
Generative Non-Markov Models for Information Extraction

by

Nicholas Oliver Andrews

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

August, 2015

c© Nicholas Oliver Andrews 2015

All rights reserved

Abstract

Learning from unlabeled data is a long-standing challenge in machine learning.

A principled solution involves modeling the full joint distribution over inputs and

the latent structure of interest, and imputing the missing data via marginalization.

Unfortunately, such marginalization is expensive for most non-trivial problems, which

places practical limits on the expressiveness of generative models. As a result, joint

models often encode strict assumptions about the underlying process such as fixed-

order Markovian assumptions and employ simple count-based features of the inputs.

In contrast, conditional models, which do not directly model the observed data, are

free to incorporate rich overlapping features of the input in order to predict the latent

structure of interest. It would be desirable to develop expressive generative models

that retain tractable inference. This is the topic of this thesis. In particular, we explore

joint models which relax fixed-order Markov assumptions, and investigate the use of

recurrent neural networks for automatic feature induction in the generative process.

We focus on two structured prediction problems: (1) imputing labeled segmentions

of input character sequences, and (2) imputing directed spanning trees relating strings

ii

ABSTRACT

in text corpora. These problems arise in many applications of practical interest, but we

are primarily concerned with named-entity recognition and cross-document coreference

resolution in this work.

For named-entity recognition, we propose a generative model in which the observed

characters originate from a latent non-Markov process over words, and where the

characters are themselves produced via a non-Markov process: a recurrent neural

network (RNN). We propose a sampler for the proposed model in which sequential

Monte Carlo is used as a transition kernel for a Gibbs sampler. The kernel is amenable

to a fast parallel implementation, and results in fast mixing in practice.

For cross-document coreference resolution, we move beyond sequence modeling to

consider string-to-string transduction. We stipulate a generative process for a corpus

of documents in which entity names arise from copying—and optionally transforming—

previous names of the same entity. Our proposed model is sensitive to both the context

in which the names occur as well as their spelling. The string-to-string transforma-

tions correspond to systematic linguistic processes such as abbreviation, typos, and

nicknaming, and by analogy to biology, we think of them as mutations along the

edges of a phylogeny. We propose a novel block Gibbs sampler for this problem that

alternates between sampling an ordering of the mentions and a spanning tree relating

all mentions in the corpus.

Readers: Jason Eisner, Mark Dredze, Benjamin Van Durme

iii

ABSTRACT

iv

Acknowledgments

This work would not have been possible without my academic advisors, Jason

Eisner and Mark Dredze, from whom I learned much along the way. I am especially

indebted to them for giving me substantial freedom in pursuing research ideas, even

in the early stages of the program. I will miss our long meetings, be it arguing over

minor technical points at the whiteboard, or talking big blue sky ideas. Special thanks

also to Benjamin Van Durme for serving on my committee and for his kind support.

I have been fortunate to meet many excellent people during my time at JHU,

including (but certainly not limited to): Matt Gormley, Spence Green, Michael Paul,

Frank Ferraro, Travis Wolfe, Markus Dreyer, Tim Vieira, and Hanna Wallach. Either

through games of squash or long technical conversations, my time as a student was

enriched by their company. I am also proud to have been part of the broader CLSP

community, home to many brilliant researchers.

My work was generously supported by the Human Language Technology Centre

of Excellence and the National Science Foundation, Partnerships for International

Research and Education (PIRE). Through PIRE, spent a brief stint as a visiting

v

ACKNOWLEDGMENTS

researcher in Australia, where I got a chance to meet many fine people at Macquarie

University, the University of Sydney, and the University of Melbourne.

Finally, I am grateful to Maria-Veronica Banks for helping to keep me sane around

submission deadlines, and with whom I spent most of time away from the computer.

vi

Contents

Abstract ii

Acknowledgments v

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Chapter Abstracts . 3

2 Predicting Sequence Attributes using Recurrent Neural Networks 5

2.1 Chapter Overview . 5

2.2 Data . 7

2.3 Types and Tokens . 9

2.3.1 Pitman-Yor Processes . 11

2.4 Sequence Models . 14

vii

CONTENTS

2.4.1 Bayesian Non-Parametric Language Models 16

2.4.2 Recurrent Neural Networks 18

2.5 Learning from Gazetteers . 25

2.6 Entity Name Models . 27

2.7 Improved RNN Parametrizations . 31

2.7.1 Joint conditional RNNs . 31

2.7.2 Multi-Conditional Learning 34

2.7.3 Experiments . 35

2.8 Summary . 37

2.9 Related Work . 38

3 Hidden Non-Markov Models 40

3.1 Chapter Overview . 40

3.2 Hidden Non-Markov Models . 42

3.2.1 Context model . 44

3.2.2 Emission model . 45

3.3 Inference via Particle Gibbs . 47

3.4 Part-of-Speech Induction . 52

3.5 Latent Segmentations . 53

3.6 A Memoized Neural Model . 55

3.7 NER with the Memoizer-Neural Model 58

3.8 Related Work . 63

viii

CONTENTS

4 Learning String-to-String Transducers via Phylogenetic Inference 65

4.1 Introduction . 65

4.2 Name Phylogeny . 67

4.2.1 Generative Story: Simple Version 69

4.2.2 Relationship to other models 71

4.3 A Mutation Model for Name Strings 73

4.3.1 Pragmatics . 76

4.4 Inference . 77

4.4.1 An unrealistically supervised setting 77

4.4.2 The unsupervised setting . 79

4.4.3 The semi-supervised setting 83

4.4.4 Spanning tree algorithms . 84

4.5 Training the Transducer with EM . 85

4.6 Modeling Names in Context . 88

4.6.1 Generative Story: Full Version 91

4.6.2 Sub-model for parent selection 93

4.7 Inference by Block Gibbs Sampling 94

4.7.1 Resampling the ordering . 95

4.7.2 Resampling the topics . 95

4.7.3 Resampling the phylogeny . 98

4.7.4 Initializing the sampler . 99

ix

CONTENTS

4.8 Parameter Estimation: Revisited . 99

4.9 Consensus Clustering . 101

4.10 Experiments . 103

4.10.1 Wikipedia Redirects . 104

4.10.2 Twitter . 104

4.10.3 Newswire . 107

4.10.4 Blogs . 108

4.10.5 Discussion . 110

4.11 Related Work . 111

5 Conclusion 117

5.1 Extensions . 119

5.2 Outlook . 121

Vita 148

x

List of Tables

3.1 Part-of-speech induction results in multiple languages. 53
3.2 Log-linear features used in the CRF baseline. 60

4.1 Results for the Twitter dataset, averaged over four data splits. Higher
B3 scores are better. 107

4.2 Results for the ACE dataset. Higher scores are better. 108

xi

List of Figures

2.1 A selection of Wikipedia redirects for Barack Obama. 6
2.2 A sample of entity types in Wikidata (frequencies as of August 2015). 8
2.3 Sample alias lists scraped from Wikipedia. 9
2.4 Recurrent neural network. 20
2.5 Unrolled recurrent neural network for backpropagation-through-time,

shown here for the case of a single recurrent layer ht. Gradients flow in
the opposite direction as the computation graph. 22

2.6 Stacked RNN architecture. 24
2.7 Predictions from trained RNN name model on 8000 sequences of the

corresponding type. Each predicted sequence is terminated with a dis-
tinguished end-of-sequence symbol, omitted above. Predictions which
correspond exactly to an entry in the knowledge base are marked with
an asterisk (*) next to the entity type. 27

2.8 The aggregate accuracy for the SM and for RNNs of three different
recurrent state sizes. The x-axis is the amount of training data used
to train each name model (one for each of 12 types). The y-axis shows
aggregate prediction accuracy. 28

2.9 A breakdown of classification accuracy for each entity type. The x- and
y-axis are as in Figure 2.8. 29

2.10 A selection of predictions from the sequence-to-sequence entity name
model. The entity attributes refer to Wikidata entities in the format
property value. Predictions which correspond exactly to an entry in
the knowledge base are marked with an asterisk (*). 30

2.11 Stacked RNN architecture with one-hot encoded class inputs ct. Note
that only the connections for ct are shown for clarity. 33

2.12 Aggregate classification accuracy for different amounts of supervised
data, with three different models: conditional log-likelihood (CLL) with
joint (CLL-joint) and independent (CLL-joint) parametrizations. Note
that the x-axis represents the total number of training sequences, which
are evenly divided between classes. 36

xii

LIST OF FIGURES

2.13 Predictions from RNN trained with different criterions: log-likelihood
(left) and multi-conditional (right). Note that for the generative crite-
rion, the predictions show some repeated patterns in different classes.
The MCL criterion appears to encourage more differentiated classes.
Predictions which correspond exactly to an entry in the knowledge base
a marked with an asterisk (*). 37

3.1 German: Discriminative model F1. 61
3.2 German: Generative model F1. 61
3.3 German CoNLL 2003. 61
3.4 English: Discriminative model F1. 62
3.5 English: Generative model F1. 62
3.6 English CoNLL 2003. 62

4.1 A portion of a spanning tree found by our model. 67
4.2 Precision and recall at different degrees of supervision for the proposed

name phylogeny model and a baseline which does not stipulate any
intermediary name forms. The proposed model consistently outperforms
the baseline. 105

xiii

Chapter 1

Introduction

Learning from unlabeled data is a long-standing challenge in machine learning.

A principled solution involves modeling the full joint distribution over inputs and

the latent structure of interest, and imputing the missing data via marginalization.

Unfortunately, such marginalization is expensive for most non-trivial problems, which

places practical limits on the expressiveness of generative models. As a result, joint

models often encode strict assumptions about the underlying process such as fixed-

order Markovian assumptions and employ simple count-based features of the inputs.

In contrast, conditional models, which do not directly model the observed data, are

free to incorporate rich overlapping features of the input in order to predict the latent

structure of interest. It would be desirable to develop expressive generative models

that retain tractable inference. This is the topic of this thesis. In particular, we explore

joint models which relax fixed-order Markov assumptions, and investigate the use of

1

CHAPTER 1. INTRODUCTION

recurrent neural networks for automatic feature induction in the generative process.

We focus on two structured prediction problems: (1) imputing labeled segmentions

of input character sequences, and (2) imputing directed spanning trees relating strings

in text corpora. These problems arise in many applications of practical interest, but we

are primarily concerned with named-entity recognition and cross-document coreference

resolution in this work.

For named-entity recognition, we propose a generative model in which the observed

characters originate from a latent non-Markov process over words, and where the

characters are themselves produced via a non-Markov process: a recurrent neural

network (RNN). We propose a sampler for the proposed model in which sequential

Monte Carlo is used as a transition kernel for a Gibbs sampler. The kernel is amenable

to a fast parallel implementation, and results in fast mixing in practice.

For cross-document coreference resolution, we move beyond sequence modeling to

consider string-to-string transduction. We stipulate a generative process for a corpus

of documents in which entity names arise from copying—and optionally transforming—

previous names of the same entity. Our proposed model is sensitive to both the context

in which the names occur as well as their spelling. The string-to-string transforma-

tions correspond to systematic linguistic processes such as abbreviation, typos, and

nicknaming, and by analogy to biology, we think of them as mutations along the

edges of a phylogeny. We propose a novel block Gibbs sampler for this problem that

alternates between sampling an ordering of the mentions and a spanning tree relating

2

CHAPTER 1. INTRODUCTION

all mentions in the corpus.

1.1 Chapter Abstracts

§2 Proper names often contain rich sub-structure. For instance, person names may

contain titles, first names, last names, initials, and so on. Unfortunately, it would

impractical to design hand-crafted grammars for all combinations of entity types

and languages. Therefore, we explore an alternate approach to name modeling

using character-level language models. We develop several architectures using

long-term short-term (LSTM) recurrent units. We find that the LSTM approach

outperforms other state-of-the-art sequences models such as the sequence mem-

oizer (SM), for the problem of classifying the entity type given a name.

§3 Lexical resources such as dictionaries and gazetteers are instrumental to the

performance of many state-of-the-art NLP systems. This type-level supervision

may be used as a source of strong features or hard constraints in discriminative

models. However, incorporating strong features in discriminative models may

lead to weight under-training: poor recall of out-of-gazetteer types due to over-

fitting the gazetteer. We observe that generative modeling provides a principled

solution: we construct a model that generates both type-level and token-level

data. Because it had to explain the gazetteer types, it is also good at predicting

novel types. We experimentally evaluate our proposed approach on two tasks:

3

CHAPTER 1. INTRODUCTION

part-of-speech (POS) induction and named-entity recognition (NER). We find

that (1) modeling dictionaries for POS induction leads to consistently improved

accuracies across several languages, and (2) our generative NER model provides

better generalization to novel types.

§4 Many linguistic and textual processes involve transduction of strings. We show

how to learn a stochastic transducer from an unorganized collection of strings

(rather than string pairs). The role of the transducer is to organize the collection.

Our generative model explains similarities among the strings by supposing that

some strings in the collection were not generated ab initio, but were instead

derived by transduction from other, “similar” strings in the collection. The

generative process assumes that each entity mention arises from copying and

optionally mutating an earlier name from a similar context. Clustering the

mentions into entities depends on recovering this copying tree jointly with

estimating models of the mutation process and parent selection process. We

present a block Gibbs sampler for posterior inference, and apply our approach

to the problem of co-reference resolution on several datasets.

4

Chapter 2

Predicting Sequence Attributes

using Recurrent Neural Networks

2.1 Chapter Overview

Entity names sometimes appear in a canonical form in text. For instance, Barack

Obama is a canonical form of the name of the current president of the United States.

Of course, there are other ways of referring to the same person (some of which may

also be considered canonical). Wikipedia contains more than 100 variations of Barack

Obama as redirect pages.1 These include formal names with titles, aliases, names with

middle initials or complete middle names, and many other variations. Furthermore,

1A Wikipedia redirect page has no content itself, but instead sends the reader to another page. By
redirect, we are specifically referring to the title of the redirect page which often contains interesting
name variations.

5

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

President Obama Barack H. Obama, Jr.
Barak Obamba Barry Soetoro

Figure 2.1: A selection of Wikipedia redirects for Barack Obama.

misspellings (Barrack), typos (Barck), and lowercase/uppercase variations (obama) fur-

ther contribute to name variation, especially in informal genres such as blogs. Some

examples are shown in Figure 2.1. In this chapter, we consider the problem of mod-

eling the name-ness of different strings (sequences of characters). For person names

which tend to have a predictable structure, it is tempting to define rules ahead of time,

perhaps in some probabilistic framework like a probabilistic context-free grammar

(PCFG). However, this approach would require hand-crafting grammars for all entity

types of interest and for all languages of interest.

In this section, we pursue a more general strategy which is to model names using

expressive sequence models with a capacity to learn name structure without prescribing

assumptions in the model structure (for instance, context-free and context-sensitive

languages [Gers and Schmidhuber, 2001]). However, we begin with a discussion of

sequence models more generally.

In later chapters, we will incorporate name models as components of more involved

generative processes. In this chapter, our modest goal is to design models that assign

high probability to strings resembling names of the appropriate type given conditioning

information, and lower probability to other strings. For instance, for two types human

6

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

(hum) and car model (mod):

ln p(Mr. Obama | e.type = hum) = p1 ln p(Mr. Obama | e.type = mod) = p3

ln p(Ford Focus | e.type = hum) = p2 ln p(Ford Focus | e.type = mod) = p4

we want p1 > p2 and p4 > p3.

The primary contributions in this chapter are the following:

§2.2 We introduce new datasets for training name models for many entity types,

derived from Wikidata and redirect data in DBpedia [Vrandečić and Krötzsch,

2014, Auer et al., 2007].

§2.7 We propose a joint parametrization of the class-based RNN which outperforms

the independently trained baseline in both low and high data-settings, while

using 1/C of the parameters for C distinct classes.

§2.7 We show that multi-conditional training of the joint RNN model leads to con-

sistent gains over a purely generative training criterion.

2.2 Data

The experiments in this section use data from Wikidata [Vrandečić and Krötzsch,

2014]. Wikidata is a free collaborative knowledge base with structured data from

Wikipedia [Wikipedia, 2015] and other sources. Each entity in Wikidata is associated

7

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

type freq. type freq.

person 1285998 road 19498
film 97616 city 19296
settlement 97179 ship 18184
company 55364 church 16467
band 35448 high school 16382
railway station 34485 organization 13427
mountain 20361 airport 12713

Figure 2.2: A sample of entity types in Wikidata (frequencies as of August 2015).

with different statements, each of which has metadata such as references to source

material. For instance, entity Q937 (Albert Einstein) has two statements of the prop-

erty P1412 (languages spoken or published): Q1860 (English) and Q188 (German).

Each entity in Wikidata has a title (such as Albert Einstein above) and optionally a

list of known aliases (also known as). These are of particular interest, as they will be

used in the experiments in this section as a source of training data for name models.

Crucially, entity titles and aliases are available in all languages for which there is a

corresponding Wikipedia. Some frequent entity types are shown in Figure 2.2.

Redirects. In the previous section, we provided examples of Wikipedia redirects as

examples of person name variation. This data was obtained from the DBpedia project,

which as of August 2015 provides dumps containing more than 6.5 million redirect

pages [Auer et al., 2007]. The titles of redirect pages provide a useful source of entity

names as they contain much variation. A sample of redirects for English person names

are shown in Figure 2.3.

Missing / incomplete data. A challenge when dealing with collaborative resources

8

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Ho Chi Minh, Ho chi mihn, Ho-Chi Minh, Ho Chih-minh

Guy Fawkes, Guy fawkes, Guy faux, Guy Falks, Guy Faukes, Guy Fawks, Guy foxe

Nicholas II of Russia, Nikolai Aleksandrovich Romanov, Nicholas Alexandrovich of Russia

Bill Gates, Lord Billy, Bill Gates, BillGates, Billy Gates, William Gates III, William H. Gates

William Shakespeare, William shekspere, William shakspeare, Bill Shakespear

Bill Clinton, Billll Clinton, William Jefferson Blythe IV, Bill J. Clinton, William J Clinton

Figure 2.3: Sample alias lists scraped from Wikipedia.

such as Wikidata is that entities may have unknown properties. For instance, the

absence of a date of death (p570) does not necessarily imply that an entity is still

living. In Wikipedia, it is typically the case that a small number of popular entities have

many known properties, while a long-tail of other entities have a few basic properties.

A proper treatment of this problem is beyond the scope of this thesis; see [Mohan

et al., 2013] for a recent discussion. For the experiments in this section, we avoid the

issue of missing data by selecting entities that have no missing data, or by focusing

on a subset of properties.

2.3 Types and Tokens

Example 2.1. On Tuesday, September 8th, 2015, a town in northern Wales was one

of the U.K.’s warmest locations. It enjoyed a considerable surge in popularity online

and in the media:2

British meteorologist Liam Dutton is the toast of the web today for
somehow managing to pronounce Llanfairpwllgwyngyllgogerychwyrndrob-
wllllantysiliogogogoch, a village in north west Wales, without missing a
beat.

2https://www.youtube.com/watch?v=fHxO0UdpoxM

9

https://www.youtube.com/watch?v=fHxO0UdpoxM

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Example 2.1 describes a case where where an unlikely name type, “Llanfairpwll-

gwyngyllgogerychwyrndrobwllllantysiliogogogoch,” occurs with high token frequency.

When learning the shape of town names, it would be desirable not to skew a generative

distribution towards the spelling of names which occur with high frequency. Another

example is the name “Barack Obama,” which is not representative of common English

person name spellings. In the next section, we describe a Bayesian nonparametric

framework that will be useful accounting for rare spellings such as the place above

when estimating generative distributions over character sequences. It will be used as

a building block for the Bayesian sequence model used in this chapter (§2.4.1), as well

as the more complex models described in Chapter 3.

Example 2.2. Word segmentation. In word segmentation, a system is presented

with a sequence of symbols, typically phonemically transcribed utterances, and must

output a segmentation of the input sequence into subsequences (words). One early

approach to this problem is to use a generative n-gram model over words, with

a certain probability of emitting a distinguished boundary symbol between each

word [Venkataraman, 2001]. Inference in this model consists of searching over all

possible positions for the boundary symbols in the input symbol sequence. Unfor-

tunately, this model suffers from a pathological defect in that the solution which

maximizes likelihood is the unsegmented input [Goldwater et al., 2006]. The problem

is that the n-gram model does not have a bias favoring the types of power-law word

distributions exhibited in natural language [Powers, 1998].

10

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

These examples motivate a useful technical concept. The term memoization refers

to an optimization in computer science where the result of a function call is cached,

so that subsequent calls may look-up the cached value rather than repeating the

calculation. The probabilistic analog of this idea optionally caches draws a distribution,

known as the the base distribution. This stochastic memoization (c.f. Goodman et al.

[2012]) induces a different distribution called the adapted distribution. A sample

from the adapted distribution is produced either via a draw from the base distribution

or by re-using a previously generated value. The adapted distribution has the same

support as the base distribution (e.g., a distribution over words), but the memoization

has the effect of concentrating probability mass on previous observations (e.g., existing

Welsh place names) while reserving some mass for novel events. The trade-off between

novelty and re-use depends on the choice of memoizer model (henceforth adaptor).

Probabilistic adaptors provide a principled way of holding out probability mass for

novel events, and to encourage a “rich-get-richer” effect in which some types occur

with high frequency—just as some words like determiners occur frequently in natural

language.

2.3.1 Pitman-Yor Processes

Pólya urn schemes provide a convenient description of a rich-get-richer process

(named after the mathematician George Pólya). They are described in terms of an

urn filled with balls of different colors. In a simple urn model, each draw from the

11

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

urn results in a ball of the same color being added back to the urn, in addition to

returning the picked ball back to the urn. Thus, the likelihood of picking a ball of that

color increases with successive draws. Compare this to sampling without replacement,

in which a draw permanently removes a ball of the corresponding color from the urn,

reducing its probability in future draws. The balls represent objects of interest: in our

case, these are either characters or words, and observing a word or character increases

its probability.

The Chinese restaurant process (CRP) is a particular type of Pólya urn scheme3,

which is more intuitively understood via the following analogy (from which it derives

its name). The Chinese restaurant is initially empty, and when it opens customers

arrive one-at-a-time and take seats around the tables (of which there are infinitely

many, initially unoccupied). At any given time, the customers are in some arrangement

around the tables—a partition—and each table serves a single dish. The dish is drawn

from the base distribution of the CRP, which in our case will usually correspond to a

distribution over words or characters, though in general may be continuous in which

case draws are distinct with probability 1.

