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Abstract 
 
Context:  

Diabetic retinopathy (DR) is a leading cause of vision loss in working age individuals 

worldwide. While screening is effective and cost-effective, it remains underutilized, and 

novel methods are needed to increase detection of DR. This clinical validation study 

compared diagnostic impressions of retinal fundus photographs provided by volunteers 

on the Amazon Mechanical Turk (AMT) crowdsourcing marketplace with expert-

provided gold-standard grading, and explored whether determination of the consensus 

of crowdsourced classifications could be improved beyond a simple majority vote (MV) 

using regression methods. 

Methods:  

One thousand two-hundred retinal images of individuals with diabetes mellitus from the 

Messidor public dataset were posted to AMT. Eligible crowdsourcing workers had at 

least 500 previously approved task with an approval rating of 99% across their prior 

submitted work. Ten workers were recruited to classify each image as normal or 

abnormal. If half or more workers judged the image to be abnormal, the MV 

“consensus” grade was recorded as abnormal. Logistic regression was used to 

determine if a more accurate “consensus” could be devised. Finally, Rasch analysis was 

used to calculate worker ability scores in a random 50% training set, which were then 

used as weights in a regression model in the remaining 50% test set. Outcomes of 

interest were the percent correctly classified images, sensitivity, specificity, and area 
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under the receiver-operator characteristic (AUROC) for the consensus grade as 

compared with the expert grading provided with the dataset.  

Results: Using MV grading, the consensus was correct in 75.5% of images, with 75.5% 

sensitivity, 75.5% specificity, and an AUROC of 0.75 (95% Confidence Interval (CI) 0.73- 

0.78). A logistic regression model using Rasch-weighted individual scores generated an 

AUROC of 0.901 (95% CI 0.88-0.93) compared with 0.89 (95% CI 0.86-92) for a model 

using unweighted scores (Chi2 p-value < 0.001). Setting a diagnostic cut-point to 

optimize sensitivity at 90%, % correct was 77.7%, sensitivity 90.3%, specificity 68.7%, 

and AUROC 0.80 (0.76-0.83).  

Conclusions: Crowdsourced interpretations of retinal images provide rapid and accurate 

results as compared with a gold-standard grading. Creating a logistic regression model 

using Rasch analysis to weight crowdsourced classifications by worker ability improves 

accuracy of aggregated grades as compared with simple majority vote.  
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Background 
 
Diabetes mellitus (DM) is a highly prevalent disease affecting over 415 million 

individuals worldwide, 80% of whom reside in low and middle income countries.1 By 

2040, the prevalence of DM is expected to reach 642 million, with the largest increases 

seen in countries with developing economies.1 In the United States, 21.0 million people 

had known diabetes in the 2012, and another 8.1 million had undiagnosed diabetes.2  

Diabetic retinopathy (DR) is an important complication of DM, currently affecting 

approximately 93 million people worldwide, with 28 million of these suffering from 

vision-threatening DR.3 It is estimated that the number of Americans with DR will reach 

16 million by 2050, with 3.4 million of these individuals afflicted with vision-threatening 

DR.4  

 

While DR is the leading cause of vision loss in working age individuals,4 screening for DR 

is an effective and cost-effective means of identifying the disease early, referring 

affected individuals for appropriate therapies, and preventing vision loss.5-8 Despite the 

increasing prevalence of DR, the annual increase in the number of practicing 

ophthalmologists is only 2%,9 largely in high-income countries.10  As a way of 

overcoming human resource shortfalls, and as a way to increase adherence with 

diabetic retinopathy screening recommendations more broadly, telehealth programs 

using non-mydriatic fundus photography and remote interpretation are increasing.11-13  
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In addition to improving screening uptake, telehealth may provide ways to reduce 

provider, payer, and societal costs.14-16  Among the costs of a telehealth program for 

diabetic retinopathy screening are the fundus camera, the telehealth software package, 

and the human resources needed for image acquisition and interpretation. Fundus 

photo interpretation costs in diabetic retinopathy screening may be high given labor-

intensive interpretation protocols, and the need to interpret multiple images per 

patient. Computerized, semi-automated image analysis techniques have been 

developed which may be able to reduce physician workload and screening costs; 17-19 

however, these methods are not yet FDA-approved, nor in wide use clinically at this 

time. As telehealth expansion continues, novel, low-cost methods will be needed to 

interpret the large volume of fundus images expected with rising incidence of diabetes, 

especially in resource-poor settings and in large public health screenings.  

 

The use of crowdsourcing in biomedical research is in its infancy, though some groups 

have used this method in public health research,20 and to interpret biomedical images.21  

Crowdsourcing has been used to categorize a number of fundus photos with a variety of 

diagnoses as normal or abnormal.22 In this trial conducted in the U.K. using untrained 

graders, the sensitivity was ≥96% for normal versus severely abnormal and between 61-

79% for normal versus mildly abnormal.22 In a proof-of-concept study, we have 

demonstrated that untrained crowdsourced workers can rapidly and accurately identify 

images with DR.23 In this study we will seek to perform an external validation of our 
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method of crowdsourcing DR identification using a public dataset of 1200 retinal 

photographs, and explore methods of improving the determination of a consensus score 

from multiple individual crowdsourced grades including creating a logistic regression 

model that includes other data points collected at the time of the Turker grading, and a 

second model that weights the responses of Turkers based on ability in a training 

dataset using the Rasch model. 

