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Abstract

In this dissertation, we examine applications of neural machine translation to

computer aided translation, with the goal of building tools for human translators.

We present a neural approach to interactive translation prediction (a form of “auto-

complete” for human translators) and demonstrate its effectiveness through both

simulation studies, where it outperforms a phrase-based statistical machine translation

approach, and a user study. We find that about half of the translators in the study are

faster using neural interactive translation prediction than they are when post-editing

output of the same underlying machine translation system, and most translators

express positive reactions to the tool. We perform an analysis of some challenges

that neural machine translation systems face, particularly with respect to novel words

and consistency. We experiment with methods of improving translation quality at

a fine-grained level to address those challenges. Finally, we bring these two areas –

interactive and adaptive neural machine translation – together in a simulation that

shows that their combination has a positive impact on novel word translation and

other metrics.
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Chapter 1

Introduction

In recent years, machine translation quality has improved by leaps and bounds.

For many domains and language pairs, it is of sufficiently high quality to enable

assimilative use by a reader, for example someone interested in reading a news article

in a language that they do not know. We have also seen advances in machine translation

for communication; with easy access to online translation systems (including speech-

to-speech translation), machine translation tools are used by some for near-instant

communication across language barriers. This dissertation focuses on a third goal

of machine translation: dissemination, or machine translation for the purpose of

publishing and sharing information in more than one language.

Even with progress in machine translation research, there are still numerous

translation use cases which require the attention of human translators, and this is likely

to remain the case for the foreseeable future – particularly in the case of translation for
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dissemination. Human translation is necessary in cases where translation quality must

meet a high threshold, such as medical, government, or legal translations. However,

the higher quality of human translation comes at a cost in terms of speed: a human

translator may be able to translate on the order of 2000 words a day (Chan, 2002)

while a machine translation system can translate more than twice that number of

words in a single second. Research in computer aided translation seeks to assist human

translators by incorporating the strengths of machine translation into tools that can

be used in their work.

This dissertation focuses on two main topics in neural machine translation and

computer aided translation: interactivity and adaptivity. The interactive portion

covers research on neural interactive translation prediction. Interactive translation

prediction operates like “auto-complete for translators” – similar to how auto-complete

on a smartphone or tablet predicts the next word that the user might type, interactive

translation prediction predicts the next words in a translation, based on the source

sentence and the translation produced thus far. The translator can either accept the

system’s suggestions or type their own corrections, after which the system adjusts

and returns updated suggestions. Today’s neural machine translation systems provide

an interesting opportunity for exploring computer aided translation and interactive

machine translation in particular. Not only are they showing state-of-the-art perfor-

mance in MT evaluations, but their decoding process is naturally analogous to human

sentence production in that it proceeds from the beginning of the sentence to the
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end, producing one token at a time. We describe a neural approach to interactive

translation prediction and run a user study with professional translators to validate

its usefulness and collect translator impressions. Approximately half of the transla-

tors were able to translate more quickly using interactive translation prediction (as

compared to post-editing), and most had positive impressions of the tool.

The adaptive portion of the dissertation focuses on improving the underlying ma-

chine translation systems by incorporating feedback from human translator corrections

and from data resources like small bilingual lexicons. Simulating translator interac-

tions, we show that these adaptive techniques can perform fine-grained adaptation,

improving translation over the course of translating a single document. Bringing the

two portions of the dissertation together, we show that a combination of interactive

and adaptive machine translation has a positive impact on several metrics that relate

to translator efficiency and to known pain points for human translators.

1.1 Contributions

The main contributions of this dissertation are:

• An approach to interactive translation prediction using a neural machine trans-

lation system.

• A user study and examination of translator performance with and perception of

neural interactive translation prediction.
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• An analysis of neural machine translation performance on rare and challenging

words.

• A demonstration of the effectiveness of several approaches to fine-grained adapta-

tion of neural machine translation systems, which could be applied in computer

aided translation settings.

1.2 Structure of the Dissertation

The dissertation is structured as follows:

• Part II provides a survey of prior art in relevant areas of research.

– Chapter 2 describes machine translation research, including a brief overview

of machine translation history, phrase-based statistical machine translation,

and neural machine translation. It also covers issues specific to the handling

of vocabulary in neural machine translation as well as approaches to domain

adaptation.

– Chapter 3 focuses on the interaction between human translators and ma-

chines. It includes a discussion of the history of computer aided translation

research, with a focus on tools for interactive translation.

– Chapter 4 covers the data and models that are used most frequently across

the dissertation. Data and models that are used only once (rather than
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across multiple chapters) are introduced and described at the point at

which they are used.

• Part III consists of two chapters describing research on neural interactive trans-

lation prediction.

– Chapter 5 introduces neural interactive translation prediction, an editing

mode for human translators interacting with machine translation output.

It provides a proof of concept through simulations, which show that in-

teractive translation prediction with neural models outperforms the same

using phrase-based statistical machine translation systems, even when the

underlying machine translation quality of the two models is comparable.

– Chapter 6 takes the approach of the previous chapter and implements

GPU-based neural interactive translation prediction in a computer aided

translation tool for use in a user study. The results of a small user study

show promise for the usefulness of the technique, and an analysis of trans-

lator surveys indicate overall positive sentiment toward neural interactive

translation prediction.

• Part IV considers the types of errors that translators may encounter when using

a computer aided translation tool and examines the ways that such machine

translation challenges can be addressed to improve translation performance in

the computer aided translation setting.
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– Chapter 7 analyzes machine translation behavior with a focus on word-level

performance. This includes an examination of the challenge that rare and

novel words pose to machine translation systems, an examination of word

copying in neural machine translation, and brief case studies of consistency

in human and machine translation at the document level. All of this

work serves to provide evidence of the need for computer aided translation

solutions that address these challenges.

– Chapter 8 proposes two methods for addressing the aforementioned issues of

rare words and consistency. The first approach, dictionary training, focuses

only on improving the translation on novel words (which may appear

multiple times in a new document). The second approach, single-sentence

adaptation, can provide improvements in terms of consistency as well as

novel word translation. Finally, the two approaches are combined. We

evaluate these by simulating the realistic scenario of a human translator

being tasked with translating whole documents sentence by sentence.

• Part V, which consists of Chapter 9, brings together the two main contributions

of the dissertation: interactive and adaptive neural machine translation for

computer aided translation. In simulation, this chapter shows the potential for

improved performance when fine-grained adaptation is combined with neural

interactive translation prediction.
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1.3 Publications

Significant portions of this dissertation are based on the work published during

my1 time as a graduate student. Their contributions to individual chapters can be

described approximately as follows. Individual chapters provide more information

about the papers used and the contributions of the authors.

• Chapter 5 draws primarily from: Rebecca Knowles and Philipp Koehn (2016).

“Neural Interactive Translation Prediction”. In: Proceedings of the Conference

of the Association for Machine Translation in the Americas (AMTA). Austin,

Texas, USA. url: https://amtaweb.org/wp-content/uploads/2016/10/

AMTA2016_Research_Proceedings_v7.pdf#page=113

• Chapter 6 draws primarily from: Rebecca Knowles, Marina Sanchez-Torron, and

Philipp Koehn (2019). “A user study of neural interactive translation prediction”.

In: Machine Translation. url: https://doi.org/10.1007/s10590-019-

09235-8

• Chapter 7 draws from the following papers:

– Philipp Koehn and Rebecca Knowles (2017). “Six Challenges for Neural

Machine Translation”. In: Proceedings of the First Workshop on Neural

1Outside of this introduction, the main body of the remainder of this dissertation uses the first
person plural (“we”) rather than the singular (“I”), a choice made for the sake of consistency,
tradition, and so as not to disregard the contributions made by colleagues and coauthors in the case
of joint work. Those collaborations are described in more detail in the relevant sections.
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Machine Translation. Vancouver, Canada: Association for Computational

Linguistics, pp. 28–39. url: https://www.aclweb.org/anthology/W17-

3204

– Rebecca Knowles and Philipp Koehn (2018a). “Context and Copying in

Neural Machine Translation”. In: Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing. Brussels, Belgium:

Association for Computational Linguistics, pp. 3034–3041. url: https:

//www.aclweb.org/anthology/D18-1339

• Chapter 8 draws primarily from: Sachith Sri Ram Kothur, Rebecca Knowles,

and Philipp Koehn (2018). “Document-Level Adaptation for Neural Machine

Translation”. In: Proceedings of the 2nd Workshop on Neural Machine Trans-

lation and Generation. Melbourne, Australia: Association for Computational

Linguistics, pp. 64–73. url: https://www.aclweb.org/anthology/W18-2708

Work from the following publication is also addressed briefly: Rebecca Knowles

and Philipp Koehn (2018b). “Lightweight Word-Level Confidence Estimation for

Neural Interactive Translation Prediction”. In: Proceedings of the AMTA 2018

Workshop on Translation Quality Estimation and Automatic Post-Editing. Boston,

Massachusetts, USA: Association for Machine Translation in the Americas, pp. 35–40.

url: https://www.aclweb.org/anthology/W18-2102
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1.4 Additional Publications

The following publications were also produced during my time as a graduate

student, but do not form part of this dissertation.

• Machine Translation:

– Huda Khayrallah, Rebecca Knowles, Kevin Duh, and Matt Post (2019). “An

Interactive Teaching Tool for Introducing Novices to Machine Translation”.

In: Proceedings of the 50th ACM Technical Symposium on Computer Science

Education. SIGCSE ’19. Minneapolis, Minnesota, USA: ACM, pp. 1276–

1276. url: http://doi.acm.org/10.1145/3287324.3293840

– Rebecca Knowles, John Ortega, and Philipp Koehn (2018). “A Comparison

of Machine Translation Paradigms for Use in Black-Box Fuzzy-Match

Repair”. In: Proceedings of the AMTA 2018 Workshop on Translation

Quality Estimation and Automatic Post-Editing. Boston, Massachusetts,

USA: Association for Machine Translation in the Americas, pp. 249–255.

url: https://www.aclweb.org/anthology/W18-2108

– Christo Kirov, John Sylak-Glassman, Rebecca Knowles, Ryan Cotterell,

and Matt Post (2017). “A Rich Morphological Tagger for English: Ex-

ploring the Cross-Linguistic Tradeoff Between Morphology and Syntax”.