We now build on these intuitive descriptions to formalize a useful generalization

of the CRP called the Pitman-Yor process (PYP) [Perman et al., 1992, Ishwaran and

3The CRP may be understood as the following modified urn scheme: the urn initially contains α
black balls. When drawing a ball from the urn, if it is black, return the ball to the urn along with
an additional non-black ball drawn from a uniform distribution over an infinite set of colors, and
suppose the drawn color is the value of the actual draw [Hoppe, 1984]. This description corresponds
to the case where the base distribution is over a continuous space, in which case draws are distinct
with probability 1.

12

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

James, 2001].

Let PYP(α, d, P0) denote a PYP with concentration (or strength) parameter α >

−d, discount parameter d ∈ [0, 1), and a base distribution P0 over Σ (e.g. colors, words,

etc.). The CRP defines a distribution over partitions which may be fancifully described

as an arrangement of customers around tables, where each table is associated with

a dish s ∈ Σ that is a draw from the base distribution of the PYP. The process by

which customers are seated corresponds to the following sequential allocation scheme,

in which the nth customer either

1. sits at an existing table k with probability proportional to nk−d
n+α

, which cor-

responds to re-using a cached value equal to the dish s ∈ Σ served at table

k;

2. sits at a new table with probability proportional to Kd+α
n+α

, which means drawing

a new dish s ∈ Σ from the base distribution P0

where nk is the number of customers sitting at table k, and K is the total number of

tables.

Together, the discount parameter d ∈ [0, 1] and concentration parameter α > 0

control the manner of the clustering (partition). A high value of α will result in a

large number of tables regardless of the number of customers sitting at those tables.

As d→ 1 the arrangement is biased towards fewer customers sitting at each table.

In §2.4.1, we show how this distribution may be used as a building block in a

13

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Bayesian language model, where restaurants are associated with particular contexts.

In §3, we apply PYP priors as a component in a generative latent-variable model.

2.4 Sequence Models

We are interested in models of the form

p(x1, . . . , xt) =
T∏
t=1

p(xt | x1, . . . , xt−1) (2.1)

where the observed symbols xt are drawn from some alphabet A. In the speech

recognition and machine translation communities, such models are known as language

models (LM), and the observed symbols correspond to words drawn from a finite

vocabulary. In this chapter our focus will be on character-level models.

Note that in §2.1, the probability of a symbol at time t is conditioned on all previous

symbols x1, . . . , xt−1, which poses increasing statistical and computational challenges

as T (the length of the sequence) increases. Historically, these challenges have been

avoided by approximating equation (2.1) via a fixed-order Markov assumption:

p(xt | x1, . . . , xT−1) ≈ p(xt | xt−N , . . . , xt−1) (2.2)

where the Markov order n is a hyper-parameter of the model. If the alphabet A is

fixed, the model may then be parametrized using a categorical distribution in which

14

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

the probability of symbol is simply derived from observed counts of that symbol in

different contexts c:

θac :=
nac
n·c

(2.3)

where nac and n·c are the number of occurences of a followed by context c and the

number of occurences of context c preceeded by any symbol in A, respectively. This

distribution is “closed-form” in the sense that

∑
a′∈A

θa′c = 1 (2.4)

pθ(a | c) = θac (2.5)

There are three main difficulties with this n-gram approach:

• As n increases, the number of unique contexts increases exponentially, leading

to sparse observations and poor estimates of the predictive distribution in those

contexts.

• The number of parameters also grows exponentially in n, which becomes in-

tractable for large n.

• Out-of-vocabulary symbols may appear in held-out data that were not present

during parameter estimation. This is particularly problematic when the symbols

are words, since (for instance) typos are an endless source of out-of-vocabulary

15

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

words.

Intuitively, larger n correspond to more specific contexts, which will be sparser in

natural language. In practice, the n-gram model above must be combined with so-called

“smoothing” schemes to deal with the first two difficulties. Due to the importance of

LMs in NLP, many such schemes have been proposed in the literature. In the next

chapter, we describe the sequence memoizer (SM), a Bayesian nonparametric language

model which addresses all of the above difficulties. This model will serve as a strong

baseline to the RNN-based models described in later sections.

2.4.1 Bayesian Non-Parametric Language Models

Pitman-Yor language models use Bayesian priors for purposes of smoothing lan-

guage models [Teh, 2006]. We focus on the sequence memoizer (SM), which does not

make any fixed-order Markov assumptions [Wood et al., 2009]. In this model, the

probability p(s | c) of a symbol s in a given context c is given by an adapted distri-

bution with base distribution p(s | σ(c)), where σ(c1c2c3 . . .) = c2c3 . . ., and the base

distribution is itself adapted. This back-off process repeats until the context is empty.

16

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

The resulting conditional dependencies have a simple linear structure:

p(s | ε) ∼ PYP(d0, α0, H) (2.6)

. . .

p(s | σ(c)) ∼ PYP(d|c|−1, α|c|−1, p(s | σ(σ(c))) (2.7)

p(s | c) ∼ PYP(d|c|, α|c|, p(s | σ(c)) (2.8)

where ε is the empty sequence. Intuitively, the model is able to obtain more robust

estimates in specific contexts (large |c|) by backing-off to less-specific contexts (small

|c|) for which there are more observations. The SM trade-off novelty and re-use at

each level of the hierarchy according to the corresponding discount and concentra-

tion hyperparameters, which in practice may either be fixed, optimized or sampled

(see [Wood et al., 2009, Gasthaus and Teh, 2010]). In our experiments, we follow prior

work and fix discount parameters to the values recommended in Wood et al. [2009],

which also fix αc = 0.

It is instructive to consider the predictive distribution, which takes a simple form:

pc(s) =
ncs − tcsd
αc + nc·

+
αc + tc·d

αc + nc·
pσ(c)(s) (2.9)

where ncs is the count of symbol s occurring in context c, and nc· is the total count of

all symbols occurring in context c. Looking at the numerators, the discounting effect

17

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

of d is clear: we subtract tcsd from the observed count ncs and shift that probability

mass to second term, where tc·d is added—raising the probability of sitting at a new

tables. We also see that even when αc = 0, there is nonzero probability of sitting at a

new table due to the discounting effect.

The choice of top-level base distribution H depends on the space being modeled.

When modeling sequences of characters, we take H to be a uniform distribution over

a finite set of character symbols. In §3, we are interested in distributions over the

infinite set of possible words, and therefore take H to be a distribution over character

sequences of unbounded length. In general, the base distribution may either be fixed

or re-estimated from data.

2.4.2 Recurrent Neural Networks

RNN language models have a number of limitations compared to nonparametric

models such as the SM. First, they usually have millions of parameters and have highly

non-convex likelihood functions. As a result, they are computationally expensive to

estimate and prone to local optima. Second, while the PYP provides a mechanism

to hold-out probability mass for novel events, this is not possible in typical RNN

parametrizations: they must use an alphabet (or vocabulary) of fixed size defined

before seeing any data.

What RNNs and the SM have in common is the ability to capture long-range

dependencies. The RNN does this in a more powerful way than the SM by summarizing

18

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

the context in the fixed-dimensional real tensor—the state of the RNN. [Bengio et al.,

2006] Until recently, RNNLMs have performed more or less on par with n-gram models

that use advanced smoothing techniques; however, recent developments in parallel

hardware, second-order parameter estimation methods, and RNN architectures have

together rendered neural methods the de facto choice for many sequence learning

problems.

Example 2.3. Matching parenthesis and modeling character classes. While

the SM is able to capture long-term dependencies by conditioning on arbitrary amounts

of context, it suffers from limited expressivity. As one example of this, consider the

problem of modeling parenthetical dates. Given a novel string (i.e. unseen during

parameter estimation):

(1 9 8 4

the SM will not assign high probability to a matched parenthesis) if the prefix

(1984 (or coincidentally some suffix thereof) occurs in the training data. This example

illustrates another weakness of the n-gram approach, which is that the symbols 1, 9, 8, 4

are all considered entirely distinct. The SM is unable to recognize that they are all

numeric symbols, nor that after an opening parenthesis it is common for four such

symbols to appear.

A recurrent neural network (RNN) is a generalization of the standard feedfor-

ward neural network to sequences. Given a sequence of inputs (x1, . . . ,xT), the RNN

19

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

xt ht yt

Figure 2.4: Recurrent neural network.

produces outputs via the following recurrence

ht = sigm(W1xt + W2ht−1 + bh) (2.10)

yt = W3ht + by (2.11)

The nonlinearity sigm is computed element-wise.4 The matrices W1,W2,W3 and the

vector h0 are trainable parameters of the model, along with the biases bh and by.

Note that for a given input xt and RNN state ht−1, the output yt and new state ht are

produced deterministically. To apply this idea to discrete symbol sequences, we require

an embedding E which maps inputs xt to corresponding vector-valued embeddings xt

E : Z+ → Rd (2.12)

The mapping E is a deterministic slice operation (selecting a vector slice of a matrix),

but the resulting embeddings xt are trainable parameters of the model [Bengio et al.,

2003]. We suppose without loss of generatility that the input embedding and recurrent

4Other nonlinearities, such as tanh, are sometimes used. The choice of nonlinearity may be thought
of as a hyperparameter of the model.

20

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

layer have the same dimensionality d: xt,ht ∈ Rd. (In §2.6, we relax this assumption.)

Probabilistic interpretation. The RNN defines a generative probability distribu-

tion via a softmax transformation of the sequence of output vectors y1, . . . ,yT :

p(xt = j | x1, . . . , xt−1) = softmax(yt) (2.13)

=
exp(y

(j)
t)∑

k exp(y
(k)
t)

(2.14)

This final layer is analogous to that of a log-linear model, with the main difference being

that log-linear models are typically parametrized via fixed feature templates [Berg-

Kirkpatrick et al., 2010].

Backpropagation-through-time. Neural networks are typically trained via error

gradient backpropagation. Unfortunately, this approach is not immediately applicable

to RNNs, as the recurrent connections form cycles in the resulting computation graph.

Several strategies have been proposed in the literature to deal with this problem. We

use backpropagation-through-time (BPTT) here, which involves “cloning” the network

for ρ time steps and modifying the recurrent connections to flow through time from

one clone to the next. There are no cycles in the modified computation graph, which

is therefore amenable to standard error backpropagation techniques. Note that use

of a fixed ρ limits the ability of the model to capture long distance dependencies. In

principle, one could set ρ to be the length of sequence; however, in practice this may

lead to numerical instability during optimization [Pascanu et al., 2013]. This difficulty

21

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

ht

xt

yt

∂yt

∂xt

ht+1

xt+1

yt+1

∂yt+1

∂xt+1

ht−1

xt−1

yt−1

∂yt−1

∂xt−1
∂xt+1

∂xt

∂xt

∂xt−1

Figure 2.5: Unrolled recurrent neural network for backpropagation-through-time,
shown here for the case of a single recurrent layer ht. Gradients flow in the opposite
direction as the computation graph.

takes the form of vanishing and exploding gradients [Bengio et al., 1994].

There is a fairly straightforward solution to the exploding gradient problem, which

involves scaling down the gradient when its norm exceeds a given threshold [Pascanu

et al., 2013]; see Algorithm 1.

Algorithm 1 Clipping exploding gradients

1: function clip(g)
2: if ‖g‖ ≥ threshold then
3: return threshold

‖g‖ g
4: end if
5: return g
6: end function

The vanishing gradient problem is more severe. One attempt to address this

problem is via optimization procedures which incorporate approximate second-order

terms; we employ one such procedure in our experiments (described below). Another

largely orthogonal approach is to modify the RNN architecture.

Several modifications to the vanilla RNN architecture have been proposed [Hochre-

22

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

iter and Schmidhuber, 1997a, Cho et al., 2014]. We adopt the recently popularized

long short-term memory framework [Hochreiter and Schmidhuber, 1997b, Hochreiter

et al., 2001]. While the LSTM-RNN has more parameters than a vanilla RNN, it

enjoys the same O(1) computational complexity per time step and weight.

Let xt, ht, and mt denote the input, recurrent state, and memory state at time t.

it = sigm(W1xt + W2ht−1) (2.15)

i′t = tanh(W3xt + W4ht−1) (2.16)

ft = sigm(W5xt + W6ht−1) (2.17)

ot = sigm(W7xt + W8ht−1) (2.18)

mt = mt−1 � ft + it � i′t (2.19)

ht = mt � ot (2.20)

where � denotes element-wise multiplication. The matrices W1, . . . ,W8 and the

vector h0 are trainable parameters of the model, and the nonlinearities tanh and sigm

are computed element-wise. Together, the gates (i, i’, f, o) and memory cells (m) allow

the LSTM unit to adaptively control the flow of detected features across multiple

timesteps.

Multiple layers. It is straightforward to extend the RNN-LSTM to incorporate

multiple layers. This is accomplished by stacking multiple LSTM recurrent layers,

feeding the output of one layer to the next. This is illustrated in Figure 2.6.

23

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

h1
t

h2
t

h3
t

xt

yt

h1
t+1

h2
t+1

h3
t+1

xt+1

yt+1

h1
t−1

h2
t−1

h3
t−1

xt−1

yt−1

.

.

.

Figure 2.6: Stacked RNN architecture.

Dropout regularization. An issue with overparametrized models such as RNNs is

that with limited training data, they can and often will overfit the training data [Hinton

et al., 2012, Srivastava et al., 2014]. We employ dropout to both input and recurrent

connections [Zaremba et al., 2014].

Stochastic gradient optimization methods. First-order stochastic gradient meth-

ods are sensitive to the learning rate schedule, which is difficult to tune in practice.

For all experiments in this thesis, we instead use the Adam algorithm [Kingma and Ba,

2014]. Adam incorporates adaptive estimates of lower-order gradients, which enables

it to adapt its learning rate per parameter.

Efficient training on graphics processing units. Due to the slow, incremental

progress of batch gradient descent methods, many passes through the data (epochs)

24

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

are necessary to achieve good performance. As described in §2.2, we are working with

large corpora with millions of training instances. To make optimization tractable we

parallelize gradient computations on graphics processing units (GPUs). At a high-level,

this involves performing both the forward and backwards passes on multiple sequences

simultaneously so that at time t, the input to the RNN is a vector of inputs where

input k is the t-th input symbol of instance k in the batch. As a result, it is helpful to

organize batches so that they contain only sequences of the same length, so that no

computation is wasted. When this is not possible (e.g., for left-over sequences), the

outputs must be masked to ensure proper gradient computations.

2.5 Learning from Gazetteers

In this section we train SM and RNN name models from lists of names of different

entity types. We evaluate the ability of the trained models to classify the type of novel

names. As previously described in §2.2, we extract gazetteers from Wikidata.

The experimental procedure is straightforward. We select 12 entity types from

among those with at least 10000 instances with English titles. We then impute the

25

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

type of novel names via Bayes’ theorem:

q∗ = argmax
q

p(p31 = q | name)

= argmax
q

p(q31 = q)p(name | p31 = q)

p(name)

= argmax
q

p(q31 = q)p(name | p31 = q) (2.21)

Hyperparameter settings. To pick the RNN architecture, we perform a grid search

over the following dimensions (best setting in parenthesis): batch size (128), RNN

state size (256), number of layers (3), gradient norm threshold (10), and initial Adam

learning rate (0.001). To select the SM hyperparameters (discount and concentration

parameters), we follow the recommendations in [Gasthaus and Teh, 2010].

Results. We show some predictions from the trained models in Figure 2.7. The

aggregate accuracy is shown in Figure 2.8. Note that the optimal size of the RNN

(128, 256, and 512) depends on the amount of training data. For low data settings, it is

preferable to use smaller networks. Also, the RNN models consistently outperform the

SM baseline as the amount of training data exceeds 1000. A breakdown of performance

for each entity type is shown in Figure 2.9.

26

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Entity type Viterbi prediction

airport S a n t a C r e s t a A i r p o r t
building C a s a d e l a S a n t a d e l a B a n k
city S a n J o s ? d e l R o s a
high school∗ S t . M a r y ’ s H i g h S c h o o l
person J o h n M a r k B a r t o n
road∗ M i n n e s o t a S t a t e H i g h w a y 1 2
band T h e S t e e l S t r i n g Q u a r t e t
church S t M a r y ’ s C h u r c h , B r i g h t o n
film T h e B o y M a n
mountain M o u n t B a r r e y
train station S h i m o - S h i m o t o S t a t i o n
ship U S S L S T - 5 5 1

Figure 2.7: Predictions from trained RNN name model on 8000 sequences of the
corresponding type. Each predicted sequence is terminated with a distinguished end-
of-sequence symbol, omitted above. Predictions which correspond exactly to an entry
in the knowledge base are marked with an asterisk (*) next to the entity type.

2.6 Entity Name Models

Wikidata provides a wealth of structured knowledge about entities. In this section

we experiment with generative name models that are sensitive to attributes such as

gender, nationality, and known given and family names. We condition the RNN on

additional entity attributes:

ln p(Mr. Obama | male, kenya, usa, obama, . . .)

A flexible way of incorporating entity attributes in the RNN is by framing the process

as a sequence-to-sequence model [Sutskever et al., 2014, Cho et al., 2014]. We will

defer a detailed description of these models to Chapter 4. The high-level idea is to

read in an encoding of all entity attributes, which are then summarized in the fixed-

27

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Figure 2.8: The aggregate accuracy for the SM and for RNNs of three different recurrent
state sizes. The x-axis is the amount of training data used to train each name model
(one for each of 12 types). The y-axis shows aggregate prediction accuracy.

28

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Figure 2.9: A breakdown of classification accuracy for each entity type. The x- and
y-axis are as in Figure 2.8.

29

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Varible # of entity attributes Viterbi prediction (true entity name)

p31 q5 p27 q403 p172 q127885 . . . → Andrej Pavali (Mihailo Obrenovi III)
p31 q5 p27 q30 p21 q6581097 . . . → John Martin∗ (Daniel Hall)
p31 q5 p27 q142 p21 q6581072 . . . → Marie Bourne (Sylvie Denis)
p31 q5 p27 q1045 p21 q6581097 . . . → Abdul Al-Ali (Ismail Jim’ale Osoble)
p31 q5 p27 q38 p21 q6581097 . . . → Antonio Martini∗ (Giacomo dalla Torre . . .)

Figure 2.10: A selection of predictions from the sequence-to-sequence entity name
model. The entity attributes refer to Wikidata entities in the format property value.
Predictions which correspond exactly to an entry in the knowledge base are marked
with an asterisk (*).

dimensional RNN state (possibly consisting of multiple stacked layers). Given the

input encoding, the RNN then outputs the name character by character until the

distinguished end-of-sequence symbol is emitted. This approach achieves qualitatively

promising results, as shown in Figure 2.10.

However, this framing of the problem suffers from a number of drawbacks. First,

there is no natural ordering of entity attributes, so the order in which attributes are

encoded is arbitrary. Furthermore, different numbers of attributes may adversely affect

the predictive ability of the RNN, as performance tends to degrade with the length

of the input sequence [Sutskever et al., 2014].

A different approach is to modify the RNN with additional inputs, one for each

entity attribute. Suppose there are M attributes. We modify the LSTM units with

additional embeddings am and associated weights Am. For instance, we modify it as

follows:

it = sigm(W1xt + A1a1 + . . .+ Amam︸ ︷︷ ︸
attribute weights and embeddings

+W2ht−1) (2.22)

30

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

We will use this modification in the next section.

2.7 Improved RNN Parametrizations

In this section we modify the name model in two ways: (1) we change the

paremetrization so that the RNN parameters are shared between classes at every

layer, including the input embeddings (2) we introduce a different training criterion

for a multi-class RNNs that optimizes both the generative log-likelihood conditioned

on the class label as well the classification log-likelihood conditioned on the inputs.

2.7.1 Joint conditional RNNs

We revisit the RNN architecture described in §2.5. The previous architecture was

used to parametrize a model pθ(x | c) where each class c is associated with a distinct

set of RNN parameters θc. The advantage of this approach is that it allows each

class-specific model to be trained independently of the others, which is amenable to

parallelized training. However, there are also downsides:

Lack of parameter sharing. There are common morphological patterns accross

classes. Put more broadly, certain character sequences are likely across different classes.

For instance, capital letters tend to begin words and certain consonent and vowel

patterns are more common. However, if each class is modeled independently, the

amount of training data to discover these broad language patterns is effectively reduced

31

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

by the number of classes.

Fixed capacity. Some classes may require RNNs with more capacity, while some

classes may require less. Therefore, an architecture which works well for one class may

not be optimal for another. Put another way, a fixed amount of model capacity is

allocated to each class, rather than adaptively allocating capacity.

Hyper-parameter tuning. If class-specific RNNs are treated as separate optimiza-

tion problems, they may require separate tuning for hyper-parameters such as opti-

mizer learning rates and schedules. If model architectures are allowed to vary between

classes in addition to optimizer hyper-parameters, this compounds the amount of

tuning necessary to train each class-specific model.

Our solution is to use a single RNN with additional inputs at the input as well as

the recurrent layers for the class. That is, we use a single set of RNN parameters θ

that is shared across all classes. This means that the parameters of the input symbol

embeddings as well as the recurrent layers are trained jointly.

The modification to the architecture is straightforward, and is shown in Figure 2.11.

At each layer, including the input layer, the class label serves as an additional input.

This is similar to the previous section, where different entity attributes were inputs

to the RNN. Note that unlike the input symbols xt, we do not learn an embedding

of the labels. We rather apply a fixed one-hot transformation of the label, where an

input scalar is converted to a vector of length C (for C classes) where dimension c is

1 and all other entries are 0.

32

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

h1
t

h2
t

h3
t

xt

ct

yt

h1
t+1

h2
t+1

h3
t+1

xt+1

ct+1

yt+1

h1
t−1

h2
t−1

h3
t−1

xt−1

ct+1

yt−1

.

.

.

Figure 2.11: Stacked RNN architecture with one-hot encoded class inputs ct. Note
that only the connections for ct are shown for clarity.

33

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

2.7.2 Multi-Conditional Learning

In some applications such as NER, we are ultimately interested in predicting

named-entity labels conditioned on all observed information. Most existing models

for NER explicitly optimize this conditional objective using discriminative training

regimes. However, in this thesis we have thus far only discussed generative objectives,

where the training criterion is the likelihood of the observed data given the class labels.

