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Abstract

Traditional research on survival analysis often centered on univariate data where the

observations are mutually independent. In many modern studies, however, data of interest

are observed in clusters, so may be associated. Primary scientific interest often centers

on the effect of a treatment on the individuals’ outcomes in studies involving multivariate

failure time data, but this thesis is mainly concerned with analyses in which the estimation

of association between failure times is of interest. A considerable body of literature has

addressed this topic, but they have been limited in many ways. They may depend on para-

metric assumptions that may easily be violated, they may not be flexbile enough, or their

interpretations are not intuitive. The primary purpose of this thesis is to investigate the

drawbacks of existing methods, and suggest an alternative measure of association that is

flexible and interpretable, especially under the competing risks setting. This thesis consists

of three main chapters. Chapter 2 discusses a nonparametric estimation of the local version

of Kendall’s τ . The performance of several smoothing methods are compared, and new

methods to deal with censored data are also proposed and assessed. Chapter 3 studies the

sensitivity of the Bandeen-Roche and Liang (2002) estimator of the CCSHR to the imposed
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ABSTRACT

statistical assumptions and investigate the source of a bias reported in its foundational work.

In Chapter 4, novel parametric and nonparametric estimators for the association between

failure causes are proposed. Various combinations of existing and new methods for the

association between failure times and between failure causes are assessed.
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Chapter 1

Introduction

Until recent decades, research on survival analysis mainly addressed univariate data in

which a main statistical assumption is the mutual independence of the observations, condi-

tional on covariates to be considered. In many modern studies, however, the data of interest

are observed in clusters, so may be mutually dependent. Such multivariate failure time data

arise in many fields. In biomedical studies, for example, one may have interest in ages at

onset of schizophrenia in relatives, times to the occurrence of blindness in the left and right

eyes in patients with diabetic retinopathy, or time to coronary heart disease and time to

cerebrovascular accident. In other disciplines, times-to-default for closely connected com-

panies in economics and times-to-failure of multiple components in a system in reliability

engineering are often of interest.

In studies involving multivariate failure times, primary scientific interest often centers

on the effect of a treatment on the individuals’ outcomes, and the association within clusters
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is considered as a technicality that should be addressed in analyses. The study of within-

cluster association among failure times, however, also may have importance in its own

right. This may provide clues, for example, into genetic heritability, geographical trends,

or environmental risk factors of health outcomes. This thesis primarily is concerned with

analyses in which the estimation of association is of primary interest.

This thesis also addresses a second common challenge for multivariate survival analy-

sis in health research: persons may be at risk for multiple types of failure, of which only

one type that occurs first is observable. In studies of dementia in older adults, for example,

participants may become demented, but many die without experiencing dementia. In such

competing risks data, it typically is not natural to view the failure type of interest as being

independent of the others. Then, multivariate survival analysis has an advantage over uni-

variate analysis. In univariate analysis of competing risks, only one type of failure can be

observed per sampling unit, hence no information pertaining to association between risks is

available. With multivariate data, multiple failures of either the same or different types can

be observed in a cluster, providing empirical information about the associations between

causes.

A considerable body of literature has addressed association in multivariate failure time

analysis. Available methods, however, have been limited in important ways. Parametric

methods have been shown to be sensitive to model assumptions such as form of the time

dependence of the association or distribution of failure times. Nonparametric estimators

of association often have had complex interpretation. This thesis aims to address these

2



CHAPTER 1. INTRODUCTION

gaps. In the following subsections, I will provide key overarching background and identify

specific topics to be studied.

1.1 Prior work on the estimation of association

among clustered failure times

The most general characterization of association among multivariate failure times is

provided by the multivariate survival function S(t1, t2) = Pr (T1 > t1, T2 > t2). Esti-

mators have been proposed and studied by Dabrowska (1988), Pruitt (1991), Prentice and

Cai (1992), van der Laan (1996), Prentice (2014), and others. However, their implementa-

tion and interpretation may be complex because they do not distinguish marginal incidence

information and association information.

Employing a simple summary measure can ameliorate this problem. The conditional

hazard ratio (CHR), θ(t1, t2) =
λ(t2|T1 = t1)

λ(t2|T1 > t1)
, first proposed by Clayton (1978), has be-

come one of the most popular measures of association for multivariate failure-time data. It

can be interpreted as the ratio of an individual’s hazard of failure at t2 given failure of his

paired partner at t1 to the hazard given that the partner has not yet failed by time t1. It also

has been shown to follow a one-to-one relationship to a local version of Kendall’s tau. One

of the main advantages of the CHR is that, for Archimedean copula distributions, it depends

on time t1 and t2 only through the joint survival function (Oakes, 1989). Many subsequent

authors have presented approaches to model the CHR parametrically (e.g., Clayton & Cuz-

3
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ick, 1985; Hougaard, 1986). Parametric measures of association, however, constrain the

form of the time dependence. In some instances, a more general time-dependent charac-

terization of association may be needed. In a genetic study, for example, a researcher may

believe that a certain gene influences risk only in old age. Prentice and Cai (1992), Hsu

and Prentice (1996), Fan, Prentice, and Hsu (2000), and others have provided measures of

association flexibly indexed by time to detect such an effect. However, their interpretation

may be complex or the measures may address time-dependence only in discrete ‘bins’ of

failure time. Thus, I aimed to develop a nonparametric estimator of association between

bivariate failure times to address these limitations.

1.2 Prior work on the estimation of failure time

associations in the presence of competing risks

The decade 2000-2010 was an active period for research to develop measures of as-

sociation in the competing risks setting. For example, Cheng, Fine, and Kosorok (2007,

2009) proposed methods by which to nonparametrically estimate the bivariate cumulative

cause-specific hazard function and the bivariate cumulative incidence function from bivari-

ate failure-time data with competing risks; they developed two measures of association

based on these quantities. Scheike et al. (2010) proposed a cross-odds ratio function as a

measure of association between cause-specific failure times, which they defined as the ratio

of the conditional odds of occurrence of one cause-specific event for one cluster member

4
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given occurrence of the same or different cause-specific event for another cluster member,

over the unconditional odds of occurrence of the cause-specific event.

My dissertation focuses on the conditional cause-specific hazard ratio (CCSHR) pro-

posed by Bandeen-Roche and Liang (2002), which is a modified version of the conditional

hazard ratio. One unique and appealing feature of the Bandeen-Roche and Liang paper

is the decomposition of the association between cause-specific failure times into two el-

ements – the association between the causes of failure, and the association between the

times to failure. However, application of the original work proved too restrictive in two

ways. First, the proposed decomposition was implemented via a fully parametric model

which appeared overly restrictive for a number of plausible data generation scenarios. I

considered it worthwhile to more extensively study estimator performance if the defin-

ing distributional assumptions are violated to inform development of alternative models as

needed. Secondly, the strength of association between failure causes may vary with time,

but the implementation of such time-dependence was limited in the original work. Thus, I

aimed to develop methods to flexibly estimate the time-variation in this association.

1.3 Organization of the thesis

The thesis consists of three research chapters addressing the issues discussed above.

Chapter 2 discusses a nonparametric approach to the estimation of the local version of

Kendall’s τ , hence with a simple transformation, the CHR. The proposed method makes

5
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use of all available parings of bivariate failure times and operates by smoothing data on

concordance and discordance. Several smoothing methods are applied, and their perfor-

mances are compared. New methods to deal with censored data are also proposed and

assessed. Chapter 3 studies the sensitivity of the Bandeen-Roche and Liang (2002) es-

timator of the CCHSR to the imposed statistical assumptions and investigates the source

of a bias reported in its foundational work. In Chapter 4, I use the method in Chapter 2

to estimate the times-to-failure component of the CCSHR nonparametrically, and propose

novel parametric and nonparametric estimators for the causes-of-failure association. The

performance of the new and existing methods are compared. Chapter 5 summarizes what

each chapter achieved, discusses their strength and weakness, and suggests future work .

6



Chapter 2

Nonparametric Estimation of

Association in Bivariate Failure-time

Data

2.1 Introduction

In studies focused on familial or geographic determinants of health, multimorbid dis-

eases or settings nesting patients within health care providers, failure-time data may occur

as clustered observations. In such studies, primary interest often centers on the effect of a

treatment or exposure on individuals’ outcomes, and association within clusters is treated

as a technicality that must be addressed in analyses. In contrast, our concern is with data

for which estimation of association is of interest in its own right. Then, within-cluster as-

7
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FAILURE-TIME DATA

sociation may provide clues into genetic heritability, geographical and environmental risk

factors, or practice-level determinants of health outcomes.

Among methods characterizing failure-time association, bivariate survival function es-

timators have been developed and studied by many authors (Dabrowska, 1988; Pruitt, 1991;

Prentice & Cai, 1992; van der Laan, 1996; Prentice, 2014). However, their implementation

and interpretation may be complex, and they blend marginal incidence information and

association information. To address these issues, a number of summary measures of asso-

ciation have been proposed. The conditional hazard ratio, θ(t1, t2) =
λ(t1|T2 = t2)

λ(t1|T2 > t2)
, has

become one of the most popular, because for Archimedean copula distributions it depends

on time t1 and t2 only through the bivariate survival function. (Oakes, 1989). Clayton’s

(1978) model for association provides the earliest, time-invariant proposal of this measure.

Many subsequent authors have presented approaches to model the conditional hazard ra-

tio parametrically (e.g., Clayton & Cuzick, 1985; Hougaard, 1986) but these constrain the

form of the time dependence. However, more general time-dependent association measures

may be of interest. In a genetic study, for example, researchers may believe that a certain

gene influences risk only in old age. Association measures flexibly indexed by time could

provide means of detecting such an effect.

Considerable work to describe failure-time association non- or semi-parametrically has

been reported. Oakes (1989) provided a definition of the conditional hazard ratio as a

local version of Kendall’s τ . Anderson et al. (1992) proposed three time-dependent mea-

sures of association, including the conditional hazard ratio of Oakes (1989), conditional

8
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FAILURE-TIME DATA

expected residual life, φ(t1, t2) =
E(T1|T1 > t1, T2 > t2)− t1

E(T1|T1 > t1)− t1
, and conditional probabil-

ity, ψ(t1, t2) =
Pr(T1 > t1|T2 > t2)

Pr(T1 > t1)
, where T1 and T2 are failure times for a randomly

sampled pair. Sankaran, Abraham and Antony (2006) suggested a dependence measure

based on a covariance residual life function, C(t1, t2) = M(t1, t2) − r1(t1, t2)r2(t1, t2)

where M(t1, t2) = E[(T1 − t1)(T2 − t2)|T1 > t1, T2 > t2] and ri(t1, t2) = E[Ti − ti|T1 >

t1, T2 > t2], and a method of its nonparametric estimation. Nair and Sankaran (2010)

suggested another measure of association, α(t1, t2) =
M(t1, t2)

r1(t1, t2)r2(t1, t2)
, using the same

definition of M(t1, t2) and ri(t1, t2). Hsu and Prentice (1996) suggested the correlation

between marginal martingales, ρ∗(t1, t2) = Corr(M1(t1),M2(t2)) as a local measure of

association where Mi(ti) = Ni(ti) − Λi(ti ∧ Ti), Ni(ti) is a binary variate of failure and

Λi(·) is a cumulative hazard. These quantities generally are estimated by plugging nonpara-

metric estimates of joint and marginal survival or cumulative hazard functions into these

expressions.

Whereas the above measures quantify the strength of association at a specific time pair

(T1, T2), other measures deal with the strength of association for a specific ‘region.’ Chen

and Bandeen-Roche (2005) exploited Oakes’ (1989) idea to estimate the conditional hazard

ratio in ‘bins’ of (bivariate) survival probability. Bandeen-Roche and Ning (2008) general-

ized such estimation to bins of bivariate time and to allow for competing risks; Cheng and

Fine (2008) and Cheng, Fine, and Bandeen-Roche (2010) addressed the same estimand

with alternative estimators. Fan, Prentice, and Hsu (2000) and Fan, Hsu, and Prentice

(2000) proposed a new class of weighted dependence measures for bivariate failure time
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data. These measures characterize the strength of association in a bivariate failure time

region [0, t1] × [0, t2]; versions of them reduce to the reciprocal of conditional hazard ra-

tio or of Kendall’s τ when t1, t2 → ∞ in the absence of censoring. Fan and Prentice

(2002) generalized these measures to accommodate regression effects on marginal hazard

functions.

Though many approaches have been proposed, these methods show only a fixed value of

the association measure at a specific time point or region. However, researchers may wish

to visualize time-dependent association for the entire time domain. We aimed to develop

a method that displays association flexibly and interpretably. We propose smoothing to

produce a ‘map’ of the local Kendall’s τ over time to achieve this goal in bivariate data.

The estimand has a ready interpretation described below, which transforms easily to the

conditional hazard ratio. We evaluated candidate smoothing methods to create a map of

association.

The remainder of this paper proceeds as follows. Section 2 introduces notation and

relevant background. Section 3 introduces the smoothing methods and describes how we

obtain estimates for evaluation in simulation studies. Section 4 reports a series of simula-

tion studies to compare the smoothing methods, and Section 5 presents the application of

these methods to data on dementia onset in families. Section 6 concludes.
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2.2 Background

2.2.1 Notation

Let Tij denote the failure time and Cij , the time of censoring, for subjects j = 1, 2

in pair i. Then the observed event time is the minimum of failure and censoring times,

Xij = Tij ∧ Cij , and the failure-censoring indicator δij is 1 if Tij < Cij and 0 otherwise.

S(t1, t2) is the joint survival function of T1 and T2, and S1(t1) and S2(t2) are the marginal

survival functions of T1 and T2, respectively. We assume the data are independently and

identically distributed across pairs i = 1, · · · , n and censoring is independent of failure

time.

2.2.2 Definitions

The conditional (cross) hazard ratio (CHR) is defined by θ(t1, t2) =
λ(t2|T1 = t1)

λ(t2|T1 > t1)
=

f(t1, t2)S(t1, t2)

∂S(s1, t2)

∂s1

∣

∣

∣

s1=t1

· ∂S(t1, s2)
∂s2

∣

∣

∣

s2=t2

. Oakes (1989) showed this measure can be viewed as

a ratio of conditional probabilities that two bivariate failure time pairs are concordant or

discordant given the componentwise minimum failure times. For two bivariate observa-

tions T (a) = (T
(a)
1 , T

(a)
2 ) and T (b) = (T

(b)
1 , T

(b)
2 ), denote the corresponding componentwise

minimum (T
(a)
1 ∧T (b)

1 , T
(a)
2 ∧T (b)

2 ) by (T
(ab)
1 , T

(ab)
2 ). We say T (a) and T (b) are concordant if

(T
(a)
1 −T (b)

1 )(T
(a)
2 −T (b)

2 ) > 0 and discordant if (T
(a)
1 −T (b)

1 )(T
(a)
2 −T (b)

2 ) < 0. Then, it can

be shown that θ(t1, t2) equals
Pr{(T (a)

1 − T
(b)
1 )(T

(a)
2 − T

(b)
2 ) > 0|(T (ab)

1 , T
(ab)
2 ) = (t1, t2)}

Pr{(T (a)
1 − T

(b)
1 )(T

(a)
2 − T

(b)
2 ) < 0|(T (ab)

1 , T
(ab)
2 ) = (t1, t2)}

.
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If we calculate this ratio without conditioning on the componentwise minimum, we obtain

a ‘global’ CHR, θ. It then is easily seen that θ has a one-to-one relationship with Kendall’s

τ by τ =
θ − 1

θ + 1
. Thus, these two measures share similar interpretation using the concept

of concordance: Kendall’s τ is defined as the difference of the probabilities that two identi-

cally distributed bivariate random vectors are concordant versus discordant, while the CHR

is defined as the ratio of these probabilities. We can then think of ‘local’ Kendall’s τ by

applying conditioning on the componentwise minimum as above.

2.3 Estimation

To ‘map’ the local Kendall’s τ over a failure time domain, we propose to directly

smooth concordance and discordance data to produce a Kendall’s τ ‘surface’ over the time

domain. This then may be transformed to estimate the CHR by plugging into θ(t1, t2) =

1 + τ(t1, t2)

1− τ(t1, t2)
. Specifically, given any bivariate failure time data, we can obtain all available

pairs of bivariate observations, and concordance status of the pairs. If we assign +1 to a

concordant pair and −1 to a discordant pair, these data provide ‘raw data’ for smoothing. A

smoothed function from these data can then be interpreted as a function of a ‘local’ version

of Kendall’s τ .

As a first step to creating association maps as we propose, a dataset of concordances and

discordances must be created. We begin with a dataset consisting of observations of paired

variables – the 1st and 2nd components of bivariate failure times. From these data, we can
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construct a new dataset which consists of pairwise minima between all available pairings of

failure time pairs and concordance status of the pairing. For observations T (i) = (T
(i)
1 , T

(i)
2 )

and T (j) = (T
(j)
1 , T

(j)
2 ), the pairwise minimum is (min (T

(i)
1 , T

(j)
1 ),min (T

(i)
2 , T

(j)
2 )), and

the concordance status is +1 if (T
(i)
1 −T (j)

1 )(T
(i)
2 −T (j)

2 ) > 0 and −1 if (T
(i)
1 −T (j)

1 )(T
(i)
2 −

T
(j)
2 ) < 0. If there is a tie in either component of the pair, we may assign 0 as a concordance

indicator for the tied pair, or if a binary outcome is desired, we may randomly assign +1 or

−1 to break the tie. Then, smoothing methods can be applied to this data set to estimate an

association function in terms of the failure times.

As the domain for our association function, we propose to use one minus Kaplan-Meier

estimates of each failure time coordinate instead of the original failure times. By so do-

ing, we standardize the bivariate failure times into a [0, 1]× [0, 1] space. This enables us to

compare association structures of bivariate failure times with different ranges and to explore

how well Archimedean copulas can fit the data. These estimates may be back-transformed

to the raw time scale by a relabeling of axes with times corresponding to survival proba-

bility values. In summary, our smoothing procedure uses the concordance status indicators

for pairs of bivariate observations as a response variable, and the pairwise minima of stan-

dardized failure times as explanatory variables.

2.3.1 Candidate smoothing methods

In a simulation study reported in the next section of this paper, we compared estimator

performance among seven methods: Loess, logistic regression, four types of generalized
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additive models (GAM), and multivariate adaptive regression splines (MARS). For Loess

and MARS, we propose to directly apply the method with concordance status (-1, 0, or 1)

as a response variable and the pairwise minimum of standardized failure times of two pairs

as explanatory variables. For other methods, tweaking is needed or variations are possible,

as described below. We begin by describing application absent censoring, and then propose

strategies to accommodate censoring.

In each case, we describe the method and then report implementations evaluated in

simulation studies. All methods were implemented using R packages.

2.3.1.1 Loess

Loess is a local regression method that was developed as a flexible means for model-

ing central tendency of a response distribution conditional on covariates (Cleveland, 1979,

1988). It does this by fitting simple linear or quadratic regression models for a small sub-

set, or nearest neighbors, of each response point, for all the x values where the Loess curve

should be evaluated. Thus, there is a separate local regression for each value of x and the

fitted values from these regressions are connected to produce the regression curve. Typi-

cally, a locally weighted linear regression or a locally weighted quadratic regression is used,

but higher order polynomials or methods targeting measures of central tendency other than

means may be used. In this paper, T1 and T2 are the explanatory variables. In simulation

studies, the size of the neighborhood was fixed to 0.75 – the R default setting, and locally

quadratic regression was used.
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2.3.1.2 Logistic regression

Logistic regression deals with situations where the observed outcome for a response

variable can have only two possible types, for example, true vs. false. It assumes that

the logit of the probability (log odds) of success is linearly associated with the predictors.

In this paper, a case (success) represents the concordance between two pairs of bivariate

failure times and a non-case (failure) the discordance. Thus, the model is expressed as

log
( p(t1, t2)

1− p(t1, t2)

)

= b0 + b1t1 + b2t2, where p(t1, t2) is the probability that a pairing of

pairs with componentwise minimum failure times (t1, t2) is concordant.

Whereas logistic regression requires the response variable should be zero and one, our

response variables have values +1 for concordance and −1 for discordance. We transform

our {−1, 1} response variable to zero-one scale by y′ =
1

2
y +

1

2
. To obtain the smoothed

Kendall’s τ estimate, the predicted values of the logistic regression are back-transformed

to [−1, 1] by y = 2y′ − 1.

2.3.1.3 Generalized additive models

Generalized additive models (GAM) were originally developed to blend properties of

generalized linear models (GLM) and smoothing (Hastie & Tibshirani, 1986). Recall that

GLMs model a mean response by g(E[Y ]) = b0 + b1x1 + · · · + bmxm. The GAM re-

places the simple linear terms bkxk by fk(xk) where fk is an unspecified function, yielding

g(E(Y )) = f1(x1) + · · · + fm(xm). This fk may be a function with a specific parametric

form or may be specified nonparametrically. In this paper, we use smoothing splines to
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model and estimate fk. In simulation studies to follow, we used k = 8 as the dimension of

the basis to control smoothness.

GAMs allow for various choices of ‘family’ (distribution) for the response variable and

link function (g(x)) as GLMs do. In our simulation studies, we compared two choices:

binomial family with g(x) = log
( x

1− x

)

using the same conversion as for logistic regres-

sion, and Gaussian family with g(x) = x (as if the values of the response variable −1, 0,

and 1 were continuous). Moreover, we compared two ways to model the additive function

of our two standardized time variables (x1, x2) in the GAM formula: specification in terms

of univariate functions, g(E(y)) = f1(x1)+f2(x2), and specification as a bivariate function

(estimated by a bivariate smoothing spline), g(E(y)) = f(x1, x2). In summary, we com-

pared four ways to model these data using GAM (two ‘families’ by two linear predictor

specifications). In the following sections, GAM with Gaussian family and two univariate

functions will be labeled as GAM1, the one with Gaussian family and a bivariate functions

as GAM2, the one with binomial family and two univariate functions as GAM3 and the

one with binomial family and a bivariate functions as GAM4.

2.3.1.4 Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines (MARS) is a nonparametric regression method

that makes no assumption about the underlying functional relationship between the re-

sponse and predictor variables (Friedman, 1991). MARS builds this relation from a set

of coefficients and basis functions derived from the data. The MARS description of the
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response variable mean typically has the form: f(x) =
∑m

k=1 ckBk(x) where each ck is a

constant coefficient and Bk(x) is a basis function. The basis function Bk(x) has one of the

three forms: a constant 1, a hinge function with the form max(0, x − c) or max(0, c − x)

and a product of two or more hinge functions. Then the MARS algorithm automatically

selects the variables and the location of knots, c in the hinge function, using a two-stage

approach consisting of a forward and backward pass. The forward pass starts with a model

which has only the intercept term. Then MARS repeatedly adds a pair of basis functions to

the model that most decreases the residual sum of squares. This process continues until the

decrease of residual sum of squares is sufficiently small or it reaches the maximum number

of terms which is pre-specified by the user. In the forward pass, the maximum degree of

interaction was chosen as 1, which equates to building an additive model.