In: Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics: Volume 2, Short Papers. Valen-
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cia, Spain: Association for Computational Linguistics, pp. 112–117. url:

https://www.aclweb.org/anthology/E17-2018

• Other topics:

– Rebecca Knowles, Adithya Renduchintala, Philipp Koehn, and Jason Eisner

(2016). “Analyzing Learner Understanding of Novel L2 Vocabulary”. In:

Proceedings of The 20th SIGNLL Conference on Computational Natural

Language Learning. Berlin, Germany: Association for Computational

Linguistics, pp. 126–135. url: https://www.aclweb.org/anthology/

K16-1013

– Adithya Renduchintala, Rebecca Knowles, Philipp Koehn, and Jason Eisner

(2016b). “User Modeling in Language Learning with Macaronic Texts”.

In: Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers). Berlin, Germany: As-

sociation for Computational Linguistics, pp. 1859–1869. url: https:

//www.aclweb.org/anthology/P16-1175

– Adithya Renduchintala, Rebecca Knowles, Philipp Koehn, and Jason Eisner

(2016a). “Creating Interactive Macaronic Interfaces for Language Learning”.

In: Proceedings of ACL-2016 System Demonstrations. Berlin, Germany:

Association for Computational Linguistics, pp. 133–138. url: https:

//www.aclweb.org/anthology/P16-4023
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– Rebecca Knowles, Josh Carroll, and Mark Dredze (2016). “Demographer:

Extremely Simple Name Demographics”. In: Proceedings of the First

Workshop on NLP and Computational Social Science. Austin, Texas, USA:

Association for Computational Linguistics, pp. 108–113. url: https:

//aclweb.org/anthology/W16-5614

– Rebecca Knowles, Mark Dredze, Kathleen Evans, Elyse Lasser, Tom

Richards, Jonathan Weiner, and Hadi Kharrazi (2014). “High Risk Preg-

nancy Prediction from Clinical Text”. In: NeurIPS Workshop on Machine

Learning for Clinical Data Analysis. Montreal, Canada.

– Charley Beller, Rebecca Knowles, Craig Harman, Shane Bergsma, Margaret

Mitchell, and Benjamin Van Durme (2014). “I’m a Belieber: Social Roles

via Self-identification and Conceptual Attributes”. In: Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers). Baltimore, Maryland, USA: Association for

Computational Linguistics, pp. 181–186. url: https://www.aclweb.org/

anthology/P14-2030.
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Chapter 2

Machine Translation

2.1 Introduction

The field of machine translation has a long history. It can trace some of its earliest

success to the cryptographic research focus during World War II, from which Warren

Weaver drew inspiration in his famous quote: “When I look at an article in Russian, I

say ‘This is really written in English, but it has been coded in some strange symbols. I

will now proceed to decode”’ (Weaver, 1949). Dorr, Jordan, and Benoit (1999) provides

an extensive survey of the state of machine translation paradigms and architectures

on the eve of the turn of the millennium, including rule-based machine translation,

example-based machine translation, neural network based machine translation (albeit

with extremely limited vocabularies), and statistical machine translation. Neural

machine translation, the approach that most of this dissertation focuses on, is the
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latest in a sequence of machine translation paradigms to achieve and advance the

state of the art.

In the remainder of this chapter, we first touch on the evaluation of machine

translation. We describe phrase-based statistical machine translation (SMT), which

had been the dominant paradigm until quite recently, and is the paradigm around

which much of the recent work in computer aided translation has been performed. We

then describe neural machine translation (NMT), the types of vocabularies that are

typically used for those systems, and finish by discussing related work on domain and

project adaptation for neural and phrase-based statistical machine translation, with

particular attention to work relating to computer aided translation. Both phrase-based

and neural machine translation are data-driven approaches: they require the use of

parallel corpora, also known as bitexts. A parallel corpus is a set of translation segments

(usually sentences) in one language with their corresponding translations into the other

language of interest. The corpora that we use to build strong machine translation

systems typically number in the millions of sentence pairs.

2.2 Machine Translation Evaluation

2.2.1 BLEU Score

Bilingual Evaluation Understudy (BLEU) scores (Papineni et al., 2002) are com-

monly used to evaluate the quality of machine translation. BLEU combines n-gram
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precision (the number of n-grams in the MT output that match the reference, divided

by the total number of n-grams in the MT output) with a brevity penalty (1 if the MT

output is longer than the reference, otherwise the length of the MT output divided by

the length of the reference), as follows:

BLEUN = (brevity penalty)
N∏

n=1

(precisionn)wn (2.1)

More technically, computed over a corpus of machine translated candidate sentences

with one reference each:1

BP =


1 if c > r

e(1−
r
c
) if c ≤ r

(2.2)

Countclip(x) = min(Count(x),Max reference count(x)) (2.3)

pn =

∑
s∈{candidate sentences}

∑
n-gram∈sCountclip(n-gram)∑

s′∈{candidate sentences}
∑

n-gram′∈s′ Count(n-gram′)
(2.4)

BLEUn = BP · exp

(
N∑

n=1

wn log pn

)
(2.5)

Where wn is a weight assigned to the particular size of n-gram (often set uniformly to

1
N

or simply to 1), r is the reference length, and c is the candidate length.

1BLEU was designed to be run over multiple reference sentences, but in practice is most frequently
evaluated with only one single reference.
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While BLEU is widely used in MT evaluations, it has a number of weaknesses,

including the fact that it does not account for synonyms.2 It is possible to achieve

improvements in translation quality (as judged by human annotators) without a

corresponding improvement in BLEU (Callison-Burch, Osborne, and Koehn, 2006), so

it is important to have other evaluation techniques available, particularly for tasks

such as adapting to human translators, where a small improvement (for example in

translation consistency of one relatively frequent word or phrase) could have a large

impact on user satisfaction.

2.2.2 Other Metrics

The goal of all of these metrics is to approximate the gold standard: human

evaluation of machine translation. We use additional metrics in our evaluation of

computer aided translation tools (word prediction accuracy, accuracy of novel word

translation, etc.), and those are introduced in the dissertation when they are first

used. We use these task-specific metrics throughout this work to measure the impact

of various approaches on specific outcomes of interest. We typically use BLEU as a

benchmark to give an overall sense of quality or to compare two systems directly.

In addition to BLEU score there are a number of other available metrics. Commonly

used ones include TER (translation error/edit rate; Snover et al., 2006), and WER

2Alternatives like METEOR (Banerjee and Lavie, 2005) have been proposed to resolve this;
METEOR uses stemming and semantic resources to handle this, but is more computationally
expensive as a result.

17



CHAPTER 2. MACHINE TRANSLATION

(word error rate), which can be calculated automatically from just the translation

output and reference without the need for external or language-specific resources.

METEOR (Banerjee and Lavie, 2005) and its successors can incorporate additional

language specific features like stemming or semantic relatedness. This short list is by

no means exhaustive, and merely scratches the surface of the range of research in this

area. The WMT shared task on metrics provides regular evaluations of a wide range

of metrics (Ma et al., 2019).

2.3 Phrase-Based Statistical Machine

Translation

The dominant paradigm in machine translation until recently,3 phrase-based sta-

tistical machine translation (SMT) systems typically consist of two main components:

a phrase table and a language model. The phrase table consists of source language

phrases (sequences of one or more tokens) and corresponding target language phrases,

associated with translation probabilities. These can be automatically extracted from

large parallel corpora using unsupervised or semi-supervised alignment techniques.

The language model (most recently likely to be a neural language model) provides

scores for sentences on the basis of target language fluency. A language model can

3And still outperforming neural machine translation on some low-resource tasks (Koehn and
Knowles, 2017).
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be trained on target language monolingual corpora (which are typically much larger

than the parallel corpora available). Combined, the translation and language model

probabilities provide scores for possible translations in a search lattice, incorporating

both adequacy and fluency in translation.

For a much more in-depth exploration of phrase-based statistical machine transla-

tion, see Koehn (2010). We use Moses (Koehn et al., 2007) for all of our phrase-based

statistical machine translation models.

2.4 Neural Machine Translation

In recent years, neural machine translation (NMT) models have proven themselves

to be state of the art across a number of language pairs (Bojar et al., 2016; Bojar et al.,

2017; Bojar et al., 2018). As these models have gained increasing traction, there has

been a veritable boom in model architectures, ranging from encoder-decoder models

(Kalchbrenner and Blunsom, 2013; Sutskever, Vinyals, and Le, 2014) to encoder-

decoder models with attention (Bahdanau, Cho, and Bengio, 2015) to self-attention

models (Vaswani et al., 2017) and beyond. In contrast to phrase-based statistical

machine translation systems, these systems tend to share the property that they are

trained jointly, end-to-end, rather than having a number of separate components

like the phrase table and language model. In this dissertation, we primarily focus

on recurrent neural network (RNN) sequence-to-sequence encoder-decoder machine
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translation models with attention, similar to those described in (Bahdanau, Cho, and

Bengio, 2015).

Such a model consists of three main components:

• an encoder stage where the input sentence is processed by two recurrent neural

networks, one running left-to-right, the other right-to-left, resulting in hidden

states for each token that encode it along with its left and right context,

• a decoder stage where the output sentence is produced sequentially, one token

at a time, by conditioning on previous output tokens via a hidden state (roughly

corresponding to a language model in traditional statistical machine translation)

and on the input encoding (roughly corresponding to a translation model), and

• an attention mechanism that conditions the prediction of each output token

on a distribution over input tokens (roughly corresponding to a soft alignment

function).

We walk through the model below, focusing on a high-level understanding of its

characteristics rather than a fine-grained consideration of its implementation. For

more details, see Bahdanau, Cho, and Bengio (2015), whose notation this section

follows, or the description of the Nematus toolkit (Sennrich et al., 2017).4

At each time step t, the standard decoder computes the conditional probability of

4Nematus was used for many of our experiments.
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generating a token yt given the input sentence ~x. This is defined to be:

p(yt|{ŷ1, · · · , ŷt−1}, ~x) = g(ŷt−1, ct, st) (2.6)

where g is a non-linearity, ŷt−1 is the token produced by the previous decoding step,

ct is a context vector, and st is the hidden state for time t.

During encoding, so-called annotations ht were produced for each token xt in

the input sentence ~x = (x1, · · · , xT ). These ht were produced by concatenating the

forward and backward hidden states produced for each token by the forward and

backward RNNs, respectively. We can think of these as continuous representations

of each input token in context; by virtue of the concatenation of the forward and

backward RNNs, they contain information about the token xt at position t in the

input sentence as well as about its full left and right context.

The context vector ct in Equation 2.6 is a weighted average of the annotations.

