Western blot confirmation of SOX9 knockdown 

PANC-1 cells were cultured in 6-well plates and transfected with 100 nM 

control siRNA (catalogue number above) or 100 nM SOX9 siRNA (catalogue number 

above). After 48 hours, cells were washed with PBS, isolated in RIPA buffer with 

complete, EDTA-free protease inhibitor (Roche) and vortexed. Supernatant was 

collected after centrifugation. Protein concentration was determined using the 

Pierce BCA Protein Assay Kit (Thermo Scientific) and 10 µg of protein was run on 

an Any kD Mini-PROTEAN TGX Precast Protein Gel (Bio-Rad). Transferred at 45V 

for 90 minutes. Membrane blocked for 1 hour and incubated overnight in primary 

antibody (Rabbit anti-Sox9 Santa Cruz sc-20095 1:500; N-Cadherin D4R1H XP 

Rabbit mAb Cell Signaling Technology 13116 1:1000; E-Cadherin 24E10 Rabbit 

mAb Cell Signaling Technology 3195 1:1000), washed 3 times, and incubated in anti-

rabbit HRP (Cell Signaling 7074S 1:2500) for 1 hour. Developed using SuperSignal 

West Dura Extended Duration Substrate (Thermo Scientific) and exposed on a 

ChemiDoc-It2. Stripped membrane using Restore Western Blot Stripping Buffer 

(Thermo Scientific) and repeated staining and development as above using rabbit 

anti-beta-tubulin (Cell Signaling 2128 1:1000) primary.  

Antibody staining 

PANC-1 cells were grown on gelatin-coated coverslips for 48 hours after 

siRNA transfection and fixed in 4% paraformaldehyde buffered in 1X PBS. 

Following 4X5 min washes in 1X PBS, coverslips were blocked in PBST + 10% FBS 

for 1 hour at room temperature and permeablized in 0.5% Triton in PBS for 20 

minutes, incubated with primary antibodies (rabbit anti-SOX9 Santa Cruz sc-20095 
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1:250; mouse anti-EPCAM Santa Cruz sc-66020 1:100; vimentin D21H3 XP Rabbit 

mAb Cell Signaling Technology 5741 1:100) at 4°C overnight. Coverslips were 

washed 4X5 min in blocking, then incubated in secondary antibody (Alexa Fluor 488 

donkey anti-rabbit, Alexa Fluor 488 donkey anti-mouse, Cy3 donkey anti-rabbit, 

Alexa Fluor 647 donkey anti-rabbit, all 1:500, Jackson ImmunoResearch 711-546-

152, 715-456-150, 711-166-152, 711-606-152 respectively) at 4°C overnight before 

4X5 min final PBST washes and a brief DAPI (1:2500 in PBS) stain. Images were 

collected using a Nikon A1-si Laser Scanning Confocal microscope.  

Quantitative PCR confirmation of differentially expressed genes 

PANC-1 cells were cultured in 12-well plates and transfected with 100 nM 

control siRNA (catalogue number above) or 100 nM SOX9 siRNA (catalogue number 

above). After 48 hours, RNA was isolated using Qiagen RNeasy Kit (with DNase 

digestion step) and cDNA was synthesized using Superscript III (Thermo) with 

random hexamer primers. 3 biological replicates of the quantitative PCR reactions 

were run in technical triplicate following the default SYBR green cycling conditions 

on an Applied Biosystems Viia 7 using 2x Power SYBR Green Master Mix (Applied 

Biosystems). Expression was calculated using the ΔΔCT method normalized to 

GAPDH expression and control siRNA transfected cells. Primer sequences can be 

found in Appendix Supplementary Table 6.2389,427,428.  

Correlation with TCGA pancreatic adenocarcinoma expression patterns 

mRNA-sequencing from 178 pancreatic adenocarcinoma samples from the 

TCGA was accessed and downloaded on March 2, 2018. Read-counts were log2 

normalized after addition of a pseudocount and a heatmap429 was generated for all 
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significantly upregulated and downregulated genes and SOX9’s expression patterns 

in these samples, using hierarchical clustering to group these selected genes into 

three clusters, and scaling the expression values by column. Individual gene 

correlation with SOX9 expression was calculated using the Pearson correlation 

method and for visualization, normalized expression values were plotted.  
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Figures and supplementary materials 
 
Appendix Figure 6.1: Knockdown of SOX9 results in an increase of ciliary 
gene expression and a decrease in expression of genes negatively regulating 
proliferation 

 

(A) Western blot and (B) immunofluorescence confirms knockdown of SOX9 protein 

following SOX9 siRNA treatment. Scale bar is 100 um. (C) A volcano plot of adjusted 

p-value versus fold change upon SOX9 knockdown indicates that 93 genes exhibit 

significantly altered expression (33 decreased and 60 increased). (D) Quantitative 

PCR confirms all but one (SKIV2L) of the top five upregulated and top five 

downregulated genes observed with RNA-seq. 3 biological replicates per gene, error 

bars represent standard deviation (E) GO analysis of downregulated genes reveals 

a role for SOX9 in Notch signaling as well as in the regulation of proliferation. (F) 

GO analysis of upregulated genes is enriched for ciliary development and function. 

Neg, Negative; Pos, Positive; reg, regulation.  
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Appendix Figure 6.2: Expression data from pancreatic adenocarcinoma 
samples corroborate the expression patterns seen in PANC-1 cells 

 

(A) Expression analysis of the TCGA pancreatic adenocarcinoma sample data set 

indicate that upregulated genes identified by RNA-seq in PANC-1 cells tend to 

cluster together and are lowly expressed in these samples. Further, downregulated 

genes identified by RNA-seq in PANC-1 cells tend to cluster together and with SOX9 

and are highly expressed. (B) At an individual gene level, CCDC13, a gene that is 

upregulated following SOX9 knockdown, is negatively correlated with SOX9 

expression, suggesting that SOX9 negatively regulates this gene. (C) Conversely, 

ESRP1, a gene that is downregulated following SOX9 knockdown, is positively 

correlated with SOX9 expression, suggesting that SOX9 positively regulates this 

gene.  
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Appendix Figure 6.3: Characteristics of SOX9 gene regulation include 
promoter proximal binding and regulation of genes important to pancreatic 
biology 

 

(A) The most common motif seen at SOX9 binding sites is a homodimer of the 

forward and reverse known SOX9 binding sequences (tail to tail). (B) The second 

most common motif at SOX9 binding sites is recognized by FOS::JUN. (C) SOX9 

binding is enriched at promoters (≤1000 base-pairs upstream of a transcription start 

site). (D) As distance from the transcriptional start site increases, the proportion of 

SOX9 binding events decreases. (E) The nearest genes to SOX9 binding sites are 

enriched for GO terms related to known SOX9 biology, including endocrine pancreas 

functions. 
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Appendix Figure 6.4: RNA-seq and ChIP-seq in combination reveal 
EPCAM to be a direct target of SOX9 

 

(A) Traces corresponding to RNA-seq and ChIP-seq reads near the EPCAM gene 

confirm SOX9 knockdown and reveal SOX9 binding at the EPCAM transcription 

start site. (B) Immunofluorescence staining of PANC-1 cells confirms knockdown of 

both SOX9 and EPCAM protein by siSOX9. Scale bar is 100 um. (C) Expression of 

EPCAM and SOX9 in TCGA pancreatic adenocarcinoma samples are positively 

correlated, suggesting that EPCAM expression is upregulated by SOX9.   
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Appendix Table 6.1: Top 10 upregulated and downregulated genes 
following SOX9 siRNA knockdown 

 

 
Gene 

log2 
(SOX9 

siRNA/control) 
p-value  

(adjusted) 

U
pr

eg
ul

at
ed

 

LRRC6  3.332 1.98E-02 
SPEF1  3.158 2.36E-04 
CASC1  2.809 4.45E-02 
DNAH7  2.663 1.85E-05 
C9orf116  2.583 3.86E-06 
CFAP69  2.358 2.09E-03 
CCDC13  2.191 4.77E-03 
AXIN2  2.175 1.59E-03 
C6orf165  2.169 1.64E-06 
ROPN1L  2.061 1.56E-03 

D
ow

nr
eg

ul
at

ed
 

TUB -1.437 1.09E-02 
LIN7C -1.470 2.28E-05 
SLC45A3 -1.475 1.23E-02 
DDAH1 -1.522 7.86E-06 
CENPM -1.550 2.91E-05 
EPCAM -1.762 1.85E-05 
RGCC -2.006 7.30E-03 
TINAGL1 -2.264 1.33E-05 
ESRP1 -2.307 2.52E-03 
SKIV2L -3.721 4.11E-02 
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Appendix Table 6.2: Assessing the top differentially expressed genes for 
evidence of direct SOX9 regulation, expression in pancreatic ductal cells, and 
ability to mark CACs 

 

 Gene 

Direct 
target of 

SOX9? 

Enriched 
ductal 

expression? 
CAC 

marker? 

U
pr

eg
ul

at
ed

 

LRRC6 Yes Yes No 
SPEF1 Yes No No 
CASC1 No No No 
DNAH7 No No No 
C9orf116 No No No 
CFAP69 Yes No No 
CCDC13 No No No 
AXIN2 No No No 
C6orf165 No No No 
ROPN1L No No No 

D
ow

nr
eg

ul
at

ed
 

TUB Yes No No 
LIN7C Yes No No 
SLC45A3 Yes No No 
DDAH1 Yes No No 
CENPM Yes No No 
EPCAM Yes Yes Yes 
RGCC No Yes No 
TINAGL1 Yes Yes No 
ESRP1 Yes Yes No 
SKIV2L Yes No No 

  



200 
 

 

Appendix Supplementary Figure 6.1: Changes in gene expression from 
SOX9 knockdown do not correspond with changes in cell state 

 

(A) Immunofluorescence for the mesenchymal marker vimentin is present uniformly 

in PANC-1 cells. (B) There is no change in N-cadherin or E-cadherin expression by 

Western blot between PANC-1 cells treated with siControl versus siSOX9. (C) 

Quantitative PCR shows that while there is a general decrease in expression of 

FGFR2 with SOX9 knockdown, there is no change in the ratio between its splice 

isoforms or the splice isoforms of FGFR3, indicative of no EMT.60,61 Three biological 

replicates per gene, error bars represent standard deviation. 
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Appendix Supplementary Table 6.1: Correlation of SOX9 expression with 
the top ten up- and down-regulated genes 

 Gene 
Pearson 

correlation 
U

pr
eg

ul
at

ed
 

LRRC6 0.21 
SPEF1 -0.13 
CASC1 -0.14 
DNAH7 -0.02 
C9orf116 0.07 
CFAP69 -0.22 
CCDC13 -0.50 
AXIN2 -0.17 
C6orf165 -0.31 
ROPN1L -0.35 

D
ow

nr
eg

ul
at

ed
 

TUB -0.56 
LIN7C 0.04 
SLC45A3 0.48 
DDAH1 0.35 
CENPM 0.24 
EPCAM 0.58 
RGCC -0.30 
TINAGL1 0.57 
ESRP1 0.67 
SKIV2L 0.03 

 

 

 
  



