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Abstract 

Sudden cardiac death occurs when an unexpected ventricular arrhythmia degenerates into 

fibrillation, which prevents the heart from pumping blood through the body. Heart 

diseases such as heart failure are significant risk factors for arrhythmias and are 

characterized by severely altered calcium (Ca2+) handling in cardiac myocytes. However, 

the Ca2+-dependent mechanisms underlying cardiac arrhythmia initiation are not well 

understood. 

 In this work, mathematical models were developed to investigate the molecular 

mechanisms of pathological Ca2+ dynamics in ventricular cardiac myocytes. A 

biophysically-detailed three-dimensional model of a subcellular Ca2+ release site was 

used to study mechanisms of spontaneous spatially-confined Ca2+ release events, known 

as Ca2+ “sparks,” which underlie cell-wide Ca2+ release and arrhythmogenic Ca2+ waves. 

It revealed a correlation between Ca2+ spark frequency and the maximum eigenvalue of 

the adjacency matrix describing the Ca2+ release channel lattice. This relationship was 

further investigated using a mathematical contact network model describing the Ca2+ 

spark initiation process. 

 A multiscale model of a 1D fiber of myocytes was also developed to investigate 

the mechanisms of ectopic excitation of cardiac tissue. The model was used to study the 

stochastic variability of delayed afterdepolarizations caused by spontaneous propagating 

waves of Ca2+ sparks. Large delayed afterdepolarizations triggered ectopic beats 

probabilistically due to the stochasticity of Ca2+ release channel gating. A novel method 

was developed to estimate the probability of rare arrhythmic events. 
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Chapter 1  Introduction 

Sudden cardiac death (SCD) occurs following the unexpected onset of a cardiac 

arrhythmia and accounts for an estimated 180-400,000 deaths per year in the US (1). 

Heart failure (HF) affects 8.4M individuals in the US (2) and increases the likelihood of 

SCD 6- to 9-fold (3). Other forms of heart disease including hypertrophic 

cardiomyopathy (4), long QT syndrome (5), and catecholaminergic polymorphic 

ventricular tachycardia (CPVT) (6) are also significant risk factors for SCD. These 

diseases are characterized by alterations to calcium (Ca2+) handling in cardiac myocytes 

that predispose the heart to arrhythmogenesis. However, the mechanisms contributing to 

the initiation of cardiac arrhythmias remain incompletely understood. 

1.1   Cardiomyocyte Calcium Dynamics 

Contraction of the cardiac myocyte is driven by a process known as excitation-

contraction coupling (ECC), which is initiated at Ca2+ release units (CRUs) when 

individual L-type Ca2+ channels (LCCs) open in response to membrane depolarization. 

These events produce Ca2+ flux into a narrow subspace formed by the t-tubule (TT) and 

junctional sarcoplasmic reticulum (JSR) membranes. The resulting increase in subspace 

Ca2+ concentration ([Ca2+]ss) leads to opening of Ca2+-sensitive Ca2+ release channels, 

known as ryanodine receptors (RyRs), located in the JSR membrane, producing 

additional flux of Ca2+ into the subspace. These two sources of Ca2+ flux generate an 

intracellular Ca2+ transient that triggers cardiac muscle contraction. Studying the 

mechanisms of this Ca2+-induced Ca2+ release (CICR) process is therefore critical to 

understanding healthy and diseased cardiac muscle function. 
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Individual release events, referred to as "Ca2+ sparks,” can be visualized using 

fluorescent Ca2+ indicators and confocal microscopy (7, 8). Spontaneous Ca2+ sparks are 

observed in resting myocytes and during diastole. A Ca2+ spark occurs when a RyR opens 

spontaneously and causes a local rise in [Ca2+]ss that triggers the rest of the RyR cluster. 

Recently, it has been shown that diastolic Ca2+ sparks contribute to sarcoplasmic 

reticulum (SR) Ca2+ leak (9), which balances Ca2+ uptake into the SR by the SR Ca2+-

ATPase (SERCA) pump. In addition, RyRs can mediate Ca2+ leak in the absence of Ca2+ 

sparks (9, 10). The spontaneous opening of a single RyR may fail to trigger the rest of the 

RyR cluster, thus releasing only a small amount of Ca2+ (11, 12). This type of event is 

known as a "Ca2+ quark,” and it results in a phenomenon referred to as “invisible” Ca2+ 

leak because its fluorescence signal is too small to detect with [Ca2+]i indicator dyes (13). 

Invisible leak may originate from RyRs located in clusters or from non-junctional 

“rogue” RyRs (14). 

Spark fidelity, or the probability that a single RyR opening triggers a Ca2+ spark, 

is a property of the RyR cluster, and it is strongly influenced by RyR gating properties. In 

particular, the sensitivity of the RyR to [Ca2+]ss critically influences spark fidelity. When 

a RyR opens, neighboring RyRs sense the steep [Ca2+]ss gradient from the open channel. 

If [Ca2+]ss sensitivity is very high, openings are very likely to recruit nearby RyRs, 

whereas low sensitivity to [Ca2+]ss results in fewer Ca2+ sparks. Previously, single-

channel studies in artificial lipid bilayers found that the EC50 for RyR open probability 

was in the range of 1-25 µM (15). However, more recent experiments have shown that 

this range is likely much higher (45-85 µM) in the presence of physiological [Mg2+], 

[ATP], and JSR Ca2+ concentration ([Ca2+]jsr ) (16-18). There are a multitude of 
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mechanisms that modulate RyR gating. A large body of work suggests that [Ca2+]jsr 

controls sensitivity to [Ca2+]ss (15, 17, 19-21). The physiological role of [Ca2+]jsr-

dependent regulation is controversial, but recent single-channel studies have concluded 

that [Ca2+]jsr-dependent regulation is weak in rat and mouse in the physiological range of 

[Ca2+]jsr (0.1-1 mM) (16, 17). There is also evidence that the JSR load affects RyR 

activity during Ca2+ sparks by controlling the unitary RyR current amplitude, which 

would influence the [Ca2+]ss gradient during channel opening (11, 16, 22). Other 

regulatory mechanisms include the effects of protein kinase A (23, 24), Ca2+ /calmodulin-

dependent kinase II (CaMKII) (25, 26), allosteric coupling (27, 28), redox modifications 

(29), and genetic mutations associated with CPVT (17, 30, 31). The role of CRU 

geometry in Ca2+ spark fidelity has been studied using compartmental models (32, 33), 

but has yet to be addressed with a detailed 3D model. 

The cardiac CRU is formed by the JSR, a flattened cisternal extension of the SR 

~30 nm thick that wraps around the TT, forming a narrow subspace ~12- 20 nm in width. 

In recent years, viewpoints on the packing of RyRs within the subspace have evolved. 

Franzini-Armstrong et al. observed densely packed RyR “foot” structures in the subspace 

using electron microscopy and estimated large cluster sizes in excess of 100 RyRs (34). 

However, recent super-resolution fluorescence microscopy techniques showed 

heterogeneous peripheral RyR cluster shapes with unprecedented detail, and quantitative 

analysis confirmed that RyR cluster sizes are exponentially distributed. Of note, the 

majority of RyR channels were organized in clusters of ~25 RyRs in rat myocytes (35). 

Breakthroughs in electron microscope tomography have led to detailed 3D 

reconstructions of the TT and SR ultrastructure, revealing that the geometry of the 
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subspace is also heterogeneous due to the irregular shape of the SR membrane (36, 37). 

Remodeling of the JSR (38, 39) and TT (40, 41) have also been observed in models of 

chronic HF. Despite these new data, the functional roles of subspace and RyR cluster 

geometry remain unclear and cannot be directly investigated through current 

experimental methods and technologies. 

1.2    Cellular Arrhythmias 

Under conditions promoting cellular Ca2+ overload, Ca2+ sparks can trigger the RyRs at 

nearby release sites and form a propagating Ca2+ wave(42). During this spontaneous Ca2+ 

release event, Ca2+ is removed from the cell through the Na+/Ca2+ exchanger (NCX), 

which transports 3 Na+ ions into the cell for every Ca2+ ion extruded out. This produces a 

net inward current, resulting in an inflection in the cell membrane potential known as a 

delayed afterdepolarization (DAD)(43). DADs of sufficient amplitude can lead to the 

activation of the fast Na+ current (INa) to trigger an AP. Gap junctions joining adjacent 

cells then conduct the AP across the myocardial syncytium. Such ectopic events in the 

heart can induce reentrant ventricular arrhythmias that lead to sudden cardiac death(44). 

Furthermore, propensity for exhibiting spontaneous Ca2+ release is increased in heart 

diseases such as HF and some forms of long-QT syndrome, which are associated with 

increased risk for sudden cardiac death. Therefore understanding of Ca2+ dynamics in 

ventricular myocytes and the Ca2+ handling instability that arises under pathological 

conditions are fundamental to our understanding of cardiac arrhythmogenesis. 

 Experimental studies have observed triggered activity under conditions evoking 

spontaneous Ca2+ release in myocardial wedge preparations(45) and whole heart(46, 47). 

These studies showed that the likelihood of observing of ectopic foci is correlated with 
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the amount of Ca2+ loading. In isolated myocytes, Ca2+ waves are observed when the SR 

Ca2+ load achieves a critical level(48). However, electrotonic coupling in tissue 

attenuates DAD amplitude by draining inward current to adjacent myocytes through the 

gap junctions. Wasserstrom et al. reported that by increasing SR Ca2+ load, spontaneous 

Ca2+ waves exhibited greater synchrony following cessation of rapid pacing in intact 

heart(47). Synchronous DADs would result in smaller spatial gradients in membrane 

potential, less inward current flowing into neighboring cells, and therefore larger DAD 

amplitude. The mechanism of synchronization and factors affecting the likelihood of 

triggered activity are not well understood. 

1.3   Reproducible Research in Computational Modeling 

Computational modeling is now an essential tool for studying a wide range of biological 

systems. As knowledge of these systems deepens, models have become increasingly 

multi-scale, complex, and computationally demanding. Publication of such models is 

challenging because transcribing equations and parameter values from model software 

into publications is error prone. XML-based model description languages such as SBML 

(49) and CellML (50) have been developed to address some of these challenges. These 

languages separate the description of models from the details underlying their 

implementation and execution. Once models are correctly encoded, they may be 

distributed in an error-free manner for machine interpretation. To enable reproduction of 

published results, authors must also disseminate the simulation details of each in silico 

experiment. 

The scope of existing model description languages and their associated 

computational tools limits them for use with certain classes of models. SBML Level 3 
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describes biochemical reaction networks and their kinetic laws (49). It has been widely 

adopted by the systems biology community, and other infrastructure such as the 

BioModels Database (51) have been built around this standard. CellML describes models 

formulated as differential-algebraic equations (52), and the CellML Model Repository 

contains descriptions of over 500 models. Tools such as Copasi (53) and OpenCOR (54) 

can import SBML and CellML model descriptions and solve the underlying model 

equations. 

Many different types of mathematical representations may encompass a given 

model as they become increasingly multi-scale. For example, our super-resolution spark 

(SRS) model presented in Chapter 2 can be used to study mechanisms underlying the 

generation of Ca2+ sparks. While some model components can be described using 

existing markup languages (e.g., ion channels and membrane transporters), the integrated 

model cannot. Simulations require definition of a model geometry and channel placement 

in that geometry, and solution of a reaction-diffusion equation in which some 

components of the reaction term require Monte Carlo simulations of stochastic channel 

gating, while others require solution of ordinary differential equations. Given the nature 

of this and many other highly complex multi-scale biological models, we believe it is 

important to consider complementary methods and technologies that make computational 

models accessible to users, and that enable modelers to systematically document their 

work so that it can be reproduced by others. 

Galaxy (55) is a web-based platform for conducting data-intensive biomedical 

research that has been widely adopted by genomics researchers. Galaxy provides users 

access to data, analysis algorithms, and computational resources on which analyses are 
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performed. All capabilities are accessed solely through the user’s web-browser. Galaxy 

instances are highly customizable, and extensible new tools can be created or imported 

from the Galaxy Tool Shed - an open repository of applications contributed by the 

community (56). Galaxy is a reproducible research system (RRS) that automatically 

tracks and records details of analyses, allows the construction of complex workflows, and 

permits results to be documented, shared, and published with complete provenance, 

helping to assure transparency and reproducibility of research. Galaxy is also a workflow 

composition system (WCS) that allows sequential steps of data reads/writes and data 

analyses to be assembled in a modular fashion using its graphical interface.  
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Chapter 2  Superresolution Calcium Spark Model 

2.1   Model Description 

Here we present a detailed three-dimensional model of a cardiac Ca2+ release unit that 

incorporates diffusion, intracellular buffering systems, and stochastically gated ion 

channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination 

across a wide range of geometries and conditions. Furthermore, the model captures the 

details of Ca2+ spark and non-spark based SR Ca2+ leak and produces normal excitation-

contraction coupling gain.  

The model simulates local Ca2+ dynamics with a spatial resolution of ~10 nm over the 

course of individual release events (~100 ms). It is based on the previous work of 

Williams et al. (12) and incorporates major biophysical components, including 

stochastically gated RyRs and LCCs, spatially organized TT and JSR membranes, and 

other important elements such as mobile buffers (calmodulin, ATP, fluo-4), immobile 

buffers (troponin, sarcolemmal membrane binding sites, calsequestrin), and the SERCA 

pump. The three-dimensional geometry was discretized on an unstructured tetrahedral 

mesh and solved using a cell-centered finite volume scheme. Parameter values and 

additional equations are given in 0. 

2.1.1   Geometry 

The simulation domain is a 64 µm3 cube (64 fL) with no-flux conditions imposed at the 

boundaries. The CRU geometry consists of the TT and JSR membranes (Figure 2.1A). 

The TT is modeled as a cylinder 200 nm in diameter (41) that extends along the z-axis of 

the domain. Unless otherwise noted, we used a nominal geometry where the JSR is a 

square “pancake” 465 nm in diameter that wraps around the TT (57), forming a dyadic 
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space 15 nm in width. The thickness of the JSR is 40 nm and has a total volume of 10-17 

L. RyRs are treated as point sources arranged in the subspace on a lattice with 31 nm 

spacing, and the LCCs are located on the surface of the TT. The nominal CRU model 

contains a square 7×7 array of RyRs and 7 LCCs distributed evenly over the RyR cluster 

(Figure 2.1B). The SERCA pump and troponin buffering sites are homogeneously 

distributed in the cytosol beyond a radius of 200 nm from the TT axis.  

  



 10	
  

 

Figure 2.1 Model geometry diagrams. 

(A) Cross-sectional diagram of the model geometry and arrangement of ion channels and 

membrane structures. The TT is modeled as a cylinder 200 nm in diameter and is 

partially encircled by the JSR, forming a subspace 15 nm in width. The ion channels are 

treated as point sources and do not occupy any volume in the subspace. (B) Schematic of 

flattened JSR (gray) with the arrangement of a 7×7 lattice of RyRs with 31 nm spacing 

(red) and LCCs distributed over the cluster (green). The depicted JSR membrane is 465 

nm in diameter 
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2.1.2   Transport Equations 

The Ca2+ diffusion and buffering system is based on a previous spark model by Hake et 

al. (58). The reaction-diffusion equation for Ca2+ is given by 

 ∑+∇=
∂

∂ +
+

i
iCa JCaD

t
Ca ][][ 22

2

β , (2.1) 

where β is the dynamic buffering fraction due to sarcolemmal binding sites and DCa is the 

diffusion coefficient. The Ji terms represent sources of Ca2+, including additional buffers, 

RyR and LCC fluxes, and SERCA uptake. Diffusion of mobile buffers (ATP, calmodulin, 

fluo-4) is modeled using similar transport equations. Each buffer B (excluding 

sarcolemmal binding sites) is assumed to bind to Ca2+ according to elementary rate laws 

given by 

 ]][[][ 2+−= CaBkCaBkJ onoffB , (2.2) 

where and kon and koff are reaction rate constants, and [CaB] is the concentration of Ca2+-

bound buffer. Concentration balance equations and the values of the diffusion 

coefficients, reaction rate constants, and buffer concentrations are provided in 0. The 

LCC (59) and SERCA (60) flux formulations are adapted from previous work. [Ca2+]jsr is 

modeled spatially in the JSR with the same diffusion coefficient as in the cytosol. The 

network SR (NSR) Ca2+ concentration ([Ca2+]nsr) is assumed to be constant. JSR Ca2+ is 

refilled by the NSR at each element in the JSR volume with a flux term given by 

 ( )jsrnsrrefillrefill CaCavJ ][][ 22 ++ −= , (2.3) 

where 𝜈refill is a constant that was adjusted to achieve a refill time constant of ~130 ms 

(61). Refilling of the JSR throughout its volume is unlikely to have significant impacts on 

[Ca2+]jsr dynamics, as JSRs typically have ~4 connections to the NSR (57). 
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Negatively charged phospholipid head groups on the inner sarcolemmal membrane 

surface are known to exert significant electrostatic effects on [Ca2+]ss dynamics (62). 

However, the Debye length for the electric field at the membrane is ~1 nm, which would 

have required much higher spatial resolution. This was computationally prohibitive to 

include in this model due to the small time steps required. Instead, a rapid buffering 

approximation was used for Ca2+ binding to high affinity sarcolemmal binding sites 

described in Peskoff et al. (63) (see 0).  

2.1.3   Ion Channels 

RyRs and LCCs are simulated stochastically using Markov chains. The LCC model used 

here was described previously in (59). The RyR is a minimal, two-state Markov chain 

that incorporates activation by [Ca2+]ss and [Ca2+]jsr-dependent regulation of the opening 

rate (12). State transitions are determined according to a fixed closing rate (k-) and an 

opening rate given by 

 ηφ ssopen Cakr ][ 2++= , (2.4) 

where +k is the opening rate constant, φ  represents a [Ca2+]jsr-dependent regulation term, 

and η is a constant. The unitary RyR Ca2+ flux is given by 

 ( )ssjsrryrryr CaCavJ ][][ 22 ++ −= , (2.5) 

where vryr is a constant. The values of k+, η, and vryr were adjusted to yield physiological 

resting Ca2+ spark frequency and leak rate at 1 mM [Ca2+]jsr . A narrow range of these 

parameters yielded a realistic spark rate for rat of ~100 cell-1 s-1. The value of vryr was 

adjusted to a unitary current of 0.15 pA at 1 mM [Ca2+]jsr . The φ  term is an empirical 

power function given by 
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 ( )42 ][ kjsrb Ca φφφ ++= , (2.6) 

where ϕb and ϕk are constants. At 1 mM [Ca2+]jsr , PO at diastolic [Ca2+]ss (100 nM) is 

extremely low (1.76×10-6), and the EC50 for activation is 55 µM. We assumed that 

[Ca2+]jsr strongly regulates PO (64) such that at 2 mM [Ca2+]jsr , the EC50 decreases to 29 

µM. In accordance with recent data (16, 17), however, we assumed that the [Ca2+]jsr 

weakly regulates the RyR when [Ca2+]jsr is below 1 mM such that the EC50 does not 

change significantly. In cases where [Ca2+]jsr-dependent regulation was assumed to be 

absent, ϕ=1, which corresponds to the effect of a resting level of 1 mM [Ca2+]jsr on RyR 

opening rate when this regulation is intact. 

2.1.4   Numerical Methods and Implementation 

The simulation domain was discretized with an unstructured mesh consisting of ~12,000 

tetrahedral elements and was generated using Tetgen (65). The transport PDEs were 

solved in space using a cell-centered finite volume scheme for unstructured grids and 

explicitly in time using the first-order Euler method. For the nominal model geometry, 

numerical stability and solution convergence was achieved for time steps < 47 ns. We 

utilized a 12 ns time step, which ensured both stability and accuracy across all tested 

CRU geometries. RyR and LCC gating models were simulated using the method 

described by Alfonsi et al. (66) (see SI text). A Galaxy (55) toolset was developed for the 

model, allowing users to explore sample datasets and run simulations with customized 

CRU geometries and model parameters on a cloud-based service. Example workflows are 

available for performing linescan simulations, Ca2+ spark fidelity and leak estimation, 

and ECC gain estimation. The tools can be found under the “Calcium Spark” model and 

the example histories and workflows under “Shared Data” at: http://cvrg.galaxycloud.org. 

http://cvrg.galaxycloud.org
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2.1.5   Spark Analysis 

Linescans were generated by convolving a Gaussian point spread function with the Ca2+-

bound indicator dye concentration, as described in Smith et al. (67), and the raw 

fluorescence signal was normalized to the baseline signal (F0). Gaussian noise was 

superimposed to resemble intrinsic photon noise. Spark kinetics and morphology were 

computed using Sparkmaster (68). Methods used to estimate Ca2+ spark fidelity, rate, 

leak, and ECC gain are given in the SI text. Unless otherwise noted, each plotted data 

point is derived from an ensemble of at least 1,000 independent simulations. 