First, weights αtj = exp(etj)/
∑T

k=1 exp(etk) are computed, where etj = a(st−1, hj)

can be thought of as a soft alignment model (parameterized as a neural network and

jointly trained with the rest of the system). The weight αtj can be interpreted roughly

as the probability that yt is aligned to xj, resulting in soft alignments used by the

system’s attention mechanism to weight the focus of the context vector. The context

vector is then computed as ct =
∑T

j=1 αtjhj.

As indicated above, decoding in this attention-based neural machine translation
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approach proceeds token by token. At each step of the decoding process, a probability

distribution over possible next tokens is computed. This is conditioned on the previous

token, the context vector, and the hidden state. The highest scoring token is selected

and used in the conditioning context for the next step. Alternatively, similar to beam

search in traditional statistical machine translation decoding, the top n next tokens

may be considered and competing hypotheses with different output tokens maintained.

Each of the hypotheses (consisting of a token sequence and a hidden state, and ranked

by the combined token translation probabilities) is extended at the next decoding

step.

There are various choices for the exact design of the recurrent neural networks

used in the encoder and decoder. There are multiple options for the cells used, such

as long short term memory (LSTM) cells or gated recurrent units (GRU). There are

also alternative architectures such as deep RNNs, convolutional neural network (CNN)

approaches, attention-only approaches, and more.

The system is trained to minimize cross-entropy on the training corpus, optionally

with early-stopping based on development set scores.

2.5 Vocabulary and Byte Pair Encoding

Vocabulary size has been a major concern in neural machine translation. Due to

computational constraints, early work operated with small fixed-size vocabularies of
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under 100k word types (Sutskever, Vinyals, and Le, 2014; Bahdanau, Cho, and Bengio,

2015),5 typically replacing rare and unknown words with a special UNK token. These

small vocabulary models could either be postprocessed to handle rare and unknown

vocabulary items, or could use alternative architectures to copy words or perform

character-level translation (Arthur, Neubig, and Nakamura, 2016; Gulcehre et al., 2016;

Luong and Manning, 2016; Nguyen and Chiang, 2018). Without adequate handling of

rare and unknown words, it is impossible for neural translation systems to perform well

on held-out data or to compete against open-vocabulary and near-open-vocabulary

phrase-based statistical machine translation systems.

As a result, rather than encoding and decoding full words, many neural machine

translation systems – including those described in this dissertation – operate on

subword vocabularies. These subword vocabularies allow words in the corpus to

be expressed either as individual vocabulary items or as sequences of subwords; in

particular, frequent words are often given their own vocabulary entry, while infrequent

words are split into subwords. This allows systems to be built with smaller vocabulary

sizes (for computational efficiency) while still maintaining full or near-full coverage of

corpus vocabulary. Here we will focus on byte pair encoding (BPE), a compression

algorithm (Gage, 1994) which Sennrich, Haddow, and Birch (2016c) applied to text

preprocessing for machine translation. In order to build a vocabulary of subword

symbols, an iterative algorithm is employed. First, all characters observed in the

5Much earlier systems used even smaller toy vocabularies consisting of only tens of types, as noted
in Dorr, Jordan, and Benoit (1999).
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training set are added as symbols to the (initially empty) vocabulary. From there, the

most frequent pair (as observed in the training data) of symbols in the vocabulary are

merged into a new symbol, which is subsequently added to the vocabulary. Symbol

pairs that cross word boundaries are not included in the frequency counts, ensuring

that the symbols in the vocabulary are indeed subwords.6 This process continues until

a predetermined number of merges is reached.

The vocabulary will then contain a fixed number of subword symbols. New text,

e.g., at test time, can be segmented according to the same process: after splitting

it into individual characters, the merges learned through the vocabulary-creation

algorithm can be applied (in order of greatest frequency) to deterministically convert

text into sequences of items from the (subword) vocabulary.

Due to the iterative merging of the most frequent symbol pairs, the completed

vocabulary will encode common whole words as their own unique symbols, while

infrequent words will need to be represented by sequences of subword symbols. This

has several benefits and drawbacks. Having frequent words treated as individual

vocabulary symbols allows the system to learn appropriate embeddings for them, while

certain types of less frequent words may benefit from their separation into subwords.

In terms of source vocabulary, this provides the possibility of successfully translating

or copying source words that have never been seen in training data. Also, for certain

languages, this may allow for parameter sharing between tokens that share the same

6One could certainly also consider including word boundaries, which would lead to a vocabulary in
which very frequent collocations (phrases) are included alongside full words, subwords, and characters.
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stem or share affixes. While BPE is not a morphological segmentation algorithm, we

do observe that for languages with a number of morphologically meaningful affixes

(e.g., verb endings, affixes that indicate number, gender, or case, etc.), BPE often learns

segmentations that look potentially morphological at a surface level. Segmentation

will be indicated either using two “at” symbols, as standard in some BPE toolkits, or

using a vertical bar (“@@”or “ | ”). These could include segmenting plurals (“cats” to

“cat@@ s”), verbs (“laughing” to “laugh@@ ing”), or compound nouns (“fireflies” to

“fire@@ flies”), among others. However, it can also learn linguistically uninformative

segmentations, like “fling” to “fl@@ ing” (which might erroneously suggest that “fl”

is the root of a verb).

While BPE is often described as solving the open vocabulary problem, there are

several rare instances where it may fail, resulting in unknown words or subwords. The

first is the case in which a new character is introduced (for example, a character in a

different script, a currency symbol, an accented character, or other special character).

Since that character was not in the initial vocabulary, it must be treated as an unknown

symbol. Sennrich, Haddow, and Birch (2016c) also note that unknown symbols could

occur if a string occurs in test data that had been merged at all instances in the

training data, but point out that this could be resolved by undoing the last merges

until a point is reached where all of the symbols are known. Both of these types of

failures are rare, but may occur more frequently if the training data and test data are
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not well matched.7

In practice, there are a number of factors to consider in the use of BPE. This

includes the number of merges to perform, which has an impact on the overall size of

the vocabulary as well as the distribution of full words vs. subwords in the vocabulary.

There is also the question of whether the BPE algorithm’s merges should be performed

over each language’s data separately, or whether a joint merging model should be

learned. Whether the vocabulary (as learned through the BPE algorithm) is used

unchanged as the system’s vocabulary or whether a new vocabulary (a subset of the

BPE vocabulary) is extracted from the training data can also have an effect on the

ability to encode or generate words that were unobserved at train time. Chapter 7

provides more detailed analysis on the effect of byte pair encoding on the translation

of rare and novel words.

We use the subword-nmt implementation of BPE.8 There exist other approaches

to generating subword vocabularies as well.9

2.6 Adaptation

Domain adaptation has long been an area of interest for researchers in the machine

translation community. Since machine translation models require large amounts of

7Anecdotally, this appears to be the case when processing patent abstract data using BPE trained
on more general domain in English. The patent data includes Greek letters and other special
characters, which do not occur in the initial vocabulary.

8https://github.com/rsennrich/subword-nmt
9E.g., https://github.com/google/sentencepiece
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data, it is often the case that general domain systems are built using all available data.

When these systems are applied to specialized domains that are not well-matched

to the training data, they may exhibit a drop in overall performance; this drop is

especially severe for neural machine translation systems (Koehn and Knowles, 2017).

Here we focus on recent work on neural machine translation model adaptation, noting

specific phrase-based statistical approaches (on which there exists a large body of

work) when they are most relevant to the computer aided translation setting.

Recent work (Freitag and Al-Onaizan, 2016; Luong and Manning, 2015) has

proposed to do domain adaptation for NMT systems by training a general system

then fine-tuning by continuing to train using only in-domain data (typically a smaller

dataset). Wang et al. (2017) present a similar approach where they weight each

source-target sentence pair during training based on scores from in-domain and out-

of-domain language models. Kobus, Crego, and Senellart (2017) use special tokens

to indicate domain. Chu, Dabre, and Kurohashi (2017) compare the approaches.

These approaches typically use larger amounts of in-domain data to do adaptation,

far greater than the amounts that might be available in a CAT setting.

Cettolo et al. (2014) proposed adapting statistical phrase-based machine translation

systems to particular projects consisting of multiple documents. Blain, Schwenk, and

Senellart (2012) and Blain et al. (2015) also perform adaptation for computer aided

translation. Peris and Casacuberta (2019) and Peris, Cebrián, and Casacuberta (2017)

propose adapting neural machine translation systems in computer aided translation
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settings. Ter-Sarkisov et al. (2015) perform project adaptation on a neural language

model for use in computer aided translation with a phrase-based statistical machine

translation system. None of these explore very small amounts of data at the sub-

document level (though Peris and Casacuberta (2019) do perform adaptation to single

sentences using a similar approach to our work in Kothur, Knowles, and Koehn (2018)

and to the phrase-based statistical approach in Denkowski, Dyer, and Lavie (2014)).

Two recent papers have tried a domain adaptation approach using very small data

sizes, ranging from 1 sentence to 128 sentences (Farajian et al., 2017; Li, Zhang, and

Zong, 2018). They adapt models for new sentences by training on sentence pairs

from a training corpus (or translation memory) that are similar to the new sentence,

which means they cannot adapt to novel vocabulary. Karimova, Simianer, and Riezler

(2018) have recently shown in a user study with translation students that an online

adaptation approach (similar to our single-sentence adaptation approach in Kothur,

Knowles, and Koehn (2018)) can decrease post-editing effort. Daems and Macken

(2019) compare phrase-based statistical adaptive interactive machine translation and

neural adaptive interactive systems in a user study, finding the tools to be similar in

quality and finding that translators had generally positive reactions.
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Human Translation and Computer

Aided Translation

3.1 Introduction

Computer aided translation1 (CAT) refers to a process whereby a human translator

translates with the aid of one or more translation-related technologies. Like machine

translation, computer aided translation has a long history, predating the invention of

the personal computer and computer aided translation tools as we know them today.

The ALPAC report (ALPAC, 1966), generally remembered as almost entirely negative

due to the blow it dealt to machine translation research (and subsequent research

funding), had tentatively positive things to say about the early stages of computer

1Sometimes styled as computer-aided translation, computer-assisted translation, or computer
assisted translation.
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aided translation (then called machine aided translation). The report describes

the usefulness of a computer-based glossary of technical terms for translation, then

employed by the Federal Armed Forces Translation Agency in Mannheim, Germany,

which increased translator speed and accuracy. It also describes post-editing and what

might be categorized as an early form of translation memory used by the European

Coal and Steel Community in Luxembourg. Results for this were more mixed, but

they did note the potential ability for these tools to be continually improved and

adapted with the addition of more translated data.