 

Crowdsourcing Background 
 
Crowdsourcing, defined by Brabham, is “an online, distributed problem-solving and 

production model that leverages the collective intelligence of online communities to 

serve specific organizational goals.”24 A subset of crowdsourcing, which Brabham terms 

“distributed-human-intelligence tasking,”24 can involve subdividing larger tasks into 

small portions and then recruiting a group of individuals to each complete these small 

portions, and only collectively, the entire task.24 Amazon Mechanical Turk (AMT) is an 

online distributed human intelligence market that allows access to thousands of people 

who can quickly accomplish small, discrete tasks for small amounts of money. Typical 

AMT tasks include tagging photos, translating words, or writing very short articles for 

websites. AMT has its own vocabulary used by workers (“Turkers”) and task 

administrators (“Requestors”). A “Human Intelligence Task” (HIT) is a small job which 

may be performed in a matter of seconds or minutes and, once the work is approved by 

the Requestor, may pay $0.01-$0.25 or more per task depending on the complexity of 
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the HIT. A group of HITs is called a “batch,” and is made up of similar HITs. Depending on 

the complexity of the task and the payment offered by the Requestor, a batch is often 

completed within minutes or hours of posting.25  

 

Several methods for aggregating multiple grades into a “consensus” score have been 

described. The simplest method, termed “majority vote” (MV), involves promoting the 

modal response to the crowdsourced determination.26  In a binary classification scheme, 

whichever response is selected by half or more of respondents becomes the 

“consensus.” While this approach is computationally simple, the differential ability of 

workers is ignored as is differential difficulty of the unique tasks. Therefore other 

methods of aggregating scores have been explored that rely on patterns of individual 

worker responses over multiple tasks, and comparisons with expert annotations where 

available.26-29  

Methods 
 
An interface for fundus photo classification has been previously described for the AMT 

crowd-sourcing platform.23  The United Kingdom national screening program grading 

scale30 was chosen due its broad clinical telemedicine deployment. For the purposes of 

the study, terms from this scale were translated into plain language; “background” 

retinopathy was called “mild,” “preproliferative” was called “moderate,” and 

“proliferative” was called “severe.”  “Maculopathy” is defined as abnormal on a training 

image with otherwise moderate disease, but is not coded separately. The AMT interface 
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was designed to provide training on grading of DR within each HIT. This training includes 

7 images annotated with the salient features of each level of retinopathy in plain 

language. Turkers are presented with the following text: “This is a photo of the inside of 

the eye. We are looking to label eyes as healthy or unhealthy with respect to diabetes. 

Rate this eye.”  Turkers can hover their mouse over the adjacent training images (2 

normal, 1 mild, 1 moderate, 3 severe) while reviewing the active test image (Figure 1). 

This layout allows for all of the training and grading to occur in one browser window. In 

order to be eligible to view and complete the HITs Turkers needed to have successfully 

completed 500 prior HITs and have an overall HIT approval rate of 99%. Turkers receive 

US $0.10 per image, with a 40% commission going to Amazon, for a total cost of US 

$1.40 per image. 

Figure 1 Screenshot of the Amazon Mechanical Turk web interface for fundus photo 
grading. 
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Phase 1: Baseline Trial with Majority Vote Analysis  
 
For the first phase of this project, 1200 images from the Messidor public dataset31 were 

posted for 10 unique binary annotations to provide external validation of the prior 

proof-of-concept study.* The Messidor dataset is composed of 800 mydriatic and 400 

nonmydriatic retinal fundus photos of universally high quality and resolution. The 

images are supplied with ground truth grading on the following scale:  

 0: normal: no microaneurysms, no hemorrhages 

 1: 1-5 microaneurysms, but no hemorrhages 

 2: 6-14 microaneurysms OR 1-4 hemorrhages, but no neovascularization 

 3: 15 or more microaneurysms OR 5 or more hemorrhages OR presence of 

neovascularization (Figure 2) 

                                                      
* Kindly provided by the Messidor program partners 

(see http://www.adcis.net/en/DownloadThirdParty/Messidor.html). 
 

http://www.adcis.net/en/DownloadThirdParty/Messidor.html
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Figure 2. Histogram of distribution of retinopathy grades in Messidor dataset. 

 

For the purposes of this study, the presence of 5 or fewer microaneurysms was felt to 

be clinically insignificant and thus we classified Messidor 0 and 1 images as “normal” 

and Messidor 2 and 3 images as “abnormal.”   

