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Abstract 

Arrhythmia commonly compromises the quality of standard cardiac MRI (CMR), and 

cine CMR of arrhythmias may be of interest for evaluating arrhythmia pathophysiology. 

The common method to perform MRI during arrhythmia is real-time imaging; however, 

temporal and spatial resolution is limited. In this work, a triggered method utilizing a 

newly implemented triggering system and a retrospectively gated method were evaluated. 

The triggering system was capable of both classifying the heartbeat type in real-time 

from an ECG signal and triggering the scanner to update the k-space sampling trajectory 

when a pre-chosen heartbeat type was encountered. On the other hand, the retrospectively 

gated method analyzes the ECG signal after imaging is completed and selects the 

appropriate k-space data to use in reconstruction. Numerical simulations incorporating 

different paces of heartbeats and respiration were performed to compare the efficiency of 

both methods. The triggered and the retrospectively gated methods were also evaluated in 

an animal experiment, and k-space sampling patterns of selected imaging data and 

reconstructed images are shown. The numerical simulations and the animal experiment 

suggested the higher time-efficiency of the triggered method compared with the 

retrospectively gated method. This work provided a platform where high temporal and 

spatial resolution CMR imaging could be performed, enabling studies of arrhythmic 

pathophysiology using MRI. 

Readers: Dr. Daniel Herzka, Dr. Aravindan Kolandaivelu, and Dr. Jerry L. Prince 
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Introduction 

1. Motivation  

Breath-hold electrocardiography (ECG) synchronized cine imaging is considered as the 

standard for assessing cardiac function with cardiac MRI (CMR). However, the image 

quality of this method is commonly compromised by patients’ arrhythmias and inability 

to hold their breath. Additionally, this method cannot provide cine images of arrhythmias 

which may also be of interest when evaluating arrhythmia pathophysiology. Real-time 

CMR is under investigation to solve the problems that currently exist in standard cine 

imaging [1]–[4]. However, real-time CMR usually has limited temporal and spatial 

resolution, introduces image artifacts due to under-sampling or motion, and requires 

sophisticated time-consuming reconstruction methods.  

Here, targeting at clinically feasible applications, we implemented a novel triggering 

method that provides good cine image quality while maintaining high temporal and 

spatial resolution using clinically feasible reconstruction methods. This method utilized a 

newly developed scanner triggering system that updates the sampling trajectory in real-

time based on the occurrence of a target heartbeat type as observed during free breathing. 

A retrospectively gated method that selects k-space data based on the post-processed 

physiological signals was also implemented.  
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2. Background 

Signal excitation  

Protons of an object can be magnetized in a magnetic field 𝑩". If 𝑩" is static, the 

macroscopic proton magnetization 𝑴 is along the direction of 𝑩"	that is assumed to be 

the z-axis. If another magnetic field 𝑩% orthogonal to 𝑩" is applied to the object for a 

short period of time, the macroscopic proton magnetization will be tilted away from z-

axis and produce magnetization 𝑀'( in the x-y plane in a phenomenon called forced 

precession. The angle between the direction of magnetization and z-axis is called “flip 

angle”. This 𝑩% is normally produced by a radio-frequency signal pulse (RF pulse) whose 

magnitude is far less than the magnitude of 𝑩" (𝐵") [5]. 

The decay of location-dependent magnetization 𝑀'((𝒓) can emit detectable signal in the 

form as: 

 
𝑆 𝑡 = 𝑀'((𝒓)𝑒

1 2
34𝑒156(𝒓)2𝑑𝒓

object
	 ( 1 ) 

where the parameter 𝑇? characterizes the decay speed of 𝑀'((𝒓). 𝜔(𝒓) is the angular 

precession frequency of protons: 

 
𝜔 𝒓 = 𝛾𝐵(𝒓) ( 2 ) 

where 𝐵(𝒓) is a location-dependent magnetic field which performs spatial information 
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encoding. 

Spatial information encoding and k-space 

The spatial information of MR signals is encoded to perform imaging. To encode spatial 

information at location 𝒓, a linearly location-dependent magnetic field:  

 𝐵 𝒓 = 𝑮 ∙ 𝒓 ( 3 ) 

should be superimposed on the static magnetic field 𝑩" with the same direction (the z-

axis). 𝑮 is a vector called the gradient.  

Two kinds of encoding are available: frequency and phase encoding [6]. Frequency 

encoding incorporates spatial information into the oscillation frequency of protons of the 

object. The angular frequency of protons at 𝒓 in 𝐵" plus 𝑮DE ∙ 𝒓 is: 

 𝜔 𝒓 = 𝛾 𝐵" + 𝑮DE ∙ 𝒓  ( 4 ) 

Thus, protons within 𝑑𝒓 at location 𝒓 generates signal as: 

 𝑑𝑆 𝒓, 𝑡 = 𝜌 𝒓 𝑒15I JKL𝑮MN∙𝒓 2𝑑𝒓 ( 5 ) 

where 𝜌(𝒓) weights the signal at location 𝒓 and 𝑮DE is constant from 0 to 𝑡. 