2.1.6   Spectral Analysis of RyR Clusters 

RyR clusters were defined by the channel positions on a 2D lattice. For a given cluster 

with N channels, we define the N×N adjacency matrix A with elements aij = 1 if RyRs i 

and j are adjacent, and 0 otherwise. This represents a graph where vertices represent 

RyRs and edges represent adjacency. It is well-known that the spectrum of the adjacency 

matrix of a graph contains valuable information about its structural properties (69). We 

computed A for a collection of RyR cluster geometries to show that its maximum 

eigenvalue λmax is a reliable predictor of spark fidelity. 
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2.2   Results 

2.2.1   Model Validation 

To validate the model, a nominal parameter set and geometry were selected to produce a 

representative Ca2+ spark with realistic appearance, frequency, and integrated flux. The 

Ca2+ spark was initiated by holding a RyR open for 10 ms. The linescan simulation 

exhibited a time-to-peak of 10 ms, full-duration at half maximum of 24 ms, and full-

width at half maximum (FWHM) of 1.65 µm (Figure 2.2A). The width is slightly lower 

than what is observed experimentally (1.8- 2.2 µm), but this discrepancy could not be 

remedied by increasing release flux or altering the CRU geometry. This “Ca2+ spark 

width paradox” is difficult explain using mathematical models (16, 67, 70), but it may be 

due to non-Fickian diffusion in the cytosol (71). [Ca2+]ss at the center of the subspace 

peaked at 280 µM, and optical blurring decreased peak F/F0 6-fold due to the small 

volume of the subspace (data not shown). The local [Ca2+]ss transients in the vicinity of 

an open RyR were similar to that shown for a 0.2 pA source in previous work that 

incorporated electrodiffusion and the buffering effects of negatively charged 

phospholipid heads of the sarcolemma (62) (data not shown). 

The model was also constrained to reproduce whole-cell Ca2+ spark rate and 

overall SR Ca2+ leak. The Ca2+ spark frequency at 1 mM [Ca2+]jsr was estimated to be 133 

cell-1 s-1 (see 0), which is in agreement with the observed Ca2+ spark rate of ~100 cell-1 s-1 

in rat (72). The leak rate of 1.01 µM s-1 is also close to that of a previous model of the rat 

myocyte used to study SERCA pump-leak balance (12) and is consistent with an 

experimental study in rabbit (9).  
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ECC gain was estimated for a 200 ms membrane depolarization at test potentials 

from -20 to 60 mV in 20 mV steps. The gain was then computed as ratio of peak total 

RyR flux to peak total LCC flux. ECC gain decreased from 20.7 at -20 mV to 1.5 at 60 

mV, in reasonable agreement with experimental studies (73). This validation was 

achieved without further fitting of the model parameters. 
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Figure 2.2 Representative Ca2+ sparks and RyR gating properties. 

(A) Simulated linescan of Ca2+ spark (with [Ca2+]jsr-dependent regulation) shown with the 

temporal fluorescence profile through the center of the spark (bottom), and the spatial 

fluorescence profile at the peak of the spark (right). (B) Three-dimensional renderings of 

the Ca2+ spark showing TT (blue), JSR (red), and 1 µM [Ca2+]i isosurface (green). The 

presence of the JSR membrane causes noticeable asymmetry in the [Ca2+]i gradient 

throughout the spark. (C) Average [Ca2+]ss , (D) number of open RyRs, and (E) total RyR 

current, and (F) average [Ca2+]jsr with (blue) and without (red) [Ca2+]jsr-dependent 

regulation during a spark initiated at t = 0 ms. Left panels show traces for single 

representative sparks, and right panels show averages of at least 100 sparks. Note that the 

peaks of the averages were lower due to variability in spark activation timing. An 

example Ca2+ spark dataset can be viewed at: 

http://cvrg.galaxycloud.org/u/mwalker/h/spark-linescan. 

http://cvrg.galaxycloud.org/u/mwalker/h/spark-linescan
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2.2.2   The Life and Death of Ca2+ Sparks 

The model provides new insights into local Ca2+ signaling during release. Figure 2.2B 

shows the asymmetrical profile of the 1 µM cytosolic Ca2+ concentration ([Ca2+]i) 

isosurface during a spark. Linescan simulations with scans parallel to the TT (z-

direction), orthogonally through the center of the subspace (x-direction), and in the y-

direction exhibited FWHMs of 1.65, 1.50, and 1.35 µm, respectively, but showed no 

significant asymmetry in their respective spatial profiles (data not shown). The presence 

of the JSR caused noticeable rotational asymmetry in [Ca2+]i, however, particularly on the 

back face of the JSR, where [Ca2+]i reaches ~1 – 4 µM. Shrinking the JSR lessened this 

effect on the [Ca2+]i isosurface, but still resulted in an uneven distribution during release. 

[Ca2+]i outside the CRU reached ~10 µM on the side opposite the JSR due to lower 

resistance to diffusion. These results highlight the importance of accounting for the 

nanoscopic structure of the CRU in studying localized Ca2+ signaling in microdomains. 

During Ca2+ spark initiation, a rise in local [Ca2+]ss around an open channel 

triggers the opening of nearby RyRs, resulting in a rapid increase in average [Ca2+]ss 

(Figure 2.2C) and the sustained opening of the entire cluster of RyRs (Figure 2.2D). Note 

that release continues for over 50 ms, despite much shorter spark duration in the linescan. 

This is explained by the decline in release flux (Figure 2.2E) due to emptying of JSR 

Ca2+ over the course of the Ca2+ spark (Figure 2.2F). When [Ca2+]jsr reaches ~0.2 mM, 

the declining [Ca2+]ss can no longer sustain RyR re-openings, and the Ca2+ spark 

terminates. This indirect [Ca2+]jsr-dependent regulation of the RyR is critical to the 

process by which CICR can terminate. Figure 2.2 C - F also shows sparks where 

[Ca2+]jsr-dependent regulation was removed, in which case spark dynamics were very 



 19	
  

similar and termination still occurred. This is not surprising given that [Ca2+]jsr dependent 

regulation below 1 mM was weak in this model. The release extinction time, defined as 

the time from the first RyR opening to the last RyR closing, was marginally higher on 

average without [Ca2+]jsr-dependent regulation (56.4 vs. 51.5 ms). Our data clearly show 

that Ca2+ sparks terminate via stochastic attrition facilitated by the collapse of [Ca2+]ss 

due to localized luminal depletion events (i.e., Ca2+ blinks). Importantly, this conclusion 

is consistent with our earlier models (12, 70, 74, 75) and in agreement with recent models 

by Cannell et al. (16) and Gillespie & Fill (76). However, it is not clear that naming this 

existing termination mechanism to something such as "induction decay" or "pernicious 

attrition" provides additional insight beyond a simple acronym such as STOP (Stochastic 

Termination On Ca2+ dePletion). Regardless, the critical role played by [Ca2+]jsr depletion 

in Ca2+ spark termination is clear, and this depletion must be robust enough for [Ca2+]ss to 

decrease sufficiently so that spontaneous closings of active RyRs outpaces Ca2+-

dependent re-openings. 

2.2.3   Direct [Ca2+]jsr-dependent Regulation of RyRs 

The role of direct [Ca2+]jsr-dependent regulation on RyR gating remains controversial. As 

shown in the previous section, we found that such regulation is not essential for Ca2+ 

spark termination. To see how this mechanism influences cell function, we investigated 

its effects on spark fidelity, Ca2+ spark rate, leak, and ECC gain over varying SR loads.  

Experimental studies have demonstrated that Ca2+ spark frequency and SR Ca2+ 

leak rate increase exponentially at elevated [Ca2+]jsr (9, 77, 78). There are two intrinsic 

factors contributing to the exponential rise. First, higher [Ca2+]jsr results in larger 

concentration gradients across the JSR membrane, thereby increasing the unitary current 
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of the RyR. This accelerates the [Ca2+]ss rising rate and thus perpetuates release from 

other RyRs. Second, higher SR loads also increase the amount of Ca2+ released per Ca2+ 

spark, contributing to increased Ca2+ spark-based leak. [Ca2+]jsr-dependent regulation 

introduces two additional mechanisms that contribute to increased Ca2+ spark frequency. 

First, [Ca2+]jsr-dependent regulation of the RyR enhances its sensitivity to [Ca2+]ss at 

higher [Ca2+]jsr , increasing the likelihood that the cluster will be triggered. Second, the 

enhanced Ca2+ sensitivity also increases the frequency of spontaneous Ca2+ quarks (12). 

To elucidate the importance of [Ca2+]jsr-dependent regulation in the SR leak-load 

relationship, we tested two versions of the model with and without it. In the case without 

it, ϕ = 1, so that Ca2+ spark frequency and leak are still properly constrained at 1 mM 

[Ca2+]jsr. Spark fidelity and the total Ca2+ released per Ca2+ spark were estimated from an 

ensemble of simulations of independent CRUs, from which Ca2+ spark frequency and SR 

Ca2+ leak rate could be estimated for [Ca2+]jsr values ranging from 0.2 to 1.8 mM (see 0). 

The presence of [Ca2+]jsr-dependent regulation increased fidelity at high [Ca2+]jsr due to 

enhanced [Ca2+]ss sensitivity, which increased the likelihood that a single open RyR 

triggered nearby channels (Figure 2.3A). The frequency of Ca2+ sparks, which is 

proportional to spark fidelity, was therefore also elevated for the same reason but 

additionally because of a higher spontaneous opening rate at resting [Ca2+]ss (Figure 

2.3B). Average Ca2+ released per Ca2+ spark was slightly lower in the presence of 

[Ca2+]jsr-dependent regulation (Figure 2.3C). This is because the RyR gating model 

exhibits a small decrease in [Ca2+]ss sensitivity upon JSR depletion, thus accelerating 

spark termination and decreasing total Ca2+ release. However, the combination of 

enhanced spark fidelity and the increased rate of individual RyR openings resulted in an 
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exponential increase in Ca2+ spark frequency under Ca2+ overload, despite the purely 

linear relationship observed in the absence of [Ca2+]jsr-dependent regulation (Figure 

2.3D). Therefore, the exponential rise in spark rate and leak rate at elevated [Ca2+]jsr 

cannot be accounted for solely by the greater driving force for Ca2+ release flux and 

higher SR load, but it can be explained by RyR sensitization by [Ca2+]jsr-dependent 

regulation. 

Figure 2.3E shows that there was a small effect on the fraction of leak attributed 

to non-spark events, with greater invisible leak at lower [Ca2+]jsr in the presence of 

[Ca2+]jsr-dependent regulation. This is due to the fact that [Ca2+]jsr-dependent regulation 

decreases [Ca2+]ss sensitivity at low values of [Ca2+]jsr and therefore also lowers spark 

fidelity. Interestingly, we find that invisible leak is maximal at 1 mM [Ca2+]jsr (data not 

shown). The decrease in invisible leak under SR overload is explained by a decline in the 

mean open time for non-spark RyR openings (1.90 ms at 1 mM vs. 0.64 ms at 1.8 mM). 

This occurs because a larger flux through the RyR occurs at higher [Ca2+]jsr , causing 

other RyRs to be triggered earlier. It is then more likely that even short openings would 

initiate Ca2+ sparks, decreasing the average Ca2+ release of non-spark events. Finally, 

Figure 2.3F shows small differences in ECC gain at a 0 mV test potential between 

models with and without [Ca2+]jsr-dependent regulation at varying [Ca2+]jsr , reflecting 

differences in RyR sensitivity to trigger Ca2+. 
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Figure 2.3 Effects of SR load on SR Ca2+ leak and ECC gain.  

Results are plotted for two versions of the model with (black) and without luminal 

[Ca2+]jsr-dependent regulation (red). (A) Dependence of spark fidelity, the probability of 

a spark occurring given that one RyR has opened. (B) Whole-cell spark rate, estimated 

assuming 1.25×106 RyRs per cell. (C) Mean total Ca2+ release per spark. (D) Visible leak 

released through sparks only. (E) The fraction of total RyR mediated leak attributed to 

invisible (non-spark) leak. (F) Peak-to-peak ECC gain for the 200 ms voltage clamp 

protocol to 0 mV. An example dataset for Ca2+ spark fidelity and leak estimates is 

available at: http://cvrg.galaxycloud.org/u/mwalker/h/fidelity-leak, and for ECC gain at: 

http://cvrg.galaxycloud.org/u/mwalker/h/ecc-gain. 

  

http://cvrg.galaxycloud.org/u/mwalker/h/fidelity-leak
http://cvrg.galaxycloud.org/u/mwalker/h/ecc-gain
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2.2.4   Subspace Geometry 

Ultrastructural remodeling of the subspace has been implicated in diseases such as HF 

(38, 39, 79) and CPVT (80, 81). We investigated how changes in subspace geometry 

influence CRU function. We first altered the distance between the TT and JSR 

membranes. Ca2+ spark fidelity (Figure 2.4A), rate (Figure 2.4B), and leak (Figure 2.4C) 

decreased steeply as the TT-JSR separation increased beyond the nominal width of 15 

nm. This separation reduced the initial rise of [Ca2+]ss during CICR due to the increase in 

subspace volume. The resulting drop in spark fidelity led to fewer sparks and less leak. 

The ECC gain at 0 mV also declined in a similar manner, dropping sharply from 16.8 at 

12 nm to 2.4 at 30 nm (Figure 2.4D). This is not surprising given the effects of subspace 

width on fidelity, since LCCs also initiate release through CICR. Ca2+ sparks, Ca2+ spark-

based leak, and ECC function were nearly abolished at subspace widths greater than 60 

nm, with the exception of invisible leak, which was nearly constant over all distances. 

We also investigated the effects of resizing the JSR membrane diameter (as 

depicted in Figure 2.1B) over a range of 217×217 nm2 to 465×465 nm2. We observed 

higher spark fidelity for JSRs of larger diameter (Figure 2.5A), which introduced 

resistance to diffusion of Ca2+ out of the subspace. Larger JSRs also exhibited greater 

spark-based leak and decreased invisible leak (Figure 2.5B). The enhanced spark-based 

leak was due to the higher spark rate and larger JSR volume, which provides more 

releasable Ca2+ per spark. The effect on invisible leak was smaller in absolute terms, 

dropping from 0.090 µM s-1 at 217×217 nm2 to 0.082 µM s-1 at 403×403 nm2 but then to 

0.051 µM s-1 at 465×465 nm2. Smaller JSRs are more likely to leak invisible Ca2+ 

because of their lower fidelity. These results suggest that remodeling of the JSR, as 
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observed in diseased hearts, may alter SR Ca2+ leak and the effectiveness of CICR and 

extends previous observations (41). 
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Figure 2.4 Effects of increasing the distance between TT and JSR membranes. 

Effects on (A) Ca2+ spark fidelity (B) spark rate, (C) spark (circles) and non-spark 

(triangles) based SR Ca2+ leak, and (D) ECC gain at 0 mV clamp potential. Spark-based 

leak and ECC gain were abolished for widths over 40 nm due to the increase in subspace 

volume, while invisible leak remained nearly constant. 
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Figure 2.5 Effects of JSR diameter on SR Ca2+ leak. 

(A) Spark fidelity (triangles) and rate (circles). (B) Spark and non-spark based SR Ca2+ 

leak. Data points collected for JSR membrane areas of 217×217, 279×279, 341×341, 

403×403, and 465×465 nm2. 
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2.2.5   RyR Cluster Structure 

Superresolution imaging techniques have revealed the diversity and complexity of 

channel arrangements of peripheral RyR clusters (35). We explored how the geometry of 

the RyR cluster may be related to spark fidelity. Images of peripheral RyR clusters were 

acquired using superresolution STED microscopy of RyR immunolabelings in isolated 

adult mouse myocytes (C57Bl6) (41, 82). Imaging protocols were adjusted to sample 

RyR immunofluorescent signals at a lateral imaging resolution less than 70 nm and 

produced variable and complex cluster shapes. These images were then used to extract 

RyR cluster geometries and infer the arrangement of RyRs in each cluster. For this 

purpose, high signal levels equal to and above the 95th percentile brightness were 

interpreted to represent a closed lattice of RyR channels (83). We incorporated a 

collection of 15 RyR cluster arrangements that represented the diversity of cluster 

geometries into the model and estimated the fidelity of each RyR using the protocol from 

Figure 2.3A. Figure 2.6 illustrates the RyR cluster arrangements, where each RyR is 

colored according to its spark fidelity. Larger and denser clusters exhibited higher spark 

fidelity. For example, cluster (i) with 4 RyRs had a 1.2% average fidelity, while cluster 

(xv) with 91 RyRs had an 11.1% average fidelity. Evidently, there were also spatial 

gradients in fidelity, particularly across the larger clusters. RyRs located on the boundary 

of a cluster were less likely to initiate sparks, while those near the epicenter had a high 

chance of triggering sparks because they had more neighboring RyRs. 

We also explored the spark fidelity of two artificial cluster types: square arrays 

and randomly generated clusters in which cluster lattice spaces contained a RyR with 

50% probability. The number of RyRs in a cluster was a robust predictor of spark fidelity 
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for the STED-based clusters and square arrays (data not shown). For these two cluster 

types, larger clusters exhibited higher spark fidelity. In a cell-wide population of release 

sites, clusters with more than 30 RyRs contributed to 92% of spark-based leak. However, 

the number of RyRs was not a robust predictor of spark fidelity for the randomly 

generated clusters. RyRs with zero, one, or two adjacent RyRs were common in the 

random clusters, but they contributed little to spark fidelity. Therefore, clusters with the 

same number of RyRs exhibited different spark fidelity because of heterogeneity in 

cluster structure. 
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Figure 2.6 Spark fidelity of RyR cluster geometries inferred from STED nanoscopy 

images. 

Superresolution imaging of adult rat cardiomyocyte RyR clusters at < 70 nm lateral 

resolution resolved highly variable cluster shapes and sizes that were translated into a 

lattice of pore positions. Heat maps depict the RyR cluster geometries, with the TT axis 

in the vertical direction. Each grid square represents a single RyR and is colored by the 

probability that it will trigger a spark. At least 10,000 simulations were performed for 

each cluster. 
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2.2.6   Spectral Analysis of RyR Cluster Structure 

To understand why clusters with the same number of RyRs exhibit different fidelity 

requires consideration of the channel arrangement. A natural approach is to use a graph-

based analysis in which adjacent RyRs, represented by nodes, are connected by edges.  

We computed the maximum eigenvalue λmax of each cluster’s adjacency matrix 

for square arrays, STED-based clusters, and the randomly generated clusters and found a 

remarkably strong correlation with spark fidelity (Spearman’s rank correlation ρ = 

0.9055). Figure 2.7A shows each cluster’s λmax value plotted against its spark fidelity for 

the nominal set of model parameters. The range of λmax values was 1.8 - 3.92, near the 

theoretical bounds of 1 - 4. STED-based clusters had a wide range of λmax values (2.0 - 

3.69) due to their varying sizes and degrees of compactness. Densely packed square 

arrays had mostly higher values (2.83 - 3.92). The randomly generated clusters fell in a 

lower range (1.80 - 3.23) due to their fragmented structure. It can be shown that 

maxmax dd << λ , where d  and dmax are the average and maximum degrees of the 

graph, respectively (69). The fidelity of the clusters from Figure 2.7A was also 

significantly correlated with d  (r = 0.8730) (data not shown). The slightly lower 

correlation coefficient may be attributed to the fact that λmax takes into account the full 

structure of the RyR network. 

We then tested how an increase in RyR Ca2+ sensitivity would alter the 

relationship between spark fidelity and λmax because of its relevance to RyR 

hypersensitivity in CPVT (17, 84). Figure 2.7B shows the fidelity of the STED-based and 

square clusters when the RyR EC50 was decreased to from 55 to 25 µM by increasing the 

mean open time (𝜏O) to 10 ms or increasing the opening rate constant. The strong 
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correlation between λmax and fidelity still held for this set of parameters, with r = 0.9266 

and 0.8169 for increasing 𝜏O and the opening rate, respectively. Increasing 𝜏O elevated 

fidelity to a range of 0.45 – 0.72, which was greater than the range 0.31 – 0.50 resulting 

from increased opening rate. Note that the changes in model parameters were 

approximately five-fold in both cases, suggesting that Ca2+ spark fidelity is more 

sensitive to changes in 𝜏O. These results show how an increase in RyR sensitivity 

resulting from CPVT-linked mutations causes dramatically increased Ca2+ spark fidelity.  

In all cases, λmax was a consistent predictor of spark fidelity for a given set of 

physical parameters. We therefore conclude that the precise arrangement of RyRs in the 

subspace has a significant impact on the spark initiation process and that the fidelity of 

the RyR cluster can be reliably predicted from λmax, which only requires knowledge of the 

RyR cluster structure. 
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Figure 2.7 Correlation between maximum eigenvalue λmax of the RyR cluster 

adjacency matrix and spark fidelity. 

(A) Results for clusters inferred from STED images (circles), square arrays of RyRs 

(diamonds) and random clusters (squares, 7×7 in blue; 10×10 green; 15×15 magenta). 