 

To create the “majority vote” (MV) consensus, each image was assigned the grade of 

“abnormal” if half or more Turkers deemed an image “abnormal,” otherwise the image 

was classified as “normal.” Sensitivity, specificity and area under the receiver operator 

characteristic (AUROC) were calculated. This batch and grading scheme served as the 

“baseline” results for comparison with the regression models used in later phases of the 

research.  
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As there was no a priori rationale to suggest the mean Turker score (with rounding 

towards abnormal) would provide the most accurate approximation of the ground truth 

classification, 2 additional methods of generating consensus were explored.   

 

Phase 2: Logistic Regression Model 
 
For this phase, we sought to create a logistic prediction model to explore whether any 

of the additional data (in addition to the Turker classification of normal or abnormal) 

provided by AMT could be used to improve diagnostic accuracy. Additionally, the images 

were divided into 4 horizontal quadrants to a) force increased zoom, b) make the task 

more abstract, and c) permit 40 separate classifications per photograph.  

 

 One hundred fifty Messidor grade 3 images and fifty grade 0 images were randomly 

selected from the MESSIDOR dataset (Figure 3). Each image was split into 4 horizontal 

strips using Adobe Lightroom, each comprising 25% of the image, each of which was 

posted for 10 unique gradings (Figure 4). Along with the Turker’s impression of 

retinopathy and a judgement of image quality, the time spent on the task, and number 

of prior retinal grading tasks were also recorded.  
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Figure 3. Flow diagram of images selected for Phase 2. 

 
Figure 4. Screenshot of the Amazon Mechanical Turk web interface for Phase 2 fundus 
photo grading. 

1200 Messidor Images 

800 Images: 
546 Grade 0 
254 Grade 3 

400 Clinically insignificant 
images excluded 

153 Grade 1 
 247 Grade 2  

Excluded: 
496 Grade 0 
 104 Grade 3 

Randomly selected: 
50 Grade 1 

150 Grade 3 
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Phase 2 Outcomes 
 
As in Phase 1, main outcomes were defined as percent agreement between the Turker 

consensus grade and the gold standard grade, as well as sensitivity and specificity for 

the detection of an abnormal retina. The area under the curve of the receiver operator 

characteristic (AUROC) was also calculated. For the naïve assessment for this phase, 

Turker consensus was defined as follows: if half or more of the Turkers marked the 

image quadrant as abnormal, the image strip was coded as abnormal. If one or more 

strips was coded abnormal in this task, the entire image was coded as abnormal. In the 

improved assessment, logistic regression was used to devise a predictive algorithm for 

image abnormality. The model prediction was also compared against the MV score from 

the baseline phase.  

 

Phase 2 Statistical Analysis 
 
Several a priori prediction models were explored. First, a logistic regression model was 

created including the raw Turker score (sum of 40 unique grades - 10 per image strip - 

where 0=normal; 1=abnormal), the total time spent on the image by all Turkers, the 

total prior experience by all Turkers and the total number of times the image was 

marked ungradeable after each continuous variable was examined for linearity using 

lowess non-parametric smoothed regressions (A priori 1). Variables with evidence of 

non-linearity were categorized or dichotomized. Additional models were created using 

the binary score for each strip quadrant as separate variables (A priori 2). Next, a model 



11 
 

using an ordinal categorical variable with the number of strips coded as abnormal was 

generated (A priori 3). Finally, a model using disjoint categorical variables for the 

number of abnormal quadrants was generated (A priori 4).  

 

Next several automated model selection tools were utilized starting with all variables 

collected. First, the variance inflation factor (VIF) was checked on a model including all 

covariates, and items with VIF > 8 were excluded. VIF was rechecked until no items had 

VIF>8. Next automated forward and backward predictor selection based on likelihood 

ratio tests, and forward and backward predictor selection based on Aikake’s Information 

Criteria (AIC) were run. The best model from each automated method was then used for 

comparison. 

 

All models were then compared using the receiver operator characteristic, and the 

model with the highest area under the curve (AUROC) was selected. Jackknife 

resampling was used to cross-validate the AUROC. Percent agreement, sensitivity, 

specificity and AUC were calculated and compared with the results from the naïve 

assessment.  

 

Phase 3: Weighted Logistic Regression Model 
 
For this phase, we recognized that among Turkers there is a range of ability, and among 

images there is a range of difficulty. In order to improve throughput, force Turkers to 
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grade images in multiples of 10 (rather than single images), and collect more data about 

the Turkers’ interactions with the task for future phases, the project was migrated to a 

new online interface (Figure 5). In the new interface, the 1200 Messidor images were 

posted for binary grading first using the full color images, and then again with the 

images converted to grayscale with the red color channel removed in Adobe Lightroom 

(applied “B&W Preset” with “Green Filter,” in “Black and White Mix” reduce Red to -75) 

(Figure 6). This was done to simulate “Red-free” images, which may allow for better 

detection of diabetic retinopathy.32 This allowed us to have a dataset with 30 grades per 

image, albeit captured under slightly different circumstances. 
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Figure 5. Screenshot of the Volunteer Science hosted web interface for Phase 3 fundus 
photo grading.
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Figure 6. Simulated "red-free" retinal photograph created by deleting the red channel 
in Adobe Lightroom. 