After demodulation to remove the carrier signal 𝑒15IJK2, the signal emitted from the 

entire object is: 
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𝑆 𝑡 = 𝜌 𝒓 𝑒15I𝑮MN∙𝒓2𝑑𝒓

L∞

1∞
	 ( 6 ) 

In order to encode 2D or 3D spatial information, phase encoding is needed. Phase 

encoding is performed by turning on a linear gradient 𝑮OE for a short period of time 𝑇OE 

to add a “phase” 𝛾𝑮OE𝒓𝑇OE to the signal at location 𝒓: 

 
𝑆 = 𝜌 𝒓 𝑒15I𝑮𝒑𝒆∙𝒓3RN𝑑𝒓

L∞

1∞
 ( 7 ) 

where 𝑮OE is constant from time 0 to 𝑇OE. 

To write equations ( 6 ) and ( 7 ) in the form of a Fourier transform, let: 

 𝒌 =
𝛾
2𝜋 𝑮DE𝑡 + 𝑮OE𝑇OE  ( 8 ) 

The spatial information encoding could be written as:  

 
𝑆(𝒌) = 𝜌 𝒓 𝑒15?V𝒌∙𝒓𝑑𝒓

L∞

1∞
 ( 9 ) 

The space of vector 𝒌 is called k-space. k-Space is essentially equivalent to the frequency 

domain of an image. 

If 𝑮DE and 𝑮OE are functions of time, a k-space point 𝒌 should be written as: 

 
𝒌 =

𝛾
2𝜋 𝑮DE 𝜏 𝑑𝜏

2

"
+ 𝑮OE 𝜏 𝑑𝜏

3RN

"
	 ( 10 ) 
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MRI sequence and k-space sampling trajectory 

An MRI sequence includes RF pulses, gradient waveforms, and data acquisition in order 

to produce a desired MR image [7]. There are a variety of sequences that are available for 

different purposes; in this study, the steady-state free precession (SSFP) sequence was 

used. There are several parameters characterizing a sequence, such as repetition time 

(TR), echo time (TE), flip angle, and receiver or image bandwidth. As these parameters 

affect the image contrast, signal-to-noise ratio (SNR), scanning time, to name a few, they 

should be chosen according to specific applications.  

The data acquisition scheme or the k-space sampling trajectory is also important in a 

sequence, as it affects the image contrast, SNR, and image artifacts. There are several k-

space trajectory categories, such as radial and Cartesian sampling, to name a few. Radial 

sampling, the original method of sampling data in MRI, has broad use in cardiac MR 

imaging (CMR), as it is relatively robust against motion artifacts [3], [7], [8]. If the SSFP 

sequence is used, sampling is performed along a radial “projection”, a line through the 

center of k-space, within each TR, and the angle of a projection is updated during 

scanning to fully cover k-space. For Cartesian sampling, however, a line parallel to a k-

space axis is sampled per TR, and the distance between the k-space center and the line is 

updated during scanning. TR in the SSFP sequence is defined as the time interval 

between two consecutive excitation RF pulses and is usually minimized to maximize 

speed and SNR efficiency and minimize imaging artifacts [10]. 

The field of view (FOV) of an object is the size of the object being imaged. As sampling 

of k-space is digitized, the intervals between two consecutive k-space samples along the 
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x-axis 𝛥𝑘'	and along the y-axis 𝛥𝑘( satisfies: 

 𝛥𝑘' =
1
𝑊'

 ( 11 ) 

 𝛥𝑘( =
1
𝑊(

 ( 12 ) 

where 𝑊'	×	𝑊( is the FOV of the object.  

Image reconstruction 

The MRI signal is sampled in k-space; thus, reconstruction should be performed to get an 

image of the object of interest. For Cartesian sampling, the fast Fourier transform (FFT) 

can be used; for radial sampling, however, an algorithm called gridding is typically used 

before applying the FFT. Gridding resamples the k-space to the Cartesian raster so that 

FFT reconstruction can be readily applied. In this study, a similar algorithm called non-

uniform FFT (NUFFT) is used to reconstruct an image from radially sampled k-space. 

More details about NUFFT can be found in [11]. 

In a 2D radial k-space sampling, the number of k-space samples per radial projection 𝑁 

and the FOV 𝑊	×	𝑊 (which is usually a square FOV) determine the spatial resolution of 

the reconstructed image. Assume the desired spatial resolution is 𝛥𝑥	×	𝛥𝑥; then the 

following equation is satisfied: 

 Δ𝑥 =
𝑊
𝑁 =

1
𝑁Δ𝑘 ( 13 ) 

where 𝑁×𝑁 is the number of pixels in the reconstructed image. 
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Cine imaging 

In CMR, cine imaging is used to get a movie of the beating heart [12]. Due to the 

relatively low speed of MRI, cine imaging samples data during several continuous 

heartbeat cycles to achieve complete coverage of k-space. People usually have 

approximately periodic cardiac cycles, so cine imaging sorts data from several heartbeats 

into different time frames according to their corresponding phases of the cardiac cycle. 

The cardiac phase is normally determined using ECG as showed in Figure 1. Without 

breath-holding, motion of the heart due to breathing can also compromise the image 

quality; thus, sometimes the breathing signal should also be monitored, and only data 

sampled during end-expiration, the most stable position from breath to breath in human 

subjects, should be kept.  

 

Figure 1: ECG recorded within a MRI scanner (InVivo, Gainesville FL). The MR data 

are sorted according to their corresponding cardiac phases determined by ECG.  