202 
 

 
Appendix Supplementary Table 6.2: List of primers used for qPCR 

 
Gene Forward Reverse Source 

GAPDH GCACCGTCAAGGCTGAGAAC ATGGTGGTGAAGACGCCAGT Ishii et al. 2014 

SOX9 GGGCACCGGCCTCTACTCCA TCCCAGTGCTGGGGGCTGT  

LRRC6 CGCCATGGGCTGGATCACAGAA ATGCAACGAGAGTTCCTCCAGGG  

SPEF1 AGCGATGGAGTCCTTGTTGCAGAG TGGAGAGAGTTGGCGGGGACA  

CASC1 AGGTGTTTTCCTGAAGCAGAGA AGGATCAGGACTCCCATCACA  

DNAH7 TGCCTCTATCGTCCTAGGGG GCTGGCCGATTTATCCTGCT  

C9orf116 GGAGAGGACCAGCGACTACT ACAGCCTTCTGGGTCCTGTA  

SKIV2L CGGGAGCGAATGCAGATACA GTTCGGAGCACCTCTACTCG  

ESRP1 CAATATTGCCAAGGGAGGTG GTCCCCATGTGATGTTTGTG Ishii et al. 2014 

TINAGL1 TCCCAAACAGCAGTTGGATGTA GGTTCTTGGTCACACTGCCA  

RGCC GCACCTGGAGCGCATGAAGC TGAATCTGCACTCTCCGAGTCGCT  

EPCAM CGCGTTCGGGCTTCTGCTTG ATTTGGCAGCCAGCTTTGAGCA  

FGFR2-IIIb CGTGGAAAAGAACGGCAGTAAATA GAACTATTTATCCCCGAGTGCTTG Ranieri et al. 2015 

FGFR2-IIIc TGAGGACGCTGGGGAATATACG TAGTCTGGGGAAGCTGTAATCTCCT Ranieri et al. 2015 

FGFR3-IIIb TCAAGTCCTGGATCAGTGAGAGT AGGAAGAAGCCCACCCCG Tomlinson et al. 2005 

FGFR3-IIIc GAGTTCCACTGCAAGGTGTACAGT GAGAGAACCTCTAGCTCCTTGTCG Tomlinson et al. 2005 
 
  



203 
 

6.2 References 

1. de Lau, L. M. L. & Breteler, M. M. B. Epidemiology of Parkinson’s disease. Lancet. 
Neurol. 5, 525–535 (2006). 

2. Fahn, S. Description of Parkinson’s disease as a clinical syndrome. Ann. N. Y. Acad. 
Sci. 991, 1–14 (2003). 

3. Postuma, R. B. et al. Identifying prodromal Parkinson’s disease: pre-motor disorders 
in Parkinson’s disease. Mov. Disord. 27, 617–626 (2012). 

4. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra 
regional selectivity. Brain 114, 2283–2301 (1991). 

5. Corti, O., Lesage, S. & Brice, A. What genetics tells us about the causes and 
mechanisms of Parkinson’s disease. Physiol. Rev. 91, 1161–1218 (2011). 

6. Kumar, K. R., Djarmati-Westenberger, A. & Grunewald, A. Genetics of Parkinson’s 
disease. Semin. Neurol. 31, 433–440 (2011). 

7. Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in 
families with Parkinson’s disease. Science 276, 2045–2047 (1997). 

8. Funayama, M. et al. A new locus for Parkinson’s disease (PARK8) maps to 
chromosome 12p11.2-q13.1. Ann. Neurol. 51, 296–301 (2002). 

9. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism 
with pleomorphic pathology. Neuron 44, 601–607 (2004). 

10. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer 
complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 
(2011). 

11. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile 
parkinsonism. Nature 392, 605–608 (1998). 

12. Bonifati, V. et al. DJ-1( PARK7), a novel gene for autosomal recessive, early onset 
parkinsonism. Neurol. Sci.  Off. J. Ital. Neurol. Soc.  Ital. Soc. Clin. Neurophysiol. 
24, 159–160 (2003). 

13. Valente, E. M. et al. Hereditary early-onset Parkinson’s disease caused by 
mutations in PINK1. Science 304, 1158–1160 (2004). 

14. Kiely, A. P. et al. alpha-Synucleinopathy associated with G51D SNCA mutation: a 
link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 
125, 753–769 (2013). 

15. Kruger, R. et al. Ala30Pro mutation in the gene encoding alpha-synuclein in 
Parkinson’s disease. Nature Genetics 18, 106–108 (1998). 

16. Zarranz, J. J. et al. The new mutation, E46K, of alpha-synuclein causes Parkinson 
and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004). 

17. Pasanen, P. et al. Novel alpha-synuclein mutation A53E associated with atypical 
multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol. Aging 
35, 2180.e1-5 (2014). 

18. Proukakis, C. et al. A novel alpha-synuclein missense mutation in Parkinson 
disease. Neurology 80, 1062–1064 (2013). 

19. Chartier-Harlin, M.-C. et al. Alpha-synuclein locus duplication as a cause of familial 
Parkinson’s disease. Lancet (London, England) 364, 1167–1169 (2004). 



204 
 

20. Singleton, A. B. et al. alpha-Synuclein locus triplication causes Parkinson’s disease. 
Science 302, 841 (2003). 

21. Singleton, A. & Gwinn-Hardy, K. Parkinson’s disease and dementia with Lewy 
bodies: a difference in dose? Lancet (London, England) 364, 1105–1107 (2004). 

22. Inzelberg, R. et al. Onset and progression of disease in familial and sporadic 
Parkinson’s disease. Am. J. Med. Genet. A 124A, 255–258 (2004). 

23. Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 
new Parkinson’s  disease risk loci. Nat. Genet. 49, 1511–1516 (2017). 

24. Nalls, M. A. et al. Expanding Parkinson&#039;s disease genetics: novel risk loci, 
genomic context, causal insights and heritable risk. bioRxiv 388165 (2019). 

25. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data 
identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014). 

26. Maurano, M. T. et al. Systematic localization of common disease-associated 
variation in regulatory DNA. Science 337, 1190–1195 (2012). 

27. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to 
candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 
(2018). 

28. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a beta-globin gene is 
enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981). 

29. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global 
cell-type-specific gene expression. Nature 459, 108–112 (2009). 

30. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. 
Nature 457, 854–858 (2009). 

31. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 
488, 116–120 (2012). 

32. Bulger, M. & Groudine, M. Enhancers: the abundance and function of regulatory 
sequences beyond promoters. Dev. Biol. 339, 250–257 (2010). 

33. Tjian, R. The binding site on SV40 DNA for a T antigen-related protein. Cell 13, 
165–179 (1978). 

34. Farley, E. K., Olson, K. M., Zhang, W., Rokhsar, D. S. & Levine, M. S. Syntax 
compensates for poor binding sites to encode tissue specificity of developmental 
enhancers. Proc. Natl. Acad. Sci. U. S. A. 113, 6508–6513 (2016). 

35. Crocker, J., Noon, E. P.-B. & Stern, D. L. The Soft Touch: Low-Affinity 
Transcription Factor Binding Sites in Development and Evolution. Curr. Top. Dev. 
Biol. 117, 455–469 (2016). 

36. Grossman, S. R. et al. Systematic dissection of genomic features determining 
transcription factor binding and enhancer function. Proc. Natl. Acad. Sci. U. S. A. 
114, E1291–E1300 (2017). 

37. Stargell, L. A. & Struhl, K. Mechanisms of transcriptional activation in vivo: two 
steps forward. Trends Genet. 12, 311–315 (1996). 

38. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 
569–577 (1997). 

39. Sawado, T., Halow, J., Bender, M. A. & Groudine, M. The beta -globin locus control 
region (LCR) functions primarily by enhancing the  transition from transcription 
initiation to elongation. Genes Dev. 17, 1009–1018 (2003). 



205 
 

40. Nechaev, S. & Adelman, K. Pol II waiting in the starting gates: Regulating the 
transition from transcription initiation into productive elongation. Biochim. 
Biophys. Acta 1809, 34–45 (2011). 

41. Ptashne, M. Gene regulation by proteins acting nearby and at a distance. Nature 
322, 697–701 (1986). 

42. de Laat, W. et al. Three-dimensional organization of gene expression in erythroid 
cells. Curr. Top. Dev. Biol. 82, 117–139 (2008). 

43. Li, G. et al. Extensive promoter-centered chromatin interactions provide a 
topological basis for transcription regulation. Cell 148, 84–98 (2012). 

44. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin 
architecture. Nature 467, 430–435 (2010). 

45. Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific 
transcription. Genome Res. 20, 578–588 (2010). 

46. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization 
of genomes during lineage  commitment. Cell 153, 1281–1295 (2013). 

47. Palstra, R.-J. et al. The beta-globin nuclear compartment in development and 
erythroid differentiation. Nat. Genet. 35, 190–194 (2003). 

48. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 
184, 868–871 (1974). 

49. Knezetic, J. A. & Luse, D. S. The presence of nucleosomes on a DNA template 
prevents initiation by RNA polymerase II in vitro. Cell 45, 95–104 (1986). 

50. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of 
transcription but allow chain elongation with the displacement of histones. Cell 49, 
203–210 (1987). 

51. Wapinski, O. L. et al. Rapid Chromatin Switch in the Direct Reprogramming of 
Fibroblasts to Neurons. Cell Rep. 20, 3236–3247 (2017). 

52. Zaret, K. Developmental competence of the gut endoderm: genetic potentiation by 
GATA and HNF3/fork head proteins. Dev. Biol. 209, 1–10 (1999). 

53. Zaret, K. S. et al. Pioneer factors, genetic competence, and inductive signaling: 
programming liver and pancreas progenitors from the endoderm. Cold Spring Harb. 
Symp. Quant. Biol. 73, 119–126 (2008). 

54. Engelen, E. et al. Sox2 cooperates with Chd7 to regulate genes that are mutated in 
human syndromes. Nat. Genet. 43, 607–611 (2011). 

55. Ding, J., Xu, H., Faiola, F., Ma’ayan, A. & Wang, J. Oct4 links multiple epigenetic 
pathways to the pluripotency network. Cell Res. 22, 155–167 (2012). 

56. Takaku, M. et al. GATA3-dependent cellular reprogramming requires activation-
domain dependent recruitment of a chromatin remodeler. Genome Biol. 17, 36 
(2016). 

57. Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions 
of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013). 

58. Kioussis, D., Vanin, E., deLange, T., Flavell, R. A. & Grosveld, F. G. Beta-globin 
gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306, 
662–666 (1983). 

59. Lettice, L. A. et al. Disruption of a long-range cis-acting regulator for Shh causes 
preaxial polydactyly. Proc. Natl. Acad. Sci. U. S. A. 99, 7548–7553 (2002). 



206 
 

60. Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the 
developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. 
Genet. 12, 1725–1735 (2003). 

61. Weedon, M. N. et al. Recessive mutations in a distal PTF1A enhancer cause isolated 
pancreatic agenesis. Nat. Genet. 46, 61–64 (2014). 

62. Lauderdale, J. D., Wilensky, J. S., Oliver, E. R., Walton, D. S. & Glaser, T. 3’ 
deletions cause aniridia by preventing PAX6 gene expression. Proc. Natl. Acad. Sci. 
U. S. A. 97, 13755–13759 (2000). 

63. Bhatia, S. et al. Disruption of autoregulatory feedback by a mutation in a remote, 
ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 93, 1126–1134 
(2013). 

64. Smemo, S. et al. Regulatory variation in a TBX5 enhancer leads to isolated 
congenital heart disease. Hum. Mol. Genet. 21, 3255–3263 (2012). 

65. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies 
Hirschsprung disease  risk. Nature 434, 857–863 (2005). 

66. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide 
association loci for human diseases and traits. Proc. Natl. Acad. Sci. U. S. A. 106, 
9362–9367 (2009). 