If we let x denote the observed inputs (e.g. a sequence of characters) and c denote a

class label, we can write these two different objectives as:

Lx|c := pθ(x | c) [generative criterion] (2.23)

Lc|x := pθ(c | x) [discriminative criterion] (2.24)

Note that the parameters θ are common to both objectives. Multi-conditional learn-

ing is an optimization criterion which trades-off the generative and discriminative

criterions [McCallum et al., 2006]. There are several interpretations of this objective.

One view of the objective is that it serves as a regularizer for a purely discriminative

criterion, alleviating overfitting when there is little data. Another view of the objec-

tive is to encourage parameters which not only explain the observed data, but also

explain different classes “with a margin” by analogy to margin classifiers [Suykens

34

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

and Vandewalle, 1999].

LMC := pθ(x | c)αpθ(c | x)β (2.25)

= αLx|c + βLc|x (2.26)

By changing the ratio α/β, the criterion gives more weight to either the generative

or discriminative objectives.

2.7.3 Experiments

We evaluate the effect of the joint architecture and the MCL criterion on aggregate

classification accuracy, using the same dataset as in §2.5 which has 12 classes. For

each model, we fix the architecture to a three-layer RNN with input embeddings and

recurrent cells of dimensionality 256. Each point in Figure 2.12 represents the best

result from a grid search over learning rates and random parameter initializations. We

also look at the predictions of models trained with the generative and MCL objectives

in Figure 2.13. Note that the MCL criterion appears to discourage overlap between

the classes, compared to the generative criterion.

35

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Figure 2.12: Aggregate classification accuracy for different amounts of supervised data,
with three different models: conditional log-likelihood (CLL) with joint (CLL-joint)
and independent (CLL-joint) parametrizations. Note that the x-axis represents the
total number of training sequences, which are evenly divided between classes.

36

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

Entity type LL MCL

film The Stand the Street The Ten Bung Bade
band The Shine Street Back Sours
church St. Mary’s Church∗ Church of St. Carnew
airport Shanger Airport Barre Airport
building St. John House∗ Conneyate House
high school San High School South Carrool High School
person Marit Balles Anterr Chares
road Marylon Route 20 Maryland Route 62∗

ship USS Mark∗ USS Senton
city Santa Mara Karango
railway station Santa Station Sanan Railway Station
mountain Mount Sungan Mount South

Figure 2.13: Predictions from RNN trained with different criterions: log-likelihood (left)
and multi-conditional (right). Note that for the generative criterion, the predictions
show some repeated patterns in different classes. The MCL criterion appears to
encourage more differentiated classes. Predictions which correspond exactly to an
entry in the knowledge base a marked with an asterisk (*).

2.8 Summary

In this chapter, we have proposed different approaches to character-level modeling

of entity names. We have shown experimentally that neural networks—in particular

stacked recurrent LSTMs—outperform state-of-the-art Bayesian non-parametric n-

gram alternatives for purposes of classifying name strings into one of several possible

types via Bayes’ rule. We proposed a joint model in which the class label is an

input, and all RNN parameters are shared between classes. This joint model has

fewer parameters and outperforms a model with separate parameters for each class.

We additionally proposed using the MCL criterion for training directly to optimize

the classification objective, and show that it leads to improved performance over log-

likelihood training. We looked at incorporating entity attributes into the name models,

37

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

and we presented qualitative results showing sensitivity to attributes such as gender

and nationality.

2.9 Related Work

The problem of classifying sequences into one of several classes occurs in many

applications. The methods we explore here—character-level sequence models—are not

specific to names and could be applied to these other problems. For instance, language

identification involves classifying the language of a document or shorter text [Torres-

Carrasquillo et al., 2002, Lui and Baldwin, 2012]. Simple generative models, such as

naive Bayes, are commonly used for this purpose [Lewis, 1998]. In the speech commu-

nity, there has recently been some work using recurrent neural networks in order to do

language identification [Gonzalez-Dominguez et al., 2014], and their approach bears

some similarity to our RNN model for names. In document classification, a document

must be labeled with a corresponding class label (e.g. sports). Both simple genera-

tive methods like naive Bayes as well as hierarchical Bayesian topic models have been

explored [Blei et al., 2003, Rennie and Rifkin, 2001, Ramage et al., 2009] Discrimina-

tive methods have also been applied to these problems, notably string kernels, which

consider features based on all subsequences up to a given length [Lodhi et al., 2002,

Manevitz and Yousef, 2002, Rennie and Rifkin, 2001]. Sentiment classification may

also be viewed as an instance of sequence labeling [Tang et al., 2015]. For sentiment,

38

CHAPTER 2. PREDICTING SEQUENCE ATTRIBUTES USING RECURRENT
NEURAL NETWORKS

more structured approaches using syntactic information have also been applied suc-

cessfully [Nakagawa et al., 2010], though these rely on additional supervision. To our

knowledge, we are the first to apply generative neural sequence models to the problem

modeling entity name gazetteers. In the context of named entity recognition (§3) there

is prior work on modeling name structure in generative models [Charniak, 2001, Elsner

et al., 2009, Bhattacharya and Getoor], though these focus on the unsupervised setting

and use less expressive count-based features, instead of RNNs as we do.

39

Chapter 3

Hidden Non-Markov Models

3.1 Chapter Overview

Lexical resources such as dictionaries and gazetteers of places and lists of names

have proven valuable resources in NLP [Kazama and Torisawa, 2007, Kozareva, 2006,

Toral and Munoz, 2006]. Such resources are typically used either as constraints or as a

source of features for discriminative systems, which are different ways of conditioning

on the lexical information.

In discriminative models, novel types may be handled via spelling features (e.g.

character n-grams) and features which consider the context (e.g. surrounding words).

Such features generalize from the observed training data and lexical resources. However,

perhaps surprisingly, incorporating large gazetteers can sometimes hurt performance

because of weight under-training. This is a type of over-fitting in which lexical features

40

CHAPTER 3. HIDDEN NON-MARKOV MODELS

are given excessive weight compared to these other features [Sutton et al., 2006, Smith

and Osborne, 2006]. Thus, more data may result in lower performance—a pathological

problem for a machine learning method.

Given the importance of lexical resources, it would be desirable to design a machine

learning method which is able to incorporate these resources in a more robust manner.

We note that generative modeling provides a principled solution: we construct a model

that generates both type-level and token-level data. That is, we stipulate a generative

process in which both lexical resources (type information) and traditional annotated

resources (tokens in context) are produced by the same model (§3.2.2).

We propose a generative model in which the observed characters originate from

a latent non-Markov process over words, and where the characters are themselves

produced via a non-Markov process: a recurrent neural network. We will make use of

the generative sequence models discussed in §2 for this purpose. In order to perform

inference in this model, we propose a sampler in which sequential Monte Carlo (SMC)

is used as a transition kernel for a Gibbs sampler. Since SMC is amenable to an

efficient parallel implementation, our sampler is both computationally efficient and

allows for high-dimensional moves.

We apply the proposed model to two problems:

• In §3.4, we show that the proposed model and associated inference method

is effective at multi-lingual POS induction with dictionaries, outperforming a

baseline generative method with manually-designed features.

41

CHAPTER 3. HIDDEN NON-MARKOV MODELS

• In §3.7, we show that our generative model is immune to the type of over-

fitting exhibited by discriminative models, while performing with comparable

performance despite not using any manually-designed input features.

3.2 Hidden Non-Markov Models

To begin, we make some modest simplifying assumptions regarding the underlying

text. The first assumption is that sentences are independent and identically distributed

(iid). This means that we do not directly model any document or cross-document effects

such as topic or coreference. We also assume that both the vocabulary and the set

of entity types are closed and finite. This means that we fix the number of target

entity types and the size of the vocabulary at training time, and neither increases at

test time (even though novel types and classes may be encountered). As in a hidden

Markov model (HMM), our model is factored into two parts: a transition model pφ

and an emission model pθ. We explore different parameterizations of these two factors,

which are all based on the sequence models we explored in the previous chapter (§2).

So, we observe a corpus of iid sentences, each of which consists of a sequence of

characters x. We suppose that these characters originate from a sequence of latent

states yt for t = 1, 2, A state may produce multiple words, such as a named-entity

phrase, or only a single word, such as a part-of-speech. The latent state sequence is

converted into the observed characters as follows. The first state y1 is chosen from an

42

CHAPTER 3. HIDDEN NON-MARKOV MODELS

initial distribution pφ(y | bos), where bos is a distinguished beginning-of-sentence

state, which is always observed (i.e. we assume a known segmentation of the input

documents into sentences). Conditioned on the initial state y1, a sequence of characters

x1 is emitted from a distribution specific to y1 until a distinguished stop character #

is emitted. Then the next term y2 is chosen conditioned on all previous terms, but

independently of the symbols emitted from y1:

y2 ∼ pφ(· | bos, y1) (3.1)

Just as for y1, a sequence of characters x2 is emitted from a y1-specific distribution

pθ(x |):

x2 ∼ pθ(· | y2) (3.2)

where x2 is again #-terminated. This process continues until the distinguished end-of-

sequence state is picked, yi+1 = eos. For generality, we assume the eos state is—like

all other states—associated with a distribution over characters. This distribution

may emit characters such punctuation or other delimeters such as HTML tags. When

sentence boundaries are given, this distribution is not important. If sentence boundaries

are unknown, they may be identified by imputing the eos term via marginal inference.

It remains to specify the form of the emission model pφ and the transition model

pθ. To begin, we use the sequence memoizer (SM), a hierarchical Bayesian language

43

CHAPTER 3. HIDDEN NON-MARKOV MODELS

model [Wood et al., 2009] which was previously introduced in §2. It is appealing for

several reasons, which include fast estimation, a closed-form predictive distribution,

and minimal assumptions about the underlying sequence. Notably, the SM makes no

fixed Markov-order assumptions, which allows it to capture long-range dependencies.

In §3.6, we explore a hybrid model that uses a recurrent neural network parametrization

for the emission model, as well as a parametrization of both the context and emission

models using RNNs.

3.2.1 Context model

We parametrize the transition distribution using a sequence memoizer (SM), a

type of sequence model which was previously introduced in §2.4.1. Here, we use it

to model sequences of words (including distinguished named-entity types), which in

general are latent.

Let y1:t denote a sequence of states drawn from a finite alphabet Y (which in-

cludes a distinguished stop state eos). The SM assigns a probability to a sequence

(y1, y2, . . . , yT , eos) via

p(y1:T) =
T∏
t=1

[p(yt | y1:t−1)] p(eos | y1:T) (3.3)

=
T∏
t=1

[
Gy1:t−1(yt)

]
Gy1:T (eos) (3.4)

where Gu(x) denotes the conditional probability of symbol y occurring in context

44

CHAPTER 3. HIDDEN NON-MARKOV MODELS

u ∈ Y∗. The distribution Gu is a PYP where

Gε ∼ PYP(dε, αε, H0) (3.5)

Gu ∼ PYP(d|u|, α|u|, Gσ(u)) (3.6)

Here, ε is the empty sequence, H0 is a distribution over Y, and σ(u) drops the first

symbol from u. We take H0 to be uniform over a finite set Y .

3.2.2 Emission model

Each latent state y ∈ Y indexes a conditional emission distribution p(x | y), where

x are #-terminated strings. We define a Pitman-Yor process (cf. §2.3.1) over the

set of strings X∗, i.e. where the dish served at each table is a string (a sequence of

characters, e.g. a word or phrase). Our construction here is similar to Mochihashi et al.

[2009]: we use a nested Bayesian model where the base distribution of the top-level

PYP adaptor is a distribution over the infinite set of character sequences; that is:

p(x | y) = PYP(αy, dy, H(x | θ)) (3.7)

where H(x | θ) is a character sequence model (cf. §2.4) with parameters θ.

As previously discussed, we are interested in incorporating type-level supervision.

This is an unusual form of supervision since it consists of strings out of context.

45

CHAPTER 3. HIDDEN NON-MARKOV MODELS

However, the advantage of our decomposition into separate emission and transition

models is that we may treat the lexicon as independently observed by the emission

model.

We suppose that the lexicon consists of a finite number of states, where a state

y corresponds to a part-of-speech or a named-entity type. Each state is associated

with a restaurant, in which the tables are labeled with string types drawn from the

corresponding base distribution H(x | θy). (For completeness, suppose the parameters

θy are drawn from some Gaussian distribution.)

Due to the exchangeability of the CRP, we may treat the lexicon types as the

first customers to the p(x | y) restaurants for each y. As a result, each type-level

observation creates a new table whose dish is the string corresponding to the lexicon

entry. Any future string tokens will then be able to sit at the same table without

having to pay the cost of generating the string spelling anew.

The type-level information is helpful in two ways:

1. It provides initial training data for the character sequence models H(x | θy)

serving as base distributions for the emission models.

2. Unlikely strings under H(x | θy), but which appear in the lexicon, will be able

to “cheaply” accept new customers thanks to the PYP adaptor.

We note that our approach here is similar to the host construction due originally

to Dreyer and Eisner [2011a], in which the type-level supervision consists of known

46

CHAPTER 3. HIDDEN NON-MARKOV MODELS

morphological paradigms, which come labeled with particular lexemes. Each lexeme

is assigned a reserved table, and these reserved tables have “hosts” which constrain

strings to the paradigm.

3.3 Inference via Particle Gibbs

In a completely unsupervised setting, we observe iid character sequences, and must

infer a distribution over latent state sequences compatible with the observations. We

are interested in the posterior distribution over assignments to the hidden states

{y}Ni=1 for each sentence i = 1, . . . , N , marginalizing over other nuisance variables.

Exact inference is intractable since the probability of transitioning from one latent

state to the next is a function of all previous states. As a result, there is no benefit

from dynamic programming over a brute force enumeration, and so the cost of exact

inference increases exponentially with sequence length.

We therefore resort to approximate inference. Markov chain Monte Carlo (MCMC)

methods are attractive since, with the proper choice of Markov chain kernel, they

provide unbiased estimates of the target posterior [Gilks, 2005]. The accuracy of the

method is adaptive in the sense that it may always be improved by taking more

samples (i.e., running the sampler for longer). However, MCMC methods suffer from

two practical issues:

• Many transition kernels result in slow mixing. For example, a simple kernel

47

CHAPTER 3. HIDDEN NON-MARKOV MODELS

for sequential state models like HMMs is a Gibbs sampler which resamples

individual states, leaving all other states fixed. This approach, unfortunately,

suffers from severely slow mixing in practice, since successive states are usually

correlated [Goldwater and Griffiths, 2007, Gael et al., 2008].

• It is often difficult to parallelize MCMC methods since they are sequential

by design. The aforementioned single-state Gibbs sampler requires processing

each state in turn (conditioned on all others), which leaves no opportunity for

resampling states in parallel.

Thus, we would like an MCMC kernel which is both (1) fast mixing and (2) compu-

tationally efficient. Our proposed solution is to use sequential Monte Carlo (SMC)

as the transition kernel in an MCMC chain. We begin by describing the basic SMC

approach [Doucet and Johansen, 2009].

SMC makes uses of an importance distribution (henceforth proposal), q(y | x),

which decomposes as follows:

q1(y1 | x)
∏
t=1

qt(yt | x,y1:t−1) (3.8)

To sample from qt: first, sample an initial state y1 from q1, then proceed incrementally,

sampling yt from qt for t = 2, . . . , T . This decomposition is important as it allows

a high-dimensional sample to be constructed from a sequence of low-dimensional

samples, which are (1) typically easier to construct and (2) more computationally

48

CHAPTER 3. HIDDEN NON-MARKOV MODELS

efficient.

Each sample constructed in this way is called a particle, and the SMC procedure

consists of generating a system of M weighted particles. The importance weight for

each particle m is computed incrementally:

w
(m)
t := w

(m)
t−1

p(x
(m)
1:t ,y1:t)

p(x
(m)
t−1,yt−1)q(y

(m)
t | . . .)

(3.9)

Note that the numerator corresponds to the unnormalized target density p(y1:t | x1:t).

As M →∞, SMC provides a consistent estimate of the partition function Z via:

Ẑ =
1

M

M∑
m=1

w(m) (3.10)

and samples from the weighted particle system are distributed as samples from the

target posterior distribution [Doucet and Johansen, 2009].

Particle Gibbs. Note that SMC provides a biased estimate of the posterior. However,

we may employ SMC as a kernel in a Markov chain Monte Carlo sampler (MCMC) [An-

drieu et al., 2010]. In particular, we use a block Gibbs sampler in which we iteratively

resample the hidden states of a sentence i conditioned on the assignments of all other

latent variables (conditional SMC). For this sampler to be ergodic, we must fix one

particle to be equal to the previous assignment of latent states before resampling; thus

M ≥ 2 is required. The resulting Gibbs sampler may be understood as a “collapsed”

(or marginal) Gibbs sampler (Liu [1994]), where the augmented state variables (the

49

CHAPTER 3. HIDDEN NON-MARKOV MODELS

particles) are integrated out conditioned on other variables. A potential issue with this

sampler is that a particularly good state sequence is chosen and is then hard to move

from, resulting in poor mixing. We have not observed this issue in our experiments, in

part because in our discrete setting and short sequence lengths, particle degeneracy

is not as severe. However, it is worth noting that some recent work has gone into

avoiding this issue in more general settings [Lindsten et al., 2012].

Proposal distribution. The choice of proposal distribution is crucial to the per-

formance of sequential Monte Carlo methods. It is common to use the transition

probability p(y′ | y1:t−1) as the proposal, because it is usually available in closed form.

The optimal proposal distribution is the one which minimizes the variance of the

importance weights, and is given by:

qt(y
(m)
t) := p(yt | x(m)

1:t−1,y1:t)

=
p(yt | x(m)

1:t−1)p(yt | xt)
p(yt | x(m)

1:t−1)
(3.11)

where p(y′ | y1:t−1) is defined in §3.2.1 and p(y | x′) is given in §3.2.2. Substituting

this expression in Equation 3.9 and simplifying yields the following incremental weight

update:

w
(m)
t := w

(m)
t−1

∑
x′∈X

p(x′ | x(m)
1:t−1)p(y | x′)

50

CHAPTER 3. HIDDEN NON-MARKOV MODELS

Particles are propagated by sampling yt with probability proportional to Equation 3.11.

Resampling. In filtering applications, it is common to use resampling operations

to prevent weight degeneracy. We do not find resampling necessary here for three

reasons. First, we treat sentences as independent, so we resample hidden state se-

quences that are only as long as the number of words in a given sentence. Second,

we use a proposal which minimizes the variance of the weights (in particular, we use

an “optimal” proposal which incorporates the current observation). Finally, we use

SMC as a kernel embedded in an MCMC sampler, and therefore the sampler will

revisit the same block of variables repeatedly (conditioned on the previous particle

assignment). Asymptotically, this procedure yields the desired posterior regardless of

degeneracy, which for particle Gibbs only affects mixing time. Practically speaking,

one can diagnose the need for resampling via the effective sample size (ESS) of the

particle system, which is heuristically for defined for M particles as

ESS =
1∑M

m=1 w
2
m

(3.12)

where wm is the normalized importance weight for particle m. An ESS of 1 corresponds

to a fully degenerate particle system, in which all weight is placed on a single particle.

In our experiments, we find that ESS remains at a substatial fraction of M , even for

longer sentences.

51

CHAPTER 3. HIDDEN NON-MARKOV MODELS

3.4 Part-of-Speech Induction

We report experiments on part-of-speech induction using a dictionary as type-level

supervision. Note that the same word might occur in the dictionary more than once

but with different parts-of-speech. We follow the experimental procedure described

in Li et al. [2012]. Their model is a second-order maximum entropy Markov model

parametrized with log-linear linear features (shmm-me). This model uses hand-

crafted features designed to distinguish between different parts-of-speech, and special

handling for rare words. In contrast, our model uses no hand-crafted features.

We evaluate our model on multi-lingual data released as part of the CoNLL 2007

and CoNLL X shared tasks. In particular, we use the same set of language as Li et al.

[2012], with the exception of Dutch. (Unlike other CoNLL languages, the Dutch data

includes phrases and the procedure by which these were split into tokens was not fully

documented.) Concretely, we ran particle Gibbs for 100 training epochs, where one

epoch consists of resampling the states for a each sentence in the corpus. We note

that in practice, the model appears to mix rapidly and for some languages as little

as 10 iterations may be required for the state of the sampler to correspond to a good

solution. Also note that no ad hoc mapping between the inferred parts-of-speech and

the true parts-of-speech is necessary, since the dictionary provides both methods with

an initialization.

Discussion. Overall, our proposed model tends to outperform the baseline approach

of Li et al. [2012] on most of the tested languages. This is an encouraging result, since

52

CHAPTER 3. HIDDEN NON-MARKOV MODELS

Model Danish German Greek English Italian Portuguese Spanish Swedish

Wiktionary
shmm-me 83.3 85.8 79.2 87.1 86.5 84.5 86.4 86.1
proposed 83.7 90.7 81.7 84.0 86.7 85.5 87.6 86.8

Supervised
shmm-me 93.9 97.4 95.1 95.8 93.8 95.5 93.8 95.5
proposed 95.2 97.4 97.4 95.2 94.5 96.0 95.6 92.2

Table 3.1: Part-of-speech induction results in multiple languages.

our proposed model lacks the inductive bias from the manually designed features of

the baseline model. Our model also converges quickly to an accurate solution, which

was obtained by freezing the state of the sampler after a fixed number of iterations

(in this case, we ran our Gibbs sampler for 50 epochs). Wiktionary contains entries

with many ambiguous tags, with no special marking for the most frequent usage. This

was a source of errors for both methods, but particularly so the baseline, which treats

tags in Wiktionary as hard constraints rather than simply observations under our

generative model.

3.5 Latent Segmentations

The inference procedure described in §3.3 may be generalized for the case where

there is an unknown segmentation of the input. This problem arises in named-entity

recognition, where the named-entities may span multiple words. We make the simpli-

fying assumption that segment boundaries only occur at word boundaries; in other

words, all characters within a word are assumed to have the same named-entity type.

