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Abstract

This dissertation studies two structural frameworks in empirical studies of In-

dustrial Organization: two-sided matching models and simultaneous auction/contest

models. Both models involve two disjoint sides of players: matching occurs between

firms and workers, schools and students, and so forth; in an auction or contest, there

always exists an auctioneer or contest designer on one side and bidders or contes-

tants on the opposite. First, empirical studies of two-sided matching markets reveal

that sorting patterns between potential employers and employees may be driven by

unobserved heterogeneity on both sides and preferences over multidimensional wage

contracts. Therefore, in Chapter 2, I study a generalized matching model with Non-

Transferrable Utility (NTU), i.e. a two-stage model where employers firstly set wage

contracts for their jobs, workers then match with the jobs in a decentralized way. I

propose a strategy that exploits the variation in agent- and match-specific charac-

teristics from finite-sized repeated markets to identify and estimate the preference

primitives in the presence of two-sided unobserved heterogeneity, assuming employ-

ers share a vertical preference over workers. I further suggest a likelihood-based
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ABSTRACT

estimation strategy that tackles the dimensionality issue emerging from the existence

of global players of the repeated game, and show its performance via Monte Carlo

simulation analyses.

In Chapter 3, I apply the model and identification method developed in Chap-

ter 2 to study recently fast-growing online labor markets that match skilled labor

to short-term jobs using a contest-based mechanism. Despite the anecdotal evidence

showing both firms and workers benefiting from largely decreased meeting friction

and increased flexibility on the platform, it is economically substantial to quantita-

tively reveal the preference structure of both parties, which may include unobserved

factors to researchers. I, therefore, adopt the two-stage model where firms set wage

contracts for their jobs before programmers choose coding projects simultaneously. I

then use the identification strategy that exploits the variation in agent- and match-

specific characteristics from finite-sized repeated markets to estimate workers’ latent

skill levels and jobs’ latent complexity levels. Using individual-level data from a

leading online tournament-based labor market, TopCoder.com, which matches work-

ers worldwide with short-term software developing tasks, I find a multidimensional

preference beyond cash motives when workers consider which jobs to take. Using the

results from the estimation, I further study the elements regarding market design that

could leverage off the matching mechanisms to improve the total surplus generated

from such markets.

While this “crowdsourcing” market can be modeled as a matching process between
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ABSTRACT

firms with temporary jobs and workers, I would also like to capture the strategic

interaction of workers after they match with an individual job. Within the same job,

workers exert effort to win pre-determined cash prizes according to the rank order

of their delivered work. This can be naturally modeled in a (multi-prize) contest

environment. A central concern is to recover the underlying preferences of workers,

which again requires the full knowledge of the unobserved heterogeneity, or types, of

both workers and jobs. Chapter 4 develops a new method to identify and estimate

primitives in simultaneous contests with multiple prizes. I establish a two-stage game

where bidders/contestants first choose one among multiple auctions/contests, then

in the second stage, they compete within each auction/contest by submitting their

bids simultaneously, contributing their efforts to win over the pre-determined prize

based on the rank order. I show that by observing their first-stage choice probability

combined with the second-stage bidding strategy, I can nonparametrically identify

the joint distribution of unobserved heterogeneity on both sides of the market. I then

present an estimation strategy and show the performance of Monte Carlo experiments.

Primary Reader: Professor Yingyao Hu

Secondary Reader: Professor Elena Krasnokutskaya
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Chapter 1

Introductory Chapter

Two-sided markets have been widely observed in real life and reached growing

attention by researchers in recent decades. Examples can be found from online mar-

kets matching skilled labor force with temporary jobs to the public school admission

process. Economically, it is of great importance to understand how preferences from

both sides of the market drive the observable market outcomes, such as the sorting

between workers and jobs, and ultimately how the welfare could be leveraged up by

policy intervention alternating the market power of players. This dissertation ex-

plores two different perspectives to identify the underlying preference primitives for

both sides, allowing for the existences of multi-layer unobserved heterogeneity.

First, in Chapter 2, I establish a generalized one-to-many matching model with

Non-Transferrable Utility (NTU) to study such markets. Specifically, there are two

sets of players, denoted as firms and workers for simplicity. They meet in the market

1



CHAPTER 1. INTRODUCTORY CHAPTER

to match with each other to form an employment relationship. Capacities from both

sides are constrained so that a worker can complete at most one job in the market,

and firms can hire no more than their pre-determined slot quota for the job. Initially,

firms set the wage scheme for the potentially paired workers simultaneously, based

upon their own preference over workers’ skills and rivalry from other firms; after-

ward, workers match with jobs by signing up a slot for a job, commonly observing

the posted wages and other job features. Compared with standard NTU matching

models in the literature, I add a wage-setting stage before the matching process, to

relax the exogeneity assumption of monetary transfers under NTU framework and

better understand how financial motives shifts the sorting patterns. After setting

up this model, I define a rational expectation equilibrium notion, in which workers

acquire pairwise stable matching in the second stage, and firms maximize their ex-

pected payoff in the first stage, holding correct beliefs about second-stage matching.

Additionally, by assuming firms carrying a vertical preference over workers’ skills, I

manage to establish critical characterizations of the equilibrium that directly links

to my identification strategy. In particular, I argue that from repeatedly observing

(1) a one-dimensional index that proxies workers’ skill level, and (2) a match-specific

outcome for each matched worker-job pair for at least two periods, I have enough

variation in observables and am able to nonparametrically identify the joint distribu-

tion of job-wise and worker-wise unobserved heterogeneity in each market, using the

eigenvalue-eigenvector decomposition method developed in measurement error mod-
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CHAPTER 1. INTRODUCTORY CHAPTER

els. Next, I recover the joint choice probability for all workers in each market, which

leads to the identification of workers’ utility parameters. In this step, I follow the well-

studied single-agent discrete choice framework to model workers’ indirect utility from

choosing any job or the outside option. Lastly, from jointly observing at least three

firms in each market, I recover their profit structure along with the distribution of a

market-level demand shifter, as the joint observation of multiple firms links to firms’

primitives in a way similar to measurement error models as well. 1 Following the

identification argument, I also provide a practically viable likelihood-based estimator

that performs well in Monte Carlo simulation analyses. The estimator maximizes a

modified likelihood that utilizes partial information from all markets observed and

can be useful especially when the number of firms and/or workers in each market

grows large.

Using data from an emerging online labor market that matches computer pro-

grammers to software development tasks on a weekly basis, I apply my generalized

matching framework and identification strategy in Chapter 3 to unveil the market

players’ preferences. I have individual-level data about the website TopCoder.com,

the world’s online leader in accommodating programmers from worldwide to complete

Information Technology (IT)-related short-term jobs remotely. It adopts the concept

of “crowdsourcing”, where multiple programmers usually engage in one job at the

same time, and payment is delivered according to the rank order of their final prod-

1An example of the market-level demand shifter is the efficiency to for firms to recruit workers
via this platform compare with alternative platforms.
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ucts submitted to the firm. From data, I find a preliminary yet interesting pattern

from regression – highly paid jobs on average get deliveries of poorer quality on this

platform. As this is apparently unappealing for the long-run sustainability of the

website, it is substantial to explore the underlying preference pattern of both parties

using a structural model. By applying the two-stage model, I developed in Chapter

3 to estimate the parameters, I find that skilled workers, while indeed prefer to get

more money out of a job, generically try to avoid more complicated jobs which pay

more in equilibrium. Based on the estimates, I conduct two sets of counterfactual

experiment, and find out that compared with stimulating skilled workers’ passion to-

wards demanding jobs through indirect channels, one more efficient way to boost the

market is to allow firms to “discriminate” workers by using a wage menu contingent

on the quality of submissions. These novel findings are not all intuitive compared

with reduced-form regressions and have their credits in the empirical studies of online

markets, as well as empirical matching market analyses.

The aforementioned “crowdsourcing” feature of the market I study in Chapter 3

relates to another important strand of structural IO studies, the all-pay auctions if the

winner takes all and contests if prize schedule is based upon rank orders. Specifically,

I shift my focus from the matching process between jobs and workers to the strategic

behavior after workers choosing the job in Chapter 4. Workers are in fact engaged in

a multi-prize contest, where they exert efforts to deliver their products to the firm,

and their payment, or prize, depend on the rank order of the final products’ quality.

4
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Therefore, I simplify the wage-setting stage of firms to be exogenous and set up

another two-stage model for workers afterward. 2 Workers hold a private valuation

toward all jobs in the market. This can be alternatively thought of as their capacity

of completing a job. They initially choose one job to take part in, then decide how

much effort they exert to maximize their expected payoff. I show in this chapter

that from jointly observing workers’ first-stage choice probability and second-stage

bidding behavior, I can nonparametrically recover the distribution of bother job-wise

and worker-wise unobserved heterogeneity (or types). The intuition is that, following

the seminal paper by Guerre, Perrigne and Voung (2009), I can establish a mapping

from observed bids, or quality of delivered products, to the unobserved valuation of

each worker. 3 On the job side, the variation in the probability of choosing a job given

different numbers of competing workers in the same market provides identification

power under regulatory conditions. I suggest a two-step estimator corresponding to

my identification argument and present the Monte Carlo simulation performance.

The estimator performs better when the job-wise unobserved heterogeneity is drawn

from a discrete space rather than continuous.

2Firms’ wage-setting behavior is exogenous, but I allow the wages or prizes to be related with their
job characteristics in an arbitrary way. Thus, this model still captures some features of two-sided
markets.

3Essentially, the valuation affects workers’ profit of taking part in a job.

5



Chapter 2

Identification of Matching Games

with Two-sided Unobserved

Heterogeneity

2.1 Introduction

When a market explicitly consists of two disjoint sets (sides) of agents, and agents

on both sides have preference over forming a relationship with agents on the other side,

it is often referred to as two-sided matching markets. Empirical studies of matching

markets have recently garnered considerable attention. Ever since the seminal work

by Gale and Shapley (1962) and Shapley and Shubik (1972), researchers separately

study two frameworks of matching games: Non-Transferrable Utility (NTU) frame-

6
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work if all the characteristics on both sides including potential monetary transfers are

exogenously determined; and Transferrable Utility (TU) framework if monetary trans-

fers are additively separable to one’s utility and endogenously determined along with

the matching allocation.1 The choice between the two structures usually hinges on

researchers’ understanding of the institutional structure of the market. For instance,

when analyzing school admission problems, it is inappropriate to adopt the TU frame-

work, as tuition fees are usually pre-determined by the government or schools with

little room for negotiation, if not completely nonnegotiable. This is the main reason

why the NTU framework is adopted in college admission problems. Nevertheless,

when doing so, one should be cautious when claiming tuition fees, similar to other

school characteristics, are exogenous. In fact, if one believes that tuition fees are set

strategically either by the government or by schools, then the underlying preferences

over students will affect the observed distribution of tuition fees, leading to inconsis-

tent estimation of model primitives if ignoring so. It is, therefore, important to study

the determination process of monetary transfers even when they are not negotiable

between two sides.

Another challenge in the empirical analysis of two-sided matching games is that the

preferences resulting in the observed outcomes may depend on individual’s features

that are unobservable to the researcher. In the example of school admission problems,

important factors influencing the observed matching outcomes include students’ latent

1A recent paper by Galichon et.al. analyzes the Imperfect Transferable Utility (ITU) framework
that is based on the TU structure but allows for non-additive transfers to agents’ utility functions.
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skills and schools’ reputation, both of which are unlikely to be entirely captured by

observables. Ignoring the existence of such unobserved heterogeneity will also impede

the accuracy of model estimates to suggest any policy improvements further.

In this paper, I analyze a generalized Non-Transferrable Utility (NTU) matching

game in which the monetary transfers are firstly determined by one side of the market

(e.g. the employers), then the matching process occurs in a decentralized fashion in

the second stage, taking the monetary transfers as given. I use information repeatedly

observed for agent- and match-specific characteristics to nonparametrically identify

both sides’ unobserved heterogeneity, assuming employers share a vertical preference

over employees. Preference primitives are further identified from solving this two-

stage model, linking the observed distribution of market outcomes to employers’ latent

pricing strategies and employees’ latent choices over multiple jobs. Afterward, I

propose a likelihood-based estimation strategy that tackles the dimensionality issue

emerging when the number of markets and/or players increases, and establish the

consistency result of such an estimator.

Contribution of this paper:

First, from a theoretical perspective, the two-stage model in this paper combines

the matching process with a wage-setting process beforehand, which generalizes the

nontransferable utility (NTU) framework in two-sided matching games that assumes

the complete exogeneity of monetary transfers in matching games. An explicit or

implicit wage-setting stage is widely observed in markets without individually nego-

8
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tiable contracts but has been underexplored in the applied matching-theory literature.

By incorporating this stage, I can explain in depth how monetary transfers are set

strategically based upon jobs’ features, and how it further determines the matching

allocation of workers towards jobs. When some job and/or worker features are not

observed by the researcher, characterizing the wage-setting process will further facil-

itate the identification of these unobserved types which will be discussed in details

later.

Second, my model allows market players’ preferences over the opposite side to be

driven by both observed and unobserved features. Workers are furthermore allowed

to have heterogeneous preferences over the types of jobs they favor. Heterogeneity

in types and preferences is mostly detected in the empirical literature of online mar-

ketplaces but has rarely been modeled explicitly in literature, as identification issues

are a central concern. In this paper, I obtain point identification through a multistep

method in which the unobserved type distribution of both sides are initially nonpara-

metrically identified from jointly observing worker- and match-specific characteristics

for multiple periods, using a modified version of eigenvalue-eigenvector decomposi-

tion techniques based on measurement error models. Then workers’ heterogeneous

preference primitives are recovered from the market-level choice probability using the

widely-studied discrete choice model. Lastly, firms’ profit primitives are identified

through the symmetric monotone strategy of their equilibrium wages against their

job types under incomplete information. This identification strategy is novel in the
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structural literature estimating matching games with unobservables, and could be

applied to various empirical settings with finite-sized markets. 2

When estimating the generalized matching game using maximum likelihood, a

general concern is the dimensionality issue when the number of players and/or mar-

kets increases. In the model, one important feature is that some players from one

side of the market (i.e. workers) are repeatedly observed over time, which makes

them “global players” of the repeated game. When this set of players increase, or

the number of market increases, it requires a high-dimensional integration over global

players’ types to construct the likelihood function, which can be very computation-

ally impractical using real data. In this paper, I suggest a likelihood-based estimator

that maximizes a reconstructed likelihood function to reduce the dimensionality sig-

nificantly, and it performs well in Monte Carlo simulation. This estimator could be

adopted in other similar models (e.g. single agent discrete choice models) with a high

dimension of unobserved heterogeneity and/or a significant number of players within

a market.

Related literature:

From a methodological point of view, this paper contributes to the recently grow-

ing empirical literature analyzing preferences in two-sided matching markets when

2Alternatively, researchers assume an infinite number of players in one market (market being
thick) and develop identification strategies accordingly. The thickness of the market is usually as-
sumed in the current empirical literature, but this is not ensured: In online labor markets, transac-
tions usually take the form of spot tasks, which can be sensitive both temporally and geographically.
Examples of temporally sensitive tasks are the coding jobs at Topcoder.com. An example of a
geographically sensitive work is a babysitting job on TaskRabbit.com.
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unobserved heterogeneity. Modeling the role of monetary transfers in these markets

is crucial for econometric specification and counterfactual experiments. When it is

believed that monetary transfers are determined simultaneously with the equilibrium

match, it falls into the TU framework, in which the researchers are only able to

identify the one-dimensional match-specific output/surplus from data on observed

matches. One strand of the literature manages to transform the matching problem

into a general equilibrium problem by assuming agents have preferences over finite

types of their counterparts and that the market is thick on both sides (Choo and

Siow, 2006; Chiappori et al., 2006; Graham, 2013; Galichon and Salanie, 2012; Sinha,

2014).

Meanwhile, the rank-order property developed in Fox (2010) is a major economet-

ric tool when preferences are over individuals, and requires that across a population

of observationally equivalent identical markets, the matching allocation that yields a

higher (deterministic part of the) surplus will be more frequently observed. While

this assumption is intuitive economically, it is challenging to write an exact data-

generating process under which it holds. Moreover, this property no longer holds

when unobserved heterogeneity is introduced into the model. Fox and Yang (2012)

show that without the rank-order property, in markets with match-specific unobserved

heterogeneity, the distribution of unobserved heterogeneity could be identified follow-

ing the special regressor method in the multinomial choice literature when researchers

are able to observe markets where no agents are matched. In this paper, I adopt a
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similar intuition by assuming preferences are over individuals rather than types, and

translate the matching problem to a well-studied discrete-choice problem by assum-

ing firms admit a vertical preference over workers, but I do not depend on observing

completely unmatched markets to achieve identification. Instead, by exploiting the

distribution of endogenous wage contracts, along with repeatedly observing agents on

one side across markets, I can uniquely recover the joint distribution of unobserved

types of both sides using the eigenvalue-eigenvector decomposition. A more funda-

mental difference from Fox and Yang(2012) is that I adopt the NTU framework in

my second stage model, wherein monetary transfers are treated as given and cannot

be negotiated between the two parties.

Although there has been a stream of papers that estimate the preferences over

various characteristics (see for example Logan et al., 2008; Boyd et al., 2013), two

recent papers have shown that utility primitives are typically not identified from

merely observing the joint distribution of characteristics of one-to-one matched pairs:

Menzel (2015) shows that under the parametric assumption on idiosyncratic match-

specific tastes, only the sum of individual surplus from a match is identified in a

single large market. Agarwal and Diamond (2014) show that double-vertical prefer-

ence in a large single market could be identified when econometricians can observe the

joint distribution of (at least) two-to-one matching characteristics. To achieve iden-

tification of distributions of unobserved heterogeneity (or partially identifying some

function of unobserved heterogeneity), both papers assume the unobserved compo-
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nents are independent of observables, inducing no systematic correlations in prefer-

ences among market players; furthermore, they rely crucially on market size going to

infinity. This paper complements their work by showing that, by observing a one-

dimensional match-specific outcome and worker-specific outcome, one could obtain

point identification even with limited market size and one-to-one matching, as long as

preferences on one side are vertical. This assumption – or, more generally, the aligned-

preference assumption – ensures uniqueness of the equilibrium and is widely used in

the literature. For instance, Agarwal (2014) makes the same one-sided vertical pref-

erence assumption when studying the national medical-resident placement market,

a labor market with almost nonnegotiable wage contracts. Sorensen (2007) adopts

a fixed sharing rule between matched pairs, which also leads to aligned preference,

and identifies utility primitives from exclusion restrictions across different markets

with match-specific idiosyncratic components. In this paper, I explicitly model the

contract setting stage before the matching process, which is not captured in any of

the papers listed above.

An alternative strand of empirical studies dodges the discussion of point identifi-

cation of utility primitives. Instead, it estimates a set of parameters consistent with

the pairwise-stability notion (Baccara et al., 2012; Uetake and Watanabe, 2014).

In this paper, I make a stronger assumption on the preference structure to obtain

a unique equilibrium outcome, as point identification facilitates the computation of

counterfactuals while the identified set may not be sharp.
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The rest of the paper is organized as follows: Section 2 establishes the structural

model and characterize the equilibrium for the Generalized Non-Transferable Utility

matching game. Next, in Section 3, I present the main identification and estimation

results that nonparametrically recover the unobserved heterogeneity and paramet-

rically recovers the utility primitives. Also, I provide a likelihood-based estimation

procedure implementing my identification method. Following that, Section 4 presents

the Monte Carlo results that confirm the validity of my estimation strategy. Lastly,

I conclude this paper in Section 5.

2.2 A Structural Model for the General-

ized NTU Matching Games

I now establish the structural model for the generalized matching game. Each

market consists of two sides of players, denoted as firms and workers seeking for a

job. They gather to match and form an employment relationship. In the market,

each firm carries one job needed to be fulfilled but can attract multiple applications,

and each potential employee can be matched with at most one job in a market;

across different markets, however, there is no restriction on the number of jobs a

worker can take. As the researcher, I observe three sets of information: on one side

of the market, I observe the monetary transfers proposed by each employer to their

potential employees; on the other side, I observe a one-dimensional “index” for each
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potential employee, and this index provides partial information about their ability

levels. Lastly, I observe the allocation of which person ends up with which employer.

Conditional on other observed information, the complexity level of each job carried by

an employer, along with the latent ability level of each employee and the market-wise

demand condition, is unobservable to me. I will focus on these layers of unobserved

heterogeneity and abstract away observable heterogeneity of both sides of the market.

It could be viewed as the model is built for each subpopulation that shares the same

observable characteristics.

2.2.1 The Timeline

The market game consists of two stages in each market t. At Stage 1, a finite

number Jt of employers randomly sign up to be present in the market. They have

common prior about the distribution of peer jobs’ complexity and potential employ-

ees’ utility profiles, but cannot observe other employers’ types nor the actual identity

of participating employees. Besides, they all observe the market-wise demand con-

dition, ωt, that commonly affects their profits.3 By the end of this stage, employers

simultaneously determine the monetary transfers they will grant to their potential

employees. They are allowed to recruit multiple people but are faced with a budget

constraint that is commonly known to all peer employers.

At Stage 2, a finite number It of workers are randomly drawn to enter the market.

3An example that determines ωt is the cost efficiency of recruiting people via alternative platforms.
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Perfectly observing the characteristics and utility profiles of every job and every peer

job-hunter, they simultaneously choose the job they would like to work on. Due to

capacity constraint, they are allowed to sign up for at most one job in a market; on

the other side, each firm can hire up to Qjt workers to work on the same project. After

signing-up, employees simultaneously work on the project and deliver their completed

job by the due date. Firms then hire a third-party reviewer board to rank order all

submissions based on their quality. The market game finishes when workers get cash

payment according to their rank order. In this model, I assume away strategic entry

and exit decisions on the firm side. This is a significant simplification that enables us

to focus on the strategic pricing behavior of firms and discrete choices of workers in

the market, which I believe are essential to recover for policy implications.

Next, I define the preference structure of players from both sides. There is an

abuse of notation in the subsequent discussion: It (resp.Jt) denotes both the number

of employees (resp. employers) in market t, and the set of employees (resp. employers)

in market t.
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2.2.2 Preferences of Firms

Firm j’s ex post payoff from recruiting a set of workers µt(j) to complete their

posted job in market t is modeled as:

πpostj,µt(j),t
= R(ωt, Z

∗
j ,

∑
i∈µt(j)

Zij)−
∑
i∈µt(j)

Pij (2.1)

where R is the revenue function that depends on three elements: (i) the job-wise

complexity Z∗j ; (ii) the sum of Zij, which denotes the quality of worker i’s submission

to firm j, 4 and (iii) the demand-side shifter, such as the cost efficiency of recruiting

via outside options, that affects the overall willingness to pay of all firms in the

market, and is denoted by ωt.

In particular, the quality of a submission is determined by the equation below:

Zij = g2(X∗i , Z
∗
j , bj), (2.2)

where g2-function is increasing in worker i’s ability, X∗i , and decreasing in the com-

plexity of a job, Z∗j . The idiosyncratic term bj is independent of (X∗i , Z
∗
j ) and is

realized only after the employees complete their job. 5 A possible factor included in

bj is the bias when the third-party reviewer board evaluates the submissions.

4Here I assume all submissions enter firms’ profit function uniformly; instead, I can assume
non-winning submissions add partial credits to the firm’s profit. The core idea is that, without
considering cost, firm strictly prefers having extra submissions.

5This is to exclude the case where firms know ex ante the value of bj when they decide the cash
prizes at Stage 1.
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In this paper, I assume the revenue function is known to the researcher up to a

one-dimensional coefficient, c:

R(ωt, Z
∗
j ,

∑
i∈µt(j)

Zij) = c · R0(ωt, Z
∗
j ,

∑
i∈µt(j)

Zij) (2.3)

where R0 is a known function. Lastly, the rule of how each employee gets paid

according to their rank-order is also observed by the researcher. Specifically,

Pij =



Pj, if i is the first place

φ1Pj, if i is the second place

φ2Pj, if i is the third place

· · ·

φQjtPj, if i is the Qjt place

where φk > φm,∀k < m, k,m = 1, 2, · · · , Qjt; φk, φm ∈ [0, 1) and is known to the

researcher.
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2.2.3 Preferences of Workers

Following the single-agent discrete choice literature, I assume the indirect utility

of employee i choosing firm j in market t is determined by the following equation:

uijt = βPij + ũit(X
∗
i , Z

∗
j ) + νijt (2.4)

where β captures one’s vertical preference over cash prizes, and β ≥ 0. The function

ũit is a worker’s heterogeneous preference over the complexity of a job, and may

interact with their own skills. Lastly, νijt is the idiosyncratic taste shock that is

independent of other variables. I use j = 0 to denote the choice of staying outside

the market.

Formally, this Extensive Form game is defined as follows:

Definition 1 The two-stage market game is described by (It, Jt,Z,X,P, µt,Ω, Fω, π, u),

where

1. It is the set of workers, and Jt is the set of jobs posted by employers.

2. Z is the support of the complexity of jobs; X is the support of employees’ skill

levels.

3. P is the support of cash payments of all jobs.

4. µt is the matching allocation such that if employee i chooses job j, then µ(i) = j

and µ(j) = i. If employee i remains unmatched, then µ(i) = ∅; if no one chooses

19



CHAPTER 2. IDENTIFICATION OF MATCHING GAMES WITH TWO-SIDED
UNOBSERVED HETEROGENEITY

job j, then µ(j) = ∅.

5. Ω is the support of market unobservables that affects all firms’ profits.

6. π is the firms’ profit function and is defined in equation (3.1).

7. u is the workers’ indirect utility function and is defined in equation (2.4).

2.2.4 Equilibrium Notion and Characterization

After defining the game and players’ preferences, I now define a rational expecta-

tion equilibrium notion for this extensive-form game.

Definition 2 The rational-expectation equilibrium (δ∗t , µ
∗
t ) is such that: At Stage 2,

for any observed (PPP t,ZZZ
∗
t ), the matching allocation µ∗t : I ∪ J → I ∪ J ∪ ∅ is pairwise

stable; At Stage 1, given the rational expectation about the stable matching function

and the knowledge of distribution of (XXX∗t ,ZZZ
∗
t ), firms play the mixed-strategy pricing

function δ∗t : Z→ Σ which is Bayesian Nash Equilibrium strategy.

The equilibrium concept defined in the second-stage market is the well-known

pairwise stability notion introduced by Gale and Shapley (1962) and generalized in

Roth and Sotomayor (1989). An observed µ is said to be pairwise stable if it satisfies:

1. (Individual Rationality) ui,µ(i),t ≥ ui,∅,t,∀i ∈ It and |µt(j)| ≤ Qt, π
post
j,µt(j),t

≥

πpostj,µt(j)\i,t, ∀j ∈ Jt, i ∈ µt(j).

20



CHAPTER 2. IDENTIFICATION OF MATCHING GAMES WITH TWO-SIDED
UNOBSERVED HETEROGENEITY

2. (Nonblocking Pairs) For any employee i and firm j such that j 6= µt(i), the fol-

lowing situations cannot happen simultaneously: ui,j,t > ui,µ(i),t; and πpostj,µt(j)∪i,t >

πpostj,µt(j),t
if |µt(j)| < Qt; or πpostj,µt(j)\i′∪i,t > πpostj,µt(j),t

,∃i′ ∈ µt(j) if |µt(j)| = Qt.

The first condition implies that the matching allocation I observe is at least as

desirable for all firms and workers as staying unmatched. The second condition means

that, for any worker i in the market, his/her current choice µt(i) is the most desirable

job in his/her choice set. This choice set consists of any firms that are willing to swap

their current matched employees with i, or to fulfill a vacant space with i.

At Stage 1, expecting employees will behave on the equilibrium path in the follow-

ing stage, and conditional on the prior knowledge of the joint distribution of workers’

abilities and peer firms’ job complexity, along with the distribution of workers’ id-

iosyncratic taste shock and the idiosyncratic shock to the submission quality, the

mixed-strategy Bayesian Nash Equilibrium is defined as a mapping δ∗t : Z → Σ,

where Σ := {δ|
∑m

l=1 δ
l = 1}, such that for each firm j, given other firms’ equilibrium

strategy, δ∗−j,t, and the correct belief for the second stage, the following inequality

holds:

m∑
l=1

[
∑

ZZZ∗
−j ,XXX

∗

Pr(ZZZ∗−j ,XXX
∗)πint(pl, Z

∗
j ,ZZZ

∗
−j ,XXX

∗, δδδ∗−j,t(·), ω)] · δl,∗j,t ≥

m∑
l=1

∑
ZZZ∗

−j ,XXX
∗

Pr(ZZZ∗−j ,XXX
∗)πint(pl, Z

∗
j ,ZZZ

∗
−j ,XXX

∗, δδδ∗−j,t(·), ω)] · δlj,t,∀δ ∈ Σ. (2.5)

where πint denotes the interim payoff for firms j that chooses cash prize Pj and
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believing other firms will play the mixed strategy δ∗−j,t:

πint(pl, Z
∗
j ,ZZZ

∗
−j,XXX

∗, δδδ∗−j,t(·), ω) =∑
µt

Pr(µt|ZZZ∗−j,t,XXX∗t , Z∗j , pl, δt(ZZZ∗−j,t))πpost(Z∗j , ωt,XXX∗t , µt, pl) (2.6)

In the subsequent paragraphs, I characterize the rational-expectation equilibrium

that leads us to the identification results in Section 3 in a backward fashion.

At Stage 2, the matching stage, it is well known from theory literature that a

pairwise stable outcome always exists when preferences are responsive (Roth and

Sotomayor, 1989). Uniqueness is ensured through the assumption that workers have

strict preferences over slots, and all slots agree upon the vertical and strict ranking

over workers (Clark, 2006; Niederle and Yariv, 2009). The formal result is presented

in the following lemma.

Lemma 1 If firm j’s profit under matching allocation µt is defined as in equation

(3.1), then firms’ preference over set of employees is responsive to the preference over

individual employee. Furthermore, when preferences are strict on both sides, the stable

matching µ exists and is unique.

The proof of Lemma 1 uses the well-known Gale-Shapley Deferred Acceptance

Algorithm(DAA) to find the unique matching allocation. Nonetheless, as this game

proceeds without multiple rounds of making, holding and rejecting offers as suggested

in DAA, the question arises naturally: would the observed outcome still obtain pair-
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wise stability? The answer is yes. Consider the following non-cooperative game:

In the market firms simultaneously announce their jobs, each assigned with a cash

payment schedule and offers multiple (but finite) slots, each worker then simultane-

ously apply for a job , or simply exit the market; then, each firm accepts or rejects

received applications if there is any; lastly, if the application is accepted, the worker

and the job slot are matched, otherwise workers exit the market remaining single,

and the corresponding slots remain vacant. Matched workers then complete the job

as requested.

It is shown by Proposition 2 in Niederle and Yariv (2009) that under complete

information assumption, meaning that all players in the market are fully informed of

the utility profile, the stable match is the unique Nash equilibrium outcome surviving

iterated elimination of weakly dominated strategies. Therefore, if we restrict our

attention to players’ rationalizable equilibrium strategies only, the non-cooperative

game’s rationalizable equilibrium are all pairwise stable.

After establishing the equivalence mapping from the non-cooperative game to the

matching framework, I would like to characterize pairwise stability in such a way that

relates to the single-agent discrete choice problem. By the proof of Lemma 1, we can

see that the skill level of a worker directly affects the cardinality of his choice set.

For instance, the most skilled worker, with the knowledge of being the best in the

market enjoys a very rich choice set containing the slots of all jobs in the market.

On the contrary, the choice set of the least-skilled one would be very limited, as in
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equilibrium, those slots favored by better workers would never be available to him.

In addition, only higher-ranked workers’ preferences will affect worker i’s choice set,

but not the lower-ranked ones. As a result, for each worker i, we can characterize his

choice set conditional on the stable matching µ in market t as:

Mi[µt] := {j1|j 6= µ(l), ∀X∗l > X∗i , π
post
j,i,t ≥ 0} ∪ {jk|∃lm,m = 1, 2, · · · , k − 1,

such that µ(lm) = j,X∗lm > X∗i , k ≤ Qt, π
post
j,lm∪i,t ≥ πpostj,lm,t

} ∪ ∅ (2.7)

where the first part of the RHS denotes the first-place of all jobs that are not chosen by

any of the better workers and are willing to hire worker i than letting the slot remain

vacant, and the second part denotes the highest slot of each job that is not fulfilled

by a better worker and the firms has to be willing to hire worker i than letting the

slot remain vacant. Through this characterization, I can rewrite the pairwise stability

condition into a series of single-agent optimal choices over heterogeneous choice sets:

Lemma 2 The match µt is pairwise stable if and only if ui,µ(i) ≥ maxm∈Mi[µt]
ui,m,∀i ∈

It, where Mi[µt] is defined in equation (3.7). 6

The proof is in the appendix. Lemma 2 implies that as long as we know the actual

skills of all potential employees in market t, the pairwise stable outcome degenerates to

a discrete choice problem, in which workers make their discrete choices sequentially.

Firms’ preferences are embedded in the skill ranking of workers, which affects the

6Menzel (2015) characterizes the equilibrium using a similar argument here. His specification is
more general, though, as he includes all possible preference structure for both sides.
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sequence of workers’ moves. This lemma holds as long as one side of the market

admits a vertical preference over the other; therefore, a symmetric result could be

obtained if workers have vertical preference over jobs yet firms hold heterogeneous

preferences over workers.

Next, to characterize first-stage Bayesian Nash Equilibrium (BNE), recall that

according to Harsanyi (1967), the incomplete information game is equivalent to a

complete information game with k · J “shadow firms,” and these shadow firms be-

longing to the same job will be randomly selected by Nature to be present at Stage

1 after they set their equilibrium strategy. The existence of a mixed-strategy BNE is

therefore ensured by Nash’s theorem. Formally,

Lemma 3 If both the support of submission qualities Z and the support of cash prizes

P are finite, then the game defined above has at least one mixed-strategy Bayesian

Nash Equilibrium.

The proof is provided in the appendix. The next proposition summarizes the

existence result for the complete two-stage game:

Proposition 1 There exists a rational-expectation equilibrium (µ∗t , δ
∗
t ) for the game

defined in Definition (1).

I already proved the uniqueness of the second-stage subgame equilibrium; Nonethe-

less, the uniqueness of the whole game cannot be assured with further restrictions.

For simplicity, I assume:
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Assumption 1 (Equilibrium Selection Rule) The same symmetric equilibrium

mixed-strategy δ∗ is uniquely played in the data.

Although due to the complexity of firms’ interim payoff functional form at Stage

1 7, I cannot derive the closed-form solution for the mixed-strategy equilibrium cash

prize, there are some characterizations that suffice for identification in the subsequent

section. In particular, I show the following lemma holds:

Lemma 4 In markets where all firms fill up their vacancy, the probability of observing

a firm setting the cash prize pm = maxP monotonically increases with the market-

level unobservable ω and the cost coefficient c.

Proof can be found in the appendix. So far, I have established results regarding

the existence and characterization of the rational expectation equilibrium, and the

next section will move to the econometric discussion for recovering the primitives.

2.3 Identification

In this section, I discuss under which conditions I can use the observed data

patterns from many finite-sized markets to fully recover of the underlying utility and

profit parameters through firstly identifying the unobserved worker-wise and job-wise

heterogeneity. Before that, let me clarify the data generating process for this game

here:
7The complexity arises as the interim payoff integrates out distribution of all potential workers’

types preferences and taste shocks, therefore difficult to solve.
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2.3.1 Data-Generating Process and Notation

Suppose, as the econometrician, I can observe T markets with It workers and Jt

firms in market t. Without loss of generality, assume each firm j offers Qjt slots such

that
∑

jt
jt × Qjt = It. Once a firm is randomly drawn in market t, it leaves the

population and will not be selected in future markets. On the other hand, workers

enjoy a positive (and exogenous) probability of re-entering a new market in the game.

Every worker carries a latent ability level, X∗t that is discrete and evolves over

time according to some underlying exogenous law, Pr(X∗t |X∗t′) if the worker appears

in markets t′ and t consecutively. Each firm carries one job with a difficulty level

Z∗, also discrete. Additionally, each market t carries a one-dimensional unobserved

heterogeneity, ωt that affects all firms’ willingness to pay. All Qjt slots within a job

j share the same characteristics, WWW j, including the unobserved type Z∗j , but grant

different cash payment [Pj, φ1Pj, φ2Pj, · · · , φQjtPj], respectively.

To summarize, for each market t, I observe a It×1 vector of worker characteristics,

Xt; a Jt × 1 vector of firm/job characteristics, Wt (including the cash payments, Pt);

and a matching allocation µt such that if worker i choose slot q in firm j’s job, then

µ(i) = kqj and µ(kqj ) = i. The goal of identification consists of three items: (1) The

joint distribution of workers’ skill levels and jobs’ complexity levels, (XXX∗t ,ZZZ
∗
t ); (2)

workers’ utility primitives in ui,j,t; and (3) firms’ ex post profit primitives in πpost
j,i,t and

market-level unobserved heterogeneity, ωt.

In the following discussion, I suppress the market subscript t for ease of notation.
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Also, I use bold letters to denote market-wise vectors of characteristics, and regular

letters to indicate individual-level characteristics. The letter f is used to denote the

probability mass/density function of any distribution, with a little abuse of notation;

and M is used to indicate the matrix representation for any discrete distribution.

The identification strategy I have developed includes three steps: in the first step,

I derive the nonparametric identification result for the two-folded unobserved hetero-

geneity; following that, I identify the utility parameters on the worker side; lastly,

the firm side primitives are identified in a semi-parametric fashion. The subsequent

sections provide detailed discussion on each step.