The forward pass usually builds an overfitted model that has a good fit to the data

used to build the model, but will not generalize well to new data. The backward pass is

performed to build a model that generalizes better to new data. This procedure removes the

least effective basis functions one-by-one from the model so that whose removal will lead

to the least decrease in the goodness-of-fit. The backward pass continues until it finds the

best submodel which is compared using a generalized cross validation (GCV) criterion.

2.3.2 Boundary of reliable estimation

When the two components of bivariate failure times are strongly correlated either pos-

itively or negatively, data may occur very sparsely in some portions of the bivariate time
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domain, and hence yield nonsensical estimates. So we will suggest a method to set a bound-

ary where the estimation can be considered as valid. The basic idea of this method is to

consider the estimation in a specific region to be trustworthy when the density of the data

is greater than a specific criterion. This method is applied to the observed pairwise minima

rather than the failure times themselves. The procedures are as follows:

First, suppose we already have the pairwise minima of the failure times as described in

the Section 3.1. We recommend estimating the bivariate density function of these times,

and then restricting estimation of failure time association within the region with density

exceeding a criterion value. For this paper, we implemented using two-dimensional kernel

density estimation in the function ‘kde2d’ in the R ‘MASS’ package. The criterion can

be decided by various methods, for example, by thresholding at a multiple of the mean

density for the entire time domain or the maximum of density estimates. In evaluating the

best smoothing method in the next section, for example, we obtained a mean of bivariate

density estimates from 300 replicates for each simulation scenario, and set an eighth of the

maximum mean density as the criterion. This multiplying coefficient 1/8 was decided by

browsing scatterplots of simulated datasets: As an example, we present a scatterplot of a

dataset of sample size 200 with the inside of the region marked with ‘o’ and the outside

with ‘x,’ (Figure 2.1).
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Figure 2.1: A scatterplot of an example dataset with the area of reliable estimation marked

with ‘o’
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2.3.3 Censoring

The method described so far assumes that there are no censored observations. To ad-

dress censored data, we evaluated various methods. The first adapted the Brown et al.

(1974) estimator of Kendall’s τ . The second was multiple imputation using conditional

bivariate density estimates derived from the Dabrowska (1988) estimator. The third was to

utilize concordance information which can be decided from censored observations. More

detailed description of these three methods are as follows.

The basic idea of the first method is to consider a censored observation may have had

a larger failure time if it had not been censored and adjust the difference using a Kaplan-

Meier estimator. Brown et al. (1974) regarded the concordance indicator as a product

of two scores aij = Pr(T1i > T1j) − Pr(T1i < T1j) = 2 × Pr(T1i > T1j) − 1 and

bij = 2 × Pr(T2i > T2j) − 1. For example, if X1i > X1j and δ1j = 1, then we can

tell that T1i > T1j for certain which makes aij = 1. If δ1j = 0, however, we can utilize

Kaplan-Meier estimates of Xi and Xj to obtain the expected value of the indicator I(T1i >

T1j)− I(T1i < T1j). Then, the scores aij are defined as follows (Table 2.1); bij are defined

similarly.

Table 2.1: Definition of aij from Brown et al. (1974)

(δ1i, δ1j) X1i > X1j X1i = X1j X1i < X1j

(1,1) 1 0 -1

(0,1) 1 1 2× S1(Xj)/S1(Xi)− 1
(1,0) 1− 2× S1(Xi)/S1(Xj) -1 -1

(0,0) 1− S1(Xi)/S1(Xj) 1− S1(Xi)/S1(Xj) S1(Xj)/S1(Xi)− 1
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The product of aij and bij matches the definition of the concordance indicator if there

is no censoring and has a real value between +1 and −1 for censored observations. Brown

et al.’s paper took an average of concordance scores aij × bij for all available pairings of

bivariate failure times to obtain global Kendall’s τ estimates. We used the score aij × bij

for each pairing as a response variable and corresponding pairwise minimum of failure

times as explanatory variables. This approach is intuitive, but may be biased because joint

information is ignored.

In the second method, multiple imputation replaces each singly and doubly censored

observation by random numbers and calculates local Kendall’s τ using this imputed dataset.

First, we obtain bivariate probability mass estimates for a rectangular grid,

Bpq =
[p− 1

m
,
p

m

]

×
[q − 1

m
,
q

m

]

, p, q = 1, 2, · · · ,m, where Bpq is a unit rectangle for

which the mass is estimated and m is an appropriately chosen positive integer considering

the smoothness of bivariate mass estimates. The mass is calculated using Dabrowska esti-

mates, i.e., Pr (Bpq) = Pr
(p− 1

m
< T1 <

p

m
,
q − 1

m
< T2 <

q

m

)

= S
(p− 1

m
,
q − 1

m

)

−

S
( p

m
,
q − 1

m

)

−S
(p− 1

m
,
q

m

)

+S
( p

m
,
q

m

)

. It is well known that Dabrowska’s estimator

may not be a proper survival function and have negative mass (Pruitt, 1991). Since negative

and very small positive density may cause an error in the following processes, we replaced

non-positive numbers by 1.0×10−10 and very small positive numbers (less than 1.0×10−5)

by 1.0×10−5. The next step is to randomly choose a failure time for censored observations

based on the bivariate mass estimates from the previous step. For a doubly censored ob-

servation (X1, X2), we pick a grid Bp′q′ (p
′ ≥ p, q′ ≥ q) with conditional bivariate density
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Pr
(

t1, t2

∣

∣

∣
t1 >

p− 1

m
, t2 >

q − 1

m

)

where
p− 1

m
< X1 <

p

m
,
q − 1

m
< X2 <

q

m
. Then the

imputed value for this observation is the (X ′
1, X

′
2) =

(p′ − 0.5

m
,
q′ − 0.5

m

)

. For a singly

censored observation (X1, X2) where X1 is censored and X2 is an observed failure, we

pick a cell Bp′q (p
′ ≥ p) with conditional density Pr

(

t1, t2

∣

∣

∣
t1 >

p− 1

m
,
q − 1

m
< t2 <

q

m

)

where
p− 1

m
< X1 <

p

m
,
q − 1

m
< X2 <

q

m
. The imputed value for this observation is

then (X ′
1, X

′
2) =

(p− 0.5

m
,X2

)

. If the second component of the pair is singly censored,

the imputed value is defined similarly. When all censored observations are replaced by im-

puted values, we obtain concordance indicators for all pairings for this dataset, then apply

a selected smoothing method. We can repeat these procedures 10 ∼ 20 times and take an

average of predicted values from smoothing.

The third method has been proposed in Chen and Bandeen-Roche (2005): It aims to

obtain concordance indicators not only from complete data, but also from censored data if

concordance status can be confirmed. If the smaller observation of each component of the

pair is an observed failure, the concordance status can be fully determined: For example,

an uncensored time pair (20,30) and a censored time pair (30+,45+) are surely concordant

whatever the censored values are. However, for a pair (20+,30+) and (30,40), concordance

status is undeterminable. Such undeterminable pairs are excluded and the other pairs are

used as input data of smoothing.
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2.4 Simulation study

To assess the performance of our local Kendall’s τ estimator, we designed two sets

of simulation studies. The first set compares the seven smoothing methods introduced in

Section 3.1, and the second set compares methods to deal with censored data.

2.4.1 Methods

We created Clayton, Frank, and Gumbel Archimedean copulas with parameters gener-

ating equal correlation coefficients. For example, a Clayton copula with parameter -0.53

and Frank copula with parameter -3.5 both have correlation -0.5. We also created three

copulas with correlation 0.3 (Clayton with parameter 0.5, Frank with parameter 1.9, and

Gumbel with parameter 1.26), and three with correlation 0.7 (Clayton with parameter 2.15,

Frank with parameter 5.8, and Gumbel with parameter 2.07). We also generated indepen-

dent bivariate data.

For each copula, corresponding true values of local Kendall’s τ were obtained as fol-

lows. Firstly, note that the CHR functions are given by

θ(t1, t2) =
f(t1, t2)S(t1, t2)

∂S(s1, t2)

∂s1

∣

∣

∣

s1=t1

∂S(t1, s2)

∂s2

∣

∣

∣

s2=t2

where S(t1, t2) = C(S1(t1), S2(t2)) is a bi-

variate survival function. We can replace the joint survival function by C(1 − u1, 1 − u2)

upon transforming the two arguments t1 and t2 by their survival functions to be between

0 and 1. These CHR functions were evaluated on a grid of points defined as the Carte-

sian product of (0.01, 0.02, · · · , 0.99) and (0.01, 0.02, · · · , 0.99) and then transformed to
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local Kendall’s τ by τ(u1, u2) =
θ(u1, u2)− 1

θ(u1, u2) + 1
. Local Kendall’s τs for the Clayton copula

and independence scenarios are constant. Those for the Frank copula are monotonically

increasing with (u1, u2) for negative association, and those for the Frank and Gumbel cop-

ulas are decreasing for positive association. For the Gumbel copula, τ(u1, u2) is steeply

decreasing in the early failure time region.

To obtain the estimates of local Kendall’s τ using the candidate smoothing methods, we

generated 300 dataset replicates per each type of association structure. For each replicate,

bivariate random numbers between 0 and 1 with sample size 300 were generated, using

the function ‘rCopula’ in the R ‘copula’ package, and the complement of those numbers

were taken as survival times; for independent data, two uniform-distributed vectors with

sample size 300 were separately generated. To create outcome times (Tj rather than Uj),

these bivariate random numbers were transformed to quantiles of the Weibull distribution

with scale parameter 1.0 and shape parameter 1.5. Each smoothing method was applied

to these times following the procedures described in Section 3.1. Before smoothing, times

were transformed to [0, 1] as Ûj = Ŝj(Tj), where Ŝj denotes the Kaplan-Meier estimator.

The resulting predicted values were evaluated at the same grid of points as true values of

the local Kendall’s τ .

To assess the quality of the fit, we calculated the root-mean-squared-deviation (RMSD)

between the true values and the estimates of local Kendall’s τ :

RMSD ≈
{ 1

992
∑99

i=1

∑99
j=1(τ(ui, uj) − τ̂(ui, uj))

2
}0.5

, where uk =
k

100
. We evaluated

RMSDs locally by splitting the bivariate domain into three regions by tertiles of the joint
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survival function, C(u1, u2) ∈ [0, 0.333), [0.333, 0.667), and [0.667, 1], and then calculat-

ing RMSDs separately for each region. We also obtained RMSDs for the subset region

where the density exceeded the criterion defined in Section 3.2.

We also evaluated the performance of each smoothing method by visual representation.

True and estimated values of local Kendall’s τ were displayed on a grid

(0.01, 0.02, · · · , 0.99)×(0.01, 0.02, · · · , 0.99) using 3D scatterplots, with each component

of bivariate standardized failure times along the X- and Y- axes and the local Kendall’s τ

values along the Z-axis. For each specific type of copula and each smoothing method, we

displayed a 3D scatterplot of means of 300 replicates of estimates overlaid with their true

values. To visualize the range of better and worse performance for a specific association

structure and smoothing method, we compared true and estimated values of local Kendall’s

τ estimates for single datasets whose overall RMSDs were at the 5th and 95th percentiles

among the 300 replicates. Overlaying true and estimated local Kendall’s τ in these ways

aims to elucidate overall performance as well as identify portions of the domain in which

the association is correctly estimated and portions in which estimation is largely biased.

The second set of simulation studies aimed to compare methods for their accuracy in

estimating the local Kendall’s τ with censored data. Here we chose one best smoothing

method from the previous simulation study and adhered to it for the entire procedure. We

generated bivariate failure times with sample size 200 from four association structures, one

from independence scenario and three from copulas with correlation coefficient 0.7 (Clay-

ton with parameter 2.15, Frank with parameter 5.8, and Gumbel with parameter 2.07). The
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method was as described for the previous simulation study. We also generated bivariate

censoring times with sample size 200 from three association structures: Gumbel with pa-

rameter 2.07 for positive association, Clayton with parameter -0.5 for negative association,

and true independence. The data generated from these copulas have marginally uniform

distribution, which assumes the proportion censored in the dataset to be about 50%. To

change the proportion censored, we convert the uniformly-distributed numbers to quan-

tiles of a beta distribution B(p, 1 − p), where 1 − p is the desired proportion censored.

We generated scenarios with proportions censored of 30% and 50%, respectively. We de-

fined observed times as the pairwise minimum of the failure times and censoring times.

Thus, we had 24 types of datasets – four types of failure-time association by three types of

censoring-time association by two censoring proportions.

In addition to comparing the three methods of treating censored data described in Sec-

tion 3.3, we implemented a naı̈ve method of handling censoring: We excluded singly or

doubly censored pairs and analyzed only fully observed data. This serves as the least crite-

rion that any censoring-tackling approach should achieve with independent censoring. We

also analyzed the actual failure times, which usually would be unknown, but are known in a

simulation study. The fit of this simulated data was used as a criterion of best performance

that any method can achieve. Two hundred replicates were generated and analyzed each,

for 24 data generation scenarios and five methods.
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2.4.2 Results

Mean RMSDs over 300 repetitions from the 1st simulation study are presented in Table

2.2, over the whole time domain (first row) as well as the subset region defined in Section

3.2. These compare true values of local Kendall’s τ and their estimates. When evaluating

over the whole time domain, logistic regression showed the best performance for indepen-

dence and all Clayton scenarios, where the local Kendall’s τ is flat, as well as for the Frank

scenario with a modest association gradient. For these scenarios, the GAM estimators fol-

lowed, with RMSDs that were similar in the Frank scenarios and higher by roughly 50%

in independence and the Clayton scenarios. For the other Frank scenarios and the Gum-

bel scenarios, the normal-distribution GAM estimator modeled as a bivariate function of

time (GAM2) generally performed best, followed by its binomial family/logit link counter-

part (GAM4). The one exception was the Frank family with parameter -3.5, where Loess

performed best. Otherwise, Loess performance generally was mediocre to poor. MARS

performance was clearly inferior to the other methods, with the largest or next-to-largest

RMSD for all scenarios.

The 2nd row of each cell in Table 2.2 shows the RMSDs estimated over the region

of reliable estimation according to the criterion proposed in Section 3.2. The RMSDs

were significantly smaller than those for the entire domain for all association structures

and smoothing methods. Differences were striking for the Frank and Gumbel copulas

with strong association. Performance rankings among the seven smoothing methods were

preserved in many scenarios, but logistic regression became the top performer in all Frank
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Table 2.2: RMSDs of local Kendall’s τ for the entire space (first row per scenario) and

region of valid estimation (second row per scenario), for seven smoothing methods and

various association structures (mean of 300 repetitions)

Corr. Copula Loess logistic GAM1 GAM2 GAM3 GAM4 MARS

-0.5

Clayton

(-0.53)

0.152 0.073 0.106 0.108 0.107 0.106 0.162

0.101 0.061 0.089 0.096 0.089 0.096 0.157

Frank

(-3.5)

0.129 0.188 0.185 0.141 0.206 0.142 0.239

0.098 0.085 0.095 0.095 0.108 0.098 0.165

0 Indep.
0.112 0.072 0.102 0.106 0.101 0.105 0.150

0.101 0.063 0.088 0.095 0.088 0.095 0.146

0.3

Clayton

(0.5)

0.113 0.068 0.097 0.099 0.097 0.098 0.134

0.096 0.060 0.082 0.088 0.082 0.088 0.125

Frank

(1.9)

0.118 0.080 0.103 0.102 0.104 0.103 0.142

0.097 0.065 0.085 0.090 0.086 0.090 0.130

Gumbel

(1.26)

0.118 0.120 0.124 0.108 0.128 0.112 0.155

0.098 0.095 0.105 0.093 0.109 0.095 0.142

0.7

Clayton

(2.15)

0.150 0.057 0.082 0.083 0.082 0.082 0.095

0.079 0.047 0.063 0.070 0.063 0.069 0.082

Frank

(5.8)

0.169 0.127 0.123 0.117 0.133 0.120 0.153

0.082 0.062 0.075 0.076 0.077 0.077 0.109

Gumbel

(2.07)

0.189 0.146 0.142 0.111 0.165 0.117 0.167

0.092 0.106 0.091 0.079 0.104 0.084 0.121

GAM1: univariate functions, Gaussian family

GAM2: bivariate function, Gaussian family

GAM3: univariate functions, binomial family

GAM4: bivariate function, binomial family
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similar. For the Frank and Gumbel copulas with correlation 0.7, the RMSDs monotonically

increased as the failure times increased from early to late. RMSDs calculated over regions

of reliable estimation (Table 2.4) were much less distinguished between the late failure

time region and the other two regions, whereas RMSDs for the middle and early failure

time regions were unchanged or slightly changed. This makes sense because the data grow

sparse in late failure time region.

To better understand differences in how these seven smoothing methods estimate local

Kendall’s τ , we selected Frank copula with parameter 1.9 and then compared 3D scatter-

plots of mean estimates of 300 replicates, best 5% (5th percentile in terms of RMSD across

300 replicates) and worst 5% (95th percentile) estimates from each of the seven methods.

Logistic regression produces planar estimates because of the parametric assumptions used,

and MARS produces ‘piecewise’ flat surfaces by its nature. All the other methods produce

smooth and curved surfaces, but we observed subtle distinctions. Since the additive form

of two univariate functions in GAM is more restrictive than the bivariate function form, the

estimates from the former look more ‘parametric’ than the latter. There was little difference

between estimates from binomial family and Gaussian family. The true values (red) and the

GAM2 estimates (black) for Frank (1.9) and Gumbel (1.26) scenarios are displayed in Fig-

ure 2.3. For the Frank scenario, the estimator was highly accurate except at the far edges,

and particularly the anti-diagonal edges, of the time quadrant. For the Gumbel scenario,

the estimator exhibited a more notable bias in the middle of the time range and also was

severely biased in the upper-right region (close to (1,1)), which was outside the boundary of
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Table 2.3: RMSDs of local Kendall’s τ for three sub-regions split by joint survival function

from seven smoothing methods for various association structures (mean of 300 repetitions):

1st, 2nd, and 3rd rows for S(t1, t2) ∈ [0, 0.333), [0.333, 0.667), and [0.667, 1], respectively

Corr. Copula Loess logistic GAM1 GAM2 GAM3 GAM4 MARS

-0.5

Clayton

(-0.53)

0.159 0.076 0.108 0.106 0.109 0.105 0.158

0.114 0.056 0.094 0.105 0.094 0.105 0.169

0.181 0.089 0.116 0.141 0.115 0.140 0.193

Frank

(-3.5)

0.131 0.213 0.206 0.149 0.231 0.152 0.258

0.108 0.060 0.088 0.100 0.089 0.103 0.163

0.164 0.089 0.111 0.137 0.103 0.122 0.172

0 Indep.

0.109 0.076 0.106 0.108 0.105 0.107 0.146

0.107 0.055 0.088 0.094 0.088 0.094 0.153

0.155 0.077 0.107 0.124 0.107 0.124 0.177

0.3

Clayton

(0.5)

0.117 0.074 0.104 0.103 0.103 0.102 0.135

0.099 0.052 0.080 0.086 0.080 0.085 0.129

0.130 0.067 0.095 0.108 0.095 0.108 0.149

Frank

(1.9)

0.125 0.090 0.112 0.108 0.112 0.109 0.145

0.100 0.054 0.082 0.086 0.082 0.086 0.132

0.118 0.064 0.091 0.099 0.090 0.098 0.142

Gumbel

(1.26)

0.123 0.133 0.130 0.114 0.134 0.118 0.155

0.109 0.086 0.113 0.096 0.118 0.099 0.153

0.103 0.103 0.097 0.096 0.098 0.099 0.162

0.7

Clayton

(2.15)

0.181 0.065 0.094 0.090 0.093 0.089 0.102

0.085 0.044 0.060 0.070 0.060 0.069 0.082

0.084 0.048 0.067 0.074 0.067 0.074 0.094

Frank

(5.8)

0.205 0.157 0.148 0.139 0.162 0.143 0.179

0.096 0.061 0.073 0.076 0.076 0.076 0.107

0.070 0.039 0.057 0.060 0.055 0.057 0.085

Gumbel

(2.07)

0.224 0.167 0.161 0.126 0.185 0.133 0.186

0.123 0.115 0.116 0.088 0.141 0.095 0.142

0.078 0.067 0.070 0.060 0.074 0.066 0.102
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Table 2.4: RMSDs of local Kendall’s τ for three sub-regions (confined to the region of

reliable estimation) split by joint survival function from seven smoothing methods for var-

ious association structures (mean of 300 repetitions): 1st, 2nd, and 3rd rows for S(t1, t2) ∈
[0, 0.333), [0.333, 0.667), and [0.667, 1], respectively

Corr. Copula Loess logistic GAM1 GAM2 GAM3 GAM4 MARS

-0.5

Clayton

(-0.53)

0.080 0.058 0.083 0.085 0.084 0.086 0.147

0.114 0.056 0.094 0.105 0.094 0.105 0.169

0.181 0.089 0.116 0.141 0.115 0.140 0.193

Frank

(-3.5)

0.083 0.092 0.096 0.086 0.115 0.093 0.165

0.108 0.060 0.088 0.100 0.089 0.103 0.163

0.164 0.089 0.111 0.137 0.103 0.122 0.172

0 Indep.

0.088 0.064 0.086 0.090 0.086 0.090 0.136

0.107 0.055 0.088 0.094 0.088 0.094 0.153

0.155 0.077 0.107 0.124 0.107 0.124 0.177

0.3

Clayton

(0.5)

0.087 0.063 0.080 0.086 0.080 0.086 0.118

0.099 0.052 0.080 0.086 0.080 0.085 0.129

0.130 0.067 0.095 0.108 0.095 0.108 0.149

Frank

(1.9)

0.091 0.072 0.087 0.091 0.088 0.092 0.126

0.100 0.054 0.082 0.086 0.082 0.086 0.132

0.118 0.064 0.091 0.099 0.090 0.098 0.142

Gumbel

(1.26)

0.089 0.099 0.100 0.090 0.104 0.092 0.131

0.109 0.086 0.113 0.096 0.118 0.099 0.153

0.103 0.103 0.097 0.096 0.098 0.099 0.162

0.7

Clayton

(2.15)

0.072 0.051 0.066 0.069 0.065 0.069 0.078

0.082 0.043 0.060 0.069 0.060 0.069 0.081

0.084 0.048 0.067 0.074 0.067 0.074 0.094

Frank

(5.8)

0.079 0.073 0.085 0.085 0.089 0.087 0.120

0.087 0.056 0.070 0.073 0.072 0.073 0.104

0.070 0.039 0.057 0.060 0.055 0.057 0.085

Gumbel

(2.07)

0.081 0.117 0.085 0.082 0.091 0.086 0.117

0.104 0.105 0.101 0.082 0.122 0.088 0.130

0.078 0.067 0.070 0.060 0.074 0.066 0.102
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For this copula, there is no or little data at the upper-right corner (late failure times), so

the estimates in this region do not make sense. Kendall’s τs for Clayton copulas with pos-

itive correlation (parameters 0.5 and 2.15) were severely underestimated in the lower-left

region, severely overestimated at the off-diagonal region and moderately overestimated at

the upper-right region. The biases at the off-diagonal region were more severe when the

correlation is stronger because the data are sparser. The Frank copula with negative corre-

lation (parameter -3.5) was accurately estimated for all regions except for the upper-right

region, where it is nonsensical to estimate because of the data sparsity. Frank copulas with

positive correlation (parameters 1.9 and 5.8) were slightly underestimated in the lower-left

corner and overestimated at the off-diagonal region. Gumbel copulas with positive correla-

tion (parameters 1.26 and 2.07) were accurately estimated in the lower-left region, but were

overestimated in the off-diagonal regions. The biases in the off-diagonal region when the

correlation is very strong were extreme for Clayton copula but moderate for Frank copula

and Gumbel copula. The region of reliable estimation excluded area in the ‘off-diagonal’

region in positive association scenarios and ‘upper-right’ region in negative association

scenarios.

