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Abstract

Building risk models from multiple different sources of data allows researchers to

incorporate the best available information on key model parameters. In this thesis,

we develop and apply methodology for optimally combining information from multiple

data sources in two main contexts.

In the first, motivated by the need for building subtype-specific absolute risk mod-

els for breast cancer, we develop and apply methodology for combining information

information from analytic cohort or case-control studies and from population-based

registries. We address the statistical challenges involved with handling different types

of missing information in this context. We derive variance estimators for the risk pre-

dictions produced by such models, accounting for different sources of uncertainty. We

apply the methods to two large consortia in order to build absolute risk models for

overall breast cancer and for subtypes of breast cancer defined by estrogen receptor

status. We show how the absolute risk models can be used to project distributions

of breast cancer risk for the US population and to evaluate the potential impact of

population-wide modification of breast cancer risk factors.

In the second problem, we consider the issue of how to effectively incorporate ex-

ternal information when building new or updated risk models, again with the goal of

combining data sources to produce models that are more efficient and representative

of the underlying population. In particular, we explore a regression calibration ap-

proach, utilizing a method from sample-survey literature which is traditionally used

for increasing the efficiency of parameter estimation from a given survey by lever-

aging information from external data sources. We examine the performance of the

estimator in a context that has not previously been studied, where the sample and the
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external data are representative of different populations. We derive theoretical con-

ditions under which the calibrated estimator produces meaningful estimates, which

are calibrated to the external population, and corroborate our analytic results with

numerical simulations. Our work also identified weaknesses in the methodology and

promising avenues of further research in this important area.
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Chapter 1

Introduction

Absolute risk models predict disease risk in an upcoming time interval based on

known risk factors for an individual or individuals in a population, accounting for the

presence of competing risks (Gail et al., 1989). Absolute risk models for cancers and

other diseases have important clinical and public health applications.

Absolute risk models can be used to identify individuals at high risk of disease in

order to target screening and disease prevention strategies (Jackson, 2000; Jackson

et al., 2005; Pharoah et al., 2008; Gail, 2011). In the past, decisions regarding the

initiation of screening or preventative intervention have often been made on the basis

of age and family history, as proxies for risk. However, there is increasing consensus

in the medical community that these decisions should instead be guided directly by

individualized estimates of risk, which can be obtained from absolute risk models that

include a wider array of environmental and genetic risk factors.

At the public health level, direct estimates of risk allow researchers to quantita-

tively weigh the risks and benefits of a particular screening regime or preventative

intervention and tailor those strategies in a way that is optimal for the underlying

population (Grundy, 1999; Gail, 2001; Murray et al., 2003). An example of this in
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practice is the American Society for Colposcopy and Cervical Pathology Consensus

Guidelines for cervical cancer screening, which are based on quantitative evaluation

of the benefits and potential harms of screening as measured by absolute risk (Saslow

et al., 2012). Other examples include using absolute risk models to identify absolute

risk thresholds for which the benefits associated with preventative breast cancer treat-

ments, such as Tamoxifen, outweigh the risks associated with treatment (Chlebowski

et al., 2002) and to evaluate the impact of smoking cessation on lung cancer (Halpern

et al., 1993). Absolute risk models can also be used to determine the necessary sample

size for prevention trials by projecting the expected distribution of disease risk based

on the distribution of risk factors in a population (Gail, 2011).

At the patient level, absolute risk estimates can be used to counsel individuals

on the basis of their personal risk. In fact, the National Cancer Institute has cre-

ated a number of risk assessment tools for this purpose, which are available online.

The Breast Cancer Risk Assessment Tool estimates a woman’s risk of invasive breast

cancer based on responses to 8 questions about her age, race, and reproductive and

medical history (Gail et al., 1989). The Colorectal Cancer Risk Assessment Tool esti-

mates risk of colorectal cancer for individuals between the ages of 50 and 85 (Freedman

et al., 2009a), and the Radiation Risk Assessment Tool estimates an individual’s life-

time risk of cancer from exposure to ionizing radiation (de Gonzalez et al., 2012).

These examples only represent a small number of the many risk calculators available

online for providing doctors and patients with more personalized estimates of disease

risk. The large number of absolute risk models now directly in use by the public

speaks to a growing trend toward managing one’s health behaviors in the context of

quantitative estimates of disease risk.

In this thesis, we address several methodological issues in developing absolute risk

models, dealing with complexities for combining information from various different
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sources of data. While the methods are developed with the aim of building models for

predicting risk of breast cancer, the methodological issues addressed are applicable

in a wide variety of settings. In the following, we describe the two main motivating

problems and present the challenges involved with each. First, we discuss the objective

of building a subtype-specific absolute risk model for breast cancer by integrating

different data sources and we present key data applications. Second, we introduce

the problem of how to best make use of external information or existing models in

order to calibrate a new risk model more generally.

1.1 Developing Subtype-Specific Absolute Risk

Models for Breast Cancer

Subtype-specific models are particularly relevant for breast cancer as it is a heteroge-

neous disease, encompassing numerous subtypes based on tumor characteristics such

as the presence of hormone receptors or growth factors (Burstein, 2005). Distinct

breast cancer subtypes differ with respect to age of diagnosis, risk factors, prevention

options, treatment regimes, and survival outcomes (Anderson and Matsuno, 2006;

Visvanathan et al., 2009; Putti et al., 2005; Burstein, 2005). Researchers who note

this heterogeneity recommend taking a stratified approach and express hope that

subtype-specific risk prediction may result in better implementation of prevention

strategies and earlier tumor detection (Anderson and Matsuno, 2006; Yang et al.,

2011a). The methods we develop in this thesis are driven by consideration for the

characteristics of real data sources available for building such a model. Specifically,

we consider the utility of existing cohort studies, case-control studies, national disease

registries, and national surveys for fitting a subtype-specific absolute risk model for

breast cancer in the US population.
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Cohorts

To fit a subtype-specific absolute risk model, one needs information on covariate rela-

tive risks, age-specific disease incidence rates, and covariate and subtype distributions

that are representative of the population of interest. In an ideal world, one might

have access to an existing large, representative, prospectively-collected cohort study

which could provide information for each component of the model. However, cohort

studies are expensive to conduct and, especially for rare outcomes such as breast

cancer subtypes, require many years of follow-up in order to accrue a large number of

cases. In practice, the ideal cohort study for a given application may be unavailable

and conducting one may not be feasible or timely. Additionally, a given cohort study

may not be representative of incidence in the population as increased intensity of

screening and follow-up in the study may artificially produce higher rates than would

naturally occur in the population. To mitigate these limitations, we propose methods

that enable the use of existing cohort data in conjunction with other complementary

data sources, such as registries that contribute more representative incidence rates.

Case-Control Studies

For developing a subtype-specific absolute risk model, case-control studies have some

advantages over cohort studies, along with some limitations. Case-control studies

specifically recruit cases with the disease of interest so they require less time to ob-

tain a large number of cases, particularly for rare subtypes, and are generally less

expensive to conduct than cohort studies. Incident case-control studies can provide

representative estimates of the disease subtype distribution, provided the sampled

cases are representative of all cases in the population for whom we intend to estimate

subtype-specific absolute risk. Case-control studies can be used to estimate covariate
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odds ratios, which approximate relative risks for rare diseases such as breast cancer

subtypes.

A drawback of case-control studies is that data on lifestyle factors may be affected

by selection or recall bias, and one must carefully consider whether a given sample

is representative of the underlying population. In particular, a major challenge in

designing case-control studies is ensuring that the sampled controls are representative

of unaffected individuals in the population. It is well known that hospital-based

incident case-control studies are likely to have non-representative controls that are

generally less healthy than the overall population; however, such a study may be an

excellent source of cases with subtype information. We address the issue of how one

can utilize these studies, for which no adequate controls are available, in order to

estimate key components of a subtype-specific absolute risk model.

A further limitation of case-control studies is that they do not provide estimates

of disease incidence due to the fact that specific numbers of cases and controls are

purposefully sought for inclusion in the study. For this reason, one cannot build an

absolute risk model from a case-control study alone, even one with good controls.

Thus, in order to make use of the rich data provided by case-control studies, we

develop methods for combining information with other data sources that can provide

the representative incidence rates and, in some cases, the representative controls that

case-control studies lack.

Registries

National disease registries are an excellent source of incidence rate information for

absolute risk models. A strength of this data is that it is representative of the na-

tional population and typically includes immense sample sizes, which result in very

precise estimates of incidence. However, these large databases generally collect very

5



little covariate information, so the reported incidence rates are based on a mixture

of women with different covariate levels. For diseases with established subtypes, na-

tional registries typically collect the necessary disease characteristic information for

delineating subtype-specific incidence rates; however, this is not always the case.

We develop methods for calibrating subtype-specific absolute risk models to na-

tionally representative registry incidence rates, dealing with the situation where the

registry is missing some or all tumor characteristics needed to define the subtypes of

interest. For many diseases, the research community is still learning how to identify

clinically relevent subtypes. In the event that new biomarkers are identified in future

research, these methods will allow researchers to calibrate absolute risk models for the

newly identified subtypes to incidence rates from a registry that has not yet begun

to collect information on the new biomarkers.

Other Challenges

In addition to addressing considerations of study design and missingness, a major

statistical component of this research is the development of methods for variance

estimation that account for the integration of different data sources. Generally, we

approach this problem by applying the functional delta method and concepts from

empirical process theory to derive variance estimators. After working through the

statistical theory, we computationally implement the proposed methods, validate their

performance using simulations, and finally apply them to a real and relevant data

example, that of building a subtype-specific absolute risk model for breast cancer.
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1.2 Applications

In this thesis, we present two major data applications; specifically, we develop ab-

solute risk models for breast cancer in the US population using data from two large

constortia. First, we build an absolute risk model for overall breast cancer using

prospective cohort data from the Breast and Prostate Cancer Cohort Consortium

(BPC3) (Hunter et al., 2005; Husing et al., 2012). In a second data application, we

apply our methods to case-control studies from the Breast Cancer Association Consor-

tium (BCAC) in order to build subtype-specific absolute risk models for breast cancer

subtypes defined by estrogen receptor status (Breast Cancer Association Consortium,

2006; Yang et al., 2011b). In both applications we aim to develop models that are rep-

resentative of the US population. To better accomplish this, we calibrate the models

to nationally representative breast cancer incidence rates from the National Cancer

Institute’s Surveillance Epidemiology and End Results (SEER) database. Much of

our subtype-specific methods development is motivated directly by practical consid-

erations encountered in working with these datasets. In the following, we give a brief

overview of these three influential data sources.

BPC3

The BPC3 includes 8 large, prospective cohorts that together total more than 17,000

cases and 19,000 controls with breast cancer outcomes (Institute, 2014). Specifically,

the consortium includes the following studies conducted in the US population: the

American Cancer Society Cancer Prevention Study-II (CPS-II); Harvard’s Nurses’

Health Study (NHS) and Women’s Health Study (WHS); the National Cancer In-

stitute’s Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial;

the Multiethnic Cohort (MEC); and the Women’s Health Initiative (WHI) (Milne
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et al., 2010; Fasching et al., 2012; Nickels et al., 2013). It also includes cohorts from

Europe and Australia, the European Prospective Investigation of Cancer (EPIC) and

the Melbourne Collaborative Cohort Study (MCCS) respectively. The BPC3 data

includes well known anthropomorphic and reproductive risk factors for breast cancer,

as well as genetic information on 24 single nucleotide polymorphisms (SNPs), which

have been previously shown to be associated with breast cancer.

BCAC

The BCAC includes more than 60 case-control studies from many different countries,

with a total of more than 90,000 breast cancer cases and 90,000 controls. The BCAC

data also includes information on tumor characteristics, including estrogen receptor

(ER) status, progesterone receptor (PR) status, and human epidermal growth factor

receptor 2 (HER2), biomarkers which are frequently used to classify breast cancer

into subtypes. Additionally, the BCAC contains data on standard risk factors for

breast cancer along with genetic information on 77 SNPs previously shown to be

associated with breast cancer. The case-control studies that make up this consortium

include those that are population-based, hospital-based, and family-based, and some

studies that are of mixed design. With so many studies, there is a huge variety in

the magnitude and patterns of missing data, in both the covariates and the tumor

characteristics. In our methodological work, we carefully consider the ramifications

of these practical data issues in the context of building subtype-specific absolute risk

models and discuss statistical approaches to handle those issues.
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SEER

The SEER database monitors cancer incidence in regions across the country covering

approximately 28 percent of US population, roughly 88 million people (Howlader

et al., 2011). For regions covered by the registry, SEER data includes breast cancer

incidence and population rates linked with age, race, sex, registry location, and year

of diagnosis (Howlader et al., 2011). Beginning in 1990, SEER began to collect ER

and PR status on breast cancer cases, and in 2009 began collecting HER2 information

(Fritz and Ries, 1998; Adamo et al., 2011). To be specific, in our data applications

we use age-specific incidence rates for integer ages 0 to 85, for those classified as

white race, from the SEER 18 Research Data, which contains the largest geographic

coverage available in SEER. The age-specific incidence rates were stratified into three

rates according to estrogen receptor status as ER positive, ER negative, and ER

unknown. In applications where only the overall rates of breast cancer were needed,

we simply calculated the age-specific incidence rates for any breast cancer as the sum

of these three rates for each age.

1.3 Calibrating to External Information

As new risk factors are identified, there is a need to update existing risk models to fully

use the most up-to-date information in predicting disease risk. Ideally, such a risk

model should be developed from a large prospective cohort study that is representative

of the underlying population and has information on all risk factors, including both

the existing and the new ones. In practice, however, such studies are hard to come by.

For example, many risk models for cancers and heart diseases have been built using

long-established cohort studies; however, these studies are unlikely to have collected

the information necessary for evaluating new risk factors which have only recently
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been identified.

Rather than conducting an entirely new cohort study to add a few new risk fac-

tors to a given risk model, it is more efficient to incorporate information from existing

models as much as possible. For many diseases, established risk models have already

been developed based on data from large representative cohorts and thoroughly val-

idated in independent studies. Calibrating to this sort of quality information can

result in an updated model that is more representative of the underlying population.

An example of this, which we have discussed previously, is the idea of calibrating

an absolute risk model to national registry data in order to make the model more

nationally representative.

Often, case-control studies are the primary source of information on the new risk

factors, such as genetic markers, with which to update a model. However, we know

that in case-control studies lifestyle factors may be affected by potential selection or

recall bias, making them less than ideal for estimating those effects. In this situation,

one could benefit by taking advantage of an existing published model, which does

have representative information for the existing risk factors that may not be well

measured in a given case-control study.

Even if representative information is available on all risk factors from a single new

study, building the updated model solely based on that study may be inefficient in

that doing so makes no use of the information from published models. If established

models were originally built based on a larger, more representative study and carefully

evaluated through independent validation studies, one ought to leverage information

from those models to develop an updated risk model that is better calibrated to the

underlying population.

In this thesis, a key problem we seek to address is exactly how to best use this
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external data when building a risk model. We explore the use of a “regression calibra-

tion” approach that is popular in the sample-survey community as a tool for increasing

efficiency of parameter estimation from a given survey by utilizing information from

large external data sources on related variables (Wu and Sitter, 2001; Wu, 2003). We

investigate the performance of the estimator both theoretically and numerically, in a

setting to which it has not previously been applied, where the external information

is representative of the population of interest while the sample population may differ

in some respects. We identify conditions under which the calibration estimator is an

effective method for calibrating a new risk model to external information, resulting

in a model that is calibrated to the external population of interest. We also diagnose

some situations where the method does not perform well, and make practical recom-

mendations regarding when the method can be safely applied. Finally, we identify

areas of future research, inspired by the goal of improving upon the weaknesses of the

proposed calibration estimator.
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Chapter 2

Methods for Developing Absolute

Risk Models for Disease Subtypes:

Integrating Multiple Data Sources

In this chapter we develop a general framework for modeling the absolute risk of

disease subtypes. We present the model and discuss a number of different ways to

estimate key parameters depending on which data sources are available. We review

the strengths of the different approaches and extend the methods to handle situations

where there is missing data in the tumor characteristics which define the disease

subtypes of interest. Finally, we use empirical process theory to derive variance

estimation procedures that account for multiple sources of uncertainty.

2.1 The Model

Absolute risk is the probability that a specific event will occur within a defined interval

of time, accounting for the risk of competing events. In this thesis we model absolute
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risk where the event of interest is tumor diagnosis. Specifically, we consider the setting

where individuals are at risk of being diagnosed with tumor subtypes j = 1, ..., J

defined by a set of tumor characteristics, h = 1, ..., H. Mathematically speaking, we

model the probability that an individual with covariates Z, who is tumor free at age a,

is diagnosed with a tumor of subtype j∗, within some upcoming time interval τ , given

that the individual is at risk of competing events including other tumor subtypes,

P [a ≤ T < a + τ, j = j∗|T ≥ a, Z]. In the following, we extend the absolute risk

model presented in Gail (2011) to accommodate disease subtypes, building up from

basic probability principles to provide a clear depiction of the framework upon which

the model is based.

The probability of an event in the interval (a, a + τ) is simply the probability of

the event happening at any given time, integrated over the entire interval. Thus we

express

P [a ≤ T < a+ τ, j = j∗|T ≥ a, Z] =

∫ a+τ

a

P [T = t, j = j∗|T ≥ a, Z]dt

=

∫ a+τ

a

P [T = t, j = j∗|T ≥ t, Z]
P [T ≥ t|Z]

P [T ≥ a|Z]
dt.

We have decomposed the absolute risk probability into an integral over the product of

two standard functions in survival analysis: the survival function, S(t) = P (T ≥ t),

and the subtype specific hazard function, λj∗(t) = P (T = t, j = j∗|T ≥ t) (Kalbfleisch

and Prentice, 1980). We leverage the classic relationships between these quantities

(namely S(t) = exp(−Λ(t)) and Λ(t) =

∫ t

0

λ(t) ) to further manipulate the expression
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of the absolute risk

P [a ≤ T < a+ τ, j = j∗|T ≥ a, Z] =

∫ a+τ

a

λj∗(t|Z)
S(t|Z)

S(a|Z)
dt

=

∫ a+τ

a

λj∗(t|Z)exp (Λ(a|Z)− Λ(t|Z)) dt

=

∫ a+τ

a

λj∗(t|Z)exp

(
−
∫ t

a

λ(u|Z)du

)
dt.

λ(t|Z) is the overall hazard function for any event, including diagnosis of any tumor

subtype, as well as competing events. Thus, if we denote the hazard for competing

mortality events by c(t|Z), the overall hazard λ(t|Z) =

(
J∑
j=1

λj(t|Z)

)
+ c(t|Z). This

relationship allows us to express the absolute risk solely in terms of the subtype

specific hazard functions λj and the hazard of competing mortality

P [a ≤ T < a+ τ, j = j∗|T ≥ a, Z] =

∫ a+τ

a

λj∗(t|Z)exp

(
−
∫ t

a

[
J∑
j=1

λj(u|Z) + c(u|Z)du

])
dt.

Thus far we have not made any modeling assumptions; we have simply worked with

standard relationships in probability to express the absolute risk of subtype j∗ in terms

of subtype specific hazard functions. At this point, we incorporate a Cox proportional

hazards model for the subtype specific hazard functions, λj(t|Z) = λ0j(t)e
Zβj for

j = 1, ..., J where λ0j(t) is the baseline hazard function, or the hazard function for an

individual with referent level covariates. We also assume that competing mortality
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risks do not depend on covariates other than age. These modeling choices result in

P [a ≤ T < a+ τ, j = j∗|T ≥ a, Z] = (2.1)

∫ a+τ

a

λ0j∗(t)e
Zβj∗exp

(
−
∫ t

a

[
J∑
j=1

λ0j(u)eZβj + c(u)du

])
dt.

This is our primary subtype specific absolute risk model of interest. Later we will

discuss situations where one might choose to incorporate additional modeling assump-

tions, but in each case we will use this model as a starting point.

2.1.1 Model Parameters

Fitting this subtype-specific absolute risk model requires estimation of:

1. the hazard rate of competing mortality events c(t)

2. the hazard ratio parameter for each subtype β1, ..., βJ , and

3. the baseline hazard function for each subtype λ01(t), ..., λ0J(t).

We allow these functions to be as flexible as possible by parametrizing the baseline

hazard functions and the competing hazard function non-parametrically, assigning a

parameter to each time point where we have data with which to estimate the value

of the function. We expand on the details in Section 2.3.

Depending on the available data sources, one can estimate these quantities in a

number of different ways. For instance, estimates of the hazard rate of competing

mortality events c(t) can be obtained empirically from a representative cohort study

with mortality data or given by the age-specific mortality rates provided by a national

survey, such as the US National Vital Statistics System. In the following sections, we
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discuss a variety of methods for fitting the final two key pieces of the model, starting

with the Cox hazard ratio parameters for each subtype.

2.2 Estimating Subtype-Specific Hazard Ratios

In this section, we discuss methods for estimating the subtype-specific Cox hazard

ratio parameters from cohort and case-control studies. The exponentiated parame-

ters, eβj , are subtype-specific hazard ratios. We present options for estimating the

βj parameters in the case where there is missing data in the tumor characteristics

variables that define each subtype.

2.2.1 Estimating Hazard Ratios from Cohort Data

Suppose we have data from a cohort study that prospectively follows individuals until

they die, are censored, or are diagnosed with a tumor. Specifically, suppose data is

collected on (Z, T, S) where Z denotes multivariate covariate data, T the time to the

observed event and S the type of event, with S = 1, ..., J for the tumor subtypes and

S = 0 for death or censoring.

Methods are well established for estimating Cox model hazard ratio parameters

from time to event data collected by cohort studies (Kalbfleisch and Prentice, 1980).

However, in the absolute risk setting, the different tumor subtypes act as competing

risks for one another. The standard method for estimating a particular βj∗ in the

presence of competing risks was developed by Holt and expanded on by Prentice

in 1978. The method is based on a partial likelihood that conditions on subtype.

Specifically, the partial likelihood is constructed from the probability that individual

i fails at time t(i), conditioning on the risk set at that time (Rt(i) = l : tl ≥ t(i)) and

the fact that exactly one failure of type j∗ occurs at that time. The partial likelihood
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is the product of this probability for all individuals (i) who experienced the event of

interest (in this case subtype j∗),

PL (βj∗) =
∏
(i)

λj∗(t(i)|zi)∑
l∈Rt(i)

λj∗(t(i)|zl)
=
∏
(i)

λ0j∗(t(i))e
βj∗zi∑

l∈Rt(i)

λ0j∗(t(i))e
βj∗zl

PL (βj∗) =
∏
(i)

eβj∗zi∑
l∈Rt(i)

eβj∗zl
(Holt, 1978; Prentice et al., 1978). (2.2)

Conditioning on subtype is useful because the baseline hazard functions cancel out,

resulting in a partial likelihood and corresponding score function that only involve

the parameter of interest, β∗j . This partial likelihood results in the score function

S (βj∗) =
∂logPL (βj∗)

∂βj
=

∑
(i):Si=j∗

zi −
∑
l∈Rt(i)

zle
β̂j∗zl

∑
l∈Rt(i)

eβ̂j∗zl

 = 0. (2.3)

Iterative methods are used to obtain the estimate β̂j that solves this equation.

Alternatively, one can estimate β∗j from a partial likelihood that does not condition

on subtype. This unconditional partial likelihood is based on the probability that

individual i fails at t(i) given the risk set at time t(i) and that exactly one failure

occurs at that time, regardless of the subtype (Kalbfleisch and Prentice, 1980). For

each time of an observed event t(i), this probability can be expressed in terms of the

overall hazard function as the partial likelihood

PL′ (β1, ..., βJ) =
∏
(i)

λ(t(i)|zi)∑
l∈Rt(i)

λ(t(i)|zl)
.
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The overall hazard of failure λ(t(i)|zi) is comprised of the sum of subtype-specific

hazards, where “subtype” S = 0 captures the competing non-tumor events. In-

corporating the subtype-specific proportional hazards model results in the following

expression for the partial likelihood,

PL′ (β1, ..., βJ) =
∏
(i)

λ(t(i)|zi)∑
l∈Rt(i)

λ(t(i)|zl)
=
∏
(i)

J∑
j=1

λc(t(i)|zi)

∑
l∈Rt(i)

J∑
j=1

λc(t(i)|zl)
=
∏
(i)

J∑
j=1

λ0j(t(i))e
βjzi

∑
l∈Rt(i)

J∑
j=1

λ0j(t(i))e
βjzl

.

The estimate β̃j∗ from this unconditional partial likelihood solves the score function

S(βj∗) =
∑
(i)

λ0j∗(t(i))zie
βj∗zi

J∑
j=1

λ0j(t(i))e
βjzi

−

∑
l∈Rt(i)

λ0j∗(t(i))zle
βj∗zl

∑
l∈Rt(i)

J∑
j=1

λ0j(t(i))e
βjzl

= 0. (2.4)

Unlike in the score function for the conditional partial likelihood given by equation

(2.3), the score function given by equation (2.4) involves the βj parameters and the

baseline hazard functions λ0j(t) for all subtypes. This makes parameter estimation

slightly more computational in that we must successively update each parameter,

plugging in current best versions of the other parameters (including the many param-

eters defining the non-parametric baseline hazard function), in order to iteratively

obtain final estimates. However, we show in Appendix A that if we plug-in a non-

parametric estimate of hazard into the unconditional partial likelihood score equation

and assume no tied failure times, this equation simplifies to the score equation from

the conditional partial likelihood. Thus, under a non-parametric model for baseline

hazard, β̂j is equivalent to β̃j. If we were to incorporate a parametric model for

baseline hazard, we would expect increased efficiency in the estimate of β̃j due to the
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fact that the unconditional partial likelihood approach, PL′ (β1, ..., βJ), does not lose

information by conditioning.

2.2.2 Estimating Hazard Ratios from Case-Control Data

Appropriate cohort data is not always available and when this is the case another op-

tion is to estimate the subtype-specific hazard ratio parameters βj from case-control

data. For rare outcomes, case-control studies are typically more economical in pro-

viding a greater number of cases, especially when particular subtypes are of interest.

Prentice and Breslow (1978) show how to estimate hazard ratio parameters β from a

Cox proportional hazards model using case-control data, and they extend discussion

of the method to the competing risk context. The authors demonstrate that the con-

ditional likelihood for β from a retrospective sampling scheme, conditioning on the

numbers of cases and controls selected, is the same as the likelihood for prospective

data associated with the Cox model (Prentice and Breslow, 1978). Having established

this link, they describe a computational strategy for estimating β through standard

logistic regression that has the form

log

{
P [S = j|T = t, z]

P [S = 0|T = t, z]

}
=α(t) + zβ.

Effectively, the authors show that one can estimate Cox hazard ratio parameters β

by simply fitting a logistic regression model that includes a non-parametric function

of time, α(t). In practice, this can be accomplished by including categorical age

strata in the model. Logistic regression is standard in statistical software packages,

so implementing this method is straightforward. We can apply this method to obtain

subtype-specific hazard ratio parameters βj from case-control data simply by fitting

separate logistic regression models for each of the J subtypes.
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However, rather than modeling each of the subtype outcomes individually, we

propose extending the ideas of Prentice and Breslow (1978) to multinomial logistic

regression and instead model the risk of each subtype simultaneously. This is a

standard way to model categorical outcomes and it is well known that multinomial

logistic regression produces more efficient parameter estimates than individual logistic

regression models that estimate the same parameters (Agresti, 2002).

Additionally, because multinomial logistic regression estimates all parameters si-

multaneously, in certain situations it is possible to fit a multinomial model using

data that would necessarily be excluded when fitting a logistic regression model. In

section 2.2.3, we describe instances where this is the case and demonstrate how to

reparametrize the multinomial model in order to make use of this data.

2.2.3 The Multinomial Likelihood

Several data features of the Breast Cancer Association Consortium (BCAC) moti-

vated us to develop and apply a reparametrized multinomial logistic regression model

in order to estimate the hazard ratios for subtypes. Our first consideration focused

on how to handle data from the numerous hospital-based studies in the consortium.

While the hospital-based case-control studies provided a representative sample of

cases from the population, the hospital-based controls did not constitute a represen-

tative sample of non-cases in the population. Thus, for the purposes of the analysis,

the hospital-based case-control studies could only contribute the representative case

data, with the non-representative controls excluded. Additionally, due to the fact

that the BCAC data is made up of multiple studies, we needed to estimate covariate

hazard ratios adjusted for study to help ensure that the observed relationships were

not driven by systematic differences in the way data was collected or processed at

different study centers.
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However, for the hospital-based studies contributing cases but not controls, it is

not possible to fit a model that adjusts for study using standard methods. To estimate

the study effect, the estimation procedures in logistic regression and multinomial

logistic regression rely on contrasts between cases and controls within a given study,

so when a study does not have controls, the study effect is not estimable. Excluding

the hospital-based studies entirely would allow use of standard methods, but at the

cost of reduced sample size, less efficient parameter estimation, and a colossal waste

of data.