2.3.2 Step 1: Identification of (XXX∗,ZZZ∗)

In the first step, within each market, conditional on observing pairwise stable

matches µ, I identify the joint distribution of (XXX∗t ,ZZZ
∗
t ) from jointly observing worker-

specific, firm-specific and match-specific characteristics. The identification strategy is

based on the eigenvalue-eigenvector decomposition technique developed in Hu (2008).

The basic idea is that, to fully recover the distribution of a latent variable, I need

at least three sets of useful information, all of which are correlated with the latent

variable in any arbitrary ways, but are independent of each other conditional on the

latent variable. In particular, one of them can be as simple as a binary variable. In

this model, the complication lies in the fact that the latent factor of interest is a

vector consisting of two parts: worker skills and job complexity. One extra feature
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unique to the matching model is that the distribution of observables from both sides

is correlated with the market matching allocation. For instance, if the econometrician

observes a significant portion of workers having relatively good ratings for their skills,

but submit jobs of very poor quality, how could he infer the underlying distribution

of skills among the population labor force? One possibility is that: posted skill

ratings are very noisy, and it is in fact very rare for a worker to be highly skilled.

However, one other possibility is that ratings are informative, and the main reason

why we see poor quality submissions are due to the complexity of jobs matched

to the workers. Therefore, without conditioning on the matching allocation, the

econometrician can never truly identify the distribution of workers’ skills. We can

make a similar argument on the job-side unobserved heterogeneity. Next, I show in

details how one can construct the set of information sufficient for identification.

2.3.2.1 The Job Evaluation System: A Match-Specific Out-

come

First, like mentioned before, one important slice of information observed by the

econometrician is the quality of each completed job, or more broadly, the match-

specific outcome. In empirical studies, the match-specific outcome is often observable

and can take many forms. An example in labor markets is the job evaluation sys-

tem. In the matching between venture capitalists and companies for investment, this

outcome could be the IPO stock price. The evaluation result provides a cardinal
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measurement to (1) rank order workers’ performance within the same job, thereby

determining the monetary transfers; and it also reflects (2) the productivity of any

matched pair.

I already modeled the quality of submission in the previous section using equation

(2.2); here in order to capture the two features above, I model it more specifically

with regard to how the match-specific outcome are determined:

Assumption 2 Let Zt
i,j represent the match-specific outcome generated from a matched

pair (i, j) in market t, then,

Zt
i,j = g2(X∗it, Z

∗
jt, bjt),

where,

1. g2-function is continuous and monotonically increasing with respect to its first

argument ( ∂g2/∂X
∗ > 0).

2. the idiosyncratic part bjt is independent of (X∗it, Z
∗
jt).

3. Conditional on observed matches µt,

(a) For any two firms j and l in market t, bjt ⊥ blt.

(b) For any worker i that is matched with j in market t, bjt ⊥ (X∗it, ait).

(c) For any firm j in market t, bjt ⊥ (Z∗jt, ωt).
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(d) For any two markets t and t′, bbbt ⊥ bbbt′.

Assumption 2 (i) implies that the more skilled a worker is, the better the match-

specific outcome would be, fixing other factors. This is a reasonable assumption in

real life. Assumption 2 (ii) -(iii) implies that idiosyncratic shocks to the match-specific

outcome are independent of other observable and unobservable characteristics. This

is a crucial assumption to ensure identifiability, and is more general than it seems to

be – I do not restrict the functional form of g2 except for Assumption 2 (i), so that

the idiosyncratic shock could interact with other factors in an arbitrary way.

Next, I exploit observed one extra slice of information on the worker side to

construct more moments related to the latent types from two sides.

2.3.2.2 The One-Dimensional Index for Workers

As mentioned in the modeling section, one set of observable information is a one-

dimensional index for each worker in each market, aiming to proxy their skill levels.

For instance, in school admission problems, this index can be students’ SAT or other

standardized test scores. The major difference between this index and the match-

specific outcome is that, the former is revealed before the matching process whereas

the latter is generated after the matching. I denote this index for worker i in market

t as Xit, and assume it is initially generated from a finite space for each worker, and

is updated in subsequent markets by the following equation:
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Xit = g1(Xi,t−1, Z
∗
µt(i),t, X

∗
it,XXXµt(µt(i)),t−1, ait), (2.8)

if he participates in both market t− 1 and t consecutively. If not, the index remains

unchanged until the next time he appears in a market. In the equation above, Xi,t−1

is the last-period index; Z∗µt(i),t is the complexity of the job he completes in the

market; X∗it is the latent skill level that evolves according to an exogenous rule:

Pr(X∗it|X∗i,t−1). Next, XXXµt(µt(i)),t−1 are the peer workers’ previous skill indexes within

a job – including this factor allows one’s skill index to be contingent on the relative

performance to others in the same market. Lastly, ait is an idiosyncratic shock specific

to the individual worker in the market and is assumed to be independent of the other

factors. Formally, I assume:

Assumption 3 The function g1 is invertible with respect to its first argument. Fur-

thermore, it also satisfies that
∂Pr(Xit<Xi,t−1)

∂Z∗
µt(i),t

> 0 when fixing other factors in g1

function. The idiosyncratic shock ait is realized after workers submit their jobs, and

satisfies: (i) ait ⊥ X∗i |µt; (ii) ait ⊥ ai,t′ for any two different markets t and t′; (iii)

ait ⊥ akt|µt for any two workers i and k in market t; and (iv) ait ⊥ ωt.

Compared with the worker side, it is sometimes difficult to observe any explicit

information to index the types (more precisely, the complexity levels) of jobs. Good

news is that I do not need as much information on the firm side as for the worker

side. In fact, a binary indicator that carries some variation in job types suffices for
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identification.

By revisiting Assumption (3), we can see that the pattern of a worker’s ability

index over time (i.e. markets) can tell us how complex the job he completes in the

current market might be. In particular, the binary indicator: 1(Xit < Xi,t−1) is

monotonically increasing with the complexity level of the job he completes. This,

therefore, serves as a binary indicator related with job complexity levels. 8

Specifically, let Yj denotes the binary indicator, equal to one if the (first-place)

worker’s index decreases in market t and zero otherwise. Then, I make one more

assumption here:

Assumption 4 Given Z∗, the distribution of Y is independent of both firms’ profit

shocks and shocks to the match-specific outcome. Furthermore, Yj is excluded from

workers’ utility functions.

This assumption restricts the potential correlation between the evolution of worker’s

skill index and the idiosyncratic shock in match-specific outcomes in its first part.

This is reasonable if we believe that ex post match-specific outcome do not affect the

evolution of one’s ability index directly, but only through the underlying types of

workers and jobs, along with other observables. Furthermore, I exclude the situation

where workers explicitly care whether their indexes will increase or not after they

play the game in market t on top of all other characteristics of the jobs. This is a

8Note that the direction could be the other way –
∂Pr(Xit<Xi,t−1)

∂Z∗
µt(i),t

< 0. The inequality sign

depends on the researcher’s understanding of how workers’ ability indexes can be affected by the
type of jobs they complete.

33



CHAPTER 2. IDENTIFICATION OF MATCHING GAMES WITH TWO-SIDED
UNOBSERVED HETEROGENEITY

strong exogeneity assumption but is often assumed in the literature.

Given all the information we have explored, the next lemma formally establishes

the conditional independence result regarding observed characteristics. To be more

accurate, we return to the explicit market subscript t.

Lemma 5 Under Assumptions 3–4, from observing many markets repeatedly, the

following condition holds for the market-level observables.

(XXX t|YYY t) ⊥ (PPP t, Z̃̃Z̃Zt) ⊥ ZZZt|(ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt),

where YYY t denotes the Jt × 1 vector of binary variables each indicating whether the

ability index of the best worker within a job decreases; XXX t represents the It× 1 vector

of workers’ contemporary ability index; PPP t represents the Jt×1 vector of cash payment

for all jobs; Z̃̃Z̃Zt indicates the It×1 vector of all workers’ match-specific outcome up to

their most recent participation; ZZZt is the It× 1 vector of contemporary match-specific

outcomes for all workers; (ZZZ∗t ,XXX
∗
t ) is the It × Jt matrix of all jobs’ and workers’

types; and X̃̃X̃X t is the It × 1 vector of all workers’ ability indexes up to their most

recent participation. Lastly, µt is the observed match in market t.

Intuitively, for any individual worker i, we have three conditionally independent

pieces of information related to their ability level: current index Xt, current and

previous match-specific outcomes (Zt, Z̃t)). On the job/firm side, we are unable to

observe information for the same job across different markets as each firm appears
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in only one market. Instead, we must rely on the information observed from the

matching outcomes in one market to invoke identification. So far within a market,

there are three slices of useful information related to job-wise heterogeneity: firms’

cash payment, the match-specific outcome, and whether the skill indices of the best

workers in each job decreases or not. To see this, first, let us focus on the match-

specific outcomes, as they not only reflect workers’ innate abilities, X∗, but also

the complexity of jobs, Z∗. We must be cautious here, though, as the observed

outcomes are driven by the matching allocation, through which jobs in the same

market are implicitly correlated. Another bit of useful information concerns the

cash payment decided by firms: They are the major movements firms make during

the extensive-form game and are equilibrium outcomes. Again, cash payment from

different firms is correlated through the market-level unobservable, ω, and further

correlated through the matching allocation, µ.9 Consequently, we cannot separately

identify its distribution without looking at other jobs in the same market. Instead, the

conditional independence could only be built upon observed (market-level) matching

allocations.

The major implication of Lemma 5 is that, suppose we could observe infinitely

many markets. Then, fixing the market size (I, J,Q) that is suppressed from the

following equations, the matching allocation, and workers’ previous performance,

(µ, X̃̃X̃X), we could decompose the joint distribution of (XXX,PPP , Z̃̃Z̃Z,ZZZ|YYY ) that is directly

9To see this, note that the probability of observing a certain match µ depends on the joint
distribution of (XXX∗,ZZZ∗,PPP ). Thus, the distribution of PPP is variant with different values of µ.

35



CHAPTER 2. IDENTIFICATION OF MATCHING GAMES WITH TWO-SIDED
UNOBSERVED HETEROGENEITY

computable from data as

f(XXX,PPP , Z̃̃Z̃Z,ZZZ|YYY , X̃̃X̃X, µ, I, J,Q)

=
∑
ZZZ∗,XXX∗

f(PPP , Z̃̃Z̃Z|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(XXX,ZZZ∗,XXX∗|YYY , X̃̃X̃X, µ) (2.9)

as well as,

f(PPP , Z̃̃Z̃Z,ZZZ|YYY , X̃̃X̃X, µt, I, J,Q)

=
∑
ZZZ∗,XXX∗

f(PPP , Z̃̃Z̃Z|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ∗,XXX∗|YYY , X̃̃X̃X, µ) (2.10)

Next, I formalize the distributional assumptions with respect to both observed

and latent variables in the market:

Assumption 5 1. Each job omplexity is drawn from the finite space {z1, z2, · · · , zm}.

2. Each worker’s, i, ability is drawn from the finite space {x1, x2, · · · , xl}.

3. The match-specific outcome, Zij, is drawn from a bounded atomless support

[0, 100].

4. The cash payment is drawn from the finite space {p1, p2, · · · , pM} with M ≥ m.

5. The ability index, Xit, is drawn from an arbitrarily large but discrete support

{x̃1, x̃2, · · · , x̃L}.
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As all latent types are discrete, we would like to write equations (3.25) and (3.26)

in matrix forms. The following assumption is crucial.

Assumption 6 For any observed (µ,X̃XX = xxx, I, J,Q),

1. There exists a mapping φX : {x̃1, x̃2, · · · , x̃L} → {x1, x2, · · · , xl} such that for

any job j: ∀xxx,x′x′x′ ∈ {x̃1, x̃2, · · · , x̃L}|µ(j)|,xxx 6= x′x′x′, and for any observed X̃̃X̃Xµ(j),

Pr(XXXd
µ(j) = xxx|XXX∗µ(j) = xxx, X̃̃X̃Xµ(j)) > Pr(XXXd

µ(j) = xxx|XXX∗µ(j) = xxx′, X̃̃X̃Xµ(j)),

where, for any worker i, Xd
i = φX(Xi).

2. There exists a mapping φP : {p1, p2, · · · , pM} → {1, 2, · · · ,m}.

3. There exists a mapping φz1 : [0, 100]→ {1, 2, · · · , l ·m} for each match-specific

outcome, Zj,1, of the best workers within each job

4. There exists a mapping φz2 : [0, 100] → {1, 2, · · · , l} for each match-specific

outcome of the non-winning workers Zj,−1 and a vector of values yyy, such that

the following matrix is of full rank mJ · lI :

MPPP d,Z̃̃Z̃Zd,ZZZd|YYY=yyy,X̃̃X̃X=xxx,µt,I,J,Q
. (2.11)

where for each non-winning worker i, Zd = φz2(Zi) and Z̃d = φz2(Z̃i); for

each winning worker i, Zd = φz1(Zi) and Z̃d = φz1(Z̃i); and for each job j,

P d = φp(Pj).
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The intuition behind Assumptions 12 and 13 is that, when (X∗, Z∗) follows a

discrete distribution, we could partition (or discretize, if observables are continuous)

observable characteristics to have the same dimension as the cardinality of the support

for (X∗, Z∗), such that equations (3.25) and (3.26) could be written in a matrix form

and would provide the nice property of invertibility. Assumption 13(1) implies that

we could partition the ability indexes in a way that gives us a good indicator of the

true ability level.

Specifically, fixing a certain value of (YYY = yyy, X̃XX, µt, I, J,Q), I compute the proba-

bility of observing XXXd = xxx as well as various values of (PPP d, Z̃̃Z̃Zd,ZZZd)

MXXXd=xxx,PPP d,Z̃̃Z̃Zd,ZZZd|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q

= MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q ·DZZZ∗,XXX∗,XXXd=xxx|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q ·M
T
PPP d,Z̃̃Z̃Zd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q

(2.12)

where on the LHS, the element on the i-th row and j-th column corresponds to the

probability:

Pr(XXXd = xxx, (PPP d, Z̃̃Z̃Zd) = (ppp,zzz)j,ZZZ
d = zzzi|YYY = y, X̃̃X̃X = xxx, µ, I, J,Q)

where (ppp,zzz)j(resp. zzzi) is the j-th(resp. i-th) distinct value for the vector (PPP d, Z̃̃Z̃Zd)(resp.

ZZZd). The first and third matrix on the RHS is similarly defined. The middle matrix D

on the RHS is diagonal whose elements are the probability of observing (ZZZ∗ = zzz,XXX∗ =

xxx′,XXXd = xxx) for various values of (zzz,xxx′) conditional on (YYY = yyy, X̃XX = xxx, µ, I, J,Q). All
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matrices are of dimension (mJ · lI)× (mJ · lI). In addition,

MPPP d,Z̃̃Z̃Zd,ZZZd|YYY=111−yyy,X̃̃X̃X=xxx,µt,I,J,Q
= MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q ·DZZZ∗,XXX∗|YYY=1−yyy,X̃̃X̃X=xxx,µ,I,J,Q·

MT
PPP d,Z̃̃Z̃Zd,ZZZ∗,XXX∗|X̃̃X̃X=xxx,µ,I,J,Q

(2.13)

By inverting equation (2.13) and right-multiplying equation (2.12), we get

MXXXd=xxx,PPP d,Z̃̃Z̃Zd,ZZZd|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q ·M
−1

PPP d,Z̃̃Z̃Zd,ZZZd|YYY=111−yyy,X̃̃X̃X=xxx,µt,I,J,Q

= MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q ·DZZZ∗,XXX∗,XXXd=xxx|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q ·D
−1

ZZZ∗,XXX∗|YYY=1−yyy,X̃̃X̃X=xxx,µ,I,J,Q
·

M−1

ZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q
(2.14)

Here, the matrices on the LHS are directly computable from data, and the RHS

embeds the distribution of unobservables that we are interested in. I then exploit the

independence condition of observable characteristics across jobs:

MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q = MZd1 |Z∗1 ,XXX∗µ(1)
⊗MZd2 |Z∗2 ,XXX∗µ(2)

⊗ · · · ⊗MZdJ |Z
∗
J ,XXX

∗
µ(J)

(2.15)
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and,

DZZZ∗,XXX∗,XXXd=xxx|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q ·D
−1

ZZZ∗,XXX∗|YYY=1−yyy,X̃̃X̃X=xxx,µ,I,J,Q
=

[(DZ∗1 |Y1=y1 ·D−1
Z∗1 |Y1=1−y1)⊗DXXXd

µ(1)
|X∗
µ(1)

,X̃XXµ(1)
]⊗ · · ·⊗

[(DZ∗J |YJ=yJ ·D−1
Z∗J |YJ=1−yJ )⊗DXXXd

µ(J)
|X∗
µ(J)

,X̃XXµ(J)
] (2.16)

The RHS of equation (3.29) therefore can be written as

MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q ·DZZZ∗,XXX∗,XXXd=xxx|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q ·D
−1

ZZZ∗,XXX∗|YYY=1−yyy,X̃̃X̃X=xxx,µ,I,J,Q
·

M−1

ZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q

= (MZd1 |Z∗1 ,XXX∗µ(1)
· [(DZ∗1 |Y1=y1 ·D−1

Z∗1 |Y1=1−y1)⊗DXXXd
µ(1)
|X∗
µ(1)

,X̃XXµ(1)
] ·M−1

Zd1 |Z∗1 ,XXX∗µ(1)
)⊗ · · ·

⊗ (MZdJ |Z
∗
J ,XXX

∗
µ(J)
· [(DZ∗J |YJ=yJ ·D−1

Z∗J |YJ=1−yJ )⊗DXXXd
µ(J)
|X∗
µ(J)

,X̃XXµ(J)
] ·M−1

ZdJ |Z
∗
J ,XXX

∗
µ(J)

)

:= M1 ⊗M2 ⊗ · · · ⊗MJ (2.17)

On the RHS, each matrix Mj is a square matrix of dimension m · l|µ(j)|. From

the definition of the Kronecker product, we know that matrix MJ could be identified

up to a positive scale from the upper-right (m · l|µ(J)|)× (m · l|µ(J)|) submatrix of the

LHS. Thus, by changing the order of variables when we construct the LHS, we could

identify the Mj matrix for any job j up to a positive scale. The next step is to recover

the matrix MZZZdj |(Z∗j ,XXX∗µ(j))
from the identified matrices Mj.

Suppose we have identified Mj up to a positive scale, s > 0. Then, by definition
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of Mj in equation (2.17), we have

s·Mj = MZdj |Z∗j ,XXX∗µ(j)
·[s·(DZ∗j |Yj=yj ·D

−1
Z∗j |Yj=1−yj)⊗DXXXd

µ(j)
|X∗
µ(j)

,X̃XXµ(j)
]·M−1

Zdj |Z∗j ,XXX∗µ(j)
(2.18)

This equation reminds us to use the eigenvalue–eigenvector decomposition method

developed in Hu (2008) for nonparametric identification. Specifically, each column in

matrix MZZZdj |(Z∗j ,XXX∗µ(j))
corresponds to an eigenvector of the LHS matrix (after a nor-

malization). Each corresponding diagonal element of [s · (DZ∗j |Yj=yj · D
−1
Z∗j |Yj=1−yj) ⊗

DXXXd
µ(j)
|X∗
µ(j)

,X̃XXµ(j)
] represents the corresponding eigenvalue of the LHS matrix. Fol-

lowing the argument in Hu (2008), in order to determine the ordering of all the

eigenvectors, we exploit the implications from Assumption 4 and 13 to derive the

following result:

Lemma 6 Under Assumption 4 and 13, for each job j, it holds that all the eigenval-

ues of the matrix s ·Mj are distinct.

This result is derived from the fact that, from Assumption 4, given different com-

plexity levels Z∗j , we could always rank the probability of observing such complexity

level given Yj = 1 relative to given Yj = 0. Furthermore, from part (1) of Assumption

13, the probability of correctly signaling one’s ability by discretized ability indexes

is higher than the probability of mismeasurement. Combining these two conditions

together, I can pin down the ordering of diagonal elements of the eigenvalue matrix,

which further leads to the identification of eigenvectors and eigenvalues in the ma-
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trix s ·Mj up to the normalization of each column in MZj,1,ZZZj,−1|(Z∗j ,XXX∗µ(j)). The next

proposition is a major result to identify the joint distribution of (ZZZ∗,XXX∗) given the

market size and observed match, µ.

Proposition 2 Under Assumptions 3–13, the joint distribution of (PPP ,ZZZ∗,XXX∗|µ, I, J,Q)

is nonparametrically identified from observing the joint distribution of (YYY ,XXX,PPP , Z̃̃Z̃Z,ZZZ, X̃̃X̃X)

conditional on a certain (µ, I, J,Q).

The proof is in the appendix.

To fully construct the likelihood when estimating the model, the conditional distri-

butions of (ZZZj|Z∗j ,XXX∗µ(j)) and (XXXµ(j)|XXX∗µ(j), X̃̃X̃Xµ(j)) must also be known. The following

corollary establishes the identification result.

Corollary 1 For any worker i and job j, the conditional distributions of (ZZZj|Z∗j ,XXX∗µ(j))

and (XXXµ(j)|XXX∗µ(j), X̃̃X̃Xµ(j)) are nonparametrically identified. Moreover, the underlying

law of motion Pr(X∗it|X̃∗it) and initial condition Pr(Xi1|X∗i1) are nonparametrically

identified.

The proof is in the appendix.

2.3.3 Step 2: Identification of Workers’ Utility Prim-

itives

The market-level choice probability is equivalent to the probability of observing

the matching allocation µt, and is determined solely by workers’ preferences once we
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know their underlying skill levels. As their preferences are affected by (XXX∗,ZZZ∗,PPP ),

the market-level choice probability can be written as Pr(µ|XXX∗,ZZZ∗,PPP ).

In order to simplify the notation, the (I, J,Q) is suppressed from now on. One

should bear in mind, however, that all of our distributions are conditioning on a

certain market size. After identifying the conditional distribution of unobserved types

of worker–slot pairs, we could apply the Bayes Theorem:

Pr(µ|XXX∗,ZZZ∗,PPP ) =
f(P,Z∗,X∗|µ) · Pr(µ)∑
µ f(P,Z∗,X∗|µ) · Pr(µ)

,

where, f(P,Z∗,X∗|µ) is identified from the previous section and Pr(µ) is directly

observable from data.

Given the knowledge of Pr(µ|XXX∗,ZZZ∗,PPP ), I am able to further decompose it into

individual-level choice probability:

Pr(µ|XXX∗,ZZZ∗,PPP ) = Pr(u1,µ(1) ≥ max
j∪∅

u1,j) · Pr(u2,µ(2) ≥ max
j 6=µ(1),∅

u2,j) · · · · Pr(uI,µ(I) ≥ max
j 6=µ(i),∀i<I,∅

uI,j)

if I order workers such that X∗1 > X∗2 > · · · > X∗I .

Recall that I parametrize their indirect utilities as:

ui,jk = βPjk + γ0X
∗
i + (γ1X

∗
i + ηit) · Z∗j + νij, (2.19)

where νij is the match-specific idiosyncratic taste shock, following an known i.i.d.
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distribution. The coefficient γ0 is the fixed-effect for a given ability level X∗i ; γ1

measures each worker’s preference over the interaction of her ability and the job’s

difficulty level. ηi is an unobserved taste determinant that follows a distribution

known up to a K-dimensional parameter σσσ. The unknown parameters are, therefore,

(β, γ0, γ1σσσ).

I first write down the conditional probability of the best worker, worker 1, chooses

µt(1) :

Pr(µ(1)|PPP ,XXX∗,ZZZ∗)

= Pr(βPµ(1) + γ0X
∗
1 + (γ1X

∗
1 + η1) · Z∗µ(1)ν1,µ(1) ≥

max (βPjk + γ0X
∗
1 + (γ1X

∗
1 + η1) · Z∗j + ν1,j, ∀jk ∈Mi[µt])

:= H(βPjk + γ0X
∗
1 + (γ1X

∗
1 + η1) · Z∗j , ∀jk),

and the functional form of H is known. Other workers’ choice probabilities could

also be written similarly, except that their choice sets are constrained by their ability

ranking in the market.

First, to identify β, I exploit the situation when all jobs in the market have zero

complexity and all workers have zero ability level. 10 Then, the choice probability for

10This could be done by normalization of (X∗, Z∗).
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the best worker becomes

Pr(µ(1)|Z∗,X∗,P)|Z∗j =0,X∗i =0∀i,j = H(βPjk).

The LHS of the equation is identified from the following equation. The RHS

has only one unknown parameter β. If the H-function is invertible on β, then it is

identified.11

Pr(µ(1)|Z∗,X∗,P)|Z∗j =0,X∗i =0∀i,j =
∑

µ(2),··· ,µ(I)

Pr(µ|Z∗,X∗,P)|Z∗j =0,X∗i =0∀i,j

Next, in order to identify γ0, I exploit the situation when all jobs in the market

have zero complexity level. Firstly we have:

∂Pr(µ(1)|Z∗,X∗,P)

∂Pj
|Z∗j =0,∀j = βH(1)(βPj + γ0X

∗
1 )

where H(1) denotes the derivative of H-function over βPj +γ0X
∗
1 +(γ1X

∗
1 +η1)Z∗j .

Similarly, we have:

∂Pr(µ(1)|Z∗,X∗,P)

∂X∗1
|Z∗j =0,∀j = γ0

∑
j

H(1)(βPj + γ0X
∗
1 )

11Typical specifications, such as the multinomial logit model, ensure the invertibility of H.
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Therefore, γ0 could be identified from:

γ0 = β{∂Pr(µ(1)|Z∗,X∗,P)

∂X∗1
/
∑
j

∂Pr(µ(1)|Z∗,X∗,P)

∂Pj
}|Z∗j =0,∀j

Next, identifying γ1 is done through the following equation:

γ1 =

∂Pr(µ(1)|Z∗,X∗,P)
∂X∗1

− [∂Pr(µ(1)|Z∗,X∗,P)
∂X∗1

|Z∗j =0,∀j]∑
j
∂Pr(µ(1)|Z∗,X∗,P)

∂Pj
Z∗j /β

Lastly, to identify the distributional parameters of η1, we need to make the fol-

lowing assumption to identify σσσ.

Assumption 7 The function H(·) is K times continuously differentiable and there

always exists some cash payment such that H(k)(β(Pµ(1)−Pj)) 6= 0,∀k = 0, 1, · · · , K.

By Assumption 7, we can construct the moment functions of η from taking the

derivative of Pr(µ(1)|Z∗,X∗,P)|X∗1=0 when all jobs in the market have the same level

of complexity:

∂Pr(µ(1)|Z∗,X∗,P)

∂Z∗µ(1)

|Z∗j =0,∀j = γ1X
∗
1H

(1)(βPj+γ0X
∗
1 )+H(1)(βPj+γ0X

∗
1 )

∫
η1

η1dF (η1)

which indicates:

∫
η1

η1dF (η1) =

∂Pr(µ(1)|Z∗,X∗,P)
∂Z∗

µ(1)
|Z∗j =0,∀j − γ1X

∗
1H

(1)(βPj + γ0X
∗
1 )

H(1)(βPj + γ0X∗1 )
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and similarly,

∫
η1

(γ1X
∗
1 + η1)kdF (η1) =

∂kPr(µ(1)|Z∗,X∗,P)

∂Z∗
µ(1)

k |Z∗j =0,∀j

H(k)(βPj + γ0X∗1 )

where the RHS can be perfectly computed now, and the LHS corresponds to the k-th

moment of η1. This suffices for the identification of σσσ. This method of identification

is a special case of Fox et al. (2012).

Consequently, all the utility primitives are identified in the model.

2.3.4 Step 3: Identification of Firms’ Profit Prim-

itives

From Step 1, we have identified the joint distribution of (PPP ,ZZZ∗,XXX∗). We know

that, for each job j, the symmetric equilibrium cash payment depends on (Z∗j , ωt),

which implies

Pj ⊥ Pj′ ⊥ Pj′′ |Z∗j , Z∗j′ , Z∗j′′ , ω (2.20)

for any j, j′, j′′ in market t. Therefore, we could recover the distribution of market

unobserved heterogeneity, ωt, from jointly observing at least three jobs in the market.

Specifically, suppose we observe J ≥ 3 jobs per market, then conditional on J ≥ 3,
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we could construct the joint probability

f(P1, P2, P3|Z∗1 , Z∗2 , Z∗3) =
∑
ω

f(P1|Z∗1 , ω) · f(P2|Z∗2 , ω) · f(P3, ω|Z∗3) (2.21)

and

f(P1, P3|Z∗1 , Z∗2 , Z∗3) =
∑
ω

f(P1|Z∗1 , ω) · f(P3, ω|Z∗3). (2.22)

This naturally relates to a measurement-error model; following Hu (2008), we

make the following assumption to identify the conditional distribution, f(Pj|Z∗j , ω).

Assumption 8 1. ω is drawn from a finite support {w1, w2, · · · , wn} with n ≤ m.

2. There exists a mapping ρ : {p1, p2, · · · , pm} → {1, 2, · · · , n} such that the fol-

lowing matrix is of full rank n× n.

Mρ(P1),ρ(P3)|Z∗1 ,Z∗3 := [Pr(ρ(P1) = p, ρ(P3) = p′|Z∗1 , Z∗3)]p,p′∈{1,2,··· ,n}

The next theorem tells us that we could identify the distribution of a single firm’s

cash payment, P , conditional on its job complexity, Z∗, and the market unobservable

ω. This condition distribution could be viewed as firms’ pricing strategies.

Proposition 3 Given Assumption 11, we can nonparametrically identify Pr(Pj|Z∗j , ω)

and the marginal distribution of ω.
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As discussed in the previous section, the equilibrium cash prize distribution max-

imizes the interim payoff of each firm at Stage 1. Specifically, let δ∗ := Pr(P |Z∗, ω),

then

δ∗ ∈ argmaxδ∈Σ

m∑
l=1

[
∑

Z∗−j ,P−j

πint(pl, Z
∗
j , Z

∗
−j, δ

∗
−j(·), ω)] · δlj

where πint(pl, Z
∗
j , Z

∗
−j, δ

∗
−j(·), ω) is the firm’s interim payoff function defined previously.

In equilibrium, δ∗ is a function of (c, Z∗, ω, β, γ, σ, Pr(Z∗), P r(X∗)), where only the

profit coefficient c is not known. As we already made the assumption with regard to

the equilibrium selection rule, we only need to make sure the δ∗ function is invertible

for c. From Lemma 4, the equilibrium distribution of cash payment δ∗ is stochastically

increasing with respect to c. Thus, the profit coefficient, c, can be identified from

c = (δ∗)−1(Pr(P |Z∗, ω), Z∗, ω, β, γ, σ, Pr(Z∗), P r(X∗)).

So, we have nonparametrically identified the distribution of unobserved hetero-

geneity on both sides of the market, and more importantly, identified the preference

primitives for firms and workers. The next section will discuss the estimation proce-

dure in detail.

2.3.5 Likelihood-Based Estimation

Although the distributions of unobserved types (ZZZ∗,XXX∗) are entirely nonparamet-

rically identified, empirically it is hard to estimate the distribution fully nonpara-
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metrically due to data constraints. Here, we assume a parametric structure on the

function of match-specific outcome, Z, and preserve the nonparametric structure for

other distributions related to (ZZZ∗,XXX∗). First, we estimate a simple case, where work-

ers’ types, XXX∗, could be entirely inferred from their ability indexes, and we estimate

the distribution of job-level unobserved heterogeneity, ZZZ∗, along with workers’ utility

primitives. Then we extend to the general case of latent workers’ types and estimate

its distribution along with other primitives in the basic model. The dimensional-

ity problem arises in the latter model, as workers participate in different markets.

To make the estimation practical, I make further assumptions on the workers’ par-

ticipation rule to reduce the dimensionality of the likelihood. Lastly, I discuss a

simulation-based approach to estimate firms’ utility primitives.

2.3.5.1 Benchmark Case: When XXX∗ Are Perfectly Observed

In this benchmark model, I use workers’ ability indexes (Xi) as the perfect measure

of their skill levels, X∗i . Also, the match-specific outcome from worker i and job j is

determined by

Zt
ij = ξ1X

∗
it + ξ2Z

∗
jt + bjt

= ξ1Xit + ξ2Z
∗
jt + bjt, (2.23)
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where ξ1 > 0 and ξ2 < 0 are unknown. b follows an atomless distribution known up

to a finite-dimensional parameter κκκ.

Also for simplicity, I assume cash payment follows the exogenous distribution,

δ := Pr(P |Z∗, ω). This is because of the complexity of simulating the equilibrium

pricing strategies. I will incorporate the equilibrium wage-setting stage in a more

general model in section 3.4.3.

The primitives I would like to estimate consist of three sets: (1) (β, γ,σσσ), which

are parameters in workers’ indirect utility function; (2) (ξ,κκκ), which are parameters

in the match-specific outcome function in equation (3.11); and (3) the distributions

Pr(Y |Z∗, X∗, µt), Pr(P |Z∗, ω), Pr(Z∗) and Pr(ω). Including all parameters and

distributions into θθθ, the log-likelihood function is defined as

LLLLLL(θθθ) :=
T∑
t=1

log(Pr(µt,ZZZt,PPP t,YYY t|XXX∗t ))

=
T∑
t=1

log

∑
ZZZ∗t

f(ZZZt|ZZZ∗t ,XXX∗t , µt) · Pr(YYY t|ZZZ∗t ,XXX∗t , µt) · Pr(µt|ZZZ∗t ,XXX∗t ,PPP t)

·
∑
ωt

Pr(PPP t|ZZZ∗t , ωt) · Pr(ωt) · Pr(ZZZ∗t )

)
(2.24)

where, if we rank workers in market t such that X∗1 ≥ X∗2 ≥ · · · ≥ X∗I ,12

Pr(µt|ZZZ∗t ,XXX∗t ,PPP t) = H1 ·H2 · · · ·HI

12For simplicity, assume when two workers carry the same ability level, all firms strictly prefer the
one with a smaller subscript.

51



CHAPTER 2. IDENTIFICATION OF MATCHING GAMES WITH TWO-SIDED
UNOBSERVED HETEROGENEITY

and,

Hi :=Pr(µ(i) = jk|µ(i′),∀i′ < i;XXX∗t ,ZZZ
∗
t ,PPP

∗
t )

=

∫
ηi

1∑
m6=µ(i′) exp(β(Pm − Pjk) + (γX∗i + ηi)(Zm − Zj))

dFη(ηi)

In words, Hi is the probability of worker i choosing job µ(i) given the choices by other

better workers in the market. Lastly, the probability of observing the match-specific

outcomes are:

f(ZZZt|ZZZ∗t ,XXX∗t , µt) =
Jt∏
j=1

fZZZj(z|Z∗j ,XXX∗µt(j)) =
Jt∏
j=1

fbj(z −X∗µ(j),1 − ξZ∗j ), (2.25)

where (µ(j), 1) denotes the worker matched with job j and sits in the first place. All

other probabilities on the RHS of equation (3.19) are primitives of the model and are

discrete.

So far, all the components in the likelihood are fully specified, and the Monte

Carlo simulation result is presented in section 2.4.1.

The next lemma establishes the consistency result for the estimator.

Lemma 7 Assume (i) the product space for estimation primitives are compact; 13

(ii) Pr(µt,ZZZt,PPP t,YYY t|XXX∗t ) is continuous in all parameters and probability distributions;

(iii) the set of primitives such that Pr(µt,ZZZt,PPP t,YYY t|XXX∗t ) > 0 does not depend on the

13The space include the parametric spaces for (1) (β, γ,σσσ), which are parameters in workers’ utility
function; (2) (ξ,κκκ), which are parameters in the score function in equation (3.11), and lastly, the
probability space for the distributions Pr(Y |Z∗), Pr(P |Z∗, ω), Pr(Z∗) and Pr(ω).
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value of primitives; (iv) there exists a function K(µt,ZZZt,PPP t,YYY t|XXX∗t ) such that

logPr(µt,ZZZt,PPP t,YYY t|XXX∗t , θθθ)− logPr(µt,ZZZt,PPP t,YYY t|XXX∗t , θ0θ0θ0) ≤ K(µt,ZZZt,PPP t,YYY t|XXX∗t ) and

EK(µt,ZZZt,PPP t,YYY t|XXX∗t ) <∞; then the likelihood estimator that maximizes the function

in equation (3.19) converges in probability to the true values of the primitives.

Proof can be found in Appendix 2.7.9.

2.3.5.2 General Case: Both (XXX∗,ZZZ∗) Are Latent

In the general case, where both (XXX∗,ZZZ∗) are latent, we make one simplification

on the generating process for ability indexes. Specifically, we simplify equation (2.8)

to be:

Xit = g(X̃it, X
∗
it, ait). (2.26)

Thus, the distribution of Xit depends only on (X̃it, X
∗
it). Compared with the

benchmark case, where X∗ is completely observable, Pr(Xit|X̃it, X
∗
it) and Pr(X∗it|X̃∗it)

are the additional primitives I would like to estimate. The likelihood function there-

fore is

LLL(θθθ) =Pr(WWW 1,WWW 2, · · · ,WWW T )

=
∑

XXX∗1,XXX
∗
2,··· ,XXX∗T

Pr(WWW 1|XXX∗1) · Pr(WWW 2|XXX∗2,WWW<2) · · ·Pr(WWW T |XXX∗T ,WWW<T ) · Pr(XXX∗1,XXX∗2, · · · ,XXX∗T )

(2.27)

where WWW t includes all variables observed in market t, i.e., (YYY t,ZZZt,PPP t,XXX t, µt). From
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Assumption 2, we know that

Pr(WWW t|XXX∗t ,WWW<t) = Pr(WWW t|XXX∗t , X̃̃X̃X t),

=
∑
ZZZ∗t

Pr(ZZZt|ZZZ∗t ,XXX∗t , µt) · Pr(YYY t|ZZZ∗t ,XXX∗t , µt) · Pr(XXX t|XXX∗t , X̃̃X̃X t)

· Pr(µt|ZZZ∗t ,XXX∗t ,PPP t)) · Pr(PPP t,ZZZ
∗
t ). (2.28)

where X̃̃X̃X t refers to the vector of the most recent rating scores of each worker in market

t. And in the first market,

Pr(WWW 1|XXX∗1) =
∑
ZZZ∗1

Pr(ZZZ1|ZZZ∗1,XXX∗1, µ1) · Pr(XXX1|XXX∗1) · Pr(µ1|ZZZ∗1,XXX∗1,PPP 1) · Pr(PPP 1,ZZZ
∗
1).