Random clusters were generated by randomly filling each RyR lattice space with 50% 

probability. (B) Results for STED-based and square clusters where RyR EC50 was 

lowered from 55 to 25 µM by increasing the RyR opening rate constant k+ from 1.10×10-

3 to 5.80×10-3 ms-1µm-η (triangles) or increasing τO to 10 ms (circles). The data from 

panel (A) for STED and square clusters are replotted for comparison (squares). 
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2.3   Discussion 

Here we have presented a novel three-dimensional model of the cardiac CRU to 

investigate mechanisms of Ca2+ release. The model is based on previous work, which 

demonstrated that RyR-mediated leak through Ca2+ sparks and non-spark “Ca2+ quarks” 

is sufficient to achieve SERCA pump-leak balance in resting cells (12). The present work 

is the first to quantitatively capture these dynamics and exhibit a realistic ECC gain in a 

superresolution spatial framework that is not limited by the assumptions of a 

compartmental model, such as the uniformity of [Ca2+]ss within the subspace or 

simplified cytosolic transport fluxes. The model has enabled us to explore how 

perturbations of subspace geometry and RyR cluster arrangements, like those that may 

occur under normal physiological conditions and in various diseased states, affect Ca2+ 

release. It also provides a framework for exploring nanoscopic Ca2+ signaling and can be 

used to investigate a plethora of topics such as the roles of Ca2+ load, RyR gating 

properties, [Ca2+]ss and [Ca2+]jsr sensitivity, and CRU geometry in Ca2+ release. 

2.3.1   RyR Cluster Spectral Properties 

A significant finding of this work is that the maximum eigenvalue of the RyR cluster 

adjacency matrix is a reliable predictor of Ca2+ spark fidelity. Spectral graph theory is a 

mature field that has been used in a variety of applications, such as the study of Internet 

networks (85), spread of social contagion (86), protein side chain cluster detection (87), 

biological networks (88), phylogeny inference (89), EEG analysis (90), and infectious 

disease models (91). These studies leverage the information contained in graph spectra to 

characterize network structure and develop novel metrics for predicting functional system 

properties. 
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Similarly, we have discovered an important role for λmax in predicting an 

important functional property of a complex system. The correlation with spark fidelity is 

remarkable given the complexity and non-linearity of the model. Note that this enables 

one to compare fidelity across clusters for a given physiological state, and it only requires 

knowledge of the RyR cluster structure. We believe that this is an elegant theoretical tool 

that can be used for functional comparison of different cluster structures in experimental 

studies. 

2.3.2   [Ca2+]jsr-dependent Regulation 

Termination of Ca2+ release is essential to stable cell function. However, it remains 

unclear exactly how a Ca2+ spark terminates given the regenerative nature of CICR. 

Several potential mechanisms have been proposed, including [Ca2+]ss- or use-dependent 

RyR inactivation (92) and [Ca2+]jsr-dependent regulation of RyRs (19). Our model 

predicts that deactivation of the RyR caused by [Ca2+]jsr-dependent regulation is not 

necessary for Ca2+ spark termination. Note that this result may be dependent on the refill 

rate of the JSR, as faster rates can prevent sufficient JSR depletion and thus Ca2+ spark 

termination as well by this mechanism (data not shown) (93, 94). A more detailed model 

that incorporates diffusion of Ca2+ in the network SR may be able to address this issue 

more carefully. Similarly, we did not include RyR-RyR interactions (27, 28), since Ca2+ 

spark termination did not require it. Nevertheless, there is reasonable biological evidence 

that support such interactions. When features that require such interactions in the 

generation and/or termination of Ca2+ sparks are shown experimentally, they can be used 

to constrain and inform Ca2+ spark features.  
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We have also shown that [Ca2+]jsr-dependent regulation can explain the 

exponential shape of the SR leak-load relationship (9, 77) by 1) enhancing RyR 

sensitivity to the local rise in [Ca2+]ss during a Ca2+ quark and 2) increasing the 

spontaneous RyR opening rate. It is also possible that Ca2+-activated regulators, such as 

CaMKII (25, 26), RyR mutations (84), or mutations in RyR-linked proteins (95) may 

affect the relationship between SR load and spark frequency in a similar manner or that 

propagation of release between adjacent sites could enhance leak under overload (96). 

Nevertheless, the model predicts that the leak-load relationship cannot be adequately 

captured in the absence of these mechanisms. 

2.3.3   Physiological and Pathophysiological Significance 

We have shown how an increase in spark fidelity leads to higher Ca2+ spark frequency 

and Ca2+ spark-based leak. Ca2+ spark frequency is an important property that controls 

cellular and SR Ca2+ load by providing a pathway for Ca2+ to leak from the SR during 

diastole. Diastolic spark-based leak leads to extrusion of Ca2+ from the cell through the 

sarcolemmal Na+/Ca2+ exchanger and also delicately balances SR refilling via the 

SERCA pump (12, 97). Under conditions with enhanced SR Ca2+ leak, these pathways 

contribute to reduced SR Ca2+ load and impaired systolic function. 

CPVT is an inherited genetic disorder that often leads to syncope and sudden 

cardiac death. The disease has been linked to mutations in the RyR (RYR) and 

calsequestrin (CASQ2) genes (98). Chen et al. (17) recently showed that a R33Q-CASQ2 

knock-in mice exhibit CPVT-like symptoms and then showed through single-channel 

studies that this mutation causes an increase in RyR 𝜏O to ~10 ms. They attributed this 

increase to a loss of calsequestrin-dependent regulation of the RyR. Jiang et al. (84) 
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studied a CPVT-linked RYR mutation that resulted in decreased mean closed time of the 

channel. 

We have shown that these mutations result in dramatically higher spark fidelity 

(compare Figure 2.7 A and B). The increased sensitivity to [Ca2+]ss directly elevated leak, 

as did the higher Ca2+ spark rate that it caused, and both would contribute to the reduction 

in SR load and spontaneous cell-wide release (i.e. Ca2+ sparks and Ca2+ waves) observed 

in experimental models of CPVT (99-101). This model and these data suggest that CICR 

underlies these changes in Ca2+ sparks and waves and not store overload-induced Ca2+ 

release (SOICR) (102).  

Using the R33Q-CASQ2 knock-in model, Liu et al. (80) and Denegri et al. (81) 

observed extensive ultrastructural remodeling of the CRU, resulting in JSR 

fragmentation, reduced subspace areas, and smaller RyR clusters. Our results are in 

agreement with a recent compartmental model by Lee et al. (33), who showed that 

subspace volume and efflux rate critically influence spark fidelity. Interestingly, our data 

suggest that this could be a compensatory mechanism that helps reduce the enhanced 

fidelity, spark frequency, and SR Ca2+ leak caused by the increase in 𝜏O.  

Chronic HF in cardiac myocytes is characterized by diminished excitation-

contraction coupling and slowed contraction (9, 103), which are in part due to a reduction 

in SR Ca2+ load (41, 104). It has been shown that RyR-mediated leak alone is sufficient 

to cause the decrease in SR Ca2+ load (9). This can be attributed to a variety of 

posttranslational modifications to the RyR, including PKA-dependent phosphorylation 

(24), CaMKII-dependent phosphorylation (105), and redox modifications (106). The 

model shows how the spark rate rises quickly for sensitive channels, suggesting that 
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minor increases in RyR [Ca2+]ss sensitivity could significantly enhance SR Ca2+ leak in 

HF. 

Structural changes to the CRU may be caused by a down-regulation of the protein 

junctophilin-2 (JP2) in HF (38, 39, 79). Wu et al. (39) observed a reduction in the length 

of the JSR and subspace in both failing rat myocytes and a JP2 knockdown model. This, 

in part, led to reduced [Ca2+]i transients and desynchronized release. The present work 

has confirmed that the CICR process is sensitive to the diameter of the JSR, which acts as 

a barrier to Ca2+ efflux from the subspace. Shortening the JSR reduces spark fidelity (see 

Figure 2.5A) and thus the ability of trigger Ca2+ from the LCCs to efficiently activate the 

RyRs. In addition, van Oort et al. (79) demonstrated experimentally that JP2 knockdown 

resulted in an increase in the variability of subspace width. This is consistent with the 

model prediction that ECC gain is sensitive to the distance between the JSR and TT (see 

Figure 2.4D), implying that subspace width variability would also contribute to 

nonsynchronous release during ECC. 

JSRs become separated from the TT during chronic HF, resulting in “orphaned” 

RyR clusters that are uncoupled from the LCCs (107). Again, the model predicts that the 

separation of the JSR and TT membranes strongly decreases spark frequency and ECC 

gain due to the increase in subspace volume. This corroborates the findings of Gaur and 

Rudy (32), who demonstrated that increasing subspace volume causes reduced ECC gain. 

We conclude here that orphaned RyR clusters contribute less to spark-based leak and 

Ca2+ release during ECC, but they may mediate invisible leak. 

The heterogeneity of spark fidelity among release sites may have implications for 

the formation of Ca2+ waves. Modeling studies have suggested that conditions that enable 
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one Ca2+ spark to trigger another are needed to initiate a Ca2+ wave (108). While it is 

unclear exactly how this occurs in every instance, conditions that favor regenerative Ca2+ 

sparks among local CRUs leads to both the generation of “macrosparks” and Ca2+ waves 

(42, 109). Therefore, RyR clusters with greater spark fidelity may be more 

arrhythmogenic because they have a higher propensity for exhibiting spontaneous release 

and are more likely to be influenced by the local elevation of [Ca2+]ss produced by a 

nearby Ca2+ spark. 

The model also provides insights into nanoscopic Ca2+ signaling during release. A 

small JSR results in a spherical 1 µM [Ca2+]i isosurface, while a larger JSR causes lower 

[Ca2+]i on its back face. Furthermore, peak [Ca2+]i just outside the subspace ranged from 

~1 – 12 µM depending on the relative position of the JSR. Additional barriers to diffusion 

not incorporated here, such as a mitochondrion abutting the back face of the JSR, could 

result in even higher local [Ca2+]i. These results may have implications for local Ca2+ 

sensing by mitochondria (110), CaMKII signaling (111), and Na+/Ca2+ exchanger activity 

(112, 113). Future work incorporating these components could advance our 

understanding of their individual contributions to cell function under normal and 

pathological conditions.  
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2.4   Conclusion 

To study the roles of RyR gating properties, spark fidelity, and CRU anatomy on CICR, 

we developed a three-dimensional, biophysically detailed model of the CRU. The model 

quantitatively reproduced important physiological parameters, such as Ca2+ spark kinetics 

and morphology, Ca2+ spark frequency, and SR Ca2+ leak rate across a wide range of 

conditions and CRU geometries. The model also produced realistic ECC gain, a measure 

of efficiency of the ECC process and healthy cellular function. We compared versions of 

the model with and without [Ca2+]jsr-dependent activation of the RyR and showed how it 

could explain the experimentally observed SR leak-load relationship. Perturbations to 

subspace geometry influenced local [Ca2+]ss signaling in the CRU nanodomain as well as 

the CICR process during a Ca2+ spark. We also incorporated RyR cluster geometries 

informed by stimulated emission depletion (STED) (35) imaging and demonstrated how 

the precise arrangement of RyRs can impact CRU function. We found that Ca2+ spark 

fidelity was influenced by the size and compactness of the cluster structure. Based on 

these results, we showed that by representing the RyR cluster as a network, the maximum 

eigenvalue of its adjacency matrix is strongly correlated with fidelity. This model 

provides a robust, unifying framework for studying the complex Ca2+ dynamics of CRUs 

under a wide range of conditions. 
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Chapter 3  RyR Contact Network Model 

3.1   Model Description 

We developed a theoretical framework for understanding the relationship between Ca2+ 

spark fidelity and the dominant eigenvalue of the RyR cluster’s adjacency matrix 

observed in the 3D Superresolution Ca2+ Spark (SRS) model. We employ the theory of 

contact networks (CNs), which are widely used to study the spread of disease due to 

contact between infected and susceptible individuals (91).  

In this section, we present a stochastic CN model of the Ca2+ spark initiation 

process, in which interactions arise instead from Ca2+-dependent coupling due to local 

influx and diffusion of Ca2+. For simplicity, we assume that the local Ca2+ concentration 

gradient near an open RyR declines rapidly enough in space such that only adjacent RyRs 

interact (62, 76, 114). Each channel transitions stochastically between open and closed 

states (Figure 3.1A). If an RyR channel i has Yi(t) neighboring RyR channels that are 

open, its opening rate is βYi(t), where β is a constant parameter. Therefore β is the RyR 

opening rate when one nearest neighbor RyR is open. Note that in the SRS model, the 

RyR opening rate when all neighbors are closed is very small (~9×10-7 ms-1). Therefore 

we have taken this rate to be zero in this formulation. The value of β is varied in our 

analyses. The RyR closing rate, δ, is assumed to be a constant 0.5 ms-1. Derivation of the 

model and parameters are given in Chapter 6 Appendix B. 

The CN model is able to capture RyR gating dynamics during the initiation phase 

of Ca2+ sparks. We used the Stochastic Simulation Algorithm of Gillespie (115) to 

simulate the stochastic CN model. Figure 3.1B shows traces of the number of open 

channels (NO) during representative simulations of spark initiation in the SRS and CN 
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models for a 7×7 lattice cluster. A single RyR is opened at t = 0, which then triggers 

openings of other channels. The CN model qualitatively reproduces channel gating 

behavior during the initiation of the spark. In the SRS model, Ca2+ sparks occur with 

greater than 95% probability if a minimum of four channels open. Therefore, we define 

this as the minimum number for successful spark initiation in both models. We also 

assume that each RyR in the cluster is equally likely to open spontaneously, and so the 

first open channel is chosen at random. 

The advantage of developing the CN model is that we can derive analytical 

relationships between the dominant eigenvalue of the RyR lattice's adjacency matrix, 

referred to in this chapter as λ1, and spark fidelity. In this chapter, we will refer to spark 

fidelity as spark probability, ps. We show (see Chapter 6 Appendix B) that for a 

deterministic mean-field approximation of the model, RyR open probability decays to 

zero when 

 λ1 <
δ
β

. (3.1) 

This implies that, in the mean-field approximation, δ/β is a stability threshold for λ1 at 

which RyR activity switches from decay to growth. While it was not immediately clear 

how this threshold related to the behavior of the full stochastic CN model, we expected 

that the model would exhibit constant spark probability when λ1 = δ/β. That is, for a set of 

cluster structures each with a different value of λ1, the spark probability would be 

consistent across clusters when each cluster's opening rate was set to β = δ/λ1. Figure 2C 

shows the spark probability for a collection of 107 RyR clusters obtained using STED 

microscopy (see Chapter 2 for imaging methods). For each simulation, λ1 was computed 

for the cluster and β was set to the threshold value δ/λ1. The range of spark probabilities 
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across all clusters was narrow (0.14 - 0.0078). This was also observed when using sub-

threshold values β = 0.5δ/λ1 (0.029 - 0.0024) and a supra-threshold values β = 2δ/λ1 (0.28 

- 0.012). Therefore spark probability is constant when β is scaled inversely with λ1. For 

comparison, we also plotted spark probability when β is set to a single value across all 

clusters (Figure 3.1D). In this case, spark probability increased with λ1 in agreement with 

the SRS model. 

The CN model was able to accurately predict Ca2+ spark probability for a range of 

cluster geometries. We estimated the spark probabilities for a collection of 15 RyR 

clusters obtained using STED microscopy. The value of β was adjusted until the spark 

probabilities in the CN model correlated with those of the SRS model (Figure 3.1E). 

Maximal correlation was achieved for β = 0.115 (R2 = 0.939), which gives the value of 

δ/β = 4.35. Note that the theoretical value of λ1 for any cluster is bounded above by the 

maximum number of channel neighbors (four) (116). Consequently, δ/β = 4.35 > λ1 

implies that the system is always sub-threshold for any cluster structure under normal 

physiological conditions. 

The CN model also predicts spark probability for different opening rates. To show 

this, we first estimated pS in the SRS model for a 7×7 cluster with the opening rate scaled 

by a constant factor. We then scaled β = 0.115 by the same factor and determined pS in 

the CN model. This was repeated for a range of scaling factors. Noting that the closing 

rates δ are the same in both models, we could directly compare pS in the two models by 

plotting it as a function of δ/β, where β is the scaled value. For the SRS model, β is the 

value used in the corresponding CN simulation. In both models, spark probability fell 

rapidly as δ/β approached λ1 from the left before decreasing gradually to the right of λ1. 
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This suggests that spark probability is more sensitive to RyR gating kinetics when the 

opening rate is elevated. From the data in this section, we concluded that the CN model is 

able to accurately predict pS over a range of opening rates and cluster geometries. 
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Figure 3.1 The contact network model reproduces RyR channel gating during Ca2+ 

spark initiation. 

(A) Contact network model schematic showing (i) a diagram of the structure of an 

example RyR lattice with lines connecting adjacent channels and (ii) the Markov model 

representing each channel with closed (C) and open (O) states. The opening rate of each 

channel i scales with the number of open adjacent channels Yi(t). (B) Example 

simulations showing CN model (red) and SRS model (blue) RyR gating behavior during 

the spark initiation phase. Spark generation is considered successful if NO ≥ 4 (dashed 

line). (C) Spark probabilities for a collection of 107 STED-informed RyR clusters for 
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threshold (middle), sub-threshold (lower), and supra-threshold (upper) values of β. (D) 

Spark probabilities when the value of β was set to constant values across all clusters. (E) 

β was adjusted to the nominal value of 0.115 ms-1 to maximize the correlation with spark 

probabilities from the SRS model for a collection of 15 representative clusters (R2 = 

0.939). (F) Spark probability pS of a 7×7 lattice of RyRs as a function of δ/β in the CN 

(red) and SRS (blue) models (see text for details). The CN model is in the sub-threshold 

regime when δ/β is to the right of λ1 (black dotted line). 
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3.2   Results 

3.2.1   Ca2+ Diffusion in the CN Model 

Cardiac Ca2+ release is actively regulated under normal conditions and modulated in 

various diseases. To study this regulation, we expanded the CN model by deriving a 

simple model of Ca2+ diffusion between RyR Ca2+ sources. The parameter β was 

estimated using this diffusion model and a model of RyR gating. All parameters were 

taken from the SRS model, except for the effective Ca2+ diffusion coefficient (dC), which 

was adjusted to give β = 0.115 as determined in the previous section. 

A number of signaling molecules regulate RyR channels, affecting their opening 

rate. This includes RyR phosphorylation by Ca2+ /calmodulin-dependent protein kinase II 

(CaMKII) and protein kinase A (PKA) (24, 117) and JSR Ca2+ concentration (19). 

Channel gating can also be altered under oxidative stress (106), and by genetic mutations 

(84, 95). As shown in Figure 3.2A, δ/β is inversely proportional to the channel opening 

rate constant (k+), reflecting the increased Ca2+ spark frequency observed under such 

conditions (9, 105, 118). Note that the closing rate is δ and therefore scales δ/β linearly. 

Increasing the unitary channel current (iRyR) resulted in a decrease in δ/β (Figure 3.2B). 

This behavior is consistent with experimental evidence (22), in which decreased iRyR 

resulted in lowered spark frequency. 

The CN model was also sensitive to parameters affecting the diffusion of Ca2+ 

ions in the release site subspace. Figure 3.2C shows the dependence of δ/β on dC. As dC 

increases, Ca2+ ions are more likely to escape the nanodomain around the open channel, 

thus decreasing spark probability. Uniformly increasing the distance between the open 
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channel pore and neighboring Ca2+ binding site increased δ/β so as to decrease spark 

probability (Figure 3.2D). 

In this section, we have used a simple diffusion model to probe the effects of 

perturbations to biophysical properties of the release site including the opening rate, 

unitary channel current, Ca2+ diffusion coefficient, and inter-channel spacing. The CN 

model suggests that minor modifications to these parameters can alter the stability of the 

system, thus leading to significant changes in spark probability. 

 

  



 48	
  

 

Figure 3.2 Dependence of δ/β on biophysical properties of the Ca2+ release site. 

Dependence on (A) the RyR opening rate constant, (B) unitary RyR current, (C) effective 

Ca2+ diffusion coefficient, and (D) distance between channel pore and neighboring Ca2+ 

binding site. Red dotted lines indicate nominal parameter values from the SRS model, 

except for dC, which was adjusted to give β = 0.115 as determined in Figure 3.1E. 
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3.2.2   Linear Mean-Field CN Model 

Up to this point, we have considered spark probability when each RyR is equally likely to 

open first. An emergent property of the SRS model was that the probability of a spark 

occurring varied with the choice of initiating RyR. Channels closer to the epicenter of the 

cluster were more likely to trigger sparks because they have more possible combinations 

of first, second, third, etc. neighbors along which channel openings could propagate. 

Likewise, channels on the periphery of the cluster were less likely to trigger sparks. 

We derive a linear mean-field representation of the CN (LCN) model (see 

Appendix B) to quantitatively study how spark probability depends on the position of the 

initiating RyR. The LCN model can be used to compute the expected number of open 

channels as a function of time. We reasoned that a greater expected number of open 

channels during the spark initiation phase would imply that sparks are more likely to 

occur and therefore would correlate with pS. Using the LCN model, we derived an 

expression for the expected number of open channels, E[NO] (see Chapter 6 Appendix B), 

and computed its value for a collection of 15 RyR clusters. We find that E[NO] derived in 

the LCN model correlated with pS in the SRS model (R2 = 0.934, Figure 3.3A). Note that 

the equation for E[NO] is time-dependent, but the results were not sensitive to our choice 

of the time point t (R2 = 0.933 and 0.923 at t = 4 and 12 ms, respectively).  
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To further establish the relationship between E[NO] and pS, we compared E[NO] to 

λ1 for a broader collection of 107 clusters obtained from STED microscopy (Figure 3.3B). 