Based on the performance of these smoothing methods discussed in this section, we rec-

ommend generalized additive models with bivariate function form (referred to as GAM2

and GAM4) for the smoothing of local Kendall’s τ . Gaussian and binomial families per-

formed equally well. GAMs showed worse performance than logistic regression for asso-

ciation structures that were time-invariant or only gently time-varying, but the difference
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was small, and the nonparametric capacity to capture substantially time-varying association

structures is a great advantage of GAM over logistic regression.

With the selected smoothing method, GAM2, we assessed the performance of censoring-

treatment techniques. In Table 2.5, we present RMSDs for 12 failure-censoring association

type pairs and five methods described in Section 4.1. We also present the efficacy of each

method, defined as the difference of RMSD of using only fully observed data and each

censoring-treatment method divided by the difference of RMSD using only fully observed

data and assuming no censoring: This is the amount of RMSD that each method reduced

from the worst case divided by the amount of RMSD increased by censoring from ideal

case. The following results are for 50% censored datasets if not otherwise specified.

Excluding all the censored observations increased the RMSDs significantly. Negatively

associated censoring times increased the RMSDs most, and positively associated censoring

times, least. In general, MI outperformed the other methods. It yielded the smallest RMSD

in most scenarios. Both Chen’s and Brown’s methods had a niche of superior performance

– Chen’s method performed best for the Clayton model and Brown’s method, for the inde-

pendence model where MI method’s RMSD exceeded each of them by 10 ∼ 30%. Each

seemed inferior to the MI method in other scenarios.

In Table 2.6, we decomposed RMSDs presented in Table 2.5 into variance and bias

squared. Chen’s method exhibited least bias for most scenarios; not surprisingly, Brown’s

method was least biased for independent data. For Clayton copula estimation, MI had sig-

nificantly larger bias than using fully observed data only; its bias was considerably less
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Table 2.5: RMSDs for censoring-treatment methods and their efficacy

30% censoring

Failure Censoring NC CC Brown MI Chen

Clayton Positive 0.101 0.162 0.189 -44.2% 0.167 -7.6% 0.138 39.3%

Clayton Negative 0.101 0.263 0.284 -12.6% 0.215 29.5% 0.168 58.7%

Clayton Indep. 0.101 0.222 0.246 -19.3% 0.190 26.9% 0.152 58.4%

Frank Positive 0.124 0.187 0.172 24.7% 0.130 90.6% 0.171 25.3%

Frank Negative 0.124 0.245 0.205 32.9% 0.142 84.9% 0.199 37.9%

Frank Indep. 0.124 0.211 0.191 22.9% 0.139 83.4% 0.186 29.4%

Gumbel Positive 0.124 0.197 0.181 21.4% 0.139 80.3% 0.177 27.4%

Gumbel Negative 0.124 0.265 0.211 38.6% 0.156 77.3% 0.217 34.6%

Gumbel Indep. 0.124 0.229 0.197 30.2% 0.149 76.7% 0.197 30.4%

Indep. Positive 0.129 0.172 0.118 125.0% 0.131 94.1% 0.179 -16.1%

Indep. Negative 0.129 0.202 0.105 132.5% 0.134 93.2% 0.200 3.3%

Indep. Indep. 0.129 0.187 0.108 136.4% 0.132 93.9% 0.191 -6.1%

50% censoring

Failure Censoring NC CC Brown MI Chen

Clayton Positive 0.101 0.230 0.243 -10.3% 0.241 -8.5% 0.179 39.3%

Clayton Negative 0.101 0.465 0.365 27.6% 0.334 36.0% 0.331 37.0%

Clayton Indep. 0.101 0.370 0.330 14.6% 0.294 28.3% 0.249 44.9%

Frank Positive 0.124 0.254 0.225 22.3% 0.167 67.3% 0.222 25.2%

Frank Negative 0.124 0.427 0.264 53.9% 0.200 75.0% 0.341 28.2%

Frank Indep. 0.124 0.342 0.256 39.5% 0.183 73.1% 0.279 28.8%

Gumbel Positive 0.124 0.272 0.239 22.1% 0.178 63.4% 0.250 15.0%

Gumbel Negative 0.124 0.476 0.253 63.3% 0.213 74.9% 0.369 30.4%

Gumbel Indep. 0.124 0.372 0.258 46.1% 0.191 73.2% 0.306 26.8%

Indep. Positive 0.129 0.245 0.122 105.6% 0.146 84.9% 0.248 -2.5%

Indep. Negative 0.129 0.390 0.112 106.6% 0.147 93.2% 0.384 2.4%

Indep. Indep. 0.129 0.304 0.115 108.1% 0.147 89.5% 0.312 -4.7%

NC: Assuming there is no censoring, CC: Using only complete case pairs

The efficacy for Brown, MI, and Chen method is defined as
(RMSD of CC)− (RMSD of each method)

(RMSD of CC)− (RMSD of NC)
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in estimation of Frank and Gumbel copulas, and was much less for independent data. In

terms of variance, Brown’s method and MI were significantly lower than Chen’s method–

however, in neither of these cases did the variance estimate account for imputation uncer-

tainty. Synthesizing the above discussion, we recommend using Chen’s method to handle

censored data.

Table 2.6: Variance (1st row) and bias squared (2nd row), 50% censored

Failure Censoring NC CC Brown MI Chen

Clayton

Positive
0.011 0.046 0.013 0.013 0.034

0.017 0.096 0.219 0.233 0.031

Negative
0.011 0.214 0.013 0.014 0.124

0.017 0.169 0.352 0.338 0.048

Indep.
0.011 0.113 0.014 0.014 0.069

0.017 0.188 0.316 0.296 0.039

Frank

Positive
0.015 0.063 0.018 0.017 0.051

0.060 0.099 0.192 0.113 0.090

Negative
0.015 0.179 0.015 0.015 0.129

0.060 0.144 0.247 0.165 0.107

Indep.
0.015 0.110 0.019 0.016 0.085

0.060 0.127 0.226 0.136 0.096

Gumbel

Positive
0.017 0.079 0.021 0.020 0.073

0.034 0.068 0.207 0.119 0.054

Negative
0.017 0.231 0.017 0.018 0.161

0.034 0.163 0.235 0.170 0.054

Indep.
0.017 0.141 0.018 0.018 0.112

0.034 0.127 0.233 0.143 0.053

Indep.

Positive
0.018 0.063 0.017 0.023 0.068

0.016 0.046 0.005 0.013 0.020

Negative
0.018 0.172 0.015 0.022 0.167

0.016 0.034 0.006 0.014 0.038

Indep.
0.018 0.101 0.015 0.022 0.108

0.016 0.028 0.004 0.015 0.019
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2.5 Data analysis

We applied our method to data from the Cache County Study on Memory Health and

Aging. This study aimed to investigate the prevalence of dementia in terms of age, ed-

ucation, sex, and APOE genotype (Breitner et al., 1999). To its end, the study recruited

participants from the entire population of Cache County, Utah, U.S.A. aged 65 and over.

Data were collected on each participant as well as all their first-degree relatives. These data

have previously been used to illustrate multivariate failure time methods related to those

developed here (Bendeen-Roche & Liang, 2002; Bandeen-Roche & Ning, 2008; Cheng &

Fine, 2008; Cheng, Fine, & Bandeen-Roche, 2010).

We analyzed a subset of Cache County data comprising the eldest sibling in each par-

ticipant’s family (inclusive of self) and the participant’s mother. This subset has 4,522 pairs

of observations, (Xi1, Xi2, Ki1, Ki2), whereXi1 is the age of event occurrence of the oldest

sibling, Xi2 is the event time of the mother, and Kij is the event type corresponding to

Xij, j = 1, 2. Censoring, dementia onset, and death without dementia were coded as 0,

1, and 2, respectively. We included 3,635 pairs of observations for which some data were

observed and who had not yet failed due to either cause by age 55. Among these, 1,431

pairs had no censored component, that is, both pair members either were demented or died.

Since our method is supposed to be used for failure times of a single cause, and we are

interested in the association between onset ages of dementia, we regarded dementia onset

as a failure cause of interest and death as censoring.

Firstly, we excluded any pairs which were singly or doubly censored, with failure type
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region within the boundary of reliable estimation. In this region, using fully observed pairs

only and multiple imputation gave similar estimates which seems most trustworthy while

estimates from Chen’s method seems overestimated. For early child onset and late mother

onset, the association was strongly negative, and for late child onset and early mother onset,

the association was weakly positive. For the multiple imputation method, the association

was strongly positive for shared early onset only; it was weakly positive for a late maternal

onset and modestly negative for early maternal onset together with late child onset. For

Brown’s method, the estimates ranged from -0.12 to 0.04. The response variables for this

method are not binary, but take continuous values between -1 and 1, hence the estimate

surface fluctuates less than for the other methods.

We compared this result with previous analyses of the same data by Bandeen-Roche

and Ning (2008). This paper calculated cause-specific CHR by counting concordances and

discordances with specified failure causes in specific regions. Children’s and mothers’ ages

of dementia onset were dichotomized at 75 and 80 years, and cause-specific CHR was es-

timated for the resulting quadrants of the bivariate time domain, (x ≤ 75, y ≤ 80), (x ≤

75, y > 80), (x > 75, y ≤ 80) and (x > 75, y > 80). For purposes of comparison,

we partitioned our zero-one-scale standardized bivariate failure times at 0.305 and 0.505,

corresponding to ages 75 and 80, and obtained the means of our local Kendall’s τ esti-

mates for each region. Table 2.7 displays the cause-specific CHRs from the 2008 paper,

with corresponding Kendall’s τ values in parentheses, side-by-side with estimates from the

methods studied in this paper. Estimates from the 2008 paper, fully observed data analysis,
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Table 2.7: Cause-specific CHRs for Cache County data in Bandeen-Roche and Ning

(2008): failure times dichotomized

(child, mother) 2008: CHR (τ ) CC Brown MI Chen

(early, early) 3.81 (0.58) 0.377 -0.003 0.264 0.721

(early, late) 0.80 (-0.11) -0.305 -0.076 -0.099 -0.020

(late, early) 2.41 (0.41) 0.126 -0.003 -0.371 0.245

(late, late) 5.89 (0.71) 0.454 -0.038 -0.009 0.528

CC: Using only complete case pairs

and Chen’s method coincided in their signs in all four regions, whereas multiple imputa-

tion estimates were of opposite sign in the (late,early) and (late,late) regions. Silverman et

al. (2005) reported the dementia aggregation in families is stronger in early ages than late

ages; the multiple imputation findings are most consistent with this report.

2.6 Conclusion

In this paper, we showed we can visualize the association structure as a nonparametric

function of bivariate failure times or inverse quantiles of them by smoothing concordance

indicators as a response variable. We compared the performances of various smoothing

methods in terms of RMSDs between true and estimated values of local Kendall’s τ ; we

recommend using GAM with a bivariate function with Gaussian or binomial family because

it is fully capable of describing complex association functions of time while exhibiting

reasonably comparable performance to logistic regression when the association structure is

planar.

We evaluated several methods to deal with censored data. We adapted methods sug-
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gested by Brown et al. (1974) and Chen and Bandeen-Roche (2005) which were applied

for global Kendall’s τ and CHR estimation, respectively, to be suited for estimating local

Kendall’s τ . A new method was also suggested which replaces censored observations by

imputed values based on bivariate mass estimates and calculates local Kendall’s τ from

these. The performance of these methods in terms of RMSDs were compared by a sim-

ulation study. Brown’s method proved unsatisfactory. Between multiple imputation and

Chen’s method, however, we could not conclude which was generally better. Multiple im-

putation showed relatively higher bias than Chen’s method, whereas Chen’s method was

more variable.

An appealing feature of our method is the intuitive interpretation of the strength of time-

dependent association – the difference of the probabilities of concordance and discordance.

Another strength is the capacity to describe and visualize association in the entire failure

time domain, and not only in bins or regions.

One limitation of our method is that the estimates have large bias when the data are

sparse at a specific region of the bivariate time domain. We observed especially large bias

with censored data addressed by multiple imputation and failure times generated from a

Clayton copula with parameter 2.15. We believe the seriousness of this bias can be mit-

igated because the bias was inflated mainly due to the extreme bias in the ‘off-diagonal’

region where the data are very sparse, and there would be little need to estimate local as-

sociation in such a region. Commensurately, we recommend our method be applied in

conjunction with a method for identifying a sub-region where estimation can be considered
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valid, such as our proposed method for thresholding in terms of the bivariate density of

observed failure times. Finally, it remains difficult to characterize variability of the pro-

posed estimators. The development of pointwise and simultaneous confidence bands for

association function is still a necessary topic of future research.
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Chapter 3

Parametric Estimation of Association in

Bivariate Failure-time Data Subject to

Competing Risks: Sensitivity to

Underlying Assumptions

3.1 Introduction

Until recent decades, research on survival analysis mostly concerned univariate data,

with observations assumed to be independent. In many modern studies, however, data of

interest contain observations that are clustered, and so may be associated. Characteriz-

ing failure time associations may sometimes then be of direct interest. Addressing this,
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multivariate survival function estimators have been developed by Dabrowska (1988), Pruitt

(1991), Prentice and Cai (1992), van der Laan (1996), and Prentice (2014). Their im-

plementation and the functions’ interpretation, however, may be complex. Employing a

simple summary measure of dependence structure can ameliorate this problem. Along

these lines, Clayton (1978) suggested representing the dependence structure as a ‘cross’

(or conditional) hazard ratio. When generalized to vary with time, this quantity is defined

as follows:

θ(t1, t2) =
λ(t2|T1 = t1)

λ(t2|T1 > t1)
=

f(t1, t2) · S(t1, t2)
∂S(s1, t2)

∂s1

∣

∣

∣

∣

s1=t1

· ∂S(t1, s2)
∂s2

∣

∣

∣

∣

s2=t2

. (3.1)

It can be interpreted as the ratio comparing an individual’s hazard of failure at t2 given

failiure of his pair partner at t1 to the hazard given that the partner has not yet failed by t1.

Multivariate survival analysis may have particular benefits to offer in research involving

competing risks. Most such research has focused on the univariate setting in which only

one type of failure may be observed per sampling unit. Multivariate survival analysis with

competing risks informs the study of relationships among failure types in ways univariate

analysis cannot, because multiple failure types may be observed in a cluster. Among many

available measures of association in the competing risks setting (e.g. Cheng, Fine, & Ko-

rosok, 2007, 2009; Scheike et al., 2010), this paper focuses on the modified conditional

hazard ratio, and a parametric model and estimator for this, proposed by Bandeen-Roche

and Liang (2002). Bandeen-Roche and Ning (2008) developed a nonparametric estimator
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of the modified conditional hazard ratio and proved its distributional properties; Cheng,

Fine, and Bandeen-Roche (2010) extended it to exchangeable data in which the cluster size

may be greater than two. Gorfine and Hsu (2011) suggested a frailty-based conditional

regression model in which the frailty processes have general distributional structure, and

which subsumes the Bandeen-Roche and Liang parametric model as a special case.

The parametric model of Bandeen-Roche and Liang (2002) has an appealing feature

that is not shared by the nonparametric approaches to estimation of the modified conditional

hazard ratio, nor is retained in the Gorfine and Hsu (2011) formulation: a conceptually in-

tuitive decomposition of failure time associations into ‘size’ and ‘shape’ components. To

explicate the idea, consider two failure causes: onset of a given disease, or death. The ‘size’

component governs clustering between times to earliest failure from any cause - either dis-

ease onset or death. It does this through cluster-specific frailties that multiply the overall,

population failure hazard. The ‘shape’ component governs clustering in the tendency to

fail preferentially from certain causes as opposed to others. It does this through cluster-

specific compositional frailty processes (time-varying vectors of proportions) that generate

cause-specific hazards by multiplying the overall cluster hazard. Such a decomposition

opens prospects for distinguishing shared genetic or environmental influences that predis-

pose faster overall health declines from those that speed or delay some diseases as opposed

to others. The methodology was never pursued beyond the 2002 paper, however, because it

performed badly in simulation scenarios in which its underlying assumptions were replaced

by alternative reasonable assumptions. Our goal herein is to better understand the source
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of this sensitivity, with an eye to correcting it.

The remainder of this paper proceeds as follows. Section 2 introduces notation and

relevant background. Section 3 investigates sensitivity to one of the methodology’s ma-

jor assumptions: Dirichlet distribution of the shape frailty. We study the behavior of the

estimator when the data are generated from a logit-normal distribution and also investi-

gate the potential influence of mis-specified size frailty. Section 4 investigates the second

major assumption: that size and shape frailty variables are statistically independent. Both

investigations employed simulation studies. Section 5 concludes.

3.2 Background and Motivation

3.2.1 Notation

We consider a simple setting in which the data are independently and identically dis-

tributed across clusters, there are two types of competing risks, and there are two units per

cluster (pairs). For members j = 1, 2 of a given pair (subscript i tracking pairs suppressed

for the time being), let Tj1 denote the failure time of interest and Tj2 the failure time for

the competing risk, each with hazard function λj(t). Then the time of the first failure is

Xj = Tj1∧Tj2; if events truly are competing, onlyXj is observable, whereas for semicom-

peting risks Tj1 and Tj2 both may be observed in certain instances. The data also includes

a failure type indicator Kj which is 1 when Xj = Tj1 and 2 when Xj = Tj2. For now we
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treat the data as fully observed; later we introduce the possibility of censoring independent

of the occurrence of both types of risks.

3.2.2 The conditional cause-specific hazard ratio (CCSHR)

The CCSHR compares two instances of the cause-specific hazard - a fundamental quan-

tity estimable from observed data in the competing risks setting. In the univariate setting,

the cause-specific hazard is defined as λk(x) = limh1↓0 Pr (x ≤ X < x + h1, K =

k|X ≥ x)/h1. Its generalization to the bivariate setting is given by λ(k1,k2)(x1, x2) =

lim(h1,h2)↓0 Pr (x1 ≤ X1 < x1+h1, K1 = k1, x2 ≤ X2 < x2+h2, K2 = k2|X1 ≥ x1, X2 ≥

x2)/(h1h2); Bandeen-Roche and Liang (2002) considered a corresponding joint density for

the failure times and causes, given by f(x, k) = lim(h1,h2)↓0 Pr(x1 ≤ X1 ≤ x1 + h1, x2 ≤

X2 ≤ x2 + h2, K1 = k1, K2 = k2)/(h1h2). Then, the conditional cause-specific hazard

ratio (CCSHR) may be defined as

θCS(x1, x2; k1, k2) =
λ1,k1(x1|X2 = x2, K2 = k2)

λ1,k1(x1|X2 > x2)

=
S(x1, x2)f(x1, x2; k1, k2)

{
∫∞

x2

∑2
k=1 f(x1, x, k1, k)dx}{

∫∞

x1

∑2
k=1 f(x, x2, k, k2)dx}

. (3.2)

Roughly it is the factor by which an individual’s risk of failure at x1 due to cause k1 is

changed if his pair partner fails at x2 due to cause k2 versus has not yet failed at all by

x2. It generalizes the conditional hazard ratio which has similar definition as in (3.2), only

omitting all references to causes k.
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3.2.3 A parametric model for the CCSHR

The model we seek to study is grounded in the frailty modeling (Vaupel et al., 1979). A

frailty variable, A, is an unobserved random effect that multiplicatively modifies the hazard

function of an individual, or of related individuals. Taking G as the frailty distribution and

a as a generic realization, the bivariate survival function can be expressed as follows:

S(x1, x2) =
∫

{∏2
m=1 S

∗
m(xm)}adG(a) =

∫

exp{−a∑2
m=1

∫ xm

0
λ∗m(x)dx}dG(a) , where

S∗
m(xm) are survival functions and λ∗m(xm) are corresponding hazard functions conditional

on A = 1 (henceforth, ‘reference’ survival or hazard functions). The conditional hazard

ratio then can be represented in terms of A and λ∗m as

θ(x1, x2) =
E[A2 exp{−A∑2

m=1

∫ xm

0
λ∗m(t)dt}]E[exp{−A

∑2
m=1

∫ xm

0
λ∗m(t)dt}]

E2[A exp{−A∑2
m=1

∫ xm

0
λ∗m(t)dt}]

(3.3)

.

Importantly for what follows, the survival function for each m-th pair member condi-

tional on A = a is S∗
m(xm)

a
, and the corresponding hazard function is

λm(xm|A = a) = aλ∗m(xm) (3.4)

.

To represent the CCSHR, Bandeen-Roche and Liang observed that because the overall
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failure hazard is the sum of cause-specific hazards, λ(x) = λ1(x)+λ2(x), the cause-specific

hazard can be written as a proportion Rk(x) of the overall hazard, λk(x) = Rk(x)λ(x),

k = 1, 2. To characterize a hazard specific to both pair and cause k, then, they pro-

posed to modify the right-hand side of (3.4) by multiplying the frailty for overall failure,

A, by a proportional shape frailty vector B(x) = {B1(x), B2(x)} having mean function

{R1(x), R2(x)}. This yields

λmk(xm|A = a,B(xm) = b(xm)) = abk(xm)λ
∗
m(xm) (3.5)

where
∑

k bk(xm) = 1. Conceptually, A amplifies or diminishes a pair’s tendency to fail

early, regardless of cause, and B(x) tailors the pair’s allocation of the overall hazard to the

respective causes.

To develop an estimator for the CCSHR, Bandeen-Roche and Liang imposed two as-

sumptions upon (3.5): Dirichlet distribution of the shape frailty B(x), and independence

between the size frailty A and the shape frailty B(x). With the independence assumption,

the CCSHR for causes k1 and k2 becomes

E{Bk1(x1)Bk2(x2)}
E{Bk1(x1)}E{Bk2(x2)}

× θ(x1, x2). (3.6)

If B(x) has Dirichlet distribution with parameter δ(x) and mean function R(x) and we set

δ(x) = ∆R(x), the first multiplicand becomes
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1− 1

∆ + 1

{

Rk1(x1 ∧ x2)− 1

Rk1(x1 ∧ x2)

}I(k1=k2)

. (3.7)

The second multiplicand is the conditional hazard ratio for the frailty model without com-

peting risks. The first and second multiplicands have interpretations as association in fail-

ure causes and in times to first failure, respectively. The distributional assumptions yield

convenient estimators.