(2.29)

I have so far constructed the likelihood function for the general case. Ideally,

one would estimate the conditional distribution of Pr(X|X̃,X∗), the initial condition

Pr(X1|X∗1 ) and the law of motion Pr(X∗t |X̃∗) along with other unknown primitives

using a Likelihood-Based estimator. Practically, however, due to the high dimension-

ality of (XXX∗1,XXX
∗
2, · · · ,XXX∗T ), this is impossible to do without further modification.

To see why the dimensionality problem arises, suppose in the real data, we have

N workers and T markets in total. Given that workers are very likely to appear in

multiple markets, they can be viewed as “global players” of the repeated game. On

average, if we observe M > N/T workers per market on average, to compute the full
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likelihood, we need to evaluate the joint probability distribution Pr(XXX∗1,XXX
∗
2, · · · ,XXX∗T )

approximately 2M ·T times, even if each worker’s skill level takes only two possible

values. This is computationally unrealistic to implement as T grows large. Instead, I

make the following assumption to simplify the estimation procedure.

Assumption 9 Suppose the probability of worker i being present in market t is

eit =



e0, if worker i never participated before,

e1, if worker i participated in market t− 1,

0, if worker i appeared both in market t and t− 1.

where 0 < e2 < e1 < 1.

Intuitively, workers enter the market and stay for at most two consecutive weeks.

Afterwards, they leave the market forever. The entry, stay and exit decisions are

nonstrategic though. Furthermore, I assume the populations of both workers and

firms consist of countless many candidates. Thus, there always exist positive numbers

of workers and firms across all markets. Hence, in each market t, the set of workers,

It, could be divided into three categories, {It,−1, It,0, It,+1}, where It,−1 denotes the

ones that also appeared in market t− 1 and stayed in market t, It,0 denotes workers

that appeared only in market t and leave forever after t, and It,+1 denotes those who

first appear in market t and stay for one more period. The detailed illustration is in in

Figure (3.6). Now, I construct a new likelihood function that uses partial information
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from what we observe:14

L̃LL(θ) =Pr(WWW 1,WWW 3, · · · ,WWW T−1|[ZZZ2,XXX2, µ2], [ZZZ4,XXX4, µ4], · · · , [ZZZT ,XXXT , µT ])

=
Pr(WWW 1,WWW 3, · · · ,WWW T−1, [ZZZ2,XXX2, µ2], [ZZZ4,XXX4, µ4], · · · , [ZZZT ,XXXT , µT ])

Pr([ZZZ2,XXX2, µ2], [ZZZ4,XXX4, µ4], · · · , [ZZZT ,XXXT , µT ])

=

∑
[PPP 2,YYY 2],...,[PPPT ,YYY T ]LLL(θθθ)∑

WWW 1,WWW 3,··· ,WWWT−1

∑
[PPP 2,YYY 2],...,[PPPT ,YYY T ]LLL(θθθ)

. (2.30)

Essentially, I have integrated out some information with regard to even markets,

and mainly focus on the odd markets. This enables me to compute market-level

likelihood separately without encountering the dimensionality problem. To see this,

L̃LL(θ) =Pr(WWW 1,WWW 3, · · · ,WWW T−1|Pr([ZZZ2,XXX2, µ2], [ZZZ4,XXX4, µ4], · · · , [ZZZT ,XXXT , µT ])

=

T/2∏
t=1

Pr(WWW 2t−1|[ZZZ2,XXX2, µ2], [ZZZ4,XXX4, µ4], · · · , [ZZZT ,XXXT , µT ])

=

T/2∏
t=1

Pr(WWW 2t−1|[ZZZ2t−2,XXX2t−2], [ZZZ2t,XXX2t])

=

T/2∏
t=1

∑
XXX∗2t−1

Pr(WWW 2t−1,XXX
∗
2t−1|[ZZZ2t−2,XXX2t−2, µ2t−2], [ZZZ2t,XXX2t, µ2t]). (2.31)

I condition on the information of Z and X from even markets, as they are relevant

to workers’ underlying types X∗. The second equality follows from the fact that

in market 2t − 1 and 2t + 1, no workers is overlapping anymore; thus, the joint

14Without loss of generality, assume T is an even number. In addition, there is an abuse of
notation – some variables inWWW are continuously distributed, but I use the summation sign to denote
the summation of all possible values for discrete variables, and the integration over the support of
continuous variables.
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distributions of observables are independent of each other, conditional on neighbor

market observables. The third equality follows from the fact that workers stay for

at most two periods. Thus the only relevant information from even markets is about

the match-specific outcomes from right before and right after market t.

To simplify my notation, I denote variables (ZZZt,XXX t) as RRRt. Then I divide all

variables into three parts according to whether the worker is from last period (denoted

as subscript {t,+1}), stays only at this period (denoted as subscript {t, 0}), or stays

for one more period (denoted as {t,−1}). Then, I have,

Pr(WWW t,XXX
∗
t |ZZZt−1,XXX t−1, µt−1,ZZZt+1,XXX t+1, µt+1)

= Pr(WWW t,XXX
∗
t |RRRt−1,RRRt+1)

= Pr(WWW t,XXX
∗
t |RRRt−1,−1,RRRt−1,0,RRRt−1,+1,RRRt+1,−1,RRRt+1,0,RRRt+1,+1)

= Pr(WWW t,XXX
∗
t |RRRt−1,+1,RRRt+1,−1). (2.32)

The likelihood function becomes

L̃LL(θ) =

T/2∏
t=1

∑
XXX∗2t−1

Pr(WWW 2t−1,XXX
∗
2t−1|[ZZZ2t−2,XXX2t−2, µ2t−2], [ZZZ2t,XXX2t, µ2t])

=

T/2∏
t=1

∑
XXX∗2t−1

Pr(WWW 2t−1,XXX
∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1]).

(2.33)

In other words, I have avoided the dimensionality problem by picking up only
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odd numbers of weeks from the data, and partial information from even numbers of

weeks. This makes the estimation much more manageable in practice. I write the

log-likelihood function as

L̃LLLLL(θ) =

T/2∑
t=1

log
∑

XXX∗2t−1,ZZZ
∗
2t−1

Pr(WWW 2t−1,XXX
∗
2t−1,ZZZ

∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1], [ZZZ2t,−1,XXX2t,−1])

=

T/2∑
t=1

log
∑

XXX∗2t−1,ZZZ
∗
2t−1

Pr(ZZZ2t−1|ZZZ∗2t−1,XXX
∗
2t−1, µ2t−1) · Pr(YYY 2t−1|XXX2t−2,+1,ZZZ

∗
2t−1,XXX

∗
2t−1, µ2t−1)·

Pr(µ2t−1|ZZZ∗2t−1,XXX
∗
2t−1,PPP 2t−1) ·

∑
ω2t−1

Pr(PPP 2t−1|ZZZ∗2t−1, ω2t−1) · Pr(ω2t−1) · Pr(ZZZ∗2t−1)·

Pr(XXX2t−1,XXX
∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1], [ZZZ2t,−1,XXX2t,−1]). (2.34)

The RHS of equation (3.24) corresponds to the primitives we are interested in

estimating. The detailed derivation is provided in the appendix.

Assumption 9 may seem to be restrictive at first sight, but empirically it is accept-

able to focus on workers’ consecutive participation behavior only, and treat reentry

behavior separately for the same worker.

The next lemma establishes the consistency result for the estimator.

Lemma 8 Assume (i) the product space for estimation primitives are compact; 15

(ii) Pr(WWW 2t−1,XXX
∗
2t−1,ZZZ

∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1], [ZZZ2t,−1,XXX2t,−1]) is continuous in all

15The space include the parametric spaces for (1) (β, γ,σσσ), which are parameters in workers’
utility function; (2) (ξ,κκκ), which are parameters in the score function in equation (3.11), and the
probability space for the distributions Pr(Y |Z∗), Pr(P |Z∗, ω), Pr(Z∗) and Pr(ω); lastly, it includes

the conditional distribution of Pr(X|X̃,X∗), the initial condition Pr(X1|X∗1 ) and the law of motion

Pr(X∗t |X̃∗)

58



CHAPTER 2. IDENTIFICATION OF MATCHING GAMES WITH TWO-SIDED
UNOBSERVED HETEROGENEITY

parameters and probability distributions, and (iii) the set of primitives such that

Pr(WWW 2t−1,XXX
∗
2t−1,ZZZ

∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1], [ZZZ2t,−1,XXX2t,−1]) > 0 does not depend on

the value of primitives; (iv) there exists a function K(WWW 2t−1) such that

logPr(WWW 2t−1|[ZZZ2t−2,XXX2t−2], [ZZZ2t,XXX2t], θθθ)−logPr(WWW 2t−1|[ZZZ2t−2,XXX2t−2], [ZZZ2t,XXX2t], θ0θ0θ0) ≤

K(WWW 2t−1) and EK(WWW 2t−1) < ∞; then the likelihood estimator that maximizes the

function in equation (3.24) converges in probability to the true values of the primi-

tives.

The proof can be found in Appendix 2.7.10.

2.3.5.3 Including Wage-Setting Stage

As described earlier, the equilibrium decision of the optimal cash payment is set

by firms before the matching process. Specifically, it should be related with the

underlying complexity level of the firm’s job. For simplicity, I assume workers’ skill

levels are still observable. In the most general case, we can always use the modified

likelihood estimator from the previous section.

I conduct a two-step estimation: In the first step, I estimate δ̂ := Pr(Pjt|Z∗jt, ωt).

In the second step, I match the simulated cash payment distribution with the esti-

mated distribution from Step 1, and use the minimum-distance estimator to estimate

the firm’s profit parameter c.
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2.4 Monte Carlo Evidence

This section presents the Monte Carlo results for the three estimation methods

discussed above. I start from the benchmark case with only job-level unobserved

heterogeneity, and the cash payments are set by an exogenous rule; next I incorporate

worker-level unobserved heterogeneity, and lastly, I include the equilibrium wage-

setting process and present the result for the model with only job-level unobserved

heterogeneity.

2.4.1 Benchmark Case: When XXX∗ Are Perfectly

Observed

I generate a random sample consisting of 1,000 markets. Within each market,

each job has a quota of recruiting up to 3 workers, and the number of workers within

a market is randomly drawn from {8, 9, · · · , 15}. For simplicity, assume each job

carries a complexity level that takes two possible values, {1, 10}. The cash payment

and match-specific outcomes are also drawn from the discrete space {1, 10}.16 The

idiosyncratic utility shock for workers, ν, follows a standard Type I extreme-value

distribution. The heterogeneity in taste over complexity, η, follows a mean-zero nor-

mal distribution with unknown variance σ2
η. On the firm side, the unobserved shock

16This assumption could be generalized to draw the cash on the positive integer space, and match-
specific outcomes drawn from any bounded interval. This setting is simple, but it is sufficient for
illustration.
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b to match-specific outcomes follows a mean-zero normal distribution with unknown

variance σ2
b . The parameter ξ1 is normalized to 1, as it could easily be estimated from

(Zt
ij − Zt

lj)/(X
∗
it −X∗lt). Lastly, for simplicity, I assume whether a coder’s rating de-

creases or not only depends on the underlying complexity of the project he is enrolled

in. This can be easily extended to the case that the binary indicator is related to both

project complexity and the current rating score the coder has. The parameter spec-

ifications are given in Table 2.1. The first specification denotes the situation where

workers’ heterogeneous preferences are mainly driven by the random coefficient η,

and they are moderately incentivized by wages. In contrast, the second specification

denotes the situation where workers’ heterogeneous preferences are mainly driven by

the interaction between their skill levels and the job complexity, and they are highly

incentivized by cash.

For each estimate, I use 125 Bootstrap iterations. The performance is shown in

Table 2.2, with more detailed results provided in the appendix. The bias is quite

small for all estimates. The estimates for the unobserved part has larger standard

deviations than those for observable characteristics. For instance, the coefficient γ for

the interaction term X∗Z∗ is slightly more biased and has a larger standard deviation

than β, the coefficient for observable cash payment.
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2.4.2 General Case: Both (XXX∗,ZZZ∗) Are Latent

Now I allow workers’ skill levels to be latent as well. Specifically, I assume that

a worker’s skill level on entering the market follows a Bernoulli distribution with

parameter pX ∈ (0, 1). In addition, we assume the observed ability indexes and

evolution of underlying abilities are determined by two rules:

Xτ−1 = X∗τ−1 + u1 (2.35)

and

Xτ = λ ·X∗τ + (1− λ) ·Xτ−1 + u2. (2.36)

Lastly,

Pr(X∗τ = xH |X∗τ−1) = [δx1, δx2]′, (2.37)

with (u1, u2) following zero-mean joint normal distribution with variance–covariance

matrix Σ =

σ2
1 0

0 σ2
2

. The goal of estimation, therefore, is to find (σ1, σ2, λ, δx1, δx2, pX).

Furthermore, I allow the cash payment to be drawn from the support consisting of

three elements instead of two: {1, 4, 10}. The results are shown in Table 2.3. Com-

pared with the benchmark case, we see larger bias and standard deviation, but the

overall performance is still good.
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2.4.3 Endogenous Cash Prize

In this section, I follow the benchmark case in which workers’ skill levels are en-

tirely observable, but add the second step of estimating firms’ ex post profit primitive

c using a minimum-distance estimator. Due to the computational complexity of sim-

ulating the equilibrium prize, I assume within each market that there are two firms

and four workers who are randomly drawn from the population. Each firm offers two

slots, and will award the first slot P , whereas the second slot receives 0.5P . The cash

payment P is drawn from a finite space {pl, pm, ph} = {1, 4, 10}. Results are shown

in Table 2.4. The estimate for the firms’ profit parameter is less accurate than the

other estimates, probably due to the finite-sample bias of the simulated moment.

2.5 Conclusion

This paper develops a two-stage model for two-sided markets where wage contracts

are set before the matching process. In the analysis, I establish the formal identifi-

cation and estimation result when unobserved heterogeneity prevails on both sides.

This paper takes the first step to establish a structural model to estimate finite-sized

Non-Transferable Utility matching markets with two-sided unobserved heterogeneity.

I see at least two directions for future research. First, it would be substantial to

account for workers’ strategic behavior after matching with the jobs. I.e. there is a

“post-matching” stage of the game, in which the match-specific outcomes are gener-
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ated in a non-cooperative fashion. This requires developing a three-stage game where

the last stage is workers’ strategic behavior over exerting efforts. Second, researchers

are concerned about the learning-by-doing phenomenon in such markets; i.e. when

workers decide which job to take, they may hold a clear expectation that they may

polish their skills, benefiting future jobs. This dynamic concern is essential if one

wants to capture and perhaps improve the learning phenomenon in such markets but

may introduce nontrivial theoretical complications to my current model. To sum, the

model and econometric discussion in this paper provide a basis for better modeling

the real-world matching market.
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2.6 Tables and Figures

Table 2.1: Monte Carlo Simulation: Parameter Specification

Specification β γ ση σb ξ2 δp(1) δp(2) δp(3) δp(4) δy(1) δy(2) δZ∗ δω
S1 1.2 -1 1 0.8 -1.2 0.1 0.8 0.2 0.9 0.1 0.9 0.3 0.5
S2 2 -2 0.5 0.8 -1.2 0.1 0.8 0.2 0.9 0.1 0.9 0.3 0.5

Table 2.2: Performance of the Likelihood-Based Estimation - Benchmark Case

S1 S2

true value bias std.dev true value bias std.dev
β 1.2 -0.00769 0.038696 2 -0.00686 0.06865
γ -1 0.009296 0.049781 -2 0.010316 0.070334
ση 1 -0.011 0.065985 0.5 -0.00418 0.031742
σb 0.8 -0.00107 0.007794 0.8 -7.7E-05 0.00859
ξ2 -1.2 -0.00019 0.002259 -1.2 -7.2E-06 0.002563

δp(1) 0.1 0.001751 0.010896 0.1 0.001307 0.011692
δp(2) 0.8 0.000186 0.01319 0.8 -0.00033 0.014436
δp(3) 0.2 -0.00015 0.01741 0.2 -0.00084 0.018748
δp(4) 0.9 0.00111 0.012722 0.9 0.001039 0.013752
δy(1) 0.1 0.000492 0.005351 0.1 0.000372 0.005892
δy(2) 0.9 0.003515 0.007733 0.9 0.002628 0.008298
δZ∗ 0.3 -0.0003 0.007629 0.3 -0.00015 0.008518
δω 0.5 -0.00048 0.01744 0.5 -3.8E-05 0.018804
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Table 2.3: Performance of the Likelihood-Based Estimation - General Case

true value bias std.dev

β 2 -0.01244 0.127455
γ -2 0.029126 0.170246
ση 1 -0.03156 0.129736
σb 3 -0.01441 0.072752
ξ2 -3 -0.00241 0.025119

δy(1) 0.1 -0.00019 0.009647
δy(2) 0.9 0.00025 0.013505
δZ∗ 0.3 0.00177 0.013729
δω 0.5 -0.01621 0.079816

Pr(pL|Z∗ = zL, ω = ωL) 0.9 -0.00879 0.034099
Pr(pM |Z∗ = zL, ω = ωL) 0.05 0.00564 0.029639
Pr(pL|Z∗ = zH , ω = ωL) 0.7 -0.01372 0.059793
Pr(pM |Z∗ = zH , ω = ωL) 0.1 0.005325 0.03103
Pr(pL|Z∗ = zL, ω = ωH) 0.5 -0.0087 0.040982
Pr(pM |Z∗ = zL, ω = ωH) 0.4 0.008471 0.038291
Pr(pL|Z∗ = zH , ω = ωH) 0.1 -0.00534 0.048937
Pr(pM |Z∗ = zH , ω = ωH) 0.2 0.001762 0.035481

Pr(X∗τ−1 = xH |X∗τ−1 = xL) 0.1 4.84E-05 0.01417
Pr(X∗τ−1 = xH |X∗τ−1 = xH) 0.9 0.000787 0.013756

λ 0.5 0.001182 0.014416
σ1 2 0.007197 0.053475
σ2 1.5 -0.00104 0.032806

Pr(X∗ = xH) 0.4 -0.00057 0.015655
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Table 2.4: Performance of the Likelihood-Based Estimation - Endogenous Cash
Prize

true value bias std.dev

β 2 0.015883 0.249372
γ -2 -0.04571 0.324542
ση 1 0.023752 0.317615
σb 0.8 0.000221 0.016724
ξ2 -1.2 0.000118 0.004728

δy(1) 0.1 -0.00078 0.013076
δy(2) 0.9 0.001045 0.016621
δZ∗ 0.3 0.001649 0.014605
δω 0.5 -0.20408 0.021261

δp(1) 1 -1E-06 1.33E-06
δp(2) 1.16E-06 -5.7E-07 7.71E-07
δp(3) 0.1221 0.001095 0.021602
δp(4) 0.285709 -0.00055 0.027849
δp(5) 2.64E-07 1.45E-06 2.13E-06
δp(6) 1 -2.7E-06 3.36E-06
δp(7) 3.28E-08 2.77E-06 4.27E-06
δp(8) 2.71E-08 2.54E-06 3.44E-06

c 1 -0.08326 0.45173
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2.7 Appendix

2.7.1 Proof of Lemma 1

First, I prove that the firms’ preferences represented by the profit functions in

equation (3.1) are responsive, which is defined as follows:

Definition 3 (Responsiveness) Firms’ preference over a set of workers is responsive

to the preference over individual workers if, for any set of workers C such that |C| <

Q, and i,m, (i) firm strictly prefers C ∪ i to C if and only if it strictly prefers i to ∅;

(ii) firms strictly prefers C ∪ i to C ∪m if and only if it strictly prefers i to m.

Let Cj denote the set of workers participating in job j. Without loss of generality,

assume the first worker has the highest skill level. First, I check part (i) of the

definition. The ex post profit of job j from hiring Cj is:

πpostj,Cj ,t
= c · ωt · (Z∗j ·

∑
k∈Cj

X∗k)−
∑
k∈Cj

Pkj

whereas the utility of hiring Cj plus one more worker i is:

πpostj,Cj∪i,t = c · ωt · [Z∗j · (
∑
k∈Cj

X∗k +X∗i )]−
∑

k∈Cj∪i

Pkj
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Therefore,

πpostj,Cj∪i,t − π
post
j,Cj ,t

=



c · ωt · [Z∗j · (X∗i )], if |Cj| ≥ 2

c · ωt · [Z∗j · (X∗i )]− 0.5Pj, if |Cj| = 1

c · ωt · [Z∗j · (X∗i )]− Pj, if |Cj| = 0

Remember that we have assumed all jobs weakly benefit from having one more

worker, regardless of his/her type, which indicates that πpostj,i,t := c·ωt ·[Z∗j ·(X∗i )]−Pj ≥

0,∀. This further implies πpostj,Cj∪i,t − π
post
j,Cj ,t

≥ 0; with the strict inequality holds if and

only if πpostj,i,t > 0. Part (i) in the definition is checked.

To check part (ii), I calculate the job’s profit from having Cj ∪m, m /∈ Cj,m 6= i.

πpostj,Cj∪m,t = c · ωt · [Z∗j · (
∑
k∈Cj

X∗k +X∗m)]−
∑

k∈Cj∪m

Pkj

Therefore,

πpostj,Cj∪i,t − π
post
j,Cj∪m,t = c · ωt · [Z∗j · (X∗i −X∗m)]

which indicates ∀i,m, πpostj,Cj∪i,t− π
post
j,Cj∪m,t > 0 if and only if X∗i > X∗m. Part (ii) in the

definition of responsiveness therefore is checked.

According to Lemma 1 in Roth and Sotomayor (1992), provided preferences are

responsive (and strict), the many-to-one matching game share the same stable out-
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come with a corresponding one-to-one matching problem where each slot within a job

is treated as the new “agent” on the firm side. Specifically, I enumerate define the set

of slots of all jobs in the market as K := {k1
1, k

2
1, · · · , k

Q
1 , · · · , k1

J , k
2
J , · · · , k

Q
J } for the

ease of notation. Slot kqj represents the q-the slot in job j, and has an ex post profit

function of:

πpost
kqj

=


c · ωt · (Z∗j ·X∗i )− Pi,kqj if slot is filled by worker i

0, otherwise

Within a job, all slots share the same ordinal preference over workers. Con-

sequently, we are describing a market with two sets of disjoint population, set of

workers I and set of slots K. Furthermore, this market entails a commonly-known

utility profile, U := {{u}, {πpost}}. Each worker i gains a utility uikt if he is matched

with slot k, whereas this slot gains πpost
kqj ,i,t

from matching with worker i.

This proof for the existence and uniqueness of the stable matching is based on

Lemma 1 in Roth and Sotomayor (1992) and Theorem 2 in Clark (2006), via the

following deferred acceptance algorithm.

In market t, we can rank workers according to their desirabilities from slots’

perspective, such that X∗1 > X∗2 > · · · > X∗|It|. First, we execute the slot-optimal

Deferred Acceptance Algorithm:

Round 1 : all slots propose to worker 1, the most preferred worker, and worker 1
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chooses his most preferred slot, denoted as S1 and hold this offer. Note that worker

1 knows any other offers in later rounds will be worse than S1, so he would only hold

the offer till the end and accept the offer eventually.

· · ·

Round k : slots rejected at Round k− 1 will propose to their best available choice,

worker k, who will, in turn, choose his most favored available firm, denoted as Sk,

and will not change her mind until the end of the game, as any later offers will be

worse than Sk.

The outcome is pairwise stable in the sense that all workers get their best choices

available to them and so are all slots. To see this, consider a worker i and a slot k

that are not matched with each other. If worker i prefers slot k to her current slot,

µ(i), then it must be that slot k is chosen before Round i, as otherwise, worker i

will certainly choose k instead of µ(i) in that round. The slot k is chosen by another

worker, µ(k), who is ranked higher than i. Consequently, even if worker i prefers slot

k to µ(i), slot k would not agree to form a coalition with worker i, as k’s current

match µ(k) is better than i.

Now consider the case when slot k prefers i to µ(k), then it must have proposed

an offer to worker i in Round i, earlier than Round µ(k), because i is ranked higher

than µ(k). The only reason why i is not matched with k is that i chose µ(i) over

k, representing that she strictly prefers µ(i) to k. Therefore, a coalition still cannot

be formed by (i, k). As I assume the utility of being matched is better than staying
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unmatched, the two conditions of pairwise stability are both satisfied.

To prove the matching is unique, we consider a sequence of sets of workers and

slots, {< In, Jn >}, n = 1, 2, · · · , N , such that < I1, J1 >:=< I, J > is the whole set

of workers and slots. If worker i and slot j is the most preferred choice of each other,

we define them as a fixed pair. In this setup, as both sides have strict preferences

over the counterpart, the unique fixed pair is worker 1 and her best choice, S1. We

define < I2, J2 >:=< I1, J1 > \ < 1, S1 >. In the subpopulation, < I2, J2 >, the

unique fixed pair is worker 2 and her best choice, S2, among all remaining slots. We

define for any n, < In+1, Jn+1 >:=< In, Jn > \ < n, Sn >. Then, the last element in

the sequence, < IN , JN > would consist of no workers and all unfavored slots. We,

therefore, know that the sequence {< In, Jn >} is uniquely defined from < I, J >.

Let µ be any stable matching of < I, J >, and let µn be a matching of the

subpopulation < In, Jn > such that µn(i) = µ(i) for all i ∈ In, and µn(j) = µ(j)

for all j ∈ Jn. By Lemma 2(ii) in Clark (2006), as we know µ is a stable matching

of < I, J >, then µn will be a stable matching of < In, Jn >. By construction, for

any worker i, she will form a fixed pair with Si in subpopulation < Ii, Ji >. Then

by Lemma 2(i) in Clark (2006), µi(i) = Si for the fixed pair < i, Si >. Combining

the results, we know that for any < i, Si > pair, µ(i) = Si, i.e., the matching µ is

unique. Furthermore, by Roth (1986), the set of unmatched slots remains the same

across different stable matchings. Therefore, the set < IN , JN > will also be the same

for different matchings. As a result, the stable matching µ is unique, and the proof
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completes.

2.7.2 Proof of Lemma 2

To prove Lemma 2, we check the two conditions specified in the definition of

pairwise stability. First, the Individual Rationality condition is satisfied on the worker

side as the set Mi[µt] always contains the empty set, i.e. staying outside the market.

Thus, the worker’s choice is always weakly better than staying unmatched. On the

firm side, if a worker generates negative incremental profit for the firm, its vacant

slots will be excluded from the worker’s choice set. Thus, whoever hired by the firm

must provide nonnegative incremental profit, satisfying the IR condition.

Second, if we consider a “blocking pair” such that a worker i switch to a job j

that still have a vacant slot, and both are better off – this will never happen as job

j is included in worker i’s choice set when he makes his decision. The fact that he

dismisses job j and chooses job µ(i) proves the nonexistence of such a blocking pair.

Similar nonexistence argument follows when job j has no vacancy but is willing to

replace a current worker with worker i.
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2.7.3 Proof of Lemma 3

First, we define the best response correspondence for firm j given other firms’

mixed strategy δ−j to be:

Bj(δ−j) := {δ : {z1, z2, · · · , zk} → Σ|
m∑
l=1

[
∑

Z∗−j ,P−j

π̃(pl, Z
∗
j , Z

∗
−j, P−j, ω) · Pr(Z∗−j, P−j|δ−j)] · δl

≥
m∑
l=1

[
∑
P−j

π̃(pl, Z
∗
j , Z

∗
−j, P−j, ω) · Pr(Z∗−j, P−j|δ−j)] · δ′l, ∀δ′ ∈ Σ}

And the best response correspondence for all firms is defined asBBB := B1×B2 · · ·×

BJ . Proof of the existence of a Bayesian Nash Equilibrium is equivalent of showing

the existence of a fixed point in BBB. According to Kakutani’s theorem, we check the

following conditions:

1. The set Σ is compact and convex.

2. BBB is nonempty for all δ.

3. BBB is convex-valued.

4. BBB has a closed graph.

For the first condition, I show that for each Σj : {δ|
∑m

l=1 δ
l = 1} is a simplex of

dimension m − 1 thus closed and bounded, i.e., compact. It is also easy to show Σj

is convex. Thus, Σ : Σ1 × Σ2 · · ·ΣJ is also compact and convex.
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For the second condition, as each Σj is nonempty, and the expected profit for firm

j is linear in its mixed strategy δj, thus continuous in δj. Therefore, Bj is nonempty

as well.

For the third condition, I show that for any j, Bj is convex valued. This is true as

Bj is linear in δj. Thus, for any δ−j, pick any pair δ, δ′ ∈ Bj(δ−j), then by definition,

they both maximize expected profit of firm j. Their linear combination also maximizes

expected payoff. From linearity, the linear combination of expected payoffs equals the

expected payoff of the linear combination of δ, δ′. Thus, the convexity condition is

checked.

For the last condition, I prove by negation. Suppose there exists a sequence

(δn, δ̂n) → (δ, δ̂) where δ̂n ∈ B(δn) but δ̂ 6∈ B(δ). That is, there exists δ̃j and ε > 0

such that
m∑
l=1

πint(δ−j) · δ̃l >
m∑
l=1

πint(δ−j) · δl + 3ε

By the continuity of the expected profit function, we have

m∑
l=1

πint(δn−j) · δ̃l >
m∑
l=1

πint(δ−j) · δ̃l − ε >
m∑
l=1

πint(δ−j) · δl + 2ε
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But also from the continuity of the expected profit function,

m∑
l=1

πint(δ−j) · δl >
m∑
l=1

πint(δn−j) · δ̂l,n − ε

This means,
m∑
l=1

πint(δn−j) · δ̃l >
m∑
l=1

piint(δn−j) · δ̂l,n + ε

which contradicts the fact that δ̂n ∈ B(δn). This completes the proof for Bj to have a

closed graph. The product of all Bj’s, BBB therefore has a closed graph, and combining

all conditions, it has a fixed point on Σ : Σ1 × Σ2 · · ·ΣJ .

2.7.4 Proof of Lemma 4

First, I prove that the probability of observing a maximum price increases with

the cost coefficient c in a market where all slots are fulfilled. Suppose this is not true,

then there exists two coefficient values cA and cB, such that cA > cB and other things

being all equal in the game, but Pr(P = pm|cA) ≤ Pr(P = pm|cB). Without loss of

generality, let Pr(P = pm−1|cA) ≥ Pr(P = pm−1|cB). Then consider firm j in the

game with cB deviate from his current (equilibrium) mixed-strategy δB to δ′B:

Instead of playing Pr(P = pm|cB) on the highest price pm, firm j decreases the

probability to Pr(P = pm|cA). Correspondingly, it increases the probability of playing

pm−1 from Pr(P = pm−1|cB) to Pr(P = pm−1|cB)+Pr(P = pm|cB)−Pr(P = pm|cA).

Conditional on ω, the difference between the expected payoff given δ′ and δ therefore
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is:

π0
j (pm, Z

∗
j , cB , ω) · Pr(Pj = pm|δ′B)− π0

j (pm, Z
∗
j , cB , ω) · Pr(Pj = pm|δB)+

π0
j (pm−1, Z

∗
j , cB , ω) · Pr(Pj = pm−1|δ′B)− π0

j (pm−1, Z
∗
j , cB , ω) · Pr(Pj = pm−1|δB)

= (π0
j (pm, Z

∗
j , cB , ω)− π0

j (pm−1, Z
∗
j , cB , ω)) · (Pr(P = pm|cA)− Pr(P = pm|cB))︸ ︷︷ ︸

≤0

≤ 0

and the last inequality follows from the fact that the Bayesian Nash Equilibrium

mixed-strategy maximizes the expected payoff. Thus, the following expression has to

be nonnegative:

(π0
j (pm, Z

∗
j , cB, ω)− π0

j (pm−1, Z
∗
j , cB, ω)) ≥ 0

Next, I show the following inequality must hold for a bigger cA:

(π0
j (pm, Z

∗
j , cA, ω)− π0

j (pm−1, Z
∗
j , cA, ω)) ≥ 0

For this inequality to hold, a sufficient condition is that 1) the expected incremen-

tal revenue from play pm−1 to pm is increasing in c, and 2) the expected incremental

cost is decreasing in c. To see this, remember that when c = cA, the other firms’

equilibrium strategy is to put less weight on playing pm than when c = cB, i.e.

Pr(P = pm|cA) ≤ Pr(P = pm|cB). Thus, when c increases from cB to cA, the ex post
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revenue R increases, and given others are now playing a less aggressive strategy, the

ex ante expected revenue will also increase. This proves the first argument. To see

why the second argument also holds, I show the following equality holds:

E(P |pm, cB)− E(P |pm−1, cB) = E(P |pm, cA)− E(P |pm−1, cA)

where E(P |p, c) denotes firm j’s expected payment when it is playing p and the cost

coefficient is c, other things being fixed. As all slots are fulfilled in the market, the

expected payment from firm j is
∑Q

k=1 φkp regardless of c, this the equality above

holds.

This further indicates the following inequality:

[π0
j (pm, Z

∗
j , cA, ω) · Pr(Pj = pm|δA)− π0

j (pm, Z
∗
j , cA, ω) · Pr(Pj = pm|δ′A)+

π0
j (pm−1, Z

∗
j , cA, ω) · Pr(Pj = pm−1|δA)− π0

j (pm−1, Z
∗
j , cA, ω) · Pr(Pj = pm−1|δ′A)]

= (π0
j (pm, Z

∗
j , cA, ω)− π0

j (pm−1, Z
∗
j , cA, ω))︸ ︷︷ ︸

≥0

· (Pr(P = pm|cA)− Pr(P = pm|cB))︸ ︷︷ ︸
≤0

≤ 0

where the mixed strategy δA is the equilibrium mixed-strategy of firm j in the game

with cA, and δ′A is a deviation such that instead of playing Pr(P = pm|cA), the firm

increases the probability to Pr(P = pm|cB); instead of playing Pr(P = pm−1|cA), the

firm decreases the probability to Pr(P = pm−1|cA)+Pr(P = pm|cA)−Pr(P = pm|cB).
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Therefore, in the game with cA, we have found a profitable deviation for firm j,

given others’ equilibrium mixed-strategy. This contradicts with the fact that δA is an

equilibrium strategy. The negation indicates the monotonicity of Pr(P = pm|c) in c

holds.

The proof for monotonicity in ω follows the same procedure, by fixing c.

2.7.5 Proof of Lemma 5

I show the following conditions hold:

1. YYY t ⊥ (PPP t, Z̃̃Z̃Zt)|(ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

2. YYY t ⊥ ZZZt|(ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

3. XXX t ⊥ ZZZt ⊥ Z̃̃Z̃Zt|(ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

4. XXX t ⊥ PPP t|(ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

5. ZZZt ⊥ PPP t|(ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

where condition (2) and (3) indicates the conditional independence between (YYY t,XXX t)

andZZZt; condition (1), (3) and (4) indicates conditional independence between (YYY t,XXX t)

and (PPP t, Z̃̃Z̃Zt); condition (3) and (5) indicates conditional independence betweenZZZt and

(PPP t, Z̃̃Z̃Zt).

First, I show condition (1) and (2) hold. As the distribution of YYY t is only related

with ZZZ∗t , conditional on ZZZ∗t , the variation in YYY t is completely independent of other

covariates; the first two condition, therefore, is checked.

79



CHAPTER 2. IDENTIFICATION OF MATCHING GAMES WITH TWO-SIDED
UNOBSERVED HETEROGENEITY

Next, I show condition (3) holds:

f(XXX t,ZZZt, Z̃̃Z̃Zt|ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

= f(XXX t|ZZZt, Z̃̃Z̃Zt,ZZZ
∗
t ,XXX

∗
t , X̃̃X̃X t, µt) · f(ZZZt|Z̃̃Z̃Zt,ZZZ

∗
t ,XXX

∗
t , X̃̃X̃X t, µt) · f(Z̃̃Z̃Zt|ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

= f(XXX t|XXX∗t , X̃̃X̃X t, µt) · f(ZZZt|ZZZ∗t ,XXX∗t , µt) · f(Z̃̃Z̃Zt|ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

The second equality holds because (i) for any individual worker i, conditional

on (XXX∗, µt), the variation in Xit is completely driven by ai,µt , which is independent

of (ZZZt, Z̃̃Z̃Zt); and (ii) conditional on (ZZZ∗,XXX∗, µt), the variation in final score Zt
ij is

completely driven by bjt, which is also independent of (XXX t, Z̃̃Z̃Zt). Thus, condition (3)

is checked.