 8 

In contrast to the heartbeats (sinus heartbeats) showed in Figure 1, arrhythmias can show 

different QRS morphology and RR intervals in ECG, due to abnormalities of the heart 

rate, rhythm, or electrical conduction in the heart [13]. As the heart motion during 

arrhythmia is no longer consistent, cine imaging can suffer severe image artifacts [2], 

[13], [14]. A standard method to avoid these artifacts, which can include ghosting and 

significant streaking, is to reject heartbeats with inconsistent RR intervals at the expense 

of increased scan duration. However, since arrhythmia affects not only the RR interval 

but also the morphology in ECG, this method does not provide cine images with high 

quality. This is one of the reasons that we developed the triggering system described 

below.   
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Methods 

A scanner triggering system detecting a target heartbeat type (beat-type) and respiratory 

phase in real-time was developed. If the target beat-type was detected during end-

expiration, a trigger was generated and sent to the scanner external input to update the 

sampling trajectory. This system is new and innovative because it uses more than just the 

RR interval to classify a heartbeat. By including both QRS morphology, which can vary 

significantly in the presence of arrhythmia, and respiratory signal monitoring, a more 

robust triggering system was developed for use in patients with cardiac arrhythmias that 

currently results in sub-standard cine MRIs. Details of this beat-type triggering system 

and application to imaging during arrhythmia are described below. 

3. Physiologic-signal acquisition 

A one-lead analog ECG signal was collected by a clinical MRI ECG monitoring system 

(InVivo, Gainesville FL), while a respiratory motion waveform was captured by a 

pneumatic respiratory bellows (BIOPAC system, Inc., Goleta, CA). ECG and respiratory 

signals were digitized by a commercial data acquisition system (MP150, BIOPAC 

system, Inc.) and relayed to the real-time heartbeat detection and classification software 

described below. Additionally, the MRI scanner was programmed to generate a 1 ms 

rectangular synchronization pulse per TR. This pulse was relayed to the data acquisition 

system over a fiber-optic connection and recorded along with the physiologic signals to 

synchronize image acquisition data with the physiologic data. 
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4. Beat-type detection in real-time and triggering signal generation 

Real-time QRS complex detection and beat-type classification software was developed in 

Python with packages SciPy (SciPy developers, http://www.scipy.org), NumpPy (NumPy 

developers, http://www.numpy.org), and matplotlib [16]. 

Detection of QRS complexes  

QRS complex locations were detected in real-time using a modified Pan-Tompkins 

algorithm [17]. To detect QRS complexes robustly, the Pan-Tompkins algorithm first 

uses a series of filters to enhance QRS complexes while suppressing other signals and 

noise. This algorithm then uses an adaptable threshold to select QRS complexes. Three 

ways to update the threshold were studied in the work by Hamilton et.al [18]: iterative, 

mean value, and median value methods. Median value method was used in this work due 

to the better detection accuracy [18]. This algorithm was modified in the presented work 

to keep the implementation simple without losing too much detection accuracy [19]. The 

modified Pan-Tompkins is summarized in Figure 2.  
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Figure 2: Pseudocode of modified Pan-Tompkins algorithm 

1: function DETECTQRSLOCATIONS

2: qrsLocations an empty list
3: for each incoming data point x do

4: y preProcess(x)
5: if y is a peak then

6: if y > threshold and no QRS found in the last 300 ms then

7: loc the timing of x

8: add loc into qrsLocations

9: end if

10: threshold updateThreshold(y, threshold)
11: end if

12: end for

13: return qrsLocations

14: end function

15: function PREPROCESS(input)
16: x1 low-pass filter input

17: x2 high-pass filter x1

18: x3 differentiate x2

19: x4 x

2
3

20: out put average the 32 most recent x4

21: return out put

22: end function

23: function UPDATETHRESHOLD(dataPoint, threshold)
24: if dataPoint > threshold then

25: define dataPoint as a signal peak
26: else

27: define dataPoint as a noise peak
28: end if

29: s the median of 8 most recent signal peaks
30: n the median of 8 most recent noise peaks
31: threshold 0.15s+2.25n

32: return threshold

33: end function

1
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The low-pass, high-pass filters, and differentiation used in this algorithm are specified by 

the equations ( 14 ), ( 15 ), and ( 16 ), respectively [18]. 

 𝑦 𝑛 = 𝑥 𝑛 − 𝑥 𝑛 − 6 + 𝑥 𝑛 − 12 + 2𝑦 𝑛 − 1 − 𝑦(𝑛 − 2) ( 14 ) 

 

 𝑦 𝑛 = 𝑦 𝑛 − 1 −
1
32
𝑥 𝑛 + 𝑥 𝑛 − 16 − 𝑥 𝑛 − 17 +

1
32
𝑥(𝑛 − 32) ( 15 ) 

 

 𝑦 𝑛 = 0.25𝑥 𝑛 + 0.125, 𝑥(𝑛 − 1) − 0.125𝑥(𝑛 − 3) − 0.25𝑥(𝑛 − 4) ( 16 ) 

Equations ( 14 ), ( 15 ), and ( 16 ) were designed for signals with sampling rate 200 Hz. 

Classification of beat-types 

Each heartbeat was quantitatively described by a morphology feature and an RR feature. 