67. Claussnitzer, M. et al. FTO Obesity Variant Circuitry and Adipocyte Browning in 
Humans. N. Engl. J. Med. 373, 895–907 (2015). 

68. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional 
connections with IRX3. Nature 507, 371–375 (2014). 

69. Gupta, R. M. et al. A Genetic Variant Associated with Five Vascular Diseases Is a 
Distal Regulator of Endothelin-1 Gene Expression. Cell 170, 522–533.e15 (2017). 

70. Kleftogiannis, D., Kalnis, P. & Bajic, V. B. DEEP: a general computational 
framework for predicting enhancers. Nucleic Acids Res. 43, e6 (2015). 

71. Lee, D., Karchin, R. & Beer, M. A. Discriminative prediction of mammalian 
enhancers from DNA sequence. Genome Res. 21, 2167–2180 (2011). 

72. Fletez-Brant, C., Lee, D., McCallion, A. S. & Beer, M. A. kmer-SVM: a web server 
for identifying predictive regulatory sequence features in genomic data sets. Nucleic 
Acids Res. 41, W544-56 (2013). 

73. Ghandi, M., Lee, D., Mohammad-Noori, M. & Beer, M. A. Enhanced regulatory 
sequence prediction using gapped k-mer features. PLoS Comput. Biol. 10, e1003711 
(2014). 

74. Kim, S. G., Harwani, M., Grama, A. & Chaterji, S. EP-DNN: A Deep Neural 
Network-Based Global Enhancer Prediction Algorithm. Sci. Rep. 6, 38433 (2016). 

75. Woolfe, A. et al. Highly conserved non-coding sequences are associated with 
vertebrate development. PLoS Biol. 3, e7 (2005). 

76. Boffelli, D. et al. Phylogenetic shadowing of primate sequences to find functional 
regions of the human genome. Science 299, 1391–1394 (2003). 

77. Antonellis, A. et al. Identification of neural crest and glial enhancers at the mouse 
Sox10 locus through transgenesis in zebrafish. PLoS Genet. 4, e1000174 (2008). 

78. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding 
sequences. Nature 444, 499–502 (2006). 

79. Shin, J. T. et al. Human-zebrafish non-coding conserved elements act in vivo to 



207 
 

regulate transcription. Nucleic Acids Res. 33, 5437–5445 (2005). 
80. Chen, H., Li, C., Zhou, Z. & Liang, H. Fast-Evolving Human-Specific Neural 

Enhancers Are Associated with Aging-Related Diseases. Cell Syst. 6, 604–611.e4 
(2018). 

81. Moon, J. M., Capra, J. A., Abbot, P. & Rokas, A. Signatures of Recent Positive 
Selection in Enhancers Across 41 Human Tissues. G3 (Bethesda). 9, 2761–2774 
(2019). 

82. Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K.-D. & Wray, G. A. Promoter 
regions of many neural- and nutrition-related genes have experienced positive 
selection during human evolution. Nat. Genet. 39, 1140–1144 (2007). 

83. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in 
vivo protein-DNA interactions. Science 316, 1497–1502 (2007). 

84. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and 
lineage-committed cells. Nature 448, 553–560 (2007). 

85. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of 
transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 
311–318 (2007). 

86. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers 
and predicts developmental state. Proc. Natl. Acad. Sci. U. S. A. 107, 21931–21936 
(2010). 

87. Ogryzko, V. V, Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The 
transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 
953–959 (1996). 

88. May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nat. 
Genet. 44, 89–93 (2011). 

89. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains 
uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–
1354 (2006). 

90. Dixon, J. R. et al. Topological domains in mammalian genomes identified by 
analysis of chromatin interactions. Nature 485, 376–380 (2012). 

91. Schoenfelder, S., Javierre, B.-M., Furlan-Magaril, M., Wingett, S. W. & Fraser, P. 
Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter 
Interactions. J. Vis. Exp. (2018). 

92. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin 
across the genome. Cell 132, 311–322 (2008). 

93. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. 
Nature 489, 75–82 (2012). 

94. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE 
(Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory 
elements from human chromatin. Genome Res. 17, 877–885 (2007). 

95. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. 
Transposition of native chromatin for fast and sensitive epigenomic profiling of open 
chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–
8 (2013). 

96. Brasier, A. R., Tate, J. E. & Habener, J. F. Optimized use of the firefly luciferase 
assay as a reporter gene in mammalian cell lines. Biotechniques 7, 1116–1122 



208 
 

(1989). 
97. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by 

STARR-seq. Science 339, 1074–1077 (2013). 
98. Kwasnieski, J. C., Mogno, I., Myers, C. A., Corbo, J. C. & Cohen, B. A. Complex 

effects of nucleotide variants in a mammalian cis-regulatory element. Proc. Natl. 
Acad. Sci. U. S. A. 109, 19498–19503 (2012). 

99. Patwardhan, R. P. et al. Massively parallel functional dissection of mammalian 
enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012). 

100. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in 
human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 
(2012). 

101. Kothary, R. et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic 
mice. Development 105, 707–714 (1989). 

102. Rossant, J., Zirngibl, R., Cado, D., Shago, M. & Giguere, V. Expression of a retinoic 
acid response element-hsplacZ transgene defines specific domains of transcriptional 
activity during mouse embryogenesis. Genes Dev. 5, 1333–1344 (1991). 

103. Fisher, S. et al. Evaluating the biological relevance of putative enhancers using Tol2 
transposon-mediated transgenesis in zebrafish. Nat. Protoc. 1, 1297–1305 (2006). 

104. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive 
bacterial immunity. Science 337, 816–821 (2012). 

105. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–
826 (2013). 

106. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 
339, 819–823 (2013). 

107. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of 
transcription in eukaryotes. Cell 154, 442–451 (2013). 

108. Singh, P. & Schimenti, J. C. The genetics of human infertility by functional 
interrogation of SNPs in mice. Proc. Natl. Acad. Sci. U. S. A. 112, 10431–10436 
(2015). 

109. Soldner, F. et al. Parkinson-associated risk variant in distal enhancer of alpha-
synuclein modulates target gene expression. Nature 533, 95–99 (2016). 

110. Dickel, D. E. et al. Ultraconserved Enhancers Are Required for Normal 
Development. Cell 172, 491–499.e15 (2018). 

111. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in 
mammalian development. Nature 554, 239–243 (2018). 

112. Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from 
polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. 
Natl. Acad. Sci. U. S. A. 76, 4350–4354 (1979). 

113. Burnette, W. N. ‘Western blotting’: electrophoretic transfer of proteins from sodium 
dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic 
detection with antibody and radioiodinated protein A. Anal. Biochem. 112, 195–203 
(1981). 

114. Engvall, E. & Perlmann, P. Enzyme-linked immunosorbent assay (ELISA). 
Quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971). 

115. Bruins, A. P., Covey, T. R. & Henion, J. D. Ion spray interface for combined liquid 



209 
 

chromatography/atmospheric pressure ionization mass spectrometry. Anal. Chem. 
59, 2642–2646 (1987). 

116. Bass, J. J. et al. An overview of technical considerations for Western blotting 
applications to physiological research. Scand. J. Med. Sci. Sports 27, 4–25 (2017). 

117. Reeves, J. R. & Bartlett, J. M. Measurement of protein expression a technical 
overview. Methods Mol. Med. 39, 471–483 (2001). 

118. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein 
abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117 
(2003). 

119. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein 
and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999). 

120. Alwine, J. C., Kemp, D. J. & Stark, G. R. Method for detection of specific RNAs in 
agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with 
DNA probes. Proc. Natl. Acad. Sci. U. S. A. 74, 5350–5354 (1977). 

121. Higuchi, R., Fockler, C., Dollinger, G. & Watson, R. Kinetic PCR analysis: real-time 
monitoring of DNA amplification reactions. Biotechnology. (N. Y). 11, 1026–1030 
(1993). 

122. Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific 
polymerase chain reaction product by utilizing the 5’----3’ exonuclease activity of 
Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 88, 7276–7280 
(1991). 

123. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. 
Genome Res. 6, 986–994 (1996). 

124. Bertone, P. et al. Global identification of human transcribed sequences with genome 
tiling arrays. Science 306, 2242–2246 (2004). 

125. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis 
genome. Science 302, 842–846 (2003). 

126. Selinger, D. W. et al. RNA expression analysis using a 30 base pair resolution 
Escherichia coli genome array. Nat. Biotechnol. 18, 1262–1268 (2000). 

127. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by 
RNA sequencing. Science 320, 1344–1349 (2008). 

128. Wilhelm, B. T. et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at 
single-nucleotide resolution. Nature 453, 1239–1243 (2008). 

129. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and 
quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 
(2008). 

130. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in 
Arabidopsis. Cell 133, 523–536 (2008). 

131. Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA 
sequencing. Nat. Methods 5, 613–619 (2008). 

132. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 
17, 13 (2016). 

133. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single 
cell. Nat. Protoc. 5, 516–535 (2010). 

134. Islam, S. et al. Characterization of the single-cell transcriptional landscape by 



210 
 

highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011). 
135. Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and 

individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012). 
136. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. 

Nat. Methods 11, 163–166 (2014). 
137. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single 

cells. Nat. Commun. 8, 14049 (2017). 
138. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 

9, 171–181 (2014). 
139. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular 

organism. Science 357, 661–667 (2017). 
140. Kharchenko, P. V, Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell 

differential expression analysis. Nat. Methods 11, 740–742 (2014). 
141. Jolliffe, I. Principal component analysis and factor analysis. Aberdeen. (2002). 
142. Maaten, L. van der & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 

9, 2579–2605 (2008). 
143. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and 

projection for dimension reduction. arXiv Prepr. arXiv1802.03426 (2018). 
144. Neftel, C. et al. An Integrative Model of Cellular States, Plasticity, and Genetics for 

Glioblastoma. Cell 178, 835–849.e21 (2019). 
145. Hovestadt, V. et al. Resolving medulloblastoma cellular architecture by single-cell 

genomics. Nature 572, 74–79 (2019). 
146. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in 

primary glioblastoma. Science 344, 1396–1401 (2014). 
147. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus 

revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015). 
148. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single 

cell level. Proc. Natl. Acad. Sci. U. S. A. 112, 7285–7290 (2015). 
149. La Manno, G. et al. Molecular Diversity of Midbrain Development in Mouse, 

Human, and Stem Cells. Cell 167, 566–580.e19 (2016). 
150. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult 

central nervous system. Science 352, 1326–1329 (2016). 
151. Hook, P. W. et al. Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs 

Candidate Gene Selection for Sporadic Parkinson Disease. Am. J. Hum. Genet. 102, 
427–446 (2018). 

152. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic 
cells, monocytes,  and progenitors. Science 356, (2017). 

153. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-
expressing ionocytes. Nature 560, 319–324 (2018). 

154. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the 
CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018). 

155. Steuerman, Y. et al. Dissection of Influenza Infection In Vivo by Single-Cell RNA 
Sequencing. Cell Syst. 6, 679–691.e4 (2018). 

156. De Baets, S. et al. A GFP expressing influenza A virus to report in vivo tropism and 



211 
 

protection by a  matrix protein 2 ectodomain-specific monoclonal antibody. PLoS 
One 10, e0121491 (2015). 

157. McFadden, G., Mohamed, M. R., Rahman, M. M. & Bartee, E. Cytokine 
determinants of viral tropism. Nat. Rev. Immunol. 9, 645–655 (2009). 