Similarly, we can check conditions (4) and (5) by showing the following:

f(XXX t,PPP t|ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt) = f(XXX t|PPP t,ZZZ
∗
t ,XXX

∗
t , X̃̃X̃X t, µt) · f(PPP t|ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

= f(XXX t|XXX∗t , X̃̃X̃X t, µt) · f(PPP t|ZZZ∗t ,XXX∗t , µt)
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and

f(ZZZt,PPP t|ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

= f(ZZZt|PPP t,ZZZ
∗
t ,XXX

∗
t , X̃̃X̃X t, µt) · f(PPP t|ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt)

= f(ZZZt|ZZZ∗t ,XXX∗t , µt) · f(PPP t|ZZZ∗t ,XXX∗t , µt)

As all five conditions are checked, the full conditional independence condition hold

and the proof completes.

2.7.6 Proof of Proposition 2

First, I show equation (2.15) and (2.16) hold. That is, the following two equations

hold:

f(ZZZd|ZZZ∗,XXX∗, X̃XX = xxx, µ, I, J,Q) =
J∏
j=1

f(Zd
j |Z∗j ,XXX∗µ(j))

and,

f(ZZZ∗,XXXd = xxx|YYY = yyy,XXX∗, X̃XX = xxx, µ, I, J,Q) =
J∏
j=1

(f(Z∗j |Yj = y) · f(XXXd
µ(j) = xxx|XXX∗µ(j), X̃XXµ(j) = x̃xx))

The first equation holds because of part 3(a) in Assumption 4. The second equa-

tion holds because of Assumptions 3 and 5 – i.e., Y ’s are independent amongst differ-
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ent jobs in the same market; the rating scores are conditionally independent amongst

workers belonging to different jobs in the market. Thus, by observing the joint distri-

bution of (YYY ,XXX,PPP , Z̃̃Z̃Z,ZZZ, X̃̃X̃X) conditional on a certain (µ, I, J,Q), we could rewrite the

main equations in the form of equation (2.17), and ultimately, we have the equation

(2.18) for eigenvalue-eigenvector decomposition as in Hu (2008).

In order to uniquely determine the ordering of eigenvalues/vectors of the matrix

on LHS, we imposed Assumption 7. To see how this works, let us first rewrite the

diagonal matrices in its full form:

DZ∗j |Yj=y ·D
−1
Z∗j |Yj=1−y =



q1,

q2,

. . .

qm


and

DXXXd
µ(j)
|XXX∗

µ(j)
,X̃XX=x̃xxµ(j)

=



c1,

c2,

. . .

cl|µ(j)|


where q’s are distinct values and takes up to m values in total, as Z∗ could take up

to m values. Similarly, as XXX∗µ(j) takes up to l|µ(j)| distinct values, the second diagonal

matrix is of dimension l|µ(j)|.
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The upper-left element ofDZ∗j |Yj=y·D
−1
Z∗j |Yj=1−y is q1 := Pr(Z∗j = z1|Yj = 1)/Pr(Z∗j =

z1|Yj = 0). From part (1) in Assumption 5, we know that, Pr(Z∗j = z1|Yj =

1)/Pr(Z∗j = z1|Yj = 0) would be the largest element among all probabilities given

different values of Z∗j , which corresponds to this upper-left element, q1. Similarly, the

upper-left element ofDXXXd
µ(j)
|XXX∗

µ(j)
,X̃XX=x̃xxµ(j)

is c1 := Pr(XXXd
µ(j) = xxx|XXX∗µ(j) = {x1, x1, · · · , x1}, X̃XX =

x̃xxµ(j)). If we choose xxx = {x1, x1, · · · , x1}, then according to part (2) in Assumption

7, the largest number should correspond to this upper-left element, c1.

Combining the two results together, we know that when we conduct eigenvalue-

eigenvector decomposition for the matrix s ·Mj where XXXd
µ(j) = {x1, x1, · · · , x1}, then

the largest number in eigenvalue corresponds to q1 · c1.

Following the same logic, we could identify q1 · c2 through q1 · cl|µ(j)| by con-

ducting the eigenvalue-eigenvector decomposition for matrix s · Mj where XXXd
µ(j) =

{x1, x1, · · · , x2} through XXXd
µ(j) = {xl, xl, · · · , xl} simply by picking the largest num-

ber in eigenvalues.

Now that we have identified q1 · c1 through q1 · cl|µ(j)| and their corresponding

eigenvectors, we could put them aside and look at the rest of the matrix. For instance,

when we decompose s · Mj where XXXd
µ(j) = {x1, x1, · · · , x1}, the largest number in

eigenvalues that does not belong to q1 · c1 through q1 · cl|µ(j)| should correspond to

q2 · c1, as q2 is the largest number except for q1 in terms of Pr(Yj = 1|Z∗j ). We

therefore could identify q2 · c1 through q2 · cl|µ(j)| . After putting aside these identified

elements, we are able to identify (in descending sequence) all qk · c1 through qk · cl|µ(j)|
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for all k = 3, 4, · · · ,m.

Given that we identify every single element of the eigenvalue diagonal matrix, the

eigenvalue-eigenvector decomposition is unique up to a normalization of each column

in the eigenvector matrix. This indicates that, the matrix MZZZdj |Z∗j ,XXX∗µ(j)
is nonparamet-

rically identified for each job j. Consequently, the matrix MZZZd|ZZZ∗,XXX∗,X̃XX,µ,I,J,Q is also

identified from equation (2.15). Note that MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q is invertible as matrix

M(PPP d,Z̃̃Z̃Zd,ZZZd|X̃̃X̃X=xxx,µ,I,J,Q) is of full rank according to Assumption 6.

For any value PPP = ppp, the following equation holds:

Pr(ZZZd,PPP = ppp|µ, I, J,Q) =
∑
ZZZ∗,XXX∗

Pr(ZZZd|ZZZ∗,XXX∗, µ, I, J,Q) · Pr(PPP = ppp,ZZZ∗,XXX∗|µ, I, J,Q)

(2.38)

Thus, if we write the above equation into vector and matrix form:

VZZZd,PPP=ppp|µ,I,J,Q = MZZZd|ZZZ∗,XXX∗,µ,I,J,Q · VPPP=ppp,ZZZ∗,XXX∗|µ,I,J,Q (2.39)

where each element of the LHS vector denotes a probability of a distinct value for

ZZZd and the dimension is (mJ · lI)× 1. On the RHS, the first matrix is of dimension

(mJ · lI)× (mJ · lI) and the second vector is of dimension (mJ · lI)× 1.
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Thus, we could identify the distribution of (PPP ,ZZZ∗,XXX∗|µ, I, J,Q) from:

VPPP=ppp,ZZZ∗,XXX∗|µ,I,J,Q = M−1
ZZZd|ZZZ∗,XXX∗,µ,I,J,Q · VZZZd,PPP=ppp|µ,I,J,Q (2.40)

This completes the proof.

2.7.7 Proof of Corollary 1

As shown in the proof of Theorem 2, the conditional distribution Pr(PPP d, Z̃̃Z̃Zd,ZZZ∗,XXX∗|X̃̃X̃X, µ, I, J,Q)

is identified. For each value of ZZZ = zzz, the following condition holds:

Pr(ZZZ = zzz,PPP d|µ, I, J,Q) =
∑
ZZZ∗,XXX∗

Pr(ZZZ = zzz|ZZZ∗,XXX∗, µ, I, J,Q) · Pr(PPP d,ZZZ∗,XXX∗|µ, I, J,Q)

(2.41)

If we rewrite it into matrix form:

VZZZ=zzz,PPP d|µ,I,J,Q = MPPP d,ZZZ∗,XXX∗|µ,I,J,Q · VZZZ=zzz|ZZZ∗,XXX∗,µ,I,J,Q (2.42)

Again, all the V -vectors are of dimension (mJ · lI) × 1 and the M -matrix is of

dimension (mJ · lI) × (mJ · lI). Therefore, the probability Pr(ZZZ|ZZZ∗,XXX∗, µ) could be
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identified from:

VZZZ=zzz|ZZZ∗,XXX∗,µ,I,J,Q = M−1
PPP d|ZZZ∗,XXX∗,µ,I,J,Q · VPPP d,ZZZ=zzz|µ,I,J,Q (2.43)

Once Pr(ZZZ|ZZZ∗,XXX∗, µ, I, J,Q) is identified, the job-level conditional probability

Pr(ZZZj|Z∗j ,XXX∗µ(j)) could also be identified from the market with only one job.

Next, we could identify Pr(ZZZ,XXX∗|µ, I, J,Q) by:

Pr(ZZZ,XXX∗|X̃̃X̃X, µ, I, J,Q) =
∑
ZZZ∗

∑
PPP d

Pr(ZZZ|ZZZ∗,XXX∗, µ, I, J,Q) · Pr(PPP d,ZZZ∗,XXX∗|X̃̃X̃X, µ, I, J,Q)

(2.44)

Then, for any XXX = xxx, we have the following equation:

Pr(ZZZ,XXX = xxx|X̃̃X̃X, µ, I, J,Q) =
∑
XXX∗

Pr(XXX = xxx|XXX∗, X̃̃X̃X, µ, I, J,Q) · Pr(ZZZ,XXX∗|X̃̃X̃X, µ, I, J,Q)

(2.45)

As ZZZ is continuously distributed, we could discretize its so as to make the matrix

MZZZdd,XXX∗|X̃̃X̃X,µ,I,J,Q invertible and is of dimension lI × lI . Therefore, the distribution of
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(XXX = xxx|XXX∗, µ, I, J,Q) could be recovered from:

VXXX=xxx|XXX∗,X̃̃X̃X,µ,I,J,Q = M−1

ZZZdd,XXX∗|X̃̃X̃X,µ,I,J,Q
· VZZZdd,XXX=xxx|X̃̃X̃X,µ,I,J,Q (2.46)

Again, for each job j, the probability of Pr(XXXµ(j)|XXX∗µ(j), X̃̃X̃Xµ(j)) could be recovered

from observing markets with only one job.

Lastly, the law of motion Pr(X∗i |X̃∗i ) could be recovered from the following equa-

tion:

Pr(Zi, Z̃i) =
∑
X∗i ,X̃

∗
i

Pr(Zi|X∗i ) · Pr(Z̃i|X̃∗i ) · Pr(X∗i , X̃∗i ) (2.47)

where, Pr(Zi|X∗i ) = Pr(Zi, X
∗
i )/

∑
Zi
Pr(Zi, X

∗
i ) and the joint distribution.Pr(Zi, X

∗
i )

could be recovered from Pr(ZZZ,XXX∗|X̃̃X̃X, µ, I, J,Q). Note that due to the data generat-

ing process, Pr(Z̃i|X̃∗i ) follows the same distribution as Pr(Zi|X∗i ). Thus, the joint

distribution of (X∗i , X̃
∗
i ) could be recovered from:

VX∗i ,X̃∗i
= [MZddi |X∗i ⊗MZ̃ddi |X̃∗i

]−1 · VZddi ,Z̃ddi
(2.48)

The matrix in the middle is invertible because MZddi |X∗i is invertible. This is true

as MZddi |X∗i ·DX∗i
= MZddi ,X∗i

, and the matrix on the RHS is invertible from previous
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proof. Thus, the joint distribution of (X∗i , X̃
∗
i ) is identified.

Lastly, the initial condition refers to the situation where no worker in the job

carries a rating score before participation – i.e., everyone is a newbie. Thus, the

distribution of rating score degenerates to Pr(Xit|X∗it). For a given value of Xit, we

have the following equation:

Pr(Zit, Xit) =
∑
X∗it

Pr(Zit, X
∗
it) · Pr(Xit|X∗it) (2.49)

Therefore, if we discretize Zit such that the matrix MZddit ,X
∗
it

is of full rank, the

distribution of Pr(Xit|X∗it) could be recovered from the following:

VXit|X∗it = M−1
Zddit ,X

∗
it
· VZddit ,Xit (2.50)

2.7.8 Proof of Proposition 3

According to Theorem 2, conditional on (µ, I, J,Q), we are able to nonparametri-

cally identify MPPP ,ZZZ∗,XXX∗|µ,I,J,Q. The following joint distribution can therefore be iden-

tified:

f(PPP ,ZZZ∗|µ, I, J,Q) =
∑
XXX∗

f(PPP ,ZZZ∗,XXX∗|µ, I, J,Q)
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hence,

f(PPP |ZZZ∗, µ, I, J,Q) =
f(PPP ,ZZZ∗|µ, I, J,Q)∑
PPP f(PPP ,ZZZ∗|µ, I, J,Q)

then,

f(PPP |ZZZ∗, J) =
∑
µ,I,Q

f(PPP |ZZZ∗, µ, I, J,Q) · f(µ, I,Q|J)

Given f(PPP |ZZZ∗, J) and the conditional independence condition (3.30), we obtain

equation (2.21) and (2.22) conditional on J ≥ 3:

f(P1, P2, P3|Z∗1 , Z∗2 , Z∗3) =
∑
ω

f(P1|Z∗1 , ω) · f(P2|Z∗2 , ω) · f(P1, ω|Z∗3)

as well as,

f(P1, P3|Z∗1 , Z∗2 , Z∗3) =
∑
ω

f(P1|Z∗1 , ω) · f(P1, ω|Z∗3)

Next, we write down the following matrix equations:

Mρ(P1),P2=pm,ρ(P3)|Z∗1 ,Z∗2 ,Z∗3 = Mρ(P1)|Z∗1 ,ω ·DP2=pm|Z∗2 ,ω ·M
T
ρ(P3),ω|Z∗3

(2.51)

and,

Mρ(P1),ρ(P3)|Z∗1 ,Z∗2 ,Z∗3 = Mρ(P1)|Z∗1 ,ω ·M
T
ρ(P3),ω|Z∗3

(2.52)
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where,

Mρ(P1),P2=pm,ρ(P3)|Z∗1 ,Z∗3 := [ρ(P1) = p, P2 = pm, ρ(P3) = p′|Z∗1 , Z∗3 ]p,p′∈{1,2,··· ,n};

Mρ(P1),ρ(P3)|Z∗1 ,Z∗3 := [Pr(ρ(P1) = p, ρ(P3) = p′|Z∗1 , Z∗3)]p,p′∈{1,2,··· ,n};

Mρ(Pj)|Z∗j ,ω := [Pr(ρ(Pj) = p|ω = w,Z∗j )]p={1,2,··· ,n};w={w1,w2,··· ,wn}, j = 1, 3;

DP2=pm|Z∗2 ,ω := diag(Pr(P2 = pm|ω = w,Z∗2))w={w1,w2,··· ,wn}.

According to part (2) in Assumption 9, Mρ(P1),ρ(P3)|Z∗1 ,Z∗3 is of full rank. Therefore,

we take the inverse of the LHS matrix in equation (2.52) and right-multiply the LHS

matrix in equation (2.51), and get:

Mρ(P1),P2=pm,ρ(P3)|Z∗1 ,Z∗2 ,Z∗3 ·M
−1
ρ(P1),ρ(P3)|Z∗1 ,Z∗2 ,Z∗3

= Mρ(P1)|Z∗1 ,ω ·DP2=pm|Z∗2 ,ω ·M
−1
ρ(P1)|Z∗1 ,ω

(2.53)

According to Corollary 1, the conditional probability Pr(P2 = pm|Z∗2 , ω) is mono-

tonically increasing with ω. After the eigenvalue–eigenvector decomposition as in Hu

(2008), we could rank all numbers in the eigenvalue matrix in an ascending order,

and uniquely determine the position of each diagonal element in DP2=pm|Z∗2 ,ω, thereby

identifying the distribution of Pr(P2 = pm|Z∗2 , ω) for each value of Z∗2 . Moreover,
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we are also able to identify the eigenvector matrix Mρ(P1)|Z∗1 ,ω, from which we could

identify Pr(P2 = p|Z∗2 , ω), p = {p1, p2, · · · , pm−1}. To see this,

DP2=p|Z∗2 ,ω = M−1
ρ(P1)|Z∗1 ,ω︸ ︷︷ ︸

identified

· [Mρ(P1),P2=p,ρ(P3)|Z∗1 ,Z∗2 ,Z∗3 ·M
−1
ρ(P1),ρ(P3)|Z∗1 ,Z∗2 ,Z∗3

]︸ ︷︷ ︸
computed from data

·Mρ(P1)|Z∗1 ,ω︸ ︷︷ ︸
identified

,

p = {p1, p2, · · · , pm−1}

To summarize, we are able to identify the distribution of cash prize Pj given

different values of (Z∗j , ω).

In order to identify the marginal distribution of ω, first notice that,

Pr(ρ(Pj)|ω) =
∑
Z∗j

Pr(ρ(Pj)|Z∗j , ω) · Pr(Z∗j |ω)

where, Pr(ρ(Pj)|Z∗j , ω) is directly identified from the decomposition; Pr(Z∗j |ω) =

Pr(Z∗j ) due to the independence assumption, and could be identified from Pr(ZZZ∗|J).

Then, I write down the following equation in matrix form:



Pr(ρ(P ) = 1)

Pr(ρ(P ) = 2)

...

Pr(ρ(P ) = n)


︸ ︷︷ ︸

data

=



Pr(ρ(P ) = 1|ω = w1) Pr(ρ(P ) = 1|ω = w2) · · · Pr(ρ(P ) = 1|ω = wn)

Pr(ρ(P ) = 2|ω = w1) Pr(ρ(P ) = 2|ω = w2) · · · Pr(ρ(P ) = 2|ω = wn)

...
...

. . .
...

Pr(ρ(P ) = n|ω = w1) Pr(ρ(P ) = n|ω = w2) · · · Pr(ρ(P ) = n|ω = wn)


︸ ︷︷ ︸

Identified; of full rank

·



Pr(ω = w1)

Pr(ω = w2)

...

Pr(ω = wn)


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Thus, Pr(ω) is identified from the following equation:



Pr(ω = w1)

Pr(ω = w2)

...

Pr(ω = wn)


=



Pr(ρ(P ) = 1|ω = w1) Pr(ρ(P ) = 1|ω = w2) · · · Pr(ρ(P ) = 1|ω = wn)

Pr(ρ(P ) = 2|ω = w1) Pr(ρ(P ) = 2|ω = w2) · · · Pr(ρ(P ) = 2|ω = wn)

...
...

. . .
...

Pr(ρ(P ) = n|ω = w1) Pr(ρ(P ) = n|ω = w2) · · · Pr(ρ(P ) = n|ω = wn)



−1

·



Pr(ρ(P ) = 1)

Pr(ρ(P ) = 2)

...

Pr(ρ(P ) = n)



2.7.9 Proof for Lemma 7

We define the Maximum Likelihood Estimator as:

θ̂θθ := argmaxθθθ
1

T

T∑
t=1

logPr(µt,ZZZt,PPP t,YYY t|XXX∗t , θθθ)

= argmaxθθθ[
1

T

T∑
t=1

logPr(µt,ZZZt,PPP t,YYY t|XXX∗t , θθθ)−
1

T

T∑
t=1

logPr(µt,ZZZt,PPP t,YYY t|XXX∗t , θ0θ0θ0)]

= argmaxθθθ[
1

T

T∑
t=1

log (Pr(µt,ZZZt,PPP t,YYY t|XXX∗t , θθθ)/Pr(µt,ZZZt,PPP t,YYY t|XXX∗t , θ0θ0θ0))︸ ︷︷ ︸
:=Q(θθθ)/Q(θ0θ0θ0)

] (2.54)

By the Strong Law of Large Numbers,

1

T

T∑
t=1

logQ(θθθ)/Q(θ0θ0θ0)
a.s.→

∫
µt,ZZZt,PPP t,YYY t

[logQ(θθθ)/Q(θ0θ0θ0)]dF (µt,ZZZt,PPP t,YYY t|XXX∗t , θ0θ0θ0) ≤ 0

(2.55)

On the RHS, it is known as Kullback-Leibler Divergence, which could be proved

to be non-positive by applying Jensen’s Inequality. This indicates that for any θθθ the
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following holds:

lim
T→∞

Pr(| 1
T

T∑
t=1

logQ(θθθ)/Q(θ0θ0θ0)−
∫
µt,ZZZt,PPP t,YYY t

[logQ(θθθ)/Q(θ0θ0θ0)]dF (µt,ZZZt,PPP t,YYY t|XXX∗t , θ0θ0θ0)| = 0) = 1

(2.56)

As the space for the primitives are compact, and Q is continuous in θθθ, we have

lim
T→∞

Pr(sup
θθθ

| 1
T

T∑
t=1

logQ(θθθ)/Q(θ0θ0θ0)−
∫
µt,ZZZt,PPP t,YYY t

[logQ(θθθ)/Q(θ0θ0θ0)]dF (µt,ZZZt,PPP t,YYY t|XXX∗t , θ0θ0θ0)| = 0) = 1

(2.57)

As the RHS of equation (2.56) equals zero iff Q(θθθ) = Q(θ0θ0θ0), given we have achieved

identification, it holds that Pr(µt,ZZZt,PPP t,YYY t|XXX∗t , θθθ) = Pr(µt,ZZZt,PPP t,YYY t|XXX∗t , θ0θ0θ0)) iff

θθθ = θ0θ0θ0. Thus, θ0θ0θ0 is the maximizer of the objective function in equation (2.58) when

T →∞, which means it equals θθθ when T →∞. This completes the proof.

2.7.10 Proof for Lemma 8

We define the Maximum Likelihood Estimator as:

θ̂θθ := argmaxθθθ
1

T/2

T/2∑
t=1

logPr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θθθ)

= argmaxθθθ
1

T/2

T/2∑
t=1

log
Pr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θθθ)

Pr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θ0θ0θ0)

(2.58)

By the Strong Law of Large Numbers,
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1

T/2

T/2∑
t=1

log
Pr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θθθ)

Pr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θ0θ0θ0)

a.s.→

∫
WWW t

[log
Pr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θθθ)

Pr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θ0θ0θ0)
]

dF (WWW t||[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θ0θ0θ0)) ≤ 0 (2.59)

On the RHS, it is known as Kullback-Leibler Divergence, which could be proved

to be non-positive by applying Jensen’s Inequality, and it equals zero iff

Pr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θθθ) =

Pr(WWW 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1], θ0θ0θ0) (2.60)

Given we have achieved identification, this equality holds iff θθθ = θ0θ0θ0. Thus, θ0θ0θ0 is the

maximizer of the log-likelihood function when T →∞, which means it equals θθθ when

T →∞. This completes the proof.

2.7.11 Detailed Monte Carlo Results

In this section, I present the Monte Carlo simulation results for the basic model

in the next two tables, where workers’ types X∗ are observable to the econometri-

cian. The starting values are set to be uninformative. We would like to evaluate the

performance of our estimation strategy, as this strategy will be used in the empirical
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part. The results are less accurate as expected but in general performing well.

Table 2.5: Performance of the Likelihood-Based Estimation - Simple Case (bad
starting point)

starting value true value bias std.dev

β 1 2 -0.03143 0.061076
γ -1 -2 0.040247 0.062758

sigmaE 0.75 0.5 -0.0107 0.02987
sigmaV 1.2 0.8 -0.00018 0.00767

PARAB -1.08 -1.2 -0.00011 0.00227
PP 0.09 0.1 0.001156 0.0108
PP 0.72 0.8 -0.00069 0.013004
PP 0.18 0.2 -0.0005 0.017138
PP 0.45 0.9 -0.00263 0.014349
PY 0.05 0.1 0.000594 0.005418
PY 0.45 0.9 0.002019 0.007875

PZ0 0.15 0.3 -0.00032 0.007608
POMEGA 0.25 0.5 0.000225 0.017319
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Table 2.6: Performance of the Likelihood-Based Estimation - Simple Case (very bad
starting point)

starting value true value bias std.dev

β 2 2 0.011772 0.091076
γ -2 -2 -0.0128 0.096681

sigmaE 0.5 0.5 0.000208 0.039282
sigmaV 0.8 0.8 0.000212 0.011857

PARAB -4 -1.2 -0.00052 0.003055
PP 0.1 0.1 -0.00017 0.01525
PP 0.8 0.8 4.2E-05 0.017969
PP 0.2 0.2 -0.00153 0.024809
PP 0.9 0.9 0.002219 0.018691
PY 0.1 0.1 0.000266 0.007567
PY 0.9 0.9 -0.00054 0.010963

PZ0 0.3 0.3 0.000971 0.010876
POMEGA 0.5 0.5 0.000929 0.024391
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2.7.12 Detailed Derivation of General Case Log-Likelihood Function

We have equation (3.24) for the log-likelihood function in the general case:

L̃LLLLL(θ) =

T/2∑
t=1

log
∑

XXX∗
2t−1,ZZZ

∗
2t−1

Pr(WWW 2t−1,XXX
∗
2t−1,ZZZ

∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1])

=

T/2∑
t=1

log
∑

XXX∗
2t−1,ZZZ

∗
2t−1

Pr(ZZZ2t−1|ZZZ∗2t−1,XXX∗2t−1, µ2t−1) · Pr(YYY 2t−1|XXX2t−2,+1,ZZZ
∗
2t−1,XXX

∗
2t−1, µ2t−1)·

Pr(µ2t−1|ZZZ∗2t−1,XXX∗2t−1,PPP 2t−1) ·
∑
ω2t−1

Pr(PPP 2t−1|ZZZ∗2t−1, ω2t−1) · Pr(ω2t−1) · Pr(ZZZ∗2t−1)·

Pr(XXX2t−1,XXX
∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1]).

If we divide the workers in market 2t − 1 into three parts: I2t−1 := {I2t−1,−1, I2t−1,0,

I2t−1,+1}, then l

Pr(XXX2t−1,XXX
∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1]) =

Pr(XXX2t−1,−1,XXX
∗
2t−1,−1|ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1)·

Pr(XXX2t−1,0,XXX
∗
2t−1,0)·

Pr(XXX2t−1,+1,XXX
∗
2t−1,+1|ZZZ2t,−1,XXX2t,−1, µ2t,−1) (2.61)

Remember the primitives we would like to estimate are Pr(Xτ |X∗τ , Xτ−1), Pr(X∗τ , X
∗
τ−1),

and Pr(Xτ−1|X∗τ−1). (The initial condition occurs when a worker first appears in the mar-

ket. For simplicity I will denote the market as τ−1 as they stay at most for two consecutive
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markets.) Therefore, we have

Pr(XXX2t−1,−1,XXX
∗
2t−1,−1|ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1)

=
∏

i∈I2t−1,−1,µ(i)=j

Pr(XXXµ(j),2t−1,XXX
∗
µ(j),2t−1|ZZZj,2t−2,XXXµ(j),2t−2, µ2t−2,+1), (2.62)

Pr(XXX2t−1,0,XXX
∗
2t−1,0) =

∏
i∈I2t−1,0

Pr(Xi,2t−1|X∗i,2t−1) · Pr(X∗i,2t−1), (2.63)

and,

Pr(XXX2t−1,+1,XXX
∗
2t−1,+1|ZZZ2t,−1,XXX2t,−1, µ2t,−1)

=
∏

i∈I2t−1,+1,µ(i)=j

Pr(XXXµ(j),2t−1,XXX
∗
µ(j),2t−1|ZZZj,2t,XXXµ(j),2t, µ2t,−1). (2.64)

For equation (2.62), we let τ = 2t− 1, so

Pr(XXXµ(j),τ ,XXX
∗
µ(j),τ |ZZZj,τ−1,XXXµ(j),τ−1) =

Pr(XXXµ(j),τ ,XXX
∗
µ(j),τ ,ZZZj,τ−1,XXXµ(j),τ−1|µτ−1,+1)

Pr(ZZZj,τ−1,XXXµ(j),τ−1|µτ−1,+1)
,

(2.65)
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where

Pr(XXXµ(j),τ ,XXX
∗
µ(j),τ ,ZZZj,τ−1,XXXµ(j),τ−1|µ2t−2,+1)

=
∑

XXX∗
µ(j),τ−1

f(ZZZj,τ−1|XXX∗µ(j),τ−1, µτ−1,+1) ·
∏
i∈µ(j)

f(Xi,τ |X∗i,τ , Xi,τ−1)·

Pr(X∗i,τ |X∗i,τ−1) · f(Xi,τ−1|X∗i,τ−1) · Pr(X∗i,τ−1)

and

Pr(ZZZj,τ−1,XXXµ(j),τ−1)

=
∑

XXX∗
µ(j),τ−1

f(ZZZj,τ−1|XXX∗µ(j),τ−1, µτ−1,+1) ·
∏
i∈µ(j)

f(Xi,τ−1|X∗i,τ−1) · Pr(Xi,τ−1∗)

and the RHS corresponds to our primitives. Specifically, with respect to the first probability,

f(ZZZj,τ−1|XXX∗µ(j),τ−1, µτ−1,+1) =
∑
Z∗j

f(ZZZj,τ−1|Z∗j ,XXX∗µ(j),τ−1, µτ−1,+1)Pr(Z∗j ).

The RHS of equation (2.63) directly corresponds to our primitives. For equation (2.64),

similarly we let τ = 2t, so

Pr(XXXµ(j),τ−1,XXX
∗
µ(j),τ−1|ZZZj,τ ,XXXµ(j),τ , µτ ) =

Pr(XXXµ(j),τ−1,XXX
∗
µ(j),τ−1,ZZZj,τ ,XXXµ(j),τ |µτ )

Pr(ZZZj,τ ,XXXµ(j),τ |µτ )
,

(2.66)
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where

Pr(XXXµ(j),τ−1,XXX
∗
µ(j),τ−1,ZZZj,τ ,XXXµ(j),τ |µτ )

=
∑

XXX∗
µ(j),τ

f(ZZZj,τ |XXX∗µ(j),τ , µτ ) ·
∏
i∈µ(j)

f(Xi,τ |X∗i,τ , Xi,τ−1)·

Pr(X∗i,τ |X∗i,τ−1) · f(Xi,τ−1|X∗i,τ−1) · Pr(X∗i,τ−1)

and

Pr(ZZZj,τ ,XXXµ(j),τ |µτ ) =
∑

XXX∗
µ(j),τ

f(ZZZj,τ |XXX∗µ(j),τ , µτ )·

∏
i∈µ(j)

∫
Xi,τ−1

f(Xi,τ |X∗i,τ , Xi,τ−1)
∑
X∗i,τ−1

Pr(X∗i,τ |X∗i,τ−1)f(Xi,τ−1|X∗i,τ−1)Pr(X∗τ−1)dXi,τ−1

and the RHS corresponds to our primitives. Specifically, with respect to the first component,

f(ZZZj,τ |XXX∗µ(j),τ , µτ ) =
∑
Z∗j

f(ZZZj,τ |Z∗j ,XXX∗µ(j),τ , µτ )Pr(Z∗j ).

Each element on the RHS is a primitive we would like to estimate.
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Chapter 3

Matching Games with Unobserved

Heterogeneity: A Structural

Analysis of Online Labor Markets

3.1 Introduction

In recent decades, the emergence of an entirely novel online labor market has

made it possible for previously geographically segmented workers and firms to match

with each other at much lower cost. Workers are now hired by the task, therefore

enjoying much more flexibility than staying in a long-term labor contract. Firms,

on the other hand, enjoy the “crowdsourcing” benefits that enable them to attract

multiple job candidates, each providing a unique proposal, and therefore increase
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the chance of finding a better solution. To date, most of the online labor markets

operate in a decentralized fashion: Instead of having a centralized “clearinghouse”

system to assign jobs to workers, firms and workers compete with their peers to

win over the scarce resource on the opposite side. Probably the most significant

difference of such online markets from traditional ones is that workers and jobs are

much more idiosyncratic in both their characteristics and their needs (Horton, 2010).

As a result, a well-defined price system is usually difficult to establish or maintain

in such markets; instead, market participants interact strategically to form monetary

transfers contingent with individual transactions. Meanwhile, anecdotal evidence

suggests that the labor forces of such online markets work primarily part-time and

more importantly, they care other features of a job beyond just cash earned. If this

is true, then the incentive problem in such markets becomes a substantial topic for

market creators. The multi-dimensionality of online workers’ utility profiles, however,

has rarely been captured in the literature, which might lead to misspecified model

predictions. The current literature tends to assume away further the game-theoretical

interaction between firms and workers, which would be inappropriate especially when

market size is finite, possibly due to data restrictions and the lack of a suitable

structural model.

To fill the gap, in this paper I use a two-sided matching framework to answer

two empirical questions regarding such markets: first, how much does a worker in

online labor markets care about various dimensions of a job? Second, based on
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the structural estimates, could the market designer introduce alternative schemes so

as to improve two-sided participation and aggregated match-specific outcomes? In

particular, I establish a stylized two-stage model to study a contest-based online labor

market, in which firms first set their cash prize under asymmetric information, then

workers choose which jobs to accept, taking into consideration peer workers’ and

firms’ preferences. Following Chapter 2 on the identification of matching games with

two-sided unobserved heterogeneity, I use data on (repeatedly) observed agent- and

match-specific characteristics to nonparametrically estimate both sides’ unobserved

heterogeneity, assuming firms share a vertical preference over workers. The preference

primitives are then identified from the equilibrium characterization. The data I use

is an individual-level record of a primary contest category on the world’s largest

online coding community, providing coders around the world access to the software

design/development and data-science problems published by mainly U.S.-based client

firms. The structural estimates show the significant role of the unobserved firm-

and worker-types in determining the observed sorting patterns in the market, as

well as the ineffectiveness of the current prize scheme. Both findings shed light on

the importance of introducing alternative plans to improve the assortativeness that

benefits the platform and market participants in the long run.

From a market-design perspective, this paper takes the first step towards evaluat-

ing how the total surplus generated in the market could be improved by introducing

alternative schemes. For instance, allowing firms to reward workers based on their
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ability and/or performance would also make them better off, despite the fact that

they incur more cost from engaging in the market. This kind of findings is insightful

to the market designer and could empirically boost the development of such markets,

as conducting alternative schemes requires much less cost and is much more witnessed

compared with traditional offline labor markets.

3.1.1 Related literature:

A growing empirical literature analyzes online marketplaces, a major theme of

which is how to efficiently create trade between many buyers and sellers through an

efficient price system. For instance, Einav et al. (2015) find that the auction-based

pricing scheme is declining as online markets becomes mature and is shifting toward

the posted-price scheme. This trend could be partially explained by the significant

number of market participants, the time sensitivity of active trades, and intense

competition among sellers (auctioneers) in the market. On the other hand, when

service delivered in such markets is not standard, and market size is moderate, such

as the one I am studying in this paper, it is usually difficult for a well established

posted-price scheme to exist. Therefore, it is of great importance to examine how firms

strategically determine the monetary transfers and how market outcomes are driven

by the strategic behavior. In this paper, I analyze the pricing scheme by characterizing

the decentralized wage-setting stage of the model and examine alternative schemes

that could potentially improve the market surplus.

104



CHAPTER 3. MATCHING GAMES WITH UNOBSERVED HETEROGENEITY:
A STRUCTURAL ANALYSIS OF ONLINE LABOR MARKETS

Another strand of literature tries to understand the incentives of participants,

especially those of workers in such markets. Horton (2010) mentions in his survey

paper of online labor markets that, given asymmetric information combined with

strategic behavior and job-wise heterogeneity, potential incentive issues impeding

workers from delivering satisfactory service can happen in such markets. In this

paper, I focus on one particular aspect of workers’ incentive issue by trying to answer

the question: under what circumstances will they stay away from certain kinds of jobs,

due to peer competition and their heterogeneous attitudes toward job characteristics,

which determines their equilibrium choices when faced with capacity constraints.

This paper also relates to both the economic and informational system (IT) studies

about online “crowdsourcing” platforms, a concept firstly introduced by Howe (2006).

See for example the paper by DiPalantino and Vojnovic(2009) and Horton and Chilton

(2010) among others. The former models the crowdsourcing markets as a two-stage

game, in which the second stage very much resembles all-pay auctions; they found

diminishing marginal returns of cash prizes regarding workers’ participation level. The

latter adopts a different rational model of labor supply and estimates the reservation

wage for workers to be willing to join the platform. In this paper, I use a two-sided

matching framework to analyze such platforms and focus on both sides’ strategic

movements leading to the observed market patterns.

Lastly, from a methodological point of view, this paper contributes to the re-

cently growing empirical literature analyzing preferences in two-sided matching mar-
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kets when unobserved heterogeneity prevails on both sides. See for example Choo

and Siow (2006), Chiappori et al. (2006), Fox (2010), Graham (2013), Galichon and

Salanie (2012) and Sinha (2014) when utility is modeled as transferrable and Logan et

al. (2008), Boyd et al. (2013), Menzel (2015), Agarwal(2016) when utility is modeled

as non-transferrable. This is, however, not the focus of this paper, and more detailed

relation to this strand of literature is discussed in Chapter 2.

I start the discussion by presenting the market description and relevant institu-

tional backgrounds in Section 2; I then establish the structural model and characterize

the equilibrium in Section 3. Also, I briefly discuss how I achieve point identification

using this strategy in Section 4.8. Next, in Section 4, I discuss the estimation strategy

that nonparametrically recovers the unobserved heterogeneity and parametrically re-

covers the utility primitives. Following that, Section 5 presents the empirical findings

and Section 6 presents the result of the counterfactual experiments. Lastly, I conclude

this paper in Section 7.

3.2 Market Description and Data

The market I study in this paper is TopCoder.com, a leading crowdsourcing web-

site. It offers businesses on-demand access to a worldwide community of over 800,000

designers, developers and data science experts.1 The platform offers three main

1Although these participants come from various industries, from now on I uniformly call them
coders, as most of the jobs involve primarily coding.
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“tracks” for firms and workers to fit themselves in software design, development and

data sciences. My data contains the complete participation record for the component

development projects, a major subset under the development track, from September

2003 to November 2011, with 1, 394 active coders and 2, 846 projects in total. Each

project is observed only once, but coders are observed multiple times throughout the

time span. Multiple coders submit to a single project and are awarded according to

their ordinal ranks. Specifically, the second place gets half of what the first place

gets in cash; and after May 2006, the top five to seven participants get bonus point

proportionally as an extra incentive to participate.

