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ABSTRACT 

The tumor immune infiltrate and tumor cytokine microenvironment have been 

shown to be crucially important to patient responses to immunotherapy. The presence of 

effector T cells in the tumor correlates highly with good disease prognosis, while the 

presence of regulatory and inhibitory cell subsets and cytokines predicts poor outcomes.  

Thus, the ability to manipulate the cellular infiltrate and cytokine presence within the 

tumor microenvironment (TME) represents an important step forward in initiating 

productive responses against tumors. Here we employ several vaccination strategies and 

molecular methods to activate anti-tumor immunity, increase tumor immune infiltration, 

and skew the cytokine environment of tumors, all with the goal of creating durable and 

curative immune responses. We show that an attenuated strain of Listeria Monocytogenes 

(LM), engineered to express the tumor antigens TRP-2 and GP-100, has moderate 

efficacy in activating lymphocytes, increasing immune infiltrate, and reducing tumor 

burden. However, when this vaccine is combined with the checkpoint blockade antibody 

aCTLA4-IgG2a, immune infiltration and tumor control increases greatly. These effects 

are dependent on the ability of aCTLA4-IgG2a to bind Fc receptors and reduce the 

percentage of CD4+ cells that are FoxP3+. Lastly, we utilize the the STING agonist 

ADU-S100, a modified cyclic-di-adenosine molecule, henceforth referred to as cyclic 

dinucleotide (CDN), to induce innate effector cytokines like GM-CSF, IL-1b, IFNb, and 

TNFa. Intratumoral administration of CDN leads to TNFa-dependent tumor necrosis and 

clearance of established tumors. We explore the acute mechanism of CDN action and 

find that both immune and stromal cells play critical functions by sensing STING, 

producing cytokines, and modulating the tumor microenvironment. Interestingly, stromal 
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cell CDN sensing seems to be indispensable for achieving acute tumor necrosis by CDN 

injection. All of the above methods represent potential clinical targets to manipulate the 

TME and increase immune infiltrate to achieve better responses, and the underlying 

molecular mechanisms are important to understand as we go forward exploring the next 

generation of therapeutic targets and vaccines.  
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PREFACE 

The following body of work represents an attempt to more fully understand the 

mechanisms behind a few important cellular and molecular components of the immune 

system as they pertain to tumor immunology. It was performed not only over the course 

of many years, but over the course of maturation from student to scientist. With these 

experiments, comes the full understanding of legitimate differences between mouse and 

human systems, but also with the knowledge that a greater understanding of the former 

leads to the ability to translate to the later. The joy of scientific research is the ability to 

ask an important question at the beginning of the day, and by the end of the day answer it 

of your own volition. The difficulty of research is spending months or years dedicating 

your time and emotion into answering questions, only to come up with dissatisfying 

answers. Both have happened over the course of these projects, but never once will I say 

it wasn’t worth it.  
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Tumor immunology, immune editing, and vaccination 

Since the late 1800’s, anecdotal evidence linking infection and the regression of 

tumor masses has been recorded. However, in 1891, William Coley, a surgical 

oncologist, began injecting Streptococcus bacteria directly into tumor masses and 

observed gradual decrease in tumor burden in some masses1.   Coley’s basic experiments 

are the first examples of immunotherapy in humans, but were not understood to be so at 

the time. Similarly, over the past 50 years, physicians have observed an increase in 

incidence of cancer in patients who are immunosuppressed. Patients undergoing 

transplant surgery and kept on immunosuppressive agents, or those with immune 

suppressive infections like HIV all have higher incidences of cancer2,3. Based on these 

observations, in the past two decades, dedicated tumor immunologists have begun to 

study the intricate mechanisms that regulate immune activation and tolerance to bacteria, 

viruses, parasites, cancers, and indeed any pathogen that threatens the integrity of our 

body.   

The first studies to define immune system’s regulation of cancers utilized MCA- 

induced sarcoma in animals with a competent immune system (WT), or in animals 

without T cell and B cells (RAG-/-). Once grown, the tumors from WT and RAG-/- mice 

were reinjected into WT or RAG-/- animals. Interestingly, all tumors grew normally 

except those raised in a RAG-/- animal and reinjected into a WT animal, which grew a 

dramatically reduced rate4. This experiment highly suggested that tumors raised in 

animals with an immune system were somehow shaped by the presence of that immune 

system to escape future encounters, while tumor raised in animals with no immune 

system encountered no such pressure, and thus were slowed by the immune system when 
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they experienced it. This work introduced the idea of immune selection and evasion by 

tumors, and solidified the idea that the immune system plays a key role in the shaping 

and elimination of cancer.  

The most basic tool of an immunologist is the vaccine. A vaccine is quite simply 

any combination of molecule, compound, or organism that activates the immune system 

to kill a specific target. These targets molecularly are short amino acid peptides called 

epitopes, and thus many vaccines consist of two molecular parts, an adjuvant that 

activates immune cells, and peptide that grants it specificity. Vaccination to elicit an 

antibody response has been resoundingly successful, as many common vaccines to 

control viral and bacterial infections like Measles, Tetanus, Polio, and smallpox have 

virtually eradicated the effects of those diseases or the actual pathogens themselves. 

Tumor vaccines generally aim to enhance a cellular CD8+ response and have shown 

relatively disappointing clinical efficacy. Thus, the thrust of immune oncology has been 

to gain a more thorough understanding of the immune system to create successful 

vaccination strategies in a directed manner.  

CD8+ Tcells and Target Killing 

The immune system has many components, both cellular and acellular. The CD8+ 

T cell, or cytotoxic T cell, is capable of recognizing and killing stressed or infected cell in 

the body through recognition of cognate antigen as presented by the major 

histocompatibility complex (MHC).  Once an immune response is initiated by infection, 

dendritic cells (DC) migrate from the site of insult to the draining lymph node, where 

mature CD8+ cells await activation.  At the immune synapse, the localized area of 

contact between a dendritic cell and a CD8+ cell, there are an abundance of molecules 
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that have the capability of activating, inactivating, and otherwise shaping that cells 

activity to a pathogen5. Activation molecules on the DC surface like CD80/CD86, CD70, 

and OX40L bind to their cognate receptors on CD8+ cells (CD28, CD27, and OX40) to 

initiate downstream activation pathways6-10. On the other hand, there are also many 

markers on dendritic cells that can regulate a t cell response. Molecules like PD-L1 can 

lead to a dampening of CD8+ activity, and eventually T cell quiescence or exhaustion11-

14.  This event where a DC activates a CD8+ Tcell is called priming or activation.  This 

initiates a signaling cascades to allow the cell to replicate, become motile, and most 

importantly, to produce effector cytokines like granzyme B, interferon Gamma, TNFa, 

and IL-2. Recently it has been suggested that multifunctional T cells, cells that can 

produce multiple cytokines rather than only one, represent the population of cells that are 

highly effective at carrying out their function15. Once a CD8+ cell has become activated 

by a dendritic cell in the draining lymph node, it then mobilizes to the site of insult.

 At this site, in the absence of overwhelming immunosuppressive modulators (see 

below), the CD8+ cell can begin killing target cells.  

T regulatory Cells   

The immune system employs several mechanisms to regulate the killing activity 

of CD8+ cells. The T regulatory cell (Treg), as it’s name suggests, develops from the 

CD4+ T cell lineage and plays an important role in suppressing the activity of CD8+ T 

cells16. Treg are defined by the transcription factor FoxP317, and by the surface markers 

CD4 and CD2518.  In the absence of Treg and other immunosuppressive mechanisms, 

severe autoimmune diseases can occur19. There are several proposed mechanisms for how 
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Treg may suppress, including suppressive cytokine generaion20, sequestration of 

activating cytokines21, and dendritic cell suppression or inactivation22-24.  

Tregulatory cells are generally thought to develop in two different manors. 

Natural Treg are thought to develop during Tcell maturation in the thymus if the T cell 

recognizes self antigen during what may otherwise be considered negative selection25. 

Induced Treg may develop in the periphery when they experience TGF-b and retinoic 

acid during their activation or possibly at any time during a CD4+ T cell’s life26,27.  

Clinically, Tregulatory cells have become the subject of much focus in tumor 

immunology. The depletion of Tregulatory cells from the tumor microenvironment can 

aid in the restoration of effective immune mediated killing. 28-32  

Anergy and Immune checkpoints 

The immune system is capable of complete and sterilizing immunity when it 

detects a foreign pathogen and mounts a response to it. However, due to the potency of 

the response generated, the immune system also utilizes a variety of mechanisms to 

prevent the generation of immune responses to self-proteins.  One such mechanism, T 

cell tolerance, is the phenomenon through which self-reactive T cells are regulated, and is 

largely mediated by the induction of anergy or deletion.  While many of the mechanisms 

that dictate which of these outcomes occur in vivo remain unclear, some in vitro 

experimental systems have uncovered several of the requirements for the imposition of 

anergy, including the absence of costimulatory signals 33and the expression of checkpoint 

proteins 34,35. Recently, prolonged expression of the intracellular transcription factors 

EGR2 and EGR3 have been shown to enforce the anergy on CD4+ T-cells, supporting the 

hypothesis that anergy is an independently programmed and maintained state for T cells 
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36-39.  Similar to CD4 T-cells, CD8 T cells have also been found to express EGR2 in 

tolerizing environments, though its exact role in these circumstances is not fully 

understood. 

Immune checkpoint molecules are one class of regulatory molecules that modify 

Tcell-Tcell interactions, Tcell-APC interactions, and T cell- Target interactions by 

blocking receptor binding or by preventing downstream signaling through those 

receptors. One of the hallmark extracellular proteins associated with anergy is 

Programmed Death 1(PD-1). PD-1 is an inhibitory checkpoint molecule that, upon 

ligation with its ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC), negatively regulates the 

function of CD4+ and CD8+ T-cells 40,41. PD-1 signals through an immunoreceptor 

tyrosine-based inhibitory motif (ITIM) that results in the recruitment and activation of the 

phosphatase SHP-2, which in turn, is thought to inhibit TCR signaling through its 

phosphatase activity42. PD-1 ligation has been shown to play a role in T-cell anergy in 

cancer models, as PD-1 -/- mice often have reduced tumor burden when compared to 

their wild type counterparts43. Furthermore, in preclinical models of melanoma, 

fibrosarcoma, colon carcinoma, breast carcinoma, and several other types of tumors, 

monoclonal PD-1 blockade results in tumor control and regression13,44. Reduction in 

tumor burden in these models often correlates with increased tumor infiltration by 

immune cells along with increased effector cytokine production by CD4+ as well as CD8+ 

T-cells. Similarly, blocking PD-1 in the clinic with a monoclonal antibodies directed at 

either PD-1 or its ligand, PD-L1, has recently been demonstrated to increase overall 

survival either alone45, or in combination with another checkpoint blockade, CTLA-4 46. 
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Cytotoxic lymphocyte antigen 4, or CTLA-4, is a key negative regulator of 

immune activation47.  It prevents B-7:CD28 ligation by binding B-7 with a higher avidity 

than CD28, thus sequestering it48 and CTLA-4 ligation has been shown to prevent 

cellular proliferation and induce anergy in vivo34.   While cell surface expression of 

CTLA-4 in many cell types is regulated intracellularly, activated Teffector cells, 

Tregulatory cells, and tumor cells may all express surface CTLA-449-51. However, our 

group and others have shown that  Tregulatory cells, especially those infiltrating the 

tumor, express CTLA4 at 10-100 times the level of other immune cells52. CTLA-4 

blockade with monoclonal antibodies has shown efficacy in pre-clinical models, perhaps 

because aCTLA4 antibodies have been shown to specifically deplete adoptively 

transferred tumor Tregulatory cells through antibody dependent cellular cytotoxicity 

(ADCC)31. Interestingly, experimentation examining non-transferred endogenous 

populations of Treg do not observe a decrease in absolute number, but rather a reduction 

in Treg as a percent of TIL32,52. 