A strong correlation between these variables was present, in contrast to the number of 

channels in the cluster, which was not consistently correlated with E[NO]. Recall that 

these conclusions were also drawn from the data of Figure 2.7 for a smaller collection of 

clusters. Taken together, these data suggest that λ1 and E[NO] are both accurate predictors 

of pS, while by itself the number of channels without regard to relative channel locations 

is not. 

The LCN model was used to compute the vector whose elements are the expected 

number of open channels given each possible initiating RyR. We denote this vector E[nO] 

(see Chapter 6 Appendix B), where each element (E[nO])j is the expected number of open 

channels given that channel j is opened initially. Note that our nominal value of δ/β is in 

the sub-threshold regime, which implies that E[NO] and E[nO] both decay in the LCN 

model (see Chapter 6 Appendix B). Figure 3.3C shows how (E[nO])j was initially 1, 

reflecting the first open channel, and decayed in time. This occurred at varying rates 

within an individual cluster, depending on the choice of initiating RyR. (E[nO])j decayed 

more rapidly for channels j near the edge compared to those near the center, consistent 

with the lower peripheral spark probabilities estimated using the SRS model (Figure 

3.3D). This is because channels near the edge have fewer adjacent channels to trigger, 

and therefore it is less likely that a second channel will open before the first closes. 

Furthermore, the peripheral channels tend to have fewer second, third, etc. neighbors that 

can potentially be activated compared to central channels. 
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We conclude that both the expected number of open channels in the LCN model 

is strongly correlated with spark probability. This fact will be used to further analyze 

spatial gradients in spark probability that depend on which RyR is opened initially. 
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Figure 3.3 The expected number of open channels in the linearized mean-field CN 

(LCN) model predicts spark probability. 

(A) Expected number of open channels (E[NO]) of the LCN model at t = 8 ms strongly 

correlated with pS of the SRS model (R2 = 0.934). Data are shown for a collection of 15 

clusters. (B) E[NO] also correlated with λ1 (red), but not with the number of channels in 

the cluster (n, black). Data points are from collection of 107 clusters. (C) Time 

dependence of the expected number of open channels for different initiating RyRs 

(E[nO]) on edge of the cluster (blue), in the interior (red), and the average (E[NO]) for the 

cluster shown in the following panel. (D) Heatmaps of E[nO] (left) and pS estimated using 

the SRS model (right) illustrates intra-cluster gradients in spark probability.  
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3.2.3   Characterization of Subdomains by the Eigenmodes 

The LCN model can be decomposed into a set of independent eigenmodes by taking the 

similarity transform of the adjacency matrix: A= VDVT, where V is the modal matrix 

whose columns are formed by a set of orthonormal eigenvectors {v1, v2,..., vn} and D is a 

diagonal matrix of eigenvalues {λ1, λ2,..., λn} in descending order. Note that A is 

symmetric such that V-1 = VT. The ith eigenmode is defined by the pair λi-vi, in which λi 

determines the rate of decay of the eigenmode in time and the values (vi)j determine the 

membership of channel j in the eigenmode. We derived an expression for E[nO] as a 

weighted sum of the eigenvectors 

 E nO (t)[ ] = bi (t)vi
i=1

n

∑ , (3.2) 

where the weights bi(t) = e(βλi-δ)tuTvi, with u being the all-one-vector. A similar expression 

for E[NO] is given by 

 E NO (t)[ ] = ci (t)
i=1

n

∑ , (3.3) 

where ci(t) = (1/n)e(βλi-δ)t(uTvi)2 = (1/n)bi(t)uTvi. Therefore E[nO] and E[NO] are essentially 

equal to weighted sums of the eigenmodes. The derivation of these equations can be 

found in Chapter 6 Appendix B. 

In the previous section, we presented further evidence of the relationship between 

λ1 and spark probability as well as intra-cluster spatial gradients in spark probability. A 

natural question to then ask is: does the dominant eigenvector (v1) corresponding to λ1 

give us information about these gradients? Furthermore, how significant are other 

eigenmodes? 
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The spatial distribution of E[nO] is shown for collection of 10 RyR clusters in 

Figure 3.4A. We further defined ci = ci (t̂ ) cj (t̂ )
j=1

n

∑  at t̂ =8 ms, which gives the fractional 

contribution of the ith eigenmode to NO( t̂ ). We decomposed these clusters into their 

eigenmodes and plotted the values of ci corresponding to the 8 greatest eigenvalues in 

Figure 3.4B. In most cases (clusters (1)-(4), (6), (7), (9)), c1 was the only large value, 

implying that the dominant eigenmode characterized the behavior of the LCN model. 

Clusters (5), (8), and (10), however, exhibited another significant ci corresponding to a 

subdominant eigenmode. 

Examining the dominant eigenmode of each cluster, we found that for clusters 

characterized by only the dominant eigenmode, there was a single locus of elevated 

membership in the dominant eigenvector corresponding to the channels j with greatest 

values (E[nO])j (Figure 3.4C). Furthermore, the eigenmode's spatial gradients resembled 

the full solution in Figure 3.4A. For clusters with a subdominant eigenmode (5, 8, 10), 

however, the dominant eigenvector did not fully characterize the spatial gradients in 

E[nO]. For these clusters, the subdominant eigenmode accounted for areas of high E[nO] 

that were not included in the dominant eigenmode (Figure 3.4D). In addition, the 

subdominant eigenmodes were insignificant in the other clusters. 

To quantitatively assess how well the dominant and subdominant eigenmodes 

characterize spark probability, we computed the correlation coefficients between the 

E[nO] and the dominant (k = 1), the sum of dominant and subdominant (k = 2), and sum 

of the dominant, subdominant, and a tertiary eigenmode corresponding to the third largest 

ci (k = 3) (Figure 3.4E). Clusters well described by the dominant eigenmode generally 
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yielded high ρ1 > 0.84, indicating that v1 was sufficient to characterize the spatial 

gradients in spark probability. For the clusters with significant subdominant eigenmodes, 

ρ1 was lower (< 0.68), and the second eigenmode was required to establish a correlation. 

Note that inclusion of the tertiary eigenmode did not greatly improve the correlation, 

suggesting that the first two eigenmodes were most significant. 

In this section, we characterized the intra-cluster spatial gradients in spark 

probability in terms of the eigenvalues and eigenvectors of the adjacency matrix. In the 

majority of cases, the dominant eigenmode λ1-v1 was sufficient to approximate the 

gradients. Clusters (5), (8), and (10) of Figure 3.4, however, possessed secondary 

subdomains of channels separated from the dominant subdomain by a bottleneck (i.e. 

dumbbell-like morphology). These functional subdomains generally contained channels 

with lower spark probability than the dominant subdomain. This is consistent with 

Equation (3.3), which indicates that these secondary subdomains are also characterized 

by a decay rate 1/λs > 1/λ1 and therefore would be expected to have lower spark 

probability. 
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Figure 3.4 Intra-cluster spatial gradients in spark probability are characterized by 

one or two eigenmodes. 

Data are shown for 10 clusters obtained from STED microscopy. (A) Spatial gradients in 

E[nO]. (B) Fractional eigenmode contributions to E[NO] corresponding to the 10 greatest 

eigenvalues of the adjacency matrix. (C) Dominant eigenmode (b1v1) corresponding to λ1. 

(D) Subdominant eigenmode corresponding to the second greatest bi. Negative values are 

shown as 0 for clarity. (E) Correlation coefficients between the values of E[nO] from 

panel (A) and the (1) dominant eigenmode, (2) sum of dominant and subdominant 

eigenmodes, and (3) sum of dominant, subdominant, and tertiary eigenmodes. Color 

scales in all panels are the same as in Figure 3.3D. 
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3.2.4   Perturbation Analysis 

It is not clear how one can determine whether a cluster is characterized by a single 

eigenmodes or dominant-subdominant pair of eigenmodes without performing the 

eigendecomposition computations. For example, comparing clusters (6) and (8) in Figure 

3.4, it is not immediately obvious why (8) requires both modes and (6) does not. To 

better understand this relationship, we progressively severed the connection between two 

functional subdomains at the top and bottom of cluster (6). In Figure 3.5A, we removed 

channels from this cluster proceeding left to right along the row of channels indicated by 

the dashed line in the baseline cluster. A subdominant eigenmode emerged as the 

channels were removed. The dominant eigenmode remained in the lower subdomain, 

while the subdominant eigenmode formed in the upper region. Note the formation of two 

disjoint subclusters in cluster (A4), which have eigenmodes similar to when connected by 

a single channel in (A3). The formation of a secondary subdomain is further 

demonstrated by an increase in the value of ci for the subdominant eigenmode (Figure 

3.5B). In this example, the subdominant eigenmode appeared after removing only one 

channel and gradually became more prominent with the removal of additional channels. 

Therefore, the formation of a subdominant eigenmode can be quite responsive to 

reductions in the region dividing two possible subdomains, each distinguished by 

different propensities for sparks. 

We next investigated how sensitive spark probability is to small changes in lattice 

shape. Figure 3.5C shows a series of clusters in which only a single channel was removed 

from the original cluster. As expected, removing a channel along the upper edge as in 

cluster (C1) where spark probability is low resulted in a small change in λ1(δ λ1). 
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Discarding a central channel as in cluster (C4) resulted in the greatest change. One may 

expect that removing channels with the higher spark probability would cause a greater 

decrease in λ1. However, the channel removed in cluster (C2) corresponded to a greater 

element in E[nO] than the channel in (C3), yet the change in λ1 was less. This is because 

the channel in cluster (C3) had greater membership in the dominant eigenmode. To 

illustrate this, we systematically removed each channel one at a time from the baseline 

cluster and calculated δ λ1. Figure 3.5D shows that there was a consistent relationship 

between δ λ1 and the discarded channel j's corresponding element of the dominant 

eigenvector (v1)j in the original cluster but not (E[nO])j. Therefore element j of the 

dominant eigenvector determines the extent by which spark probability decreases when a 

single channel j is removed. 
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Figure 3.5 Perturbation analysis of lattice structure. 

(A) Dominant (top) and subdominant (bottom) eigenmodes for six variations of cluster 

(6) in Figure 3.4. In clusters (A1)-(A4), channels are progressively removed from left to 

right along the row indicated by the dashed line on the baseline cluster. (B) Values of 

eigenmode weights ci as the channels are removed. (C) Removal of a single channel 

indicated by the arrows caused varying reductions in λ1 depending on its position. The 

change in λ1 compared to the baseline cluster (δλ1) is shown for each cluster (C1)-(C4). 

Heatmaps show E[nO] in each case. (D) Change in λ1 when removing a single channel j 

from the baseline cluster. (v1)j is the channel's corresponding element in the dominant 

eigenvector (red) and (E[nO])j is its element in E[nO] (blue) in the baseline cluster. δ λ1 is 

again the change in λ1 upon removing channel j. Heatmap color scales are the same as in 

Figure 3.3D. 
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3.3   Discussion 

We showed in Chapter 2 that the precise structure of RyR channel clusters influences 

properties of Ca2+ release. In particular, the probability of a Ca2+ spark occurring when an 

RyR opens spontaneously depends strongly on the arrangement of the RyRs in the 

subspace. This has implications for Ca2+ cycling in the cell, as Ca2+ spark probability 

controls the frequency of Ca2+ sparks and the excitability of the cluster (12). An emergent 

property of this biophysically detailed model was that λ1 is a strong predictor of Ca2+ 

spark probability. 

Here we presented a model similar to those used to study the spread of contagion, 

such as in disease epidemics (119). In this model, a single RyR is opened initially, which 

increases the open probability of its neighbors via a local rise in Ca2+ concentration. After 

deriving a linearized mean-field formulation of the system, we showed that the open 

probability of the RyRs is extinguished when λ1 < δ/β. Therefore λ1 governs a stability 

threshold for spark generation. In the stochastic model, spark probability was constant 

across all clusters when λ1 = δ/β. Therefore, if one compares any two different RyR 

clusters, the cluster with lower λ1 value would need a lower δ/β ratio (i.e. greater RyR 

mean open time or opening rate) to achieve the same spark probability as the other 

cluster. This explains why λ1 is correlated with Ca2+ spark probability. Cator and Van 

Mieghem derived a second-order CN model, with which they showed that the true 

threshold for the system to exhibit exponentially long transients is in fact bounded from 

above by λ1 (120). Nevertheless, the first-order model presented here was sufficient to 

account for the relationship between λ1 and spark probability. 
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It is known that the maximum eigenvalue of a graph's adjacency matrix is related 

to the number of walks on the graph (116). Specifically, if Wk is the number of possible 

walks of length k on a graph with n vertices, then Wk ≈ n λ1 ^k when k is large. 

Furthermore, Wk is proportional to (uTv1)2 when k is large. Recall that this term also 

appears in the expression for c1. It is no coincidence that Wk and E[NO] are related. 

Intuitively, a greater number of walks implies that there are more possible contiguous sets 

of RyRs along which channel openings can propagate. This is essentially the underlying 

relationship between λ1 and Ca2+ spark probability. 

An eigendecomposition of the CN model further identified RyR subdomains 

characterized by different spark probabilities, as observed in the SRS model. Secondary 

subdomains with lower spark probability were found in clusters containing two groups of 

channels separated by central narrow regions ~2-3 channels in width. This lends meaning 

to the eigenvectors of the model, which define the membership of the RyRs to each 

functional subdomain. Interestingly, v1 is a known measure of vertex centrality (121), 

which means that the proportion of all possible walks of length k beginning at vertex j is 

(v1)j/(uTv) when k is sufficiently large. This implies that the elements of v1 indicate the 

relative number of lattice walks beginning at each channel. Our results suggest that this is 

approximately true for clusters characterized by the dominant eigenmode, as channels 

with greater values of (v1)j had higher spark probability. Because we consider the 

transient behavior of channel gating during a fixed time window, the assumption that k is 

large (i.e. t is large) may not hold, thus explaining why a subdominant eigenmode was 

observed for some clusters. 
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Our results indicate that the system is near the threshold under normal conditions, 

as the ratio δ/β is close to the threshold λ1. Therefore, small changes to β can greatly 

change the qualitative behavior of the system. Using a simple Ca2+ diffusion model, we 

determined that spark probability is sensitive to changes in biophysical parameters. 

RyR open probability is modulated by a variety of factors including 

phosphorylation (24, 117), JSR Ca2+ concentration (19), oxidative stress (106), and 

genetic mutations (84, 95). Most of these increase the opening rate of the channel and 

cause elevated Ca2+ spark frequency. Our work in Chapter 2 and others (16, 76) have 

shown that RyR regulation by JSR Ca2+ concentration is not necessary for spark 

termination. Rather, depletion of the JSR Ca2+ stores causes a sufficient decrease in 

unitary RyR current such that the channel openings are not sustained. This mechanism is 

supported in the present model as well, as shown by the sharp increase in δ/β as iRyR is 

decreased (see Figure 3.2B), as it would be due to reduction of the Ca2+ concentration 

gradient from inside the JSR to the subspace when RyRs open. 

A recent imaging study by Asghari et al. (122) observed regulation of RyR cluster 

structure. The authors reported RyRs clusters in dense side-by-side lattices, as assumed in 

the present study, as well as checkerboard-like arrangements with greater spacing of ~37 

nm compared to the baseline of 31 nm. Increasing channel spacing uniformly caused an 

increase in δ/β to 6.3 at 37 nm (see Figure 3.2D). Note that for any graph whose vertices 

have a maximum of m neighbors, λ1 < m (69). Therefore λ1 < 4 for cluster lattices. This 

suggests that any cluster in the checkerboard arrangement would be unlikely to exhibit 

Ca2+ sparks in the absence of other changes. Interestingly, checkerboard spacing was 

observed upon channel phosphorylation or after decreasing the cytosolic Mg2+ 
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concentration, both of which increase RyR open probability (19, 24). Therefore the 

increase in inter-channel spacing may counteract the effects of these conditions. 

We maintained focus on the relevance of cluster morphology to Ca2+ spark 

probability when a single RyR opens spontaneously. Ca2+ release can also be triggered 

following electrical excitation of the cell due to Ca2+ influx through apposing LCCs 

located on the transverse tubule. Note modeling studies suggest that coupling fidelity 

between LCCs and RyRs is still strong despite low spark probability (11, 12, 114). This is 

because although LCC mean open time is shorter (~0.5 ms), unitary LCC current is 

approximately the same as the RyR, there are usually several LCCs per RyR cluster (the 

ratio of RyRs to LCCs is 4-10 (123)), and LCC openings are synchronized upon 

membrane depolarization to drive local buildup of Ca2+. 

The study of sub-cellular structure using super-resolution techniques requires 

careful interpretation of the raw image data. In this study, we generated RyR cluster 

lattices based on fluorescence intensity using a uniform thresholding algorithm. 

Intensities at or above the 95th percentile were interpreted to represent the RyR positions 

over the entire image. To assess uncertainty in the results with respect to our choice of 

threshold, we analyzed a single set of STED images using both the 95th and 98th 

percentile thresholds. At the higher threshold, more of the fluorescence signal is filtered 

out and thus the clusters contain fewer RyRs. This resulted in lower values of λ1 and 

decreased pS (Figure 3.1A). The large differences in spark probability after using the 

higher threshold highlight the sensitivity of the model to the image processing methods. 

Nevertheless, there was still a strong correlation between pS and λ1 when using the higher 

threshold (Figure 3.1B). Consequently quantitative prediction of spark probability 



 64	
  

applying λ1 requires consistent interpretation of superresolution imaging data and in 

addition benefits from an incremental alteration of image analysis parameters if possible. 

We did not consider weaker interactions between RyRs such as those between 

diagonally adjacent neighbors. This results in an underestimation of the open 

probabilities. We also did not consider clusters with heterogeneous inter-channel spacing 

as observed in Asghari et al. (122). We also only considered single connected clusters 

containing no gaps that divide the cluster into separate subclusters. We assumed that the 

Ca2+ concentration gradient surrounding an open RyR declines sufficiently rapidly such 

that a negligible Ca2+ concentration is sensed in nearby subclusters, and therefore spark 

initiation occurs independently. These limitations could be overcome by using a distance 

matrix or diffusion model as in (28) to compute inter-RyR Ca2+ coupling. In addition, the 

LCN model is known to deviate most from the exact model near the stability threshold 

δ/β = λ1 (124). Note it has been shown that the solution of the mean-field CN model is an 

upper-bound on the true probabilities (125), and although higher-order approximations do 

exist (120) we chose the first-order mean-field approximation for its simplicity and 

analytical tractability. 

The CN model may also be applied to similar biological systems. It may be 

adapted to study Ca2+ release triggered by an LCC. The spark probability would be 

related to the coupling fidelity between LCCs and RyRs. This model could be used to 

analyze the arrangement of LCCs as such experimental data become available. It may 

also be applied to future imaging studies to compare RyR cluster morphology to, for 

example, identify interspecies variability or remodeling in heart disease. For example, 

reduced RyR cluster sizes and fragmented JSR morphology have been observed in mouse 
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models of CPVT (80). Inositol trisphosphate receptors (IP3Rs) located in the 

sarcoplasmic reticulum are known to aggregate into small clusters that exhibit similar 

release events known as Ca2+ “puffs,” and recent work has implicated cluster size in 

release extent (126) and trigger probability (127). The present models could be used to 

compare IP3R cluster geometries like those reported in a recent study (128). In skeletal 

muscle, Ca2+ release is coordinated mainly by physical LCC-RyR1 and RyR1-RyR1 

interactions (129). Imaging studies have observed that RyR1 clusters in slow-twitch 

muscle fibers were typically smaller and more fragmented than in fast-twitch muscle (34, 

130). The model presented here could be used to relate these observations to known 

differences in the Ca2+ release properties of these cell types. 

More generally, the model could be adapted to complement super-resolution 

imaging studies of a wide range of receptors that form similar supramolecular clusters in 

other cell types (131, 132). A general theoretical model has suggested that clusters of 

ligand-activated receptors behave cooperatively (133). Examples from neurons include 

synaptic microclusters of syntaxin 1 (134), acetylcholine receptor complexes at the 

neuromuscular postynapse (135), and rings of AMPA receptors found in spiral ganglion 

neurons (136). Another example are immunoreceptors (137), which form clusters to 

amplify signal initiation and transduction, perhaps by decreasing the effective 

dissociation constants of ligands and downstream effectors (138). Furthermore, 

Greenfield et al. employed super-resolution techniques to investigate the spatial 

organization of receptors involved in bacterial chemotaxis (139). These receptors form 

clusters in the cell membrane and, similar to RyRs, exhibit cooperative interactions that 

enhance sensitivity to low chemical signals. 
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This work presents a new perspective on cardiac calcium release and, more 

generally, highlights the relevance of subcellular variability in microdomains for the 

study of multi-scale biological systems. 
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Figure 3.6 Dependence of λ1 and Ca2+ spark probability on RyR cluster image 

interpretation. 