The sampler proceeds as follows. For each latent state y, we consider two spe-

53

CHAPTER 3. HIDDEN NON-MARKOV MODELS

cializations: (1) I-y corresponds to a partially complete chunk spanning at least one

more word, and (2) E-y corresponds to the final word in a chunk. For instance, I-per

E-per is equivalent to labeling the entire name “Barack Obama” with the entity

type per. As a special case, the other category is always associated with E, which

encodes the assumption that context phrases never span more than one word. This is

property of the annotated data—of course, there are multi-word context phrases in

natural language. They just happen to be annotated as a sequence of other words

in our dataset.

Within a chunk, the previous state yt−1 is always I-y by construction. Let s denote

the position in the sentence at which the segment began, so ys:t denotes the word

sequence associated with the chunk. At position t there are two possible actions

associated with yt: (1) either extend the segment to include the word at time t + 1

and continue (I-y), or (2) extend the segment to include the word at time t+ 1 and

stop (E-y).

To associate probabilities with these actions, we define the following useful quan-

tities. Let xs:t denote the span of characters starting at the beginning of word s, and

ending at the end of word t. Let pprefix(xs:t | y) denote the total probability under

the PYP emission model for y of emitting the prefix xs:t followed by the space sym-

bol. Similarly, define phalt(xs:t | y) as the probability of emitting the prefix xs:t and

54

CHAPTER 3. HIDDEN NON-MARKOV MODELS

stopping, i.e. emitting the # symbol.

qt(y) ∝

pprefix(xs:t | I-y), y = I-y

phalt(xs:t | I-y), y = E-y

(3.13)

Between states, one may transition to any other state I-y or E-y. In our experiments,

we take the possible transitions to be I-{per,org,loc}, E-{per,org,loc}, and

E-O for context words. The proposal probabilities for each of these states are given

by:

qt(y) ∝

p(y | y(m)

1:t−1)pprefix(xt:t | y), y = I-y

p(y | y(m)
t:t−1)phalt(xt:t | y), y = E-y

(3.14)

Between segments, the incremental importance weight is updated as in Equation 3.11.

This concludes the description of the sampler for labeled segmentations, which gener-

alizes the sampler used for POS induction. Note that the model itself has not changed,

only the inference procedure.

3.6 A Memoized Neural Model

In §3.2, we proposed a hidden non-Markov sequence model. The model is non-

Markov since the probability of a state depends on all previous states. The SM was

55

CHAPTER 3. HIDDEN NON-MARKOV MODELS

used for both the transition and emission distributions. As described in §2 (and exper-

imentally validated), neural sequence models are more expressive than count-based

models such as sequence memoizers. It would therefore be desirable to incorporate

recurrent neural networks in both the transition and emission components of the

model.

We experimented with a version of the model in which both the transition and

emission factors are parametrized using stacked LSTMs. To be precise, we replace the

base distribution of the emission model—a distribution over character sequences X ∗—

with a neural sequence model (replacing the SM used for POS induction). We also

re-parametrized the transition model with an LSTM over latent state sequences, which

includes all context words in the vocabulary as well as distinguished named-entity

types (per, org, misc, loc).

Unfortunately, these substitutions result in over-fitting on the CoNLL data. The

over-fitting manifests during inference where the context model becomes over-confident

in certain types occurring in certain contexts, overwhelming evidence from the emission

model (the name model). For instance, the CoNLL training data contains repeated

sentences such as

PSV Eindhoven 3 3 0 0 11 3 9

where PSV Eindhoven is an organization. Thus, the org “word” will occur dispropor-

tionately at the beginning of sentences. This over-fitting leads to poor exploration of

the posterior with SMC, and therefore incorrect segmentations on test data (and lower

56

CHAPTER 3. HIDDEN NON-MARKOV MODELS

F1 scores). We experimented with several post-hoc methods to improve performance:

• Regularization. To alleviate overfitting, we experimented with high dropout

at every layer of the RNN. This yields improvements in F1 on the order of 1–2%

on development data, compared to a baseline with no regularization. We also

experimented with adding Gaussian noise to the estimated gradient, but this

gave no benefit over dropout regularization.

• Annealing the proposal distribution. A significant improvement in F1 is

possible by annealing the context factor in the proposal distribution of the

SMC sampler. This effectively “flattens” the context factor, alleviating the over-

confidence that is symptomatic of overfitting. On English CoNLL validation

data, this improved the results from 76% to 80% F1.

• Initialization of the word embedding. A larger unlabeled corpus may be

used to obtain initial word embeddings; however, an issue with this approach in

the context of our model is that it contains latent-variables: the distinguished

named-entity types. Nonetheless, for context words we may use pre-trained

embeddings. To investigate the effect of these initializations, we employed pre-

trained word-embeddings estimated via Hellinger PCA on English Wikipedia,

Reuters, and WSJ [Lebret and Collobert, 2014]. We experimented with three

different embedding sizes: 50, 100, and 200 dimensions. We also experiment

with two strategies: (a) fixing the context word embeddings to the pre-trained

57

CHAPTER 3. HIDDEN NON-MARKOV MODELS

vectors, and (b) using the pre-trained vectors as initializations for the context

words. The best combination was with the largest embeddings (200) and using

the embeddings as an initialization, which together yield an improvement of

approximately 1.9% on English CoNLL validation. In contrast, fixing the context

word embeddings to the pre-trained vectors resulted in lower performance.

The combination of these techniques results in substantial improvements over a

straightforward RNN parametrization. However, overall performance remains lower

than a baseline which uses a sequence memoizer (SM) for the transition model over

words and entity types, and a neural name model for the base distribution of the

emission distribution. Therefore, for the experiments presented in §3.7, we use this

hybrid model.

3.7 NER with the Memoizer-Neural Model

We simplify the inference problem as follows. We assume that we observe context

word lemmas such as the via a deterministic transformation of the observed string.

That is, each of “The” and “the” are case-normalized to the, and we take this to be

an observation of a context type. In the generative story, we then emit the observed

spelling of the in the same manner as for named-entities. However, we will tie the

58

CHAPTER 3. HIDDEN NON-MARKOV MODELS

parameters of the context emission distribution, so that

p((t, h, e,#) | the) = p((t, h, e,#) | said) (3.15)

where {the, said} ∈ Y, i.e. index particular latent states. So there are emission

distributions for each named-entity type, plus a distinguished emission distribution

for context words.

Effectively, we are fixing an assignment of latent-variables to simplify the inference

problem. Note however that since we observe a finite vocabulary at train time, we

must account for novel types at test time. To do so, we assume a distinguished oov

state which is responsible for all non-entity context words that were not observed at

training time. We suppose that all singleton terms are deterministically mapped to

oov at training time, and so the strings associated with oov will tend to come from

a diverse set of rare terms.

We form gazetteers by selecting words and named-entity spans at random, sepa-

rately from the training set and development sets. In this way, we control the expected

gazetteer coverage at train and test time. Note however that no special effort was made

to prevent overlap between the train and test gazetteer sets; thus, a test gazetteer

type may appear in the training set. In Figure 3.3 and Figure 3.6, the axes show the

proportion of types selected at random from train and test sets.

We show results for our generative model and a canonical discriminative approach:

59

CHAPTER 3. HIDDEN NON-MARKOV MODELS

Feature Description

word form word identity
class entity type
char 6-grams char n-grams up to length 6
previous word previous words
word class pair word and entity type
disjunctive combinations
type sequences sequences of labels
word shape encoding of the word shape

Table 3.2: Log-linear features used in the CRF baseline.

a conditional random field (CRF) [Wang et al., 2013]. The CRF baselines uses the

feature templates shown in Table 3.2, with the addition of gazetteer features. We

report the F1 performance measure, which is standard in NER [Nadeau and Sekine,

2007].

Discussion. The heat maps in Figures 3.6 and 3.3 show test performance for both

the proposed generative approach as well as the baseline discriminative method. The

diagonal of the heat maps correspond to a typical “in-domain” setting, in which

gazetteer coverage is the same at train time and test time. The performance for the

two methods is comparable in this setting, which is encouraging for the proposed

approach as it relies on less manual feature-engineering. However, we see that for a

given level of test set gazetteer coverage, the performance of disriminative method

tends to decrease as train coverage increases, a result of overfitting the gazetteer

features. In contrast, our proposed method is immune from this effect, simply treating

the type-level lexical information as additional observations of the generative process.

60

CHAPTER 3. HIDDEN NON-MARKOV MODELS

Figure 3.1: German: Discriminative model F1.

Figure 3.2: German: Generative model F1.

Figure 3.3: German CoNLL 2003.

61

CHAPTER 3. HIDDEN NON-MARKOV MODELS

Figure 3.4: English: Discriminative model F1.

Figure 3.5: English: Generative model F1.

Figure 3.6: English CoNLL 2003.

62

CHAPTER 3. HIDDEN NON-MARKOV MODELS

3.8 Related Work

Unsupervised part-of-speech tagging is typically addressed using generative mod-

els [Christodoulopoulos et al., 2010]. Unfortunately, these models often make unreal-

istic assumptions about the data, and do not incorporate rich features. For instance,

Goldwater and Griffiths [2007] use a count-based Bayesian non-parametric model,

which makes fixed-order Markov assumptions. A similar Bayesian nonparametric ap-

proach but with milder modeling assumptions is Dubbin and Blunsom [2012], which

also uses sequential Monte Carlo for inference.

The most successful approaches have used additional forms of supervision, and so

effectively become semi supervised methods for POS induction. For instance, bilingual

constraints have been used to guide inference [Das and Petrov, 2011]. Most related

to our approach is Li et al. [2012], which uses dictionaries to constrain the possible

parts-of-speech for lexical items contained in the dictionary. In constrast, we will treat

the dictionary as observations under an assumed generative process. There have also

been attempts at using minimal amounts of annotated data [Garrette and Baldridge,

2013].

Conditional random field (CRF) autoencoders are one approach at adapting dis-

criminative training methods to unsupervised learning settings [Ammar et al., 2014].

Manually-designed features are used to provide an inductive bias in a procedure that

alternates between predicting latent structure given observations, and observations

given the latent structure.

63

CHAPTER 3. HIDDEN NON-MARKOV MODELS

Regarding named-entity recognition, most approaches considered state-of-the-art

have been discriminative—that is, they model the target labeled segmentation condi-

tioned on the input [Tjong Kim Sang and De Meulder, 2003]. An early approach based

a hidden Markov model is Zhou and Su [2002]. More recently, Elsner et al. [2009]

propose a structured word-level model for entity names. In constrast, we propose a

character-level model which makes no assumptions concerning name structure, and is

therefore applicable across different entity types and languages without modification.

Our inclination to directly model the data with minimal assumptions encoded in

the model is related to the “from scratch” neural network approach of Collobert et al.

[2011]. However, their approach relies on full supervision, and uses a heuristic approach

for decoding, while we propose a principled joint model and associated probabilistic

inference methods. This enables re-estimation of the model on unlabeled data, as well

as the incorporation of lexical resources without concerns of over-fitting.

64

Chapter 4

Learning String-to-String

Transducers via Phylogenetic

Inference

4.1 Introduction

We have thus far considered strings in isolation. In this chapter, we propose a

generative model in which some strings are not generated ab initio, but rather via

transformative linguistic processes such as abbreviation, morphological derivation,

historical sound or spelling change, loanword formation, translation, transliteration,

editing, or transcription error. We propose learning from an unorganized collection of

strings rather than from pairs of strings known to be in some relation.

65

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Systematic relationships between pairs of strings are at the core of problems

such as transliteration [Knight and Graehl, 1998], morphology [Dreyer and Eisner,

2011b], cross-document coreference resolution [Bagga and Baldwin, 1998b], canoni-

calization [Culotta et al., 2007], and paraphrasing [Barzilay and Lee, 2003]. Stochastic

transducers such as probabilistic finite-state transducers are often used to capture

such relationships. They model a conditional distribution p(y | x), and are ordinarily

trained on input-output pairs of strings [Dreyer et al., 2008b].

The difficulty is that most or all of these parent-child relationships are unobserved.

We must reconstruct this evolutionary phylogeny. At the same time, we must fit the

parameters of a model of the relevant linguistic process p(y | x), which says what

sort of children y might plausibly be derived from parent x. Learning this model of

p(y | x) helps us organize the training collection by reconstructing its phylogeny, and

also permits us to generalize to new forms.

Conceptually, the model described in this chapter may be viewed as an extension

to the generative story for name spellings (§2) and for named-entity recognition (§3).

In particular, it stipulates that the spelling of a given named-entity mention may

optionally depend on the spelling of a previously observed name of an entity of the

same type. However, in order to compare with prior work, we evaluate the contributions

in this chapter in isolation. Specifically, we assume that named-entities and their types

are observed, e.g. by using a sample from our model in §3.

66

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Figure 4.1: A portion of a spanning tree found by our model.

4.2 Name Phylogeny

We will focus on the problem of name variation. We observe a collection of person

names—full names, nicknames, abbreviated or misspelled names, etc. Some of these

names can refer to the same person; we hope to detect this. It would be an unlikely

coincidence if two mentions of John Jacob Jingleheimer Schmidt referred to different

people, since this is a long and unusual name. Similarly, John Jacob Jingelhimer Smith

and Dr. J. J. Jingleheimer may also be related names for this person. That is, these

names may be derived from one another, via unseen relationships, although we cannot

be sure.

We propose a generative process that makes explicit assumptions about how strings

are copied with possible mutation (edits). It is assumed to have generated all the names

in the collection, in an unknown order. Given learned parameters, we can ask the

model whether a name Dr. J. J. Jingelheimer in the collection is more likely to have

been generated from scratch, or derived from some previous name in the collection.

A fragment of a phylogeny for person names is shown in Figure 4.1. Our procedure

67

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

learned this automatically from a collection of name tokens, without observing any

input/output pairs. The nodes of the phylogeny are the observed name types, each

one associated with a count of observed tokens.

Each arrow corresponds to a hypothesized mutation. These mutations reflect lin-

guistic processes such as misspelling, initialism, nicknaming, transliteration, etc. As

an exception, however, each arrow from the distinguished root node ♦ generates an

initial name for a new entity. The descendants of this initial name are other names

that subsequently evolved for that entity. Thus, the child subtrees of ♦ give a partition

of the name types into entities.

Thanks to the phylogeny, the seemingly disparate names Ghareeb Nawaz and Muin-

uddin Chishti are seen to refer to the same entity. They may be traced back to their

common ancestor Khawaja Gharibnawaz Muinuddin Hasan Chisty, from which both were

derived via successive mutations.

Not shown in Figure 4.1 is our learned family p of conditional probability distri-

butions, which models the likely mutations in this corpus. Via the EM algorithm,

we estimate p jointly with the phylogeny [A. P. Dempster, 1977]. This procedure

alternates between improving p and estimating the distribution over phylogenies. At

the end, we extract the single best phylogeny (the “viterbi” spanning tree).

Together, the learned p and the phylogeny in Figure 4.1 form an explanation of the

observed collection of names. What makes it more probable than other explanations?

Informally, two properties:

68

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

• Each node in the tree is plausibly derived from its parent. More precisely, the

product of the edge probabilities under p is comparatively high. A different p

would have reduced the probability of the events in this phylogeny. A different

phylogeny would have involved a more improbable collection of events, such as

replacing Chishti with Pynchon, or generating many unrelated copies of Pynchon

directly from ♦.

• In the phylogeny, the parent names tend to be used often enough that it is

plausible for variants of these names to have emerged. Our model says that

new tokens are derived from previously generated tokens. Thus—other things

equal—Barack Obama is more plausibly a variant of Barack Obama, Jr. than of

Barack Obama, Sr. (which has fewer tokens).

The above is merely an informal description of how statistical inference will behave

under our model of the data. We now state the model more precisely.

4.2.1 Generative Story: Simple Version

Our model should reflect the reasons that name variation exists. A named entity

has the form y = (e, w) where w is a string being used to refer to entity e. A single

entity e may be referred to on different occasions by different name strings w. We

suppose that this is the result of copying the entity with occasional mutation of its

name (by analogy to asexual reproduction).

69

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Thus, we assume the following simple generative process that produces an ordered

sequence of tokens y1, y2, . . ., where yi = (ei, wi). We proposed an expanded generative

process in §4.6.1, which also incorporates various contextual features of the entity

names.

• After the first k tokens y1, . . . yk have been generated, the author responsible

for generating yk+1 must choose whom to talk about next. She is likely to think

of someone she has heard about often in the past. So to make this choice, she

selects one of the previous tokens yi uniformly at random, each having probability

1/(k + α); or else she selects ♦, with probability α/(k + α).

• If the author selected a previous token yi, then with probability 1−µ she copies

it faithfully, so yk+1 = yi. But with probability µ, she instead draws a mutated

token yk+1 = (ek+1, wk+1) from the mutation model p(· | yi), described in §4.3.

This preserves the entity (ek+1 = ei with probability 1), but the new name

wk+1 is a stochastic transduction of wi drawn from p(· | wi). Straightforward

extensions are to allow a variable mutation rate µ(yi) that depends on properties

of yi, and to allow wk+1 to depend on known properties of ei. For example, in

referring to ei, the author may shorten and respell wi = Khwaja Gharib Nawaz

into wk+1 = Ghareeb Nawaz (Figure 4.1).

• If the author selected ♦, she must choose a fresh entity yk+1 = (ek+1, wk+1) to

talk about. So she sets ek+1 to a newly created entity, sampling its name wk+1

70

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

from the distribution p(· | ♦). For example, wk+1 = Thomas Ruggles Pynchon, Jr.

(Figure 4.1). Nothing prevents wk+1 from being a name that is already in use

for another entity (i.e., wk+1 may equal wj for some j ≤ k).

4.2.2 Relationship to other models

If we ignore the name strings, we can see that the sequence of entities e1, e2, . . . eN

is being generated from a Chinese restaurant process (CRP) with concentration pa-

rameter α [Aldous, 1985]. To the extent that α is low (so that � is rarely used), a few

randomly chosen entities will dominate the corpus. The CRP is equivalent to sampling

e1, e2, . . . IID from an unknown distribution that was itself drawn from a Dirichlet

process with concentration α. This is indeed a standard model of a distribution over

entities. For example, Hall et al. [2008] use it to model venues in bibliographic entries.

From this characterization of the CRP, one can see that any permutation of this entity

sequence would have the same probability. That is, our distribution over sequences of

entities e is exchangeable.

However, our distribution over sequences of named entities y = (e, w) is non-

exchangeable. It assigns different probabilities to different orderings of the same tokens.

This is because our model posits that later authors are influenced by earlier authors,

copying entity names from them with mutation. So ordering is important. The muta-

tion process is not symmetric—for example, Figure 4.1 reflects a tendency to shorten

rather than lengthen names.

71

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Non-exchangeability is one way that our present model differs from (paramet-

ric) transformation models [Eisner, 2002] and (non-parametric) transformation pro-

cesses [Andrews and Eisner, 2011]. These too are defined using mutation of strings or

other types. From a transformation process, one can draw a distribution over types,

from which the tokens are then sampled IID. This results in an exchangeable sequence

of tokens, just as in the Dirichlet process.

We avoid transformation models here for three reasons.

1. Inference is more expensive.

2. A transformation process seems less realistic as a model of authorship. It con-

structs a distribution over derivational paths , similar to the paths in Figure 4.1.

It effectively says that each token is generated by recapitulating some previ-

ously used path from ♦, but with some chance of deviating at each step. For an

author to generate a name token this way, she would have to know the whole

derivational history of the previous name she was adapting. Our present model

instead allows an author simply to select a name she previously saw and copy

or mutate its surface form.

3. One should presumably prefer to explain a novel name y as a mutation of a

frequent name x, other things equal (§4.2). But surprisingly, inference under

the transformation process does not prefer this. The very fact that x has been

frequently observed demonstrates that it has often chosen to stop mutating. This

72

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

implies that it is likely to choose stop again rather than mutate into y.

4.3 A Mutation Model for Name Strings

Let x denote a mention with parent p = x.p. We assume that its name x.n is a

stochastic transduction of its parent’s name p.n [Ristad and Yianilos, 1998]. That is,

pθ(x.n | p.n) is given by the probability that applying a random sequence of edits to

the characters of p.n that yields x.n. The probabilities of different edits depend on

parameters θ, which will be re-estimated from unlabeled data (i.e. we do not assume

access to supervised pairs of input and output strings).

This process has four character-level edit operations: copy, substitute, insert, delete.

It also has a distinguished no-edit operation that behaves exactly like copy. At each

step, the process first randomly chooses whether to edit or no-edit, conditioned only on

whether the previous operation was an edit. If it chooses to edit, it chooses a random

edit type with some probability conditioned on the next input character. In the case

of insert or substitute, it then randomly chooses an output character, conditioned on

the type of edit and the next input character.

It is common to mutate a name by editing contiguous substrings (e.g., words).

Contiguous regions of copying versus editing can be modeled by a low probability

of transitioning between no-edit and edit regions. This somewhat resembles the tra-

ditional affine gap penalty in computational biology [Gusfield, 1997], which makes

73

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

deletions or insertions cheaper if they are consecutive. We instead make consecutive

edits cheaper regardless of the edit type. Note that an edit region may include some

copy edits (or substitute edits that replace a character with itself) without leaving the

edit region. This is why we distinguish copy from no-edit.

The probability of a single edit sequence, which corresponds to a monotonic

alignment of x.n to p.n, is a product of individual edit probabilities of the form

pθ((
a
b) | â), which is conditioned on the next input character â. The edit (ab) replaces

input a ∈ {ε, â} with output b ∈ {ε} ∪ Σ (where ε is the empty string and Σ is the

alphabet of language x.`). Insertions and deletions are the cases where respectively

a = ε or b = ε—we do not allow both at once. All other edits are substitutions. When

â is the special end-of-string symbol #, the only allowed edits are the insertion (εb)

and the substitution (#
#). We define the edit probability using a locally normalized

log-linear model:

pθ((
a
b) | â) =

exp(θ · f(â, a, b))∑
a′,b′ exp(θ · f(â, a′, b′))

(4.1)

We use a small set of simple feature functions f , which consider conjunctions of the

attributes of the characters â and b: character, character class (letter, digit, etc.), and

case (upper vs. lower). In §5.1, we discuss extensions to this approach that obviate

the need for manual feature engineering using recurrent neural networks.

Notice that we use a locally normalized probability for each edit. This enables

74

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

faster and simpler training than the similar model of Dreyer et al. [2008a], which uses

a globally normalized probability for the whole edit sequence. This is an important

point since, in the most general inference setting, we must evaluate edit probabilities

between all string pairs.