Notwithstanding these advantages, prior studies have suggested that estimators employ-

ing (3.6) and (3.7) may be sensitive to assumptions made. In the next two sections we study

this issue seeking means to ameliorate the sensitivity.

3.3 Sensitivity to assumption 1: Dirichlet distri-

bution of shape frailty

To evaluate the sensitivity of the Bandeen-Roche and Liang (2002) parametric estimator

(henceforth, BRL estimator) to the Dirichlet distribution assumption, a natural comparator

is one incorporating a logit-normal distribution instead. In this section, we propose an es-

timator based on logit-normal-distributed shape frailty, and then compare the performance

of the two estimators for simulated data sets in which the shape frailty has Dirichlet ver-

sus logit-normal distribution. Additionally, we repeated simulation scenarios in which the

underlying assumptions of the BRL framework were replaced by alternative reasonable as-
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sumptions, but revisited estimation not only of the shape frailty component of our model

but also the size frailty component – a source of sensitivity not considered in the original

2002 paper.

3.3.1 Introduction of distributions to be studied

The Dirichlet distribution is frequently used to model vectors of multivariate propor-

tions, W , which sum to one (i.e. ‘compositional’ data). Thus it is suited to allocate

proportions of hazards of the various failure types to the overall hazard. It has den-

sity
Γ(α)

∏K

k=1 Γ(αk)

∏K

k=1w
αk−1
k where α =

∑K

k=1 αk, E(Wk) =
αk

α
and V ar(Wk) =

αk(α− αk)

α2(α + 1)
(Aitchison, 1982). It arises intuitively by dividing a collection of ‘amounts’

by their sum when the amounts are mutually independent, and the proportions resulting

from dividing the amounts by their sum are independent of the sum, or when the amounts

are independent gamma random variables with common scale, or in certain cases when

amounts are positively correlated (Bandeen-Roche & Ruppert, 1991). In the failure time

context, if disease A and disease B arise independently within families, and the type of

failure occurring first is independent of the total propensity to fail, then the assumptions

of the Dirichlet distribution are satisfied. If diseases A and B have a common cause, these

assumptions are likely to be violated because the propensities to fail from two diseases are

correlated. Moreover, the Dirichlet distribution constrains the covariance between any pair

of proportions to be negative. If there are only two types of failures (i.e. a single proportion

and its difference from one to be modeled), the Dirichlet distribution reduces to the beta
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distribution.

The logit-normal distribution is a primary alternative to the Dirichlet for modeling com-

positional data (Aitchison & Shen, 1980). Suppose a (K − 1)-dimensional random vec-

tor Y follows a multivariate normal distribution NK−1(µ,Σ) over R
K−1. Then W with

Wj =
exp(Yj)

1 +
∑K−1

k=1 exp(Yk)
, j = 1, · · · , K − 1 and WK = 1 −

∑K−1
k=1 Wk defines the

logit-normal distribution of dimension K. The associated density function is given by

|2πΣ|− 1

2 (
∏K

k=1Wk)
−1 exp[−1

2
{log(W−K/WK) − µ}TΣ−1{log(W−K/WK) − µ}] where

W−K = (W1, · · · ,WK−1). The logit-normal distribution has
1

2
(K−1)(K+2) parameters

compared with only K parameters for the Dirichlet distribution; in fact, a suitably chosen

logit-normal can closely approximate any Dirichlet. It relaxes some of the assumptions un-

derlying the Dirichlet class, for example independence of the bases, making it a worthwhile

choice for further study.

Following on the 2002 paper by Bandeen-Roche and Liang, we proceed to study the

case of two competing causes.

3.3.2 Methods

We began by implementing a maximum likelihood estimator for the parameters of a

logit-normal shape distribution in the BRL framework, assuming that Bj(x) = Bj for all

x. The likelihood function for hazard and frailty quantities based on a sample of pairs
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i = 1, · · · , n is given by

n
∏

i=1

E{BKi1
(xi1)BKi2

(xi2)}E[A2λ∗1(xi1)λ
∗
2(xi2) exp{−A

2
∑

m=1

∫ xim

0

λ∗m(t)dt}] (3.8)

(Bandeen-Roche & Liang, 2002). Additionally assuming size and shape independence fac-

torizes this into quantities involvinng only the shape frailty distribution versus only the

reference hazard and size frailty distribution. Inference for the pair-specific hazards and

size frailty can be accomplished by existing methods such as Shih and Louis (1995). Infer-

ence for the shape frailty involves only the first multiplicand of Equation (3.8), taking the

likelihood function for the logit-normal parameters proprotional to

∏

i∈I1

E(B1(x)B1(x))
∏

i∈I3

E(B1(x)B2(x))
∏

i∈I2

E(B2(x)B2(x))

=
∏

i∈I1

E(B2)
∏

i∈I3

E(B(1− B))
∏

i∈I2

E((1− B)2)

=
∏

i∈I1

E

(

exp(2Y )

(1 + exp(Y ))2

)

∏

i∈I3

E

(

exp(Y )

(1 + exp(Y ))2

)

∏

i∈I2

E

(

1

(1 + exp(Y ))2

)

(3.9)

where Y is a normal, and B, a logit-normal, random variable, and I1, I2, and I3 refer

respectively to sets of pairs whose members both fail of cause 1, both fail of cause 2, and
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fail of different causes. Then the log-likelihood is

n1 log

∫ ∞

−∞

exp(2y)

{1 + exp(y)}2
1√
2πσ

exp

(

−(y − µ)2

2σ2

)

dy

+ n3 log

∫ ∞

−∞

exp(y)

{1 + exp(y)}2
1√
2πσ

exp

(

−(y − µ)2

2σ2

)

dy

+ n2 log

∫ ∞

−∞

1

{1 + exp(y)}2
1√
2πσ

exp

(

−(y − µ)2

2σ2

)

dy (3.10)

where µ and σ are the mean and standard deviation of the logit, n1 is the number of pairs

whose members both fail due to cause 1, n2 is the number of pairs whose members both fail

due to cause 2, and n3 is the pairs whose members fail of different causes. For improved

numerical stability, we replaced the standard deviation σ with exp(log(σ)) and then esti-

mated log(σ). The values of µ and log(σ) that maximize the log-likelihood function were

obtained using the ‘optim’ function with L-BFGS-B method in the R Statistical Software

package.

When we have censored observations, we can still use the same likelihood function to

estimate µ and σ. First, we count the number of pairs whose members both fail due to cause

1, both fail due to cause 2 and fail of different causes among pairs in which both members

were observed to fail. Using the proportional frequencies of these three groups of pairs,

we can get imputed frequencies of three groups for singly and doubly censored pairs. Then

adding the observed and imputed frequencies of pairs gives us n1, n2, and n3. This method

is described in more detail in Step 1∼3 in the Appendix 1 of Bandeen-Roche and Liang

(2002).
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A simulation study was conducted to assess the performance of the estimator with logit-

normal shape frailty assumption, and the sensitivity of both it and the previously proposed

Dirichlet-based estimator to violations of their respective distributional assumptions. The

simulation settings and procedures mimicked those of Bandeen-Roche and Liang (2002).

A first set of studies assessed the accuracy of the logit-normal parameter estimation. It

assumed the pair members’ earliest failure times regardless of cause followed a Clayton

copula distribution. To create such failure times, we first generated 1,000 replicates of

n = 100 or n = 500 size frailties ‘A’ drawn independently from a gamma distribution with

mean = 1 and variance = 1. Per replicate and pair i, we generated two failure times drawn

independently from an exponential distribution with rate parameter Ai. Next, we allocated

‘causes’ of failure. Per replicate and pair, we drew shape frailties ‘Bi’ independently from

a logit-normal distribution with mean of the logit equal to µ and standard deviation of the

logit equal to σ. Parameters µ = 0, 0.75, and 1.5 and σ = 1 and 3 were varied as true

values of the logit-normal parameters. The resulting distribution is symmetric when µ = 0

and increasingly left skewed as µ is larger; σ = 1 results in unimodal distributions and

σ = 3 results in a bimodal (U-shaped) distribution. In each, to decide the failure type

for each failure time in a pair, we generated independent uniformly distributed random

numbers and compared these to the shape frailties Bi; if an individual’s uniform realization

was less than or equal to Bi, we assigned cause 1, and otherwise, cause 2. Finally, we

estimated µ and σ as the values maximizing the log-likelihood equation (3.10) and then the

CCSHR according to (3.6). In the first multiplicand of CCSHR1,1 (between cause 1 and
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cause 1), E(B2) and E(B) were calculated using numerical integration, plugging in the

estimated logit-normal parameters. The numerical integration was implemented using the

‘integrate’ function in R with default settings (R Core Team, 2013). The first multiplicand

of CCSHR1,2 and CCSHR2,2 can be obtained by numerical integration of
E(B(1− B))

E(B)E(1− B)

and
E((1− B)2)

{E(1− B)}2 , respectively. The second CCSHR multiplicand is the conditional hazard

ratio without competing risks: it was obtained using two-stage semiparametric estimation

of Shih and Louis (1995) assuming Clayton’s copula.

A next set of studies assessed sensitivity of estimators to mis-specified shape distri-

bution, within the BRL framework. To assess sensitivity of the original, Dirichlet-based

estimator to violation of its assumption of distribution for the shape frailty, we applied

an estimator assuming beta shape distribution (detailed in Section 4.1, Bandeen-Roche

and Liang, 2002) to the same data as described above. Here, we used maximum like-

lihood method to estimate Dirichlet parameters instead of closed-form formula in their

paper. Conversely, to assess performance of the logit-normal estimator under a Dirich-

let shape assumption, we fit both estimators to data generated as described above except

replacing logit-normal shape frailties with beta frailties, varying the beta parameters as

(α, β) = (0.2, 0.8), (1, 4), (0.5, 0.5), and (2, 2).

A third set of studies employed a generating mechanism outside of the BRL framework.

This mechanism imagines a ‘latent’ failure time for each cause of which only the first is

observed. For each of 500 replicates, we first generated n = 500 pairs of ‘cause 1’ (say,

‘disease’) failure times as exponential conditional on gamma frailties, Ai1, exactly as in
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Cause 1 Cause 2

Scenario l1 l2 t1 l3 l4 t2
1 2 2 2 2 2 2

2 2 2 2 2 2 4

3 2 2 2 2 3 2

4 2 2 2 2 3 4

5 2 2 2 3 3 2

6 2 2 2 3 3 4

Table 3.1: Exponential rate (l) and association (gamma shape-defining; t) parameters for

the 3rd and 4th sets of simulation studies

the first step of the first set of studies. Then, we independently generated n = 500 pairs

of ‘cause 2’ (say, ‘death’) failure times, also exponential conditional on gamma frailties,

Ai2; for each individual, we considered the pairwise minimum of the ‘disease’ and ‘death’

failure times as the failure time (with their associated cause). For both causes the gamma

scale parameter was set equal to 1. The gamma shape parameter was set equal to 1/(t1−1)

for ‘disease’ (yielding ‘marginal’ CHR of t1) and to 1/(t2−1) for ‘death’, varying of t1 and

t2 as in Table 3.1 below. For ‘disease’ the exponential rate parameters were set to l1 × Ai1

and l2 × Ai1 for the respective members of the pair; for ‘death’, they were set equal to

l3 × Ai2 and l4 × Ai2. Values of l1, l2, l3, and l4 also were varied as in Table 3.1, for a total

of six scenarios. CCSHRs were estimated through the same estimation procedures as in the

second simulation study (falsely assuming data generated according to the Bandeen-Roche

and Liang framework).

A fianl set of simulation studies was similar to the third one in all ways with one ex-

ception: rather than generating cause-specific failure times as exponential conditional on

the pairwise frailty, we generated them to be marginally exponential. Details are provided
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in the Appendix. The gamma, exponential, normal, beta, and uniform random numbers

needed for the studies just described were generated using standard R functions.

3.3.3 Results

The first and second sets of simulation studies addressed the estimation of the logit-

normal parameters µ and σ (Table 3.2) and resulting CCSHR (Table 3.3). The estimator

of µ exhibited bias at most 5.3% for completely observed data and at most 7.6% for 30%

censored data. The estimator of σ exhibited bias which increased in absolute value with

σ, but bias as a percentage of the estimand decreased. For both estimators based on beta

and logit-normal shape distributions, biases decreased considerably comparing n = 500 to

n = 100 and increased for 30% censored data compared to complete data. Precision of

estimation improved substantially for n = 500 compared to n = 100, with standard errors

in estimation generally smaller by 50% to 60% for both µ and σ. Standard errors for the

censored data were greater than those for complete data by 35∼60% for both µ and σ.

Table 3.3 compares performance in estimating CCSHR1,1 between procedures based

on a logit-normal shape distribution and on a beta distribution when the true failure types

are generated by various parameters of these two distributions. Each column displays mean

and standard deviation of the CCSHR estimates using estimators based on logit-normal and

beta distribution respectively. The upper and lower parts of the table show the results when

the true failure type distribution was beta and logit-normal, respectively. Two estimators

exhibited bias no greater than 1.2% for complete data and 2.0% for censored data in all

59



CHAPTER 3. PARAMETRIC ESTIMATION OF ASSOCIATION IN BIVARIATE

FAILURE-TIME DATA SUBJECT TO COMPETING RISKS: SENSITIVITY TO

UNDERLYING ASSUMPTIONS

Table 3.2: Simulation study findings: Performance of ML estimation of logit-normal distri-

bution parameters (Equation (3.10)). Data were generated according to the Bandeen-Roche

and Liang parametric model with gamma size frailty and logit-normal shape frailty.

Estimates of µ

True values No censoring 30% censoring

n=100

µ σ Mean SD Bias Mean SD Bias

0 1 -0.002 0.188 -0.002 -0.001 0.278 -0.001

0 3 -0.003 0.400 -0.003 0.017 0.548 0.017

0.75 1 0.770 0.221 0.020 0.789 0.342 0.039

0.75 3 0.778 0.437 0.028 0.801 0.629 0.051

1.5 1 1.537 0.294 0.037 1.585 0.472 0.085

1.5 3 1.579 0.537 0.079 1.614 0.775 0.114

n=500

µ σ Mean SD Bias Mean SD Bias

0 1 0.002 0.082 0.002 0.005 0.120 0.005

0 3 0.003 0.170 0.003 0.004 0.245 0.004

0.75 1 0.756 0.096 0.006 0.762 0.142 0.012

0.75 3 0.751 0.179 0.001 0.748 0.261 -0.002

1.5 1 1.511 0.127 0.011 1.519 0.186 0.019

1.5 3 1.506 0.218 0.006 1.512 0.306 0.012

Estimates of σ

True values No censoring 30% censoring

n=100

µ σ Mean SD Bias Mean SD Bias

0 1 0.998 0.406 -0.002 1.029 0.567 0.029

0 3 3.025 0.657 0.025 3.010 0.903 0.010

0.75 1 0.997 0.457 -0.003 1.010 0.685 0.010

0.75 3 3.083 0.686 0.083 3.126 0.993 0.126

1.5 1 0.951 0.515 -0.049 0.963 0.737 -0.037

1.5 3 3.120 0.757 0.120 3.146 1.078 0.146

n=500

µ σ Mean SD Bias Mean SD Bias

0 1 0.990 0.177 -0.010 0.985 0.260 -0.015

0 3 2.987 0.300 -0.013 2.994 0.430 -0.006

0.75 1 0.990 0.191 -0.010 0.972 0.292 -0.028

0.75 3 2.991 0.315 -0.009 2.991 0.451 -0.009

1.5 1 0.999 0.214 -0.001 0.980 0.334 -0.020

1.5 3 2.993 0.327 -0.007 2.998 0.477 -0.002
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scenarios except for (α, β) = (0.2, 0.8) scenario where logit-normal based estimator had

biases of 2.8% and 4.0%, respectively. The coefficient of variation (CV) for CCSHR1,1

was no greater than 14.3% for complete data, and no greater than 18.9% for censored data,

and there were little differences between beta-based and logit-normal-based estimators for

most scenarios. For the most highly skewed scenario, (α, β) = (0.2, 0.8), logit-normal-

based estimator was less accurate than beta-based one, but also less variable. For all the

other scenarios, both estimators were highly accurate.

Table 3.3: Comparison of CCSHR estimators based on beta and logit-normal distributions

when the true failure types respectively are generated from logit-normal and beta distribu-

tions. Estimators are those detailed in Section 3.1.

No censoring 30% censoring

Beta Logit-normal Beta Logit-normal

µ σ TRUE Mean SD Mean SD Mean SD Mean SD

0 1 2.347 2.336 0.163 2.336 0.163 2.304 0.220 2.305 0.220

0 3 3.081 3.075 0.208 3.068 0.207 3.038 0.291 3.029 0.288

0.75 1 2.177 2.169 0.135 2.169 0.135 2.138 0.182 2.138 0.182

0.75 3 2.762 2.755 0.178 2.751 0.177 2.721 0.244 2.717 0.243

1.5 1 2.080 2.075 0.123 2.076 0.122 2.048 0.165 2.049 0.165

1.5 3 2.529 2.521 0.158 2.519 0.157 2.489 0.216 2.487 0.216

α β TRUE Mean SD Mean SD Mean SD Mean SD

0.2 0.8 6.000 6.000 0.614 5.830 0.527 5.959 0.843 5.757 0.709

1 4 3.333 3.299 0.466 3.293 0.470 3.218 0.607 3.223 0.602

0.5 0.5 3.000 2.990 0.198 2.987 0.198 2.950 0.275 2.946 0.273

2 2 2.400 2.388 0.163 2.388 0.163 2.352 0.216 2.352 0.216

The third set of simulation studies addressed the estimation of CCSHR for failure times

arising as the pairwise minimum of cause-specific failure times (Table 3.4). When failure

rates due to cause 1 equaled those for cause 2 for both pair members (l1 = l3 and l2 =

l4; Scenarios 1 and 2), the bias of CCSHR estimator was very small (<1%). When the
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cause-specific failure rates differed across causes for only one member of the pair (l1 =

l3 and l2 6= l4; Scenarios 3 and 4), the estimator was moderately biased (up to 2.7%).

When the cause-specific hazard rates differed for both pair members (l1 6= l3 and l2 6= l4;

Scenarios 5 and 6), the biases inflated further (up to 8.9%). In most of the scenarios,

biases in estimating CCSHR1,2 were smaller than those of CCSHR1,1. The coefficients of

variation of CCSHR1,2 estimates, however, were greater than those of CCSHR1,1. Beta-

based and logit-normal-based estimators performed similarly in all scenarios.

Table 3.4: Comparison of the CCSHR estimators based on beta and logit-normal distribu-

tions (3rd simulation study); Data generated from distributions with CCSHR1,1 = 2 and

CCSHR1,2 = 1

CCSHR1,1 CCSHR1,2

Scenario Beta Logit-normal Beta Logit-normal

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

1 2.006 (0.138) 2.001 (0.151) 1.000 (0.084) 1.006 (0.103)

2 2.001 (0.117) 1.993 (0.115) 0.997 (0.099) 1.023 (0.085)

3 2.054 (0.131) 2.054 (0.131) 1.018 (0.092) 1.018 (0.092)

4 2.036 (0.108) 2.029 (0.106) 0.996 (0.099) 1.015 (0.086)

5 2.177 (0.150) 2.177 (0.150) 1.021 (0.086) 1.021 (0.085)

6 2.085 (0.121) 2.077 (0.119) 0.958 (0.094) 0.980 (0.080)

The fourth set of simulation studies differed from the third set only in the distributions

of T1 and T2 (exponential marginally versus conditionally on the pair frailty; Table 3.5).

We observed a pattern of findings quite similar to the third set of studies, however with

biases that were much more severe. For scenarios in which the strength of association was

equal across causes (Scenarios 1, 3, and 5), the bias increased with increasing differen-

tiation in the cause-specific marginal distributions (0∼10%). For scenarios in which the

strength of association differed across causes (Scenarios 2, 4, and 6), the estimators were
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severely biased regardless of the marginal distributions (30∼ 60%). For each estimand,

beta- and logit-normal-based estimators performed similarly. For the beta estimator, this

finding replicates that in the Bandeen-Roche and Liang (2002) paper.

Table 3.5: Comparison of the CCSHR estimators based on beta and logit-normal distribu-

tions (4th simulation study); Data generated from distributions with CCSHR1,1 = 2 and

CCSHR1,2 = 1

CCSHR1,1 CCSHR1,2

Scenario Beta Logit-normal Beta Logit-normal

1 2.006 (0.139) 1.999 (0.155) 1.002 (0.080) 1.010 (0.105)

2 2.689 (0.200) 2.682 (0.206) 1.009 (0.097) 1.017 (0.111)

3 2.061 (0.131) 2.061 (0.131) 1.038 (0.084) 1.038 (0.084)

4 2.808 (0.218) 2.806 (0.216) 1.082 (0.099) 1.083 (0.097)

5 2.273 (0.168) 2.273 (0.168) 1.029 (0.085) 1.029 (0.085)

6 3.200 (0.257) 3.194 (0.253) 1.107 (0.099) 1.111 (0.095)

In seeking to understand biases in estimating the CCSHR observed in the 3rd and par-

ticularly the 4th set of simulations, estimation of the size (second) multiplicand (Equation

(3.6)) and not only the shape (first) multiplicand of the CCSHR must be considered. Specif-

ically, even though the dependence between bivariate failure times for each cause follows

a gamma frailty model where the strength of association does not change over time, the

dependence in observed failure times (generated as the minimum of cause-specific failure

times) may not. This was a possibility not considered by Bandeen-Roche and Liang in

their 2002 paper. We used the diagnostic method of Chen and Bandeen-Roche (2005) to

assess whether the pairwise minimum retained gamma frailty dependence structure. If so,

the ‘size’-associated conditional hazard ratio, θ∗(S(t1, t2)), should be constant considered

as a function of the survival function. Results of this diagnostic are displayed in Table
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3.6. The numbers in the table are the mean and standard deviation of the CHR (for time

to first failure) over 200 replicates of simulation studies when the joint survival function is

0, 1/6, 2/6, 3/6, 4/6, 5/6, and 1, respectively. For Scenarios 2, 4, and 6 of the 4th simu-

lation study in which the bias in estimating the CCSHR was most severe, the ratios were

strikingly non-constant. This implies the association between the first failure times of a pair

regardless of cause may not follow gamma frailty dependence structure, even though the

association for the cause-specific failure time does. Thus, both herein and in the 2002 paper

by Bandeen-Roche and Liang, the bias in CCSHR estimation may reflect mis-specification

in estimating its size multiplicand rather than undue sensitivity to the shape distributional

assumption.

3.4 Sensitivity to assumption 2: Independence

of size and shape frailty

The simplicity of the Bandeen-Roche and Liang method becomes possible by assuming

the size frailty A and the shape frailty B(x) are statistically independent. This means the

overall tendency to fail early or late should not relate to the propensity to fail from a specific

cause at any time. This assumption allows the CCSHR (Equation (3.6)) to be decomposed

into multiplicands which respectively characterize the propensity to fail from a particular

cause and dependence in the timing of one’s earliest failure regardless of cause.