The STING Pathway 

The immune system is evolutionarily primed to prevent infection through the 

possession of receptors for molecules that are common and necessary to viral and 

bacterial existence and replication. These Pattern Recognition Receptors (PRRs) bind 

pathogen associated molecular patterns (PAMPs), and are essential to initiate innate 

immune responses53-55. The ensuing integration of danger signals into innate immune 

signal circuits results in downstream transcription of innate effector molecules such as 

Interferon-b, TNFa, and IL-156. These effector molecules then allow the stromal and 
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immune cells of the body to respond by a variety of reactions including MHC expression, 

an unfolded protein response, or apoptosis.  

One such receptor for danger signals is cyclic GMP-AMP synthase (cGAS). 

cGAS catalyzes the conversion of dsDNA into cyclic dinucleotides (CDN)57-59. CDN in 

turn, bind to an er-resident protein stimulator of interferon Genes (STING) 60,61. In the 

presence of bound CDN, STING dimerizes and phosphorylates the adaptor protein 

TBK1, which can in turn phosphorylate IRF-3 and initiate the transcription of type 1 

interferons61-64.  Additionally, STING ligation induces NF-kB signaling that leads to the 

transcription of TNFa.  

Evolutionarily, the cGAS-STING pathway may have developed for several 

reasons.  The obligate intracellular bacteria Listeria Monocytogenes produces CDN as a 

natural metabolic byproduct, and sensing of CDN intracellularly allows for more efficient 

clearance of the infection65,66. More recently, STING has been implicated in the initiation 

of immune responses to dsDNA viruses such as gamma herpes virus, polio, and HIV57,67-

73, and the discovery that CDN can be shared between cells via gap junctions to prevent 

the spread of virus to neighboring cells solidifies CDN as a major viral defense 

mechanism74,75. Interestingly, the receptor has also been shown to have 

immunosuppressive effects through recruitment of tolerogenic mechanisms63,76,77. 

Stromal Cells 

The innate system is not sourced solely by bone marrow derived cells that do not 

need to rearrange genome for receptor production and diversity, but also by every cell in 

the body that is able to sense danger signals and produce cytokines. The vast majority of 

cells in the body have the ability to recognize cellular damage through nod like receptors, 
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cyctosolic DNA receptors, viral RNA receptors, as well as general mechanisms that allow 

for a cell to become immunogenic after stress or death78. Many of these cells, such as 

endothelial cells, epithelial cells, and especially pseudo-immune cells like tissue resident 

macrophages and microglial cells have the capacity to produce immune cytokines after 

danger signals are sensed79-81. In this way, the stroma is perhaps one of the most crucial 

initiators of anti-tumor immunity and immunity in general.   
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Cell Lines 

B16F10 and CT26 were acquired from ATCC (CRL-6475, and CRL-2639 

Respectively) and were cultured in Complete RPMI (10%FBS, 100u/ml penicillin, 

100ug/ml streptomycin, 250ng/ml amphotericin, 1mM sodium pyruvate, NEAA).  

Mice 

C57BL/6 mice (6-8 week old female) were purchased from Jackson Laboratories 

and BL6-CD45.1 mice (6-8 week old female) were purchased from Charles River.FoxP3 

DTR mice were a gift from Dr. Drew Pardoll and FcgR-/-  (B6.129P2-Fcer1gtm1RavN12) 

breeder mice were purchased from Taconic and bred in Johns Hopkins Facilities. cGAS-/- 

animals were a gift from Skip Virgin. STING-/- animals are the Golden Ticket strain, and 

were a gift from Young Kim. Rag2-/- animals were a gift from Jonathan Powell. IFNar-/- 

(B6.129S2-Ifnar1tm1Agt/Mmjax), TNFa-/- ( B6.129S-Tnftm1Gkl/J), and IL-6-/- 

(B6;129S2-Il6tm1Kopf/J) breeder pairs were purchased from Jackson laboratories and 

bred in Johns Hopkins Facilities. All mouse procedures were approved by the Johns 

Hopkins University Institutional Animal Care and Use Committee and were compliant with 

the Guide for the Care and Use of Laboratory Animals (8th ed. The National Academic 

Press. 2011). 

Chimeric animals were made by irradiating 6-12 week old animals with 2 doses of 

6 gy separated by 3 hours. 3 hours after the second dose of irradiation, mice were 

reconstituted with 5-10 million cells of unirradiated donor bone marrow via tail vein 

injection and left to rest for at least 6 weeks. All chimeric animals were put on uniprim 

https://www.jax.org/strain/005540
https://www.jax.org/strain/002254
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feed at least 1 week before irradiation and removed from uniprim feed at least 1 week 

before tumor challenge.  

 

 

Antibodies 

Therapeutic antibodies aCTLA-4 IgG1 (9D9), aCTLA-4 IgG2a (9D9), aPD-1 

(4H2), anti-DT mIgG1 (1D12) and anti-DT mIgG2a (1D12) were acquired in collaboration 

with Alan Korman and Mark Selby at Bristol-Myers Squibb.  Dosing per injection was 200 

ug for all antibodies, administered IP in 200ul PBS. 

Immunohistochemistry antibodies included CD3 (SP7), ThermoScientific; CD4 

(1), SinoBiological; FoxP3(D608R), Cell Signaling.   

Flow cytometry staining antibodies included CD4-Pacific orange (RM4-5) 

Invitrogen; CD4-FITC (GK1.5), CD8-PerCP/Cy5.5 (53-6.7), CD44-Pacific Blue (IM7), 

CD11b-AlexaFluor700 (M1/70), CD11c-FITC (N418), F4/80-Pe/Cy7 (BM8), 

CD16.2(FcRIV)-PE (9E9), FoxP3-APC (FJK-16s), CD25-PerCp/Cy5.5 (PC61), CTLA4-

PE (UC10-4B9), CD86-PE/Cy5 (GL-1), IFN-gamma-PE/Cy7 (XMG1.2),CD45-BV605 

(30-F11), IFNy-APC(XMG1.2), Gzb-Pacific Blue (GB11),  BioLegend; GranzymeB-PE 

(16G6), CD4-PerCP Cy5.5 (RM4-5), Viability Dye- APC-Cy7, CD8-FITC (53-6.7), 

CD44-AF700 (IM7), TNFa-PE (MP6-XT22), eBioscience; TNF-APC (MP6-XT22), BD 

Biosciences; IL-2-PE-CF594 (JES6-5H4), BD Horizon.  
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Depletion antibodies aCD4 (GK1.5) and aCD8 (2.43) were obtained from Bio X 

Cell. Dosing for depletion antibodies was 200ug IP in 200ul PBS on day -3,-1, +1 relative 

to vaccination, then every 7 days thereafter until completion of the experiment.  

For CDN studies antibodies used included CD11b-AF700 (M1/70), CD44-Pacific 

Blue (IM7), CD11c-FITC (N418), CD86-PE (GL-1), CD19 PerCP-Cy5.5 (6D5), Ly6C-

BV605(HK1.4), CD45.2- APC (104), IA/IE- PerCP-Cy5.5 (M5/114.15.2), Ly6G- BV421 

(1A8), CD16/32-BV510 (93), F4/80-PE-Cy7 (BM8), CD206-BV711 (C068C2), Ly6c- 

PerCP- Cy5.5 (HK1.4), and CD4- BV605 (GK1.5), Biolegend; NOS2-APC (CXNFT), 

NK1.1-PE (PK136), and CD8-PE-Cy7 (53-6.7), EBiosicence; CD4-Pacific Orange (RM4-

5), Life Technologies; CD45.1-FITC (A20) BD Pharmingen. 

LM/2a Tumor Outgrowth and Infiltration Studies 

5x10^5 B16F10 cells were implanted between the skin and peritoneal cavity on day 

0. On day 5, mice were vaccinated via the tail vein with Listeria or given sham treatment. 

On days 5, 7, and 9, mice were given 200ug (in 200ul PBS) of blockade antibodies or PBS 

alone. On day 18 mice were sacrificed. Tumor volume was calculated by the following 

equation: (Length*Width^2)/2. Cell number of spleen and lymph node were counted on a 

hemocytometer while cell numbers of tumor infiltrate were acquired by flow cytometry. 

For Cytokine intracellular staining, animals sacrificed and tumors were harvested 10 days 

after implantation. Whole tumor suspension was incubated with PMA and Ionomycin for 

4.5 hours. Cells were fixed for 30 minutes in Fixation/Permeablilization buffer by BD 

Bioscience (Cat. No. 554714 and 554715) before proceeding to stain.  

CDN Tumor Outgrowth and Infiltration studies 
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5x10^5 B16F10 cells were implanted between the skin and peritoneal cavity on day 

0. Tumors were monitored until the group average was ~80mm^3 and then treated with 

100ug injections of CDN in 40ul PBS or PBS alone every other day for a total of three 

treatments. For chimera studies, a surplus of mice were implanted tumor, then when tumors 

were palpable, animals were selected and groups normalized to ~80mm^3. Tumor 

outgrowth volume was measured by the equation V=1/2(width^2*length). 24 hours after 

treatment, some mice were sacrificed for tumor infiltrate studies by flow cytometry or for 

tumor lysate. Tumor lysate was made by resecting tumors and dissociating in Cell Lytic M 

(Sigma Cat no. C2978) with Protease Inhibitor Cocktail (Sigma S8820).   

 

Cytokine Array 

Blood serum was collected by cheek bleed on days 8 and 11, then by incision of 

the IVC on day 14. Blood sat to clot for 10 minutes then was centrifuged and serum was 

harvested. The Luminex Biorad Mouse Group 1 23-plex assay (#M60-009RDPD) was 

conducted following vendor guidelines. Serum samples were diluted 1:4. Standard curves 

were generated and within the normal ranges expected with the exception of a reduced 

range for GMCSF. IL-4 was not detected.  

Elisa: 

Elisas were purchased as kits as follows:  Mouse IL-1b/IL-1f2 (Catalog No. 

MLB00c), Mouse GM-CSF (Catalog No. MGM00), Mouse IL-6 (Catalog No. M6000B), 

Mouse TNF-a (Catalog No MTA00B) R&D; VeriKine Mouse IFNb Elisa (Catalog No 
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42400-2) PBL Assay Science; Mouse Inflammatory Cytokines Multi-anylite ELISArray 

Kit (MEM004a), Quiagen.   

Statistics: 

Staticstical significance for bar graphs was determined with a one-sided or two 

sided non-Paired students T test (*=P<.05, **=P<.001, ***=P<.0001). Statistical 

significance for Kaplan-Meier survival graphs was determined by Log-Rank Test.    
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CHAPTER III 

Combination Listeria + Checkpoint blockade effectively reduces Tumor burden of 

established B16F10 Melanoma IN a CD8 Dependent manner 

 

  



17 
 

Introduction 

At the onset of an immune response, many molecular interactions determine the 

magnitude and character of the immune response82. Immune checkpoints like PD-L1 

expressed on dendritic cells, macrophages, and tumor cells, as well as CTLA4, PD-1, and 

Lag-3 expressed on Tcells, can blunt an immune response through ligation of their 

cognate receptors35,40,83. This ligation can promote the dephosporylation of the Tcell 

receptor signaling complex through the recruitment of phosphatases like SHP-2 or block 

interactions with costimulatory molecules  84-86. Cytokines in the immune 

microenvironment like TGF-b and IL-10 can also dampen the immune response by 

activating pathways to suppress production of effector cytokines by Tcells87,88.  Tcells 

activated in, or experiencing these conditions become less effective in their killing 

functions, adopt a tolerized and anergic phenotype, and thus become unable to control 

tumor outgrowth43. However, reversal of this suppressive environment is possible 

through depletion of tolerogenic cell types, checkpoint blockade antibodies, and 

vaccination32,89-91.  