Hospital-based studies with cases of different subtypes have information on case-

case hazard ratios. If we were to fit logistic regression models for each subtype

separately, there would be no way to incorporate that information. However, because

multinomial logistic regression estimates parameters for all subtypes simultaneously,

in principle it should be possible for hospital-based cases to contribute case-case

information to the estimation, with population-based studies that have representative

controls contributing to estimation of the case-control parameters. To achieve this

we needed to reparametrize the multinomial model.

In the following section, we show how to reparametrize the multinomial logistic

regression model in order to include data from studies that are missing controls while

appropriately adjusting for study effects. We go on to extend the method to allow

cases with incomplete subtype information to contribute to estimation of the model

parameters. While the development of this model is motivated by issues encountered

in the BCAC data, the reparametrized model should be useful for addressing similar

issues that may arise in other datasets as well.
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Notation

For data (Zl, Sl) on individuals l = 1, ..., N , let Zl denote a vector of covariates and let

Sl denote an integer disease status, taking values Sl = 0 for controls and Sl = 1, ..., J

mutually exclusive disease subtypes.

A standard multinomial logistic model for this data takes the form

log(
P (S = j|Z)

P (S = 0|Z)
) = Zβj (2.5)

for j = 1, ..., J , where βj is a parameter vector. Standard methods obtain parameter

estimates by maximizing the likelihood

L =
N∏
i=1

J∏
j=0

P (Sl = j|Zl)
I{Sl=j} (2.6)

L =
N∏
i=1

J∏
j=1

exp(Zlβj)
I{Sl=j}

1 +
J∑
j=1

exp(Zlβj)

. (2.7)

However, this multinomial likelihood is currently defined such that the controls are

the referent outcome category. As discussed, under this parametrization it is not

possible to estimate study effects for the studies that do not have controls.

Assume for now that the studies without controls have cases of all subtypes j =

1, ..., J . Data from these studies can be used to estimate

log

(
P (S = j∗|Z)

P (S = j′|Z)

)
= log

(
P (S = j∗|Z)

P (S = 0|Z)

/
P (S = j′|Z)

P (S = 0|Z)

)
= Z(β∗j − β′j)

for any j∗, j′ ∈ 1, ..., J . Thus, while studies without controls cannot contribute di-

rectly to the estimation of the βj parameters, data from these studies can contribute
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to estimation of the contrasts βj∗ − βj′ for j∗, j′ ∈ 1, ..., J .

Reparametrizing the Likelihood

To leverage this idea in the likelihood, consider the data into two parts (Zi, Si) and

(Zk, Sk), with observations from studies with controls indexed by i = 1, ..., Ni and

those from studies without controls indexed by k = 1, ..., Nk. We know that there

are no controls in (Zk, Sk), so we construct the likelihood conditional on the fact that

Sk ≥ 1. Mirroring equation (2.6), the likelihood for the two part data is

L =

(
Ni∏
i=1

J∏
j=0

P (Si = j|Zi)
I{Si=j}

)(
Nk∏
k=1

J∏
j=1

P (Sk = j|Zk, Sk ≥ 1)
I{Sk=j}

)
.

Again incorporating the multinomial model given by equation (2.5), we express the

likelihood in terms of model parameters as

L =


Ni∏
i=1

J∏
j=1

exp(Ziβj)
I{Si=j}

1 +
J∑
j=1

exp(Ziβj)




Nk∏
k=1

J∏
j=2

exp(Zk(βj − β1))
I{Sk=j}

1 +
J∑
j=2

exp(Zk(βj − β1))

 .

As previously discussed, in this likelihood the studies without controls contribute to

estimation of βj − β1. To use this in practice, all that remains is to implement a

Newton-Raphson algorithm to optimize the likelihood with respect to βj. This could

be done from the existing likelihood directly, but our preference is to reparametrize
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the likelihood by defining θ1 = β1,θj = βj − β1 for j ≥ 2, resulting in

L =


N∏
i=1

exp(Ziθ1)
I{Si=1}

J∏
j=2

exp(Zi(θj + θ1))
I{Si=j}

1 + exp(Ziθ1) +
J∑
j=2

exp(Zi(θj + θ1))




Nk∏
k=1

J∏
j=2

exp(Zkθj)
I{Sk=j}

1 +
J∑
j=2

exp(Zkθj)

 .

The score functions

S(θ1) =

Ni∑
i=1

Zi


[

J∑
j=1

I{Si=j}

]
−

exp(Ziθ1) +
J∑
j=2

exp(Zi (θj + θ1))

1 + exp(Ziθ1) +
J∑
j=2

exp(Zi (θj + θ1))

 , (2.8)

S(θj∗) =

Ni∑
i=1

Zi

I{Si=j∗} −
exp(Zi (θj∗ + θ1))

1 + exp(Ziθ1) +
J∑
j=2

exp(Zi (θj + θ1))

 (2.9)

+

Nk∑
k=1

Zk

I{Sk=j∗} −
exp(Zk (θj∗))

1 +
J∑
j=2

exp(Zk (θj))


have the familiar form Z(S−E[S]). We obtain the maximum likelihood estimator θ̂ =[
θ̂1
θ̂j

]
via the Newton-Raphson method by iterating θ̂new = θ̂old− [ I(θ) ]−1

[
S(θ1)
S(θj)

]
where

[ I(θ) ] = −E

[
∂S(θ1)
∂θ1

∂S(θ1)
∂θj

∂S(θj)

∂θ1

∂S(θj)

∂θj

]
. In practice, we approximate this expectation empirically
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with averages

∂S(θ1)

∂θ1

= −
Ni∑
i=1

Z ′iP1i (1− P1i)Zi (2.10)

∂S(θ1)

∂θj∗
=
∂S(θj∗)

∂θ1

= −
Ni∑
i=1

Z ′iP2j∗i (1− P1i)Zi (2.11)

∂S(θj∗)

∂θj∗
= −

Ni∑
i=1

Z ′iP2j∗i (1− P2j∗i)Zi +−
Nk∑
k=1

Z ′kP3j∗k (1− P3j∗k)Zk, (2.12)

and

P1i =

exp(Ziθ1) +
J∑
j=2

exp(Zi (θj + θ1))

1 + exp(Ziθ1) +
J∑
j=2

exp(Zi (θj + θ1))

P2j∗i =
exp(Zi (θj∗ + θ1))

1 + exp(Ziθ1) +
J∑
j=2

exp(Zi (θj + θ1))

; P3j∗k =
exp(Zkθj∗)

1 +
J∑
j=2

exp(Zkθj)

.

Getting Back Estimable Parameters

Converting maximum likelihood estimates θ̂ back into the original parametrization is

straightforward, with β̂1 = θ̂1 and β̂j = θ̂j + θ̂1 for j = 2, ..., J . This can be accom-

plished in one step using matrix notation β̂ = [ A ]
[
θ̂1
θ̂j

]
, A =


 1 0 0

0
... 0

0 0 1

 [ 0 ] 1 0 0

0
... 0

0 0 1

  1 0 0

0
... 0

0 0 1



.

However, the parameter vector β includes both covariate effects and study effects, for

subtypes j=1,...,J. As discussed previously, some study effects βj[s] are not estimable

for studies without controls (only the contrasts θj[s] are estimable, which is why we

reparametrized the likelihood as we did). Though we may be able to estimate θj[s],
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that does not change the fact that those elements of βj[s] are not estimable. When we

map the estimates θ̂ back to β̂, we must indicate which elements are not estimable.

In order for a given study effect βj[s∗] to be estimable, the study of interest and the

referent study must both have controls and cases of subtype j. In general, it is not a

hindrance that some study effects are not estimable because in most situations they

are simply nuisance parameters in a model where our primary goal is to estimate

covariate effects. The main purpose of including study in the model is to adjust for

the study effect, which is accomplished under the θj parametrization before map-

ping back to βj. Thus even though study effects cannot be estimated under the βj

parametrization, the final estimable βj estimates are appropriately adjusted for study.

Incorporating Incomplete Information for Classifying Case Subtype

Another feature of the BCAC data that we wanted to handle in developing the

reparametrized multinomial model was missing data in the subtype defining char-

acteristics. For example, we have discussed that breast cancers can be classified into

subtypes based on estrogen receptor (ER) status and progesterone receptor (PR)

status, which define four breast cancer subtypes: ER-PR-, ER-PR+, PR+ER-, and

ER+PR+. In the BCAC data ER status is missing on 19.4% of the cases and PR

status is missing on 30.4%. For cases with missing data on one of the tumor char-

acteristics, only partial information is available for assigning subtype outcome and

multiple different subtypes are possible based on the known information. For exam-

ple, if an individual’s breast cancer is known to be ER+ but the PR status is missing,

then the tumor could be either ER+PR- or ER+PR+, while we know that it is not

ER-PR- or ER-PR+. Though this information is incomplete, it would be wasteful to

exclude the partial information, especially on such a large number of cases. In this

section, we extend the ideas from the previous likelihood to allow individuals with
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incomplete subtype information to contribute to estimation of the model parameters,

while still accommodating for studies without controls.

In the previous section, we defined the outcome S as a single scalar taking val-

ues 0,1,..., J, depending on that individual’s specific combination of observed disease

characteristics. This implicitly assumed that there was complete information avail-

able on the disease defining characteristics in order to assign each individual’s tumor

to exactly one case subtype. To handle the fact that multiple subtypes are possible

when tumor characteristics are missing, we adapt our notation to define the outcome

as a binary vector Si = [S0, S1, ..., Sj]i according to whether the subtype is a possi-

bility given the known disease defining characteristics. When enough information is

available to define the subtype exactly, the Si vector will only assign one Sji to 1.

In the previous section when we assumed complete subtype information, each Si

only needed to reflect a single known outcome, say j∗. Thus, the likelihood given by

equation (2.7) only needed to reflect P (Si = j∗|Zi) for each person, given generally as
J∏
j=0

P (Si = j|Zi)
I{Si=j} . However, when there is incomplete information to determine

subtype, the likelihood must account for some individuals whose incomplete tumor

information allows multiple tumor subtypes to be possible, say Si = j∗ or j′. In this

case, the likelihood should reflect

P (Si = j∗ or Si = j′|Zi) = P (Si = j∗|Zi) + P (Si = j′|Zi),

expressed generally as
J∑
j=1

I{Sji=1}P (Si = j|Zi). This results in the likelihood

L =

(
Ni∏
i=1

J∑
j=1

I{Sji=1}P (Si = j|Zi)

)(
Nk∏
k=1

J∑
j=1

I{Sjk=1}P (Sk = j|Zi, Sk ≥ 1)

)
.

Again we parametrize the likelihood with parameters βj for j = 1, ..., J from the
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multinomial model (2.5), resulting in

L =


Ni∏
i=1

I{S0i=1} + I{S1i=1}exp(Ziβ1) +
J∑
j=2

I{Sji=1}exp(Ziβj)

1 +
J∑
j=1

exp(Ziβj)

 ·


Nk∏
k=1

I{S1k=1} +
J∑
j=2

I{Sjk=1}exp(Zk(βj − β1))

1 +
J∑
j=2

exp(Zk(βj − β1))

 .

Again, we reparametrize according to θ1 = β1 and θj = βj − β1 for j ≥ 2, resulting in

L =


Ni∏
i=1

I{S0i=1} + I{S1i=1}exp(Ziθ1) +
J∑
j=2

I{Sji=1}exp(Zi(θj + θ1))

1 +
J∑
j=1

exp(Zi(θj + θ1))

 ·


Nk∏
k=1

I{S1k=1} +
J∑
j=2

I{Sjk=1}exp(Zkθj)

1 +
J∑
j=2

exp(Zkθj)


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As before, the score functions have the form Z(S − E[S]):

S(θ1) =−
Ni∑
i=1

Zi

I{S0i=1} −
1

1 + exp(Ziθ1) +
J∑
j=2

exp(Zi(θj + θ1))

 , (2.13)

S(θj∗) =−
Ni∑
i=1

Zi

I{Sj∗i=1} −
exp(Zi(θj∗ + θ1))

1 + exp(Ziθ1) +
J∑
j=2

exp(Zi(θj + θ1))

 (2.14)

−
Nk∑
k=1

Zk

I{Sj∗k=1} −
exp(Zkθj∗)

1 +
J∑
j=2

exp(Zkθj)

 .

These score functions are essentially the same as the score functions for complete

subtype data given by equations (2.8) and (2.9); however, in this formulation an

individual may have more than one non-zero indicator in the outcome vector Si =

[S0, S1, ..., Sj]i if multiple subtypes are possible due to some unknown subtype defining

information. The derivatives of these score functions are the same as those given

previously in equations (2.10), (2.11), and (2.12), resulting in the same expressions for

the Fisher’s information matrix and the same Newton-Raphson estimation procedure

as previously described.

Calculating the Variance

θ̂ is a maximum likelihood estimator so the covariance V
[
θ̂
]

= [ I(θ) ]−1, where I (θ)

is the Fisher’s information matrix based on the derivatives of the score functions
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(2.13) and (2.14). Given the relationship β = [ A ]
[
θ1
θj

]
, A =


 1 0 0

0
... 0

0 0 1

 [ 0 ] 1 0 0

0
... 0

0 0 1

  1 0 0

0
... 0

0 0 1



,

the covariance for β̂ can be easily calculated from the covariance matrix for θ̂ as

V
[
β̂
]

= V
[
Aθ̂
]

= A [ I(θ) ]−1A′.

Another way to calculate the variance of θ and β is to use influence functions.

This method of variance calculation is based on expressing
√
N(θ̂ − θ) = 1√

N

N∑
m=1

ψm

independent identically distributed contributions and applying the central limit the-

orem to conclude that the asymptotic variance of 1√
N

N∑
m=1

ψm, and thus of
√
N(θ̂− θ),

is Eθ0 [ψ′ · ψ]. With the appropriate formula for computing ψ which we derive below,

the variance is estimated by the empirical variance of ψm in the data.

In this setting, the primary goal is to estimate covariate effects while adjusting

for study effects. When we compute the influence functions for the covariate effect

parameters, we must take into account the additional variance that arises due to

estimation of the nuisance study effect parameters. If we denote the effects of interest

θp and the nuisance effects θnui, the function that does this is the efficient influence

function, which for maximum likelihood estimators takes the form

ψpk = Eθp
[
S(θp)

effS(θp)
eff ′
]−1

S(θp)
eff , with

S(θp)
eff = S(θp)− Eθ [S(θnui)

′]Eθnui [S(θnui)S(θnui)
′]−1 Sθnui .

We compute the efficient influence functions empirically using the expressions for the
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score functions given by equations (2.13) and (2.14) as

ψpk =

(
1

N

N∑
m=1

S(θp)
eff
m S(θp)

eff ′

m

)−1

S(θp)
eff
m

S(θp)
eff
m = S(θp)m−

(
1

N

N∑
m=1

S(θp)mS(θnui)
′
m

)(
1

N

n∑
m=1

S(θnui)mS(θnui)
′
m

)−1

S(θnui)m.

Based on the linear relationship between θ and β, once we have the influence functions

ψp(NxP ) for the parameters of interest θp we can easily obtain the influence function for

βp as φp = ψpA
′. The influence functions φp are useful for other variance calculations,

such as computing the variance of a complex function f(β̂p). Specifically, φp will later

be used in a variance calculation for subtype-specific absolute risk estimates that are

based on βj parameters from this reparametrized multinomial model.

Simulations

In order to eventually incorporate this method into our absolute risk model, we im-

plemented the reparametrized multinomial likelihood in R. To verify that the coded

method was functioning well, we evaluated its performance in several simulation set-

tings.

Specifically, we generated cohort data by simulating three predictor variables, dis-

tributed as x1 ∼ N (µ = 0, σ2 = 9), x2 ∼ Bernoulli (p = 0.2), x3 ∼ Bernoulli (p = 0.5),

and randomly assigned individuals to one of three studies. We then generated an

outcome variable y, taking values 0 for controls or 1, 2, 3, 4 for subtypes, from a

multinomial model with known parameters, given in Table 2.1. In this simulation

we considered the four subtypes to be defined by two binary tumor characteristics,
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Table 2.1: True Parameter Values for Multinomial Simulation:
Covariate Log Odds Ratios for Four Subtypes

Subtype 1 Subtype 2 Subtype 3 Subtype 4

βx0 -2 -3 -1 -1

βx1 log(1) log(1.03) log(1.04) log(1.05)

βx2 log(0.75) log(1) log(0.25) log(0.5)

βx3 log(0.6) log(0.6) log(0.95) log(0.7)

ER status and PR status. Accordingly, we generated tumor characteristic variables

ER and PR based on the simulated subtype variable y, with Subtype 1 = ER-PR-,

Subtype 2 = ER-PR+, Subtype 3 = ER+PR-, and Subtype 4 = ER+PR+.

In the first simulation setting, we fit the model with the complete data, with con-

trols in all three studies and complete information on the tumor characteristics. In

the second setting, we removed all controls in the second study to evaluate perfor-

mance in the case where some studies are fully missing controls. In the third setting,

we randomly inserted missing values into the ER and PR variables to examine the

method’s performance when some tumor characteristic information is missing.

In each setting, we generated 500 datasets of sample size 200,000 and used the

multinomial likelihood method to estimate the hazard ratio parameters for each

subtype. We assigned Subtype 4 (ER+PR+) to be the referent subtype in the

reparametrization, both to test our function’s option for user specification of the

referent subtype and to ensure that the most commonly occuring subtype was used

as referent.

Table 2.2 presents the bias as a percentage of the true parameter value for the

log odds ratio estimates from the reparametrized multinomial model for under the

three simulation settings. For parameters with true value equal to zero, we present

the absolute bias instead of the percent bias, which was cannot compute as it would
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Table 2.2: Percent Bias of Reparametrized Multinomial Estimates for Covariate
Log Odds Ratio Parameters of Four Subtypes, for True Values in Table 2.1

Percent Bias

Subtype 1 Subtype 2 Subtype 3 Subtype 4

Complete
Data

βx1 *2.0E-04 -1.3 -0.2 -0.2

βx2 -0.2 *-2.9E-04 0.0 0.0

βx3 0.1 -0.6 -0.4 0.1

No Controls
in Study 2

βx1 *-2.6E-05 -0.2 0.1 0.1

βx2 -0.1 *-9.9E-04 0.1 0.1

βx3 0.0 -0.5 -0.6 0.2

Missing Data
in Tumor

Characteristics

βx1 *-7.1E-05 -0.1 -0.2 -0.4

βx2 0.4 *3.8E-04 -0.1 -0.1

βx3 0.0 0.4 0.7 0.0

“ * ” indicates where bias is reported instead of percent bias due to
true values of 0.

involve dividing by zero. The results in Table 2.2 show that the implemented method

provides unbiased parameter estimates in all simulation settings.

Having verified the unbiasedness of the parameter estimates, we next evaluate

the performance of the variance estimators. We will refer to the Fisher’s informa-

tion variance estimator as “model-based” and the variance estimator derived from

the influence functions as “robust.” We compare the standard deviations from these

variance estimators to the average empirical standard deviation in the point estimates

observed for the 500 datasets. In Table 2.3 we present the bias and coverage prob-

ability for the model-based and robust estimates of standard deviation in the three

simulation settings . The results in Table 2.3 show that both the model-based and

robust variance estimators have less than 10% bias in all cases and coverage probabil-

ities consistently at the 95% level. We see a small percentage of bias in the standard
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Table 2.3: Percent Bias and Coverage Probability of Model-Based and Robust Stan-
dard Deviation Estimates for Covariate Log Odds Ratio Parameters of Four Subtypes

Percent Bias Coverage Probability

Y=1 Y=2 Y=3 Y=4 Y=1 Y=2 Y=3 Y=4

Complete Data

Model-
Based

βx1 -7.3 -5.2 -3.1 -4.7 0.97 0.97 0.96 0.95

βx2 4.1 1.7 -1.1 -1.5 0.95 0.95 0.96 0.95

βx3 -3.4 0.0 -1.8 1.4 0.97 0.94 0.95 0.94

βx1 -7.3 -5.3 -3.1 -4.7 0.97 0.96 0.96 0.96

Robust βx2 4.1 1.7 -1.1 -1.6 0.95 0.95 0.96 0.95

βx3 -3.4 0.0 -1.9 1.4 0.97 0.94 0.95 0.94

No Controls in Study 2

Model-
Based

βx1 -6.5 -2.2 2.1 -1.1 0.96 0.97 0.94 0.95

βx2 1.7 0.1 -1.1 -1.3 0.94 0.96 0.95 0.95

βx3 -1.0 -1.4 -3.5 4.0 0.96 0.95 0.96 0.93

βx1 -6.6 -2.3 2.1 -1.1 0.96 0.97 0.94 0.95

Robust βx2 1.7 0.1 -1.1 -1.3 0.94 0.96 0.95 0.95

βx3 -1.1 -1.4 -3.5 4.0 0.96 0.95 0.96 0.93

Missing Data in Tumor Characteristics

Model-
Based

βx1 2.6 -2.3 -0.3 -3.5 0.93 0.95 0.95 0.96

βx2 -2.7 0.9 -5.7 1.1 0.96 0.94 0.96 0.96

βx3 -2.9 3.3 0.1 -4.8 0.95 0.94 0.95 0.96

βx1 2.6 -2.3 -0.3 -3.5 0.93 0.96 0.95 0.96

Robust βx2 -2.7 0.8 -5.7 1.1 0.96 0.94 0.96 0.96

βx3 -2.9 3.2 0.1 -4.8 0.95 0.94 0.95 0.96

“Y” indicates subtype
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deviation estimates for the current simulation parameters, with sample size 200,000

and the ‘true values’ of standard deviation computed empirically on 500 datasets;

however, the bias is not systematic. When we compared the model-based standard

deviations to the robust ones, we found that they were essentially equal, differing on

average by less than 0.005 percent. The model is correctly specified, so this concor-

dance is to be expected and provides further verification that our implementation of

the method is working correctly.

We also performed two additional simulations, considering the setting with con-

trols fully missing from one study and missing data in the tumor characteristics, as

well as a setting with complete data that included an interaction between x2 and

x3. The results (not shown) did not differ significantly from the three simulations

presented here.

2.3 Estimating Baseline Hazard Functions

In addition to the subtype-specific hazard ratio, another key component of a subtype-

specific absolute risk model is the baseline hazard function. The subtype-specific

baseline hazard function λ0j(t) captures the probability P [T = t, S = j|T ≥ t, Z0],

over time. At any given time t, this is the chance that an individual is diagnosed

with subtype j given that they have not been diagnosed with any subtype prior to

that time, for an individual with referent level covariates Z0. In the following section,

we present a number of different options for estimating the subtype-specific baseline

hazard function by integrating information from a variety of data sources, including

analytic cohort studies, case-control studies, national surveys, and population-based

cancer registries. We go on to discuss how one can make use of registry data even if

it is lacking detailed subtype and/or covariate information.
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2.3.1 Estimating Baseline Hazard Functions from Cohort Data

We begin by reviewing a standard method for estimating subtype-specific baseline

hazard functions from cohort data. As in Section 2.2.1, suppose there is a cohort

with variables (Z, T, S) where Z denotes multivariate covariate data, T the time to

the observed event and S the type of event, with S = 1, ..., J for the tumor subtypes

and S = 0 for death or censoring. A common way to model the baseline hazard

function λ0j (t) for each subtype is to do so non-parametrically, allowing the function

to be as flexible as possible and driven by the data. Let non-parametric baseline

hazard function for each subtype λ0j (t) be defined by parameters λjq at each time

point tj1 , ..., tjQj where a failure of the given subtype occurred, with zero hazard

between these time points, yielding

λ0j(t) =


λjq for tjq = t

0 else

 =

Qj∑
q=1

λjqI {tjq = t} .

This baseline hazard function can be estimated by obtaining maximum likelihood

estimates for every parameter λjq that defines the function.

In Appendix B, we give the details for constructing the likelihood in terms of

subtype-specific hazard functions, incorporating the proportional hazards model for

each subtype, λj(t) = λ0j(t)e
βjzi , and expressing the baseline hazard function λ0j(t)

in terms of the parameters λjq, yielding the likelihood

L =

( ∏
i:Si≥1

J∏
j=1

(
Q∑
q=1

I {Si = j}λjqI {tjq = ti}

)
eβjzi

)
·

(
N∏
i=1

exp

−
J∑
j=1

( ∑
m:tjm<ti

λjm

)
eβjzi


)
.
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In Appendix B we also derive the score function for each parameter λjq and show

that the maximum likelihood estimator λ̂jq for a specific subtype j∗ at time tj∗q∗ is

λ̂j∗q∗ =

∑
i:Si=j∗

I {tj∗q∗ = ti}

N∑
i:tj∗q∗<ti

eβj∗zi

=
dj∗(tj∗q∗)∑

i∈R(tj∗q∗ )

eβj∗zi
, (2.15)

the number of failure events of type j∗ which occur at tj∗q∗ , divided by weighted

contributions for all individuals in the risk set R(tj∗q∗), those who were event free at

tj∗q∗ . This is equivalent to treating all events other than subtype j∗ as censored and

applying Breslow’s estimator (Breslow, 1972). Consequently, it is straightforward to

utilize existing software packages to estimate the baseline hazard function for each

subtype by appropriately redefining the censoring variable.

Drawing Strength Across Subtypes

Here, we discuss additional modeling assumptions that could be incorporated to draw

strength across all subtypes in the estimation of each subtype-specific baseline hazard

functions. We initially defined the subtype-specific Cox proportional hazards models

as λj(t|Z) = λ0j(t)e
Zβj , formalizing the assumption that for a given subtype j the

hazard functions for women with different covariate levels are proportional. This

does not make any assumptions about the relationship between the baseline hazard

functions of different subtypes, say λ0j∗(t) and λ0j′(t). However, one could choose to

model the relationship between the baseline hazard functions of different subtypes,

reducing the number of parameters that need to be estimated and leading to gains in

the efficiency and stability of the parameter estimates.

Specifically, one could model λ0j(t) = λ01(t)hj(θj, t), where hj(θj, t) is a parametric

function and h1(θ1, t) = 1. In order to estimate the subtype-specific hazard functions
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based on this model, one need only estimate the reference baseline hazard function

λ01(t) and the parameters θj of the functions hj(θj, t) = 1 for j=2,..., j=J. We derive

the estimators for this general model.

Again, we characterize the reference baseline hazard function λ01(t) by constant

parameters λ1, ..., λQ at all times, t1, ..., tQ, where an event was observed to occur,

with zero hazard in between. Starting with the likelihood from Appendix B, which is

defined in terms of the subtype-specific baseline hazard functions, we incorporate the

new model λj(t) = λ01(t)hj(θj, t)e
βjzi . We then obtain profile likelihood estimates for

λ01(t), by treating hj(θj, t) as fixed. Appendix C contains the mathematical details

showing that the estimator at a given time tq∗ is

λ̂q∗ =

∑
i:Si≥1

I {tq∗ = ti}

N∑
i=1

J∑
j=1

∑
m:tm<ti

hj(θj, tj)e
βjzi

=
d(tq∗)∑

i∈R(tq∗)

J∑
j=1

hj(θj, tj)e
βjzi

, (2.16)

the total number of observed events that occured at that time, d(tq), divided by

weighted contributions from all those at risk at that time. Recall that the numerator

of the baseline hazard estimator for the standard Cox model given in equation (2.15)

only included cases of the particular subtype j∗. In contrast, the numerator of the

baseline hazard estimator given by equation (2.16) includes all events that occur at

tq, allowing the estimator to draw strength across all subtypes. The estimator also

depends on both hj(θj, tj) and βj.

In Appendix D we derive score functions for θj parameters from the general model

hj(θj, t). In the case of the simple model, hj(θj, t) = θj, the score function can be
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analytically solved to obtain the estimator

θ̂∗ =
dj∗

N∑
i=1

−
∫ ti

0

λ01(u)eβj∗zidu

,

where dj∗ is the number of observed events of subtype j∗ irrespective of the time that

those events occurred. In both the general formulation of hj(θj, t) and the simple

model where hj(θj, t) = θj, the estimates of θ̂j depend on the referent baseline hazard

parameters λq, so it is necessary to iterate between the estimators in order to obtain

final estimates.

2.3.2 Estimating Baseline Hazard Functions from Registry

Data

While cohort studies can be an excellent source of representative, prospective data

from a population, these studies are expensive and usually conducted over long periods

of time. For this reason, when data is needed to fit an absolute risk model for a

particular outcome, an ideal cohort study may not be available and often one must

resort to case-control studies to estimate the subtype-specific hazard ratio parameters,

βj, using the methods discussed in Sections 2.2.2 and 2.2.3. However, case-control

studies cannot be used to estimate the baseline hazard function. In this case, one can

use external registry data to estimate baseline hazard functions.