In this section, we evaluate the effect which the dependence structure between the size
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Table 3.6: CHR as a function of joint survival function S(t). Non-constant trends with S(t)
indicate departure from gamma frailty dependence structure in paired times to first failure

(Chen and Bandeen-Roche, 2005).

Simulation 2: S(t)=0 S(t)=1

Scenario 1
Mean 1.491 1.561 1.519 1.506 1.469 1.505 1.456

SD 0.230 0.238 0.252 0.257 0.323 0.412 0.639

Scenario 2
Mean 1.805 1.760 1.801 1.788 1.780 1.812 1.834

SD 0.267 0.238 0.269 0.293 0.319 0.439 0.771

Scenario 3
Mean 1.494 1.508 1.493 1.524 1.481 1.548 1.531

SD 0.213 0.214 0.244 0.265 0.330 0.413 0.718

Scenario 4
Mean 1.805 1.736 1.773 1.742 1.817 1.706 1.824

SD 0.317 0.243 0.267 0.296 0.350 0.454 0.721

Scenario 5
Mean 1.491 1.496 1.504 1.480 1.552 1.531 1.416

SD 0.219 0.212 0.220 0.252 0.327 0.414 0.692

Scenario 6
Mean 1.812 1.805 1.765 1.724 1.751 1.689 1.823

SD 0.259 0.242 0.251 0.295 0.306 0.419 0.875

Simulation 3: S(t)=0 S(t)=1

Scenario 1
Mean 1.547 1.517 1.498 1.524 1.512 1.498 1.526

SD 0.245 0.232 0.206 0.242 0.320 0.389 0.646

Scenario 2
Mean 1.752 1.857 1.848 1.914 1.928 1.995 2.034 *

SD 0.267 0.241 0.282 0.353 0.322 0.434 0.821

Scenario 3
Mean 1.524 1.507 1.512 1.520 1.487 1.464 1.517

SD 0.208 0.232 0.226 0.232 0.333 0.369 0.672

Scenario 4
Mean 1.800 1.876 1.890 2.003 1.935 1.974 2.162 *

SD 0.294 0.252 0.276 0.366 0.371 0.475 0.829

Scenario 5
Mean 1.519 1.484 1.545 1.522 1.537 1.526 1.452

SD 0.250 0.197 0.227 0.246 0.294 0.406 0.661

Scenario 6
Mean 1.967 1.920 1.961 2.036 2.091 2.146 2.233 *

SD 0.310 0.306 0.290 0.344 0.410 0.548 0.880

65



CHAPTER 3. PARAMETRIC ESTIMATION OF ASSOCIATION IN BIVARIATE

FAILURE-TIME DATA SUBJECT TO COMPETING RISKS: SENSITIVITY TO

UNDERLYING ASSUMPTIONS

and the shape frailty has on estimation of the CCSHR when the size frailty A is gamma

distributed and the shape frailty B(x) is beta distributed. Assuming only the ‘size-shape

frailty’ framework and not the independence of A and B(x),

θCS(x1, x2; k1, k2) =
E[A2BK1

(x1)BK2
(x2)Λ

∗(x1, x2)]E[Λ
∗(x1, x2)]

E[ABK1
(x1)Λ∗(x1, x2)]E[ABK2

(x2)Λ∗(x1, x2)]
, (3.11)

where Λ∗(x1, x2) = exp{−A∑2
m=1

∫ xm

0
λ∗m(t)dt}. This is Equation (9) in Bandeen-Roche

and Liang (2002). Equation (10) in this paper,

E{BK1
(x1)BK2

(x2)}
E{BK1

(x1)}E{BK2
(x2)}

× E[A2Λ∗(x1, x2)]E[Λ
∗(x1, x2)]

E2[AΛ∗(x1, x2)]
, (3.12)

on the other hand, decomposes θCS(x1, x2; k1, k2) based on the assumption that A and

B(x) are independent. Thus the effect of the assumption of independence between A and

B(x) can be assessed by directly comparing the CCSHR calculated by Equation (3.11) and

parametrically estimated using Equation (3.12).

In this section, we will approximate true values of the CCSHR for various degrees of

dependence between size and shape frailty. Then we compare them with parametric and

nonparametric estimates of CCSHR.
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3.4.1 Methods

First, we studied the difference between the CCSHR surfaces as functions of t1 and

t2 when A and B(x) are independent versus dependent. To approximate these surfaces,

we generated a random sample of 2000 realizations of size frailty A and shape frailty B,

with scenario-specific details to follow shortly. CCSHR1,1, CCSHR1,2, and CCSHR2,2

were obtained using Equation (3.11), replacing expectations by sample means and using

λ∗m(t) = 1. These CCSHRs were evaluated on a grid consisting of Cartesian products of

1st to 99th percentiles of failure time points generated from an exponential distribution as

in the first set of simulation studies in Section 3.

For an independent case, we generated gamma-distributed size frailty A with mean 1

and variance 1 and time-invariant, beta-distributed shape frailty B with parameters 0.2 and

0.8 sampled independently from A. To construct a dependent sample (A∗, B∗) from A

and B, we generated a bivariate standard normal-distributed sample with a pre-specified

correlation value. We obtained ranks within the first components of the bivariate sample

and ranks within the second components; then we re-ordered A and B yielding A∗ with

the same ranks as the first components of the bivariate sample and B∗ with the second

components.

After studying the effect of varying the joint distribution ofA andB on the true CCSHR

values, we evaluated the performance of the Bandeen-Roche and Liang’s parametric and

nonparametric estimator when A and B are not independent. The parametric estimator of

CCSHR was obtained by plugging in maximum likelihood estimates of R1 and ∆ from the
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beta distribution model into Equation (3.7). We implemented the time-invariant nonpara-

metric estimator of CCSHR described by Bandeen-Roche and Liang (2002) for the CCSHR

between cause 1 and cause 1. This estimator compares concordances and discordances for

parings of pairs, where a concordance occurs if both failure times of cause 1 for one pair in

the pairing are greater than both failure times of cause 1 in the other pair in the pairing, and

a discordance occurs otherwise. If all four members of a pairing were observed to fail from

cause 1, then a concordance or discordance can be confirmed. If the smaller observation

among the first components of the two pairs and the smaller one among the second com-

ponents were observed to fail from cause 1, then we can confirm concordance/discordance

status since the concordance/discordance among observed or latent cause 1 failure times

coincides with that among observed (minimum) failure times. On the other hand, either in

the first components or the second components, if the smaller observation failed of cause

2, then we cannot decide whether it is concordant or discordant.

3.4.2 Results

When A and B are statistically independent, θCS(x1, x2; 1, 1) = 6 for all (x1, x2), and

indeed our approximation of this function using the method described in the first paragraph

of the previous section was virtually constant (near 6). As the correlation of the bivariate

normal distribution used to generate dependence between A and B increased, we observed

the CCSHR to increase throughout the (x1 , x2) space (Figure 3.1), particularly rapidly in

the upperright region. Conversely, the CCSHR decreased throughout the (x1 , x2) space
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Correlation CCSHR1,1(0.2, 0.2) CCSHR1,1(0.5, 0.5) CCSHR1,1(0.8, 0.8)

1 7.909 20.857 115.207

0.7 7.275 11.992 26.169

0.4 6.640 8.234 12.061

0 5.977 6.074 6.421

-0.5 4.514 3.882 3.213

-1 1.614 1.295 1.315

Table 3.7: CCSHR1,1 values resulting for three values of (x, x) and various degrees of

correlation between A and B

as the correlation decreased below 0. Table 3.7 displays CCSHR values at three diagonal

(x, x) points. Our work further indicates that the CCSHR increases with x1 and x2 when A

and B are positively correlated and decreases with x1 and x2 when A and B are negatively

correlated (Figure 3.1). As electronic supplementary material, we present CCSHR contour

plots for various degrees of dependence between A and B.

Global (time-invariant) estimates of CCSHR1,1 are presented for comparison: the 2nd

column of Table 3.8 presents parametric estimates of CCSHR as in Bandeen-Roche and

Liang (2002), and the 3rd column presents nonparametric estimates of CCSHR1,1. Since

the parametric estimation does not take the dependence between A and B into considera-

tion, the estimates for all correlation values were close to 6, the true value under indepen-

dence. In contrast, the nonparametric estimates of the CCSHR increase as the correlation

increases, resembling the pattern of underlying values of the CCSHR.
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Correlation
Parametric Nonparametric

Mean (SD) Mean (SD)

1 5.992 (0.296) 8.150 (0.566)

0.7 6.001 (0.290) 7.871 (0.552)

0.4 6.005 (0.283) 7.266 (0.559)

0 6.000 (0.296) 6.040 (0.505)

-0.5 6.008 (0.299) 3.892 (0.355)

-1 5.994 (0.301) 1.344 (0.14)

Table 3.8: Comparison of parametric and nonparametric estimates of CCSHR1,1 for various

degrees of dependence between A and B

3.5 Discussion

This paper addressed association among paired failure times subject to a competing

risk, as defined by conditional cause-specific hazard ratios (CCSHRs), and estimated in

the parametric framework proposed by Bandeen-Roche and Liang (2002). This framework

partitions the CCSHR into two factors–one reflecting association between times to earli-

est failure regardless of cause (overall hazard ‘size’), and a second reflecting association

between the causes of failure (cause allocation ‘shape’). We implemented a new estima-

tor in this framework based on a logit-normal shape frailty distribution and compared its

performance with an existing one based on a beta shape frailty distribution, in data scenar-

ios generated from each distribution within the framework as well as scenarios outside the

framework. We also studied the effect of dependence between overall failure propensity

and the allocation of this among causes on the CCSHR magnitude and temporal varia-

tion, and we evaluated the robustness of the Bandeen-Roche and Liang estimator of the

CCHSR to such dependence. We found little difference in estimator performance between
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the two shape-generating distributions, but large implications of dependence between size

and shape frailty for the magnitude and temporal variation of failure time associations

hence for estimator performance.

When size and shape were generated independently, both beta- and logit-normal-based

estimators estimated the CCSHR accurately when data were generated according to the

Bandeen-Roche and Liang framework, regardless of the underlying shape distribution.

When data were generated according to models outside the Bandeen-Roche and Liang

framework, both estimators exhibited biases comparable to those observed in the 2002 pa-

per; however, based on our application of diagnostics for model fit, we suspect this owes

primarily to mis-modeling of the association in first failure times (‘size’ association) rather

than sensitivity to the ‘shape’ distributional assumption. We conclude parametric estima-

tion of shape component of CCSHR will adequately estimate the CCSHR in many cir-

cumstances, provided that association in first failure times is characterized carefully as a

function of time. The estimator employing a beta distribution assumption was comparably

accurate and precise as the logit-normal-based estimator, hence we recommend both for

paired failure-time data.

Independence between the size and shape frailty is a key feature enabling the simplified

likelihood formulation in the Bandeen-Roche and Liang framework. Dependence in size

and shape induces a mathematically complex likelihood form as well as a complicated time

dependence of the resulting CCSHR. It remains to be seen whether a simply estimable, and

interpretable, method can be developed to accommodate this scenario. We conjecture that
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this model is only weakly identifiable from one in which independence of size and shape

frailty is maintained but the overall (‘size’-dependent) association is allowed to vary arbi-

trarily with time. If so, one might retain a parametric estimation of shape component of

CCSHR together with nonparametric estimation of size component, a flexibly time-varying

conditional hazard ratio with CCSHR estimator as a multiplication of shape and size com-

ponents. In such an approach, methods which accommodate estimation of a time varying

ratio of cause-specific to overall hazard, R(t), within the shape component of CCSHR

(Equation (3.7)) may well be needed.

A limitation of our work is that we have only evaluated scenarios with two compet-

ing causes and two candidate shape distributions. The similarity we observed in estimator

performance comparing beta and logit-normal models, as well as for generalized beta distri-

butions (data not shown), is not surprising because logit-normal and Dirichlet distributions

closely approximate each other when there are only two categories to be modeled. More

substantive differences likely would emerge for 3 or more competing causes, because the

logit-normal distribution admits more flexible correlation structures in this case.

We believe there is merit in distinguishing contributions to associations among clus-

tered failures of multiple types into shared overall failure risk and shared failure cause

propensities. Multimorbidity–an important and common setting in which clustered failures

of multiple types arises–may reflect, both, individuals’ overall vulnerability to physiolog-

ical declines and disease-specific mechanisms (Varadhan et al., 2014). Partitioned disease

heritability into these two components, methodology as discussed in this paper could in-
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form the etiology of psychiatric disorders, metabolic syndrome, frailty in aging, and other

medical syndromes. Whether the partitioning proposed here does address this goal, alter-

native means and measures for achieving the goal are still needed, representing another

area of needed work.
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Chapter 4

Nonparametric and Semiparametric

Estimation of Association in Bivariate

Failure-time Data under Competing

Risks

4.1 Introduction

A large literature on failure-time analysis has addressed univariate data where the obser-

vations are independently and identically distributed, and there is only one cause of failure.

However, a considerable body of work in recent decades has extended this traditional sur-

vival analysis approach. Multivariate failure-time data analysis accommodates multiple

75



CHAPTER 4. NONPARAMETRIC AND SEMIPARAMETRIC ESTIMATION OF

ASSOCIATION IN BIVARIATE FAILURE-TIME DATA UNDER COMPETING RISKS

observations in a single sampling unit, for example, times to onset of a disease for multiple

family members, wherein the observations may be correlated. A number of researchers

have aimed to assess the association among multivariate failure times and suggested vari-

ous measures to this end (Hougaard, 2000). Among the proposed measures, the conditional

(or cross) hazard ratio (CHR) is an easily interpreted description of association (Clayton &

Cuzick, 1985; Clayton, 1978; Oakes, 1982, 1986, 1989), and parametric models of it have

been studied by many researchers (Genest et al., 1995; Genest & MacKay, 1986; Glidden,

2000; Nielsen et al., 1992; Oakes, 1989; Ripatti et al., 2002; Ripatti & Palmgren, 2000;

Shih & Louis, 1995). Nonparametric measures of time-varying association have also been

proposed (Fan, Prentice, & Hsu, 2000; Hsu & Prentice, 1996). Another direction of exten-

sion of traditional survival analysis has been to accommodate competing risks. Competing

risks data are frequently encountered in biomedical studies, where subjects may experi-

ence failure from one of multiple causes. In such data, we may only observe the time to the

first failure experienced and the cause of this failure. In this paper, we address the situa-

tion where the failure-time data are both multivariate and reflect competing risks using our

measure of association, the conditional cause-specific hazard ratio (CCSHR), an extension

of the CHR proposed by Bandeen-Roche and Liang (2002).

A considerable body of literature has considered the estimation of association among

multivariate failure times subject to competing risks (Bandeen-Roche & Ning, 2008; Cheng

& Fine, 2008; Cheng & Fine, 2012; Cheng, Fine, & Bandeen-Roche, 2010; Cheng, Fine, &

Kosorok, 2007, 2009; Ning & Bandeen-Roche, 2014; Scheike & Sun, 2012; Scheike et al.,
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2010). A few researchers have observed that associations among multivariate failure times

subject to competing risks can be decomposed into two elements: the association between

the probabilities that the individuals experience a specific failure type, and the associa-

tion between times to first failure experienced regardless of cause. Bandeen-Roche and

Liang (2002) demonstrated that under certain assumptions, the CCSHR can be expressed

as a multiplication of the ordinary CHR for association between times to first failure, and

a factor representing the association between failure causes. Shih and Albert (2010) also

adopted the framework where the overall association between cause-specific failure times

could be decomposed into the association between failure times and the association be-

tween failure causes. For the former, they also utilized the ordinary CHR for association

between times to first failure; for the latter, they defined an odds ratio of having a specific

pair of failure causes conditional on the first-failure times. The previous approaches to es-

timating the decompositions described above either have been parametric (Bandeen-Roche

& Liang, 2002) or modeled time dependence as piecewise constant (Shih & Albert, 2010).

The decompositions described above distinguish associations between causes of failure

from associations between overall propensity to fail, which may yield insights into shared

determinants of disease onset in people (e.g. comorbidity), families (e.g. genetics), or com-

munities (e.g. environment). In this paper, we aimed to augment the available methodology

to achieve such insights by enabling completely nonparametric estimation of each compo-

nent in the CCSHR decomposition proposed by Bandeen-Roche and Liang (2002). To this

end, we developed methods to estimate both failure-time and failure-cause components of
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the CCSHR by smoothing. In Section 2, we detail these methods. In Section 3, we study

the performance of our methods through simulation studies. In Section 4, we present an

application of our method to study familial associations in times to onset of dementia, using

data from the Cache County Study on Memory Health and Aging. Section 5 concludes.

4.2 Methods

4.2.1 Definition and notation

We assume data are independently and identically distributed across pairs i = 1, · · · , n

and censoring is independent of failure time. S(t1, t2) is the joint survival function of T1

and T2, and S1(t1) and S2(t2) are the marginal survival functions of T1 and T2, respectively.

Hazard functions corresponding to Sm(tm) are denoted by λm(tm), and cause-specific haz-

ard functions for the m-th individual is defined as λm,k(tm).

The conditional hazard ratio (CHR) is defined by

θ(t1, t2) =
λ(t2|T1 = t1)

λ(t2|T1 > t1)
=

f(t1, t2)S(t1, t2)

∂S(s1, t2)

∂s1

∣

∣

∣

s1=t1

· ∂S(t1, s2)
∂s2

∣

∣

∣

s2=t2

, (4.1)

the ratio of an individual’s hazard of failure at t2 given failure of his pair partner at t1 to the

hazard given that the partner has not yet failed by t1. Oakes (1989) showed that the CHR
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can be alternatively expressed as

Pr{(T (a)
1 − T

(b)
1 )(T

(a)
2 − T

(b)
2 ) > 0|(T (ab)

1 , T
(ab)
2 ) = (t1, t2)}

Pr{(T (a)
1 − T

(b)
1 )(T

(a)
2 − T

(b)
2 ) < 0|(T (ab)

1 , T
(ab)
2 ) = (t1, t2)}

(4.2)

where T (a) = (T
(a)
1 , T

(a)
2 ) and T (b) = (T

(b)
1 , T

(b)
2 ) are two randomly chosen bivariate obser-

vations and (T
(ab)
1 , T

(ab)
2 ) is the componentwise minimum of T (a) and T (b).

Our approach to augmenting the CHR can be best motivated through a frailty formula-

tion. A frailty variable is a positive random effect that multiplicatively modifies the hazard

function of both individuals in a pair. That is, the hazard function for each m-th individual

in the i-th pair is λim(t) = aiλ
∗
m(t) where ai is the realization of the frailty variable for the

i-th pair and λ∗m(t) is the ‘reference’ hazard function conditional on ai = 1. The bivariate

survival function with frailty variable A can be expressed as follows:

S(x1, x2) =

∫

exp
{

−a
2

∑

m=1

∫ xm

0

λ∗m(t)dt
}

dG(a) = E
[

exp
{

−A
2

∑

m=1

∫ xm

0

λ∗m(t)dt
}]

,

(4.3)

where G is the distribution of the frailty variable. Taking partial and second derivatives

here to compute all the terms needed in Equation (4.1), then the bivariate density can be

expressed in terms of the frailty variable A and λ∗m as

f(x1, x2) = λ∗1(x1)λ
∗
2(x2)E[A

2 exp{−A
2

∑

m=1

∫ xm

0

λ∗m(t)dt}], (4.4)
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and the conditional hazard ratio can be expressed as

θ(x1, x2) =
E[A2 exp{−A∑2

m=1

∫ xm

0
λ∗m(t)dt}]E[exp{−A

∑2
m=1

∫ xm

0
λ∗m(t)dt}]

E2[A exp{−A
∑2

m=1

∫ xm

0
λ∗m(t)dt}]

.

(4.5)

(Liang et al., 1995)

4.2.2 Introduction to CCSHR and shape-size decomposi-

tion

Bandeen-Roche and Liang (2002) introduced the concept of CCSHR as a measure of

association between bivariate failure times with competing risks, defined as

θCS(x1, x2; k1, k2) =
λ1,k1(x1|X2 = x2, K2 = k2)

λ1,k1(x1|X2 > x2)

=
S(x1, x2)f(x1, x2; k1, k2)

{
∫∞

x2

∑2
k=1 f(x1, x, k1, k)dx}{

∫∞

x1

∑2
k=1 f(x, x2, k, k2)dx}

. (4.6)

It is interpreted as a multiplicative factor by which one’s hazard of failing at time x1 due to

failure cause k1 is inflated when his pair partner fails at time x2 due to cause k2 compared

to when the partner has not yet failed by time x2 due to any cause. Bandeen-Roche and

Liang pointed out it is possible to decompose the CCSHR into the association between fail-

ure times regardless of the failure cause (which they termed the hazard ‘size’ association)

and the association between the propensities of failing due to specific causes (which they
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termed the hazard ‘shape’ association).

In competing risks analysis, the overall hazard is considered as the sum of cause-

specific hazard functions. Bandeen-Roche and Liang generalized this idea to the multi-

variate failure time setting by envisioning that the proportions of allocation of the overall

hazard function into cause-specific hazards may heterogeneously vary across pairs, and not

only the overall hazard. To this end, they defined two types of frailties: A positive random

variable A that governs a pair’s tendency to fail early or late (regardless of the cause), and

a stochastic process B(x) = (B1(x), B2(x)) that tailors the pair’s allocation of the overall

hazard to the respective causes. Then, they defined the hazard function conditional on these

frailties as λm(xm|A = a,B1(xm) = b1(xm), B2(xm) = b2(xm)) = ab1(xm)λ
∗
m(xm) +

ab2(xm)λ
∗
m(xm) where b1(xm) + b2(xm) = 1. The vector B(x) = (B1(x), B2(x)) has a

mean function R(x) = (R1(x), R2(x)) where Rk(x) = λmk(x)/λm(x) which for simplic-

ity we take to be equal across components m = 1, 2, in our paper. Henceforth, A will be

called the size frailty and B, the shape frailty.

Synthesizing, the cause-specific hazard of cause km for the m-th individual given the

frailties is λmkm(x) = ABmkm(x)λ
∗
m(x). Then, in analogy to Equation (4.4), the corre-

sponding bivariate cause-specific density f(x1, x2; k1, k2) equals

λ∗1(x1)λ
∗
2(x2)E

[

A2Bk1(x1)Bk2(x2) exp
{

− A
∑2

m=1

∫ xm

0
λ∗m(t)dt

}]

(Bandeen-Roche &

Liang, 2002). By plugging it into Equation (4.6), the CCSHR between cause k1 and k2 can

be expressed as:
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θ(x1, x2) =
E[A2Bk1(x1)Bk2(x2) exp{−A

∑2
m=1

∫ xm

0 λ∗
m(t)dt}]E[exp{−A

∑2
m=1

∫ xm

0 λ∗
m(t)dt}]

E[ABk1(x1) exp{−A
∑2

m=1

∫ xm

0 λ∗
m(t)dt}]E[ABk2(x2) exp{−A

∑2
m=1

∫ xm

0 λ∗
m(t)dt}]

.