The dataset of 1200 images was randomly divided into 600 training and 600 test images. 

Using the training images, a matrix of images and individual Turkers was created with 

each cell either being a missing datapoint (if that particular Turker did not grade that 

particular image), a “1” for a correct classification, or a “0” for an incorrect classification. 

Rasch analysis was then performed to determine the “image measures” and “Turker 

measures.”  

The Rasch model, as described by Linacre,33 specifies: 
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Where, in the present study, Pni is the probability of a given image n of difficulty Bn 

having a correct response provided by Turker i of skill level Di. Therefore, the Turker’s 

ability measure and the image’s difficulty measure are expressed as log-odds units 

(logits), theoretically ranging from - ∞ to +∞. The negative exponentiated Turker ability 

measure, then, is the odds that an image of average difficulty (i.e., Bn=0) would be 

categorized correctly by that particular Turker. This value was then multiplied by each of 

that Turker’s categorizations from the test set (with abnormal = 1, normal = -1). The 

weighted scores were then summed for each image. In an initial analysis, the consensus 

image score was considered to be “abnormal” if greater than or equal to zero, and 

“normal” otherwise. Sensitivity, specificity and AUROC were calculated as above with 

comparison to the Baseline MV results. In a subsequent analysis, the consensus image 

score was included as a continuous variable in a logistic regression model to determine 

the ideal cut-off value for different values of percent correct, sensitivity and specificity.  

 

Data were analyzed using Stata Statistical Software: Release 14 (StataCorp. 

2015. College Station, TX: StataCorp LP) and Winsteps® Rasch measurement computer 

program. (Linacre, J. M. (2016). Beaverton, Oregon: Winsteps.com). The Johns Hopkins 

University Institutional Review Board (IRB) deemed this research IRB-exempt as non-

human subjects research. 

  



16 
 

Results 
 

Phase 1 Results: Baseline Majority Vote 
 
A batch of 12,000 (1200 images x 10 repetitions) tasks was posted on AMT March 13, 

2015, 11 am Eastern for a total cost of US $1440 ($12000 for Turker compensation, $240 

for Amazon commission). The grading was complete in 68 minutes, with 97% of images 

graded within 35 minutes. Tasks submitted without image grades were immediately re-

posted so there were no missing data. The tasks were submitted by 281 unique Turkers, 

with each submitting a mean of 42.7 tasks (median 28, mode=1). 

The MV consensus was correct in 75.5% of images. Sensitivity and specificity were 
75.5%. The area under the receiver operator characteristic was 0.755 (

 

Figure 7). 
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Figure 7. Receiver operator characteristic for the diagnosis of abnormal retinal 
photograph in the Phase 1 baseline analysis. 

 

Phase 2 Results: Logistic Regression 
 
A batch of 8000 tasks (4 strips x 400 images x 10 repetitions) was released on AMT 

March 18, 2016, 9 am Eastern for a total cost of US $1120 ($800 for Turker 

compensation, $320 for Amazon commission).  The gradings were completed in 53 

minutes. The majority of images were graded within 15 minutes (Figure 8). Three of 

8000 gradings were blank/missing, and due to the small amount of missing data (0.04%), 

this was ignored in the analysis.  
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In our naïve phase 2 analysis, we assumed that if the consensus (MV) score of one 

quadrant of an image was determined to be abnormal, the overall image would be 

considered abnormal. In the naïve analysis, 82.5% of images were correctly classified, 

with 92.7% sensitivity and 52.0% specificity, and with an AUROC of 0.723 (Table 1, Table 

2). The results for same images from the Phase 1 baseline analysis were correctly 

classified in 91.5% of images, with 92.3% sensitivity and 88.0% specificity, and with an 

AUROC of 0.903 (with similar results using the MV consensus method with the batches 

using the improved Volunteer Science interface with both color and simulated red-free 

images; data not shown).  
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When creating the logistic regression model, the relationship between abnormality and 

the raw score was deemed to be approximately linear (Supplemental figure 1). Total 

time spent was deemed to have evidence of non-linearity, and so this value was 

categorized into <3000 seconds, between 3000 and 5000 seconds and >5000 seconds 

(Supplemental figure 2). Likewise, total prior experience was deemed to have evidence 

of non-linearity, and so this value was dichotomized at 5000 prior tasks (Supplemental 

figure 3).  