In one of the seminal pieces of literature on the topic, Kay (1980) set forth a

proposal for a translator’s amanuensis, a sort of computer aided translation tool, or,

more accurately, he proposed a path towards building such a tool. Kay advocated

for the iterative implementation of pieces of a tool that would be “gradually, almost

imperceptibly, allowed to take over certain functions in the overall translation process.”

This would begin with tasks that the computer was best suited to do, then slowly take

on more responsibility as its capabilities increased. At its core, though, it would be in

the hands of the human translator, who would have the final say in which functions

they would like to use: the tool “will always be under the tight control of a human

translator,” with the goal of increasing productivity but not replacing the translator.

Cadwell, O’Brien, and Teixeira (2018) echo this in their examination of professional

translator perceptions of machine translation, noting the importance of translators’

agency and sense of control; a group of translators who were able to easily enable or
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disable machine translation assistance and had been given input in its development

had more positive reactions to the introduction of it as a tool of their trade than a

group who did not. In a survey of professional translators, Moorkens and O’Brien

(2017) found that 63% had a preference for a user interface that could be customized

to their particular needs and desires.

Computer aided translation today covers a wide range of types of tools, which we

summarize briefly before focusing on the two most closely related to machine transla-

tion and the remainder of this dissertation: post-editing and interactive translation

prediction.

3.2 CAT Technologies

In Computer-Aided Translation Technology: A Practical Introduction, Bowker

(2002) provides a clear overview of CAT technologies. Aimed at an audience primarily

of translation students, this book divides CAT tools into four main categories. We

follow an approximation of those categories in this very brief introduction, albeit in a

different order, and direct the reader to that book and other relevant resources for

additional detail.2

2When no other resource is cited, Bowker (2002) provides information on the topic.
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3.2.1 Categories of CAT Tools

Formats

While electronic text-to-text machine translation research has largely focused its

attention on translating plain text sentences (or perhaps even documents) from one

language to another, starting from preprocessed plain text files, data formatting is of

major practical concern to human translators. They may be working from hard copies,

in which case optical character recognition technologies may be useful in providing a

starting point to convert the data into a format which will enable the use of other CAT

tools (another alternative is to convert the text into a machine-readable format using

automatic speech recognition). Alternatively, the text may already be provided in a

particular electronic format, such as a PDF, spreadsheet, word processing document,

or so on. In many cases, the translator is expected to return their finished translation

in the same format in which the source language data was originally provided. This

could include translations of text inside tables or figures, formatting requirements,

and other such challenges. Thus, for human translators, the compatibility of a given

CAT tool with the data formats, other CAT tools, and other resources they regularly

use are of great importance. In this dissertation, like much other work in this space

from the natural language processing community, we do not focus on data formatting

issues, instead assuming that the text to be translated is already sentence-segmented

and provided in text format.
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Translation Memory

A translation memory (TM) is a collection of source language segments with

corresponding target language translation, collected during or after the translation

process (or after quality assurance is completed on translations). These segments

often consist of sentences. Other times they are sentence fragments like list items,

headers, or titles, and sometimes they are supersentential segments like paragraphs.

From the perspective of a machine translation researcher, a translation memory is

simply a parallel corpus or bitext.

The collection of translation memories serves an efficiency-related purpose for

human translators and translation clients. Since many domains include data with

repeated segments, it is often more efficient to reuse existing translations, rather than

starting from scratch each time. In parliamentary text, one might often encounter

standardized and repeated language like “Madam President, on a point of order.”

or “Resumption of the session” (both from European Parliament parallel text). In

general, it would be appropriate to translate these consistently, so the translation

memory serves a dual purpose: it saves time and it encourages consistency. Rather

than translating these sentences from scratch, the CAT tool can interface with the

translation memory, so that the target side text is presented to the translator each

time that a source sentence contained in the translation memory is to be translated.

Even when no exact match to the source side of the translation memory can

be found, the translation memory may still prove useful. Consider an example of
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a near-match, with only a one word difference between the source sentence to be

translated and a sentence in the translation memory. Suppose we wish to translate

“Mr. President, on a point of order.” and while our translation memory does not

contain that exact sentence, it does contain the sentence “Madam President, on a point

of order.”, so the system returns as a suggested translation “Frau Präsidentin, zur

Geschäftsordnung.” (perhaps also indicating the location of the mismatched word, as

in Esplà, Sánchez-Mart́ınez, and Forcada (2011)). It may be faster for the translator to

produce the correct translation “Herr Präsident, zur Geschäftsordnung.” by replacing

“Frau” with “Herr” and removing the feminine “in” ending from “Präsidentin” than

by translating the full sentence from scratch.3

This process of modifying the translation returned from the translation memory is

called “post-editing” and is described in more detail in Section 3.2.2. The selection of

these near-matches is often done using a so-called “fuzzy match” algorithm; individual

CAT tools typically maintain proprietary fuzzy match algorithms, which are then

thresholded before use (a high threshold allows only nearly identical segments to be

used, while a low threshold would more often provide results, though they might

not increase translator productivity as much). One example of such a fuzzy match

algorithm would be to use the word-level edit distance between the sentence to be

translated and sentences in the translation memory. When no satisfactory fuzzy match

is returned from the translation memory, it may be appropriate to return machine

3In Knowles, Ortega, and Koehn (2018) we examine approaches to performing these types of
corrections automatically, using machine translation.
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translated output instead.

Translators may have different levels of trust in and attitudes towards machine

translation (sometimes perceived as being intended to replace human translators) and

translation memories, since the latter are fully human-generated, possibly even by the

translator themselves (Heyn, 1996). There has been a range of work on this and on

combining translation memories and machine translation from the machine translation

community; this line of work also has close ties to the body of work on example-based

machine translation (Dandapat et al., 2011; Federico, Cattelan, and Trombetti, 2012;

Koehn and Senellart, 2010; Marcu, 2001).

Terminology

Certain translation domains (e.g., law, medicine, engineering, etc.) require knowl-

edge of highly technical or domain-specific terminology in order to produce appropriate

translations. Terminology management systems can assist translators in this area, by

providing searchable records of terms with relevant information (translations, contexts,

definitions, the source of the terminology management system entry, regional infor-

mation,4 etc.). Translators can use these systems themselves to look up translations,

can have them automatically pre-translate words from the source data, or can add to

the terminology systems themselves for future use. As mentioned above, consistency

4Information about regional usage may be particularly important for colloquial or metaphorical
language. For example, Church and Gale (1991) note that the Canadian Hansards contain frequent
hockey metaphors including the term “rondelle” (“puck”), whereas a European French resource only
includes senses of “rondelle” related to round shapes.
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is often required of human translators, and particular translation clients may have

specific needs and desires about how certain words should be translated, which can

be entered into a terminology management system. Terminology systems can also be

augmented automatically, using large scale parallel corpora and automatic alignments

(Barrière and Isabelle, 2011).

Corpus Analysis

In addition to using term banks, dictionaries, and terminology management systems,

translators may benefit from additional information about potential translations of

terms. This could include term frequency counts in monolingual or bilingual corpora

or information about collocations in which those terms frequently occur. When

choosing between multiple translation options, both collocations and wider context

may be useful. In order to see translation options in a wider context, translators

can access a bilingual concordancer. A bilingual concordancer takes a source term

and its translation and returns sentence pairs from a parallel corpus or translation

memory where the source side contains the source term and the target side contains the

translation. By examining these sentence pairs, a translator can gain an understanding

of senses of a particular translation (for example, the difference between “bank” as the

side of a river and “bank” as a financial institution or even “bank” as a collection, as in

“terminology bank”). Church and Gale (1991) describes early work in building sentence-

level concordances for word sense disambiguation and Isabelle et al. (1993) show
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examples of the bilingual concordancer TransSearch. Subsequent studies examined

how translators used the TransSearch tool, finding that translators are especially likely

to use it for determining the translation of polysemous words (Simard and Macklovitch,

2005; Macklovitch, Lapalme, and Gotti, 2008). Wu et al. (2003) and Callison-Burch,

Bannard, and Schroeder (2004) describe work on other bilingual concordancers.

Other Features

Many of the standard features of a word processor may also be incorporated into

a CAT tool: spelling and grammar checkers, search-and-replace, thesaurus, and edit

tracking, among others. Isabelle et al. (1993) describe some such work. This can also

include handling of markup (Tezcan and Vandeghinste, 2011), or other approaches

to automatically handling formatting. Rodriguez Vazquez, O’Brien, and Fitzpatrick

(2017) evaluates CAT tools from an accessibility perspective (particularly focusing on

blind users) and finds significant room for improvement in modern CAT tools.

CAT Tools and Workbenches

There have been a number of CAT tools and workbenches produced by both

industry and academia, which implement some or all of the computer aided translation

features described in this chapter. Hutchins (1998) provides a history of early work

on CAT tools, which he calls translator’s workstations or workbenches. Among the

most commonly used industry tools are SDL Trados (https://www.sdltrados.com/),
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Wordfast (https://www.wordfast.com/), and MemoQ (https://www.memoq.com/).

Open source tools include MateCat (Federico et al., 2014), casmacat (Alabau et al.,

2014), and OmegaT (https://omegat.org/). MateCat and casmacat have shared

academic origins. Lilt (https://lilt.com/) was specifically built with interactive

and adaptive machine translation technologies in mind. In our user study (Chapter 6)

we use casmacat, which allows us to collect keystroke, mouseclick, and timing

information during the translation process.

3.2.2 Post-Editing

Post-editing (PE) is one of the simplest ways that human translators can interact

with machine translation output. In post-editing, a human translator receives a

source sentence and a machine translated version in the target language, which they

correct and modify until it is a satisfactory translation of the source. Translators may

also post-edit fuzzy matches from a translation memory, but the remainder of this

section focuses primarily on post-editing machine translation output. The post-editing

approach stands in contrast to translating a sentence unaided or with the aid of

computer aided translation tools like bilingual concordancers or terminology banks; it

involves a very different cognitive process on the part of the translator. This has been

studied extensively in the literature, with focus on both translator productivity and

effort.