Even if appropriate cohort data is available, there are compelling reasons to con-

sider using registry data, instead of the cohort data, to estimate the baseline hazard

functions. Data from a national registry could be more representative of a coun-

try’s overall population than a single cohort study, especially if the cohort study was

conducted in a specialized population. Additionally, the typically large sample size
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of registry data can increase efficiency in the estimation of rates, especially for rare

cancer subtypes.

Methods for incorporating registry data to estimate the baseline hazard for a

single disease outcome have been described by Gail et al. (1989). In particular, the

existing methods handle the issue that registries generally collect minimal covariate

information and thus report only the marginal hazard rates, λm(t) = P [T = t|T ≥ t].

These rates quantify the hazard for individuals with a mixture of different covariate

levels, whereas to fit an absolute risk model, an estimate of the hazard function for

individuals with referent level covariates λ0(t) = P [T = t|T ≥ t, Z0] is needed. Gail

et al. (1989) proposed methods that relate these two quantities through a well-known

public health measure, the attributable risk, and used estimates of attributable risk

to reweight the marginal hazard rates in order to obtain baseline hazard rates for a

single subtype outcome.

In this section, we extend the methods of Gail et al. (1989) to the setting of

multiple disease subtypes. First, we describe methods for estimating subtype-specific

attributable risks and present the details for naturally extending the reweighting ap-

proach described above to handle subtypes. We then address an added complexity in

using registry data to estimate baseline hazard rates for disease subtypes: potentially

missing information on the subtype-defining tumor characteristics.

To rievew, Bruzzi et al. (1985) define attributable risk as the fraction of the

total disease experience in the population that would not have occurred if the effect

associated with the risk factor of interest were absent; mathematically,

AR(t) =
λm(t)− λ0(t)

λm(t)
= 1− λ0(t)

λm(t)
.

Applying this definition to subtypes, the attributable risk for a given subtype j at
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a particular time can be expressed as the difference between the subtype-specific

marginal hazard and the subtype-specific hazard for those with baseline covariates as

a proportion of the subtype-specific marginal hazard,

ARj(t) =
λmj(t)− λ0j(t)

λmj(t)
= 1− λ0j(t)

λmj(t)
.

Following Gail et al. (1989), a simple rearrangement of this equation shows that

the baseline hazard function, λ0j(t), can be obtained from the subtype-specific at-

tributable risk and the marginal hazard function provided by the registry as λ0j(t) =

(1−ARj(t))λmj(t). To make practical use of this relationship, we need to estimate the

subtype-specific absolute risks ARj(t). We will review how to estimate the subtype-

specific attributable risk from cases only and from a sample of the population by

applying the estimators given by Bruzzi et al. (1985) to subtype outcomes.

Bruzzi’s Formula: Estimating Attributable Risk from Cases Only

Bruzzi et al. (1985) showed that as long as we have estimates of the relative risk, we

can estimate the attributable risk from the covariate distribution among the cases

only. A simple extension of Bruzzi et al.’s estimator to the setting of subtypes yields

the estimator

ÂRj = 1− 1

dj

∑
i:Si=j

1

R̂Rji

= 1− 1

dj

∑
i:Si=j

1

eβ̂jZi
. (2.17)

As before, dj denotes the total number of subtype j cases. As detailed in Section

2.2, the β̂j estimates can be based on either cohort or case-control data. Based on

the estimate in equation (2.17), λ0j(t) relates to λmj(t) through a weighting of the

marginal hazard function by the expected value of the inverse relative risk among
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subtype j cases,

λ̂0j(t) = λ̂mj(t)

(
1

dj

∑
i:Si=j

1

eβ̂jZi

)
≈ λ̂mj(t) · ES=j

[
1

eβjZ

]
. (2.18)

The attributable risk link depends only on the distribution of the covariates among

subtype j cases, so any data source with a representative sample of cases can be used

for estimation. For instance, the covariate distribution among subtype j cases can

come from a population-based or hospital-based case-control study, or from a cohort

study. However, for any of these studies, it is important that the data constitute a

sample of subtype j cases that is representative of the population of interest. If the

study is conducted in a special population, this may not be the case and could result

in biased estimates.

Estimating Attributable Risk from a Sample of the Population

Again following Bruzzi et al. (1985), another way to obtain the baseline hazard func-

tion for each subtype is by weighting the marginal hazard estimates according to the

distribution of covariates in the population, rather than just the cases. Starting with

the relationship ARj(t) = 1− λ0j(t)

λmj(t)
, one can express the marginal hazard for a given

subtype as a mixture of subtype-specific hazards which are conditional on covariates

and incorporate the proportional hazards model to show that

ARj(t) = 1− λ0j(t)

λmj(t)
= 1− λ0j(t)∑

Z

λj(t|Z)P [Z|T ≥ t]
= 1− λ0j(t)∑

Z

λ0j(t)e
βjZP [Z|T ≥ t]

ARj(t) = 1− 1∑
Z

eβjZP [Z|T ≥ t]
.
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For rare diseases one may assume that the distribution of covariates for individuals

who survive beyond time t is approximately the same as the distribution in the general

population, i.e. P [Z|T ≥ t] = P [Z], and thus that

ÃRj(t) = 1− 1∑
Z

eβ̂jZP̂ [Z|T ≥ t]
≈ 1− 1∑

Z

eβ̂jZP̂ [Z]
. (2.19)

This places fewer restrictions on the data sources that can be used to estimate the at-

tributable risk. Aside from estimates of the subtype specific hazard ratio parameters,

β̂j, this calculation depends entirely on estimates of the joint covariate distribution

P̂ [Z], which can be estimated from any sample with covariate data that is representa-

tive of the population of interest, such as a population-based cohort study, a national

survey, or the controls from a population-based case-control study. From these data

sources, ÂRj(t) can be obtained empirically or with further modeling of P [Z].

Putting this together with the relationship λ0j(t) = (1 − ARj(t))λmj(t), the

subtype-specific marginal hazard functions relate to the baseline hazard functions

through the inverse of the expected relative risk in the population,

λ̃0j(t) =
λmj(t)∑

Z

eβ̂jZP̂ [Z]
≈ λmj(t)

EZ

[
eβ̂jZ

] . (2.20)

We have shown how the attributable risk relates the marginal hazard functions pro-

vided by the registry to the baseline hazard functions needed in the model. We

detailed two methods for estimating the attributable risk, using the distribution of

the covariates in a representative sample of cases or of individuals in the population.

Both are valid approaches and the decision for which method to use should depend

on the quality and representativeness of the available data.

Thus far, we have discussed estimates ÂRj and ÃRj which are constant over time.
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A simple but effective way to allow the attributable risk to vary with time is through

a piecewise constant function, with each parameter representing the attributable risk

within a different stratum of age. The same estimators can be applied, restricting

the calculation to covariate data within the appropriate age stratum. In order to

do this, the data sources used to estimate time varying attributable risk must have

information on age.

Registry Data with Missing Tumor Characteristics

In some cases, a registry may not contain all the information necessary to determine

subtype. In the most extreme case, the registry may not contain any information on

subtype and thus only provides only the overall hazard rate of any tumor. In this

situation, it is still possible to estimate baseline hazard functions for the subtypes of

interest calibrated to registry data, by incorporating subtype distribution information

from other data sources.

The overall age specific incidence rate provided by the registry, λm+(t), will re-

flect the hazard for a mixture of subtypes and individuals with different covariate

levels. We must obtain λmj(t), the age-specific incidence function for each subtype

marginalized over the covariates. Once we have λmj(t), we can apply previously

discussed methods that make use of attributable risk to obtain the baseline hazard

λ0j(t).

One approach to get λmj(t) from λm+(t) would be to reparametrize the marginal

hazard of each subtype as a proportional of the overall marginal hazard,
λmj(t)

λm+(t)
= ξj(t)

for each subtype j = 1, ..., J and model ξj(t). For example, a restrictive model might

make the assumption that the ratio is constant over time, ξj(t) = ξj for each subtype.

One would then estimate ξ̂j =
nj
n+

from any representative sample of incident cases

(an appropriate cohort or incident case-control study), with nj and n+ denoting the
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number of subtype j cases and the total number of cases respectively.

An example of a more flexible model would be a piecewise constant function,

parametrizing ξj(t) = ξjk for selected intervals tk ≤ t ≤ tk+1. One could then estimate

the observed fraction of subtype j cases among all cases, restricted to the age stratum

defined by tk, ξ̂jk =
njk
n+k

, from a representative sample of incident cases with subtype

and age information. One could choose to consider other parametric functions for

ξc(t); however, in most situations the constant or time-varying proportionality models

should be sufficient.

A registry may also have some, but not all, the information necessary to deter-

mine subtype. This could be the case when one or more of the tumor characteristics

that define the subtype have been recently recognized as important, and the registry

has yet to record information on those characteristics. Revisiting the example of four

breast cancer subtypes defined by the binary tumor characteristics ER and PR status,

the registry may have recorded ER status but not PR status. This registry would

provide marginal hazard rates by ER status, λm(ER+)(t) and λm(ER−)(t). In order

to obtain the subtype-specific marginal hazard rates λm(ER+,PR+)(t), λm(ER+,PR−)(t),

λm(ER−,PR+)(t), λm(ER−,PR−)(t), one could take the same approach but in this case

weighting the ER-defined marginal hazards by estimates of the finer subtype distri-

butions through a proportionality model fit with a supplemental data source. By

noting that λm(ER+,PR+)(t)+λm(ER+,PR−)(t) = λm(ER+)(t) and that λm(ER−,PR+)(t)+

λm(ER−,PR−)(t) = λm(ER−)(t), we see that is is only necessary to establish propor-

tionality models for two of the four subtypes, say λm(ER+,PR+)(t) and λm(ER−,PR+)(t),

as the remaining subtypes (in this case λm(ER+,PR−)(t) and λm(ER−,PR−)(t)) are then

defined.
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2.4 Summary and Absolute Risk Predictions

In this chapter we have discussed a number of different ways to estimate the key

components of a subtype-specific absolute risk model, depending on the characteristics

of the available data sources. Figure 1 summarizes which data sources can be used

to estimate each component, providing a road map for using different data sources

in conjunction with one another to develop the model. For instance, we could fit an

Figure 2.1: Data Sources for Estimation When Available Incidence Rates Have Sub-
type Information
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1                   
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absolute risk model by estimating the βj parameters and attributable risk (using the

distribution of covariates among cases) from a case-control study and combining those

estimates with subtype-specific marginal hazard rates from a registry and competing

mortality rates from a national survey. We also discussed ways to handle registry

data that is missing tumor subtype. Figure 2 adds these details to the overall picture

of which data can be used to estimate each model component.

The option to build absolute risk models by integrating multiple data sources

allows researchers to use the most appropriate choice available for each component

of the model, drawing on the strengths of different types of data. When multiple
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Figure 2.2: Data Sources for Estimation When Incidence Rates Are Missing Subtype
Information
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sources of data are available to fit a given model component, careful consideration

of characteristics such as the representativeness, sample size, sampling scheme, and

missingness of the data should go into deciding which source is ultimately the best

choice for estimating that component.

Typically once the subtype-specific absolute risk model is built, the goal is to use

the model to learn about the distribution of absolute risk for the subtypes of interest

in the population. This may mean looking at the proportion of the population that

exceeds clinically relevent thresholds of risk or evaluating risk differences associated

with a given risk factor for a particular subtype. Whatever the goal, in order to learn

about the distribution of risk in the population one must first use the fitted model

to predict risk for a set of covariate profiles that are representative of the population.

This representative set of covariate profiles could come directly from a cohort study or

from the controls in a population-based case-control study. The representative set of

covariate profiles could also be simulated from the joint distribution of the covariates

Z, perhaps estimated in a large national survey. In Chapter 4 we will demonstrate

these ideas by fitting a subtype-specific absolute risk model to real data, making risk
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predictions for breast cancer subtypes that are representative of the United States

population, and analyzing the resulting risk distributions to evaluate the impact of

risk factor modification on the distribution of risk for various subtypes. Before doing

so, we will first address the statistical challenge of variance estimation, characterizing

the uncertainty in risk predictions from an absolute risk model which is fit on multiple

sources of data.

2.5 Variance Estimation

Characterizing the uncertainty in subtype-specific absolute risk estimates is critical to

their use. An individual’s risk is estimated by applying the fitted absolute risk model

to the individual’s set of covariates. Thus, the variance of the risk estimate is directly

related to the variance of the parameters that comprise the fitted model. Variance

estimation in this context is challenging because we must account for the fact that

the risk estimate is a complex function of the various model parameters, which we

have shown may be estimated from multiple different sources of data. A given data

set may also be used to estimate more than one set of model parameters, in which

case a valid variance estimation procedure must account for covariance between the

estimates and how it ultimately affects the variance of the absolute risk estimate.

To construct a variance estimator that accounts for these features, we apply em-

pirical process theory, basing the variance calculation on influence functions. The

influence function approach has previously been applied to the problems of estimat-

ing the variance of attributable risk estimates from complex surveys and of estimat-

ing the variance of absolute risks for colorectal cancer (Graubard and Fears, 2005;

Freedman et al., 2009b). We extend the approach to the setting of subtype-specific

absolute risk models, handling influence functions for subtype-specific absolute risks,
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the reparametrized multinomial model for subtypes, and models of the subtype dis-

tribution.

For illustrative purposes, suppose the model is parametrized by β̂j, λ̂0jq for j =

1, ..., J and q = 1, ..., Qj for each subtype j. Generally, a risk estimate for subtype j∗,

denoted Aj∗ , is simply a function of the parameter estimates Âj∗ = f(β̂j, λ̂0jq). Given

this general form, we express the risk estimate as a linear function of the parameter

estimates through a Taylor’s expansion

(
Âj∗ − Aj∗

)
=

J∑
j=1

∂f(βj, λ0jq)

∂βj

(
β̂j − βj

)
+

Qj∑
q=1

∂f(βj, λ0jq)

∂λ0jq

(
λ̂0jq − λ0jq

)+ op(1).

We then express each parameter estimate as a sum of independent identically dis-

tributed influence functions, which quantify the contribution of each data point to a

given parameter estimate, with β̂j − βj = 1
N

N∑
i=1

ψji and λ̂0jq − λ0jq = 1
N

N∑
i=1

ϕjqi,

(
Âj∗ − Aj∗

)
=

J∑
j=1

(
∂f(βj, λ0jq)

∂βj

)(
1

N

N∑
i=1

ψji

)

+
J∑
j=1

Qj∑
q=1

(
∂f(βj, λ0jq)

∂λ0jq

)(
1

N

N∑
i=1

ϕjqi

)
+ op(1)

√
N
(
Âj∗ − Aj∗

)
=

1√
N

N∑
i=1

 J∑
j=1

(∂Aj∗
∂βj

)
(ψji) +

Qj∑
q=1

(
∂Aj∗

∂λ0jq

)
(ϕjqi)

+ op(1)

√
N
(
Âj∗ − Aj∗

)
=

1√
N

N∑
i=1

φi + op(1).

By using influence functions, we express the risk estimate as an sum of independent

identically distributed contributions φi from each observation that was used to es-

timate the model parameters. Due to the central limit theorem, we know that the
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variance of the risk estimate V ar
[
Âj∗
]

= V ar[φ]
N

. With the proper formula for φ, we

can estimate this variance empirically by computing the variance of φi for all individ-

uals in the overall data. Again, this overall data may be comprised of observations

from multiple data sources.

Thus far we have described a general strategy for constructing a variance estimator

for risk estimates from a subtype-specific absolute risk model. However, the specific

formula for φ will depend on how the model is parametrized and how those parameters

are estimated. In this chapter we have provided many different options for modeling

and model fitting, which depend on the chosen data sources. In the following, we will

derive the formula of φ for one possible choice of model parametrization and fitting.

We present the mathematical details of variance calculation for the following

model, which incorporates attributable risk and subtype ratio as described in 2.3.2:

Aj∗ =

∫ a+τ

a

λ0j∗(t)e
Zβj∗exp

(
−
∫ t

a

[
J∑
j=1

λ0j(u)eZβj + c(u)du

])
dt

Aj∗ =

∫ a+τ

a

(1− ARj∗(t)) ξj∗(t)λm+(t)eZβj∗ (2.21)

· exp

(
−
∫ t

a

[
J∑
j=1

(1− ARj(t)) ξj(t)λm+(u)eZβj + c(u)du

])
dt.

In Chapter 4 we fit this model to real data, so the variance calculation presented here

will reflect the characteristics of the data sources we use in the actual data analysis.

For instance, we obtain estimates of competing mortality c(t) from national survey

data and overall marginal hazard λm+(t) from a national cancer registry. These

data sources have large enough sample sizes that the estimates c(t) and λm+(t) are

essentially without variance, so in the variance calculation we treat these rates as
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known. Estimation of the subtype-specific attributable risks ARj(t), the subtype-

ratios ξj(t), and the log hazard ratios βj, all contribute variation to the variance of

the risk estimate Aj∗ .

The precise relationships depend on the model’s parametrization, which we for-

malize as

ARj(t) = ARjq when tq ≤ t ≤ tq+1 λm+(t) = λk when tk = t

ξj(t) = ξjp when tp ≤ t ≤ tp+1 c(t) = cl when tl = t.

We define the rates c(t) and λm+(t) by known parameters at integer ages tl for l =

1, ..., L and tk for k = 1, ..., K respectively. We define the functionsARj(t) and ξj(t) by

the subtype-specific scalar parameters ARjq and ξjp in sequential time intervals with

cutpoints tq and tp, allowing the functions to vary with time. Defining these functions

with more and finer intervals allows more flexible modeling with time, but requires

estimation of a greater number of parameters. The intervals should be selected to

jointly cover the time interval where risk prediction is desired with as much precision

as can be well-supported by the available data.

By expressing the model in terms of the parameters, we define the function

Âj∗ = f(β̂j, ÂRjq, ξ̂jp) as

Âj∗ =
a+τ∑
t=a

{(
1−

∑
q

ARj∗qI{tq≤t≤tq+1}

)(∑
p

ξj∗pI{tp≤t≤tp+1}

)(∑
k

λkI{tk=t}

)
eZβj∗

· exp

− t∑
u=a

J∑
j=1

[(
1−

∑
q

ARjqI{tq≤u≤tq+1}

)(∑
p

ξjpI{tp≤u≤tp+1}

)(∑
k

λkI{tk=u}

)
eZβj

]

−
∑
l

clI{tl=u}

)}
.

As before, the first step in constructing a variance estimator for this model is to apply
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a Taylor’s expansion to establish a linear relationship between Âj∗ and the parameter

estimates

(
Âj∗ − Aj∗

)
=

J∑
j=1

(
∂f(βj, ARjq, ξjp)

∂βj

)(
β̂j − βj

)

+
J∑
j=1

Qj∑
q=1

(
∂f(βj, ARjq, ξjp)

∂ARjq

)(
ÂRjq − ARjq

)

+
J∑
j=1

Pj∑
p=1

(
∂f(βj, ARjq, ξjp)

∂ξjp

)(
ξ̂jp − ξjp

)
+ op(1).

Next we express the centered parameter estimates as
(
β̂j − βj

)
= 1

N

N∑
i=1

ψbji,

(
ÂRjq − ARjq

)
= 1

N

N∑
i=1

ψajqi, and
(
ξ̂jp − ξjp

)
= 1

N

N∑
i=1

ψcjpi. We incorporate the

influence functions ψbji, ψajqi, and ψcjpi and obtain

√
N
(
Âj∗ −Aj∗

)
=

1√
N

N∑
i=1

J∑
j=1

[(
∂f(βj , ARjq, ξjp)

∂βj

)
ψbji +

Qj∑
q=1

(
∂f(βj , ARjq, ξjp)

∂ARjq

)
ψajqi

+

Pj∑
p=1

(
∂f(βj , ARjq, ξjp)

∂ξjp

)
ψcjpi

+ op(1).

Thus, Âj∗ is the sum of independent identically distributed contributions φi

√
N
(
Âj∗ − Aj∗

)
=

1√
N

N∑
i=1

φi + op(1) where

(2.22)

φi =
J∑
j=1

(Aj∗
∂βj

)
ψbji +

Qj∑
q=1

(
Aj∗

∂ARjq

)
ψaji +

Pj∑
p=1

(
Aj∗

∂ξjp

)
ψcji

 .
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To obtain the formula for φi, we must compute the derivative of Aj∗ in terms of

each parameter and obtain the formula for the influence functions ψbji, ψajqi, and

ψcjpi. The derivatives are provided in Appendix F and the derivation of the influence

functions is given in Appendix G.

2.6 Simulations

To verify that the variance estimator given by equation (2.22) estimates the vari-

ance well, we evaluated its performance using simulations. We generated cohort

data by simulating two binary covariates, Z1 and Z2 with probabilities 0.2 and

0.5. We then simulated event times, T1 and T2, for two subtypes, S1 and S2,

from weibull distributions with shape parameters K1, K2 and scale parameters

L1

exp(
[Z1,Z2]β1

K1
)
, L2

exp(
[Z1,Z2]β2

K2
)

respectively, which induce the specified log hazard ratios

β1 = [log(2), 0]′ and β2 = [log(3), 0]′. We selected parameters K1 = 3.22, L1 = 209.1,

K2 = 3.72, and L2 = 159.1 such that the hazard rates of simulated event times

approximately corresponded with breast cancer incidence rates in SEER. We also

simulated potential censoring times Tc from a normal distribution with mean 70 and

standard deviation 3.5. For each individual, the final event time T = min(T1, T2, Tc)

with the subtype S assigned accordingly, taking subtype 0 if censoring time occurred

first. Thus, the overall simulated data was comprised of variables [Z1, Z2, T, S].

For 1000 simulated datasets of size 800000, we fit the absolute risk model and

recorded absolute risk estimates for each of the two subtypes, and the corresponding

variance estimates, for individuals with two different covariate profiles: [Z1 = 0, Z2 = 0]

and [Z1 = 1, Z2 = 1]. Based on our knowledge of the true data generating distribu-

tions, we computed the true values of absolute risk for each subtype. Table 2.4

presents the average absolute risk estimates for ages 50-70 along with the percent
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bias on the scale of population risk per 1000 women.

Table 2.4: Average Estimates and Percent Bias of Absolute Risk in
Ages 50-70 for Two Subtypes on the Scale of Risk in 1000 Women

Covariate
Profile

True
Risk

Estimated
Risk

% Bias

Subtype 1
Z1 = 0, Z2 = 0 19.92 19.91 -0.07

Z1 = 1, Z2 = 1 38.05 38.07 0.05

Subtype 2
Z1 = 0, Z2 = 0 34.37 34.39 0.08

Z1 = 1, Z2 = 1 98.32 98.51 0.19

The results show that our coded implementation of the model gives unbiased

estimate of the subtype-specific absolute risks, with estimates deviating from the

true values by less than one percent on average, in a non-systematic fashion. By

presenting the risk estimates applied to a population of size 1000, we see that in

a public health context the estimated number of predicted cancers would be off by

substantially less than one person on average.

In Table 2.5 we examined the performance of the robust variance estimator by

comparing the variance estimates to the “true” observed variation in risk estimates

over the 1000 datasets. Table 2.5 presents the estimated standard deviations of the

absolute risks in Table 2.4 as compared to the observed standard deviation, along with

coverage probability. The results show that the robust variance estimator performs

quite well, with coverage probability at the appropriate 95% level. These results

demonstrate that the influence function based approach is a valid way to obtain

variance estimates and is implemented correctly in our code.

Although the simulation results for the point estimates and robust variance esti-

mates of the absolute risk clearly show that the implemented method is working well,

to be thorough we also investigated the performance each estimated component in the
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Table 2.5: Average Standard Error Estimates and Coverage Probabilities of Absolute
Risk Estimates in Ages 50-70 for Two Subtypes on the Scale of Risk in 1000 Women

Covariate
Profile

Observed
Standard
Deviation

Estimated
Standard
Deviation

Coverage
Probability

Subtype 1
Z1 = 0, Z2 = 0 0.223 0.219 0.944

Z1 = 1, Z2 = 1 0.587 0.586 0.954

Subtype 2
Z1 = 0, Z2 = 0 0.287 0.284 0.954

Z1 = 1, Z2 = 1 1.064 1.082 0.958

model: the log hazard ratios, the time-varying attributable risk, and the time-varying

subtype ratio. In the simulation, we model ARj(t) and ξj(t) by piecewise constant

functions defined by four categories of time: 30-49, 50-58, 59-65, and 66-85.

Table 2.6 presents the average estimates and percent bias for each of the model

components. The results show that across all model components the parameter es-

timates exhibit less than four percent bias on average, with less than one percent

bias in the majority of the estimates. Similarly, Table 2.7 presents the average robust

standard deviation estimates for each model component and the percent bias. Again,

the results show that the robust variance estimator is performing well, with under

five percent bias across all model components. Because the two subtype ratios for a

given time interval add to one, one estimate is fully determined by the other and we

expect them to have the same variance. This is the case in our simulation results.

Taken together, these simulation results empirically demonstrate the effectiveness

of the robust variance estimator we constructed from the influence functions for each

model parameter. This exercise also demonstrates that we implemented the method

correctly in R and can feel confident applying our code to address practical problems

using real data.
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Table 2.6: Average Estimates and Percent Bias of Model Components for Absolute
Risk Models for Two Subtypes, with Attributable Risk and Subtype Ratios Modeled
by Piecewise Constant Functions Defined by Four Time Intervals

Parameter
True

Values
Average

Estimates
% Bias

Log
Hazard
Ratios

Subtype 1
βz1 0.693 0.695 0.23

βz2 0 -2.744E-04 –

Subtype 2
βz1 1.099 1.100 0.13

βz2 0 -2.337E-04 –

Attributable
Risk,
AR(t)

Subtype 1

t ∈ [30, 49] 0.165 0.165 -0.08

t ∈ [50, 58] 0.161 0.161 0.01

t ∈ [59, 65] 0.158 0.158 0.08

t ∈ [66, 85] 0.150 0.154 3.19

Subtype 2

t ∈ [30, 49] 0.283 0.282 -0.15

t ∈ [50, 58] 0.278 0.278 0.05

t ∈ [59, 65] 0.273 0.274 0.03

t ∈ [66, 85] 0.260 0.267 2.60

Subtype
Ratio,
ξ(t)

Subtype 1

t ∈ [30, 49] 0.384 0.379 -1.33

t ∈ [50, 58] 0.348 0.348 0.15

t ∈ [59, 65] 0.334 0.333 -0.09

t ∈ [66, 85] 0.314 0.322 2.47

Subtype 2

t ∈ [30, 49] 0.616 0.621 0.83

t ∈ [50, 58] 0.652 0.652 -0.08

t ∈ [59, 65] 0.666 0.667 0.04

t ∈ [66, 85] 0.686 0.678 -1.13
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Table 2.7: Percent Bias of Robust Standard Deviation Estimates for Model Components
in Two Absolute Risk Models, with Attributable Risk and Subtype Ratios Modeled by
Piecewise Constant Functions Defined by Four Time Intervals

Parameter
Observed
Standard
Deviation

Estimated
Standard
Deviation

% Bias

Log
Hazard
Ratios

Subtype 1
βz1 1.725E-02 1.708E-02 0.98

βz2 1.611E-02 1.584E-02 1.64

Subtype 2
βz1 1.348E-02 1.355E-02 -0.50

βz2 1.300E-02 1.292E-02 0.59

Attributable
Risk,
AR(t)

Subtype 1

t ∈ [30, 49] 8.085E-03 8.033E-03 0.64

t ∈ [50, 58] 8.267E-03 8.081E-03 2.25

t ∈ [59, 65] 8.221E-03 8.221E-03 0.01

t ∈ [66, 85] 8.414E-03 8.345E-03 0.81

Subtype 2

t ∈ [30, 49] 6.189E-03 6.040E-03 2.41

t ∈ [50, 58] 5.915E-03 6.005E-03 -1.52

t ∈ [59, 65] 6.208E-03 6.214E-03 -0.11

t ∈ [66, 85] 6.378E-03 6.422E-03 -0.69

Subtype
Ratio,
ξ(t)

Subtype 1

t ∈ [30, 49] 3.681E-03 3.662E-03 0.51

t ∈ [50, 58] 3.755E-03 3.603E-03 4.04

t ∈ [59, 65] 3.531E-03 3.457E-03 2.10

t ∈ [66, 85] 3.223E-03 3.360E-03 -4.24

Subtype 2

t ∈ [30, 49] 3.681E-03 3.662E-03 0.51

t ∈ [50, 58] 3.755E-03 3.603E-03 4.04

t ∈ [59, 65] 3.531E-03 3.457E-03 2.10

t ∈ [66, 85] 3.223E-03 3.360E-03 -4.24
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2.7 Appendix A: Equivalence Between Two

Partial Likelihood Estimators

Beginning with the score function for the unconditional partial likelihood, we assign

non-parametric estimates for the hazard at time t and show that the resulting score

function is the same if we assume that there are no tied failure times. In doing so,

we show that in such a situation the unconditional partial likelihood estimator β̃j∗ is

equivalent to the conditional partial likelihood estimator β̂j∗

S(βj∗) =
∂logPL′ (β1, ..., βJ)

∂βj∗
=
∑
(i)


λ0j∗(t(i))zie

βj∗zi

J∑
j=1

λ0j(t(i))e
βjzi

−

∑
l∈Rt(i)

λ0j∗(t(i))zle
βj∗zl

∑
l∈Rt(i)

J∑
j=1

λ0j(t(i))e
βjzl

 .