(A) Percent changes in spark probability and λ1 for a collection of clusters reconstructed 

from STED images after raising the fluorescence intensity threshold from the 95th 

percentile (pS 95, λ1
95) to the 98th percentile (pS

98, λ1
98). (B) Relationship between λ1 and pS 

when cluster structures are determined at the 95th (black) and 98th (red) percentiles. 
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3.4   Conclusion 

Here we presented an analytical model of the Ca2+ release process and derive the 

relationship between λ1 and spark probability. The model was applied to realistic RyR 

clusters obtained using stimulated emission depletion (STED) microscopy and 

recapitulated the spatial gradients in spark probability observed in the SRS model. We 

found through an eigendecomposition that some RyR clusters possess functional 

subdomains with distinct sensitivity to Ca2+. This work outlines a unique approach to 

understanding CICR and provides a theoretical framework for comparing the 

physiological function of protein clusters based solely on structural information. 
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Chapter 4  Stochastic Tissue Model 

4.1   Superresolution Modeling of Release Site Coupling 

Recent super-resolution imaging experiments of RyR clusters revealed that RyR 

clusters can be closely spaced (<100 nm edge-to-edge) (36, 140). However, the question 

has been raised as to whether these clusters are contained within multiple subspaces and 

whether they are functionally coupled (141). Three-dimensional reconstructions of JSR 

and TT morphology in mouse showed that subspaces can extend along the length of the 

TT with varying JSR diameter (36, 37).  

In light of these data, we next sought to investigate the properties of calcium 

release at a pair of release sites where the JSRs are tethered together by a narrow 

sarcoplasmic connection. We extended the SRS model to incorporate an additional 

release site on the same TT (Figure 4.1A). Figure 4.1B shows four configurations used in 

the model. Configuration (i) consists of a single elongated JSR containing two RyR 

clusters, and configurations (ii)-(iv) consist of two identical release sites with RyR cluster 

edge-to-edge spacing of 93-155 nm. At the start of each simulation, a calcium spark was 

initiated by holding one RyR open in the “initiating” release site for 10 ms.  

For each configuration, the probability that a Ca2+ spark was triggered at the 

neighboring site is plotted in Figure 4.1B. For configuration (i), the probability was 

approximately 100% due to the high resistance to Ca2+ efflux out of the subspace and 

larger Ca2+ stores contained in the elongated JSR. Increasing the edge-to-edge distance to 

93 nm and splitting the JSR into two separate compartments resulted in a 50% drop in 

spark probability, as in configuration (ii). Thus, regardless of whether the JSR formed a 

single compartment, RyR clusters with <100 nm edge-to-edge spacing were functionally 
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coupled. However, increasing the separation distance by 31 nm greatly reduced the 

triggering probability, as in configuration (iii). These results strongly suggest that the 

RyR superclusters observed in recent studies are likely to be functionally coupled 

because subclusters sense high local elevations of [Ca2+] caused by Ca2+ sparks at 

neighboring sites. 
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Figure 4.1 Superresolution model of two Ca2+ release sites. 

(A) Model geometry incorporating two Ca2+ release sites on a single TT (not shown for 

clarity). (B) Release site configurations with varying edge-to-edge RyR cluster spacing. 

(C) Probability that a Ca2+ spark at the initiating site triggered a Ca2+ spark at the 

neighboring site. 
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4.2   Model Description 

4.2.1   Ventricular Myocyte Model 

We developed a 3D model of a single heart cell based on the Greenstein-Winslow canine 

ventricular myocyte model (59). To enable reproduction of realistic Ca2+ waves and 

DADs, the original non-spatial model was adapted to include spatial Ca2+ diffusion on a 

rectangular lattice of 25,000 Ca2+ release sites. The cell was divided into 25 and 20 lattice 

points in the two transverse directions and 50 lattice points in the longitudinal direction. 

Release sites were spaced 1 and 2 µm in the transverse and longitudinal directions, 

respectively (142). The time constant for longitudinal Ca2+ diffusion was twice that for 

the transverse direction (i.e. 2x slower) such that the model exhibited symmetric Ca2+ 

wave propagation (143). 

A submembrane (SM) release site compartment was added to describe the volume 

under the membrane where [Ca2+]i is elevated during Ca2+ sparks and cell-wide Ca2+ 

release (144). Detailed imaging studies of Ca2+ release sites have revealed that RyR 

clusters exhibit edge-to-edge spacing of less than 100 nm (36, 140). We showed in the 

previous section that neighboring sites are likely to be functionally coupled through local 

Ca2+ diffusion. Therefore Ca2+ diffusion between SM compartments was implemented to 

reflect Ca2+ transport across steep [Ca2+] gradients on the periphery of the release site 

during release. The SM compartment was modeled as a layer above the TT membrane 

(TT radius 100 nm) with thickness 80 nm that extends 1 µm along the axis of the TT. It 

was assumed that 50% of NCX are located in the SM compartment and the rest are in the 

cytosol (112, 145). Ca2+ in the SM is buffered by calmodulin and sarcolemmal binding 

sites. Ca2+ transport rates from the SM to the cytosol and between SM compartments 



 73	
  

were constrained to yield a realistic Ca2+ wave threshold (~100 - 150 µmol/L cytosol) 

(146) and velocity (50-100 µm/s) (42) in the baseline model. 

Each site at coordinate (i,j,k) contains its own set of ordinary differential 

equations to describe local Ca2+ transport (Figure 4.2A). The Ca2+ concentration ([Ca2+]) 

is assumed to be uniform within the local JSR ([Ca2+]jsr ,i,j,k), dyadic subspace ([Ca2+]ss 

,i,j,k), and SM space ([Ca2+]sm,i,j,k) compartments. Spatial Ca2+ diffusion is modeled as 

transport between SM compartments of adjacent release sites in the 3D lattice (Figure 

4.2B). Model equations and parameters are given in Appendix C. 

It was assumed that the lattice of local JSR, SS, and SM Ca2+ compartments could 

adequately describe spatial Ca2+ dynamics in the cell. Therefore, bulk compartments were 

used to represent average cytosolic [Ca2+] ([Ca2+]i) and network SR [Ca2+] ([Ca2+]nsr). 

This assumption eliminated two Ca2+ diffusion parameters and provided a three-fold 

reduction in the number of Ca2+ diffusion terms. 

Each release site also contains a set of 48 RyRs and 8 LCCs that gate 

stochastically according to Markov chain models. The LCC model is essentially as 

described in the Greenstein-Winslow model (59), with adjustments made to the rate of 

Ca2+-dependent inactivation in order to reproduce the inactivation kinetics of the original 

model (see Appendix C). RyR gating is described by the minimal two-state Markov 

model used in the SRS model. Briefly, mean open time of each channel is 2 ms, and the 

opening rate is given by  

  (4.1) 

where k+ = 1.107 × 10-4 ms-1 µM-η is the opening rate constant, η = 2.1 is the Ca2+ Hill 

coefficient, and ϕ is a [Ca]JSR,i,j,k-dependent regulation term given by   

rO = φk
+ [Ca2+ ]SS,i, j,k( )

η
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Figure 4.2 Multiscale cell and tissue model schematics. 

 (A) Diagram of intracellular Ca2+ compartments and transport. At each release site at 

coordinates (i,j,k), Ca2+ is released via RyRs from the JSR into the dyadic subspace (SS) 

and diffuses into a submembrane (SM) compartment. Ca2+ diffuses between SM 

compartments of adjacent release sites in the 3D lattice, as depicted in panel (B). Ca2+ 

can also diffuse from the SM into a single cell-averaged cytosolic compartment and can 

be transported by the SERCA pump from the cytosolic compartment into a single 

network SR (NSR), which refills the JSR. (C) Illustration of the different spatial scales 

incorporated in the tissue model including (from left to right) the 48 stochastic RyRs in 

each of the 25,000 release sites of a single cell. Hundreds of cells are coupled via gap 

junction currents to form the fiber model. 
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4.2.2   Fiber model 

The 3D cell model was incorporated into a tissue-scale model of a 1D fiber of myocytes. 

Figure 4.2C depicts the multiple scales of model components, from single ion channels to 

the multicellular fiber. The 3D cell model was augmented with a current carried by the 

gap junctions at either ends of each cell (Igap). The current from cell i into an adjacent cell 

i+1 is given by:  

  (4.3) 

where ggap is the gap junction conductance, which was adjusted to yield a conduction 

velocity of 55 cm/s. The membrane potential in the fiber was solved using the Crank-

Nicolson method (147) with 50 µs time steps.  

4.2.3   Beta-adrenergic stimulation 

Sympathetic stimulation of the heart occurs through beta-adrenergic receptor activation, 

which activates the PKA pathway and leads to increased contractility (148). Beta-

adrenergic stimulation is also known to be proarrhythmic and evoke spontaneous Ca2+ 

release (149). Cell model parameters were modified to reflect the effects of acute beta-

adrenergic stimulation. LCC open probability was increased (150) by changing the 

fraction of active LCCs from 25% to 60% and setting 3-5% of the channels to gate in a 

high-activity mode, in which the mean open time was increased from 0.5 to 5.8 ms (151, 

152). Enhanced activation of inward currents was implemented for IKr using 

modifications described previously (152) and for IKs by shifting the Vm-dependence of 

activation by -35 mV and increasing conductance by 40% (153). SR Ca2+ loading was 

facilitated by reducing SERCA pump Kd for [Ca2+]i by 50% (154). RyR opening rate was 

increased by 50% to reflect increased SR Ca2+ leak observed in experimental studies 

Igap,i,i+1 = ggap(Vi −Vi+1)
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(155). Unless otherwise noted, these conditions were applied to all simulations in this 

study. 
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4.3   Results 

4.3.1   Cell Model Properties 

In order to reproduce protocols designed to measure excitation-contraction coupling, 

membrane potential was stepped to varying test potentials for 200 ms from a holding 

potential of -80 mV. The dependence of normalized peak RyR and LCC Ca2+ fluxes on 

the test potential and corresponding excitation-contraction coupling gain values were 

similar to those observed experimentally (73) (Figure 4.3 A, B).  

Under control conditions, model action potentials (APs) and [Ca2+]i transients 

were similar to those of normal ventricular myocytes (156), with an AP duration of 

approximately 320 ms (Figure 4.3C). Simulating the effect of beta-adrenergic stimulation 

increased the amplitude of the AP plateau as well as [Ca2+]i transient amplitude and decay 

rate in addition to decreasing the AP duration to ~255 ms (152).  

[Ca2+]nsr was clamped at increasing values to test the relationship between SR 

Ca2+ load and leak. The model exhibited an exponential leak-load relationship that is 

similar to experimental estimates (9, 77) (Figure 4.3D). Spontaneous Ca2+ waves formed 

at a threshold Ca2+ load, at which wave fronts of propagating Ca2+ sparks emanated from 

random regions of high spark activity. Figure 4.3E shows a plot of SR Ca2+ leak along a 

cross-section through the center of the cell during a representative Ca2+ wave. The wave 

shape and velocity of 68 µm/s were similar to those observed in experimental studies 

(42). 
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Figure 4.3 Cell model properties. 

 (A) Diagram of intracellular when the membrane was stepped to test potentials between -

20 and 40 mV. (B) Excitation-contraction coupling gain, defined as the ratio of the 

normalized peak RyR to LCC Ca2+ flux at each test potential. (C) Representative action 

potentials and [Ca2+]i transients under control (black) and beta-adrenergic (red) 

conditions. (E) Cell-wide SR Ca2+ leak rate via RyRs at varying SR Ca2+ loads. The 

dotted line indicates the lowest SR Ca2+ load tested that exhibited spontaneous Ca2+ 

waves. (F) Example linescan plot showing a Ca2+ wave in the baseline model when 

initialized with SR Ca2+ overload. All panels except where indicated in (C) and (D) were 

in the absence of beta-adrenergic stimulation.  



 80	
  

4.3.2   Delayed afterdepolarizations during pacing 

Myocytes are known to exhibit DADs and triggered APs under conditions that promote 

Ca2+ overload. Liu et al. demonstrated that ouabain overdose causes accumulation of 

[Na+]i, leading to Ca2+ overload and DADs (157). In addition, the authors showed that the 

production of reactive oxygen species, which are known to oxidize RyRs (106) and 

CaMKII (158), both of which enhance RyR activity, contributed to DAD generation.  

To induce Ca2+ overload, model parameters were modified to simulate beta-

adrenergic stimulation and to reflect the conditions in Liu et al. by inhibiting the Na+/K+ 

ATPase by 90%, elevating [Na+]i to 22 mM, and increasing RyR opening rate to 5x that 

of baseline. Figure 4.4A shows APs when the cell was paced at 1 Hz under these 

conditions. Large DADs with ~ 20 mV amplitude occurred after the first and second 

shown beats. Inhibition of the Na+/K+ ATPase resulted in accumulation of [Na+]i (Figure 

4.4B). This caused Ca2+ waves to form more readily by reducing extrusion of Ca2+ via 

NCX in the SM compartment, thus elevating [Ca2+]ss at sites adjacent to Ca2+ sparks and 

increasing the probability of Ca2+ spark propagation. This resulted in DADs of sufficient 

amplitude to activate the rapid Na+ current and trigger spontaneous APs. 

Intermittent Ca2+ waves caused spontaneous [Ca2+]i transients (Figure 4.4C). 

These waves were triggered by overload of SR Ca2+ (Figure 4.4D). The threshold SR 

load for Ca2+ waves was reduced to 76 µM/L cytosol compared to the baseline model 

threshold of 140 µM/L cytosol (see Figure 4.3E). This was due to high [Na+]i and the 

greater RyR opening rate, which increased Ca2+ spark frequency and encouraged Ca2+ 

wave nucleation and propagation.  
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Elevated diastolic [Ca2+]i has been implicated in DAD formation in experimental 

studies (45, 159). Diastolic [Ca2+]i was ~250 nM when the DADs were sub-threshold. 

Triggered APs resulted in greater spontaneous [Ca2+]i transients due to activation of 

LCCs and the cells exhibited elevated diastolic [Ca2+]i of ~360-450 nM. This caused a 

reduction in the SR Ca2+ load threshold for spontaneous release to 65 µM/L cytosol due 

to the resulting increase in RyR opening rate and Ca2+ spark frequency.  

These results demonstrate how SR Ca2+ overload drove the occurrence of DADs 

under pathophysiological conditions. Elevated RyR sensitivity and [Na+]i accumulation 

led to DADs of sufficient amplitude to trigger action potentials during the diastolic 

intervals. In addition, these results illustrate the interplay between [Ca2+]i and SR load 

dynamics during spontaneous Ca2+ release. 
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Figure 4.4 DADs induced by Ca2+ overload during 1 Hz pacing in the myocyte 

model. 

 (A) Sub-threshold DADs and triggered APs (red arrows) in between paced APs. (B) 

Accumulation of [Na+]i. (C) Spontaneous [Ca2+]i transients caused by Ca2+ waves. Dotted 

lines indicate diastolic [Ca2+]i. (D) SR Ca2+ load. Dotted lines indicate threshold for Ca2+ 

overload that resulted in spontaneous Ca2+ waves. This threshold was decreased due to 

elevated diastolic [Ca2+]i following triggered APs. 
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4.3.3   Effect of SR Ca2+ load on DADs 

The relationship between SR Ca2+ load and spontaneous Ca2+ release was next 

investigated. Simulations were run using initial conditions that reflected the cell state just 

prior to the moment when SR Ca2+ load reaches the Ca2+ wave threshold following an 

AP. Initial [Ca2+]i was set to 150 nM, similar to the level during the late decay phase of a 

[Ca2+]i transient. Figure 4.5A shows DADs that occurred at the five different values of 

initial SR Ca2+ load shown in Figure 4.5B. At the highest SR Ca2+ load (v), the DAD 

amplitude was large enough to trigger an AP. Elevating SR Ca2+ load reduced the delay 

until spontaneous release, consistent with the observations of Wasserstrom et al. (47). 

The increase in DAD amplitude is consistent with a study by Schlotthauer and Bers, who 

demonstrated increased amplitude of caffeine-induced DADs at higher SR Ca2+ loads 

(160).  

Figure 4.5C shows volume renderings of [Ca2+]SM at three time points in each 

simulation. The number of Ca2+ wave nucleation sites (Nnuc) generally increased with SR 

Ca2+ load, in agreement with experimental studies in intact heart (46, 47). Therefore, the 

increase in SR Ca2+ load also increased RyR Ca2+ release flux (JRyR) by enhancing the 

synchrony of RyR opening and number of nucleation sites. 
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Figure 4.5 Elevating SR Ca2+ load accelerated Ca2+ wave formation and increased 

DAD amplitude. 

 (A) DADs resulting from initializing SR Ca2+ load to five different values as shown in 

(B). (C) Volume renderings of Ca2+ in the simulations at three time points illustrating the 

greater spontaneous Ca2+ wave activity at higher SR Ca2+ loads. The number of Ca2+ 

wave nucleation sites, Nnuc, is tabulated for each simulation. 
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Ensemble properties of DADs 

We hypothesized that stochastic gating of the RyRs drives variability in Ca2+ wave 

dynamics and thus DAD amplitude and timing. To test this, five independent realizations 

were generated, each of which had identical initial conditions similar to (i) from Figure 

4.5. The pseudorandom number generator seed was varied among the realizations in 

order to produce independent patterns of RyR gating. Figure 4.6A shows the resulting 

DADs, which exhibited marked variability in timing and amplitude. Delays until the 

DAD peak varied from 520 to 1209 ms and the amplitudes ranged from 2.3 to 6.2 mV. 

Thus substantial DAD variability could be attributed to the stochasticity of RyR gating. 

Spontaneous Ca2+ release generates DADs by causing an inward current through 

NCX (43). Imaging and electrophysiology studies have suggested that NCX senses a 

[Ca2+]SM that is higher than [Ca2+]i because it is localized near the release sites (112, 144, 

145). Therefore the driving force for inward NCX current is likely to be determined, in 

part, by the aggregate number of concurrent Ca2+ sparks occurring across the cell. This is 

consistent with a study showing that peak Ca2+ release flux is strongly correlated with the 

likelihood of ectopic activity (161). An ensemble of 98 independent simulations were 

performed to determine how peak [Ca2+]i and JRyR were related to DAD amplitude 

(Figure 4.6 B, C). There was a strong linear correlation between the peak membrane 

potential during the DAD, Vmax, and the maximum [Ca2+]i of the spontaneous [Ca2+]i 

transient (R2 = 0.950). However, there was a stronger relationship between Vmax and the 

peak JRyR value (R2 = 0.998). This confirmed that the inward NCX current is primarily 

driven by JRyR via the resulting rise in [Ca2+]SM. 
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Note that JRyR reflects the combined Ca2+ release flux of all Ca2+ sparks occurring 

at any time. It was therefore expected that the variability in DADs was the result of 

spatio-temporal variations in Ca2+ wave dynamics. Figure 4.6D shows volume renderings 

of the Ca2+ waves in each simulation. Simulations (i) and (ii) were both associated with 

the highest-amplitude DADs as well as the greatest number of nucleation sites, while the 

remaining three had lower amplitudes and fewer nucleation sites. Note that in simulation 

(iv), two separate Ca2+ waves formed over 100 ms apart, resulting in a prolonged low-

amplitude DAD with two peaks. These results are consistent with the strong correlation 

between Vmax and maximum JRyR, which reflects the timing and pattern of Ca2+ wave 

formation. 
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Figure 4.6 Variability of DAD timing and amplitude in five independent model 

realizations with identical initial conditions. 

(A) Variability in DAD timing and amplitude. Vmax is defined as the peak membrane 

potential during each DAD. Strong correlations were observed between Vmax and both the 

maximum of the spontaneous [Ca2+]i transient (B) and RyR Ca2+ release flux (C). (D) 

Volume renderings of Ca2+ wave dynamics at three time points in each simulation. The 

number of nucleation sites, Nnuc, was higher in simulations (i) and (ii) which had greater 

DAD amplitude. 
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4.3.4   Dependence of DAD distribution on total cell Ca2+ and IK1 density 

In this section, the statistical relationships between Ca2+ loading and DAD amplitude and 

timing in ensemble simulations are investigated. Figure 4.7A depicts the variability in 

sub-threshold DADs when initial SR Ca2+ load was varied. The shaded regions represent 

the second and third DAD quartiles. Consistent with the findings from the individual cell 

simulations in Figure 4.5, DAD delay decreased and amplitude increased with SR Ca2+ 

load. 

Recall that diastolic [Ca2+]i played a critical role in determining the SR Ca2+ wave 

threshold during pacing (see Figure 4.4). The effect of increasing [Ca2+]i on the DAD 

distribution when SR Ca2+ load is held constant was next tested (Figure 4.7B). Elevating 

[Ca2+]i had an effect similar to increasing SR Ca2+ load, reducing the delay and increasing 

the amplitude of the DADs. 

The inward rectifier K+ current, IK1, is the primary membrane current that 

stabilizes Vm at the cell’s resting potential and plays a critical role in protecting the cell 

from triggered APs. IK1 density down-regulation is associated with ventricular 

arrhythmias in diseases such as heart failure (162), Andersen’s syndrome (163), and long 

QT syndrome (164). Figure 4.7C shows DAD distributions when IK1 density was reduced 

by 50% and [Ca2+]i was varied. This caused an apparent increase in DAD amplitude and 

variability compared to cells with normal IK1. Note that in the 350 nM [Ca2+]i case, only 

one of the 98 realizations produced a sub-threshold DAD. 