Our model of these distributions could incorporate detailed linguistic knowledge

of the mutation process. Here we describe the specific model that we use in our

experiments. Like many such models, it can be regarded as a stochastic finite-state

string-to-string transducer parameterized by θ. That is, the probability (4.3) may also

be conditioned on other variables such as on the languages p.` and x.`—this leaves

room for a transliteration model when x.` 6= p.`—and on the entity type x.t. The

features in (4.1) may then depend on these variables as well.

When p = ♦, we are generating a new name x.n. We use the same model, taking

♦.n to be the empty string (but with #♦ rather than # as the end-of-string symbol).

This yields a feature-based unigram language model (whose character probabilities

may differ from usual insertion probabilities because they see #♦ as the lookahead

character).

Note that the conditional distribution for p = ♦ is similar to the neural name

models that are used in §2 and §3. There are two reasons we avoid using those more

expressive models here:

1. If the name model at ♦ is more expressive than the edit models, the model may

learn to generate names preferentially from ♦ as new entities rather than as

75

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

mutations of existing names. One may perhaps offset this by tuning hyperpa-

rameters, but in general in unsupervised learning one must be careful to imbue

the model with the right inductive biases. In §??, we describe an extension in

which both the edit model and the mutation model may be parametrized using

equally expressive neural models.

2. Since our training procedure requires (approximate) inference via sampling,

there would be a substantial performance cost to using more complex transducer

models as we must repeatedly score configurations of hidden variables. Therefore,

for our experiments, we prefer a simpler model in which dynamic programming

is tractable and which uses simple features. However, it is worth noting that

there are several ways in which these computational concerns could be addressed,

such as using efficient hardware parallelization.

4.3.1 Pragmatics

We can optionally make the model more sophisticated. Authors tend to avoid

names x.n that readers would misinterpret (given the previously generated names).

The edit model thinks that pθ(CIA | ♦) is relatively high (because CIA is a short string)

and so is pθ(CIA | Chuck’s Ice Art). But in fact, if CIA has already been frequently used

to refer to the Central Intelligence Agency, then an author is unlikely to use it for a

different entity.

76

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

To model this pragmatic effect, we multiply our definition of pθ(x.n | p.n) by

an extra factor p(x.e | x)γ, where γ ≥ 0 is the effect strength. Currently, we omit

the step of renormalizing this deficient model. Our training procedure also ignores

the extra factor. Here p(x.e | x) is the probability that a reader correctly identifies

the entity x.e. We take this to be the probability that a reader who knows our

sub-models would guess some parent having the correct entity (or ♦ if x is a first

mention):
∑

p′:p′.e=x.ew(p′, x)/
∑

p′ w(p′, x). Here p′ ranges over mentions (including ♦)

that precede x in the ordering i, and w(p′, x)—defined later in §4.7.3—is proportional

to the posterior probability that x.p = p′, given name x.n and topic x.z.

4.4 Inference

The input to inference is a collection of named entity tokens y. Most are untagged

tokens of the form y = (?, w). In a semi-supervised setting, however, some of the

tokens may be tagged tokens of the form y = (e, w), whose true entity is known. The

entity tags place a constraint on the phylogeny, since each child subtree of ♦ must

correspond to exactly one entity.

4.4.1 An unrealistically supervised setting

Suppose we were lucky enough to fully observe the sequence of named entity tokens

yi = (ei, wi) produced by our generative model. That is, suppose all tokens were tagged

77

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

and we knew their ordering.

Yet there would still be something to infer: which tokens were derived from which

previous tokens. This phylogeny is described by a spanning tree over the tokens. Let

us see how to infer it.

For each potential edge x→ y between named entity tokens, define δ(y | x) to be

the probability of choosing x and copying it (possibly with mutation) to obtain y. So

δ(yj | ♦) = α p(yj | ♦) (4.2)

δ(yj | yi) = µ p(yj | yi) + (1− µ)1(yj = yi) (4.3)

except that if i ≥ j or if ei 6= ej, then δ(yj | yi) = 0 (since yj can only be derived from

an earlier token yi with the same entity).

Now the prior probability of generating y1, . . . yN with a given phylogenetic tree

is easily seen to be a product over all tree edges,
∏

j δ(yj | pa(yj)) where pa(yj) is the

parent of yj. As a result, it is known that the following are efficient to compute from

the (N + 1)× (N + 1) matrix of δ values (see §4.4.4):

(a) the max-probability spanning tree

(b) the total probability of all spanning trees

(c) the marginal probability of each edge, under the posterior distribution on span-

ning trees

78

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

(a) is our single best guess of the phylogeny. We use this during evaluation. (b) gives the

model likelihood, i.e., the total probability of the observed data y1, . . . yN . To locally

maximize the model likelihood, (c) can serve as the E step of our EM algorithm

(§4.5) for tuning our mutation model. The M step then retrains the mutation model’s

parameters θ on input-output pairs wi → wj, weighting each pair by its edge’s posterior

marginal probability (c), since that is the expected count of a wi → wj mutation. This

computation is iterated.

Note that a phylogeny partitions the name types into some number of “clusters,”

where each cluster corresponds to a child subtree of ♦ and represents an entity. We

can increase the number of “clusters” inferred by our method by increasing the ratio

α/µ, which controls the preference for an entity to descend from ♦ versus an existing

entity.

4.4.2 The unsupervised setting

Now we turn to a real setting—fully unsupervised data. Two issues will force us to

use an approximate inference algorithm. First, we have an untagged corpus: a token’s

entity tag e is never observed. Second, the order of the tokens is not observed, so we

do not know which other tokens are candidate parents.

Our first approximation is to consider only phylogenies over types rather than

tokens. Working over types improves the quality of our second approximation, and also

speeds up the spanning tree algorithms. §4.5 explains how to regard this approximation

79

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

as variational EM. The type phylogeny in Figure 4.1 represents a set of possible token

phylogenies. Each node of Figure 4.1 represents an untagged name type y = (?, w).

By grouping all ny tokens of this type into a single node, we mean that the first token

of y was derived by mutation from the parent node, while each later token of y was

derived by copying an (unspecified) earlier token of y.

A token phylogeny cannot be represented in this way if two or more tokens of y were

created by mutations. In that case, their name strings are equal only by coincidence.

They may have different parents (perhaps of different entities), whereas the y node in

a type phylogeny can have only one parent.

We argue, however, that these unrepresentable token phylogenies are comparatively

unlikely a posteriori and can be reasonably ignored during inference.The first token

of y is necessarily a mutation, but later tokens are much more likely to be copies.

The probability of generating a later token y by copying some previous token is

at least

(1− µ)/(N + α),

while the probability of generating it in some other way is at most

max(α p(y | ♦), µ max
x∈Y

p(y | x))

where Y is the set of observed types.

The second probability is typically much smaller: an author is unlikely to invent

80

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

exactly the observed string y, certainly from ♦ but even by mutating a similar string

x (especially when the mutation rate µ is small).

How do we evaluate a type phylogeny? Consider the probability of generating

untagged tokens y1, . . . yN in that order and respecting the phylogeny:

(
N∏
k=1

1

k + α

)∏
y∈Y

g(y | pa(y))

(
ny−1∏
i=1

i (1− µ)

)
(4.4)

where g(y | pa(y)) is a factor for generating the first token of y from its parent pa(y),

defined by

g(y | ♦) = α · p(y | ♦) (4.5)

g(y | x) = µ · (# tokens of x preceding

first token of y) · p(y | x) (4.6)

But we do not actually know the token order: by assumption, our input corpus

is only an unordered bag of tokens. So we must treat the hidden ordering like any

other hidden variable and maximize the marginal likelihood, which sums (4.4) over

all possible orderings (permutations). This sum can be regarded as the number of

permutations N ! (which is fixed given the corpus) times the expectation of (4.4) for

a permutation chosen uniformly at random.

This leads to our second approximation. We approximate this expectation of the

product (4.4) with a product of expectations of its individual factors. In general this

81

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

is an overestimate for each phylogeny. To find the expectation of (4.6), observe that

the expected number of tokens of x that precede the first token of y is nx/(ny + 1),

since each of the nx tokens of x has a 1/(ny + 1) chance of falling before all ny tokens

of y. It follows that the approximated probability of generating all tokens in some

order, with our given type parentage, is proportional to

∏
y∈Y

δ(y | pa(y)) (4.7)

where

δ(y | ♦) = α · p(y | ♦) (4.8)

δ(y | x) = µ · p(y | x) · nx/(ny + 1) (4.9)

and the constant of proportionality depends on the corpus.

The above equations are analogous to those in §4.4.1. Again, the approximate

posterior probability of a given type parentage tree is edge-factored—it is the product

of individual edge weights defined by δ. Thus, we are again eligible to use the spanning

tree algorithms in described in §4.4.4.

Notice that nx in the numerator of (4.9) means that y is more likely to select a

frequent x as its parent. Also, ny + 1 in the denominator means that a frequent y is

not as likely to have any parent x 6= ♦, because its first token probably falls early in

the sequence where there are fewer available parents x 6= ♦.

82

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

4.4.3 The semi-supervised setting

The semi-supervised setting is like the unsupervised setting—except that some

of our tokens are now tagged with the true entity. Inference should only consider

phylogenies that respect these tags.

The supervised information may break §4.4.2’s assumption of “one entity per

string,” by revealing that there are in fact multiple John Jacob Jingleheimer Schmidts.

In this case, we can no longer force all tokens of a string w into the same node of the

phylogeny on the grounds that w only evolved once. But our inference will continue to

assume, on the same grounds as §4.4.2, that it evolved the minimum possible number

of times. (In computational biology jargon, we are considering only parsiminious

phylogenies.)

What are the nodes, then? If w is tagged with k different entities, then we know

that it evolved independently k times (at least). In our current experiments, the case

k > 1 never actually arises, because of the way our training corpus was constructed. We

create a separate node in the phylogeny for each of the tagged types (e1, w), . . . , (ek, w).

We then partition untagged tokens (?, w) among these nodes in proportion to the

number of tagged tokens at each node. Only if k = 0 must we create a node for the

untagged type (?, w).

Given these nodes, the supervision constrains the possible phylogenies:

C1 If types x, y are tagged with different entities, they must not be in the same

child subtree of �.

83

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

C2 If type x, y are tagged with the same entity, they must be in the same child

subtree of �.

Unfortunately, we cannot enforce constraint C1 or C2 within our spanning tree algo-

rithm. So our approach is to enforce only the weaker constraint C1′, which can be

done by setting δ(y | x) = 0:

C1′ If types x, y are tagged with different entities, the tree must not have a direct

x→ y edge.

Another form of supervision appears if we are provided with some supervised input-

output pairs. These may be used to train initial parameters for the transducer. In

subsequent steps of EM, they should be incorporated into the M step, so that they

are used (along with the pairs derived from the E step) to retrain the transducer.

4.4.4 Spanning tree algorithms

Define a complete directed graph G over the vertices Y ∪ {♦}. The weight of an

edge x→ y is defined by δ(y | x).

The (approximate) posterior probability of a given phylogeny given our evidence,

is proportional to the product of the δ values of its edges.

Formally, let T♦(G) denote the set of spanning trees of G rooted at ♦, and define

the weight of a particular spanning tree T ∈ T♦(G) to be the product of the weights

84

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

of its edges:

w(T) =
∏

(x→y)∈T

δ(y | x) (4.10)

Then the posterior probability of spanning tree T is

pθ(T) =
w(T)

Z(G)
(4.11)

where Z(G) =
∑

T∈T♦(G) w(T) is the partition function, i.e. the total probability of

generating the data G via any spanning tree of the form we consider. This distribution

is determined by the parameters θ of the transducer pθ, along with the ratio α/µ.

There exist several algorithms to find the single maximum-probability spanning

tree, notably Tarjan’s implementation of the Chu-Liu-Edmonds algorithm, which runs

in O(m log n) for a sparse graph or O(n2) for a dense graph [Cheriton and Tarjan,

1976]. Figure 4.1 shows a spanning tree found by our model using Tarjan’s algorithm.

Here n is the number of vertices (in our case, types and �), while m is the number of

edges.

4.5 Training the Transducer with EM

Our inference algorithm assumes that we know the transducer parameters θ. We

now explain how to optimize θ to maximize the marginal likelihood of the training data.

85

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

This marginal likelihood sums over all the other latent variables in the model—the

spanning tree, the alignments between strings, and the hidden token ordering.

The EM procedure repeats the following until convergence:

E-step: Given θ, compute the posterior marginal probabilities cxy of all possible

phylogeny edges.

M-step Given all cxy, retrain θ to assign a high conditional probability to the muta-

tions on the probable edges.

This describes a variational EM algorithm: our E step approximates the true dis-

tribution q over all phylogenies with the closest distribution p that assigns positive

probability only to type-based phylogenies. This distribution is given by (4.11) and

minimizes KL(p || q). We argued in section §4.4.2 that it should be a good approxi-

mation. The posterior marginal probability of a directed edge from vertex x to vertex

y, according to (4.11), is

cxy =
∑

T∈T♦(G):(x→y)∈T

pθ(T) (4.12)

The probability cxy is a “pseudocount” for the expected number of mutations from x

to y. This is at most 1 under our assumptions.

Calculating cxy requires summing over all spanning trees of G, of which there are

nn−2 for a fully connected graph with n vertices. Fortunately, Tutte [1984] shows how

to compute this sum by the following method, which extends Kirchhoff’s classical

86

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

matrix-tree theorem to weighted directed graphs. This result has previously been

employed in non-projective dependency parsing [Koo et al., 2007, Smith and Smith,

2007].

Let L ∈ Rn×n denote the Laplacian of G, namely

L =

∑

x′ δ(y | x′) if x = y

−δ(y | x) if x 6= y

(4.13)

Tutte’s theorem relates the determinant of the Laplacian to the spanning trees in

graph G. In particular, the cofactor L0,0 equals the total weight of all directed spanning

trees rooted at node 0. This yields the partition function Z(G) (assuming node 0 is

♦).

Let L̂ be the matrix L with the 0th row and 0th column removed. Then the edge

marginals of interest are related to the log partition function by

cxy =
∂ logZ(G)

∂ δ(y | x)
=

∂ log |L̂|
∂ δ(y | x)

(4.14)

which has the closed-form solution

cxy =

δ(y | ♦) L̂−1

yy if x = y

δ(y | x) (L̂−1
xx − L̂−1

xy) if x 6= y

(4.15)

See [Koo et al., 2007] for a derivation. Thus, computing all edge marginals reduces

87

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

to computing a matrix inverse, which may be done in O(n3) time.

At the M step, we retrain the mutation model parameters θ to maximize

∑
xy

cxy log p(wy | wx) (4.16)

This is tantamount to maximum conditional likelihood training on a supervised col-

lection of (wx, wy) pairs that are respectively weighted by cxy.

The M step is nontrivial because the term p(wy | wx) sums over a hidden alignment

between two strings. It may be performed by an inner loop of EM, where the E step

uses dynamic programming to efficiently consider all possible alignments, as in [Ristad

and Yianilos, 1996]. In practice, we have found it effective to take only a single step

of this inner loop. Such a Generalized EM procedure enjoys the same convergence

properties as EM, but may reach a local optimum faster [Dempster et al., 1977].

4.6 Modeling Names in Context

Even the best model of name similarity is not enough by itself, since two names

that are similar—even identical—do not necessarily corefer. Document context is

needed to determine whether they may be talking about two different people. We

now propose an extension to the generative process described in §4.2.1 for jointly (1)

learning similarity between names and (2) clustering name mentions into entities, the

two major components of cross-document coreference resolution systems [Baron and

88

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Freedman, 2008, Finin et al., 2009, Rao et al., 2010, Singh et al., 2011, Lee et al., 2012,

Green et al., 2012]. The main extension is that we will also consider entity context. This

extension motivates a different inference procedure based on block Gibbs sampling.

Let x = (x1, . . . , xN) denote an ordered sequence of distinct named-entity mentions

in documents d = (d1, . . . , dD). We assume that each document has a (single) known

language, and that its mentions and their types have been identified by a named-entity

recognizer. We use the object-oriented notation x.v for attribute v of mention x.

Our model generates an ordered sequence x although we do not observe its order.

Thus each mention x has latent position x.i (e.g., x729.i = 729). The entire corpus,

including these entities, is generated according to standard topic model assumptions;

we first generate a topic distribution for a document, then sample topics and words

for the document [Blei et al., 2003]. However, any topic may generate an entity type,

e.g. person, which is then replaced by a specific name: when person is generated, the

model chooses a previous mention of any person and copies it, perhaps mutating its

name.

Note that this differs from our word-level model in §3.2.1, which generated words

sequentially. The reason to prefer a topic model here, which treats documents as

bags-of-words, is that for cross-document coreference resolution the document-level

topic interactions would be more useful in distinguishing between entities with similar

names. However, we leave evaluating this hypothesis experimentally for future work.

We make the closed-world assumption that the author is only aware of previous

89

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

mentions from our corpus. This means that two mentions cannot be derived from

a common ancestor outside our corpus. To mitigate this unrealistic assumption, we

allow any ordering x of the observed mentions, not respecting document timestamps

or forcing the mentions from a given document to be generated as a contiguous

subsequence of x. Alternatively, the model may manufacture a name for a new person,

though the name itself may not be new.

If all previous mentions were equally likely, this would be a Chinese Restaurant

Process (CRP) in which frequently mentioned entities are more likely to be mentioned

again (“the rich get richer”). We refine that idea by saying that the current topic,

language, and document influence the choice of which previous mention to copy, similar

to the distance-dependent CRP [Blei and Frazier, 2011]. This will help distinguish

multiple John Smith entities if they tend to appear in different contexts.

Unlike the ddCRP, our generative story is careful to prohibit derivational cycles:

each mention is copied from a previous mention in the latent ordering. This is why our

phylogeny is a tree, and why our sampler is more complex. Also unlike the ddCRP, we

permit asymmetric “distances”: if a certain topic or language likes to copy mentions

from another, the compliment is not necessarily returned.

Formally, each mention x is derived from a parent mention x.p where x.p.i < x.i

(the parent came first), x.e = x.p.e (same entity) and x.n is a copy or mutation of

x.p.n. In the special case where x is a first mention of x.e, x.p is the special symbol ♦,

x.e is a newly allocated entity of some appropriate type, and the name x.n is generated

90

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

from scratch.

Our goal is to reconstruct mappings p, i, z that specify the latent properties of

the mentions x. The mapping p : x 7→ x.p forms a phylogenetic tree on the mentions,

with root ♦. Each entity corresponds to a subtree that is rooted at some child of ♦.

The mapping i : x 7→ x.i gives an ordering consistent with that tree in the sense that

(∀x)x.p.i < x.i. Finally, the mapping z : x 7→ x.z specifies, for each mention, the topic

that generated it. While i and z are not necessary for creating coref clusters, they are

needed to produce p.

4.6.1 Generative Story: Full Version

We assume that the corpus d was generated as follows.

First, for each topic z = 1, . . . K and each language `, choose a multinomial βz`

over the word vocabulary, from a symmetric Dirichlet with concentration parameter η.

Then set m = 0 (entity count), i = 0 (mention count), and for each document index

d = 1, . . . , D:

1. Choose the document’s length L and language `. (The distributions used to

choose these are unimportant because these variables are always observed.)

2. Choose its topic distribution ψd from an asymmetric Dirichlet prior with pa-

rameters m [Wallach et al., 2009].

3. For each token position k = 1, . . . , L:

91

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

(a) Choose a topic zdk ∼ ψd.

(b) Choose a word conditioned on the topic and language, wdk ∼ βzdk`.

(c) If wdk is a named entity type (person, place, org, . . .) rather than an

ordinary word, then increment i and:

i. create a new mention x with

x.e.t = wdk x.d = d x.` = `

x.i = i x.z = zdk x.k = k

ii. Choose the parent x.p from a distribution conditioned on the attributes

just set (see §4.6.2).

iii. If x.p = ♦, increment m and set x.e = a new entity em. Else set

x.e = x.p.e.

iv. Choose x.n from a distribution conditioned on x.p.n and x.` (see §4.3).

Notice that the tokens wdk in document d are exchangeable: by collapsing out ψd,

we can regard them as having been generated from a CRP. Thus, for fixed values of

the non-mention tokens and their topics, the probability of generating the mention

sequence x is proportional to the product of the probabilities of the choices in step 3

at the positions dk where mentions were generated. These choices generate a topic x.z

(from the CRP for document d), a type x.e.t (from βx.z), a parent mention (from the

distribution over previous mentions), and a name string (conditioned on the parent’s

name if any). §4.7 uses this fact to construct an MCMC sampler for the latent parts

of x.

92

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

4.6.2 Sub-model for parent selection

To select a parent for a mention x of type t = x.e.t, a simple model (as mentioned

above) would be a CRP: each previous mention of the same type is selected with

probability proportional to 1, and ♦ is selected with probability proportional to αt > 0.

A larger choice of αt results in smaller entity clusters, because it prefers to create new

entities of type t rather than copying old ones.

We modify this story by re-weighting ♦ and previous mentions according to their

relative suitability as the parent of x:

pφ(x.p | x) =
exp (φ · f(x.p, x))

Z(x)
(4.17)

where x.p ranges over ♦ and all previous mentions of the same type as x, that is,

mentions p such that p.i < x.i and p.e.t = x.e.t. The normalizing constant Z(x)
def
=∑

p exp (φ · f(x.p, x)) is chosen so that the probabilities sum to 1.

This is a conditional log-linear model parameterized by φ, where φk ∼ N (0, σ2
k).

The features f are extracted from the attributes of x and x.p. Our most important

feature tests whether x.p.z = x.z. This binary feature has a high weight if authors

mainly choose mentions from the same topic. To model which (other) topics tend to

be selected, we also have a binary feature for each parent topic x.p.z and each topic

pair (x.p.z, x.z).

Many other features could be added. In a multilingual setting, one would similarly

93

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

want to model whether English authors select Arabic mentions. One could also imagine

features that reward proximity in the generative order (x.p.i ≈ x.i), local linguistic

relationships (when x.p.d = x.d and x.p.k ≈ x.k), or social information flow (e.g.,

from mainstream media to Twitter). One could also make more specific versions of

any feature by conjoining it with the entity type t.