One such vaccine that has gained popularity is engineered attenuated Listeria 

Monocytogenes. Indeed, a combination GVAX+ Listeria vaccine showed a survival 

advantage over GVAX alone in pancreatic cancer patients.92Unaltered, Listeria is an 

obligate intracellular pathogen that preferentially infects liver and can be associated with 

liver toxicity93. However, with targeted deletion of select genes, attenuated variants of 

Listeria have been generated that offer the same adjuvant activity with dramatically 

reduced toxicity93. Listeria is also unique in its activation of the immune system by its 

production of the metabolic byproduct cGAMP, a molecule that has recently been 



18 
 

spotlighted for its potential in intratumoral adjuvant therapy65,66,94-96. Additionally, listeria 

outperforms other engineered vaccine platforms as a stimulator of effective CD8+ t cell 

responses due to its preferential infection of CD8+ Dendritic cells, that produce soluble 

factors which lead to antigen specific activation without upregulating the co-inhibitory 

marker PD-1 (unpublished data). Preclinical models have shown that Listeria or 

checkpoint blockade can aid in reduction of tumor burden, but our study differs in that we 

combine two novel strategies (LM-MEL and aCTLA4 IgG2a), observe efficacy in the 

highly aggressive line B16F10, and gain insights into the mechanism of Treg 

maneagment29,32,97,98.  
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Chapter Specific Materials and Methods 

Cell Lines 

B16F10 and CT26 were acquired from ATCC (CRL-6475, and CRL-2639 

Respectively) and were cultured in Complete RPMI (10%FBS, 100u/ml penicillin, 

100ug/ml streptomycin, 250ng/ml amphotericin, 1mM sodium pyruvate, NEAA).  

Mice 

C57BL/6 mice (6-8 week old female) were purchased from Jackson Laboratories 

and BL6-CD45.1 mice (6-8 week old female) were purchased from Charles River. All 

mouse procedures were approved by the Johns Hopkins University Institutional Animal 

Care and Use Committee and were compliant with the Guide for the Care and Use of 

Laboratory Animals (8th ed. The National Academic Press. 2011). 

Antibodies 

Therapeutic antibodies aCTLA-4 IgG1 (9D9), aCTLA-4 IgG2a (9D9), aPD-1 

(4H2), anti-DT mIgG1 (1D12) and anti-DT mIgG2a (1D12) were acquired in collaboration 

with Alan Korman and Mark Selby at Bristol-Myers Squibb.  Dosing per injection was 200 

ug for all antibodies, administered IP in 200ul PBS. 

Depletion antibodies aCD4 (GK1.5) and aCD8 (2.43) were obtained from Bio X 

Cell. Dosing for depletion antibodies was 200ug IP in 200ul PBS on day -3,-1, +1 relative 

to vaccination, then every 7 days thereafter until completion of the experiment.  

LM/2a Tumor Outgrowth and Infiltration Studies 

5x10^5 B16F10 cells were implanted between the skin and peritoneal cavity on day 

0. On day 5, mice were vaccinated via the tail vein with Listeria or given sham treatment. 
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On days 5, 7, and 9, mice were given 200ug (in 200ul PBS) of blockade antibodies or PBS 

alone. On day 18 mice were sacrificed. Tumor volume was calculated by the following 

equation: (Length*Width^2)/2. Cell number of spleen and lymph node were counted on a 

hemocytometer while cell numbers of tumor infiltrate were acquired by flow cytometry. 

For Cytokine intracellular staining, animals sacrificed and tumors were harvested 10 days 

after implantation. Whole tumor suspension was incubated with PMA and Ionomycin for 

4.5 hours. Cells were fixed for 30 minutes in Fixation/Permeablilization buffer by BD 

Bioscience (Cat. No. 554714 and 554715) before proceeding to stain.  

Statistics: 

Staticstical significance for bar graphs was determined with a one-sided or two 

sided non-Paired students T test (*=P<.05, **=P<.001, ***=P<.0001). Statistical 

significance for Kaplan-Meier survival graphs was determined by Log-Rank Test.    
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Results 

Combination therapy with LM-M/aCTLA4-IgG2a dramatically reduces B16F10 

tumor burden. 

Due to promise generated by recent immunotherapy clinical trials, we sought to 

design a vaccination strategy that affords the best tumor survival advantage in the highly 

aggressive mouse melanoma model B16F10. We employed a novel vaccine, an 

engineered listeria monocytogenes bacteria (LM) that expresses two melanoma antigens 

shared between mouse and human, TRP-2 and GP-100, and combined it with checkpoint 

blockade antibodies, administered at 0, 48, and 96 hours after vaccination (Figure 3-1a). 

Administering this vaccine on its own reduced tumor burden in mice somewhat, though 

not robustly (Figure 3-1b). We hypothesized that addition of checkpoint blockade 

antibodies would release the immunosuppressive environment of the tumor and aid in 

tumor clearance. Somewhat surprisingly, PD-1 blockade conferred no significant 

reduction in tumor burden, so we altered the vaccination strategy to a different 

checkpoint blockade target, CTLA-4. Previous publications have shown that CTLA-4 

blockade enhances T cell activation and may even increase de novo T cell activation99. 

With this knowledge we treated mice with two different aCTLA-4 monoclonal 

antibodies,  aCTLA-4-IgG1 (hereon referred to as non-depleting or ND ) and aCTLA-4-

IgG2a (hereon referred to as Depleting or D).  aCTLA-4 (ND) has relatively little effect 

with or without the addition of LM vaccination. Alternatively, aCTLA-4 (D) 

administration greatly reduces tumor burden as a monotherapy and, with the addition of 

LM, the combination therapy shows remarkable efficacy in this highly aggressive model 

(Figure 3-1b and Figure 3-2). Eventually, B16F10 tumor bearing animals do succumb to 
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tumor burden, but the combination therapy of LM/aCTLA-4 (D) roughly doubles the 

survival time of these animals from ~25 days to ~50 days (Figure 3-2b).  We then 

repeated these experiments in the lymphoma line EL-4 OVA and achieved similar results 

(Data not shown) EL-4 OVA responds to LM-OVA as a monotherapy with significant 

but non-curative effects. However, the addition of aCTLA-4 to this therapy results in the 

depletion of Tregulatory cells from the tumor environment as well as the clearance and 

long term survival of the majority of these animals. 

 

CD4+ and CD8+ cells are negative and positive regulators of tumor clearance, 

respectively. 

Due to now overwhelming data suggesting that CD8 cells directly kill tumor cells 

in vivo,  we depleted CD4+ and CD8+ subsets in mice by administering the antibodies 

GK1.5 (aCD4) and 2.43 (aCD8) on days -3 and -1 before vaccination, as well as every 7 

days therafter. Administration of these antibodies allows for near complete depletion of T 

cells to <0.1% by peripheral blood measurement. Depletion of CD8+ cells from the 

animal dramatically reduces the ability of the combination therapy LM+aCTLA-4 (D) to 

control tumor (Figure 3-3b). Any remaining vaccination advantage may be due to CD8- 

effector subsets such as natural killer cells. Surprisingly, depletion of CD4+ cells after 

combination treatment does not diminish the effect of immune killing, but rather 

enhances it (Figure 3-3c). This suggests that any enhancement of CD8+ cell killing by 

CD4+ conventional cells is overshadowed by the effect of more efficient depletion of 

CD4+ Tregulatory cells by GK1.5. This supports our previous experimentation that has 

shown the effects of Treg in the tumor to be a main controlling characteristic for tumor 
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outgrowth. Similarly, tumor outgrowth in mice vaccinated with LM and treated with 

GK1.5 mirrors tumor outgrowth in mice treated with LM-M and aCTLA-4 (D), 

reinforcing our hypothesis that the main effect of aCTLA-4 (D) is to effectively deplete 

tumor infiltrating Treg, and that differences in the treatment effects between IgG1 and 

IgG2a isotypes are due to differences in the efficiency of Treg depletion. Lastly, 

administration of both GK1.5 and 2.43 antibody has the same effect as administering 2.43 

antibody alone, further suggesting that CD8 mediated killing is essential for tumor 

regression (Figure 3-3d). 
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Figure 3-1 

 

 

 

 

 

 

Figure 3-1: Engineered Listeria Melanogaster vaccine leads to significant 

survival advantage when combined with CTLA4- IgG2a. (A) Schematic of 

experimental design. 10^5 B16F10 tumor cells were implanted in the flank of 

mice on day 0. On Day 5, animals were vaccinated intravenously with LM-MEL. 

On day 5,7,9, animals were administered checkpoint blockade or isotype control 

antibodies via IP injection. (B) Tumor outgrowth curves of treated animals. 

Curves are representative of 3 experiments with 5+ animals per experiment. 
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Figure 3-2 

 

 

 

 

Figure 3-2:  Engineered Listeria Melanogaster vaccine leads to significant 

survival advantage when combined with CTLA4- IgG2a. (A) Spaghetti plots of 

tumor growth in individual mice for the experiment in Figure 3-1. B) Kapplan-

Meier curve of mouse survival for experiment in (B). Mice were sacrificed when 

tumors reached >2000 mm^3. Curves are representative of 3 experiments with 

5+ animals per experiment. 
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Figure 3-3 

 

 

 

 

 

Figure 3-3: CD4 depletion enhances treatment effect through Treg depletion, but 

only in the presence of CD8+ cells. (A-D) Mice were treated with 200ug 

aCD4(GK1.5), aCD8(2.43), or both antibodies on day -3 and -1 before 

vaccination/antibody administration (day 2 and 4 after tumor implantation) and 

continued every 7 days therafter. LM CTLA4 IgG2a treatment schedule was the 

same as in Figure 3-1a. Outgrowth was followed until the first tumors reached 

>2000 mm^3.  Representative of 1 experiment, 5 mice per group.  
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CHAPTER IV 

Combination Listeria + Checkpoint blockade dramatically changes the tumor 

infiltrate and cytokine microenvironment 
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Introduction 

The production of cytokines by both immune cells and non- immune stromal cells 

shapes the tumor micro environment. Recently, the field has come to appreciate that 

multifunctional t cells, those that produce multiple different cytokines, represent the most 

effective subset of cells and are not only a good readout for vaccine efficacy, but a good 

prognosis for tumor clearance. Thus, probing to see if vaccination induces these cells is a 

major output for therapeutic vaccines. Similarly, analyzing the whole of the tumor 

microenvironment for cytokine presence allows an understanding of the 

microenvironment that cells experience while undergoing their functions. Many tumor 

types, including B16, 4T1, and Her2, have tolerizing tumor microenvironments 

characterized by the presence of TGF-b and IL-10. Through vaccination, we seek to skew 

this environment from one of immunosuppression to one of immune activation.  

Additionally, the presence and absolute number of infiltrating lymphocytes is 

crucial for immune clearance of tumors. B16F10 is a relatively uninfiltrated tumor at is 

basal state, and inducing strong infiltration of lymphocytes into the tumor 

microenvironment is key to initiating immune mediated killing.  Conversely, Tregulatory 

cells infiltrating in the tumor will prevent the effector function of CD8+ Tcells, and as 

such preventing the infiltration and buildup of Tregulatory cells is equally important.  
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Chapter Specific Material and Methods 

Cell Lines 

B16F10 and CT26 were acquired from ATCC (CRL-6475, and CRL-2639 

Respectively) and were cultured in Complete RPMI (10%FBS, 100u/ml penicillin, 

100ug/ml streptomycin, 250ng/ml amphotericin, 1mM sodium pyruvate, NEAA).  

Mice 

C57BL/6 mice (6-8 week old female) were purchased from Jackson Laboratories 

and BL6-CD45.1 mice (6-8 week old female) were purchased from Charles River. All 

mouse procedures were approved by the Johns Hopkins University Institutional Animal 

Care and Use Committee and were compliant with the Guide for the Care and Use of 

Laboratory Animals (8th ed. The National Academic Press. 2011). 

Antibodies 

Therapeutic antibodies aCTLA-4 IgG1 (9D9), aCTLA-4 IgG2a (9D9), aPD-1 

(4H2), anti-DT mIgG1 (1D12) and anti-DT mIgG2a (1D12) were acquired in collaboration 

with Alan Korman and Mark Selby at Bristol-Myers Squibb.  Dosing per injection was 200 

ug for all antibodies, administered IP in 200ul PBS. 

Immunohistochemistry antibodies included CD3 (SP7), ThermoScientific; CD4 

(1), SinoBiological; FoxP3(D608R), Cell Signaling.   

