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ABSTRACT 

Controlling assembly of colloidal particles into different phases and 

microstructures could provide bases to understand and manufacture novel materials with 

non-trivial properties and numerous potential applications. A common strategy is to direct 

the assembly with prefabricated topographical or chemical patterns. This approach is useful 

in rapid assembly of massive materials but is inherently an irreversible process and is 

unable to achieve reconfigurable control. Field mediated self-assembly, on the other side, 

directs the process through interaction with external fields, including optical, magnetic, and 

electric, and provides a promising path for more sophisticated microstructures. One of the 

most imminent research goals in this area is to design novel external field patterns and 

control strategies with an aim for a scalable assembly. In this dissertation, MHz AC electric 

fields are used to generate reconfigurable and multi-dimensional fields and to accomplish 

three goals: 1) understanding equilibrium phase behaviors under multi-dimensional 

external fields, 2) controlling assembly of defect-free colloidal crystal with optimal 

strategy, and 3) scale up the assembly control to hierarchical colloid structures. 

Equilibrium behavior of particles under external field is critical in understanding 

phase transition and nonuniform distribution of colloidal systems; it is also important 

practically in investigating novel control mechanisms. Equilibrium particle concentration 

profile can be derived by considering the interaction between particles and field and by 

balancing the interactions with osmotic pressure due to inhomogeneous particle 

concentration. Equation of states for effective hard disks can be used to relate osmotic 

pressure with particle concentration, so that we can derive a general relationship between 

the external energy landscape and particle concentration distribution. Based on the theory, 
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we successfully predicted local and global phase transitions as well as two-dimensional 

particle distribution under external fields. Our findings also provide foundations for the 

following dynamic control problems. 

For the second goal, we rely on morphing electric fields and energy landscapes to 

control the self-assembly of particles into defect-free crystals with circular morphology. 

We first observed that morphology changes in response to applied electric fields enhance 

the diffusion of grain boundaries and formation of perfect crystals. We derived an optimal 

feedback control strategy based on the initial observation and a reinforcement learning 

study. We showed that the assembly of perfect crystal is most efficient when the applied 

anisotropic field is aligned with grain boundary orientation. The control strategy achieves 

100% yield of perfect crystals within an order of magnitude shorter time compared to 

precedent works. We also demonstrated the scalability of our approach in assembly of 

larger colloidal systems. 

Finally, we extend our knowledge in design an assembly strategy for hierarchical 

structures. Our specific goal is to achieve periodic colloidal crystals with perfect structure 

and circular morphology. We design an electrode array with independently activated poles, 

which can dynamically generate multiple DC and MHz AC electric fields. Through 

computer simulations, we showed a control process includes coarse partitioning particles 

into separate clusters, equalizing cluster size by particle redistribution, removing grain 

boundaries in all clusters, and restoring circular morphologies for the periodic structures. 

We demonstrated the scalability of the control to various cluster sizes. We also discussed 

potential applications of electrode array and field mediate assembly in other scenarios. 
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each cluster. Orientations of grain boundaries are marked by orange lines (G) 
Control of morphology relaxation. Initially all clusters have perfect structure and 
anisotropic shapes. Cyan arrows represent the direction of morphology, and the 
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reaching equilibrium states. The color bar ranges from blue to red following 
rainbow spectrum. (E) Parameters tracked during the coarse partitioning, including 
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1 INTRODUCTION 

1.1 Background 

Ordered colloid microstructures possess many unique properties and show 

extensive applications in areas such as photonics, optoelectronics, energy conversion, and 

biological and chemical sensing. Transition of colloidal system between dilute dispersion 

and condensed morphology has also been studied as a model of phase behavior and other 

equilibrium kinetics. Controlling spatial and temporal arrangement of colloids an ongoing 

research topic, and typically involves a trade-off between resolution and scalability. 

Precise, particle-level control, such as optical tweezer, is one of the most accurate methods 

to control the spatial organization of colloids.1 The limitation, on the other hand, is its 

limited operation area and weak scalability. Massive, entropy-driven assembly approaches, 

such as evaporation deposition, often introduce undesired defects and/or require extended 

time.2 In order to maintain high throughput as well as sufficient resolution, directed self-

assembly is considered as a desirable approach to manufacture novel nano- and micro- 

scale materials.3  

Two general categories of directed assembly exist, namely template mediate 

assembly and field mediate assembly. Template mediate assembly relies on prefabrication 

of surface-modified substrates, which selectively induce colloid deposition. A wide range 

of microstructures have been fabricated based on this approach, although a common 

limitation is the prerequisite template manufacture.4 External field mediate assembly, on 

the other hand, has received broad attentions for enabling precise control to local and global 

particle organizations, and achieving well defined and tunable colloidal structures, and 
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enabling. Various types of external fields have been considered for self-assembly control, 

including electric field,5 magnetic field,6 and shear field.7 External fields introduce 

additional driving forces re-equilibrate particles, thereby forming specific patterns. A 

common challenge for such type of control is to dynamically tune the fields such that 

kinetically trapped states of defected structures can be prevented and/or resolved. 

Gravitational field, for example, has long been used to deposit particles into condensed 

structures. While the magnitude of field can be tuned relatively easily in centrifuges, spatial 

control is difficult and usually requires prefabricated substrates. Electric field, of all 

possible candidates, is most suitable for such goals for two reasons. First, the interactions 

between colloids and electric fields are universal for native colloids in aqueous medium.8 

Second, multiple types of electric fields are possible to control colloidal systems, and both 

the spatial and temporal features of electric fields can be dynamically tuned based on a 

fixed electrode design.9 

Open questions remain in electric field mediate colloid assembly. First, a robust 

and general strategy to direct assembly of particles into perfect structures is highly 

desirable and yet still under investigation. Although various open-loop strategies have been 

proposed based on simple, one-dimensional electric fields, searching for more 

sophisticated field patterns and associated control policies not only further enhances the 

overall assembly performance in terms of success rate and time cost, but also provide 

insights and possibilities to understand complex, nonuniform colloid phase behaviors. 

Moreover, scalability of electric field and assembled pattern is a nontrivial topic. Very few 

attempts have been devoted to extending from a single crystal of a finite size to larger 

systems or hierarchical structures. The scalability of electric field mediate assembly is 
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critical in achieving massive control of macroscopic structures. 

1.2 Objective 

This dissertation is devoted to several scientific and engineering aspects of 

fundamental thermodynamics and self-assembly mechanisms of colloidal systems. The 

first objective is to understand the equilibrium distribution and phase behaviors of colloidal 

under multi-dimensional external field. Previous works focused on examining the 

distribution of particles under one-dimensional energy landscape, and successfully predict 

phase transition and other interesting thermodynamic behaviors.10 Octupole electrode is 

used to generated reconfigurable isotropic and anisotropic electric fields with two-

dimensional variation. Particles are equilibrated in each field conditions and form different 

phases and morphology structures. The second objective is to employ various isotropic and 

anisotropic electric fields in direct the assembly of colloidal crystals. We observed effects 

of morphing field shapes to the relaxation of grain boundary defects, and developed image 

analysis algorithms to characterize the crystal properties including global and local density, 

global and local crystallinity, position and orientation of structural defects (grain 

boundaries), and shape and orientation of cluster morphology. We also apply reinforcement 

learning algorithms in optimizing control strategy. The goal is to enhance the yield and 

time cost for colloidal crystal assembly. The last objective is to extend a single cluster self-

assembly to hierarchical colloidal crystal assembly. We rely on an electrode array to 

generate various types of electric fields, and breakdown the control process in key 

operation steps. The goal is to investigate the scalability of forming periodic and ordered 

structures using external fields. 
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1.3 Dissertation Overview 

    This dissertation is divided into chapters. Chapter 2 reports spatially varied 

equilibrium phase behavior under anisotropic electric fields. We derived the theory by 

considering the force on a single particle due to external field and the osmotic pressure due 

to nonuniform particle concentration. By incorporating the equation of states for effective 

hard disks, we proposed a general relationship between particle concentration distribution 

and the applied energy landscape. We used the theory to predict local phase transition and 

condensation of particles under different external field shapes and magnitudes. We also 

successfully predicted particle distribution under external field. We concluded that three 

parameters are directly related the equilibrium distribution of colloidal system: global 

density maximum, mean density of particles, and the shape and magnitudes of external 

field. The theory is presumably applicable to any types of field in arbitrary multi-

dimensional system. 

Chapter 3 reports control of colloid assembly of perfect crystals based on morphing 

electric fields. We controlled the colloid morphology by applying isotropic and anisotropic 

electric fields. We observed an enhancement in grain boundary diffusion and relaxation 

due to morphology change. We used on reinforcement learning to yield optimal control 

strategy, which suggests that the grain boundary can be most effective removed when the 

applied anisotropic field is aligned with grain boundary orientation. We also developed an 

image analysis algorithm to automatically track critical system parameters and achieve a 

closed-loop control system. The proposed control strategy achieves 100% yield of perfect 

crystals with circular morphology and reduced the mean assembly time by an order of 

magnitude compared with the most advanced precedent approach. We also demonstrate 
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the scalability of the strategy in assembling crystals with larger system sizes. 

Chapter 4 reports a simulation work to obtain hierarchical colloidal crystals using 

an electrode array. Previously, we focused primarily on assembly of a single cluster, while 

in this work we present an approach to extend to theoretically infinite clusters. Our goal is 

to form hierarchical crystals with equal size, perfect structure, and circular morphology. 

We rely on an array of independently controlled electrodes to generate various types of DC 

and MHz AC electric fields. The control first partitions particles in coarse clusters. Next, 

particles are redistributed between adjacent clusters in order to equalize all cluster sizes. 

Last, all clusters are simultaneously controlled to remove grain boundaries and form 

circular morphology. We demonstrate the scalability of this approaching in obtaining 

hierarchical crystals of various sizes. We also discussed potential applications of electrode 

array and field mediate colloid control in other assembly tasks. 

Finally, Chapter 5 summarizes major accomplishments and findings, and discuses 

several potential directions and outlooks for electric field mediate colloidal control. 
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2 SPATIALLY VARYING COLLOIDAL PHASE 

BEHAVIOR ON MULTI-DIMENSIONAL ENERGY 

LANDSCAPES* 

 

2.1 Abstract 

A method is reported to determine equilibrium concentration profiles and local 

phase behavior for colloids on multi-dimensional energy landscapes. A general expression 

is derived based on local particle concentration and osmotic pressure differences that are 

balanced by forces on colloids due to energy landscape gradients. This analysis is applied 

to colloidal particles in high frequency AC electric fields within octupolar electrodes, 

where the energy landscape can be shaped in two dimensions. Predictions based on 

modelling colloids with an effective hard disk equation of state indicate inhomogeneous 

solid and fluid states coexisting on different shaped energy landscapes including multiple 

minima. Model predictions show excellent agreement with time-averaged Brownian 

Dynamic simulations at equilibrium. Findings demonstrate a general approach to 

understand colloidal phase behaviour on energy landscapes due to external fields, which 

could enable control of colloidal microstructure on morphing energy landscapes and the 

inverse design of fields to assemble hierarchically structured colloidal materials. 

 

 

*Reprinted with permission from “Spatially varying colloidal phase behavior on multi-dimensional 

energy landscapes.” Journal of Chemical Physics 152 (2020). By Jianli Zhang, Yuanxing Zhang, and Michael 

A. Bevan. Copyright © 2020 AIP Publishing 
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2.2 Introduction 

Numerous scientifically and technologically important problems involve colloidal 

particles interacting with external fields. Many studies investigate steady transport of 

colloids in external fields balanced by hydrodynamic drag such as sedimentation,11 

electrophoresis,12 dielectrophoresis,13 magnetophoresis,14 etc. The present study is 

concerned with the equilibrium distribution and local phase behavior of colloidal particles 

in external fields. The classic example of this type of problem is sedimentation equilibrium 

of colloids in a gravitational field.  A similar analysis to the one used for sedimentation 

equilibrium can be used to determine equilibrium distributions and local phase behavior of 

colloids in other fields (e.g., electric, magnetic, optical, acoustic). While gravitational fields 

can be tuned using a centrifuge, other field types can be tuned in amplitude but also 

spatially, providing the opportunity to generate more complex equilibrium concentration 

profiles. 

A brief review of sedimentation equilibrium illustrates the basic features of 

calculating concentration profiles in external fields. First, we limit our review to cases 

where concentration profiles do not change significantly on scales comparable to particle 

dimensions, which enables the assumption that local thermodynamic properties are 

equivalent to a bulk system at the same concentration (i.e., the “local density 

approximation”15-16). For sedimentation equilibrium, a differential change in elevation 

produces osmotic pressure changes due to concentration variations; the osmotic pressure 

change (times a unit area) is balanced by the gravitational force acting on each particle 

(within a unit volume). The gravitational force is the local gradient of the single particle 

position dependent energy (i.e., potential energy landscape). This illustrates the basic 
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connection between equilibrium concentration profiles and potential energy landscapes. 

Integrating the differential force balance for sedimentation equilibrium is 

straightforward; the gravitational energy landscape is a 1D linear function of elevation; 

when combined with the ideal gas equation of state for the dispersion osmotic pressure, the 

result is an exponential concentration profile. This profile was confirmed for dilute colloids 

in pioneering optical microscopy experiments by Perrin.17-18 Performing the same analysis 

with the hard sphere equation of state19-20 predicts macro-scale colloidal dispersion 

concentration profiles with non-uniform fluid and solid phases, which were confirmed 

using direct sampling21 and x-ray measurements.22-23 For micron sized electrostatically 

stabilized colloids, the sedimentation equilibrium analysis with an effective hard sphere 

equation of state24 predicts micro-scale non-uniform fluid and solid phases, which have 

been confirmed using confocal microscopy.25 The sedimentation equilibrium analysis is 

commonly used in inverse fashion to extract phase behavior and equations of state from 

measured concentration profiles of complex colloidal particles in gravitational fields (e.g., 

magnetic colloids,26 Janus particles,27 active particles28-29, binary mixtures30, rods30). 

The equilibrium distribution of colloids in any field can be obtained by an analysis 

that is fundamentally the same as that for sedimentation equilibrium. For example, one 

particularly common case is for charged colloids in non-uniform high frequency AC 

electric fields.13, 31 This interaction has been used to confine colloidal dispersions in electric 

bottles32-33 and to assemble colloids into non-uniform fluid, liquid crystal, and crystal 

phases.34-38 The time averaged interaction corresponds to an induced dipole in a non-

uniform field, which yields an energy landscape that has been previously modeled39-40 and 

verified in direct measurements of particles between parallel electrodes (via a Boltzmann 
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inversion of measured position histograms).41-42 The energy landscape depends on field 

shape and material properties; when particles are less polarizable than the medium their 

lowest potential energy state is at the electric field minimum, and when particles are more 

polarizable than the medium their lowest potential energy state is at the electric field 

maximum (analogous to the role of density in sedimentation equilibria).42-43 

Concentration profiles and phase behavior of colloids in AC electric fields has 

previously been investigated for simple energy landscape shapes. For example, in the 

central region of a quadrupolar electrode (Fig. 2-1), the energy landscape has only a radial 

dependence, so that concentration profiles can be modeled with a 1D differential force 

balance in the radial coordinate. One difference to the sedimentation equilibrium problem 

is that the energy landscape has a quadratic dependence on the radial coordinate due to the 

electric field shape.44-45 In this example, the quasi-2D osmotic pressure can be modeled 

with a modified hard disk equation of state46-47 based on perturbation theory.24 

Concentration profiles show a non-uniform solid decaying from the potential energy 

minimum to a non-uniform fluid at its periphery, which has been validated in 

experiments.45 A related analysis of concentration profiles of 3D hemispherical colloidal 

crystals interacting with gravity and AC quadrupolar electric fields was accurately modeled 

as the superposition of two separable 1D problems (i.e., orthogonal gravitational and 

electric fields).44  

A general approach has not been reported for relating concentration profiles and 

local phase behavior of colloids on energy landscapes that vary in more than one 

dimension. For example, physical surface patterning can produce a gravitational energy 

landscape, which could have an arbitrary shape based on topographies that cannot be 
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reduced by symmetry to 1D landscapes. We have previously performed such 

measurements with repulsive and attractive colloids levitated by electrostatic repulsion on 

top of a topographically patterned gravitational energy landscape.48-49 The particle 

distribution was simulated with Monte Carlo by adjusting a potential energy landscape in 

an inverse analysis, but an analytical model was not developed to relate concentration 

profiles to the energy landscape. With the availability of increasingly sophisticated 

methods to shape energy landscapes for colloids based on their interactions with patterned 

electric, magnetic, and optical fields, it is necessary to understand how the local balance of 

osmotic pressure and particle forces determines concentration profiles. By understanding 

how shape tunable energy landscapes connect to local concentration and phase behavior, 

fields can be designed to spatially pattern colloids with different local microstructures 

corresponding to equilibrium phases. 

Here, we investigate a model system consisting of an octupolar electrode that can 

shape 2D electric fields and energy landscapes for small ensembles of several hundred 

colloidal particles. This provides a realistic model based on past experiments37-38, 50-51 to 

control colloidal assembly on energy landscapes that can be morphed between different 

shapes. A general method is presented for determining equilibrium 2D concentration 

profiles and local phase behavior on different shaped energy landscapes. Analytical 

predictions for concentration profiles and local phase behavior are validated based on 

Brownian Dynamic (BD) simulations of particles on a variety of 2D energy landscapes 

with a systematic increase in shape complexity. In addition to validating predictions, results 

are presented to show practically how numerical solutions are obtained depending on 

available information (i.e., particle number, reference concentration, etc.). Although 
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findings are presented for the specific case of induced dipoles in high frequency AC electric 

fields, the general approach for obtaining concentration profiles and local phase behavior 

on multi-dimensional energy landscapes can be applied to any field mediated energy 

landscape 

 

 

Figure 2-1 Two dimensional electric fields and energy landscapes in octupole electrode. (A-
C) Electric field in grayscale contour plot. Electrode voltages are normalized by a reference 
voltage of Vpp=3.0V applied to west-east electrodes, and fields are normalized by E0=Vpp/dg, 

where dg=100m is the electrode gap width in diagonal direction. Voltage ratios applied to the 
west-east and north-south electrodes are set as (A) Vpp:Vpp, (B) Vpp:0.6Vpp, and (C) Vpp:0.4Vpp. 
(D-F) Corresponding potential energy landscapes are plotted relative to the electric field central 
minimum up to ~30kT. 

 

2.3 Theory 

2.3.1 Interaction Potentials 

The net interaction on particle i, ui, in a high-frequency AC electric field is given 

by,38 

 pf pp

i i ij

j i

u u u


= +  (2.1) 
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where the first term is the superposition of particle-field potentials, which in the present 

study includes only an induced dipole-field potential given by,42  

 ( ) ( )3 2, 2 ,m c

pf

ma fu x y E x y= −   (2.2) 

where (x,y) is the particle center Cartesian coordinate, m is the medium dielectric constant, 

a is particle radius, fcm is the Clausius-Mossotti factor, and E(x, y) is the local electric field 

magnitude. The second term is the superposition of particle-particle pair potentials given 

by, 

 ( ) ( ), ,pp e dd

ij ij ij ij ij i iu u r u r x y= +  (2.3) 

where uij
e is electrostatic repulsion between particles with electrostatic double layers given 

by,52  

 ( ) ( )
2

232 tanh exp 2
4

e

m

kT e
u r a r a

e kT


 

   
= − −      

   
  (2.4) 

where r is center-to-center distance, e is elemental charge,   is the colloid surface 

potential, and  is the inverse Debye length. The second particle-particle potential in Eq. 

(2.3) is for induced dipole-dipole interactions given by,41, 43  

 ( ) ( ) ( )
3

3 2 2

2

2
, , cos ,dd

m cm

a
u r x y a f P E x y

r
 

 
= −  

 
 (2.5) 

where P2(cos) is the second Legendre polynomial, and   is the angle between induced 

dipoles. 
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2.3.2 Equation of State 

The osmotic pressure, (), for quasi-2D colloidal dispersions can be modeled 

using the hard disk equation of state as, 

 ( ) ( )ZkT   =  (2.6) 

where , is number density (i.e., particles/area), and the hard disk compressibility factor, 

Z(), in terms of area fraction,  =a2, is given by,46-47 

 

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

,F

,

22

,F

1

,S

,   

,   

1 8 1

2 1 0.67 1 1.9

HD f

HD

HD S m cp

HD

HD cp cp

Z
Z

Z

Z

Z

  


   

  

    

−

−


= 

 

 = + −
 

   = − + − +
   

 (2.7) 

where ZHD,F is the fluid compressibility factor up to freezing (f≈0.69), and ZHD,S is the 

solid compressibility factor from the melting (m≈0.71) up to close packing (CP=0.906).53-

54 The hard disk equation of state can be used for particles with short-range interactions 

compared to the particle radius55 by replacing  with an effective area fraction, eff, given 

by,44  

 2

eff effa  =  (2.8) 

with an effective radius, aeff, from a perturbation theory given as,24  

 ( )( )
2

2 2 1 exp /e

eff
a

a a u r kT dr


 = + − −
   (2.9) 

based on a particle pair potential, ue(r). Eq. (2.6) can then be re-written in terms of eff as, 
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 ( ) ( )2
Z

eff

eff HD eff

eff

kT
a


 


 =  (2.10) 

2.3.3 1D Force Balance 

Differential changes in local osmotic pressure can be related to forces acting on 

particles within differential spatial elements (the concentration and energy landscape 

gradients are larger compared to particle dimensions; i.e., the local density 

approximation15-16). This is often derived in an intuitive manner for the case of 

sedimentation equilibrium,25 but has also been shown for colloids in 1D (1D) electric 

fields.44 Here, we first illustrate this differential balance for a symmetric potential energy 

landscape with a radial dependence in polar coordinates but no angular dependence (which 

allows this case to be tested in a 2D Cartesian coordinate system as a benchmark). A force 

balance can be written to equate the osmotic pressure difference between concentric rings 

at distances of r and r+r (left hand side below) to the local field mediated force acting all 

the particles between the rings (right hand side below) as, 

 ( ) ( )
( )

( )2 2

pfdu r
r r r r r r r

dr
    − +  = −       (2.11) 

where the force on each particle due to the external field can be obtain as the local gradient 

of a potential energy landscape. In the limit as r → 0, the differential form of Eq. (2.11) 

becomes, 

 
( ) ( )

( )
pfd r du r

r
dr dr




= −  (2.12) 

where integrating both sides with respect to r gives, 
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 ( ) ( ) ( )pfd r r du r = −    (2.13) 

which indicates differential changes in local osmotic pressure can be related to differential 

changes in the local energy landscape and local density. Inserting an energy landscape and 

equation of state into Eq. (2.13) and integrating yields concentration profiles including 

phase behavior. 

2.3.4 2D Force Balance 

In this section, we extend the analysis of the 1D case in Eqs. (2.11)-(2.13) to 

arbitrary 2D energy landscapes. Given a 2D potential energy landscape in Cartesian 

coordinates, upf(x, y), differential changes in local osmotic pressure are given by partial 

differential equations as, 

 
( ) ( )

( )
( ) ( )

( )
, , , ,

, ,  ,

pf pfx y u x y x y u x y
x y x y

x x y y
 

   
= −  = − 

   
 (2.14) 

which can be integrated with respect to x and y, and add together to give, 

 
( ) ( )

( )
( )

( )
( ), , , ,

, ,

pf pfx y x y u x y u x y
dx dy x y dx x y dy

x y x y
 

   
 +  = −  − 

      

 (2.15) 

which, by chain rule of total derivatives, can be simplified as, 

  ( ) ( ) ( ), , ,pfd x y x y du x y = −    (2.16) 

which has the same expression as Eq. (2.13) except for the coordinate. This indicates that 

2D differential changes in local osmotic pressure can be related to differential changes in 

the local energy landscape and the local density.  
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2.3.5 Equilibrium Concentration Profiles 

Inserting any equation of state into Eq. (2.16) and re-arranging gives, 

 ( )
( )

( )( )
0

,

0

1 1
,

x y
pf pfd Z u x y u

kT







 = − −  (2.17) 

where the left-hand side is integrated from a reference density, 0, to the density at position, 

 (x, y), and the right-hand side is integrated from the reference energy, upf
0, to the same 

energy landscape position, upf(x, y). The same result is obtained for a 1D coordinate by 

inserting Eq. (2.10) into Eq. (2.13). The concentration profile,  (x, y), depends only on 

reference particle density 0 and the potential energy difference between the reference state 

and position of interest. By inserting the hard disk equation of state (Eq. (2.10)) into Eq. 

(2.17), and expressing density in terms of effective area fraction eff (Eq. (2.8)), an 

expression for effective hard disks is given by, 

 ( )
( )

( )( )
0

,

0

1 1
,

eff x y
pf pf

HDd Z u x y u
kT







 = − −  (2.18) 

which gives the spatially varying concentration profile in terms of the energy landscape 

and equation of state. The total number of particles, N, in a system is given by,  

 ( ),N x y dxdy
+ +

− −

=    (2.19) 

2.3.6 Order Parameters 

The local six-fold bond orientational order parameter of particle i is given as,56 
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6

6,

1

1
i
C

ij

N
i

i i
jC

e
N




=

=   (2.20) 

where NC
i
 is the number of coordinated neighbors within the first coordination shell of 

particle i, and ij is the angle between two particle centers for an arbitrary reference angle. 

The crystalline connectivity, 6
ij, of particle i with coordinated neighbor j is defined as, 

 

*

6, 6,

6 *

6, 6,

Re i jij

i j

 


 

  
=  (2.21) 

where 6,j
* is the complex conjugate of 6,j. The local six-fold connectivity order parameter, 

C6,i, is defined as the number of crystalline neighbors for particle i with 6-fold order given 

by,57  

 6

6,

1 6

1 0.321

6 0 0.32

i
C

ijN

i ij
j

C


=

 
=  

  
  (2.22) 

 

2.4 Methods 

2.4.1 Electric Field Simulations 

The octupole electrode was modeled using the electrostatic interface in COMSOL 

Multiphysics software. The octupole was centered in the bottom of a 400 µm by 400 µm 

rectangular chamber with a height of 20 µm, and was filled with 0.1mM NaOH aqueous 

solution. Each electrode pole was 20 µm in diameter, 40nm in thickness, and positioned on 

the vertices of an octagon with a 100 µm diagonal distance. The top view of the octupole 

is illustrated in Fig. 2-1. The electrodes are represented by grayscale circles. The electric 

field in the octupole center was solved at a height of 1.5 µm from the bottom surface, which 
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is equivalent to the equatorial elevation of a 3 µm particle touching the substrate. The 

resulting electric field is tabulated in a look-up table with a 0.25µm grid resolution and a 

magnitude normalized by E0=Vpp/dg, where Vpp is voltage applied to the east-west poles, 

and dg is the electrode gap distance; a specific magnitude electric field is obtained by 

multiplying the normalized table with Vpp. For Brownian Dynamics simulations, 

intermediate values were obtained from the look-up table by Barycentric interpolation,58 

and used to compute energy landscapes given by Eq. (2.2). 

2.4.2 Brownian Dynamics Simulations 

Table 2-1 Model and simulation parameters based on prior experiments. (a) Particle radii, (b) 

medium dielectric constant, (c) Debye length, (d) Clausius-Mossotti factor, (e) zeta potential, (f) 
electrode gap. 

Parameter equation value parameter equation value 

a (nm)a (2.2), (2.4), 

(2.5) 

1000 fcm
d (2.2) -0.47 

m
b (2.2), (2.4), 

(2.5) 

78  (mV)e (2.4) -75 

-1 (nm)c (2.4) 10 dg (m)f Fig. 1 100 

 

Brownian Dynamics simulations were used to obtain the dynamic equilibrium 

distribution of particles on each energy landscape. The simulation details are the same as 

in previously reported studies.59-60 The dynamics is discretized into time steps of 0.1ms, 

during which the total force on particle, which is defined in Eqs. (2.1)-(2.5), is considered 

to be constant. The electric field in Eqs. (2.2) and (2.5) was obtained from the lookup table 

as described above. The remainder of the parameters used in the simulations are reported 

in Table 2-1. The particles were randomly placed in the electric field at the beginning of 

every simulation, and the equilibrium state is identified by the plateau of total potential 

energy felt by all particles. After equilibrium, the particle coordinates were recorded every 

simulation second for a total of 1000s. A total of 104 individual simulations are conducted 
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for each case. The particle distribution is counted as the normalized visit frequency to every 

square of 0.1µm wide in the simulation area. 

2.4.3 Given  0 and upf(x,y), solve eff(x,y) and  

Eq. (2.18) gives the relationship between the potential energy landscape, reference 

concentration, and concentration profile. In addition, Eq. (2.19) relates the concentration 

profile and total number of particles. With four variables and two equations, two variables 

need to be defined to solve for the remaining two variables. In cases where the 

concentration profile, eff(x,y), is given, the other variables can be obtained in a 

straightforward manner. When the reference particle concentration, 0, and the energy 

landscape, upf (x, y), are given, the other two parameters can be found as follow. By 

inserting 0 into Eq. (2.18) to relate upf and eff, the concentration profile is obtained, and 

then the total particle number is obtained from Eq. (2.19). 