4.7 Inference by Block Gibbs Sampling

We use a block Gibbs sampler, which from an initial state (p0, i0, z0) repeats these

steps:

1. Sample the ordering i from its conditional distribution given all other variables.

2. Sample the topic vector z likewise.

3. Sample the phylogeny p likewise.

4. Output the current sample st = (p, i, z).

It is difficult to draw exact samples at steps 1 and 2. Thus, we sample i or z

from a simpler proposal distribution, but correct the discrepancy using the Indepen-

dent Metropolis-Hastings (IMH) strategy: with an appropriate probability, reject the

proposed new value and instead use another copy of the current value [Tierney, 1994].

94

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

4.7.1 Resampling the ordering

We resample the ordering i of the mentions x, conditioned on the other variables.

The current phylogeny p already defines a partial order on x, since each parent must

precede its children. For instance, phylogeny (a) below requires ♦ ≺ x and ♦ ≺ y.

This partial order is compatible with 2 total orderings, ♦ ≺ x ≺ y and ♦ ≺ y ≺ x.

By contrast, phylogeny (b) requires the total ordering ♦ ≺ x ≺ y.

We first sample an ordering i♦ (the ordering of mentions with parent ♦, i.e. all

mentions) uniformly at random from the set of orderings compatible with the current p.

However, such orderings are not in fact equiprobable given the other variables—some

orderings better explain why that phylogeny was chosen in the first place, according

to our competitive parent selection model (§4.6.2). To correct for this bias using IMH,

we accept the proposed ordering i♦ with probability

a = min

(
1,
p(p, i♦, z,x | θ,φ)

p(p, i, z,x | θ,φ)

)
(4.18)

where i is the current ordering. Otherwise we reject i♦ and reuse i for the new sample.

4.7.2 Resampling the topics

Each context word and each named entity is associated with a latent topic. The

topics of context words are assumed exchangeable, and so we resample them using

Gibbs sampling [Griffiths and Steyvers, 2004].

95

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Unfortunately, this is prohibitively expensive for the (non-exchangeable) topics of

the named mentions x. A Gibbs sampler would have to choose a new value for x.z

with probability proportional to the resulting joint probability of the full sample. This

probability is expensive to evaluate because changing x.z will change the probability

of many edges in the current phylogeny p. (Equation (4.17) puts x is in competition

with other parents, so every mention y that follows x must recompute how happy it

is with its current parent y.p.)

Rather than resampling one topic at a time, we resample z as a block. We use a

proposal distribution for which block sampling is efficient, and use IMH to correct the

error in this proposal distribution.

Our proposal distribution is an undirected graphical model whose random variables

are the topics z and whose graph structure is given by the current phylogeny p:

Q(z) ∝
∏
x6=♦

Ψx(x.z)Ψx.p,x(x.p.z, x.z) (4.19)

Q(z) is an approximation to the posterior distribution over z. As detailed below, a

proposal can be sampled from Q(z) in time O(|z|K2) where K is the number of topics,

because the only interactions among topics are along the edges of the tree p. The

unary factor Ψx gives a weight for each possible value of x.z, and the binary factor

Ψx.p,x gives a weight for each possible value of the pair (x.p.z, x.z).

The Ψx(x.z) factors in (4.19) approximate the topic model’s prior distribution

96

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

over z. Ψx(x.z) is proportional to the probability that a Gibbs sampling step for an

ordinary topic model would choose this value of x.z. This depends on whether—in

the current sample—x.z is currently common in x’s document and x.t is commonly

generated by x.z. It ignores the fact that we will also be resampling the topics of the

other mentions.

The Ψx.p,x factors in (4.19) approximate p(p | z, i) (up to a constant factor), where

p is the current phylogeny. Specifically, Ψx.p,x approximates the probability of a single

edge. It ought to be given by (4.17), but we use only the numerator of (4.17), which

avoids modeling the competition among parents.

We sample from Q using standard methods, similar to sampling from a linear-chain

CRF by running the backward algorithm followed by forward sampling. Specifically,

we run the sum-product algorithm from the leaves up to the root ♦, at each node x

computing the following for each topic z:

βx(z)
def
= Ψx(z) ·

∏
y∈children(x)

∑
z′

Ψx,y(z, z
′) · βy(z′)

Then we sample from the root down to the leaves, first sampling ♦.z from β♦, then

at each x 6= ♦ sampling the topic x.z to be z with probability proportional to

Ψx.p,x(x.p.z, z) · βx(z).

Again we use IMH to correct for the bias in Q: we accept the resulting proposal ẑ

97

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

with probability

min

(
1,

p(p, i, ẑ,x | θ,φ)

p(p, i, z,x | θ,φ)
· Q(z)

Q(ẑ)

)
(4.20)

While p(p, i, ẑ,x | θ,φ) might seem slow to compute because it contains many

factors (4.17) with different denominators Z(x), one can share work by visiting the

mentions x in their order i. Most summands in Z(x) were already included in Z(x′),

where x′ is the latest previous mention having the same attributes as x (e.g., same

topic).

4.7.3 Resampling the phylogeny

It is easy to resample the phylogeny. For each x, we must choose a parent x.p from

among the possible parents p (having p.i < x.i and p.e.t = x.e.t). Since the ordering

i prevents cycles, the resulting phylogeny p is indeed a tree.

Given the topics z, the ordering i, and the observed names, we choose an x.p value

according to its posterior probability. This is proportional to w(x.p, x)
def
= pφ(x.p |

x) · pθ(x.n | x.p.n), independent of any other mention’s choice of parent. The two

factors here are given by (4.17) and (4.3) respectively. As in the previous section, the

denominators Z(x) in the p(x.p | x) factors can be computed efficiently with shared

work.

With the pragmatic model (§4.3.1), the parent choices are no longer independent;

then the samples of p should be corrected by IMH as usual.

98

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

4.7.4 Initializing the sampler

The initial sampler state (z0,p0, i0) is obtained as follows.

1. We fix topics z0 via collapsed Gibbs sampling [Griffiths and Steyvers, 2004]. The

sampler is run for 1000 iterations, and the final sampler state is taken to be z0.

This process treats all topics as exchangeable, including those associated with

named entities.

2. Given the topic assignment z0, initialize p0 to the phylogeny rooted at ♦ that

maximizes
∑

x logw(x.p, x). This is a maximum rooted directed spanning tree

problem that can be solved in time O(n2) [Cheriton and Tarjan, 1976]. The

weight w(x.p, x) is defined as in §4.7.3—except that since we do not yet have

an ordering i, we do not restrict the possible values of x.p to mentions p with

p.i < x.p.i.

3. Given p0, sample an ordering i0

4.8 Parameter Estimation: Revisited

Evaluating the likelihood and its partial derivatives with respect to the parameters

of the model requires marginalizing over our latent variables. As this marginalization

is intractable, we resort to Monte Carlo EM procedure [Levine and Casella, 2001]

which iterates the following two steps:

99

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

E-step: Collect samples by MCMC simulation as in §4.7, given current model param-

eters θ and φ.

M-step: Improve θ and φ to increase

L def
=

1

S

S∑
s=1

log pθ,φ(x,ps, is, zs) (4.21)

We actually do MAP-EM, which augments (4.21) by adding the log-likelihoods of θ

and φ under a Gaussian prior.

It is not necessary to locally maximize L at each M-step, merely to improve it if it

is not already at a local maximum [Dempster et al., 1977]. We improve it by a single

update: at the tth M-step, we update our parameters to Φt = (θt,φt)

Φt = Φt−1 + εΣt∇ΦL(x,Φt−1) (4.22)

where ε is a fixed scaling term and Σt is an adaptive learning rate given by Ada-

Grad [Duchi et al., 2011].

We now describe how to compute the gradient ∇ΦL. The gradient with respect to

the parent selection parameters φ is

∑ 1

S

(
f(p, x)−

∑
p′

pφ(p′ | x)f(p′, x)

)
(4.23)

The outer summation ranges over all edges in the S samples. The other variables

100

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

in (4.23) are associated with the edge being summed over. That edge explains a

mention x as a mutation of some parent p in the context of a particular sample

(ps, is, zs). The possible parents p′ range over ♦ and the mentions that precede x

according to the ordering is, while the features f and distribution pφ depend on the

topics zs.

As for the mutation parameters, let cp,x be the fraction of samples in which p is

the parent of x. This is the expected number of times that the string p.n mutated

into x.n. Given this weighted set of string pairs, let câ,a,b be the expected number

of times that edit (ab) was chosen in context â: this can be computed using dynamic

programming to marginalize over the latent edit sequence that maps p.n to x.n, for

each (p, x).

The gradient of L with respect to θ is

∑
â,a,b

câ,a,b(f(â, a, b)−
∑
a′,b′

pθ(a
′, b′ | â)f(â, a′, b′)) (4.24)

4.9 Consensus Clustering

From a single phylogeny p, we deterministically obtain a clustering e by removing

the root ♦. Each of the resulting connected components corresponds to a cluster of

mentions. Our model gives a distribution over phylogenies p (given observations x

and learned parameters Φ)—and thus gives a posterior distribution over clusterings

101

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

e, which can be used to answer various queries.

A traditional query is to request a single clustering e. We prefer the clustering e∗

that minimizes Bayes risk (MBR) [Bickel and Doksum, 1977]:

e∗ = argmin
e′

∑
e

L(e′, e)p(e | x,θ,φ) (4.25)

This minimizes our expected loss, where L(e′, e) denotes the loss associated with

picking e′ when the true clustering is e.

In practice, we again estimate the expectation by sampling e values.

The Rand index [Rand, 1971]—unlike our actual evaluation measure—is an efficient

choice of loss function L for use with (4.25):

R(e′, e)
def
=

TP + TN

TP + FP + TN + FN
=

TP + TN(
N
2

)
where the true positives (TP), true negatives (TN), false positives (FP), and false

negatives (FN) use the clustering e to evaluate how well e′ classifies the
(
N
2

)
mention

pairs as coreferent or not. More similar clusterings achieve larger R, with R(e′, e) = 1

iff e′ = e. In all cases, 0 ≤ R(e′, e) = R(e, e′) ≤ 1.

The MBR decision rule for the (negated) Rand index is easily seen to be equivalent

102

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

to

e∗ = argmax
e′

E[TP] + E[TN] (4.26)

= argmax
e′

∑
i,j: xi∼xj

sij +
∑

i,j: xi 6∼xj

(1− sij)

where∼ denotes coreference according to e′. As explained above, the sij are coreference

probabilities sij that can be estimated from a sample of clusterings e.

This objective corresponds to min-max graph cut [Ding et al., 2001], an NP-hard

problem with an approximate solution [Nie et al., 2010]. In our experiments, we run

the clustering algorithm five times, initialized from samples chosen at random from the

last 10% of the sampler run, and keep the clustering that achieved highest expected

Rand score.

4.10 Experiments

In this section, we describe experiments on four different datasets. The first ex-

periment on Wikipedia redirects evaluates the model without considering the token

context §4.2.1. The remaining experiments evaluate the full model §4.6. For Wikipedia,

Twitter, and ACE 2008, (§4.10.1,§4.10.2,§4.10.3) we report the standard B3 met-

ric [Bagga and Baldwin, 1998b]. For the political blog dataset (§4.10.4), the reference

does not consist of entity annotations, and so we follow the evaluation procedure

103

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

of Yogatama et al. [2012].

4.10.1 Wikipedia Redirects

We begin by evaluating the simple generative model described in §4.2.1 and the

associated type-level EM re-estimation procedure described in §4.5. The purpose of

this initial evaluation is to model string variation independently from the context

of individual mentions. We do so at various degrees of supervision, ranging from

completely unsupervised to completely supervised §4.4. As our dataset, we use the

English Wikipedia redirect corpus, described in §2.2. We reserve a fixed portion of

the corpus for testing. For each test token, our system finds a set of coreferents. Our

baseline is a “flat” model which does not stipulate any intermediary name forms:

each name derives directly from the canonical name for the entity. We are directly

evaluating the benefit of relating strings via successive mutations, compared to a

baseline which assumes that all names are related directly to a common parent. The

results are reported in 4.2, where we find a consistent benefit to our phylogenetic

approach, at all levels of supervision.

4.10.2 Twitter

Data. We use a novel corpus of Twitter posts discussing the 2013 Grammy Award

ceremony. This is a challenging corpus, featuring many instances of name variation.

104

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Figure 4.2: Precision and recall at different degrees of supervision for the proposed
name phylogeny model and a baseline which does not stipulate any intermediary name
forms. The proposed model consistently outperforms the baseline.

105

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

The dataset consists of five splits (by entity), the smallest of which is 604 mentions

and the largest is 1374. We reserve the largest split for development purposes, and

report our results on the remaining four.

Baselines. We use the discriminative entity clustering algorithm of Green et al.

[2012] as our baseline; their approach was found to outperform another generative

model which produced a flat clustering of mentions via a Dirichlet process mixture

model. Their method uses Jaro-Winkler string similarity to match names, then clusters

mentions with matching names (for disambiguation) by comparing their unigram

context distributions using the Jenson-Shannon metric. We also compare to the exact-

match baseline, which assigns all strings with the same name to the same entity.

Procedure. We run four test experiments in which one split is used to pick model

hyperparameters and the remaining three are used for test. For the discriminative

baseline, we tune the string match threshold, context threshold, and the weight of

the context model prior (all via grid search). For our model, we tune only the fixed

weight of the root feature, which determines the precision/recall trade-off (larger values

of this feature result in more attachments to ♦ and hence more entities). We leave

other hyperparameters fixed: 16 latent topics, and Gaussian priors N (0, 1) on all

log-linear parameters. For phylo, the entity clustering is the result of (1) training

the model using EM, (2) sampling from the posterior to obtain a distribution over

clusterings, and (3) finding a consensus clustering. We use 20 iterations of EM with

100 samples per E-step for training, and use 1000 samples after training to estimate

106

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Precision Recall B3

exact-match 99.6 53.7 69.8
Green et al. [2012] 92.1 69.8 79.3
phylo 85.3 91.4 88.7
phylo+topic 92.8 90.8 91.8
phylo+topic+mbr 92.9 90.9 91.9

Table 4.1: Results for the Twitter dataset, averaged over four data splits. Higher B3

scores are better.

the posterior. We report results using three variations of our model: phylo does not

consider mention context (all mentions effectively have the same topic) and determines

mention entities from a single sample of p (the last); phylo+topic adds context

(§4.7.2); phylo+topic+mbr uses the full posterior and consensus clustering to

pick the output clustering (§4.9). Our results are shown in Table 4.1.

4.10.3 Newswire

Data. We use the ACE 2008 dataset, which is described in detail in Green et al.

[2012]. It was designed specifically to evaluate co-reference resolution systems, and

includes entities with similar names, and entities with aliases (which our model does

not explicitely account for), as well as variation in how the same names are spelled.

It is split into a development portion and a test portion. The baseline system took

the first mention from each (gold) within-document coreference chain as the canonical

mention, ignoring other mentions in the chain; we follow the same procedure in our

experiments. That is, each within-document coreference chain is mapped to a single

107

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

mention as a preprocessing step.

Baselines & Procedure. We use the same baselines as in §4.10.2. On development

data, modeling pragmatics as in §4.3.1 gave large improvements for organizations (8

points in F-measure), correcting the tendency to assume that short names like CIA

were coincidental homonyms. Hence we allowed γ > 0 and tuned it on development

data For these experiments, we used only a simplified version of the pragmatic model,

approximating w(p′, x) as 1 or 0 according to whether p′.n = x.n. We also omitted

the IMH step from §4.7.3. The other results we report do not use pragmatics at all,

since we found that it gave only a slight improvement. Results are in Table 4.2.

Precision Recall B3

exact-match 98.0 81.2 88.8
per Green et al. [2012] 95.0 88.9 91.9

phylo+topic+mbr 97.2 88.6 92.7

exact-match 98.2 78.3 87.1
org Green et al. [2012] 92.1 88.5 90.3

phylo+topic+mbr 95.5 80.9 87.6

Table 4.2: Results for the ACE dataset. Higher scores are better.

4.10.4 Blogs

Data. The CMU political blogs dataset consists of 3000 documents about U.S. pol-

itics [Yano et al., 2009]. Preprocessed as described in Yogatama et al. [2012], the

data consists of 10647 entity mentions. Unlike our other datasets, mentions are not

annotated with entities: the reference consists of a table of 126 entities, where each

108

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

row is the canonical name of one entity.

Baselines. We compare to the system results reported in Figure 2 of Yogatama et al.

[2012]. This includes a baseline hierarchical clustering approach, the “EEA” name

canonicalization system of Eisenstein et al. [2011], as well the model proposed by

Yogatama et al. [2012]. Like the output of our model, the output of their hierarchical

clustering baseline is a mention clustering, and therefore must be mapped to a table

of canonical entity names to compare to the reference table.

Procedure & Results We tune our method as in previous experiments, on the

initialization data used by Yogatama et al. [2012] which consists of a subset of 700

documents of the full dataset. The tuned model then produced a mention clustering

on the full political blog corpus. As the mapping from clusters to a table is not fully

detailed in Yogatama et al. [2012], we used a simple heuristic: the most frequent

name in each cluster is taken as the canonical name, augmented by any titles from a

predefined list appearing in any other name in the cluster. The resulting table is then

evaluated against the reference, as described in Yogatama et al. [2012]. We achieved a

response score of 0.17 and a reference score of 0.61. Though not state-of-the-art, this

result is close to the score of the “EEA” system of Eisenstein et al. [2011], as reported

in Figure 2 of Yogatama et al. [2012], which is specifically designed for the task of

canonicalization.

109

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

4.10.5 Discussion

On the Twitter dataset, we obtained a 12.6-point F1 improvement over the baseline.

To understand our model’s behavior, we looked at the sampled phylogenetic trees on

development data. One reason our model does well in this noisy domain is that it is

able to relate seemingly dissimilar names via successive steps. For instance, our model

learned to relate many variations of LL Cool J:

Cool James LLCoJ El-El Cool John

LL LL COOL JAMES LLCOOLJ

In the sample we inspected, these mentions were also assigned the same topic, further

boosting the probability of the configuration.

The ACE dataset, consisting of editorialized newswire, naturally contains less

name variation than Twitter data. Nonetheless, we find that the variation that does

appear is often properly handled by our model. For instance, we see several instances

of variation due to transliteration that were all correctly grouped together, such

as Megawati Soekarnoputri and Megawati Sukarnoputri. The pragmatic model was also

effective in grouping common acronyms into the same entity.

We found that multiple samples tend to give different phylogenies (so the sampler

is mobile), but essentially the same clustering into entities (which is why consensus

clustering did not improve much over simply using the last sample). Random restarts of

EM might create more variety by choosing different locally optimal parameter settings.

It may also be beneficial to explore other sampling techniques [Bouchard-Côté, 2014].

110

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

We suspect that our greedy EM optimization procedure is the culprit for the peaked

posterior, and a possible improvement would be to run multiple sampler chains from

different initializations of the parameters; we leave this as future work however.

Our method assembles observed names into an evolutionary tree. However, the

true tree must include many names that fall outside our small observed corpora, so

our model would be a more appropriate fit for a far larger corpus. Larger corpora also

offer stronger signals that might enable our Monte Carlo methods to mix faster and

detect regularities more accurately. Nonetheless, in this paper we have shown that

these unsupervised techniques can achieve good results even on small datasets.

A common error of our system is to connect mentions that share long substrings,

such as different persons who share a last name, or different organizations

that contain University of. A more powerful name mutation than the one we use here

would recognize entire words, for example inserting a common title or replacing a first

name with its common nickname.

4.11 Related Work

Several previous papers have also considered learning transducers or other models of

word pairs when the pairing between inputs and outputs is not given. Most commonly,

one observes parallel or comparable corpora in two languages, and must reconstruct

a matching from one language’s words to the other’s before training on the resulting

111

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

pairs [Schafer, 2006, Klementiev and Roth, 2006, Haghighi et al., 2008, Snyder et al.,

2010, Sajjad et al., 2011]. Haghighi et al. [2008] learn a joint generative model of input

features and output features, although it does not take the form of a transducer.

Prior work on learning transducers without training pairs has relied on a given

partition of the observed strings into unaligned “inputs” and “outputs.” For instance,

Irvine et al. [2010] use Wikipedia to construct supervision for transliteration models

between many languages.

This work differs in that we assume no such partitioning, and our latent variable

is not a bipartite matching between the input and output strings. Instead, given a

single corpus of unaligned strings, our latent variable is a tree relating different string

types. Any string may be generated as the output of one edge and subsequently serve

as the input to other edges.

Hall and Klein [2010] extend this setting to more than two languages, where

the phylogenetic tree is known. A given lexeme (abstract word) can be realized in

each language by at most one word (string type), derived from the parent language’s

realization of the same lexeme. The system must match words that share an underlying

lexeme (i.e., cognates), creating a matching of each language’s vocabulary to its parent

language’s vocabulary. A further challenge is that the parent words are unobserved

ancestral forms.

Hall and Klein [2010] use the term “cognate group” instead of “lexeme.” In the

more scalable PARSIM model of [Hall and Klein, 2011], it is a semantic slot (“gloss”)

112

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

that is realized once per language, and this slot is observed for each word type. For a

given slot, the child language may use the same lexeme as the parent (mutation) or

create a new one (innovation).

Similarly, Dreyer and Eisner [2011b] organize words into morphological paradigms

of a given structure. Again words with the same underlying lexeme (i.e., morphemes)

must be identified. A lexeme can be realized in each grammatical inflection (such as

“first person plural present”) by exactly one word type, related to other inflected forms

of the same lexeme, which as above may be unobserved. Their inference setting is closer

to ours because the input is an unorganized collection of words—input words are not

tagged with their grammatical inflections. This contrasts with the usual multilingual

setting where each word is tagged with its true language.

In one way, our problem differs significantly from the above problems. We are

interested in random variation that may occur within a language as well as across

languages. A person name may have unboundedly many different variants. This is

unlike the above problems, in which a lexeme has at most K realizations, where K is

the (small) number of languages or inflections. In the above problems, one learns a

set of O(K) or O(K2) specialized transducers that relate Latin to Italian, singular to

plural, etc. We instead use one global mutation model that applies to all names.