Flow cytometry staining antibodies included CD4-Pacific orange (RM4-5) 

Invitrogen; CD4-FITC (GK1.5), CD8-PerCP/Cy5.5 (53-6.7), CD44-Pacific Blue (IM7), 

CD11b-AlexaFluor700 (M1/70), CD11c-FITC (N418), F4/80-Pe/Cy7 (BM8), 

CD16.2(FcRIV)-PE (9E9), FoxP3-APC (FJK-16s), CD25-PerCp/Cy5.5 (PC61), CTLA4-
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PE (UC10-4B9), CD86-PE/Cy5 (GL-1), IFN-gamma-PE/Cy7 (XMG1.2),CD45-BV605 

(30-F11), IFNy-APC(XMG1.2), Gzb-Pacific Blue (GB11),  BioLegend; GranzymeB-PE 

(16G6), CD4-PerCP Cy5.5 (RM4-5), Viability Dye- APC-Cy7, CD8-FITC (53-6.7), 

CD44-AF700 (IM7), TNFa-PE (MP6-XT22), eBioscience; TNF-APC (MP6-XT22), BD 

Biosciences; IL-2-PE-CF594 (JES6-5H4), BD Horizon.  

LM/2a Tumor Outgrowth and Infiltration Studies 

5x10^5 B16F10 cells were implanted between the skin and peritoneal cavity on day 

0. On day 5, mice were vaccinated via the tail vein with Listeria or given sham treatment. 

On days 5, 7, and 9, mice were given 200ug (in 200ul PBS) of blockade antibodies or PBS 

alone. On day 18 mice were sacrificed. Tumor volume was calculated by the following 

equation: (Length*Width^2)/2. Cell number of spleen and lymph node were counted on a 

hemocytometer while cell numbers of tumor infiltrate were acquired by flow cytometry. 

For Cytokine intracellular staining, animals sacrificed and tumors were harvested 10 days 

after implantation. Whole tumor suspension was incubated with PMA and Ionomycin for 

4.5 hours. Cells were fixed for 30 minutes in Fixation/Permeablilization buffer by BD 

Bioscience (Cat. No. 554714 and 554715) before proceeding to stain.  

Cytokine Array 

Blood serum was collected by cheek bleed on days 8 and 11, then by incision of 

the IVC on day 14. Blood sat to clot for 10 minutes then was centrifuged and serum was 

harvested. The Luminex Biorad Mouse Group 1 23-plex assay (#M60-009RDPD) was 

conducted following vendor guidelines. Serum samples were diluted 1:4. Standard curves 

were generated and within the normal ranges expected with the exception of a reduced 

range for GMCSF. IL-4 was not detected.  
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Statistics: 

Statistical significance for bar graphs was determined with a one-sided or two sided 

non-Paired students T test (*=P<.05, **=P<.001, ***=P<.0001). Statistical significance 

for Kaplan-Meier survival graphs was determined by Log-Rank Test.    
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Results 

Lymphocyte and Systemic Cytokine levels are increased by vaccination + 

checkpoint blockade. 

We hypothesized that the enhanced tumor clearance due to combination therapy 

may be due to an enhanced effector T cell response. Thus, we sacrificed animals treated 

in the above strategy 10 days after tumor implantation, re-stimulated TIL ex vivo with 

PMA and Ionomicin, and analyzed the lymphocytes for their ability to produce effector 

cytokines. We found that after vaccination, Listeria and both aCTLA-4 antibodies 

enhance Granzyme B and Interferon Gamma production by TIL and reduce the number 

of cells that produce zero measurable cytokines. However, administration of aCTLA-4 

(D) enhanced cytokine production and multi-functionality of TIL to a greater degree than 

both LM or aCTLA-4 (ND) monotherapies. The combination LM+aCTLA-4 (D) led to 

the greatest cytokine production, although it was not significantly higher than aCTLA-4 

(D) alone (Figure 4-1a-b). To analyze the levels of systemic cytokines within mice, we 

performed blood cytokine analysis by acquiring blood serum from animals at 3,7, and 11 

days after vaccination. 3 days after vaccination, systemic cytokine levels are generally 

elevated in mice that have received LM and enhanced further with the addition of 

checkpoint antibodies (Figure 4-2). Interestingly, we noted an overall increase in all 

measured systemic cytokine levels in untreated animals as well as most measured 

systemic cytokine levels in treated animals over time. On day 7 and 11, differences 

between treated and untreated groups became less clear (data not shown).  
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Combination LM-M+aCTLA4-IgG2a therapy robustly depletes Tregs in the 

tumor and allows for Tumor infiltration. 

Because we observed increases in functionality of tumor immune infiltrate, we 

then analyzed the abundance of Treg and Teff lymphocytic infiltrate in the tumor 

microenvironment and periphery. We firstly examined the expression of CTLA-4 across 

cell types and confirmed that tumor infiltrating Treg highly express CTLA-4, even when 

compared to their peripheral counterparts (Figure 4-3a). We then analyzed mice treated 

as in Figure 3-1a for peripheral and Tumor infiltrating CD4+ FoxP3+ Treg. Not 

surprisingly, while Treg in the periphery stay relatively constant (data not shown) 

independent of treatment, Tumor infiltrating Treg percentages are highly reduced in LM 

treated, as well as aCTLA-4 (D) treated animals. When LM+aCTLA-4 (D) combination 

strategy is applied, Treg generally account for only 1-5% of CD4+ cells in the tumor as 

opposed to ~40% in untreated animals (Figure 4-3b-c). We next analyzed the number of 

Infiltrating lymphocytes in each of our treatments and show infiltration of lymphocyte 

very closely follows the depression of Treg percentages. LM increases infiltrate of both 

CD4+ and CD8+ cells as a monotherapy. However, aCTLA-4 (D) as a monotherapy or in 

combination with LM strongly induces infiltration of lymphocytes into the tumor 

environment (Figure 4b). Interestingly, almost all lymphocytes in the tumor are CD44+ 

in the untreated group, and this number generally does not increase with most treatments 

(data not shown). Because the CD4+ and CD8+ Tumor infiltrate increases concurrently 

with the decrease in Tregulatory cells, this treatment strategy allows for a high Teff:Treg 

ratio. Lastly, we stained for the presence of CD3 positive infiltrating cells across our 
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treatment groups using immunohistochemistry (IHC) on FFPE tumors (Figure 4-4a). 

While LM treatment alone shows a moderate increase in infiltrating CD3+ cells (red), 

aCTLA-4 (D) alone or in combination with LM vastly increases the lymphocytic 

infiltrate in the tumor. In fact, we observe foci of CD3+ cells in the middle of tumor areas 

that no longer express the pigment melanin.  

  



35 
 

Figure 4-1 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Lymphocyte and systemic cytokine levels are increased by 

vaccination + checkpoint blockade. (A) Mice were implanted with tumor and 

treated as in Figure 3-1.  On Day 18, TIL were harvested and restimulated with 

PMA+Ionomicin and cytokine expression was examined by FACS. (B) Graph of 

Data in  (A). 
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Figure 4-2. LM vaccination increases peripheral cytokines: 8 days after 

treatment, animals were bled via the tail vein and serum was collected. Serum was 

Low                  High 
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diluted 1:4 and applied to a Luminex array and cytokines were measured.  Data is 

normalized in a heat map within cytokine groups. 
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Figure 4-3 
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Figure 4-3:  Tregulatory cells are effectively depleted with LM and aCTLA-4 (D) 

strategies. (All plots represent data collected on day 18 after treatment as in 

Figure 1a. (A) CTLA4 MFI on FoxP3+ cells across all treatment groups as 

measured by flow cytometry. All treatment groups were binned together and 

expression was examined based on location of cells. (B-C) Flow Cytometry plots 

tumor infiltrating CD4+FoxP3+. Cells were gated on FSC/SSC and vitality dye 

negative populations. 
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Figure 4-4 
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Figure 4-4: Effector cell infiltrate is greatly increased with LM+aCTLA-4 

vaccination. (A) IHC of FFPE stained tumor sections, CD3+ cells in red. Bar 

graphs and FACS plots are representative of multiple similar experiments with 5 

mice per group. IHC was performed in two separate experiments on a total of 5 or 

more mice. (B) Absolute numbers of tumor infiltrating CD4 and CD8 cells were 

analyzed by flow cytometry and divided by wet weights of tumors to determine 

cell number and cell number per mg tumor. Teff/Treg ratio was defined as 

#CD4+FoxP3-/#CD4+FoxP3+.  
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CHAPTER V 

Fc Gamma receptors are indispensable for the anti tumor effects of CTLA4 IGG2a 
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Introduction 

Antibody dependent cellular cytotoxicity (ADCC) is the phenomenon by which 

antibodies aid in the killing of cells. Antibodies are comprised of several different 

structural and functional components. For the sake of this introduction, we will focus on 

the Fab portion and the Fc portion. Endogenous or artificially introduced antibodies bind 

to their target cells at the variable region, or Fab, of the antibody, which is exquisitely 

specific for the target. The other portion of the antibody structure is the constant region, 

or Fc. The Fc portion of the antibody is the ligand for Fc-Receptors, which are Fc-

binding proteins located on phagocytic or cytotoxic cells throughout the body. While 

multiple cell types can express Fc receptors, natural killer (NK) cells and macrophages 

express the widest variety in the highest abundance, and thus are thought to be the main 

cellular mediators of ADCC.   

There are several classes of Fc Receptors, each with specific functions. Generally 

grouped into activating Fc receptors, which stimulate the cell bearing them and induce 

apoptosis of the antibody-bound target, and inhibitory Fc receptors, which do not aid in 

ADCC and are thought to prevent phagocytosis or killing of the target.  Recently, isotypic 

differences in checkpoint blockade antibodies have been implicated in the efficiency of 

ADCC based depletion100. In mice, isotype IgG2a binds Fc receptors with higher affinity, 

and thus corresponds with highly effective depletion while IgG1 is less effective at 

binding Fc receptors and thus mediating ADCC101.  
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Chapter Specific Materials and Methods 

Cell Lines 

B16F10 and CT26 were acquired from ATCC (CRL-6475, and CRL-2639 

Respectively) and were cultured in Complete RPMI (10%FBS, 100u/ml penicillin, 

100ug/ml streptomycin, 250ng/ml amphotericin, 1mM sodium pyruvate, NEAA).  

Mice 

C57BL/6 mice (6-8 week old female) were purchased from Jackson Laboratories 

and BL6-CD45.1 mice (6-8 week old female) were purchased from Charles River.FoxP3 

DTR mice were a gift from Dr. Drew Pardoll and FcgR-/-  (B6.129P2-Fcer1gtm1RavN12) 

breeder mice were purchased from Taconic and bred in Johns Hopkins Facilities. All 

mouse procedures were approved by the Johns Hopkins University Institutional Animal 

Care and Use Committee and were compliant with the Guide for the Care and Use of 

Laboratory Animals (8th ed. The National Academic Press. 2011). 

Antibodies 

Therapeutic antibodies aCTLA-4 IgG1 (9D9), aCTLA-4 IgG2a (9D9), aPD-1 

(4H2), anti-DT mIgG1 (1D12) and anti-DT mIgG2a (1D12) were acquired in collaboration 

with Alan Korman and Mark Selby at Bristol-Myers Squibb.  Dosing per injection was 200 

ug for all antibodies, administered IP in 200ul PBS.  

Flow cytometry staining antibodies included CD4-Pacific orange (RM4-5) 

Invitrogen; CD4-FITC (GK1.5), CD8-PerCP/Cy5.5 (53-6.7), CD44-Pacific Blue (IM7), 

CD11b-AlexaFluor700 (M1/70), CD11c-FITC (N418), F4/80-Pe/Cy7 (BM8), 

CD16.2(FcRIV)-PE (9E9), FoxP3-APC (FJK-16s), CD25-PerCp/Cy5.5 (PC61), CTLA4-
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PE (UC10-4B9), CD86-PE/Cy5 (GL-1), IFN-gamma-PE/Cy7 (XMG1.2),CD45-BV605 

(30-F11), IFNy-APC(XMG1.2), Gzb-Pacific Blue (GB11),  BioLegend; GranzymeB-PE 

(16G6), CD4-PerCP Cy5.5 (RM4-5), Viability Dye- APC-Cy7, CD8-FITC (53-6.7), 

CD44-AF700 (IM7), TNFa-PE (MP6-XT22), eBioscience; TNF-APC (MP6-XT22), BD 

Biosciences; IL-2-PE-CF594 (JES6-5H4), BD Horizon.  