Green, Heer, and Manning (2013) experiment with unaided human translation
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and find that post-editing is faster and produces higher quality translations. Plitt

and Masselot (2010) had also observed similar results in their realistic production

environment experiments, comparing post-editing to “traditional” translation (though

they do not specify whether additional computer aided translation features were

available to the translators). Comparing post-editing against computer aided transla-

tion with the assistance of translation memories, terminology databases, and other

assistance through a CAT tool workbench, Läubli et al. (2013) observed translation

productivity gains of between 15 and 20% when post-editing. Langlois, Simard, and

Macklovitch (2016) present results of a study where translation students benefitted (in

terms of efficiency) from post-editing machine translation output (based on systems

trained for the specific domain of interest). Federico, Cattelan, and Trombetti (2012)

augment a translation memory with machine translation output, and also find that this

improves translator productivity. More recently, Sanchez-Torron and Koehn (2016)

perform a user study to examine the relationship between phrase-based statistical

machine translation system BLEU scores and translator productivity, and find that

a 1 BLEU point increase results in a corresponding 3-4% translator speed increase

in post-editing. Denkowski (2015) shows work on statistical machine translation

adaptation and post-editing.

Koponen (2012) considers cognitive and technical effort in post-editing, finding

that reordering during post-editing is more cognitively demanding than changing the

form of otherwise correct words. Koponen (2016) provides a survey of additional work
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on effort.

In measuring translator productivity, a recurring theme is inter-translator variation.

Federico, Cattelan, and Trombetti (2012) observed overall gains when using post-

editing, but noted that the largest relative productivity gains were for slower translators.

Plitt and Masselot (2010) reported similar trends. Koehn and Germann (2014) note

that differences between translators are greater than the difference between the

machine translation systems being compared. All of this suggests that computer aided

translation tools are not “one-size-fits-all” and may instead need to be chosen to best

fit a given translator’s skills and needs.

In addition to human post-editing, there exists a body of research on automating

this task (automatic post-editing; Chatterjee et al., 2018).

3.2.3 Interactive Translation Prediction

Interactive translation prediction has been known by many names: interactive

machine translation (IMT, though that term usually covers a broader set of tech-

niques), text prediction (Foster, Langlais, and Lapalme, 2002), interactive-predictive

machine translation (Domingo, Peris, and Casacuberta, 2017), target-text mediated

interactive translation prediction (Foster, Isabelle, and Plamondon, 1997), and others.

In interactive translation prediction (an editing mode for translators interacting with

machine translation), the human translator guides the translation process. The ma-

chine translation system provides suggestions (much like an “auto-complete” function),

40



CHAPTER 3. HUMAN TRANSLATION AND COMPUTER AIDED
TRANSLATION

which the translator can accept if they approve. If the translator prefers a different

translation, they can type the word of their choice, and the system will adapt and

provide new suggestions that are appropriate given the translator’s additions.

Early work on interactive translation prediction can be found in the TransType

and TransType2 projects (Langlais, Foster, and Lapalme, 2000; Foster, Langlais,

and Lapalme, 2002; Bender et al., 2005; Barrachina et al., 2009). Using statistical

machine translation, interactive translation prediction can be performed by re-decoding

constrained by the prefix (Green et al., 2014; Wuebker et al., 2016) or by searching for

the prefix in the original search graph (Och, Zens, and Ney, 2003; Barrachina et al.,

2009). Sanchis-Trilles et al. (2014) showed that interactive translation prediction could

be as fast as post-editing in a user study with professional translators. The following

theses deal extensively with issues of computer aided translation: Foster (2002) and

Green (2014). Neural approaches were introduced in Knowles and Koehn (2016) and

Wuebker et al. (2016) (concurrent work), and Domingo, Peris, and Casacuberta (2017)

also proposed a neural approach.

This dissertation focuses on text-based translation, but there also exists work

on various approaches to interaction modalities: Sanchis-Trilles et al. (2008) (mouse

actions), Alabau, Sanchis, and Casacuberta (2011) (hand-writing), Barrachina et al.

(2009) (speech), and Grissom II et al. (2014) (real-time simultaneous translation).
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Chapter 4

Corpora and Models

This dissertation makes use of a number of publicly available corpora, especially

parallel corpora, as well as some trained machine translation systems. Where those

datasets and models are used in multiple chapters, we describe them in detail here.

Within the chapters where they are used, we discuss issues specific to the particular

use case, but refer the reader back to this chapter for implementation and parameter

information. For models and datasets that are used in only one chapter, we describe

those in detail in the chapter in question.
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4.1 Corpora

4.1.1 WMT News

The WMT news translation shared task focuses on building translation systems

suited for translating news data from large quantities of parallel corpora. Constrained

submissions to this task use a shared set of training data resources, including Europarl

(Koehn, 2005), Common Crawl (Smith et al., 2013), News Crawl, and various mono-

lingual corpora. These resources can be found at the official shared task website for

each year, for example: https://www.statmt.org/wmt16/translation-task.html.

Over the years, the task has covered a range of language pairs. Combined, these

corpora contain millions of lines of parallel text and hundreds of millions of tokens for

many of the language pairs.

In addition to using training data from WMT (and models trained on WMT

training data), we use the test sets from the WMT 2016 and 2017 news evaluation

(Bojar et al., 2016; Bojar et al., 2017). These test sets were collected from online news

sources. For a given language pair, half of the test data was originally in English, while

half was originally in the other language in the pair. This data was then translated by

professional translators.
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4.1.2 European Medicines Agency (EMEA)

We use the European Medicines Agency (EMEA) parallel corpus,1 consisting of

sentence-aligned documents focusing on medical products, downloaded from OPUS

(Tiedemann, 2012). The full corpus consists of documents in 23 European languages,

though we only make use of the English–German data. The text data was extracted

from PDF documents (including converting tables into text), and the data is subse-

quently sentence-aligned. Additional details concerning the corpus and its collection

can be found in Tiedemann (2009).

The corpus contains high levels of domain-specific terminology and repetition.

Each document describes a new medication, meaning that new documents often

contain novel vocabulary. Other novel vocabulary items include highly-specific medical

terminology; these tend to appear fewer times within the document. Certain documents

contain primarily tables of dosage information.

4.2 Models

4.2.1 Phrase-Based German–English Model

In two instances, we use a phrase-based statistical machine translation model,

trained using Moses (Koehn et al., 2007). The system we use is Johns Hopkins

University’s German–English submission to the WMT shared news translation task

1http://opus.lingfil.uu.se/EMEA.php
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(Ding et al., 2016). It uses all available parallel and monolingual training data released

for the WMT evaluations. As described in that work, the systems were trained with

the following settings:

“a maximum sentence length of 80, grow-diag-final-and symmetrization
of GIZA++ alignments, an interpolated Kneser-Ney smoothed 5-gram
language model with KenLM (Heafield et al., 2013) used at runtime,
hierarchical lexicalized reordering (Galley and Manning, 2008), a lexically-
driven 5-gram operation sequence model (OSM) (Durrani et al., 2013) with
4 count-based supportive features, sparse domain indicator, phrase length,
and count bin features (Blunsom and Osborne, 2008; Chiang, Knight,
and Wang, 2009), a distortion limit of 6, maximum phrase-length of 5,
100-best translation options, compact phrase table (Junczys-Dowmunt,
2012), minimum Bayes risk decoding (Kumar and Byrne, 2004), cube
pruning (Huang and Chiang, 2007), with a stack-size of 1000 during tuning
and 5000 during test, the no-reordering-over-punctuation heuristic (Koehn
and Haddow, 2009), a domain-weighted neural language model.”

The model uses POS tags, morphological tags and Och clusters (Och, 1999) of size

50, 200, 600 for additional interpolated language models, operation sequence models,

lexicalized reordering models, sets of sparse features, syntactic prereordering, and

compound splitting. The feature function weights are optimized with k-best MIRA

(Cherry and Foster, 2012) on the concatenation of the 2008-2014 test sets. With the

exception of compound splitting, this model uses whole words (rather than the byte

pair encodings used by the neural models). On the WMT 2016 news test data, it has

a BLEU score of 34.5.
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4.2.2 Edinburgh’s 2016 Neural Models

The neural machine translation models described in this section use Nematus,2 a

fork of the DL4MT toolkit3 by Cho (2015). The models use an RNN encoder-decoder

with attention architecture with one layer encoders and decoders; a full description

(and comparison to the Bahdanau, Cho, and Bengio (2015) model) can be found in

Sennrich et al. (2017).

For German–English, we use the publicly available model4 from the University of

Edinburgh’s 2016 WMT shared news translation task submission (Sennrich, Haddow,

and Birch, 2016a). It was trained on all the available parallel data (a 115 million word

parallel corpus including Europarl, News Commentary, and CommonCrawl) and a

similar amount of synthetic parallel data that was generated by translating part of the

monolingual news data (about 75 billion words of additional English monolingual data,

including LDC Gigaword, monolingual news, and monolingual CommonCrawl) into

German (Sennrich, Haddow, and Birch, 2016b). It uses byte pair encoding (Sennrich,

Haddow, and Birch, 2016c) for a vocabulary of 90,000 words. When decoding with a

beam size of 1, the German–English model has a BLEU score of 34.5.

For English–German, Czech–English, and English–Czech, we also use the publicly

available models from the University of Edinburgh’s 2016 WMT submission. They

were trained on all available WMT parallel training data, along with back-translated

2https://github.com/rsennrich/nematus/
3https://github.com/nyu-dl/dl4mt-tutorial/
4https://github.com/rsennrich/wmt16-scripts/
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data.5 All of the models released are the best single models for their translation pair

and direction.

4.2.3 Neural English–Spanish Model

For English–Spanish, we trained our own neural machine translation model, again

using a Nematus (Sennrich et al., 2017) RNN encoder-decoder architecture with atten-

tion. We use these training parameters: vocabulary of size 50,000, word embedding

layer size of 500, hidden layer size of 1000, batch size of 80, Adadelta optimizer (Zeiler,

2012), maximum sentence length of 50, and default learning rate of 0.0001. All other

parameters are set to Nematus defaults. The system is trained on Europarl v7 (Koehn,

2005) and News Commentary v10 data,6 which comprised the WMT 2013 training

data for English–Spanish. This training set contains 3.95 million sentence pairs, over

102 million source tokens, and over 106 million target tokens. We preprocess the

data using the standard preprocessing scripts: tokenization, truecasing, and byte pair

encoding (Sennrich, Haddow, and Birch, 2016c). We used the WMT 2012 News Test

data for validation. The system has a BLEU score of 29.79 (beam 12, less than 1

BLEU below the best score from WMT 2013) or 28.40 (beam 1) on the WMT 2013

test set.