The morphology feature was defined as a 300 ms segment of ECG data around a QRS 

complex, and the RR feature was defined as the interval between the current and the next 

QRS complex. Using a template matching algorithm [20], heartbeats were classified into 

different types based on similarities between their features and the features of template 

heartbeats. We defined this type as a local type in order to be distinguished from the beat-

type that this algorithm finally assigned to a certain heartbeat. To enable classification 

flexibility, template heartbeats were dynamically created from heartbeats that were not 

sufficiently similar to any available template heartbeats. More details of this algorithm 

can be found in the pseudocode showed in Figure 3. 
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Figure 3: Pseudocode of template matching algorithm 

As ventricular volumes and ejection fraction of the current heartbeat can be affected by 

the morphology of the previous heartbeat, the beat-type finally assigned to the current 

1: function TEMPLATEMATCHING

2: set T

m

: morphology threshold
3: set T

R

: RR threshold
4: beatTypes a empty list
5: for each QRS wave do

6: candidates an empty list
7: morphlogy 300ms segment around this QRS wave
8: RR the time between this and the next QRS waves
9: for each avaialbe template do

10: S

m

 max
✓

cross-correlation(morphology, template.morphology)

norm(morphology)norm(template.morphology)

◆

11: S

R

 
����
template.RR�RR

template.RR

����

12: if S

m

> T

m

and S

R

> T

R

then

13: score S

m

+S

R

14: add (score, template) into candidates

15: end if

16: end for

17: if candidates is not empty then

18: find the template associated with the highest score from candidates

19: add template.ID into beatTypes

20: else

21: add (morphology,RR) as newTemplate

22: newTemplate.ID = total number of available templates �1
23: add newTemplate.ID into beatTypes

24: end if

25: end for

26: return beatTypes

27: end function

1
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heartbeat was defined as the local type of the current heartbeat in addition to the local 

type of the previous heartbeat. 

Evaluation of QRS complex detection and beat-type classification 

The modified Pan-Tompkins and the template matching algorithms were tested on MIT-

BIH arrhythmia database [21], [22] with 48 ECG records. Each record is slightly above 

30 minutes with 360 Hz sampling frequency. A modified limb lead II (MLII) ECG of 

each record was used in this test. As the modified Pan-Tompkins algorithm was designed 

for signals with 200 Hz sampling frequency, linear interpolation was performed to down-

sample these records. For the template matching algorithm, the morphology threshold 

was empirically set to 0.7, and the RR threshold was empirically set to 0.7. 

After processing by the modified Pan-Tompkins and the template matching algorithms, 

the classification results were compared with the reference beat annotations included with 

these records (the description of beat annotations could be found online in 

http://physionet.org/physiobank/annotations.shtml). To assess the accuracy of the 

implemented algorithms in the classification of each beat type, the results of 

classification were mapped to the reference beat annotations, since the template-matching 

can only discriminate among different types but cannot determine the exact name of a 

given morphology. To perform the mapping, the timing of the classified heartbeats was 

compared with the timing heartbeats of each reference annotation, and the reference 

annotation that included the highest number of heartbeats with the same timing was 

paired with the beat-type. Finally, the accuracy was calculated as the number of correctly 

classified heartbeats divided by the total number of heartbeats in the reference 
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annotations.  

Detection of end-expiration 

The end-expiratory phase was detected by thresholding of a respiratory bellows signal. 

Prior to thresholding, a direct current (DC) removal filter [23] (equation ( 17 )) and a 

Butterworth low-pass filter designed using MATLAB (MathWorks, Inc., Natick, MA. 

Release 2016a) (equation ( 18 )) were applied to remove the drift and the noise, 

respectively. 

 𝑦 𝑛 = 𝑥 𝑛 − 𝑥 𝑛 − 1 + 0.995𝑦(𝑛 − 1) ( 17 ) 

	

 𝑦 𝑛 = 0.0078𝑥 𝑛 + 0.0078𝑥 𝑛 − 1 + 0.9844𝑦(𝑛 − 1) ( 18 ) 

Equations ( 17 ) and ( 18 ) were designed for signals with sampling rate 200 Hz. 

Trigger generation 

The software was also implemented with the functionality that allowed users to change 

target beat-type in real-time. As the template matching algorithm had no knowledge of 

the names of different arrhythmias and sinus heartbeats, the users had to be familiar with 

the ECG morphology of the target beat-type expected to be triggered. When the target 

beat-type was detected during end-expiration, a 5V trigger pulse was generated (BIOPAC 

System, Inc.) and applied to the external trigger input of the MRI scanner. The trigger 

pulse was used to change the k-space sampling location after the whole target heartbeat. 

Therefore, the effects of the trigger were delayed until the detection of the next QRS 
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complex.  

Figure 4 illustrates classification of heartbeats and a generated trigger pulse in a human 

subject with premature ventricular complexes (PVCs). 

5. Design of imaging sequences  

Triggered beat-type imaging sequence design 

A conventional segmented radial SSFP sequence was modified to update the sampling 

trajectory when the MRI scanner received an external trigger pulse. When the triggering 

option was enabled, the sampling of the same k-space segment was repeated until 

detection of an external trigger, at which point the sampling was advanced to the next k-

space segment. Two sampling trajectories were evaluated in this study: continuous 

segmented radial sampling [24] and interleaved segmented sampling with golden-ratio 

interleaving [24], [25] as illustrated in Figure 5 A and B, respectively. 
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Figure 4: Heartbeat type classification and trigger generation. A: Heartbeat type 

classification. Detected QRS complex locations are marked by red circles, and results of 

heartbeat type classification are marked by different colors. The green heartbeats (beat-

type 3) representing premature ventricular contractions (PVCs) are selected for trigger 

generation. Three templates with different morphology or RR features are generated. 