LM/2a Tumor Outgrowth and Infiltration Studies 

5x10^5 B16F10 cells were implanted between the skin and peritoneal cavity on day 

0. On day 5, mice were vaccinated via the tail vein with Listeria or given sham treatment. 

On days 5, 7, and 9, mice were given 200ug (in 200ul PBS) of blockade antibodies or PBS 

alone. On day 18 mice were sacrificed. Tumor volume was calculated by the following 

equation: (Length*Width^2)/2. Cell number of spleen and lymph node were counted on a 

hemocytometer while cell numbers of tumor infiltrate were acquired by flow cytometry. 

For Cytokine intracellular staining, animals sacrificed and tumors were harvested 10 days 

after implantation. Whole tumor suspension was incubated with PMA and Ionomycin for 

4.5 hours. Cells were fixed for 30 minutes in Fixation/Permeablilization buffer by BD 

Bioscience (Cat. No. 554714 and 554715) before proceeding to stain.  

Statistics: 

Staticstical significance for bar graphs was determined with a one-sided or two 

sided non-Paired students T test (*=P<.05, **=P<.001, ***=P<.0001). Statistical 

significance for Kaplan-Meier survival graphs was determined by Log-Rank Test.    
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Results 

LM-M/CTLA4 Combination therapy are FCR dependent 

Previous research has shown that IgG2a dependent ADCC occurs through Fc 

gamma receptor 4 (FcgRIV). We hypothesized that LM may synergize with aCTLA4 and 

enhance ADCC through activation of macrophages to express higher levels of surface 

FcgRIV. To assess this we treated WT mice as in Figure 1a and measured FcgRIV 

expression by flow cytometry. Both LM (not significant) and aCTLA-4 (D) 

administration increased the number of FcgRIV + macrophages (Figure 5-1b) and the 

MFI of FcgRIV(Figure 5-1a).  We next examined the outgrowth and lymphocytic 

compartment of Fc common gamma chain knockout mice (FcgR-/-). Unsurprisingly, 

FcgR-/- mice are unable to control tumor to the same degree as WT mice when 

administered aCTLA-4 (D)(Figure 5-2a). Tregulatory cells are still reduced with LM 

treatment in these animals, but not with aCTLA-4 (D) treatment, showing that Fc 

receptors are necessary for aCTLA-4 (D) dependent ADCC of Treg (Figure 5-2b). 

Concurrently, while LM+CTLA4 (D) increases CD4+ and CD8+ TIL in WT animals, 

FcgR-/- animals show a marked reduction in the ability to induce an immune infiltrate 

when treated with aCTLA-4 (D) alone (Figure 5-2c). Treatment LM increases these 

numbers, but cannot fully rescue infiltration in a WT vaccinated animal. All these data 

suggest that aCTLA-4 (D) reduces tumor Treg through Fc Gamma receptors, and that our 

vaccination strategy not only acts through the presence of these receptors, but can also 

induce and increase their expression.   
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Figure 5-1 

 

 

 

 

 

 

 

Figure 5-1: CTLA4 (D) therapeutic effect is ablated in FcgR-/- mice. Mice were 

treated according to Figure 3-1.  (A) 10 Days after tumor implantation, tumors 

from WT animals were harvested and analyzed via flow cytometry for FcgRIV 

expression on CD11b+F4/80+ cells. Graph of FcgRIV MFI and representative 

histograms of FcgRIV MFI in CD11b+F4/80+ Cells.  (B) Macrophage frequency 

was measured by calculating the number of CD11b+F4/80+ Cells per 100,000 

events.  Data is representative of at least 2 similar experiments with 5 mice per 

experiment.   
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Figure 5-2 

 

 

 

 

 

 

 

 

 

 

Figure 5-2. Outgrowth and Treg Depletion by CTLA-4 are Fc receptor 

dependent. (A)WT or FcgR-/- mice, treated as in Figure 3-1, were measured and 

followed for outgrowth.  (B,C) 18 Days after tumor implantation, WT or FCGR-/- 

TIL was analyzed by Flow cytometry. Cell numbers and frequencies were 

calculated as in Figure 3. Data is representative of at least 2 similar experiments 

with 5 mice per experiment.   
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CHAPTER VI 

Therapeutic Intratumoral Injection of CDN leads to acute rejection of B16F10 

Through modulation of the Tumor Microenvironemnt  
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Introduction 

Recent data suggests that the cGAS-STING axis not only determines outcomes to 

bacterial and viral insult, but also to self-DNA in cancer models96,102-108. STING deficient 

mice lack the ability to reject highly immunogenic tumors, and have accelerated tumor 

outgrowth in less immunogenic tumor models. Interestingly, these studies also show that 

tumor DNA can be found in dendritic cells, and that these cells are necessary to initiate 

an adaptive immune response107. Sparked by these discoveries, studies have begun to 

utilize CDN as an immunotherapeutic agent. Administration of small doses of CDN 

intravenously (IV) can aid in initiating an adaptive immune response, however, IV dosing 

of this agent seems to be delicate in that high concentrations of CDN can produce sub 

optimal or even immune suppressive conditions95. If administered intratumorally (IT), 

some tumor cell lines are directly effected by sting activation and undergo apoptosis. 

However, this direct killing of tumor cells seems to be a rare event, IT CDN 

administration more often induces tumor regression by inducing cellular infiltrate and  

inflammatory cytokine environment102.  

While the effects of sting signaling on adaptive immune cells have begun to 

become elucidated, relatively little data has been shown on the effects of CDN on the 

stromal cell compartment. Endothelial cells have been shown to produce interferon-b 

after CDN administration109, but no study has shown the importance of TNFa production 

on the tumor microenvironment, and no study has definitively shown that production of 

innate cytokines is necessary for acute tumor necrosis and immune infiltrate modulation. 

Additionally, we are the only group to use bone marrow chimeras to show the 
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dependence of tumor necrosis on STING sensing within stromal cells and that stromal 

cells play an indispensable role in mediating acute clearance of tumors using IT CDN.   
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Chapter Specific Materials and Methods 

Cell Lines 

B16F10 and CT26 were acquired from ATCC (CRL-6475, and CRL-2639 

Respectively) and were cultured in Complete RPMI (10%FBS, 100u/ml penicillin, 

100ug/ml streptomycin, 250ng/ml amphotericin, 1mM sodium pyruvate, NEAA).  

Mice 

C57BL/6 mice (6-8 week old female) were purchased from Jackson Laboratories 

and BL6-CD45.1 mice (6-8 week old female) were purchased from Charles River.FoxP3 

DTR mice were a gift from Dr. Drew Pardoll and FcgR-/-  (B6.129P2-Fcer1gtm1RavN12) 

breeder mice were purchased from Taconic and bred in Johns Hopkins Facilities. cGAS-/- 

animals were a gift from Skip Virgin. STING-/- animals are the Golden Ticket strain, and 

were a gift from Young Kim. Rag2-/- animals were a gift from Jonathan Powell. IFNar-/- 

(B6.129S2-Ifnar1tm1Agt/Mmjax), TNFa-/- ( B6.129S-Tnftm1Gkl/J), and IL-6-/- 

(B6;129S2-Il6tm1Kopf/J) breeder pairs were purchased from Jackson laboratories and 

bred in Johns Hopkins Facilities. All mouse procedures were approved by the Johns 

Hopkins University Institutional Animal Care and Use Committee and were compliant with 

the Guide for the Care and Use of Laboratory Animals (8th ed. The National Academic 

Press. 2011). 

Antibodies 

For CDN studies antibodies used included CD11b-AF700 (M1/70), CD44-Pacific 

Blue (IM7), CD11c-FITC (N418), CD86-PE (GL-1), CD19 PerCP-Cy5.5 (6D5), Ly6C-

BV605(HK1.4), CD45.2- APC (104), IA/IE- PerCP-Cy5.5 (M5/114.15.2), Ly6G- BV421 

https://www.jax.org/strain/005540
https://www.jax.org/strain/002254
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(1A8), CD16/32-BV510 (93), F4/80-PE-Cy7 (BM8), CD206-BV711 (C068C2), Ly6c- 

PerCP- Cy5.5 (HK1.4), and CD4- BV605 (GK1.5), Biolegend; NOS2-APC (CXNFT), 

NK1.1-PE (PK136), and CD8-PE-Cy7 (53-6.7), EBiosicence; CD4-Pacific Orange (RM4-

5), Life Technologies; CD45.1-FITC (A20) BD Pharmingen. 

CDN Tumor Outgrowth and Infiltration studies 

5x10^5 B16F10 cells were implanted between the skin and peritoneal cavity on day 

0. Tumors were monitored until the group average was ~80mm^3 and then treated with 

100ug injections of CDN in 40ul PBS or PBS alone every other day for a total of three 

treatments. For chimera studies, a surplus of mice were implanted tumor, then when tumors 

were palpable, animals were selected and groups normalized to ~80mm^3. Tumor 

outgrowth volume was measured by the equation V=1/2(width^2*length). 24 hours after 

treatment, some mice were sacrificed for tumor infiltrate studies by flow cytometry or for 

tumor lysate. Tumor lysate was made by resecting tumors and dissociating in Cell Lytic M 

(Sigma Cat no. C2978) with Protease Inhibitor Cocktail (Sigma S8820).   

Elisa: 

Elisas were purchased as kits as follows:  Mouse IL-1b/IL-1f2 (Catalog No. 

MLB00c), Mouse GM-CSF (Catalog No. MGM00), Mouse IL-6 (Catalog No. M6000B), 

Mouse TNF-a (Catalog No MTA00B) R&D; VeriKine Mouse IFNb Elisa (Catalog No 

42400-2) PBL Assay Science; Mouse Inflammatory Cytokines Multi-anylite ELISArray 

Kit (MEM004a), Quiagen.   

Statistics: 
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Results 

Therapeutic Intratumoral Injection of CDN leads to acute rejection of B16F10. 

Because CDN’s have been shown to be potent adjuvants and because direct 

injection of adjuvant is now being used in clinical trials, we sought to understand the 

effect of adjuvant injection on the tumor microenvironment. To do this, we implanted 

B16F10 tumors in the flank of mice and treated mice with tumors of volume 80-100 

cm^3 with 3x 40 ul injections of 100ug RR-di adenosine CDN (Figure 6-1a).  Within 48 

hours of the first injection, redness and necrosis forms around the injection site. Within 5 

days of injection, an eschar has formed and tumor is no longer palpable. At 8 days after 

first treatment, untreated animals have large tumors and may need to be sacrificed, but 

treated animals generally have only a eschars (Figure 6-1c,d). Occasionally injection and 

necrosis of the tumor is incomplete and healthy growing tumor can be seen, even around 

the site of injection (Figure 6-1e). Several weeks after injection, mice that have 

completely cleared tumor have healed but show reaction site vitiligo indicating the 

presence of an ongoing, melanin specific adaptive immune response (Figure 6-1f).  

 IT CDN injection causes a distinct cytokine and cellular profile in the tumor.  

To gain an understanding into the cause of necrosis within the tumor, we 

performed extensive analysis of the systemic and tumor infiltrating cytokines and 

immune cells before and after intratumoral CDN administration. 24 hours after the initial 

injection, we sacrificed animals and analyzed spleen, tumor draining lymph node and 

tumor for cellular infiltrate via flow cytometry. Due to the acute nature of tumor 

rejection, we did not expect that adaptive immune infiltrate and killing would be 

enhanced in the tumor, and in fact injection of high dose CDN caused a decrease in T and 
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B cell numbers acutely (figure 6-2). This decrease in the lymphocytic compartment may 

be due to toxicity of high dose CDN to lymphocytic cells (unpublished data). On the 

contrary, CDN administration increased the number of tumor infiltrating CD11b+F4/80+ 

macrophages as well as CD11b+F4/80- neutrophils (these cells are further characterized 

by the high expression of Ly6g and low expression of Ly6c). NK cell numbers were not 

effected in the tumor. Interestingly, the tumor draining lymph node experiences a similar 

decrease in T cell percentages, though not B cell percentages, along with a large increase 

of high FSC and SSC cells that are a large percentage macrophages and other APC 

(Figure 6-3). 