158. See, K. et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-
regulated de-differentiation and cell cycle stress-response in vivo. Nat. Commun. 8, 
225 (2017). 

159. Nomura, S. et al. Cardiomyocyte gene programs encoding morphological and 
functional signatures in cardiac hypertrophy and failure. Nat. Commun. 9, 4435 
(2018). 

160. Grubman, A. et al. A single cell brain atlas in human Alzheimer’s disease. bioRxiv 
628347 (2019). 

161. Ma, S. Y., Roytta, M., Rinne, J. O., Collan, Y. & Rinne, U. K. Correlation between 
neuromorphometry in the substantia nigra and clinical features in Parkinson’s 
disease using disector counts. J. Neurol. Sci. 151, 83–87 (1997). 

162. Pringsheim, T., Jette, N., Frolkis, A. & Steeves, T. D. L. The prevalence of 
Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 29, 1583–
1590 (2014). 

163. Thomas, B. & Beal, M. F. Parkinson’s disease. Hum. Mol. Genet. 16 Spec No, R183-
94 (2007). 

164. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease 
associations with regulatory information in the human genome. Genome Res. 22, 
1748–1759 (2012). 

165. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human 
cell types. Nature 473, 43–49 (2011). 

166. Forrest, M. P. et al. Open Chromatin Profiling in hiPSC-Derived Neurons Prioritizes 
Functional Noncoding Psychiatric Risk Variants and Highlights 
Neurodevelopmental Loci. Cell Stem Cell 21, 305–318.e8 (2017). 

167. Fullard, J. F. et al. Open chromatin profiling of human postmortem brain infers 
functional roles for non-coding schizophrenia loci. Hum. Mol. Genet. 26, 1942–1951 
(2017). 

168. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From 
Polygenic to Omnigenic. Cell 169, 1177–1186 (2017). 

169. Lee, D. et al. A method to predict the impact of regulatory variants from DNA 
sequence. Nat. Genet. 47, 955–961 (2015). 

170. Praetorius, C. et al. A polymorphism in IRF4 affects human pigmentation through a 
tyrosinase-dependent  MITF/TFAP2A pathway. Cell 155, 1022–1033 (2013). 

171. Heintz, N. Gene expression nervous system atlas (GENSAT). Nat. Neurosci. 7, 483 
(2004). 

172. Robinson, J. T. et al. Integrative genomics viewer. Nature Biotechnology 29, 24–26 
(2011). 

173. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer 
(IGV): high-performance genomics data visualization and exploration. Brief. 
Bioinform. 14, 178–192 (2013). 

174. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer 
Browser--a database of tissue-specific human enhancers. Nucleic Acids Res. 35, 



212 
 

D88-92 (2007). 
175. Stott, S. R. W. et al. Foxa1 and foxa2 are required for the maintenance of 

dopaminergic properties in ventral midbrain neurons at late embryonic stages. J. 
Neurosci. 33, 8022–8034 (2013). 

176. Arenas, E. Foxa2: the rise and fall of dopamine neurons. Cell Stem Cell 2, 110–112 
(2008). 

177. Prakash, N. & Wurst, W. Development of dopaminergic neurons in the mammalian 
brain. Cell. Mol. Life Sci. 63, 187–206 (2006). 

178. Smits, S. M., Ponnio, T., Conneely, O. M., Burbach, J. P. H. & Smidt, M. P. 
Involvement of Nurr1 in specifying the neurotransmitter identity of ventral 
midbrain dopaminergic neurons. Eur. J. Neurosci. 18, 1731–1738 (2003). 

179. Hook, P. W. et al. Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs 
Candidate Gene Selection for Sporadic Parkinson Disease. Am. J. Hum. Genet. 102, 
427–446 (2018). 

180. Wang, Y. et al. The 3D Genome Browser: a web-based browser for visualizing 3D 
genome organization and long-range chromatin interactions. Genome Biol. 19, 151 
(2018). 

181. Zarow, C., Lyness, S. A., Mortimer, J. A. & Chui, H. C. Neuronal loss is greater in 
the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and 
Parkinson diseases. Arch. Neurol. 60, 337–341 (2003). 

182. Kastenhuber, E., Kratochwil, C. F., Ryu, S., Schweitzer, J. & Driever, W. Genetic 
dissection of dopaminergic and noradrenergic contributions to catecholaminergic 
tracts in early larval zebrafish. J. Comp. Neurol. 518, 439–458 (2010). 

183. Rink, E. & Wullimann, M. F. The teleostean (zebrafish) dopaminergic system 
ascending to the subpallium (striatum) is located in the basal diencephalon 
(posterior tuberculum). Brain Res. 889, 316–330 (2001). 

184. Seidel, K. et al. The brainstem pathologies of Parkinson’s disease and dementia with 
Lewy bodies. Brain Pathol. 25, 121–135 (2015). 

185. Wakabayashi, K., Mori, F., Tanji, K., Orimo, S. & Takahashi, H. Involvement of the 
peripheral nervous system in synucleinopathies, tauopathies and other 
neurodegenerative proteinopathies of the brain. Acta Neuropathol. 120, 1–12 (2010). 

186. Wakabayashi, K. & Takahashi, H. Neuropathology of autonomic nervous system in 
Parkinson’s disease. Eur. Neurol. 38 Suppl 2, 2–7 (1997). 

187. Braak, H. et al. Amygdala pathology in Parkinson’s disease. Acta Neuropathol. 88, 
493–500 (1994). 

188. Langston, J. W. & Forno, L. S. The hypothalamus in Parkinson disease. Ann. 
Neurol. 3, 129–133 (1978). 

189. Guella, I. et al. alpha-synuclein genetic variability: A biomarker for dementia in 
Parkinson disease. Ann. Neurol. 79, 991–999 (2016). 

190. Biedler, J. L., Roffler-Tarlov, S., Schachner, M. & Freedman, L. S. Multiple 
neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer 
Res. 38, 3751–3757 (1978). 

191. Dutta, G., Zhang, P. & Liu, B. The lipopolysaccharide Parkinson’s disease animal 
model: mechanistic studies and  drug discovery. Fundam. Clin. Pharmacol. 22, 453–
464 (2008). 

192. Perry, V. H. The influence of systemic inflammation on inflammation in the brain: 



213 
 

implications for chronic neurodegenerative disease. Brain. Behav. Immun. 18, 407–
413 (2004). 

193. Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse 
forebrain reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 
432–439 (2018). 

194. Greffard, S. et al. Motor score of the Unified Parkinson Disease Rating Scale as a 
good predictor of  Lewy body-associated neuronal loss in the substantia nigra. Arch. 
Neurol. 63, 584–588 (2006). 

195. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in 
the human genome. Nature 489, 57–74 (2012). 

196. Gong, S. et al. A gene expression atlas of the central nervous system based on 
bacterial artificial chromosomes. Nature 425, 917–925 (2003). 

197. Westerfeld, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish 
(Danio rerio). (Univ. Oregon Press, 2007). 

198. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. 
Methods 9, 357–359 (2012). 

199. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 
2078–2079 (2009). 

200. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 
(2008). 

201. Shin, H., Liu, T., Manrai, A. K. & Liu, X. S. CEAS: cis-regulatory element 
annotation system. Bioinformatics 25, 2605–2606 (2009). 

202. Liu, T. et al. Cistrome: an integrative platform for transcriptional regulation 
studies. Genome Biol. 12, R83 (2011). 

203. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 
32, D493-6 (2004). 

204. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing 
data analysis. Nucleic Acids Res. 44, W160-5 (2016). 

205. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low 
memory requirements. Nat. Methods 12, 357–360 (2015). 

206. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable 
read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013). 

207. Huber, W. et al. Orchestrating high-throughput genomic analysis with 
Bioconductor. Nat. Methods 12, 115–121 (2015). 

208. Gentleman, R. C. et al. Bioconductor: open software development for computational 
biology and bioinformatics. Genome Biol. 5, R80 (2004). 

209. Mudge, J. M. & Harrow, J. Creating reference gene annotation for the mouse 
C57BL6/J genome assembly. Mamm. Genome 26, 366–378 (2015). 

210. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome 
assemblies. Bioinformatics 30, 1006–1007 (2014). 

211. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics 26, 841–842 (2010). 

212. Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase 
chain reaction. BMC Bioinformatics 13, 134 (2012). 

213. Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq 



214 
 

data using conditional quantile normalization. Biostatistics 13, 204–216 (2012). 
214. Wei, T. & Simko, V. corrplot: Visualization of a Correlation Matrix. (2016). 
215. Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014). 
216. Schwalb, B., Tresch, A., Torkler, P., Duemcke, S. & Demel, C. LSD: Lots of Superior 

Depictions. (2015). 
217. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and 

yeast genomes. Genome Res. 15, 1034–1050 (2005). 
218. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory 

regions. Nat. Biotechnol. 28, 495–501 (2010). 
219. Poulin, F. et al. In vivo characterization of a vertebrate ultraconserved enhancer. 

Genomics 85, 774–781 (2005). 
220. Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of 

idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. 
Neurosurg. Psychiatry 55, 181–184 (1992). 

221. R Core Team. R: A language and environment for statistical computing. (2017). 
222. Sinnwell, J. P. & Schaid, D. J. haplo.stats: Statistical Analysis of Haplotypes with 

Traits and Covariates when Linkage Phase is Ambiguous. (2016). 
223. Schaid, D. J., Rowland, C. M., Tines, D. E., Jacobson, R. M. & Poland, G. A. Score 

Tests for Association between Traits and Haplotypes when Linkage Phase Is 
Ambiguous. Am. J. Hum. Genet. 70, 425–434 (2002). 

224. Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring 
population-specific haplotype structure and linking correlated alleles of possible 
functional variants. Bioinformatics 31, 3555–3557 (2015). 

225. Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond 
genome editing. Nucleic Acids Res. 47, W171–W174 (2019). 

226. Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP 
v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids 
Res. 44, W272–W276 (2016). 

227. Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. 
CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic 
Acids Res. 42, W401–W407 (2014). 

228. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 
2281–2308 (2013). 

229. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred 
kilobases. Nat. Methods 6, 343–345 (2009). 

230. Watkins-Chow, D. E. et al. Highly Efficient Cpf1-Mediated Gene Targeting in Mice 
Following High Concentration Pronuclear Injection. G3 (Bethesda). 7, 719–722 
(2017). 

231. Kircher, M. et al. A general framework for estimating the relative pathogenicity of 
human genetic variants. Nat. Genet. 46, 310–315 (2014). 

232. Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein 
function. Nucleic Acids Res. 31, 3812–3814 (2003). 

233. Adzhubei, I. A. et al. A method and server for predicting damaging missense 
mutations. Nature methods 7, 248–249 (2010). 

234. Boyle, A. P. et al. Annotation of functional variation in personal genomes using 



215 
 

RegulomeDB. Genome Res. 22, 1790–1797 (2012). 
235. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic 

variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010). 
236. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep 

learning-based sequence model. Nat. Methods 12, 931–934 (2015). 
237. McClymont, S. A. et al. Parkinson-Associated SNCA Enhancer Variants Revealed by 

Open Chromatin in Mouse Dopamine Neurons. Am. J. Hum. Genet. 103, 874–892 
(2018). 

238. Sugiaman-Trapman, D. et al. Characterization of the human RFX transcription 
factor family by regulatory and target gene analysis. BMC Genomics 19, 181 (2018). 