In Appendix B the non-parametric estimates defining the baseline hazard function at

time tjq are shown to be λ̂jq =
dj(tjq)∑

v∈R(tjq)

eβjzi
. Plugging these in, we find

S(βj∗) =
∑
(i)



dj∗ (t(i))∑
v∈Rt(i)

eβj∗Zv
zie

βj∗zi

J∑
j=1

dj(t(i))∑
v∈Rt(i)

eβjZv
eβjzi

−

∑
l∈Rt(i)

dj∗(t(i))∑
v∈Rt(i)

eβj∗Zv
zle

βj∗zl

∑
l∈Rt(i)

J∑
j=1

dj(t(i))∑
v∈Rt(i)

eβjZv
eβjzl


.

58



Parts of the denominator in the second term cancel out immediately, leaving

S(βj∗) =
∑
(i)



dj∗ (t(i))∑
v∈Rt(i)

eβj∗Zv
zie

βj∗zi

J∑
j=1

dj(t(i))∑
v∈Rt(i)

eβjZv
eβjzi

−

∑
l∈Rt(i)

dj∗(t(i))∑
v∈Rt(i)

eβj∗Zv
zle

βj∗zl

J∑
j=1

dj(t(i))


.

If we assume that there are no tied failure times, then each dj(t(i)) is 0 or 1 based on

whether the single observed event at that time was of subtype j. This means that
J∑
j=1

dj(t(i)) = 1. Moreover, when the single event at a given time is not of subtype j∗

then d∗j(t(i)) = 0, and thus the contribution to the overall sum is zero at those times

S(βj∗) =
∑

(i):Si=j∗



1∑
v∈Rt(i)

eβj∗Zv
zie

βj∗zi

J∑
j=1

dj(t(i))∑
v∈Rt(i)

eβjZv
eβjzi

−

∑
l∈Rt(i)

1∑
v∈Rt(i)

eβj∗Zv
zle

βj∗zl

1


.
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The only non-zero contribution in the denominator of the first term occurs when

j = j∗, in which case d∗j(t(i)) = 1 and the rest equal 0, giving

S(βj∗) =
∑

(i):Si=j∗



zie
βj∗zi∑

v∈Rt(i)

eβjZv

e
βj∗zi∑

v∈Rt(i)

eβj∗Zv

−
∑
l∈Rt(i)

zle
βj∗zl∑

v∈Rt(i)

eβj∗Zv



S(βj∗) =
∑

(i):Si=j∗

zi −
∑
l∈Rt(i)

zle
βj∗zl

∑
v∈Rt(i)

eβjZv

 .

This is the score equation for the partial likelihood conditional on subtype.

2.8 Appendix B: Deriving the Subtype-Specific

Baseline Hazard Estimates

In the following equations, we derive the maximum likelihood estimator for param-

eters λjq which non-parametrically define the subtype-specific baseline hazard func-

tions λ0j. This likelihood formulation assumes that censoring is independent of the
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subtype outcomes, given the covariates Z

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λj(ti|zi)S(ti|zi)

)( ∏
i:Si=0

S(ti|zi)

)

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λj(ti|zi)

)(
N∏
i=1

S(ti|zi)

)

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λj(ti|zi)

)(
N∏
i=1

exp {−Λ(ti|zi)}

)

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λj(ti|zi)

)(
N∏
i=1

exp

{
−
∫ ti

0

λ(u|zi)du
})

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λj(ti|zi)

)(
N∏
i=1

exp

{
−
∫ ti

0

J∑
j=1

λj(u|zi)du

})

We then incorporate the proportional hazards model, λj(t|Z) = λ0j(t)e
βjZ , into the

likelihood

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λ0j(ti)e
βjzi

)(
N∏
i=1

exp

{
−
∫ ti

0

J∑
j=1

λ0j(u)eβjzidu

})
.

Recall the non-parametric characterization of λ0j(t) and Λ0j(t) in terms of constant

parameters λjq

λ0j(t) =


λjq for tjq = t

0 else

 =

Q∑
q=1

λjqI {tjq = t} , Λ0j(t) =
∑

m:tjm<t

λjm.
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We express the likelihood in terms of this characterization as

L =

( ∏
i:Si≥1

J∏
j=1

(
Q∑
q=1

I {Si = j}λjqI {tjq = ti}

)
eβjzi

)
·

(
N∏
i=1

exp

−
J∑
j=1

( ∑
m:tjm<ti

λjm

)
eβjzi


)

log(L) =
∑
i:Si≥1

J∑
j=1

(
log(

Q∑
q=1

I {Si = j}λjqI {tjq = ti}) + βjzi

)

−
N∑
i=1

J∑
j=1

( ∑
m:tjm<ti

λjm

)
eβjzi .

We subsequently derive the score function for a specific λj∗q∗ and solve for λ̂j∗q∗

S(λj∗q∗) =
∂logL

∂λj∗q∗
=
∑
i:Si≥1

I {Si = j∗} I {tj∗q∗ = ti}
Q∑
q=1

I {Si = j∗}λj∗qI {tj∗q = ti}

−
N∑
i=1

I
{
tj∗q∗ < ti

}
eβj∗zi

S(λj∗q∗) =
∑
i:Si=j∗

I {tj∗q∗ = ti}
λj∗q∗

−
N∑

i:tj∗q∗<ti

eβj∗zi = 0.

Thus, the maximum likelhood estimator for a given parameter λj∗q∗ is

ˆλj∗q∗ =

∑
i:Si=j∗

I {tj∗q∗ = ti}

N∑
i:tj∗q∗<ti

eβj∗zi

=
dj∗(tj∗q∗)∑

R(tj∗q∗ )

eβj∗zi
.
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2.9 Appendix C: Deriving the Subtype-Specific

Baseline Hazard Estimates, Drawing Strength

Across Subtypes

Here we derive the non-parametric estimator of the referent baseline hazard function.

We start with the likeilhood constructed in Appendix B

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λj(ti|zi)

)(
N∏
i=1

exp

{
−
∫ ti

0

J∑
j=1

λj(u|zi)du

})
.

We incorporate the new formulation of the proportional hazards model λj(t) =

λ01(t)hj(θj, t)e
βjzi based on a proportional relationship between the baseline hazard

functions of different subtypes

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λ01(t)hj(θj, t)e
βjzi

)
·

(
N∏
i=1

exp

{
−
∫ ti

0

J∑
j=1

λ01(t)hj(θj, t)e
βjzidu

})
.

Recall that we define the reference baseline hazard function λ01(t) non-parametrically

by parameters λ1, ..., λQ at each observed event time t1, ..., tQ, with zero hazard in

between. The cumulative baseline hazard function is the sum of each parameter

preceding time t

λ01(t) =


λq for tq = t

0 else

 =

Q∑
q=1

λqI {tq = t} , Λ01(t) =
∑

m:tm<t

λm.
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We express the likelihood in terms of the parameters λ1, ..., λQ as

L =

( ∏
i:Si≥1

J∏
j=1

Q∑
q=1

I {Si = j}λqI {tq = t}hj(θj, t)eβjzi
)
·

(
N∏
i=1

exp

{
−

J∑
j=1

∑
m:tm<ti

λmhj(θj, tm)eβjzi

})
.

log(L) =
∑
i:Si≥1

J∑
j=1

log

{
Q∑
q=1

I {Si = j}λqI {tq = ti}

}
+ log(hj(θj, ti)) + βjzi

−
N∑
i=1

J∑
j=1

∑
m:tm<ti

λmhj(θj, tm)eβjzi

To obtain the profile likelihood estimate of a specific λq∗, we treat hj(θj, ti) and βj as

fixed and solve the score function for λq

∂log(L)

∂λq∗
=
∑
i:Si≥1

I {tq∗ = ti}∑
q=1

I {Si = j∗}λqI {tj∗ = ti}
−

N∑
i=1

J∑
j=1

∑
m:tm<ti

hj(θj, tj)e
βjzi

∂log(L)

∂λq∗
=
∑
i:Si≥1

I {tq∗ = ti}
λq∗

−
N∑
i=1

J∑
j=1

∑
m:tm<ti

hj(θj, tj)e
βjzi = 0.

Thus, the profile likelihood estimator for a given referent baseline hazard parameter

parameter λq∗ is

λ̂q∗ =

∑
i:Si≥1

I {tq∗ = ti}

N∑
i=1

J∑
j=1

∑
m:tm<ti

hj(θj, tj)e
βjzi

=
d(tq∗)∑

i∈R(tq∗)

J∑
j=1

hj(θj, tj)e
βjzi

.
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2.10 Appendix D: Estimating the Proportional-

ity Model Relating Subtype Baseline Hazard

Functions

To estimate the general function hj(θj, ti) for a particular subtype, we will obtain the

score function from the profile likelihood of θj. We begin with the likelihood from

Appendix C, calculate the log likelihood, and take the derivative with respect to a

particular θj∗

L =

( ∏
i:Si≥1

J∏
j=1

I {Si = j}λ01(ti)hj(θj, ti)e
βjzi

)
·

(
N∏
i=1

exp

{
−
∫ ti

0

J∑
j=1

λ01(u)hj(θj, u)eβjzidu

})

log(L) =

( ∑
i:Si≥1

J∑
j=1

I {Si = j} [log(λ01(ti)) + log(hj(θj, ti)) + βjzi]

)
·

+

(
N∑
i=1

−
∫ ti

0

J∑
j=1

λ01(u)hj(θj, u)eβjzidu

)

∂log(L)

∂θj∗
=

( ∑
i:Si=j∗

(
∂hj∗ (θj∗ ,ti)

∂θj∗

)
hj∗(θj∗ , ti)

)
+

(
N∑
i=1

−
∫ ti

0

λ01(u)
∂hj∗(θj∗ , u)

∂θj∗
eβj∗zidu

)
.

Thus the estimate θ̂j∗ is the value θj∗ that solves

∂log(L)

∂θj∗
=

( ∑
i:Si=j∗

h′j∗(θj∗ , ti)

hj∗(θj∗ , ti)

)
+

(
N∑
i=1

−
∫ ti

0

λ01(u)h′j∗(θj∗ , u)eβj∗zidu

)
= 0.
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In general, estimation of θj∗ depends on the referent baseline hazard function λ01(ti)

and βj∗ . Thus, obtaining final estimates necessitates iteratively solving the estimating

equations for all the parameters.

In the case of the simple proportionality model where hj(θj, ti) = θj, and corre-

spondingly h′j(θj, t) = 1, the general equation simplifies and can be solved analytically

∂log(L)

∂θj∗
=

( ∑
i:Si=j∗

1

θj∗

)
+

(
N∑
i=1

−
∫ ti

0

λ01(u)eβj∗zidu

)
= 0

θ̂∗ =
dj∗

N∑
i=1

−
∫ ti

0

λ01(u)eβj∗zidu

,

where dj∗ is the number of observed events of subtype j∗ irrespective of the time that

those events occurred. This is not particularly surprising due to the fact that the

model hj(θj, ti) = θj is not time-varying.

2.11 Appendix E: Influence Function for x̄
ȳ

Suppose xi and yi are independent and identically distributed where x ∼ F0, µx =

E[x] and y ∼ G0, µy = E[y]. Our goal is to derive the influence function ψi associated

with the estimator x̄
ȳ
. To do this, we first express the estimator x̄

ȳ
as a function of the

empirical distributions Fn and Gn, and the parameter µx
µy

as a function of the true

distributions F0 and G0

(
x̄

ȳ
− µx
µy

)
=

(∫
x d {Fn}∫
y d {Gn}

−
∫
x d {F0}∫
y d {G0}

)
= φ

(
Fn
Gn

)
− φ

(
F0
G0

) ∼= φ′(F0,G0)

(
Fn−F0
Gn−G0

)
.

The difference
(
x̄
ȳ
− µx

µy

)
can be expressed as the derivative of the function φ that maps

the distribution functions to the estimate and parameter. The empirical distributions
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Fn and Gn are defined by n jump points with one parameter at each data point as

Fn =
1

n

N∑
i=1

δxi(x) and Gn =
1

n

N∑
i=1

δyi(y), with δxi(x) =
{

0, xi>x
1, xi≤x

}
, δyi(y) =

{
0, yi>y
1, yi≤y

}
.

Given this definition, and the fact that φ′ is a linear map,

φ′(F0,G0)

(
Fn−F0
Gn−G0

)
= φ′(F0,G0)


1
n

N∑
i=1

δxi(x)− F0

1
n

N∑
i=1

δyi(y)−G0

 =
1

n

N∑
i=1

φ′(F0,G0)

(
δxi (x)−F0

δyi (y)−G0

)
.

Thus, we can express
(
x̄
ȳ
− µx

µy

)
as a sum of indpendent identically distributed in-

fluence functions ψi = φ′(F0,G0)

(
δxi (x)−F0

δyi (y)−G0

)
. We take this derivative in the direction

of the true distributions by taking the derivative of φ along a “line” in the space of

distributions, defined as a convex combination of the empirical and true distributions

according to parameter t

ψi = φ′(F0,G0)

(
δxi (x)−F0

δyi (y)−G0

)
=

d

dt
|t=0 φ

(
(1−t) F0+t δxi (x)

(1−t) G0+t δyi (y)

)
ψi =

d

dt
|t=0

∫
x d {(1− t) F0 + t δxi(x)}∫
y d {(1− t) G0 + t δyi(y)}

ψi =
d

dt
|t=0

(1− t)
∫
x d {F0}+ t

∫
x d {δxi(x)}

(1− t)
∫
y d {G0}+ t

∫
y d {δyi(y)}

.

We simplify this expression by recognizing the relationships

∫
x d {F0} = µx

∫
y d {G0} = µy

∫
x d {δxi(x)} = xi

∫
y d {δyi(y)} = yi.
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We then take the derivative with respect to t and evaluate at t = 0 to obtain the

formula for the influence function

ψi = d
dt
|t=0

(1−t)µx+(t)xi
(1−t)µy+(t)yi

ψi = (xi−µx)((1−t)µy+td)−(yi−µy)((1−t)µx+tb)

((1−t)µy+td)2

ψi = (xi−µx)µy+(µy−yi)µx
µ2y

ψi = bc−ad
µ2y

ψi = xiµy−yiµx
µ2y

.

Thus, the influence function for estimators of the form x̄
ȳ

is ψi = xiE[y]−yiE[x]

E[y]2
.

2.12 Appendix F: Derivatives for the Variance

Calculation

We solve for the derivatives
Aj∗

∂βj
,

Aj∗

∂ARjq
, and

Aj∗

∂ξjp
through a combination of straight-

forward calculus and careful bookkeeping. For ease of calculation, we work with an

expression of Aj∗ where all model terms are inside the exponential

Aj∗ =
a+τ∑
t=a

exp

{
log

(
1−

∑
q

ARj∗qI{tq≤t≤tq+1}

)
+ log

(∑
p

ξj∗pI{tp≤t≤tp+1}

)
+ log

(∑
k

λkI{tk=t}

)

+ Zβj∗ −
t∑

u=a

J∑
j=1

[(
1−

∑
q

ARjqI{tq≤u≤tq+1}

)(∑
p

ξjpI{tp≤u≤tp+1}

)(∑
k

λkI{tk=u}

)
eZβj

]

−
∑
l

clI{tl=u}

}
.
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Generally, Aj∗ =
a+τ∑
t=a

exp (h (βj, ARjq, ξjp)). Thus, the derivatives needed for the

calculation of φ are

Aj∗

∂βj′
=

a+τ∑
t=a

exp (h (βj, ARjq, ξjp))Z

{
I{j∗=j′} − eZβj′

t∑
u=a

[(
1−

∑
q

ARj′qI{tq≤u≤tq+1}

)

·

(∑
p

ξj′pI{tp≤u≤tp+1}

)(∑
k

λkI{tk=u}

)]}
,

Aj∗

∂ARj′q′
=

a+τ∑
t=a

exp (h (βj, ARjq, ξjp))

{
−
I{tq′≤t≤tq′+1}
1− ARj′q′

+
t∑

u=a

[
I{tq′≤u≤tq′+1}

·

(∑
p

ξj′pI{tp≤u≤tp+1}

)(∑
k

λkI{tk=u}

)
eZβj′

]}
,

Aj∗

∂ξj′p′
=

a+τ∑
t=a

exp (h (βj, ARjq, ξjp))

{
I{tp′≤t≤tp′+1}

ξj′p′
−

t∑
u=a

[
I{tp′≤t≤tp′+1}

·

(
1−

∑
q

ARj′qI{tq≤u≤tq+1}

)(∑
k

λkI{tk=u}

)
eZβj′

]}
.

2.13 Appendix G: Influence Functions for the

Variance Calculation

The final elements needed for the variance calculation are the influence functions,

the independent identically distributed contributions of each observation to the pa-

rameters, such that
(
β̂j − βj

)
= 1

N

N∑
i=1

ψbji,
(
ÂRjq − ARjq

)
= 1

N

N∑
i=1

ψajqi, and

69



(
ξ̂jp − ξjp

)
= 1

N

N∑
i=1

ψcjpi. The form of these influence functions depends on how

the parameters are estimated.

When we ultimately fit the model in Chapter 4, we estimate the Cox parameters

βj using the multinomial likelihood method applied to cohort data. In Section 2.2.3

we derived the efficient influence function associated with the multinomial maximum

likelihood estimator, accounting for the presence of nuisance parameters. With ex-

pectations replaced by empirical means, those formulas can be used to compute ψbji

for each observation in the cohort data used to estimate βj. For all observations that

were in some way used in model fitting, but that did not contribute to estimation of

the β̂j’s, the influences ψbji = 0.

The influence function ψcjpi should reflect the independent and identically dis-

tributed contribution of each observation to

ξ̂jp =

N∑
i=1

I{Si=j}I{tp≤ti≤tp+1}

N∑
i=1

I{tp≤ti≤tp+1}

,

the empirical estimate of the proportion tumors in time interval [tp, tp+1] that are

subtype j. In Appendix E, we derive the influence function for estimators of this

general form: x̄
ȳ
. Applying the resulting influence function to ξ̂jp, we can show that

(
ξ̂jp − ξjp

)
=

1

N

N∑
i=1

E
[
I{tp≤t≤tp+1}

]
I{Si=j}I{tp≤ti≤tp+1} − E

[
I{S=j}I{tp≤t≤tp+1}

]
I{tp≤ti≤tp+1}

E
[
I{tp≤t≤tp+1}

]2 .

In the actual variance estimate, we approximate the expectations with empirical
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means such that the influence function that we compute for each data point is

ψcjpi =

[
1
N

N∑
i=1

I{tp≤ti≤tp+1}

]
I{Si=j}I{tp≤ti≤tp+1} −

[
1
N

N∑
i=1

I{Si=j}I{tp≤ti≤tp+1}

]
I{tp≤ti≤tp+1}[

1
N

N∑
i=1

I{tp≤ti≤tp+1}

]2 .

As before, for all observations that contributed to model fitting but were not used

to estimate ξ̂jp, the influences ψcjpi = 0.

Finally, we derive the influence function ψajqi associated with ÂRjq. In Chapter

4, we estimate ÂRjq in time strata defined by [tq, tq+1] using the Bruzzi formula

described in Section 2.3.2 applied to incident cases from cohort data

ÂRjq = 1−

 1
N∑
i=1

I{Si=j}I{tq≤ti≤tq+1}


(

N∑
i=1

I{Si=j}I{tq≤ti≤tq+1}

eβ̂jZi

)

ÂRjq = 1−

(
1

N · P̂jq

)(
N∑
i=1

I{Si=j}I{tq≤ti≤tq+1}

eβ̂jZi

)
with P̂jq =

1

N

N∑
i=1

I{Si=j}I{tq≤ti≤tq+1}.

The variance of ÂRjq depends on the variance of β̂j, P̂jq, and the empirical variance in

the distribution of the indicators. To take all these sources of variation into account

in the influence function of ÂRjq, we again use a Taylor’s approximation and influence
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functions for each component

(
ÂRjq − ARjq

)
=

(
∂ARjq

∂βj

)(
β̂j − βj

)
+

(
∂ARjq

∂Pjq

)(
P̂jq − Pjq

)

+ φ′F0
(Fn − F0) + op(1)

√
N
(
ÂRjq − ARjq

)
=

1√
N

N∑
i=1

[(
∂ARjq

∂βj

)
ψbji +

(
∂ARjq

∂Pjq

)
ψpjqi + ψeji

]
+ op(1).

Let F0 denote the joint distribution of S, T, and Z

AR = 1− 1

N · Pjq

(∫
I{S=j} I{tq≤t≤tq+1}

eβjZ
d {F0}

)
.

The necessary derivatives are

(
∂ARjq

∂βj

)
=

1

N · Pjq

(∫
Z I{S=j} I{tq≤t≤tq+1}

eβjZ
d {F0}

)
=

1

N · Pjq
E

[
Z I{S=j} I{tq≤t≤tq+1}

eβjZ

]
(
∂ARjq

∂Pjq

)
=

1

N · P 2
jq

(∫
I{S=j} I{tq≤t≤tq+1}

eβjZ
d {F0}

)
=

1

N · P 2
jq

E

[
I{S=j} I{tq≤t≤tq+1}

eβjZ

]
.

The influence function ψbji for β̂j should be obtained as previously discussed. Deriving

the influence function for P̂jq is straightforward in that the estimator is linear, needing

only to be centered to yield ψpjqi = I{Si=j}I{tq≤ti≤tq+1} − E
[
I{S=j}I{tq≤t≤tq+1}

]
.

The last component needed for the influence function of ÂRjq is the influence

function for the empirical distribution, φ′F0
(Fn − F0) = 1

N

N∑
i=1

ψeji. We solve for ψeji

using the same approach as employed in Appendix E, expressing ÂRjq and ARjq as a

function φ of the empirical distribution Fn and the true distribution F0 respectively,

and taking the derivative in the direction of the true distribution through a scalar
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parameter t. In this case, the calculation is

ψeji = φ′F0
(δSi,Ti,Zi(S, T, Z)− F0) =

d

dt
|t=0 φ ((1− t) F0 + t δSi,Ti,Zi(S, T, Z))

ψeji =
d

dt
|t=0

[
1− 1

N · Pjq

(∫
I{S=j} I{tq≤t≤tq+1}

eβjZ
d {(1− t) F0 + t δSi,Ti,Zi(S, T, Z)}

)]

ψeji =
d

dt
|t=0

[
1− 1− t

N · Pjq

(∫
I{S=j} I{tq≤t≤tq+1}

eβjZ
d {F0}

)

− t

N · Pjq

(∫
I{S=j} I{tq≤t≤tq+1}

eβjZ
d {δSi,Ti,Zi(S, T, Z)}

)]

ψeji =
1

N · Pjq

(
E

[
I{S=j} I{tq≤t≤tq+1}

eβjZ

]
−
I{Si=j} I{tq≤ti≤tq+1}

eβjZi

)
.

Putting these components together, and replacing true values with estimates and

expectations with empirical means, we can compute the influence function for ÂRjq

ψajqi =

(
∂ARjq

∂βj

)
ψbji +

(
∂ARjq

∂Pjq

)
ψpjqi + ψeji + op(1).
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Chapter 3

Building Calibrated Risk Models

by Leveraging Information from

Published Models

This chapter contains material in preparation to be published in collaboration with

Raymond Carroll and Nilanjan Chatterjee.

3.1 Introduction

In the previous chapter, we presented methodology for building an absolute risk

model from scratch by integrating information from multiple data sources. However,

in many cases a published risk model based on known risk factors may already exist

in the literature. If that is the case, the main reason for building a new absolute risk

model would be to update the model to include newly identified risk factors, such as

lifestyle factors or biomarkers, along with the existing ones.

In this chapter, we investigate methodology for updating risk models with new
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risk factor information while incorporating information from existing models as much

as possible. Specifically, we consider a regression calibration estimator that has tra-

ditionally been used to increase the efficiency of estimation by calibrating to external

data that comes from the same underlying population as the sample data. We seek

to understand whether this estimator is also useful for calibration in contexts where

the two populations are not the same.

The main question we address is whether the regression calibration estimator pro-

duces meaningful results when the sample and the external data are representative

of different populations, and under what conditions. First, we describe the statis-

tical formulation of the problem along with a few motivating examples and set up

basic notations. We then review the regression calibration approach and go on to

show analytically that applying the regression calibration estimator when the two

populations are different produces an estimate of the external population parameters

under certain conditions. In particular, we identify a key mapping that implicitly

relates parameters of interest through the population distribution. We show that if

this mapping is common for the two populations, then the regression estimator is

unbiased for the external population parameters up to a Taylor’s approximation. In

addition, we provide a variance estimator that is appropriate for this setting. We

also conduct extensive simulations to assess the estimator’s bias and variance in a

variety of settings, numerically corroborating our analytic results. Finally, we discuss

exciting areas of future research identified by our work with the calibration estimator.
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3.2 Methods

Models and Notations

Let Y be an outcome of interest and X be a set of covariates upon which a published

model for the predictive distribution g(y|x) has been built. In general, we will assume

that we have only access to the model, but not necessarily to the individual level data

from the “external study” upon which the original model was built. Let Z be a set of

new covariates based on which the model needs to be updated. We assume that data

on Y , X and Z are available to us from an “internal study” for building such a model.

We are interested in the case where our internal study sample, which is representative

of some underlying population P I , may differ in some respects from the underlying

population that we want to model, PE, due to characteristics of the study design or

sampled population. We envision a situation where the external, published study is

representative of the population of interest, PE, and can thus help produce results

that are more generalizable to that population. To make this less abstract, we present

two specific examples.

Example 1.

It is often of interest to develop a logistic model for disease risk prediction of the

form: logit P(D = 1|Z,X) = β0 + βXX + βZZ + βXZXZ, where X are established

environmental and lifestyle related risk factors and Z is a set of new biomarkers, such

as genetic susceptibility markers.

In a logistic model, the intercept parameter β0 captures information related to

the disease rate in the population. It is well known that under case-control sam-

pling the estimated intercept parameter is not unbiased for β0, but instead for β∗0 =

β0+log(π1/π0), where π1 and π0 denote the sampling probability for cases and controls
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from the underlying population. To make adequate risk predictions, the estimated

intercept parameter must be representative of the disease rate in the underlying pop-

ulation. To obtain a corrected estimate that reflects the true underlying β0, one can

benefit by leveraging external information in the estimation of β̂0.

Initial biomarker data are often collected in case-control studies, where differential

participation of cases and controls by factors related to lifestyle or behavioral factors

can lead to selection bias in the associated risk parameter estimates, βX . However,

if the selection of participants does not depend on the biomarker Z conditional on

lifestyle factors X, one can still obtain unbiased estimates for the risk parameters βZ

and βXZ from a case-control study. If that is the case, it may be desirable to estimate

the parameters βZ and βXZ from the case-control study, but utilize information from

external models to assist in estimation of βX , which is susceptible to selection bias in

the internal case-control data.

Example 2.

For late-onset chronic diseases, risk models typically require specification of an age-

window over which prediction is desired. In this setting it is natural to consider

models that incorporate time-to-event as an outcome. To that end, it is common

to develop Cox proportional hazard models of the form λ(t|X) = λ0(t) exp(βTX),

where λ(·|X) denotes the instantaneous hazard function given risk factor information

X, λ0(t) denotes the baseline hazard function and β denotes the vector of hazard-

ratio parameters. As we described in Section 2.2, hazard ratio parameters β can be

estimated from cohort studies, case-cohort studies or even case-control studies that

use appropriate incident density sampling design by applying Cox partial-likelihood or

conditional logistic regression methods. These hazard ratios β are generally thought

to be transportable across populations even though the distributions of risk factors
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may differ.

Estimates of λ0(t) can obtained from such studies using Breslow’s method or

variations of it that can take into accounting the sampling of cases and controls within

a cohort. However, if the internal study data is not representative of the population of

interest then the resulting baseline hazard rates λ0(t) will also not be representative.

For example, Nurses Health Study is a widely used cohort study that has been used

for etiologic investigation of many disease outcomes (Colditz et al., 1997). Although

this study has proven to be a tremendous resource for understanding relative risks

associated with various etiologic causes of various outcomes, any estimate of baseline

risks λ0(t) from this cohort would probably not be representative of the general US

population because the cohort of participating nurses is likely healthier. If the goal

is to build a risk model for the US population using the Nurses Health Study cohort,

one would benefit from incorporating external “models” (perhaps just simple marginal

disease rates) when estimating λ0(t) part of the model.