We next examined intratumoral cytokine levels by resecting tumors and creating 

whole tumor lysate. After tumors were homogenized and lysed, we performed a 

multiKine ELISA. 24 hours after the initial injection of CDN, we observed highly 

significant increases in the amount of IL-6, TNFa, IFNb, IL-1, and GMCSF within the 

tumor (Figure 6-4).  
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Figure 6-1 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: IT CDN treatment leads to tumor regression in B16F10 tumor 

bearing animals.  (A) Animal treatment scheme. 5x10^5 B16F10 cells were 

implanted between the skin and peritoneal cavity on day 0. Tumors were 

monitored until the group average was ~80mm^3 and then treated with 100ug 

injections of CDN in 40ul PBS or PBS alone every other day for a total of three 

treatments. (B) Outgrowth of animals treated as in (A). (C-D) Photos of tumors 8 

Days after CDN (C) or PBS (D) show necrosis at the tumor site. (E) Close-up of 

necrosis in (D). (F) 3+ Weeks after CDN injection, mice show signs of vitiligo.  
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Figure 6-2 

 

 

 

 

 

 

 

Figure 6-2: IT CDN changes tumor immune infiltrate. (A) 24 hours after IT CDN 

administration, mice are sacked and TIL was analyzed by flow cytometry. 
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Figure 6-3 

 

 

 

 

 

 

 

 

 

 

Figure 6-3: IT CDN changes tumor draining lymph node immune infiltrate. (A) 

24 hours after IT CDN administration, mice are sacked and the tumor draining 

lymph node was analyzed by flow cytometry. 
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Figure 6-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4: Cytokine concentrations in tumor microenvironment increase after IT 

CDN. 24 hours after IT CDN administration, tumor lysates were prepared as 

described in the above methods, and cytokine levels were measured by ELISA.  
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CHAPTER VII 

TNFa production is necessary for IT CDN related necrosis and is produced by both 

stromal and bone marrow derived cells 
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Introduction 

 

 

 

Previously, we have shown that the IT injection of CDN results in the increase of 

several cytokines and cell types within the TME. In looking more closely at the cytokine 

profile and cellular resulting from acute necrosis that we observe after, we hypothesized 

that a few key factors could be responsible for this necrosis. Most obviously, tumor 

necrosis factor has a well established function of inducing necrosis among various cell 

types expressing the receptor. 

  Tumor Necrosis Factor alpha (TNFa) is an inflammatory cytokine made of 3-

17kD subunits in a trimeric form.110 It generally though of as a pro-inflammatory 

cytokine, it triggers dilation of blood vessels and leakage of fluid and cells into 

surrounding tissues. In systemic infection, massive release of TNFa can lead to septic 

shock.111 In high doses, TNFa can also cause necrosis of tissues expressing the proper 

receptor. TNFa binds to one of two receptors, named TNFR-1 and TNFR-2.  TNFR-1 is 

expressed by a wide variety of cell types, whereas TNFR-2 is generally only expressed 

on immune cells.  Ligation of both receptors can lead to the transcription of NFkB and 

pro-survival gene transcription through the binding of the TRADD scaffold protein. 

TNFR-1, however, is unique in it’s ability to bind a Fas associated death domain (FADD) 

that can lead to cleavage and activation of pro-caspase 8 and pro-caspase 3. The 

activation of the effector caspase 3 in turn initiates apoptosis of the cell expressing 

TNFR-1.112 Thus, TNFa plays an important roll in activating immune cells, but can have 

apoptic effects in non-immune cells.  
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TNFa is mainly produced by hematopoietic cells of the immune system.102 

Macrophages in particular can produce large amounts of TNFa in response to ligation by 

TLR agonists. However it is now well characterized that TNFa is also produced by non-

immune stromal cells such as endothelial cells, fibroblasts, and tumor cells.80,113,114  

Because a growing body of literature suggests the importance of cellular and 

cytokine infiltrate in tumor clearance, we sought to systematically eliminate possible 

contributors to this acute necrosis phenotype and observe the effect of the deletion.  
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Chapter Specific Materials and Methods 

 

 

 

Cell Lines 

B16F10 and CT26 were acquired from ATCC (CRL-6475, and CRL-2639 

Respectively) and were cultured in Complete RPMI (10%FBS, 100u/ml penicillin, 

100ug/ml streptomycin, 250ng/ml amphotericin, 1mM sodium pyruvate, NEAA).  

Mice 

C57BL/6 mice (6-8 week old female) were purchased from Jackson Laboratories 

and BL6-CD45.1 mice (6-8 week old female) were purchased from Charles River.FoxP3 

DTR mice were a gift from Dr. Drew Pardoll and FcgR-/-  (B6.129P2-Fcer1gtm1RavN12) 

breeder mice were purchased from Taconic and bred in Johns Hopkins Facilities. cGAS-/- 

animals were a gift from Skip Virgin. STING-/- animals are the Golden Ticket strain, and 

were a gift from Young Kim. Rag2-/- animals were a gift from Jonathan Powell. IFNar-/- 

(B6.129S2-Ifnar1tm1Agt/Mmjax), TNFa-/- ( B6.129S-Tnftm1Gkl/J), and IL-6-/- 

(B6;129S2-Il6tm1Kopf/J) breeder pairs were purchased from Jackson laboratories and 

bred in Johns Hopkins Facilities. All mouse procedures were approved by the Johns 

Hopkins University Institutional Animal Care and Use Committee and were compliant with 

the Guide for the Care and Use of Laboratory Animals (8th ed. The National Academic 

Press. 2011). 

Chimeric animals were made by irradiating 6-12 week old animals with 2 doses of 

6 gy separated by 3 hours. 3 hours after the second dose of irradiation, mice were 

reconstituted with 5-10 million cells of unirradiated donor bone marrow via tail vein 

injection and left to rest for at least 6 weeks. All chimeric animals were put on uniprim 

https://www.jax.org/strain/005540
https://www.jax.org/strain/002254
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feed at least 1 week before irradiation and removed from uniprim feed at least 1 week 

before tumor challenge.  

 

 

CDN Tumor Outgrowth and Infiltration studies 

5x10^5 B16F10 cells were implanted between the skin and peritoneal cavity on day 

0. Tumors were monitored until the group average was ~80mm^3 and then treated with 

100ug injections of CDN in 40ul PBS or PBS alone every other day for a total of three 

treatments. For chimera studies, a surplus of mice were implanted tumor, then when tumors 

were palpable, animals were selected and groups normalized to ~80mm^3. Tumor 

outgrowth volume was measured by the equation V=1/2(width^2*length). 24 hours after 

treatment, some mice were sacrificed for tumor infiltrate studies by flow cytometry or for 

tumor lysate. Tumor lysate was made by resecting tumors and dissociating in Cell Lytic M 

(Sigma Cat no. C2978) with Protease Inhibitor Cocktail (Sigma S8820).   

Elisa: 

Elisas were purchased as kits as follows:  Mouse IL-1b/IL-1f2 (Catalog No. 

MLB00c), Mouse GM-CSF (Catalog No. MGM00), Mouse IL-6 (Catalog No. M6000B), 

Mouse TNF-a (Catalog No MTA00B) R&D; VeriKine Mouse IFNb Elisa (Catalog No 

42400-2) PBL Assay Science; Mouse Inflammatory Cytokines Multi-anylite ELISArray 

Kit (MEM004a), Quiagen.   

Statistics: 
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Staticstical significance for bar graphs was determined with a one-sided or two 

sided non-Paired students T test (*=P<.05, **=P<.001, ***=P<.0001). Statistical 

significance for Kaplan-Meier survival graphs was determined by Log-Rank Test.    
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Results 

 

TNFa Is required for Injection Site Necrosis  

Because we observed distinct cellular and cytokine signatures after CDN 

injection, we hypothesized that these elements may be responsible for tumor site necrosis. 

To elucidate the minimal requirements for CDN-mediated injection site necrosis, we 

performed the same treatment scheme as in Figure 6-1a in a series of knockout mice.  

Unsurprisingly, while WT mice control tumors acutely, STING-/- animals lack the ability 

to sense CDN and clear tumor. cGAS-/- animals have no deficit in tumor clearance, 

showing that the upstream sensor of the sting pathway has no gross effect on the 

downstream signaling (Figure 7-1). RAG2-/-, IFNar-/-, and IL-6-/- animals all showed 

the same tumor site necrosis as WT animals. Interestingly, the type 1 Interferon receptor 

is a necessary mediator of many immune pathways, and thus tumors in these grow much 

faster (Figure 7-2a). This increased rate subverts some of the effect of CDN and CDN 

therapy is not curative in these animals in a B16 tumor system (Figure 7-2b). However, in 

a non-tumor bearing animal, injection site necrosis occurs in the same manner as a WT 

animal, showing that IFNar is not an important mediator of the acute response to CDN. 

Interestingly, the only animals to show absolutely no injection site necrosis after CDN 

injection were TNFa-/- animals.  

Bone Marrow produced TNFa is predominates the tumor microenvironment. 

We observed that TNFa is a necessary effector of CDN-mediated tumor site 

necrosis, and hypothesized that because bone marrow derived cells are largely 

responsible for the production of CDN, TNFa producing bone marrow cells would be 

required for injection site necrosis. To answer this, we developed a series of bone marrow 
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chimeras by irradiating WT or TNFa-/- hosts and reconstituting them with either WT or 

TNFa bone marrow. As hypothesized, animals with WT bone marrow have a more 

dramatic response to IT CDN therapy (Figure 7-3a). These animals have higher levels of 

intratumoral TNFa compared to their TNFa-/- bone marrow counterparts, clear tumor 

more efficiently than their counterparts, and have more injection site necrosis than their 

counterparts (Figure 7-3a-b). It should, however, be noted, that TNFa-/-  WT bone 

marrow chimeric animals do form some necrosis and have a reduction in tumor burden 

when compared to TNFa-/-TNFa-/-  chimeric controls. Based on these observations, 

we conclude that while both stromal and bone marrow derived TNFa contributes to 

necrosis, bone marrow derived TNFa dominates the milieu.  
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Figure 7-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1: TNFa is required for injection site necrosis after IT CDN therapy. Tumors 

were implanted as above and outgrowth in knockout animals was assessed for volume 

and presence of necrosis.  
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Figure 7-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-2: Tumor outgrowth is enhanced in IFNar, STING, cGAS, and RAG-/- 

animals.  (A-B) Tumor outgrowth on day 12 of untreated (A) and IT CDN treated 

(B) treated animals.  
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Figure 7-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-3:  TNFa produced by both bone marrow and stroma aids in the 

clearance of B16F10.  (A) Outgrowth plots and representative pictures of 

TNF/WT chimeric animals. (B) Elisa of tumor lysate taken 24 hours after IT CDN 

administration.   

 

 

 

 

TNFa In Tumor Lysate

W
T-->

W
T C

D
N

W
T-->

TN
F C

D
N

TN
F--

>W
T C

D
N

0

500

1000

1500

2000

2500

p
g

/u
g

 t
u

m
o

r 
ly

s
a

te

A 

B 

WT-->WT

1 6 11 16 21 26 31

0

200

400

600

800

1000
WT PBS

WT ADU-S100

T
u

m
o

r 
v
o

lu
m

e
 (
m

m
^
3

)

TNF-->WT

1 6 11 16 21 26 31

0

200

400

600

800

1000
TNF-->WT PBS

TNF-->WT ADU-S100

T
u

m
o

r 
v
o

lu
m

e
 (
m

m
^
3

)

WT-->TNF

1 6 11 16 21 26 31

0

500

1000

1500

2000
WT-->TNF PBS

WT-->TNF ADU-S100

T
u

m
o

r 
v
o

lu
m

e
 (
m

m
^
3

)

WTWT TNF-/-WT WTTNF-
/- 



71 
 

 

 

 

 

 

CHAPTER VIII 

Both Bone marrow and stromal cell signaling are crucial for an IT CDN response 
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Introduction 

 

With the exception of microglial cells, tissue resident macrophages, and few 

others, cells of the immune system are generally all derived from hematopoietic stem 

cells of bone marrow. The common lymphoid progenitor gives rise to all B cells, T cells, 

and NK cells, whereas the common myeloid progenitor gives rise to Basophils, 

neutrophils, and monocytes that spawn macrophages and dendritic cells. These cell 

subsets comprise the specialized cells of the immune system, and are exquisite at 

performing their duties within the immune system. However these are not, by a long 

stretch, the only cells that take part in immune reactions.  Many cell types in the body 

have the capability to initiate an immune response through activation of any of several 

mechanisms, as discussed in the section “stromal cells” above. TLR agonists are not only 

found on immune cells, but on in the liver, on brain microglia, on epithelial cells in the 

gut, lung, and even musculature78,81. Viral sensors like RIG-I and MDA5, which potently 

initiate production of type 1 interferons, can be found in many cell types including 

endothelial, epithelial, and fibroblast cells79-81. Lastly, DNA sensors like cGAS as well as 

STING can be found in the cytosol and ER of multiple cell types115.  