Figure 4.7D shows the average and standard deviation of Vmax as a function of the 

total cell Ca2+, which was calculated as the combined total of buffered and free Ca2+ in 

the cytosol and SR. These results demonstrate two important conclusions. First, in the 
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baseline model with normal IK1, the distributions of Vmax were identical as a function of 

total cell Ca2+ when SR [Ca2+] and [Ca2+]i were varied. This strongly suggests that DADs 

are driven by overload of total cell Ca2+ and not just SR Ca2+ load. Second, reducing IK1 

by 50% caused a marked increase in the average and standard deviation of Vmax. In this 

case, Vm was more sensitive to the inward INCX during the DAD because of the reduced 

outward IK1 current opposing membrane depolarization. Therefore the DAD amplitude 

was greater for a given INCX, causing an increase in mean. Similarly, standard deviation 

was greater because Vm was more sensitive to variability in INCX. 

Total cell Ca2+ was also strongly correlated with DAD delay and synchrony, as 

measured by the distribution of the time until the DAD peak occurred (Figure 4.7E). 

Increasing cell Ca2+ reduced DAD delay and increased synchrony. These distributions are 

comparable to those reported by Wasserstrom et al. (47). DAD delay did not considerably 

change with 50% IK1 reduction because it is determined primarily by the timing of Ca2+ 

wave formation, which was not affected by the IK1 density. 

As total cell Ca2+ increased, the higher DAD amplitudes made it more likely that 

the threshold membrane potential for triggering an AP (~-55 mV) could be reached. The 

probability that a triggered AP occurred is shown in Figure 4.7F. Reducing IK1 by 50% 

caused triggered beats to occur at lower Ca2+ loads, consistent with the observed increase 

in DAD amplitude. 
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Figure 4.7 Roles of total cell Ca2+ and IK1 density in DAD distribution. 

DAD distributions when initial (A) SR [Ca2+] and (B) [Ca2+]i were varied in the baseline 

model. (C) DAD distributions when varying initial [Ca2+]i after reducing IK1 density by 

50%. Shaded regions indicate the middle quartiles of the membrane potential for sub-

threshold events. Dark lines indicate median values. Statistics of Vmax (D) of sub-

threshold events and delay until DAD peak (E) are shown when [Ca2+] SR was varied 

(blue), [Ca2+]i was varied (red), and [Ca2+]i was varied with 50% reduction in IK1 density 

(magenta) as a function of total cell Ca2+. Error bars indicate standard deviation of the 

estimates. (F) Dependence of triggered AP probability of total cell Ca2+. 
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4.3.5   Probabilistic triggered activity in a paced fiber of myocytes 

In the previous section, it was shown that triggered APs occurred with a probability that 

depended on the Ca2+ load and IK1 density. Simulations were performed to test whether 

the model could produce probabilistic triggered activity in a 1D fiber of myocytes during 

pacing. Figure 4.8A shows the membrane potential of a fiber paced at 0.5 Hz under 

conditions similar to those in Figure 4.4 with [Na+]i set to 19 mM. To reflect a state of 

pathological remodeling, IK1 density and gap junction conductance were each reduced by 

50% as observed in HF (162, 165). [Na+]i was decreased to 10 mM in the outer twenty-

four cells on either end of the fiber to prevent boundary effects on DAD amplitude. 

DADs, appearing as faint bands of depolarization between the paced beats, reached Vmax 

values between approximately -70 and -60 mV. This is consistent with experimental 

observations of synchronized spontaneous Ca2+ release causing DADs in intact heart 

following rapid pacing (46). 

The model exhibited considerable variability in Vmax along the length of the fiber. 

To investigate the source of this variability, the state of the model at time trestart 

immediately after the third paced beat was recorded. A set of three independent 

realizations were run starting in that state but with different pseudorandom number 

generator seeds.  

Figure 4.8B shows (i) the DAD from the original simulation in Figure 4.8A at 4.9 

s and (ii)-(iv) the three additional simulations initialized at trestart. Each simulation 

exhibited substantial differences in DAD amplitude along the fiber. In panel (iv), a 

traveling action potential wave was observed. The wave originated from a region of 
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locally high DAD amplitude near cell no. 50 and emanated in either direction along the 

fiber. 

These results illustrate that arrhythmic events can occur probabilistically in tissue. 

By restarting the simulations immediately prior to the DADs, it became evident that the 

variability in DAD amplitude was due to variations in the stochastic events that occurred 

in this brief time window. Taken together with the results from Figure 4.6 and Figure 4.7, 

the variability in DAD amplitude in the fiber could therefore be attributed to the 

underlying randomness of Ca2+ wave dynamics and thus stochastic RyR gating. 
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Figure 4.8 Probabilistic triggered activity caused by DADs in the fiber model. 

(A) Fiber of 192 cells paced at 0.5 Hz by applying a stimulus current for 2 ms to the first 

two cells in the fiber (black arrows). DADs occurred between paced beats (red arrows). 

(B) Ensemble simulations (i)-(iv) initialized to the state at time trestart in panel (A). (i) 

corresponds to the simulation in panel (A). Enhanced view of (iv) is shown at right. 
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4.3.6   Roles of Ca2+ loading, IK1 density, and ggap in fiber DADs 

Conditions reflecting pathological remodeling influenced the distribution of Vmax in the 

fiber. Figure 4.9A shows fiber simulations when all cells are initialized to identical initial 

conditions with Ca2+ overload in the baseline model. The resulting DADs resembled 

those from the paced fiber shown in Figure 4.8. As in individual cells, Vmax increased 

with initial [Ca2+]i. However, at the highest [Ca2+]i the range of Vmax was 2.8 mV, which 

indicated that there was much less variability than in individual cells at similar Ca2+ loads 

(standard deviation >4 mV, see Figure 4.7D). This reduction in variability was due to 

electrotonic coupling through Igap. This provided a pathway for the charge carried by 

inward INCX to diffuse to adjacent cells, thus attenuating spatial gradients in Vm. 

Figure 4.9B shows similar simulations where IK1 density was reduced by 50%. 

This resulted in greater fluctuations of Vmax and range of 8.0 mV. This is consistent with 

the observed increase in Vmax standard deviation under the same condition in isolated 

cells (see Figure 4.7D). Reducing ggap by 50% in addition to 50% IK1 further amplified 

Vmax spatial fluctuations, resulting in a range of 10.2 mV (Figure 4.9C). The increase in 

range arose from the reduced electrotonic load experienced by each cell. These results 

demonstrate how perturbations to IK1 and ggap increase the likelihood of observing large 

DADs. 
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Figure 4.9 Roles of initial [Ca2+]i, IK1 density, and ggap in DAD variability in the fiber 

model. 

(A) Spatiotemporal profile of V (left) and Vmax profile (right) in a 480-cell fiber under 

baseline conditions. Similar simulations are shown with 50% IK1 reduction (B) and both 

50% IK1 and 50% gap junction conductance (C). The range of Vmax values are indicated 

for the red traces, which correspond to the images at right. To avoid boundary effects, the 

outer 24 cells on either end were initialized to normal SR loads. The inner cells were 

initialized to identical initial conditions to those of Figure 4.7. 
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4.3.7   Overview of method for estimating rare event probabilities 

The results from the preceding sections suggest that spatial fluctuations in Vmax can result 

in a triggered beat emanating from a cluster of cells exceeding the threshold Vm (~-55 

mV). For a fiber of a given length, the probability of this event is dependent on both the 

mean Vmax and the likelihood of a deviation from the mean large enough to reach 

threshold. Under conditions where the mean Vmax is far below threshold, however, it was 

unclear whether it would be possible to observe a large fluctuation that causes a triggered 

beat. Furthermore, we sought to characterize the likelihood of such events by estimating 

the upper tail of the Vmax distribution. 

We hypothesized that extreme deviations in Vmax could be caused by rare spatially 

clustered synchronized release events. Estimating the probability of rare events (e.g. 1 in 

106) would be computationally prohibitive with the full biophysical model. Therefore a 

method was developed for estimating the probability of such events using the output from 

a single fiber simulation. By assuming independence of the spontaneous Ca2+ release 

among the cells in the fiber, cell JRyR profiles were resampled by shuffling the cell 

positions to generate independent realizations. A spatial smoothing filter and linear 

transformation was then applied to JRyR to estimate fluctuations in Vmax. The following 

sections state the method and its assumptions, validate its accuracy for estimating DAD 

probabilities, and characterize the how IK1 density and ggap affect the likelihood of 

extreme events. 

4.3.8   Filtering method for estimating Vmax from JRyR 

A filtering method was developed for estimating Vmax from the spatiotemporal profile of 

JRyR in a fiber. The left column of Figure 4.10A shows the simulation from Figure 4.9A 
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where [Ca2+]i was initialized to 300 nM, and the right column illustrates the steps used in 

the filtering method. The first step in the method was to apply a uniform averaging filter 

to JRyR at each point in time to obtain a spatially smoothed profile 

 

,
 

(4.4) 

where x refers to cell index, t refers to time, and W is the width of the filter (an odd 

integer). For each cell, the maximum J’RyR value over all time was computed: 

 
.
 (4.5) 

The value of W that maximized the correlation coefficient between Vmax and J’max was 

selected. We then normalized J’max to obtain estimates of Vmax using the formula 

 

,
 

(4.6) 

where µV and σV are the mean and standard deviation of Vmax of the simulation, and µJ 

and σJ are the mean and standard deviation of J’max. Note how in the example of Figure 

4.10A the estimated profile of V’ closely resembled V. 

The filtering method was applied to simulations of DADs with baseline 

conditions, 50% IK1, and both 50% IK1 and 50% ggap (Figure 4.10B). In non-baseline 

conditions, the initial [Ca2+]i was adjusted from 300 to 220 nM so that µV would be 

approximately equal to that of the baseline. The width W of the smoothing filter was 

dependent on the fiber model parameters and therefore was optimized separately for each 

case. Table 1 shows the parameter fits for each condition. The resulting fits of V’max to 

Vmax were compelling, as measured by high correlation coefficient values (ρ > 0.94). All 
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values of µV fell in a small range near -78 mV, while the values of µJ in the two non-

baseline conditions were less than half of baseline due to their lower Ca2+ loads.  

The increase in Vmax variability in the two pathological conditions is reflected in 

the parameters of the filtering model. It can be shown that the quantity SV = (σV/σJ)/W 

scales with the standard deviation of V’max (see Appendix C). Recall that 50% IK1 

reduction increased variability of V in the cell model (see Figure 4.7). However, SV was 

28% larger in this case compared to baseline, primarily reflecting the higher value of σV. 

Imposing 50% ggap resulted in a filter width of only 27 cells compared to 43 and 49 in the 

other cases due to local decoupling of cells when gap junction conductance is decreased. 

This caused SV to be 87% larger than baseline and 46% larger than 50% IK1 alone.  

These results show that the filtering method accurately estimates fluctuations in 

Vmax based on the JRyR profile. In addition, the empirical relationships derived here 

between JRyR and Vmax also yield insight into how reductions in outward currents and 

electrotonic coupling enhance spatial fluctuations in Vmax. 
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Figure 4.10 Filtering method for estimating Vmax from the spatiotemporal JRyR 

profile in a fiber. 

(A) Illustration of the filtering method for an example fiber simulation. A uniformly-

weighted spatial smoothing filter of width W was applied to the spatiotemporal JRyR 

profile. The maximum values of the filtered profile were then normalized to obtain an 

estimate of the voltage profile (see text for details). (B) The filtering method was applied 

to three fiber simulations using the conditions indicated above each plot. The filtering 

method result (red) accurately estimated Vmax from the original simulation (black). 

Parameters are listed in Table 1. 
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 [Ca2+]i  
(nM) ρ µV 

(mV) 

µJ 
(µM ms-

1) 

σV 
(mV) 

σJ 
(µM ms-

1) 

W 
(cells) SV 

Baseline 300 0.949 -77.0 0.526 0.665 0.00873 43 1.77 
50% IK1  220 0.973 -78.3 0.248 1.38 0.0124 49 2.27 
50% IK1,  
50% ggap  

220 0.976 -79.1 0.242 1.34 0.0150 27 3.31 

Table 4.1 Parameters used for filtering method in Figure 4.10. 
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4.3.9   Resampling method for estimating rare event probabilities 

Samples of Vmax were obtained by shuffling cell positions in the JRyR profile, as 

illustrated in Figure 4.11A. The filter method was then applied to the shuffled JRyR profile 

to estimate Vmax. An example Vmax profile obtained using this method is shown on the 

right. Note that the fluctuations about the mean µV were qualitatively similar to those of 

the original simulation. In Figure 4.8, it was shown how a triggered propagating wave 

originated from a region of the fiber exhibiting extreme DADs that reached the threshold 

for triggering a spontaneous AP. Therefore, events of interest were defined as the greatest 

value of Vmax in the fiber, referred to here as Vpeak.  

The shuffling of cell positions makes two assumptions. The first is that the JRyR 

profiles of the cells are independent and identically distributed stochastic processes. 

Implicit in this assumption is that for each cell the variability of membrane potential due 

to local spontaneous Ca2+ release does not affect its JRyR. The second assumption is that 

the fiber contains a sufficient number of cells such that the true distribution of JRyR is well 

represented by the collection obtained from a single simulation.  

To validate our assumptions, the distribution of Vpeak generated using this method 

needed to match that of the detailed biophysical model, which was estimated from 1,000 

independent realizations. Simulating the ~500-cell fiber with 25,000 release sites in each 

cell was computationally prohibitive. For the purposes of the validation, the number of 

release sites was reduced to 2,500 and the fiber length to 96 cells. The values of µV and 

σV were computed using the Vmax values from all cells in all fibers.  

Figure 4.11B compares the true distribution to the distribution of Vpeak values 

obtained from applying only the filtering method to the simulated JRyR profiles (without 
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shuffling). While this distribution exhibited a bias of -0.05 mV, it was not significantly 

different from the true distribution according to a non-parametric Kruskal-Wallis test 

after correcting for the bias by subtracting their means (p = 0.89). The shuffling method 

was then validated by resampling from the JRyR’s in all 1,000 fibers to produce 1,000 96-

cell fiber realizations and computing Vpeak with the filtering method. While the resulting 

distribution also was biased by -0.08 mV, it was not significantly different from the true 

distribution after adjusting the means (p = 0.69) (Figure 4.11B). The upper tails of the 

distributions containing the extreme DADs of interest were also similar (Figure 4.11C). 

To validate the second assumption that sampling population of JRyR is sufficiently large, 

these tests were repeated using a subset of five of the 1,000 fibers to compute µV, σV and 

the population of resampled JRyR’s (bias +0.05 mV, p = 0.68). Therefore the method was 

also accurate using a total of <500 simulated cells. In summary, the method outlined here 

is a computationally efficient approach that permits the rapid estimation of the Vpeak 

distribution using output from a single 500-cell fiber simulation.  
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Figure 4.11 Method for estimation of rare extreme DAD probabilities. 

 (A) Example illustrating how independent fiber realizations are generated by shuffling 

cell positions and applying the filtering method. The resulting Vmax profile of the original 

simulation (black) and V’max obtained after shuffling (red) are plotted on the right. Vpeak 

is defined as the maximum potential achieved in the fiber. (B) Histograms of Vpeak from 

model simulations (black), the filtering method (blue), and shuffling method (red). See 

text for details. (C) Upper tail of the distributions from (B). (D) Predicted tail of Vpeak 

distributions for fibers with the baseline model (blue), with 50% IK1 reduction (red), and 

with both 50% IK1 reduction and 50% ggap (magenta). Distributions are plotted relative to 

the average Vmax, µV. 
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4.3.10   Prediction of rare events 

The resampling method was applied to the simulations from Figure 4.10B to estimate the 

probability of rare extreme DADs in the fiber model. Figure 4.11D plots the probability 

that (Vpeak-µV) exceeded a given potential estimated from an ensemble of 106 realizations. 

Reducing IK1 by 50% shifted the distribution tail to greater amplitude DADs compared to 

the baseline model. The most extreme event observed was 6.1 mV above µV compared to 

3.4 mV in baseline, corresponding to DAD amplitudes 41% and 21% above average, 

respectively. Reducing ggap by 50% further increased the likelihood of larger DADs, with 

the most extreme event at 7.5 mV corresponding to a DAD amplitude 53% higher than 

average. These results demonstrate that reductions in IK1 and ggap widen the distribution 

of DAD amplitude considerably and can increase the probability of occurrence of larger 

DADs by orders of magnitude. 

 To illustrate the nature of these rare events, the realizations exhibiting the greatest 

DAD amplitude were examined in each condition. Figure 4.12A plots Vmax relative to the 

mean. The extreme DADs occurred in a localized region of ~20-40 cells that achieved a 

local maximum. Figure 4.12B shows the underlying JRyR profiles and the filter window 

centered on the maximum DAD. In each case, the extreme event occurred at a cluster of 

cells where JRyR tended to be greater and more synchronized than in the rest of the fiber.  

 In this section, the resampling method was employed to estimate the probability 

of extremely rare events in the fiber model. Reducing IK1 and ggap greatly increased the 

likelihood of large DADs that deviate substantially from the average. It was further 

shown that these events are characterized by unlikely spatial clustering of high-

amplitude, synchronized spontaneous Ca2+ release, thus confirming our hypothesis that 
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variability in Ca2+ wave dynamics and RyR gating can result in rare arrhythmic events at 

the tissue scale. 
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Figure 4.12 Realizations of rare extreme DADs. 

(A) Plots of Vmax-µV in the realizations from Figure 4.11D containing the most extreme 

DADs out of 106 trials. Curves correspond to the baseline model (blue), with 50% 

reduction of IK1 (red), and both 50% IK1 and 50% ggap (magenta). (B) Spatiotemporal JRyR 

profiles in each realization from panel (A). Brackets and dotted lines mark the location of 

the filter window centered on the extreme DAD. 
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4.4   Discussion 

In this study we have presented a biophysically detailed stochastic computational model 

of the ventricular cardiac myocyte describing spatial Ca2+ diffusion between release sites 

and incorporated it into a tissue-scale model to study the mechanisms and statistical 

properties of DADs and triggered ectopic activity. Loading of SR Ca2+ is known to cause 

spontaneous Ca2+ release(43, 84, 160). In this model, Ca2+ waves were generated when 

under high SR Ca2+, load passive diffusion of Ca2+ between release sites caused Ca2+ 

sparks to propagate across the cell. In agreement with experimental studies, RyR 

sensitivity modulated the threshold SR Ca2+ load at which this instability arises(166). 

Rather than explicitly modeling RyR regulation mechanisms such as phosphorylation by 

activated CaMKII (117) and PKA (23), allosteric channel decoupling due to PKA-

dependent dissociation of FKBP12.6 (24), and oxidation by reactive oxygen species (106, 

157), RyR opening rate was scaled such that the model reproduced experimentally 

observed triggered APs at 1 Hz pacing(157). [Ca2+]jsr-dependent regulation of the RyRs 

increases their sensitivity to cytosolic [Ca2+] (102, 167), but its role in spontaneous Ca2+ 

release is controversial. In the model of RyR gating used here, it played a minimal role in 

dynamically regulating RyR sensitivity because [Ca2+]jsr < 1 mM(16, 17).  

The distribution of DADs was controlled by the total Ca2+ in the cell. This was 

revealed by the apparent change in the threshold SR Ca2+ load for spontaneous Ca2+ wave 

formation during pacing (see Figure 4.4). Elevated diastolic [Ca2+]i increased RyR 

opening rate and thus perpetuated Ca2+ wave formation at lower SR Ca2+ loads. It also 

caused more rapid loading of the SR to induce overload. Cellular Ca2+ loading also 

increased the amplitude of DADs due to the greater number and concurrence of Ca2+ 
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wave nucleation sites, which is in agreement with experimental studies(46, 47). 

Consistent with our results, Wasserstrom et al. reported that cellular Ca2+ loading reduced 

DAD delay and increased synchrony associated this with greater likelihood of triggered 

activity (47).  

Triggered events were investigated using the fiber model. Experimental study of 

the nature of DAD-induced arrhythmias is difficult due the limited temporal and spatial 

resolutions of live multiplex fluorescence imaging of tissue preparations. The model 

revealed that triggered beats originated at a region of localized high-amplitude DADs. 

We showed that these events occurred probabilistically due to random patterns of RyR 

gating and Ca2+ waves that gave rise to high-amplitude, synchronized Ca2+ release flux in 

a cluster of cells. Heterogeneity of cell types and intercellular variability of Ca2+ 

handling, may also play an important role in determining the likelihood and location of 

triggered foci (47) but were beyond the scope of this study. Furthermore, the potential 

effects of proarrhythmic beat-to-beat AP variability (168) or stochastic EADs (169), 

which could affect Ca2+ loading and DAD timing, were not examined. 

The role of IK1, which acts to stabilize the resting membrane potential, affected 

the DAD distribution in isolated cells. Loss of IK1 function has been associated with 

arrhythmogenesis in diseases such as heart failure (162), Andersen’s syndrome (163), and 

long QT syndrome (164). The model exhibited a considerable increase in DAD amplitude 

and variability in both isolated cells and the fiber when IK1 density was reduced by 50%. 

Reduction of gap junction conductance, another pathological feature of diseases such as 

HF (165), also increased the variability of DAD amplitude in the fiber by reducing the 

spatial scale of electrotonic coupling. These findings are consistent with a modeling study 
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that showed that fewer contiguous cells are required to exhibit DADs to produce a 

triggered beat under such conditions(170).  