We have talked about the fact that national disease registries, such as the SEER

registry for cancer, are excellent sources of external data for building risk models in

this context. Registry data can be used to obtain estimates of nationally representa-

tive age-specific hazard rates for many diseases. Gail et al. (1989) pioneered a method

for utilizing this type of external data to estimate the baseline hazard λ0(t) such that

the corresponding marginal hazard function (i.e. the hazard function averaged over

the covariate distribution) is calibrated to population hazard estimates provided by

the registry. In Chapter 2 we extended those ideas to the setting of subtype-specific

risk models. In fact, both of these approaches, which build absolute risk models

that are in some sense “calibrated” to registry data, are special cases of the general

problem we have described.
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Statistical Framework

Our goal is to develop a parametric model of the form fβEx ,βEz ,βEzx(Y |X,Z) for the

population of interest PE. We explore doing this by using a sample of population

P I and calibrating to external information on PE. βEx denotes a set of parameters

associated with the original risk factors X, βEz denotes the main effect parameters

associated with new risk factors Z, and βExz denotes the possible interactions of Z

with the existing risk factors X. A model of the same form for population P I is

parametrized by βIx, βIz , and βIxz. The underlying parameters βEx and βIx are not

necessarily the same for the two populations. We do, however, assume the parameters

[βEz , β
E
xz] = [βIz , β

I
xz], so that βz, βxz are transportable between the populations. This

assumption is needed in order to build the model as the external study provides no

information on the new covariates Z.

3.2.1 Background: Links with Survey Methodology

Thus far we have spoken generally of calibrating to the information in existing models

and external datasets when developing an updated risk model. The problem of how

to perform such a calibration has strong links to a well-developed statistical area,

namely survey methodology, that we can draw upon. There is a wide literature

about how to use external data sources to improve inference for parameter estimates

from sample surveys. For a simple introduction to the methodology, consider the

problem of estimating the population mean µW from a survey that collects random

variables W and auxiliary variables V when the population mean µV is available from

a census. In this setting, commonly used calibration estimators take the form

µ̂CalW = W + c× (µV − V ), (3.1)
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where W and V are sample means for W and V , possibly taking into account sample-

weights if non-random sampling is used, and c is a constant factor. Since (V − µV )

is an unbiased estimator for 0 and W is unbiased for µW , for any constant c, µ̂CalW

is an unbiased estimator of the desired quantity, µW . The optimal estimator, which

minimizes the variance in this class, is given by choosing copt = cov(V ,W )/var(V ).

Calibration estimators increase the efficiency of parameter estimation for µW by lever-

aging information on the relationship between W and V in the data and knowledge

of µV .

The same basic idea can be applied to the problem of calibrating a new model to an

existing one. In the model framework described previously, suppose the reduced model

g(y|x) is specified in terms of a set of parameters θ. Let θ̂E and θ̂I denote the max-

imum likelihood estimates from fitting a reduced model to the external and internal

study respectively; analogously, let β̂I denote the maximum likelihood estimate from

fitting the full model fβ(y|x, z) to the internal study. Denote the corresponding score

functions as U(Y |X; θ) = ∂ log g(y|x; θ)/∂θ and S(Y |X,Z; β) = ∂ log f(y|x, z; β)/∂β

for the reduced and full models respectively.

Analogously to the estimator defined in (3.1), a calibration estimator can be de-

fined as Chen and Chen (2000):

β̂cal = β̂I +D−1
1 C12C

−1
22 D2(θ̂E − θ̂I), (3.2)

where

D1 = −ESI
[
∂S(Y |X,Z; β)

∂βT

]
, D2 = −ESI

[
∂U(Y |X; θ)

∂θT

]
,

C22 = ESI
[
U(Y |X; θ)UT (Y |X; θ)

]
, C12 = ESI

[
S(Y |X,Z; β)UT (Y |X; θ)

]
,

and ESI denotes the sample expectation based on the internal study. It is easy to see
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that the maximum likelihood estimators β̂I and θ̂I can be asymptotically represented

as sample means of the form

β̂I = D−1
1 ESIS(Y |X,Z; β), and θ̂I = D−1

2 ESIU(Y |X; θ).

Thus, the estimator proposed by Chen and Chen is essentially same as the regression

calibration estimator of the form (3.1), but substituting W = D−1
1 S(Y |X,Z; β) and

V = D−1
2 U(Y |X; θ). When the internal and external populations are identical, it is

evident that the estimator (3.1) is asymptotically unbiased because β̂I is a consistent

estimator of βE = βI and (θ̂E− θ̂I) is a consistent estimator of zero. However, we are

interested in the more general problem of calibration when the internal and external

populations may differ in some respects, and it is not clear what the asymptotic limit

of βcal is when the underlying populations are different.

3.3 Characterizing Bias for the Calibration

Estimator

In the following, we show that under certain conditions the asymptotic limit for the

calibration estimator provides a first-order Taylor’s approximation for βE.

We assume that f(Y |X,Z, β) specifies a correct model for the conditional distri-

bution P(Y |X,Z) for both the internal and external study populations, which have

parameters βI and βE respectively; we will refer to this assumption as (A1). We also

assume that c22 = EPI
[
U(Y |X; θ)UT (Y |X; θ)

]
is invertible, where EPI denotes the

population expectation based on the internal study; this is assumption (A2).

Let q(β) = θ define a mapping between the limiting values of the maximum-

likelihood estimates θ̂ and β̂. In Appendix A, we show that such a mapping can be
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implicitly defined by the equation

∫
Y,X,Z

U(Y |X; θ) f(Y |Z,X; β) P (Z|X) P (X) dY dXdZ = 0. (3.3)

The mapping can be common for the internal and external populations, even when

the underlying limiting parameter values are not necessarily the same for the two

populations, i.e., q(βI) = θI and q(βE) = θE but possibly βI 6= βE or θI 6= θE. This

mapping plays a key role in understanding whether the calibration estimator will

estimate meaningful parameters in a given context.

Proposition. Assume (A1), (A2). If the mapping θ = q(β) defined by equation

(3.3) is the same between populations PE and P I , then the calibration estimator β̂cal,

as defined in equation (3.11), provides an unbiased estimator for βE, the parameters

of the external population, up to a one-step Taylor’s approximation.

Sketch of the Proof. Beginning with equation (3.11) and incorporating the

mapping given by equation (3.3), we can write the asymptotic limit of β̂cal as

βcal = βI + d−1
1 c12c

−1
22 d2

{
q(βE)− q(βI)

}
, (3.4)

where d1, d2, c12, c22 are defined the same way as D1, D2, C12 and C22 respectively,

but replacing the sample expectation ESI by the population expectation EPI .

In order to understand βcal better, we establish some useful relationships. First,

we note the first-order Taylor approximation,

q(βE)− q(βI) ≈
{
∂q(β)

∂βT
|β=βI

}(
βE − βI

)
. (3.5)

In Appendix B, we take the derivative of the implicit mapping and show that

∂q(βI)

∂βT
= d−1

2 cT12. (3.6)
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By equating two possible expressions for the asymptotic variance of θ̂, namely AV
[
θ̂I
]

and AV
[
q(β̂I)

]
, we show in Appendix C that as long as c22 is invertible then

d1 = c12c
−1
22 c

T
12. (3.7)

Incorporating the relationships (3.5), (3.6), and (3.7) sequentially into (3.4), we show

that the asymptotic limit of β̂cal is

βcal = βI + d−1
1 c12c

−1
22 d2

{
q(βE)− q(βI)

}
≈ βI + d−1

1 c12c
−1
22 d2

{
∂q(β)

∂βT
|β=βI

}(
βE − βI

)
(3.8)

= βI + d−1
1 c12c

−1
22 d2d

−1
2 cT12

(
βE − βI

)
= βI + d−1

1 c12c
−1
22 c

T
12

(
βE − βI

)
= βI +

(
c12c

−1
22 c

T
12

)−1
c12c

−1
22 c

T
12

(
βE − βI

)
= βI +

(
βE − βI

)
= βE. �

Thus, β̂cal provides a first-order Taylor’s approximation for βE.

The Taylor’s approximation incorporated in (3.8) is based on the relationship

q(βE)−q(βI) ≈
{
∂q(β)
∂βT
|β=βI

}(
βE − βI

)
; however, by the mean value theorem we know

that this relationship holds with equality, i.e. q(βE)−q(βI) =
{
∂q(β)
∂βT
|β=β∗

}(
βE − βI

)
,

for some β∗ ∈ [βE, βI ]. When the form of q(β) is linear, the derivative ∂q(β)
∂βT

is a

constant and thus the relationship in (3.8) is exact. Correspondingly, the closer

q(β) is to being linear, the better the approximation. However, in situations where

q(β) is non-linear and βE 6= βI , the relationship will always be approximate, even

asymptotically. In Section 3.5 we examine the performance of this approximation in
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a number of realistic scenarios by way of numerical simulation.

Conditions for the Implicit Mapping to be Common

To determine when the mapping is common for the internal and external popula-

tions, we examine each element of (3.3) that defines the implicit mapping. The

forms of the reduced model and the full model are the same for the internal and

external populations, so the U(Y |X; θ) and f(Y |Z,X; β) parts of the mapping are

always common. Thus, for the entire mapping to be common, in general one needs

P I(Z|X) = PE(Z|X) and P I(X) = PE(X), which is to say that the joint distribution

of X and Z must be the same for the two populations.

In Appendix D we consider the special case where the reduced model g(Y |X, θ)

is also correctly specified, such as when the model is saturated, and show that the

mapping can be implicitly defined by

∫
Y,Z

U(Y |X; θ) f(Y |Z,X; β) P (Z|X) dY dZ = 0 for each value of X.

This mapping does not depend on P (X), so if the reduced model is correctly specified

it need only be the case that P I(Z|X) = PE(Z|X) for the mapping to be common for

the two populations. This underscores that P I(Z|X) = PE(Z|X) is the more critical

assumption, a finding which we later confirm by simulation.

It is worth noting that at no point, in either the special or the general case, was it

necessary to make assumptions about the relationship between
[
βI0 , β

I
x

]
and

[
βE0 , β

E
x

]
or between θI and θE for the mapping to be common. It is rather remarkable that

these risk parameters and disease rates for the internal and external populations could

be quite different and yet the calibration estimator still provides a good approximation

of the full model risk parameters for the external population.
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3.4 Variance Estimation

Deriving the variance estimator in this context is fairly straightforward. To simplify

notation, we express the estimator as

β̂cal = β̂I +M(θ̂E − θ̂I) where M = D−1
1 C12C

−1
22 D2.

The elements of M are Fisher’s information matrices and converge more quickly than

the maximum likelihood estimators, so here we treat them as constant matrices.

Thus, in derving the variance of β̂cal we begin with

V ar
[
β̂cal

]
= V ar

[
β̂I
]

+ V ar
[
M(θ̂E − θ̂I)

]
+ 2 · Cov

[
β̂I , M(θ̂E − θ̂I)

]
.

The internal estimates β̂I , θ̂I and the external estimates θ̂E are estimated on different

datasets and thus have zero covariance, resulting in

V ar
[
β̂cal

]
= V ar

[
β̂I
]

+M
(
V ar

[
θ̂E
]

+ V ar
[
θ̂I
])
MT − 2 · Cov

[
β̂I , θ̂I

]
MT .

Letting ΣE denote the robust variance estimator for the existing model θ̂E, and

inserting robust variance estimates for the remaining components, we obtain

V ar
[
β̂cal

]
= D−1

1 C11D
−1
1 +M

(
ΣE +D−1

2 C22D
−1
2

)
MT − 2 · (D−1

1 C12D
−1
2 )MT .

Finally, we insert the original matrices for M to obtain a final expression for the

variance of βcal.

V ar
[
β̂cal

]
= D−1

1 C11D
−1
1 +

(
D−1

1 C12C
−1
22 D2

) (
ΣE +D−1

2 C22D
−1
2

) (
D−1

1 C12C
−1
22 D2

)T
− 2 · (D−1

1 C12D
−1
2 )
(
D−1

1 C12C
−1
22 D2

)T
.
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This variance expression takes into account the variance in the external model, de-

noted ΣE, as well as the covariance between the reduced and full internal models.

In the next section we examine the performance of this variance estimator in sim-

ulations and show that it results in confidence intervals with appropriate coverage

probabilities.

3.5 Simulations

To evaluate the performance of the calibration estimator, we considered a simple

simulation setting with an existing risk factor X and a new risk factor Z, related to

a binary outcome Y through a full logistic model parametrized by β, P (Y |X,Z) =

expit(β0 + βxX + βzZ + βxzXZ).

3.5.1 The Binary Covariate Setting

We first consider a setting with binary X and Z, defining the the joint distribution

(Y,X,Z) through the parameters Px = P (X = 1), Pz0 = (Z = 1|X = 0), Pz1 =

P (Z = 1|X = 1), and β = [β0, βx, βz, βxz]
T . We defined the true underlying popula-

tion of interest, PE, by parameter values PE
x , PE

z0, PE
z1 and βE =

[
βE0 , β

E
x , β

E
z , β

E
xz

]T
.

Similarly, the underlying distribution represented by the available sample P I was

defined by P I
x , P I

z0, P I
z1 and βI .

We examined many settings where P I differed from PE with respect to one or

more of these various features of the population distribution. We classify the different

settings into Scenarios 1 through 4, with simulation parameters given in Table 3.1. In

Scenario 1, the populations P I and PE are identical. In Scenario 2, all features of the

two populations are the same except for the risk parameters,
[
βI0 , β

I
x

]T 6= [βE0 , βEx ]T .
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Table 3.1: Simulation Parameters for the Binary Covariate Setting,
Defining Scenarios in which the Internal and External Populations Differ with Respect
to Various Features of the Population Distribution

Parameters

Px Pz0 Pz1 β0 eβx eβz eβxz

External Population True Values 0.5 0.7 0.3 -3 0.85 2 1.2

Internal
Population

Scenario 1 - - - - - - -

Scenario 2 - - - -2.5 0.6 - -

Scenario 3

0.2 - - -2.5 0.6 - -

0.35 - - -2.5 0.6 - -

0.5 - - -2.5 0.6 - -

0.65 - - -2.5 0.6 - -

0.8 - - -2.5 0.6 - -

Scenario 4

0.8 0.85 0.15 -2.5 0.6 - -

0.8 0.7 0.3 -2.5 0.6 - -

0.8 0.55 0.45 -2.5 0.6 - -

0.8 0.4 0.6 -2.5 0.6 - -

0.8 0.25 0.75 -2.5 0.6 - -

“-” indicates that the internal and external population parameters are the same
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In Scenario 3, both
[
βI0 , β

I
x

]T 6= [βE0 , βEx ]T and P I
x 6= PE

x . Finally, in Scenario 4 all sim-

ulation parameters differ between P I and PE, including the conditional distributions

P I(Z|X) and PE(Z|X). In all simulation settings, we let the parameters associated

with the new covariate Z be transportable between the populations; mathematically,[
βIz , β

I
xz

]T
=
[
βEz , β

E
xz

]T
.

For each simulation setting, we conducted 5000 simulations where we generated

a cohort of size 150,000 from PE and obtained an estimate of θ̂E for the reduced

model P (Y |X) = expit(θ0 + θxX), representing the existing model toward which to

calibrate. We then generated a case-control sample with 1000 cases and 1000 controls

from P I , according to the parameters of the given simulation setting. We fit the full

model P (Y |X,Z) = expit(β0 + βxX + βzZ + βxzXZ) from the sample of P I using

both standard logistic regression and the calibration estimator, calibrated to θ̂E. In

the binary covariate setting we have defined, both the full and reduced models are

saturated and hence correctly specified. Thus, the conditions for a common mapping

are satisfied in all scenarios except Scenario 4.

Investigating Bias in the Binary Covariate Setting

In Table 3.2, we present the bias and mean squared error for β̂0 and β̂x, with respect to

the true parameters in the population of interest, βE0 and βEx , for both the calibration

estimator and the standard logistic regression estimator. In these simulations,

estimation of β̂z and β̂Ixz is not impacted by calibration, so the basic logistic regression

estimates and the calibration estimates are identical and unbiased (not presented).

Across all simulation settings, the standard logistic regression estimator is biased for

the intercept βE0 . This is to be expected, as it is well known that logistic regression

with case-control sampling yields a biased estimate of the intercept parameter. The

calibration estimator is based on a case-control sample as well, but by calibrating to
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Table 3.2: Percent Bias (Mean Squared Error) of the Calibration Estimator and the
Standard Logistic Regression Estimator for Estimating Log Odds Ratios in the
External Population, βE, in the Binary Covariate Setting for Simulation Parameters
Specified in Table 3.1

βE0 βEx

cal basic cal basic

Scenario 1 0 (0.01) -88 (6.96) -1 (0.02) 0 (0.02)

Scenario 2 0 (0.01) -92 (7.71) 0 (0.02) 214 (0.14)

Scenario 3

0 (0.01) -86 (6.71) 5 (0.02) 219 (0.16)

0 (0.01) -89 (7.19) 1 (0.02) 213 (0.15)

0 (0.01) -92 (7.71) -1 (0.02) 212 (0.14)

0 (0.02) -96 (8.33) 1 (0.02) 216 (0.15)

0 (0.03) -100 (9.03) 2 (0.03) 216 (0.16)

Scenario 4

3 (0.07) -102 (9.50) -151 (0.12) 214 (0.19)

0 (0.03) -100 (9.00) -3 (0.03) 212 (0.16)

-3 (0.02) -98 (8.62) 145 (0.07) 217 (0.15)

-7 (0.05) -95 (8.20) 284 (0.23) 215 (0.15)

-10 (0.10) -93 (7.84) 421 (0.49) 215 (0.15)

“cal” refers to the calibration estimator

“basic” refers to the standard logistic regression estimator
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the existing study, the method corrects the intercept estimate to be consistent with

the external population. As we expect, in Table 3.2 we see that the calibration of the

intercept parameter provides unbiased estimates of βE0 in all settings except Scenario

4, where we know the common mapping assumption is violated. In Scenario 1 we see

that both estimators are unbiased for βEx , which is also expected.

In Scenario 2 we see that when the risk parameters differ, the basic logistic estimate

is heavily biased for βEx . This is the case because it is unbiased for βIx 6= βEx . The

calibration estimator exhibits no bias for either parameter, supporting our analytic

finding that the risk parameters do not need to be the same for two populations in

order for calibration to be effective.

In Scenario 3, we see that the calibration estimator is unbiased for βE0 and ap-

proximately unbiased for βEx over a range of deviations between P I
x and PE

x when the

risk parameters differ as well. This is consistent with our analytic finding that when

the reduced model is correctly specified, we need not assume that Px is the same for

the common mapping assumption to hold. The calibration estimator does exhibit a

small degree of bias for βEx . This is consistent with our analytic observation that even

asymptotically the calibration correction will still be approximate. However, under

the specified difference in the risk parameters, we see that this approximation is very

good. The standard logistic regression estimator is biased for both parameters for

the same reasons as in Scenarios 1 & 2.

In Scenario 4, we know that the assumption of a common mapping does not hold,

so we do not expect the calibration estimator to be unbiased. Indeed, we see that as

the magnitudes of deviation between P I(Z|X) and PE(Z|X) increase, the calibration

estimate of βEx becomes seriously biased. However, it is worth noting that the degree

of bias in estimation of the intercept parameter is relatively small, even when the

P (Z|X) distributions are significantly different.
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Confidence Interval Coverage in the Binary Covariate Setting

In Table 3.3 we present the percent bias and coverage probability for the estimates of

standard deviation associated with the calibration estimates and the standard logis-

tic regression estimates. The estimates of the standard deviation for the calibration

Table 3.3: Percent Bias (Coverage Probability) for the Estimated Standard Errors
of the Calibration Estimator and the Standard Logistic Regression Estimator for the
Log Odds Ratios in the External Population, βE, in the Binary Covariate Setting for
Simulation Parameters Specified in Table 3.1

βE0 βEx

cal basic cal basic

Scenario 1 0 (0.95) 7 (0.00) 1 (0.95) 0 (0.95)

Scenario 2 0 (0.95) 8 (0.00) 0 (0.95) 1 (0.37)

Scenario 3

-1 (0.95) 11 (0.00) 1 (0.95) 0 (0.51)

0 (0.95) 10 (0.00) -1 (0.95) 0 (0.39)

-1 (0.95) 7 (0.00) -1 (0.95) -1 (0.38)

-2 (0.95) 4 (0.00) -2 (0.95) -1 (0.42)

0 (0.95) 3 (0.00) 1 (0.95) 0 (0.56)

Scenario 4

0 (0.94) 1 (0.00) 0 (0.83) -1 (0.74)

-1 (0.95) 2 (0.00) -1 (0.95) -1 (0.58)

0 (0.86) 4 (0.00) 0 (0.58) 0 (0.45)

2 (0.41) 7 (0.00) 1 (0.04) 1 (0.43)

0 (0.01) 7 (0.00) 0 (0.00) 0 (0.47)

“cal” refers to the calibration estimator

“basic” refers to the standard logistic regression estimator

estimator are given by the variance calculation derived in Section 3.4. These results

show that in settings where the calibration point estimates are unbiased, namely Sce-

narios 1 through 3, the estimates of standard deviation for the calibration estimator
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are unbiased as well, with coverage probabilities right at the appropriate 0.95 level.

In Scenario 4 where the calibration estimator showed substantial bias, the coverage

probabilities are understandably poor. Similarly, in the scenarios where the standard

logistic regression point estimates were biased, which include all except the Scenario 1

estimate of βEx , the coverage probabilities for the standard logistic regression estimates

are unacceptably low.

3.5.2 The Continuous Covariate Setting

Having thoroughly explored the setting of binary covariates, we now turn our at-

tention to the context of continuous covariates. Specifically, we consider the case

where X and Z are multivariate normal. To be consistent with our setup for bi-

nary covariates, we define the joint distribution P (Y,X,Z) by P (X) ∼ N (µx, σx),

P (Z|X) ∼ N
(
µz|x, σz|x

)
, and β as before. In all settings, we set the parameters of

the marginal distribution of Z to be µz = 0 and σz = 0.4. Given these parameters,

it is well known that the parameters of the conditional distribution Z given X are

µz|x = µz + σ2
zx (σ2

x)
−1

(X − µx) and σz|x = σ2
z − σ2

zx (σ2
x)
−1
σ2
xz, where σ2

xz is the co-

variance between X and Z (Seber and Lee, 2003). After computing the parameters for

the conditional distribution of Z given X, we choose to either shift the mean µz|x by

δz|x or scale the standard deviation σz|x by γz|x. With this setup, the joint distribution

P (Y,X,Z) is fully specified by the simulation parameters µx, σx, σ
2
xz, δz|x, γz|x, and

β.

We investigate the performance of the calibration estimator in situations where

these features may differ between the true underlying population, PE, and the popu-

lation represented by the sample, P I . Again, we organize the simulations into Scenar-

ios 1 through 4 that correspond with those for the binary covariate simulations, and
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present the simulation parameters in Table 3.4. In simulating PE we did not manip-

ulate the distribution of P (Z|X) at all, i.e. δz|x = 0 and γz|x = 1. In Scenario 1 the

Table 3.4: Simulation Parameters for Continuous the Covariate Setting,
Defining Scenarios in which the Internal and External Populations Differ with Respect
to Various Features of the Population Distribution

Parameters

µx σx σ2
xz δz|x γz|x β0 eβx eβz eβxz

External Population True Values 0.0 0.5 0.1 0 1 -3 0.85 2 1.2

Internal
Population

Scenario 1 - - - - - - - - -

Scenario 2 - - - - - -2.5 0.6 - -

Scenario 3

0.15 - - - - -2.5 0.6 - -

0.30 - - - - -2.5 0.6 - -

0.45 - - - - -2.5 0.6 - -

- 0.3 - - - -2.5 0.6 - -

- 0.8 - - - -2.5 0.6 - -

Scenario 4

0.3 - - 0.15 - -2.5 0.6 - -

0.3 - - 0.3 - -2.5 0.6 - -

0.3 - - - 0.7 -2.5 0.6 - -

0.3 - - - 1.3 -2.5 0.6 - -

0.3 - 0 - - -2.5 0.6 - -

0.3 - 0.19 - - -2.5 0.6 - -

“-” indicates that the internal and external population parameters are the same

underlying populations PE and P I are the same. In Scenario 2 the risk parameters

for P I differ from PE. In Scenario 3 the distribution P I(X) differs from PE(X),

first by shifting the mean µx and then by altering the standard deviation. In all

settings in Scenario 3, the risk parameters for the two populations differ as well. In

Scenario 4 the distribution P I (Z|X) differs from PE (Z|X), first by shifting the con-

ditional mean by δz|x, then by scaling the conditional standard deviation by γz|x, and

lastly by changing the covariance of X and Z through parameter σ2
xz. In addition, in

Scenario 4 the risk parameters and the distribution of P (X) differ as well.
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Again, in each simulation scenario we performed 5000 simulations, generating a

cohort study of size 150,000 from PE and a case-control study with 1000 cases and

1000 controls from P I , fitting models of the same form as in the binary case. However,

with continuous covariates it is no longer the case that the existing reduced model

is correctly specified; thus, the common mapping assumption will not satisfied in

cases where either P (X) or P (Z|X) differ between the populations (Scenarios 3 and

4). Accordingly, we do not expect the calibration estimator to be unbiased in those

settings.

Investigating Bias in the Continuous Covariate Setting

In Table 3.5, we present the bias and mean squared error for the calibration estimator

and the standard logistic regresssion estimator with respect to the true parameters

in the population of interest PE for the simulation settings described. In these sim-

ulations, the calibration estimate of β̂z is not impacted by calibration and thus the

results are identical to those for the standard logistic regression estimator and unbi-

ased in all settings; however, calibration estimate of β̂xz is affected by calibration in

these settings and will be discussed. As before, the basic logistic regression estimator

is significantly biased for the intercept parameter due to case-control sampling.

The results in Scenarios 1 and 2 mirror what we observed for binary covariates.

In Scenario 1 where the underlying populations are the same, both methods provide

unbiased estimation of all parameters, except for the standard logistic regression

estimator which is biased for the intercept as previously discussed. Scenario 2 shows

that when the risk parameters differ, the calibration method is unbiased for the

intercept. However, the calibration estimator of βEx shows some bias due to the

fact that the calibration is approximate, even asymptotically. We also see that the

magnitude of bias in the continuous covariate setting is greater than the bias observed
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Table 3.5: Percent Bias (Mean Squared Error) of the Calibration Estimator and the Standard
Logistic Regression Estimator for Estimating Log Odds Ratios in the External Population, βE,
in the Continuous Covariate Setting for Simulation Parameters Specified in Table 3.4

βE0 βEx βEz βExz
cal basic cal basic cal basic cal basic

Scenario 1 0 (0.00) -98 (8.72) 2 (0.00) -1 (0.01) 0 (0.02) 0 (0.02) 2 (0.04) 1 (0.04)

Scenario 2 0 (0.00) -98 (8.71) -12 (0.00) 215 (0.13) 0 (0.02) 0 (0.02) -1 (0.05) -1 (0.04)

Scenario 3

-1 (0.00) -101 (9.16) -4 (0.00) 215 (0.13) 0 (0.02) 0 (0.02) 1 (0.05) 2 (0.04)

-3 (0.01) -103 (9.62) 4 (0.00) 216 (0.13) 0 (0.02) 0 (0.02) 2 (0.04) 2 (0.04)

-5 (0.02) -106 (10.09) 12 (0.00) 215 (0.13) 0 (0.03) 0 (0.03) 2 (0.05) 1 (0.04)

-1 (0.00) -99 (8.81) 307 (0.30) 211 (0.19) 0 (0.04) 0 (0.04) 0 (0.09) 1 (0.08)

0 (0.00) -97 (8.47) -121 (0.04) 216 (0.13) 0 (0.02) 0 (0.01) 2 (0.03) 0 (0.02)

Scenario 4

1 (0.00) -100 (8.94) 23 (0.01) 217 (0.14) 0 (0.02) 0 (0.02) 3 (0.04) 3 (0.04)

4 (0.02) -96 (8.29) 39 (0.01) 215 (0.14) 0 (0.02) 0 (0.02) 2 (0.04) 2 (0.04)

-3 (0.01) -104 (9.71) 0 (0.01) 216 (0.14) 1 (0.04) 1 (0.04) 1 (0.06) 1 (0.06)

-2 (0.01) -103 (9.49) 10 (0.00) 214 (0.13) 0 (0.01) 0 (0.01) 4 (0.03) 4 (0.03)

0 (0.00) -103 (9.54) -169 (0.08) 215 (0.13) 0 (0.02) 0 (0.02) -1 (0.07) 1 (0.05)

-6 (0.04) -104 (9.71) 177 (0.16) 217 (0.21) 1 (0.14) 1 (0.13) 0 (0.03) 0 (0.03)

“cal” refers to the calibration estimator
“basic” refers to the standard logistic regression estimator
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in the binary covariate case. The standard logistic regression estimate is unbiased for

βIx 6= βEx , so we observe significant bias with respect to βEx .