The main pipeline could be broadly divided into three stages. At Stage 1, client

firms reach out to the website, and with the help of a project manager, decompose the

project into smaller, independently manageable parts. They assign each component

a set of reward package (including cash payment and accumulative point rewards

which could transfer to cash seasonally) according to the rules of the website.2 At

the second stage, known as Competition and Collaboration Stage, coders select from

a list of published projects and register themselves without any charge. Coders then

work on the project simultaneously and submit by the due date. Communication

with project managers is allowed and encouraged during the whole process. At the

third stage, the Peer Review Stage, a group of coding gurus is hired by the client

firms as the review board. The group first screens out any submissions failing to

2Specifically, regarding the cash payment, the website requires each client to split their cash
rewards proportionally to the first- and second-place coders, on top of a fixed entry payment
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meet the baseline requirement, as well as technically trivial solutions. Team members

then independently score each submission passed the screening, and submissions are

ranked based on the average of their final scores. Finally, at the Results and Rewards

Stage, participants are awarded according to their ordinal ranks, and coders’ public

profiles are updated.

From the data, for every project, I observe the name (which briefly describes the

project’s content and requirement), the amount of the monetary and non-monetary

award such as the “Digital Run Cup Series” introduced in 2006,3 the duration of

the project as measured by the number of days allowed to develop the codes, the

programming language requirement and whether the project is for custom or generic

use. Furthermore, I observe the number of registrations and submissions per project,

the identity of all coders submitting and passing the screening, and the final scores

for their submitted code. For every coder, I observe his nationality, active days on

the website, and a full history including which projects he/she has participated in,

final scores for every submission, monetary and non-monetary rewards collected, and

updated skill rating on the website.4

Table 3.1 provides descriptive statistics of the project characteristics mentioned

3Digital Run (DR) points were introduced in mid-2006 as a complement to award good per-
formers. They allocate proportionally among top five to seven participating coders at the end of
each project. The points accumulate until the end of each quarter and those among the top third
DR-point holders are rewarded with extra money. Although there have been various changes in the
rules for setting the amount of the points, it is, on average, positively related with the winners’ cash
rewards.

4The site provides each registered programmer with a rating score for each track that he/she
ever participates in. This rating score is calculated with the well-known Elo rating algorithm widely
used to indicate the relative abilities of participants in competitor-versus-competitor games.
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above. On average, each project is active for about one week.5 The levels of the

monetary reward provided by different projects vary considerably, reflecting the ob-

served heterogeneity across projects. The dominant programming languages in the

data are .NET and Java. It is further decomposed into two categories: generic and

custom projects, with approximately 40% being generic. This is to capture whether

the code written for the project will be used only once or will be potentially used

for multiple purposes. Scores to measure the quality of the submissions are scaled

from 0 to 100, averaging about 89, reflecting a satisfactory ex post performance of

coders. Table 3.2 presents the coders’ descriptive statistics. Repeated participation

is common: The average number of previous submissions per coder at the time of

registration, denoted Experience, is 13. This website is strongly international: over

half of registered coders are from China, and only 9.37% are U.S. coders. Moreover,

rating scores are relatively diverse: scaled from 0 to 2,500, I observe an average of

1,169 and a standard deviation of almost 400. Lastly, according to the website, con-

tests occur on a roughly weekly basis. I, therefore, divide the whole dataset into 400

weekly markets. As shown in Table 3.3, I observe about seven contests active in a

week, with about 22 coders participating. Repeated participation within a market is

rare, though. In fact, about 88% of coders only attend once in a weekly market.6

By further exploring the data patterns, I have reason to believe there exists a

5After a closer look, I find that at the early and middle stages of my data time span, almost all
contests are published on each Thursday, but this pattern becomes noisier in later stage.

6Initially, the website even restricted new coders to one project per week. This rule was
abandoned in February 2008: http://apps.topcoder.com/forums/?module=Thread&threadID=

602646&start=0&mc=115.
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nontrivial degree of unobserved heterogeneity on both sides of this market, beyond

observed characteristics. On the coder side, although we can observe the up-to-date

rating scores for each person, it is still unclear how well these scores proxy innate

skills. For instance, in Table 3.4, I observe that even after controlling for coders’

rating score and experience, Chinese coders are preferred over U.S. coders, reflected

by their ordinal placement within each contest. Rather than believing firms inherently

prefer Chinese coders over U.S. coders, I think it may be true that coders’ skill levels

are not perfectly captured by rating scores and might be correlated with coders’

nationalities.

On the firm side, I find much more extraordinary evidence: As shown in Figure

3.4, we see a clear increasing trend in participants’ average rating scores as firms

increase the prize money, but there is a decreasing trend in the average final scores as

prize money goes up. A reasonable explanation would be the existence of project-wise

heterogeneity beyond the observables, which coders may value differently. To take a

closer look, I regress final scores coders get from participating in projects on observed

project-wise and coder-wise characteristics, and the results are shown in Table 3.5.

First, the negative correlation between the cash payment and coders’ performance

does not vanish after I control for observed characteristics. Second, in the last two

column, I consider the potential endogeneity issue concerning projects’ winning cash

payment and coders’ rating scores – the former can be correlated with unobserved

project heterogeneity and the latter might be associated with the unobserved coder
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heterogeneity. To tackle this issue, I use the average winning cash payment within

the weekly market and the last-period rating score for the same coder to instrument

the two endogenous variables. It can be seen that the coefficient before winning cash

payment becomes positive in the last column, where I further incorporate market

fixed effect to deal with market-wise unobserved heterogeneity. This serves as stronger

evidence showing that after teasing out the potential project-wise and market-wise

heterogeneity, higher cash payment indeed motivates better performance measured

by the final scores.

The matching allocation is driven by mutual choices of firms and coders. This

platform’s crowdsourcing feature enables us to observe firms’ cardinal preference over

coders who submit to the project. The more interesting part, however, is how firms

rank all potential participants in the market, which is unknown to the researchers.

Nonetheless, from a simple regression analysis, I find that firms’ revealed preference

over actual submissions indicates a strong vertical pattern. In Table 3.4, I regress

the within-contest ranking against coders’ rating-score rankings along with other

covariates. The coefficient of rating score rank is as high as 0.9 with an R-squared to

be as high as 0.81, and barely changes when we add more covariates. Furthermore,

as this rating score is uniformly computed and ranked, one has reason to believe

that all firms hold a vertical preference over coders, according to their (potentially

imperfectly observed) skill levels.

On the other hand, inference on coders’ preference over firms is less straightfor-
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ward because firms can rank multiple workers who submit, but workers can only

choose one job at a time. More specifically, for any single coder in a market, we

only observe his discrete choice of participation. Nonetheless, it is difficult to use

the standard discrete-choice regression model to study coders’ preference over the

entire project-wise characteristics set, as all the choices (projects) are heterogeneous

across different markets. In Table 3.6, I regress coders’ rating scores against contests’

observable characteristics and see how coders sort themselves into different kinds of

projects regarding their observable characteristics. In particular, I divide coders into

two subgroups: “top coders” who rank first or second in a contest, and “average

coders” who ranked third or worse in a contest. Their regression results are shown

in columns 2 and 3, respectively. A high heterogeneity in the sorting pattern is de-

tected here: Top coders have a strong disutility over longer contests, whereas average

coders slightly prefer more extended contests, as shown in row 2. The preference

for winning cash prizes is also different, as average coders apparently sort away from

highly-paid jobs, probably due to their concern with the job complexity. To sum, it is

inappropriate to hypothesize coders’ preferences to be purely vertical; instead, coders’

clearly sort themselves into projects heterogeneously in the data. More interestingly,

if for instance short projects with high payment are more likely to be highly complex

jobs, we can even detect coders’ different preference over the unobserved types(i.e.

complexity levels) across jobs.

Lastly, I look at how cash payment is determined in the market, as in labor
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markets, monetary transfers play a crucial role in determining the final matching

allocation. In the empirical literature analyzing matching markets, two completely

different ways of modeling the monetary transfers diverge in their methodologies

to identify primitives. In reality, however, monetary transfers are very likely to be

endogenous, but not arbitrarily negotiable between firms and coders. For instance,

in this market, firms first determine the contract terms, publish the information, and

then coders participate to win the contract. Setting and negotiating contracts/wages,

therefore, is excluded from the matching process; however, firms non-cooperatively set

the wage, taking into consideration how the matching game will play afterward. Table

3.7 suggests strong evidence for prize endogeneity: By regressing the winning prize

on the degree of competition along with other firm-level covariates, I find a strong

causal effect of the highest winning prize of peer contests in the market on cash prizes.

When controlling for market-wise fixed effect as shown in the second column, firms

are negatively affected by the head-to-head competition. This is very interesting,

as firms explicitly take into consideration both the market-specific willingness-to-pay

and the competition within a market when setting their cash payment to incentivize

coders to participate later.

To summarize, from a series of reduced-form analyses, I have found that: (1)

there might exists a non-trivial degree of coder-wise, project-wise and market-wise

unobserved heterogeneity in this online market; (2) firms are likely to admit a vertical

preference over coders’ skill levels, but coders might have heterogeneous preference
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over the same job; and (3) firms strategically set the cash payment for their projects,

reflecting their willingness-to-pay for the talents in the competitive market. Next, I

will present a structural model and use a novel method to estimate this game.

3.3 A Structural Model for the Online La-

bor Matching Markets

I present a stylized structural model that captures how the market works. As the

researcher, from market t, I observe three sets of information: the project-wise ob-

servable characteristics including the cash prizes set by all Jt firms, PPP t; the coder-wise

observable characteristics including their current rating score, XXX t; and the matching

allocation µt that tells us who matches with whom along with a one-dimensional

match-specific outcome, ZZZt. On the other hand, the project’s complexity, ZZZ∗t and

coders’ abilities, XXX∗t , and the market condition ωt, are unobservable heterogeneity, all

of which are assumed to be drawn from finite spaces.

I abstract away several aspects of this market. First, to avoid the complexity

of coordinating intra-firm pricing strategies, and to focus on the inter-firm pricing

competition, I ignore the fact that a firm’s business project is divided into multiple

components. Instead, I simply assume each firm (or equivalent entity) carries a single

project. This is acceptable as in the data; there is no record tracking the identities of

firms behind each project; it might, therefore, be inaccurate to decide which projects
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belong to the same firm. Second, I assume away strategic entry and exit decisions from

both sides. I, therefore, do not consider coders’ strategic participation and potential

learning-by-doing in this model. This is a major simplification, but is consistent with

the empirical findings that there is no explicit pattern regarding entries and exits

over time, as shown in Figure (3.3). This simplification enables me to focus on the

strategic pricing behavior of firms and discrete choices of coders in the market, which I

believe are most important to recover for policy implications. Lastly, when coders are

making their discrete-choice decisions, I assume they enjoy full information including

their peers’ utility profiles and idiosyncratic shocks. While it is rare to observe fully

informed workers in a real-life labor market, it is much easier and almost costless to

achieve full-information scenario for the worker side in online markets. Here I focus

on the information asymmetry from the firm side towards the coder side. Next, I

establish the timeline for the two-stage market game.

At Stage 1, a finite number Jt of firms are randomly drawn to be present in the

market. Firms have common prior about the distribution of peer projects’ complex-

ity and potential coders’ utility profiles but cannot observe other firms’ types nor the

actual identity of participating coders. Also, all firms observe the market condition,

ωt, that commonly affects their profits.7 By the end of this stage, firms simultane-

ously decide the cash prizes they will pay for the first and second place among all

submissions. At Stage 2, a finite number It of coders are randomly drawn to enter

7An example that determines ωt is a positive shock to recruiting coders from traditional markets.
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the market. Perfectly observing the characteristics and utility profiles of every active

project and every peer coder, they simultaneously submit their codes to the project

they choose. Without loss of generality, assume all firms provide a slot quota such

that Jt × Qt = It. Firms then hire a third-party reviewer board to evaluate all sub-

mitted codes. The market game completes with firms publishing the scores for every

submission, coders getting cash rewards accordingly.

Next, I define the preference structure of firms and coders. There is an abuse of

notation in the subsequent discussion: It (resp.Jt) denotes both the number of coders

(resp. projects) in market t, and the set of coders (resp. projects) in market t.

3.3.1 Preferences Structure of Firms and Coders

As presented in the reduced-form analysis, from Table 3.4, I detect a strong vertical

pattern of firms’ preferences over coders. This implies that coders’ professional skills

might be the primary component affecting firms’ preferences. Nonetheless, I need

to consider the fact that the willingness to pay for professional skills might vary

across firms, especially when they are faced with competitions among other firms

of asymmetric types. Therefore, I model Firm j’s ex post payoff from collecting

submissions of the set of coders µt(j) in market t is modeled as:

πpostj,µt(j),t
= R(c, ωt, Z

∗
j ,WWW j,

∑
i∈µt(j)

Zij)−
∑
i∈µt(j)

Pij (3.1)
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where R is the revenue function that has a known form to the researcher. c is

a one-dimensional revenue coefficient that is positive and reflects how profitable the

submitted codes are. WWW j is a vector of observable firm/project-wise characteristics;

here in my data, it is the duration and technology of the project. Lastly,

Pij =



Pj, if i is the first place

1
2
Pj, if i is the second place

0, otherwise.

Note that this is one of the simplest parametric specifications of the payoff function

for the ease of illustration, and I can also add nonlinear terms in empirical analyses.

In particular, the revenue part mainly depends on three elements: (i) the project-wise

complexity Z∗j ; (ii) the sum of Zij, which denotes the quality of coder i’s submission

to project j, and (iii) the demand-side shifter that affects the overall willingness to

pay in the market, and is denoted by ωt.

Next, I model the quality of a submission to be determined by the following

equation:

Zij = g2(X∗i , Z
∗
j ,WWW j,VVV i, bj), (3.2)

where g2-function is increasing in coder i’s ability, X∗i , and decreasing in the com-

plexity of a project, Z∗j . The final score is also determined by project-wise observed

characteristics, WWW j: the duration and the technology, as well as the coder’s experi-
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ences, as denoted by VVV i. The idiosyncratic term bj is independent of (X∗i , Z
∗
j ) and is

realized only after the code is submitted. 8

To sum, this specification of firms’ preference captures (i) the vertical prefer-

ence over coders’ skill ability; (ii) the synergy effect between a project’s complexity

and participating coders’ skill levels, and (iii) the trade-off between attracting better

coders and saving costs.

Next, I model the preference structure of coders towards projects. Following the

discrete choice literature, I assume the indirect utility of coder i choosing project j

in market t is determined by the following equations:

uijt = β0Pij + ũit(X
∗
i , Z

∗
j ,VVV i) + βββWWW j + νijt (3.3)

where β0 captures coders’ vertical preference over cash prizes, and β0 ≥ 0. The

function ũit is coders’ heterogeneous preference over the complexity of a project, and

reflects their benefit from projects with various complexity which may depend on

their own skills and experiences. Next, as before, WWW j denotes projects’ duration and

technology requirement, which coders also care about; lastly, νijt is the idiosyncratic

taste shock that is independent of other variables. In this paper, I assume ũit takes

8This is to exclude the case where firms know ex ante the value of bj when they decide the cash
prizes at Stage 1.
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the following form:

ũit(X
∗
i , Z

∗
j ) = γ0X

∗
i + (γ1X

∗
i + γ2VVV i + ηit) · Z∗j (3.4)

where ηit is a random coefficient following a normal distribution and is independent

of X∗i . Lastly, coders are allowed to choose the outside option. The systematic part

of the indirect utility from choosing any outside option is assumed to be zero.

Now I define the matching allocation µ generated in the second stage of the game:

if coder i chooses project j, then µ(i) = j and i ∈ µ(j). If coder i remains unmatched,

then µ(i) = ∅; if no one chooses project j, then µ(j) = ∅. This enables me to further

define the rational-expectation equilibrium for this extensive-form game.

Definition 4 The rational-expectation equilibrium (δ∗t , µ
∗
t ) is such that: At Stage 2,

for any observed (PPP t,ZZZ
∗
t ), the matching allocation µ∗t : I ∪ J → I ∪ J ∪ ∅ is pairwise

stable; At Stage 1, given the rational expectation about the stable matching function

and the knowledge of distribution of (XXX∗t ,ZZZ
∗
t ), firms play the mixed-strategy pricing

function δ∗t : Z→ Σ which is Bayesian Nash Equilibrium strategy.

The equilibrium concept defined in the second-stage market is the pairwise stabil-

ity. An observed µ is said to be pairwise stable if it satisfies:

1. (Individual Rationality) ui,µ(i),t ≥ ui,∅,t,∀i ∈ It and |µt(j)| ≤ Qt, π
post
j,µt(j),t

≥

πpostj,µt(j)\i,t, ∀j ∈ Jt, i ∈ µt(j).
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2. (Nonblocking Pairs) For any coder i and project j such that j 6= µt(i), the follow-

ing situations cannot happen simultaneously: ui,j,t > ui,µ(i),t; and πpostj,µt(j)∪i,t >

πpostj,µt(j),t
if |µt(j)| < Qt; or πpostj,µt(j)\i′∪i,t > πpostj,µt(j),t

,∃i′ ∈ µt(j) if |µt(j)| = Qt.

The first condition implies that the matching allocation I observe is at least as

desirable for all firms and coders as staying unmatched. The second condition implies

that, for any coder i in the market, his/her current choice µt(i) is the most desirable

project in his/her choice set. This choice set consists of any projects that is willing

to swap their current matched coders with coder i, or to fulfill a vacant space with

coder i.

At Stage 1, conditional on the prior knowledge of the joint distribution of potential

coders’ abilities and peer firms’ project complexity, along with the distribution of

coders’ idiosyncratic taste shock and the idiosyncratic shock to the code quality, the

mixed-strategy Bayesian Nash Equilibrium is defined as a mapping δ∗t : Z → Σ,

where Σ := {δ|
∑m

l=1 δ
l = 1}, such that for each firm j, given other firms’ equilibrium

strategy, δ∗−j,t, and the correct belief for the second stage, the following inequality

holds:

m∑
l=1

[
∑

ZZZ∗
−j ,XXX

∗

Pr(ZZZ∗−j ,XXX
∗)πint(pl, Z

∗
j ,ZZZ

∗
−j ,XXX

∗, δδδ∗−j,t(·), ω)] · δl,∗j,t ≥

m∑
l=1

∑
ZZZ∗

−j ,XXX
∗

Pr(ZZZ∗−j ,XXX
∗)πint(pl, Z

∗
j ,ZZZ

∗
−j ,XXX

∗, δδδ∗−j,t(·), ω)] · δlj,t,∀δ ∈ Σ. (3.5)

where πint denotes the interim payoff for firms j that chooses cash prize Pj and
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believing other firms will play the mixed strategy δ∗−j,t:

πint(pl, Z
∗
j ,ZZZ

∗
−j,XXX

∗, δδδ∗−j,t(·), ω) =∑
µt

Pr(µt|ZZZ∗−j,t,XXX∗t , Z∗j , pl, δt(ZZZ∗−j,t))πpost(Z∗j , ωt,XXX∗t , µt, pl) (3.6)

3.3.2 Equilibrium Characterization

In this section, I use the result from Section 2.4 of Chapter 2 to establish the

existence result of such equilibrium. Specifically, the following lemma hold and proof

can be found in the appendix of Chapter 2.

Proposition 4 There exists a rational-expectation equilibrium (µ∗t , δ
∗
t ) for the game

defined in the previous section. Moreover, when assuming the symmetric equilibrium

mixed-strategy δ∗ is uniquely played in the data, the following two results hold:

1. The match µt is pairwise stable if and only if ui,µ(i) ≥ maxm∈Mi[µt]
ui,m,∀i ∈ It,

where Mi[µt] is defined as follows:

Mi[µt] := {j1|j 6= µ(l),∀X∗l > X∗i , π
post
j,i,t ≥ 0} ∪ {jk|∃lm,m = 1, 2, · · · , k − 1,

such that µ(lm) = j,X∗lm > X∗i , k ≤ Qt, π
post
j,lm∪i,t ≥ πpostj,lm,t

} ∪ ∅ (3.7)

2. In markets where all firms fill up their vacancy, the probability of observing a

firm setting the cash prize pm = maxP monotonically increases with the market-
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level unobservable ω and the profit coefficient c.

This proposition shows that, at the second stage, as long as we know the skill levels

of all coders in market t, the pairwise stable outcome degenerates to a discrete choice

problem on the coder side, in which coders make their discrete choices sequentially,

even though this is originally a two-sided market. Moving back to the first stage, in

equilibrium, the better the market demand condition is (e.g. when it is more costly

to recruit coders from alternative platforms), the more probable for me to observe

firms posting maximum cash reward to compete for the best coders in the market.

This applies also to the profit coefficient that is remained to be identified – the more

profitable it is to attract better coders to do the job, the more probable it is for firms

to offer the maximum cash reward.

Detailed proof of this proposition can be found in the second section of Chapter 2.

In the next section, I will move on to the discussion of how to estimate this game. A

stylized identification discussion follows afterward, with minor changes made about

the original identification strategy in the third section of Chapter 2.
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3.4 Empirical Specification and Estima-

tion Procedure

Suppose, as the econometrician, I observe T weekly markets with It coders and Jt

projects in market t. Without loss of generality, assume each of the Jt projects offers

Qt slots such that Jt × Qt = It. Once a project is randomly drawn in market t, it

leaves the population and will not be selected in future markets. On the other hand,

coders enjoy a positive (and exogenous) probability of re-entering the market.

Every coder carries a latent ability level, X∗t , that is discrete and evolves over time

according to some underlying law, Pr(X∗t |X∗t′) if the coder appears in markets t and

t′ consecutively. Each project carries a difficulty level Z∗, also discrete. Addition-

ally, each weekly market t carries unobserved heterogeneity, ωt, which affects firms’

willingness to pay. All Qt slots within a project j share the same characteristics,

WWW j and the unobserved type Z∗j , but grant different cash prizes [Pj,
1
2
Pj, 0, · · · , 0],

respectively.9

To summarize, for each market t, I observe a It× 1 vector of coder characteristics

including their rating scores, XXX t, and their experiences and nationalities, VVV t; a Jt× 1

vector of contest characteristics, Wt and cash prizes, Pt; and a matching allocation

µt such that if coder i chose slot q in contest j, then µ(i) = kqj and µ(kqj ) = i. The

goal of identification, on the other hand, consists of three categories: (1) The joint

9In the data there exists an extra percentage bonus for coders who have been reliable in their
history; this is abstracted away here but will be taken into account in estimation.
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distribution of coders’ and projects’ unobserved heterogeneity, (XXX∗t ,ZZZ
∗
t ); (2) coders’

utility primitives in ui,j,t; and (3) firms’ ex post profit primitives in πpost
j,i,t , i.e. the

one-dimensional profit coefficient c.

In the following discussion, I suppress the market subscript t for ease of notation.

Also, I use bold letters to denote market-wise vectors of characteristics, whereas reg-

ular letters denote individual-level characteristics. The letter f is used to indicate the

probability mass/density function of any distribution, with a little abuse of notation,

and M is used to denote the matrix representation for any discrete distribution.

3.4.1 The Coder Rating System

To keep track of coders’ ability ranking in the population, the website provides

an up-to-date rating record for every coder. The rating score is calculated using the

Elo Algorithm as in chess games and is updated every time a coder participates in a

contest.10

Under this algorithm, I assume the rating score is calculated (and updated) ac-

cording to the following function. Specifically, I assume that a coder’s skill level when

entering the market follows a Bernoulli distribution with parameter pX ∈ [0, 1]. In

addition, I assume the rating scores and evolution of underlying abilities of coders

10The particular algorithm for calculating (and updating) a coder’s rating score can be found at
https://community.topcoder.com/tc?module=Static&d1=help&d2=ratings
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are determined by two rules:

Xτ−1 = X∗τ−1 + u1 (3.8)

when a coder first enters the market τ − 1, and

Xτ = λ ·X∗τ + (1− λ) ·Xτ−1 + u2. (3.9)

when he was present in some previous markets and re-enters the market τ . Rating

scores remain unchanged until the next time a coder re-enters the market. The error

terms (u1, u2) follow a zero-mean joint normal distribution with variance–covariance

matrix Σ =

σ2
1 0

0 σ2
2

.

Lastly, a coder’s latent ability evolves according to the following rule:

Pr(X∗τ = xH |X∗τ−1,VVV i) = [δx1(VVV i), δx2(VVV i)]
′, (3.10)

where VVV is observable characteristics and X∗τ−1 is the coder’s most recent latent

ability. The goal of estimation, therefore, is to find (σ1, σ2, λ, δx1(VVV i), δx2(VVV i).

This specification above indicates that a coder’s rating in market t is determined

by his rating in the most recent market, X̃it, his innate ability in market t, X∗it, and

a match-specific shock u independent of X∗i , independent among different coders and

independent across different weekly markets. In reality, this random shock reflects
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additional information used to calculate and update the rating scores, such as the

rating volatility of other peer coders in the same contest. Furthermore, the following

conditions hold for any pair of coders i and m such that µ(i) 6= µ(m) in market t:

Xkt ⊥ Xit|XXX∗t ,XXX t−1, µt.

Next, I specify how the reviewer board evaluates all submitted codes and generate

the final score that reflects firms’ preferences and determines the rank order within

each project.

3.4.2 The Contest Evaluation System

According to the rule specified on the website, the evaluation scores provided by

the reviewer board determines the ordinal rank of participating coders. Moreover,

both the website and users agree that the score is positively related to each coder’s

latent ability and the complexity of a project. Specifically, the more difficult a con-

test is, the more probable that submitted codes cannot meet the universal grading

criterion. Thus, the submitted code is more likely to receive a lower grade. I make

the following parametric specification about how the final score is related to observed

and unobserved characteristics.

Let Zt
i,j represent the final score coder i gets from participating in project j,
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characterized by

Zij = g2(X∗i , Z
∗
j ,WWW j,VVV i, bj)

= ξ0 + ξ1X
∗
i + ξ2Z

∗
j + ξ3.NETj + ξ4Durationj + ξ5Experiencei + bj (3.11)

where,

1. the idiosyncratic part bj reflects anything not captured in the characteristic

space, such as the review board’s potential bias in grading, and is independent

of (X∗i , Z
∗
j ,WWW j,VVV i). In particular, it is assumed to follow a zero-mean normal

distribution with variance σ2
b .

2. g2 is continuous and monotonically increasing with respect to its first argument

( ξ1 ≥ 0) and is monotonically decreasing in its second argument (ξ2 ≤ 0).

3. Conditional on observed matches µt,

(a) For any two contests j and l in the market, bj ⊥ bl.

(b) For any coder i that is matched with j, bj ⊥ (X∗i , ui,µt).

(c) For any project j in market t, bj ⊥ (Z∗j , ω).

(d) For any two markets t and t′, bbbt ⊥ bbbt′ .

Part (i) above implies that the variation in such scores is driven by the unobserved

heterogeneity on both sides. Part (ii) suggests that idiosyncratic taste shocks are
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unrelated with the market willingness to pay, ω. This is reasonable, as the reviewer

board evaluates codes independent of firms’ decision-makers and determines scores

solely based on functionality and documentation. The parameters to be estimated

are therefore (ξ1, ξ2, ξ3, ξ4, ξ5, σb).

3.4.3 The Equilibrium Cash Prize

As described in the modeling section, the equilibrium decision of the optimal cash

prize is set by firms before the matching process as an equilibrium outcome. This

is also supported by reduced-form evidence: The level of the winner’s cash prize

is significantly affected by the level of winner’s cash prize in peer projects in the

same market. Therefore, I would like to incorporate the prize-setting stage into the

estimation procedure.

I conduct a two-step estimation: In the first step, I estimate δ̂ := Pr(Pjt|Z∗jt, ωt).

In the second step, I match the simulated cash prize distribution with the estimated

distribution from Step 1, and use the minimum-distance estimator to estimate the

firm’s profit parameter c.

In the data, I observe cash prizes taking integer values and are calculated in US

dollars. To make the estimation simpler, in the first step, I discretize the observed

cash prize into three intervals: above the median ($500), equal to the median and

below median. Furthermore, the probability of the cash prize lying in each interval
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is assumed to follow a logit model:11

Pr(Pjt = pk|Z∗j , ωt) =

exp[ψH + ψZ
∗

0 · Z∗j + ψω0 · ωt + ψ1.NET + ψ2Duration + ψ3J ]∑
k=M,H exp[ψk + ψZ

∗
0 · Z∗j + ψω0 · ωt + ψ1.NET + ψ2Duration + ψ3J ] + 1

, k = M,H

(3.12)

The parameters to be estimated therefore are (ψH , ψ
Z∗
0 , ψω0 , ψ1, ψ2, ψ3). All the char-

acteristics in the above equation are observable except for (i) the contest-wise un-

observed heterogeneity, i.e. the project complexity level, and (ii) the market-wise

unobserved heterogeneity, ωt. For the former, I assume it is drawn from a binary

space, {zL, zH}, and how it relates to observables also follows a logit model:

Pr(Z∗j = zH) =
exp[ι0(1 + ι1.NET + ι2Duration)]

exp[ι0(1 + ι1.NET + ι2Duration)] + 1
(3.13)

and the parameters to be estimated are (ι0, ι1, ι2). The market-level unobservable ω

is also drawn from a binary space {wL, wH}, with probability of being wH depends

on the number of projects in the market according to a probit model:

Pr(ωt = wH) = Pr(χ0 + χ1J + vt ≥ 0) (3.14)

where vt follows a standard normal distribution. The parameters to be estimated

11In the actual estimation, I only include the .NET dummy but not the Java dummy, as they
compose 98% of the observations, and in order to avoid multicollinearity, I treat all projects that
are not .NET as belonging to the Java family.
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are (χ0, χ1).

3.4.4 Project Generality

As mentioned in the data description section, one feature about software develop-

ment contests is that, besides the distinction of programming languages (such as Java

and C++), applications are also categorized into two classes: custom and generic.

The submitted code for generic applications will be delivered to the client firm and

simultaneously included in the TopCoder Catalog for potential future use. In con-

trast, custom code is entirely tailor-made for the client firm’s business project: It is

not allowed to be used by others.

Anecdotal evidence has suggested that there exists complexity distinction between

custom and generic projects. For instance, in a custom project, client firms often ex-

pect coders to configure multiple sets of properties to meet their specific functionality

requirement. Figure 3.1 shows that custom projects are on average rewarded higher

than generic projects, but the number of participation is lower, demonstrated by

Figure 3.2. This serves as indirect evidence for the relationship between project gen-

erality and its underlying complexity (types). More intuitively, the types of jobs in

this market involve certain degree of innovation, and it is reasonable to believe that

the customized jobs involve higher degree of innovation than generic jobs, which also

inherently adds complexity to the job.

Specifically, let Yj denotes the binary indicator, equal to one if the contest is
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generic and zero if it is custom. Then, I make the following specification:

Pr(Yjt = 1|Z∗j ) =
exp[φ0 + φ1 · Z∗j + φ2.NET + φ3Duration]

exp[φ0 + φ1 · Z∗j + φ2.NET + φ3Duration] + 1
(3.15)

and the parameters to be estimated therefore are (φ0, φ1, φ2, φ3). Furthermore, assume

log(Pr(Z∗j = z|Y = 1)) − log(Pr(Z∗j = z|Y = 0)) is decreasing in z and is i.i.d.

among all contests with the same Z∗j . In addition, given Z∗, the distribution of Y is

independent of both firms’ profit shocks and reviewers’ taste shocks . Furthermore,

Yj is excluded from coders’ utility functions.

Intuitively, as we compare an easy project with a difficult one, it is relatively more

probable to observe the complicated project when Y = 0 rather than when Y = 1.

This assumption mainly restricts the possible correlation between the generality of a

project and how reviewers would bias their evaluation conditional on the complexity.

This is reasonable, as final scores mainly evaluate the functionality and documentation

of codes. Nevertheless, I exclude the situation where reviewers are systematically more

favorable to custom (or generic) code.

More implicitly, I restrict coders from having a systematic preference for custom

(or generic) contests, beyond the difficulty levels they carry. From the forum discus-

sion, custom and generic contests do not differ much in popularity. If a generic code is

sold to other clients, the winning coder will gain a “Royalty Dividend” – i.e., a small
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portion of the profit; for custom code, however, there will be no potential dividends

in the future. Nonetheless, royalty payments are tiny compared with winning prizes.

Recently, the website even decided to shut down the Royalty Dividend program due

to lack of popularity and motivation. This is a strong exogeneity assumption, as I

assume coders do not take the potential Royalty Dividend into account when they

make decisions, but we have anecdotal evidence supporting it. In a word, the binary

variable of custom vs. generic contests only reflects a variation in difficulty levels, but

does not affect how reviewers or coders value a contest, beyond its latent complexity,

Z∗.

3.4.5 Coders’ Indirect Utility Primitives

Next, I parametrize coders’ indirect utilities as:

ui,jk = β1Pjk + β2Durationj + β3.NETj + β4X
∗
i + (γ0 + γ1X

∗
i

+ γ2Experiencei) · Z∗j + νij, (3.16)

where νij is the coder/contest pairwise idiosyncratic taste shock, following an i.i.d.

standard Type-I Extreme Value distribution. Specifically, the coefficient β4 is the

fixed-effect for a given ability level X∗i ; γ0 is the fixed effect given a complexity level

of a project; γ1 measures each coder’s preference over the interaction of her ability

and the contest’s difficulty level, and γ2 captures the interaction between a coder’s
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experience and the project complexity; ηi is an unobserved taste determinant that is

independent of the other covariates. The parameters to be estimated are (β1, β2, β3,

β4, γ0, γ1, γ2).

3.4.6 Firm’s Profit Function

As presented in the modeling part, the ex post profit for each firm to attract a set

of coders is specified as:

πpostj,µt(j),t
= R(c, ωt, Z

∗
j ,WWW j,

∑
i∈µt(j)

Zij)−
∑
i∈µt(j)

Pij (3.17)

There are two elements that are unknown to the econometrician. First, the

market-wise unobserved heterogeneity ωt has an unknown distribution; second, the

one-dimensional profit coefficient c is not known either. To estimate these two, I first

exploit the joint distribution of monetary prizes of at least three firms in a market,

as they can be viewed as the three measurements to the underlying market demand

shifter ωt and are conditionally independent with each other. After estimating the

marginal distribution of the market-wise unobserved heterogeneity, ωt, I can then

estimate the one-dimensional profit coefficient, c, for all firms using the following

equation:

c = (δ∗)−1(Pr(P |Z∗, ω), Z∗, P r(ω), P r(Z∗), P r(X∗)).

where Pr(P |Z∗, ω) is already estimated, and δ∗ is the symmetric equilibrium

133



CHAPTER 3. MATCHING GAMES WITH UNOBSERVED HETEROGENEITY:
A STRUCTURAL ANALYSIS OF ONLINE LABOR MARKETS

strategy of each firm, and is assumed to be invertible on c. In the actual estimation,

however, due to the complexity of computing δ∗, I did not estimate the profit coeffi-

cient, but in the Monte Carlo Simulation section of Chapter 2, I show the performance

of my estimation for c.

After presenting the parametric specification of the primitives in the game, I

present my likelihood-based estimation procedure in the following section.

3.4.7 A Likelihood-Based Estimation Procedure

To summarize, the primitives I would like to estimate consist of three sets: (1)

(βββ,γγγ), which are parameters in coders’ indirect utility function; (2) (ξξξ, σb), which

are parameters that determines the match-specific outcome, or the final score for

each coder, in equation (3.11); and (3) (φφφ,ψψψ, ιιι, ξξξ), the parameters that determines

the distribution of project complexity, YYY , equilibrium cash prize PPP , the marginal

distribution of project- and market-wise unobserved heterogeneity, (ZZZ∗, ω), and (4)

(σ1, σ2, λ, δx1, δx2), the parameters that determines the marginal distribution Pr(XXX∗)

. Summarizing all these parameters and distributions into θθθ, the likelihood function

is defined as

LLL(θθθ) =

Pr([µ1,PPP 1,YYY 1,ZZZ1,XXX1,WWW 1,VVV 1], [µ2,PPP 2,YYY 2,ZZZ2,XXX2,WWW 2,VVV 2], · · · , [µT ,PPPT ,YYY T ,ZZZT ,XXXT ,WWWT ,VVV T ]|θθθ)

=
∑

XXX∗
1 ,XXX

∗
2 ,··· ,XXX∗

T

Pr([µ1,PPP 1,YYY 1,ZZZ1,XXX1,WWW 1,VVV 1]|XXX∗1) · Pr([µ2,PPP 2,YYY 2,ZZZ2,XXX2,WWW 2,VVV 2]|XXX∗2, [µ1,PPP 1,YYY 1,ZZZ1,XXX1,WWW 1,VVV 1]) · · ·

Pr([µT ,PPPT ,YYY T ,ZZZT ,XXXT ,WWWT ,VVV T ]|XXX∗T , [µ<T ,PPP<T ,YYY <T ,ZZZ<T ,XXX<T ,WWW<T ,VVV <T ]) · Pr(XXX∗1,XXX∗2, · · · ,XXX∗T )

(3.18)
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where the subscript < T denotes all the observed variables prior to market T . We

further know that

Pr([µt,PPP t,YYY t,ZZZt,XXXt,WWW t,VVV t]|XXX∗t , [µ<t,PPP<t,YYY <t,ZZZ<t,XXX<t,WWW<t,VVV <t]) =∑
ZZZ∗
t

Pr(ZZZt|ZZZ∗t ,XXX∗t ,WWW t,VVV t, µt) · Pr(XXXt|XXX∗t , X̃̃X̃Xt,VVV t)

· Pr(µt|ZZZ∗t ,XXX∗t ,PPP t,WWW t,VVV t)) · Pr(YYY t,PPP t,ZZZ∗t ,WWW t,VVV t). (3.19)

where X̃̃X̃X t refers to the vector of the most recent rating scores of each coder in market

t. And in the first market,

Pr([µ1,PPP 1,YYY 1,ZZZ1,XXX1,WWW 1,VVV 1]|XXX∗1) =∑
ZZZ∗

1

Pr(ZZZ1|ZZZ∗1,XXX∗1,WWW 1,VVV 1, µ1) · Pr(XXX1|XXX∗1,VVV 1) · Pr(µ1|ZZZ∗1,XXX∗1,PPP 1,WWW 1,VVV 1) · Pr(YYY 1,PPP 1,ZZZ
∗
1,WWW 1,VVV 1).