A significant contribution of this work is that sudden arrhythmias can be caused 

by stochastic molecular events. A rigorous, computationally efficient method was 

developed to estimate the probability of extreme DADs. There were two important 

conclusions from using this method. First, that variability of the inward current due to 

stochastic RyR gating caused random patterns of Ca2+ wave dynamics and results in 

substantial DAD variability at the tissue scale, particularly in the pathological states 

tested where IK1 and ggap were reduced. Second, while one could imagine a possible case 

where a contiguous cluster of cells exhibit large synchronized spontaneous Ca2+ release, 

the probability distribution of such events has not been well characterized. In a 496-cell 

fiber with reduced IK1 and gap junction coupling, the largest DAD amplitude out of 106 

realizations had amplitude ~50% greater than mean DAD amplitude. For such a fiber 

paced at 1 Hz and exhibiting a DAD after every beat, one could therefore expect to 

observe such an event approximately every 11 days. Thus extreme DADs, while quite 

rare, are still possible over feasible time frames. Further work is needed to estimate the 

probability of such events in whole heart, given the increased electrotonic coupling of 3D 

tissue and greater number of cells. Nevertheless the results presented here suggest that 

variability due to stochastic molecular events can play a large role in the initiation of 

cardiac arrhythmias and sudden cardiac death. 

4.5   Conclusion 

Ectopic heartbeats can trigger reentrant arrhythmias, leading to ventricular fibrillation 

and sudden cardiac death. Such events have been attributed to unstable Ca2+ handling in 
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cardiac myocytes that results in spontaneous Ca2+ release and DADs under pathological 

conditions. However, the molecular mechanisms underlying the generation of ectopic 

foci are not well understood. Here we presented a multiscale model of cardiac tissue that 

incorporates a biophysically detailed 3D model of the ventricular myocyte. The cell 

model reproduces realistic spontaneous Ca2+ waves and DADs driven by stochastic Ca2+ 

RyR gating under conditions promoting cellular Ca2+ overload. The model was used to 

study the mechanisms of DAD variability. Key factors influencing the distribution of 

DAD amplitude and timing included the cell Ca2+ load and IK1 density. It was further 

shown how random patterns of RyR gating and Ca2+ wave dynamics could thus give rise 

to probabilistic triggered activity in a fiber of myocytes. Pathological reductions in IK1 

density and gap junction conductance caused a substantial increase in the variability of 

DAD amplitude in the fiber model. Lastly, a novel method for estimating the probability 

of rare stochastic events is presented and used to predict the likelihood of extreme (i.e. 

rare, high-amplitude) DADs, which were characterized by randomly organized clusters of 

cells exhibiting synchronized, high amplitude Ca2+ release flux. We concluded that 

variability in DAD amplitude at the tissue scale can be attributed to stochastic molecular 

events and that the probability of rare arrhythmic events is substantially increased under 

conditions reflecting pathophysiological remodeling in heart disease.  
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Chapter 5  Models and Simulations as a Service 

5.1   Tool Description 

5.1.1   Globus Galaxies 

Over the past several years we have developed, deployed, and operated an enhanced 

version of the Galaxy framework for the Cardiovascular Research Grid (CVRG) (171) 

community called Globus Galaxies (172). This Globus Galaxies instance provides: 

integrated high-performance and easy to use data management capabilities using Globus 

Transfer (173); custom “recipes” to install the Galaxy framework preconfigured with 

analytical tools and pipelines using virtual machines; integration with the BioPortal 

Ontology Server (174) through its REST interface; novel on-demand computational 

infrastructure using Amazon EC2 and HTCondor (175) for elastic scaling; a user-

configurable node provisioner for managing elastic scaling by determining when 

instances should be added and removed from the compute cluster as a result of tasks 

waiting in the execution queue. We have also created a framework that helps determine 

the computational characteristics of a particular analysis in terms of the number of CPU 

cores and the amount of RAM required to run optimally. These profiles help create an 

optimal execution strategy for the application.  

5.1.2   Tool Development 

We have developed a set of Galaxy tools for using computational models. All tools can 

be accessed at https://cvrg.galaxycloud.org. Galaxy tools are typically comprised of two 

files: a software application such as the model program and an XML configuration 

document that tells Galaxy how to use the application. Galaxy provides an XML 

specification for configuring the application’s input and output data files, parameter 

https://cvrg.galaxycloud.org
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fields, and documentation. The developer must also specify a command to invoke the 

main computations performed by the application. Because of this constraint, applications 

must be implemented such that they receive the paths of input and output files and 

parameter values as arguments. The application must be accessible as a web-services or 

an executable on the Galaxy server. Installation of applications and incorporation of 

third-party software dependencies can be performed manually by a server administrator, 

or automated using the dependency package manager in the Galaxy Tool Shed (56). 

Therefore models, modeling tools, and third-party applications can be integrated into a 

Galaxy tool as long as they can be run programmatically. This includes models that are 

compiled (e.g. C/C++, FORTRAN, Java), scripted (e.g. MATLAB, R, Python), or 

available through an application programming interface (API) (e.g. software libraries, 

web services). This excludes models, however, that can only be run through graphical 

user interfaces.  
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5.2   Results 

5.2.1   SRS Model Tools 

We have developed a Galaxy tool suite for customizing and running the SRS model as an 

example of how our approach is able to deliver RRS capabilities for complex models. 

The original SRS model was comprised of a set of executables that were used in different 

pipelines for running and analyzing the model. These executables performed separate 

tasks including generating the 3D mesh geometry, running simulations, and performing 

various post-processing computations. Here we have wrapped these executables into a set 

of Galaxy tools that streamlines the different workflows used to produce published 

analyses.  

A recent study reported that the calsequestrin R33Q mutation associated with 

CPVT results in an increase of RyR mean open time (MOT) from ~ 2 to 10 ms (17). To 

illustrate the use of Galaxy workflows for simulating complex models, we ran two Ca2+ 

spark simulations of the SRS model to test the effects of the R33Q mutation on Ca2+ 

dynamics.  

The first step is to run a meshing tool within Galaxy to generate the three-

dimensional tetrahedral mesh used by the model. With this tool users can customize the 

geometry of the model, including release site dimensions and ion channel locations. The 

Galaxy simulation tool is invoked to run the model on this new mesh. Users can 

customize model parameters and run different types of simulations including individual 

or ensembles of multiple simulations for estimating statistical properties of the model. In 

the latter case, Galaxy launches ~1,000 parallel simulations on a 32-core AEC2 node. For 

the control simulation, we used the default set of parameters, which runs a single Ca2+ 



 114	
  

spark simulation under normal conditions. For the R33Q simulation, we decreased the 

RyR closing rate parameter (k-) from 0.50 ms-1 to 0.10 ms-1. An offline three-dimensional 

rendering of a Ca2+ spark simulation is shown in Figure 5.1A. 

To visualize simulation output, we developed a tool to mimic confocal linescan 

plots of simulation results. Figure 5.1B shows these linescan plots for the control and 

R33Q simulations. Analysis of these plots using Sparkmaster (68) revealed that the full 

duration at half-maximum increased by 45% compared to control, in agreement with 

experimental data (80). 

We next designed a Galaxy tool for converting model output so that it can be 

readily viewed and visualized within Galaxy. Figure 5.1C shows graphs of Ca2+ 

dynamics during each spark generated using the Galaxy plotting tool. The increase in 

Ca2+ spark duration can be explained by the longer time until release termination, and the 

lower nadir of junctional sarcoplasmic reticulum Ca2+ concentration is consistent with 

experimental data (176). These results demonstrate how the complex SRS model and 

computational resources can be shared with and customized by others to predict the 

physiological implications of new experimental data. 

Galaxy maintains a user “history” containing a list of datasets and executed tools 

from the current session. The contents and provenance of each history item can be 

viewed and downloaded. A collection of histories can be stored on the user’s account, 

thus providing a persistent platform for managing multiple simulations and analyses. 

Importantly, Galaxy lets users share and publish histories and workflows. These are 

tagged with URLs that can, for example, be embedded in publications. By clicking on 

these links, readers may repeat simulations and recreate analysis results described in the 
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publication. This was included in Chapter 2 figure captions. Similarly, Galaxy enables 

researchers to construct workflows using a graphical drag-and-drop editor. In contrast to 

a history, a workflow serves as a template for performing simulations and data analyses. 

An entire workflow can be executed, invoking the tools used in the workflow and 

returning the results to the user as a history when complete. Users can import a copy of a 

shared history or workflow into their own workspace, enabling them to run identical or 

customized simulations. To enhance transparency, users can embed workflows, histories, 

and documentation into a publishable webpage provided by Galaxy’s “pages” feature. 

These features thus address issues of reproducibility in computational modeling by 

enabling users to readily access the provenance of simulations performed by other 

researchers. A hyperlink to the history containing the preceding simulation results is 

given in the caption of Figure 5.1, and a Galaxy page documenting different analyses is 

available at http://cvrg.galaxycloud.org/u/mwalker/p/calcium-spark-tools.  

  

http://cvrg.galaxycloud.org/u/mwalker/p/calcium-spark-tools
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Figure 5.1 Spark simulation from the SRS model. 

(A) The three-dimensional model depicting transverse-tubule (blue), junctional 

sarcoplasmic reticulum (red), and 1 µM Ca2+ concentration isosurface (green) during a 

Ca2+ spark. (B) Simulated confocal linescan plots of Ca2+ indicator fluorescence for 

control parameters (top) and when the RyR MOT was increased to 10 ms (bottom). 

Image dimensions are 200 ms across and 6 µm vertically. (C) Time-series plots using the 

control parameters (black) and with RyR MOT of 10 ms (red). Panels show number of 

open RyRs (left), and average junctional sarcoplasmic reticulum Ca2+ concentration 

(right). Simulation histories available at: 

http://cvrg.galaxycloud.org/u/mwalker/h/calcium-spark-mot-10ms. 

  

http://cvrg.galaxycloud.org/u/mwalker/h/calcium-spark-mot-10ms
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5.2.2   XML-encoded Model Tools 

The RRS capabilities of Galaxy can be leveraged when working with other applications 

to provide provenance of in silico experiments. To demonstrate a basic use case for 

SBML simulations, we developed a search interface within Galaxy that uses the 

BioModels Database web services to support discovery and import of models directly 

into Galaxy. The tool is able to access the database over SOAP web services using 

queries specified in the BioModels WSDL document (177). To simulate SBML models, 

we developed a wrapper tool for the COPASI simulation software (53), which can run 

simulations via the command line and therefore was suitable for integration into a Galaxy 

tool. The user selects the desired SBML model, provides solver parameters, and selects 

whether to run a deterministic or stochastic simulation. Using these tools, we imported a 

model of PKA signaling by Saucerman et al. from BioModels and replicated Figure 2B of 

the original publication (178) (Figure 5.2A).  

We have also developed tools for editing and simulating CellML models in 

Galaxy. Using the upload tool, we first imported the ten-Tusscher epicardial cell model 

(179) via its URL in the CellML model repository (180). We developed a CellML editing 

tool that utilizes the CellML Python API (52) to enable users to modify parameter values 

and initial conditions. Thus from a parent model, one can produce one or more child 

models representing variations in cell types or conditions. We reduced the IKs 

conductance four-fold to derive an M cell model variant and retrieved the endocardial 

model version from the CellML repository for comparison. OpenCOR is an open-source 

CellML modeling environment that supports running simulations via the command line 

(54) and therefore could be wrapped in a Galaxy tool to simulate CellML models. We 
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simulated action potentials for the three models at 1 Hz pacing (Figure 5.2B), as shown in 

Figure 10 of the original publication (179).  

Hyperlinks to the histories used to generate Figure 5.2 are included in the figure 

caption. Thus we have demonstrated how existing SBML and CellML tools can be 

adapted for use within Galaxy, thereby taking advantage of its RRS capabilities.  
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Figure 5.2 Use of XML-encoded models in Galaxy.  

(A) The COPASI Galaxy tool was used to simulate a model of PKA signaling (178). Plot 

of AKAR2 phosphorylation kinetics following application of isoproterenol followed by 

propranolol. Simulation history available at: 

http://cvrg.galaxycloud.org/u/mwalker/h/saucerman2006. (B) Action potentials of the 

epicardial (blue), M cell (red), and endocardial (green) ten Tusscher human ventricular 

myocyte model (179). Simulation history available at: 

http://cvrg.galaxycloud.org/u/mwalker/h/tentusscher. 

  

http://cvrg.galaxycloud.org/u/mwalker/h/saucerman2006
http://cvrg.galaxycloud.org/u/mwalker/h/tentusscher
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5.2.3   Hodgkin-Huxley Model Composition 

Hierarchical model composition is a powerful technique for building models from 

smaller components. It enables modelers to rapidly prototype new models and facilitates 

meta-analyses to compare existing ones. Galaxy is a suitable environment for model 

composition. To demonstrate this, we developed two tools for building Hodgkin-Huxley 

(HH) type cell models (181) that incorporate ion channels as customizable components. 

Users can drag and drop new channels into Galaxy’s graphical workflow editor. Each 

channel can be linked to a simulator component that incorporates the channels into a cell 

model, and simulates the response to a stimulus current. Figure 3A shows a screenshot of 

the workflow editor used to compose the original HH squid giant axon model (181). HH 

models of sodium, potassium, and leak currents were created. The workflow visual editor 

was used to interconnect these models to create a HH model of the neuronal action 

potential (Figure 5.3A). Galaxy simulated the model and produced a plot of the 

membrane potential oscillations over time (Figure 5.3B). Links to the workflow and 

history that produced this figure are given in its caption.  
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Figure 5.3 Model composition of the Hodgkin-Huxley squid giant axon model using 

Galaxy workflows. 

(A) Workflow interface shows nodes for sodium, potassium, and leak currents (left), 

which are then combined into a cell model for simulation of current injection (middle). 

The final node (right) plots the membrane potential, as shown in panel (B). Simulation 

history and workflow available at: http://cvrg.galaxycloud.org/u/mwalker/w/hh-sga and 

http://cvrg.galaxycloud.org/u/mwalker/h/hh-sga. 

  

http://cvrg.galaxycloud.org/u/mwalker/w/hh-sga
http://cvrg.galaxycloud.org/u/mwalker/h/hh-sga
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5.3   Discussion 

We have introduced the concept of MaSS to address the many challenges 

associated with computational research and demonstrated that Galaxy is a powerful, easy 

to use platform for realizing this approach. Galaxy enables users to run and publish 

simulations and workflows, thus providing complete provenance and transparency of 

results. We showed how a complex model of Ca2+ sparks that requires high performance 

computing resources for execution can be seamlessly customized and run in the cloud. 

We have shown how the RRS capabilities of Galaxy can be leveraged when working with 

SBML- and CellML-encoded models. External repositories such as the BioModels 

database and the CellML Repository can be integrated into Galaxy using web services, 

enabling users to query and retrieve models directly. Finally, Galaxy supports model 

composition in an intuitive graphical workflow editor. This is a powerful feature that will 

enable modelers to build, for example, cell models from constitutive signaling networks 

and ion channel modules. To our knowledge, there are no other biomodel databases with 

the web-based workflow capabilities of Galaxy. While CVRG Galaxy and these tools are 

currently fully usable, we stress that their development is ongoing. We present them as 

preliminary examples of how the features of Galaxy can be harnessed for delivering 

complex models via MaSS. 

We are currently hosting an instance of MaSS for community use 

(https://cvrg.galaxycloud.org) as a biomodeling reproducible research resource. Users 

wishing to contribute and share models should contact the authors for assistance. This 

service will host a catalog of user-submitted models that complies with existing 

annotation standards such as MIRIAM (182). Integration with the BioPortal ontology 

https://cvrg.galaxycloud.org
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(174) has been developed and will be used in the annotation of each model. Galaxy 

integration will allow users to search models by their ontology, run simulations, and 

browse their associated histories and workflows. Persistent availability of this data will 

be ensured using permanent URLs that can be embedded in publications. The repository 

will fulfill the pressing need for an accessible platform for retrieving, running, and 

sharing computational simulations. 
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5.4   Conclusion 

We demonstrated the ways in which Galaxy can be used to share complex multi-scale 

biological models in a manner that supports reproducible modeling research. We 

proposed the concept of Models and Simulations as a Service (MaSS) in which these 

capabilities are delivered as easy to use, on-demand web services accessed through the 

user’s browser. To demonstrate MaSS, we showed how Galaxy tools could be used to 

wrap the SRS model into a convenient web interface that allows users to seamlessly 

access, customize and execute simulations. We showed how the RRS capabilities of 

Galaxy enable documentation and reproducibility of published results. We also showed 

multiple ways in which Galaxy can be used to access and simulate models encoded using 

the SBML and CellML languages, an approach that automatically inherits the RRS 

capabilities of the Galaxy platform. Finally, we demonstrated how the WCS capabilities 

of Galaxy could be used to compose hierarchical models from sub-module components. 
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Chapter 6   Conclusion and Future Directions 

Ca2+ plays a central role in the function of the cardiac myocyte. In heart disease, Ca2+ 

dynamics are severely altered, resulting in functional changes to cellular contraction 

(156, 183), ultrastructure (39, 80), Ca2+ handling protein expression (184), Ca2+-

dependent signaling pathways (24, 105, 185), and increased propensity for arrhythmias 

(99, 186). In this work, computational and mathematical models were used to investigate 

the mechanisms of altered Ca2+ handling under normal and pathological conditions.  

 The SRS model combined a contemporary model of RyR gating with realistic 

anatomical and biophysical detail based on recent data. The model was used to test the 

functional roles of [Ca2+]jsr-dependent RyR regulation, release site ultrastructure, and 

RyR channel positioning. These results provide a novel perspective on nanoscale Ca2+ 

spark dynamics and a framework for investigating the roles of additional biophysical 

components including localized NCX (145), localized Na+/K+ ATPase (37), mitochondria 

(187, 188), and RyR superclusters (140) in health and disease.  

 An emergent property of the SRS model was the relationship between Ca2+ spark 

probability and the maximum eigenvalue of the adjacency matrix describing the RyR 

cluster lattice. RyRs were coupled to open neighboring channels via local rises in 

subspace [Ca2+], and the probability of a spontaneous RyR opening triggering a Ca2+ 

spark was highly dependent on the interconnectedness of the lattice network.  

This empirical result was further investigated by describing the Ca2+ spark 

initiation process as a CN model, from which the relationship could be derived 

analytically. Capturing the behavior of the full biophysical model using this minimal 

abstraction lends intuition and brings the key mechanisms of probabilistic Ca2+ spark 
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initiation into focus. The CN paradigm can be applied to a variety of clustered 

transmembrane receptors that also exhibit cooperativity in other cell types (131, 132). 

 Spontaneous ectopic activity in the heart occurs when DADs are induced by 

pathological conditions that enhance cellular Ca2+ overload (46, 47, 159). The stochastic 

tissue model was developed to study DAD generation and synchronization. Substantial 

DAD variability in an ensemble of cells was attributed to stochastic molecular events 

driven by spontaneous RyR openings. In a 1D fiber, this variability was sufficient to 

cause spatially varying DAD amplitude and probabilistic triggered activity despite the 

effects of electrotonic coupling between cells. Changes reflecting pathological 

remodeling in HF, including IK1 and ggap reduction, greatly enhanced DAD amplitude 

variability. 

 It is not known, though speculated, if arrhythmias can be triggered by rare 

stochastic events (47). A novel method was developed to efficiently estimate the 

probability of extreme DADs. By assuming independence and identical distribution 

across cells of the stochastic processes driving spontaneous Ca2+ release, events of 

probability ~10-6 could be estimated from the output of a single simulation. Future efforts 

could incorporate other methods for estimating rare event probabilities, including 

importance resampling (189) and simulation splitting (190). Under pathological 

conditions (50% IK1 and 50% ggap), rare DADs that had amplitude ~50% higher than 

average occurred once in every 106 beats. Such events were characterized by clusters of 

cells exhibiting high-amplitude, synchronized Ca2+ release flux. This strongly suggests 

that rare DADs exceeding the threshold for AP activation can occur in a fiber of 
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myocytes. However, future work is needed to investigate this phenomenon in realistic 3D 

tissue geometry. 
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Appendix A Superresolution Calcium Spark Model 

A.1  Model Parameters 

Table A.1 Diffusion Coefficients 

Parameter Definition Value 
CaD  Ca2+ diffusion coefficient 0.250 µm2 ms-1 (67) 

ATPD  ATP diffusion coefficient 0.140 µm2 ms-1 

CmdnD  Calmodulin diffusion coefficient 0.025 µm2 ms-1 

4FluoD  Fluo-4 diffusion coefficient 0.042 µm2 ms-1 
 

Table A.2 Initial Conditions 

Parameter Definition Value 
CytoC0  Resting cytoplasmic Ca2+ 

concentration 
0.10 µM 

SRC0  Resting SR Ca2+ concentration 1.0 mM 

 

Table A.3 Buffering Parameters 

Parameter Definition Value* 
Tot
ATPB  Total ATP concentration 455 µM 
Tot
CmdnB  Total calmodulin concentration 24 µM 

Tot
TrpnB  Total troponin concentration 70 µM 

Tot
FluoB 4  Total fluo-4 concentration 50 µM 

Tot
CsqnB  Total calsequestrin concentration 

(JSR) 
30 mM 

SLρ  Sarcolemmal binding site density  1.6×10-13 µmol µm-2 (63) 

ATP
onk  ATP on rate 0.225 µM-1 ms-1 
ATP
offk  ATP off rate 45 ms-1 
Cmdn
onk  Calmodulin on rate 0.023 µM-1 ms-1 
Cmdn
offk  Calmodulin off rate 0.238 ms-1 
Trpn
onk  Troponin on rate 0.039 µM-1 ms-1 
Trpn
offk  Troponin off rate 0.020 ms-1 

4Fluo
onk  Fluo-4 on rate 0.100 µM-1 ms-1 
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4Fluo
offk  Fluo-4 off rate 0.110 ms-1 
Csqn
onk  Calsequestrin on rate 0.100 µM-1 ms-1 
Csqn
offk  Calsequestrin off rate 63.8 ms-1 
SL
DK  Sarcolemmal binding site affinity 13 µM (63) 

 
*Unless otherwise noted, diffusion coefficients and buffering parameters were from (58).  