2.4.4 Given N and upf(x,y), solve 0 and eff(x,y)  

Given the total particle number and energy landscape, a bisection numerical method 

is used to solve for the concentration profile. This is done by iterating the reference area 

fraction, 0,i, until N(0,i)=N (as in the previous section calculation). In each iteration, the 

mid-point value,0,i=0.5(0,lo+0,up), is used to solve for the distribution and total particle 

number, N(0,i), where 0,lo and 0,up are lower and upper bounds used in the bisection 

method that satisfy N(0,lo)<N and N(0,up)>N. The bounds are initialized with guesses and 

are updated according to the bisection method that halves the interval [0,lo, 0,up] with each 

iteration. Convergence is guaranteed because N is an integer. 
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2.4.5 Given N and 0 solve energy landscape magnitude (Vpp) and eff(x,y) 

Given the total particle number, reference area fraction, a bisection numerical 

method is used to solve for the concentration profile and energy landscape magnitude. The 

energy landscape in this work is given by Eq. (2.2), where electric field amplitude 

determines the energy landscape magnitude (although physical properties in the prefactor 

could also be changed in a similar fashion). In this case, the applied voltage, Vpp, is a 

prefactor in the electric field look-up table, so adjusting it changes the energy landscape 

magnitude. Similar to the previous cases, the value of Vpp is iterated using the bisection 

method until N(Vpp)=N. 

2.5 Results & Discussion 

2.5.1 Anisotropic Non-Uniform Energy Landscapes 

Figs. 2-1A-C show results for three electric fields based on applying different 

voltages to electrode pairs within a coplanar octupole electrode (see Methods). Figs. 2-1D-

F show potential energy landscapes for an induced dipole in the non-uniform AC electric 

fields given in Figs. 2-1A-C. The potential energy landscapes are given by Eq. (2.2), which 

we previously measured directly for single colloidal particles between coplanar parallel 

electrodes41-43 and within the central region of coplanar quadrupolar electrodes.44-45, 59 

The magnitudes of the potential energy landscapes in Fig. 2-1 are determined by 

|E2| in Eq. (2.2), which are scaled by peak-to-peak voltage, Vpp, applied to the eat-west 

poles. Different shaped fields and landscapes are generated by applying different relative 

voltages to electrode pairs within the octupole. In each case, the east-west electrodes have 

Vpp=3V, and the north-south electrode pairs are set as ratios of this voltage (see Fig. 2-1 
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caption, schematics). The remaining electrodes are ground. The first landscape in Fig. 2-

1D for a symmetric quadrupolar state produces an isotropic energy landscape in the vicinity 

of the central electric field minimum, which has a radial dependence with no angular 

variations. The other two cases (Figs. 2-1E, F) have different voltage ratios applied in 

orthogonal directions to produce anisotropic energy landscapes. The resulting energy 

landscapes in these latter cases both global minima at the field minimum at the electrode 

center, as well as, local energy minima along the axis of the low voltage poles. 

2.5.2 Concentration Profiles & Phase Behavior on Energy Landscapes 

Fig. 2-2 illustrates the procedure for obtaining spatially varying concentrations 

profiles and phase behavior on a 2D energy landscape. An example case is shown where 

the total number of particles is specified (N=100) and the energy landscape is specified 

(Fig. 2-1F). The goal is to determine the concentration profile,  (x, y), given the energy 

landscape, upf(x, y) using the approach outlined in Methods. This requires an iterative 

scheme since Eq. (2.18) cannot be solved algebraically to a closed-form expression for  

(x, y) and eff(x, y) as a function of upf(x, y). 

Figs. 2-2A, B show the electric field and energy landscape for this particular case. 

Fig. 2-2C shows three representative relationships between eff(x, y) and upf(x, y), which 

are calculated using Eq. (2.18) with different reference area fractions, 0. Using the 

bisection method, the initial iteration starts with a guess of 0=0.85, which gives a specific 

relationship between eff and upf (Fig.2-2C, 1st iteration). The relationship can be used to 

plot eff(x, y) in Fig. 2-2D, which corresponds to a total number of N=165 particles. In the 

subsequent iterations, additional eff(x, y) from Eq. (2.18), and N from Eq. (2.19) are 
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obtained. Figs. 2-2C-F show concentrations profiles for the first, third, and fifth iterations 

in this scheme, where N1 = 165 (0,1=0.85), N3=26 (0,3=0.64), and N5=100 (0,5 =0.80). 

The fifth iteration results in the correct number of particles, and the concentration profile 

shown in Fig. 2-2F is the correct one for the energy landscape. 

 

Figure 2-2 Solving for particle concentration profile given number of particles and energy 
landscape. (A) The electric field, E(x, y), generated using a reference voltage of Vpp=3V and 

Vpp:0.4Vpp (see Fig. 2-1) (B) Corresponding energy landscape, upf(x, y). (C) Relationship between 

eff(x, y) and upf(x, y) solved over the 1st, 3rd, and 5th iteration using bisection method according to 

Eq.(2.18). (D-F) Concentration profiles plotted in the same color bar for the same three iterations 
in panel C with N=165, 26, and 100. 

 

2.5.3 Radially Symmetric Energy Landscape: Comparison of 1D & 2D Analyses 

After showing how to calculate concentration profiles for given energy landscapes 

in Fig. 2-2, results from Brownian Dynamic (BD) simulations are compared to theoretical 

predictions to demonstrate the validity of the approach. Fig. 2-3 first shows results for the 

radially symmetric energy landscape in Fig. 2-1A, D, which provides a benchmark case 

since it can be predicted from either a 1D or 2D analysis. Comparison with BD simulations 

also provides the opportunity to demonstrate the validity of the “local density 
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approximation”; agreement between particle-scale simulations and predicted concentration 

profiles shows whether it is valid to assume concentration profiles do not change 

significantly on scales comparable to the particle dimensions (and local thermodynamic 

properties are equivalent to a bulk system at the same concentration15-16). 

 

Figure 2-3 Equilibrium concentration profiles of N=100 particles on energy landscapes 
resulting from Vpp:Vpp fields. (A-C) Electric field, E(x, y), generated using a reference voltage of 

Vpp=0.9V (A), 2.2V (B), and 3.8V (C). (D-F) Corresponding energy landscapes, upf(x, y). (G-I) 

Theoretical concentration profiles from Eq. (2.18) with maximum center area fractions of 0=0.83 
(G), 0.73 (H), and 0.55 (I) corresponding to solid, solid near melting conditions, and fluid phases. 
(J-L) Concentration profiles from time averaged Brownian Dynamic simulation at equilibrium. (M-
O) representative simulation renderings with particles colored using a white-blue scale based on 
the local C6

i (white for C6,i = 0, blue for C6,i = 1). (P) One-dimensional concentration profiles along 

positive y-axis. For the cases of 0=0.83, 0.73, and 0.55, the theoretical estimations are shown 
using solid line, dash line, and dot line, and the simulation results are shown using square, circle, 
and triangle symbols. BD simulations with and without field-induced dipolar interactions shown by 
open and closed symbols 

 

The first two columns of Fig. 2-3 show the electric field and corresponding energy 

landscapes that are used to equilibrate the particles. Fig. 2-3G-I shows theoretical 

concentration profiles (Eq. (2.18)) for N=100 particles on symmetric landscapes with the 

same voltage applied in both directions (Fig. 2-1A,C) for Vpp=0.9V, 2.2V, and 3.8V. BD 

results are shown in Fig. 2-3J-L as equilibrated time-averaged concentration profiles and 

Fig. 2-3M-O as renderings of single configurations. Particles in the rendered configurations 
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are colored by their six-fold connectivity order parameter, C6, in Eq. (2.22), which helps to 

visualize whether they are part of fluid or solid phases. Fig. 2-3P compares theoretical and 

simulated profiles along the positive y-axis of the energy landscape. Open points indicate 

BD simulations with dipolar pair interactions (Eq. (2.5)), and closed points are obtained by 

neglecting this interaction. 

The results for BD simulations and the predictions in Eq. (2.18) display excellent 

agreement for each of the three energy landscape amplitudes. In each case, the predicted 

and simulated 2D concentration profiles appear essentially identical, and the 1D profiles 

clearly show close correspondence between predictions without dipole-dipole interactions 

and simulations with and without dipolar interactions. While the predictions are based on 

the hard disk equation of state with perturbation theory to account for electrostatic 

repulsion, the BD simulations with dipolar interactions could result in a significantly 

different equation of state and resulting spatial variation in phase behavior. However, the 

dipolar interactions have a negligible effect for the conditions investigated in Fig. 2-3. This 

result is consistent with prior work for colloidal particles in radially non-uniform energy 

landscapes with no angular variations (also due to high frequency AC electric field 

mediated interactions).44-45 This behavior is understood as arising from a net cancellation 

of dipolar interactions in solid phases,61 which also appears to be a reasonable 

approximation in dense fluids states.41-43 The agreement between the model prediction and 

BD simulation results also demonstrates the validity of the local density approximation. 

The results in Fig. 2-3 also show the 1D analysis (Eq. (2.13)) and 2D analysis (Eq. 

(2.16)) both agree with the BD simulations, which provides a benchmark for the 2D 

analysis prior to its implementation in other cases that cannot be solved with the 1D 
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analysis. The 2D analysis can be shown to analytically reduce to the 1D analysis for the 

case in Fig. 2-3 where a change in coordinate system together with symmetry makes the 

two analyses identical. A similar 1D analysis to the case in Fig. 2-3 was reported in prior 

work.44-45 

The results in Fig. 2-3 also show how different amplitudes of energy landscapes 

with the same shape changes spatial variations in particle concentration including local 

phases. The maximum area fractions at the energy landscape potential energy minimum 

for the three cases in Fig. 2-3 are 0 =0.55 (Vpp=0.9V), 0 =0.73(Vpp=2.2V), and 

0=0.83(Vpp=3.8V). The latter two cases have maximum effective area fractions indicating 

the presence of a hard disk solid phase. Both of these cases have concentration profiles that 

decays radially as an inhomogeneous solid, and at greater radial distances, a number of 

different microstructures are observed. In the steepest potential energy well, the density 

vanishes form the hard disk solid state within less than a particle diameter indicating all 

particles are in the solid phase. In the next steepest potential energy landscape, the hard 

disk solid density decays into a coexisting fluid periphery, which rapidly vanishes over 

several particle radii. The lowest amplitude energy landscape contains an inhomogeneous 

dense fluid state that radially decays and vanishes. In each case, local structure based on 

C6 values indicate crystalline microstructures consistent with the expected solid phases. In 

short, the results in Fig. 2-3 show that Eq. (2.18) is accurate for the simple 1D energy 

landscape and all effective hard disk concentrations including single fluid, solid, and 

coexisting phases. 
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2.5.4 Concentration Profiles & Phase Behavior on 2D Energy Landscapes 

 

Figure 2-4 Equilibrium concentration profiles of N=100 particles on energy landscapes 
resulting from Vpp:0.6Vpp fields. Panel organization and legends same Fig. 3. Reference voltages 

are Vpp=0.9V (A), 1.9V (B), and 3.3V (C). Maximum center area fractions are 0=0.83 (G), 0.73 (H), 
and 0.55 (I). 

 

 

Figure 2-5 Equilibrium concentration profiles of N=100 particles on energy landscapes 
resulting from Vpp:0.4Vpp fields. Panel organization and legends same Fig. 3. Reference voltages 

are Vpp=0.8V (A), 1.6V (B), and 2.5V (C). Maximum center area fractions are 0=0.83 (G), 0.73 (H), 
and 0.55 (I). 

 

Figs. 2-4 and 2-5 show concentration profiles for particles on 2D energy 

landscapes, which capture both local phase behavior and ensemble morphology. Results 
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are presented in the same organization as Fig. 2-3. The landscapes are 2D in this case since 

they cannot be reduced to a single coordinate through symmetry (and thus require the 2D 

analysis in Eq. (2.16) rather than the 1D analysis in Eq. (2.13)). The electric field and 

energy landscape shapes investigated are shown as the first two columns. The field 

amplitudes were set so that the maximum particle concentration at the energy landscape 

minimum in Figs. 4 and 5 is the same as the cases presented in Fig. 2-3. 

The results in Figs. 2-4 and 2-5 for different 2D landscape morphologies show 

excellent agreement between predictions of the 2D model (Eqs. (2.16) and (2.18)) and BD 

simulation results. Variations in phase behavior are captured in each case including 

inhomogeneous fluids, solids, and their transition. Figs. 4-4P and 4-5P shows cases with 

nearly all particles in solid phases, all particles in the fluid phases, and cases where solid 

phases exist in three separate potential energy wells with intervening and peripheral fluid 

regions. The Vpp:0.4Vpp field generates three isolated crystalline domains connected by 

fluid phases, which is due to local energy maxima between minima. Dipolar interaction 

between particles have negligible effects in BD results for the concentration profiles in 

Figs. 2-4 and 2-5 (consistent with Fig. 2-3). The results in Figs. 2-3-2-5 together show how 

energy landscape shape and amplitude can be used to control morphology, concentration 

profiles, and local phase behavior of colloidal particles. 
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2.5.5 Concentration Cross Sections from Arbitrary Initial Coordinates 

 

Figure 2-6 Calculating concentration profile cross sections. (A) Energy landscape generated 
by Vpp:0.4Vpp with Vpp=2V. Two directions, denoted as C 1 and C 2, shown in red and blue lines. (B) 
1D energy landscapes along the lines shown in (A) with matching colors with reference states at 
origins. The x-axis is the distance along C1 or C2 directions. (C) Relationship between potential 

energy magnitude and particle area fraction, solved using 0 = 0.8 (blue) and 0.51 (red) in Eq. 
(2.18). Reference area fractions are found from simulation and marked by points in the figure. (D) 
1D particle concentration distributions along C 1 and C 2 directions. 

 

Fig. 2-6 shows how low-dimensional cross sections can be obtained from arbitrary 

starting coordinates other than the global energy minimum or density maximum. This 

practically demonstrates a different aspect of using Eq. (2.18). For an anisotropic energy 

landscape, Fig. 2-6A shows two 1D cross sections originating from different starting 

coordinates including different directions on the landscape. The 1D energy landscapes are 

shown in Fig. 4-6B with the same color scheme vs. the coordinates C1 and C2 given by 

equations of lines in Cartesian coordinates. The 1D energy landscapes are reported for 

energies relative to value at their respective origins. Fig. 2-6C shows the dependence of 

eff on upf given by Eq. (2.18) where points indicate the effective area fractions at the 
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energy landscape origin (0=0.8 (blue) and 0.51 (red)) These reference effective area 

fractions can be obtained from either theory or BD simulation as discussed in Fig. 2-5. 

With eff vs. upf in Fig. 2-6C, and upf vs. C1 and C2 in Fig. 4-6B, it is straightforward to plot 

eff vs. C1 and C2 in Fig. 2-6D using the same color scheme as the other panels. 

The results in Fig. 2-6 are fundamentally same as the 2D plots in Fig. 2-5 in that 

both cases solve the distribution of particles on a 2D energy landscape. However, Fig. 2-6 

also demonstrates several useful aspects of calculating such 1D concentration profiles. For 

example, the starting states are not located at global energy landscape minima, but can be 

chosen at arbitrary initial coordinates. This enables initial states to be chosen with more 

flexibility and convenience. In addition, multiple reference positions can be chosen if local 

concentration profiles and phase behavior are required at different arbitrary coordinates on 

an energy landscape. The initial area fractions are not required to be the maximum value 

along a spatial coordinate, which was the approach demonstrated in the example in Fig. 2-

2 and employed in Figs. 2-3-2-5. As shown in Fig. 2-6D, starting from different energy 

landscape coordinates and initial concentrations can still be used to compute the density at 

other coordinates along a profile. The results in Fig. 2-6D confirm the consistency of the 

distributions along C1 and C2 directions, because both distributions yield the same 

maximum density at the global energy minimum at the 2D landscape center.  

The example in Fig. 2-6 shows that the same relationship between potential energy 

and area fraction can be used to specify the concentration profile and phase behavior along 

any energy landscape cross section. The relationship in Fig. 2-6C is also the same as those 

reported in Fig. 2-2C, which demonstrates that once the equation of state is known, the 

expression in Eq. (2.18) can be used to connect concentration profiles directly to any 
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energy landscape and any coordinates on the landscape. The examples in this paper 

demonstrate different numerical approaches to use this expression depending what 

information is known in a given problem statement. Ultimately, the approach in this work 

demonstrate a general approach to determining concentration profiles and phase behavior 

on multi-dimensional energy landscapes. 

2.6 Conclusions 

A method was developed to determine concentration profiles and local phase 

behavior on energy landscapes that vary in more than one spatial coordinate. A general 

expression was derived based on local osmotic pressure differences balancing forces on 

colloids due to energy landscape gradients (when concentration and energy gradients are 

large compared to the particle size). This analysis is used to study colloidal particles in 

high frequency AC electric fields, where an octupolar electrode is used to tune the 

amplitude and shape of electric fields and resulting energy landscapes. By modeling the 

colloidal particles with an effective hard disk equation of state based on perturbation 

theory, it is shown that concentration profiles of locally non-uniform solid and fluid phases 

can be predicted for a variety of different 2D energy landscape shapes including multiple 

energy minima. Results are compared to Brownian Dynamic simulations to confirm the 

predictions of the theoretical model against time averaged equilibrium particle 

configurations. Findings include practical details of determining concentration profiles and 

cross sections based on different known and unknown variables. Findings from this work 

demonstrate a general approach for obtaining concentration profiles and local phase 

behavior on multi-dimensional energy landscapes for colloids interacting with a variety of 

external fields. The reported approach is amenable to controlling colloidal microstructure 
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on morphing energy landscapes and to the inverse design of external fields and energy 

landscapes based on desired colloidal concentration profiles (e.g., hierarchically patterned 

crystals). 
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3 CONTROLLING COLLOIDAL CRYSTALS VIA 

MORPHING ENERGY LANDSCAPES & 

REINFORCEMENT LEARNING  

3.1 Abstract 

We report a feedback control method to remove grain boundaries and produce 

circular shapes in colloidal crystals using morphing energy landscapes and reinforcement 

learning based control policies. We demonstrate this approach for optical microscopy and 

computer simulation experiments for colloidal particles in AC electric fields. First, we 

discover how tunable energy landscape shapes and orientations enhance stochastic grain 

boundary motion and crystal morphology relaxation. Using these findings, reinforcement 

learning is used to develop an optimized control policy to actuate morphing energy 

landscapes to produce defect-free colloidal crystals orders of magnitude faster than natural 

relaxation times. Morphing energy landscapes mechanistically enable rapid crystal repair 

via anisotropic stresses to control defect and shape relaxation without melting. This method 

is scalable for up to at least N=103 particles with mean process times scaling as N0.5. Further 

scalability could be enabled by controlling many parallel local morphing energy landscapes 

(e.g., periodic landscapes) to generate large-scale global defect-free hierarchical structure. 

 

 

*Reprinted with permission from “Controlling Colloidal Crystals via Morphing Energy Landscapes 

& Reinforcement Learning.” Science Advances (2020). By Jianli Zhang and Michael A. Bevan. 
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3.2 Introduction 

Controlling assembly of colloidal particles into different microstructures and 

morphologies could provide a basis to fabricate hierarchically structured materials with 

non-trivial emergent properties (e.g., optical, mechanical, thermal, acoustic) important to 

numerous technologies.62 Many naturally occurring biological materials provide 

inspiration for creating periodic microstructures with unique multifunctional properties, 

where such microstructures often have repeat units that could be realized by assembling 

colloidal components.63-64 However, despite a common recognition that colloidal assembly 

could provide a route to synthetic materials that mimic biological material structures and 

properties, many approaches are limited by defects, as well as, scalability and structural 

diversity. In addition, changing interactions between initially stable colloids frequently 

results in amorphous aggregates with minimal functionality. In short, the state of the art in 

colloidal assembly often falls short of the grand challenge of directing matter into highly 

ordered nano- and micro- structured materials. 

Using biological materials as inspiration for target structures naturally leads to 

questions about how processes in biological systems produce complex structures. 

Biological systems are clearly complex in terms of the number of components, interactions, 

and parallel dynamic processes. A central feature of biological processes is exquisite 

control over many processes orchestrated in space and time. Although the obvious 

complexity of biological systems is somewhat overwhelming, it may be a necessary 

requirement to replicate some minimal aspects of such control in synthetic material systems 

to achieve comparable structures. Practically, it may be necessary to control colloidal 

assembly in space and time with a minimal level of sophistication to achieve many 
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desirable microstructures and morphologies. Such intervention perhaps seems at odds with 

a popular conception of self-assembly as simply mixing components and waiting for an 

autonomous process to yield complex defect-free structures. However, formally 

controlling assembly processes, in a manner similar to biological systems, may be the 

critical piece missing from many current approaches to assembling defect-free nano- and 

micro- structured materials. 

Based on current limits of colloidal assembly, and with inspiration from biological 

systems, it seems necessary to control colloidal assembly in space and time, including both 

microstructures and morphologies. External fields provide mechanisms to control position 

and orientation of colloidal assemblies and microstructure relaxation. For example, 

gravitational fields cause colloidal assembly to occur at different spatial coordinates, with 

crystalline microstructures assembling at potential energy minima.22, 65-66 Although 

effective gravitational fields can be controlled macroscopically in centrifuges, and 

microscopically on topographically patterned landscapes,49 they are not easily controlled 

locally and dynamically to manipulate colloidal assembly kinetics and defects. 

Macroscopic magnetic fields have been used to anneal colloidal microstructures,67 and 

local magnetic fields have also been used to assemble small colloidal ensembles,68-70 but 

require specific material properties. Shear fields can induce crystallization,71 but are 

difficult to control on length scales comparable to particle microstructures and produce 

significant defects.72 Optical fields73-74 can produce induced dipolar interactions in highly 

localized fields to manipulate many single colloidal particles (e.g., holographic optical 

tweezers). However, optical fields have not been used to control colloidal assembly and 

local microstructures beyond proof-of-principle demonstrations.75-76 Such examples of 
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colloidal assembly in external fields illustrate both desirable features and challenges with 

controlling assembly in space and time. 

Electric fields can be designed to manipulate colloidal assembly in space and time 

in a manner that overcomes many limitations of other external fields. Electric fields can be 

shaped across length scales with different electrode designs77 including arrays78-79 and 

patterns.80-81 Such spatial control of electric field shape and amplitude along with fast 

transient responses provides capabilities for rapid control over colloidal assembly and 

reconfiguration. In general, interactions and transport of colloids in electric fields at 

different frequencies8222,23 and in media with varying properties (e.g., polar, non-polar, 

salt)12, 83 are sufficiently well understood to manipulate colloidal assembly for diverse 

materials. More recently, direct measurements have quantitatively connected dipole-field 

and dipole-dipole interaction potentials to local phase behavior45 and morphology 

including different field shapes.84 The ability to tune electric field shape, amplitude, and 

frequency in space and time has a number of promising features for achieving high fidelity 

control over colloidal assembly processes. 

Although much is known about colloidal interactions, dynamics, and 

microstructures in electric fields,85-86 significant limitations remain in understanding and 

developing elements to implement formal control of assembly processes. These elements, 

in the terminology of colloid science (and control science), include capabilities to: (1) 

quantify microstructures (sense states), (2) tune interactions (actuate state changes), (3) 

model non-equilibrium microstructure evolution (dynamic models), and (4) determine how 

to choose colloidal interactions (control policy) based on current and desired states 

(objective). Some aspects have been previously developed, such as  quantifying 
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microstructures and their dynamic evolution between states for tunable depletion,87 

magnetic field,88 and electric field59 mediated assembly processes. In addition, field 

mediated colloidal assembly dynamic models have been used to implement feedback 

control in experiments38 and simulations89-90 to assemble defect-free colloidal crystals. 

Such approaches have yielded the unprecedented capability to assemble small defect-free 

colloidal crystals on relatively short time-scales with complete efficacy.38 In these prior 

studies, the control policy, which closes the loop between sensing microstructures and 

deciding how to actuate fields, was based on a Markov decision process framework using 

coarse-grained Markov state models. This prior work provides a foundation to pursue 

control of more complex processes and objectives, but also indicates limitations and 

directions for development. 

In this work, we report morphing electric field shapes to control crystal defect 

removal rates and morphology. Results are obtained for varying system sizes in microscopy 

and computer experiments. We first investigate how field shape influences coupled grain 

boundary (GB) motion and crystal morphology relaxation. This approach is enabled by the 

capability to morph electric field mediated energy landscapes within octupolar electrodes 

to control quasi-2D spatially varying colloidal phase behavior (Fig. 3-1).84 We then 

develop novel coarse-grained variables, or reaction coordinates, for microstructural and 

morphological features (i.e., sensors) to quantify dynamic responses to field shape changes 

(i.e., actuators). To close the loop between sensing and actuation, we employ reinforcement 

learning (RL) to discover control policies to determine what field shapes and orientations 

should be actuated to: (1) rapidly remove GBs to obtain single domain crystals, and (2) 

restore circular crystal morphologies from anisotropic states. Finally, using this control 
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scheme, the time to obtain target defect-free circular crystals is characterized for different 

system sizes. Findings from this work inform the design, control, and optimization of 

colloidal assembly in space and time to realize complex hierarchically structured materials. 

 

Figure 3-1 Feedback controlled morphing energy landscape for colloidal assembly. (A) (top) 
Feedback control configuration consisting of octupole electrode, microscope, CCD camera, 
computer, and function generator. (bottom) Octupole electrode with two applied voltages, V1 and 
V2, and ground poles, G, with zoom view of electrode center region. (B) Feedback control scheme 
based on morphing energy landscape actuator, reaction coordinate sensors, and RL control policy. 
(C) (top row) Applied voltages determine electric field amplitude and anisotropy as shown for three 
illustrative cases, including: (left) isotropic fields (V1:V2=1:1), (middle) anisotropic field with 112o 
orientation (V1:V2=10:4), and (right) anisotropic field with 22o orientation (V1:V2=4:10). (middle row) 
Corresponding single particle potential energy landscapes. (bottom row) Representative 
experimental configurations for 2.34 um silica colloids (N=300) for each field. 

3.3 Results & Discussion 

3.3.1 Anisotropic Field Shape Actuation 

To control electric field shape, and field-mediated energy landscapes for quasi-2D 

colloidal dispersions sedimented onto surfaces, a gold film octupole electrode on a glass 

microscope slide and connected to a function generator (Figs. 3-1A). A microscope and 

CCD camera connected to a computer monitor particles positions in real-time to sense the 

system state, and by connecting the same computer to the function generator, it is possible 

to close the loop and perform feedback control on the system state. Key elements of the 

feedback loop involving sensing, actuation, and the control policy (Fig. 3-1B) are described 
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in the following. 

To actuate field-mediated dipolar colloidal interactions within the electrode, 

different voltages are applied to electrode pairs within the octupole (Figs. 3-1C). This 

relatively simple electrode configuration provides control of field anisotropy and 

orientation. By controlling AC voltage and frequency, it is also possible to control the 

magnitude of dipolar interactions and sign of dipole-field interactions. The kT-scale energy 

landscapes due to dipole-field interactions can be adjusted in shape and magnitude. For 

high AC frequencies, particles are compressed towards the field minimum at the octupole 

center, where the assembled morphology depends on the energy landscape shape. We 

recently reported the equilibrium phase behavior and concentration profiles of colloids on 

such field mediated energy landscapes.84 In brief, dipole field energy landscapes are given 

as, 

 ( ) ( )23, 2 ,m cmau x y E x yf= −   (3.1) 

where m is the medium dielectric constant, a is particle radius, fcm is the Clausius-Mossotti 

factor that depends on particle and medium dielectric properties, and E(x,y) is the local 

electric field magnitude. The particle phase behavior and morphology is determined by the 

concentration profile, (x,y), on the energy landscape as,  

 ( )
( )
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1 1
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x y
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





= − −    (3.2) 

where 0 and u0
 are a reference concentration and energy, and Z is the compressibility 

factor (effective hard disks in this work, see SI). Eq. (3.2) is obtained from integrating a 

differential force balance of local osmotic pressure and particle forces due to energy 

landscape gradients. These results allow us to specify electrode voltages for each field 
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shape to ensure all particles are in the crystal phase (Fig. 3-7) with morphologies 

determined by the energy landscape shape. 

Knowledge of equilibrium phase behavior in different shaped fields provides a 

basis to begin considering non-equilibrium structures and their dynamic evolution on 

changing landscapes. Static crystalline configurations within different field shapes show 

predicted phase behavior and morphology based on model predictions (Fig. 3-1C),84 but 

with significant defects in the form of GBs between misoriented crystalline domains. With 

the present study’s objectives of creating defect-free crystalline microstructures with 

circular morphology, the first task is to understand how changing field shape influences 

GB removal and morphological dynamic responses. 