Four heartbeat types formed by different template combinations are detected. B: Filtered 

respiratory signal. Expiratory windows are marked by red. C: A trigger generated 

following the first PVC that occurs within an expiratory window. Notice that no trigger is 

generated for the second PVC that occurs during inspiration.  
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Figure 5: Sampling trajectories with four radial projections in each segment. Sampled 

projections are plotted using solid lines; previously sampled projections are plotted using 

dash lines. Using the triggered method, the trajectory is updated when a trigger is 

received by the scanner. Using retrospective gating, the trajectory is updated after a fixed 

number of repetitions of the same segment (2 in this case). A. Continuous segmented 

sampling trajectory. B. Interleaved segmented sampling trajectory with golden-ratio 

interleaving.  
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For the continuous segmented trajectory, the angular spacing between projections within 

each segment was set to V
lRmno

, where 𝑁Opqr was the number of radial projections to fully 

sample the radial k-space. The first projection of each segment was set to V stNu1%
ltNu,

 where 

𝑛vEw was the current segment number and 𝑁vEw was the total number of k-space 

segments. This trajectory was selected to minimize angular spacing between projections 

in order to reduce eddy current effect which is one of the sources of image artifacts [26]. 

For interleaved imaging, the angular spacing between projections within each segment 

was set to V
xtNu

	, where 𝑀vEw is the number of radial projection in a segment, providing 

uniform k-space coverage within a single segment. The first projection of each segment 

was set according to the golden ratio: 0.618 𝑚vEw − 	1
V

xtNu
 modulo V

xtNu
, where 𝑚vEw 

was the current segment number. As a following segment always split the largest 

remaining gap among previous segments, golden-ratio interleaving could provide more 

uniform coverage of k-space after an arbitrary number of segments [25], resulting in 

more tolerable under-sampling artifact compared with the continuous segmented method.  

Retrospectively gated beat-type imaging sequence design 

In this study, triggered beat-type imaging was compared to gating with retrospective 

physiologic signal processing. The same sequence described for triggered imaging was 

also used in retrospectively gated imaging. However, instead of trigger-based trajectory 

update, the same k-space sampling segment was repeated a specified number of times 

before advancing to the next k-space segment. The number of segment repetitions was set 
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to fill 1.2 times the longest expected RR interval. A brief illustration is also included in 

Figure 5, where the repetition number equal to 2.  

After imaging acquisition, associated physiologic signals were processed offline using 

the beat-type detection software described above, and the imaging data corresponding to 

the target beat-type during end-expiration were selected. Regarding data selection, any 

parts of a target heartbeat during end-expiration could be selected in retrospectively gated 

imaging; however, in triggered imaging, the whole heartbeat had to fall within an end-

expiratory window to be selected, as illustrated in Figure 6. 
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Figure 6: Difference between data selection of retrospectively gated imaging and 

triggered beat-type imaging. Expiratory windows and detected PVCs are marked on the 

physiologic signals. The timing of the selected imaging data is marked using green bars. 

Notice that the whole heartbeat of the first PVC falls within end-expiration. Therefore, 

the corresponding data segment is selected in both methods. However, only a part of the 

second PVC falls in end-expiration; thus only retrospectively gated method selects the 

corresponding data segment.  
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6. Numerical simulations 

To more generally assess the efficiency of beat-type imaging using the triggered and 

retrospectively gated methods, a numerical simulation was performed. One hour and a 

half of physiologic signals with sampling frequency 4000 Hz were simulated to achieve 

fully sampled k-space. ECG waveforms were simulated with baseline heart rates from 60 

to 100 bpm (RR intervals equal to 0.60s, 0.65s, 0.70s, …, 1.00s, 9 types in total) and 

premature heartbeats were introduced every 1 to 5 heartbeats (5 types in total). The RR 

interval of the heartbeat prior to a premature heartbeat was set to half of the baseline RR 

interval, while the RR interval of a premature heartbeat was set to the baseline RR 

interval. Zero mean Gaussian noise with standard deviation equal to RR interval times 

0.1 was introduced. The simulated respiratory rate was varied from 5 to 20 breaths per 

minute (the lengths of breath cycle equal to 3, 4, 5, …, 12 s, 10 types in total) with the 

length of expiration equal to the length of inspiration. Zero mean Gaussian noise with 

standard deviation equal to the length of breath cycle times 0.1 was also introduced to 

simulated breath signals. 5	×	9	×	10 = 450 ECG and respiratory combinations were 

repeated 20 times, resulting 450	×	20 = 9000 simulated physiologic signals in total. In 

addition to physiologic-signal simulation, a scanner synchronization signal was also 

simulated with the interval between two synchronization pulses equal to 3.1 ms, which 

was used to synchronize k-space projections to simulated physiologic signals. For each 

synchronization pulse, the angle of the sampled k-space projection was incorporated 

following the angle update principle used in continuous segmented sampling trajectory. 

The number of projections per segment was set to 9 and the number of segments required 

to fully sample the k-space was set to 15 to match the in-vivo experiments. Cine data 
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sorting of premature heartbeats during end-expiration were then generated for triggered 

and retrospectively gated methods.  