5Backtranslations were also released publicly by the authors at http://data.statmt.org/

rsennrich/wmt16_backtranslations/.
6http://www.casmacat.eu/corpus/news-commentary.html
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This section of the dissertation focuses on neural interactive translation prediction,

one particular type of computer aided translation tool in which a translator produces

a translation by using an “auto-complete” style interactive interface. We begin in

Chapter 5 by describing the neural interactive prediction algorithm, comparing it

against a phrase-based statistical machine translation approach, and analyzing why

the neural interactive approach outperforms the phrase-based statistical approach.

We show results for the neural approach on several language pairs and translation

directions, all in simulation. In Chapter 6, we move from simulation to a user study,

collecting information about human translator performance and satisfaction with an

implementation of neural interactive translation prediction. We find that most of the

translators in our study reacted positively to the tool, and more than half of them

were faster (as compared to post-editing) when using it.
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Chapter 5

Neural Interactive Translation

Prediction

5.1 Introduction

This section covers work published in the following publications: Knowles
and Koehn (2016), Knowles and Koehn (2018b), and Knowles, Sanchez-
Torron, and Koehn (2019).

Interactive translation prediction (also called interactive machine translation or

target-text mediated interactive machine translation) is an editing mode for translators

who interact with machine translation output. In this mode, the machine translation

system makes suggestions for how to complete the translation (“auto-complete”), and

the translator either accepts suggested words or writes in their own translation. When

the suggestion is rejected, the machine translation system recomputes its prediction
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for how to complete the sentence from the given prefix and presents the corrected

version to the translator. Implementations of interactive translation can be found

in the casmacat1 (see Figure 5.1) and Lilt2 computer aided translation tools. This

approach stands in contrast to the common practice of post-editing machine translation

output. In post-editing, the translator receives complete machine translation output,

which they then revise until it is both adequate and fluent. In interactive translation

prediction, the translator drives the translation and can actively choose to guide

the direction of translation or to accept suggestions from the machine translation

system. There is evidence that this interaction mode is preferred by translators over

post-editing (Koehn, 2009).

The goal of interactive translation prediction is to generate suggestions that the

translator will accept. In prior work, phrase-based machine translation systems have

been used for interactive translation prediction, and suggestions were made either

by re-decoding constrained by the prefix (Green et al., 2014) or by searching for

the prefix in the original search graph (Och, Zens, and Ney, 2003; Barrachina et al.,

2009). As our baseline in this work, we use a statistical machine translation system for

interactive translation prediction which follows Koehn (2009) and Koehn, Tsoukala,

and Saint-Amand (2014). The system attempts to match the partial translator input

(called the prefix) to the search graph, using approximate string matching techniques

(minimal string edit distance) when an exact match cannot be found. Recently,

1http://www.casmacat.eu/
2https://lilt.com/
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Figure 5.1: Interactive translation prediction in casmacat: The system suggests to
continue the translation with the words mehr als 18, which the user can accept by
pressing the tab key.

neural translation models have been proposed and in some cases have shown superior

performance over phrase-based models (Jean et al., 2015; Sennrich, Haddow, and

Birch, 2016a). We propose to use such models for interactive translation prediction.

Parallel to this work, Wuebker et al. (2016) also explore a similar approach to using

neural MT for interactive translation prediction.

The decoding mechanism for neural models provides a natural way of doing

interactive translation prediction. We show that neural translation models can provide

better translation prediction quality and improved recovery from rejected suggestions.

We also develop efficient methods that enable neural models to meet the speed

requirements of live interactive translation prediction systems and demonstrate that

they can successfully be used by real translators through a user study.
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5.2 Neural Interactive Translation

Prediction

The decoding process for the types of neural translation models described in Section

2.4 operates by generating one token at a time, from the beginning of the sentence to

the end, each conditioned on the previously generated tokens. This leads naturally

to a simple implementation of interactive translation prediction in the neural setting.

Instead of using the model’s predictions in the conditioning context for the next step,

the tokens in the prefix provided by the translator can be used. Hence, the next token

prediction is conditioned on the choice of the translator, rather than the prediction of

the model.

During decoding for translation as described in Section 2.4, the model’s predictions

{ŷ1, · · · , ŷt−1} are fed back into the model to produce the next predicted token, with

the probability of generating yt defined as:

p(yt|{ŷ1, · · · , ŷt−1}, ~x) = g(ŷt−1, ct, st) (5.1)

In order to do interactive prediction, we instead feed the true prefix {y∗1, · · · , y∗t−1}

produced by the translator back into the model. This is actually quite similar to

training, where a human-produced (reference) translation is used. Thus we redefine
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the conditional probability of generating a token yt to be:

p(yt|{y∗1, · · · , y∗t−1}, ~x) = g(y∗t−1, ct, st) (5.2)

During standard decoding for translation (without an interactive component),

beam search is often employed in order to produce higher quality output. In our

simulations, we consider two variations on neural interactive translation prediction,

with and without beam search:

• The no beam search (greedy) method produces the single best hypothesis for

each new token, given the prefix provided by the translator, which is fed into

the model during decoding (as described above).

• The beam search method force-decodes the prefix provided or validated by

the translator and then performs beam search to select the most probable full

translation of the sentence. In contrast to standard beam search for translation,

where many or all of the hypotheses may differ from one another, all hypotheses

in neural interactive translation with beam search will share the same prefix

(provided by the translator), but may differ from one another at any point after

that. We show results for beam size 12, but note that a beam size of 2 provides

most of the improvement (a similar observation was made by Sutskever, Vinyals,

and Le (2014) with respect to standard MT evaluation).
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While beam search is known to produce better translation quality than models

without beam search, it is more computationally expensive. Additionally, the standard

application of beam search requires translating to the end of the sentence, whereas the

approach without beam search could be used to generate just the subsequent n tokens

if needed. We demonstrate that full beam search performs well on the interactive

translation prediction task, but note that it is too slow for use in a live system.

Despite its similarities to training, passing the translator prefix into the system

(when the translator diverges from the predicted sequence) may produce subsequent

errors in the translation, for instance by causing the attention mechanism to be

misfocused. We show that the system is often able to recover from these errors, but

that it occasionally results in incoherent sequences of suggestions. However, we show

that the sequences of errors produced by the neural systems tend to be shorter than

those produced by the traditional search graph based systems.

5.3 Related Work

The following sections provide more technical detail on two approaches for sta-

tistical machine translation systems: search graph decoding (Section 5.3.1) and

prefix-constrained decoding (Section 5.3.2). We also discuss additional related work

on neural interactive translation prediction.
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5.3.1 Search Graph Decoding

Och, Zens, and Ney (2003) propose an approach to interactive translation prediction

that makes use of the kind of search graph (which they call a word hypothesis graph,3

and describe as a subset of the search graph) produced by a word- or phrase-based

statistical machine translation system. Such a directed acyclic graph G = (V,E) has

vertices v ∈ V that represent partial translations, with each edge (v, v′) ∈ E associated

with a target language unit (a word or phrase) and its score (as a combination of

language model and translation model probability). Forward and backward probabilites

can be computed to each vertex v; these can be used with the edge-associated

probabilities to determine the most probable suggested completions of the sentence

for any given prefix v in the graph. However, a human translator may prefer a prefix

that is not found in the graph (for example, by adding an out of vocabulary token or

by choosing a token that was simply not found in the hypothesis graph). They handle

this by performing a “tolerant search” – first they find vertices with low edit distance

to the desired prefix, then select from those the highest probability vertex and use

its most probable completion as the suggestion to the translator. They built this

prototype as part of the TransType2 project, and found in simulation that presenting

full sentence completions had the potential to save translators more keystrokes than

presenting single-word completions. In addition to providing the one-best suggested

completion of a sentence, one could also view multiple suggestions. Barrachina et al.

3Ueffing, Och, and Ney (2002) provide additional information on this.
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(2009) also discuss this approach, and mention reordering multiple hypotheses in order

to present maximal diversity at the beginning of suggested sentence completions.

The approach that we use as the phrase-based statistical machine translation

baseline follows this search-graph based approach, with refinements as described

in Koehn, Tsoukala, and Saint-Amand (2014). That work uses the core algorithm

described in Koehn (2009), computing minimal costs to reach vertices using dynamic

programming. The main refinements are prioritizing matching the last word in a

prefix and other improvements to approximate word matching (using edit distance to

penalize small changes less than major ones, and stemmed matching to do the same).

In these approaches, heuristics are required to handle the case of “falling off the

search graph,” while the neural approach does not face the same challenge as it

maintains a probability distribution over the full vocabulary at all times.

5.3.2 Prefix-Constrained Decoding

Green et al. (2014) describes prefix decoding for cube pruning (Chiang, 2007).

Hypothesis translations are required to match the user prefix, and then search is

conducted as usual. They note that the pop limit must be suspended until each beam

contains at least one translation that could meet this matching constraint, if possible.

In Wuebker et al. (2016), the authors propose target beam search, in which beams

are associated with target word counts rather than source word counts, and in which

long-range reorderings are allowed. They also add synthetic phrase pairs to the
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phrase table by generating automatic alignments between the source sentence and

the translated prefix. This addition addresses one issue faced by the search graph

approaches (resolved in those approaches via search that is tolerant of mismatches),

by making sure that the phrase table always includes all of the target prefix words

with some alignment to the source.

5.3.3 Neural Approaches

The neural machine translation approach to interactive translation prediction is

a very natural extension of standard neural machine translation decoding, and has

been presented in several publications. Contemporaneous with Knowles and Koehn

(2016), Wuebker et al. (2016) also proposed the approach to interactive neural machine

translation described in Section 5.2. They compare it to a prefix-constrained system

that is tuned to interactive translation specific objectives and find in simulation that

the neural approach outperforms the phrase-based approach but is slower by two

orders of magnitude. Peris, Domingo, and Casacuberta (2017) describes this same

approach to interactive translation prediction, and also proposes a method for a

different interactive technique, in which the human translator validates potentially

discontiguous segments of a full translation (rather than validating a prefix), after

which the system returns a new translation that keeps all of the validated segments

intact. Lam, Kreutzer, and Riezler (2018) propose a reinforcement learning based form

of neural interactive translation, wherein the system produces partial translations,
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requests human quality judgments (rather than corrections) when entropy suggests the

system is uncertain, and updates the model after each such interaction; as with the rest

of the approaches described here, they evaluate it in simulation. Two of our papers

(Knowles and Koehn, 2016; Knowles, Sanchez-Torron, and Koehn, 2019) discuss the

use of probability distribution masking to allow character-level interactions with a

subword vocabulary in interactive translation prediction.4 Peris and Casacuberta

(2019) also describe this same masking technique.