3.3.2 Microstructure & Morphology Evolution 

To quantify microstructure and morphology relaxation on different energy 

landscapes, here we characterize the temporal evolution of 2D crystals following step-

changes in isotropic and anisotropic fields. We introduce reaction coordinates that track 

dynamic processes (Fig. 3-2A). Raw information includes the applied field shape and 

orientation from voltage settings and particle coordinates obtained either directly from 

simulations or from image analysis of microscopy experiments. To monitor GBs, we 

characterize global crystallinity via bond orientational order (6), local crystallinity via six-

fold connectivity for each particle (C6,i ) and its ensemble average (C6), which are used 

together to identify GB orientation in lab coordinates () and relative to the field (). To 

monitor crystal morphology, we characterize circularity (c) as well as the shape major-axis 

orientation in lab coordinates () and relative to the field (). 
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Figure 3-2 Gain boundary and shape relaxation vs. energy landscape shape and orientation. 
(A) Particle coordinate analysis in experiments and simulations to obtain reaction coordinates 
(corner label) for static configurations (see quantitative definitions in SI), which can be obtained in 
real-time trajectories. (Right) Rendered configurations and trajectories for sensors (reaction 
coordinates) and actuator settings (voltages) for different field shapes and orientations, including: 

(B) anisotropic field nearly perpendicular to the GB (=87.5o) for 50s, followed by isotropic field for 

50s, (C) anisotropic field nearly parallel to the GB (=2.5o) for 50s, followed by isotropic field for 

50s, and (D) constant isotropic field for 100s. Trajectories show: global crystallinity (6, red), 

circularity (c, green), GB orientation relative to field (, yellow), morphology orientation relative to 

field (, cyan), and voltages (V1, black; V2, gray). The 6 and c trajectories of 19 additional 
experiments are shown by lighter colored lines. 

Brownian Dynamic (BD) simulations are used to investigate how GB motion and 

crystal shape relaxation are affected by field shape and orientation. We first test whether 

field shape and orientation can favorably influence GB motion and shape relaxation and 

demonstrate use of the reaction coordinates for tracking relevant dynamic processes (as 

part of posing a problem for more extensive testing using RL). A circular crystal of N=300 

particles with a single GB is quenched for 50s by anisotropic fields orientated 
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perpendicular (Fig. 3-2B) and parallel (Fig. 3-2C) to the GB, which is then followed by 

50s quenches using isotropic fields. For comparison, a 100s quench with an isotropic field 

is also shown (Fig. 3-2D). Results suggest how energy landscape shape determines 

directional stresses and collective dynamic processes to promote both GB migration and 

shape relaxation. As evident from the first 50s of 6 trajectories, isotropic fields do not 

affect GB diffusion, whereas both anisotropic field orientations promote GB migration. 

Alignment of the anisotropic field long-axis parallel to GBs (Fig. 3-2C) yields on average 

faster GB migration than the perpendicular orientation (Fig. 3-2B). It appears that 

compression of the crystal domains towards the GB coupled with elongation produces local 

anisotropic stresses; these appear to favor particle motion within the GB and a net drift of 

the GB to the crystal periphery. 

While anisotropic fields enhance GB removal rates in bicrystals, they also sculpt 

cluster morphologies to match underlying landscapes.84 To make a fair comparison with 

feedback controlled assembly of perfect crystals using isotropic fields,38 and to achieve the 

objective of creating circular defect-free crystals, it is necessary to understand relaxation 

of crystal morphologies towards circular states. The simulated trajectories reveal coupled 

microstructural and morphological dynamics during the 50s isotropic quench (Figs. 3-2B, 

C, D). An important aspect of this finding is that we observe defect-free crystals do not 

relax easily to circular morphologies with only application of an isotropic field. As will be 

discussed in the following section on feedback control, fields can be shaped with moments 

orthogonal to the crystal shape anisotropy to provide stronger driving forces for shape 

relaxation. We defer further discussion of how field shape influences GB removal and 

shape evolution until after presenting these results. 
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3.3.3 Feedback Controlled Microstructure & Morphology 

The initial experiments addressed scientific questions about how different shaped 

electric field mediated energy landscapes influence GB motion and morphology relaxation 

(Fig. 3-2). These findings provide essential information to address the engineering 

challenge of designing a feedback approach to control crystal defects and shape. By 

employing microscopy and particle tracking as sensors for crystallinity and shape, and 

reconfigurable electric field mediated energy landscape shape as an actuator, the only 

remaining element (Fig. 3-1C) is a control policy to close the loop to achieve the objectives 

of assembling defect-free circular crystals in minimal time. The feedback control is 

designed with two objectives, to obtain: (1) defect-free crystal microstructures, and (2) 

circular crystal morphologies. We describe the development of two control policies that 

address each objective by specifying how to actuate tunable energy landscapes. 

To develop control policies, we employ a combination of empirical testing and 

machine learning using BD simulations previously matched to experiments via rigorous 

thermodynamic and dynamic criteria.38, 59, 84, 91 For comparison, our previous work used a 

Markov Decision Process framework to develop control policies for assembly of perfect 

crystals in isotropic fields.38 This approach required knowledge of the transition probability 

between all states for each field based on a model; optimization in this approach was 

achieved by maximizing the probability of reaching a target state by choosing the correct 

actuator based on instantaneous observations of any system state. The present work avoids 

construction of a dynamic model for transition probability by employing a combination of 

initial empirical parametric testing (i.e., human learning) with subsequent reinforcement 

learning (RL) to obtain final policies.  
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Figure 3-3 Feedback controlled GB removal and circularity using morphing energy 
landscapes with RL control policy. (A) Electric field shapes and orientations (actuator choices) 
for consideration in RL based optimal control policies. RL control policies as look up tables and 

representative states for: (B) GB removal based on sensors for GB orientation () and global 

crystallinity (6), and (C) circular shape restoration based on sensors for sensors for crystal shape 

orientation () and circularity (c). (D) Microscopy experiment including analyzed images and 
trajectories for: (objectives) global crystallinity and circularity, (sensors) field orientation and shape 
major axis orientation relative to the GB, and (actuators) applied voltages. Gray region (74s < t < 
100s) highlighted in the actuator panel repents the period for morphology control, while the other 
white region represents the period for GB removal (t < 74s). (E) BD experiments including rendered 
configurations on underlying gray scale energy landscapes and reaction coordinate trajectories 
with the same information in (B). In images, renderings, and plots, particles and trajectories are 
colored the same as in Fig. 3-2. 

To provide initial estimates of feedback control parameters, we first employed 

empirical tests to determine characteristic relaxation timescales. Relaxation time was 

interrogated by testing anisotropic fields with fixed shape (Vmax:Vmin=10:4) and random 

orientations (=23o or 113o), which were alternated with isotropic fields (Fig. 3-12). For 

simplicity, the same time period was used for anisotropic and isotropic fields. Findings 

show alternating anisotropic and isotropic fields every 20s produced the fastest removal of 

GBs and morphology restoration. These characteristic relaxation times are consistent with 
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prior measures of GB motion59 and scaling arguments based on long-time diffusion of 

particles within GBs.38 

Next, using 20s period of randomly oriented anisotropic fields alternated with 20s 

isotropic fields, different field shapes were tested (i.e., voltage ratios, Vmax:Vmin = 10:3-

10:10, Fig. 3-12). Finding show a 10:4 field aspect ratio produced the fastest GB removal. 

The most anisotropic field shape (Vmax:Vmin = 10:3) occasionally released particles from 

the octupole center, so it was not further considered. In short, a monotonic increase in GB 

removal rate was observed with increasing anisotropy in the underlying energy landscape. 

However, this result was observed with a fixed field shape for all control cycles. The 

optimal landscape shape is less obvious if both field shape and orientation can be 

dynamically selected. 

Using the control update time and possible field shapes identified in initial testing, 

we next employed RL to determine the optimal control policies for determining field 

orientation and shape in feedback control of GBs and crystal morphology. RL obtains 

optimal policies via algorithm-guided learning through iteratively simulated experiments;92 

this avoids time-consuming dynamic model development.93 BD simulations are used to 

enable significantly more statistics than directly using experimental trajectories (and also 

overcome spatiotemporal sampling limitations). The two control objectives were 

considered separately during RL (see Methods). For both GB removal and crystal shape 

control, eight anisotropic field shapes and orientations were considered as candidate 

actuator settings (Fig. 3-3A). In both cases, RL is initialized with all actuator settings being 

equally likely, so that optimal choices are identified in the course of evaluating statistical 

outcomes as learning proceeds. 
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For GB removal, the control policy was discretized into a look-up table based on 

sensors for GB orientation () and global crystallinity (6), with representative states 

rendered for illustration (Fig. 3-3B). The resulting control policy from RL primarily 

chooses the most anisotropic field (10:4) oriented parallel to GBs, except for highly ordered 

configurations (6>0.8) where a less anisotropic field (10:6) is chosen. The choice of field 

orientations parallel to GBs in consistent with the initial results in Fig. 3-2, but is now 

verified for many more starting configurations, control trajectories, and for all eight 

combinations of field shape and orientation. The choice of a lower aspect ratio field for 

high values of global crystallinity is not obvious but indicates less distortion of crystal 

morphology is necessary for GB removal. A single asymmetric feature is observed in the 

GB removal policy at (60º< <75º, 6<0.2); this condition is for highly defective crystals 

with GBs oriented about half-way between both possible field orientations, where it 

appears either field orientation is about equally effective. In short, RL identifies a clear 

trend for field orientation with a subtle shape change for highly crystalline states. 

For crystal morphology control, the control policy was discretized into a look-up 

table based on sensors for crystal shape orientation () and circularity (c), with 

representative states shown for illustration (Fig. 3-3C). The resulting policy always uses 

the most anisotropic field (10:4) oriented perpendicular to the crystal shape orientation. 

This finding is also consistent with preliminary results in Fig. 3-2 showing defect free 

anisotropic crystals (6≈0.2, c<1) did not relax to circular shapes in isotropic fields. 

Whereas GB motion is visibly part of morphology relaxation in polycrystals, microscopy 

and simulation videos show for defect free crystals a shearing motion along crystal planes 

are the primary morphology relaxation mechanism. In addition, GBs were not observed to 
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form as part of morphology relaxation. The same movies also show morphology relaxation 

does not involve particle migration around the crystal periphery (for either defect free or 

polycrystals), although such a mechanism is in principle possible. Based on these findings, 

when the mismatch between crystal and underlying energy landscape shape is small, the 

driving force for relaxation appears insufficient to overcome relevant elastic moduli of the 

perfect crystal interior. Practically, the RL policy reduces to a simple heuristic where the 

most anisotropic field, with the least alignment to the crystal shape major axis, produces 

the fastest relaxation to circular crystals. 

The resulting overall control policy (Table 3-2) then consists of the two sub-policies 

to achieve the two objectives of removing GBs (Table 3-3) and obtaining circular crystals 

(Table 3-4). The GB removal policy is called until a perfect crystal is obtained (i.e., 

6>0.99), followed by the policy to restore morphology until a circular crystal is formed 

(i.e., c>0.99). Endpoint detection within both sub-policies enables early termination as 

soon as objectives are met. To allow for the possibility of introducing defects during the 

process for restoring circular morphology, the GB removal algorithm can be called at any 

control update time when defects are detected. In practice, we never observed GBs being 

reintroduced into crystals during morphology relaxation for the several hundred 

realizations conducted in the course of our study. 

The resulting optimized control policies were implemented in experiments to test 

their effectiveness for generating defect-free crystals with circular morphologies (Fig. 3-

3). Individual realizations for feedback control of 300 particle ensembles are shown for 

microscopy (Fig. 3-3D) and simulated (Fig. 3-3E) experiments. Reaction coordinate 

trajectories now formally serve as sensors for microstructure and morphology. Global 
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crystallinity (6) and circularity (c) indicate progress toward control objectives of creating 

single domain crystals and perfect circular morphology and are used for end-point 

detection. The field orientation relative to the GB () and to the crystal shape major axis 

() are used in control policies with feedback control to decide field orientation to promote 

GB removal and restoration of circular morphologies. Applied voltage to each electrode 

(V1, V2) show how the electric field is actuated using the policy. 

Simulated and experimental trajectories show how feedback control using the 

control policies work in practice. In both simulated and experimental trajectories, the GB 

removal policy is called during two control update periods and terminated early during the 

second period via end-point detection. After GB removal, both defect-free crystal lattices 

have shapes corresponding to circularities of c=0.7-0.9, which requires the circular shape 

restoration policy. In both cases, application of an anisotropic field orthogonal to the crystal 

long-axis yields a circular morphology in ~5-10s. Changing crystal morphology does not 

introduce any new internal defects; this appears to result from crystals shape relaxation 

occurring via shearing motion along crystal planes. Based on successful demonstrations in 

experiments and simulations, in the following, we obtain statistics for many more 

controlled trajectories, which we compare for different policies and system sizes. 

3.3.4 Control Performance & Scaling 

The feedback control performance can be quantified based on more statistics, comparison 

to other approaches, and as a function of system size. Control performance (Fig. 3-4) is 

reported for statistical comparisons of many individual stochastic trajectories including 102 

microscopy experiments and 103 simulated experiments. Instantaneous and cumulative 
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yields of perfect crystals vs. time are reported for three cases: (1) the feedback controlled 

alternating anisotropic/isotropic field developed in this work (Fig. 3-4A), (2) a feedback 

controlled isotropic field from our prior work (Fig. 3-4B) (details in SI and Ref. 38), and (3) 

uncontrolled quenches to a constant isotropic field (Fig. 3-4C). For comparison, individual 

experimental and simulated realizations for the last two approaches are shown in Fig. 3-

13,14. All control experiments begin with quenched bicrystal configurations characterized 

by a single GB, high local order, and low global order (C6>0.9, 6<0.6). Each policy also 

has an identical objective of producing a defect-free single domain crystal (6>0.99). The 

second objective of circular morphology is automatic for isotropic fields. Mean times (and 

standard deviations) to yield different percentages of defect-free circular crystals are 

compared for each case (Fig. 3-4D). The logarithmic fits capture cumulative yield vs time 

data up to 100% yields for controlled cases at finite times (and uncontrolled data at short-

times; long-time asymptotic behavior may differ). 
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Figure 3-4 Defect-free circular crystal yield vs. time for different control strategies. 
Cumulative yield (Y, left-axis) of defect-free circular crystals for 102 microscopy experiments 

(points) and 103 simulated experiments (lines) as well as instantaneous yield (Y, right axis) values 
from simulated experiments (bars). Results for three different control strategies include: (A) the 
new feedback approach based on morphing energy landscapes with an RL based policy, (B) a 
former feedback approach based on changing isotropic energy landscape amplitudes with a MDP 
based policy38 (Fig. 3-14), and (C) a constant uncontrolled quench using an isotropic field45, 84 (Fig. 

3-13). (D) Cumulative defect-free circular crystal yield vs. average time, t, for each control policy 

in A-C (same coloring) using simulation results (points). t obtained for all t up to yield Y within the 

time limit. Left value error bar is standard deviation for all t less than t given value of Y; right value 

error bar standard deviation for all t greater than t given value of Y. Empirical logarithmic fits to 

each case are given by: (anisotropic) Y=288ln(0.025t), (isotropic) Y=49ln(0.009t), and (quench) 

Y=12ln(0.013t). 

Feedback control using anisotropic fields displays an obvious superior capability 

for rapidly generating perfect circular crystals compared to benchmarks. To understand the 

advantages of the new approach, we first discuss results from benchmarks. For the case of 

a constant isotropic field quench, less than ~15% of trajectories relax into perfect crystals 

in 500s (Fig. 3-4C). This shows structures do not easily relax via GB diffusion without 

intervention, which is consistent to weak driving forces and slow dynamics on shallow free 
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energy landscape gradients.59 This uncontrolled case does not produce 100% perfect 

crystals on experimental timescales (microscopy or computer experiments). Because the 

majority of trajectories never relax into perfect crystals, assembling perfect crystals on 

short times requires some type of control. 

A previously reported method for optimal feedback control based on isotropic fields 

provides an important benchmark in terms of performance and concept. This approach 

employs isotropic fields with varying inward radial compression (Fig. 3-4B), to control 

melting and re-crystallization,38 has a ~50% success rate in 500s. The optimal scheme using 

only isotropic fields represents a critical improvement in that it guarantees perfect crystals 

in 100% of trials compared to the small yield in the uncontrolled quench. The average 

crystallization time for the uncontrolled case is unbounded since many trajectories never 

crystallize, so in this respect controlling isotropic compression represent an essentially 

infinite improvement compared to the uncontrolled case. This case provides the most 

relevant direct benchmark for comparing with the new feedback control method and policy. 

We are aware of other approaches to feedback controlled assembly,89-90 but not for field 

based actuators and an objective of assembling perfect crystals. 

The new approach developed in this work (Fig. 3-4A), using anisotropic fields to 

assist GB motion with the RL optimized policy, has a 100% success rate at producing 

perfect circular crystals within ~100s, which is ~10x faster than the best prior feedback 

control method using isotropic fields. Because our prior approach using isotropic fields 

produced circular crystals, we made this part of the current control objective. However, if 

we had only specified perfect crystal microstructures, then the performance would be even 

faster without the morphology correction step. In any case, the previous feedback control 
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was optimal for isotropic fields, and produced perfect crystals 100% of the time, but the 

new approach using anisotropic fields provides a non-trivial order of magnitude 

improvement. 

A statistical analysis of many feedback controlled trajectories (from Fig. 3-4A) also 

reveal trends about the number of cycles necessary to remove GBs and restore circular 

morphologies. In 103 simulated control experiments, the number of times the GB removal 

policy was called to remove defects was 1 (15%), 2 (50%), 3 (28%), 4 (4%), 5 (1%), and 

6 (<1%). No controlled trajectories were observed where the GB removal policy was called 

>6 times. In microscopy experiments, results were similar except 2% of trajectories 

required 6 cycles to remove GBs, but this could be due to less statistics. For morphology 

control, >98% of simulated experiments yielded circular crystals after calling the 

morphology restoration policy one time. The other 2% of trajectories did not require 

morphology control because the final state after GB removal was already circular. 

Practically, for perfect crystals after grain boundary removal, morphology control was 

essentially deterministic, which appears to be the reason for one cycle being sufficient for 

restoring circular morphologies. 

Given the success our new approach for creating perfect crystals of 300 particles, 

it is important to address scaling to larger system sizes (i.e., particle number, N). To 

investigate size effects, we first scaled the field to maintain the same thermodynamic 

conditions using Eqs. (3.1) and (3.2). The differential force balance underlying this 

thermodynamic model is based on dipole-dipole interactions averaging to zero for 

isotropically distributed particles, which has been shown in theory for macroscopic 

electrorheological fluids61 and has been validated in experiments for three dimensional 
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millimeter scale electrode dimensions.94 However, the model could be updated to include 

dipole-dipole interactions if they were found to be important for different conditions. The 

model has also been validated in our own prior work on different system sizes45 and 

dimensions.44, 84 As such, the thermodynamic model appears to be appropriate for scaling 

to larger system dimensions. Practically, the electrode dimensions and voltages are sized 

for different N using Eqs. (3.1) and (3.2) to specify solid phases with the same osmotic 

pressure, morphology, and peripheral density profile for any field shape (i.e.,  arbitrary 

energy landscapes84, see SI for details). Simplification of this model for specific cases in 

this work yields analytical expressions where the electrode gap scales as ~N1/2 and voltage 

scales as ~N3/4. The control update time and RL control policy are same for all system sizes. 

Given the excellent agreement between microscopy and simulated experiments in 

Fig. 2-4, we investigate system size effects using BD simulations for 300, 600, and 900 

particles (Fig. 3-5, Fig. 3-15). For each size, 103 controlled trajectories are summarized by 

instantaneous and cumulative yields of perfect circular crystals vs. time (Fig. 3-5A-C). 

Representative configurations in isotropic and anisotropic fields is also reported (Fig. 3-

5D), as well as, perfect crystal yield vs. mean time for each system size (Fig. 3-5E) and 

system size dependence vs. mean time for fixed perfect crystal yields (Fig. 3-5F). Average 

crystallization times, obtained by averaging cumulative crystallization trajectories up to 

100%, are 72s (N=300), 110s (N=600), and 129s (N=900). In short, the current control 

method produces 100% perfect circular crystals on the order of ~100s, which demonstrates 

its general effectiveness for different system sizes. 
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Figure 3-5 Feedback controlled morphing energy landscape control vs. system size. 

Instantaneous (Y, bars) and cumulative (Y, line) yields of defect-free circular crystals vs. time for 
computer simulations of system sizes including: (A) N=300, (B) 600, and (C) 900 particles. Example 
controlled trajectories for 600 and 900 particles are shown in Fig. S10; Movies S8, S9. (D) 
Representative renderings of GBs and crystal morphology for different system sizes on (left) 
isotropic energy landscapes and (right) anisotropic energy landscapes for electrode gap 

dimensions of 100m, 140m, and 170m. (E) Cumulative defect-free circular crystal yield vs. 
average time (same as Fig. 4D) for each system size in A-C (same coloring). Logarithmic fits to 

each case are given by: (N= 300) Y=288ln(0.025t), (N=600) Y=134ln(0.022t), and (N=900) 

Y=117ln(0.016t). (F) Average time to achieve cumulative defect-free circular crystal yields given 

by power law fits as: (25%, circle) N=0.74t1.67, (50%, square) N=0.51t1.67, (75%, diamond) 

N=0.38t1.67, and (95%, triangle) N=0.27t1.67. 

The time to obtain perfect crystals via GB removal with the new feedback control 

approach increases with increasing system size. The system size dependence on GB 

removal time scales (t ∝ N3/5; inverting N ∝ t5/3) is slightly greater than the N1/2 system 

size dependence of the electrode dimensions. However, GB dynamics should not obviously 

follow similar scaling to thermodynamic quantities.59 GB removal requires migration from 

crystal interiors to edges, where this distance is proportional to the crystal radius, which 

scales as N1/2 for circular morphologies. This scaling might account for similar GB removal 
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time scales. The observed bias to a greater power likely results from additional effects 

including multiple GBs/domains and more complex non-circular shapes.45 The current 

control approach is partially based on orienting fields relative to GBs, which is less well 

defined for multiple domains. As we noted when investigating field orientations, all 

anisotropic field orientations promoted faster GB relaxation compared to isotropic fields. 

Despite additional complexity of multiple domains/GBs, GB removal times fit a consistent 

scaling up to the largest size investigated. 

Our new feedback approach rapidly generates perfect circular crystals of up to ~103 

particles, and nothing suggests the trend will not extrapolate to larger systems. Given GB 

removal time increases for larger system sizes, eventually these times may become 

impractically large. Further scaling-up beyond some threshold crystal size might be 

achieved through adaptation of the approach here to subdomains within larger crystals. For 

example, the approach here could be parallelized on an electrode array78-81 to work on local 

regions of larger crystals. Another approach could involve spatially translating fields 

through crystals in a manner analogous to zone refining. In general, the approach in this 

work can be scaled effectively in local microscopic systems of increasing size, but 

eventually creating very large crystals would require adapting the current approach to 

include some spatial addressability to operate on different regions within larger crystals. In 

any case, given the unprecedented nature of the feedback control method developed here, 

it seems there are opportunities for further development including scale-up to larger 

systems. 

In conclusion, we developed a new feedback controlled approach using morphing 

energy landscapes to remove GBs and produce circular shapes in colloidal crystals. We 
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demonstrated this approach in microscopy and simulation experiments for colloidal 

particles in AC electric fields, although the reported approach is generalizable to any 

morphing energy landscape. We discovered how easily accessible energy landscape shapes 

and orientations together could enhance coupled GB and crystal morphology relaxation 

processes. Based on this finding, RL was used to develop an optimized control policy to 

close the loop between sensing states and actuating morphing energy landscapes to rapidly 

and reliably produce defect-free circular crystals. 

The resulting optimized control enabled by morphing energy landscapes is superior 

to benchmarks and is scalable to different system sizes. Statistical comparisons of 

controlled stochastic trajectories quantify the speed and accuracy of producing defect-free 

circular crystals, where: (1) feedback controlled morphing energy landscapes produces 

perfect crystals an order of magnitude faster than feedback controlled isotropic landscapes, 

and (2) both feedback controlled methods are dramatically faster than the nearly 

unbounded times required for uncontrolled relaxation of defective crystals into perfect 

structures. The key element provided by morphing energy landscapes that enables rapid 

creation of perfect crystals is the ability to exert anisotropic stresses to control crystal 

defects/shapes without melting, which is inherently faster than repeated melting/freezing 

(disassembly/assembly) processes. Finally, this new control approach is scalable to 

different system sizes, with average times for creating defect-free circular crystals 

increasing as N0.5. In short, morphing energy landscapes in conjunction with optimized 

feedback control can assemble defect-free colloidal crystals with non-trivial improvements 

to speed and scaling compared to state-of-the-art methods. 

Future work could extend the scalability of our approach, most likely without the 
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need for higher fidelity control. Addressing multiple crystals on electrode arrays, or any 

periodic landscape, via parallel and serial combinations of our control approach, could be 

used to merge adjacent crystals into larger crystals or to create hierarchical patterned crystal 

structures. Given the success of elliptically shaped landscapes in this work, it is not obvious 

that more complex shaped landscapes would improve speed or reliability. For example, 

even in the limit of individually controlling every particle on highly complex landscapes, 

limitations due to cooperative re-arrangement processes would not obviously allow for 

faster net processes than coarse control of directional stresses within crystals via local field 

anisotropy. Another extension of this work could include controlling assembly of 

anisotropic colloidal particles, which have additional complexities due to additional 

orientational degrees of freedom important to equilibrium and non-equilibrium structures 

as well as defects. Finally, other potential future directions include adapting our method to 

three dimensional target structures as well as using crystal optical responses (e.g., 

diffraction) as sensors for desired states. Ultimately, controlling locally repeating shapes 

on periodic landscapes could produce many defect-free local structures that collectively 

lead to a global defect-free hierarchical structure. 

3.4 Methods 

Control cell. Coplanar octupole Au thin film electrodes were patterned on glass 

microscope coverslips after cleaned with acetone (30 min), isopropanol (30 min), 

Nochromix (1h), and 0.1 M KOH (30 min). The coverslips were rinsed with DI water and 

dried with N2 before use. The electrodes were fabricated by spin coating photoresist 

(S1813, Shipley) onto microscope cover slips, UV exposure through a photomask, and 

physical vapor deposition of a 15 nm chromium adhesive layer and a 35 nm gold layer. 
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The photoresist liftoff was accomplished with agitation in 1165 Remover (Shipley). To 

construct batch cells, PDMS O-rings (Corning, d=10mm) were coated with vacuum grease 

and sealed between the coverslip with the electrode and a glass coverslip. 100 L of 

nominal 2.34 μm diameter silica colloids (Bangs Laboratories) were added to the batch cell 

before sealing it. 22 gauge copper wires were attached to the electrode using conductive 

carbon tape. The electrode was then connected in series with a dual-channel function 

generator (Agilent 33220) (Fig. 3-1A). 

Microscopy. Microscopy was performed on an inverted optical microscope with a 

63 Zeiss air objective lens (0.6 numerical aperture) at 1.25 magnification. A 12-bit CCD 

camera captured 336 pixel  256 pixel (104 µm  79 µm) digital images at rate of 10 

frames/s. Image capture and analysis were performed using MATLAB Image Processing 

and Image Acquisition Toolboxes. Image analysis algorithms coded in MATLAB were 

used to simultaneously locate and track particle centers, as well as, compute reaction 

coordinates in real time.  

Simulations. BD simulations, which previously matched to experiments,59 were 

used to compare with experiments and test additional conditions. Particle elevations above 

the substrate are fixed to their most probable value based on a balance of gravitational and 

electrostatic particle-wall interactions. This simulation time step is 0.1ms, and the 

remainder of the parameters used in the simulations are reported in Table 1. To obtain 

initial configurations of self-assembly, the particles were randomly placed in the electric 

field, quenched under isotropic field using crystallization voltage, and held for 50s. The 

process is restarted if the configuration failed the starting configuration criterion (6<0.6). 
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Table 3-1 Model parameters based on prior experiments. (a) Particle radii, (b) medium dielectric 
constant, (c) Debye length, (d) Clausius-Mossotti factor, (e) zeta potential, (f) electrode gap. 