(4.7)

Bandeen-Roche and Liang assumed statistical independence between the size frailty A,

and the shape frailty, B(x), simplifying Equation (4.7) into factors

E[Bk1(x1)Bk2(x2)]

E[Bk1(x1)]E[Bk2(x2)]
× θ(x1, x2) (4.8)

where θ(x1, x2) is the ordinary conditional hazard ratio. Henceforth, we will call the first

multiplicand the ‘shape’ component of the CCSHR and the second multiplicand, the ‘size’

component.

The shape factor governs the association between pair members’ failure causes, and

the size component measures the strength of association between bivariate failure times

regardless of failure cause. Our approach is to estimate these two multiplicands separately,

each as a function of bivariate failure times. The next two subsections will discuss existing

estimators and our new approach for each component.

4.2.3 Estimation of the shape component

In this section, we present an existing method of estimating the shape component of the

CCSHR, and then suggest an alternative. The existing method is semiparametric estimation
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as suggested by Bandeen-Roche and Liang (2002). Our new approach is nonparametric

estimation using an alternative representation of the CCSHR proposed by Shih and Albert

(2010).

Method 1: Semiparametric Dirichlet Model – This method assumes that B(t) is a two-

dimensional beta-distributed process with parameter (δ1(t), δ2(t)) = ∆ × (R1(t), R2(t))

and combines a parametric estimator of ∆ with a nonparametric estimator of R(t). For the

present, censored observations are excluded in the estimation of R(t) and ∆.

• Estimation of R(t): The function R(t) = (R1(t), R2(t)) is defined as a pointwise divi-

sion of a cause-specific hazard function over an overall hazard function, λk(t)/λ(t), k =

1, 2. Here we do not distinguish the (cause-specific) hazard functions of the 1st and 2nd

individuals of each pair, nor R(t), but rather assume these functions are common for

both members of a pair. We therefore take as input for estimation univariate failure time

data with corresponding failure causes, pooling the 1st and 2nd individuals in pairs with-

out distinguishing them. To estimate R(t) using these data, we obtain nonparametric

estimates of the cause-specific hazard functions and overall hazard function using an ex-

isting software such as ‘muhaz’ function in R ‘muhaz’ package, and then divide them.

Here, we constrain the estimates of R(t) to be confined within the range of [ε, 1 − ε] by

winsorizing for a small positive number ε to prevent nonsensical values in the next steps.

This shape component estimator will be called ‘Shape1’ hereafter.

• Estimation of ∆: ∆ is a parameter which controls the strength of failure cause association
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within a pair. Under conditions delineated in Bandeen-Roche and Liang (2002), it may

be estimated as follows. If pairs are sampled independently, the likelihood function for

the frailty distribution parameters and reference hazard function is

n
∏

i=1

E
{

Bki1(xi1)Bki2(xi2)
}

E
[

A2λ∗1(xi1)λ
∗
2(xi2) exp

{

− A

2
∑

m=1

∫ xim

0

λ∗m(t)dt
}]

.

(4.9)

Since this likelihood function factorizes into a shape frailty component versus a size

frailty and hazard function component, estimation of shape frailty parameters involves

only
∏n

i=1E
{

Bki1(xi1)Bki2(xi2)
}

. We propose to reduce this likelihood to a function

of a single variable rather than two by invoking the assumption that B(x)./R(x) is a

martingale process: Bandeen-Roche and Liang (2002) showed when this occurs, both

time arguments may be evaluated at their minimum, x = (min(xi1, xi2)). Then, under

the beta distribution assumption,

E
{Bk1(x1 ∧ x2)Bk2(x1 ∧ x2)
Rk1(x1 ∧ x2)Rk2(x1 ∧ x2)

}

=
∆

∆+ 1
for k1 6= k2, and equals

∆+R−1
k (x1 ∧ x2)
∆ + 1

=

R−1
k (x1 ∧ x2)− 1

∆ + 1
+1 for k1 = k2. The likelihood with respect to ∆, then, is proportional

to
∏

i∈I1∪I2

[

1− 1

∆ + 1
{1−R−1

k1
(xi1 ∧ xi2)}

]

∏

i∈I3

(

1− 1

∆ + 1

)

where

Ik = {i : both members of pair i fail due to cause k} (k = 1, 2)

I3 = {i : members of pair i fail due to different causes}.
(4.10)

84



CHAPTER 4. NONPARAMETRIC AND SEMIPARAMETRIC ESTIMATION OF

ASSOCIATION IN BIVARIATE FAILURE-TIME DATA UNDER COMPETING RISKS

With this likelihood we can estimate ∆ by solving the corresponding score equation:

n3

∆(∆+ 1)
−

2
∑

k=1

∑

i∈Ik

( 1

(∆ + 1)2

{1−Rk(xi1 ∧ xi2)

Rk(xi1 ∧ xi2)

}[ 1

∆ + 1

{1−Rk(xi1 ∧ xi2)

Rk(xi1 ∧ xi2)

}

+1
]−1)

= 0,

(4.11)

plugging in for Rk1(xi1 ∧ xi2), the nonparametric estimates of Rk1(t) for t ∈ (0, 1)

obtained in the previous step. Following this plug-in, the score equation can be solved

by a simple R program.

Finally we obtain the shape component by plugging the maximum likelihood estimate

of ∆ and nonparametric estimates of R(t) into the formula,

1− 1

∆ + 1

{Rk1(x1 ∧ x2)− 1

Rk1(x1 ∧ x2)
}I(k1=k2)

, (4.12)

which is a function of x1 ∧ x2 for the association between the same failure causes and a

constant for the association between different causes.

Method 2: Nonparametric Estimator – Shih and Albert (2010) showed that the CCSHR

can be alternatively represented as

θ(t1, t2) ·
Pr(K1 = k1, K2 = k2|T1 = t1, T2 = t2)

Pr(K1 = k1|T1 = t1, T2 > t2) Pr(K2 = k2|T2 = t2, T1 > t1)
. (4.13)

They proposed quite complicated methodology to estimate the quantities in the right-hand

multiplicand. Rather, we propose to directly estimate each component of Equation (4.13)

nonparametrically. The numerator and the two components of the denominator can be
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expressed as functions of t1 and t2:

g1(t1, t2) = Pr(K1 = k1, K2 = k2|T1 = t1, T2 = t2) (4.14)

g2(t1, t2) = Pr(K1 = k1|T1 = t1, T2 ≥ t2) (4.15)

g3(t1, t2) = Pr(K2 = k2|T2 = t2, T1 ≥ t1) (4.16)

To estimate g1, g2, and g3, a smoothing method may be applied to the data fully observed

for the event of interest. That is, for the estimation of g1, we need a subset of the full dataset

with failures observed for both the 1st and 2nd individuals, and for the estimation of g2, we

need another subset where the 1st individuals are not censored, and similarly for g3. Thus,

the input data for the smoothing of g1 are two explanatory variables, ti1 and ti2, and the

response variable, I(Ki1 = k1, Ki2 = k2), for i ∈ I(K1 > 0, K2 > 0). For the estimation

of g2 (and similarly for g3), the estimand at (t1, t2) is the ‘proportion’ of the population of

whom first members of pairs are representative who fail due to cause k1, conditional on

failure time T1 = t1 and having a pair partner who fails later than t2. To estimate this,

suppose we simply apply a smoothing method to the dataset {ti1, ti2, prop(K1 = k1)}, i ∈

I(K1 > 0) where ‘prop()’ indicates the proportion of observations satisfying the condition

in the parenthesis on the area T1 = t1 and T2 ≥ t2. Unfortunately, this strategy very likely

will estimate Pr(K1 = k1|T1 = t1, T2 = t2) rather than Pr(K1 = k1|T1 = t1, T2 ≥ t2),

if the time variable is continuous, because it is highly likely that no observation satisfies

T1 = t1 and T2 > t2 in this case. To circumvent this complexity, we use observations
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from the ‘band’, {t1 − w/2 < T1 < t1 + w/2, T2 ≥ t2}, rather than from the ‘line’,

{T1 = t1, T2 ≥ t2}, where w is an appropriately chosen positive number. Specifically,

we calculate the proportion of the 1st individuals who failed due to cause k1 among non-

censored individuals, #I(K1 = k1)/#I(K1 > 0), from the rectangular area, {ti1−w/2 <

T1 < ti1 + w/2, T2 ≥ ti2}, and consider this as a response value in the input data for

smoothing.

Any smoothing method that can take continuous or binomial response variables and

two explanatory variables can be used. Based on the authors’ work described elsewhere,

we used generalized additive models with Gaussian family and bivariate smoothing func-

tion: g(E(y)) = f(x1, x2) where g(E(y)) is an identity link function. After obtaining the

smoothed estimates of g1, g2, and g3 above, pointwise multiplication and division leads to

the estimate of the shape component for any (t1, t2). This estimator will be called ‘Shape2’

hereafter.

4.2.4 Estimation of the size component

The second multiplicand of the CCSHR, the size component, is same as the conditional

hazard ratio under the framework defined in Section 2.2. A considerable literature has

discussed parametric modeling of the CHR as a function of bivariate failure times (Clayton

& Cuzick, 1985; Genest & MacKay, 1986; Oakes, 1989; Shih & Louis, 1995). A much

sparser literature had addressed nonparametric estimation. In this paper, we evaluated a

method that does not impose any parametric assumption in estimating the CHR, allowing
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it to be fully time-varying as a function of t1 and t2, in comparison to two parametric

approaches:

Method 1: Nonparametric Estimator – The first method nonparametrically estimates a

local version of Kendall’s τ . Consider two realizations from the same bivariate failure time

distribution, T (a) = (T
(a)
1 , T

(a)
2 ) and T (b) = (T

(b)
1 , T

(b)
2 ), and denote their corresponding

pairwise minimum as (T
(ab)
1 , T

(ab)
2 ) = (min (T

(a)
1 , T

(b)
1 ),min (T

(a)
2 , T

(b)
2 )). Recall that T (a)

and T (b) are concordant if (T
(a)
1 − T

(b)
1 )(T

(a)
2 − T

(b)
2 ) > 0 and are discordant if (T

(a)
1 −

T
(b)
1 )(T

(a)
2 − T

(b)
2 ) < 0. As noted by Oakes (1989; Equation (4.2)), the CHR can be written

as a ratio of concordance and discordance probabilities and hence relates directly to a local

version of Kendall’s τ , τ(t1, t2) = P{(T (a)
1 − T

(b)
1 )(T

(a)
2 − T

(b)
2 ) > 0|(T (ab)

1 , T
(ab)
2 ) =

(t1, t2)} − P{(T (a)
1 − T

(b)
1 )(T

(a)
2 − T

(b)
2 ) < 0|(T (ab)

1 , T
(ab)
2 ) = (t1, t2)}. Therefore, we

propose to estimate the CHR by first obtaining a smoothed estimator of this local Kendall’s

τ , and then back-transform as θ(t1, t2) =
1 + τ(t1, t2)

1− τ(t1, t2)
to obtain the CHR estimator.

Our Kendall’s τ estimator takes failure times T1 and T2 as two explanatory variables and

a concordance-discordance indicator as a response variable. As a first step, then, we need

to prepare a dataset of concordances and discordances. Beginning with bivariate failure

times data on n pairs of individuals, we create a dataset of all available pairings of them

(n × (n − 1)/2 pairings). For each of these pairings, for example, T (i) = (T
(i)
1 , T

(i)
2 ) and

T (j) = (T
(j)
1 , T

(j)
2 ), we obtain (min (T

(i)
1 , T

(j)
1 ),min (T

(i)
2 , T

(j)
2 )) and a concordance status

indicator. The concordance status indicator is defined as +1 if (T
(i)
1 −T (j)

1 )(T
(i)
2 −T (j)

2 ) > 0

, -1 if (T
(i)
1 − T

(j)
1 )(T

(i)
2 − T

(j)
2 ) < 0, and 0 if (T

(i)
1 − T

(j)
1 )(T

(i)
2 − T

(j)
2 ) = 0, or we may
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randomly assign +1 or -1 in this latter case if a binary outcome is required in the selected

smoothing method. Then, we smooth concordance status data in terms of the pairwise

minimum times. Any smoothing method which can take two explanatory variables can be

used. As a result of an extensive simulation study comparing the performance of these

smoothing methods for local Kendall’s τ estimation, reported elsewhere, we recommend

the GAM (Hastie & Tibshirani, 1986), g(E(y)) = f(x1, x2) where g(E(y)) is identity or

logit link function. To address censoring, we used multiple imputation among methods

reported in Chapter 2 of this thesis. For logit link, one transforms the (1,-1) data to (1,0)

and then back again. This nonparametric estimator of the size component will be called

‘Size1’ estimator.

Method 2: Shih and Louis Estimator, Method 3: Alternative Parametric Estimator –

These estimators are similar in the sense that they estimate a copula parameter, α, for

a specific, parametrically specified copula C(S1(t1), S2(t2);α) = S(t1, t2) which links

the joint survival function with two marginal survival functions. We propose, as in the

preceding thesis paper, to work with random ‘standardized’ arguments transformed to be

uniformly distributed. Then, the relationship between the survival function and the copula

function is S(t1, t2) = C(1− u1, 1− u2;α) with S(tm) = 1− um.

The second estimator is the maximum likelihood estimator due to Shih and Louis

(1995). The likelihood function for the copula parameter is defined as
∏

i L(α; u1i, u2i) =

∏

i c(u1i, u2i;α)
δ1iδ2i

∂c(u1i, u2i;α)
δ1i(1−δ2i)

∂u1i

∂c(u1i, u2i;α)
δ2i(1−δ1i)

∂u2i
C(u1i, u2i;α)

(1−δ1i)(1−δ2i)

where i is the pair index from 1 to n and δ1i and δ2i are failure-censoring indicators. The
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estimator of α maximizes this function.

The third strategy chooses the parameter value which minimizes the mean absolute

deviation between implied and estimated versions of the local Kendall’s τ across the en-

tire bivariate time domain. This can be accomplished using optimization software such

as ‘optim’ function of R. The implied Kendall’s τ is calculated from the one-to-one rela-

tionship between the specified copula (hence, bivariate survival) function using the CHR

formula, θ(t1, t2) =
f(t1, t2)S(t1, t2)

∂S(s1, t2)

∂s1

∣

∣

∣

s1=t1

· ∂S(t1, s2)
∂s2

∣

∣

∣

s2=t2

, and the one-to-one relationship

between CHR and local Kendall’s τ , τ(t1, t2) =
θ(t1, t2)− 1

θ(t1, t2) + 1
. The estimated Kendall’s

τ , τ̂(ti, tj), can be obtained by the smoothing method as described in the first method of

this section. The mean absolute deviation (MAD) between them can be approximated by

1

992
∑99

i=1

∑99
j=1

∣

∣

∣
τ(ui, uj) − τ̃(ui, uj)

∣

∣

∣
where uk =

k

100
. As above, here we employed

standardized times Ui rather than crude failure times Ti.

A challenge for Methods 2 and 3 is that the correct copula type is not known when

analyzing data in practice. In our simulation study to be described shortly, we estimated

fits (separately by Methods 2 and 3) for each of three Archimedean copulas: Clayton,

Frank, and Gumbel. Then, the copula type achieving the best fit to the data as assessed by

the MAD defined just above was chosen as the final fit. Methods 2 and 3 will be called

‘Size2’ and ‘Size3’ estimators hereafter.
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4.3 Simulation studies

A set of simulation studies was designed to assess the performance of the proposed

estimators and compare them with existing methods. We generated simulated datasets

of various association structures from copula models. We estimated the shape and size

components separately using the methods described in the previous section, then obtained

the CCSHR by multiplying various combinations of shape and size component estimators.

We assessed the estimators’ accuracy and variability at specific time points.

4.3.1 Methods

We need to create a simulated dataset with four variables in which each observation

consists of a pair of failure times and a pair of associated failure causes. In this simulation

study, we assumed failure times to be uniformly distributed between 0 and 1 (reflecting

conversion to zero-one scale by applying one minus survival function transformation). By

standardizing the bivariate time domain into [0, 1]× [0, 1], we can compare the association

structures of datasets with different time scales.

The bivariate failure times were created using the ‘rCopula’ function in the R ‘copula’

package with a specified copula type, dimension (two in this paper), and copula parameter

value. To generate failure causes, we employ the Bandeen-Roche and Liang framework

where the proportions of each failure cause for a given pair at time t have a beta distribution

with two-dimensional parameter δ(t) = (δ1(t), δ2(t)) decomposed into the multiplication
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of a parameter ∆ representing the strength of cohesion of failure causes within a pair and

the mean function of the proportions of each failure cause, R(t) = (R1(t), R2(t)). For

each pair and each time point t, a beta distributed random number was generated and was

compared with two standard uniformly distributed random numbers. If the beta random

number was greater than the first uniform random number, the first individual’s failure

cause was set to 1, otherwise it was 2. The second individual’s failure cause was similarly

defined.

To create a simulated dataset, we must designate sample size, association structure (a

copula type and parameter), and the distribution governing allocation of two failure causes

(∆ and R(t)). We used two different sample sizes, 500 and 1,000. Among numerous types

of copulas, we chose Clayton and Gumbel copulas. The Clayton copula represents an as-

sociation structure with constant CHR over time, and Gumbel copula represents a structure

with CHR that is decreasing over time. We designed six data generation scenarios. Scenar-

ios 1, 2, and 6 employed a Clayton copula with parameter 1, which is equivalent to Pearson

correlation coefficient 0.48. Scenario 3 employed a Gumbel copula with parameter 2.5

and scenarios 4 and 5 with parameter 1.125, which are equivalent to correlation coeffi-

cients of 0.79 and 0.29, respectively. The parameter ∆ was fixed to 1 for all scenarios.

The function of the proportion of the first failure cause R1(t) was assumed to be constant

for scenarios 1 ∼ 4 where the values were 0.2, 0.8, 0.5, and 0.5, respectively. We used

R1(t) = 0.4× 1

1 + exp (−(t− 0.5)× 10)
+ 0.3 for scenarios 5 and 6 which represents an

S-shaped curve increasing from 0.3 to 0.7 when t changes from 0 to 1. Scenario 7 used the
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complement of R(t) in scenarios 5 and 6, that is, a decreasing S-shaped curve from 0.7 to

0.3. Scenarios 1 ∼ 4 replicated scenarios evaluated by Bandeen-Roche and Ning (2008),

who generated bivariate failure time data from gamma frailty with mean 1 and variance 1

(equivalent to scenarios 1 and 2) and positive stable frailty with α = 0.4 and 0.8 (equivalent

to scenarios 3 and 4).

We introduced two methods of estimation for the shape component and three meth-

ods for the size component in Sections 2.3 and 2.4. The combination of ‘Shape1’ and

‘Size1’ will be referred to as ‘Method 1’, that of ‘Shape2’ and ‘Size1’ as ‘Method 2’, that

of ‘Shape1’ and ‘Size2’ as ‘Method 3’, and that of ‘Shape1’ and ‘Size3’ as ‘Method 4.’

Method 2 is a completely nonparametric method where both components are estimated by

smoothing, and the other three methods are semiparametric.

Table 4.1: Labels for the shape and size components, and their combinations

New nonparametric

(Size1)

Shih and Louis

(Size2)

New parametric

(Size3)

Bandeen-Roche and Liang (Shape1) Method 1

New method (Shape2) Method 2 Method 3 Method 4

Bandeen-Roche and Ning (2008) evaluated their estimators at four quadrants which

were bisected at the medians of the first and second individuals’ failure times. Their es-

timator was evaluated for specific rectangular regions, but our estimator is continuously

varying and point-specific, thus is not directly comparable. Since our estimator supposes

that the time variables were standardized to zero-one scale, we bisected each time axis at

its median, 0.5, and then chose a representative point from each quadrant at which to eval-
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uate our estimators. For comparison, we chose a representative point from each quadrant

for which the true values of the CCSHR, calculated from the Bandeen-Roche and Liang

formula, are closest to the area-specific CCSHR for the four quadrants in the 2008 paper.

These representative points were (0.20, 0.20), (0.40, 0.60), (0.60, 0.40), and (0.70, 0.70).

Each scenario was repeated 300 times. For each replicate of simulated data, two shape

estimates, three size estimates, and four CCSHR estimates were recorded at (0.20, 0.20),

(0.40, 0.60), (0.60, 0.40), and (0.70, 0.70). We also evaluated contour plots of differences

between true and estimated local Kendall’s τ , to visualize variation in accuracy over time.

To study the variability of our estimates, we used the bootstrap method. The bootstrapped

samples were sampled as pairs from the original bivariate failure time data of size n = 500

or 1, 000 with sizes the same as that of the original dataset. For each of the 300 bootstrapped

samples, we obtained two shape estimates, three size estimates, and four CCSHR estimates

at the same points described above. The mean, standard deviation, 2.5th percentile, and

97.5th percentile at the same points from 300 bootstrapped samples were also collected.

We could obtain the coverage probability that the 95% bootstrap confidence intervals (from

the 2.5th percentile to the 97.5th percentile) include the true CCSHR value.