5.4 Simulation Experiment Setup

We begin with a simulation study, where a preexisting human translation is used

in place of the translator’s live input to an interactive translation system. We do

this by treating the preexisting human translation as though it were being typed

live, one token (or letter) at a time, by a translator interacting with a prediction

system. Algorithm 1 shows the approach to simulating neural interactive translation

prediction. The phrase-based statistical machine translation baseline follows the same

outline, using the search graph to predict the next token. We perform the simulation

exhaustively (predicting each token given all true token prefixes in the sentence) and

compute metrics from this exhaustive output rather than sampling a subset of sentence

prefixes for examination.

While we expect that in practical use, the human translator may sometimes match

4This is described more extensively in Section 5.7.1.
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the machine translation’s suggestions more closely (for example, by accepting synonyms

which we score as “wrong” as they are not exact matches) or may diverge more than

any one given reference sentence does, we can nevertheless compare methods based on

their prediction accuracy on the human reference relative to one another.

Algorithm 1 Simulated Neural Interactive Translation Prediction

~x, ~y∗ : source language sentence and reference (target language) translation
xt, y

∗
t : token t of ~x and ~y∗, respectively

T : length of ~y∗ (number of tokens)

Approach to predicting next token:

function Predict(~r, ~x, b)
if b = 1 then

. Perform greedy (no beam) decoding to generate the next token, given
the reference prefix (~r, length t− 1) and source sentence (~x).

ŷt ← arg max
yt

p(yt|~r, ~x)

else
. Perform beam search (beam size b) to translate the sentence to comple-

tion, selecting the most probable full sentence completion: {ỹt, · · · , ỹT ′},
while keeping the reference prefix (~r) fixed. Then select the first token
of the sentence completion ỹt to be the prediction.

ŷt ← ỹt
end if
return ŷt

end function

Process of simulating interactive translation prediction:

ŷ1 ← Predict({}, ~x, version)
for t ∈ {2 . . . T} do

ŷt ← Predict({y∗1, · · · , y∗t−1}, ~x) . Predict next token given reference prefix.
end for

. Compute word and character prediction accuracy by comparing y∗t and ŷt for
t ∈ {1, . . . , T}.
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5.4.1 Data

We perform a direct comparison between neural and statistical machine translation-

based interactive translation prediction on the German–English datasets5 made avail-

able for the news translation shared task at the 2016 Conference on Machine Trans-

lation (WMT), as described in Section 4.1.1. We use the official 2999 sentence test

set (average sentence length 23 tokens) to measure the performance of our methods.

This language pair and direction was chosen for this comparison on the basis of the

existence of neural and phrase-based statistical machine translation systems of very

comparable quality.

We also show neural interactive translation prediction results for German–English,

English–German, Czech–English, and English–Czech on the 2017 WMT news test sets.

For Czech language data, the test sets contain 3005 sentence pairs and for German

language data, 3004. For English–Spanish, we show results on the 2013 WMT test set,

consisting of 3000 sentence pairs. Those datasets are also discussed in Section 4.1.1.

5.4.2 Phrase-Based Model

As a baseline against which to compare neural interactive translation prediction,

we begin with a phrase-based statistical model which can be used to produce search

graph based predictions in an interactive translation prediction setting. We use the

German–English system submitted by Johns Hopkins University to the 2016 WMT

5http://www.statmt.org/wmt16/
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shared task (Ding et al., 2016), as described in Section 4.2.1, which has a BLEU

score of 34.5 on the WMT 2016 news test set. This model does not use the byte pair

encodings used by the neural models.

5.4.3 Neural Translation Models

For German–English, we use the Nematus model released by the University of

Edinburgh (Sennrich, Haddow, and Birch, 2016a), which also scores 34.5 on the WMT

2016 news test set when decoding with a beam size of 1. The system uses byte pair

encoding with a vocabulary of 90,000 words. For English–German, Czech–English,

and English–Czech, we also use the publicly available models from the University of

Edinburgh’s 2016 WMT submission. All of these systems are described in more detail

in Section 4.2.2.

We also train our own English–Spanish neural machine translation system, also

using the Nematus toolkit. As described in more detail in Section 4.2.3, the system is

trained on WMT data and evaluated on WMT 2013 news test data (the most recent

year in which the language pair was included in the evaluation). The system has a

BLEU score of 29.8 (beam 12, less than 1 BLEU below the best score from WMT

2013) or 28.4 (beam 1) on the WMT 2013 test set.

62



CHAPTER 5. NEURAL INTERACTIVE TRANSLATION PREDICTION

System Configuration BLEU
Neural no beam search 34.5

beam size 12 36.2
+ ensemble 37.5
+ r2l reranking 38.6

Phrase-based 34.5

Table 5.1: Quality measured by BLEU scores (case-sensitive) on the WMT 2016 news
test set for both the phrase-based and neural German–English models.

5.4.4 System Quality

Without beam search, the German–English neural system used has the same BLEU

score as the phrase-based system on the WMT 2016 test set (Table 5.1). While these

identical BLEU scores do not guarantee or even imply that the systems make the same

kinds of errors or that they would be judged by human annotators to be of identical

quality, we can claim that the systems are of comparable quality. For this reason, we

choose to compare neural and phrase-based interactive translation prediction on the

German–English language pair, allowing us to make a stronger claim about the fact

that neural interactive translation outperforms phrase-based than we would be able to

make if the underlying neural translation system were clearly of higher quality than

the phrase-based one.

Since we are concerned with translation speed, we consider a few simplifications

of the neural translation model. We do not use ensemble decoding (“ensemble”) or

a reranking stage (“r2l reranking”).6 Each of these simplifications makes decoding

several times faster at a cost to quality of 1-2 BLEU points. See Table 5.1 for a

6For more on these methods, see Sennrich, Haddow, and Birch (2016a).
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Input: Das Unternehmen sagte, dass es in diesem Monat mit Bewerbungsgesprächen
beginnen wird und die Mitarbeiterzahl von Oktober bis Dezember steigt.

Correct Prediction Prediction probability distribution
3 the the the (99.2)
3 company company company (90.9), firm (7.6)
3 said said said (98.9)
3 it it it (42.6), this (14.0), that (13.1), job (2.0), the (1.7), ...
3 will will will (77.5), is (4.5), started (2.5), ’s (2.0), starts (1.8), ...
3 start start start (49.6), begin (46.7)

inter@@ job job (16.1), application (6.1), en@@ (5.2), out (4.8), ...
8 viewing state state (32.4), related (5.8), viewing (3.4), min@@ (2.0), ...
8 applicants talks talks (61.6), interviews (6.4), discussions (6.2), ...
3 this this this (88.1), so (1.9), later (1.8), that (1.1)
3 month month month (99.4)
8 , and and (90.8), , (7.7)
8 with and and (42.6), increasing (24.5), rising (6.3), with (5.1), ...
3 staff staff staff (22.8), the (19.5), employees (6.3), employee (5.0), ...
8 levels numbers numbers (69.0), levels (3.3), increasing (3.2), ...
8 rising increasing increasing (40.1), rising (35.3), climbing (4.4), rise (3.4), ...
3 from from from (97.4)
3 October October October (81.3), Oc@@ (12.8), oc@@ (2.9), Oct (1.2)
8 through to to (73.2), through (15.6), until (8.7)
3 December December December (85.6), Dec (8.0), to (5.1)
3 . . . (97.5)

Figure 5.2: Example with nearly average prediction accuracy. Note the good recovery
from failure and that several of the correct choices rank highly in the probability
distribution of predicted words (values in parentheses indicate percent of probability
mass assigned to words; only words with probability ≥1% are shown). Tokens
containing @@ are an artifact of byte pair encoding.

comparison of quality scores for the different settings. There is clear potential for

improvement if computational concerns are removed. We discuss more issues of speed

and practical implementation in Section 5.7.
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5.5 Simulation Results

Figure 5.2 provides an example of the neural interactive translation prediction

system’s output for one sentence. The figure displays the correct word choices (taken

from the reference translation), the model’s prediction (using the prefix of the reference

translation up to that point as conditioning context), and the most probable word

choices according to the model’s probability distribution. In this example, we see

some instances where the token predicted by the system is a synonym of the reference

token (e.g., rising and increasing), a replacement that a human translator (rather than

our reference simulation) might actually accept in practice. We measure simulated

performance of the interactive translation prediction systems according to exact

matches with the reference, but we also examine the frequency of these and other

types of errors. Note that all predictions are made with the correct history, either

because it was correctly generated by the system or because the correct tokens were

force-decoded.

The neural method copes well with failure, and typically resumes with plausible

predictions. One exception is the prediction of talks after having seen ... will start

interviewing. This may be due to the attention mechanism being thrown off after a

sequence of low-probability prefix words, the way that byte pair encoding segments

the German compound noun Bewerbungsgesprächen, or other reasons. We provide

additional analysis of all of these issues in Section 5.6.
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System Configuration Word Prediction Accuracy
Neural no beam search 61.6%

beam size 12 63.6%
Phrase-based - 43.3%

Table 5.2: Word prediction accuracy: Percentage of words predicted by the interactive
translation prediction system that matched the human reference translation exactly
for German–English on the WMT 2016 news test set.

5.5.1 Word Prediction Accuracy

Figure 5.2 also illustrates word prediction accuracy, the primary evaluation metric

we use to measure the quality of the interactive prediction methods. It measures how

many words are predicted correctly (see the first column in the figure). Note that we

measure on the level of words, so we score the split form inter@@ viewing (an artifact

of byte pair encoding) as a single word, rather than as two words. This allows us

to directly compare the neural and phrase-based systems despite the fact that they

use different segmentations (the former translates and predicts tokens at the subword

level, while the latter predicts tokens at the whole word level). For both the neural

and phrase-based interactive prediction systems, we generate a sequence of predictions

such that the prediction ŷt is based on the human validated prefix {y∗1, · · · , y∗t−1} for

all t. We can then compute the word prediction accuracy as the percentage of the

predictions ŷt that exactly match their corresponding reference y∗t .