Parameter equation value parameter equation value 

a (nm)a S2, S4, S5 1000 fcm
d S2, S5 -0.47 

m
b S2, S4 78  (mV)e S4 -75 

-1 (nm)c S4 10 T (K)f S4 300 

 

Control Policies. RL, specifically Q-learning, was used to obtain the optimal 

anisotropic policy. The controlled system is characterized by a state space (S), and the 

control actions forms the action space (A). A score table, Q(s, a), is defined to reflect the 

preference of applying an action a   at a state s  S. Optimal control policies for two 

objectives are learned separately with RL. For GB removal, the state space is defined by 

global crystallinity (6) and grain orientation (), while for morphology relaxation, the state 

space is defined by circularity (c) and morphology orientation (). Crystallinity and 

circularity are discretized by 0.2, and GB and morphology orientations are discretized by 

15º. In both policies, the action space consists of all combinations of anisotropic field 

shapes and orientations (Fig. 3-3A). Initially, actions are unbiased, i.e. Q(s, a) = 0. During 

learning, control actions are chosen at the beginning of each period (T) either randomly 

with 50% probability or by the highest Q score. A reward (R) is given at the end of every 

period to evaluate the outcome of the chosen control action. By observing a control period, 

the Q-score is updated as,95  

 ( ) ( ) ( )
0.51

1 1( , ) , 0.5 max , ( , )T T T T T T i T T
i

Q s a N s a R s Q s a Q s a
−

+ +
  = +  −    

 (3.3) 

where sT is the state at the beginning of control period, and aT is the chosen control action, 

R(sT+1) is the reward calculated based on the period ending state, sT+1, and N(sT, aT) is the 

number of times state sT and action aT has been visited. Learning terminates when Q(s, 
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a) < 0.01 for all (s, a), indicating further updates are negligible. For GB removal, reward 

is defined as, 

 ( ) 2

1 6, 11T TR s + += −  (3.4) 

where 6,T+1 is crystallinity at the period end. For morphology control, reward is defined 

as, 

 ( ) 2

1 11T TR s c+ += −  (3.5) 

where cT+1 is morphology circularity at the period end. Rewards indicate effectiveness of 

the chosen control action towards achieving the control objective, and therefore 

crystallinity and circularity are chosen as metrics. Nonlinear expressions are used to better 

distinguish crystals with intermediate to high crystallinity and circularity values, where the 

most challenging control situations arise. For GB removal, configurations with low 

crystallinity (e.g. 6 < 0.4) are rarely observed and rapidly resolved. Intermediate and high 

crystallinity values often possess complex defect structures and. The same is true for 

morphology control, where extremely anisotropic clusters (e.g. c < 0.5) are less common 

than nearly circular morphologies. The final optimized policies are plotted in Fig. 3-3A 

and listed in Table 2.  
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Table 3-2 Policy to obtain perfect, isotropic crystals  

given N particles in isotropic field V1 = V2= V(N) from Eq. S29 

loop until both control objectives are met, exit if 6>0.99 and c>0.99 

if grain boundary exists, use Table 3 policy if 6<0.99, go to Table 3 policy  

if morphology not circular, use Table 4 policy if 6>0.99 and c<0.99, go to Table 4 

policy  

 

Table 3-3 Policy to obtain perfect crystal microstructure; remove grain boundaries (6<0.99) 

loop with update time, tC 

endpoint detection every 1s, exit to Table 2 policy if 6>0.99  

for first half period, use anisotropic field, V1≠V2 if t < 0.5tC 

orientation parallel to GB   =| -|<45o 

field shape according to 6 v=0.4 (6<0.8) or v=0.6 (6≥0.8) 

voltage found by theory V1,2(N,v) from Eq. S29 

for second half period, use isotropic field V1 = V2 if t > 0.5tC 

voltage found by theory V1,2(N) from Eq. S29 

 

Table 3-4 Policy to obtain circular crystal morphology; remove shape anisotropy (c<0.99) 

loop with update time, tC 

endpoint detection every 1s, exit to Table 2 policy if c>0.99 

for first half period, use anisotropic field, if t<0.5tC,CM 

orientation normal to morphology  =| -|>45o 

field shape with fixed aspect ratio v=0.4 

voltage found by theory  V1,2(N,v) from Eq. S29 

for second half period, use isotropic field  V1 = V2 if t > 0.5tC 

voltage found by theory V1,2(N) from Eq. S29 

 

3.5 Nomenclature 

a particle radius v voltage ratio between Vmin and Vmax 

aeff effective radius of particle V1,2 voltages applied to electrodes 

ac morphology acylindricity Vmax max of the applied voltages 

aT control action of period T Vmin min of the applied voltages 

c morphology circularity ud
ij induced dipolar interaction 

cE field circularity ue
ij electrostatic repulsion 

Ci
6 local six-fold connectivity upf

i particle-field interaction 

C6 average six-fold connectivity upp
ij particle-particle interaction 

dg electrode gap width Y yield of crystals 

dg,ref reference gap width Z compressibility factor 

e elemental charge ZHD,F compressibility factor of fluid phase 

E electric field magnitude ZHD,S compressibility of solid phase 

E0 reference field magnitude  grain orientation relative to field  

Ẽ normalized electric field magnitude  anisotropic field orientation 
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fcm Clausius-Mossotti factor  grain orientation in lab coordinate 

Fi net conservative force m dielectric constant of medium 

I electric field second moment tensor  local particle area fraction 

Ix,y diagonal terms in moment of field  CP area fraction of close-packed crystal 

kT thermal energy eff effective area fraction of particle 

N number of particles m area fraction of melting transition 

Ni
c coordination number  morphology-field orientation  

Nref reference number of particles ij particle angle in lab coordinate 

rij distance between particle i and j  inverse Debye length 

R ensemble length   osmotic pressure 

𝑅̃ normalized ensemble length  number density of particle 

Rg particle radius of gyration  morphology lab orientation 

RT reward of control period T 6 global crystallinity parameter 

S particle gyration tensor i
6 local crystallinity parameter 

ST system state of control period T  colloid surface potential 

Sx,y particle gyration tensor terms 6
ij crystalline connectivity 

 

3.6 Theory 

3.6.1 Colloidal Interactions 

The net conservative force, Fi, acting on particle i is given by,38 

 pf pp

i i ij

j i

F u u


 
=  + 

 
  (3.6) 

where the first term is the interaction between external field and particle and given as, 

 ( ) ( )3 2, 2 ,m c

pf

ma fu x y E x y= −    (3.7) 

where (x, y) is the particle coordinate, m is the medium dielectric constant, a is the particle 

radius, fcm is the Clausius-Mossotti factor, and E(x, y) is the electric field magnitude. The 

second term is the particle-particle pair-interaction, which in this study can be expressed 

as, 

 
pp e d

ij ij iju u u= +  (3.8) 
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where the first term is the electrostatic repulsion between particle i and j and is given as,59 

 ( )
2

232 tanh exp 2
4

e

ij m ij

kT e
u a r a

e kT
 

     = − −        
  (3.9) 

where rij is the center-to-center distance between the particles, e is the elemental charge,  

is the colloid surface potential, and  is the inverse Debye screening length. The second 

term is the field-induced dipolar interaction and is given by,59 
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 
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 (3.10) 

where P2(cosij) is the second Legendre polynomial, and ij is the angle between the line 

that connects the two particle centers and the electric field. 

3.6.2 Colloidal Phase Behavior on Energy Landscapes 

In our previous work we have shown the general relationship between particle 

density distribution and the applying external field.84 The two-dimensional osmotic 

pressure,  (), for hard disk colloids is given by the equation of state as,44 

 ( ) ( )ZkT   =  (3.11) 

where  is the particle number density and Z is the compressibility factor. For hard disk 

model, the compressibility factor is given as, 
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where ZHD,F is the fluid compressibility factor valid from infinite dilution up to the freezing 

transition, f=0.69, and ZHD,S is the solid compressibility factor valid from melting 

transition, m=0.71, up to close packing at CP=0.906. eff is effective area fraction given 

as, 

 
2

eff effa  =  (3.13) 

where aeff is the effective radius of particles which accommodates the pair-wise 

electrostatic repulsion interaction and is given as,10 

 ( )( )
2

2 2 1 exp /e

eff
a

a a u r kT dr


 = + − −
   (3.14) 

Eq. (2.6) can be rewritten by combining Eq. (3.12)-(3.14) as, 

 ( ) ( )2
Z
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which relates the colloidal osmotic pressure to the effective area fraction. Under a 2D 

external energy landscape, differential changes in local osmotic pressure are given by 

partial differential force balances as, 
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which can be integrated with respect to x and y, and add together to give, 
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  (3.17) 

which, by chain rule of total derivatives, can be simplified as, 
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  ( ) ( ) ( ), , ,pfd x y x y du x y = −    (3.18) 

which indicates that 2D differential changes in local osmotic pressure can be related to 

differential changes in the local energy landscape and the local density. Inserting the 

equation of state given by Eq. (2.10) into Eq. (2.16) and re-arranging gives,84 
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( )( )
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1 1
,

eff x y
pf pf

HDd Z u x y u
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





 = − −  (3.19) 

where the left-hand side is integrated from a reference density, 0, to the density at position 

(x, y),  (x, y), and the right-hand side is integrated from the reference energy, upf
0, to the 

same energy landscape position, upf(x, y). Eq. (3.2) indicates particle density depends only 

on energy landscape magnitude, and therefore the field can be related to the particle phase 

behavior. 

3.7 Electric Field 

3.7.1 Crystallization Voltage 

The crystallization voltage of N particles under a specific field shape can be solved 

from Eq. (3.2) based on a 90-10 rule,96 where the density decays from 90% of the maximum 

density to 10% in less than one particle diameter at the periphery. Using this criterion, Eq. 

(3.2) is re-written as, 

 ( ) ( ) ( )
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1 1cp
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HDd Z u R a u R
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





  = − − −   (3.20) 

where R is the furthest distance between cluster edge and center. upf is replaced by Eq. 

(3.7) to yield, 
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 ( ) ( )2 2
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The energy different on the left-hand side can be approximated as, 

 ( )2
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ln9

4

HD

cm

kTZ
E R

a f 
 =  (3.22) 

which suggests that the gradient of electric field squared on cluster edge is a constant to 

obtain a crystal phase. The electric field can be normalized as, 

 ( ) ( ) 0 , gE R E R E R R d= =  (3.23) 

where 𝑅̃ is the dimensionless length of cluster, and E0 is the magnitude of field defined 

as, 

 ( )0 min max gE V V d= +  (3.24) 

where Vmin and Vmax are the two peak-to-peak voltages applied to the octupole. The left-

hand side of Eq. (3.22) can be substituted with Eq. (3.23) to give, 

 ( ) ( )2 1 2 2

0g R
E R d E R E− =   (3.25) 

where ∇𝑅̃ is the gradient operator with respect to 𝑅̃. Eq. (3.22) can then be rewritten as, 
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which, by substitute E0 with Eq.(3.24), yields, 
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where v is the voltage ratio between Vmin and Vmax, 

 min maxv V V=  (3.28) 

∇𝑅̃𝐸̃ can be solved empirically for octupole-based fields as, 

 ( ) ( ) ( )2 3 2exp 17 23 114 126 28 7 9
R
E R v R v R vR v  = − + + + + −   (3.29) 

which can be substituted into Eq. (3.27) to get the crystallization voltage for a given field 

shape. 

3.7.2 Field Shape & Orientation 

The shape and orientation of the anisotropic electric fields are defined based on the 

second moment of electric energy landscape, which is given as, 
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where the energy landscape, upf(x, y) is defined in the lab coordinate. To define the 

orientation of the field, the coordinate system is rotated by,  
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where the angle of rotation, , is defined as the field orientation, if the rotated second 
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moment matrix is diagonal, 
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and Ix > Iy.  is the direction of the field major axis. The field shape is defined as, 
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 (3.33) 

which is a dimensionless value that goes to one for an isotropic field. 

3.7.3 System Size Dependent Fields 

To control the self-assembly of different numbers of particles, both the width of 

electrodes and the magnitude of applied voltages need to be adjusted accordingly. The 

dependency of voltage on particle number and voltage ratio is shown in Fig. 3-6A. where 

the marked cases are rendered in Fig. 3-6B-G. To solve for the voltages, the electrode width 

is first scaled according to, 
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d d
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 
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 (3.34) 

where Nref=300 and dg,ref=100m is considered as the reference system. With such choice 

of electrode scale-up, a constant field circularity is maintained for each voltage ratio (Fig. 

3-6H), which yield comparable and consistent driving force for the self-assembly control 

of different particle numbers. Given the electrode width, crystallization voltages can be 

found by substituting Eq. (3.34) into Eq. (3.27) as, 
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 (3.35) 

Another merit of using Eq. (3.34) as the scale-up criterion is that the fitted parameter of 

∇𝑅̃𝐸̃ (Eq. (3.29)) is independent of system size. This is because both the electrode width 

and characteristic cluster length both scale as N1/2, so their ratio, the dimensionless cluster 

length, is constant. 

 

Figure 3-6 Octupole voltages for scaled-up system sizes. (A) Crystallization voltages at different 
field shapes and system sizes as calculated by Eq. (3.35). The electrode width scaled with N1/2 (Eq. 
(3.34)). Markers represent the crystallization voltages of isotropic (pink) and v=0.4 anisotropic (red) 
field for N=300 (circle), 600 (triangle), and 900 (diamond) particles. (B-D) Renderings of N=300, 
600, and 900 particles from simulation under corresponding isotropic fields. (E-G) Renderings of 
N=300, 600, and 900 particles under anisotropic (v=0.4) fields. (H) field circularity as a function of 
field shape and system size. The circularity is given by Eq. (3.33). Field shapes, in terms of voltage 
ratio v, are v=0.4 (red), 0.6 (green), 0.8 (blue), and 1 (pink). System sizes are N=300 (circle), N=600 
(triangle), and N=900 (diamond). 
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3.7.4 Reaction Coordinates 

3.7.4.1 Crystallinity Parameters 

The global six-fold bond orientational order, 6, is defined as,97  

 6 6

1

1 N
i

iN
 

=

=   (3.36) 

where N is the total number of particles, and 6
i is the local six-fold bond orientational 

order for each particle i, given by, 
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where Nc
i
 is the number of coordinated neighbors within the first coordination radium of 

particle i, and ij, which as the same definition as in Eq. (2.5), is the angled between particle 

i and j and the lab coordinate given as, 
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The crystalline connectivity, 6
ij, between particle i and j is defined as, 
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where 6
j* is the complex conjugate of 6

j. The local six-fold connectivity C6,i can be 

calculated by,98 
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and the global six-fold connectivity, C6, of the ensemble is given by, 

 6 6,

1
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i

i

C C
N =

=   (3.41) 

3.7.4.2 Morphology Parameters 

The shape and orientation of the particle ensemble are defined similar to those of 

the electric field based on the particle gyration tensor, which is given as,88 
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where the coordinates are defined in the lab coordinate, and, similar to Eq. (3.31), can be 

rotated by, 
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where the rotation angle, , is the orientation of morphology, if the rotated gyration tensor 

is diagonal, 
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and Sx > Sy.  is effectively the major axis direction of the morphology, and Sx and Sy are 

the standard deviation of particles along the major and minor axes. The relative angle 

between the morphology and an applied anisotropic field is given as, 

   = −  (3.45) 
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which ranges between ±90o. The shape of morphology, on the other hand, is defined by the 

circularity, c, as, 

 ( )1 c gc a R= −  (3.46) 

where Rg is the particle radius of gyration,  

 g x yR S S= +  (3.47) 

and ac is the morphology acylindricity, 

 c x ya S S= −  (3.48) 

The morphology circularity is a dimensionless value that goes to one for a perfect spherical 

cluster. 

3.7.4.3 GB Coordinate 

The grain particles are defined as interior particles that are not hexagonally packed, 

and can be identified using the crystallinity parameters as 6,i<0.9 and C6,i>0.6. The 

orientation of GB is defined as, 
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 (3.49)  

where the subscripts represent the grain particle, and, and the angle brackets represent 

average values.  is effectively the angle of the linear fit of grain particles. The relative 

angle between GB and field is given as, 

   = −  (3.50) 
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which ranges between ±90o.  

3.8 Computational Methods 

3.8.1 Electric Field Modeling 

The octupole electrode was modeled using the electrostatic interface in COMSOL 

Multiphysics software. The octupole was placed at the center on the bottom of a 400 µm 

by 400 µm by 20 µm rectangular chamber, which was filled with 0.1mM NaOH aqueous 

solution. Each electrode was modeled as a cylinder with 20 µm in diameter and 40nm in 

thickness, and was positioned on the vertices of an octagon with a 100 µm diagonal 

distance. The top view of the octupole is shown in Fig. 3-1, where the applied voltages to 

the electrodes are represented by grayscale fillings. A lookup table is generated with 

0.25µm resolution at 1.5 µm from the chamber bottom, which is equivalent to the 

equatorial elevation of a 3 µm particle touching the substrate. The field is normalized by 

E0 (Eq.(3.24)), so that only the spatial variation of the field, denoted as Ẽ(x, y) in Eq. (3.23)

, is recorded by the lookup table. In the Brownian Dynamics simulations, intermediate 

values were obtained from the look-up table by Barycentric interpolation, and used to 

compute energy landscapes given by Eq. (3.6). 

3.8.2 Reaction Coordinates 

Fig. 3-7-3-10 show color renderings of reaction coordinates explained in Theory. 

Fig. 3-7A, B shows a trajectory where the particles are held by anisotropic field (v=0.4) 

parallel to GB (=2.5o) for 50s, followed by isotropic field for 50s. The particles are 

colored by 6 (red) and C6,i (blue). Fig. 3-7C, D show trajectories of 6 and C6 given in 
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Eq. (3.36) and (3.41). Fig. 3-8A, B use the same trajectory to show the morphology 

parameters. The green arrow shows the standard deviation of particles along long and short 

axes of morphology orientation, which are denoted by the diagonal terms in the particle 

gyration tensor (Eq. (3.44)). The orientation of major axis is defined as the morphology 

orientation   (Eq. (3.43)). The radii of cyan and purple circles correspond to the radius of 

gyration Rg (Eq. (3.47)) and morphology acylindricity ac (Eq. (3.48)). Fig. 3-8C, D plot the 

trajectories of Rg, ac, and circularity, c (Eq. (3.46)) from the same trajectory.  

 

Figure 3-7 Crystallinity reaction coordinates. (A) Trajectory shown same as Fig. 2C, where 300 
particles are quenched using anisotropic field parallel to the GB for 50s, followed by isotropic field 

for 50s. The particles are colored in white-red scale based on the global crystallinity 6 given in Eq. 

(3.36) (white for 6 = 0, red for 6 = 1). The applied electric fields are plotted as underneath contour 
(B) The same trajectory colored using a white-blue scale based on the local C6,i given in Eq.(2.22) 

(white for C6
i = 0, blue for C6

i = 1). (C, D) trajectories of 6 and C6. 



 

 74 

 

Figure 3-8 Morphology circularity. (A, B) Configurations obtained from the same trajectory as 
Fig. S2, where 300 particles are quenched using anisotropic field parallel to the GB for 50s, followed 
by isotropic field for 50s. The radius of gyration Rg (Eq. (3.47)) is shown by the radii of cyan circles, 
and acylindricity ac (Eq. (3.48)) is shown by the radii of purple circles. The long-axis of green arrows 

point towards morphology orientation  (Eq. (3.43)). The lengths of arrows correspond to the 

standard deviations of particles along long and short axes of morphology and are denoted by Sx 
and Sy in Eq. (3.44). Radius of gyration, acylindricity, and morphology circularity are all calculated 
based on Sx and Sy. (C, D) Trajectories of Rg and ac and (D) Trajectory of morphology circularity c 
(Eq.(3.46)) are matched to configurations shown in (A,B). 

 

Figure 3-9 GB orientation. (A, B) Configurations captured from trajectories in which particles are 
squeezed by parallel and perpendicular anisotropic fields for 50s from an initial isotropic 

configuration. GB particles are colored in yellow. Field orientations  (Eq. (3.31)) are shown by the 

slopes of black lines, and the GB orientations  (Eq.(3.43)) are shown by the slopes of yellow lines.  

(C, D) Trajectories of GB orientations relative to field orientation  (Eq. (3.50)) are plotted based 
on the trajectories shown in (A, B) 
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Figure 3-10 Morphology orientation. (A, B) Configurations captured from trajectories in which 
particles are squeezed by parallel and perpendicular anisotropic fields for 50s from an initial 

isotropic configuration. Morphology orientation  (Eq.(3.43)) are shown by the slopes of cyan lines, 

and field orientations  are shown by the slopes of black lines. (C,D) Trajectories of morphology 

orientations relative to field orientation   defined in Eq. (3.45). 

Fig. 3-9 shows two trajectories where the particles are held by different anisotropic 

fields (=2.5o and 87.5o) for 50s. The orientations of field and GB are shown by black and 

yellow lines, and the grain particles are colored in yellow. Fig. 3-9C, D plot the trajectories 

of GB angle, , as given in Eq. (3.50), which measures the relative angle between GB and 

applied anisotropic field. Therefore, although the two trajectories start from the same 

configuration, the initial readings of  are perpendicular to each other. Fig. 3-10 use the 

same trajectories as Fig. 3-9 to show the orientations of morphology and anisotropic field 

in cyan and black lines. Fig. 3-10C, D plot the trajectories of morphology orientation, , as 

given in Eq.(3.45), which measures the relative angle between morphology and applied 

anisotropic field.  
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3.9 Control Policy Optimization 

3.9.1 Control Update Time Empirical Optimization 

 

Figure 3-11 Empirical optimization of control update time. (A) Yield of perfect crystals as a 
function of time for different update time and fixed anisotropic field shape (v=0.4). (B) Change of 
morphology circularity as a function of time starting from circular configuration under anisotropic 
fields. 20 individual trajectories and their average are shown by black and red lines. (C) Rate of 
morphology change as a function of time after the same condition. Individual trajectories and their 
average are plotted in black and red curves. 

Control update time was optimized by randomly alternating isotropic and 

anisotropic field (v=0.4) with equal time. The yield of perfect circular crystals vs. time was 

averaged over 1000 simulated experiments for each update time (Fig. 3-11A). The legend 

denotes the respective times anisotropic and isotropic half-periods. Fig. 3-11B shows the 

net change of circularity starting from isotropic morphologies by applying anisotropic field 

(v=0.4), where 20 individual trajectories (black lines) and their average (red line) are 

presented. Fig. 3-11C shows the rate of circularity change under the same conditions. 



 

 77 

Perfect circular crystals have been formed with 100% yield at all update times, while the 

fastest assembly was achieved with an update time of 20s.  

Dynamic trajectories support the observed optimal update time. Maximum 

morphology change was asymptotically reached at longer control times (>30s), which is 

desired to remove larger GBs from ensemble interior. On the other hand, the maximum 

rate of morphology change was observed early in the period (~10s), which allows for more 

frequent field changes and accelerated removal of small GBs or local defects. The optimal 

control update time is a combination of both factors, which is confirmed by the crystal 

yield trajectories (Fig. 3-11A). The earliest success was observed for an update time of 10s, 

which can be attributed to the rapid relaxation of small GBs. However, assembly of the last 

5% required extended times, because these cycles usually consisted of configurations with 

larger GBs in the cluster center. An inadequate morphology change is less effective in 

relaxing defects. With larger period times (>30s), virtually all cycles finished within the 

same control period, as the yield curve rise to 100% vertically. While large GBs are 

removed effectively with longer periods, relaxation of minor defects was delayed. 

3.9.2 Anisotropic Shape Empirical Optimization 

The anisotropic field shape was optimized by using the optimal control update time 

and alternating between isotropic and anisotropic field in random directions. The field 

shape, denoted in terms of applied voltage ratios, was optimized within v=0.4-0.7. The 

yield of perfect circular crystals using each anisotropic field shape was averaged over 1000 

cycles of simulated experiment (Fig. 3-12A).  Fig. 3-12B shows the circularity of field (Eq. 

(3.33)) as a function of applied voltage. Fig. 3-12C shows the energy landscape of each 
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field shape defined by Eq. (2.2), and Fig 3-12D shows the corresponding equilibrium 

particle distributions as predicted from thermodynamics by Eq. (3.2). 

 

Figure 3-12 Empirical optimization of anisotropic field shape. (A) Yield of perfect crystals as a 
function of time for different anisotropic field shapes with random orientations and fixed update time 

(t=20s). (B) Field circularity (Eq. (3.33)) as a function of voltage ratio. (C) Single particle energy 
landscapes (Eq. (2.2)) generated with voltage ratios of v = 0.4 - 0.7. (D) Equilibrium distributions of 
particles predicted by Eq. (3.2) under corresponding energy landscapes. 

The yield monotonically increased with decreasing field circularity and applied 

voltage ratio, which again confirmed that the fundamental driving force for GB removal is 

the alternation between isotropic and anisotropic fields.  With the current electrode and 

number of particles, a minimum voltage ratio v=0.4 is feasible. For lower ratios, the field 

does form an energy well enclosing all the particles within the electrode center of, such 

that particles would irreversibly diffuse away. As a result, the optimal anisotropic field 

shape was found to correspond v=0.4. 
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3.10 Example Control Experiments 

3.10.1 Constant Quench 

 

Figure 3-13 Open loop control using constant isotropic field. (A) Microscopy experiment 

including analyzed images and trajectories for global crystallinity 6(red), morphology circularity c 
(green), and two applied voltages (black, gray). (B) Computer simulated experiment including 
rendered configurations on underlying gray scale energy landscapes and same information in (A). 
In images, particles are colored using an 8-bit white-red scale to indicate degree of global 
crystallinity, GB particle are colored yellow, and green arrows indicate directions and relative 
magnitudes of shape long- and short- axes (see Method and SI for detailed calculations related to 
coloring particles). 

Constant quench policy represented an open loop, uncontrolled process of colloid 

self-assembly, in which particles are held under a constant isotropic field until a perfect 

crystal is formed or time exceeds. To make fair comparisons with other policies, the initial 

structure was set as 6<0.6, and a perfect crystal is defined as 6>0.99 and c>0.99. 

Individual renderings from microscopy (Fig. 3-13A) and simulated (Fig. 3-13B) 
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experiments failed to form perfect crystals within the time limit, which is not uncommon 

given constant field shape. 

3.10.2 Optimal Closed-Loop Isotropic Control 

 

Figure 3-14 Feedback control using optimal isotropic policy. (A) Microscopy experiment 

including analyzed images and trajectories for global crystallinity 6(red), morphology circularity c 
(green), and two applied voltages (black, gray). (B) Computer simulated experiment including 
rendered configurations on underlying gray scale energy landscapes and same information in (A). 
In images, particles are colored using an 8-bit white-red scale to indicate degree of global 
crystallinity, GB particle are colored yellow, and green arrows indicate directions and relative 
magnitudes of shape long- and short- axes (see Method and SI for detailed calculations related to 
coloring particles). 

Optimal isotropic control policy introduced in previous works was replicated using 

the octupole electrode to be compared with anisotropic policy.38 To make fair comparisons 

with other policies, the initial structure was set as 6<0.6, and a perfect crystal is defined 

as 6>0.99 and c>0.99. Individual renderings from microscopy (Fig. 3-14A) and simulated 
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(Fig. 3-14B) experiments are presented. Briefly, the policy applies isotropic fields with 

various magnitudes based on the system global crystallinity 6 and bond connectivity C6. 

The policy relies on periodic relaxation of condense structure to remove GBs with 

Brownian motion. 

 

3.10.3 Optimal Closed-Loop Anisotropic Control for Larger System Sizes 

Computer simulated experiments are conducted to investigate the scale-up problem 

of self-assembly using anisotropic control policy. Individual realizations for N = 600 (Fig. 

S15A) and N = 900 (Fig. S15B) particles are used. The control policy (Policy. 1) was same 

as the benchmark system of N = 300. The electrode width and applied voltage magnitudes 

were scaled according to Eq. (3.34) and (3.35), which ensured a consistent level of field 

anisotropy for the dynamics of grain removal, and a consistent cluster density for the 

thermodynamics of the ensemble. Otherwise, the choice of update time, field orientation, 

and field shape were the same.  
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Figure 3-15 Feedback control using optimal anisotropic policy for different system sizes. (A) 
Computer simulated experiment of N = 600 particles using the same anisotropic control policy, 

which includes analyzed images and trajectories for global crystallinity 6(red), morphology 

circularity c (green), GB orientation  (yellow), morphology orientation  (cyan), and two applied 
voltages (black, gray). (B) Computer simulated experiment of N = 900 particles. The organization 

of panel is same as (A). 
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4 CONTROLLED HIERARCHICAL COLLOIDAL 

ASSEMBLY ON PERIODIC LANDSCAPES  

4.1 Abstract 

We report a comprehensive control process that yields hierarchical colloidal 

crystals with perfect crystallinity and circular morphology. We demonstrate this approach 

in computer simulation based on an electrode array that can be dynamically activated to 

generate diverse fields and energy landscapes. We proposed control steps include coarse 

partition of liquid phase particles into condensed clusters, redistribution of particles in to 

equal size clusters, removal of grain boundaries, and relaxation of circular morphology for 

all clusters. This approach can assemble large array of hierarchical structures of various 

cluster sizes. The proposed electrode array also provides a robust and reconfigurable tool 

to solve other assembly tasks. 