The number of full premature heartbeats required to fully sample k-space for all cine 

frames was then compared for both methods, where a “full premature heartbeat” was 

defined as a premature heartbeat that fully fell within an end-expiratory window as the 

first selected heartbeat illustrated in Figure 5. According to its principle, triggered 

imaging guaranteed to use 15 full premature heartbeats to fully sample the k-space, while 

this number for the retrospectively gated method was indefinite. Meanwhile, we should 

note that this comparison was in inherently biased for the retrospectively gated method, 

since this method benefited from premature heartbeats that only partially fell within an 

expiratory window as illustrated in Figure 6.  

A one-tailed Wilcoxon rank sum test performed using the MATLAB ranksum function 

(MathWorks, Inc., Natick, MA. Release 2016a) was used to assess the difference 

between the distributions of the numbers of full premature heartbeats required for 

triggered and retrospectively gated methods. The null hypothesis was that the two 

distributions had the same median, and the alternative hypothesis was that the median of 

the retrospectively gated method was greater than the median of the triggered method.  

7. Beat-type imaging experiment design  

All animal protocols were reviewed and approved by the Animal Care and Use 

Committee at the Johns Hopkins University and conformed to the guidelines published in 
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the “Position of the American Heart Association on Research Animal Use.”  

A domestic pig (weight 40 kg) was studied during mechanical ventilation while under 

general anesthesia. Using X-ray fluoroscopy guidance, a 7 F sheath was inserted into the 

right internal jugular vein and a non-ferromagnetic pacing catheter was advanced into 

heart. 

The ventilated animals were transferred to a 1.5 T MRI scanner (Avanto, Siemens 

Medical Systems, Erlangen, Germany) and imaged using the standard chest and spine 

array coils.  

A programmable overdrive pacing stimulus was applied at 10 beats per minutes (bpm) 

over the base heart rate of the animal (Arduino Uno, https://www.arduino.cc). A 

premature pacing stimulus was delivered every 4th heartbeat to simulate arrhythmia with 

premature atrial complexes (referred as premature beats below). The pacing stimulus was 

used to trigger a 5 mA pacing pulse (A385, World Precision Instruments, Inc., Sarasota 

FL). The pacing pulse was delivered to the intra-cardiac pacing catheter over 64MHz RF 

filtered coaxial cable to suppress imaging noise and induced RF currents during imaging. 

ECG and respiratory waveforms were acquired and processed in real-time during 

imaging. The beat-type trigger pulse was connected to the scanner external trigger input. 

For this study, the premature beat was selected as the beat-type of interest for imaging. 

steady-state free precession (SSFP) imaging of the left ventricle short axis (LV SAX) was 

performed using the triggered method and the retrospectively gated method described 

above. Imaging for each method was performed using both continuous segmented 
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sampling and interleaved segmented sampling with golden-ratio interleaving. Imaging 

parameters were TR = 3.1 ms, TE = 1.5 ms, flip angle = 60 degrees, FOV = 220 mm x 

220 mm, slice thickness = 6 mm, reconstruction image dimensions = 128 pixels x 128 

pixels, oversampling factor = 2, spatial resolution = 1.7 mm x 1.7 mm (FOV divided by 

reconstruction image dimensions), bandwidth = 953 Hz/pixel, projections per segment = 

9, and segments per image = 15. The number of projections per segment (= 9) was 

chosen to fit each imaging segment within a target temporal resolution of less than 30 ms. 

Scans were performed for 2 minutes for each imaging protocol to ensure full sampling of 

the premature beat during end-expiration. 

8. Reconstruction and result analysis  

For comparison, both triggered and retrospectively gated scans were truncated at the time 

when the first 15 full premature heartbeats were detected. Cine data sorting was then 

applied to both methods. Finally, each cine phase was reconstructed using non-uniform 

fast Fourier transform (NUFFT). A 5-neighbor Kaiser-Bessel kernel with min-max 

interpolator was used. [11] 

k-Space coverage and image quality were compared between the triggered and 

retrospectively gated cine images. Additionally, for continuous segmented sampling, the 

number of premature heartbeats required to fully sample k-space was compared to assess 

the relative time efficiency of both methods.  

The number of cine phases was chosen as the largest integer that was less than the RR 
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interval divided by target temporal resolution (given by TR times the projection number 

per segment = 3.1 ms x 9 = 27.9 ms), thus the actual temporal resolution was RR interval 

divided by the cine phase number. If more than one projection had the same angle in a 

given cardiac phase, only the first projection was kept.  
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Results 

9. Evaluation of modified Pan-Tompkins and template matching 

algorithms 

The mean accuracy was 76.03% and the standard deviation is 19.50%. The accuracy for 

each record is showed in Table 1. 