239. Gajiwala, K. S. et al. Structure of the winged-helix protein hRFX1 reveals a new 
mode of DNA binding. Nature 403, 916–921 (2000). 

240. Kittappa, R., Chang, W. W., Awatramani, R. B. & McKay, R. D. G. The foxa2 gene 
controls the birth and spontaneous degeneration of dopamine neurons in old age. 
PLoS Biol. 5, e325 (2007). 

241. Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse 
and human fibroblasts. Nature 476, 224–227 (2011). 

242. Sung, M.-H., Guertin, M. J., Baek, S. & Hager, G. L. DNase footprint signatures are 
dictated by factor dynamics and DNA sequence. Mol. Cell 56, 275–285 (2014). 

243. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new 
susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013). 

244. Genetic determinants of common epilepsies: a meta-analysis of genome-wide 
association studies. Lancet. Neurol. 13, 893–903 (2014). 

245. Hoglinger, G. U. et al. Identification of common variants influencing risk of the 
tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699–705 (2011). 

246. Consortium, S. W. G. of the P. G. Biological insights from 108 schizophrenia-
associated genetic loci. Nature 511, 421–427 (2014). 

247. Beer, M. A. Predicting enhancer activity and variant impact using gkm-SVM. Hum. 
Mutat. 38, 1251–1258 (2017). 

248. Gorkin, D. U. et al. Integration of ChIP-seq and machine learning reveals enhancers 
and a predictive regulatory sequence vocabulary in melanocytes. Genome Res. 22, 
2290–2301 (2012). 

249. Jeong, J. S. et al. Rapid identification of monospecific monoclonal antibodies using a 
human proteome microarray. Mol. Cell. Proteomics 11, O111.016253 (2012). 

250. Son, J. H. et al. Neuroprotection and neuronal differentiation studies using 
substantia nigra dopaminergic cells derived from transgenic mouse embryos. J. 
Neurosci. 19, 10–20 (1999). 

251. Zorita, E., Cusco, P. & Filion, G. J. Starcode: sequence clustering based on all-pairs 
search. Bioinformatics 31, 1913–1919 (2015). 

252. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence 
alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). 

253. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to 
discover motifs in biopolymers. Proceedings. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–
36 (1994). 

254. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying 



216 
 

similarity between motifs. Genome Biol. 8, R24 (2007). 
255. Pique-Regi, R. et al. Accurate inference of transcription factor binding from DNA 

sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2011). 
256. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given 

motif. Bioinformatics 27, 1017–1018 (2011). 
257. Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries 

by high-density in vitro transposition. Genome Biol. 11, R119 (2010). 
258. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide 

association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017). 
259. Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor 

package for predicting variant effects at transcription factor binding sites. 
Bioinformatics 31, 3847–3849 (2015). 

260. Shannon, P. & Richards, M. MotifDb: An Annotated Collection of Protein-DNA 
Binding Sequence Motifs. (2017). 

261. Hu, S. et al. DNA methylation presents distinct binding sites for human 
transcription factors. Elife 2, e00726 (2013). 

262. Postuma, R. B. & Berg, D. Advances in markers of prodromal Parkinson disease. 
Nat. Rev. Neurol. 12, 622–634 (2016). 

263. Barallobre, M. J. et al. DYRK1A promotes dopaminergic neuron survival in the 
developing brain and in a mouse model of Parkinson’s disease. Cell Death Dis. 5, 
e1289 (2014). 

264. Hegarty, S. V, Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: a 
review of the molecular circuitry that regulates their development. Dev. Biol. 379, 
123–138 (2013). 

265. Pacary, E., Azzarelli, R. & Guillemot, F. Rnd3 coordinates early steps of cortical 
neurogenesis through actin-dependent and -independent mechanisms. Nat. 
Commun. 4, 1635 (2013). 

266. Peukert, D., Weber, S., Lumsden, A. & Scholpp, S. Lhx2 and Lhx9 determine 
neuronal differentiation and compartition in the caudal forebrain by regulating Wnt 
signaling. PLoS Biol. 9, e1001218 (2011). 

267. Pacary, E. et al. Proneural transcription factors regulate different steps of cortical 
neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69, 
1069–1084 (2011). 

268. Yin, M. et al. Ventral mesencephalon-enriched genes that regulate the development 
of dopaminergic neurons in vivo. J. Neurosci. 29, 5170–5182 (2009). 

269. Mei, L. & Xiong, W.-C. Neuregulin 1 in neural development, synaptic plasticity and 
schizophrenia. Nat. Rev. Neurosci. 9, 437–452 (2008). 

270. Petryniak, M. A., Potter, G. B., Rowitch, D. H. & Rubenstein, J. L. R. Dlx1 and Dlx2 
control neuronal versus oligodendroglial cell fate acquisition in the developing 
forebrain. Neuron 55, 417–433 (2007). 

271. Retaux, S., Rogard, M., Bach, I., Failli, V. & Besson, M. J. Lhx9: a novel LIM-
homeodomain gene expressed in the developing forebrain. J. Neurosci. 19, 783–793 
(1999). 

272. Kramer, R. et al. Neuregulins with an Ig-like domain are essential for mouse 
myocardial and neuronal development. Proc. Natl. Acad. Sci. U. S. A. 93, 4833–4838 
(1996). 



217 
 

273. Arenas, E., Denham, M. & Villaescusa, J. C. How to make a midbrain dopaminergic 
neuron. Development 142, 1918–1936 (2015). 

274. Kelsom, C. & Lu, W. Development and specification of GABAergic cortical 
interneurons. Cell Biosci. 3, 19 (2013). 

275. Lavado, A., Lagutin, O. V & Oliver, G. Six3 inactivation causes progressive 
caudalization and aberrant patterning of the mammalian diencephalon. 
Development 135, 441–450 (2008). 

276. Geng, X., Lavado, A., Lagutin, O. V, Liu, W. & Oliver, G. Expression of Six3 
Opposite Strand (Six3OS) during mouse embryonic development. Gene Expr. 
Patterns 7, 252–257 (2007). 

277. Gestri, G. et al. Six3 functions in anterior neural plate specification by promoting 
cell proliferation and inhibiting Bmp4 expression. Development 132, 2401–2413 
(2005). 

278. Lagutin, O. V et al. Six3 repression of Wnt signaling in the anterior neuroectoderm 
is essential for vertebrate forebrain development. Genes Dev. 17, 368–379 (2003). 

279. Panman, L. et al. Sox6 and Otx2 control the specification of substantia nigra and 
ventral tegmental area dopamine neurons. Cell Rep. 8, 1018–1025 (2014). 

280. Viereckel, T. et al. Midbrain Gene Screening Identifies a New Mesoaccumbal 
Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in 
Parkinson’s Disease. Sci. Rep. 6, 35203 (2016). 

281. Kozicz, T., Vigh, S. & Arimura, A. The source of origin of PACAP- and VIP-
immunoreactive fibers in the laterodorsal  division of the bed nucleus of the stria 
terminalis in the rat. Brain Res. 810, 211–219 (1998). 

282. Darland, T., Heinricher, M. M. & Grandy, D. K. Orphanin FQ/nociceptin: a role in 
pain and analgesia, but so much more. Trends Neurosci. 21, 215–221 (1998). 

283. Poulin, J.-F. et al. Defining midbrain dopaminergic neuron diversity by single-cell 
gene expression profiling. Cell Rep. 9, 930–943 (2014). 

284. Cai, H., Liu, G., Sun, L. & Ding, J. Aldehyde Dehydrogenase 1 making molecular 
inroads into the differential vulnerability of nigrostriatal dopaminergic neuron 
subtypes in Parkinson’s disease. Transl. Neurodegener. 3, 27 (2014). 

285. Itoh, N. & Ohta, H. Roles of FGF20 in dopaminergic neurons and Parkinson’s 
disease. Front. Mol. Neurosci. 6, 15 (2013). 

286. Ng, S.-Y., Bogu, G. K., Soh, B. S. & Stanton, L. W. The long noncoding RNA RMST 
interacts with SOX2 to regulate neurogenesis. Mol. Cell 51, 349–359 (2013). 

287. Ellis, B. C., Molloy, P. L. & Graham, L. D. CRNDE: A Long Non-Coding RNA 
Involved in CanceR, Neurobiology, and DEvelopment. Front. Genet. 3, 270 (2012). 

288. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and 
differentiation. Nature 477, 295–300 (2011). 

289. Lin, M. et al. RNA-Seq of human neurons derived from iPS cells reveals candidate 
long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. 
PLoS One 6, e23356 (2011). 

290. Uhde, C. W., Vives, J., Jaeger, I. & Li, M. Rmst is a novel marker for the mouse 
ventral mesencephalic floor plate and the anterior dorsal midline cells. PLoS One 5, 
e8641 (2010). 

291. Giasson, B. I. et al. Neuronal alpha-synucleinopathy with severe movement disorder 
in mice expressing A53T human alpha-synuclein. Neuron 34, 521–533 (2002). 



218 
 

292. Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of 
oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 
25, 331–343 (2000). 

293. Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. 
Proc. Natl. Acad. Sci. U. S. A. 113, E1738-46 (2016). 

294. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted 
deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 
4106–4114 (2000). 

295. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and 
oligodendrocytes: a new resource for understanding brain development and 
function. J. Neurosci. 28, 264–278 (2008). 

296. Yang, Y. et al. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in 
astroglial reporter mice. Glia 59, 200–207 (2011). 

297. Kageyama, R., Ohtsuka, T. & Kobayashi, T. Roles of Hes genes in neural 
development. Dev. Growth Differ. 50 Suppl 1, S97-103 (2008). 

298. Wang, W. et al. Nuclear factor I coordinates multiple phases of cerebellar granule 
cell development via regulation of cell adhesion molecules. J. Neurosci. 27, 6115–
6127 (2007). 

299. Aruga, J. et al. Mouse Zic1 is involved in cerebellar development. J. Neurosci. 18, 
284–293 (1998). 

300. Blank, M. C. et al. Multiple developmental programs are altered by loss of Zic1 and 
Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development 
138, 1207–1216 (2011). 

301. Gleichmann, M. et al. Identification of inhibitor-of-differentiation 2 (Id2) as a 
modulator of neuronal apoptosis. J. Neurochem. 80, 755–762 (2002). 

302. Jung, M. et al. Analysis of the expression pattern of the schizophrenia-risk and 
intellectual disability gene TCF4 in the developing and adult brain suggests a role 
in development and plasticity of cortical and hippocampal neurons. Mol. Autism 9, 
20 (2018). 

303. Sepp, M., Kannike, K., Eesmaa, A., Urb, M. & Timmusk, T. Functional diversity of 
human basic helix-loop-helix transcription factor TCF4 isoforms generated by 
alternative 5’ exon usage and splicing. PLoS One 6, e22138 (2011). 

304. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. 
Nature 445, 168–176 (2007). 

305. Chiurchiu, V., Maccarrone, M. & Orlacchio, A. The role of reticulons in 
neurodegenerative diseases. Neuromolecular Med. 16, 3–15 (2014). 

306. Lenka, A., Arumugham, S. S., Christopher, R. & Pal, P. K. Genetic substrates of 
psychosis in patients with Parkinson’s disease: A critical  review. J. Neurol. Sci. 
364, 33–41 (2016). 

307. Wang, J., Si, Y.-M., Liu, Z.-L. & Yu, L. Cholecystokinin, cholecystokinin-A receptor 
and cholecystokinin-B receptor gene polymorphisms in Parkinson’s disease. 
Pharmacogenetics 13, 365–369 (2003). 