4.2 Introduction 

Assembly of colloidal particles into structured materials possess potential 

applications and properties in photonics, magnetics, and mechanics.99-101 Spatial 

organization is a major challenge to many promising colloidal materials.102-103 

Homogenous close-packed colloid crystals are the most investigated structures.104 More 

complex spatial organizations are investigated for non-spherical colloids, assembly on 

curved substrates, or colloid nanodot.105-108 Hierarchical structure with distinct long- and 

short-range orders and properties is an active research territory.109 

Many hierarchical colloid structures are inspired by biological systems.110-112 

Individual and collective behavior of colloids resemble those of active cells or biological 
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molecules.113-114 Hierarchy is a critical prerequisite for biological multifunctional 

materials.115-117 Bio-inspired structures have seen potential applications in drug screening, 

optical/electronic devices, and templated substrates.80, 118-120 Understanding and replication 

of complex biological structures contributes to more knowledge regarding colloidal 

interactions.121-122 

Colloid assembly approach with high resolution and great scalability is a desirable. 

Precise control to individual particles or small clusters, such as optical tweezers, have 

limited operation areas. Entropy-driven assembly, such as evaporation deposition or 

interfacial assembly, are most suitable for massive fabrications but often lack precision and 

introduce irreversible defects.123-124 Directed assembly is often a good combination of 

precision and scalability.125-126 

Pattern mediate assembly provides a robust and consistent approach to form 

hierarchical colloidal structures.127-129 Colloid crystals nucleate and grow around specific 

sites on substrates.130-131 Assembly are formed on topographical features, chemically 

modified spots, or captured interfaces on prefabricated substrates.132-134 The pattern can be 

manufactured in different geometries to achieve colloidal microstructures of stripes, 

circles, or other shapes.102, 135-137 Natural limitations of template-based assembly are the 

poor tunability of assembled structure and lack of mechanisms to resolve defects. External 

fields are desirable in these regards. Reversible assembly controlled using external fields 

achieves reconfigurable microstructures and can prevent kinetically trapped states. Electric 

fields are most successful with assembly of single colloid crystal or micropattern. 38, 51, 138 

In a way, electric fields act like reconfigurable templates, in which particles aggregate 

according to spatial variation of fields. So far, most successful works of electric field 
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mediate assembly focus on a single cluster.60, 139 Scalable and macroscopic colloid 

structures formed by electric fields is still an ongoing research topic. 

In this work we present a computational study to direct assembly of hierarchical 

crystals based on electrode array. We generated various types of DC and MHz AC electric 

fields using electrode array. These electric fields enable controls to colloid phase behavior, 

dynamic transport process, and grain and morphology dynamics. We divided the overall 

approach into steps of coarse partitioning, cluster redistribution, and defect and cluster 

morphology control. Our approach can scale to larger system sizes and potentially infinite 

array of clusters. Finally, we conceptually present several possible applications based on 

electrode array. 

4.3 Results & Discussion 

4.3.1 Colloid Control over Electrode Array with DC or AC electric fields 

Fig 4-1A shows simulation system setup, where orthogonal array is formed by 

electrodes of 5m in width, 40nm in height, and separated by 5m. Fig. 4-1B shows a 

random liquid state of N0 = 3600 particles with 1m radius, and Fig. 4-1C shows coarse 

partitioning of particles into 9 condensed clusters. Particles are colored by local C6 values 

in white-to-blue scale representing liquid (C6 = 0, white) to solid (C6 = 1, blue) phases. Fig. 

4-1D and 4-1E shows particle trajectories during cluster redistribution, where blue-to-red 

color scale is used to represent dynamics over one second starting from equilibrium 

positions. Fig. 4-1F shows a case of cluster dimension of L/S = 1/3, which consists of 9 

clusters with equal sizes (N = 400). Grain boundary defects exist because of uncontrolled 

quenching. Fig. 4-1G and H shows control operations which remove grain boundaries and 
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relax circular morphology. Grain particles are represented in yellow color and other 

particles are represented in white-to-red scale according to 6 values of each cluster. Cyan 

arrows point in the direction of morphology orientations, and the lengths is defined as (1 - 

c) ∙ R, where R is the cluster radius given as R = (N∙a2/cp)
1/2, a is the particle radius and 

cp is the close packed area fraction. The length of cyan arrow corresponds to difference 

from circular morphology. 

 

Figure 4-1 Assembly of hierarchical colloidal crystals on electrode array. (A) Schematic of 
colloid control on electrode array. (B) Initially particles are randomly dispersed with area fraction 

density of  ≈ 0.28. (C) Coarse partitioning of colloids into clusters. clusters have dimension of L/S 
= 1/3. Particles are colored by local C6 in white-blue scale. (D, E) Cluster redistribution and cluster 
size equalization. Particles redistributed between adjacent clusters in multiple steps. Trajectories 
are colored from blue to red as a function of time. (F) Control of grain boundary removal. Initially all 
clusters contain grain boundaries, which are represented by yellow particles. The other particles 

are colored in white-red scale by global 6 of each cluster. Orientations of grain boundaries are 
marked by orange lines (G) Control of morphology relaxation. Initially all clusters have perfect 
structure and anisotropic shapes. Cyan arrows represent the direction of morphology, and the 
lengths represent (1 - c) ∙ R, where c is the morphology circularity, and R is the cluster size given 

as R = (Na2/cp)1/2. (H) hierarchical perfect crystals with circular morphologies. 

Assembly of hierarchical perfect crystals is controlled in consecutive steps using 

electrode array. Each electrode can be independently activated with AC voltage and DC 

offset. Initially particles are randomly dispersed in the system, with a liquid phase of area 
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fraction  ≈ 0.28. In the first step (Fig. 4-1C), particles are coarse partitioned into clusters 

with framing MHz AC electric field. The cluster dimension is defined in terms of L/S, 

where L is the dimension of cluster and S is the dimension of simulation window. 

Distribution of cluster sizes can be predicted by density fluctuation theory with isotherm 

compressibility factor. In the next step (Fig. 4-1D, E), clusters are redistributed to obtain 

equal sizes using directional DC electric fields. An optimal strategy to redistribute clusters 

is determined based on greedy optimization algorithm, which minimizes the total number 

of redistributed particles and the number of transfer operations. MHz AC electric fields are 

always applied to constrain particles in each cluster, except for the redistributed clusters. 

In the third step (Fig. 4-1F), the grain boundaries in all clusters are removed with 

alternating isotropic and anisotropic AC electric fields. Each field shape is applied for a 

fixed period, so that cluster morphology can be squeezed under changing fields. In previous 

works, we have shown that such changing fields and morphologies contribute to the 

diffusion of grain defects and the formation of perfect crystals. In the last step (Fig. 4-1G), 

the same set of isotropic and anisotropic fields are used to relax the circular morphology 

of each cluster. The anisotropic field perpendicular to existing morphology orientation is 

applied until the cluster shape is relaxed, and then isotropic field is applied to hold clusters 

in perfect structures. Finally, hierarchical crystals with circular shapes are obtained (Fig. 

4-1H). 
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4.3.2 Coarse Partitioning of Particles into hierarchical clusters 

 

Figure 4-2 Coarse partition particles into clusters. (A) MHz AC electric fields for coarse 

partitioning with increasing strengths. The plots scale between 0 and 0.05 V/m. The applied AC 
voltages are 0.06V, 0.2V, 1.6V and 2V (left to right). (B) Energy landscapes of single-particle 
interaction with AC electric fields (Eq. (4.8)). The plots scale between 0 and 100kT. (C) Equilibrium 

particle rendering under each field magnitude field. Particles are colored by average C6 in white 

(C6 = 0) to blue (C6 = 1) scale. (D) Dynamic particle trajectories over 5s before reaching 
equilibrium states. The color bar ranges from blue to red following rainbow spectrum. (E) 

Parameters tracked during the coarse partitioning, including C6 (blue) and cluster sizes (black). 
Dash lines correspond to capture times of (C). 

Fig. 4-2 shows coarse partitioning of N0 = 3600 particles (a = 1m) into clusters 

with dimension of L/S = 1/3, which correspond to an array of 3×3 clusters. Fig. 4-2A shows 

four magnitudes of MHz AC electric fields sequentially applied during partitioning, and 

Fig. 4-2B shows corresponding energy landscapes due to interaction between particles and 

MHz AC electric field (Eq. (4.8)).  Fig. 4-2C shows equilibrium distributions of particles 

under each field magnitude. Particles are colored by local C6 values in white-to-blue scale, 

which represent the degree of local condensation. Fig. 4-2D shows dynamic trajectories of 

particles in the center cluster captured before reaching the equilibrium configurations over 
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five seconds. Trajectories are plotted in blue-to-red scale. Finally, Fig. 4-2E shows size 

(black) and averaged C6 (blue) of individual clusters. 

The applied MHz AC electric fields are designed to generate energy barriers of 

0.1kT, 1kT, 10kT, and 100kT in four columns of Fig. 4-2. Coarse partitioning can be 

achieved by first separating particles into isolated clusters with these energy barriers, and 

then condensed into solid phase under field gradient. With small energy barriers less than 

kT, particles can diffuse freely across energy barriers and migrate between different 

clusters. As a result, the particles trajectories are stochastic, and cluster sizes are 

fluctuating. With intermediate energy barriers (<100kT), particles are constrained in each 

cluster, because kT-level thermo motion cannot overcome energy barriers. Meanwhile, 

particles aggregate within each cluster under field gradient towards cluster center. The 

equilibrium concentration and distribution of particles can be predicted by balancing the 

particle-field interaction with an osmotic pressure incurred by particle aggregation (see 

supporting information). At the high energy barrier (= 100kT), particles are completely 

condensed into solid phase, with averaged C6 ≈ 1. The large energy barrier needed for 

full condensation is because of the nonlinear decay of field from cluster edge. Over the 

area of particles, the energy drops only by approximately 20kT, which can be proved by 

theory to be able to completely crystallize the given number of particles. Overall, Coarse 

partitioning achieved unequal sizes clusters with grain boundaries. To equalize cluster 

sizes, the cluster redistribution control is conducted and discussed next. 
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4.3.3 Redistribution of Particles to Form Equal Size Clusters 

We use an example to demonstrate cluster redistribution in three steps (Fig. 4-3). 

The applied electric fields (Fig. 4-3A) and energy landscapes (Fig. 4-3B) used in each step 

are shown as linear summations of MHz AC fields and DC fields. Rendering of particles 

during each step of redistribution is colored to distinguish different clusters (Fig. 4-3C), 

and the direction of particle transfers are shown using dynamic trajectories captured over 

one second (Fig. 4-3D). Changes of cluster sizes are shown as a function of time with 

matching cluster colors (Fig. 4-3E). 

 
Figure 4-3 Cluster redistribution. (A) Applied electric fields during each step of redistribution 
control. The electric fields are superpositions of DC and AC electric fields and are plotted between 

0 and 0.05V/m. (B) Energy landscapes, which are linear summations of particle interactions with 
DC (Eq. (4.9)) and AC (Eq. (4.8)) electric fields. The plots scale between 0 and 100 kT. (C) 
Renderings of particle configurations in the middle of each redistribution step. Different colors are 
associated to each cluster. (D) Dynamic particle trajectories captured over 1s before rendered 
configurations. The color bar ranges from blue to red following rainbow spectrum. (E) Cluster sizes 
as a function of time with same colors. Dash lines correspond to capture times of (C). 
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Fig. 4-3 shows an example where all transfer operations are grouped into three 

steps, where each step consists of a single or multiple transfer operations. Equal size 

clusters are eventually held by AC electric field as in coarse partitioning. Because of the 

periodic boundary condition, transfers across simulation boundary are allowed. By the end 

of coarse partitioning, particles are randomly distributed in clusters, where the mean and 

standard deviation of cluster size can be predicted by density fluctuation theory based on 

isotherm compressibility factor.140 It is practically impossible to directly achieve equal 

cluster size, and therefore cluster redistribution is necessary. A directional DC electric field 

can be used to move particles along field gradient,141 and is used in this paper to transfer 

particles between adjacent clusters. An example of a single transfer operation is shown in 

Fig. 4-11. A MHz AC electric field is linearly superimposed onto the DC field, which 

constrains particles within the cluster pair and provides an energy barrier that shields the 

effect of DC field to nearby clusters. The two electric fields can be considered as results of 

an alternating voltage signal and a constant offset, respectively. The fields and energy 

landscapes can be linearly superimposed because their interaction with particles, given by 

Eq. (4.8) and (4.9), are independent with each other. 

 An optimal redistribution strategy (Fig. 4-12) is used with the goals to minimize 

total number of transferred particles and total number of transfer operations (Fig. 4-3). 

Details about the redistribution strategy is discussed later. Briefly, the strategy is found 

using a greedy algorithm based on the Manhattan distance between clusters. The strategy 

prefers transfers between closers clusters (e.g. adjacent) over clusters further apart (e.g. 

diagonal or alternating). The strategy also prefers a transfer path that can be combined with 

other transfers. To further accelerate cluster redistribution, multiple transfer operations can 
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be launched simultaneously by compartmenting the electrode array into individual cluster 

pairs, where each pair can be independently controlled (Fig. 4-3). For example, in the first 

plot of Fig. 4-3A and 4-3B, three redistribution cluster pairs are assigned (top-left, bottom-

left, and bottom-right). In each cluster pair, the DC field establishes the field gradient that 

migrates particles from larger cluster to smaller cluster. In addition, the MHz AC field is 

applied to constrain the particles on the periphery. Numerically, the electric field and 

energy landscapes of each compartment are modeled separately, and the full profiles are 

concatenated by each compartment. This approach assumes a negligible effect of the field 

to one cluster pair to nearby clusters. This is valid due to the applied AC electric field, 

which generates a significant energy barrier that shields effect of DC fields outside of the 

controlled clusters. We presented a comparison between the approximated approach and 

the exact full modeling of all DC fields in Fig. 4-10. The results suggest that a negligible 

effect is caused due to crosstalk between different DC fields. 

4.3.4 Remove Grain Boundaries in All Clusters 

Fig. 4-4 shows the process of grain boundary removal control. The electric fields 

(Fig. 4-4A) and energy landscapes (Fig. 4-4B) are generated by periodic octupole 

electrodes. The resulting isotropic and anisotropic fields in perpendicular directions are 

alternatively applied with fixed period to compress clusters into different morphologies. 

Renderings of particles shows equilibrium morphology under each field shape (Fig. 4-4C), 

where grain boundary particles are colored in yellow, and other particles are colored in 

white-to-red scale by 6 of each cluster. The dynamic particle trajectories (Fig. 4-4D) are 

captured over 5 seconds before reaching corresponding equilibrium configurations. 
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Trajectories are plotted in blue to red scale. The crystallinity and grain boundary orientation 

related to anisotropic field orientation are plotted for each individual cluster (Fig. 4-4E). 

 

Figure 4-4 Grain boundary removal using isotropic and anisotropic fields. (A) MHz AC electric 

fields applied during each period of control. The plots scale between 0 and 0.05 V/m. (B) Energy 
landscapes for single particle interaction with AC fields (Eq. (4.8)). The plots scale between 0 and 
40kT. (C) Equilibrium particle configurations under each field shape. Grain boundary particles are 

colored in yellow and others are colored according to 6 of each cluster in white (6 = 0) to red (6 
= 1) scale. (D) Dynamic particles trajectories captured over 5s before rendered configurations. The 
color bar ranges from blue to red following rainbow spectrum. (E) Control parameters, including 

crystallinity 6 (red) and grain orientation  (yellow) related to anisotropic field orientation for each 
cluster. Dash lines correspond to capture times of (C). 

Removing grain boundaries within a single colloidal cluster using alternating 

isotropic and anisotropic electric fields has been reported in our previous paper. The goal 

in this work is to simultaneously achieve perfect crystallinity in all hierarchical crystals 

(6>0.99). By applying alternative field shapes and orientations, clusters are compressed 

in different shapes and directions, which not only changing the cluster morphology but also 

contributes to the diffusion of grain boundaries. Here an open loop control policy is 
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proposed. A fixed anisotropic field shape is used with two perpendicular orientations, 

which are generated by applying a voltage ratio of 10:5 to two pairs of active electrodes in 

octupole (Fig. 4-8A). Isotropic and anisotropic fields are alternatively applied with periods 

of 20s. During the first anisotropic period, a random field orientation is applied, while the 

following anisotropic periods always take perpendicular directions from the previous 

period. Isotropic field period is necessary because the dramatic energy difference between 

two perpendicular anisotropic fields can often destroy an existing ordered structure, while 

an isotropic intermediate step allows for moderate morphology changes while maintaining 

existing lattice structures. For example, in Fig. 4-4E, the first anisotropic period (t = 

[0,20s]) effectively removes grain boundaries in all but one clusters. During subsequent 

isotropic (t = [20,40s]) and anisotropic period (t = [40,60s]), the defected cluster continues 

to be improved, while the formed lattice structures are maintained with only local defects 

reintroduced. These defects can be easily removed by thermo motion of particles during 

subsequent control. Eventually, crystals are formed in all clusters. The negligible effect of 

morphing electric fields to existing crystal lattice is critical for the feasibility of assembly 

of hierarchical crystals. With other control approaches, for example, the assembly time 

could be orders of magnitudes longer or practically approaching infinity, even when such 

approaches are fairly efficient for a single cluster assembly control. 
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4.3.5 Obtain Circular Morphology and Perfect Crystals in All Clusters 

 

Figure 4-5 Morphology relaxation using isotropic and anisotropic fields. (A) MHz AC electric 

fields applied during each period of control. The plots scale between 0 and 0.05 V/m. (B) Energy 
landscapes for single particle interaction with AC fields (Eq. (4.8)). The plots scale between 0 and 
40kT. (C) Equilibrium particle configurations under each field shape. Grain boundary particles are 

colored in yellow and others are colored according to 6 of each cluster in white (6 = 0) to red (6 
= 1) scale. Cyan arrows point in the direction of morphology long-axis, and the length of arrows is 

(1-c)∙R, where c is the morphology circularity and R = (N∙a2/cp)1/2 is the characteristic size of 
cluster. (D) Dynamic particles trajectories captured over 5s before rendered configurations. The 
color bar ranges from blue to red following rainbow spectrum. (E) Control parameters, including 

crystallinity 6 (red) and morphology circularity c (cyan). Dash lines correspond to capture times of 
(C). 

Fig. 4-5 shows a single step of control of cluster morphology to form perfect, 

circular crystals simultaneously in all clusters. Fig. 4-5A and B shows applied AC electric 

field and energy landscapes at different times of process. Fig. 4-5C shows renderings at 

these times. Grain particles are colored in yellow, and other particles are colored in white-

to-red scale by 6of each cluster. Cyan arrows represent morphology orientations of every 
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cluster, with length corresponding to deviation from circularity scaled by cluster radius. 

Fig. 4-5D shows particle trajectories over the course of one second starting from 

equilibrium positions in Fig. 4-5C. Fig. 5E shows trajectories of crystallinity, 6, 

morphology circularity, c, and morphology orientation, , for each cluster. 

After cluster redistribution (Fig. 4-3) and grain boundary removal (Fig. 4-4), all 

clusters are in perfect lattice structure, while morphology can be arbitrary depending on 

the ending state of previous control. Anisotropic field perpendicular to current morphology 

is applied to relax the circular morphologies, and isotropic field is applied to hold form 

circular crystals. Local defects and dislocations may be reintroduced during the process, as 

is seen in some clusters in Fig. 5C. However, these defects can be removed by particle 

thermo motions, and therefore melt automatically during the isotropic period. In a rare case, 

where reintroduced defect is nontrivial and cannot be removed with thermo motions, grain 

boundary removal control (Fig. 4-4) and morphology control (Fig. 4-5) can be re-applied 

in sequence. However, this has never happened over the course of 1000 simulations (Fig. 

4-16). In all cases, a single iteration of grain boundary removal control and morphology 

restore control is required. 
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4.3.6 Potential Applications of Electrode Array 

 

Figure 4-6 Potential applications of electrode array. (A-D) Assembly of hierarchical crystals with 
different sizes and morphology shapes. (E) Assembly of spherical particles into stripes by 
mimicking a parallel electrode. (F) Assembly of anisotropic particles into stripes. ((G) Assembly of 
hierarchical 3D colloidal structures. (H) Assembly of particles on periodic droplet interfaces. (I) 
assembly of complex microstructures, e.g. gears. 

Fig. 4-6 presents a few potential applications based on electrode array. First, 

assembly and morphology control of various system and cluster sizes can be achieved by 

scaling the fields properly (Fig. 4-6A-D). Next, other microstructures (e.g. stripes) can be 

achieved using electrode array, which are used to assemble isotropic and anisotropic 

particles (Fig. 4-6E, F). Although the electrode array is a static pattern, the achievable 

energy landscapes are dynamic and reconfigurable. In this way, the limitation with pattern-

based assembly can be overcome. Next, the assembly on periodic interfaces can also be 

facilitated by electrode array by simply depositing droplets only the substrates (Fig. 4-6G). 

Besides, the assembly can be extended from 2D structures to 3D, in which case periodic 

3D pyramids can be assembly (Fig. 4-6H). Finally, electrode array can be used to achieved 
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more complex microstructures, such as a gear shape cluster (Fig. 4-6I). This can potentially 

be interesting in designing micromotors and achieve translation and rotation controls. 

4.4 Conclusion 

We reported a computational study of self-assembly of hierarchical colloid crystals 

from liquid phase using an electrode array. The process was divided into steps of coarse 

partitioning, cluster redistribution, and grain boundary and morphology control. Various 

types of DC and MHz AC electric fields were generated to facilitate different controls to 

colloid morphology and dynamics. We also investigated the scalability of problem for 

cluster redistribution and grain boundary and morphology control in terms of cluster 

dimension, L/S. Specifically, we presented an optimal redistribution strategy based on 

greedy planning algorithm and a Manhattan distance between clusters. We also presented 

an open loop strategy to direct the assembly of perfect, circular crystals. 

The proposed strategy achieves accurate control to cluster size, crystallinity, and 

shape. The work is based on a simple design of electrode array, where each electrode can 

be individual activated with AC (alternating) and DC (offset) voltages. With the electrode 

array, we demonstrate control of colloidal phase behavior, nonequilibrium transport, and 

morphology and grain boundary defects. Based on this work, we further proposed a number 

of potential applications with electrode array. More cluster geometries can be formed using 

the electrode array, which can be used to study spherical as well as anisotropic particles. 

Moreover, electrode array can be used to control colloidal assembly on periodic droplet 

interfaces, or assembly of 3D microstructures. Finally, more complex structures, for 

example gears, can be obtained using an electrode array, which can be used to design 

micromotors. 
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4.5 Nomenclature 

a particle radius Rg individual cluster radius of gyration 

ac morphology acylindricity S simulation window size 

c morphology circularity Sx, Sy gyration tensor diagonal terms 

C6
 global bond connectivity T absolute temperature 

C6,i local bond connectivity upf particle interaction with electric field 

m medium dielectric constant uac
pf particle interaction with AC field 

d Manhattan norm udc
pf particle interaction with DC field 

de electrode size ui
pp particle-particle interaction 

D medium viscosity Vdc DC field potential 

e elemental charge  relative GB orientation 

Eac AC field magnitude  field orientation in lab coordinate 

Edc DC field magnitude  GB orientation in lab coordinate 

fcm Clausius-Mossotti factor p particle zeta-potential 

I AC field second moment s substrate zeta-potential 

k Boltzmann constant  relative morphology orientation 

l electrode distance ij pair-wise particle orientation 

L cluster dimension  inverse Debye screening length 

N0 total number of particles N mean cluster size 

N moved particle number 6
ij crystalline connectivity 

Ni size of cluster i 6 global bond orientational order 

Nc
i neighboring particle number 6

i local bond orientational order 

a particle radius  particle surface potential 

rij center-to-center particle distance   

 

4.6 Theory 

4.6.1 Colloidal Interactions 

The total energy, ui,tot, acting on particle i under electric field is given by,  

 
,

pp ps pf

i tot ij i i

j i

u u u u


= + +  (4.1) 

where the first term is the electrostatic repulsion between particle i and j and is given as,59 

 ( )exp 2pp

ij iju B r a = − −
    (4.2) 

where, 
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where m is the medium dielectric constant, a is the particle radius, k is the Boltzmann 

constant, T is the temperature, e is the elementary charge, rij is the center-to-center distance 

between the particles, p is the colloid surface potential, and  is the inverse Debye 

screening length. The second term in Eq. (4.1) represents interaction between particles and 

substrate, which is given by, 

 ( )2 exppp

iju B z a= − −     (4.4) 

where s is surface potential of substrate. The last term in Eq. (4.1) represents interaction 

between a single particle and external fields, which are given as, 

 ( ) ( ) ( ) ( ), , , ,pf grav pf pf

ac dcu x y z u z u x y u x y= + +  (4.5) 

where (x, y, z) is the particle position in lab coordinate. ugrav is the energy caused by gravity, 

which is given by, 

 ( )gravu z Gz=  (4.6) 

where, 

 ( )33

4
p mG a g  = −  (4.7) 

where p and m are densities of particle and medium and g is the gravitational force. uac
pf

 

is the energy due to interaction between particles and MHz AC electric field, which is given 
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by,142 

 ( ) ( )23, 2 ,m

pf

ac accma fu x y x y= − E   (4.8) 

where, fcm is the Clausius-Mossotti factor and Eac is the AC electric field magnitude. udc
pf 

is the energy due to interaction with DC electric field, which is given by,143  

 ( ) ( ) ( ), 4 ,pf

dc m p s dcu x y a V x y   = −   (4.9) 

where p and s are the zeta-potential of particle and substrate and VDC is the local electric 

potential at the position of particles. 

4.6.2 Equilibrium height of particles above substrate 

For a single particle sediment under gravity, the total energy, ui,tot, is given by, 

 
,

ps grav

i tot i iu u u= +  (4.10) 

where the first term is the electrostatic repulsion between particle and substrate and the 

second term is gravity. The minimum in total energy occurs at equilibrium height given 

as,144 

 1 lneq

B
z

G


 −  

=  
 

  (4.11) 

where equilibrium height, zeq, is found as ~100nm. 

4.6.3 Electrophoretic potential under DC field 

Eq. (4.9) is found by considering force balance of particle under DC electric field, 
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tot dc drag= +F F F   (4.12) 

where Fdc is the electrophoretic force and Fdrag is the stokes’ friction given as, 

 6drag a = −F v   (4.13) 

where  is the medium viscosity, and v is the particle velocity, which can be related by 

electrophoretic mobility as,143 

 
( )m p s

dc

  



−
=v E   (4.14) 

where Edc is the local DC electric field magnitude. By substituting Eq. (4.14) and (4.13) 

into (4.12), one could get, 

 ( ) ( ) ( ), 6 ,dc m p w dcx y a x y   = −F E   (4.15) 

which can be rewritten in scalar form in x- and y- coordinate as, 

 
( )

( )

, ,

, ,

6

6

dc x m p w dc x

dc y m p w dc y

F a E

F a E

   

   

= −

= −
  (4.16) 

The left-hand side can be integrated with respect to x and y, and sum to yield, 

 ( ) ( )
0 0

, , 0 0, ,
x y

pf pf

dc x dc y dc dc
x y

F x F y u x y u x y +  = −    (4.17) 

where x0 and y0 represent a reference state, and the right-hand side can yield, 
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 ( ) ( ) ( ) ( )
0 0

, , 0 06 6 , ,
x y

m p w dc x dc y m p w dc dc
x y

a E x E y a V x y V x y        −  +  = − −     

   (4.18) 

Eq. (4.17) and (4.18) can be combined to yield, 

 ( ) ( ) ( ), 6 ,pf

dc m p w dcu x y a V x y   = −   (4.19) 

where the reference state is set to be zero for both electric potential and DC field energy 

landscape, and the expression is identical to Eq. (4.9). 