Table 1: Accuracy of heartbeat detection and classification 

Record Number 100 101 102 103 104 105 106 107 
Accuracy (%) 97.67 70.08 74.90 98.90 77.52 90.51 54.86 78.61 
Record Number 108 109 111 112 113 114 115 116 
Accuracy (%) 65.97 97.95 95.29 99.80 91.75 43.05 97.13 94.20 
Record Number 117 118 119 121 122 123 124 200 
Accuracy (%) 99.54 79.19 76.85 97.05 68.30 92.75 90.86 65.71 
Record Number 201 202 203 205 207 208 209 210 
Accuracy (%) 42.54 49.81 26.31 95.33 64.95 75.16 88.32 46.64 
Record Number 212 213 214 215 217 219 220 221 
Accuracy (%) 81.11 84.87 80.50 94.35 43.21 74.19 90.72 54.02 
Record Number 222 223 228 230 231 232 233 234 
Accuracy (%) 32.42 72.82 65.12 67.77 85.93 65.00 71.58 98.47 

10. Numerical simulation results 

The numbers of full premature heartbeats required to fully cover the k-space for the 

triggered and retrospectively gated methods are shown in Figure 7. Although the 

retrospectively gated method requires a minimum of 12 full premature heartbeats to reach 
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full sampling, the median of the number of full premature heartbeats is 51; however, the 

triggered method requires a constant 15 full premature heartbeats. P = 0.  

 

Figure 7: Histogram of the numbers of full premature heartbeats to fully sample k-space 

using the triggered and retrospectively gated methods. Red dash line indicates the number 

(15) of full premature heartbeats required by the triggered method. Numbers exceeding 

300 are not showed. 

11. Beat-type triggered vs. retrospectively gated trajectory comparison 

Figure 8 compares the experimental continuous segmented sampling trajectory for the 

triggered method and the retrospectively gated method. Only the projections for the first 
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cine phase are shown. The triggered method generates an ascending “step-shaped” 

sampling pattern that predictably increments without sampling gaps each time the beat-

type of interest was encountered. By comparison, the retrospectively gated method has no 

knowledge of the heart rhythm during imaging and generates a “pseudo-random” 

sampling pattern when retrospective beat-type and respiratory gating are performed.  

For the triggered method, k-space was fully sampled after 15 full premature heartbeats. 

However, for the retrospectively gated method, k-space had unfilled gaps after 15 full 

premature heartbeats, and this scan (24 detected premature heartbeats in total) had 

insufficient data for the retrospectively gated method to fully sample the k-space.  
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Figure 8: k-Space projections of the continuous segmented sampling of the triggered 

method (A and B) and the retrospectively gated method (C and D). Red dots represent the 

selected data for the reconstruction of the first cine phase and corresponding physiologic 

signals. Vertical yellow dash lines represent triggers. A, C: selected projections after 15 

full premature heartbeats. B, D: physiologic signals and sampled projections during one 

full premature heartbeats.  

12. Cine beat-type image reconstruction and k-space coverage 

Figure 9 shows the k-space coverage and the resulting images after the first 15 premature 
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heartbeats using continuous segmented sampling. End-systolic, mid-diastolic, and end-

diastolic cine results are selected from the 25 frame cine image with temporal resolution 

28 ms. Full sampling for all cine frames is noted using the triggered method; however, 

variable gaps are present in the k-space coverage using the retrospectively gated method. 

Corresponding image artifacts due to under-sampling are seen in the retrospectively gated 

images.  

Figure 10 shows the results for interleaved imaging with golden-ratio interleaves. The 

end-systolic image is shown after 1, 3, and 5 full detected premature heartbeats for both 

methods. The k-space coverage is more uniform using the triggered method compared 

with the retrospectively gated method, reflecting orderly selection of consecutive golden-

ratio interleaves. In this case, the under-sampling artifact is less noticeable after 5 

premature heartbeats using the triggered method compared with the retrospectively gated 

method. 

 



 32 

 

Figure 9: Reconstruction of the continuous segmented sampling. End-systole, mid-

diastole, and end-diastole of the cine images are showed. A. Triggering method. B. 

Retrospectively gated method. 
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Figure 10: Reconstruction of the interleaved segmented sampling with golden ratio 

interleaving after 1, 3, and 5 full premature heartbeats. End-systole is shown. A. 

Triggered method. B. Retrospectively gated method. 
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Discussion and Conclusions 

13. Evaluation of modified Pan-Tompkins and template matching 

algorithms 

Compared to other beat-type classification algorithms [27]–[30], the template matching 

algorithm implemented in this study has relatively low accuracy. However, this algorithm 

does not require training on arrhythmia databases and allows subject-adaptable beat-type 

classification. Furthermore, morphology and RR thresholds could be adjusted to increase 

classification accuracy for a specific subject; but this will increase the probability of 

compromising detection sensitivity of the target beat-type, thus prolonging scanning time. 

More accurate classification algorithms could be incorporated in the triggering system in 

the future with the only constraint being that the time available for classification cannot 

exceed the duration of one heartbeat. To increase the accuracy of real-time heartbeat 

classification on a variety of different arrhythmias, an ECG system with more leads [31] 

could be also used. 

14. Efficiency comparison between both methods in numerical 

simulations 

The numerical simulations suggest that it is possible that the retrospectively gated method 

can require fewer full premature heartbeats to fully sample the k-space than the triggered 

method, since the minimal number of full premature heartbeats is 12 using the 
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retrospectively gated method, while the number is 15 using triggered method requires. 

However, the triggered method is more efficient than the retrospectively gated method in 

general, which is suggested by the median of full premature heartbeats (51) using the 

retrospectively gated method and the one-tailed Wilcoxon rank sum test. Because of this 

result, we only conducted one in-vivo experiment to demonstrate the efficiency of the 

triggered method.  