308. Su, J. et al. RESP18 deficiency has protective effects in dopaminergic neurons in an 
MPTP mouse model of Parkinson’s disease. Neurochem. Int. 118, 195–204 (2018). 

309. Huang, Y. et al. RESP18 is involved in the cytotoxicity of dopaminergic neurotoxins 
in MN9D cells. Neurotox. Res. 24, 164–175 (2013). 



219 
 

310. Nucifora, F. C. J. et al. Ubiqutination via K27 and K29 chains signals aggregation 
and neuronal protection  of LRRK2 by WSB1. Nat. Commun. 7, 11792 (2016). 

311. Salpietro, V. et al. AMPA receptor GluA2 subunit defects are a cause of 
neurodevelopmental disorders. Nat. Commun. 10, 3094 (2019). 

312. Briand, L. A., Deutschmann, A. U., Ellis, A. S. & Fosnocht, A. Q. Disrupting GluA2 
phosphorylation potentiates reinstatement of cocaine seeking. Neuropharmacology 
111, 231–241 (2016). 

313. Kanehisa, M. & Sato, Y. KEGG Mapper for inferring cellular functions from protein 
sequences. Protein Sci. (2019). 

314. Mastroeni, D. et al. Nuclear but not mitochondrial-encoded oxidative 
phosphorylation genes are altered in aging, mild cognitive impairment, and 
Alzheimer’s disease. Alzheimers. Dement. 13, 510–519 (2017). 

315. Schapira, A. H. V, Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson 
disease. Nat. Rev. Neurosci. 18, 435–450 (2017). 

316. Al-Qassabi, A., Fereshtehnejad, S.-M. & Postuma, R. B. Sleep Disturbances in the 
Prodromal Stage of Parkinson Disease. Curr. Treat. Options Neurol. 19, 22 (2017). 

317. Weingarten, C. P., Sundman, M. H., Hickey, P. & Chen, N. Neuroimaging of 
Parkinson’s disease: Expanding views. Neurosci. Biobehav. Rev. 59, 16–52 (2015). 

318. Politis, M. & Loane, C. Serotonergic dysfunction in Parkinson’s disease and its 
relevance to disability. ScientificWorldJournal. 11, 1726–1734 (2011). 

319. Ho, D. H. et al. LRRK2 Kinase Activity Induces Mitochondrial Fission in Microglia 
via Drp1 and Modulates Neuroinflammation. Exp. Neurobiol. 27, 171–180 (2018). 

320. Ma, B. et al. LRRK2 modulates microglial activity through regulation of chemokine 
(C-X3-C) receptor 1 -mediated signalling pathways. Hum. Mol. Genet. 25, 3515–
3523 (2016). 

321. Moehle, M. S. et al. LRRK2 inhibition attenuates microglial inflammatory 
responses. J. Neurosci. 32, 1602–1611 (2012). 

322. Park, J.-S., Davis, R. L. & Sue, C. M. Mitochondrial Dysfunction in Parkinson’s 
Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr. Neurol. 
Neurosci. Rep. 18, 21 (2018). 

323. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity 
in Parkinson’s disease. Neuron 85, 257–273 (2015). 

324. Mullin, S. & Schapira, A. alpha-Synuclein and mitochondrial dysfunction in 
Parkinson’s disease. Mol. Neurobiol. 47, 587–597 (2013). 

325. Hauser, D. N. & Hastings, T. G. Mitochondrial dysfunction and oxidative stress in 
Parkinson’s disease and monogenic parkinsonism. Neurobiol. Dis. 51, 35–42 (2013). 

326. Krebiehl, G. et al. Reduced basal autophagy and impaired mitochondrial dynamics 
due to loss of Parkinson’s disease-associated protein DJ-1. PLoS One 5, e9367 
(2010). 

327. Fukui, H. & Moraes, C. T. The mitochondrial impairment, oxidative stress and 
neurodegeneration connection:  reality or just an attractive hypothesis? Trends 
Neurosci. 31, 251–256 (2008). 

328. Richardson, J. R., Quan, Y., Sherer, T. B., Greenamyre, J. T. & Miller, G. W. 
Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol. Sci. 88, 
193–201 (2005). 



220 
 

329. Nicklas, W. J., Vyas, I. & Heikkila, R. E. Inhibition of NADH-linked oxidation in 
brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 
1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36, 2503–2508 (1985). 

330. Marella, M., Seo, B. B., Yagi, T. & Matsuno-Yagi, A. Parkinson’s disease and 
mitochondrial complex I: a perspective on the Ndi1 therapy. J. Bioenerg. Biomembr. 
41, 493–497 (2009). 

331. Greenamyre, J. T., Sherer, T. B., Betarbet, R. & Panov, A. V. Complex I and 
Parkinson’s disease. IUBMB Life 52, 135–141 (2001). 

332. Pozo Devoto, V. M. et al. alphaSynuclein control of mitochondrial homeostasis in 
human-derived neurons is disrupted by mutations associated with Parkinson’s 
disease. Sci. Rep. 7, 5042 (2017). 

333. Nakamura, K. et al. Direct membrane association drives mitochondrial fission by 
the Parkinson disease-associated protein alpha-synuclein. J. Biol. Chem. 286, 
20710–20726 (2011). 

334. Kamp, F. et al. Inhibition of mitochondrial fusion by alpha-synuclein is rescued by 
PINK1, Parkin and DJ-1. EMBO J. 29, 3571–3589 (2010). 

335. Pozo Devoto, V. M. & Falzone, T. L. Mitochondrial dynamics in Parkinson’s disease: 
a role for alpha-synuclein? Dis. Model. Mech. 10, 1075–1087 (2017). 

336. Xie, W. & Chung, K. K. K. Alpha-synuclein impairs normal dynamics of 
mitochondria in cell and animal models of Parkinson’s disease. J. Neurochem. 122, 
404–414 (2012). 

337. Son, G. & Han, J. Roles of mitochondria in neuronal development. BMB Rep. 51, 
549–556 (2018). 

338. Arrazola, M. S. et al. Mitochondria in Developmental and Adult Neurogenesis. 
Neurotox. Res. 36, 257–267 (2019). 

339. Khacho, M. et al. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate 
Decisions by Regulating a Nuclear Transcriptional Program. Cell Stem Cell 19, 232–
247 (2016). 

340. Saxena, A. et al. Trehalose-enhanced isolation of neuronal sub-types from adult 
mouse brain. Biotechniques 52, 381–385 (2012). 

341. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq 
experiments with  TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012). 

342. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). 

343. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. 
Nat. Methods 14, 309–315 (2017). 

344. Wang, X.-F. & Xu, Y. Fast clustering using adaptive density peak detection. Stat. 
Methods Med. Res. 26, 2800–2811 (2017). 

345. Prakash, N. & Wurst, W. Development of dopaminergic neurons in the mammalian 
brain. Cell. Mol. Life Sci. 63, 187–206 (2006). 

346. Nakatani, T., Kumai, M., Mizuhara, E., Minaki, Y. & Ono, Y. Lmx1a and Lmx1b 
cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and 
control of floor plate cell differentiation in the developing mesencephalon. Dev. Biol. 
339, 101–113 (2010). 

347. Jankovic, J., Chen, S. & Le, W. D. The role of Nurr1 in the development of 
dopaminergic neurons and Parkinson’s disease. Prog. Neurobiol. 77, 128–138 (2005). 



221 
 

348. Chen, N. & Reith, M. E. Structure and function of the dopamine transporter. Eur. J. 
Pharmacol. 405, 329–339 (2000). 

349. Wallen-Mackenzie, A., Wootz, H. & Englund, H. Genetic inactivation of the 
vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt 
about functional glutamatergic neurotransmission? Ups. J. Med. Sci. 115, 11–20 
(2010). 

350. Rumping, L. et al. GLS hyperactivity causes glutamate excess, infantile cataract 
and profound developmental delay. Hum. Mol. Genet. 28, 96–104 (2019). 

351. Zhou, Y. et al. Selective deletion of glutamine synthetase in the mouse cerebral 
cortex induces glial dysfunction and vascular impairment that precede epilepsy and 
neurodegeneration. Neurochem. Int. 123, 22–33 (2019). 

352. Grone, B. P. & Maruska, K. P. Three Distinct Glutamate Decarboxylase Genes in 
Vertebrates. Sci. Rep. 6, 30507 (2016). 

353. Kaupmann, K. et al. GABA(B)-receptor subtypes assemble into functional 
heteromeric complexes. Nature 396, 683–687 (1998). 

354. Zhou, Y. & Danbolt, N. C. GABA and Glutamate Transporters in Brain. Front. 
Endocrinol. (Lausanne). 4, 165 (2013). 

355. Zill, P. et al. Analysis of tryptophan hydroxylase I and II mRNA expression in the 
human brain: a post-mortem study. J. Psychiatr. Res. 41, 168–173 (2007). 

356. Krueger, K. C. & Deneris, E. S. Serotonergic transcription of human FEV reveals 
direct GATA factor interactions and fate of Pet-1-deficient serotonin neuron 
precursors. J. Neurosci. 28, 12748–12758 (2008). 

357. Murphy, D. L. & Lesch, K.-P. Targeting the murine serotonin transporter: insights 
into human neurobiology. Nat. Rev. Neurosci. 9, 85–96 (2008). 

358. Oda, Y. Choline acetyltransferase: the structure, distribution and pathologic 
changes in  the central nervous system. Pathol. Int. 49, 921–937 (1999). 

359. Nachmansohn, D. & Machado, A. L. THE FORMATION OF ACETYLCHOLINE. A 
NEW ENZYME: ‘CHOLINE ACETYLASE’. J. Neurophysiol. 6, 397–403 (1943). 

360. Erickson, J. D. et al. Functional identification of a vesicular acetylcholine 
transporter and its expression from a ‘cholinergic’ gene locus. J. Biol. Chem. 269, 
21929–21932 (1994). 

361. Misgeld, T., Kerschensteiner, M., Bareyre, F. M., Burgess, R. W. & Lichtman, J. W. 
Imaging axonal transport of mitochondria in vivo. Nat. Methods 4, 559–561 (2007). 

362. Kopp, J. L. et al. Sox9+ ductal cells are multipotent progenitors throughout 
development but do not produce new endocrine cells in the normal or injured adult 
pancreas. Development 138, 653–665 (2011). 

363. Xu, X. et al. β Cells Can Be Generated from Endogenous Progenitors in Injured 
Adult Mouse Pancreas. Cell 132, 197–207 (2008). 

364. Al-Hasani, K. et al. Adult Duct-Lining Cells Can Reprogram into β-like Cells Able to 
Counter Repeated Cycles of Toxin-Induced Diabetes. Dev. Cell 26, 86–100 (2013). 

365. Van de Casteele, M. et al. Partial Duct Ligation:  -Cell Proliferation and Beyond. 
Diabetes 63, 2567–2577 (2014). 

366. Xiao, X. et al. No evidence for β cell neogenesis in murine adult pancreas. J. Clin. 
Invest. 123, 2207–2217 (2013). 

367. Xiao, X. et al. Neurogenin3 Activation Is Not Sufficient to Direct Duct-to-Beta Cell 



222 
 

Transdifferentiation in the Adult Pancreas. J. Biol. Chem. 288, 25297–25308 (2013). 
368. Arnes, L., Hill, J. T., Gross, S., Magnuson, M. A. & Sussel, L. Ghrelin Expression in 

the Mouse Pancreas Defines a Unique Multipotent Progenitor Population. PLoS One 
7, e52026 (2012). 

369. Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells 
into insulin producers. Nature 514, 503–507 (2014). 

370. Courtney, M. et al. The Inactivation of Arx in Pancreatic α-Cells Triggers Their 
Neogenesis and Conversion into Functional β-Like Cells. PLoS Genet. 9, e1003934 
(2013). 

371. Nir, T., Melton, D. A. & Dor, Y. Recovery from diabetes in mice by β cell 
regeneration. J. Clin. Invest. 117, 2553–2561 (2007). 

372. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell 
loss. Nature 464, 1149–1154 (2010). 

373. Meier, J. J., Bhushan, A., Butler, A. E., Rizza, R. A. & Butler, P. C. Sustained beta 
cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for 
islet regeneration? Diabetologia 48, 2221–2228 (2005). 

374. Butler, A. E. et al. Modestly increased beta cell apoptosis but no increased beta cell 
replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. 
Diabetologia 50, 2323–2331 (2007). 

375. Moss, J. B. et al. Regeneration of the pancreas in adult zebrafish. Diabetes 58, 1844–
1851 (2009). 

376. Pisharath, H., Rhee, J. M., Swanson, M. A., Leach, S. D. & Parsons, M. J. Targeted 
ablation of beta cells in the embryonic zebrafish pancreas using E. coli 
nitroreductase. Mech. Dev. 124, 218–229 (2007). 

377. Delaspre, F. et al. Centroacinar Cells Are Progenitors That Contribute to Endocrine 
Pancreas Regeneration. Diabetes 64, 3499–3509 (2015). 

378. Beer, R. L., Parsons, M. J. & Rovira, M. Centroacinar cells: At the center of 
pancreas regeneration. Dev. Biol. 413, 8–15 (2016). 

379. Huang, W. et al. Sox9b is a mediator of retinoic acid signaling restricting endocrine 
progenitor differentiation. Dev. Biol. 418, 28–39 (2016). 

380. Seymour, P. A. et al. SOX9 is required for maintenance of the pancreatic progenitor 
cell pool. Proc. Natl. Acad. Sci. U. S. A. 104, 1865–1870 (2007). 

381. Miyamoto, Y. et al. Notch mediates TGFα-induced changes in epithelial 
differentiation during pancreatic tumorigenesis. Cancer Cell 3, 565–576 (2003). 

382. Seymour, P. A. Sox9: a master regulator of the pancreatic program. Rev. Diabet. 
Stud. 11, 51–83 (2014). 

383. Kopp, J. L. et al. Identification of Sox9-dependent acinar-to-ductal reprogramming 
as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. 
Cancer Cell 22, 737–750 (2012). 

384. Wu, Y. et al. c-Kit and stem cell factor regulate PANC-1 cell differentiation into 
insulin- and glucagon-producing cells. Lab. Investig. 90, 1373–1384 (2010). 

385. Cirulli, V. et al. KSA antigen Ep-CAM mediates cell-cell adhesion of pancreatic 
epithelial cells: morphoregulatory roles in pancreatic islet development. J Cell Biol 
140, 1519–1534 (1998). 

386. Maimets, M. et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells 



223 
 

Driven by Wnt Signals. Stem cell reports 6, 150–162 (2016). 
387. Tanimizu, N., Kobayashi, S., Ichinohe, N. & Mitaka, T. Downregulation of miR122 

by grainyhead-like 2 restricts the hepatocytic differentiation potential of adult liver 
progenitor cells. Development 141, 4448–4456 (2014). 

388. Balzar, M. et al. The structural analysis of adhesions mediated by Ep-CAM. Exp. 
Cell Res. 246, 108–121 (1999). 

389. Ishii, H. et al. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) 
suppress cancer cell motility via different mechanisms. J Biol Chem 289, 27386–
27399 (2014). 

390. Li, D. et al. Adrenocortical zonation factor 1 is a novel matricellular protein 
promoting integrin-mediated adhesion of adrenocortical and vascular smooth 
muscle cells. FEBS J. 274, 2506–2522 (2007). 

391. Tajiri, Y. et al. Tubulointerstitial nephritis antigen-like 1 is expressed in the uterus 
and binds with integrins in decidualized endometrium during postimplantation in 
mice. Biol. Reprod. 82, 263–270 (2010). 

392. Cui, X. B., Luan, J. N., Ye, J. & Chen, S. Y. RGC32 deficiency protects against high-
fat diet-induced obesity and insulin resistance in mice. J Endocrinol 224, 127–137 
(2015). 

393. Schnell, U., Cirulli, V. & Giepmans, B. N. EpCAM: structure and function in health 
and disease. Biochim Biophys Acta 1828, 1989–2001 (2013). 

394. Chan, S. W., Fowler, K. J., Choo, K. H. & Kalitsis, P. Spef1, a conserved novel testis 
protein found in mouse sperm flagella. Gene 353, 189–199 (2005). 

395. Xue, J. C. & Goldberg, E. Identification of a novel testis-specific leucine-rich protein 
in humans and mice. Biol Reprod 62, 1278–1284 (2000). 

396. Zeng, L. et al. Identification of a novel human doublecortin-domain-containing gene 
(DCDC1) expressed mainly in testis. J Hum Genet 48, 393–396 (2003). 

397. Bernard, P. et al. Dimerization of SOX9 is required for chondrogenesis, but not for 
sex determination. Hum Mol Genet 12, 1755–1765 (2003). 

398. He, X., Ohba, S., Hojo, H. & McMahon, A. P. AP-1 family members act with Sox9 to 
promote chondrocyte hypertrophy. Development 143, 3012–3023 (2016). 

399. Shih, H. P. et al. A Gene Regulatory Network Cooperatively Controlled by Pdx1 and 
Sox9 Governs Lineage Allocation of Foregut Progenitor Cells. Cell Rep 13, 326–336 
(2015). 

400. Kadaja, M. et al. SOX9: a stem cell transcriptional regulator of secreted niche 
signaling factors. Genes Dev 28, 328–341 (2014). 

401. Zeng, L., Kempf, H., Murtaugh, L. C., Sato, M. E. & Lassar, A. B. Shh establishes 
an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce 
somitic chondrogenesis. Genes Dev. 16, 1990–2005 (2002). 

402. Lefebvre, V. & Dvir-Ginzberg, M. SOX9 and the many facets of its regulation in the 
chondrocyte lineage. Connect. Tissue Res. 58, 2–14 (2017). 

403. Tarifeño-Saldivia, E. et al. Transcriptome analysis of pancreatic cells across distant 
species highlights novel important regulator genes. BMC Bol. 15, 21 (2017). 

404. Muto, A., Iida, A., Satoh, S. & Watanabe, S. The group E Sox genes Sox8 and Sox9 
are regulated by Notch signaling and are required for Müller glial cell development 
in mouse retina. Exp. Eye Res. 89, 549–558 (2009). 



224 
 

405. Briot, A. et al. Repression of Sox9 by Jag1 is continuously required to suppress the 
default chondrogenic fate of vascular smooth muscle cells. Dev. Cell 31, 707–721 
(2014). 

406. Capaccione, K. M. et al. Sox9 mediates Notch1-induced mesenchymal features in 
lung adenocarcinoma. Oncotarget 5, 3636–3650 (2014). 

407. Haller, R. et al. Notch1 signaling regulates chondrogenic lineage determination 
through Sox9 activation. Cell Death Differ. 19, 461–469 (2012). 

408. Huang, W. et al. Retinoic acid plays an evolutionarily conserved and biphasic role in 
pancreas development. Dev. Biol. 394, 83–93 (2014). 

409. Ohba, S., He, X., Hojo, H. & McMahon, A. P. Distinct Transcriptional Programs 
Underlie Sox9 Regulation of the Mammalian Chondrocyte. Cell Rep. 12, 229–243 
(2015). 

410. Igarashi, T. et al. Tubulointerstitial nephritis antigen-like 1 is expressed in 
extraembryonic tissues and interacts with laminin 1 in the Reichert membrane at 
postimplantation in the mouse. Biol. Reprod. 81, 948–955 (2009). 

411. Wex, T. et al. TIN-ag-RP, a novel catalytically inactive cathepsin B-related protein 
with EGF domains, is predominantly expressed in vascular smooth muscle cells. 
Biochemistry 40, 1350–1357 (2001). 

412. Favre, C. J. et al. Expression of genes involved in vascular development and 
angiogenesis in endothelial cells of adult lung. Am. J. Physiol. Heart Circ. Physiol. 
285, H1917-38 (2003). 

413. Kalfa, T. A., Thull, J. D., Butkowski, R. J. & Charonis, A. S. Tubulointerstitial 
nephritis antigen interacts with laminin and type IV collagen and promotes cell 
adhesion. J. Biol. Chem. 269, 1654–1659 (1994). 

414. Ueda, J. et al. Epithelial splicing regulatory protein 1 is a favorable prognostic 
factor in pancreatic cancer that attenuates pancreatic metastases. Oncogene 33, 
4485–4495 (2013). 

415. Deloria, A. J. et al. Epithelial splicing regulatory protein 1 and 2 paralogues 
correlate with splice signatures and favorable outcome in human colorectal cancer. 
Oncotarget 7, 73800–73816 (2016). 

416. Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P. ESRP1 
and ESRP2 Are Epithelial Cell-Type-Specific Regulators of FGFR2 Splicing. Mol. 
Cell 33, 591–601 (2009). 

417. González, B., Denzel, S., Mack, B., Conrad, M. & Gires, O. EpCAM Is Involved in 
Maintenance of the Murine Embryonic Stem Cell Phenotype. Stem Cells 27, 1782–
1791 (2009). 

418. Lu, T.-Y. et al. Epithelial Cell Adhesion Molecule Regulation Is Associated with the 
Maintenance of the Undifferentiated Phenotype of Human Embryonic Stem Cells. J. 
Biol. Chem. 285, 8719–8732 (2010). 

419. Vercollone, J. R., Balzar, M., Litvinov, S. V, Yang, W. & Cirulli, V. MMTV/LTR 
Promoter-Driven Transgenic Expression of EpCAM Leads to the Development of 
Large Pancreatic Islets. J. Histochem. Cytochem. 63, 613–625 (2015). 

420. Rodrigo-Torres, D. et al. The biliary epithelium gives rise to liver progenitor cells. 
Hepatology 60, 1367–1377 (2014). 

421. Lorent, K., Moore, J. C., Siekmann, A. F., Lawson, N. & Pack, M. Reiterative use of 
the notch signal during zebrafish intrahepatic biliary development. Dev. Dyn. 239, 
855–864 (2010). 



225 
 

422. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and  
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 

423. Kuleshov, M. V et al. Enrichr: a comprehensive gene set enrichment analysis web 
server 2016 update. Nucleic Acids Res. 44, W90-7 (2016). 

424. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list 
enrichment analysis tool. BMC Bioinformatics 14, 128 (2013). 

425. Lee, T. I., Johnstone, S. E. & Young, R. A. Chromatin immunoprecipitation and 
microarray-based analysis of protein location. Nat. Protoc. 1, 729–748 (2006). 

426. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription 
factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 
(2018). 

427. Ranieri, D. et al. Expression of the FGFR2 mesenchymal splicing variant in 
epithelial cells drives epithelial-mesenchymal transition. Oncotarget 7, 5440–5460 
(2016). 