(3.20)

In equation (3.19), if we rank coders in market t such that X∗1 ≥ X∗2 ≥ · · · ≥ X∗I ,12

Pr(µt|ZZZ∗t ,XXX∗t ,PPP t,WWW t,VVV t)) = H1 ·H2 · · · ·HI

and,

Hi := Pr(µ(i) = jk|µ(i′),∀i′ < i;XXX∗t ,ZZZ
∗
t ,PPP t,WWW t,VVV t)

=

∫
ηi

exp(β1Pjk + β2Durationj + β3.NETj + β4X
∗
i + (γ0 + γ1X

∗
i + γ2Experiencei) · Z∗j )∑

m exp(β1Pm + β2Durationm + β3.NETm + β4X∗i + (γ0 + γ1X∗i + γ2Experiencei) · Z∗m)
dFη(ηi)

In words, Hi is the probability of coder i choosing contest µ(i) given the choices by

12For simplicity, assume when two coders carry the same ability level, all firms strictly prefer the
one with a smaller subscript.
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other better coders in the market. Lastly, the probability of observing the scores for

submitted codes are:

Pr(ZZZt|ZZZ∗t ,XXX∗t ,WWW t,VVV t, µt) =
Jt∏
j=1

fZZZj(z|Z∗j ,XXX∗µt(j),Wj,VVV µt(j))

=
Jt∏
j=1

∏
i∈µ(j)

fbj(z − ξ1X
∗
i − ξ2Z

∗
j − ξ3.NETj − ξ4Durationj − ξ5Experiencei), (3.21)

Similarly, for the probability of Pr(XXX t|XXX∗t , X̃̃X̃X t,VVV t), we have:

Pr(XXX t|XXX∗t , X̃̃X̃X t,VVV t) =
I∏
i=1

[fu1(Xi −X∗i ) · 1(coder i first appear in market t)+

fu2(Xi − λX∗i − (1− λ)X̃i) · 1(coder i not first appear in market t)]

(3.22)

The last component Pr(YYY t,PPP t,ZZZ
∗
t ,WWW t,VVV t) can be similarly decomposed using the

primitives I am estimating. So far, I have constructed the likelihood function, and

everything on the RHS corresponds to the primitives to be estimated. Standard MLE

approach is not practically implementable without further modification, however. To

see this, recall that coders have a positive probability of re-entering a market. In fact,

this panel structure helps me to achieve identification that will be discussed in the

next section; coders are therefore viewed as “global players” of this repeated game,

leading to the correlation of likelihood across different markets. Taking logarithm is
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not implementable, as likelihood across markets is not separable. Even if we maximize

likelihood function directly, a dimensionality issue will arise here, as we need to sum

over all possible values of Pr(XXX∗1,XXX
∗
2, · · · ,XXX∗T ), which can be as many as

∏T
t=1M

It

times of evaluation if we assume coders’ ability levels are drawn from a finite space

of order M . For instance, in the real data, we have more than 1,300 coders and 400

weekly markets. On average, there are 22 coders per market, which implies that,

to compute the full likelihood, we need to evaluate the joint probability distribution

Pr(XXX∗1,XXX
∗
2, · · · ,XXX∗T ) approximately 222×400 times, even if each coder’s skill level takes

only two possible values.

3.4.7.1 A Computationally-Feasible Modified Likelihood-Based

Estimator

I therefore adopt the modified estimator suggested in section 3.5.2 of Chapter 2.

First, I need to make the following assumption:

Assumption 10 Suppose the probability of coder i being selected in market t is

eit =



e0, if coder i never participated before,

e1, if coder i participated in market t− 1,

0, if coder i appeared both in market t and t− 1.

where 0 < e2 < e1 < 1.
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Intuitively, I assume that coder enters the market and stay for at most two consecutive

weeks. Afterward, they leave the market forever. The entry, stay, and exit decisions

are nonstrategic, though. Furthermore, I assume the populations of both coders and

contests consist of countlessly many candidates. Thus, there always exist a positive

number of coders and contests across all weekly markets. Hence, in each market t,

the set of coders, It, could be divided into three categories, {It,−1, It,0, It,+1}, where

It,−1 denotes the coders that also appeared in market t − 1 and stayed in market t,

It,0 denotes coders that appeared only in market t and leave forever after t, and It,+1

denotes coders that first appear in market t and stay for one more period. This is

illustrated in Figure (3.6). This assumption may seem to be restrictive at first sight,

but empirically it is acceptable to focus on coders’ consecutive participation behavior

only, and treat reentry behavior separately for the same coder. Figure (3.7) shows the

frequency coders’ consecutive participation behavior. Specifically, more than 92% of

consecutive attendance is less than or equal to 2 periods, and less than 8% consecutive

participation is more than twice. This adds credit to our assumption: We treat any

coder who re-enters the market after about of consecutive participation as a separate

identity.

Now, I construct a new likelihood function that integrates out partial information
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from what we observe:13

L̃LL(θθθ) =

∑
[PPP 2,YYY 2],...,[PPPT ,YYY T ]

LLL(θθθ)∑
AAA1,AAA3,··· ,AAAT−1

∑
[PPP 2,YYY 2],...,[PPPT ,YYY T ]

LLL(θθθ)

= Pr(AAA1,AAA3, · · · ,AAAT−1|[ZZZ2,XXX2, µ2,WWW 2,VVV 2], [ZZZ4,XXX4, µ4,WWW 4,VVV 4], · · · , [ZZZT ,XXXT , µT ,WWWT ,VVV T ])

=

T/2∏
t=1

∑
XXX∗

2t−1,ZZZ
∗
2t−1

Pr(AAA2t−1,XXX
∗
2t−1,ZZZ

∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1,WWW 2t−2,+1,VVV 2t−2,+1],

[ZZZ2t,−1,XXX2t,−1, µ2t,−1,WWW 2t,−1,VVV 2t,−1]). (3.23)

whereAAAt := [µt,PPP t,YYY t,ZZZt,XXX t,WWW t,VVV t]. In the last equation, the subscript {2t,−1}

denotes the distribution of variables in market 2t, of coders staying from market 2t−1

till in market 2t; similarly, the subscript {2t− 2,+1} denotes the distribution of vari-

ables in market 2t − 2, of coders staying from market 2t − 2 till market 2t − 1.

Essentially, I have integrated out some information with regard to even numbers

of markets, and mainly focus on the odd numbers of markets. This enables me to

compute market-level likelihood separately without encountering the dimensionality

problem. We condition on the information of observables such as Z and X from even

markets, as they are relevant to coders’ underlying types X∗. The last equality follows

from the fact that in market 2t−1 and 2t+1, there is no coder overlapping anymore;

thus, the joint distributions of observables are independent of each other, conditional

on neighbor market observables. Moreover, coders stay for at most two periods, thus

the only relevant information from even markets is about the codes from right before

13Without loss of generality, assume T is an even number. In addition, there is an abuse of
notation – some variables inWWW are continuously distributed, but I use the summation sign to denote
the summation of all possible values for discrete variables and the integration over the support of
continuous variables.
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and right after market t. I then write the log-likelihood function as:

L̃LLLLL(θθθ) =

T/2∑
t=1

log
∑

XXX∗
2t−1,ZZZ

∗
2t−1

Pr(AAA2t−1,XXX
∗
2t−1,ZZZ

∗
2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1,WWW 2t−2,+1,VVV 2t−2,+1],

[ZZZ2t,−1,XXX2t,−1, µ2t,−1,WWW 2t,−1,VVV 2t,−1])

=

T/2∑
t=1

log
∑

XXX∗
2t−1,ZZZ

∗
2t−1

Pr(ZZZ2t−1|ZZZ∗2t−1,XXX∗2t−1,WWW 2t−1,VVV 2t−1, µ2t−1)·

Pr(µ2t−1|ZZZ∗2t−1,XXX∗2t−1,PPP 2t−1,WWW 2t−1,VVV 2t−1))·

Pr(YYY 2t−1|ZZZ∗2t−1,WWW 2t−1) · Pr(PPP 2t−1|ZZZ∗2t−1,WWW 2t−1) · Pr(ZZZ∗2t−1,WWW 2t−1)·

Pr(XXX2t−1,XXX
∗
2t−1,VVV 2t−1|[ZZZ2t−2,+1,XXX2t−2,+1, µ2t−2,+1,WWW 2t−2,+1,VVV 2t−2,+1], [ZZZ2t,−1,XXX2t,−1, µ2t,−1,WWW 2t,−1,VVV 2t,−1]).

(3.24)

The RHS of equation (3.24) corresponds to the primitives we are interested in

estimating. The detailed derivation is provided in the appendix.

The next lemma establishes the consistency result for the estimator.

Lemma 9 Assume (i) the product space for estimation primitives are compact; 14 (ii)

Pr(µt,ZZZt,PPP t,YYY t,WWW t,VVV t|XXX∗t ) is continuous in all parameters and probability distribu-

tions; (iii) the set of primitives such that Pr(µt,ZZZt,PPP t,YYY t,WWW t,VVV t|XXX∗t ) > 0 does not

depend on the value of primitives; (iv) there exists a function K(µt,ZZZt,PPP t,YYY t,WWW t,VVV t|XXX∗t )

such that

1. logPr(µt,ZZZt,PPP t,YYY t,WWW t,VVV t|XXX∗t , θθθ)−logPr(µt,ZZZt,PPP t,YYY t,WWW t,VVV t|XXX∗t , θ0θ0θ0) ≤ K(µt,ZZZt,PPP t,YYY t,WWW t,VVV t|XXX∗t )

and

2. EK(µt,ZZZt,PPP t,YYY t,WWW t,VVV t|XXX∗t ) <∞;

14The space include the parametric spaces for (1) (β, γ,σσσ), which are parameters in coders’ utility
function; (2) (ξ,κκκ), which are parameters in the score function in equation (3.11), and lastly, the
probability space for the distributions Pr(Y |Z∗), Pr(P |Z∗, ω), Pr(Z∗) and Pr(ω).
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then the likelihood estimator that maximizes the function in equation (3.19) converges

in probability to the true values of the primitives.

A detailed proof can be found in the appendix of Chapter 2. In the next section,

I briefly discuss how the observed data patterns from many finite-sized markets lead

to the identification of the underlying utility and profit parameters through first

identifying the unobserved coder and project heterogeneity. The detailed derivations

are presented in Chapter 2, and I will focus on how the stylized facts in the market I

am studying leads to identification argument.

3.4.8 Identification Discussion

Full identification discussion consists of three steps. First, within each market,

conditional on observing stable matches µ, I identify the joint distribution of (XXX∗t ,ZZZ
∗
t )

from jointly observing coder-specific, firm-specific and match-specific characteristics.

The identification strategy is based on the eigenvalue-eigenvector decomposition tech-

nique developed in Hu (2008). Then, the market-level choice probability can be re-

vealed, which leads to the identification of coders’ indirect utility parameters following

the well-known discrete-choice literature. Lastly, market-wise demand condition can

be identified by observing multiple projects within each market. The identification

of firms’ profit coefficient is identified from the monotonicity result in Proposition 1.

The intuition behind the first step is that, from data, for any individual coder

i, we have three conditionally independent pieces of information related with their
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ability level (current rating Xt and current and previous final scores (Zt, Z̃t)). On

the contest side, we are unable to observe information for the same project across

different markets as each contest appears in only one market. Instead, we must rely

on the information observed from the matching outcomes in one market to invoke

identification. First, let us focus on the final scores, as they not only reflect coders’

innate abilities, X∗, but also the complexity of contests, Z∗. We must be cautious

here, though, as the observed scores are driven by the matching allocation, through

which contests occurring in the same market are implicitly correlated. Another bit

of useful information concerns the equilibrium cash prizes decided by firms: They

are the major movements firms make during the extensive-form game and are an

equilibrium outcome. Again, the distribution of cash prizes is correlated through the

market-level unobservable, ω, and further correlated through the matching allocation,

µ.15 Consequently, we cannot separately identify its distribution without looking at

other contests in the same market. Instead, the conditional independence could only

be built upon observed matching allocations.

The next lemma formally establishes the conditional independence assumption

among observed characteristics. To be more accurate, I return to the explicit market

subscript t.

Lemma 10 The following condition holds for the market-level observables, when con-

15To see this, note that the probability of observing an individual match µ depends on the joint
distribution of (XXX∗,ZZZ∗,PPP ). Thus, the distribution of PPP is variant with different values of µ.
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ditioning on (WWW t,VVV t)

(XXX t|YYY t) ⊥ (PPP t, Z̃̃Z̃Zt) ⊥ ZZZt|(ZZZ∗t ,XXX∗t , X̃̃X̃X t, µt),

where YYY t denotes the Jt × 1 vector of binary variables, each indicating whether a

contest is custom or generic; XXX t represents the It × 1 vector of coders’ contemporary

ratings; PPP t represents the Jt× 1 vector of cash prize for all contests; Z̃̃Z̃Zt indicates the

It × 1 vector of all coders’ final scores up to their most recent participation; ZZZt is the

It×1 vector of final scores for all coders; (ZZZ∗t ,XXX
∗
t ) is the It×Jt matrix of all contests’

and coders’ types; and X̃̃X̃X t is the It × 1 vector of all coders’ ratings up to their most

recent participation. Lastly, µt is the observed match in market t.

Therefore, fixing the market size (I, J,Q), other observed characteristics (WWW t,VVV t)

(suppressed here), the matching allocation and coders’ previous performance, (µ, X̃̃X̃X),

I can write down the following equations:

f(XXX,PPP , Z̃̃Z̃Z,ZZZ|YYY , X̃̃X̃X, µ, I, J,Q)

=
∑
ZZZ∗,XXX∗

f(PPP , Z̃̃Z̃Z|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(XXX,ZZZ∗,XXX∗|YYY , X̃̃X̃X, µ) (3.25)
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as well as,

f(PPP , Z̃̃Z̃Z,ZZZ|YYY , X̃̃X̃X, µt, I, J,Q)

=
∑
ZZZ∗,XXX∗

f(PPP , Z̃̃Z̃Z|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ∗,XXX∗|YYY , X̃̃X̃X, µ) (3.26)

Furthermore, when (X∗, Z∗) follows a discrete distribution, we could partition (or

discretize, if observables are continuous) observable characteristics to have the same

dimension as the cardinality of the support for (X∗, Z∗), such that equations (3.25)

and (3.26) could be written in a matrix form and would provide the nice property of

invertibility. Detailed assumptions can be found in Appendix 3.9.3.

Specifically, fixing a certain value of (YYY = yyy, X̃XX, µt, I, J,Q), I compute the proba-

bility of observing XXXd = xxx as well as various values of (PPP d, Z̃̃Z̃Zd,ZZZd)

MXXXd=xxx,PPP d,Z̃̃Z̃Zd,ZZZd|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q

= MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q ·DZZZ∗,XXX∗,XXXd=xxx|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q ·M
T
PPP d,Z̃̃Z̃Zd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q

(3.27)

where on the LHS, the element on the i-th row and j-th column corresponds to the

probability:

Pr(XXXd = xxx, (PPP d, Z̃̃Z̃Zd) = (ppp,zzz)j,ZZZ
d = zzzi|YYY = y, X̃̃X̃X = xxx, µ, I, J,Q)

where (ppp,zzz)j(resp. zzzi) is the j-th(resp. i-th) distinct value for the vector (PPP d, Z̃̃Z̃Zd)(resp.
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ZZZd). The first and third matrix on the RHS is similarly defined. The middle matrix D

on the RHS is diagonal whose elements are the probability of observing (ZZZ∗ = zzz,XXX∗ =

xxx′,XXXd = xxx) for various values of (zzz,xxx′) conditional on (YYY = yyy, X̃XX = xxx, µ, I, J,Q). All

matrices are of dimension (mJ · lI)× (mJ · lI). In addition,

MPPP d,Z̃̃Z̃Zd,ZZZd|YYY=111−yyy,X̃̃X̃X=xxx,µt,I,J,Q
= MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q ·DZZZ∗,XXX∗|YYY=1−yyy,X̃̃X̃X=xxx,µ,I,J,Q·

MT
PPP d,Z̃̃Z̃Zd,ZZZ∗,XXX∗|X̃̃X̃X=xxx,µ,I,J,Q

(3.28)

By inverting equation (3.28) and right-multiplying equation (3.27), I get

MXXXd=xxx,PPP d,Z̃̃Z̃Zd,ZZZd|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q ·M
−1

PPP d,Z̃̃Z̃Zd,ZZZd|YYY=111−yyy,X̃̃X̃X=xxx,µt,I,J,Q

= MZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q ·DZZZ∗,XXX∗,XXXd=xxx|YYY=yyy,X̃̃X̃X=xxx,µ,I,J,Q ·D
−1

ZZZ∗,XXX∗|YYY=1−yyy,X̃̃X̃X=xxx,µ,I,J,Q
·

M−1

ZZZd|ZZZ∗,XXX∗,X̃̃X̃X=xxx,µ,I,J,Q
(3.29)

Here, the matrices on the LHS are directly computable from data, and the RHS

embeds the distribution of unobservables that we are interested in. I use the eigenvalue–

eigenvector decomposition method developed in Hu (2008) for nonparametric identi-

fication. The next proposition is a significant result to identify the joint distribution

of (ZZZ∗,XXX∗) given the market size and observed match, µ.

Proposition 5 The joint distribution of (PPP ,ZZZ∗,XXX∗|µ, I, J,Q), the conditional distri-

butions of (ZZZj|Z∗j ,XXX∗µ(j)) and (XXXµ(j)|XXX∗µ(j), X̃̃X̃Xµ(j)) are all nonparametrically identified
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from observing the joint distribution of (YYY ,XXX,PPP , Z̃̃Z̃Z,ZZZ, X̃̃X̃X) conditional on a certain

(µ, I, J,Q). Moreover, the underlying law of motion Pr(X∗it|X̃∗it) and initial condition

Pr(Xi1|X∗i1) are nonparametrically identified.

In the second step, the market-level choice probability is equivalent to the prob-

ability of observing the matching allocation µt, and is determined solely by coders’

preferences once we know their skill levels. In order to simplify our notation, the

(I, J,Q,WWW t,VVV t) is suppressed from now on. As coders’ preferences are affected by

(XXX∗,ZZZ∗,PPP ), the market-level choice probability can be written as Pr(µ|XXX∗,ZZZ∗,PPP ).

After identifying the conditional distribution of unobserved types of coder–slot pairs,

we could apply the Bayes Theorem:

Pr(µ|XXX∗,ZZZ∗,PPP ) =
f(P,Z∗,X∗|µ) · Pr(µ)∑
µ f(P,Z∗,X∗|µ) · Pr(µ)

,

where, f(P,Z∗,X∗|µ) is identified from the previous step and Pr(µ) is directly ob-

servable from data.

Given the knowledge of Pr(µ|XXX∗,ZZZ∗,PPP ), we are able to recover coders’ utility

primitives based on

Pr(µ|XXX∗,ZZZ∗,PPP ) = Pr(u1,µ(1) ≥ max
j∪∅

u1,j) · Pr(u2,µ(2) ≥ max
j 6=µ(1),∅

u2,j) · · · · Pr(uI,µ(I) ≥ max
j 6=µ(i),∀i<I,∅

uI,j)

if we order coders such that X∗1 > X∗2 > · · · > X∗I .

Note that for each coder i, the conditional probability Pr(ui,µ(i) ≥ maxj∪∅ u1,j) is
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very similar to the individual choice probability in single-agent discrete-choice models.

The major difference lies in the way I characterize a coder’s choice set. Now that the

choice set is identified, I can directly use the argument in the discrete-choice literature

to identify coders’ utility parameters.

From Step 1, we have identified the joint distribution of (PPP ,ZZZ∗,XXX∗). We know

that, for each contest j, the symmetric equilibrium cash prize depends on (Z∗j , ωt),

which implies

Pj ⊥ Pj′ ⊥ Pj′′ |Z∗j , Z∗j′ , Z∗j′′ , ω (3.30)

for any project j, j′, j′′ in market t. Therefore, we could recover the distribution of

market unobserved heterogeneity, ωt, from jointly observing at least three contests

in the market. This is in line with the measurement-error model, as all prizes can

be viewed as noisy measures for ωt. Following Hu (2008), we make the following

assumption to identify the conditional distribution, f(Pj|Z∗j , ω).

Assumption 11 1. ω is drawn from a finite support {w1, w2, · · · , wn} with n ≤

m.

2. There exists a mapping ρ : {p1, p2, · · · , pm} → {1, 2, · · · , n} such that the fol-

lowing matrix is of full rank n× n.

Mρ(P1),ρ(P3)|Z∗1 ,Z∗3 := [Pr(ρ(P1) = p, ρ(P3) = p′|Z∗1 , Z∗3)]p,p′∈{1,2,··· ,n}
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The next theorem tells us that we could identify the distribution of a single con-

test’s cash prize, P , conditional on its complexity, Z∗, and the market unobservable

ω. This condition distribution could be viewed as firms’ pricing strategies.

Proposition 6 Given Assumption 11, we can nonparametrically identify Pr(Pj|Z∗j , ω)

and the marginal distribution of ω.

As discussed in the theory section, the equilibrium cash prize distribution maxi-

mizes the interim payoff of each firm at Stage 1. Specifically, let δ∗ := Pr(P |Z∗, ω),

which has been identified, then

δ∗ ∈ argmaxδ∈Σ

m∑
l=1

[
∑

Z∗−j ,P−j

πint(pl, Z
∗
j , Z

∗
−j, δ

∗
−j(·), ω)] · δlj

where πint(pl, Z
∗
j , Z

∗
−j, δ

∗
−j(·), ω) is the firm’s interim payoff function defined previously.

In equilibrium, δ∗ is a function of (c, Z∗, ω, β, γ, σ, Pr(Z∗), P r(X∗)), where only the

profit coefficient c is not known. As we already made the assumption with regard to

the equilibrium selection rule, we only need to make sure the δ∗ function is invertible

for c. From part 2 of Proposition 4, the equilibrium distribution of cash prize δ∗

is stochastically increasing with respect to c. Thus, the profit coefficient, c, can be

identified from

c = (δ∗)−1(Pr(P |Z∗, ω), Z∗, ω, β, γ, σ, Pr(Z∗), P r(X∗)).
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Thus, I have nonparametrically identified the distribution of unobserved hetero-

geneity on both sides of the market, and more importantly, identified the preference

primitives for firms and coders. Detailed derivation and proofs can be found in Sec-

tion 3 of Chapter 2. In the subsequent section, I will discuss the estimation results

and show how the model fits the data.

3.5 Estimation Results and Discussion

In this section, I present the estimation result using the modified likelihood-based

estimator I suggested in the previous section. To construct the (log-)likelihood func-

tion, I select markets that have no more than 20 coders; This is because when the

number of coders increases, the computational burden will increase exponentially. I

firstly use odd numbers of markets to generate the point estimate; then I re-estimate

using numbers of markets. I include 204 markets in total (over half of the whole

sample). Also, I do not observe actual coders choosing the outside option in each

market. Here I permute the “outside option” observations by two means: (1) I treat

coders who deliver a coder of score lower than 75 to be choosing the outside option.

This is acceptable as submissions with a score worse than 75 is treated as trivial

and nonfunctional, and can be partially categorized as coder choosing to contribute

nothing in the market; (2) I treat coders appearing more than once in the market

to choose the outside option in the previous market. This is also reasonable, as an

149



CHAPTER 3. MATCHING GAMES WITH UNOBSERVED HETEROGENEITY:
A STRUCTURAL ANALYSIS OF ONLINE LABOR MARKETS

active coder in the current market is more likely to browse the website for a period

of time, but decide not to participate until he sees exciting projects. Nonetheless, if

given more data, especially data about the actual outside option observations, the

estimation should be more accurate. After adding these observations, my sample size

increases by around 10%. Other detailed specifications can be found in Appendix

3.9.4.

The results are summarized in Table 3.8. Here, I discuss in detail how the esti-

mation result informs us about the market’s underlying patterns and how they are

compared with reduced-form evidence.

3.5.1 Coders’ Utility Primitives

First, let us look at coders’ utility primitives shown in Panel A of Table 3.8. The

cash prize plays an active role in motivating coders to participate, but the magnitude

of that role is small, as the cash prizes have been scaled down by 1000. On the other

hand, duration has a negative impact, showing coders’ preference over shorter projects

over longer ones. If we compare the reduced-form regression of how coders sort them-

selves into different projects, this estimates is in line with the sorting pattern: more

skilled coders sort into projects with a shorter duration. Regarding programming

language, coders slightly prefer .NET projects than Java projects, which is consistent

with the fact that the former is less familiar to most coders.

Coders exhibit a positive individual-level fixed effect, reflecting the fact that more
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skilled coders tend to show more interest to this platform compared with alternative

work opportunities outside the platform. In my model, I also allow coders to perceive

the complexity of a job differently by adding the interaction terms between project

complexity and coder-wise characteristics. On average, the complexity becomes less

desirable to coders with higher skills, although the complexity fixed effect per se has

a positive coefficient in the model. Experience positively affects the probability of

choosing complex projects, which indicates that, coders who have more experience

tend to sort themselves into more complex jobs.

Compared with results in Table 3.6, this panel at least partially echoes what I

have found in the reduced-form sorting pattern. For instance, it is clear that coders

with higher rating score sort themselves into Java projects compared with .NET and

other projects; from the structural estimation, .NET is less favorable to coders. As

mentioned earlier, this pattern also applies to coders’ perception over the duration

of a job. Lastly, the fact that coders (insignificantly) sort into less paid jobs can

be rationalized by the fact that although they love money, they are hesitant to be

engaged in more complex jobs, especially when a coder is more skilled, as suggested

by the structural estimates.

3.5.1.1 Determinants of the Final Scores

Another interesting pattern is how the average final scores are determined by

various factors beyond the participating coder’s skill level. This is summarized in
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Panel B of Table 3.8. Firstly, it is clear that final score is positively affected by coder

ability and negatively affected by project complexity; .NET projects score slightly

less than Java projects; coders participating in projects with shorter duration tend

to score higher, which is reasonable, as longer projects tend to be easier to complete.

More experienced coders tend to get a lower score. Compared with Table 3.5, most

results are consistent regarding observable characteristics.

3.5.1.2 Distribution of Cash Prize, Project Generality and

the Underlying Complexity

More importantly, let us explore how data informs us about the underlying degree

of heterogeneity on the firm side. We see a clear pattern of a project’s cash prize being

increasingly affected by its underlying complexity, as reflected in the third row of Panel

C in Table 3.8. Similarly, higher market-level unobservables are associated with higher

average cash prizes. This is all in line with the theoretical prediction. In addition, cash

prizes compensate more for .NET projects and/or projects with a shorter duration,

as suggested by the coefficient for .NET dummy and Duration covariate. Lastly, as

the number of firms in each market increases, the equilibrium cash prize tend to be

higher; this might be explained by the fact of competition. This result is also partially

consistent with the reduced-form finding in Table 3.7 except for how cash prizes are

related to duration and the number of contests per market. Nevertheless, regression

analysis in Table 3.7 does not consider the unobserved heterogeneity of a project,
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thus can result in biased estimates.

The binary variable Y indicates whether the project is for generic or custom use.

More complex jobs are less likely to be generic, as reflected by the negative coefficient

for the complexity. .NET projects are slightly more likely to be generic. The longer

a project is, the more probable it is a generic project.

Regarding the underlying distribution of project complexity, .NET projects are

slightly more likely to be complex. The shorter a project is, the more probable it is a

complex job. Combining all the estimation regarding the duration, I have found that

shorter projects are more challenging for coders to complete, which may be because

they require more coding efficiency and bug-freeness.

Moving to Panel F of the table, we can see that the market-level demand shifter

is negatively affected by the number of firms in the market. This is reasonable, as the

more firms there are in the market, the less profitable it is to buy submitted codes

via this platform because of the limited capacity supply of coders.

3.5.1.3 Distribution of Coders’ Latent Ability

Lastly, Let me discuss how the structural model tells about the pattern of coders’

latent ability and its evolution over time. First, when a coder is of high ability last

period, it is more probable for him to remain skilled during the current period than

does a coder with low ability, as shown by the first two rows of Panel G. Next, it is

demonstrated by the estimate of λ that a coder’s rating score depends heavily on his
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last-period rating. The disturbance to a coder’s rating score becomes smaller, as over

time, the rating tend to become more stable. This is also consistent with what the

website shows us. Regarding the latent marginal probability of being highly skilled,

Chinese coders tend to be more skilled than coders of other nationalities. This might

arise from the selection as Chinese coders might sort themselves into this platform

more often than others. Most of the estimates are reasonable and consistent with

what I find in reduced-form analyses.

3.5.2 Model Fit

In this section, I describe the in-sample fit of the estimated moments. Specifically,

in the simulated data, I firstly include the same set of coders for all T = 204 weekly

markets. By using the point estimates from the previous section, I generate the ob-

served projects (resp. coders) within each market, including their latent complexity

levels (resp. ability levels), conditional on observed characteristics such as program-

ming language and duration (resp. nationality and experience). Then, I simulate

coders’ discrete choices and the final scores they would get from participating in the

matched project. Lastly, I pool all observations together and re-divide them into

four bins according to the experience percentile of each coder. Table 3.9 depicts the

predicted and observed first and second moments between data and model against

different experience percentiles, with standard deviation from 200 simulated samples

provided in the parentheses. Regarding the first moments, it shows that the model
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well predicts the trend of both rating scores and final scores a coder would get when

he accumulates more experience from participation. The estimates for how much cash

prize a coder would get is less accurate than the previous two estimates, probably

because of the way I discretize the cash prizes. For all first moment estimates, the

last column is always less accurate, though, possibly because the experience is capped

above by 20 during the estimation. Thus the more experienced coder sub-sample is

noisier.

Regarding the second moment estimates, qualitatively my model well predicts the

correlation between the (1) final score and cash prize, and (2) rating score and the

cash prize. Quantitatively the latter is better predicted than the former. For both

estimates, the lower 10% and upper 30% experience subsamples are worse predicted,

probably because these samples have noisier observations. To sum, the overall fit is

good, indicating that the structural model well approximates the observed data.

3.6 Counterfactual Experiments

Although I am unable to provide closed-form solution for the whole model due to

the complexity of computation when the number of agents gets large, it is possible

to explore the market patterns via simulation analysis. In particular, I am interested

in how to improve the total surplus in such a market. I conduct three counterfactual

experiments using the point estimates from the data and an illustrative model where
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there are two firms in each market, offering three slots each, and four coders are

randomly drawn from population to make their participation choices. The whole

time window is 12 weeks which is approximately three months after the counterfactual

policies go into effect. Besides computing the welfare of all coders and firms in each

market, I also define the degree of “assortativeness” as

Assort =
Pr(µ(i) = j|X∗i = xh, Z

∗
j = zh) + Pr(µ(i) = j|X∗i = xl, Z

∗
j = zl)

Pr(µ(i) = j|X∗i = xh, Z∗j = zl) + Pr(µ(i) = j|X∗i = xl, Z∗j = zh)

and define the participation rate within each market as the percentage of coders not

choosing the outside option. In the first experiment, I am interested in how coders’

attitude towards complexity would affect firms’ welfare.

3.6.1 Coders’ Attitudes Towards Complexity

How different coders perceive the complexity of various projects is influenced by

the scheme that the website designs. For instance, by introducing extra reputation

rewards for complex projects in addition to the cash prize, coders might view those

projects as more attractive than before, potentially due to the fact that their reputa-

tion will be built up that benefits their future income even in other platforms. This

dimension of preference is captured through the γ1-term in coders’ indirect utility

functions: to see this, note that currently γ1 is estimated to be negative, which shows

that more talented coders are more interested in easy jobs rather than complex ones.
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In this counterfactual experiment, I would like to see what would happen if their

attitude toward complexity, γ1 be shifted to positive (first scenario) and even more

negative (second scenario). In particular, the first scenario represents one type of

policy change such as delivering extra point rewards for highly skilled coders to enroll

in challenging jobs, whereas the second scenario can be implemented by giving them

extra points for contributing to easy jobs. Formally, recall the specification about

coders’ utility functions:

ui,jk = β0Pjk + ũ(X∗i , Z
∗
j ,VVV i) + βββWWW j + νij

= β0Pjk + γ0X
∗
i + (γ1X

∗
i + γ2VVV i + ηit) · Z∗j + νij (3.31)

In particular, the γ1-term in high-skilled coders’ utility function denotes their

overall attitudes towards complexity. In this experiment, we shift the values of γ1 from

upward to twice its absolute value, and downward to 2 times of its current value, to see

its impact on coders’ and firms’ total surplus and other market outcomes. The results

are shown in Table 3.10. It first indicates that in both scenarios, the coders’ welfare is

improved, whereas firms’ welfare is hurt by the first scenario, largely affecting the total

welfare. This is interesting, as what we typically think is that once the assortativeness

is increased, as shown in the fourth row of the first column, firms will be as better

off as coders do. Instead, they are harmed by the decrease in participation. The

reason is that, when high skilled coders are more motivated to take part in difficult
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jobs, low-skilled ones may potentially be “squeezed out” as their desired jobs are

taken, whether it is an easy or a difficult one; this fact on average harms the firm

side as a result. From this experiment, we can see there is a subtle trade-off between

assortativeness and participation, as what I find in the market is that low-skilled

coders are more passionate about complex jobs, and the market will be better off

if we further allow them to do so. Therefore, an incentive scheme that encouraging

high-skilled coders to be more active in easy jobs might help improve this market. In

the long run, however, it remains uncertain which way to go especially if the market

creator would like to attract more skilled labor onto this platform.

3.6.2 Allowing Firms to Price-Discriminate

The current market operates in a way that firms are not able to price discriminate

coders with different skill levels. This may result in the overly high payment by firms

and misalignment of the match between coders and their most suitable jobs. Now I

would like to introduce an alternative regime, in which firms have the choice to design

discriminative contracts based on coders’ skill levels. Specifically, firms could choose

to add a 50% percentage bonus if the coder participated is of high skill level, on top

of their basic cash prize levels. The splitting rules remain the same: the second-

place always gets half of the prize for the first-place. The results are shown in Table

3.11. First of all, this new regime improves the participation rate, as demonstrated

by the last row in the table. Interestingly, both firms and coders benefit from this
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new scheme: (especially high-skilled) coders are now awarded more money due to

price discrimination; meanwhile, firms with complex jobs can attract better coders

to participate. As a result, the total surplus in such a market improves. Lastly, the

degree of assortativeness is moderately hurt by price discrimination, which is less

of a problem, as the price discrimination leads to coders who previously choose the

outside option now stay inside, possibly in less complex jobs. To sum, when firms have

more freedom of choosing how to award coders in terms of price discrimination, they

gain higher utility, which also benefits coders as a whole. This inspires the market

designers to redesign the market so as to improve the total surplus in an efficient

manner.

3.7 Conclusion

This paper adopts a two-stage structural model to study an online contest-based

labor market, where wage contracts are set by the employer before they match with

skilled labor. In the analysis, I establish a computationally practical estimation pro-

cedure allowing unobserved heterogeneity to prevail on both sides. Estimates of

structural parameters using individual level data from a leading contest-based cod-

ing community suggest the importance of accounting for workers’ multidimensional

preferences over short-term jobs on such platforms. To answer the policy question

of how to better design such markets, two counterfactual experiments are conducted,
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which shed light on the importance of incentivizing workers’ preference over different

task complexities and firms’ price discrimination power, which has been less studied

in the existing literature.

This paper takes the first step to establishing a structural model to estimate

such finite-sized markets with unobserved heterogeneity. One important direction for

future research would be to account for workers’ strategic behavior after matching

with the tasks. This requires a combination of the current model and the well-

developed auction/contest literature. By doing so, one could better understand how

workers’ ex post performance is incentivized by different market schemes. It would

be equally interesting if one can compare the economic efficiency and potential skill

spillovers across different matching platforms, but this requires a new set of data

about alternative matching markets.

3.8 Tables and Figures
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Table 3.1: Descriptive Statistics: Contest-specific Characteristics

Variable Mean Std. Dev. Min. Max. N
Number of Submissions 2846 3.860506 (3.919741) 1 61
Average Final Score 2845 87.20051 (9.24136) 0 99.94
Winning Cash Payment 2778 578.6886 (318.2293) 0 3000
Duration 2835 6.202469 (2.905825) 0 105
Screening Rate 2832 .9330778 (.1411169) .25 1
Total DR Points 2828 351.6358 (286.9357) 0 2500
Dummy=1 if Custom 2846 .5523542 (.4973389) 0 1
Programming language Percentage (%) N
Java Custom 36.51 1039
Java 26.91 766
.NET Custom 16.62 473
.NET 17.15 488
Others 2.81 80

Note: Each coder gets three independent final scores from the reviewer board, and the average determines
coders’ ordinal rankings. Cash prize is the amount of money awarded to the first-place participant.
Duration is defined as the number of days from the posting date till the submission due date. DR point
reward scheme is observed only after May 12, 2006.
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Table 3.2: Descriptive Statistics: Coder-specific Characteristics

Variable Mean Std. Dev. Min. Max. N
Rating Score 1,169.49 392.126 1 2,488 9,849
Experience 13.169 20.029 0 194 10,052
Tenure 624.815 523.109 0 3,201 10,052
Final Score 87.328 10.366 0 100 10,061
Final Cash Reward 212.641 303.650 0 3,000 10,052
Final DR Reward 122.236 189.141 0 2,500 8,109
# of participation/week 1.156 0.474 1 14 8,718

Nationalities Percentage (%) N
China 53.82 747
United States 9.37 130
India 5.98 83
Ukraine 3.60 50
Others 27.23 378

Note: The tenure of a coder is defined as the number of days from the date he registered on the
website to the date he takes part in the current contest.