4.6.4 Reaction Coordinates 

4.6.4.1 Crystallinity Parameters 

The global six-fold bond orientational order, 6, is defined as,97  

 6 6

1

1 N
i

iN
 

=

=   (4.20) 

where N is the total number of particles, and 6
i is the local six-fold bond orientational 

order for each particle i, given by, 

 
6

6

1

1
i
C

ij

N
ii

i
jc

e
N




=

=   (4.21) 

where Nc
i
 is the number of coordinated neighbors within the first coordination radium of 

particle i, and ij is the angled between particle i and j and the lab coordinate given as, 
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1tan

i j

ij

i j

y y

x x
 −

 −
=   − 

 (4.22) 

The crystalline connectivity, 6
ij, between particle i and j is defined as, 

 

*

6 6

6 *

6 6

Re i j

ij

i j

 


 

  
=  (4.23) 

where 6
j* is the complex conjugate of 6

j. The local six-fold connectivity C6,i can be 

calculated by,98 

 
6

6,

1 6

1 0.321

6 0 0.32

i
c

ijN

i ij
j

C


=

 
=  

  
  (4.24) 

and the global six-fold connectivity, C6, is given by, 

 6 6,

1

1 N

i

i

C C
N =

=   (4.25) 

4.6.4.2 Electric Field Orientation 

The orientation of MHz AC electric field is derived from the second moment of 

field energy landscape, defined in Eq. (2.2), as, 

 
( )

( ) ( )

( ) ( )

2

2

, ,1

, , ,

pf pf

pf pf pf

x u x y dxdy xy u x y dxdy
I

u x y dxdy xy u x y dxdy u u x y dxdy

 
 =
 
 

 

  
 (4.26) 

where the coordinate (x, y) is defined in a lab coordinate. Field orientation is defined 

from a rotation matrix given as,  
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' cos sin

' sin cos

x x

y y

 

 

−     
=     

     
 (4.27) 

where  is the field orientation when Eq. (3.30) is diagonalized with respect to rotated 

coordinate (x’, y’) as, 

( )

( ) ( )

( ) ( )

2

2

' ', ' 01
'

', ' 0 ' ', '

pf

pf pf

x u x y dxdy
I

u x y dxdy y u x y dxdy

 
 =
  
 



 
 (4.28) 

4.6.4.3 Morphology Parameters 

Particle morphology shape and orientation are derived from particle gyration 

tensor, which is given as,88 

 

2

2

1
i i i

i i

i i i

i i

x x y

S
N x y y

 
 

=
 
  

 

 
 (4.29) 

Where, similar to Eq. (3.30), the coordinates are based on a lab coordinate. Morphology 

orientation is defined in, 

 
' cos sin

' sin cos

i i

i i

x x

y y

 

 

−    
=    

    
 (4.30) 

where  is absolute morphology orientation if Eq. (3.42) can be diagonalized with respect 

to rotated coordinate as, 
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( )

( )

2

2

' ' '
01

'
0' ' '

i i i
xi i

y
i i i

i i

x x y
S

S
SN x y y

 
  

= =   
  

 

 

 
 (4.31) 

where Sx and Sy are primary diagonal terms. The final morphology orientation is defined 

with respect the applied field orientation as, 

 
90

 


−
=


 (4.32) 

The morphology shape (circularity) is defined as, 

 ( )1 c gc a R= −  (4.33) 

where Rg is the particle radius of gyration,  

 g x yR S S= +  (4.34) 

and ac is the morphology acylindricity, 

 c x ya S S= −  (4.35) 

4.6.4.4 Grain Boundary Coordinate 

Grain particles are interior particles that are not hexagonally packed. 

Mathematically they are identified as 6,i<0.9 and C6,i>0.6. The orientation of grain 

boundary is defined as, 
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( )( )

( )
, ,

2

,

arctan
i g g i g gi

i g gi

x x y y

x x


 − −
 =
 

−  




 (4.36)  

where xg and yg are coordinates of grain particles, and angle brackets values represent 

center of mass coordinate. Conceptually  is equivalent to the slope of a linear fit for all 

grain particles. The final grain boundary orientation is defined with respect to field 

orientation as, 

 
90

 


−
=


 (4.37) 

4.6.5 Colloidal Phase Behavior on Energy Landscapes 

In our previous work we have shown the general relationship between particle 

density distribution and the applying external field.84 The two-dimensional osmotic 

pressure,  (), for hard disk colloids is given by the equation of state as,44 

 ( ) ( )ZkT   =  (4.38) 

where  is the particle number density and Z is the compressibility factor. For hard disk 

model, the compressibility factor is given as, 

 

( ) ( )

( )
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,S

1 1
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HD eff eff eff f
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HD eff CP eff m

eff eff
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
   

 
   

 

−

−

 
= + −   

 

   
= − + − +        

   

 (4.39) 

where ZHD,F is the fluid compressibility factor valid from infinite dilution up to the freezing 
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transition, f=0.69, and ZHD,S is the solid compressibility factor valid from melting 

transition, m=0.71, up to close packing at CP=0.906. eff is effective area fraction given 

as, 

 2

eff effa  =  (4.40) 

where aeff is the effective radius of particles which accommodates the pair-wise 

electrostatic repulsion interaction and is given as,10 

 ( )( )
2

2 2 1 exp /e

eff
a

a a u r kT dr


 = + − −
   (4.41) 

Eq. (2.6) can be rewritten by combining Eq. (3.12)-(3.14) as, 

 ( ) ( )2
Z

eff

eff HD eff

eff

kT
a


 


 =  (4.42) 

which relates the colloidal osmotic pressure to the effective area fraction. Under a 2D 

external energy landscape, differential changes in local osmotic pressure are given by 

partial differential force balances as, 

 
( ) ( )

( )
( ) ( )

( )
, , , ,

, ,  ,

pf pfx y u x y x y u x y
x y x y

x x y y
 

   
= −  = − 

   
 (4.43) 

which can be integrated with respect to x and y, and add together to give, 

 
( ) ( )

( )
( )

( )
( ), , , ,

, ,

pf pfx y x y u x y u x y
dx dy x y dx x y dy

x y x y
 

   
 +  = −  − 

      

 (4.44) 
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which, by chain rule of total derivatives, can be simplified as, 

  ( ) ( ) ( ), , ,pfd x y x y du x y = −    (4.45) 

which indicates that 2D differential changes in local osmotic pressure can be related to 

differential changes in the local energy landscape and the local density. Inserting the 

equation of state given by Eq. (2.10) into Eq. (2.16) and re-arranging gives,84 

 ( )
( )

( )( )
0

,

0

1 1
,

eff x y
pf pf

HDd Z u x y u
kT







 = − −  (4.46) 

where the left-hand side is integrated from a reference density, 0, to the density at 

position (x, y),  (x, y), and the right-hand side is integrated from the reference energy, upf
0, 

to the same energy landscape position, upf(x, y). Eq. (4.46) indicates particle density 

depends only on energy landscape magnitude, and therefore the field can be related to the 

particle phase behavior. With Eq. (4.46), one can theoretically calculate minimum field 

strength to crystallize a given number of particles in a specific electric field. Briefly, The 

crystallization voltage of N particles under a specific field shape can be solved based on a 

90-10 rule,96 where the density decays from 90% of the maximum density to 10% in less 

than one particle diameter at the periphery. Using this criterion, Eq. (4.46) is re-written as, 

 ( ) ( ) ( )
0.9

0.1

1 1cp

cp

pf pf

HDd Z u R a u R
kT







  = − − −   (4.47) 

where R is the distance between cluster edge and center. upf is replaced by Eq. (4.8) to 

yield, 
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 ( ) ( )2 2

3

ln9

2

HD

cm

kTZ
R a R

a f 
− − =E E  (4.48) 

Which can be approximated as, 

 ( )2

4

ln9

4

HD

cm

kTZ
R

a f 
 =E  (4.49) 

Eq. (3.22) provide the minimum magnitude of the gradient of squared electric field on 

cluster edge in order to obtain a crystal phase. 

4.6.6 Distribution of Cluster Size Based on Fluctuation Theory 

Distribution of cluster sizes by coarse partitioning can be considered as a density 

fluctuation problem. The number of particles in each cluster can be considered as the 

particle density of each cluster area, and is given as,140 

 
2 2

( ) 1 2

2

1
(1 ) ( )

T T

L bN
T

B

L
L O L

N k T S


  



− −= = − + +  (4.50) 

where is the fluid density, N and N
2 are the mean and variance of particle number in 

the, L and S are dimensions of the area and the whole system, T is the isothermal 

compressibility, r
L is the expanded expression of isothermal compressibility in finite area, 

and T
(b) is the first order correction due to boundaries of the block. Isothermal 

compressibility or pair distribution function can be calculated by,145 

  
1

( )TkT Z   


−

 
=  

 
 (4.51) 
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The compressibility factor, Z(), can be approximated by Henderson’s compressibility 

factor for a hard disk system as146-147: 
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1 0.125
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Z






+
=

−
 (4.52) 

T
(b) can be approximated as, 
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 (4.53) 

which can be substituted in Eq. (4.50) to yield, 

 
2 2

2
1N L

N S


= −  (4.54) 

which relates the variance of cluster size with cluster dimension. The mean cluster size, 

N, is given by, 

 
2

02

L
N N

S
=  (4.55) 

where N0 is the total number of particles in the system. 

4.7 Computational Methods 

4.7.1 Brownian Dynamics Simulation 

Brownian Dynamics simulations used in this paper to study hierarchical assemble 

of particles were described in previous papers.38, 148 Particles were confined in a 2D plane, 

whose trajectories were based on Langevin equation as,149 



 

 112 

 H P Bd
m

dt
= + +

v
F F F  (4.56) 

where m is the particle relative mass in water, v is the particle velocity, and FH is the 

hydrodynamic forces, FP is the conservative forces due to particle interactions, and FB is 

the stochastic Brownian force. FP is given by the negative derivative of particle interactions 

defined in Eq. (2.1). FH is related to particle velocity and diffusivity as, 

 H kT

D
= −F v  (4.57) 

where D is the particle diffusivity above a no-slip plane.148, 150 FB is defined by,151 

 
( ) ( ) ( ) ( )

2 1

0

0 2

B

B B t kT D t−

=

=

F

F F
 (4.58) 

Table 4-1 Brownian Dynamic simulation parameters.  (a) Particle radii, (b) medium dielectric 

constant, (c) Debye length, (d) Clausius-Mossotti factor, (e) particle zeta potential, (f) substrate 
zeta potential, (g) temperate, (h) particle density, (i) medium density, (j) gravity constant. 

Parameter equation value parameter equation value 

a (nm)a (4.2), (4.3) 1000 s (mV)f (4.2)

,

DisplayText cannot span more than one line! 

-50 

m
b (4.6), (4.7) 78 T (K)g (4.2) 300 

-1 (nm)c (4.7) 10 p (g/cm3)h (4.8) 1.96 

fcm
d (4.6) -0.47 m (g/cm3)i (4.8) 1 

p (mV)e (4.2)

,

DisplayText cannot span more than one line! 

-50 g (m/s2)j (4.8) 9.8 

 

Particles diffuse in a quasi-2D plane above the substrate with fixed height of 

~100nm (Eq. (4.11)). The equilibrium height is calculated by considering particle gravity 

and interaction between single particle and bottom substrate.  Effects of electric fields to 

equilibrium height is neglected in the simulation. Other parameters used in the simulation 

are summarized in Table 1. Simulations were performed with an integration time of 0.01ms 

and store interval of 0.1s. Periodic boundary conditions were applied for the simulation 
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cell, which contained 3600 particles corresponding to a volume fraction of  = 0.3. 

4.7.2 Electric Field Modeling 

 

Figure 4-7 COMSOL model of electrode and electric field. (A) array of 20 by 20 electrodes 

(yellow) modeled on bottom substrate (gray). (B) Zoomed-in view. Electrode has dimension of 5m 

(W) by 5m (L) by 40nm (H), and are separated by l = 5m in orthogonal array. (C) top view of a 
sample electric field generated by activating 8 electrodes with AC voltage and used to direct 

assembly. The colorbar ranges between 0 and 0.05V//m. (D) xz-plane of the same electric field. 
Dash line shows the equilibrium height of particles, which is also the plane of lookup table.  (E) Top 
view of energy landscape of single particle interacting with electric field shown in (C). Color bar 

ranges between 0 and 40kT. (F) xz-plane of the same energy landscape plotted up to 15 m from 
bottom substrate. 

DC electric fields and time-averaged MHz AC electric fields are modeled using 

electrostatic interface of COMSOL Multiphysics. Gold electrodes are placed on the 

bottom substrate, where each electrode has dimensions of 5m (L) × 5m (W) × 40nm 

(H). To form electrode array, electrodes are separated by 5m into a regular matrix of 20 

rows and 20 columns (Fig. 4-7). The whole model box has dimensions of 400m (L) × 

400m (W) × 20 µm (H). To generate different electric fields, a subset of electrodes is 

activated with specified voltages, while others remain idle. COMSOL results suggest that 

inactivated electrodes do not distort the generated field shape. Electric fields are tabulated 

on the plane 1.5 µm above the bottom substrate, which is equivalent to the equilibrium 

height of particles electrostatically stabilized into quasi-2D structure. Electric fields have 

a spatial resolution of 0.25µm. Finer values are calculated using Barycentric interpolation 
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in simulation. 

 

Figure 4-8 Electrode conditions, electric fields, and energy landscapes. (A) Electrode 
conditions of single control cell for coarse partition (1st column), GB and morphology control, 
including octupole with equal (2nd column) and unequal voltages (3rd and 4th column), and cluster 
redistribution (5th column). Electrodes are applied with AC voltage (red), DC voltage(blue), ground 
(black), or inactive (yellow). (B) Corresponding electrode conditions of the whole array. (C) Contour 
plots of electric field magnitudes generated by electrode conditions. The plots scale between 0 and 

0.05V/m for both AC and DC fields. (D) Energy landscapes of single particle interaction with 
applied AC and DC electric fields. The plots scale between 0 and 100kT for the 1st and 5th columns, 

and between 0 and 40kT for the other columns. Superposition and approximation of DC 

electric fields 

DC electric fields are used during cluster redistribution. AC and DC electric fields 

are separately modeled using COMSOL, which assumes their energy landscapes, given 

by Eq. (2.2) and (4.9), are independent with each other. Moreover, the DC energy 

landscape is assumed to be effective only within the clusters that undergo redistribution 

and does not affect particles in surrounding clusters. This is expected to be reasonable 

because all clusters are always framed by AC electric fields, which provides a strong 

energy barrier (>100kT) between clusters and constrain particles towards cluster centers. 
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In addition, when multiple pairs of clusters undergo redistribution, the DC energy 

landscapes are independent with each other and are linearly superimposed with each 

other and with the AC energy landscape. This is valid by assuming DC energy landscape 

is confined within the redistributed clusters. Later we compare this approximation with a 

complete modeling of all existing DC electric fields. 

 

Figure 4-9 Coarse partition in a single control cell. (A) MHz AC electric fields generated using 
the electrodes shown in Fig. 4-7A, 1st column, with increasing voltages set as 0.06V (0-50s), 0.2V 

(50-100s), 1.6V (100-150s) and 2V (150-200s). The plots scale between 0 and 0.05 V/m. (B) 
Energy landscapes for single-particle interaction with AC electric field (Eq. (4.8)), which scale 
between 0 and 100kT. (C) Particles in equilibrium under each field magnitude. Particles are colored 

in white (<C6> = 0) to blue (<C6> = 1) scale. (D) Trajectories of <C6> (blue) and particle number 

within the cell area. Equilibrium particle configurations are captured at instances represented by 
dash lines. 

4.8 Coarse Partitioning 

4.8.1 Electric field  

Electric fields (Fig. 4-9B 1st column) used for coarse partitioning are generated by 

alternatively applying a constant MHz AC voltage and ground state to adjacent electrodes 

on cluster edges (Fig. 4-9A 1st column). Such array of electrodes form boundaries that 
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divide electrode array into cluster regions. Each cluster region has a dimension of L = 

60m. The energy barrier on cluster edges is determined by applied voltage.  

4.8.2 Energy landscape 

Magnitude and distribution of particle-field energy landscape is defined by Eq. 

(2.2), with electric described in previous section (Fig. 4-9C 1st column). 

4.8.3 Equilibrium microstructure 

Particles are constrained and condensed by AC electric field and energy landscape 

into isolated clusters. Degree of condensation is determined by magnitude of applied field. 

At low magnitudes, energy barrier does not prevent particles from diffusing between 

adjacent cluster. At intermediate magnitudes, energy barrier is significantly high such that 

particles are constrained within specific cluster regions. At high field magnitudes, energy 

barrier not only constrains particles into isolated areas, but also condensed them into 

crystals because of long-range decay of energy landscape from cluster edges. 

4.8.4 Control policy 

A step ramp of field is used to divide particles into separate clusters and condense 

clusters to crystal phases. The magnitude of each step is designed to create energy barriers 

between cluster areas on orders of 0.1kT, 1kT, 10kT and 100kT. 

Table 4-2 Coarse partition control strategy 

iterate with period t = 50s, increment applied voltage  

VAC = 0.06V if t < 50s 

VAC = 0.2V if 50s < t < 100s 

VAC = 1.6V if 100s < t < 150s 

VAC = 2V if 150s < t < 200s 
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4.9 Particle Redistribution 

4.9.1 Electric field  

A DC electric field is applied to direct the transfer of particles, and an AC electric 

field is applied to constrain the particles (Fig. 4-8B 5th column). DC and AC electric fields 

are modeled separately using COMSOL and then linearly sum together. This is reasonable 

because AC and DC electric fields come from a time-alternating voltage and a constant 

offset. Moreover, the interaction between particles and each type of field, as given in Eq. 

(2.2) and (4.9), are independent with each other. DC electric field is oriented such that 

active electrodes are around the cluster with larger size, and 9 ground electrodes are placed 

at the center of the cluster with smaller size (Fig. 4-8A 5th column). Particles migrate along 

generated field gradient as defined by Eq. (4.9). AC electric field is used to hold particles 

in two clusters and prevent the DC field from affecting surrounding clusters. As a result, 

when multiple DC fields are applied to simultaneously direct transfers between different 

pairs of clusters, the overall DC field is a linear summation of each individual part. When 

transfer operation is completed, AC electric fields same as used in coarse partitioning are 

applied to split the redistributed clusters and hold particles back cluster centers (Fig. 4-8B 

1st column).  

4.9.2 Energy landscape 

Energy landscapes caused by AC and DC electric fields are computed separately 

by Eq. (4.8) and (4.9). The final energy landscape is assumed to be a linear summation of 

the two components (Fig. 4-8C 5th column). Moreover, when multiple DC electric fields 

are applied simultaneously, they are considered to be independent with each other. Fig. 4-

10 compares COMSOL simulations between a complete calculation of all DC fields and a 
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linear summation of individually calculated fields. To approximate the periodic boundary 

condition, the electrode array is repeated by 9 times into a matrix of 3×3 (Fig. 4-10A). The 

AC electric field applied on a single electrode array is shown in Fig. 4-10B, which is similar 

to the coarse partitioning field except that the barrier between transferred clusters are 

removed. The resulting energy landscape has local energy minima in each separated cluster 

(Fig. 4-10C). The DC electric field is modeled by replicating the array for 9 times (Fig. 4-

10D), where all three sets of DC fields are modeled in each array (Fig. 4-10E). The 

calculated energy landscape is therefore an exact solution (Fig. 4-10F). By superimposing 

both components, the final energy landscape is shown in Fig. 4-10I. For every pairs of 

redistributed clusters, an energy gradient exists due to DC fields. For other unaffected 

clusters, energy landscape drops from cluster edge to center, which constrain particles in 

each cluster. On the other side, the overall energy landscape can be obtained approximated 

by superimposing AC field (Fig. 4-10C) with multiple sets of single DC field (Fig. 4-10H). 

The resulting field is given in Fig. 4-10J, which is very close to the complete model given 

in Fig. 4-10I. The major difference is the energy profile of the cluster on the leftmost of 

second row, which are slightly affected the surrounding DC fields. However, this is 

negligible considering the overall energy barrier that holds this cluster is ~100kT.  
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Figure 4-10 Comparison between approximated and exact solutions of superimposed energy 
landscapes. (A) Full COMSOL simulation model for the AC electric field, where the periodic 
boundary condition is approximated by replicating the original electrode array by 8 times. (B) 
Electrode design in COMSOL of the original simulated electrode array. Red and black electrodes 
represent active AC and ground electrodes. (C) COMSOL modeling of the energy landscape due 
to particle interaction with AC electric field. The plot scales between 0 and 100 kT. (D) Full 
COMSOL simulation model for the DC electric field, where the periodic boundary condition is 
approximated by replicating the original electrode array by 8 times. (E) Electrode design in 
COMSOL of the original simulated electrode array. Blue and black electrodes represent active DC 
and ground electrodes. (F) COMSOL modeling of the energy landscape due to particle interaction 
with DC electric field. The plot scales between 0 and 20 kT. (I) Linear summation of energy 
landscapes in (C) and (F), which is assumed to be the exact solution for particle interactions under 
AC and DC fields. The plot scales between 0 and 100 kT. (H) COMSOL model of a single set of 
DC electric field (left) and its corresponding energy landscape (right) scaled between 0 and 100kT. 
(J) Approximated energy landscape, in which the single DC energy landscape shown in (H) is 
superimposed to corresponding cluster regions in (C). 

4.9.3 Equilibrium microstructure 

At equilibrium states, all clusters are held by AC field and energy landscape. During 

cluster redistribution, DC fields are applied to certain pairs of adjacent clusters, between 

which a specific number of particles are moved. Once target number of particles are moved 

to the other cluster, DC field is turned off and AC fields are reapplied to equilibrate 

particles into respective clusters. The process repeats until all clusters have same sizes. 
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4.9.4 Control policy 

4.9.4.1 Control Policy for Pair-wise Cluster Redistribution 

 

Figure 4-11 Transfer operation between two adjacent clusters. (A) Applied electric fields, where 
the first two columns are linear superpositions of DC and MHz Ac electric fields, and the last two 

columns are MHz AC electric fields. The plots scale between 0 and 0.05 V/m. (B) Energy 
landscapes, where the first two columns are linear summation of interactions between particles and 
DC (Eq. (4.9)) and MHz AC (Eq. (4.8)) electric fields, and the last two columns are based on 
interaction with MHz AC electric fields only. The plots scale between 0 and 100kT (C) Particle 
renderings captured throughout the redistribution process, where black and grey particles 
represent the two clusters. (D) Cluster sizes (black and gray) and applied DC (red) and AC (blue) 
voltages. Dash lines correspond to capture times of (C). 

Control policy is designed at two levels. At the low level, particle redistributed from 

the controlled cluster to an adjacent cluster is achieved using direction DC electric field 

and AC electric field (Fig. 4-11). Applied voltages are given by, 
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where N is the number of particles in the controlled cluster, N0 is the initial number of 

particles in the controlled cluster N is the number of particles to be moved. All clusters 

are initially held with AC fields. when N particles need to be transferred between two 

clusters, the DC field is applied at maximum magnitude to propel particles in the controlled 

cluster towards the other cluster (Fig. 4-11 1st column). As soon as the first particle exceeds 

cluster boundary, a reduced DC field is applied to fine control transport process (Fig. 4-11 

2nd column). When the target cluster size is reached, the DC field is turned off and AC field 

is re-applied (Fig. 4-11 3rd column). Particles in both clusters eventually reach equilibrium 

positions again (Fig. 4-11 4th column). 

 

Figure 4-12 Optimal cluster redistribution strategy. (A) Manhattan norm (distance) between 
clusters with respect to the center in a L/S = 1/3 array. (B) A sample distribution of N0 = 3600 
particles formed by coarse partitioning. (C) A transfer operation between the most inequal clusters 
adjacent to each other (d = 1), which is the most preferred operation according to the greedy 
planning algorithm. (D) A summary of all transfers between adjacent clusters (d = 1). (E) An 
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operation between diagonal clusters (d = 2), which is needed in order to equalize clusters as shown 
in (B).  (F) two potential transfer paths (solid and dash arrows) that are equivalent to the diagonal 
transfer. Red arrow shows an existing operation in (D). (G-I) Transfer operations are parallelized 
into three steps. Red arrows represent moves initially between adjacent clusters and blue arrows 
represent moves initially between diagonal clusters. 

4.9.4.2 Optimized Redistribution Strategy based on Pair-wise Transfer Operations 

The high level of redistribution policy is to optimize the number of moved particles 

to equalize cluster size (Fig. 4-12). The optimization is conducted using greedy algorithm 

(Policy 1). Particle transfers are planned between closest clusters first. Cluster distance is 

defined by the Manhattan norm as, 

 ( ),i j i j i jd N N x x y y= − + −  (4.60) 

where Ni and Nj are two clusters and (xi, yi) and (xj, yj) are their cluster positions (Fig. 4-

12A). For example, adjacent clusters have distance of one, and diagonal clusters have 

distance of two. For an array of 3x3 clusters with periodic boundary condition, the 

maximum distance is two, which correspond to diagonal clusters. The Manhattan norm is 

equivalent to the number of pair-wise transfer operations needed to move particles between 

two clusters. By greedy algorithm, transfers are prioritized between closer clusters. Local 

cluster redistribution is more desired than global redistribution because the former requires 

less transfer operations than the latter. Between equal distance clusters, transfers are 

prioritized by number of particles to be transferred, which is given as, 

  ( )min ,i jN N N N N = − −  (4.61) 

where N is the mean cluster size. Particles are redistributed until the first of the two 

clusters reaches mean cluster size. This prevent unnecessary transfers. Fig. 4-12B presents 

a distribution based on 3×3 clusters, where mean cluster size is 400. Fig. 4-12C shows the 
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transfer operation between two adjacent clusters (d = 1) that has the largest number of 

transferred particles. Fig. 4-12D shows a summary of all transfer operations between 

adjacent clusters (d = 1), and Fig. 4-12E shows a summary of transfers between diagonal 

clusters (d = 2), which has only one move for this specific case, and is determined after all 

adjacent cluster redistributions are conducted. Through transfers shown in Fig. 4-12D-E, 

all clusters end with equal sizes.  

While redistribution between adjacent clusters can be directly carried out using a 

single transfer operation, redistribution between further distanced clusters has to be done 

into multiple steps through consecutively adjacent clusters. In this situation, multiple paths 

can be available, and the one that requires minimum additional transfer operations is 

preferred. For example, Fig. 4-12F shows the situation where a transfer between diagonal 

clusters can be carried out in two paths. The solid arrow requires one additional transfer 

operation, because the operation in vertical direction coincides with a previous transfer and 

therefore can be merged. The two operations following the dash arrow path, on the other 

side, are both new compared with previous operations. When multiple equivalent paths 

exist, a random path is selected. Finally, all transfers can be parallelized if they involve 

different clusters (Fig. 4-12G-I).  

The total number of misplaced particles is defined as, 

 
1

2
mp i

i

N N N= −  (4.62) 

which is half the differences between every cluster size and mean cluster size. This value 

represents the minimum number of particles need to be redistributed in order to equalize 

all clusters. The actual number of particles being moved is given as, 
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 ( ) ( ), ,mN d i j N i j=   (4.63) 

where d(i, j) and N(i, j) are the distance and number of particles transferred between cluster 

Ni and Nj. Because transfer is possible between adjacent clusters only, a total of d transfer 

operations is required to redistribute particles between clusters of distance d. Nm represent 

the actual number of particles transferred and is always larger than or equal to Nmp. 

Table 4-3 Minimize number of transferred particles 

start from closest clusters d (Ni, Nj) = 1, 2, 3, … 

start from most inequal clusters |Nx – Ny| = max(|Ni – Nj |) 

move minimum number of particles N = min(|Nx – Nave|, |Ny – Nave|) 

 

Table 4-4 Cluster Redistribution control policy 

iterate transfer steps planned by Table 4-3  

if no particle pass cluster boundary,  if N = 0 

apply high DC voltage VDC = 0.4V 

then if target transfer number is not achieved, if N < min(|Ni –N|, |Nj –N|) 

apply low DC voltage VDC = 0.1V 

then if target transfer number is achieved, if N = min(|Ni –N|, |Nj –N|) 

turn off DC voltage VDC = 0V 
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4.10 Remove Grain Boundaries 

 

Figure 4-13 Grain boundary remove in a unit cluster. (A) MHz AC electric fields applied during 

each period of control. The plots scale between 0 and 0.05 V/m. (B) Energy landscapes for single 
particle interaction with AC fields. The plots scale between 0 and 40kT. (C) Equilibrium particle 
configurations under each field shape. Grain boundary particles are colored in yellow and others 

are colored according to 6 of each cluster in white (6 = 0) to red (6 = 1) scale. (D) Control 

parameters, including crystallinity 6 (red) and grain orientation  (yellow) related to anisotropic 
field orientation for each cluster. Dash lines correspond to capture times of (C). 

 

4.10.1 Electric field  

MHz AC electric field is used to control removal of grain boundaries 

simultaneously in all clusters. Eight electrodes are activated, where four of them are ground 

and other four are active and grouped into diagonal pairs (Fig. 4-13A). Every adjacent 

cluster region shares two electrodes, and therefore resulting electric fields are in mirror 

position. Field shape in each cluster region is controlled by the relative voltage applied to 

the two pair of active electrodes. When two voltages are equal, the resulting field is 

isotropic. When two voltages are inequal, the field elongates towards the electrodes with 
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lower voltage. To minimize complexity of field, only two anisotropic field directions are 

designed, which are used in the control. Minimum voltage required to full crystallize a 

given number of particles can be determined theoretically based on thermodynamic phase 

behavior of colloid system. 

4.10.2 Energy landscape 

Magnitude and distribution of particle-field energy landscape is defined by Eq. 

(4.8) and shown in Fig. 4-13B. Energy landscape is proportional to square of MHz AC 

electric fields. 