 

Results from the a priori and automated model selection tool are shown in Table 

1/Supplemental figure 4. Prior to automated model selection, all variables were tested 

for collinearity. A variable for the sum of the consensus score for each strip (values 0-4) 

was found to be strongly collinear and was removed from this model. Next the raw 

score was found to be collinear with the individual strip binary scores, so these were not 

included together in the automated selection tool. Both forward and backward model 

selection using likelihood ratios returned the same model, raw score alone when 

excluding the individual strip scores, and the scores for strip 3 and strip 4 when 

excluding the raw total. The model including just the raw score was called “Auto 1” and 

then “Auto 2” was defined as using all four binary strip scores, as it did not make 

biological sense to exclude the strip 1 and 2 scores. Auto 2 was the same model as A 

priori 2. Using automated model selection based on AIC, the same models were found 

as with the likelihood ratio test.  
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Area Under 
Receiver Operator 

Characteristic 
(95% CI) 

Naïve baseline: 1 strip MV consensus abnormal = image abnormal 0.72 

A priori 1: raw total score, time, experience, quality grade 0.87 (0.81-0.93) 

A priori 2 / Auto 2: binary score for each quadrant  0.85 (0.79-0.92) 

A priori 3: ordinal score for number of abnormal quadrants 0.84 (0.78-0.91) 

A priori 4: disjoint categorical variable for number of abnormal 
quadrants 0.85 (0.79-0.91) 

Final model (Auto 1): raw total score 0.87 (0.81-0.93) 

Final model (Jackknife crossvalidation): 0.86 (0.79-0.92) 

Table 1. Area under the receiver operator characteristic for each of the a priori and 
automated models. 

Next all models were tested for goodness-of-fit. Due to low numbers of unique 

covariate patterns, Pearson’s Goodness of Fit test was used, and all models showed 

evidence of good fit with the exception of A priori model 4.  

 

Based on the AUROC, and the parsimony of the model, Auto 1 was chosen as the final 

model. A chi-squared test comparing the AUROC between the naïve analysis and the 

final model was statistically significant (p<0.001, Figure 9) A Jackknife crossvalidation 

was performed in order to get a validated AUROC (Table 1). In order to determine the 

ideal cut-off value for an abnormal test, values maximizing percent agreement, 

sensitivity, and specificity were explored (Table 2/Supplemental figure 5).  
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  % Correct Sensitivity Specificity AUROC (95% CI) 
Phase 1 baseline: 91.5% 92.3% 88.0% 0.90 

Naïve method: 82.5% 92.7% 52.0% 0.72 

     

Final model (Auto 1):          

(maximizing % correct) 83.0% 93.3% 52.0% 0.73 (0.65-0.80) 

(sensitivity ≥ 90%) 82.0% 91.3% 54.0% 0.73 (0.65-0.80) 

 (specificity ≥ 90%) 75.0% 70.0% 90.0% 0.80 (0.74-0.86) 

Table 2. Characteristics of different cut-off values using the final model compared with 
the naïve model and results from the Phase 1 baseline task. 

 

  

Figure 9. Comparison of area under the receiver operator characteristic 
between the naïve analysis and the final logistic model demonstrates an 
improved range of sensitivity and specificity of the model. 
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Phase 3 Results: Weighted logistic regression model 
 
For this Phase, the focus shifted to the perspective of Turkers rather than on the images 

themselves. Exploration of Turker accuracy motivated an attempt to incorporate Turker 

ability into a predictive model. As demonstrated in Figure 10, and has been 

demonstrated in the literature34 there is a distribution of Turker accuracy that is not 

necessarily related to the number of tasks performed. As such, any method that 

implicitly weights a consensus score based on number of tasks performed as does MV 

may reduce accuracy.  In the Phase 1 baseline task, among the 281 unique Turkers 

median percentage of images graded correctly was 64.7% with an intraquartile range of 

55.5% to 74.4%. 
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Figure 10. Scatter plot of percentage of correctly graded images versus the number of 
tasks performed in the Phase 1 baseline task. 

 
Prior to performing Rasch analysis, the results of the improved Volunteer Science 
experiment (1200 color images + 1200 red-free images; cost $2,558, completed over 
days) were merged with the Phase 1 baseline classifications to permit as many grades 
possible. In essence, we treated the Turkers as “test takers” taking a “test” involving 
grading multiple images. For stability, we excluded Turkers who had graded fewer 
10 images within the training set of 600 images. Using Rasch analysis, we found Turker 
ability ranging from the most highly skilled at -3.75 logits, and the least skilled at 1.9 
logits. The median ability is set in the model as zero, and the intraquartile range of 
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ability was -0.40 to 0.47 (

 

Figure 11). 
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Figure 11. Histogram of Turker measure in log-odds units (logits) as determined by 
Rasch analysis used the random 50% (600 images) Training set. 

 

After transformation, the Turker measure scores from log-odds to odds of correctly 
classifying an average difficulty image, weights outside the top and bottom centile 
were truncated to the level of the 1st and 99th centile to increase stability and 
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the effect of outliers (

 

Figure 12). 
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Figure 12. Histogram of Turker weights expressed in odds of correctly classifying an 
average image correctly in the random 50% (600 images) Training set with the top and 
bottom centile (1%) truncated. 