15. Efficiency comparison between both methods in the in-vivo 

experiment 

Because of the fact that the triggered method required less full heartbeats than the 

retrospectively gated method to fully sample the k-space, the experiment also suggests 

higher efficiency of the triggered method over the retrospectively gated method 

Intuitively, the retrospectively gated method requires fewer full heartbeats, as it also takes 

advantage of heartbeats that only partially fall within an expiratory window. This is 

revealed in Figure 10 where the retrospectively gated method has more projections than 

the triggered method. However, in sampling trajectories that have fixed projection 

locations in k-space, such as the continuous segmented sampling trajectory, it is difficult 

for the retrospectively gated method to fill the uncovered k-space “gap” simply by chance 

(Figure 9); this finding was also suggested by the numerical simulations. In contrast, the 

triggered method, which only changes the segment of k-space being sampled when the 

desired beat-type is found, achieves full k-space coverage in a pre-designed sampling 

pattern, thus guaranteeing complete sampling after a certain number of full heartbeats (15 

in the presented work). This disadvantage of the retrospectively gated method is expected 
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to be more severe when approaching higher resolution or 3D imaging, as more k-space 

segments are required to obtain fully sampled k-spaces. For trajectories that have flexible 

projection locations (such as those based on the golden ratio [25]), the experiment also 

suggests that the triggered method has more uniformly distributed projections compared 

to the retrospectively gated method. Thus we can conclude that better image quality may 

be achieved with insufficient scan time as showed in Figure 10.  

16. Comparison between continuous and interleaved segmented 

sampling trajectories 

The continuous segmented sampling trajectory and the interleaved segmented sampling 

trajectory with golden-ratio interleaving sampling have different advantages. One of the 

main reasons for choosing continuous segmented sampling is that it minimizes eddy 

currents when using the SSFP sequence. This is because the largest angular space 

between two consecutive projections does not exceed the angular space of a k-space 

segment (1.33 x (9 – 1) = 10.54 degrees in the presented work). In contrast, in the 

interleaving sampling trajectory, the largest angular space between two consecutively 

projections is 180 / 9 = 20 degrees. On the other hand, the interleaved segmented 

sampling with golden ratio is more efficient when the scanning time is insufficient. As 

each segment is spread evenly to cover the whole k-space, and the golden-ratio fashion 

ensures that the next segment splits the largest k-space “gap” [25], the images have better 

quality compared with continuous segmented sampling Figure 9 and Figure 10. 
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17. Comparison between the proposed method and standard 

arrhythmia rejection 

Compared with the standard arrhythmia rejection cine imaging, the proposed method 

allows users to choose a specific heartbeat type to image. This enables not only accurate 

arrhythmia-free imaging but also imaging during a specific arrhythmia heartbeat type 

(such as PVC). The proposed method permits image-based studies of specific arrhythmia 

pathophysiology for the first time.  

18. Comparison between the proposed method and real-time imaging 

Compared with real-time imaging [1]–[4], the proposed method (utilizing segmented 

sampling trajectories and cine imaging) provides the possibility of choosing higher 

temporal and spatial resolution. Theoretically, the temporal resolution is equal to the 

acquisition time of a k-space segment thus could be set to any value that is no less than 

TR (3.1 ms in the presented work) with the trade-off of scanning time. Higher spatial 

resolution is also achievable, although it would increase TR and the segment number to 

fully sample k-space. Additionally, the proposed methods use straightforward and fast 

reconstruction (NUFFT), which is feasible for clinical application.  

19. Limitations of the proposed methods 

The presented work has limitations. First, the experiment has a very small sample size as 

only one animal was imaged. However, the observation of higher efficiency of the 



 38 

triggered method compared with the retrospectively method was also supported by the 

results from numerical simulations (Figure 7), assuming beat-types can be detected 

accurately. Another limitation is that the real-time beat-type detection platform was not 

tested on human subjects. Human subjects could have more inconsistent respiration and 

different types of arrhythmias compared with the controlled animals, which would 

increase the complexity of QRS complex detection and beat-type classification.  

Third, the current implementation of the real-time beat-type detection software is 

inefficient when imaging the types of heartbeats that occurred consecutively, such as 

sinus beats. Considering the following situation illustrated in Figure 11: 

 

Figure 11: Detection of sinus heartbeats. End-expiration is marked by red in respiration 
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signal; QRS complex locations are marked by red circles. Notice that the delays between 

trigger pulses and QRS complexes cause overlapped sampling in k-space. 

Due to the delay between the trigger pulse and the QRS complex following the detected 

heartbeat, if two target heartbeats are detected consecutively as illustrated in Figure 11, 

the sampling during the delay is identical to the previous sampling, creating gaps in k-

space coverage of the first few cine phases. A workaround solution of the proposed 

method disabled the trajectory update when the consecutive target heartbeat was detected, 

which compromised the time efficiency. Although this problem could be solved by 

minimizing this delay by detecting QRS complexes using direct thresholding instead of 

Pan-Tompkins algorithm, detection flexibility could be compromised.  

20. Conclusions 

The proposed work provides a platform to perform efficient cine imaging of cardiac 

arrhythmias with relatively high temporal and spatial resolution, thus enabling the study 

of arrhythmia pathophysiology using MRI. More efficient methods may be developed 

and tested on the presented triggering system, especially when applied to high resolution 

and 3D imaging. 
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