4.10.3 Equilibrium microstructure 

Equilibrium configurations of particles under isotropic and anisotropic fields can 

be derived in theory by balancing the gradient of energy landscape with osmotic pressure 

due to particle condensation. Particle configurations follow closely to field and energy 

landscape shapes. During the control process, meanwhile, a true equilibrium 

microstructure is never formed, because fields are constantly changed during each control 

period, so that particles only asymptotically approach equilibrium positions. 

4.10.4 Control policy 

An open loop policy is used in this paper to direct the removal of grain boundaries 

in hierarchical colloidal clusters (Policy 2). The policy iterates with constant period time. 

In each period, an isotropic and one of the two anisotropic fields are alternatively applied. 

The first period is always anisotropic, where the field orientation is randomly chosen. In 

the subsequent anisotropic periods, the perpendicular field direction from the previous 
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anisotropic period is used. The endpoint is defined as when 6>0.99 for all clusters. The 

control immediately terminates when the endpoint condition is met. 

Table 4-5. Remove grain boundaries in all clusters 

iterate with period time t = 40s  

endpoint detection every second  end if 6>0.99 for all clusters 

for first half of period, apply anisotropic field V1 ≠ V2 when t < 0.5t 

random orientation V1 > V2 if U (0,1) > 0.5, else V1 < V2 

for second half of period, apply isotropic field V1 = V2 when t > 0.5t 

 

4.11 Morphology Control 

4.11.1 Electric field  

MHz AC electric fields same as in grain boundary remove control are used here.  

4.11.2 Energy landscape 

Energy landscape is defined by single particle interaction with MHz AC electric 

field given in Eq. (4.8). 
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4.11.3 Equilibrium microstructure 

 

Figure 4-14 Morphology control in a unit cluster. (A) MHz AC electric fields applied during each 

period of control. The plots scale between 0 and 0.05 V/m. (B) Energy landscapes for single 
particle interaction with AC fields. The plots scale between 0 and 40kT. (C) Equilibrium particle 
configurations under each field shape. Grain boundary particles are colored in yellow and others 

are colored according to 6 of each cluster in white (6 = 0) to red (6 = 1) scale. Cyan arrows point 
in the direction of morphology long-axis, and the length of arrows is (1-c)∙R, where c is the 

morphology circularity and R = (N∙a2/cp)1/2 is the characteristic size of cluster. (D) Control 

parameters, including crystallinity 6 (red) and morphology circularity c (cyan). Dash lines 
correspond to capture times of (C). 

Equilibrium behaviors of particles and clusters are identical to cases in grain 

boundary removal control. In addition, because clusters are in perfectly ordered structure 

at the beginning of morphology control, lattice rigidity further hinders formation of truly 

equilibrium structures as predicted by thermodynamics. 

4.11.4 Control policy 

Morphology control restores the shape of all clusters to circular with a single period 

of control. First, the anisotropic field perpendicular to the morphology orientation is 

applied until circularity is unity (c >0.99). Circular morphology can be simultaneously 

achieved for all clusters because both anisotropic fields and cluster morphology are in 
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mirror symmetry for adjacent clusters. Morphology change in the same direction for all 

clusters. Next, an isotropic field is applied to hold clusters until perfect crystallinity is 

achieved (6>0.99). With grain boundary remove control, interior grain boundary defects 

are all removed. Remaining defects at the beginning of isotropic period is due to local 

misorientation from morphology restoration. Such type of defects can be removed by 

thermo motion of particles and local re-organization, and therefore a simple hold using 

isotropic field is sufficient to achieve perfect crystals. In the rare case, where interior grain 

defects are re-introduced during morphology control, grain boundary remove control can 

be reapplied, after which morphology control can be tried again. In practice, however, such 

case has never been seen.  

Table 4-6. Restore circular morphology for all clusters 

if anisotropic morphology exists  if c<0.99 for any cluster 

apply anisotropic field perpendicular to 

morphology circularity 
V1 > V2 if  −  < 45o, else V1 < V2 

then if perfect crystals are not formed if 6<0.99 for any cluster 

apply isotropic field V1 = V2 

 

4.12 Cluster Redistribution for Different Systems Sizes  

Fig. 4-15A, C, E show distributions of cluster size for L/S = 1/2, 1/3, and 1/5, which 

correspond to arrays of 2×2, 3×3, and 5×5 clusters. colored bars represent histograms 

obtained from 1000 configurations in each condition, and curves represent Gaussian 

distributions whose  mean and variance are predicted using Eq. (4.54) and (4.55). Fig. 4-

15G plots the relationship between mean and standard deviation of cluster distribution and 

the dimension of cluster. Dash line is given by N=3600(L/S)2, which is the mean cluster 

size for all cluster dimensions. Fig. 4-15B, D, F show relationship between misplaced 

particle number, Nmp, given in Eq. (4.62), and total number of moved particles, Nm, given 
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in Eq. (4.63). Fig. 4-15H shows the mean and standard deviation of moved particles for 

different cluster dimensions. 

 

Figure 4-15 Statistics of cluster size and redistribution operation. (A, C, E) Distribution of 
cluster sizes by coarse partitioning for cluster dimensions of L/S = 1/2 (blue), 1/3 (green), and 1/5 
(red). Bars are histograms measured over 1000 configurations. Curves are gaussian distributions 
predicted by density fluctuation theory in Eq. (4.54) and (4.55). The mean cluster sizes are 900, 
400, and 144, and standard deviations are 26, 19, 12 for L/S = 1/2, 1/3, and 1/5. (B, D, F) 
Correlation between total number of misplaced particles (Nmp, Eq. (4.62)) and total number of 
particles moved (Nm, Eq. (4.63)) for each cluster dimension. Each scatter plot shows 200 data 
points. (G) dependency of mean and standard deviation of cluster size on cluster dimension. Error 
bars show standard deviations, dash line shows the analytical equation for mean cluster size as 
predicted by Eq. (4.55). (H). Relationship between total number of moved particles and the cluster 
dimensions. 1000 configurations are considered for each cluster dimension. Dash line is an 
empirical fitting given as Nm=17(L/S)0.35. 

Distribution of cluster sizes can be predicted by density fluctuation theory, because 

the sizes are determined by the configuration of particles when coarse partitioning field is 

applied. Mean cluster sizes can be calculated by Eq. (4.55), which gives N = 900, 400, 

and 144 for cluster dimensions of L/S = 1/2, 1/3, and 1/5. The standard deviation can be 

calculated by Eq. (4.54), which gives N
2 = 26, 19, and 12 for each case. As cluster 

dimension increases, the standard deviation of cluster size decreases. Meanwhile, when 

considering total number of particles misplaced or being moved to equalize cluster sizes 

(Fig. 4-15B, D, F), both numbers increases with cluster dimension. Although for each 

cluster, the deviation of cluster size is smaller for smaller cluster dimension, more clusters 
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exist in the whole system. Overall, more particles need to be redistributed for smaller 

cluster dimensions. In addition, with smaller cluster dimensions, transfer of particles 

between clusters can take more operations, and therefore the total number of moved 

particles, which weights number of transferred particles with distance of transfer, also 

increases. If all particles moves are conducted directly between adjacent clusters, in which 

case a single operation is needed, the total number of misplaced particles is equal to the 

number of moved particles. Deviation between these two parameters correspond to the 

extra operations required for long-distance transfers. For smaller cluster dimensions, the 

scattered data are more deviated from the diagonal line.  
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4.13 Assembly of Perfect Crystals of Different Sizes 

 

Figure 4-16 Yield of perfect crystals for different cluster sizes. (A) System with cluster 

dimension of L/S = 1/2, which correspond to N = 900 particles. Renderings show circular 
morphology with defects (left), anisotropic morphology with defects (middle), and circular perfect 

crystals (right). Grain particles are colored in yellow and other particles are colored by local 6 in 

white (6 = 0) to red (6 = 1) scale. Cyan arrows point in the direction of morphology long-axis, and 

the length of arrows is (1-c)∙R, where c is the morphology circularity and R = (N∙a2/cp)1/2 is the 
characteristic size of cluster. (B) Yield of hierarchical crystals with cluster dimension of L/S = 1/2. 

Histogram represent instantaneous yields (t = 5s) and the curve represents cumulative yield. 
Times for different percentages of yields are: 49s (25%), 79s (50%), 100s (75%), and 134s (100%). 

(C) System with cluster dimension of L/S = 1/3, which correspond to N = 400 particles. Renderings 
show circular morphology with defects (left), anisotropic morphology with defects (middle), and 
circular perfect crystals (right). (D) Yield of hierarchical crystals with cluster dimension of L/S = 1/3 
with same legend definition as in (B). Times for different percentages of yields are: 20s (25%), 45s 
(50%), 72s (75%), and 129s (100%). (E) System with cluster dimension of L/S = 1/5, which 

correspond to N = 144 particles. Renderings show circular morphology with defects (left), 
anisotropic morphology with defects (middle), and circular perfect crystals (right). (F) Yield of 
hierarchical crystals with cluster dimension of L/S = 1/5 with same legend definition as in (B). Times 
for different percentages of yields are: 12s (25%), 22s (50%), 30s (75%), and 48s (100%). 
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Fig. 4-16 shows yields of perfect crystals with circular morphology as a function 

of time for systems dimensions of L/S = 1/2, 1/3, and 1/5, where each cluster has N = 900, 

400, and 144 particles. Result of each system size is averaged over 1000 cycles of 

simulation. For each simulation, all clusters have equal sizes and are controlled 

simultaneously following open loop policies for grain boundary remove and morphology 

control as described in previous sections. The initial states are generated by randomly 

quenched particles into isotropic morphologies. The time is defined as when all clusters 

form perfect crystals (6>0.99) with circular morphology (c>0.99). 

Overall a shorter assembly time is observed for finer clusters. A significant portion 

of clusters in L/S = 1/5 are already in perfect crystal state through random quenching, and 

therefore the early successes are more frequent than other cluster dimensions. In addition, 

defects are closer to periphery for small clusters, and so a rapid diffusion is observed, which 

causes the quick termination of all simulations. Larger clusters, on the other hand, may 

contain multiple defects deep inside of cluster. As a result, longer times are needed to 

achieve perfect structure. 
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5 CONLCUSIONS AND FUTURE WORK 

 

5.1 Summary and Conclusion 

This dissertation contained three focuses. First, the fundamental thermodynamics 

of colloids under different phases are generated and studied. Second, assembly of colloids 

into perfect circular crystals are controlled using morphing external fields. Last, a 

hierarchical assembly strategy is proposed to form ordered crystals on top of electrode 

array. The following conclusions are based on each of these focuses as presented in this 

dissertation. 

5.1.1 Equilibrium Distribution of Colloids under 2D Energy Landscapes 

A method was developed to determine concentration profiles and local phase 

behavior on energy landscapes that vary in more than one spatial coordinate. A general 

expression was derived based on local osmotic pressure differences balancing forces on 

colloids due to energy landscape gradients (when concentration and energy gradients are 

large compared to the particle size). This analysis is used to study colloidal particles in 

high frequency AC electric fields, where an octupolar electrode is used to tune the 

amplitude and shape of electric fields and resulting energy landscapes. By modeling the 

colloidal particles with an effective hard disk equation of state based on perturbation 

theory, it is shown that concentration profiles of locally non-uniform solid and fluid phases 

can be predicted for a variety of different 2D energy landscape shapes including multiple 

energy minima. Results are compared to Brownian Dynamic simulations to confirm the 

predictions of the theoretical model against time averaged equilibrium particle 
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configurations. Findings include practical details of determining concentration profiles and 

cross sections based on different known and unknown variables. Findings from this work 

demonstrate a general approach for obtaining concentration profiles and local phase 

behavior on multi-dimensional energy landscapes for colloids interacting with a variety of 

external fields. The reported approach is amenable to controlling colloidal microstructure 

on morphing energy landscapes and to the inverse design of external fields and energy 

landscapes based on desired colloidal concentration profiles (e.g., hierarchically patterned 

crystals). 

5.1.2 Assembly of Colloidal Crystals under Morphing External Fields 

We developed a new feedback controlled approach using morphing energy 

landscapes to remove GBs and produce circular shapes in colloidal crystals. We 

demonstrated this approach in microscopy and simulation experiments for colloidal 

particles in AC electric fields, although the reported approach is generalizable to any 

morphing energy landscape. We discovered how easily accessible energy landscape shapes 

and orientations together could enhance coupled GB and crystal morphology relaxation 

processes. Based on this finding, RL was used to develop an optimized control policy to 

close the loop between sensing states and actuating morphing energy landscapes to rapidly 

and reliably produce defect-free circular crystals. 

The resulting optimized control enabled by morphing energy landscapes is superior 

to benchmarks and is scalable to different system sizes. Statistical comparisons of 

controlled stochastic trajectories quantify the speed and accuracy of producing defect-free 

circular crystals, where: (1) feedback controlled morphing energy landscapes produces 

perfect crystals an order of magnitude faster than feedback controlled isotropic landscapes, 



 

 136 

and (2) both feedback controlled methods are dramatically faster than the nearly 

unbounded times required for uncontrolled relaxation of defective crystals into perfect 

structures. The key element provided by morphing energy landscapes that enables rapid 

creation of perfect crystals is the ability to exert anisotropic stresses to control crystal 

defects/shapes without melting, which is inherently faster than repeated melting/freezing 

(disassembly/assembly) processes. Finally, this new control approach is scalable to 

different system sizes, with average times for creating defect-free circular crystals 

increasing as N0.5. In short, morphing energy landscapes in conjunction with optimized 

feedback control can assemble defect-free colloidal crystals with non-trivial improvements 

to speed and scaling compared to state-of-the-art methods. 

Future work could extend the scalability of our approach, most likely without the 

need for higher fidelity control. Addressing multiple crystals on electrode arrays, or any 

periodic landscape, via parallel and serial combinations of our control approach, could be 

used to merge adjacent crystals into larger crystals or to create hierarchical patterned crystal 

structures. Given the success of elliptically shaped landscapes in this work, it is not obvious 

that more complex shaped landscapes would improve speed or reliability. For example, 

even in the limit of individually controlling every particle on highly complex landscapes, 

limitations due to cooperative re-arrangement processes would not obviously allow for 

faster net processes than coarse control of directional stresses within crystals via local field 

anisotropy. One further extension of this work is to control assembly of anisotropic 

colloidal particles, which have additional complexities due to additional orientational 

degrees of freedom important to equilibrium and non-equilibrium structures as well as 

defects. Ultimately, controlling locally repeating shapes on periodic landscapes could 
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produce many defect-free local structures that collectively lead to a global defect-free 

hierarchical structure. 

5.1.3 Assembly of Hierarchical Crystals on Electrode Array 

We reported a computational study of self-assembly of hierarchical colloid crystals 

from liquid phase using an electrode array. The process was divided into steps of coarse 

partitioning, cluster redistribution, and grain boundary and morphology control. Various 

types of DC and MHz AC electric fields were generated to facilitate different controls to 

colloid morphology and dynamics. We also investigated the scalability of problem for 

cluster redistribution and grain boundary and morphology control in terms of cluster 

dimension, L/S. Specifically, we presented an optimal redistribution strategy based on 

greedy planning algorithm and a Manhattan distance between clusters. We also presented 

an open loop strategy to direct the assembly of perfect, circular crystals. 

The proposed strategy achieves accurate control to cluster size, crystallinity, and 

shape. The work is based on a simple design of electrode array, where each electrode can 

be individual activated with AC (alternating) and DC (offset) voltages. With the electrode 

array, we demonstrate control of colloidal phase behavior, nonequilibrium transport, and 

morphology and grain boundary defects. Based on this work, we further proposed a number 

of potential applications with electrode array. More cluster geometries can be formed using 

the electrode array, which can be used to study spherical as well as anisotropic particles. 

Moreover, electrode array can be used to control colloidal assembly on periodic droplet 

interfaces, or assembly of 3D microstructures. Finally, more complex structures, for 

example gears, can be obtained using an electrode array, which can be used to design 

micromotors. 
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5.2 Future Work 

This dissertation demonstrates broad applications of controlling colloidal 

morphology and phase behavior with electric fields. This could enable future works in two 

ways. First, the general strategy to control colloids under external fields can be extended 

to more sophisticated systems, in which both fundamental behaviors and practical 

applications of colloids can be studied. Second, the diversity of electrode design and types 

of interactions between particles and electric field can be further developed in searching 

for more complex colloidal controls. 

5.2.1 Colloidal Interactions in Nonaqueous Medium 

The interactions between particles and with external electric fields are less well 

understood compared with aqueous systems. The low dielectric constant of nonaqueous 

medium can often reduce or fundamentally change the particle behaviors. The applications 

of colloids in nonaqueous systems, on the other hand, are ubiquitous and often possess 

practical and commercial interests. Controlling individual particles as well as cluster of 

particles are therefore both challenging and intriguing. The electrode design and electric 

fields discussed in this dissertation are naturally applicable to nonaqueous system without 

further modification.  

5.2.2 Assembly on Periodic Interfaces 

Strong interaction between colloids and oil-water interfaces has been known for 

many years.152 Many interactions exist between particles on the interface, which affects 

their equilibrium configurations, dynamic properties, and various applications.153 Some 
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interactions that are well understood in bulk phase is less clear between particles at 

interfaces.154 Unpredicted structures are often observed that are against commonly 

accepted theories of colloidal interactions.154 Moreover, assembly on curved interface adds 

another layer of complexity than regular 2D assembly, because periodic structures often 

contains geometry-based defects as well as other types of defects. The characterization of 

crystal lattice on a curve interface, therefore, is substantially different from a flat surface 

and requires both physical and mathematical models to understand. Electrode array can be 

used to direct assembly at interfaces, which is identical to other types of electric field 

mediate assembly problem but with better reconfigurability with geometry of interfaces. 

Moreover, electrode array can be used to achieve hierarchical assembly on periodic curved 

interfaces, which might be more interesting in designing novel nanostructures. 

5.2.3 Assembly of Anisotropic Particles 

Anisotropic particles are known as building blocks of many biomimicry functional 

materials and possess unique mechanical, optical, and electrical properties.155 Anisotropic 

nanomaterials give rise to similarly anisotropic properties.156 The assembly of anisotropic 

species into ordered, isotropic or anisotropic structures are inherently more complex than 

isotropic particles. Orientational order of particles with nearby particles are critical in 

achieving desired microstructures.157 In addition, understanding geometry-dependent 

colloidal interactions is still an ongoing research. External field mediate assembly of 

anisotropic particles can often achieve high level of alignment and order.155 In particularly, 

electric field has been used to direct assembly of many anisotropic particles. Many particles 

can be polarized under electric field and form chains and other ordered structures.158 

Moreover, the equilibrium orientation and position of anisotropic particles can also be 
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controlled with tunable electric fields. Electrode array has been shown to be versatile and 

capable of forming a wide variety of field shapes and conditions. It is most suitable to study 

equilibrium behaviors of anisotropic particles under different conditions. In addition, the 

control approaches developed in this dissertation can provide clues to anisotropic particle 

controls. The anisotropic electric fields, for example, can be a natural fit to the control of 

similarly anisotropic particles. 

5.2.4 Control of complex Colloidal Structures and Micromotors 

Active particles or micromotors are studied with potential applications in 

biomedicine, mechanical engineering, and environmental engineering.154, 159 One 

perspective is to design self-propelled particles, also known as microswimmers, which 

could navigate in confined environment and actively searching for specific targets and 

sites.160 Another possible strategy is to direct the particle translocation via extern field.161 

This can be potentially interesting in achieving functionalities of micromotors without 

chemical or structural modifications to particles. By harvesting external energy and 

converting to its own kinetic energy, particles can act as micro-cargo carriers to capture, 

transport, and release other objects. They can also be studied as the model for collaborative 

functions of natural material and living species. Electrode array is capable of generated 

complex and dynamic external fields to assemble and drive colloidal micromotors as single 

particle or ensemble cluster. In addition, some of the control planning algorithms, such are 

reinforcement learning, are inherently suitable for such robotic planning and control tasks.  

  



 

 141 

REFERENCES 

1. Moffitt, J. R.; Chemla, Y. R.; Smith, S. B.; Bustamante, C., Recent Advances 

in Optical Tweezers. Annual Review of Biochemistry 2008, 77 (1), 205-228. 

2. Dinsmore, A. D.; Crocker, J. C.; Yodh, A. G., Self-assembly of colloidal 

crystals. Current Opinion in Colloid & Interface Science 1998, 3 (1), 5-11. 

3. Ye, X.; Qi, L., Two-dimensionally patterned nanostructures based on 

monolayer colloidal crystals: Controllable fabrication, assembly, and 

applications. Nano Today 2011, 6 (6), 608-631. 

4. Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M., Directed Self-

Assembly of Nanoparticles. ACS Nano 2010, 4 (7), 3591-3605. 

5. Hermanson, K. D.; Lumsdon, S. O.; Williams, J. P.; Kaler, E. W.; Velev, O. 

D., Dielectrophoretic Assembly of Electrically Functional Microwires from 

Nanoparticle Suspensions. Science 2001, 294 (5544), 1082. 

6. Tracy, J. B.; Crawford, T. M., Magnetic field-directed self-assembly of 

magnetic nanoparticles. MRS Bulletin 2013, 38 (11), 915-920. 

7. Greving, I.; Cai, M.; Vollrath, F.; Schniepp, H. C., Shear-Induced Self-

Assembly of Native Silk Proteins into Fibrils Studied by Atomic Force 

Microscopy. Biomacromolecules 2012, 13 (3), 676-682. 

8. Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. 

M.; Grzybowski, B. A., Electrostatic Self-Assembly of Binary Nanoparticle 

Crystals with a Diamond-Like Lattice. Science 2006, 312 (5772), 420. 

9. Swan, J. W.; Vasquez, P. A.; Whitson, P. A.; Fincke, E. M.; Wakata, K.; 

Magnus, S. H.; Winne, F. D.; Barratt, M. R.; Agui, J. H.; Green, R. D.; Hall, 

N. R.; Bohman, D. Y.; Bunnell, C. T.; Gast, A. P.; Furst, E. M., Multi-scale 

kinetics of a field-directed colloidal phase transition. Proceedings of the 

National Academy of Sciences 2012, 109 (40), 16023. 



 

 142 

10. Beckham, R. E.; Bevan, M. A., Interfacial colloidal sedimentation 

equilibrium. I. Intensity based confocal microscopy. The Journal of Chemical 

Physics 2007, 127 (16), 164708. 

11. Russel, W. B.; Saville, D. A.; Schowalter, W. R., Colloidal Dispersions. 

Cambridge University Press: New York, 1989. 

12. Anderson, J. L., Colloid transport by interfacial forces. Ann. Rev. Fluid Mech. 

1989, 21, 61-99. 

13. Morgan, H.; Green, N. G., AC electrokinetics: colloids and nanoparticles. 

Research Studies Press: Philadelphia, PA, 2003. 

14. Lim, J.; Lanni, C.; Evarts, E. R.; Lanni, F.; Tilton, R. D.; Majetich, S. A., 

Magnetophoresis of Nanoparticles. ACS Nano 2011, 5 (1), 217-226. 

15. Biben, T.; Hansen, J.-P.; Barrat, J.-L., Density profiles of concentrated 

colloidal suspensions in sedimentation equilibrium. J. Chem. Phys. 1993, 98 

(9), 7330-7344. 

16. Lu, M.; Bevan, M. A.; Ford, D. M., Interfacial Colloidal Sedimentation 

Equilibrium  II. Closure based Density Functional Theory. J. Chem. Phys. 

2007, 127, 164709. 

17. Perrin, J. B., Realite moleculaire (Molecular Reality). J. Ann. Chim. Phys. 

1909, 18, 1. 

18. Perrin, J., Atoms. D. van Nostrand Company: New York, 1916. 

19. Carnahan, N. F.; Starling, K. E., Equation of state for nonattracting rigid 

spheres. J. Chem. Phys. 1969, 51, 635. 

20. Hall, K. R., Another Hard-Sphere Equation of State. J. Chem. Phys. 1972, 57 

(6), 2252-2254. 

21. Hachisu, S.; Takano, K., Pressure of Disorder to Order Transition in 

Monodisperse Latex. Advances in Colloid and Interface Science 1982, 16, 233-

252. 



 

 143 

22. Davis, K. E.; Russel, W. B.; Glantschnig, W. J., Disorder-to-Order Transition 

in Settling Suspensions of Colloidal Silica: X-ray Measurements. Science 

1989, 245, 507-510. 

23. Rutgers, M. A.; Dunsmuir, J. H.; Xue, J.-Z.; Russel, W. B.; Chaikin, P. M., 

Measurement of the hard-sphere equation of state using screened charged 

polystyrene colloids. Phys. Rev. B 1996, 53 (9), 5043-5046. 

24. Barker, J. A.; Henderson, D., Perturbation Theory and Equation of State for 

Fluids. II. A Successful Theory of Liquids. J. Chem. Phys. 1967, 47 (11), 4714-

4721. 

25. Beckham, R. E.; Bevan, M. A., Interfacial Colloidal Sedimentation 

Equilibrium I. Intensity Based Confocal Microscopy. J. Chem. Phys. 2007, 

127, 164708. 

26. Luigjes, B.; Thies-Weesie, D. M. E.; Erné, B. H.; Philipse, A. P., 

Sedimentation equilibria of ferrofluids: II. Experimental osmotic equations 

of state of magnetite colloids. Journal of Physics: Condensed Matter 2012, 24 

(24), 245104. 

27. Beltran-Villegas, D. J.; Schultz, B. A.; Nguyen, N. H. P.; Glotzer, S. C.; 

Larson, R. G., Phase behavior of Janus colloids determined by 

sedimentation equilibrium. Soft Matter 2014, 10 (26), 4593-4602. 

28. Ginot, F.; Theurkauff, I.; Levis, D.; Ybert, C.; Bocquet, L.; Berthier, L.; Cottin-

Bizonne, C., Nonequilibrium Equation of State in Suspensions of Active 

Colloids. Physical Review X 2015, 5 (1), 011004. 

29. Sherman, Z. M.; Swan, J. W., Dynamic, Directed Self-Assembly of 

Nanoparticles via Toggled Interactions. ACS Nano 2016, 10 (5), 5260-5271. 

30. Savenko, S. V.; Dijkstra, M., Sedimentation and multiphase equilibria in 

suspensions of colloidal hard rods. Physical Review E 2004, 70 (5), 051401. 

31. Jones, T. B., Electromechanics of Particles. Cambridge University Press: 

Cambridge, 1995; p 265. 



 

 144 

32. Sullivan, M. T.; Zhao, K.; Hollingsworth, A. D.; Austin, R. H.; Russel, W. B.; 

Chaikin, P. M., An electric bottle for colloids. Phys. Rev. Lett. 2006, 96, 

015703. 

33. Leunissen, M. E.; van Blaaderen, A., Concentrating colloids with electric 

field gradients. II. Phase transitions and crystal buckling of long-ranged 

repulsive charged spheres in an electric bottle. J. Chem. Phys. 2008, 128 (16), 

164509-12. 

34. Lumsdon, S. O.; Kaler, E. W.; Velev, O. D., Two-Dimensional 

Crystallization of Microspheres by a Coplanar AC Electric Field. Langmuir 

2004, 20 (6), 2108-2116. 

35. Smith, B. D.; Mayer, T. S.; Keating, C. D., Deterministic Assembly of 

Functional Nanostructures Using Nonuniform Electric Fields. Annual 

Review of Physical Chemistry 2012, 63 (1), 241-263. 

36. Singh, J. P.; Lele, P. P.; Nettesheim, F.; Wagner, N. J.; Furst, E. M., One- and 

two-dimensional assembly of colloidal ellipsoids in ac electric fields. 

Physical Review E 2009, 79 (5), 050401. 

37. Juarez, J. J.; Bevan, M. A., Feedback Controlled Colloidal Self-Assembly. 

Adv. Funct. Mater. 2012, 22 (18), 3833-3839. 

38. Tang, X.; Rupp, B.; Yang, Y.; Edwards, T. D.; Grover, M. A.; Bevan, M. A., 

Optimal Feedback Controlled Assembly of Perfect Crystals. ACS Nano 2016, 

10 (7), 6791-6798. 

39. Wang, X. B.; Huang, Y.; Burt, J. P. H.; Markx, G. H.; Pethig, R., Selective 

Dielectrophoretic Confinement of Bioparticles in Potential-Energy Wells. J. 

Phys. D: Appl. Phys. 1993, 26 (8), 1278-1285. 

40. Jones, T. B.; Washizu, M., Equilibria and dynamics of DEP-levitated 

particles: multipolar theory. J. Electrostatics 1994, 33 (2), 199-212. 

41. Juarez, J. J.; Bevan, M. A., Interactions and Microstructures in Electric Field 

Mediated Colloidal Assembly. J. Chem. Phys. 2009, 131, 134704. 



 

 145 

42. Juárez, J. J.; Cui, J.-Q.; Liu, B. G.; Bevan, M. A., kT-Scale Colloidal 

Interactions in High Frequency Inhomogeneous AC Electric Fields. I. Single 

Particles. Langmuir 2011, 27 (15), 9211-9218. 