We cannot assign the observed strings to positions in an existing structure that is

shared across all lexemes, such as a given phylogenetic tree whose K nodes represent

languages, or a given inflectional grid whose K cells represent grammatical inflections.

113

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Rather, we must organize them into a idiosyncratic phylogenetic tree whose nodes are

the string types or tokens themselves.

Names and words are not the only non-biological objects that are copied with

mutation. Documents, database records, bibliographic entries, code, and images can

evolve in the same way. Reconstructing these relationships has been considered by a

number of papers on authorship attribution, near-duplicate detection, deduplication,

record linkage, and plagiarism detection. A few such papers reconstruct a phylogeny,

as in the case of chain letters [Bennett et al., 2003], malware [Karim et al., 2005], or

images [Dias et al., 2012]. In fact, the last of these uses the same minimum spanning

tree method that we apply in §4.4.4. However, these papers do not train a similarity

measure as we do. To our knowledge, these two techniques have not been combined

outside biology.

In molecular evolutionary analysis, phylogenetic techniques have often been com-

bined with estimation of some parametric model of mutation [Tamura et al., 2011].

However, names mutate differently from biological sequences, and our mutation model

for names (§4.3) reflects that. We also posit a specific process (§4.2.1) that generates

the name phylogeny.

One view of our phylogenetic model comes from the literature on random graphs

(e.g., for modeling social networks or the link structure of the web). In a preferential

attachment model, a graph’s vertices are added one by one, and each vertex selects

some previous vertices as its neighbors. Our phylogeny is a preferential attachment

114

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

tree, a random directed graph in which each vertex selects a single previous vertex

as its parent. Specifically, it is a random recursive tree[Smythe and Mahmoud, 1995]

whose vertices are the tokens. This is not the tree shown in Figure 4.1, whose vertices

are types rather than tokens. To this simple random topology we have added a random

labeling process with mutation.

Cross-document coreference resolution (CDCR) was first introduced by Bagga

and Baldwin [1998a]. Most approaches since then are based on the intuitions that

coreferent names tend to have “similar” spellings and tend to appear in “similar”

contexts. The distinguishing feature of our system is that both notions of similarity

are learned together without supervision. We adopt a “phylogenetic” generative model

of coreference. The basic insight is that coreference is created when an author thinks

of an entity that was mentioned earlier in a similar context, and mentions it again in

a similar way. The author may alter the name mention string when copying it, but

both names refer to the same entity. Either name may later be copied further, leading

to an evolutionary tree of mentions—a phylogeny. Phylogenetic models are new to

information extraction. In computational historical linguistics, Bouchard-Côté et al.

[2013] have also modeled the mutation of strings along the edges of a phylogeny; but

for them the phylogeny is observed and most mentions are not, while we observe the

mentions only.

Name similarity is also an important component of within-document coreference

resolution, and efforts in that area bear resemblance to our approach. Haghighi and

115

CHAPTER 4. LEARNING STRING-TO-STRING TRANSDUCERS VIA
PHYLOGENETIC INFERENCE

Klein [2010] describe an “entity-centered” model where a distance-dependent Chinese

restaurant process is used to pick previous coreferent mentions within a document.

Similarly, Durrett and Klein [2013] learn a mention similarity model based on labeled

data. Our cross-document setting has no observed mention ordering and no observed

entities: we must sum over all possibilities, a challenging inference problem.

116

Chapter 5

Conclusion

Generative models, such as hidden Markov models, are commonly used for prob-

lems where either no annotated data is available, or where only partial supervision

exists. Unfortunately, it is difficult to incorporate expressive features in these models

while retaining tractable inference algorithms. In this thesis, we have proposed joint

models that make minimal assumptions about the underlying generative process, and

incorporate rich character-level features.

Our primary technical contributions are as follows:

In §2, we consider character-level sequence models. We propose a stacked LSTM

architecture for jointly modeling multiple string types in a single network, with pa-

rameters shared between all types. We explore different approaches for incorporating

entity attributes, yielding name models which are sensitive to various properties such

as nationality and gender. We also experimented with discriminative training objec-

117

CHAPTER 5. CONCLUSION

tives as an alternative to log-likelihood training, and found that this led to further

improvements in classification performance.

In §3, we propose a hidden non-Markov model for inducing latent state sequences

and labeled segmentation problems. We describe two variants of the model: (1) a fully

nonparametric variant, where Bayesian sequence memoizers are used at both the word-

level and character-levels and (2) a hybrid model in which a more expressive neural

model is used at the character level. We propose a general framework for inference in

such models, based on particle MCMC, and apply this framework to unsupervised part-

of-speech induction with dictionaries, and to named-entity recognition with gazetteers.

In §4, we proposed an evolutionary phylogenetic process to discover relations

between strings in an unorganized collection. Our primary contribution consists of new

modeling ideas, and associated inference techniques, for the problem of cross-document

coreference resolution. We have described how writers systematically plunder and then

systematically modify the work of past writers. Inference under such models could also

play a role in tracking evolving memes and social influence, not merely in establishing

strict coreference. Our perspective descends from noisy channel modeling. Working

with highly noisy corpora such as Twitter requires distinguishing the underlying signal

from the noise (e.g., identifying entities that are referred to inconsistently).

118

CHAPTER 5. CONCLUSION

5.1 Extensions

There are many opportunities for extensions of the proposed methods. We mention

some here.

• In §3, we used a convenient factorization of the hidden non-Markov model

into independent transition and emission factors, which correspond to models

over (latent) words and observed characters. However, this is an unrealistic

assumption, since the context in which a word occurs may influence its spelling.

A simple example of a contextual dependency for NER is where a full name is

used at the beginning of a news article. Another example is where a nickname

is used in an informal context, and a full name in a formal context. It would

be desirable for the emission distribution to incorporate contextual information.

One way to accomplish this is by directly parametrizing the joint distribution

over labeled characters. This may be understoodd as modeling sequences of

tuples, consisting of a label and a character. The probability of emitting each

tuple is dependent on all previous tuples. We may then use an RNN to score

paths of such tuples. This model poses the same inference challenges as the one

proposed in §3; however, particle Gibbs again provides an efficient solution for

approximate inference.

• We have advocated using an unstructured approach—character-level sequence

models—to model name structure. Of course, names often do exhibit a consis-

119

CHAPTER 5. CONCLUSION

tent structure; for instance, English person names typically have a first, middle,

and last name. Our proposed models implicitely capture this structure in the

continuous dynamics of the RNN, which avoids encoding any fixed assumptions

into the model. However, in unsupervised or low-resource settings, it may be

helpful to imbue the model with more latent variables, enabling it to capture

higher-order phenomena such as re-orderings or word-level variation more ef-

ficiently [Elsner et al., 2009, Charniak, 2001]. Grammar induction techniques,

usually applied to learning syntax, could be adapted to avoid manually specifying

this structure [Cohn et al., 2010, Gormley and Eisner, 2013].

• The transducer described in §4.3 could be parametrized using RNNs in several

different ways. One approach involves treating the problem as a sequence-to-

sequence RNN [Sutskever et al., 2014], in which the input string is encoded into

a continuous vector-space, which is then used to render the output string. This

approach is appealing as it does not rely on a fixed alignment between the input

and output strings, and may provide a better account for re-orderings. Another

option is to use a transducer model where the probability of different edits are

parametrized using RNNs.

• In §3.3, we propose an inference method based on sequential Monte Carlo. The

proposal q to sample the state at time t used all previous and current information.

However, it may also be beneficial to incorporate future information into the

120

CHAPTER 5. CONCLUSION

proposal, in order to minimize particle degeneracy. One promising approach for

doing so is to use a recurrent neural network as an adaptive proposal [Gu et al.,

2015]. The proposal may be adapted (optimized) by minimizing the inclusive

KL divergence between the target posterior p(y | x) and the proposal q.

5.2 Outlook

At the time of writing this thesis, there has been a resurgence in interest in neural

methods. A key strength of neural networks is their ability for feature learning. One

of the first successful attempts at natural language processing “from scratch” using

neural networks was Collobert et al. [2011]. Given enough supervised data, neural

networks are able to learn expressive continuous representations of natural language

inputs. Seminal work in machine translation has since shown the ability of recurrent

neural networks (cf. §2, §3) to encode entire input sentences into a fixed dimensional

vectors, and to produce translations based on those encodings competitive with highly

engineered approaches [Sutskever et al., 2014]. The merit of representation learning in

fully supervised settings is well-established at this point. However, there remain many

interesting research directions in settings where there are no resources or more limited

resources, and therefore require unsupervised or semi-supervised learning. A weakness

of neural networks is that they are data inefficient, requiring many examples of inputs

and desired outputs. For instance, a recent attempt at using recurrent neural networks

121

CHAPTER 5. CONCLUSION

for constituency parsing relied on an entirely separate generative model to produce

additional (noisy) supervision for the neural model from unlabeled data [Vinyals et al.,

2015]. Our view is that directly enriching generative models with neural factors, and

performing joint inference in the resulting model, may ultimately yield superior results

in various structured prediction tasks. In §3, we take some modest first steps in this

direction, and we discuss some extensions in §5.1 that we believe are quite promising.

122

Bibliography

D. B. Rubin A. P. Dempster, N. M. Laird. Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society. Series B

(Methodological), 39(1):1–38, 1977. ISSN 00359246. URL http://www.jstor.org/

stable/2984875.

David J. Aldous. École d’Été de Probabilités de Saint-Flour XIII — 1983, chapter

Exchangeability and related topics, pages 1–198. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1985. ISBN 978-3-540-39316-0. doi: 10.1007/BFb0099421.

URL http://dx.doi.org/10.1007/BFb0099421.

Waleed Ammar, Chris Dyer, and Noah A Smith. Conditional random field autoen-

coders for unsupervised structured prediction. In Advances in Neural Information

Processing Systems, pages 3311–3319, 2014.

Nicholas Andrews and Jason Eisner. Transformation process priors. In NIPS 2011

Workshop on Bayesian Nonparametrics: Hope or Hype?, Sierra Nevada, Spain,

123

http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://dx.doi.org/10.1007/BFb0099421

BIBLIOGRAPHY

December 2011. URL http://cs.jhu.edu/~jason/papers/#nipsw11-transf.

Extended abstract (3 pages).

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain

monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 72(3):269–342, 2010.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. Dbpedia: A nucleus for a web of open data. Springer, 2007.

Amit Bagga and Breck Baldwin. Entity-based cross-document coreferencing using

the vector space model. In Proceedings of the 36th Annual Meeting of the Associ-

ation for Computational Linguistics and 17th International Conference on Com-

putational Linguistics - Volume 1, ACL ’98, pages 79–85, Stroudsburg, PA, USA,

1998a. Association for Computational Linguistics. doi: 10.3115/980845.980859.

Amit Bagga and Breck Baldwin. Algorithms for scoring coreference chains. In

In The First International Conference on Language Resources and Evaluation

Workshop on Linguistics Coreference, pages 563–566, 1998b.

Alex Baron and Marjorie Freedman. Who is who and what is what: Experi-

ments in cross-document co-reference. In Proceedings of the Conference on Em-

pirical Methods in Natural Language Processing, EMNLP ’08, pages 274–283,

Stroudsburg, PA, USA, 2008. Association for Computational Linguistics. URL

http://dl.acm.org/citation.cfm?id=1613715.1613754.

124

http://cs.jhu.edu/~jason/papers/#nipsw11-transf
http://dl.acm.org/citation.cfm?id=1613715.1613754

BIBLIOGRAPHY

Regina Barzilay and Lillian Lee. Learning to paraphrase: an unsupervised ap-

proach using multiple-sequence alignment. In Proc. of NAACL-HLT, pages 16–23,

Stroudsburg, PA, USA, 2003. doi: 10.3115/1073445.1073448.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependen-

cies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5

(2):157–166, 1994.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural

probabilistic language model. J. Mach. Learn. Res., 3:1137–1155, March 2003.

ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=944919.944966.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-

Luc Gauvain. Innovations in Machine Learning: Theory and Applications, chapter

Neural Probabilistic Language Models, pages 137–186. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006. ISBN 978-3-540-33486-6. doi: 10.1007/3-540-33486-6 6.

URL http://dx.doi.org/10.1007/3-540-33486-6_6.

C. H. Bennett, M. Li, , and B. Ma. Chain letters and evolutionary histories. Scien-

tific American, 288(3):76–81, June 2003. More mathematical version available at

http://www.cs.uwaterloo.ca/~mli/chain.html.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein.

Painless unsupervised learning with features. In Human Language Technologies:

The 2010 Annual Conference of the North American Chapter of the Association

125

http://dl.acm.org/citation.cfm?id=944919.944966
http://dx.doi.org/10.1007/3-540-33486-6_6
http://www.cs.uwaterloo.ca/~mli/chain.html

BIBLIOGRAPHY

for Computational Linguistics, HLT ’10, pages 582–590, Stroudsburg, PA, USA,

2010. Association for Computational Linguistics. ISBN 1-932432-65-5. URL

http://dl.acm.org/citation.cfm?id=1857999.1858082.

Indrajit Bhattacharya and Lise Getoor. A Latent Dirichlet Model for Unsupervised

Entity Resolution, chapter 5, pages 47–58. doi: 10.1137/1.9781611972764.5. URL

http://epubs.siam.org/doi/abs/10.1137/1.9781611972764.5.

Peter J. Bickel and Kjell A. Doksum. Mathematical Statistics : Basic Ideas and

Selected Topics. Holden-Day, Inc., 1977.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Ma-

chine Learning Research, 3:993–1022, 2003. URL /home/rayder441/Documents/

PaperArchive/3-993-blei.pdf.

David M. Blei and Peter I. Frazier. Distance dependent chinese restaurant processes.

J. Mach. Learn. Res., 12:2461–2488, November 2011. ISSN 1532-4435. URL

http://dl.acm.org/citation.cfm?id=1953048.2078184.

Alexandre Bouchard-Côté. Sequential Monte Carlo (SMC) for Bayesian phylogenet-

ics. Bayesian phylogenetics: methods, algorithms, and applications, 2014.

Alexandre Bouchard-Côté, David Hall, Thomas L. Griffiths, and Dan Klein. Au-

tomated reconstruction of ancient languages using probabilistic models of sound

change. Proceedings of the National Academy of Sciences, 2013.

126

http://dl.acm.org/citation.cfm?id=1857999.1858082
http://epubs.siam.org/doi/abs/10.1137/1.9781611972764.5
/home/rayder441/Documents/PaperArchive/3-993-blei.pdf
/home/rayder441/Documents/PaperArchive/3-993-blei.pdf
http://dl.acm.org/citation.cfm?id=1953048.2078184

BIBLIOGRAPHY

Eugene Charniak. Unsupervised learning of name structure from coreference data.

In Proceedings of the Second Meeting of the North American Chapter of the As-

sociation for Computational Linguistics on Language Technologies, NAACL ’01,

pages 1–7, Stroudsburg, PA, USA, 2001. Association for Computational Linguis-

tics. doi: 10.3115/1073336.1073343. URL http://dx.doi.org/10.3115/1073336.

1073343.

David Cheriton and Robert Endre Tarjan. Finding minimum spanning trees. SIAM

Journal on Computing, 5(4):724–742, 1976.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

Christos Christodoulopoulos, Sharon Goldwater, and Mark Steedman. Two decades

of unsupervised pos induction: How far have we come? In Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing, pages 575–584.

Association for Computational Linguistics, 2010.

Trevor Cohn, Phil Blunsom, and Sharon Goldwater. Inducing tree-substitution

grammars. J. Mach. Learn. Res., 11:3053–3096, December 2010. ISSN 1532-4435.

URL http://dl.acm.org/citation.cfm?id=1756006.1953031.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

127

http://dx.doi.org/10.3115/1073336.1073343
http://dx.doi.org/10.3115/1073336.1073343
http://dl.acm.org/citation.cfm?id=1756006.1953031

BIBLIOGRAPHY

and Pavel Kuksa. Natural language processing (almost) from scratch. J. Mach.

Learn. Res., 12:2493–2537, November 2011. ISSN 1532-4435. URL http://dl.

acm.org/citation.cfm?id=1953048.2078186.

Aron Culotta, Michael Wick, Robert Hall, Matthew Marzilli, and Andrew McCallum.

Canonicalization of database records using adaptive similarity measures. In Proc.

of ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’07, pages 201–209, 2007. ISBN 978-1-59593-609-7. doi: 10.1145/

1281192.1281217.

Dipanjan Das and Slav Petrov. Unsupervised part-of-speech tagging with bilingual

graph-based projections. In Proceedings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human Language Technologies-Volume 1,

pages 600–609. Association for Computational Linguistics, 2011.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society. Series

B (Methodological), 39(1):1–38, 1977. ISSN 00359246. doi: 10.2307/2984875. URL

http://web.mit.edu/6.435/www/Dempster77.pdf.

Z. Dias, A. Rocha, and S. Goldenstein. Image phylogeny by minimal spanning trees.

IEEE Trans. on Information Forensics and Security, 7(2):774–788, April 2012.

C.H.Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and H.D. Simon. A min-max

cut algorithm for graph partitioning and data clustering. In Data Mining, 2001.

128

http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://web.mit.edu/6.435/www/Dempster77.pdf

BIBLIOGRAPHY

ICDM 2001, Proceedings IEEE International Conference on, pages 107–114, 2001.

doi: 10.1109/ICDM.2001.989507.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smooth-

ing: Fifteen years later. Handbook of Nonlinear Filtering, 12:656–704, 2009.

Markus Dreyer and Jason Eisner. Discovering morphological paradigms from plain

text using a dirichlet process mixture model. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing, EMNLP ’11, pages 616–

627, Stroudsburg, PA, USA, 2011a. Association for Computational Linguistics.

ISBN 978-1-937284-11-4. URL http://dl.acm.org/citation.cfm?id=2145432.

2145504.

Markus Dreyer and Jason Eisner. Discovering morphological paradigms from plain

text using a Dirichlet process mixture model. In Proc. of EMNLP, pages 616–627,

2011b. Supplementary material (9 pages) also available.

Markus Dreyer, Jason Smith, and Jason Eisner. Latent-variable modeling of string

transductions with finite-state methods. In Proceedings of the 2008 Conference

on Empirical Methods in Natural Language Processing, pages 1080–1089, Honolulu,

Hawaii, October 2008a. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/D08-1113.

Markus Dreyer, Jason Smith, and Jason Eisner. Latent-variable modeling of string

transductions with finite-state methods. In Proc. of EMNLP, pages 1080–1089,

129

http://dl.acm.org/citation.cfm?id=2145432.2145504
http://dl.acm.org/citation.cfm?id=2145432.2145504
http://www.aclweb.org/anthology/D08-1113
http://www.aclweb.org/anthology/D08-1113

BIBLIOGRAPHY

Honolulu, Hawaii, October 2008b. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/D08-1113.

Gregory Dubbin and Phil Blunsom. Unsupervised bayesian part of speech inference

with particle gibbs. In Machine Learning and Knowledge Discovery in Databases,

pages 760–773. Springer, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-

line learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159,

July 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=

1953048.2021068.

Greg Durrett and Dan Klein. Easy victories and uphill battles in coreference reso-

lution. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, pages 1971–1982. Association for Computational Linguistics,

2013. URL http://aclweb.org/anthology/D13-1203.

Jacob Eisenstein, Tae Yano, William W. Cohen, Noah A. Smith, and Eric P. Xing.

Structured databases of named entities from Bayesian nonparametrics. In Proceed-

ings of the First Workshop on Unsupervised Learning in NLP, EMNLP ’11, pages

2–12, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

ISBN 978-1-937284-13-8. URL http://dl.acm.org/citation.cfm?id=2140458.

2140460.

Jason Eisner. Transformational priors over grammars. In Proceedings of the Confer-

130

http://www.aclweb.org/anthology/D08-1113
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://aclweb.org/anthology/D13-1203
http://dl.acm.org/citation.cfm?id=2140458.2140460
http://dl.acm.org/citation.cfm?id=2140458.2140460

BIBLIOGRAPHY

ence on Empirical Methods in Natural Language Processing (EMNLP), Philadel-

phia, July 2002. URL http://cs.jhu.edu/~jason/papers/#emnlp02.

Micha Elsner, Eugene Charniak, and Mark Johnson. Structured generative models

for unsupervised named-entity clustering. In Proceedings of Human Language

Technologies: The 2009 Annual Conference of the North American Chapter of

the Association for Computational Linguistics, pages 164–172. Association for

Computational Linguistics, 2009.

T. Finin, Z. Syed, J. Mayfield, P. McNamee, and C. Piatko. Using Wikitology

for cross-document entity coreference resolution. In AAAI Spring Symposium

on Learning by Reading and Learning to Read, 2009. URL /home/rayder441/

Documents/PaperArchive/finin-coref09.pdf.

Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, and Zoubin Ghahramani. Beam

sampling for the infinite hidden markov model. In Proceedings of the 25th interna-

tional conference on Machine learning, pages 1088–1095. ACM, 2008.

Dan Garrette and Jason Baldridge. Learning a part-of-speech tagger from two hours

of annotation. In HLT-NAACL, pages 138–147. Citeseer, 2013.

Jan Gasthaus and Yee Whye Teh. Improvements to the sequence memoizer. In

NIPS, pages 685–693, 2010.

F.A. Gers and J. Schmidhuber. Lstm recurrent networks learn simple context-free

131

http://cs.jhu.edu/~jason/papers/#emnlp02
/home/rayder441/Documents/PaperArchive/finin-coref09.pdf
/home/rayder441/Documents/PaperArchive/finin-coref09.pdf

BIBLIOGRAPHY

and context-sensitive languages. Neural Networks, IEEE Transactions on, 12(6):

1333–1340, Nov 2001. ISSN 1045-9227. doi: 10.1109/72.963769.

Walter R Gilks. Markov chain monte carlo. Wiley Online Library, 2005.

Sharon Goldwater and Tom Griffiths. A fully bayesian approach to unsuper-

vised part-of-speech tagging. In Proceedings of the 45th Annual Meeting of

the Association of Computational Linguistics, pages 744–751, Prague, Czech

Republic, June 2007. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/P07-1094.

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. Contextual depen-

dencies in unsupervised word segmentation. In Proceedings of the 21st Inter-

national Conference on Computational Linguistics and the 44th Annual Meet-

ing of the Association for Computational Linguistics, ACL-44, pages 673–680,

Stroudsburg, PA, USA, 2006. Association for Computational Linguistics. doi:

10.3115/1220175.1220260. URL http://dx.doi.org/10.3115/1220175.1220260.