 

When the Turker weights were applied to the classifications in the color images in the 

test set using the arbitrarily determined cut-off (0), the percent correctly classified 

improved to 80.7% with an AUROC of 0.817 from the 77.0% correct and AUROC of 77.1 

determined in the phase 1 baseline task for the same images.  

 

In order to determine the arbitrarily-determined cutoff could be improved, a logistic 

regression model using the consensus image score determined by the weighted Turker 

classifications was generated. Using this model, a much more granular ROC could be 
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generated. A similar ROC was generated from a separate regression model using the 

unweighted consensus classifications from the same batch (Figure 13). The AUROC’s 

were 0.909 (95% Confidence Interval 0.883-0.934) and 0.888 (95% Confidence Interval 

0.861-915) respectively (Chi2 p-value< 0.001).  

Figure 13. ROC generated from a logistic regression model using weighted consensus 
scores of the random 50% (600 images) Test set and a second using the non-weighted 
scores from the same data. 

 

 
Examination of multiple dichotomization cutpoints revealed that choosing a cut-off 
would permit a minimum sensitivity of 90.3% allows for specificity of 68.7% and 
correctly classified at 77.7% with an AUROC of 0.80 (Table 3/ 
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Figure 14). 
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  % Correct Sensitivity Specificity AUROC (95% CI) 
Phase 1 MV baseline: 75.5% 75.5% 75.5% 0.75 

MV weighted cut-point: 80.8% 87.1% 76.4% 0.82 

     

Weighted regression:         0.91 (0.88-0.93) 

(maximizing % correct)  85.0% 81.1% 87.8% 0.84 (0.81-0.87) 

(sensitivity ≈ 90%) 77.7% 90.3% 68.7% 0.80 (0.76-0.83) 

(specificity ≈ 90%)  84.2% 75.8% 90.1% 0.83 (0.80-0.86) 

Table 3. Characteristics of different cutpoint values using the weighted logistic model, 
as compared with the majority vote weighted cutpoint and the Phase 1 baseline task. 
(MV = majority vote) 

 

 
Figure 14. ROC from logistic regression model using weighted consensus scores using a 
dichotomization cutpoint designed to permit sensitivity of 90% shown alongside 
unweighted and Rasch-weighted majority vote cut-points. 



32 
 

 
Rasch analysis also allowed for a qualitative analysis of the retinal images. The images 
were sorted by image measure on the logit scale as generated by the Rasch analysis 
described earlier (

 

Figure 15). The 20 images with the lowest measures ranged from -4.75 to -2.56 logits, 

which corresponds to the log odds that a Turker of average ability (i.e., Turker measure 

= 0) would grade these images correctly. Among these only images 0, 1, or 2 Turkers 

(out of maximum of 30) graded correctly, and were designated as the most “difficult” to 

grade. The 20 images with the highest measures were selected as the “easiest” to grade. 

Twenty sequential images were then selected at the 3 quartiles as successively less 

difficult images to grade (Table 4/Figure 16). The “hardest” images were largely 

Messidor grade 0 and 1 images with some abnormal features, but without significant 
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diabetic retinopathy (e.g., chorioretinal atrophy, choroidal nevus, etc), that had been 

graded as abnormal by Turkers. Intermediate images were mostly Messidor grade 2 

images with extrafoveal microaneurysms of subtle hard exudates, as well as Messidor 

grade 0 images without any non-diabetic pathology or distracting features. The “easiest” 

images were generally Messidor grade 3 with prominent hard exudates apparent.  

 

Figure 15. Histogram displaying the distribution of image measures of the 1200 
Messidor images. Images with more negative scores are “harder” to grade correctly, 
which images with more positive scores are “easier” to grade correctly. 

 

 

 Difficulty 
Measure score 
range (logits)  

% images 
graded correct 

Messidor 
grade (mode) 

“Hardest” -4.74 - -2.56 0-8.3% 1 

Intermediate 1 -0.14 - -.04 43.4-53.9% 0 
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Intermediate 2 1.01 - 1.1 69.2-76.9% 0 

Intermediate 3  2.04 - 2.09 85.2-88.9%  0 

“Easiest” 4.5 - 4.91 100% 3 

Table 4. Comparison of “easy” and “difficult” to grade images 

 

Figure 16. Representative retinal fundus images organized by progressive ease of 
grading correctly (A-E). A) The image reveals areas of chorioretinal atrophy (arrow), 
but is without lesions of diabetic retinopathy. B) This image reveals very subtle 
microaneurysms (arrows). C) This image reveals more obvious microaneurysms 
(arrowheads) and subtle hard exudates (arrow). D) This image reveals more apparent 
hard exudates (arrow). E) This image reveals obvious hard exudates (arrow) and more 
obvious hemorrhagic microaneurysms (arrowhead).  