In Scenario 3, we see that when the mean of the distribution P I(X) is shifted

relative to PE(X), the calibration estimates of β0 and βx are biased. The bias in the

intercept β0 is negligible, while the bias for βx is more substantial, increasing in mag-

nitude as the size of the shift in mean increases. Changing the distribution of P (X)

through the standard deviation, such that σIx 6= σEx , does not bias the calibration

estimate of the intercept parameter but results in substantial bias in the calibration

estimate of βx. It appears that differences in the mean affect the calibration estimate

of the intercept more than differences in the standard deviation of P (X), whereas the

opposite is true for estimation of β̂x. The calibration estimator shows a small degree

of bias for βxz. Standard logistic regression is unaffected by the distribution of the

covariates, and accordingly its performance is the same as in Scenario 2 in all cases,

with the observed bias attributable to differences in the risk parameters.

In the first two settings of Scenario 4, we observe that differences in the mean of

the conditional distribution P (Z|X) result in a small degree of bias in the calibration

estimate of β0 and somewhat greater bias in the calibration estimate of βx, with bias

increasing as the difference in means, δz|x, increases. However, in the next two settings,

we observe that differences in the standard deviations of P (Z|X) do not result in

bias for the calibration estimate of β0 and only negligible bias for the calibration

estimate of βx. Differences in the covariance of X and Z do not particularly impact

the calibration estimator of β0, but do substantially affect estimation of βx. The

calibration estimates of βxz show a small degree of bias when the conditional means

differ. As we noted previously, the performance of standard logistic regression does

not depend on the distribution of the covariates, so again it performs similarly as in

Scenario 2.
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Confidence Interval Coverage in the Continuous Covariate Setting

In Table 3.6 we present the percent bias and coverage probabilities for the standard

deviation estimates that arise from the variance calculation derived in Section 3.4 in

the continuous covariate simulation scenarios. In general, the true standard deviations

Table 3.6: Percent Bias (Coverage Probability) for the Estimated Standard Errors of the
Calibration Estimator and the Standard Logistic Regression Estimator for Log Odds Ratios in
the External Population, βE, in the Continuous Covariate Setting for Simulation Parameters
Specified in Table 3.4

βE0 βEx βEz βExz
cal basic cal basic cal basic cal basic

Scenario 1 -3 (0.95) 128 (0.00) -7 (0.93) -1 (0.95) -5 (0.94) -1 (0.95) -5 (0.94) 0 (0.95)

Scenario 2 -4 (0.94) 119 (0.00) -7 (0.92) 0 (0.08) -4 (0.94) 0 (0.95) -6 (0.94) -2 (0.95)

Scenario 3

-11 (0.58) 106 (0.00) -6 (0.93) 0 (0.09) -2 (0.95) 1 (0.96) -6 (0.93) -2 (0.95)

-13 (0.11) 65 (0.00) -6 (0.93) 0 (0.08) -4 (0.94) -1 (0.95) -4 (0.94) 0 (0.95)

-14 (0.01) 38 (0.00) -6 (0.93) 1 (0.08) -5 (0.93) -1 (0.95) -6 (0.94) -2 (0.95)

-5 (0.91) 83 (0.00) -2 (0.43) 0 (0.76) -1 (0.95) 1 (0.95) -5 (0.94) 0 (0.95)

-9 (0.92) 149 (0.00) -8 (0.00) -1 (0.00) -4 (0.94) 1 (0.95) -17 (0.90) 0 (0.95)

Scenario 4

-12 (0.83) 82 (0.00) -1 (0.92) 0 (0.11) -4 (0.94) 0 (0.95) -5 (0.94) -1 (0.95)

-5 (0.03) 54 (0.00) 2 (0.90) 0 (0.19) -4 (0.94) -1 (0.95) -5 (0.94) -1 (0.95)

-11 (0.17) 49 (0.00) -5 (0.94) 1 (0.15) -2 (0.95) 1 (0.95) -4 (0.94) 0 (0.95)

-13 (0.15) 75 (0.00) -6 (0.93) 1 (0.07) -5 (0.94) 0 (0.95) -7 (0.94) -2 (0.94)

0 (0.87) 107 (0.00) 0 (0.00) 1 (0.03) -7 (0.94) 0 (0.95) -13 (0.91) 0 (0.95)

-1 (0.45) 11 (0.00) -2 (0.81) -1 (0.77) -2 (0.95) -1 (0.95) -4 (0.95) -2 (0.95)

“cal” refers to the calibration estimator
“basic” refers to the standard logistic regression estimator

were quite small, so even a very small amount of bias appears large when presented on

the scale of percent bias. A better indicator of performance of the variance estimator

is to consider the coverage probabilities, which is what we will focus on.
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In Scenario 1, we see that both methods have coverage probabilities hovering

around the appropriate 0.95 level. In this case the point estimates are unbiased so

we would expect the standard deviation estimates to be unbiased as well; however

we do see a bit of bias in the variance estimator for the calibration estimator. This

is most likely due to the fact that these sample sizes are not quite large enough for

the asymptotics of the robust variance estimates to have kicked in yet. In additional

simulations (not shown) we found that this bias shrank as we looked at increasingly

larger sample sizes, supporting the notion that this is a small sample bias.

As we observed in Table 3.5, in Scenarios 2 through 4 there is some degree of

bias in the point estimates of β0 and βx for the calibration estimator. In these

settings where the point estimates are biased, we expect the variance estimator to

show some bias as well. However, even in these cases the coverage probabilities

still seem relatively reasonable, with a few exceptions. In Scenario 2, we see that

there is a large percent bias in the standard deviation estimates, especially when the

risk relationship is reverse, and yet the coverage probabilities for all parameters are

still greater than 90%. In Scenario 3, when the populations have different means

for P (X), the calibration coverage probabilities for βx are still above 90% but the

variance estimates of the intercept βE0 are significantly affected, with unacceptably

low coverage. Conversely, when the populations have different standard deviations for

P (X), the coverage probabilities for βE0 are above 90% while the coverage probabilites

for βEx drop significantly.

In Scenario 4, when the distribution of P (Z|X) differs between the populations,

for the most part the coverage probabilities are still very good, despite the bias in

the point estimates. However, when the means of the distributions are different,

the calibration coverage probabilities for β0 are unacceptably low; and when the

covariance between X and Z is 0 in the sample but non-zero in the true population,
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then the coverage for βx is also quite bad. The calibration coverage probabilities for

βz and βxz remain above 85% for all simulation scenarios, and in most cases hover

very close to the 0.95 level.

Other Observations

In the course of conducting these simulations, we noted the importance of using a

robust variance estimator for the existing model, ΣE, in the variance calculation for

the calibration estimator. Standard logistic regression software in R does not return

the robust variance estimator by default, so it is unlikely that the variance reported

for a published model is the robust variance estimate unless specifically stated. In

practice it may be necessary to contact the researchers who built the existing model

to request the robust variance matrix. For the purposes of calibration, it would be

even better if researchers made it standard practice to publish the robust variance

estimator from the outset.

Our simulation explored the performance of the calibration estimator in great

detail for the setting of building a logistic regression model, calibrated to a published

logistic regression model. This application of the calibration estimator addresses

the motivating problem we described in Example 1 of 3.2. However, the theoretical

results we’ve shown for the calibration estimator hold generally and can be applied

to calibrate other types of models as well. For instance, to address the motivating

problem we laid out in Example 2 of 3.2, in Appendix E we show how to use calibration

estimator to calibrate the Cox Proportional Hazards model.
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3.6 Conclusions and Practical Recommendations

We proposed the use of a calibration estimator as a way of incorporating relevant ex-

ternal information when building a new or updated model with the aim of improving

the efficiency and representativeness of the model. The estimator had not previously

been studied in the setting where the sample data and the external information are

representative of different populations, so we evaluated its performance in that con-

text, both analytically and numerically. We identified a mapping, given by equation

3.3, that plays a key role in whether or not the calibration estimator produces mean-

ingful results when the populations are different. We showed that if the mapping is

common for the two populations, then the calibration estimator is asymptotically un-

biased for the parameters of the external population, up to a Taylor’s approximation.

With further exploration of the mapping, we determined that a critical require-

ment for the mapping to be common, and thus for the calibration estimator to perform

well, is that the conditional distribution of the new risk factors, Z, given the pub-

lished risk factors, X, be the same in the two populations. For a given application,

researchers should carefully consider whether this is the case based on the features of

their particular dataset and the source of external information that is available.

We also found that if the external model is not correctly specified, then the per-

formance of the calibration estimator is sensitive to differences in the distribution of

the published risk factors, X, and is especially impacted when the degree of variation

differs between in the two populations. Thus, we recommend calibrating to satu-

rated models when possible. In general, calibrating to external information in a form

that is most saturated will reduce the impact that any potential differences in the

distribution of the published risk factors, X, would have on the resulting model.
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3.7 Future Work

In the course of evaluating the calibration estimator we identified some weaknesses

that have inspired avenues of future work in this area. As we have discussed, we

found that the performance of the calibration estimator depends on whether the

distribution of P (Z|X) in the internal data is representative of the distribution in

the external population of interest, and in cases where the external model is not

correctly specified, on P (X) as well. Unfortunately, these distributions contribute

to the calibration implicitly in a way that does not make it possible to incorporate

better estimates of P (Z|X) and P (X), perhaps from survey data, in situations where

it would be necessary. This inspired us to consider ways to overcome that limitation,

while still making use of the powerful mapping that relates parameters of the new

model to the parameters of the existing model.

In the future, we plan to explore a constrained maximum likelihood approach that

makes use of the key mapping given by equation (3.3) as a constraint in the likelihood.

The mapping will still involve the distributions P (Z|X) and P (X), but an advantage

of this approach is that one would have the option of incorporating estimates of those

distributions from other sources, such as survey data, into the constraint.
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3.8 Appendix A: The Mapping

Here we will derive the implicit mapping q(·) that relates the parameters of the full

model with the parameters of the reduced model. We begin with the identity

E [ U(Y |X; θ) ] = 0, which holds for every true value θ.∫
Y,X

U(Y |X; θ) P (Y,X) dY dX = 0

∫
Y,X,Z

U(Y |X; θ) P (Y,X,Z) dY dXdZ = 0

∫
Y,X,Z

U(Y |X; θ) P (Y |Z,X) P (Z|X) P (X) dY dXdZ = 0

By incorporating the full model parametrized by β for P (Y |Z,X), we establish an

implicit relationship with θ defined by∫
Y,X,Z

U(Y |X; θ) f(Y |Z,X; β) P (Z|X) P (X) dY dXdZ = 0

3.9 Appendix B: Deriving ∂q(βI)

∂βT
= d−1

2 cT12

Here, we derive the relationship ∂q(βI)
∂βT

= d−1
2 cT12. We begin with the implicit mapping

derived in Appendix A.

0 =

∫
Y,X,Z

U(Y |X; θ) f(Y |Z,X; β) P (Z|X) P (X) dY dXdZ

0 =

∫
Y,X

U(Y |X; θ)

[ ∫
Z

f(Y |Z,X; β) P (Z|X)dZ

]
P (X) dY dX
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To temporarily simplify the notation, express this as 0 =
∫
Y,X

A · B · P I(X), letting

A = U(Y |X, q(βI)) and B =
∫
Z
f(Y |Z,X; β) P (Z|X). Take the derivative of both

sides with respect to β.

0 =

∫
Y,X

(
∂A

∂βT

)
·B · P I(X) +

∫
Y,X

A ·
(
∂B

∂βT

)
· P I(X)

The necessary derivatives are

∂A

∂βT
=
∂U(Y |X, q(β))

∂βT
=
∂U(Y |X, q(β))

∂θ
· ∂θ
∂βT

=
∂U(Y |X, θ)

∂θ
· ∂q(β)

∂βT
,

∂B

∂βT
=

∫
Z

∂f(Y |Z,X; β)

∂βT
P (Z|X) =

∫
Z

ST (Y |Z,X; β) f(Y |Z,X; β) P (Z|X).

Plugging in these expressions yields

0 =

∫
Y,X

(
∂U(Y |X, θ)

∂θ
· ∂q(β)

∂βT

)
·
[∫

Z

f(Y |Z,X; β) P (Z|X)

]
· P (X) +

∫
Y,X

U(Y |X, qT (β)) ·
(∫

Z

ST (Y |Z,X; β) f(Y |Z,X; β) P (Z|X)

)
· P (X).

By recognizing that these integrals represent expectations over the population, we

can write the equation as

0 =EP

[
∂U(Y |X, θ)

∂θ

](
∂q(β)

∂βT

)
+ EP

[
U(Y |X, q(β))ST (Y |Z,X; β)

]
.

When considering the mapping in the internal population, these population expecta-

tions are denoted by the matrices −d2 and cT12, yielding

0 =(−d2)

(
∂q(βI)

∂βT

)
+ cT12.

This implies that ∂q(βI)
∂βT

= d−1
2 cT12.
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3.10 Appendix C: Deriving d1 = c12c
−1
22 c

T
12

Let AV [·] denote the asymptotic variance of a given estimator. The mapping θ̂I =

q(β̂I) implies that

AV
[
θ̂I
]

= AV
[
q(β̂I)

]
.

By the delta method, AV
[
θ̂I
]

=

(
∂q(βI)

∂βT

)
AV

[
β̂I
](∂q(βI)T

∂β

)
.

Recall that the matrices d1, c11, and d2, c22 are representations of the Fisher’s infor-

mation for β and θ respectively. Thus, we can incorporate robust variances for the

parameters as follows, yielding

d−1
2 c22d

−1
2 =

(
∂q(βI)

∂βT

)
d−1

1 c11d
−1
1

(
∂q(βI)T

∂β

)
.

Plugging in the relationship we derived in Appendix A, that ∂q(βI)
∂βT

= d−1
2 cT12,

d−1
2 c22d

−1
2 = d−1

2 cT12d
−1
1 c11d

−1
1 c12d

−1
2

c22 = cT12d
−1
1 c11d

−1
1 c12.

We assume the full model f(y|x, z; βI) is correctly specified, which means d1 = c11,

and thus
c22 = cT12d

−1
1 c12. (3.9)

Recall that the overall matrix, c =

 c11 c12

c21 c22

 =

 d1 c12

c21 c22

 since d1 = c11.

Let det denote the determinant of a matrix. The following are properties of matrix

algebra:
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det

 A B

C D

 = det[A]det[D − CA−1B], and when D is invertible

det

 A B

C D

 = det[D]det[A−BD−1C].

Assuming that c22 is invertible and applying these rules to the second expression of

the overall matrix c, we see that

det[c] = det[c22] · det[d1 − c12c
−1
22 c

T
12] = det[d1] · det[c22 − cT12d

−1
1 c12].

However, from (3.9) we know that det[c22 − cT12d
−1
1 c12] = 0, meaning that

det[c22] · det[d1 − c12c
−1
22 c

T
12] = 0. (3.10)

Since we assume c22 is invertible, det[c22] 6= 0. Thus, in order for (3.10) to be satisfied

it must be the case that det[d1 − c12c
−1
22 c

T
12] = 0, which implies that d1 = c12c

−1
22 c

T
12.

3.11 Appendix D: Mapping in a Special Case

Here we derive the mapping q(·) in the special case where the reduced model is cor-

rectly specified, in addition to the full model. In this case, we begin with the identity

∫
Y

g(Y |X; θ) = 1, which holds for all θ and X.
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Taking the derivative of both sides yields

∫
Y

∂g(Y |X; θ)

∂θ
=

∫
Y

U(Y |X; θ)g(Y |X; θ) = 0.

Under the assumption that the reduced model is correctly specified, it is the case that

g(Y |X; θ) =
∫
Z
f(Y |X,Z; β)P (Z|X)dZ, and thus that

∫
Y

U(Y |X; θ)

[∫
Z

f(Y |X,Z; β)P (Z|X)dZ

]
= 0

defines the mapping for each value of X.

.
3.12 Appendix E: The Calibration Estimator

Applied to the Cox Proportional Hazards

Model

In the simulation section, we implemented the calibration estimator in the public

health context presented in Example 1, where the objective was to fit a logistic

regression model on case-control data while calibrating to an existing reduced model

built from a large cohort. Now we turn our attention to Example 2 and detail how

to use the calibration estimator to estimate the baseline hazard function for the Cox

proportional hazards model, λ(t|X) = λ0(t)eXβ, such that it is marginally calibrated

to registry incidence rates.

Suppose we have data (Xi, Ti, δi) from a prospective cohort on covariates X,

event time T and censoring indicator δ on N individuals in the United States, which

we want to use to fit the the Cox proportional hazards model. Recall that λ(t|X) =

P (T = t|T ≥ t,X) and the baseline hazard λ0(t) = P (T = t|T ≥ t,X = 0). The

SEER cancer registry monitors the US population, and is an excellent source of
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precise, representative estimates of cancer incidence, P̂ (T = t|T ≥ t) = λ̂m(t). To

conceptualize this problem in the framework we have proposed, we think of the model

we want to fit, λ(t|X), as the full model, and the marginal model λm(t) that does

not incorporate covariates as the reduced model. Thus, the incidence rates from the

SEER registry can be thought of as an existing, reduced model toward which to

calibrate.

As in Section 2.3.1, we define the hazard functions by parameters at each observed

event time tq for q=1,...,Q, as follows:

λ0(t) =


λ0q for tq = t

0 else

 ; λm(t) =


λmq for tq = t

0 else


λ0(t) =

Q∑
q=1

λ0qI {t0q = t} ; λm(t) =

Q∑
q=1

λmqI {tmq = t} .

The calibration estimator for the baseline hazard estimate for the full model in the

external population is

λ̂0q,cal = λ̂I0q +D−1
1 C12C

−1
22 D2(λ̂Emq − λ̂Imq),

where λ̂I0q = dq∑
i∈Rq exp(Xiβ)

and λ̂Imq = dq∑
i∈Rq 1

= dq
nq

are the maximum likelihood es-

timators estimated in the sample, with dq denoting the number of observed events

at time tq and nq are the number at risk at that time. λ̂Emq are the incidence esti-

mates provided by the registry at each time. The expressions for Fisher’s information

matrices in this example are:

D1 = −ESI
[
∂S (λ0q)

∂λ0q

]
;D2 = −ESI

[
∂S (λmq)

∂λmq

]
,

C12 = ESI
[
S (λ0q)S (λmq)

′] ;C22 = ESI
[
S (λmq)S (λmq)

′] ,
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with

S (λ0q) =
δ · I{tq=t}
λ0q

− exp(Xβ) · I{tq≤t},
∂S (λ0q)

∂λ0q

=
−δ · I{tq=t}

λ2
0q

,

S (λmq) =
δ · I{tq=t}
λmq

− I{tq≤t}, and
∂S (λmq)

∂λmq
=
−δ · I{tq=t}

λ2
mq

.

Note that because we have defined these functions by a parameter at each observed

event time, the matrices D1, D2, C12 and C22 all have dimension J by J , where J

is the number of observed event times. Similarly, the variance matrix ΣE for the

“existing model” parameters would theoretically also be J by J . However, in the

case where the incidence rates come from a cancer registry as large as SEER, it may

be reasonable to treat the λEmq’s as known, and effectively without variation, ΣE = 0.
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Chapter 4

Data Applications and Results

4.1 An Absolute Risk Model for Breast Cancer

4.1.1 Introduction

Thus far, we have reviewed statistical methods for building absolute risk models and

developed some novel methodologies that extend the existing methods to accommo-

date disease subtypes in settings where data sources may be completely or partially

missing the disease characteristics that define subtype. We then discussed a method

for building risk models that are calibrated to existing published models or to disease

registries. Having discussed the statistical methods at length, in this chapter we will

apply the methods in a real data setting to develop absolute risk models for breast

cancer.

We will begin by developing a model for overall invasive breast cancer based on

known breast cancer risk factors and genetic information from 24 single nucleotide

polymorphisms (SNPs) using prospective cohort data. Our goal is to use the absolute

risk model to project the distribution of breast cancer risk in ages 30-70 for the US

population. This provides an opportunity to contrast the results with those from the
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subtype-specific model, which is built based on case-control studies in the BCAC.

Additionally, we plan to use the risk model to evaluate the potential impact that

population-wide risk factor modification would have on the distribution of risk in the

United States. Since many standard risk factors for breast cancer are not modifiable,

a woman at high risk based on non-modifiable risk factors can only reduce her risk so

much, even by adopting the lowest risk health behaviors. With this in mind, we will

investigate the impact of risk factor modification for hormone replacement therapy

use, body mass index, alcohol consumption, and smoking behaviors on overall breast

cancer risk within strata defined by non-modifiable risk.

4.1.2 Materials and Methods

Study Population

We analyzed data on a total of 17,176 invasive breast cancer cases and 19,860 controls

from 8 prospective cohort studies participating in the Breast and Prostate Cancer Co-

hort Consortium (BPC3), including 6 American cohorts (CPSII, NHS, WHS, PLCO,

MEC, and WHI), 1 European cohort (EPIC), and 1 Australian cohort (MCCS)

(Hunter et al., 2005; Husing et al., 2012). The observations contributed by each

cohort are given in Table 4.1. These cohorts contributed information on known

breast cancer risk factors including first degree family history, age at menarche, par-

ity, age at first full term birth, menopausal status, age at menopause, height in cm,

body mass index (BMI), alcohol consumption in g/day, smoking status, and hormone

replacement therapy (HRT) use. Four binary HRT variables included information on

ever use of HRT, ever use of estrogen only HRT, ever use of combined estrogen and

progestin HRT, and current use of HRT. Additionally, these cohorts included genetic

information on 24 SNPs. We excluded 42 cases and 45 controls with risk factor values
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Table 4.1: Sample Sizes by Case-Control Status and Cohort in the BPC3 data

Cases Controls

CPS2 2558 3215

EPIC 4154 5166

MCCS 930 765

MEC 521 570

NHS 1782 3148

PLCO 790 982

WHI 5772 5349

WHS 669 665

Total 17176 19860

that differed by more than 4 standard deviations from average after transforming the

risk factors to be approximately normal.

Statistical Methods

Completeness of the breast cancer risk factors varied by cohort and is presented in

Supplemental Table 4.1. We imputed missing values for all risk factors sequentially, in

order of increasing missingness. We constructed each imputation model conditional

on case-control status, outcome age, cohort, and all completed variables that were

significantly associated with the risk factor being imputed. These imputation models

also included any significant two-way interactions between the variables included in

the model. In cases where a cohort had no data on a given variable from which to

build the imputation model, such as for some HRT variables, the imputation was

performed from the model built on the cohort thought to be the most similar based

on related variables. We fit logistic models for the association between case-control

status and each variable, adjusted for age and cohort, before and after imputation to

verify that none of the estimated effects changed by more than 10%, and found that

most differed by less than 2% before and after imputation.
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Different cohorts also had different patterns of missing data for each of the 24

SNPs in the dataset. Within each cohort, we imputed missing data for each SNP for

which there was data from an imputation model conditional on case-control status,

family history, and an interaction between the two. In cases where a cohort had no

data on a given SNP, we did not attempt to impute a value for that SNP. We planned

to incorporate SNP data in the absolute risk model through a single polygenic risk

score (PGRS) equal to the sum of estimated log odds ratios for each SNP multiplied

by the observed SNP profile for each individual. For the SNPs entirely missing in a

given cohort, we imputed the missing component of the polygenic risk score (rather

than each individual SNP), taking family history into account using the methods of

Chatterjee et al. (2013).

To explain further, to construct a PGRS for the BPC3 data, we fit a logistic

regression model with all 24 SNPs, adjusted for family history, categorical age, and

cohort for individuals with complete data on those variables to obtain estimates of

the log odds ratio parameters for each SNP: β̂1, ..., β̂24. We then used those estimates

to compute the PGRSi =
24∑
j=1

β̂j ·Gij for each person using their own particular SNP

profile, Gi. However, if a cohort was fully missing data on a given set of SNPs, the

PGRS could be decomposed into a component that could be directly computed from

the empirical data (SNPs j) and a component that could not (SNPs k), as

PGRSi =
∑
j

β̂j ·Gij +
∑
k

β̂k ·Gik.

PGRSi =
∑
j

β̂j ·Gij + γi with γi =
∑
k

β̂k ·Gik

Rather than attempt to impute values for each missing SNP, indexed by k, we instead

imputed the missing component of the PGRS, γi, still using the empirical SNP data
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from each individual for SNPs that did have data, indexed by j. We know that γi is a

sum of random variables so we can impute from normal distributions with appropriate

mean and variance. Chatterjee et al. (2013) detail how to specify the parameters of

the imputation in a way that accounts for case-control status and family history.

The method relies solely on estimates of the log odds ratios and allele frequencies

for the missing SNPs along with an estimate of the log odds ratio for family history,

all of which we obtained from the completed data (Chatterjee et al., 2013). For the

purposes of comparison, we created a fully simulated PGRS based on 24 SNPs by

imputing the entire PGRS, not just the missing component. Using this method, we

also created a simulated PGRS based on 86 SNPs, adding an additional 62 SNPs

found to be associated with breast cancer in the published literature, with log odds

ratios and allele frequencies estimated in the BCAC data.

Using the imputation methods described, we created 5 imputed datasets for anal-

ysis. To build the absolute risk model, we employed the methods pioneered by (Gail

et al., 1989), the details of which we reviewed in Chapter 2. We estimated the hazard

ratio component of the model using standard logistic regression adjusted for quintiles

of outcome age and cohort. We estimated the attributable risk among the cases using

the Bruzzi method, by computing one minus the average of the inverse relative risks

among the cases (Bruzzi et al., 1985). We combined the estimated attributable risk

with marginal hazard rates of overall breast cancer in the SEER registry to obtain

baseline hazard rates. Having constructed the absolute risk model, we then used

it to predict risk of breast cancer among the controls to obtain an estimate of the

distribution of risk for ages 30-70 in the population.

When predicting risk over the age interval 30-70, all women are initially pre-

meopausal (with no HRT use) and become postmenopausal at their recorded age at

menopause. In addition to menopausal status, at this time the variables reflecting
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HRT use are changed from “never” to the actual HRT use behaviors of the women

for whom risk is to be predicted. For women who are premenopausal, the age at

menopause and HRT use variables are not defined. For the purposes of projecting

risk for these women, we use an age at menopause of 50 (the median among post-

menopausal women in the dataset) and we impute HRT use variables from a model

fit on the postmenopausal women for whom the HRT variables are known. We con-

structed the absolute risk model and predicted risk for each of the 5 imputed datasets

and averaged the results.

4.1.3 Results and Discussion

To determine the form of the hazard ratio component of the absolute risk model, we

performed a number of exploratory analyses. To evaluate whether the effect of each

risk factor could be modeled in a linear fashion, we fit generalized additive models

relating case-control status to each continuous variable, adjusted for age and cohort

(Hastie and Tibshirani, 1990). The models allowed us to look at flexibly modeled,

smoothed covariate effects to ascertain whether linear modeling was appropriate. In

general we found non-linearity in the effects and thus chose to take a more non-

parametric approach, including categorical versions of the continuous risk factors

in the model. We evaluated heterogeneity in the effects across cohorts by creating

forest plots and testing for differences in effect size. We did not see statistically

significant heterogeneity in the effects by study, except for the age at first full term

birth (AFFTB) variable. In this case, all studies were qualitatively consistent in

showing that greater AFFTB increased risk but differed in the estimated effect size.

We also evaluated whether to include an interaction between the PGRS and any

of the risk factors. We tested interactions between the PGRS and each covariate,

modeled continuously to reduce the degrees of freedom and increase the power for
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detecting interaction. We first tested interactions between the PGRS and each con-

tinuous covariate, adjusting for age and cohort, for the middle 90% of the PGRS.

We separately tested interaction in the extremes of PGRS (defined by the upper and

lower 5th percentiles) separately, by including a binary indicator of “extreme” (rel-

ative to the middle) and testing the interaction with each continuous covariate. We

also looked at forest plots and performed statistical tests to evaluate heterogeneity

in the effect size for each continuous covariate across deciles of the PGRS. Across

these evaulations we did not see consistent evidence of interaction between PGRS

and any risk factor and thus did not include any interactions with PGRS. Previous

studies have found that the effect of BMI on breast cancer risk is strongest among

postmenopausal never-HRT users (Lahmann et al., 2004; Morimoto et al., 2002; Lah-

mann et al., 2003). We observe this in the BPC3 data as well and accordingly we

include an interaction between BMI and HRT in the model.