The prolific expression of these sensors means that, while far too often 

immunologist only consider the effects of adjuvants on immune cells, we should strongly 

consider the effect of these compounds on non-immune endothelial, epithelial, and other 

stromal cell subsets. Previous research has suggested that Type 1 interferon can be 

produced by CD31+ endothelial cells in response to IT CDN109. While we have 

concluded that TNFa is vastly more important for acute necrosis in our system, we show 
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here, with a series of bone marrow chimeras, that sensing of CDN by stromal cells may 

be just as, or more important to generating acute inflammatory cytokines in the tumor 

microenvironment.  
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Chapter Specific Methods 

 

 

Cell Lines 

B16F10 and CT26 were acquired from ATCC (CRL-6475, and CRL-2639 

Respectively) and were cultured in Complete RPMI (10%FBS, 100u/ml penicillin, 

100ug/ml streptomycin, 250ng/ml amphotericin, 1mM sodium pyruvate, NEAA).  

Mice 

C57BL/6 mice (6-8 week old female) were purchased from Jackson Laboratories 

and BL6-CD45.1 mice (6-8 week old female) were purchased from Charles River.FoxP3 

DTR mice were a gift from Dr. Drew Pardoll and FcgR-/-  (B6.129P2-Fcer1gtm1RavN12) 

breeder mice were purchased from Taconic and bred in Johns Hopkins Facilities. cGAS-/- 

animals were a gift from Skip Virgin. STING-/- animals are the Golden Ticket strain, and 

were a gift from Young Kim. Rag2-/- animals were a gift from Jonathan Powell. IFNar-/- 

(B6.129S2-Ifnar1tm1Agt/Mmjax), TNFa-/- ( B6.129S-Tnftm1Gkl/J), and IL-6-/- 

(B6;129S2-Il6tm1Kopf/J) breeder pairs were purchased from Jackson laboratories and 

bred in Johns Hopkins Facilities. All mouse procedures were approved by the Johns 

Hopkins University Institutional Animal Care and Use Committee and were compliant with 

the Guide for the Care and Use of Laboratory Animals (8th ed. The National Academic 

Press. 2011). 

Chimeric animals were made by irradiating 6-12 week old animals with 2 doses of 

6gy separated by 3 hours. 3 hours after the second dose of irradiation, mice were 

reconstituted with 5-10 million cells of unirradiated donor bone marrow via tail vein 

injection and left to rest for at least 6 weeks. All chimeric animals were put on uniprim 

https://www.jax.org/strain/005540
https://www.jax.org/strain/002254
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feed at least 1 week before irradiation and removed from uniprim feed at least 1 week 

before tumor challenge.  

 

Antibodies 

For CDN studies antibodies used included CD11b-AF700 (M1/70), CD44-Pacific 

Blue (IM7), CD11c-FITC (N418), CD86-PE (GL-1), CD19 PerCP-Cy5.5 (6D5), Ly6C-

BV605(HK1.4), CD45.2- APC (104), IA/IE- PerCP-Cy5.5 (M5/114.15.2), Ly6G- BV421 

(1A8), CD16/32-BV510 (93), F4/80-PE-Cy7 (BM8), CD206-BV711 (C068C2), Ly6c- 

PerCP- Cy5.5 (HK1.4), and CD4- BV605 (GK1.5), Biolegend; NOS2-APC (CXNFT), 

NK1.1-PE (PK136), and CD8-PE-Cy7 (53-6.7), EBiosicence; CD4-Pacific Orange (RM4-

5), Life Technologies; CD45.1-FITC (A20) BD Pharmingen. 

CDN Tumor Outgrowth and Infiltration studies 

5x10^5 B16F10 cells were implanted between the skin and peritoneal cavity on day 

0. Tumors were monitored until the group average was ~80mm^3 and then treated with 

100ug injections of CDN in 40ul PBS or PBS alone every other day for a total of three 

treatments. For chimera studies, a surplus of mice were implanted tumor, then when tumors 

were palpable, animals were selected and groups normalized to ~80mm^3. Tumor 

outgrowth volume was measured by the equation V=1/2(width^2*length). 24 hours after 

treatment, some mice were sacrificed for tumor infiltrate studies by flow cytometry or for 

tumor lysate. Tumor lysate was made by resecting tumors and dissociating in Cell Lytic M 

(Sigma Cat no. C2978) with Protease Inhibitor Cocktail (Sigma S8820).   

Elisa: 
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Elisas were purchased as kits as follows:  Mouse IL-1b/IL-1f2 (Catalog No. 

MLB00c), Mouse GM-CSF (Catalog No. MGM00), Mouse IL-6 (Catalog No. M6000B), 

Mouse TNF-a (Catalog No MTA00B) R&D; VeriKine Mouse IFNb Elisa (Catalog No 

42400-2) PBL Assay Science; Mouse Inflammatory Cytokines Multi-anylite ELISArray 

Kit (MEM004a), Quiagen.   

Statistics: 

Statistical significance for bar graphs was determined with a one-sided or two sided 

non-Paired students T test (*=P<.05, **=P<.001, ***=P<.0001). Statistical significance 

for Kaplan-Meier survival graphs was determined by Log-Rank Test.    
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Results 

Stromal STING sensing is required for injection site necrosis.  

Because TNFa production by both bone marrow and stromal cells appeared to 

have an effect in the previous chimeric animals, we sought to understand the relative 

contributions of CDN sensing and STING signaling in bone marrow and stromal cells. 

Again, we made a series of bone marrow chimeras by irradiating WT or STING-/- hosts 

and reconstituting them with either WT or STING-/- bone marrow. After IT CDN 

therapy, only animals with STING competent (WT) bone marrow (GTWT, WTWT) 

became necrotic at the IT CDN injection site while chimeras devoid of stromal STING 

(WTGT, GTGT) had no such necrosis (Figure 8-1a). Similarly, only WT host 

animals have detectable TNFa, IFNb, IL-6, and GM-CSF in tumor lysate when measured 

by ELISA (Figure 8-1b). Interestingly, there is an effect of tumor regression in both sets 

of chimeric animals to a close degree, suggesting that while WTGT animals have no 

observable innate necrosis or cytokine response, there may be other mechanisms, like an 

ongoing adaptive response, that control the tumor to some degree.  

To address the possibility of adaptive immune activation in all sets of chimeric 

animals, we analyzed the tumor draining lymph node(TDLN) infiltrate after CDN 

administration. All chimeras except GTGT experienced a significant infiltration of 

FSChi-SSChi cells into the TDLN (Figure 8-3). A large proportion of these cells were 

CD11b+CD11c+ dendritic cells, and in all chimeras except GTGT these dendritic cells 

upregulated the activation co-stimulatory molecule CD86 after CDN administration. This 

suggests that DC can become activated directly or indirectly as a result of IT CDN 

administration.  
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Figure 8-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-1: Tumor necrosis only occurs in mice with STING competent stromal 

cells.  (A) Tumor outgrowth plots and pictures of chimeric animals treated with 

PBS or CDN. (B) ELISA of tumor lysate. 24 hours after IT CDN tumors were 

harvested and tumor lysate was made as described above.  
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Figure 8-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-2: APC become activated via direct and indirect mechanisms after IT 

CDN. 24 hours after IT CDN administration, TDLN from CDN treated animals 

were harvested and analyzed by flow cytometry. APC were defined as high 

FSC/SSChi CD11c+CD11b+ cells. This population was then analyzed for CD86 

expression by histogram.  
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CHAPTER IX 

Conclusion and Discussion 
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Conclusion and Discussion  

 

The tumor microenvironment presents many barriers and challenges to the 

immune system.  However, these can be overcome through the use of agents to stimulate 

and shape the immune response as well as the tumor microenvironment in such a way 

that it becomes unaffected by these barriers.  In the above work, we have used the current 

and growing wealth of knowledge about the immune system and about the tumor 

environment to design and apply therapies that have proven potent in causing the 

regression of aggressive lethal tumors. However, not only have we designed therapies, 

but we have used them to gain a more full understanding of the immune system as it 

pertains to cancer. We have elucidated previously undiscovered mechanisms pertaining 

to the development of T regulatory cells as well as the contribution of the tumor stroma to 

initiating an anti-tumor immune response. In the future, we aim to continue these studies 

and understand further details of the immune reaction to cancer.  

Listeria+ Checkpoint Blockade Conclusions 

Administration of immunetherapeutic agents has shown resounding success lately 

in clinical trials as well as pre-clinical models. However, along with the successes, clear 

limitations of these approaches have become apparent. Absence of tumor infiltrating 

lymphocytes in tumors corresponds with poor responses in patients, so increasing the 

tumor infiltrate and creating de- novo tumor responses is a crucial step to overcoming 

those hurdles. We report that vaccination with LM-MEL, an engineered listeria 

bacterium, reduces tumor burden, increases the number and percentage of multifunctional 

CD8+ Tumor infiltrating lymphocytes and reduces the percent of CD4+ lymphocytes that 

are FoxP3+ from ~40% to ~30%. The addition of aCTLA-4 (D) to this vaccine increases 
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tumor lymphocytic infiltrate over 10-fold and dramatically enhances tumor responses 

through further depletion of Tregulatory cells from ~30% to ~1%.  This change in the 

cellular TIL compartment corresponds with a survival time of ~20 days when untreated 

to >40 days when treated.  

 

The field of antibody engineering is becoming exquisitely attentive to Fc receptor 

binding. Antibodies that react with Tcells, such as PD-1, can be engineered to have 

absolutely no interaction with Fc receptors, while those that react with immunosupessive 

compartments like Treg can be engineered to have maximal depletion efficiency. 

Unmentioned in these studies is manipulation of the other key element, the Fc receptor. 

Vaccines that can make depletion more efficient through upregulation of Fc receptors 

offer a double threat: activation of Tcells and enhancement of ADCC through 

monoclonal antibodies. To our knowledge, this is the first study that observes an increase 

in Fc expression as a result of vaccination. Listeria vaccination increases MFI of FcRIV 

by ~40%, and IgG2a increases this MFI another 2-4 fold. Our system is unfortunately not 

designed to determine if this upregulation of Fc receptor expression is functionally 

relevant, because LM, as we have shown, reduces Treg independently of Fc receptors and 

this confounds any conclusions we could draw.  

It has been shown that checkpoint blockade reduces the fraction of Treg as a 

percent of total tumor infiltrate and that the resulting Teff:Treg ratio is an important 

factor when predicting tumor clearance32,52. While data concur completely in this regard 

the mechanism behind this observation is not fully addressed. It seems that while 

aCTLA-4 administration reduces the percent of FoxP3+ cells as a fraction of TIL, that 
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effect is mostly due to the induction of CD4+FoxP3- infiltrate, not due to the obliteration 

of the Treg compartment. We in fact observe the opposite, a moderate increase in Treg in 

the tumor.  aCTLA-4 has been shown to reduce surface activation markers and the 

suppressive capacity of Treg in in vitro suppression assays30,116, but because we observe 

that tumor infiltration due to aCTLA-4 is isotype (IgG2a induces infiltrate while IgG1 

does not) and Fc receptor dependent rather than Fab dependent, it seems unlikely that 

Treg dysfunction explains all of this phenotype. Similarly, because we observe that 

aCTLA-4 increases numbers of infiltrating macrophages and expression of Fc receptors 

on those macrophages, we hypothesize that there is another mechanism yet to be 

explored.  