 

Discussion 
 

In this study we have shown that crowdsourcing workers on a popular crowdsourcing 

platform, Amazon Mechanical Turk, are able to rapidly and accurately identify mild to 

moderate diabetic retinopathy in a large public dataset. While dividing the retinal 
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images into horizontal strips and using time spent grading images or prior experience 

does not seem to influence the accuracy of consensus grading, weighting Turker 

responses by their demonstrated ability does seem to improve accuracy.  

 

There are many ways of defining a crowdsourcing consensus, or “divining the wisdom of 

the crowd.” For binary tasks, or categories that can be rationally dichotomized (as was 

done in this study by reducing 4 levels of disease to disease or no disease), one could 

take a simple majority vote (MV) approach such that the image receives the 

categorization rendered by half or more of respondents. To reach a consensus with 

categorical data, using the modal response may reduce the influence of outlier, or 

inattentive/malicious users. Both of these methods involve a post-hoc analysis of the 

data. Alternatively, one could allow consensus to be determined “on-the-fly,” such that 

if enough workers render the same or similar judgment of an image, the image is 

immediately coded with this classification, such that the full 10 responses need not be 

completed. In this study, we sought to compare the simple MV approach with several 

logistic prediction models.  

 

Because data on the time spent completing the task and prior exposure to similar tasks 

is collected in addition to the grade for the current image task is collected when a 

crowdsourcing worker completes a task, in Phase 2 we sought to leverage this data to 

improve our determination of worker accuracy. Moreover, dividing each image into 4 
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segments allowed us to collect a “raw score” for each image on a semi-continuous scale 

of 0-40, as each worker renders a binary scale (0=normal, 1=abnormal), and each strip is 

graded by 10 unique workers. We hypothesized expanding our scale by taking additional 

image metrics into account would allow greater precision and flexibility to determine an 

ideal cutpoint for crowdsourcing as a diagnostic tool.  

 

Interestingly, incorporating image metric such as time spent and prior worker 

experience did not substantially improve our ability to predict and abnormal retinal 

image. None of the automated model selection algorithms applied (either based on 

model likelihood ratio or AIC) included these variables in the prediction model.  The 

logistic regression model did have better diagnostic characteristics over the range of 

different cut-off values for probability of image abnormality. However, in order to 

operationalize the model as a diagnostic (binary) tool, a single cut-off would need to be 

chosen, and as demonstrated in Table 2, no cut-off is objectively better than the naïve 

analysis. What is provided, however, is an opportunity to tailor the diagnostic 

characteristics to the particular clinical/research task at hand. In other words, an 

investigator could calibrate the model by choosing a cut-off to emphasize either 

sensitivity or specificity. We suspect that in future iterations of our crowdsourcing 

interface which allow for capturing more of the user interaction we may be able to 

improve upon our prediction model. Likewise, explorations of continuous outcomes 
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such as optic nerve cup-to-disc ratio may be more amenable to improved regression 

prediction versus a standard mean of crowdsourced values.  

 

In phase 3 of this project, we sought to determine whether knowledge of an individual 

Turker’s ability on a training set of images could be used to improve accuracy of the 

consensus grade in a separate test set of images. For this phase, we chose to use the 

Rasch model with “image difficulty” as the latent trait. In this way, we were able to 

determine the odds of each image being correctly classified by a Turker of average 

ability, and the odds of each Turker being able to correctly grade an image of average 

difficulty. This allowed us to weight a Turker’s response to the images in the test set for 

use in a logistic regression model. This also allowed for a qualitative assessment of the 

retinal images from a unique perspective; ranked from difficulty to grade correctly 

rather than ranked by disease severity.  

 

The use of weighting Turkers’ responses in phase 3 showed a small, but significant 

improvement in the area under the receiver operator characteristic as compared with 

unweighted aggregation. This result was very encouraging and suggests several possible 

improvements that can be made to our crowdsourcing method. For example, if a 

returning Turker has previously had their “ability” calculated, this can be immediately 

applied to their new categorizations. If a new Turker begins a retinal grading task, they 

can be asked to perform a brief quiz to determine their “ability” prior to officially 
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grading images. This method may allow for a reduction in the number of annotations 

per image required to generate a stable estimate for each image.  

 

A reasonable question is whether Rasch analysis was truly necessary. For an exploratory 

trial, the odds of correctly grading all images in the training set was compared to the 

Rasch derived measure, and these were quite similar (data not shown). The advantage 

of the Rasch measure is that 1) it takes into account the specific images graded and 2) it 

is amenable to being determined with a small number of images. Conceptually, we have 

thought of the 1200 image Messidor set as a large “item bank.”  When a Turker grades 

several images, they are taking a test comprised of “questions” of known difficulty, 

which can be used to generate a weighted “score” that incorporates the item difficulty.  

 

Rather than use whichever images are selected randomly for a given Turker’s  

“test,” we can apply computerized adaptive testing (CAT) methods to efficiently 

ascertain the Turker’s ability. Indeed, an immediate next phase of the present research 

is to validate image difficulty by creating a smaller item bank for use in CAT. Using the 

image difficulties calculated in the prior trial, images will be selected from the 100 

images examined qualitatively in phase 3. We can require that a group of Turkers 

complete gradings on all the images in this bank to ensure no missing data. After 

ensuring adherence to the Rasch model, image difficulty measures will be re-calculated. 