Table A.4 RyR Gating Parameters 

Parameter Definition Value† 
ryrv  RyR Ca2+ release rate constant 3.0×10-8 ms-1 
η  Ca2+ Hill coefficient 2.1 

+k  RyR open rate constant 1.107×10-4 ms-1µM-η 

−k  RyR close rate 0.50 ms-1 
ϕk [Ca2+]jsr-dependent regulation affinity 1.5 mM 
ϕb [Ca2+]jsr-dependent regulation intercept 0.8025 
 
†RyR gating parameters were fit to achieve physiological spark and leak rates.  

Table A.5 SERCA and JSR Transport Parameters 

Parameter Definition Value‡ 
refillv  JSR refill rate 0.095 ms-1 

pA  SERCA concentration 150 µM 

idK ,  SERCA cytosolic [Ca2+] affinity 0.91 mM 

srdK ,  SERCA SR [Ca2+] affinity 2.24 mM 

 
‡JSR refill rate was adjusted to achieve a realistic refill time constant (~130 ms) (61).  

SERCA parameters were taken from Williams et al. (12). 
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A.2  Equations 

A.2.1  Transport Equations 

The mesh was discretized into tetrahedral elements. For each element i, the time rate of 

change for [Ca2+]i s given by, 
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where NB refers to the number of buffering species Bj, and Ji,k is the net flux into the 

element through each face k, which is a function of the element geometry and [Ca2+] 

gradient. No-flux conditions were imposed at TT and JSR membranes, and at the domain 

boundary. Similarly, the transport equations for each Ca2+-bound mobile buffer CaBj is 

given by, 
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Note that because there are no external sources of buffers, total buffer concentration is 

conserved and therefore the unbound concentration is given by: ij
Tot
jij CaBBB ][][ −= . 

Immobile buffers also used Eq. A2 with Ji,k = 0. 

A.2.2  Dynamic Buffering Fraction 

Recall that βi refers to the dynamic buffering fraction due to sarcolemmal binding sites, 

which is given by, 

 
( )

1

22 ][
1

−

+ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
+=

i
SL
D

SL
DiSL

i
CaK

KAρ
β , (A.3) 



 131	
  

where SLρ is the sarcolemmal binding site density per area of TT membrane, SL
DK is the 

sarcolemmal binding site affinity, and Ai is the surface area of TT membrane incident 

with the faces of element i.  

A.2.3  RyR Flux 

Each RyR i is mapped to the closest cytosolic and JSR elements with indices j and k, 

respectively. The flux of Ca2+ in each element with volumes Vj and Vk are then given by, 

 ( )jk
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RyR
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j CaCa

V
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33
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×
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 and RyR
j

RyR
k JJ −= . (A.5) 

A.2.4  SERCA Formulation 

We implemented a thermodynamically constrained kinetic model of the SERCA pump 

presented in Tran et al. (60) and used parameters from Williams et al. (12). SERCA was 

homogeneously distributed in space > 200 nm from the TT axis. The flux in element j is 

given by, 

 pjcycle
SERCA
j AvJ ,

3)102( −×−= , (A.6) 

where Ap is the concentration of SERCA, and vcycle,j is the cycling rate given by, 

 vcycle, j =
3.24873×1012Ki, j

2 +Ki, j (9.17846×10
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, (A.7) 
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A.3  Numerical Methods and Implementation 

Briefly, it can be shown that for a Markov process with non-stationary transition rates, 

vi(t), if the last transition occurred at time t0, then the time until the next reaction τ can be 

determined using the residual Ri(τ) given by, 

 ∫
+

=
τ

τ
0

0

)()(
t

t
ii dttvR , (A.11) 

which is an exponential random variable with mean 1. Therefore, for each transition, one 

can draw a random number, xi, from this distribution and effect the transition when Ri(τ) 

= xi.  

The model was implemented in C++ and deployed to a cluster for ensemble 

simulations. A CUDA implementation was also developed for model prototyping and 

spark simulations on GPU devices. For a 100 ms simulation, the run times were 184 min 

on a 2.27GHz Intel Xeon E5520 and 18 min on an Nvidia Tesla C2075. 

A.4  Ca2+ Spark Properties and ECC Gain 

Ensemble simulations of individual CRUs were used to estimate whole-cell Ca2+ spark 

rate, leak rate, and ECC gain. Assuming that release sites are independent and the spark 

refractory period is much shorter than the mean waiting time for an channel opening in a 

49 RyR cluster (23.2 sec at 100 nM [Ca2+]ss), whole-cell spark occurrence can be 

modeled as a thinned Poisson process compounded over all CRUs. This yields the spark 

rate Rs ≈ NRyRropenPspark where NRyR is the total number of RyRs per cell (1.25×106), ropen 

is the resting RyR opening rate, and Pspark is the spark fidelity, which is defined as the 

probability a Ca2+ spark is generated given that one RyR has opened. Spark fidelity was 

estimated by opening a randomly chosen RyR at the beginning of each simulation and 

counting the fraction of simulations where at least 4 RyRs were open. 
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The spark leak rate LS was then estimated using the spark rate, RS, and the average 

total Ca2+ release per spark JS: Ls ≈ RsJs/Vcyto, where Vcyto is the total cytosplasmic volume 

(18 pL). Non-spark leak LN was calculated using the average amount of release per non-

spark JN: LN ≈ NRyRropen(1-Pspark)JN/Vcyto. At least 1,000 independent simulations were 

performed to estimate Pspark, JS, and JN.  

For RyR clusters inferred from STED images, sparks were simulated for each 

cluster by initially opening a randomly-chosen RyR. The spark fidelity of each RyR was 

then estimated as the ratio of the total number of sparks initiated by the RyR to the total 

number of times it was opened at the start of the simulation. 

The distribution of the spark rate R’S(n) and leak rate L’S(n) in a population of 

RyR clusters was estimated as a function of cluster size n using the formulas: R’S(n) = 

f(n)RS(n) and L’S(n) = f(n)LS(n), where RS(n) and LS(n) are the spark and leak rate fit to 

both STED-informed and square array clusters, and f(n) is the biexponential fit to the 

cluster size distribution. 

ECC gain was defined as the ratio of peak release (RyR) to peak trigger (LCC) 

flux and was estimated by summing the release fluxes over > 1,000 simulations in 

response to a 200 ms voltage clamp from a holding potential of-80 mV. 
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Appendix B RyR Contact Network Model 

B.1  CN Model Formulation 

Contact process models have been widely studied for their use in modeling disease and 

computer virus spread (see Keeling and Eams (119) for a review). In the present work, 

the CN model represents the RyR channel gating of a cluster of n channels. We will 

restrict ourselves to clusters that are connected, i.e. there are no separate islands of 

channels. The model is composed of a set of n random variables Xi(t) = 1 if channel i is 

open at time t and 0 otherwise. If the channel is open, the probability that it closes within 

an infinitesimal time step dt is given by δdt, where δ =0.5 ms-1 is constant. If channel i is 

closed, it transitions into the open state in time dt with probability βYi(t)dt, where Yi(t) is 

the number of open adjacent channels. β is a constant given by β = k+Cη, where k+ = 

1.107×10-4 µM s-η is the opening rate constant, C is the local elevation of Ca2+ 

concentration caused by an open neighbor, and η = 2.1 is the Hill coefficient for Ca2+ 

binding. These parameters were taken from the SRS model. 

The adjacency matrix A is defined as an n×n matrix, where element (A)ij = 1 if 

channels i and j are adjacent, and 0 otherwise. The number of open adjacent channels is 

then given by Yi (t) = A( )ij X j (t)
j
∑ . Let pi(t) = P(Xi(t) = 1), the probability that channel i is 

open at time t, which obeys the equation (124) 

 
dpi (t)
dt

= β 1− Xi (t)( ) A( )ij X j (t)
j=1

n

∑ −δXi (t) . (B.1) 

The entire system can be more compactly represented as the matrix equation 

 
d p(t)
dt

= βdiag u− X(t){ }A−δI( )X(t) , (B.2) 
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where p(t) = [p1(t),..., pn(t)], u is the all-one-vector, X(t) = [X1(t),..., Xn(t)], and I is the 

identity matrix. The system is therefore described by a set of n coupled stochastic 

differential equations, whose solution is analytically intractable. We simulated the CN 

model using the Gillespie algorithm (115). Spark probability in the CN model was 

estimated by running an ensemble of 10,000 simulations per data point. 

B.2  Ca2+ Diffusion Model 

Here we incorporate a simple model of Ca2+ diffusion that relate the CN model to 

the Ca2+-based communication between RyRs. We use the steady-state diffusion equation 

for a continuous point source in a semi-infinite volume to obtain the Ca2+ concentration 

sensed by a RyR neighboring a single open channel (191) 

 C =
iRyR

2π zFdCr
, (B.3) 

where iRyR = 0.15 pA is the unitary current of a single channel, z = 2 is the valence of 

Ca2+, F is Faraday's constant, dC is the effective diffusion coefficient of Ca2+ in the 

release site subspace, and r = 31 nm is the distance between the open channel pore and 

neighboring Ca2+ binding site.  

The diffusion coefficient for Ca2+ in the subspace is unknown, though estimates for 

dC in the cytosol range from 100 to 600 µm2 s-1 (67). Ca2+ buffering molecules, 

electrostatic interactions with the membrane, and tortuosity imposed by the large RyR 

channels can affect the motion Ca2+ ions (192). In light of these factors, the value of dC 

was adjusted from 250 to 146 µm2 s-1 to obtain the nominal value of β = 0.115 that yields 

accurate spark probabilities (see Figure 3.1). 
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B.3  Linear Mean-Field CN Model 

A common approach is to derive a mean-field approximation of the first moment of Xi(t) 

by assuming that the higher moments are equal to 0 (124). This yields a set of non-linear 

ordinary differential equations 

 
d p(t)
dt

= βdiag u− p(t){ }A−δI( ) p(t) , (B.4) 

where p(t) is now the vector of mean-field open probabilities. This non-linear system is 

difficult to analyze analytically (124). We further simplify the model by linearizing the 

equations about p = 0 (91) 

 
d p(t)
dt

= βA−δI( ) p(t) . (B.5) 

We refer to this as the linearized mean-field CN (LCN) model, which is amenable to the 

tools of linear systems theory. Note that the system is stable if and only if the maximum 

(dominant) eigenvalue of βA- δI, given by βλ1- δ, is less than 0, or 

 λ1 <
δ
β

, (B.6) 

where λ1 is the maximum (dominant) eigenvalue of A. Therefore, if λ1 < δ/β, the open 

probabilities in the LCN decay to 0. Otherwise, p(t) is unbounded as t approaches 

infinity. While physically meaningless, this result implies that the open probabilities 

increase when most channels are closed, or p(t) ≈ 0 (near the origin of linearization). 

The eigendecomposition of A is given by 

 A =VDVT , (B.7) 

where V is the modal matrix with columns formed by the orthonormal eigenvectors 

{v1,..., vn} of A, and D is a diagonal matrix of the eigenvalues {λ1,..., λn} in descending 
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order. Note that A is symmetric and therefore V-1 = VT. Combining Eqs. B16 and B18 

gives 

 
d p(t)
dt

=V βD−δI( )VT p(t) , (B.8) 

which can be rewritten as the summation 

 
d p(t)
dt

= βλi −δ( )
i=1

n

∑ vi vi
T p(t) . (B.9) 

The solution of this system is given by 

 p(t) = e βλi−δ( )t

i=1

n

∑ vi vi
T p(0) . (B.10) 

We refer to the eigenmodes as the eigenvalue-eigenvector pairs λi-vi. Note that p(t) is 

essentially a sum of the eigenmodes. If the initial probability distribution p(0) = αvi for 

some constant α, then p(t) is proportional to vi for all t. In other words, the trajectory of 

the system will be entirely characterized by the ith eigenmode. In general, the contribution 

of the ith eigenmode is determined by the weight vi
Tp(0) and a time-dependent 

exponential factor with time constant 1/(βλi-δ). 

We define E[nO(t)] as the vector whose elements (E[nO(t)])i give the expected 

number of open channels at time t given that channel i is open initially. This is computed 

by taking the sum of the elements of p(t) in the previous equation 

 E nO (t)[ ] = e βλi−δ( )t

i=1

n

∑ uTvi( )vi . (B.11) 

We assume that in a resting RyR cluster, every channel experiences the same Ca2+ 

concentration and therefore is equally likely to initiate a spark. The expected total number 
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of open channels when the first open channel is chosen randomly can be computed by 

setting p(0) to the uniform distribution and again summing over all elements of p(t) 

 E NO (t)[ ] = 1
n

e βλi−δ( )t

i=1

n

∑ uTvi( )
2

. (B.12) 
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Appendix C Stochastic Tissue Model 

C.1  Release Site Ca2+ Transport 

d[Ca2+ ]JSR,i, j,k

dt
= βJSR,i, j,k JNSR−JSR,i, j,k − JRyR,i, j,k( )  

(C.1) 

d[Ca2+ ]SS,i, j,k
dt

= βSS,i, j,k
VJSR

VSS

JRyR,i, j,k + JLCC,i, j,k − JSS−SM ,i, j,k

"

#
$

%

&
'
 (C.2) 

d[Ca2+ ]SM ,i, j,k

dt
= βSM ,i, j,k

VSS

VSM

JSS−SM ,i, j,k − JSL−Cyto,i, j,k − JTrans,i, j,k,nT − JLong,i, j,k,nL
nL

∑
nT

∑
#

$
%
%

&

'
(
(  

(C.3) 

βJSR,i, j,k = 1+
BcsqnKcsqn

Kcsqn +[Ca2+ ]JSR,i, j,k( )
2

!

"

#
#

$

%

&
&

−1

 
(C.4) 

βSS,i, j,k = 1+ BSRKSR

KSR +[Ca2+ ]SS,i, j,k( )
2 +

BSL,SSKSL

KSL +[Ca2+ ]SS,i, j,k( )
2

!

"

#
#

$

%

&
&

−1

 
(C.5) 

βSM ,i, j,k = 1+ BcmdnKcmdn

Kcmdn +[Ca2+ ]SM ,i, j,k( )
2 +

BSL,SMKSL

KSL +[Ca2+ ]SM ,i, j,k( )
2

!

"

#
#

$

%

&
&

−1

 
(C.6) 

JRyR,i, j,k = NRyROpen,i, j,kvRyR [Ca2+ ]JSR,i, j,k −[Ca2+ ]SS,i, j,k( )
 

(C.7) 

JLCC,i, j,k = NLCCOpen,i, j,k
Cm

VSS

PCaL
VmF
RT

[Ca2+ ]SS,i, j,k e
2VmF /RT − 0.31[Ca2+ ]o

e2VmF /RT −1

"

#
$$

%

&
''

 

(C.8) 

JNSR−JSR,i, j,k = [Ca2+ ]NSR −[Ca2+ ]JSR,i, j,k( ) / τ NSR−JSR

 

(C.9) 

JSS−SM ,i, j,k = [Ca2+ ]SS,i, j,k −[Ca2+ ]SM ,i, j,k( ) / τ SS−SM

 

(C.10) 

JSM−Cyto,i, j,k = [Ca2+ ]SM ,i, j,k −[Ca2+ ]i( ) / τ SM−Cyto

 

(C.11) 
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JTrans,i, j,k,n = [Ca2+ ]SM ,i, j,k −[Ca2+ ]SM ,in , jn ,kn( ) / τ Trans  (C.12) 

JLong,i, j,k,n = [Ca2+ ]SM ,i, j,k −[Ca2+ ]SM ,in , jn ,kn( ) / τ Long  (C.13) 

Table C.1 Release Site Ca2+ Transport Parameters 

VJSR JSR volume 1.113 × 10-11 µL 
VSS Subspace volume 0.812 × 10-12 µL 
VSM Submembrane volume 5.85 × 10-11 µL 
Bcsqn Calsequestrin buffer concentration 13.5 mM 
Kcsqn Calsequestrin buffer affinity 0.63 mM 
BSR SR membrane buffer site concentration 0.047 mM 
KSR SR membrane buffer site affinity 0.00087 mM 
BSL,SS Sarcolemmal membrane buffer site 

concentration (subspace) 
1.124 mM 

BSL,SM Sarcolemmal membrane buffer site 
concentration (submembrane) 

0.122 mM 

KSL Sarcolemmal membrane buffer site affinity 0.0087 mM 
Bcmdn Calmodulin buffer concentration 0.05 mM 
Kcmdn Calmodulin buffer affinity 2.38 × 10-3 mM 
vRyR Open RyR Ca2+ transport rate 0.92 ms-1 
PCaL LCC permeability 9.13 × 10-13 cm µF s-1 

τNSR-JSR NSR-JSR Ca2+ diffusion time constant 9 ms 
τSS-SM SS-SM Ca2+ diffusion time constant 0.02 ms 
τSM-Cyto SM-Cyto Ca2+ diffusion time constant 1 ms 
τLong Longitudinal Ca2+ diffusion time constant 4 ms 
τTrans Transverse Ca2+ diffusion time constant 2 ms 
 

C.2  LCC Markov Model 

We used the LCC Markov model described by Greenstein and Winslow (59). In the 

baseline model, we assumed that 25% of LCCs were functionally active, which were 

randomly selected at the beginning of each simulation. The function γ that controls the 

rate into the Ca2+-inactivated states was changed from a linear to a saturating function of 

[Ca2+]ss ,i,j,k: 

γ = 0.0022
[Ca2+ ]SS,i, j,k

0.003+[Ca2+ ]SS,i, j,k . (C.14) 
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C.3  Sensitivity Analysis of the Filtering Method 

According to Eq. 4.6, the ratio σV/σJ represents the sensitivity of Vmax with respect to 

deviations from the average in the filtered release flux values, J’max-µJ. Compared to the 

baseline, the sensitivity was 46% larger with 50% IK1 density and 17% larger with both 

50% IK1 and 50% ggap due to the reduced outward current. In the latter case, the 

sensitivity was 20% lower than with 50% IK1 alone. This result is counter-intuitive, as 

one would expect the sensitivity of Vmax with respect to JRyR to increase due to the 

reduced electrotonic load.  

This discrepancy can be explained by the fact that the filter width was reduced by 

~50% after introducing 50% ggap. Note that combining Eqs. 4.4 and 4.6 yields the 

expression 

 
V '(x, t) = µV +

σV

σ J

1
W

JRyR (x + k, t)
k=−(W−1)/2

(W−1)/2

∑ −
1
N

JRyR (x '+ k, t)
k=−(W−1)/2

(W−1)/2

∑
x '=1

N

∑
#

$
%%

&

'
((

,
 (C.15) 

where N is the number of cells in the fiber. Note the summations in second term in 

parentheses can be exchanged and simplified to yield 

 
V '(x, t) = µV +

σV

σ J

1
W

JRyR (x + k, t)
k=−(W−1)/2

(W−1)/2

∑ −
W
N

JRyR (x ', t)
x '=1

N

∑
#

$
%%

&

'
((

.
 (C.16) 

The partial derivative of V’ at cell x with respect to J’RyR of any cell x-(W-1)/2 ≤ x’ ≤ 

x+(W-1)/2, lying within the filter window centered on x, is therefore approximated by 

 ∂V '(x, t)
∂JRyR (x ', t)

=
σV

σ J

1
W

1−W
N

#

$
%

&

'
( ≈

σV

σ J

1
W ,

 (C.17) 

assuming that the filter width is much smaller than the fiber length (W/N << 1). 

Therefore V’ is approximated by the linear function 
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V '(x, t) ≈V '0 (t)+

σV

σ J

1
W

JRyR (x + k, t)
k=−(W−1)/2

(W−1)/2

∑
,
 (C.18) 

The variance of V’ therefore given by 

 Var(V '(x, t)) = E V '(x, t)2!" #$−E V '(x, t)[ ]2

.
 (C.19) 

Combining Eqs. C.18 and C.19 and applying the linearity property of expectation gives 

the result 

 
Var(V '(x, t)) ≈ σV

σ J

1
W

"

#
$

%

&
'

2

Var JRyR (x + k, t)
k=−(W−1)/2

(W−1)/2

∑
"

#
$$

%

&
''
.
 (C.20) 

Therefore the standard deviation of V’ is given by the product of (σV/σJ)/W and the 

standard deviation of JRyR over the filter window. 
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