43. Juarez, J. J.; Liu, B. G.; Cui, J.-Q.; Bevan, M. A., kT-Scale Colloidal 

Interactions in High-Frequency Inhomogeneous AC Electric Fields. II. 

Concentrated Ensembles. Langmuir 2011, 27 (15), 9219-9226. 

44. Juarez, J. J.; Feicht, S. E.; Bevan, M. A., Electric Field Mediated Assembly of 

Three Dimensional Equilibrium Colloidal Crystals. Soft Matter 2012, 8 (1), 

94-103. 

45. Edwards, T. D.; Beltran-Villegas, D. J.; Bevan, M. A., Size Dependent 

Thermodynamics and Kinetics in Electric Field Mediated Colloidal Crystal 

Assembly. Soft Matter 2013, 9 (38), 9208-9218. 

46. Henderson, D., Monte carlo and perturbation theory studies of the equation 

of state of the two-dimensional Lennard-Jones fluid. Molecular Physics 1977, 

34 (2), 301-315. 

47. Alder, B. J.; Hoover, W. G.; Young, D. A., Studies in Molecular Dynamics. 

V. High-Density Equation of State and Entropy for Hard Disks and Spheres. 

The Journal of Chemical Physics 1968, 49 (8), 3688-3696. 

48. Bahukudumbi, P.; Bevan, M. A., Imaging Energy Landscapes using 

Concentrated Diffusing Colloidal Probes. J. Chem. Phys. 2007, 126, 244702. 

49. Fernandes, G. E.; Beltran-Villegas, D. J.; Bevan, M. A., Spatially Controlled 

Reversible Colloidal Self-Assembly. J. Chem. Phys. 2009, 131, 134705. 

50. Juarez, J. J.; Mathai, P. P.; Liddle, J. A.; Bevan, M. A., Multiple Electrokinetic 

Actuators for Feedback Control of Colloidal Crystal Size. Lab Chip 2012, 12 

(20), 4063-4070. 

51. Tang, X.; Zhang, J.; Bevan, M. A.; Grover, M. A., A comparison of open-loop 

and closed-loop strategies in colloidal self-assembly. Journal of Process 

Control 2017, 60, 141-151. 



 

 146 

52. Wu, H.-J.; Pangburn, T. O.; Beckham, R. E.; Bevan, M. A., Measurement and 

Interpretation of Particle−Particle and Particle−Wall Interactions in 

Levitated Colloidal Ensembles. Langmuir 2005, 21 (22), 9879-9888. 

53. Truskett, T. M.; Torquato, S.; Sastry, S.; Debenedetti, P. G.; Stillinger, F. H., 

Structural precursor to freezing in the hard-disk and hard-sphere systems 

Phys. Rev. E 1998, 58 (3), 3083 - 3088. 

54. Engel, M.; Anderson, J. A.; Glotzer, S. C.; Isobe, M.; Bernard, E. P.; Krauth, 

W., Hard-disk equation of state: First-order liquid-hexatic transition in two 

dimensions with three simulation methods. Physical Review E 2013, 87 (4), 

042134. 

55. Regnaut, C.; Ravey, J. C., Application of the Adhesive Sphere Model to the 

Structure of Colloidal Suspensions. J. Chem. Phys. 1989, 91 (2), 1211-1221. 

56. Nelson, D. R.; Halperin, B. I., Dislocation-Mediated Melting in Two 

Dimensions. Phys. Rev. B 1979, 2457-2484. 

57. van Teeffelen, S.; Likos, C. N.; Löwen, H., Colloidal Crystal Growth at 

Externally Imposed Nucleation Clusters. Physical Review Letters 2008, 100 

(10), 108302. 

58. Berrut, J.-P.; Trefethen, L. N., Barycentric Lagrange Interpolation. SIAM 

Review 2004, 46 (3), 501-517. 

59. Edwards, T. D.; Yang, Y.; Beltran-Villegas, D. J.; Bevan, M. A., Colloidal 

Crystal Grain Boundary Formation and Motion. Sci. Rep. 2014, 4, 06132. 

60. Yang, Y.; Thyagarajan, R.; Ford, D. M.; Bevan, M. A., Dynamic colloidal 

assembly pathways via low dimensional models. The Journal of Chemical 

Physics 2016, 144 (20), 204904. 

61. Khusid, B.; Acrivos, A., Effects of interparticle electric interactions on 

dielectrophoresis in colloidal suspensions. Phys. Rev. E 1996, 54 (5), 5428. 



 

 147 

62. Velev, O. D.; Gupta, S., Materials Fabricated by Micro- and Nanoparticle 

Assembly – The Challenging Path from Science to Engineering. Adv. Mat. 

2009, 21 (19), 1897-1905. 

63. Zhao, Y.; Xie, Z.; Gu, H.; Zhu, C.; Gu, Z., Bio-inspired variable structural 

color materials. Chemical Society Reviews 2012, 41 (8), 3297-3317. 

64. McDougal, A.; Miller, B.; Singh, M.; Kolle, M., Biological growth and 

synthetic fabrication of structurally colored materials. Journal of Optics 2019, 

21 (7), 073001. 

65. Pusey, P. N.; van Megen, W., Phase Behaviour of Concentrated Suspensions 

of Nearly Hard Colloidal Spheres. Nature 1986, 320 (6060), 340-342. 

66. Hachisu, S.; Kobayashi, Y. J., Kirkwood-Alder Transition in Monodisperse 

Latexes II. Aqueous Latexes Of High Electrolyte Concentration. J. Colloid. 

Interface Sci. 1974, 46, 470-476. 

67. Swan, J. W.; Bauer, J. L.; Liu, Y.; Furst, E. M., Directed colloidal self-

assembly in toggled magnetic fields. Soft Matter 2014, 10 (8), 1102-1109. 

68. Helseth, L. E.; Wen, H. Z.; Hansen, R. W.; Johansen, T. H.; Heinig, P.; 

Fischer, T. M., Assembling and Manipulating Two-Dimensional Colloidal 

Crystals with Movable Nanomagnets. Langmuir 2004, 20 (17), 7323-7332. 

69. Bharti, B.; Velev, O. D., Assembly of Reconfigurable Colloidal Structures by 

Multidirectional Field-Induced Interactions. Langmuir 2015, 31 (29), 7897-

7908. 

70. Hilou, E.; Du, D.; Kuei, S.; Biswal, S. L., Interfacial energetics of two-

dimensional colloidal clusters generated with a tunable anharmonic 

interaction potential. Physical Review Materials 2018, 2 (2), 025602. 

71. Ackerson, B. J., Shear induced order and shear processing of model hard sphere 

suspensions. SOR: 1990; Vol. 34, p 553-590. 

72. Solomon, T.; Solomon, M. J., Stacking fault structure in shear-induced 

colloidal crystallization. Journal of Chemical Physics 2006, 124 (13), 10. 



 

 148 

73. Loudiyi, K.; Ackerson, B. J., Direct observation of laser induced freezing. 

Physica A 1992, 184, 1-25. 

74. Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S., Observation of a single-

beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11 

(5), 288-290. 

75. Korda, P. T.; Grier, D. G., Annealing thin colloidal crystals with optical 

gradient forces. J. Chem. Phys. 2001, 114 (17), 7570-7573. 

76. Vossen, D. L. J.; Plaisier, M. A.; Blaaderen, A. v., Colloidal crystallization 

induced by optical gradient forces exerted by optical tweezers. SPIE: 2004; Vol. 

5514, p 755-762. 

77. Huang, Y.; Pethig, R., Electrode Design for Negative Dielectrophoresis. 

Meas. Sci. Technol. 1991, 2, 1142-1146. 

78. Chaudhary, S.; Shapiro, B., Arbitrary steering of multiple particles at once 

in an electroosmotically driven microfluidic system. IEEE Transactions on 

Control Systems Technology 2006, 14 (4), 669-680. 

79. Lu, J. P.; Thompson, J. D.; Whiting, G. L.; Biegelsen, D. K.; Raychaudhuri, 

S.; Lujan, R.; Veres, J.; Lavery, L. L.; Völkel, A. R.; Chow, E. M., Open and 

Closed Loop Manipulation of Charged Microchiplets in an Electric Field. 

Appl. Phys. Lett. 2014, 105 (5), 054104. 

80. Hayward, R. C.; Saville, D. A.; Aksay, I. A., Electrophoretic assembly of 

colloidal crystals with optically tunable micropatterns. Nature 2000, 404 

(6773), 56-59. 

81. Kim, Y.; Shah, A. A.; Solomon, M. J., Spatially and Temporally 

Reconfigurable Assembly of Colloidal Crystals. Nat. Commun. 2014, 5, 4676. 

82. Hunter, R. J., Zeta Potential in Colloid Science: Principles and Applications. 

Academic Press: New York, 1981. 

83. Morrison, I. D., Electrical charges in non-aqueous media. Coll. Surf. A 1993, 

71, 1-37. 



 

 149 

84. Zhang, J.; Zhang, Y.; Bevan, M. A., Spatially Varying Colloidal Phase 

Behavior on Multi-Dimensional Energy Landscapes. J. Chem. Phys. 2020, 

152, 054905. 

85. Pethig, R., Review Article---Dielectrophoresis: Status of the theory, 

technology, and applications. Biomicrofluidics 2010, 4 (2), 022811. 

86. Dobnikar, J.; Snezhko, A.; Yethiraj, A., Emergent colloidal dynamics in 

electromagnetic fields. Soft Matter 2013, 9 (14), 3693-3704. 

87. Beltran-Villegas, D. J.; Sehgal, R. M.; Maroudas, D.; Ford, D. M.; Bevan, M. 

A., Colloidal Cluster Crystallization Dynamics. J. Chem. Phys. 2012, 137 (13), 

134901. 

88. Coughlan, A. C. H.; Torres-Díaz, I.; Zhang, J.; Bevan, M. A., Non-

equilibrium steady-state colloidal assembly dynamics. The Journal of 

Chemical Physics 2019, 150 (20), 204902. 

89. Klotsa, D.; Jack, R. L., Controlling Crystal Self-Assembly Using a Real-Time 

Feedback Scheme. J. Chem. Phys. 2013, 138 (9), 094502. 

90. Vezirov, T. A.; Gerloff, S.; Klapp, S. H. L., Manipulating Shear-Induced 

Non-Equilibrium Transitions in Colloidal Films by Feedback Control. Soft 

Matter 2015, 11 (2), 406-413. 

91. Yang, Y.; Thyagarajan, R.; Ford, D. M.; Bevan, M. A., Dynamic colloidal 

assembly pathways via low dimensional models. J. Chem. Phys. 2016, 144 

(20), 204904. 

92. Littman, M. L., Reinforcement learning improves behaviour from 

evaluative feedback. Nature 2015, 521, 445. 

93. Lee, J. M.; Lee, J. H., Approximate dynamic programming-based 

approaches for input–output data-driven control of nonlinear processes. 

Automatica 2005, 41 (7), 1281-1288. 

94. Leunissen, M. E.; Sullivan, M. T.; Chaikin, P. M.; van Blaaderen, A., 

Concentrating colloids with electric field gradients. I. Particle transport and 



 

 150 

growth mechanism of hard-sphere-like crystals in an electric bottle. J. Chem. 

Phys. 2008, 128 (16), 164508-11. 

95. Wei, Q.; Lewis, F. L.; Sun, Q.; Yan, P.; Song, R., Discrete-Time Deterministic 

Q-Learning: A Novel Convergence Analysis. IEEE Transactions on 

Cybernetics 2017, 47 (5), 1224-1237. 

96. Davidchack, R. L.; Laird, B. B., Simulation of the hard-sphere crystal–melt 

interface. The Journal of Chemical Physics 1998, 108 (22), 9452-9462. 

97. Nelson, D. R.; Halperin, B. I., Dislocation-mediated melting in two 

dimensions. Physical Review B 1979, 19 (5), 2457-2484. 

98. Rein ten Wolde, P.; Ruiz ‐ Montero, M. J.; Frenkel, D., Numerical 

calculation of the rate of crystal nucleation in a Lennard‐Jones system at 

moderate undercooling. The Journal of Chemical Physics 1996, 104 (24), 9932-

9947. 

99. Kinoshita, S.; Yoshioka, S.; Miyazaki, J., Physics of structural colors. Reports 

on Progress in Physics 2008, 71 (7), 076401. 

100. Zhang, H.; Yu, X.; Braun, P. V., Three-dimensional bicontinuous ultrafast-

charge and -discharge bulk battery electrodes. Nature Nanotechnology 2011, 

6 (5), 277-281. 

101. Ozin, G. A.; Hou, K.; Lotsch, B. V.; Cademartiri, L.; Puzzo, D. P.; 

Scotognella, F.; Ghadimi, A.; Thomson, J., Nanofabrication by self-

assembly. Materials Today 2009, 12 (5), 12-23. 

102. Kim, Y.; Shah, A. A.; Solomon, M. J., Spatially and temporally 

reconfigurable assembly of colloidal crystals. Nature Communications 2014, 

5 (1), 3676. 

103. Vogel, N.; Retsch, M.; Fustin, C.-A.; del Campo, A.; Jonas, U., Advances in 

Colloidal Assembly: The Design of Structure and Hierarchy in Two and 

Three Dimensions. Chemical Reviews 2015, 115 (13), 6265-6311. 



 

 151 

104. Chang, C. H.; Tian, L.; Hesse, W. R.; Gao, H.; Choi, H. J.; Kim, J. G.; Siddiqui, 

M.; Barbastathis, G., From Two-Dimensional Colloidal Self-Assembly to 

Three-Dimensional Nanolithography. Nano Letters 2011, 11 (6), 2533-2537. 

105. Yang, S.-M.; Jang, S. G.; Choi, D.-G.; Kim, S.; Yu, H. K., Nanomachining by 

Colloidal Lithography. Small 2006, 2 (4), 458-475. 

106. Zhang, J.; Li, Y.; Zhang, X.; Yang, B., Colloidal Self-Assembly Meets 

Nanofabrication: From Two-Dimensional Colloidal Crystals to 

Nanostructure Arrays. Advanced Materials 2010, 22 (38), 4249-4269. 

107. Quan, Z.; Fang, J., Superlattices with non-spherical building blocks. Nano 

Today 2010, 5 (5), 390-411. 

108. Miszta, K.; de Graaf, J.; Bertoni, G.; Dorfs, D.; Brescia, R.; Marras, S.; 

Ceseracciu, L.; Cingolani, R.; van Roij, R.; Dijkstra, M.; Manna, L., 

Hierarchical self-assembly of suspended branched colloidal nanocrystals 

into superlattice structures. Nature Materials 2011, 10 (11), 872-876. 

109. Feng, W.; Ueda, E.; Levkin, P. A., Droplet Microarrays: From Surface 

Patterning to High-Throughput Applications. Advanced Materials 2018, 30 

(20), 1706111. 

110. Saranathan, V.; Osuji, C. O.; Mochrie, S. G. J.; Noh, H.; Narayanan, S.; 

Sandy, A.; Dufresne, E. R.; Prum, R. O., Structure, function, and self-

assembly of single network gyroid 

(&lt;em&gt;I&lt;/em&gt;4&lt;sub&gt;1&lt;/sub&gt;32) photonic crystals in 

butterfly wing scales. Proceedings of the National Academy of Sciences 2010, 107 

(26), 11676. 

111. Xiu, Y.; Zhu, L.; Hess, D. W.; Wong, C. P., Biomimetic Creation of 

Hierarchical Surface Structures by Combining Colloidal Self-Assembly and 

Au Sputter Deposition. Langmuir 2006, 22 (23), 9676-9681. 

112. Lin, T.-H.; Huang, W.-H.; Jun, I.-K.; Jiang, P., Bioinspired Assembly of 

Colloidal Nanoplatelets by Electric Field. Chemistry of Materials 2009, 21 (10), 

2039-2044. 



 

 152 

113. Liu, K.; Jiang, L., Bio-inspired design of multiscale structures for function 

integration. Nano Today 2011, 6 (2), 155-175. 

114. Goerlitzer, E. S. A.; Klupp Taylor, R. N.; Vogel, N., Bioinspired Photonic 

Pigments from Colloidal Self-Assembly. Advanced Materials 2018, 30 (28), 

1706654. 

115. Li, F.; Josephson, D. P.; Stein, A., Colloidal Assembly: The Road from 

Particles to Colloidal Molecules and Crystals. Angewandte Chemie 

International Edition 2011, 50 (2), 360-388. 

116. Wang, J.; Zhang, Y.; Wang, S.; Song, Y.; Jiang, L., Bioinspired Colloidal 

Photonic Crystals with Controllable Wettability. Accounts of Chemical 

Research 2011, 44 (6), 405-415. 

117. Bai, L.; Xie, Z.; Wang, W.; Yuan, C.; Zhao, Y.; Mu, Z.; Zhong, Q.; Gu, Z., Bio-

Inspired Vapor-Responsive Colloidal Photonic Crystal Patterns by Inkjet 

Printing. ACS Nano 2014, 8 (11), 11094-11100. 

118. Dumanli, A. G.; Savin, T., Recent advances in the biomimicry of structural 

colours. Chemical Society Reviews 2016, 45 (24), 6698-6724. 

119. Velev, O. D.; Kaler, E. W., Structured Porous Materials via Colloidal Crystal 

Templating: From Inorganic Oxides to Metals. Advanced Materials 2000, 12 

(7), 531-534. 

120. Chiou, P. Y.; Ohta, A. T.; Wu, M. C., Massively parallel manipulation of 

single cells and microparticles using optical images. Nature 2005, 436 (7049), 

370-372. 

121. Nie, Z.; Petukhova, A.; Kumacheva, E., Properties and emerging 

applications of self-assembled structures made from inorganic 

nanoparticles. Nature Nanotechnology 2010, 5 (1), 15-25. 

122. Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. 

O., Tough, Bio-Inspired Hybrid Materials. Science 2008, 322 (5907), 1516. 



 

 153 

123. Weekes, S. M.; Ogrin, F. Y.; Murray, W. A.; Keatley, P. S., Macroscopic 

Arrays of Magnetic Nanostructures from Self-Assembled Nanosphere 

Templates. Langmuir 2007, 23 (3), 1057-1060. 

124. Watanabe, S.; Mino, Y.; Ichikawa, Y.; Miyahara, M. T., Spontaneous 

Formation of Cluster Array of Gold Particles by Convective Self-Assembly. 

Langmuir 2012, 28 (36), 12982-12988. 

125. Yap, F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy, S., Nanoparticle 

Cluster Arrays for High-Performance SERS through Directed Self-

Assembly on Flat Substrates and on Optical Fibers. ACS Nano 2012, 6 (3), 

2056-2070. 

126. Xia, D.; Ku, Z.; Li, D.; Brueck, S. R. J., Formation of Hierarchical 

Nanoparticle Pattern Arrays Using Colloidal Lithography and Two-Step 

Self-Assembly: Microspheres atop Nanospheres. Chemistry of Materials 

2008, 20 (5), 1847-1854. 

127. Yin, Y.; Lu, Y.; Gates, B.; Xia, Y., Template-Assisted Self-Assembly:  A 

Practical Route to Complex Aggregates of Monodispersed Colloids with 

Well-Defined Sizes, Shapes, and Structures. Journal of the American Chemical 

Society 2001, 123 (36), 8718-8729. 

128. Lee, I.; Zheng, H.; Rubner, M. F.; Hammond, P. T., Controlled Cluster Size 

in Patterned Particle Arrays via Directed Adsorption on Confined Surfaces. 

Advanced Materials 2002, 14 (8), 572-577. 

129. Lei, Y.; Yang, S.; Wu, M.; Wilde, G., Surface patterning using templates: 

Concept, properties and device applications. Chemical Society Reviews 2011, 

40 (3), 1247-1258. 

130. Xia, Y.; Yin, Y.; Lu, Y.; McLellan, J., Template-Assisted Self-Assembly of 

Spherical Colloids into Complex and Controllable Structures. Advanced 

Functional Materials 2003, 13 (12), 907-918. 

131. Dziomkina, N. V.; Vancso, G. J., Colloidal crystal assembly on topologically 

patterned templates. Soft Matter 2005, 1 (4), 265-279. 



 

 154 

132. Chen, K. M.; Jiang, X.; Kimerling, L. C.; Hammond, P. T., Selective Self-

Organization of Colloids on Patterned Polyelectrolyte Templates. Langmuir 

2000, 16 (20), 7825-7834. 

133. Manoharan, V. N.; Elsesser, M. T.; Pine, D. J., Dense Packing and Symmetry 

in Small Clusters of Microspheres. Science 2003, 301 (5632), 483. 

134. Velev, O. D.; Furusawa, K.; Nagayama, K., Assembly of Latex Particles by 

Using Emulsion Droplets as Templates. 1. Microstructured Hollow 

Spheres. Langmuir 1996, 12 (10), 2374-2384. 

135. Aizenberg, J.; Braun, P. V.; Wiltzius, P., Patterned Colloidal Deposition 

Controlled by Electrostatic and Capillary Forces. Physical Review Letters 

2000, 84 (13), 2997-3000. 

136. Tien, J.; Terfort, A.; Whitesides, G. M., Microfabrication through 

Electrostatic Self-Assembly. Langmuir 1997, 13 (20), 5349-5355. 

137. Shillingford, C.; Grebe, V.; McMullen, A.; Brujic, J.; Weck, M., Assembly and 

Dynamic Analysis of Square Colloidal Crystals via Templated Capillary 

Assembly. Langmuir 2019, 35 (37), 12205-12214. 

138. Solomon, M. J., Tools and Functions of Reconfigurable Colloidal Assembly. 

Langmuir 2018, 34 (38), 11205-11219. 

139. Bevan, M. A.; Ford, D. M.; Grover, M. A.; Shapiro, B.; Maroudas, D.; Yang, 

Y.; Thyagarajan, R.; Tang, X.; Sehgal, R. M., Controlling assembly of 

colloidal particles into structured objects: Basic strategy and a case study. 

Journal of Process Control 2015, 27, 64-75. 

140. Román, F. L.; White, J. A.; Velasco, S., Block analysis method in off-lattice 

fluids. Europhysics Letters (EPL) 1998, 42 (4), 371-376. 

141. Juárez, J. J.; Mathai, P. P.; Liddle, J. A.; Bevan, M. A., Multiple electrokinetic 

actuators for feedback control of colloidal crystal size. Lab on a Chip 2012, 12 

(20), 4063-4070. 



 

 155 

142. Robins, M.; Fillery-Travis, A., Colloidal dispersions. Edited by W. B. Russel, 

D. A. Saville & W. R. Schowalter, Cambridge University Press, Cambridge, 

UK, 1989, xvii + 506 pp., price: £60.00. ISBN 0 521 34188 4. Journal of Chemical 

Technology & Biotechnology 1992, 54 (2), 201-202. 

143. Keh, H. J.; Anderson, J. L., Boundary effects on electrophoretic motion of 

colloidal spheres. Journal of Fluid Mechanics 1985, 153, 417-439. 

144. Bike, S. G.; Prieve, D. C., Measurements of double-layer repulsion for 

slightly overlapping counterion clouds. International Journal of Multiphase 

Flow 1990, 16 (4), 727-740. 

145. Hansen, J. P.; McDonald, I. R., Theory of Simple Liquids. Academic Press: 

London, 1986. 

146. Henderson, D., Simple Equation of State for Hard Disks. Molecular Physics 

1975, 30 (3), 971-972. 

147. Baus, M.; Colot, J. L., Thermodynamics and Structure of a Fluid of Hard-

Rods, Disks, Spheres, or Hyperspheres from Rescaled Virial Expansions. 

Physical Review A 1987, 36 (8), 3912-3925. 

148. Beltran-Villegas, D. J.; Sehgal, R. M.; Maroudas, D.; Ford, D. M.; Bevan, M. 

A., A Smoluchowski model of crystallization dynamics of small colloidal 

clusters. The Journal of Chemical Physics 2011, 135 (15), 154506. 

149. Bedeaux, D.; Mazur, P., Brownian motion and fluctuating hydrodynamics. 

Physica 1974, 76 (2), 247-258. 

150. Swan, J. W.; Brady, J. F., Simulation of hydrodynamically interacting 

particles near a no-slip boundary. Physics of Fluids 2007, 19 (11), 113306. 

151. Grassia, P. S.; Hinch, E. J.; Nitsche, L. C., Computer simulations of Brownian 

motion of complex systems. Journal of Fluid Mechanics 2006, 282, 373-403. 

152. Liu, I. B.; Sharifi-Mood, N.; Stebe, K. J., Capillary Assembly of Colloids: 

Interactions on Planar and Curved Interfaces. Annual Review of Condensed 

Matter Physics 2018, 9 (1), 283-305. 



 

 156 

153. McGorty, R.; Fung, J.; Kaz, D.; Manoharan, V. N., Colloidal self-assembly at 

an interface. Materials Today 2010, 13 (6), 34-42. 

154. Morrison, I. D.; Ross, S., Colloidal dispersions: suspensions, emulsions, and 

foams. Wiley-Interscience New York: 2002. 

155. Thorkelsson, K.; Bai, P.; Xu, T., Self-assembly and applications of 

anisotropic nanomaterials: A review. Nano Today 2015, 10 (1), 48-66. 

156. Glotzer, S. C.; Solomon, M. J., Anisotropy of building blocks and their 

assembly into complex structures. Nature Materials 2007, 6 (8), 557-562. 

157. Liu, Q.; Cui, Y.; Gardner, D.; Li, X.; He, S.; Smalyukh, I. I., Self-Alignment 

of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for 

Tunable Bulk Metamaterial Applications. Nano Letters 2010, 10 (4), 1347-

1353. 

158. Rupp, B.; Torres-Díaz, I.; Hua, X.; Bevan, M. A., Measurement of 

Anisotropic Particle Interactions with Nonuniform ac Electric Fields. 

Langmuir 2018, 34 (7), 2497-2504. 

159. Xiao, Z.; Wei, M.; Wang, W., A Review of Micromotors in Confinements: 

Pores, Channels, Grooves, Steps, Interfaces, Chains, and Swimming in the 

Bulk. ACS Applied Materials & Interfaces 2019, 11 (7), 6667-6684. 

160. Khezri, B.; Novotný, F.; Moo, J. G. S.; Nasir, M. Z. M.; Pumera, M., Confined 

Bubble-Propelled Microswimmers in Capillaries: Wall Effect, Fuel 

Deprivation, and Exhaust Product Excess. Small 2020, 16 (27), 2000413. 

161. Yang, G.-Z.; Bellingham, J.; Dupont, P. E.; Fischer, P.; Floridi, L.; Full, R.; 

Jacobstein, N.; Kumar, V.; McNutt, M.; Merrifield, R., The grand challenges 

of Science Robotics. Science robotics 2018, 3 (14), eaar7650. 

 

  



 

 157 

CURRICULUM VITAE 

EDUCATION 

Ph.D. 

Aug. 2015 − Oct. 2020 Johns Hopkins University, Baltimore, MD 

    Department of Chemical and Biomolecular Engineering 

    Advisors: Prof. Michael A. Bevan 

M.S.E. 

Aug. 2014 − May. 2015 University of California, Berkeley, CA 

    Department of Chemical and Biomolecular Engineering 

B.S. 

Aug. 2010 − Aug. 2014 Georgia Institute of Technology, Atlanta, GA 

    Department of Chemical and Biomolecular Engineering 

AWARDS AND HONORS 

ACS Colloids, Soft Matter poster prize 2017 

UC, Berkeley Product Development scholarship ($20,000/yr.) 2015 

NSF fellowship for Undergraduate Summer Research Program       2013 

PUBLICATIONS 

Zhang, J.; Bevan, M.A., (2020). Hierarchical Assembly of Colloids on Electrode Array. 

manuscript in preparation. 

Zhang, J.; Yang, J; Zhang, Y; Bevan, M.A., (2020). Perfect Colloidal Crystals via 

Morphing Energy Landscapes & Reinforcement Learning. Sci. Adv. submitted. 

Zhang, J.; Zhang, Y; Bevan, M.A., (2020). Spatially Varying Colloidal Phase Behavior 

on Multi-Dimensional Energy Landscapes, J. Chem. Phys. 

Coughlan A.C.H.; Torres, I.; Zhang, J.; Bevan, M.A., (2019). Non-Equilibrium Steady-

State Colloidal Assembly Dynamics, J. Chem. Phys. 

Lin, L.; Zhang, J.; Peng, X.; Wu, Z.; Coughlan A.C.H.; Mao, Z.; Bevan, M.A.; Zheng, Y., 

(2017). Opto-thermophoretic Assembly of Colloidal Matter. Sci. Adv. 

Tang, X.; Zhang, J.; Bevan, M.A.; Grover, M.A. (2017). A Comparison of Open-Loop 

and Closed-Loop Strategies in Colloidal Self-Assembly. J. Process Control. 

 