Based on our initial analyses, we formulated a fully-adjusted model with main

effects for the categorical covariates and an interaction between deciles of BMI and

ever use of HRT, along with deciles of PGRS, and adjustment for quintiles of age

and cohort. Supplemental Table 4.2 contains the hazard ratio estimates from this

model with the PGRS based on empirical genotype data for 24 SNPs, which are

consistent with previous associations for the standard breast cancer risk factors. Table

4.2 compares the hazard ratio estimates for deciles of the PGRS based on empirical

genotype data for 24 SNPs with the hazard ratio estimates for deciles of the simulated

PGRS for 24 SNPs in the fully-adjusted model. The estimates correspond closely,

providing support for our use of the simulated PGRS for 86 SNPs going forward. We

evaluated the discriminatory accuracy of a number of models, including those with

risk factors alone, PGRS alone, and risk factors and PGRS together for both the

PGRS based on empirical genotype data for 24 SNPs and the simulated PGRS for
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Table 4.2: Comparison of Estimated Hazard Ratios for Deciles of PGRS, for PGRS
from Empirical Genotype Data for 24 SNPs and Simulated PGRS for 24 SNPs, in
Fully-Adjusted Models

Estimated Hazard Ratios

Empirical Simulated

PGRS Decile 1 1 1

PGRS Decile 2 1.19 1.21

PGRS Decile 3 1.33 1.38

PGRS Decile 4 1.43 1.47

PGRS Decile 5 1.58 1.59

PGRS Decile 6 1.66 1.75

PGRS Decile 7 1.78 1.89

PGRS Decile 8 2.05 2.02

PGRS Decile 9 2.26 2.27

PGRS Decile 10 2.80 2.84

Family History 1.41 1.38

86 SNPs. Figure 4.1 shows the Receiver Operating Characteristic (ROC) curves and

the area under the ROC curve (AUC) for these models (Hanley, 1989). We find that

the best discriminatory accuracy is provided by a model with risk factors and the

simulated PGRS for 86 SNPs, with AUC=0.654.

We predicted absolute risks among controls for ages 30-70 from two fully-adjusted

models, one with the PGRS based on empirical genotype data for 24 SNPs and the

other with the simulated PGRS for 86 SNPs. Table 4.3 presents average predicted

risk within deciles of risk for these two fully-adjusted models. These results show

increased risk stratification for the 86 SNP model, particularly for those at highest

risk. Figure 4.2 shows the distribution of predicted absolute risks for ages 30-70

for the fully-adjusted model with simulated PGRS based on 86 SNPs, along with the

percentage of the population projected to exceed referent risk thresholds.

Ideally, individuals at high risk of disease could seek to reduce their risk by mod-

ifying their behaviors. Unfortunately, most known breast cancer risk factors such as
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Figure 4.1: ROC Plot for Risk Models in BPC3
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Risk Factors + 86 SNPs, AUC= 0.654

Table 4.3: Average Absolute Risk of Breast Cancer in Ages 30-70 from Two Fully-
Adjusted Models, with the PGRS from Empirical Genotype Data for 24 SNPs and
the Simulated PGRS for 86 SNPs, by Risk Decile

Among Controls

24 SNPS 86 SNPS

Risk Decile 1 4.19 3.15

Risk Decile 2 5.36 4.35

Risk Decile 3 6.17 5.29

Risk Decile 4 6.93 6.20

Risk Decile 5 7.69 7.15

Risk Decile 6 8.53 8.21

Risk Decile 7 9.52 9.45

Risk Decile 8 10.77 11.13

Risk Decile 9 12.60 13.67

Risk Decile 10 16.98 19.58

Overall 8.87 8.82
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Figure 4.2: Distribution of Absolute Risk of Breast Cancer in Ages 30-70 from Fully-
Adjusted Model with Simulated PGRS for 86 SNPs
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family history, reproductive factors, and genetic factors are not modifiable. In fact,

in our absolute risk model the only modifiable risk factors are alcohol consumption,

HRT use, BMI, and smoking status. We evaluated how modifying these risk factors

to their lowest risk levels, individually and simultaneously, impacts the projected risk

distribution for ages 30-70 using the fully-adjusted model with 86 SNPs. In particular,

we computed two quantities to quantify the risk reduction associated with modifying

risk factors: percent total cancer (PTC) reduction and percent preventable cancer

(PPC) reduction.

We defined PTC as the difference between the probability of disease in the pop-

ulation and the probability of disease for those with lowest risk modifiable factors,

M0, as a proportion of the overall probability of disease; mathematically, PTC =

[P (D)− P (D|M0)] /P (D). We then partitioned the PTC by categories defined by

118



non-modifiable risk group, denoted by G, to be

PTC =

[∑
G

[P (D|G)− P (D|G,M0)]P (G)

]
/P (D).

Thus, the percent total cancer reduction that would occur by reducing all modifiable

risk factors to the lowest risk levels in a particular non-modifiable risk category, G′,

is given by

PTC(G′) =
[P (D|G′)− P (D|G′,M0)]P (G′)

P (D)
.

We defined percent preventable cancer similarly, but with P (D) − P (D|M0) in the

denominator in order to measure the risk reduction as a proportion of the possible

reduction that could be achieved if the entire population reduced modifiable risk

factors to the lowest risk levels.

PPC(G′) =
[P (D|G′)− P (D|G′,M0)]P (G′)

P (D)− P (D|M0)
.

We computed P (D|G) within strata defined by the quintiles of non-modifiable risk

by using the absolute risk model to predict risk for the covariate profiles of controls

in the dataset. To compute P (D|G′,M0) we predicted risk for the same covariate

profiles but set the modifiable risk factors to their lowest risk levels. Using these

quantities, we computed the proportion of all breast cancers that would be prevented

by modification of the risk factor (PTC) and the percent that would be prevented

if one were to target risk factor modification to those in a given quintile of non-

modifiable risk (PPC).

Table 4.4 presents these results. We see that targeting all risk factors simulta-

neously is projected to result in a 32% reduction of breast cancer in the population,

while targeting HRT-use alone would only result in a roughly 17% reduction overall.

We also see that by targeting risk factor modification efforts to those in the upper

20th percentile of non-modifiable risk, roughly 35% of the preventable breast cancers
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Table 4.4: Percent Preventable and Percent Total Breast Cancer Reduction for Ages
30-70 from Modification of Risk Factors by Non-Modifiable Risk Group, Based on
Fully-Adjusted Model with Simulated PGRS for 86 SNPs

Non-Modifiable Alcohol HRT BMI Smoking Simultaneous

Risk %P %T %P %T %P %T %P %T %P %T

Quintile 1 9.3 0.71 9.1 1.54 10.2 0.87 9.6 0.38 9.6 3.10

Quintile 2 14.0 1.07 13.8 2.34 14.5 1.23 14.3 0.57 14.2 4.58

Quintile 3 18.0 1.38 18.1 3.06 18.4 1.57 18.2 0.73 18.2 5.89

Quintile 4 23.4 1.79 23.4 3.94 23.0 1.96 23.4 0.93 23.3 7.52

Quintile 5 35.4 2.71 35.5 6.00 34.0 2.90 34.5 1.38 34.8 11.25

Overall – 7.66 – 16.89 – 8.53 – 3.99 – 32.33

%P refers to percent preventable breast cancer reduction

%T refers to percent total breast cancer reduction

might be prevented. This indicates that targeted prevention strategies may yield a

greater breast cancer reduction for the same resources invested. However, this also

indicates that a considerable proportion of preventable breast cancer falls outside the

highest non-modifiable risk group so there is reason to pursue broader prevention

strategies as well.

Within categories defined by non-modifiable risk there is significant variability in

overall breast cancer risk, depending on the specific risk factors, both modifiable and

non-modifiable, of each woman in that group. Figure 4.3 presents the distribution of

breast cancer risk in ages 30-70 by non-modifiable risk group based on results from

the fully-adjusted model with simulated PGRS for 86 SNPs. It is clear that the higher

risk non-modifiable groups have a greater degree of stratification in breast cancer risk

than the lower risk groups. This as an important, though perhaps under-appreciated,

consequence of modeling risk with a logistic regression model, which is formulated

such that risk factors act multiplicatively on risk. A model with no interaction on the

relative risk scale does result in an interaction on the scale of risk differences, which

is what we consider when working with absolute risk. Thus, even though there is
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Figure 4.3: Distribution of Absolute Risk of Breast Cancer in Ages 30-70 by Non-
Modifiable Risk Group, Based on Fully-Adjusted Model with Simulated PGRS for 86
SNPs
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no interaction between the modifiable factors and the non-modifiable factors in our

logistic model, we see an interaction on absolute risk scale.

This has important ramifications for disease prevention efforts. Though the rela-

tive risk of modifying a given risk factor may be the same for two women, their risk

differences may be drastically different depending on their other risk factors, with

one receiving a substantially greater benefit. This presents a compelling reason for

considering disease prevention in public health through the lens of absolute risk.

4.1.4 Conclusions and Future Work

We built two absolute risk models for invasive breast cancer from prospective co-

hort data in the BPC3 data that incorporated known breast cancer risk factors and

polygenic risk scores based on 24 and 86 SNPs respectively. Having developed these

absolute risk models, we projected the distribution of breast cancer risk in the BPC3
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controls for ages 30-70 and found that approximately 1.1% had a breast cancer risk

exceeding 20%. It is possible that the covariate profiles in BPC3 represent women

with generally lower risk health behaviors, in which case the projected risk distribu-

tion would underestimate the distribution of risk in the general US population. In

future work, we plan to obtain nationally representative covariate distributions from

the National Health and Nutrition Examination survey (NHANES) to use for pro-

jecting risk, and compare the resulting risk distribution to that projected from the

BPC3 data.

We used the absolute risk model to investigate the impact of population-wide

modification of alcohol consumption, smoking behavior, body mass index, and use of

hormone replacement therapy, alone and simultaneously, on breast cancer risk. We

evaluated the reduction in breast cancer risk that could be achieved by targeting risk

factor modification efforts to women at high risk based on non-modifiable risk factors,

such as genetics or defined reproductive risk factors. While we found that targeting

risk reduction efforts to the highest risk group based on non-modifiable factors would

result in greater breast cancer reduction than intervening in the population at random,

we found that much of the preventable breast cancer risk was outside of that high

risk group so broader intervention efforts are needed as well.

In the future, we plan to work with collaborators to develop an absolute risk

model for invasive breast cancer in the UK. The model will incorporate the hazard

ratios presented here, fit on the BPC3 data. However, for the UK absolute risk

model we will base the estimates of attributable risk on a risk factor distribution that

is representative of women in the UK. Additionally, we will calibrate the model to

breast cancer rates from the UK. We plan to validate the model in data from the UK

Breakthrough Generations Study.

In the next section, we develop subtype-specific absolute risk models for subtypes
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of breast cancer defined by estrogen receptor status in the US population using data

from the BCAC consortium of case-control studies. We can obtain estimates of breast

cancer risk from the sum of the subtype-specific risks provided by the models. In the

future, we also plan to build an absolute risk model for overall breast cancer directly

from the BCAC data. We will compare the projected risk distribution of overall

breast cancer from BCAC to these BPC3 results. Through this comparison, we will

investigate differences that may arise due to building the absolute risk model from

a consortium of case-control studies as opposed to a consortium of cohorts. We will

also compare the risk stratification produced by the simulated PGRS for 86 SNPs

with that from a PGRS based on empirical genotype data on 77 SNPs in the BCAC

data.

4.2 Absolute Risk Models for Breast Cancer

Subtypes Defined by Estrogen Receptor

Status

4.2.1 Introduction

In this section, we make use of the methods developed in Chapter 2 to build absolute

risk models for subtypes defined by estrogen receptor (ER) status. ER+ and ER-

breast cancer subtypes are quite distinct. In general, ER+ breast cancer has later

age of onset compared with ER- breast cancer (Anderson and Matsuno, 2006). ER+

breast cancer is more common, comprising 77% of breast cancers for which ER status

is known in SEER (Jatoi et al., 2007). Many risk factors have been identified for

ER+ breast cancer, including all reproductive factors included in our previous model

for overall breast cancer, but few have been identified for ER- breast cancer (Ma
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et al., 2006). ER+ breast cancer is thought to be hormonally-driven, and a number

of treatments have been developed, resulting in a generally more favorable prognosis

for ER+ compared to ER- breast cancer (Elledge et al., 1994). The most well known

of these is tamoxifen, which has also been used as a preventative treatment for ER+

breast cancer (Moyer et al., 2013; Fisher et al., 1998). However, use of tamoxifen has

been shown to be associated with adverse events, including stroke, and thus should

only be administered as a preventative treatment to women who are expected to

derive the most benefit, those at high levels of risk for ER+ breast cancer (Bushnell

and Goldstein, 2004). A subtype-specific absolute risk model for ER+ breast cancer

can be used to identify women who exceed thresholds of risk for which the benefits

of preventative breast cancer treatments outweigh the harms.

In the following sections, we develop subtype-specific risk models for ER+ and

ER- breast cancer with the goal of estimating distributions of breast cancer risk for

each subtype in the US population, and producing estimates of overall breast cancer

risk from the sum of the subtype-specific risks. We then examine and compare the

degree of risk stratification produced by these models for ER+, ER-, and overall

breast cancer.

4.2.2 Materials and Methods

Study Population

We analyzed data on a total of 36,018 cases of invasive breast cancer and 36,155

controls from 27 case-control studies in the Breast Cancer Association Consortium

(BCAC), 10 of which were classified as population based. The BCAC constortium

pools information across many large breast cancer studies in order to provide a re-

source for comprehensive investigation of breast cancer risk factors, in particular
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genetic risk factors (Breast Cancer Association Consortium, 2006; Yang et al., 2011b;

Milne et al., 2010; Fasching et al., 2012; Nickels et al., 2013). These studies provide

information on standard breast cancer risk factors, including first degree family his-

tory, parity and age at first full term birth, age at menarche, menopausal status and

age at menopause, height, body mass index (BMI), alcohol consumption, smoking

behavior, and hormone replacement therapy (HRT) use. Some studies provided more

detailed information on HRT, including data on ever use of HRT, current use of any

HRT, current use of estrogen-type HRT, and current use of combined estrogen and

progestin-type HRT. In addition, all included studies provided genotype data on 77

SNPs previously found to be associated with breast cancer. These SNPs were geno-

typed using a custom Illumina iSelect genotyping array known as iCOGS, designed

as part of the Collaborative Oncological Gene-Environment Study (COGS) to test

genetic variants related to breast cancer (Sakoda et al., 2013; Bahcall, 2013). We

restricted our analysis dataset to those with iCOGS data, known female sex, and re-

ported European ethnicity. We excluded studies that were classified as family-based

or of mixed design.

For cases, additional information was provided on tumor characteristics, indicat-

ing whether the tumor was positive, negative or unknown for each of the following

markers: estrogen receptor (ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2). Specifically, the 36,018 cases were distributed as

ER+ (65.6%), ER- (15%), unknown ER status (19.4%), with PR+ (48.4%/0, PR-

(21.2%), unknown PR status (30.4%); and HER2+ (8.2%/0, HER2- (43.8%), un-

known HER2 status (48.0 %). Here, we focus on developing an absolute risk model

for breast cancer subtypes defined by ER status, which is the least missing of the

tumor characteristics.
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Statistical Methods

To be consistent with previous analyses of the BCAC data, we chose to model

as categorical the variables family history (no/yes), parity (0/1/2/3/4+), smoking

(no/current), and menopausal status and HRT (Premeno, Postmeno Never HRT use,

Postmeno Former HRT use, Postmeno Current Non-E-Type HRT use, Postmeno Cur-

rent Only E-Type HRT use, and Postmeno Current Any EP-Type HRT use. We chose

to model as continuous the variables age at menarche divided by 2, age at first full-

term birth divided by 5, age at menopause, alcohol consumption divided by 10, and

height and bmi divided by 5. All continuous variables were centered by subtracting

the median value.

In defining these variables, we encountered two types of missing data. We observed

“structural missing” data when studies were entirely missing a given covariate. Any

study with fewer than 200 cases or 200 controls with data for a given covariate were

treated as structurally missing for that covariate. In other cases, studies had mostly

complete data for a given covariate but were “randomly missing” some observations.

Due to the large number of studies, we did not attempt to build models to impute

missing covariate values. Instead we included missing categories for each covariate,

paying careful attention to model the variables with missing categories such that the

resulting model parameters were interpretable. Those with missing data on any of

the 77 genotyped SNPs comprised less than 4% of the study population and were

excluded from the analysis.

To build absolute risk models for ER+ and ER- subtypes, we employed the meth-

ods described in Chapter 2. In particular, we estimated the hazard ratio component

of the model using the reparametrized multinomial model with the ER+ subtype as

referent. A strength of this method is that cases contribute to estimation even when

ER status is unknown. Additionally, because ER+ is the referent group, a study is
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not required to have controls to contribute to the effect estimation. This makes it

possible to include all cases from hospital based studies, that may not have repre-

sentative controls. We will refer to this method as “full data analysis” (FDA). Table

4.5 gives the sample sizes included in FDA by study, with cases differentiated by ER

status.

Alternatively, one could perform a “complete case analysis” (CCA) and estimate

the model for each subtype individually using standard logistic regression methods,

excluding cases for which the ER status is unknown. To contribute to the CCA,

studies must have good controls, which further restricts the analysis to data from

population based studies. Table 4.6 gives the sample sizes included in CCA for

subtypes defined by ER status. Comparing Table 4.5 and Table 4.6, we see that

FDA allows the model to be fit from roughly five times the number of cases compared

to CCA.

We estimate subtype-specific baseline hazard rates for the absolute risk models

from the marginal SEER incidence rate for overall breast cancer in conjunction with

estimates of attributable risk and observed subtype proportions in the data. We

estimated attributable risk from cases with complete covariates in 4 time intervals,

defined separately for each subtype by the quartiles of outcome age using the Bruzzi

formula (Bruzzi et al., 1985). We estimated subtype proportions in 4 time intervals

defined by outcome age as well. For ER+ and ER- subtypes, one could instead choose

to calibrate to marginal subtype-specific hazard rates directly, which are available in

SEER. This is generally a more optimal strategy; however, here we choose to estimate

the subtype proportions to provide a real data example of the methods presented in

Chapter 2 and to demonstrate what one would do if the subtypes of interest were

such that subtype-specific rates were not provided by SEER.
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Table 4.5: BCAC Sample Sizes Contributing to Full Data Analysis in Multinomial
Model, Overall and by Study

Controls ER+ ER- ER Missing

Total 7480 23624 5613 6974

ABCFS 551 456 261 73

ABCS 0 561 195 397

BBCC 0 456 82 16

BIGGS 0 474 146 173

BSUCH 0 531 152 132

CECILE 999 743 130 27

CGPS 0 1919 357 582

CTS 71 0 68 0

ESTHER 502 303 98 71

GENICA 427 328 119 18

HMBCS 0 35 8 645

KBCP 251 288 89 34

LMBC 0 2069 378 169

MARIE 1778 1279 370 7

MCBCS 0 1271 250 25

MCCS 511 352 119 143

MEC 0 412 87 206

MTLGEBCS 0 421 64 4

NBCS 0 617 199 44

NBHS 118 0 125 0

OBCS 0 403 97 0

ORIGO 0 211 68 56

PBCS 424 519 0 0

pKARMA 0 3588 664 301

SASBAC 1378 663 144 356

SBCS 0 358 104 289

SEARCH 0 5130 1170 2796

SZBCS 0 149 51 103

UKBGS 470 88 18 307
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Table 4.6: BCAC Sample Sizes Contributing to Complete Case Analysis in Separate
Logistic Models, Overall and by Study

Study Controls ER+ Study Controls ER-

Total 7291 5019 Total 7056 1541

ABCFS 551 456 ABCFS 551 261

CECILE 999 743 CECILE 999 130

ESTHER 502 303 CTS 71 68

GENICA 427 328 ESTHER 502 98

KBCP 251 288 GENICA 427 119

MARIE 1778 1279 KBCP 251 89

MCCS 511 352 MARIE 1778 370

PBCS 424 519 MCCS 511 119

SASBAC 1378 663 NBHS 118 125

UKBGS 470 88 SASBAC 1378 144

UKBGS 470 18

4.2.3 Results and Discussion

We modeled the hazard ratios for each subtype from the FDA multinomial regression

model with main effects for the covariates, an interaction between continuous BMI and

menopausal status and HRT use, and 77 SNPs adjusted for deciles of age, study, and

9 principle components scores to account for population substructure. For purposes of

comparison, we fit the same models using CCA in separate logistic regression models.

The estimated hazard ratios for the covariates are given in Table 4.7 and the estimated

hazard ratios for the SNPs are given in Supplemental Table 4.3. In general, the point

estimates for FDA and CCA are consistent with one another for both subtypes, with

the exception of the association between parity and ER- breast cancer. As we would

expect, FDA is more efficient than CCA, with tighter confidence intervals. Testing

statistical significant of the SNP effects in the FDA model finds 47 of the 77 SNPs

to be significantly associated with ER+ breast cancer, where with CCA only 44 are

significant. Similarly, for ER- breast cancer FDA finds that 23 SNPs are statistically
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Table 4.7: Covariate Hazard Ratios (HR) and 95% Confidence Intervals (CI) for Fully-Adjusted
Models of ER+ and ER- Breast Cancer, with Results from FDA and CCA

ER+ ER-

FDA CCA FDA CCA

HR (CI) HR (CI) HR (CI) HR (CI)

Famiy History = No 1 – 1 – 1 – 1 –

Family History = Yes 1.59 (1.39, 1.81) 1.59 (1.38, 1.82) 1.59 (1.38, 1.84) 1.56 (1.26, 1.94)

Family History = Missing 0.92 (0.72, 1.17) 0.91 (0.7, 1.18) 0.55 (0.43, 0.72) 0.74 (0.46, 1.17)

Parity = 0 1 – 1 – 1 – 1 –

Parity = 1 0.95 (0.84, 1.08) 0.91 (0.79, 1.04) 1.06 (0.91, 1.23) 1.47 (1.18, 1.85)

Parity = 2 0.84 (0.75, 0.94) 0.77 (0.68, 0.88) 0.88 (0.77, 1) 1.21 (0.99, 1.48)

Parity = 3 0.71 (0.63, 0.81) 0.68 (0.59, 0.78) 0.72 (0.62, 0.84) 0.94 (0.74, 1.19)

Parity = 4 0.58 (0.5, 0.67) 0.57 (0.48, 0.68) 0.61 (0.51, 0.73) 0.69 (0.52, 0.92)

Parity = Missing 0.41 (0.21, 0.78) 0.36 (0.17, 0.77) 0.24 (0.12, 0.47) 0.4 (0.11, 1.39)

Age Menarche /2 0.93 (0.89, 0.97) 0.93 (0.88, 0.97) 0.93 (0.88, 0.98) 0.93 (0.86, 1.01)

Age Menarche = Missing 0.85 (0.72, 0.99) 0.89 (0.74, 1.07) 0.99 (0.82, 1.19) 0.94 (0.7, 1.26)

Age FFTP /5 1.03 (0.98, 1.08) 1.02 (0.97, 1.08) 0.99 (0.93, 1.04) 0.94 (0.87, 1.03)

Age FFTP = Missing 7.1 (2.38, 21.12) 0.18 (0.02, 2.04) 15.79 (5.27, 47.26) 7.25 (1.04, 50.64)

Age Menopause 1 (0.99, 1) 0.99 (0.99, 1) 1 (0.99, 1.01) 1 (0.98, 1.01)

Age Menopause = Missing 0.87 (0.72, 1.05) 0.87 (0.7, 1.1) 1.08 (0.88, 1.32) 0.77 (0.5, 1.19)

Alcohol /10 1.05 (1.01, 1.09) 1.06 (1.01, 1.1) 1.01 (0.94, 1.08) 1.02 (0.95, 1.09)

Height /5 1.06 (1.03, 1.09) 1.06 (1.03, 1.1) 1.05 (1.01, 1.08) 1.03 (0.98, 1.09)

Height = Missing 0.73 (0.5, 1.08) 0.69 (0.43, 1.1) 1.41 (0.94, 2.1) 0.61 (0.23, 1.61)

BMI /5 1.18 (1.09, 1.27) 1.15 (1.06, 1.25) 1.02 (0.91, 1.16) 1.1 (0.96, 1.26)

BMI = Missing 0.93 (0.69, 1.25) 1.01 (0.72, 1.41) 0.7 (0.49, 0.99) 0.68 (0.37, 1.28)

Smoke = Never, Former 1 – 1 – 1 – 1 –

Smoke = Current 1.09 (0.99, 1.2) 1.09 (0.98, 1.22) 1.03 (0.9, 1.17) 0.98 (0.83, 1.17)

Smoke = Missing 0.22 (0.08, 0.6) 0.31 (0.08, 1.16) 0.38 (0.14, 1.05) 0 (0, Inf)

PostMeno Never HRT USE 1 – 1 – 1 – 1 –

Premenopause 1.46 (1.26, 1.68) 1.57 (1.34, 1.85) 1.09 (0.92, 1.28) 1.27 (1, 1.63)

PostMeno Former HRT Use 0.94 (0.84, 1.05) 0.95 (0.85, 1.08) 0.9 (0.77, 1.04) 0.9 (0.74, 1.1)

PostMeno Current Non-E HRT Use 1.1 (0.94, 1.3) 1.07 (0.89, 1.3) 0.86 (0.69, 1.06) 0.82 (0.6, 1.13)

PostMeno Current Only E HRT Use 1.27 (1.04, 1.55) 1.28 (1.04, 1.58) 0.79 (0.56, 1.11) 0.73 (0.5, 1.05)

PostMeno Current Any EP HRT Use 1.78 (1.54, 2.06) 1.76 (1.51, 2.06) 1.04 (0.82, 1.32) 0.98 (0.74, 1.29)

Meno/HRT = Missing 0.95 (0.61, 1.46) 0.86 (0.52, 1.43) 0.7 (0.45, 1.1) 1.06 (0.48, 2.33)

(BMI/5)*(PostMeno Never HRT Use) 1 – 1 – 1 – 1 –

(BMI/5)*(Premenopause) 0.72 (0.63, 0.81) 0.73 (0.64, 0.83) 0.87 (0.73, 1.03) 0.83 (0.68, 1)

(BMI/5)*(PostMeno Former HRT Use) 0.97 (0.84, 1.12) 0.97 (0.84, 1.14) 1.06 (0.85, 1.33) 0.88 (0.67, 1.16)

(BMI/5)*(PostMeno Current Non-E HRT Use) 0.75 (0.59, 0.95) 0.77 (0.6, 0.98) 0.69 (0.46, 1.05) 0.64 (0.41, 1)

(BMI/5)*(PostMeno Current Only E HRT Use) 0.71 (0.54, 0.93) 0.73 (0.56, 0.96) 0.83 (0.52, 1.34) 0.67 (0.39, 1.15)

(BMI/5)*(PostMeno Current Any EP HRT Use) 0.85 (0.69, 1.04) 0.88 (0.71, 1.1) 1 (0.73, 1.37) 0.94 (0.63, 1.41)

(BMI/5)*(Meno/HRT = Missing) 1.37 (0.45, 4.22) 1.29 (0.34, 4.92) 0.91 (0.26, 3.25) 0.6 (0.04, 8.98)

”FDA” refers to Full Data Analysis

”CCA” refers to Complete Case Analysis
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Figure 4.4: ROC Plot for Models of ER+ and ER- Breast Cancer, Based on Full Data
Analysis
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significant, as opposed to only 18 with CCA.

Figure 4.4 presents ROC curves, computed on 2632 controls and 2177 ER+ and

423 ER- cases with complete data, for FDA models with SNPs alone, covariates

alone, and the main fully-adjusted model for each subtype. For both subtypes, the

SNPs only model provided significantly better discriminatory accuracy than the risk

factor only model. The AUC for the ER+ fully-adjusted model was 0.66 while the

AUC for the ER- fully-adjusted model was 0.63. Figure 4.5 presents the ROC curves

for predicting risk of overall breast cancer based on the sum of the ER+ and ER-

risks. The AUC for using subtype-specific risks from the fully-adjusted models to

predict overall breast cancer risk based on FDA in the BCAC data is 0.652. This risk

discrimination is similar to what we found in the fully-adjusted BPC3 model with 86

SNPs, which had an AUC of 0.654.