Javier Gonzalez-Dominguez, Ignacio Lopez-Moreno, Hasim Sak, Joaquin Gonzalez-

Rodriguez, and Pedro J Moreno. Automatic language identification using long

short-term memory recurrent neural networks. 2014.

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B

Tenenbaum. Church: a language for generative models. arXiv preprint

arXiv:1206.3255, 2012.

132

http://www.aclweb.org/anthology/P07-1094
http://www.aclweb.org/anthology/P07-1094
http://dx.doi.org/10.3115/1220175.1220260

BIBLIOGRAPHY

Matthew R. Gormley and Jason Eisner. Nonconvex global optimization for latent-

variable models. In Proceedings of ACL, August 2013.

Spence Green, Nicholas Andrews, Matthew R. Gormley, Mark Dredze, and Christo-

pher D. Manning. Entity clustering across languages. In Proceedings of the

2012 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, NAACL HLT ’12, pages

60–69, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.

ISBN 978-1-937284-20-6. URL http://dl.acm.org/citation.cfm?id=2382029.

2382039.

Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of

the National Academy of Sciences of the United States of America, 101(Suppl 1):

5228–5235, 2004.

Shixiang Gu, Zoubin Ghahramani, and Richard E Turner. Neural adaptive sequen-

tial monte carlo. In C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, and

R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages

2611–2619. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/

5961-neural-adaptive-sequential-monte-carlo.pdf.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences—Computer Science and

Computational Biology. Cambridge University Press, 1997. ISBN 0-521-58519-8.

Aria Haghighi and Dan Klein. Coreference resolution in a modular, entity-centered

133

http://dl.acm.org/citation.cfm?id=2382029.2382039
http://dl.acm.org/citation.cfm?id=2382029.2382039
http://papers.nips.cc/paper/5961-neural-adaptive-sequential-monte-carlo.pdf
http://papers.nips.cc/paper/5961-neural-adaptive-sequential-monte-carlo.pdf

BIBLIOGRAPHY

model. In Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, pages

385–393, Los Angeles, California, June 2010. Association for Computational Lin-

guistics. URL http://www.aclweb.org/anthology/N10-1061.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein. Learning

bilingual lexicons from monolingual corpora. In Proc. of ACL-08: HLT, pages

771–779, 2008. URL http://www.aclweb.org/anthology/P/P08/P08-1088.

David Hall and Dan Klein. Finding cognates using phylogenies. In Association for

Computational Linguistics (ACL), 2010.

David Hall and Dan Klein. Large-scale cognate recovery. In Proc. of EMNLP,

Edinburgh, Scotland, July 2011.

Rob Hall, Charles Sutton, and Andrew McCallum. Unsupervised deduplication using

cross-field dependencies. In Proc. of the ACM SIGKDD International Conference

On Knowledge Discovery and Data Mining, KDD ’08, pages 310–317, 2008. ISBN

978-1-60558-193-4. doi: http://doi.acm.org/10.1145/1401890.1401931. URL

http://doi.acm.org/10.1145/1401890.1401931.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580, 2012.

134

http://www.aclweb.org/anthology/N10-1061
http://www.aclweb.org/anthology/P/P08/P08-1088
http://doi.acm.org/10.1145/1401890.1401931

BIBLIOGRAPHY

S Hochreiter and J Schmidhuber. Long short-term memory. Neural Computation, 9

(8):1735–1780, Nov 1997a. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time lag prob-

lems. Advances in neural information processing systems, pages 473–479, 1997b.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient

flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

Fred M. Hoppe. Pólya-like urns and the ewens’ sampling formula. Journal of Math-

ematical Biology, 20(1):91–94, 1984. ISSN 1432-1416. doi: 10.1007/BF00275863.

URL http://dx.doi.org/10.1007/BF00275863.

Ann Irvine, Chris Callison-Burch, and Alexandre Klementiev. Transliterating from

all languages. In Proceedings of The Ninth Biennial Conference of the Association

for Machine Translation in the Americas, Denver, Colorado, 2010. URL http://

cis.upenn.edu/~ccb/publications/transliterating-from-all-languages.

pdf.

Hemant Ishwaran and Lancelot F James. Gibbs sampling methods for stick-breaking

priors. Journal of the American Statistical Association, 96(453), 2001.

Md. Enamul. Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida. Mal-

ware phylogeny generation using permutations of code. Journal in Computer

Virology, 1(1–2):13–23, 2005.

135

http://dx.doi.org/10.1007/BF00275863
http://cis.upenn.edu/~ccb/publications/transliterating-from-all-languages.pdf
http://cis.upenn.edu/~ccb/publications/transliterating-from-all-languages.pdf
http://cis.upenn.edu/~ccb/publications/transliterating-from-all-languages.pdf

BIBLIOGRAPHY

Junichi Kazama and Kentaro Torisawa. Exploiting wikipedia as external knowledge

for named entity recognition. In Proceedings of the 2007 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, pages 698–707, 2007.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Alexandre Klementiev and Dan Roth. Weakly supervised named entity translitera-

tion and discovery from multilingual comparable corpora. In Proc. of COLING-

ACL, pages 817–824, 2006. URL http://www.aclweb.org/anthology/P/P06/

P06-1103.

K. Knight and J. Graehl. Machine transliteration. Computational Linguistics, 24:

599–612, 1998.

Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. Structured pre-

diction models via the matrix-tree theorem. In Proc. of EMNLP-CoNLL, pages

141–150, 2007. URL http://www.aclweb.org/anthology/D/D07/D07-1015.

Zornitsa Kozareva. Bootstrapping named entity recognition with automatically

generated gazetteer lists. In Proceedings of the eleventh conference of the European

chapter of the association for computational linguistics: student research workshop,

pages 15–21. Association for Computational Linguistics, 2006.

136

http://arxiv.org/abs/1412.6980
http://www.aclweb.org/anthology/P/P06/P06-1103
http://www.aclweb.org/anthology/P/P06/P06-1103
http://www.aclweb.org/anthology/D/D07/D07-1015

BIBLIOGRAPHY

Rémi Lebret and Ronan Collobert. Word embeddings through hellinger pca. EACL

2014, page 482, 2014.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai Surdeanu, and Dan Jurafsky.

Joint entity and event coreference resolution across documents. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing and Com-

putational Natural Language Learning (EMNLP-CoNLL), 2012.

Richard A. Levine and George Casella. Implementations of the Monte Carlo EM

Algorithm. Journal of Computational and Graphical Statistics, 10(3):422–439,

2001. ISSN 10618600. doi: 10.2307/1391097. URL http://dx.doi.org/10.2307/

1391097.

David D Lewis. Naive (bayes) at forty: The independence assumption in information

retrieval. In Machine learning: ECML-98, pages 4–15. Springer, 1998.

Shen Li, Joao V Graça, and Ben Taskar. Wiki-ly supervised part-of-speech tagging.

In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning, pages 1389–

1398. Association for Computational Linguistics, 2012.

Fredrik Lindsten, Thomas Schön, and Michael I Jordan. Ancestor sampling for

particle gibbs. In Advances in Neural Information Processing Systems, pages

2591–2599, 2012.

137

http://dx.doi.org/10.2307/1391097
http://dx.doi.org/10.2307/1391097

BIBLIOGRAPHY

Jun S Liu. The collapsed gibbs sampler in bayesian computations with applications

to a gene regulation problem. Journal of the American Statistical Association, 89

(427):958–966, 1994.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris

Watkins. Text classification using string kernels. J. Mach. Learn. Res., 2:419–

444, March 2002. ISSN 1532-4435. doi: 10.1162/153244302760200687. URL

http://dx.doi.org/10.1162/153244302760200687.

Marco Lui and Timothy Baldwin. langid. py: An off-the-shelf language identifica-

tion tool. In Proceedings of the ACL 2012 system demonstrations, pages 25–30.

Association for Computational Linguistics, 2012.

Larry M. Manevitz and Malik Yousef. One-class svms for document classification.

J. Mach. Learn. Res., 2:139–154, March 2002. ISSN 1532-4435. URL http://dl.

acm.org/citation.cfm?id=944790.944808.

Andrew McCallum, Chris Pal, Greg Druck, and Xuerui Wang. Multi-conditional

learning: Generative/discriminative training for clustering and classification. In

Proceedings of the 21st National Conference on Artificial Intelligence - Volume

1, AAAI’06, pages 433–439. AAAI Press, 2006. ISBN 978-1-57735-281-5. URL

http://dl.acm.org/citation.cfm?id=1597538.1597608.

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda. Bayesian unsupervised

word segmentation with nested pitman-yor language modeling. In Proceedings of

138

http://dx.doi.org/10.1162/153244302760200687
http://dl.acm.org/citation.cfm?id=944790.944808
http://dl.acm.org/citation.cfm?id=944790.944808
http://dl.acm.org/citation.cfm?id=1597538.1597608

BIBLIOGRAPHY

the Joint Conference of the 47th Annual Meeting of the ACL and the 4th Interna-

tional Joint Conference on Natural Language Processing of the AFNLP: Volume

1-Volume 1, pages 100–108. Association for Computational Linguistics, 2009.

Karthika Mohan, Judea Pearl, and Jin Tian. Graphical models for inference with

missing data. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.

Weinberger, editors, Advances in Neural Information Processing Systems 26, pages

1277–1285. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

4899-graphical-models-for-inference-with-missing-data.pdf.

David Nadeau and Satoshi Sekine. A survey of named entity recognition and classifi-

cation. Lingvisticae Investigationes, 30(1):3–26, 2007.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi. Dependency tree-based

sentiment classification using crfs with hidden variables. In Human Language

Technologies: The 2010 Annual Conference of the North American Chapter of the

Association for Computational Linguistics, HLT ’10, pages 786–794, Stroudsburg,

PA, USA, 2010. Association for Computational Linguistics. ISBN 1-932432-65-5.

URL http://dl.acm.org/citation.cfm?id=1857999.1858119.

Feiping Nie, Chris H. Q. Ding, Dijun Luo, and Heng Huang. Improved minmax

cut graph clustering with nonnegative relaxation. In José L. Balcázar, Francesco

Bonchi, Aristides Gionis, and Michèle Sebag, editors, ECML/PKDD (2), volume

139

http://papers.nips.cc/paper/4899-graphical-models-for-inference-with-missing-data.pdf
http://papers.nips.cc/paper/4899-graphical-models-for-inference-with-missing-data.pdf
http://dl.acm.org/citation.cfm?id=1857999.1858119

BIBLIOGRAPHY

6322 of Lecture Notes in Computer Science, pages 451–466. Springer, 2010. ISBN

978-3-642-15882-7.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In Proceedings of The 30th International Conference

on Machine Learning, pages 1310–1318, 2013.

Mihael Perman, Jim Pitman, and Marc Yor. Size-biased sampling of poisson point

processes and excursions. Probability Theory and Related Fields, 92(1):21–39,

1992.

David MW Powers. Applications and explanations of zipf’s law. In Proceedings of

the joint conferences on new methods in language processing and computational

natural language learning, pages 151–160. Association for Computational Linguis-

tics, 1998.

Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning. La-

beled lda: A supervised topic model for credit attribution in multi-labeled corpora.

In Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing: Volume 1 - Volume 1, EMNLP ’09, pages 248–256, Stroudsburg, PA,

USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-59-6.

URL http://dl.acm.org/citation.cfm?id=1699510.1699543.

William M. Rand. Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66(336):846–850, 1971. doi:

140

http://dl.acm.org/citation.cfm?id=1699510.1699543

BIBLIOGRAPHY

10.1080/01621459.1971.10482356. URL http://www.tandfonline.com/doi/

abs/10.1080/01621459.1971.10482356.

Delip Rao, Paul McNamee, and Mark Dredze. Streaming cross document entity

coreference resolution. In Proceedings of the 23rd International Conference on

Computational Linguistics: Posters, COLING ’10, pages 1050–1058, Stroudsburg,

PA, USA, 2010. Association for Computational Linguistics. URL http://dl.acm.

org/citation.cfm?id=1944566.1944687.

Jason DM Rennie and Ryan Rifkin. Improving multiclass text classification with the

support vector machine. 2001.

Eric Sven Ristad and Peter N. Yianilos. Learning string edit distance. Technical

Report CS-TR-532-96, Princeton University, Department of Computer Science,

1996.

Eric Sven Ristad and Peter N. Yianilos. Learning string edit distance. IEEE Trans-

actions on Pattern Recognition and Machine Intelligence, 20(5):522–532, May

1998.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid. An algorithm for unsu-

pervised transliteration mining with an application to word alignment. In

Proc. of ACL, pages 430–439, 2011. ISBN 978-1-932432-87-9. URL http:

//dl.acm.org/citation.cfm?id=2002472.2002527.

141

http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://dl.acm.org/citation.cfm?id=1944566.1944687
http://dl.acm.org/citation.cfm?id=1944566.1944687
http://dl.acm.org/citation.cfm?id=2002472.2002527
http://dl.acm.org/citation.cfm?id=2002472.2002527

BIBLIOGRAPHY

Charles Schafer. Translation Discovery Using Diverse Smilarity Measures. PhD

thesis, Johns Hopkins University, 2006.

Sameer Singh, Amarnag Subramanya, Fernando Pereira, and Andrew McCallum.

Large-scale cross-document coreference using distributed inference and hierar-

chical models. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, pages 793–803, Port-

land, Oregon, USA, June 2011. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/P11-1080.

Andrew Smith and Miles Osborne. Using gazetteers in discriminative information

extraction. In Proceedings of the Tenth Conference on Computational Natural

Language Learning, pages 133–140. Association for Computational Linguistics,

2006.

David A. Smith and Noah A. Smith. Probabilistic models of nonprojective depen-

dency trees. In Proc. of EMNLP-CoNLL, pages 132–140, 2007.

R. T. Smythe and H. M. Mahmoud. A survey of recursive trees. Theory of Probabil-

ity and Mathematical Statistics, 51(1–27), 1995.

Benjamin Snyder, Regina Barzilay, and Kevin Knight. A statistical model for lost

language decipherment. In Proc. of ACL, pages 1048–1057, 2010. URL http:

//www.aclweb.org/anthology/P10-1107.

142

http://www.aclweb.org/anthology/P11-1080
http://www.aclweb.org/anthology/P10-1107
http://www.aclweb.org/anthology/P10-1107

BIBLIOGRAPHY

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-

ting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages

3104–3112, 2014.

Charles Sutton, Michael Sindelar, and Andrew McCallum. Reducing weight un-

dertraining in structured discriminative learning. In Proceedings of the Main

Conference on Human Language Technology Conference of the North American

Chapter of the Association of Computational Linguistics, HLT-NAACL ’06, pages

89–95, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers.

Neural Processing Letters, 9(3):293–300, 1999. ISSN 1370-4621. doi: 10.1023/A:

1018628609742. URL http://dx.doi.org/10.1023/A%3A1018628609742.

Koichiro Tamura, Daniel Peterson, Nicholas Peterson, Glen Stecher, Masatoshi Nei,

and Sudhir Kumar. Mega5: Molecular evolutionary genetics analysis using maxi-

mum likelihood, evolutionary distance, and maximum parsimony methods. Molec-

ular Biology and Evolution, 28(10):2731–2739, 2011. doi: 10.1093/molbev/msr121.

URL http://mbe.oxfordjournals.org/content/28/10/2731.abstract.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent

143

http://dx.doi.org/10.1023/A%3A1018628609742
http://mbe.oxfordjournals.org/content/28/10/2731.abstract

BIBLIOGRAPHY

neural network for sentiment classification. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 1422–1432, Lisbon,

Portugal, September 2015. Association for Computational Linguistics. URL http:

//aclweb.org/anthology/D15-1167.

Yee Whye Teh. A hierarchical bayesian language model based on pitman-yor pro-

cesses. In Proceedings of the 21st International Conference on Computational

Linguistics and the 44th annual meeting of the Association for Computational

Linguistics, pages 985–992. Association for Computational Linguistics, 2006.

Luke Tierney. Markov Chains for Exploring Posterior Distributions. The Annals of

Statistics, 22(4):1701–1728, 1994. ISSN 00905364.

Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared

task: Language-independent named entity recognition. In Proceedings of the

seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4,

pages 142–147. Association for Computational Linguistics, 2003.

Antonio Toral and Rafael Munoz. A proposal to automatically build and maintain

gazetteers for named entity recognition by using wikipedia. In Proceedings of

EACL, pages 56–61, 2006.

Pedro A Torres-Carrasquillo, Elliot Singer, Mary A Kohler, Richard J Greene, Dou-

glas A Reynolds, and John R Deller Jr. Approaches to language identification

144

http://aclweb.org/anthology/D15-1167
http://aclweb.org/anthology/D15-1167

BIBLIOGRAPHY

using gaussian mixture models and shifted delta cepstral features. In INTER-

SPEECH, 2002.

W. Tutte. Graph Theory. Addison-Wesley, 1984.

Anand Venkataraman. A statistical model for word discovery in transcribed speech.

Comput. Linguist., 27(3):352–372, September 2001. ISSN 0891-2017. URL http:

//dl.acm.org/citation.cfm?id=972655.972657.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey

Hinton. Grammar as a foreign language. In Advances in Neural Information

Processing Systems, pages 2755–2763, 2015.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-

base. Communications of the ACM, 57(10):78–85, 2014.

Hanna Wallach, David Mimno, and Andrew McCallum. Rethinking lda: Why priors

matter. In Advances in Neural Information Processing Systems, pages 1973–1981,

2009.

Mengqiu Wang, Wanxiang Che, and Christopher D. Manning. Joint word alignment

and bilingual named entity recognition using dual decomposition. In Association

for Computational Linguistics (ACL), 2013. URL http://nlp.stanford.edu/

pubs/wang-etal-acl13.pdf.

145

http://dl.acm.org/citation.cfm?id=972655.972657
http://dl.acm.org/citation.cfm?id=972655.972657
http://nlp.stanford.edu/pubs/wang-etal-acl13.pdf
http://nlp.stanford.edu/pubs/wang-etal-acl13.pdf

BIBLIOGRAPHY

Wikipedia. Wikipedia, the free encyclopedia, 2015. URL http://en.wikipedia.

org/. [Online; 2015].

Frank Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James, and Yee Whye

Teh. A stochastic memoizer for sequence data. In Proceedings of the 26th Annual

International Conference on Machine Learning, pages 1129–1136. ACM, 2009.

Tae Yano, William W. Cohen, and Noah A. Smith. Predicting response to political

blog posts with topic models. In Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Association

for Computational Linguistics, NAACL ’09, pages 477–485, Stroudsburg, PA, USA,

2009. Association for Computational Linguistics. ISBN 978-1-932432-41-1. URL

http://dl.acm.org/citation.cfm?id=1620754.1620824.

Dani Yogatama, Yanchuan Sim, and Noah A. Smith. A probabilistic model for

canonicalizing named entity mentions. In Proceedings of the 50th Annual Meeting

of the Association for Computational Linguistics: Long Papers - Volume 1, ACL

’12, pages 685–693, Stroudsburg, PA, USA, 2012. Association for Computational

Linguistics. URL http://dl.acm.org/citation.cfm?id=2390524.2390621.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329, 2014.

GuoDong Zhou and Jian Su. Named entity recognition using an hmm-based chunk

tagger. In Proceedings of the 40th Annual Meeting on Association for Compu-

146

http://en.wikipedia.org/
http://en.wikipedia.org/
http://dl.acm.org/citation.cfm?id=1620754.1620824
http://dl.acm.org/citation.cfm?id=2390524.2390621

BIBLIOGRAPHY

tational Linguistics, ACL ’02, pages 473–480, Stroudsburg, PA, USA, 2002. As-

sociation for Computational Linguistics. doi: 10.3115/1073083.1073163. URL

http://dx.doi.org/10.3115/1073083.1073163.

147

http://dx.doi.org/10.3115/1073083.1073163

Vita

Nicholas was born in Dallas, Texas, in 1984, to British parents. He grew up in

Geneva, Switzerland before returning to the United States in 2000. He obtained

Bachelors’ degrees in Mathematics and Computer Science from Virginia Tech in

Blacksburg, Virginia in 2008. Prior to joining the doctoral program at Johns Hopkins

University, Nicholas worked as an associate scientist at BBN Technologies for one

year, where he was converted to the Church of Emacs. He defended his Ph.D. in

Computer Science at Johns Hopkins University in 2015, advised by Prof. Jason Eisner

and Prof. Mark Dredze. He was affiliated with the Center for Language and Speech

Processing and Human Language Technologies Center of Excellence. Nicholas resides

in Washington D.C. with his girlfriend Maria-Veronica and their dog, Bubba.

148

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Chapter Abstracts

	Predicting Sequence Attributes using Recurrent Neural Networks
	Chapter Overview
	Data
	Types and Tokens
	Pitman-Yor Processes

	Sequence Models
	Bayesian Non-Parametric Language Models
	Recurrent Neural Networks

	Learning from Gazetteers
	Entity Name Models
	Improved RNN Parametrizations
	Joint conditional RNNs
	Multi-Conditional Learning
	Experiments

	Summary
	Related Work

	Hidden Non-Markov Models
	Chapter Overview
	Hidden Non-Markov Models
	Context model
	Emission model

	Inference via Particle Gibbs
	Part-of-Speech Induction
	Latent Segmentations
	A Memoized Neural Model
	NER with the Memoizer-Neural Model
	Related Work

	Learning String-to-String Transducers via Phylogenetic Inference
	Introduction
	Name Phylogeny
	Generative Story: Simple Version
	Relationship to other models

	A Mutation Model for Name Strings
	Pragmatics

	Inference
	An unrealistically supervised setting
	The unsupervised setting
	The semi-supervised setting
	Spanning tree algorithms

	Training the Transducer with EM
	Modeling Names in Context
	Generative Story: Full Version
	Sub-model for parent selection

	Inference by Block Gibbs Sampling
	Resampling the ordering
	Resampling the topics
	Resampling the phylogeny
	Initializing the sampler

	Parameter Estimation: Revisited
	Consensus Clustering
	Experiments
	Wikipedia Redirects
	Twitter
	Newswire
	Blogs
	Discussion

	Related Work

	Conclusion
	Extensions
	Outlook

	Vita