Table 3.3: Descriptive Statistics: Market-specific characteristics

Variable Mean Std. Dev. Min. Max. N
# of contests/week 7.115 4.743 1 24 400
# of active coders/week 21.795 14.885 1 84 400
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Table 3.4: Firms’ Vertical Preference: Placement Regression on Rating Score

Placement Placement Placement Placement Placement
Rank of Rating Score 0.900*** 0.891*** 0.839*** 0.821*** 0.782***

(50.81) (46.12) (147.03) (37.10) (26.18)
Experience -0.00172 -0.00384** -0.000443 -0.00170

(-1.66) (-3.17) (-0.39) (-1.30)
Winning Cash Payment -0.000290*** -0.000489*** 0.0000491 0.0000412

(-5.11) (-4.02) (0.34) (0.10)
Duration -0.0110 -0.0176 -0.0390** -0.0474

(-1.14) (-0.87) (-2.60) (-1.68)
Coder Nationality: China 0.0173 -0.0440 0.0377 -0.00247

(0.37) (-0.90) (0.77) (-0.06)
Coder Nationality: US 0.219* 0.298** 0.250* 0.306**

(2.47) (2.66) (2.44) (3.18)
Constant 0.416*** 0.460*** 0.897*** 0.404** 0.663***

(6.64) (3.99) (3.68) (2.95) (4.27)

Project Generality FE N Y Y Y Y
Technology FE N Y Y Y Y

Market FE N N Y N Y
IV Regression N N N Y Y

Obs 10075 9778 9778 8430 8430
R-sq 0.810 0.811 0.728 0.776

Note: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. P-value in parentheses.

163



CHAPTER 3. MATCHING GAMES WITH UNOBSERVED HETEROGENEITY:
A STRUCTURAL ANALYSIS OF ONLINE LABOR MARKETS

Table 3.5: Final Score Regression

FinalScore FinalScore FinalScore FinalScore FinalScore
Winning Cash Payment -0.00414*** -0.00291*** -0.00221*** -0.00229*** 0.0200*

(-9.94) (-9.27) (-6.13) (-3.78) (2.52)
Rating Score 0.0177*** 0.0182*** 0.0116*** 0.0121***

(75.48) (91.80) (52.55) (37.92)
Experience -0.0263*** -0.0471*** 0.00794* -0.0146**

(-6.86) (-11.46) (2.07) (-3.00)
Duration -0.398*** -0.148* -0.374*** -1.111**

(-9.49) (-2.45) (-6.83) (-2.86)
.NET Custom -1.400* -0.378 -1.288* 0.691

(-2.50) (-0.60) (-2.19) (0.68)
.NET Generic -3.507*** -0.457 -2.584*** 5.966***

(-6.36) (-0.72) (-4.40) (5.09)
Java Custom -1.054* -0.258 -0.901 3.793***

(-1.99) (-0.43) (-1.60) (5.62)
Java Generic -3.443*** -1.180 -2.578*** 5.489***

(-6.39) (-1.89) (-4.43) (4.72)
Coder Nationality: China 0.947*** 0.460** 1.432*** 1.141***

(5.87) (3.13) (8.52) (5.51)
Coder Nationality: US -3.348*** -2.033*** -2.301*** -0.894

(-8.36) (-6.14) (-5.03) (-1.64)
Constant 89.61*** 73.00*** 69.29*** 79.24*** 65.73***

(387.76) (115.78) (93.36) (113.69) (23.13)

Market FE N N Y N Y
IV Regression N N N Y Y

Obs 9776 9555 9555 8253 8253
R-sq 0.011 0.530 0.546 0.476

Note: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. P-value in parentheses.
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Table 3.6: Coder’s Heterogeneous Preferences: Sorting Patterns

Whole Sample Top Coders Average Coders
Robust OLS 2SLS Robust OLS 2SLS Robust OLS 2SLS

Cash Payment -0.0258 -0.0300 -0.0747*** 0.00192 -0.237*** -0.182***
(-1.55) (-1.09) (-3.84) (0.06) (-9.81) (-3.70)

Duration -2.984 -2.803 -15.71*** -18.51*** 4.468 2.009
(-1.41) (-1.21) (-6.27) (-6.64) (1.46) (0.56)

.NET Custom 149.9*** 149.7*** 200.0*** 201.1*** 146.3** 147.7**
(4.29) (4.29) (5.06) (5.07) (3.07) (3.13)

.NET Generic 68.71* 67.82* 199.1*** 215.2*** 118.4** 123.7**
(2.01) (1.97) (5.08) (5.41) (2.60) (2.74)

Java Custom 107.4** 106.6** 229.6*** 242.3*** 110.9* 115.3**
(3.17) (3.13) (5.92) (6.18) (2.47) (2.59)

Java Generic 62.66 61.55 230.7*** 250.4*** 124.2** 132.2**
(1.85) (1.79) (5.91) (6.32) (2.77) (2.95)

Constant 1115.5*** 1117.4*** 1262.5*** 1223.3*** 977.1*** 960.3***
(31.45) (30.41) (30.77) (28.55) (21.02) (20.10)

Obs 9571 9571 4652 4652 4919 4919
R-sq 0.007 0.007 0.024 0.021 0.019 0.018

Note: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. P-value in parentheses.

165



CHAPTER 3. MATCHING GAMES WITH UNOBSERVED HETEROGENEITY:
A STRUCTURAL ANALYSIS OF ONLINE LABOR MARKETS

Table 3.7: Regression Analysis: Endogenous Pricing of Contests

Cash Payment Cash Payment
Duration 36.03*** 23.80***

(6.99) (8.30)
.NET Custom -26.50 -2.212

(-0.73) (-0.08)
.NET Generic -229.6*** -192.7***

(-6.30) (-6.46)
Java Custom -155.8*** -138.8***

(-4.64) (-5.14)
Java Generic -278.2*** -220.0***

(-8.05) (-7.56)
Number of Coders/Market 0.950*

(1.96)
Number of Contests/Market -4.222*

(-2.43)
Maximum Opponent Payment 0.267*** -1.244***

(12.10) (-32.15)
constant 303.7*** 1727.0***

(7.31) (35.82)
Market FE N Y

Obs 2751 2751
R-sq 0.288 0.394

Note: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. P-value in parentheses.

166



CHAPTER 3. MATCHING GAMES WITH UNOBSERVED HETEROGENEITY:
A STRUCTURAL ANALYSIS OF ONLINE LABOR MARKETS

Table 3.8: Structural Estimation Result

Estimate Std. Dev.
Panel A: Coder’s Utility Parameters

β1 Cash prize 0.0104 2.52e-9
β2 Duration -0.0849 1.28e-4
β3 .NET -0.1500 1.21e-5
β4 Ability 1.4309 1.62e-5
γ0 Complexity 1.6223 1.54e-5
γ1 Ability × Complexity -2.3248 6.15e-5
γ2 Experience × Complexity 0.1436 4.93e-4

Panel B: Final Score Parameters
ξ0 Intercept -0.3700 0.0059
ξ1 Ability 1.0004 1.49e-9
ξ2 Complexity -0.0089 2.08e-5
ξ3 .NET -0.0296 0.0016
ξ4 Duration -0.0215 0.0355
ξ5 Experience -0.0241 0.0726
σb Std.Dev. of b 0.4622 0.0018

Panel C: Cash Payment Parameters
ψM Mid-level cash FE -0.2676 3.45e-6
ψH High-level cash FE -0.2534 5.10e-5
ψZ
∗

0 complexity FE 0.2511 3.34e-6
ψω0 demand shifter FE 2.0027 8.93e-5
ψ1 .NET 0.4985 1.74e-5
ψ2 Duration -0.0940 5.38e-4
ψ3 No. of projects 0.2080 4.57e-4

Panel D: Project Generality Indicator Parameters
φ0 Intercept -1.3349 3.77e-5
φ1 complexity FE -0.0995 2.35e-5
φ2 .NET 0.0202 5.88e-6
φ3 Duration 0.1846 1.04e-4

Panel E: Project Complexity Parameters
ι0 intercept -0.0754 2.00e-5
ι1 .NET 0.0165 4.47e-6
ι2 Duration -0.6023 1.20e-4

Panel F: Market Demand Shifter Parameters
χ0 intercept 0.5054 3.40e-5
χ1 no. of projects -0.5901 1.74e-4

Panel G: Coder’s Latent Ability Parameters
Pr(X∗t = xH |X∗t−1 = xL) Law of motion 0.4094 4.40e-6
Pr(X∗t = xH |X∗t−1 = xH) Law of motion 0.7262 1.95e-5

λ coefficient in equation 3.9 0.1252 2.66e-6
σ1 Std.dev. in equation 3.8 0.8538 1.82e-4
σ2 Std.dev. in equation 3.9 0.4570 1.38e-4

Pr(X∗t−1 = xH |Not Chinese) Marginal prob. of high ability if not Chinese 0.7033 1.54e-5
Pr(X∗t−1 = xH |Chinese) Marginal prob. of high ability if Chinese 0.8049 2.16e-5

T Number of markets 204

Note: ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001. Standard errors are calculated from 22 Bootstrapped samples due to
the length of time taken to do the estimation. In Panel A, cash prize is scaled down by 1000, adjusted for their
reliability bonus in Panel A, and further discretized in Panel C into three intervals: pL for prizes smaller than the
median, pM for equal to median and pH for larger than median in Panel C. Score is scaled down by 100. Duration
is capped from above by 14. Experience is capped up by 20. Rating scores are scaled down by 1000.
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Table 3.10: Counterfactual Experiment 1: Coders’ At-
titudes Towards Complexity

New values of γ1 -2γ1 2γ1

Coder surplus change (%) 10.5182 57.5541
(18.4574) (18.6697)

Firm surplus change (%) -37.8889 3.2451
(41.1096) (10.4817)

Total surplus change (%) -35.1617 5.3782
(37.0937) (10.0079)

Assortativeness change (%) 696.9877 -16.3580
(1477.3) (10.9636)

Participation rate change (%) -54.2458 37.0392
(22.3489) (2.0887)

Note: Standard errors are calculated from 100 simulated sam-
ples. The scaling and discretization are the same as in the
estimation part.

Table 3.11: Counterfactual Experiment 2: Allowing Firms to Price Discrimi-
nate

Adding Bonus for 95% Confidence Interval
High-type Coders

Coder surplus change (%) 0.0215 [-0.0264, 0.0566]
(0.0339)

Firm surplus change (%) 0.1610 [-0.3304,0.2874]
(1.8740)

Total surplus change (%) 0.1723 [-0.2919, 0.2509]
(1.7628)

Assortativeness change (%) -0.3397 [0, 0]
(11.4086)

Participation rate change (%) 0.0206 [0, 0]
(0.2749)

Note: Standard errors are calculated from 100 simulated samples. The scaling and dis-
cretization are the same as in the estimation part.
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Figure 3.1: Cash Reward and the Generality of the Project

Figure 3.2: Number of Submissions and the Generality of the Project

Figure 3.3: The Number of Projects and Coders over Time
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Figure 3.4: The Distribution of Avg. Rating Scores and Avg. Final Scores within
a Project

Figure 3.5: The Distribution of Avg. Rating Scores and Avg. Final Scores within
a Project

Figure 3.6: Coders’ Consecutive Participation Illustration
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Figure 3.7: Coders’ Consecutive Participation Distribution

Figure 3.8: Model Fit: Coder’s Rating Score Rank Prediction Bias
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3.9 Appendix

3.9.1 An Alternative Two-step Estimation Proce-

dure

As an alternative approach to the structural estimation procedure discussed in

Section 3.5, I conduct a two-step estimation, wherein the first step, by using the final

score and rating score of each coder, I estimate their ability levels from a fixed-effect

regression; in the second step, I adopt the benchmark case estimation procedure in

Chapter 2 to recover primitives of the model. Compared with the general approach,

this approach restricts the data generating the process of coders’ rating scores from

their observable and unobservable characteristics. Specifically, I assume rating scores

are generated from a linear fixed-effect model discussed below. By making this addi-

tional restriction, I can incorporate more information in the second step, as I do not

encounter the dimensionality problem after recovering coders’ latent ability levels in

the first step.
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3.9.1.1 Step 1: Fixed-Effect Regression to Recover Ability

In market t, for any coder i that submits to contest j, the final score is determined

from

Zt
ij = ξ1X

∗
it + ξ2Z

∗
jt + ξ3Wijt + bjt, (3.32)

where X∗it denotes the coders’ ability in market t, Z∗jt denotes the contest’s unobserved

heterogeneity – i.e., its complexity; Wijt are the observed characteristics of coder i

and/or contest j, and lastly, bjt is the contest-level idiosyncratic taste shock that

follows mean-zero normal distribution with unknown variance. In this equation, both

X∗it and Z∗jt are unobserved by the econometrician. However, the coders’ ability level

X∗it is imperfectly measured by their rating scores:

Xit = X∗it + ζi + uit, (3.33)

where ζi is the fixed effect for frequently participating coders, and is independent of

the idiosyncratic shock, u. 16 To simplify the estimation procedure, I first separately

estimate coders’ abilities using a fixed-effects regression model:

Zt
ij = ξ1X

∗
it + ξ3Wijt + Z̃∗jt, (3.34)

16For ζi, I tried three sets of specifications: Fixed effect for coders who participated more than 14
times, more than 20 times, and more than 30 times.
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where Z̃∗jt is the contest-level fixed effect that summarizes both the unobserved hetero-

geneity Z∗jt and the contest-level idiosyncratic shock bjt. Thus, by plugging equation

(3.43) back to equation (4.14), we have

Zt
ij = ξ1Xit + ξ3,1Wit + ξ3,2Wjt + Z̃∗jt + ζ̃i + ũit, (3.35)

whereWijt is decomposed into [Wit,Wjt], and ζ̃i = −ξ1·ζi and ũit = −ξ1·uit. Assuming

the independence between ũ and other observables and fixed effects, we are able to

consistently estimate the coefficient [ξ1, ξ3,1] and back out the ability level X∗it given

observable characteristics. This enables us to construct the residual that relates to

the unobserved heterogeneity of contests, Z∗jt.

Zt
ij − ξ̂1X̂

∗
it − ξ̂3,1Wit ≈ ξ2Z

∗
jt + ξ3,2Wjt + bjt (3.36)

and the parameters (ξ2, ξ3,2, σb) are to be estimated in the second stage.

Table 3.12 shows the fixed-effects regression of the average final score. A clear

positive causality between the coders’ ratings, proxying their skill, and the average

final score is reinforced here. This is in line with my theoretical assumption, in which

the average final score will monotonically increase with one’s skill level. Furthermore,

I have tried three specifications of coder-wise fixed effects, which account for the fixed

effect of coders who have participated more than (1) 14 times, (2) 20 times and (3)

30 times. The table shows that the point estimates among the three specifications
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are very similar. In the main estimation part, therefore, I use the estimated result

that accounts for fixed effects of coders who have completed more than 30 projects.

3.9.1.2 Step 2: Structural Estimation of Primitives

In this step, I parametrize coders’ indirect utility function, equilibrium cash prize

distribution and other model primitives as follows. Firstly, I discretize the observed

cash prize into two intervals: above or equal to median and below median. Then, the

probability of the cash prize lying in each interval follows a logit model:17

Pr(Pjt = pH |Z∗j , ωt) =

exp[ψH + ψZ
∗

0 · Z∗j + ψω0 · ωt + ψ1.NET + ψ2Duration + ψ3J ]

exp[ψH + ψZ
∗

0 · Z∗j + ψω0 · ωt + ψ1.NET + ψ2Duration + ψ3J ] + 1
, (3.37)

The parameters to be estimated therefore are (ψH , ψ
Z∗
0 , ψω0 , ψ1, ψ2, ψ3). The proba-

bility of a project being generic or custom also follows a logit model:

Pr(Yjt = 1|Z∗j ) =
exp[φ0 + φ1 · Z∗j + φ2.NET + φ3Duration]

exp[φ0 + φ1 · Z∗j + φ2.NET + φ3Duration] + 1
(3.38)

17In the subsequent discussion, I only include the .NET dummy but not the Java dummy, as they
compose 98% of the observations, and in order to avoid multicollinearity, I treat all projects that
are not .NET as belonging to the Java family.
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and the parameters to be estimated therefore are (φ0, φ1, φ2, φ3). On the other side

of the market, for coder’s indirect utility function, we specify

ui,jk = β1Pjk + β2Duration + β3.NET + β4X
∗
i + (γ0 + γ1X

∗
i

+ γ2Experience) · Z∗j + νij, (3.39)

and the parameters to be estimated are (β1, β2, β3, β4, γ0, γ1, γ2). Lastly, I assume

the unobserved heterogeneities of contests are drawn from a binary space, {zL, zH},

and how it relates to observables also follows a logit model:

Pr(Z∗j = zH) =
exp[λ0(1 + λ1.NET + λ2Duration)]

exp[λ0(1 + λ1.NET + λ2Duration)] + 1
(3.40)

and the parameters to be estimated are (λ0, λ1, λ2). The market-level unobservable

ω is also drawn from a binary space {wL, wH}, with probability of being wH depends

on the number of projects in the market according to a probit model:

Pr(ωt = wH) = Pr(χ0 + χ1J + vt ≥ 0) (3.41)

where vt follows a standard normal distribution. The parameters to be estimated

are (χ0, χ1).

As in the data, I do not observe coders choosing outside option, I impute coders

who have appeared in the previous two markets but do not appear in the current
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market as choosing the outside option. This enlarges my sample size by about 45%.

More important, it enables me to give more accurate estimates for the cash prize

coefficient.

3.9.2 Result using the Alternative Estimation Pro-

cedure

In the empirical specification, I conduct a two-step estimation, wherein the first

step, by using the final score and rating score of each coder, I estimate their ability

levels from a fixed-effect regression; in the second step, I adopt the benchmark case

estimation procedure in Chapter 2 to recover primitives of the model.

3.9.2.1 Step 1: Fixed-Effect Regression to Recover Ability

In market t, for any coder i that submits to contest j, the final score is determined

from

Zt
ij = ξ1X

∗
it + ξ2Z

∗
jt + ξ3Wijt + bjt, (3.42)

where X∗it denotes the coders’ ability in market t, Z∗jt denotes the contest’s unobserved

heterogeneity – i.e., its complexity; Wijt are the observed characteristics of coder i

and/or contest j, and lastly, bjt is the contest-level idiosyncratic taste shock that
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follows mean-zero normal distribution with unknown variance. In this equation, both

X∗it and Z∗jt are unobserved by the econometrician. However, the coders’ ability level

X∗it is imperfectly measured by their rating scores:

Xit = X∗it + ζi + uit, (3.43)

where ζi is the fixed effect for frequently participating coders, and is independent of

the idiosyncratic shock, u. 18 To simplify the estimation procedure, I first separately

estimate coders’ abilities using a fixed-effects regression model:

Zt
ij = ξ1X

∗
it + ξ3Wijt + Z̃∗jt, (3.44)

where Z̃∗jt is the contest-level fixed effect that summarizes both the unobserved hetero-

geneity Z∗jt and the contest-level idiosyncratic shock bjt. Thus, by plugging equation

(3.43) back to equation (4.14), we have

Zt
ij = ξ1Xit + ξ3,1Wit + ξ3,2Wjt + Z̃∗jt + ζ̃i + ũit, (3.45)

whereWijt is decomposed into [Wit,Wjt], and ζ̃i = −ξ1·ζi and ũit = −ξ1·uit. Assuming

the independence between ũ and other observables and fixed effects, we are able to

consistently estimate the coefficient [ξ1, ξ3,1] and back out the ability level X∗it given

18For ζi, I tried three sets of specifications: Fixed effect for coders who participated more than 14
times, more than 20 times, and more than 30 times.
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observable characteristics. This enables us to construct the residual that relates to

the unobserved heterogeneity of contests, Z∗jt.

Zt
ij − ξ̂1X̂

∗
it − ξ̂3,1Wit ≈ ξ2Z

∗
jt + ξ3,2Wjt + bjt (3.46)

and the parameters (ξ2, ξ3,2, σb) are to be estimated in the second stage.

Table 3.12 shows the fixed-effects regression of the average final score. A clear

positive causality between the coders’ ratings, proxying their skill, and the average

final score is reinforced here. This is in line with my theoretical assumption, in which

the average final score will monotonically increase with one’s skill level. Furthermore,

I have tried three specifications of coder-wise fixed effects, which account for the fixed

effect of coders who have participated more than (1) 14 times, (2) 20 times and (3)

30 times. The table shows that the point estimates among the three specifications

are very similar. In the main estimation part, therefore, I use the estimated result

that accounts for fixed effects of coders who have completed more than 30 projects.

3.9.3 Detailed Assumptions and Derivations in Iden-

tification Discussion

Recall the two equations I establish in the first step of identification:
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Table 3.12: Fixed Effect Regression on Final Score

(1) (2) (3)
Final Score Model 1 Model 2 Model 3
RatingScore 0.0196∗∗∗ 0.0195∗∗∗ 0.0192∗∗∗

(0.000350) (0.000330) (0.000310)

Experience -0.0679∗∗∗ -0.0585∗∗∗ -0.0437∗∗∗

(0.00686) (0.00656) (0.00627)

Intercept 64.07∗∗∗ 64.77∗∗∗ 65.42∗∗∗

(0.358) (0.339) (0.324)

≥ 14 experience Coder FE Y
≥ 20 experience Coder FE Y
≥ 30 experience Coder FE Y
Contest FE Y Y Y
N 9,823 9,823 9,823
R2 0.622 0.606 0.595

Note: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

f(XXX,PPP , Z̃̃Z̃Z,ZZZ|YYY , X̃̃X̃X, µ, I, J,Q)

=
∑
ZZZ∗,XXX∗

f(PPP , Z̃̃Z̃Z|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(XXX,ZZZ∗,XXX∗|YYY , X̃̃X̃X, µ) (3.47)

as well as,

f(PPP , Z̃̃Z̃Z,ZZZ|YYY , X̃̃X̃X, µt, I, J,Q)

=
∑
ZZZ∗,XXX∗

f(PPP , Z̃̃Z̃Z|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ|ZZZ∗,XXX∗, X̃̃X̃X, µ) · f(ZZZ∗,XXX∗|YYY , X̃̃X̃X, µ) (3.48)

Then, by making the following assumptions, a formal identification result is es-
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Table 3.13: Empirical Result – Alternative Approach

Parameter Description point estimate std.dev.
Panel A: Coders’ utility parameters:

β1 Cash prize 0.2729∗∗∗ 0.0553
β2 Duration -1.2234∗∗∗ 0.1447
β3 .NET projects -0.3109∗∗∗ 0.0479
β4 Ability -0.8383** 0.3930
γ0 Complexity 1.1980∗∗∗ 0.4502
γ1 Ability× Complexity 0.5238 0.5745
γ2 Experience × Complexity -0.2481∗∗∗ 0.0099

Panel B: Average final score parameters:
ξ2 Complexity -0.0205∗∗∗ 0.0044
ξ3 .NET projects 0.0019 0.0038
ξ4 Duration 0.0580∗∗∗ 0.0031
σb Std.Dev. of b 0.0648∗∗∗ 0.0019

Panel C: Cash prize parameters:
ψH High-level prize FE 2.9052∗∗∗ 0.2339
ψZ
∗

0 Complexity FE 1.8209∗∗∗ 0.1920
ψω0 Demand shifter FE 0.6492 1.3534
ψ1 .NET projects -0.1552 0.1677
ψ2 Duration -0.6726 0.6580
ψ3 # of Projects -0.3048∗∗∗ 0.0500

Panel D: Generic project indicator parameters:
φ0 Intercept -0.6115 1.4515
φ1 Complexity FE -0.2437 0.2631
φ2 .NET projects 0.6007∗∗∗ 0.1128
φ3 Duration 0.4463 0.5730

Panel E: Project-level unobservable parameters:
λ0 Intercept -0.3506 0.4735
λ1 .NET projects -0.1111 0.1418
λ2 Duration -0.4448∗∗∗ 0.1994

Panel F: Distribution of market-level unobservable:
χ0 Intercept 0.7835∗∗∗ 0.2997
χ1 # of projects -0.1936∗∗ 0.0726
T No. of Markets 344

Note: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Standard errors are calculated from 100 Bootstrapped samples.
In Panel A, cash prize is scaled down by 1000, adjusted for their reliability bonus in Panel A, and further
discretized in Panel C into two intervals: pL for prizes smaller than the median, and pH for higher than
or equal to median in Panel C. Duration is scaled down by taking log(1+Duration). Experience is scaled
down by taking log(1+Experience).The final scores are scaled down by 100.
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tablished in Proposition 2.

Assumption 12 1. Each contest’s, j, complexity is drawn from the finite space

{z1, z2, · · · , zm}.

2. Each coder’s, i, ability is drawn from the finite space {x1, x2, · · · , xl}.

3. The final score, Zij, is drawn from a bounded atomless support [0, 100].

4. The cash prize is drawn from the finite space {p1, p2, · · · , pM} with M ≥ m.

5. The rating score, Xit, is drawn from an arbitrarily large but discrete support

{x̃1, x̃2, · · · , x̃L}.

As all latent types are discrete, we would like to write equations (3.25) and (3.26)

in matrix forms. The following assumption is crucial.

Assumption 13 For any observed (µ,X̃XX = xxx, I, J,Q),

1. There exists a mapping φX : {x̃1, x̃2, · · · , x̃L} → {x1, x2, · · · , xl} such that for

any contest j: ∀xxx,x′x′x′ ∈ {x̃1, x̃2, · · · , x̃L}|µ(j)|,xxx 6= x′x′x′, and for any observed X̃̃X̃Xµ(j),

Pr(XXXd
µ(j) = xxx|XXX∗µ(j) = xxx, X̃̃X̃Xµ(j)) > Pr(XXXd

µ(j) = xxx|XXX∗µ(j) = xxx′, X̃̃X̃Xµ(j)),

where, for any coder i, Xd
i = φX(Xi).

2. There exists a mapping φP : {p1, p2, · · · , pM} → {1, 2, · · · ,m}.
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3. There exists a mapping φz1 : [0, 100] → {1, 2, · · · , l ·m} for each final score of

the winning coders Zj,1.

4. There exists a mapping φz2 : [0, 100] → {1, 2, · · · , l} for each final score of the

non-winning coders Zj,−1 and a vector of values yyy, such that the following matrix

is of full rank mJ · lI :

MPPP d,Z̃̃Z̃Zd,ZZZd|YYY=yyy,X̃̃X̃X=xxx,µt,I,J,Q
. (3.49)

where for each nonwinning coder i, Zd = φz2(Zi) and Z̃d = φz2(Z̃i); for each

winning coder i, Zd = φz1(Zi) and Z̃d = φz1(Z̃i); and for each contest j, P d =

φp(Pj).

3.9.4 Detailed Specifications in Structural Estima-

tion

In the structural estimation, I assume coders’ latent ability levels are drawn from

a binary space {0, 2}. The project-wise latent complexity level is drawn from {−1, 1}.

The market-wise demand condition is similarly drawn from {−1, 1}. The cash prizes

are discretized into three values: {0, 500, 3000}. Final scores are divided by 100, thus

ranging from 0 to 1. Rating scores are divided by 1000, thus ranging from 0 to 2.5.

Experiences are capped above by 20. When calculating the log-likelihood function, I
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selected markets with less than or equal to 20 coders, and in total there are 204 such

markets, a bit over than half of the whole sample.
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Chapter 4

Identification of Simultaneous

Contests with Two-sided

Unobserved Heterogeneity

4.1 Introduction

In recent years, a growing amount of markets begins to adopt contests and/or auc-

tions to allocate scarce economic goods and services to multiple players. Examples can

be found in rent-seeking activities by politicians such as lobbying a desirable political

prize, research and development races on different new drugs among pharmaceutical

companies and procuring temporary jobs to part-time talents via the Internet. There

exists an abundant amount of economic questions to be answered while seeing this
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trend in real life. From a market-design point of view, researchers are interested in

how different regimes of allocating the economic good to participants can achieve a

better market welfare. Also, it remains uncertain whether it would be better off to

introduce more competition on the other side of the market, i.e. auctioneers/contest

holders, to boost the performance of bidders/contestants. To answer questions like

these, one should firstly understand what the current market patterns tell us about

players’ preferences over the economic good to be allocated via an auction or a con-

test. This is not an easy task, as unobserved characteristics may mostly affect players’

behavior in equilibrium. In this paper, I develop a two-stage structural model where

players initially choose among several contests held simultaneously, and then partici-

pate, getting paid according to the rank order of their submitted bids/efforts. In the

model, it is also allowed that non-winners get part of the economic good according

to a commonly-observed splitting rule. The major theme of this paper is to suggest

a nonparametric identification and estimation strategy to recover both player-wise

and contest-wise unobserved heterogeneity, from observing (1) all players’ first-stage

equilibrium choices over different contests, and (2) the second-stage equilibrium effort

they exert to win.

In particular, my model assumes that for each economic good to be auctioned

1, there is one extra layer of heterogeneity beyond observable characteristics such

1I will use terms in auctions and contests literature interchangeably, though primarily I am
studying a multi-prize contest problem. For instance, I call what the contestants contribute in a
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as the monetary prize. This heterogeneity could originate from the complexity of

meeting some minimum requirement for the job, and/or a virtual reward benefiting

contestants’ future activities, such as a good reputation in the market. This is usually

difficult to observe or measure from data but is also as important in determining mar-

ket players’ behavior. To see this, contestants’ will bid according to their preference

over the unobserved part of a job; on the other hand, contest holders will determine

how much prize they would like to propose given all the relevant features of their jobs.

The econometric model is further complicated by the fact that contestants may also

carry unobserved characteristics determining the market outcomes. Examples can be

their valuation over the prize awarded by a contest, or their latent abilities to complete

certain jobs. Using a simple additively separable parametric setting, I can exploit the

variations in contestants’ observable choice probabilities over multiple contests when

facing different numbers of peer contestants to uncover the underlying joint distribu-

tion of their unobserved heterogeneity by solving the two-stage model described in

the previous paragraph. Furthermore, contestants’ unobserved types can be nonpara-

metrically recovered from the distribution of equilibrium bids. Identification through

the one-to-one mapping between equilibrium bids and unobserved bidders’ valuation

has been established by Guerre, Perrigne and Voung (2000), and the major departure

here is that I am solving an all-pay “auction” with multiple prizes awarded according

to the rank order. By combining the two steps, I can nonparametrically identify the

contest as “bids”.
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full model, which can be well estimated when having enough contestant variations

across markets in the data.

4.2 Related Literature

This paper contributes to several strands of the literature. First, it borrows theo-

retical results from all-pay auctions and multi-prize contests with private information

of bidder- (contestant-) types. When a contest is static in the sense that no mul-

tiple rounds exist, it is isomorphic to private-valued all-pay auctions with multiple

prizes. (Moldovanu and Sela, 2006) The existence and characterization results of all-

pay auctions date back to Milgrom and Weber (1982) but only one prize is granted

in a standard all-pay auction. On the other hand, in the strand of contest design

literature, Moldovanu and Sela (2001) proves the existence of a (unique) symmetric

equilibrium bidding strategy when multiple prizes are granted within a contest. Here,

I extend Moldovanu and Sela’s model to study multiple parallel contests held at the

same time faced by multiple contestants. Kvasov (2006) characterizes mixed-strategy

equilibria in a two-player complete-information simultaneous contests with budget

constraint and identical valuation, whereas in this paper I study the simultaneous

contests among multiple bidders with private information and heterogeneous valua-

tion over auctioned items. Compared with the optimal contest design literature such

as Modovanu and Sela (2001), I do not consider contest designer’s optimization prob-

189



CHAPTER 4. IDENTIFICATION OF SIMULTANEOUS CONTESTS WITH
TWO-SIDED UNOBSERVED HETEROGENEITY

lem; instead, I assume contest prizes and splitting rules are exogenously given, but

allow the contest prize to be correlated with contest types in an arbitrary way.

The competition among bidders over multiple objects also naturally relates to the

growing study of multi-unit and combinatorial auctions. Multi-unit Auction litera-

ture examines the case where the auctioneer holds multiple homogeneous and divisible

goods, allowing bidders to submit a price-quantity pair of bids. In this paper, how-

ever, the items to be auctioned are assumed to be heterogeneous in various aspects,

and therefore is more closely related to the (single-round) combinatorial auctions over

heterogeneous goods studied in Cantillon and Pesendorfer (2006) and Kim, Olivares

and Weintraub (2014). One feature is that only one auctioneer exists in their mod-

els, trying to solve a complex “Winner Determination Problem” (Rothkopf et.al.,

1998 and Sandholm, 1999) that chooses the best bidder-item allocation to maximize

the total revenue from all auctions. In this paper, I study the case that multiple

auctioneers are present in the market, each holding a single-item multi-prize contest

and implicitly competing to win over the best bidders. Therefore the winner deter-

mination problem is much more straightforward than in the standard combinatorial

auctions. To my best knowledge, the most closely related auction literature to this

paper is Gentry, Komarova, and Schiraldi (2016), in which they study the simultane-

ous first-price single-item sealed-bid auctions, allowing bidders to hold non-additive

preference over combinations of auctioned items. Bidders submit a vector of bids to
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all items being auctioned in the market at the same time. In this paper, I split the

game into two stages: at the first stage, bidders need to make an entry decision of

being involved in at most one auction in the market; afterward, they engage in a

multi-prize single-unit contest as described previously. To restrict bidders to involve

no more than one auction/contest a time seems to be less general than in Gentry,

Komarova, and Schiraldi (2016), but can instead provide very useful information on

bidders’ choice probability which leads to the full identification of auction/contest-

wise and bidder-wise unobserved heterogeneity. Furthermore, my model provides a

clean-cut way to explicitly model capacity constraint which is sometimes present in

real life applications.

Lastly, the theoretical framework is closely related to the two-stage model estab-

lished in DiPalantino and Vojnovic (2009), except for the multi-prize aspect of the

contests, extending their all-pay auction framework in the second stage. This two-

stage model provides a way to depict the capacity constraint faced with every bidder

and most importantly serves to identify the underlying heterogeneity across auc-

tions/contests in empirical studies, which provides a novel insight into the structural

literature that mainly discusses bidder-wise unobserved heterogeneity. The extension

to multiple prizes within a contest has its empirical virtue of better fitting into real-life

markets such as sports tournaments, crowd-souring coding platform, and lobbying in

political activities.
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To summarize, complementing existing literature, this paper studies simultaneous

contests that (1) extends standard single-item auctions to provide multiple prizes; (2)

endogenizes the entry decision of bidders toward multiple parallel contests before the

competition, and (3) nonparametrically identifies both contest-wise and contestant-

wise unobserved heterogeneity.

In the subsequent section, I set up a two-stage model, defining the preference struc-

ture of the players on both sides. The equilibrium characterization is then established

in Section 4. Afterward, I discuss in Section 5 the nonparametric identification results

when players’ unobserved types are continuous and bounded, and I allow auction-wise

unobserved types to be either discrete or continuous. I then suggest an estimation

procedure in Section 6. Monte Carlo simulation is then provided in Section 7. Lastly,

I conclude in Section 8.

4.3 Model Setup

From this section, I denote one side of the market as “contests” and the other side

as “bidders,” with a bit abuse of terminology. An outline of the model is as follows.

Consider a two-stage game where there are N bidders and M contests randomly se-

lected to be present in market t. At Stage 1, each of the bidders chooses one contest

to enter, after perfectly observing his valuation towards every contest award, but not
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the valuation of others. Choosing the outside option generates a payoff normalized to

zero. At Stage 2, every bidder exerts a certain level of effort in the contest he chooses

without knowing the first-stage choices of other bidders, and the payoff depends on

(1) which contest he steps into, (2) his valuation towards that contest, and (3) the

rank order of his effort level within the contest. The rule of splitting the prize ac-

cording to the rank order is common knowledge.

For each contest, the prize consists of two parts: the actual monetary reward, R,

and a virtual reward (or cost if negative), ε, that is correlated with money and could

be interpreted as the reputation for performing Ill in the contest, and/or the difficulty

of meeting the minimum requirement of the contest. In particular, the payoff of a

bidder with valuation v exerting effort level b is v(R + ε)− b if he ranks the highest,

φj,2v(R + ε) − b if he is the second-place, φj,3v(R + ε) − b if third-place and so on.

Without loss of generality, I assume φj,k = 0, ∀k ≥ 3, and φ := φj,2 ∈ [0, 1) does not

differ across contests. I further assume that the total reward is larger than zero all

the time, i.e. R + ε > 0,∀R, ε, as a contest would never attract any participation if

the total reward is negative. Here the all-pay feature is clear – no matter which rank

a bidder ends up with, his effort is already exerted and cannot be contingent on his

rank order or be reverted.