Using a stepping algorithm, a short (Rasch-motivated item reduction can help determine 
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how short), CAT quiz can be created within our improved “Eyedentification” interface on 

AMT. Weighted consensus can then be compared using the phase 3 test set using naïve 

Turkers. Follow-up experiments will then seek to determine whether 10 unique 

categorizations are necessary for a stable prediction of disease status.  Beyond the a 

priori desire for maximum efficiency, Amazon applies an additional 20% commission to 

tasks which use 10 or more unique graders per task, so the ability to use 9 workers or 

fewer would substantially reduce the cost of these experiments.  

 

It is worth noting that the application of the Rasch model may have applications to the 

analysis of retinal imaging data beyond crowdsourcing. For example, in the analysis of 

images of premature babies at risk of retinopathy of prematurity, it has been 

demonstrated that there is very little agreement among experts on what constitutes so-

called “Plus disease.”35 A dichotomized (sometimes categorized with an intermediate 

“pre-plus”) grading of the level of vascular tortuosity of the posterior pole of the retina, 

Plus disease is the primary driver of whether a baby requires treatment for this blinding 

disease. Because of the lack of agreement among experts, it has been challenging to 

standardize grading and to calibrate automated grading systems. Treating “Plus-ness” as 

a latent trait could allow for the calculation of an interval scale measure of “Plus” as well 

as allow for calibration of experts’ gradings (correction of systematic bias).   
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Additionally, in a recent study exploring the use of deep learning artificial intelligence 

for retinal image interpretation published by researchers at Google36 a stated limitation 

was their use of majority vote consensus grading of several ophthalmologists in both 

their 128,000+ image training set and 11,700+ image test sets. The authors 

acknowledged that much of the residual imprecision of the algorithm likely resides in 

“feeding” better gold standard data into the algorithm, creating an opening for similar 

methods as described here. 

 

There are several limitations to crowdsourcing retinal image processing. Because users 

are anonymous, and cannot be directly selected by the researcher, there is no way to 

ensure high quality, highly conscientious workers each time work is posted. Indeed, the 

pool of workers can vary substantially over time and different trends in how workers 

engage with the site have become apparent to us over the course of the three years of 

this experiment. For example, we have recently noticed that many workers use 

automated “scripts” to accept/reserve large numbers of tasks at once, and then they 

can proceed at their own pace without concern for there being few tasks left for them. 

Indeed, this phenomenon may be the explanation for the “shark fin” shape with long tail 

in Figure 8. This “hoarding” has made metrics of time spent per image rather 

meaningless, but it is not clear that it has led to worse outcomes overall (data not 

shown). Regardless, researchers who wish to use crowdsourcing need to be aware of 

the “culture” of the crowdsourcing marketplace they choose.  
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Our current method used the supplied Messidor grade as the gold standard. While this 

is a high-quality, well-known data set, there were dramatic differences in how the 

images were graded compared to standard clinical and telemedicine grading schemes 

such as the one we used for training. Particularly, while we tried to eliminate clinically 

insignificant disease by defining the very mild disease category (Messidor 1) as 

“normal,” there was still the possibility of clinically very mild disease in the most severe 

Messidor category (e.g., 16 microaneurysms is Messidor 3, but, could be considered 

minimal retinopathy on most clinical grading scales).  

 

There are several potential benefits to the use of crowdsourcing for the interpretation 

of visual data in ophthalmology.  First, an inexpensive, rapid, and accurate system to 

reduce the number of images needing human grading in large public health screenings is 

needed. An approach which accurately identifies normal (or very mildly abnormal; 

allowing for some false negatives) fundi would be of great value and could reduce the 

skilled grader burden by up to 26-38% or more according to some investigators using 

artificial intelligence programs.19 A “first pass” to remove normal images is currently 

being done with an Artificial Intelligence (AI) solution in Scotland’s national screening 

program.37 If appropriately validated, crowdsourcing could provide a similar service at 

lower cost, and with less infrastructure in resource-poor settings. Likewise, a means to 
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rapidly interrogate existing datasets with existing datasets could allow for nimble 

hypothesis generation for secondary data analyses. 
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 Supplemental figure 1. Grossly normal relationship between turker raw score and 

log odds of abnormality supports linear term for turker raw score in prediction 

model.  
Supplemental figure 2. Evidence of non-linearity in the relationship between total time 

spent on the task and logodds of abnormality supports categorizing this variable. 
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Supplemental figure 3. Evidence of non-linearity in the relationship between total 

experience score for all turkers grading the image and logodds of abnormality 

supports dichotomizing this variable. 

Supplemental 

figure 4. Receiver operator characteristic for each model tested. 
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Supplemental figure 5. Sensitivity and specificity for various cut-off values for 

probability of abnormality using the final model. 
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