Having built the subtype-specific absolute risk models, we projected absolute risk

in ages 30-70 for 2,493 controls with no missing data to estimate the distribution of

risk in the population for each subtype based on the fully-adjusted model. Figure 4.6

shows the distribution of predicted risks by subtype, along with the proportion of the
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Figure 4.5: ROC Plot for Overall Breast Cancer Risk, Defined as the Sum of ER+ and
ER- Breast Cancer Risks from Fully-Adjusted Models, Based on Full Data Analysis
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population that exceeds certain referent thresholds of risk. Table 4.8 shows the risk

stratification provided by the subtype-specific models, giving the average predicted

risks within deciles of risk as compared to the average absolute risk in SEER and

compared to the average risk for those with and without family history. From an

average SEER risk of 7.2% in ages 30-70, the fully-adjusted model for ER+ stratifies

risk ranging from average risk of 2.4% to 17.5% in the lowest and highest deciles of

risk respectively. The ER- model stratifies risk far less, ranging from 0.8% to 3.7%

average risk in the lower and upper deciles of risk, compared to an average SEER risk

of 1.8%. Family history alone goes a long way toward that risk stratification, with an

average risk of 1.7% for those with no family history and 2.7% for those with family

history. The overall risks presented in Table 4.8 are based on the sum of ER+ and

ER- risks and result in substantial risk stratification beyond that of family history

alone.
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Figure 4.6: Distribution of Absolute Risk of Breast Cancer for Ages 30-70 by Estrogen
Receptor Status, and the Proportions of the Population with Risk Above Specified
Risk Thresholds
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Table 4.8: Average Absolute Risk by Risk Decile for ER Subtypes and Overall Breast
Cancer in Ages 30-70

ER+ ER- Overall

SEER 7.2 1.8 8.9

Fh = No 6.7 1.7 8.4

Fh = Yes 10.7 2.7 13.4

Risk Decile Full Model Genes Covs Full Model Genes Covs Full Model Genes Covs

1 2.4 2.9 4.2 0.8 0.9 1.2 3.2 3.9 5.4

2 3.4 3.9 5.1 1.0 1.2 1.4 4.5 5.2 6.6

3 4.2 4.6 5.7 1.2 1.3 1.5 5.5 6.1 7.2

4 5.0 5.3 6.2 1.4 1.5 1.6 6.5 6.8 7.8

5 5.8 6.0 6.7 1.5 1.6 1.7 7.4 7.7 8.5

6 6.6 6.8 7.4 1.7 1.8 1.8 8.4 8.6 9.2

7 7.6 7.6 8.2 1.9 2.0 2.0 9.5 9.6 10.1

8 9.0 8.7 9.1 2.2 2.2 2.1 11.2 10.8 11.1

9 11.2 10.4 10.2 2.6 2.5 2.3 13.7 12.8 12.5

10 17.5 14.4 13.2 3.7 3.2 3.0 20.8 17.4 16.0

Fh = Family History
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4.2.4 Conclusions and Future Work

We demonstrated the utility of the methods we developed for building subtype-specific

absolute risk models by applying those methods in a real data analysis setting to the

BCAC data. We showed how subtype specific absolute risk models can be used to

project distributions of risk for each subtype in the population. We found that our

absolute risk model for ER+ breast cancer provides substantial risk stratification and

thus could be used to target preventative treatments, such as tamoxifen, to women at

high risk of ER+ breast cancer. Due to the low rate of ER- breast cancer and a lack

of strong known risk factors, our absolute risk model currently produces only modest

stratification of risk for ER- breast cancer.

In the future we plan to build off this work and continue to improve the subtype-

specific absolute risk models defined by ER status. The absolute risk models we have

presented are currently calibrated to the SEER rate for overall breast cancer, with

the marginal subtype-specific rates obtained by reweighting according to stratified

estimates of the subtype proportions observed in the data. In the future, we plan to

instead calibrate directly to the ER stratified rates available in SEER. This requires

thinking carefully about how to handle the “ER unknown” SEER rate as improper

treatment of this missing ER data can bias results. We plan to use ER+ and ER- rates

that correct for the missing ER rate in SEER through a simple published imputation

method that accounts for age and calendar year (Anderson et al., 2011).

Additionally, we plan to incorporate survey data, perhaps from the National

Health and Nutrition Examination survey (NHANES), in estimation of the attributable

risk component of the absolute risk model. Currently, we have estimated the at-

tributable risk for each subtype from cases of that subtype for which there is no

missing covariate data, thus basing the estimate on a relatively small amount of data.

Even if that criteria were met by large number observations in BCAC, it is still better
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to base our estimates of attributable risk on the covariate distribution from NHANES

as it is likely to be more representative of the US population than the distribution in

the diverse collection of case-control studies in BCAC. Similarly, we also plan to use

the covariate distribution from NHANES to specify the set of risk profiles for which

to predict risk, which should result in projected risk distributions that are more rep-

resentative of the US population. Additionally, we will incorporate risks of competing

mortality into the model.

We plan to use the BCAC data to build absolute risk models for subtypes that

are defined by progesterone receptor (PR) status and human epidermal growth fac-

tor receptor 2 (HER2) status as well as ER status. HER2 is an important tumor

characteristic for defining breast cancer subtypes as it is used to guide therapy and

as a prognostic indicator (Althuis et al., 2004). HER2+ tumors are often associated

with more aggressive behavior and worse prognosis than HER2- tumors (Jardines

et al., 2005; Burstein, 2005). Treatment by trastuzumab, or Herceptin, is available

for HER2+ breast cancers but provides no clinical benefit in HER2-negative breast

cancers (Burstein, 2005). Studies of risk factors for breast cancer subtypes defined

by HER2 suggest that the risk factors for HER2+ and HER2- tumor types differ as

well (Balsari et al., 2003; Yang et al., 2007, 2011b). Given this eterogeneity in risk

factors, treatment, and prognosis, an absolute risk model that incorporates HER2 will

provide useful information for projecting population risks for these clinically relevant

subtypes.

As part of our future work with subtypes defined jointly by ER, PR, and HER2,

we plan to develop an absolute risk model for the ER-, PR-, and HER2- subtype,

commonly referred to as triple negative breast cancer. Though this subtype is rare,

it is clinically relevant due to its biological aggressiveness, lack of treatment options

beyond chemotherapy, and poor survival outcomes (Bosch et al., 2010; Cleator et al.,
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2007). Women with triple negative breast cancers have worse survival relative to

those with other breast cancer subtypes, with a 5-year survival of 77% for the triple

negative subtype as compared to 93% for other breast cancers (Bauer et al., 2007).

Risk factors for the triple negative subtype have not been well-established, in part

because studies may be underpowered to detect associations from small numbers of

triple negative cases (Schneider et al., 2008).

The reparametrized multinomial method, which allows cases with missing tumor

characteristics or from hospital-based studies to be included in estimation of the haz-

ard ratios, will be vital to building such absolute risk models in the BCAC data as

there is a substantial amount of missing data in the PR and HER2 tumor characteris-

tics. The methods we developed for estimating subtype-specific baseline hazard rates

will be necessary in this setting, as SEER currently has little data on breast cancer

incidence rates stratified by HER2 status. We also plan to validate all absolute risk

models that we develop in independent data.

4.3 Supplemental Tables
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Supplemental Table 4.1: Percent Completeness of Covariates by Case-Control Status and Study
in BPC3

Overall CPS2 EPIC MCCS MEC

Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls

Total 17176 19860 2558 3215 4154 5166 930 765 521 570

Family History 64.3 65.3 97.8 98.7 36.8 29.9 47.6 54.4 89.3 94.4

Menarche 97.8 98.3 98.6 98.9 95.5 96.7 99.8 99.6 99.2 99.8

Parity 97.6 97.7 98.1 98.3 92.6 92.6 100 100 99.0 99.5

Age at First Birth 95.8 91.4 97.7 98.0 95.3 77.4 99.9 100 99.0 98.6

Age at Menopause 87.2 87.6 98.0 98.4 66.2 70.1 86.6 82.7 97.3 98.6

Height 99.7 99.7 99.4 99.4 100 100 100 99.9 99.8 100

Body Mass Index 99.1 98.9 98.9 99.0 100 100 100 99.9 99.8 100

Menopause Status 94.4 94.6 98.5 98.8 82.7 84.3 96.0 100 97.3 98.4

HRT Use: Ever 80.5 80.2 23.9 26.4 75.4 78.5 98.8 99.6 96.7 98.4

HRT Use: Ever E 61.3 60.9 23.2 25.6 44.6 53.8 0 0 95.6 96.5

HRT Use: Ever C 63.6 62.2 23.2 25.6 54.0 59.0 0 0 95.6 96.5

HRT Use: Current 63.0 59.1 0.0 0.0 75.3 68.9 0 0 0 0

Alcohol Use 97.7 97.1 94.5 92.8 100 99.9 100 100 95.8 97.7

Smoking Status 98.9 99.0 98.6 98.9 98.1 98.2 100 100 99.0 99.5

NHS PLCO WHI WHS

Cases Controls Cases Controls Cases Controls Cases Controls

Total 1782 3148 790 982 5772 5349 669 665

Family History 99.3 99.6 99.0 99.5 50.5 47.2 96.7 98.2

Menarche 99.2 99.7 100 99.7 97.6 97.8 100 100

Parity 100 100 100 99.8 99.2 99.6 100 100

Age at First Birth 100 100 99.7 99.7 92.1 91.2 99.9 100

Age at Menopause 90.0 91.3 98.9 99.2 94.9 94.7 81.8 77.9

Height 99.9 99.9 99.9 99.7 99.5 99.4 99.4 98.8

Body Mass Index 95.7 96.0 99.6 99.4 99.3 99.2 99.3 98.0

Menopause Status 97.8 97.4 98.9 99.2 100 100 85.2 81.4

HRT Use: Ever 81.5 86.9 99.6 99.2 100 100 95.5 95.8

HRT Use: Ever E 82.1 72.7 0 0 100 100 52.0 45.4

HRT Use: Ever C 82.1 72.7 0 0 100 100 52.0 45.4

HRT Use: Current 63.6 59.6 99.0 97.8 100 100 0 0

Alcohol Use 92.1 93.4 92.7 90.0 99.5 99.6 100 100

Smoking Status 99.9 99.7 100.0 99.9 98.7 99.0 100 99.8
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Supplemental Table 4.2: Hazard Ratio Estimates for Fully-Adjusted Model for Overall
Breast Cancer with PGRS for Empirical Genotype Data on 24 SNPs in BPC3

Hazard Ratio (95% Confidence Interval)

PGRS category=1 1 –

PGRS category=2 1.19 (0.76, 1.88)

PGRS category=3 1.33 (0.84, 2.1)

PGRS category=4 1.43 (0.91, 2.25)

PGRS category=5 1.58 (1, 2.48)

PGRS category=6 1.66 (1.06, 2.6)

PGRS category=7 1.78 (1.14, 2.79)

PGRS category=8 2.05 (1.31, 3.21)

PGRS category=9 2.26 (1.45, 3.51)

PGRS decile=10 2.80 (1.82, 4.33)

Family History = No 1 –

Family History = Yes 1.41 (1.02, 1.94)

Menarche category=1 1 –

Menarche category=2 1.07 (0.53, 2.17)

Menarche category=3 0.96 (0.67, 1.38)

Menarche category=4 0.92 (0.65, 1.31)

Menarche category=5 0.90 (0.61, 1.32)

Menarche category=6 0.91 (0.59, 1.41)

Continued on next page...
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Supplemental Table 4.2 – continued from previous page

Hazard Ratios (95% Confidence Interval)

Menarche category=7 0.86 (0.54, 1.37)

Parity = 0 1 –

Parity = 1 0.84 (0.52, 1.37)

Parity = 2 0.76 (0.49, 1.2)

Parity = 3 0.75 (0.47, 1.18)

Parity = 4 0.72 (0.45, 1.15)

AFFTB category=1 1 –

AFFTB category=2 1.07 (0.69, 1.65)

AFFTB category=3 1.05 (0.65, 1.67)

AFFTB category=4 1.02 (0.68, 1.55)

AFFTB category=5 1.23 (0.78, 1.93)

AFFTB category=6 1.40 (0.87, 2.25)

AFFTB category=7 1.37 (0.85, 2.21)

AFFTB category=8 1.43 (0.76, 2.69)

AFFTB category=9 1.34 (0.58, 3.08)

AgeMeno category=1 1 –

AgeMeno category=2 0.99 (0.64, 1.55)

AgeMeno category=3 0.99 (0.63, 1.56)

AgeMeno category=4 1.06 (0.66, 1.72)

Continued on next page...
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Supplemental Table 4.2 – continued from previous page

Hazard Ratios (95% Confidence Interval)

AgeMeno category=5 1.15 (0.75, 1.77)

AgeMeno category=6 1.17 (0.72, 1.9)

AgeMeno category=7 1.24 (0.79, 1.95)

AgeMeno category=8 1.30 (0.79, 2.16)

AgeMeno category=9 1.29 (0.8, 2.07)

AgeMeno category=10 1.12 (0.69, 1.84)

Height category=1 1 –

Height category=2 1.12 (0.74, 1.71)

Height category=3 1.14 (0.74, 1.75)

Height category=4 1.17 (0.76, 1.81)

Height category=5 1.10 (0.72, 1.67)

Height category=6 1.23 (0.8, 1.89)

Height category=7 1.20 (0.78, 1.86)

Height category=8 1.31 (0.85, 2.01)

Height category=9 1.22 (0.79, 1.88)

Height category=10 1.31 (0.85, 2.02)

BMI category=1 1 –

BMI category=2 1.06 (0.59, 1.92)

BMI category=3 0.91 (0.49, 1.69)

Continued on next page...
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Supplemental Table 4.2 – continued from previous page

Hazard Ratios (95% Confidence Interval)

BMI category=4 0.99 (0.53, 1.86)

BMI category=5 0.89 (0.46, 1.71)

BMI category=6 1.09 (0.55, 2.17)

BMI category=7 1.00 (0.49, 2.02)

BMI category=8 0.98 (0.48, 2)

BMI category=9 0.95 (0.46, 1.96)

BMI category=10 1.06 (0.51, 2.21)

PreMeno 1 –

PostMeno HRT=Never 0.59 (0.32, 1.11)

PostMeno Ever HRT 0.68 (0.37, 1.27)

PostMeno Ever E HRT 1.02 (0.7, 1.49)

PostMeno Ever EP HRT 1.28 (0.88, 1.87)

PostMeno HRT=Current 1.24 (0.85, 1.8)

Alcohol category=1 1 –

Alcohol category=2 0.96 (0.65, 1.42)

Alcohol category=3 1.02 (0.68, 1.53)

Alcohol category=4 1.06 (0.72, 1.57)

Alcohol category=5 0.98 (0.66, 1.45)

Alcohol category=6 1.07 (0.72, 1.59)

Continued on next page...
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Supplemental Table 4.2 – continued from previous page

Hazard Ratios (95% Confidence Interval)

Alcohol category=7 1.18 (0.79, 1.75)

Alcohol category=8 1.25 (0.84, 1.86)

Smoking = Never 1 –

Smoking = Former 1.08 (0.79, 1.47)

Smoking = Current 1.15 (0.8, 1.67)

(BMI category)*(PreMeno) 1 –

(BMI category=2)*(PostMeno HRT=Never) 1.00 (0.5, 2)

(BMI category=3)*(PostMeno HRT=Never) 1.21 (0.6, 2.46)

(BMI category=4)*(PostMeno HRT=Never) 1.20 (0.59, 2.44)

(BMI category=5)*(PostMeno HRT=Never) 1.37 (0.66, 2.83)

(BMI category=6)*(PostMeno HRT=Never) 1.05 (0.49, 2.23)

(BMI category=7)*(PostMeno HRT=Never) 1.33 (0.62, 2.87)

(BMI category=8)*(PostMeno HRT=Never) 1.44 (0.66, 3.12)

(BMI category=9)*(PostMeno HRT=Never) 1.56 (0.71, 3.43)

(BMI category=10)*(PostMeno HRT=Never) 1.46 (0.66, 3.23)

(BMI category=2)*(PostMeno HRT=Ever) 0.96 (0.5, 1.82)

(BMI category=3)*(PostMeno HRT=Ever) 1.11 (0.57, 2.17)

(BMI category=4)*(PostMeno HRT=Ever) 1.12 (0.57, 2.2)

(BMI category=5)*(PostMeno HRT=Ever) 1.18 (0.58, 2.37)

Continued on next page...
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Supplemental Table 4.2 – continued from previous page

Hazard Ratios (95% Confidence Interval)

(BMI category=6)*(PostMeno HRT=Ever) 1.06 (0.51, 2.19)

(BMI category=7)*(PostMeno HRT=Ever) 1.13 (0.54, 2.4)

(BMI category=8)*(PostMeno HRT=Ever) 1.27 (0.6, 2.71)

(BMI category=9)*(PostMeno HRT=Ever) 1.27 (0.59, 2.74)

(BMI category=10)*(PostMeno HRT=Ever) 1.25 (0.57, 2.74)

Supplemental Table 4.3: Hazard Ratios (HR) and 95% Confidence Intervals (CI) for
SNPs in Fully-Adjusted Models of ER+ and ER- Breast Cancer, with Results from
Full Data Analysis (FDA) and Complete Case Analysis (CCA)

ER+ ER-

FDA CCA FDA CCA

SNP HR (CI) HR (CI) HR (CI) HR (CI)

rs78540526 1.38 (1.04, 1.83) 1.38 (1.02, 1.86) 0.79 (0.55, 1.15) 0.74 (0.39, 1.42)

rs75915166 1.26 (1.05, 1.5) 1.27 (1.04, 1.56) 1.31 (1.08, 1.59) 0.9 (0.64, 1.26)

rs554219 1.23 (1.15, 1.32) 1.24 (1.15, 1.34) 1.19 (1.1, 1.29) 1.23 (1.08, 1.39)

rs7726159 1.2 (1, 1.45) 1.23 (1.01, 1.5) 1.09 (0.89, 1.35) 1.27 (0.93, 1.73)

rs10069690 1.18 (1.06, 1.33) 1.2 (1.05, 1.36) 1.07 (0.94, 1.22) 0.97 (0.79, 1.19)

rs2736108 1.15 (1.09, 1.21) 1.16 (1.1, 1.23) 1.06 (1, 1.13) 1.03 (0.94, 1.12)

rs2588809 1.14 (1.06, 1.23) 1.16 (1.04, 1.29) 1.02 (0.94, 1.11) 1.15 (0.98, 1.36)

Continued on next page...
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Supplemental Table 4.3 – continued from previous page

ER+ ER-

FDA CCA FDA CCA

SNP HR (CI) HR (CI) HR (CI) HR (CI)

rs999737 1.13 (1.03, 1.24) 1.15 (1.08, 1.23) 1.13 (1.02, 1.25) 1.05 (0.95, 1.16)

rs10759243 1.13 (1.07, 1.19) 1.15 (1.04, 1.27) 1.09 (1.03, 1.16) 1.1 (0.95, 1.27)

rs865686 1.13 (1.03, 1.22) 1.11 (1.05, 1.18) 1.13 (1.03, 1.24) 0.95 (0.87, 1.04)

rs2981579 1.11 (1.05, 1.18) 1.11 (1.04, 1.18) 1.05 (0.98, 1.13) 1.03 (0.93, 1.13)

rs11199914 1.11 (1.05, 1.17) 1.1 (1.01, 1.2) 1.02 (0.95, 1.08) 1.04 (0.91, 1.2)

rs7072776 1.11 (0.97, 1.26) 1.1 (0.98, 1.23) 1.05 (0.9, 1.22) 1.2 (1.02, 1.42)

rs11814448 1.1 (1.04, 1.16) 1.09 (1, 1.2) 1.03 (0.97, 1.09) 1.1 (0.95, 1.26)

rs13387042 1.1 (1.01, 1.19) 1.09 (1.02, 1.17) 1.1 (1.01, 1.2) 1 (0.9, 1.11)

rs16857609 1.09 (1.04, 1.15) 1.09 (1.02, 1.16) 1.02 (0.96, 1.08) 1 (0.91, 1.1)

rs11552449 1.09 (1.03, 1.16) 1.09 (1.02, 1.16) 1.14 (1.07, 1.22) 1.09 (0.99, 1.19)

rs11249433 1.09 (1.04, 1.14) 1.09 (1.02, 1.16) 1.06 (1.01, 1.12) 0.99 (0.9, 1.09)

rs1045485 1.09 (0.98, 1.2) 1.08 (1.01, 1.16) 1.12 (1.01, 1.25) 0.96 (0.87, 1.07)

rs4973768 1.08 (1.02, 1.14) 1.08 (1.02, 1.14) 1.05 (0.98, 1.11) 1.05 (0.96, 1.14)

rs10941679 1.08 (1.02, 1.14) 1.08 (1.01, 1.16) 1.02 (0.96, 1.09) 1.14 (1.02, 1.27)

rs889312 1.07 (1.02, 1.13) 1.08 (1.01, 1.15) 1.05 (0.99, 1.11) 0.96 (0.87, 1.07)

rs12662670 1.07 (1.01, 1.14) 1.08 (1.01, 1.15) 1.11 (1.04, 1.19) 1.21 (1.09, 1.34)

rs2046210 1.07 (1.01, 1.13) 1.08 (1.02, 1.14) 1.03 (0.97, 1.09) 1.02 (0.94, 1.11)

Continued on next page...
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Supplemental Table 4.3 – continued from previous page

ER+ ER-

FDA CCA FDA CCA

SNP HR (CI) HR (CI) HR (CI) HR (CI)

rs13281615 1.06 (1.01, 1.12) 1.08 (1.01, 1.14) 1.03 (0.98, 1.09) 0.95 (0.87, 1.05)

rs1011970 1.06 (1, 1.13) 1.07 (1.01, 1.13) 1.08 (1.01, 1.16) 1.12 (1.03, 1.23)

rs2380205 1.06 (1.01, 1.12) 1.07 (1.01, 1.14) 1.03 (0.97, 1.1) 0.96 (0.87, 1.05)

rs10995190 1.06 (1, 1.13) 1.07 (1.01, 1.13) 1.02 (0.95, 1.09) 1.02 (0.94, 1.12)

rs704010 1.06 (1.01, 1.12) 1.07 (1, 1.14) 1.01 (0.96, 1.07) 1.03 (0.94, 1.14)

rs3817198 1.06 (1.01, 1.11) 1.07 (1.01, 1.13) 1.1 (1.04, 1.16) 0.97 (0.89, 1.06)

rs10771399 1.06 (1.01, 1.11) 1.06 (1, 1.12) 1.06 (1, 1.12) 1.07 (0.98, 1.16)

rs1292011 1.06 (1.01, 1.11) 1.06 (1, 1.12) 1 (0.95, 1.06) 1.05 (0.96, 1.14)

rs3803662 1.05 (1, 1.11) 1.06 (1, 1.12) 1.02 (0.96, 1.08) 1.04 (0.95, 1.14)

rs6504950 1.05 (1, 1.1) 1.06 (0.91, 1.23) 1.02 (0.97, 1.08) 1.12 (0.89, 1.41)

rs8170 1.05 (0.99, 1.11) 1.05 (0.99, 1.13) 1.03 (0.96, 1.1) 1.13 (1.02, 1.25)

rs2363956 1.03 (0.98, 1.09) 1.05 (0.96, 1.15) 1.03 (0.98, 1.09) 0.84 (0.74, 0.97)

rs2823093 1.03 (0.98, 1.08) 1.04 (0.98, 1.1) 1.05 (0.99, 1.11) 1.06 (0.97, 1.16)

rs17879961 1.03 (0.98, 1.08) 1.03 (0.95, 1.12) 0.95 (0.9, 1.01) 0.96 (0.84, 1.08)

rs616488 1.01 (0.94, 1.09) 1.02 (0.96, 1.08) 0.97 (0.89, 1.05) 1.04 (0.95, 1.14)

rs4849887 0.99 (0.94, 1.04) 1.02 (0.95, 1.08) 1.05 (0.99, 1.11) 0.88 (0.79, 0.97)

rs2016394 0.99 (0.93, 1.05) 1.01 (0.96, 1.07) 0.93 (0.87, 0.99) 1 (0.92, 1.1)
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ER+ ER-

FDA CCA FDA CCA

SNP HR (CI) HR (CI) HR (CI) HR (CI)

rs1550623 0.98 (0.91, 1.06) 1 (0.74, 1.37) 0.98 (0.9, 1.06) 0.63 (0.42, 0.94)

rs6762644 0.98 (0.91, 1.06) 0.99 (0.82, 1.19) 0.94 (0.86, 1.03) 0.79 (0.58, 1.07)

rs12493607 0.97 (0.92, 1.02) 0.99 (0.93, 1.05) 0.97 (0.92, 1.03) 1.07 (0.98, 1.17)

rs9790517 0.97 (0.92, 1.02) 0.99 (0.93, 1.04) 0.95 (0.9, 1.01) 0.95 (0.87, 1.05)

rs6828523 0.97 (0.92, 1.02) 0.97 (0.91, 1.04) 0.98 (0.92, 1.04) 0.94 (0.85, 1.04)

rs10472076 0.97 (0.91, 1.02) 0.97 (0.91, 1.03) 1.06 (1, 1.13) 0.98 (0.89, 1.08)

rs1353747 0.96 (0.92, 1.01) 0.97 (0.9, 1.04) 0.95 (0.9, 1.01) 0.85 (0.76, 0.95)

rs1432679 0.96 (0.91, 1.02) 0.97 (0.91, 1.03) 1.01 (0.95, 1.08) 0.96 (0.88, 1.05)

rs11242675 0.96 (0.88, 1.05) 0.97 (0.91, 1.03) 0.9 (0.82, 1) 1.03 (0.94, 1.13)

rs204247 0.96 (0.9, 1.02) 0.96 (0.9, 1.03) 0.97 (0.91, 1.04) 1.07 (0.97, 1.18)

rs17529111 0.96 (0.89, 1.03) 0.96 (0.9, 1.02) 0.94 (0.87, 1.02) 0.96 (0.87, 1.06)

rs720475 0.95 (0.89, 1.02) 0.96 (0.9, 1.01) 0.99 (0.92, 1.07) 0.87 (0.8, 0.96)

rs9693444 0.95 (0.73, 1.24) 0.95 (0.9, 1.01) 0.91 (0.68, 1.21) 0.94 (0.86, 1.03)

rs6472903 0.95 (0.9, 1.01) 0.95 (0.88, 1.04) 0.95 (0.89, 1.01) 0.93 (0.81, 1.06)

rs2943559 0.95 (0.8, 1.12) 0.95 (0.9, 1.01) 0.93 (0.77, 1.12) 0.86 (0.79, 0.94)

rs11780156 0.94 (0.88, 1.01) 0.95 (0.89, 1.01) 0.92 (0.85, 0.99) 0.9 (0.82, 0.99)

rs7904519 0.94 (0.89, 0.99) 0.94 (0.87, 1.03) 0.9 (0.85, 0.96) 1.05 (0.92, 1.19)
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ER+ ER-

FDA CCA FDA CCA

SNP HR (CI) HR (CI) HR (CI) HR (CI)

rs3903072 0.94 (0.89, 0.99) 0.94 (0.88, 1.02) 0.93 (0.88, 0.99) 1.04 (0.93, 1.18)

rs11820646 0.94 (0.89, 0.99) 0.92 (0.87, 0.98) 0.86 (0.81, 0.92) 0.89 (0.81, 0.98)

rs12422552 0.93 (0.89, 0.98) 0.92 (0.87, 0.97) 0.96 (0.91, 1.02) 0.91 (0.83, 0.99)

rs17356907 0.93 (0.88, 0.98) 0.92 (0.86, 0.98) 0.87 (0.82, 0.93) 0.93 (0.84, 1.02)

rs11571833 0.92 (0.88, 0.97) 0.92 (0.86, 0.97) 0.97 (0.91, 1.02) 0.88 (0.8, 0.96)

rs2236007 0.92 (0.87, 0.97) 0.91 (0.86, 0.97) 0.95 (0.89, 1.01) 0.98 (0.9, 1.07)

rs941764 0.92 (0.87, 0.97) 0.91 (0.86, 0.96) 0.94 (0.88, 1) 1.04 (0.95, 1.14)

rs17817449 0.92 (0.85, 0.98) 0.91 (0.82, 1) 0.93 (0.86, 1) 1.02 (0.87, 1.19)

rs13329835 0.91 (0.87, 0.97) 0.91 (0.84, 0.98) 0.99 (0.93, 1.06) 1 (0.89, 1.12)

rs527616 0.91 (0.86, 0.98) 0.9 (0.83, 0.98) 0.94 (0.87, 1.01) 0.99 (0.88, 1.12)

rs1436904 0.91 (0.87, 0.96) 0.9 (0.84, 0.96) 0.94 (0.88, 0.99) 1.1 (1, 1.22)

rs4808801 0.91 (0.85, 0.97) 0.89 (0.85, 0.95) 0.96 (0.89, 1.03) 0.97 (0.89, 1.06)

rs3760982 0.9 (0.86, 0.95) 0.88 (0.82, 0.95) 0.96 (0.9, 1.01) 1 (0.89, 1.13)

rs132390 0.9 (0.84, 0.96) 0.88 (0.83, 0.93) 0.94 (0.87, 1.01) 0.99 (0.91, 1.08)

rs6001930 0.89 (0.85, 0.94) 0.87 (0.81, 0.94) 0.95 (0.9, 1.01) 0.97 (0.86, 1.08)

rs4245739 0.87 (0.83, 0.92) 0.86 (0.79, 0.94) 0.94 (0.89, 0.99) 0.77 (0.67, 0.89)

rs6678914 0.82 (0.76, 0.89) 0.85 (0.81, 0.91) 0.79 (0.72, 0.86) 0.92 (0.84, 1)
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ER+ ER-

FDA CCA FDA CCA

SNP HR (CI) HR (CI) HR (CI) HR (CI)

rs12710696 0.8 (0.76, 0.85) 0.8 (0.75, 0.85) 0.84 (0.79, 0.89) 0.83 (0.75, 0.91)

rs11075995 0.76 (0.73, 0.8) 0.74 (0.7, 0.78) 0.91 (0.86, 0.96) 0.97 (0.89, 1.06)
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