The valuation of each bidder is independently drawn from a commonly known
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distribution, F (·), on a bounded interval, [0, V̄ ]. Both the monetary prize R and the

virtual prize ε can be drawn from either a discrete or a continuous space. Suppose

in market t, there are in total Jt different values for R + ε, and for each value, there

are Mj contests in the market. In other words,
∑Jt

j=1 Mj = M . This total value

of prizes denoted as the “class” of contests and all other information regarding the

contests and bidders is commonly known to every market participants at the initial

stage. From now on, I suppress the market subscript t for the ease of illustration.

4.4 Equilibrium Notion

A mixed-strategy for bidder i with valuation v consists of two parts: [πππ(v),βββ(v)],

where πππ(v) is a (J − 1) × 1 vector that tells us the probability of bidder i choosing

one contest in each class of the contests2 , and within the class, he uniformly ran-

domizes in choosing which contest to join; βββ(v) is a J × 1 vector of bidding functions

at the second stage for each class of the contests. Here, bidders (resp. contests)

are interchangeable as long as they have the same “type”, i.e. valuation of a bidder

(resp. the 2-dimensional rewards, [R, ε], of a contest). I restrict myself in discussing

symmetric Bayes-Nash Equilibrium only, which specifies that each bidder yields the

highest expected payoff by playing the equilibrium strategy, believing that others are

2And of course, if a bidder plays a pure strategy of entering one contest for sure, πππ(v) will be all
zeros except for one element.
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following the symmetric Bayes-Nash Equilibrium strategy. The following proposition

establishes the existence result of such an equilibrium:

Proposition 1 There exists a symmetric mixed-strategy equilibrium to this two-

stage game.

Proof: I first prove there exists a (unique) monotone symmetric pure-strategy

Bayes Nash equilibrium for the second-stage sub-game. At Stage 2, assuming other

bidders all play a monotone symmetric bidding strategy β(·), the expected payoff for

bidder i with value vi to bid b in contest class j is:

EΠj(vi, b) = vi(Rj + εj)(1− pj(1− F̂j(β−1(b)))N−1 (4.1)

+ φjvi(Rj + εj)(N − 1)pj(1− F̂j(β−1(b)))(1− pj(1− F̂j(β−1(b)))N−2 − b,

where pj := Pr(bidder k chooses contest class j) and

F̂j := Pr(β(vk) ≤ b|bidder k chooses contest class j). Further, I denote f̂ as the

derivative of F̂ agains v. Note that pj is the same for all other bidders as bidder i

has no prior knowledge regarding other bidders’ types at the time of bidding; this

equivalently means other bidders’ choice probability at Stage 1 is ex ante equal to

bidder i’s. Deriving the First Order Condition with respect to b gives us the following
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equation:

β′(vi) =vi(Rj + εj)(N − 1)(1− pj(1− F̂j(vi)))N−2pj f̂j(vj) (4.2)

− viφ(Rj + εj)(N − 1)(1− pj(1− F̂j(vi)))N−2pj f̂j(vi)

+ viφ(Rj + εj)(N − 1)(N − 2)(1− pj(1− F̂j(vi)))N−3pj(1− F̂j(vi))pj f̂j(vi)

Moreover, when vi = 0 it is obvious that the optimal strategy is to bid zero,

therefore:

β(vi) =

∫ vi

0

x(1− φ)(Rj + εj)(N − 1)(1− pj(1− F̂j(x)))N−2pj f̂j(x)dx (4.3)

+

∫ vi

0

xφ(Rj + εj)(N − 1)(N − 2)(1− pj(1− F̂j(x)))N−3pj(1− F̂j(x))pj f̂j(x)dx

It is easy to check that the second derivative function β′(v) ≥ 0, thus satisfying the

monotonic assumption of the bidding strategy. Furthermore, the equilibrium payoff

for bidder i is:
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EΠ∗(vi) = viφ(Rj + εj)(1− pj(1− F̂j(vi)))N−1 (4.4)

+ (1− φ)(Rj + εj)

∫ vi

0

(1− pj(1− F̂j(x)))N−1dx

+ φ(Rj + εj)(N − 1)

∫ vi

0

(1− pj(1− F̂j(x)))N−2pj(1− F̂j(x))dx

− φ(Rj + εj)(N − 1)

∫ vi

0

(1− pj(1− F̂j(x)))N−2pjxf̂(x)dx

Next, conditional on knowing what bidders will behave in the second stage, I

move back to the first stage – This is a simultaneous-move game with finite action

space and independent type space regarding bidders, then according to Milgrom and

Weber(1985), I know that a mixed-strategy Bayes-Nash Equilibrium always exists.

As the game is symmetric, I may select one symmetric equilibrium. In fact, when the

bidders’ types are invariant to which contest they participate in, the symmetric equi-

librium is unique according to Proposition 4.1 of DiPanlatino and Vojnovic (2009).

I now characterize the equilibrium entry strategy πππ(·) for any bidder i at Stage 1.

Following a similar argument as in DiPalantino and Vojnovic (2009), I firstly calculate

the marginal benefit for bidder i to choose one contest in class j:
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Π′j(vi) :=
∂EΠ∗(vi)

∂vi
(4.5)

= (Rj + εj)(1− pj(1− F̂j(vi)))N−1 + φ(Rj + εj)(N − 1)(1− pj(1− F̂j(vi)))N−2pj(1− F̂j(vi))

By checking the second order derivative of EΠ∗, I know that the marginal benefit

stated above is positive and increasing in vi, i.e. EΠ∗(·) is a non-decreasing contin-

uous convex function of vi, and Π′(·) is continuous in vi. Applying Corollary B.1 of

DiPalantino and Vojnovic (2009), I have:

Π′j(0) = Π′k(0),∀j, k such that Pj > 0, Pk > 0; (4.6)

Π′j(0) ≥ Π′k(0),∀j, k such that Pj > 0, Pk = 0; (4.7)

where,

Π′j(0) = (Rj + εj)(1− pj)N−1 + φ(Rj + εj)(N − 1)(1− pj)N−2pj

Intuitively, it means that for any contest that has zero entry probability, it must

be the case that the marginal benefit of entering it cannot exceed that of any contest

with a positive entry probability for the lowest-type bidder; and if this is true, it

must be true for all higher-type bidders. Otherwise, in equilibrium, there is always a
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profitable deviation for the lowest-type bidder to choose the contest that all bidders

currently have zero probability to enter.

Using this result, I could derive the equilibrium entry probability for each contest.

I do this progressively. Rank the contest classes such that R1 + ε1 > R2 + ε2 > · · · >

RJ + εJ > 0. First, consider the case that all classes of contests have positive entry

probabilities. I therefore solve for the following system of equations:



(R1 + ε1)(1− p1)N−1 + φ(R1 + ε1)(N − 1)(1− p1)N−2p1 = C

(R2 + ε2)(1− p2)N−1 + φ(R2 + ε2)(N − 1)(1− p2)N−2p2 = C

· · ·

(RJ + εJ)(1− pJ)N−1 + φ(RJ + εJ)(N − 1)(1− pJ)N−2pJ = C

∑J
j=1 pjMj = 1

(4.8)

where only [p1, p2, · · · , pJ , C] are unknowns and there are J+1 polynomial equations.

Note that by fixing other coefficients, the LHS of all the equations but the last one is

decreasing in p on its interval [0, 1]. I consider the case that p1 = p2 = · · · = pJ = 1.

Thus, all LHS of the first J equations are equal to zero, but clearly the last equation

does not hold. I now let pJ decrease from 1 towards 0. Meanwhile, for each value of

pJ , I solve for p1, · · · , pJ−1 so as to equate the LHS of all the first J equations. If N
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is an even number, the real-valued solutions for pj, j < J always exist; if N is odd, I

compute that the Hermite form of the following polynomial:

(1− φ)(Rj + εj)(1− pj)N−1 + (N − 1)φ(Rj + εj)(1− pj)N−2 − C (4.9)

As long as the signature of the Hermite form is positive, I could ensure the

existence of a real solution for pj. As pJ decreases and other p’s decreases ac-

cordingly, their weighted sum
∑J

j=1Mjpj gets closer to 1. If it gets to 1 before

pJ approaches zero, I have found the solution [p1, p2, · · · , pJ ], as other p’s must

not exceed pJ . If when pJ = 0, the weighted sum is still larger than 1, I let

pJ = 0 and decrease pJ−1 from 1 towards 0. Following similar argument, I find

a solution or move to the next pj. Now consider the case where all pj, j ≥ 2 are

set to be zero. Then it must be the case that p1 > 1
M1

, where p1 is such that

(R1 + ε1)(1− p1)N−1 + φ1(R1 + ε1)(N − 1)(1− p1)N−2p1 = R2 + ε2. Given the mono-

tonicity of the LHS as a function of p1, I further know that

Π′1(0) := (R1 + ε1)(1− 1

M1

)N−1 + φ(R1 + ε1)(N − 1)(1− 1

M1

)N−2 1

M1

> R2 + ε2

In this case, the equilibrium would be that all bidders randomize in class 1 of the

contests, with an entry probability being 1
M1

. To sum, I could always find a solution

to this problem.
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Next, I solve for the individual entry probability, πππ(v), given a bidder’s type.

First, I claim that the following lemma holds:

Lemma 1: Suppose in equilibrium, class 1, 2, · · · , K contests have positive entry

probabilities, K ≤ J . Then there exists 0 ≤ vK ≤ vK−1 ≤ · · · v2 ≤ v1 ≤ V̄ such that:

1. Π′j(v) = Π′1(v)∀j = 1, 2, · · · , l, v ∈ [vl+1, vl)

2. Π′j(v) < Π′1(v)∀j = l + 1, · · · , K, v ∈ [vl+1, vl)

Proof: Following a similar argument in DiPalantino and Vojnovic (2009), I define

the [v1, v2 · · · , vK ] as:

pj(1− F̂j(v)) > 0,∀v ∈ [0, vj)

pj(1− F̂j(v)) = 0,∀v ∈ [vj, V̄ ]

I firstly show that 0 ≤ vK ≤ vK−1 ≤ · · · v2 ≤ v1 ≤ V̄ . It is easily shown that

vK ≥ 0 as otherwise, I have pK(1− F̂K(0)) = 0, which corresponds to pK = 0. This,

however, contradicts our assumption that pK > 0. Similarly, to show vK ≤ vK−1, I

consider the case that vK−1 < vK , then there exists v ∈ [vK−1, vK) such that

pK−1(1− F̂K−1(v)) > 0

pK(1− F̂K(v)) = 0
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This, however, cannot be true, as I have Π′K−1(v) = RK−1 + εK−1 ≥ RK + εK >

ΠK(v). This means it cannot happen that a bidder of type v only participates in

contest class K but not class K − 1 as the marginal benefit of moving to the lat-

ter is more than staying with the former. Following the same logic, I could prove

0 ≤ vK ≤ vK−1 ≤ · · · v2 ≤ v1 ≤ V̄ . Also, for v ∈ [vl+1, vl), I know that he will have a

positive probability in joining contest class 1, 2, · · · , l but not class l + 1, · · · , K.

To show Π′j(v) = Π′1(v)∀j = 1, 2, · · · , l, v ∈ [vl+1, vl), I consider a case that ∃j ≤ l

such that Π′j(v) > Π′1(v) for some v ∈ [vl+1, vl). This cannot happen as I already

have EΠ∗j(v) = EΠ∗1(v),∀j ≤ l, and once Π′j exceeds Π′1, it would be profitable for

the bidder of type v to choose contest class j instead of class 1. This contradicts the

statement that when v ∈ [vl+1, vl), the probability of entering contest class 1 through

l are all positive. It follows similar arguments to show that Π′j(v) < Π′1(v) cannot

happen either.

To show Π′j(v) < Π′l(v)∀j = l + 1, · · · , K, v ∈ [vl+1, vl), I consider that Π′j(v) ≥

Π′1(v) for some v ∈ [vl+1, vl) and j ≥ l + 1. I then choose a positive number ν such

that, Rj+εj−Π′j(vl+1−ν) < Π′j(v)−Π′j(vl+1). This is ensured by the fact that Π′ is a

continuous function, and as v approaches vl+1 from left side, Π′ approaches Rj+εj ar-

bitrarily. Thus, I have Π′j(v)−Π′j(vl+1−ν) ≥ Π′j(v)−Π′j(vl+1) > Rj+εj−Π′j(vl+1−ν),

which indicates Π′j(v) > Rj + εj which can never be true. This completes the proof.
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To solve for the individual entry probability, πππ(v), given a bidder’s type, I firstly

state the following equation holds:

pj(1− F̂j(v)) =

∫ V̄

v

πj(x)dF (x) (4.10)

Thus, I have: πj(v) = − 1
f(v)

∂pj(1−F̂j)
∂v

. Suppose v ∈ [vl+1, vl), then πj(v) =

0,∀j ≥ l + 1. Then it can be shown that, ∀j ≤ l, πj(v) =
xj(v)

Mj
, where xj(v) :=

Prob( choose class j |V ∈ [v, vl+1)). This probability could be solved iteratively. First

solve for x1(v1) which is the probability of choosing class 1 when v ≥ v1. This is triv-

ial as I have x1(v1) = 1
M1
. Next, I solve for x1(v2), x2(v2) via the following system of

equations:



(R1 + ε1)(1− 1
M1

(1− F (v1))− x1(v2)
M1

(F (v1)− F (v2)))N−1

+φ(R1 + ε1)(N − 1)(1− 1
M1

(1− F (v1))− x1(v2)
M1

(F (v1)− F (v2)))N−2( 1
M1

(1− F (v1))

+x1(v2)
M1

(F (v1)− F (v2))) = C

(R2 + ε2)(1− x2(v2)
M2

(F (v1)− F (v2)))N−1

+φ(R2 + ε2)(N − 1)(1− x2(v2)
M2

(F (v1)− F (v2)))N−2(x2(v2)
M2

(F (v1)− F (v2))) = C

x1(v2) + x2(v2) = 1
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Complicated as this system of nonlinear equations seems, I can use a similar argu-

ment to track down its solution as what I did in deriving the unconditional entry prob-

abilities, pj. I do this progressively, and could derive xj(v1), xj(v2), · · · , xj(vl), xj(v),

j = 1, 2, · · · , l. After solving xj(v), I could derive the individual entry probabilities.

The most intuitive implication of Lemma 1 is that when I divide bidders into K + 1

ordered groups according to their skill levels, in equilibrium, a bidder of skill level

v ∈ [vk+1, vk) randomizes his entry in the first k classes of contests. Thus, I proved the

existence and characterized the symmetric Bayes-Nash Equilibrium for this two-stage

game.

4.5 Nonparametric Identification

Recall that the goal of identification in this game consists of two parts: (i) The

distribution of the contest complexity, ε; (ii)The distribution of the valuation, vi,

for bidders that have positive entry probabilities to at least one of the contests in

the market. I now discuss the strategies for two cases respectively: when contests’

unobserved types are discrete and when they are continuous.

4.5.1 When Contest Types are Discrete

In this section, I assume that the contest types are drawn from a finite space

with a cardinality of Q. Here, I do not restrict the contest type to be independent
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of its monetary prize, i.e. Pr(ε|R) 6= Pr(ε) for some (R, ε). Furthermore, I allow

contest prizes in the same market to be correlated with each other, i.e. Pr(RRR|εεε) 6=

ΠjPr(Rj|εj). This is to capture the possibility of firms strategically setting their

monetary rewards to compete with their peer firms in the market, and the market-level

unobserved factors affecting contest holders’ pricing behavior. The only restriction on

the contest side is that the contest types are independent of the number of bidders in

the market when conditioning on their monetary prizes. This assumption naturally

holds when the contest designers have no knowledge about how many bidders will

appear in the market when they design their rewarding schemes. The type space on

the bidder side is assumed to be i.i.d. drawn from [0, V̄ ]. More importantly, it is

assumed that fixing the number of contests and their monetary prizes; the researcher

can observe at least Q distinct values of the number of bidders, N , from data. This

is to ensure enough variation in equilibrium choice probabilities in the first stage to

recover the discrete distribution of contests’ unobserved types.

The identification strategy consists of two steps. First, I exploit the variation

in entry probabilities in response to the different amount of bidders in a market to

recover the joint distribution of contest types, εεε := [ε1, ε2, · · · , εQ]. Suppose in the

data, there are infinitely many repeated markets where we can observe many markets

with the same monetary prize vector, RRR = rrr. I therefore am able to compute the

empirical probability toward each contest in the market. I write down the following

equation:
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Pr(a contest with R = rj is chosen|RRR,N) =∑
εεε

Pr(a contest with R = rj is chosen|RRR,εεε,N)︸ ︷︷ ︸
:=p̂j

·Pr(εεε|RRR,N) (4.11)

Note that once I knew the values of (rrr, εεε,N), p̂j could be computed by the system

of equations (4.8) and the algorithm provided in the modeling part, as all other

coefficients in the system of equations are observable to the econometrician. More

important, I have the following independence result:

Pr(εεε|RRR,N) = Pr(εεε|RRR) (4.12)

Therefore, fixing the value of RRR = rrr, equation (4.11) could be written using every

distinct value of N . Suppose I can observe Qj ≥ Q distinct values of N , I will have
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the following equation:



Pr(R = rj is chosen |rrr, n1)

Pr(R = rj is chosen |rrr, n2)

· · ·

Pr(R = rj is chosen |rrr, nQJ )


QJ×1

=



Pr(R = rj is chosen |rrr,e1e1e1, n1), P r(R = rj is chosen |rrr,e2e2e2, n1), · · · , P r(R = rj is chosen |rrr,eQJeQJeQJ , n1)

Pr(R = rj is chosen |rrr,e1e1e1, n2), P r(R = rj is chosen |rrr,e2e2e2, n2), · · · , P r(R = rj is chosen |rrr,eQJeQJeQJ , n2)

· · ·

Pr(R = rj is chosen |rrr,e1e1e1, nQJ ), P r(R = rj is chosen |rrr,e2e2e2, nQJ ), · · · , P r(R = rj is chosen |rrr,eQJeQJeQJ , nQJ )


QJ×QJ

·



Pr(e1e1e1|rrr)

Pr(e2e2e2|rrr)

· · ·

Pr(eQJeQJeQJ |rrr)


QJ×1

The LHS is an QJ×1 vector that is observed from data. The first matrix on the RHS

could be computed from equilibrium argument. The last vector on the RHS is the

goal of identification. A just-identified case would be when QJ = Q, and assuming the

first two matrics on the RHS are both invertible, I could identify the joint distribution
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of εεε given RRR = rrr by the following:



Pr(e1e1e1|rrr)

Pr(e2e2e2|rrr)

· · ·

Pr(eQJeQJeQJ |rrr)


=



Pr(R = rj is chosen |rrr,e1e1e1, n1), P r(R = rj is chosen |rrr,e2e2e2, n1), · · · , P r(R = rj is chosen |rrr,eQJeQJeQJ , n1)

Pr(R = rj is chosen |rrr,e1e1e1, n2), P r(R = rj is chosen |rrr,e2e2e2, n2), · · · , P r(R = rj is chosen |rrr,eQJeQJeQJ , n2)

· · ·

Pr(R = rj is chosen |rrr,e1e1e1, nQJ ), P r(R = rj is chosen |rrr,e2e2e2, nQJ ), · · · , P r(R = rj is chosen |rrr,eQJeQJeQJ , nQJ )



−1

·



Pr(R = rj is chosen |rrr, n1)

Pr(R = rj is chosen |rrr, n2)

· · ·

Pr(R = rj is chosen |rrr, nQJ )


(4.13)

The over-identified case, on the other hand, would be when QJ > Q. In this

case, I could always come up a way to combine some distinct values of the number of

bidders to reconstruct a similar equation above, but with Q vector on the LHS. The

conditional distribution of εεε given RRR = rrr can still be identified.

Next, I move to the bidder side. First of all, I use the observed distribution of

bids within each contest to identify the conditional distribution, F̂j(v). To do this,

I follow the seminal paper by Guerre, Perrigne and Voung (2000), GPV henceforth,

and derive an equation linking the observed bids to the unobserved bidder types.

Fixing the total number of bidders N and the vector of monetary rewards RRR, and
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conditional on observing bidder i choosing contest class j, I have:

v−1
i =(1− φ)(Rj + εj)(N − 1)(1− pj(1− Ĝj(b))

N−2pj ĝj(b) (4.14)

+ φ(Rj + εj)(N − 1)(N − 2)(1− pj(1− Ĝj(b))
N−3pj(1− Ĝj(b))pj ĝj(b)

:= ξj(b, Rj, εj, N, φ, pj)

where, Ĝj(b) is the observed cdf of bids in contest class j, and ĝj is the corre-

sponding pdf function. The choice probability pj is a known function of (RRR,εεε,N). I

can use this equation to recover the conditional cdf, F̂j(v), for any contest class j,

Fj(v|RRR,εεε,N) = Pr(V ≤ v| choose class j; εεε,RRR,N) (4.15)

= Pr(ξj(b, Rj, εj, N, φ, pj(RRR,εεε,N)) ≥ 1

v
)

= Pr(b ≤ ξ−1
j (

1

v
,Rj, εj, N, φ, pj(RRR,εεε,N)))

= Ĝj(ξ
−1
j (

1

v
,Rj, εj, N, φ, pj(RRR,εεε,N)))

In order to recover the unconditional cdf, F (v), I need the following equation

which is derived from equation (4.14):

f(v|RRR,N) =
∑
εεε

∂[pj(RRR,εεε,N) · (1− F̂j(v|RRR,εεε,N))]

∂v
· (− 1

πj(v|RRR,εεε,N)
) · Pr(εεε|RRR)

(4.16)

Note that the first part is identified from the previous argument, and πj(v|RRR,εεε,N)
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could be computed using the algorithm in the modeling part, and I already identified

the distribution of contest types, Pr(εεε|RRR).

4.5.2 When Contest Types are Continuous

When ε is drawn from a continuous space such as the real line, I can still achieve

nonparametric identification under suitable conditions. To see this, suppose in the

data, there are many repeated markets where contests offer J distinct values of mon-

etary rewards, RRR, and N bidders. I therefore am able to compute the empirical prob-

ability of a contest with monetary rewards R ∈ {r1, r2, · · · , rQR} chosen by bidders.

I then write down the following equation:

Pr(a contest with R = rj is chosen|RRR,N) (4.17)

=

∫
εεε

Pr(a contest with R = rj is chosen|RRR,εεε,N) · f(εεε|RRR,N)dεεε

=

∫
εεε

Pr(a contest with R = rj is chosen|RRR,εεε,N) · f(εεε|RRR)dεεε

:=

∫
εεε

g(−(RRR + εεε), N) · f(εεε|RRR)dεεε

Here, again both RRR and εεε are 1×J vectors. Let ttt := −RRR, then the above equation
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can be written as a convolution:

Pr(a contest with R = rj is chosen|RRR,N) := f ∗ g(ttt) =

∫
εεε

g(ttt− εεε) · f(εεε)dεεε (4.18)

In the above equation, I supress (RRR,N) for the ease of illustration. Assume both f

and g are continuous and absolutely integrable with absolute integrable Fourier trans-

form 3, then according to the Convolution Theorem, I can write down the following

equation:

F(f ∗ g(ξξξ)) = F(f(ξξξ))×F(g(ξξξ)) (4.19)

where F denotes the Fourier Transform operation. I could then recover the density

function of εεε given RRR:

f(εεε|RRR) =F−1(
F(f ∗ g(−RRR))

F(g(−(RRR + εεε)))
)

=F−1(
F(Pr(a contest with R = rj is chosen|RRR,N))

F(Pr(a contest with R = rj is chosen|RRR,εεε,N))
) (4.20)

In particular, the numerator can be computed from data, and the denominator can

be computed from equilibrium argument in the modeling section. Most importantly,

given a fixed number of biddersN , I need to observe the choice probability at any value

3Alternatively, I assume the Fourier Transform of fε is everywhere non-vanishing.
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ofRRR to construct the Fourier Transform in the numerator; in other words, variations in

monetary prizes provide the primary identification power of contest-wise unobserved

heterogeneity. In reality, this full-support condition is difficult to satisfy; instead, I can

exploit the variations in the number of bidders like in the discrete case to ensure full

identification. To see this, suppose I construct a new function,HHH(RRR,N1, N2, · · · , NK),

such that it equals Pr(a contest with R = rj is chosen|RRR,Nk) when we actually ob-

serve contests’ types to be RRR and the number of bidders to be Nk in the data; The

number K is defined as the number of distinct N ’s that covers the full support

of RRR. Another function GGG(−(RRR + εεε), N1, N2, · · · , NK) := Pr(a contest with R =

rj is chosen|RRR,εεε,Nk), when Nk and RRR are jointly observed in the data. can be simi-

larly defined and computed in equilibrium, except that I condition on a certain value

of εεε now. We then have the following equation:

HHH(RRR,N1, N2, · · · , NK) =

∫
εεε

GGG(−(RRR + εεε), N1, N2, · · · , NK)f(εεε|RRR)dεεε (4.21)

Then the Convolution Theorem still applies here, except that we substitute the

functions to be Fourier Transformed on the RHS of equation (4.20) with the HHH and

GGG functions respectively:

f(εεε|RRR) =F−1(
F(HHH(RRR,N1, N2, · · · , NK))

F(GGG(−(RRR + εεε), N1, N2, · · · , NK))
) (4.22)
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These two functions ensure that for any values of contests’ monetary prizes RRR, so

long as we observe some markets in the data with the number of bidders to be Nk,

we can still achieve identification of contests’ unobserved types. Essentially it still

requires the full support ofRRR to be observed, but allows the values to be observed with

different numbers of bidders in the market; therefore the conditional independence

condition in equation (4.12) is also assumed. So far, the distribution of contest-

wise unobserved heterogeneity is nonparametrically identified. Identifying bidder-wise

unobserved heterogeneity adopts the same strategy as in the discrete case, except that

I need to take integration over εεε according to their joint distribution.

4.6 Nonparametric Estimation

The estimation procedure consists of two parts: uncovering the bidders’ and con-

tests’ unobserved type distribution. I start by estimating the distribution of contest-

wise unobserved heterogeneity by using the variation in the amount of participating

bidders to recover the distribution of contests’ unobserved types. This can be directly

done using equation 4.13 for the discrete case. For the continuous case, following equa-

tion 4.20, I use Monte Carlo method to numerically integrate when estimating the

Fourier transform of observed density functions on the RHS. Specifically,

f̂(εεε|RRR) =F̂−1(
F̂(Pr(a contest with R = rj is chosen|RRR,N))

F̂(Pr(a contest with R = rj is chosen|RRR,εεε,N))
) (4.23)
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where, F̂(Pr(a contest with R = rj is chosen|RRR,N)) := 1
M

∑M
m=1 Pr(a contest with R =

xmj is chosen|xxxm, N))e2πixxxmRRR and xxxm is (pseudo-) randomly generated from a multi-

variate uniform distribution. Similarly, F̂(Pr(a contest with R = rj is chosen|RRR,εεε,N)) :=

1
M

∑M
m=1 Pr(a contest with R = xmj is chosen|xxxm, εεε, N)e2πixxxm(RRR+εεε). Lastly, I gener-

ate M (pseudo-) random vectors from multivariate uniform distribution, yyym,m =

1, 2, · · · ,M , and estimate the inverse Fourier transform as

F̂−1 := 1
M

∑M
m=1

F̂(Pr(a contest with R=rj is chosen|RRR,N))

F̂(Pr(a contest with R=rj is chosen|RRR,yyym,N))
e2πiεεεyyym .

Here, I also show a special case, where ε is drawn from a continuous function known

up to a finite-dimensional parameter vector θθθ. In this case, I use a moment-based

estimator that relies on various values of N , the number of bidders in the market, to

estimate θθθ. In other words,

θ̂θθ =argminθθθ(||Pr(a contest with R = rj is chosen|RRR,N)−
M∑
m=1

Pr(a contest with R = rj is chosen|RRR,εεεm,θθθ, N)||) (4.24)

where εεεm,θθθ is a (pseudo-) randomly generated vector with a density function f(·|RRR,θθθ).

So long as there are as many different values of N as the dimensionality of θθθ, the

distribution of εεε can be estimated.

After recovering the conditional distribution of contests’ unobserved types, I show

the estimation of the distribution of bidders’ value function. Following GPV, a

well-known two-step estimation strategy is used: in the first step, I estimate the
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distribution of observed bids for each class of contests using kernel methods; after

that, I recover the pseudo-private value for each bidder using the following equa-

tion, then use the kernel method to estimate the conditional distribution of bidders’

value functions within each class of contests. Formally, in the first step, suppose

a set of bidders Ijt choose contests of class j in market t, and I observe their bids

{Bit, i ∈ Ijt, t = 1, 2, · · · , T}, then the empirical distribution function Ĝ and the

kernel density estimator ĝ for contest class j are estimated as:

Ĝj(b) =
1

T

T∑
t=1

1

Njt

∑
i∈Ijt

1(Bit ≤ b) (4.25)

ĝj(b) =
1

T

T∑
t=1

1

Njthjg

∑
i∈Ijt

Kjg(
b−Bjt

hjg
) (4.26)

where hjg is a bandwidth that may vary across contest classes and Kjg(·) is a kernel

function on a compact support. One thing to mention here is that, by solving the

functional form of the equilibrium bidding strategy within each auction, I know that

the underlying density of equilibrium bids is infinite at its loIr bound. Furthermore,

it is also Ill known that on its boundaries, the kernel density estimator is biased.

Therefore, kernel methods could be quite inaccurate near the loIr bound. I hence

trim the pseudo-private value using the following criteria. In particular, bidder i’s

215



CHAPTER 4. IDENTIFICATION OF SIMULTANEOUS CONTESTS WITH
TWO-SIDED UNOBSERVED HETEROGENEITY

pseudo-private value is estimated through

v̂i =



∑
εεε{(1− φ)(Rj + εj)(N − 1)(1− p̂j(RRR,N)(1− Ĝj(b))

N−2p̂j(RRR,N)ĝj(b)

+φ(Rj + εj)(N − 1)(N − 2)(1− p̂j(RRR,N)(1− Ĝj(b))
N−3p̂j(RRR,N)·

(1− Ĝj(b))p̂j(RRR,N)ĝj(b)}−1 · Pr(εεε|RRR) , if Bmin + ρjghjg/2 ≤ Bit ≤ Bmax− ρjghjg/2

+∞ , otherwise

when contest-wise types, εεε’s, are discrete and ρjg denotes the length of support of the

kernel function used for contest class j. In the equation above, the estimated function

p̂j(RRR,N) :=
∑Q

k=1 pj(RRR,εεεk, N)Pr(εεε = εεεk). When εεε’s are continuous, it is specified as:

v̂i =



∫
εεε
{(1− φ)(Rj + εj)(N − 1)(1− p̂j(RRR,N)(1− Ĝj(b))

N−2pj(RRR,N)ĝj(b)

+φ(Rj + εj)(N − 1)(N − 2)(1− p̂j(RRR,N)(1− Ĝj(b))
N−3p̂j(RRR,N)·

(1− Ĝj(b))p̂j(RRR,N)ĝj(b)}−1 · dF (εεε|RRR) , if Bmin + ρjghjg/2 ≤ Bit ≤ Bmax− ρjghjg/2

+∞ , otherwise

and the estimated function p̂j(RRR,N) :=
∫
εεε
pj(RRR,εεε,N)dF̂ (εεε|RRR). In practice, this

integration can be done numerically if not having a closed-form solution. In the

following section, I show how this estimation procedure performs using Monte Carlo

simulated data.
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4.7 Monte Carlo Evidence

4.7.1 When Contest Types are Discrete

In this Monte Carlo simulation analysis, I generate 100 markets with i.i.d. dis-

tributed 2, 3, 4 or 5 bidders and i.i.d. distributed two contests in each market. As

discussed in the identification argument, this is to create variation in number of con-

tests within each class for the first-stage estimation. Bidders’ types are drawn from

a truncated standard lognormal distribution on [0.1, 4]. Further, I let the monetary

reward take only two distinct values, {5, 3}. For simplicity, I further assume that

there is only one project having monetary reward equal to 5 and one project having

monetary reward equal to 3 in each market. The contest complexity is drawn from

a binary support of {−0.1, 0.1}, and the conditional probability of ε given monetary

reward R is given by:

Pr(ε = 0.1|R) =


0.9, if R = 5

0.1, if R = 3

(4.27)

This also suggests that the ε’s across different contests are independent of each

other. This assumption is only for computational simplicity. I use triangular Kernel

function, and the bandwidth is set same as in GPV. Figure 4.1 and Table 4.1 are the
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results from two steps of the estimation with 100 repetitions. The starting values are

set to be zeros. It can be seen that, for the estimation of contest-wise complexity

distribution, the overall bias is small, despite the relatively high variation as shown

by the standard deviations. For the estimation of bidders’ valuation function, it can

be shown that on the interval of [0.8, 3.3], the estimation is relatively good. On the

lower and higher bounds, however, it is less accurate due to the inaccurate kernel

estimation of bid density near boundaries.

4.7.2 When Contest Types are Continuous

Now I present the performance when the contest unobserved types are continuous.

I only show results estimating parametric distribution for contest-wise complexity lev-

els, and nonparametric distribution for bidders’ valuation, as fully nonparametrically

estimating the whole model may be computationally burdensome and require a lot

more variations in the simulated data. I generate 100 i.i.d. markets with 2, 3, 4,

5 or 6 bidders in each market. Bidders’ valuation is again drawn from a truncated

standard lognormal distribution on [0.1, 4]. Further, I let the monetary reward take

only two distinct values, {5, 3}. For simplicity, I further assume that there is only

one project having a monetary reward equal to 5 and one project having a monetary

reward equal to 3 in each market. The contest complexity is drawn from a normal

distribution, which parameters are given below. The conditional mean is:
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µε|R =


1, if R = 5

−1, if R = 3

(4.28)

and the conditional variance is:

σε|R =


1, if R = 5

2, if R = 3

(4.29)

I estimated the parameters using two specifications. First I fix the variances of ε’s

and only estimated the conditional means, µε|R=5 and µε|R=3. The results are shown

in the first panel of Table 4.2. Then I estimated all four parameters of ε, including

σε|R=5 and σε|R=3. The starting values are set to be 0.9 times the true values in

the first specification and the true values in the second specification. To estimate

the parameters for contest complexity levels, I adopt the Monte Carlo numerical

integration method and generate 200 random samples to approximate the integrated

value. It can be seen that there is more noises and inaccuracy regarding estimating the

contest-wise complexity levels, compared with the discrete case, as I see higher biases

and larger variation in Table 4.2. This inaccuracy increases when I try to estimate

more parameters in the model. One conjecture is that, when trying to estimate the
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distribution of contest-wise complexity nonparametrically, I must need a much richer

variation in the number of bidders appeared in each market.

To sum, it can be seen that compared with the continuous case, it is more accurate

to estimate the contest-wise unobserved heterogeneity in the discrete space. This is

mainly due to the data availability and the bias arisen from numerical integration.

4.8 Conclusion

This paper develops a new method to identify and estimate primitives in simul-

taneous contests with multiple prizes. In theoretical modeling part, I establish a

two-stage game where contestants first choose one among multiple contests, then in

the second stage, they compete within each contest by submitting their bids or con-

tributing their efforts to win over the pre-determined prize based on the rank order.

Non-winners may get part of the prize due to a pre-determined rule. I show that

by jointly observing their first-stage choice probability and the second-stage bidding

strategy, I can nonparametrically identify the joint distribution of unobserved het-

erogeneity on both sides of the market. I then present a corresponding estimation

strategy and show the performance of Monte Carlo experiments.

While this novel strategy can be potentially applied to many real-life scenarios

from political lobbying to online labor markets, I see at least three directions for fu-

ture work to suit more complicated markets better. First, it is widely observed that
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bidders/contestants incur nonrefundable cost when bidding in the second stage of the

game. Hence, how to incorporate this bidding cost as another layer of contest-wise

and/or bidder-wise unobserved heterogeneity is important to study. The main com-

plication here is the lack of a closed-form solution to characterize players’ equilibrium

strategies in the presence of the bidding cost, except that I know there will be a min-

imum level of bidders’ skills to enter a particular contest class. Another direction is

to introduce supermodularity or submodularity between bidders’ skills and contests’

types. For instance, some bidders may encounter synergy effect by participating in

certain classes of contests. It would be fascinating to see how market outcomes are

affected by this synergy effect, and most importantly, how the market designer could

stimulate a better participation pattern using alternative policy intervention. Lastly,

as contest holders stand for the other side of the market, it would be substantial to

explicitly study their equilibrium behavior by incorporating a pricing stage before the

contestants’ movements. This is also related to the other two chapters of this thesis

but requires more work regarding proving the existence of a reasonable equilibrium

notion.
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Figure 4.1: Kernel Density Fitting of Bidder’s Value Function – Discrete Case

Table 4.1: Estimation of the Distribution of Contest-wise Unobserved Heterogeneity
– Discrete Case

starting value true value bias std.dev
Pr(ε = 1|R = 1.1) 0.9 0 -0.0303 0.3072
Pr(ε = 1|R = 1) 0.1 0 -0.0150 0.3144
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Figure 4.2: Kernel Density Fitting of Bidder’s Value Function – Continuous Case
(first specification)

Figure 4.3: Kernel Density Fitting of Bidder’s Value Function – Continuous Case
(second specification)
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Table 4.2: Estimation of the Distribution of Contest-wise Unobserved Heterogeneity
– Continuous Case

starting value true value bias std.dev
First set of parameters

µε|R=5 1 0.9 -0.1537 0.2135
µε|R=3 -1 -0.9 0.1532 0.2063

Second set of parameters
µε|R=5 1 1 -0.1925 0.4180
µε|R=3 -1 -1 0.2365 0.4351
σε|R=5 1 1 0.2534 0.7427
σε|R=3 2 2 -0.2337 0.6918
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