4.3.2 Results

First, we examine the biases of the separate estimators of the shape and size components

(Table 4.2). In the following discussion, the bias is reported as
(Estimate)− (True value)

(True value)
,

and we will mainly discuss the sample size 1,000 unless otherwise specified. In the 1st
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s Copula type Shape component Size component

Cause allocation Location True Shape1 Shape2 True Size1 Size2 Size3

Clayton(1)

R = 0.2

(0.20,0.20) 3.000 3.023 (0.008) 3.024 (0.008) 2.000 2.004 (0.002) 2.003 (0.002) 2.006 (0.003)

(0.40,0.60) 3.000 3.018 (0.006) 3.038 (0.013) 2.000 2.006 (0.003) 2.003 (0.002) 2.006 (0.003)

(0.60,0.40) 3.000 3.018 (0.006) 3.035 (0.012) 2.000 2.013 (0.006) 2.003 (0.002) 2.006 (0.003)

(0.70,0.70) 3.000 3.038 (0.013) 3.03 (0.010) 2.000 2.026 (0.013) 2.003 (0.002) 2.006 (0.003)

Clayton(1)

R = 0.8

(0.20,0.20) 1.125 1.122 (-0.003) 1.124 (-0.001) 2.000 2.004 (0.002) 2.003 (0.002) 2.006 (0.003)

(0.40,0.60) 1.125 1.123 (-0.002) 1.127 (0.002) 2.000 2.006 (0.003) 2.003 (0.002) 2.006 (0.003)

(0.60,0.40) 1.125 1.123 (-0.002) 1.128 (0.003) 2.000 2.013 (0.006) 2.003 (0.002) 2.006 (0.003)

(0.70,0.70) 1.125 1.124 (-0.001) 1.127 (0.002) 2.000 2.026 (0.013) 2.003 (0.002) 2.006 (0.003)

Gumbel(2.5)

R = 0.5

(0.20,0.20) 1.500 1.502 (0.001) 1.505 (0.003) 6.094 5.944 (-0.025) 6.096 (0.000) 6.158 (0.011)

(0.40,0.60) 1.500 1.501 (0.001) 1.494 (-0.004) 2.506 2.531 (0.010) 2.511 (0.002) 2.526 (0.008)

(0.60,0.40) 1.500 1.501 (0.001) 1.501 (0.001) 2.506 2.518 (0.005) 2.511 (0.002) 2.526 (0.008)

(0.70,0.70) 1.500 1.502 (0.001) 1.497 (-0.002) 1.944 1.935 (-0.005) 1.946 (0.001) 1.957 (0.006)

Gumbel(1.125)

R = 0.5

(0.20,0.20) 1.500 1.499 (0.000) 1.507 (0.005) 1.643 1.68 (0.022) 1.656 (0.008) 1.656 (0.008)

(0.40,0.60) 1.500 1.496 (-0.003) 1.508 (0.005) 1.199 1.255 (0.047) 1.208 (0.008) 1.208 (0.008)

(0.60,0.40) 1.500 1.496 (-0.003) 1.508 (0.005) 1.199 1.256 (0.048) 1.208 (0.008) 1.208 (0.008)

(0.70,0.70) 1.500 1.503 (0.002) 1.506 (0.004) 1.119 1.181 (0.055) 1.122 (0.003) 1.121 (0.002)

Gumbel(1.125)

R = 0.3 ↑ 0.7

(0.20,0.20) 2.068 1.802 (-0.128) 1.725 (-0.166) 1.643 1.68 (0.022) 1.656 (0.008) 1.656 (0.008)

(0.40,0.60) 1.500 1.592 (0.061) 1.405 (-0.063) 1.199 1.255 (0.047) 1.208 (0.008) 1.208 (0.008)

(0.60,0.40) 1.500 1.592 (0.061) 1.399 (-0.067) 1.199 1.256 (0.048) 1.208 (0.008) 1.208 (0.008)

(0.70,0.70) 1.266 1.362 (0.076) 1.259 (-0.006) 1.119 1.181 (0.055) 1.122 (0.003) 1.121 (0.002)

Clayton(1)

R = 0.3 ↑ 0.7

(0.20,0.20) 2.068 1.86 (-0.101) 1.811 (-0.124) 2.000 2.004 (0.002) 2.004 (0.002) 2.008 (0.004)

(0.40,0.60) 1.500 1.653 (0.102) 1.422 (-0.052) 2.000 2.008 (0.004) 2.004 (0.002) 2.008 (0.004)

(0.60,0.40) 1.500 1.653 (0.102) 1.42 (-0.053) 2.000 2.014 (0.007) 2.004 (0.002) 2.008 (0.004)

(0.70,0.70) 1.266 1.358 (0.073) 1.264 (-0.002) 2.000 2.03 (0.015) 2.004 (0.002) 2.008 (0.004)

Gumbel(1.125)

R = 0.7 ↓ 0.3

(0.20,0.20) 1.266 1.332 (0.052) 1.337 (0.056) 1.643 1.675 (0.019) 1.654 (0.007) 1.657 (0.009)

(0.40,0.60) 1.500 1.453 (-0.031) 1.677 (0.118) 1.199 1.256 (0.048) 1.208 (0.008) 1.208 (0.008)

(0.60,0.40) 1.500 1.453 (-0.031) 1.676 (0.117) 1.199 1.257 (0.048) 1.208 (0.008) 1.208 (0.008)

(0.70,0.70) 2.068 1.742 (-0.158) 1.961 (-0.052) 1.119 1.182 (0.056) 1.122 (0.003) 1.121 (0.002)

9
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scenario, both shape component estimators exhibited biases of at most 1.3%, across all the

evaluation points. In scenarios 2 ∼ 4, the biases did not exceed 0.5%. Bias differences

across quadrants seemed to reflect random variation. In scenarios 5, 6, and 7, where R(t)

was time-varying, the shape estimators were biased up to 16.6%. In scenarios 5 and 6,

the Shape2 method consistently underestimated the strength of association, whereas the

Shape1 estimator underestimated in the 1st quadrant and overestimated in the other quad-

rants. For both estimators, the magnitude of the bias was largest in the 1st quadrant, where

the R(t) was smallest, and smallest in the 4th quadrant. In scenario 7, the biases were

smaller than those for scenarios 5 and 6, but the direction of the biases were opposite.

Evaluation over the entire time domain (by contour plots; not shown here) showed that

Shape1 estimator biases inflated greatly as the difference between T1 and T2 grew, likely

due to the Shape1 estimator dependence on min(T1, T2), while Shape2 estimator biases did

not depend substantially on time.

The biases of the size component for Clayton failure times (scenarios 1, 2, and 6) were

at most 1.5%, 0.2%, and 0.4% in the Size1, Size2, and Size3 estimator, respectively. The

biases for the Size1 method were time-varying, while it was constant in the Size2 and Size3

method. This is obvious because the algorithms in the Size2 and Size3 methods must have

chosen Clayton copula as the simulated datasets failure time association structure which

gives constant size component estimates. In Gumbel copula scenarios (scenarios 3, 4, 5,

and 7), the Size1 estimator showed biases of at most 5.6% while those for the Size2 and

Size3 estimators were less than 1.1%.
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Copula type Method 1 Method 2 Method 3 Method 4

Cause allocation Location True Mean Bias B.SD Cov Mean Bias B.SD Cov Mean Bias B.SD Cov Mean Bias B.SD Cov

Clayton(1)

R = 0.2

(0.20,0.20) 6.000 6.041 0.007 0.720 0.963 6.044 0.007 0.959 0.977 6.059 0.010 0.825 0.973 6.064 0.011 0.887 0.973

(0.40,0.60) 6.000 6.051 0.009 0.738 0.963 6.089 0.015 1.034 0.997 6.085 0.014 0.900 0.983 6.092 0.015 0.938 0.987

(0.60,0.40) 6.000 6.080 0.013 0.740 0.960 6.115 0.019 1.040 0.990 6.080 0.013 0.903 0.987 6.085 0.014 0.940 0.980

(0.70,0.70) 6.000 6.145 0.024 0.889 0.967 6.123 0.021 1.114 0.987 6.069 0.012 0.946 0.977 6.074 0.012 0.980 0.983

Clayton(1)

R = 0.8

(0.20,0.20) 2.250 2.243 -0.003 0.198 0.930 2.247 -0.001 0.203 0.930 2.251 0.000 0.095 0.957 2.254 0.002 0.145 0.957

(0.40,0.60) 2.250 2.252 0.001 0.195 0.943 2.261 0.005 0.204 0.940 2.258 0.004 0.097 0.950 2.260 0.004 0.133 0.953

(0.60,0.40) 2.250 2.262 0.005 0.195 0.963 2.273 0.010 0.204 0.970 2.260 0.004 0.097 0.947 2.263 0.006 0.132 0.957

(0.70,0.70) 2.250 2.274 0.011 0.220 0.960 2.281 0.014 0.228 0.957 2.258 0.004 0.101 0.960 2.261 0.005 0.136 0.950

Gumbel(2.5)

R = 0.5

(0.20,0.20) 9.142 8.909 -0.025 0.961 0.927 8.931 -0.023 1.069 0.940 9.175 0.004 0.735 0.970 9.253 0.012 1.011 0.977

(0.40,0.60) 3.759 3.797 0.010 0.350 0.927 3.781 0.006 0.403 0.937 3.750 -0.002 0.300 0.973 3.772 0.003 0.333 0.967

(0.60,0.40) 3.759 3.779 0.005 0.348 0.943 3.779 0.005 0.402 0.957 3.767 0.002 0.300 0.980 3.788 0.008 0.334 0.960

(0.70,0.70) 2.916 2.908 -0.003 0.301 0.970 2.900 -0.005 0.334 0.960 2.913 -0.001 0.214 0.980 2.927 0.004 0.240 0.973

Gumbel(1.125)

R = 0.5

(0.20,0.20) 2.465 2.513 0.019 0.245 0.950 2.525 0.024 0.270 0.953 2.498 0.013 0.210 0.947 2.496 0.013 0.231 0.943

(0.40,0.60) 1.799 1.877 0.043 0.178 0.950 1.891 0.051 0.208 0.963 1.822 0.013 0.139 0.993 1.822 0.013 0.138 0.997

(0.60,0.40) 1.799 1.876 0.043 0.179 0.933 1.891 0.051 0.207 0.953 1.822 0.013 0.139 0.990 1.822 0.013 0.138 0.973

(0.70,0.70) 1.679 1.778 0.059 0.164 0.913 1.781 0.061 0.181 0.943 1.690 0.007 0.110 0.980 1.688 0.005 0.110 0.983

Gumbel(1.125)

R = 0.3 ↑ 0.7

(0.20,0.20) 3.398 3.028 -0.109 0.325 0.790 2.890 -0.149 0.400 0.863 2.859 -0.159 0.343 0.853 2.856 -0.160 0.363 0.870

(0.40,0.60) 1.799 1.998 0.111 0.201 0.840 1.763 -0.020 0.196 0.977 1.698 -0.056 0.127 0.977 1.698 -0.056 0.126 0.970

(0.60,0.40) 1.799 2.000 0.112 0.201 0.823 1.755 -0.024 0.196 0.957 1.691 -0.060 0.127 0.973 1.692 -0.059 0.126 0.963

(0.70,0.70) 1.418 1.609 0.135 0.146 0.717 1.489 0.050 0.141 0.950 1.411 -0.005 0.073 0.973 1.411 -0.005 0.074 0.967

Clayton(1)

R = 0.3 ↑ 0.7

(0.20,0.20) 4.135 3.727 -0.099 0.392 0.810 3.630 -0.122 0.487 0.898 3.629 -0.122 0.373 0.902 3.637 -0.120 0.426 0.915

(0.40,0.60) 3.000 3.316 0.105 0.331 0.843 2.857 -0.048 0.310 0.922 2.850 -0.050 0.198 0.919 2.856 -0.048 0.232 0.942

(0.60,0.40) 3.000 3.327 0.109 0.332 0.843 2.861 -0.046 0.310 0.956 2.846 -0.051 0.197 0.956 2.853 -0.049 0.230 0.942

(0.70,0.70) 2.533 2.753 0.087 0.289 0.907 2.567 0.013 0.282 0.956 2.533 0.000 0.149 0.956 2.538 0.002 0.181 0.959

Gumbel(1.125)

R = 0.7 ↓ 0.3

(0.20,0.20) 2.028 2.238 0.104 0.207 0.810 2.241 0.105 0.213 0.924 2.213 0.091 0.155 0.894 2.217 0.093 0.176 0.928

(0.40,0.60) 1.799 1.823 0.013 0.167 0.950 2.106 0.171 0.223 0.826 2.026 0.126 0.151 0.795 2.026 0.126 0.149 0.788

(0.60,0.40) 1.799 1.824 0.014 0.167 0.950 2.107 0.171 0.224 0.822 2.025 0.126 0.152 0.799 2.025 0.126 0.150 0.807

(0.70,0.70) 2.169 2.057 -0.052 0.203 0.930 2.318 0.069 0.293 0.951 2.199 0.014 0.216 0.970 2.198 0.013 0.216 0.970

* B.SD: Bootstrap Standard Deviation, Cov: Probability of 95% CI including the true value
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We proceeded to assess the performances of the CCSHR estimators (Table 4.3). In

scenarios 1 ∼ 4, the biases were no greater than 6.1% for Methods 1 and 2, and no greater

than 1.5% for Methods 3 and 4. The difference between Methods 3 and 4 was negligible,

and likewise for Methods 1 and 2. In scenarios 5 and 6, the bias was no greater than 12%,

in all quadrants but the first, for Method 1, no greater than 5% for Method 2, and no greater

than 6% for Methods 3 and 4. For these methods, the bias in the first quadrant, (0.20,0.20),

was larger than those in the other quadrants. Method 1 exhibited considerably higher bias

than the other methods for scenarios 5 and 6, except in the first quadrant, but was the most

accurate estimator in scenario 7.

Estimator variability, as indicated by the bootstrap SD, for the most part tracked the

true value of the estimand. In most scenarios, Method 3 exhibited a substantially lower

bootstrap SD than the other three methods: Method 1 was the best performer in scenario 1,

and in scenario 5, none of them dominated the others. In scenarios 1 ∼ 4, the probabilities

of 95% confidence interval coverage were greater than 0.91 for Methods 1 and 2 and at

least 0.94 for Methods 3 and 4. In scenarios 5 ∼ 7, however, the coverage probability was

as low as 0.72 for Method 1 and 0.80 for the other methods (in scenario 7). In the scenarios

with n=500, the bootstrap SD was about 50% higher than n = 1, 000 scenarios.

The directions of these biases were mainly decided by the size component in scenarios

3 and 4 and by the shape component in scenarios 5, 6, and 7. Scenario 7 seemed to present

a particular challenge for estimation, perhaps due to the combination of increasing shape

association together with decreasing size association over time.
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Based on the results of the simulation studies, we recommend Method 3. It provides

the most precise and accurate size component and CCSHR estimates in various scenarios

while allowing flexibility in the shape component estimation. All of the methods, however,

proved capable of tracking the general shape of the CCSHR association over time.

4.4 Data analysis

The estimators studied in the previous sections were applied to data from the Cache

County Study on Memory Health and Aging (Breitner et al., 1999). This study was con-

ducted to investigate the prevalence of dementia. It is known that the onset of dementia

aggregates in families (Hendrie, 1998), and the heritability is higher for early-age onset

than late-age (Silverman, 2005). The study collected information on dementia onset from

the permanent residents of Cache County, Utah, U.S.A., aged 65 and over (the ‘proband’)

on themselves and all their family members. Thus, the Cache County dataset is appropri-

ate for assessing whether our estimator adequately expresses time-dependent association

between failure causes and failure times within a pair.

To simplify the analysis, we included only the participant’s mother and the oldest sib-

ling inclusive of self. Pairs without information available for both members were excluded;

pairs for which either member died or became demented before age 55 also were excluded.

The resulting dataset consisted of 3,635 pairs’ times of event occurrence and event indi-

cators: 0 for censoring or living without dementia at the end of the study, 1 for dementia,
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and 2 for death without dementia. The proportion of data censored was 60.4% among the

eldest siblings and 4.0% among mothers. Among those experiencing events, 13 ∼ 14% of

participants experienced dementia before death. Both members of a pair became demented

in 40 pairs, both members died without dementia in 1,132 pairs, and the members failed of

different causes in 259 pairs. The primary purpose of our analysis was to assess association

between dementia onset in families. Because only a small proportion of failures were due

to dementia, we also conducted an analysis considering death as the failure cause of interest

and dementia as the secondary cause.

To assess the variability of estimators in our analysis, we used bootstrapping. Three

hundred bootstrap samples with the same size as the original dataset (3,635 pairs) were gen-

erated. Each bootstrap sample was created by random selection of pairs with replacement.

We obtained bootstrap standard errors and 95% confidence intervals from the bootstrapped

samples using the percentile method described in the previous section.

Times of event occurrence ranged from 55 to 104. These were transformed to lie be-

tween 0 and 1 by computing their Kaplan-Meier functions, separately for mothers and

children, and transforming the times to cumulative incidence probabilities. Size and shape

estimators studied in the previous section were applied to these transformed times. Be-

low we display values for each at (T ′
1, T

′
2) = (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), and

(0.75, 0.75), which correspond to children’s ages 77 and 91 and mothers’ ages 73 and 88,

as well as a contour plot of the estimated CCSHR function.

The results considering dementia as the primary cause of interest are summarized in
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Tables 4.4 (size and shape components) and 4.5 (CCSHR). The Shape2 estimator showed

associations that varied by region but were strong in each. On the other hand, the Shape1

estimator showed modest association regardless of region. The Size1 and Size3 estimators

produced similar results of weakly positive association in (early,early) failure times and

virtually no association otherwise. The Size2 estimates suggested near-independence of

first-failure times. Bootstrap standard errors were considerably smaller for Method 1 than

the other methods even after considering the magnitude of the estimates.

Relatively high bootstrap standard errors of the Shape2 estimator implies that this esti-

mator may not be stable if the proportion of the failure cause of primary interest is too low

or if there is heavy censoring. The magnitudes of the size component estimators indicate

there is modest or little association between failure times, and the association between onset

times of dementia mainly comes from the association between failure causes rather than the

association between first-failure times. The magnitudes of associations for Methods 2 ∼ 4

are more consistent with prior estimates (Bandeen-Roche & Liang, 2002; Bandeen-Roche

& Ning, 2008) than those for Method 1.

Table 4.4: Shape and size components estimates from Cache County data with dementia as

cause 1

Shape1 Shape2 Size1 Size2 Size3

(0.25,0.25) 1.76 (0.22) 6.29 (1.49) 1.19 (0.07) 1.04 (0.02) 1.19 (0.05)

(0.25,0.75) 1.76 (0.22) 5.03 (1.58) 1.24 (0.08) 1.02 (0.02) 1.07 (0.02)

(0.75,0.25) 1.76 (0.22) 3.67 (1.23) 0.85 (0.08) 1.02 (0.02) 1.07 (0.02)

(0.75,0.75) 1.67 (0.20) 5.87 (2.84) 0.95 (0.10) 1.02 (0.02) 1.03 (0.02)

If we consider death as the main failure cause, the association was generally weaker
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Table 4.5: CCSHR estimates and their bootstrap standard errors and 95% confidence inter-

vals from Cache County data with dementia as cause 1

Method 1 Method 2 Method 3 Method 4

(0.25,0.25)
Mean (SD) 2.08 (0.28) 7.48 (1.86) 6.52 (1.54) 7.52 (1.82)

95% CI (1.57,2.61) (4.44,11.93) (3.98,10.22) (4.49,11.83)

(0.25,0.75)
Mean (SD) 2.18 (0.32) 6.24 (2.00) 5.13 (1.62) 5.37 (1.69)

95% CI (1.57,2.61) (3.41,11.41) (2.97,9.10) (3.10,9.44)

(0.75,0.25)
Mean (SD) 1.50 (0.23) 3.14 (1.12) 3.74 (1.26) 3.91 (1.31)

95% CI (1.05,1.97) (1.58,5.99) (1.86,7.13) (1.95,7.32)

(0.75,0.75)
Mean (SD) 1.59 (0.26) 5.60 (2.75) 5.97 (2.89) 6.04 (2.92)

95% CI (1.16,2.12) (2.20,13.00) (2.36,13.29) (2.41,13.44)

Table 4.6: Shape and size components estimates from Cache County data with death as

cause 1

Shape1 Shape2 Size1 Size2 Size3

(0.25,0.25) 1.02 (0.01) 3.17 (0.18) 1.19 (0.07) 1.04 (0.02) 1.19 (0.05)

(0.25,0.75) 1.02 (0.01) 3.38 (0.28) 1.24 (0.08) 1.02 (0.02) 1.07 (0.02)

(0.75,0.25) 1.02 (0.01) 1.51 (0.09) 0.85 (0.08) 1.02 (0.02) 1.07 (0.02)

(0.75,0.75) 1.02 (0.01) 1.24 (0.06) 0.95 (0.10) 1.02 (0.02) 1.03 (0.02)

than when dementia was the main failure cause. See Tables 4.6 and 4.7. The Shape2 es-

timates indicated association that was modest to strong for early failure times, but became

weaker as time increased; while the Shape1 estimates indicated virtually zero association.

The size estimates were, of course, identical as for the dementia-based analysis. The boot-

strap standard errors for the shape estimators were substantially smaller than for dementia

outcomes mainly due to the high proportion of death compared to dementia. Here, the

standard errors were smallest for Method 1 except for (late,late) failiure times.

We provide the contour plot of the estimated CCSHR from the Method 3 in the dementia-

based analysis (Figure 4.1). Consistent with existing knowledge, it indicates cause-specific
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Table 4.7: CCSHR estimates and their bootstrap standard errors and 95% confidence i

ntervals from Cache County data with death as cause 1

Method 1 Method 2 Method 3 Method 4

(0.25,0.25)
Mean (SD) 1.21 (0.07) 3.77 (0.33) 3.29 (0.20) 3.79 (0.30)

95% CI (1.08,1.34) (3.11,4.41) (2.91,3.69) (3.23,4.42)

(0.25,0.75)
Mean (SD) 1.26 (0.09) 4.19 (0.51) 3.44 (0.29) 3.61 (0.31)

95% CI (1.11,1.44) (3.21,5.16) (2.94,4.05) (3.04,4.31)

(0.75,0.25)
Mean (SD) 0.87 (0.09) 1.29 (0.16) 1.54 (0.09) 1.61 (0.10)

95% CI (0.71,1.06) (1.04,1.60) (1.39,1.75) (1.45,1.83)

(0.75,0.75)
Mean (SD) 0.98 (0.10) 1.19 (0.14) 1.26 (0.07) 1.28 (0.07)

95% CI (0.79,1.21) (0.95,1.48) (1.14,1.42) (1.16,1.46)

association that is very strong in (early,early) failure time region and modestly strong in

the other regions. We believe that the very high values in the upper part of the plot reflects

instability due to the sparsity of dementia onset. If we use the method of deciding a bound-

ary where the estimates are considered reliable (reported in Chapter 2 of this thesis), the

estimates in the area of (early,early) failures are trustworthy.

4.5 Conclusion

This paper addressed the estimation of two multiplicative components of the CCSHR.

The shape component, representing the association between failure causes, has been esti-

mated parametrically by assuming a Dirichlet (or beta) distribution of failure cause alloca-

tion (Bandeen-Roche & Liang, 2002), and by a composite likelihood method proposed by

Shih and Albert (2010). We suggested a nonparametric method which estimates Shih and

Albert’s alternative representation of the shape component by smoothing. The size com-
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Figure 4.1: Contour plot of CCSHR estimates from Cache County Study data analysis

ponent, representing the association between failure times, has been estimated by various

methods including one proposed by Shih and Louis (1995). We studied both parametric

and nonparametric alternatives of this method. We conducted a set of simulation studies

of these methods, where we varied copula types and strength of association, beta distri-

bution parameters ∆, which controls the aggregation of failure causes within a pair, and

R(t), the constant or time-varying allocation of failure causes. The estimators we proposed

generally performed well, but the shape component estimators tended to too shallowly rep-

resent time variation in R(t). We also conducted an analysis of association in times to

dementia onset and in times to death, using data from the Cache County Study on Memory

Health and Aging. Our new shape association estimator (Shape2) suggested occurrence of
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dementia among family members to be more strongly associated than death without de-

mentia, and the size component estimators suggested that the association between event

occurrence times is slightly stronger in early ages than in late ages. The different methods

of shape component estimation varied substantially in their assessments of the strengths of

association.

In the simulation studies, it was observed that the shape component estimator was more

biased when R(t) was small. This may reflect the small size of the data subset engaged in

the estimation in these cases and the greater value of the estimand which can be seen from

Equation (4.12). We also found the shape component estimators to be more biased than

the size component estimators, especially when R(t) was time-varying, even after consid-

ering the magnitude of R(t). The reason of this bias is unclear. The Shape1 estimator was

severely biased for large differences between T1 and T2 in the increasing R(t) scenario.