There are a few unexpected and unexplained results in our data. CD8 depletion 

does not lead to a complete abolition of tumor burden reduction. This is likely due to 

innate components of the immune system that we have left unexamined. Repolarization 

of TAM that might otherwise directly enhance tumor growth or activation of NK cells to 

kill tumor both may explain this vaccination effect. Additionally, aCTLA4 IgG1, 

supposedly “non-depleting” also leads to mild Treg depletion and increase of 

multifunctional CD8+ t cells. It should be noted that this antibody, while not optimized 

for depletion, still has the ability to bind Fc receptors, but with lower affinity. Lastly, the 

addition of LM-MEL to CTLA4 is mild, but consistent. In all our studies, this small 

combination effect always occurs. 

IT CDN therapy Conclusions 

We have shown here that IT CDN therapy has powerful effects leading to tumor 

clearance and long term survival of tumor bearing animals. In these studies, we have 
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focused on the innate acute effects of IT CDN therapy while also noting the long term 

adaptive effects that are initiated in the acute phase.  Injection of high dose CDN leads to 

acute and often complete necrosis of the tumor area- an effect that is TNFa dependent. 

Our particular formulation of CDN, a mixed linkage RR-S2 cyclic di-adenosine, binds 

both mouse and human STING forms, though interestingly other CDN formulations we 

have worked with have higher potency at smaller doses in mouse models (unpublished 

data). Similarly, other formulations of CDN and sting agonists have shown differences in 

tumor clearance, induction of cytokines, and activation of an adaptive immune 

response.96  However, we used only the human-binding CDN formulation because this is 

the product that will be taken forward into clinical trials.  Additionally, other groups have 

assessed the use of lower dose CDN and through different vaccination routs to study the 

adaptive response, but that is also not what we focus on here.95,104 The efforts of these 

experiments focused on elucidating the importance and ability of the stromal cell 

compartment to add to effective tumor killing after CDN therapy.  

We firstly showed efficacy and immune phenotype of tumors undergoing this 

therapy. The induction of multiple cytokines including IL-6, TNFa, IFNb, and GM-CSF 

was not surprising because we now understand that signaling downstream of STING 

stimulates both NF-kB and IRF-3 activity. We showed that in the tumor, high dose CDN 

acutely deplete lymphocytic populations, which may necessitate the use of lower doses in 

humans. However, this does does increase the infiltration of neutrophils and 

macrophages, cell subsets that we know can increase inflammation and produce TNFa. In 

the tumor draining lymph node, APC populations greatly increase and become activated, 
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as measured by the presence of CD86. Thus while this dose may not be optimal for 

resident lymphocytes, the potential exists to mount a robust adaptive immune response. 

Importantly, we observe that acute CDN dependent tumor necrosis is not 

dependent on adaptive killing of the tumor, but rather TNFa necrosis alone. Using 

multiple genetic knockout mice, we show that RAG2, IL-6, cGAS, and IFNar are not 

responsible for tumor necrosis. However, STING-/- and TNFa-/- animals fail to show any 

injection site necrosis after IT CDN administration.  

Using a series of bone marrow chimeras, we show that CDN dependent necrosis 

occurs only when host stromal cells are STING competent, and that TNFa can only be 

found in the TME when stromal cells are STING competent. Interestingly, none of our 

results have come in a binary fashion. It has become abundantly clear that the CDN 

dependent immune clearance of tumors depends on cross talk or additive effects of both 

bone marrow and stromal cells. Indeed, both STING-/-WT and WTSTING-/- 

animals experience delayed tumor outgrowth after CDN treatment. Similarly, using a 

series of bone marrow chimeras with TNFa protein knockouts, we showed that both 

WTTNFa-/- and TNFa-/-WT animals show some tumor clearance and injection site 

necrosis. However, bone marrow derived cells seem to be making the majority of TNFa 

because only in animals with TNFa competent bone marrow do we find TNFa in the 

TME.  

We conclude that the tumor stroma is an important factor to consider when 

approaching any tumor therapy, especially those that utilize direct intratumoral injection 

of adjuvant. CDN injection acutely leads to the activation of the stroma, an inflammatory 

immune environment, and tumor clearance. Long term studies will need to be preformed 
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to understand if this inflammatory environment persists, and if this is an ideal 

environment for the priming of adaptive immunity. We also look forward to 

understanding the long term effects of neutrophil and macrophage infiltration into the 

tumor site and into the tumor draining lymph node, because while these subsets are 

acutely inflammatory, it is understood that myeloid subsets can often be, or become 

immune suppressive. However, our observations of activated APC and long term vitiligo 

and dermatitis (unpublished) lead us to believe that these responses do exist and are 

potent, so we propose that IT CDN are a potent tool that represent the successful 

reinvigoration of a concept dating back to William Coley, one of the first men to 

experiment with tumor immunotherapy.  

Drawbacks 

There are several drawbacks of these studies, as indeed there are with any body of 

work. The use of mouse models has been somewhat contentiously debated over the past 

years, and even the use of inbred mice strains has come into question. The basic fact that 

a very small fraction of therapies discovered in mice translate to human clinical trials 

gives scientists pause, rightly so, about the validity and importance of their work. It is, 

however, undeniable that the use of these model systems allows for a greater 

understanding of the human body because small animal systems are manipulatable. 

Knockout animals are indispensable to our field, and indeed we have used many 

genetically modified organisms in these studies. While outbred mice may represent the 

genetic diversity of the human race better than clonal inbred animals, the sample size 

required to do such studies with reasonable scientific precision makes that goal 

unrealistic. Thus, we have chosen mice and indeed mouse tumor models not because we 
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expect absolute fidelity between mice and humans, but because it gave us the ability to 

quickly and thoroughly explore the mechanisms behind tumor clearance and immune 

activation.  

The second drawback of these experiments is the tumor model. While we have 

experimented and shown efficacy of our therapies in multiple models including B16F1 

(melanoma), EL-4 (lymphoma), and CT26 (colon carcinoma), the vast majority of our 

studies have been performed in the highly aggressive and metastatic mouse melanoma 

model B16F10. B16F10 grows at an enormous rate, often killing animals within 3 weeks 

of implantation, depending on the initial implanted tumor burden. This aggressiveness is 

orders of magnitude higher than that observed in any tumor in humans. However, we 

chose this model for several reasons. Firstly, the potency of aCTLA-4 IgG2a is 

staggering. In most models we experimented with, it cures tumors as a single agent. In 

order to discover combinatorial efficacy, we needed an extremely aggressive model. 

Additionally, B16F10 mirrors the efficacy of immunotherapy more closely than many 

models. While the field is advancing, the highest rate of tumor control observed in the 

clinic has been 50-60 percent with PD-1, when patients are binned according to the 

biomarker PD-L1. B16F10 is a vastly uninfiltrated tumor with no truly curative 

immunodominant epitopes and a highly immunosuppressive tumor microenvironment, 

and it is the combination of these factors that makes it representative of the majority of 

fatal tumors in the human population.  

Lastly, the treatment schema for the administration of CDN is not entirely 

representitve of what we expect to be administered in clinical trials. We administered 

100ug of the compound ADU-S100. This is an amount that has been optimized for the 
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clearance of aggressive tumors through the formation of necrosis. We used this dose to 

understand the basis of this necrosis and to understand the ability of different cell types to 

contribute to it. However this dosage, as we have shown, is not optimal for the induction 

of a CD8+ t cell response. It is indeed toxic to TIL acutely. And while this does does 

activate dendritic cells and induce long term immunity, our collaborators at Aduro 

Biotech have shown that lower doses allow for better long term immunity in less 

aggressive tumor models. 
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                                                                                      December 2015 
 
Recipient, Award for Outstanding Poster Presentation  

         Johns Hopkins Immunology Conference      October 2015 

 

 

 

 

 

 

Community Involvement and Professional Development: 

 

Teaching Assistant, Johns Hopkins University, Department of Immunology 

 Taught Graduate Immunology, Senior TA in 2016                  February 2013-2016  

 

        

Graduate Student Liaison- Johns Hopkins University to Milford Mill Academy                       

Spring 2016 

  

 

Selected Conference Abstracts and Presentations: 

 

Francica BJ,  Ghasemzadeh A, Dubensky TW, and Drake CG. Radio-resistant Stromal 

Cells Initiate the Innate Response to Cyclic Dinucleotides. Keystone Symposia, 

Cancer Vaccines: Targeting Cancer Genes for Immunotherapy 2016. Whistler, 

BC, Canada. March 7, 2016. (oral presentation and poster presentation) 
 
Francica BJ, Ghasemzadeh A, Dubensky TW, Brockstedt DG, Lauer P, Korman A, 

Selby M, Pardoll DM, and Drake CG. Combinatorial Listeria+Depleting 

Antibody Cures Established B16 Melanoma. Keystone Symposia, Tumor 

Immunology: Multidisciplinary Science Driving Combination Therapy 2015. 

Banff, AB, Canada. February 8, 2015. (poster presentation) 
 
Francica BJ,  Nirschl CJ, Ceccato CM, Nirschl TR, and Drake CG. Adoptive Transfer 

Therapy is Greatly Improved by an Engineered Listeria Vaccine Targeting Shared 

Human and Mouse Antigens. Cancer Research Institute, Cancer Immunotherapy 

2014: Out of the Gate. New York, New York. October 6, 2014. (poster 

presentation) 
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Manuscripts in Preparation:  

 

Francica BJ, Ghasemzadeh A, Kochel CM, Nirschl TR, Theodros D, Nirschl CJ, 

Marsicano A, Dubensky TW, Korman A, Selby M, Pardoll DM, and Drake CG. 

Combination Listeria Vaccine + Checkpoint Blockade Effectively Reduces 

Tumor Burden of Established B16F10 Melanoma in an Fc-Dependent Manner. 

Manuscript in preparation. 
 
Francica BJ, Ghasemzadeh A, Marciscano A, Theodros D, Nirschl TR, Dubensky TW, 

Pardoll DM, and Drake CG. Radio Resistant Stromal Cells Initiate the Innate 

Response to Cyclic Dinucleotide Therapy. Manuscript in preparation. 
 
Francica BJ, Nirschl CJ, Goldberg MV, Huang DD, and Drake CG. Independent Control 

of PD-1 and Egr2 in Models of CD8+ T-Cell Tolerance. Manuscript in 

preparation. 
 
 
Selected Publications: 

 

Jackson CM, Kochel CM, Nirschl CJ, Durham NM, Ruzevick J, Alme 

A, Francica BJ, Elias J, Daniels A, Dubensky TW Jr, Lauer P, Brockstedt 

DG,Baxi EG, Calabresi PA, Taube JM, Pardo CA, Brem H, Pardoll DM, Lim 

M, Drake CG. Systemic Tolerance Mediated by Melanoma Brain Tumors Is 

Reversible by Radiotherapy and Vaccination. Clin Cancer Res. 2015 Oct 21. 
 
Martin AM, Nirschl TR, Nirschl CJ, Francica BJ, Kochel CM, van Bokhoven A, 

Meeker AK, Lucia MS, Anders RA, DeMarzo AM and Drake CG. Paucity of PD-

L1 expression in prostate cancer: innate and adaptive immune resistance. Prostate 

Cancer and Prostatic Diseases 18, 325-332. December 2015. 
 
Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, Deweese 

TL, Drake CG. Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-

Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen. 

Cancer Immunology Research.  April 2015. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jackson%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kochel%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nirschl%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Durham%20NM%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ruzevick%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alme%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alme%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Francica%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Elias%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Daniels%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dubensky%20TW%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lauer%20P%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brockstedt%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brockstedt%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baxi%20EG%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calabresi%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Taube%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pardo%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brem%20H%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pardoll%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lim%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lim%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/?term=Drake%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=26490306
http://www.ncbi.nlm.nih.gov/pubmed/26490306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sharabi%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=25527358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nirschl%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=25527358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kochel%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=25527358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nirschl%20TR%5BAuthor%5D&cauthor=true&cauthor_uid=25527358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Francica%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=25527358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Velarde%20E%5BAuthor%5D&cauthor=true&cauthor_uid=25527358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Deweese%20TL%5BAuthor%5D&cauthor=true&cauthor_uid=25527358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Deweese%20TL%5BAuthor%5D&cauthor=true&cauthor_uid=25527358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Drake%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=25527358