428. Tomlinson, D. C., L’Hôte, C. G., Kennedy, W., Pitt, E. & Knowles, M. A. Alternative 
splicing of fibroblast growth factor receptor 3 produces a secreted isoform that 
inhibits fibroblast growth factor-induced proliferation and is repressed in urothelial 
carcinoma cell lines. Cancer Res. 65, 10441–10449 (2005). 

429. Kolde, R. pheatmap: Pretty Heatmaps. (2019). Available at: https://cran.r-
project.org/package=pheatmap.  

 

  



226 
 

6.3 Curriculum Vitae 

Sarah McClymont 
733 N Broadway 

Baltimore, MD 21205 
443-301-2909 

sarahmcclymont@gmail.com 

EDUCATION 
Johns Hopkins University School of Medicine, Baltimore, MD   2013-2019 

PhD candidate in the Predoctoral Training Program in Human Genetics 
Thesis: Transcriptional regulation and disruption in Parkinson disease 
Advisor: Dr. Andrew McCallion  

University of Guelph, Guelph, ON, Canada     2008-2012 
BSc (Hons) Biological Sciences, Minor in Educational Psychology 

 
RESEARCH EXPERIENCE 
Undergraduate research assistant – University of Guelph, Plant Agriculture 2011-2012 

Identifying a disease resistance QTL for common bacterial blight in the common  
bean for the University of Guelph Field Bean Breeding Program 
Advisors: Dr. Alireza Navabi and Dr. Weilong Xie 

Undergraduate research assistant – University of Guelph, Plant Agriculture 2008-2011 
Designing a novel aeroponics system and characterizing maize root physiology to 
examine the effects of domestication on fine root architecture and nitrogen use efficiency 
Advisors: Dr. Manish Raizada and Dr. Amelie Gaudin 
 

TEACHING EXPERIENCE 
Curriculum and content development – Getting and Cleaning Data, Coursera 2019 
Curriculum and content development – The Data Scientist’s Toolbox, Coursera 2018 
Teaching assistant – Human and Mammalian Genetics, Jackson Labs  2018 
Teaching assistant – Undergraduate genetics, Stevenson University  2017-2018 
Content development – Chromebook Data Science Program, Johns Hopkins 2017-2018 
Lesson instructor – Science outside the Lines, Art with a Heart   2017 
Teaching assistant – Basic Mechanisms of Disease, Johns Hopkins   2015 
 
LEADERSHIP AND SERVICE 
Lead mentor – Human genetics mentorship program, Johns Hopkins University 2016-present 
Poster judge – Fourth-year undergraduate genetics, Stevenson University  2016, 2018 
Graduate student committees for the Institute of Genetic Medicine:  

Human genetics mentorship program   2016-present 
Human genetics seminar speaker selection 2015-present 
Barton Childs’ seminar speaker selection 2014-present 
Recruitment     2014-2015 

 
HONOURS AND AWARDS 
C.W. Cotterman Award from the American Society of Human Genetics   2019 
The McKusick Short Course on Human and Mammalian Genetics and  

Genomics Teaching Scholarship       2018 
Natural Sciences and Engineering Research Council of Canada (NSERC) 

Postgraduate Scholarship       2013-2014 
Undergraduate Student Research Award/NSERC Scholarship   2009 



227 
 

PUBLICATIONS 
1. McClymont, S.A., Hook, P.W., Soto, A.I., Reed, X., Law, W.D., Kerans, S.J., Waite, E.L., 

Briceno, N.J., Thole, J.F., Heckman, M.G., Diehl, N.N., Wszolek, Z.K., Moore, C.D., Zhu, H., 
Akiyama, J.A., Dickel, D.E., Visel, A., Pennacchio, L.A., Ross, O.A., Beer, M.A., McCallion, A.S. 
(2018). Parkinson-associated SNCA enhancer variants revealed by open chromatin in mouse 
dopamine neurons. The American Journal of Human Genetics, 103:874-892. 

2. Gould, R.A., Aziz, H., Woods, C.E., …, McClymont, S.A., …, et al. (2018). ROBO4 Mutations 
Predispose Individuals to Bicuspid Aortic Valve and Thoracic Aortic Aneurysm. Nature Genetics, 
51:42-50.  

3. Hook, P.W., McClymont, S.A., Cannon, G.H., Law, W.D., Morton, A.J., Goff, L.A., and 
McCallion, A.S. (2018). Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate 
Gene Selection for Sporadic Parkinson Disease. The American Journal of Human Genetics, 102: 
427–446. 

4. Xie, W., Raja, K., McClymont, S., Stonehouse, R., Bett, K., Yu, K., Pauls, K.P., Navabi, A. 
(2017). Interaction of quantitative trait loci for resistance to common bacterial blight and 
pathogen isolates in Phaseolus vulgaris L. Molecular Breeding, 37:55.  

5. Turner, T.N., …, McClymont, S.A., ..., et al. (2016). Genome sequencing of autism-affected 
families reveals disruption of putative noncoding regulatory DNA. The American Journal of 
Human Genetics, 98: 58-74.  

6. Gaudin, A.C.M., McClymont, S.A., Soliman, S.S.M., and Raizada, M.N. (2014). The effect of 
altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern 
maize. BMC Genetics, 15:23.  

7. Gaudin, A.C.M., McClymont, S.A., Holmes, B.M., Lyons, E. and Raizada, M.N. (2011). Novel 
temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) 
in response to low nitrogen stress. Plant, Cell & Environment, 34: 2122–2137.  

8. Gaudin, A.C.M., McClymont, S.A. and Raizada, M.N. (2011). The nitrogen adaptation strategy 
of the wild teosinte ancestor of modern maize, Zea mays subsp. parviglumis. Crop Science, 51: 
2780-2795. 
 

ORAL PRESENTATIONS 
1. McClymont, S.A. Effective undergraduate education for the successful preparation of graduate 

students and genetics professionals. Invited speaker at the American Society of Human Genetics 
Meeting; October 2019; Houston, TX. 

2. McClymont, S.A. Enhancer variants at SNCA confer Parkinson disease risk. Invited speaker at 
Grand Challenges in Parkinson’s Disease; August 2019; Grand Rapids, MI. 

3. McClymont, S.A., Hook, P.W., Soto, A.I., Briceno, N.J., Thole, J.F., Law, W.D., Kerans, S.J., 
Heckman, M.G., Diehl, N.N., Waite, E.L., Reed, X., Dickel, D.E., Akiyama, J.A., Visel, A., 
Pennacchio, L.A., Beer, M.A., Ross, O.A., McCallion, A.S. Exploiting dynamic open chromatin in 
mouse dopamine neurons reveals Parkinson-associated variation in an SNCA enhancer: a 
paradigm for illuminating functional noncoding variation. Presented at the 32nd International 
Mammalian Genome Conference; November 2018; San Juan, Puerto Rico.  

 

POSTER PRESENTATIONS 
1. McClymont, S.A., McCallion, A.S. Single-cell RNA-seq in a mouse model of Parkinson disease 

reveals potential disease mechanisms affecting subpopulations of dopaminergic neurons. 
Presented at the American Society of Human Genetics Meeting; October 2019; Houston, TX. 

2. McClymont, S.A., Hook, P.W., Law, W.D., Beer, M.A., Ross, O.A., McCallion, A.S. Dopaminergic 
neuronal chromatin signatures reveal Parkinson Disease associated variation in a novel 
aminergic intronic enhancer at SNCA. Presented at the 6th Annual Genetics Research Day; April 
2019; Baltimore, MD. Third Place. 

3. McClymont, S.A., Hook, P.W., Law, W.D., Beer, M.A., Ross, O.A., McCallion, A.S. Dopaminergic 
neuronal chromatin signatures reveal Parkinson Disease associated variation in a novel 
aminergic intronic enhancer at SNCA. Presented at The Keystone Symposia Conference on 
Chromatin Architecture and Chromosome Organization; March 2018; Whistler, B.C., Canada. 



228 
 

4. Edelman H.E.*, McClymont, S.A.*, McCallion, A.S., Parsons, M.J. SOX9 ChIP-seq and RNA-
seq in PANC-1 cells reveals interesting target genes for pancreatic progenitor biology. Presented 
at the 5th Annual Genetics Research Day; February 2018; Baltimore, MD. 

5. McClymont, S.A., Hook, P.W., Beer, M.A., Ross, O.A., McCallion, A.S. Chromatin Profiles of 
Dopaminergic Neurons Refine a Parkinsonian-associated Interval and Prioritize Neurological 
GWAS-implicated Variants for Functional Validation. Presented at the Lasker to Lasker: 
Bayview Research Symposium; December 2016; Baltimore, MD. 

6. McClymont, S.A., Hook, P.W., Beer, M.A., Ross, O.A., McCallion, A.S. Dopaminergic neuron 
chromatin signatures refine a novel Parkinsonian-associated interval and establish a pipeline for 
informing future genetic studies of neurological disease. Presented at the American Society for 
Human Genetics Meeting; October 2016; Vancouver, B.C., Canada. 

7. McClymont, S.A., Hook, P.W., Goff, L.A., McCallion, A.S. Chromatin profiles from ex vivo 
purified dopaminergic neurons establish a promising model to support studies of neurological 
function and dysfunction. Presented at the Human Genome Meeting; March 2016; Houston, TX. 

* co-first authors 
 

 


	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 A model complex disease: Parkinson disease
	1.2 Enhancers and transcriptional regulation
	1.3 Regulatory variation and human phenotypes
	1.4 Identifying and validating enhancers
	1.5 Evaluating gene expression
	1.6 Applying scRNA-seq to biological questions
	1.7 The transcriptional origins of sporadic Parkinson disease
	1.8 Figures

	Chapter 2: Chromatin-based analyses of dopaminergic neurons0F
	2.1 Applying chromatin data to investigate non-coding variation in Parkinson disease
	2.2 ATAC-seq identifies open chromatin in midbrain and forebrain dopaminergic neurons
	2.3 Candidate regulatory regions are capable of directing expression in vivo
	2.4 A midbrain-specific enhancer directs expression in catecholaminergic neuron populations
	2.5 Enhancer variants are significantly associated with Parkinson disease risk
	2.6 Deleting the disease-associated enhancer
	2.7 Discussion
	2.8 Methods
	2.9 Figures and supplementary materials

	Chapter 3: Transcription factors and non-coding variants that disrupt their binding in dopaminergic neurons
	3.1 Interrogating non-coding variants and their role in disease
	3.2 Candidate regulatory elements are enriched for transcription factor motifs active in dopaminergic neurons1F
	3.3 Predicting and testing the effects of regulatory variants
	3.4 Protein binding arrays are a viable alternative validation strategy2F
	3.5 The suitability of in vitro dopaminergic neuron surrogates: the SN4741 cell line
	3.6 Discussion
	3.7 Methods
	3.8 Figures and supplementary materials

	Chapter 4: The developmental origins of Parkinson disease
	4.1 Investigating the pathogenesis of Parkinson disease by single-cell RNA-seq
	4.2 Characterizing E15.5 and P7 dopaminergic neurons in wildtype mice3F
	4.3 Characterizing P7 dopaminergic neurons in a mouse model of Parkinson disease
	4.4 The Parkinson disease mutation alters cell maturation, gene expression and mitochondrial dynamics
	4.5 Discussion
	4.6 Methods
	4.7 Figures and supplementary materials

	Chapter 5: Conclusions
	5.1 Summary of significant findings
	5.2 Future directions

	Chapter 6: Appendices
	6.1 The transcriptional targets of SOX9 in Type II Diabetes4F
	6.2 References
	6.3 Curriculum Vitae