The Shape1 estimator assumes that the beta-distributed stochastic process of failure cause

allocation divided by its mean function is a martingale. This assumption reduced the tem-

poral dependence of the estimator on T1 and T2 into a dependence upon the minimum of

T1 and T2, but it may not appropriately capture association in many cases in which the

true association depends on T1 and T2 separately. Consequently, further development of

parametric estimation of the shape component in cases of time-dependent R(t) is needed.

Moreover, our methods remain subject to the assumption of independence between shape

and size frailty which was imposed when the CCSHR was initially proposed. How to ac-

commodate covariation between these quantities is an open question. Considering accuracy
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and precision, we recommend the combination of Shape2 and Size2 estimators, Method 3.

In analyses restricted to a few time points in quadrants, we failed to find convincingly

stronger familial aggregation of early- than late-onset dementia as Silverman (2005) did.

However, a contour plot displaying the association fully as a function of time provided

indication of this. The stronger association between cause-specific failure times in early

ages was primarily tied to the association between failure causes rather than the association

between failure times, thus appeared specific to the dementia disease rather than a more

general propensity to become sick or die. This finding emphasizes how the separation of

the shape and size components of the CCSHR may help interpret the source of association.

However, this result should be interpreted with caution because of the small proportion of

mother-child pairs in which there was shared dementia onset.

Overall, the methods we introduced in this paper demonstrated usefulness in detecting

and describing the strength of association between failure causes and failure times. There

are some aspects, however, requiring further work to make these methods more useful. A

measure of estimator variability over the whole time domain should be developed. Fur-

ther investigation and development are needed regarding treatment of censoring and the

estimator biases that were observed in regions of data sparsity.
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Conclusion

This thesis studied and developed statistical methodologies to measure the strength of

the association among clustered failure times, with an emphasis on the competing risks set-

ting. In Chapter 2, I developed a nonparametric estimator of the local version of Kendall’s

τ . Based on the simple idea of smoothing the concordance-discordance indicator as a func-

tion of bivariate failure times, this method enabled easy visualization and interpretation of

the association. Logistic regression and smoothing methods such as Loess, generalized ad-

ditive models (GAM), and multivariate adaptive regression splines (MARS) were assessed,

among which GAM was considered to perform best in terms of RMSDs. We also compared

approaches for dealing with censored data: we adapted existing methods to estimate global

Kendall’s τ to be suited for the localized version of Kendall’s τ and also suggested a novel

multiple imputation method based on Dabrowska’s bivariate density estimator.

Chapter 3 investigated the sensitivity of the estimation of the CCSHR, by the method
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proposed by Bandeen-Roche and Liang (2002), to that method’s underlying statistical as-

sumptions. To assess the assumption of Dirichlet distribution governing association be-

tween causes of failure (via a ‘shape’ frailty), we developed a new estimator based on the

logit-normal distribution assumption and compared it with an existing one based on the

Dirichlet distribution. There was very little difference in performance between these esti-

mators, even when one was applied to data generated from the other model. Rather, we

discovered that misspecification of failure-time association (‘size’) structure, rather than

the Dirichlet shape mechanism, was the major source of poor performance reported in

the original Bandeen-Roche and Liang paper. Such mis-specification is easily addressed

by more flexible modeling of the CHR. To assess the independence assumption between

frailties governing association in times-to-failure (‘size’ frailty) and the shape frailty, we

generated data from dependent size and shape frailty variables and applied the Bandeen-

Roche and Liang estimator to these data. Violation of independence assumption, which

crucially underlay the development of simplified CCSHR estimator, was shown to have a

huge impact on the estimators.

Chapter 4 aimed to develop a completely nonparametric estimator of the CCSHR based

on separate estimators of shape and size components of the CCSHR, then multiplied. To

estimate the size component, I suggested using a nonparametric estimator of the CHR

developed in Chapter 2, and I also proposed a modified parametric estimator. The shape

component estimator was motivated from Shih and Albert’s alternative representation of the

CCSHR, and could be estimated by applying nonparametric regression methods to each of
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its multiplicands. Various combinations of these methods were assessed. Multiplication of

our nonparametric shape component estimator and the Shih and Louis (1995) likelihood-

based CHR estimator was identified as the best strategy.

A number of nonparametric approaches to estimating association between failure times

have been previously proposed. Prentice and Cai (1992), Hsu and Prentice (1996), Fan,

Hsu, and Prentice (2000), Fan, Prentice, and Hsu (2000), Sankaran, Abraham, and Antony

(2006), and Nair and Sankaran (2010) all proposed such nonparametric estimators. The

Kendall’s τ -based method suggested in Chapter 2 adds an alternative to these existing

methods which has a clear advantage of easy visualization and intuitive interpretation.

That Kendall’s τ ranges from -1 to +1 may assist in distinguishing temporal differences

in strength of association across applications, as compared to measures which may diverge

to infinity. In addition, it is interpreted as a difference of probabilities of concordance and

discordance, thus, absolute values of the estimator are easily interpretable, whereas many

of the other estimators only allow ready relative comparison between different time points

or data sets.

The main appeal of the nonparametric estimators of the shape component proposed in

Chapter 4 is smooth description over the entire time domain while maintaining the advan-

tage of the shape and size component decomposition. The measures proposed by Cheng

and colleagues (2007, 2009) or Scheike and colleagues (2010, 2012) do not provide this.

Shih and Albert (2010) adopted the same decomposition framework as in my work, but

their estimate is piecewise constant on a ‘binned’ time domain.
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A common limitation of our approaches in Chapters 2 and 4 is instability of estimates in

regions where the data are sparse. We suggested a method to define a boundary of reliable

estimation based on the data density, so the analyst can limit estimation to a region in which

the estimator is most trustworthy. Our estimators are not yet equipped with convenient

inferential procedures by which to judge uncertainty; rather, we relied on bootstrapping.

We observed moderate biases even for our preferred estimators in a number of the most

challenging scenarios. None of the methods of dealing with censoring in Chapter 2 clearly

outperformed the others, and the performance was not satisfactory under heavy censoring.

Still, the tools I have developed proved capable of capturing overall shapes of relationships,

and should provide useful new tools for visualizing failure time associations.

There are several future directions for this work. Development of readier inferential

procedures, including simultaneous confidence bands for the estimators, is a priority. The

assumption of independence between size and shape frailty in the estimation of the CC-

SHR enables simplified estimation, but may be easily violated in real data. Thus, further

study of this phenomenon and work to develop a new estimator which can accommodate

potential covariation would be worthwhile. Functions to accomplish estimation are avail-

able from the author; however, development of user-friendly software to implement the

methods proposed in this thesis, such as an R package, is needed.
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APPENDICES

A.1 Comparison of smoothing methods for esti-

mating local Kendall’s τ

A.1.1 Comparison of true and estimated local Kendall’s τ

The data were generated from Frank copula with parameter 1.9 or Gumbel copula with

parameter 1.26 (correlation 0.3).

On the left panel, the true values are in red and the estimates are in black.

The right panel is the difference between the true values and the estimates.

1. Frank (1.9)

(1) Loess
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(2) Logistic regression

(3) GAM1

(4) GAM2
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(5) GAM3

(6) GAM4

(7) MARS
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Table A.1: True and estimated values of local Kendall’s τ for Frank (1.9) copula

Location True Loess Logistic GAM1 GAM2 GAM3 GAM4 MARS

(0.2,0.2) 0.276 0.264 0.261 0.260 0.267 0.260 0.268 0.262

(0.2,0.5) 0.191 0.190 0.192 0.193 0.187 0.193 0.187 0.196

(0.2,0.8) 0.083 0.100 0.120 0.121 0.092 0.123 0.092 0.137

(0.5,0.2) 0.191 0.192 0.198 0.199 0.194 0.200 0.194 0.207

(0.5,0.5) 0.138 0.133 0.127 0.132 0.133 0.132 0.133 0.141

(0.5,0.8) 0.063 0.065 0.054 0.061 0.063 0.060 0.064 0.081

(0.8,0.2) 0.083 0.104 0.132 0.132 0.101 0.134 0.101 0.139

(0.8,0.5) 0.063 0.070 0.060 0.065 0.072 0.064 0.072 0.073

(0.8,0.8) 0.031 0.036 -0.013 -0.007 0.034 -0.008 0.033 0.014
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2. Gumbel (1.26)

(1) Loess

(2) Logistic regression

(3) GAM1
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(4) GAM2

(5) GAM3

(6) GAM4
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(7) MARS

Table A.2: True and estimated values of local Kendall’s τ for Gumbel (1.26) copula

Location True Loess Logistic GAM1 GAM2 GAM3 GAM4 MARS

(0.2,0.2) 0.252 0.237 0.302 0.242 0.248 0.246 0.254 0.195

(0.2,0.5) 0.137 0.121 0.195 0.143 0.112 0.144 0.107 0.130

(0.2,0.8) 0.070 0.077 0.083 0.120 0.062 0.124 0.062 0.106

(0.5,0.2) 0.137 0.128 0.197 0.151 0.113 0.152 0.108 0.141

(0.5,0.5) 0.098 0.095 0.086 0.052 0.120 0.048 0.124 0.076

(0.5,0.8) 0.060 0.062 -0.028 0.029 0.072 0.028 0.074 0.052

(0.8,0.2) 0.070 0.087 0.088 0.132 0.072 0.135 0.071 0.114

(0.8,0.5) 0.060 0.062 -0.025 0.032 0.080 0.030 0.082 0.049

(0.8,0.8) 0.045 0.041 -0.138 0.010 0.002 0.010 -0.008 0.025
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A.1.2 Decomposition of RMSD into variance and bias squared

We selected nine points on the bivariate time domain and obtained variances and squared

biases from two copula types

1. Frank (1.9)

Table A.3: Variance, Frank (1.9)

Location Loess Logistic GAM1 GAM2 GAM3 GAM4 MARS

(0.2,0.2) 71 26 41 53 40 52 128

(0.2,0.5) 69 23 45 53 45 54 141

(0.2,0.8) 109 60 65 119 65 120 138

(0.5,0.2) 83 25 57 61 56 62 165

(0.5,0.5) 77 17 48 74 50 74 156

(0.5,0.8) 61 49 58 75 59 76 154

(0.8,0.2) 90 60 65 108 66 111 156

(0.8,0.5) 54 47 51 70 53 71 145

(0.8,0.8) 50 74 54 64 55 65 109

Units are 1.0× 10−3
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Table A.4: Bias2, Frank (1.9)

Location Loess Logistic GAM1 GAM2 GAM3 GAM4 MARS

(0.2,0.2) 2 2 3 1 2 1 2

(0.2,0.5) 0 0 0 0 0 0 0

(0.2,0.8) 3 14 14 1 16 1 29

(0.5,0.2) 0 1 1 0 1 0 3

(0.5,0.5) 0 1 0 0 0 0 0

(0.5,0.8) 0 1 0 0 0 0 3

(0.8,0.2) 4 24 24 3 26 3 31

(0.8,0.5) 0 0 0 1 0 1 1

(0.8,0.8) 0 20 14 0 15 0 3

Units are 1.0× 10−3
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2. Gumbel (1.26)

Table A.5: Variance, Gumbel (1.26)

Location Loess Logistic GAM1 GAM2 GAM3 GAM4 MARS

(0.2,0.2) 65 23 39 48 38 48 194

(0.2,0.5) 70 28 54 63 56 67 165

(0.2,0.8) 94 77 64 93 66 95 157

(0.5,0.2) 86 29 63 69 65 73 203

(0.5,0.5) 74 19 42 64 43 63 126

(0.5,0.8) 53 52 45 69 47 71 107

(0.8,0.2) 90 76 65 100 66 102 159

(0.8,0.5) 49 50 48 75 50 78 136

(0.8,0.8) 59 64 55 95 58 100 127

Units are 1.0× 10−3

Table A.6: Bias2, Gumbel (1.26)

Location Loess Logistic GAM1 GAM2 GAM3 GAM4 MARS

(0.2,0.2) 2 25 1 0 0 0 32

(0.2,0.5) 2 34 0 6 1 9 0

(0.2,0.8) 0 2 25 1 28 1 12

(0.5,0.2) 1 37 2 6 3 8 0

(0.5,0.5) 0 1 21 5 25 7 5

(0.5,0.8) 0 77 9 1 11 2 1

(0.8,0.2) 3 3 37 0 42 0 19

(0.8,0.5) 0 73 8 4 9 5 1

(0.8,0.8) 0 332 12 18 12 28 4

Units are 1.0× 10−3
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A.1.3 Boxplots of RMSDs for 300 replicates

(1) Clayton (-0.53) (Corr = -0.5)

(2) Frank (-3.5) (Corr = -0.5)
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(3) Independent (Corr = 0)

(4) Clayton (0.5) (Corr = 0.3)
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(5) Frank (1.9) (Corr = 0.3)

(6) Gumbel (1.26) (Corr = 0.3)
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(7) Clayton (2.15) (Corr = 0.7)

(8) Frank (5.8) (Corr = 0.7)
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(9) Gumbel (2.07) (Corr = 0.7)
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A.2 Comparison of true and estimated local Kendall’s

τ for various association structure

A.2.1 Mean of 300 replicates

We used GAM with bivariate function and Gaussian family.

True values are in red and the estimates are in black.

(1) Clayton (-0.53) (Corr = -0.5)
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(2) Frank (-3.5) (Corr = -0.5)

(3) Independent (Corr = 0)
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(4) Clayton (0.5) (Corr = 0.3)

(5) Frank (1.9) (Corr = 0.3)
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(6) Gumbel (1.26) (Corr = 0.3)

(7) Clayton (2.15) (Corr = 0.7)
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(8) Frank (5.8) (Corr = 0.7)

(9) Gumbel (2.07) (Corr = 0.7)
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A.2.2 5th and 95th percentiles of RMSD

Two simulated datasets were selected among 300 replicates whose RMSDs are at the

5th and 95th percentiles as examples of ‘good’ and ‘bad’ estimates. The left panel is for

5th percentile and the right panel is for 95th percentile.

(1) Clayton (-0.53) (Corr = -0.5)

(2) Frank (-3.5) (Corr = -0.5)
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(3) Independent (Corr = 0)

(4) Clayton (0.5) (Corr = 0.3)

(5) Frank (1.9) (Corr = 0.3)

132



APPENDICES

(6) Gumbel (1.26) (Corr = 0.3) (Corr = -0.5)

(7) Clayton (2.15) (Corr = 0.7)

(8) Frank (5.8) (Corr = 0.7)
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(9) Gumbel (2.07) (Corr = 0.7)
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A.3 Censoring-treatment techniques

We compared various censoring-treatment techniques in terms of RMSD for various

association structure between failure times and between censoring times. We also presented

the decomposition of RMSD into variance and bias squared.

NC: Assuming there is no censoring

CC: Using only complete case pairs

For Brown, MI, and Chen method, we presented the efficacy which is defined as

(RMSD of CC)− (RMSD of each method)

(RMSD of CC)− (RMSD of NC)
.

A.3.1 RMSD

(1) 30% censored

Table A.7: RMSD, 30% censored

Failure Censoring NC CC Brown MI Chen

Clayton Positive 0.101 0.162 0.189 -44.2% 0.167 -7.6% 0.138 39.3%

Clayton Negative 0.101 0.263 0.284 -12.6% 0.215 29.5% 0.168 58.7%

Clayton Indep. 0.101 0.222 0.246 -19.3% 0.190 26.9% 0.152 58.4%

Frank Positive 0.124 0.187 0.172 24.7% 0.130 90.6% 0.171 25.3%

Frank Negative 0.124 0.245 0.205 32.9% 0.142 84.9% 0.199 37.9%

Frank Indep. 0.124 0.211 0.191 22.9% 0.139 83.4% 0.186 29.4%

Gumbel Positive 0.124 0.197 0.181 21.4% 0.139 80.3% 0.177 27.4%

Gumbel Negative 0.124 0.265 0.211 38.6% 0.156 77.3% 0.217 34.6%

Gumbel Indep. 0.124 0.229 0.197 30.2% 0.149 76.7% 0.197 30.4%

Indep. Positive 0.129 0.172 0.118 125.0% 0.131 94.1% 0.179 -16.1%

Indep. Negative 0.129 0.202 0.105 132.5% 0.134 93.2% 0.200 3.3%

Indep. Indep. 0.129 0.187 0.108 136.4% 0.132 93.9% 0.191 -6.1%
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(2) 50% censored

Table A.8: RMSD, 50% censored

Failure Censoring NC CC Brown MI Chen

Clayton Positive 0.101 0.230 0.243 -10.3% 0.241 -8.5% 0.179 39.3%

Clayton Negative 0.101 0.465 0.365 27.6% 0.334 36.0% 0.331 37.0%

Clayton Indep. 0.101 0.370 0.330 14.6% 0.294 28.3% 0.249 44.9%

Frank Positive 0.124 0.254 0.225 22.3% 0.167 67.3% 0.222 25.2%

Frank Negative 0.124 0.427 0.264 53.9% 0.200 75.0% 0.341 28.2%

Frank Indep. 0.124 0.342 0.256 39.5% 0.183 73.1% 0.279 28.8%

Gumbel Positive 0.124 0.272 0.239 22.1% 0.178 63.4% 0.250 15.0%

Gumbel Negative 0.124 0.476 0.253 63.3% 0.213 74.9% 0.369 30.4%

Gumbel Indep. 0.124 0.372 0.258 46.1% 0.191 73.2% 0.306 26.8%

Indep. Positive 0.129 0.245 0.122 105.6% 0.146 84.9% 0.248 -2.5%

Indep. Negative 0.129 0.390 0.112 106.6% 0.147 93.2% 0.384 2.4%

Indep. Indep. 0.129 0.304 0.115 108.1% 0.147 89.5% 0.312 -4.7%
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A.3.2 Variance

Definition: Variance of estimates across 300 replicates was averaged over the entire

time domain

(1) 30% censored

Table A.9: Variance, 30% censored

Failure Censoring NC CC Brown MI Chen

Clayton Positive 0.011 0.023 0.011 0.012 0.021

Clayton Negative 0.011 0.049 0.010 0.012 0.031

Clayton Indep. 0.011 0.037 0.010 0.011 0.025

Frank Positive 0.015 0.033 0.014 0.015 0.030

Frank Negative 0.015 0.053 0.012 0.015 0.042

Frank Indep. 0.015 0.040 0.013 0.016 0.036

Gumbel Positive 0.017 0.041 0.015 0.017 0.035

Gumbel Negative 0.017 0.070 0.013 0.018 0.056

Gumbel Indep. 0.017 0.054 0.014 0.019 0.045

Indep. Positive 0.018 0.031 0.015 0.018 0.034

Indep. Negative 0.018 0.043 0.012 0.019 0.042

Indep. Indep. 0.018 0.038 0.013 0.019 0.039
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(2) 50% censored

Table A.10: Variance, 50% censored

Failure Censoring NC CC Brown MI Chen

Clayton Positive 0.011 0.046 0.013 0.013 0.034

Clayton Negative 0.011 0.214 0.013 0.014 0.124

Clayton Indep. 0.011 0.113 0.014 0.014 0.069

Frank Positive 0.015 0.063 0.018 0.017 0.051

Frank Negative 0.015 0.179 0.015 0.015 0.129

Frank Indep. 0.015 0.110 0.019 0.016 0.085

Gumbel Positive 0.017 0.079 0.021 0.020 0.073

Gumbel Negative 0.017 0.231 0.017 0.018 0.161

Gumbel Indep. 0.017 0.141 0.018 0.018 0.112

Indep. Positive 0.018 0.063 0.017 0.023 0.068

Indep. Negative 0.018 0.172 0.015 0.022 0.167

Indep. Indep. 0.018 0.101 0.015 0.022 0.108
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A.3.3 Bias

Definition: Mean of squared bias across 300 replicates was averaged over the entire

time domain, then square root of it was taken

(1) 30% censored

Table A.11: Bias, 30% censored

Failure Censoring NC CC Brown MI Chen

Clayton Positive 0.017 0.070 0.165 0.145 0.013

Clayton Negative 0.017 0.155 0.278 0.209 0.024

Clayton Indep. 0.017 0.124 0.236 0.178 0.021

Frank Positive 0.060 0.083 0.132 0.058 0.079

Frank Negative 0.060 0.107 0.180 0.080 0.081

Frank Indep. 0.060 0.092 0.162 0.071 0.076

Gumbel Positive 0.034 0.056 0.141 0.065 0.049

Gumbel Negative 0.034 0.094 0.185 0.093 0.038

Gumbel Indep. 0.034 0.074 0.168 0.077 0.039

Indep. Positive 0.016 0.033 0.008 0.012 0.016

Indep. Negative 0.016 0.030 0.012 0.015 0.029

Indep. Indep. 0.016 0.019 0.011 0.011 0.036
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(2) 50% censored

Table A.12: Bias, 50% censored

Failure Censoring NC CC Brown MI Chen

Clayton Positive 0.017 0.096 0.219 0.233 0.031

Clayton Negative 0.017 0.169 0.352 0.338 0.048

Clayton Indep. 0.017 0.188 0.316 0.296 0.039

Frank Positive 0.060 0.099 0.192 0.113 0.090

Frank Negative 0.060 0.144 0.247 0.165 0.107

Frank Indep. 0.060 0.127 0.226 0.136 0.096

Gumbel Positive 0.034 0.068 0.207 0.119 0.054

Gumbel Negative 0.034 0.163 0.235 0.170 0.054

Gumbel Indep. 0.034 0.127 0.233 0.143 0.053

Indep. Positive 0.016 0.046 0.005 0.013 0.020

Indep. Negative 0.016 0.034 0.006 0.014 0.038

Indep. Indep. 0.016 0.028 0.004 0.015 0.019
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A.4 Generation of correlated failure times with

marginally exponential distribution

To generate ‘disease’ failure time of the first component of a pair, we generated gamma

distributed random numbers as in the third set of simulation studies (see methods). Then

we used the fact that
log(1− log(U)/A)

l1 × (t− 1)
is exponentially distributed where U is uniformly

distributed, l1 is the exponential parameter, andA is gamma distributed with a shape param-

eter 1/(t−1) and a scale parameter 1. The ‘disease’ failure time for the second component

and the ‘death’ failure times for two components were generate similarly.

To see that this method yields the distributions as claimed, let us consider a univariate

frailty model with a random effect denoted by α, with distribution G and Laplace transfor-

mation p(x) = E(e−xα), where the marginal survival function for individual j in the cluster

is Sj(t) =
∫

{S∗
j (t)}adG(a). Then, − log S∗

j (t) = q[Sj(t)], that is, Sj(t) = p[− log S∗
j (t)]

where q is the inverse function of p (See Equation (1) of Bandeen-Roche and Liang (1996)).

For exponential distribution, Sj(t) = e−λt and for Clayton copula, p(u) = (1+u)
1

1−θ . Thus,

e−λT = (1− log S∗
j (T ))

1

1−θ

−λT =
1

1− θ
log(1− log S∗

j (t))

T =
1

λ(θ − 1)
log(1− log S∗

j (t)).

(A.4.1)

For gamma frailty, conditionally on frailty, S∗
j (T )

A is uniformly distributed, thus log(S∗
j (T )) =
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log(U)/A. Then,

T =
1

θ − 1
log(1− log(U)/A). (A.4.2)
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