Table 5.2 shows the prediction accuracy for the three methods. The neural systems

clearly outperform the method based on the search graph of the phrase-based model

with over 60% prediction accuracy for the neural systems and just 43.3% for the
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Language Pair WPA BLEU
English→German 60.7% 24.2

German→English (2016) 61.6% 34.5
German→English 62.7% 29.6
English→Czech 56.1% 19.1
Czech→English 57.0% 24.5

English→Spanish (2013) 59.1% 28.4

Table 5.3: Word prediction accuracy (WPA) of neural interactive translation prediction
with beam size 1 and BLEU score for standard neural machine translation decoding
with beam size 1 on WMT 2017 test set (unless otherwise noted).

phrase-based. The difference between the beam search approach (63.6%) and the

no beam search approach (61.6%) is much smaller than the difference between those

approaches and the phrase-based approach, despite their corresponding BLEU scores

(Table 5.1). We discuss potential reasons for this improvement in Section 5.6.1.

We also show word prediction accuracy and BLEU scores for several other language

pairs and datasets in Table 5.3. For both German and Czech, we observe slightly

higher word prediction accuracies when translating into English than when translating

from English; in both cases this matches the intuition that it is more challenging to

translate from a less morphologically complex language to a more morphologically

complex one. In all cases, the word prediction accuracy is above 50%, even without

beam search.
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5.5.2 Letter Prediction Accuracy

In interactive translation prediction, the user can interact at either the whole-word

level (accepting suggestions) or at the character level (providing corrections). This

means that the interactive translation prediction system must be able to react to a

single user keystroke. Returning to the example from Figure 5.2, we observe that the

system assigns higher probability to the word numbers than to the word levels, while

the latter is preferred by the human translator (or, at least, the human translator

who produced this particular reference). This is marked as an error for the purpose of

calculating word prediction accuracy. Now we can imagine this occurring in a real

translation setting: if the user types the letter l, the system should quickly update

its prediction to levels, the most likely token (from the probability distribution that

generated the original hypothesis) that starts with this letter. In general, when the

user types the initial letters of a word, the system should predict the most probable

word with this letter prefix. In the beam search setting, the system first runs through

the first word of each of the hypotheses in the beam (from most to least probable) to

see if any match the translator’s letter prefix, before falling back to the probability

distribution over the full vocabulary. With a beam size of 12, the correct word appears

in the beam (but not as the predicted word) 25.2% of the time. We discuss the

particulars of implementation in Section 5.7.1.

To measure the accuracy of system predictions for word completion, we count the

number of incorrectly-predicted characters. To give a more complex example, suppose
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System Configuration Letter Prediction Accuracy
Neural no beam search 86.8%

beam size 12 87.4%
Phrase-based - 72.8%

Table 5.4: Letter prediction accuracy: Percentage of letters predicted correctly for
German–English on the WMT 2016 news test set.

that the human translator wants to use the word increased at the point at which the

system first predicts rising. After seeing the letter i, the system updates its prediction

to increasing. It predicts all letters correctly until it comes to the final e. When the

user enters increase, the system updates its prediction to increased. We count this

as two wrongly predicted letters: increased. Table 5.4 shows the scores for both the

neural and phrase-based methods. Again, the neural methods clearly outperform the

phrase-based method.

Note that this measure is not as clearly tied to user actions as word prediction

accuracy. In the user interface shown in Figure 5.1, correctly predicted words are

accepted by pressing tab, while incorrectly predicted words have to typed in completely

(assuming no word completion). So, word prediction accuracy reflects the proportion

of words that do not have to be typed in. The effort savings for word completion are

less clear, since there are various ways the user could interact with the system. In our

example, when the user sees the prediction increasing but wants to produce increase,

there are several choices even within the user interface of a computer aided translation

tool like casmacat. The user could accept the system’s suggestion, and then delete

the suffix ing and type in ed. Or, they could type in the entire prefix increase until

69



CHAPTER 5. NEURAL INTERACTIVE TRANSLATION PREDICTION

System Configuration 1 2 3 4 5
Neural no beam search 55.9% 61.8% 61.3% 62.2% 61.1%

beam size 12 58.0% 62.9% 62.8% 64.0% 61.5%
Phrase-based - 28.6% 45.5% 46.9% 47.4% 48.4%

Table 5.5: Ratio of words correct after first failure for German–English on the WMT
2016 news test set. The columns (numbered 1 through 5) indicate the position of the
word relative to the first failure in the sentence, with 1 being the word immediately
following the first failure and 5 being the word five tokens after the first failure.

the system makes the correct prediction, which in this example does not yield any

savings at all: the user may accept the prediction with tab or type in d on their own.

5.6 Analysis

Having observed that neural interactive translation prediction outperforms a phrase-

based approach using the search graph when the underlying machine translation quality

is similar, we consider some of the reasons why this is the case. We first examine how

well each of the systems recovers from errors (Section 5.6.1), then consider the length

of the sequences of erroneous predictions (Section 5.6.2), and conclude with additional

analysis of the probability assigned to synonyms or other erroneously predicted words

(Section 5.6.3).

5.6.1 Recovering from Failure

Let us imagine a human translator interacting with an interactive translation

prediction system, working to translate the sentence from Figure 5.2: Das Unternehmen
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sagte, dass es in diesem Monat mit Bewerbungsgesprächen beginnen wird und die

Mitarbeiterzahl von Oktober bis Dezember steigt. To start, the interactive translation

prediction system performs well, and the translator accepts the first six words (The

company said it will start) suggested by the system. However, the next word that

the system suggests is job, but the translator would prefer the word interviewing

instead. They would then produce the word interviewing themselves, the interactive

translation prediction system would adjust, and they would continue interacting by

either accepting suggestions or correcting the system with their own preferred words.

We call this misprediction (job instead of interviewing) the first failure in the sentence.

To get a more detailed picture of the performance of the neural prediction method,

we explore how it recovers from failure. That is, after the translator rejects a suggestion

and provides their own (currently simulated by a reference), we look at what the

system does the next time(s) that it predicts a word. First, how well does the method

predict the words following its first failure? We look at a window of up to five words

following the first failure in a sentence (note that if the first failure is near the end of

the sentence, the window will be truncated to the end of the sentence). In the case of

our example, this would involve looking at the 5 system suggestions and simulated

translator interactions (acceptance or correction) following the erroneous suggestion of

job. The next suggestion is incorrect (applicants), followed by two correct suggestions

(this and month), then two incorrect suggestions (, and with); these would be the 5

words in the window following the first failure. See Table 5.5 for performance of the
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Figure 5.3: Neural (no beam) recovery from first failure at each position in the window
of 5 words following the first failure, binned by probability assigned to correct solution
(see legend) for the neural German–English system without beam search on the WMT
2016 news test set.

various interactive translation prediction systems.

The neural system is successful in predicting the word following the first failure

in the sentence (the first word in the window) 55.9% of the time. The second word

in the window is predicted correctly 61.8% of the time, with similar accuracy for the

remainder of the winder. So, failing on a word does impact the prediction of the word

immediately following the failure, but it has less of an impact on words in the rest of

the window following the failure. The phrase-based method only correctly predicts

28.6% of the first words immediately after failing on a word, a larger drop. This

suggests that the phrase-based method has a harder time recovering initially, though

for both types of system, the percentage predicted correctly does return to or exceed

the overall word prediction accuracy within the five word window.

Interestingly, not all failures have an equal impact on the predictability of the
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subsequent words. Figure 5.3 shows the prediction accuracy for the neural method

(without beam search) in more detail for the same five word window following the

system’s first error. We examine the way that the probability assigned to the correct

word (which the model failed to predict) influences recovery from errors. When the

model assigns extremely low probability (below 1%) to the correct answer, it performs

very poorly on the next word, getting it correct only 44.1% of the time. On the other

hand, when the model assigns relatively high probability to the correct word (25%

to 50%), the probability of correctly guessing the next word rises to 72.1%. We can

intuitively understand the probability assigned to the correct word as approximating

how close the model was to being correct when it made the first error. When its

prediction is far from correct, it has difficulty recovering, but when it is close to correct,

it does not suffer a drop in performance in predicting the next words.

We observe examples of this phenomenon (and its ties to near-synonyms) in

Figure 5.2. When the model assigns low probability to the correct answer (e.g., inter-

viewing), there are sequences of incorrect predictions. In the case of rising, the model

predicts increasing, a near-synonym, and assigns the highest probability to increasing,

rising, and climbing (in descending order).

5.6.2 Length of Sequences of Mispredicted Words

Another revealing set of statistics is the length of sequences of word prediction

failures. If the method fails on one word, and predicts the next word correctly,
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System Config. 1 2 3 4 5 6 7 8 9 10+
Neural no beam 8168 3229 1422 694 350 187 89 33 16 25

beam 12 8378 3072 1320 615 305 151 75 46 14 15
Phrase - 3403 2150 1227 825 530 360 282 212 157 774

Figure 5.4: The graph shows number of mispredicted words, categorized by lengths of
the sequence of mispredicted words to which they belong. The table gives a breakdown
of the number of sequences of each length.

we have a 1-word failure sequence. However, if it misses the next word also and

only recovers after that, we have a 2-word failure sequence, and so on. Shorter

failure sequences indicate better models (and ideally a correspondingly improved user

experience). Figure 5.4 visualizes the sequences of word prediction failures by showing

how many mispredicted words can be accounted for by each failure sequence length

(mispredictions in shorter sequences are represented by light colors while mispredictions

in long sequences are shown in darker red).

The methods show a stark contrast. The neural methods have a much higher

number of 1-word failure sequences (8168 and 8378 vs. 3403) and 2-word failure

sequences (3229 and 3072 vs. 2150, comprised of 6458 and 6144 vs. 4300 mispredicted

words) but comparably very few long failure sequences. For instance, only a small
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fraction of the neural systems’ mispredicted words occur in sequences of greater than

15 errors in a row, while 7129 of the phrase-based system’s word prediction errors

occur in misprediction sequences of length greater than 15 words. This is not simply

a consequence of the greater word prediction accuracy of the neural systems; in

particular, the phrased based model shows far more long misprediction sequences

than one would expect were those errors distributed uniformly randomly (the neural

systems also have more long misprediction sequences than would be expected if the

errors occurred randomly, but to a lesser extent).

These numbers again suggest that the neural method recovers much better from

failures, while the phrase-based system has more difficulty. Since the neural method

considers every word in the vocabulary at any point in the sequence, it can always

place the user’s choice in a word prediction sequence, and does not have to resort to

string edit distance to match up with the user’s translation.

5.6.3 Synonyms

In both the example sentence (Figure 5.2) and the analysis of error recovery

(Section 5.6.1), we observe interesting behavior when the model makes an error while

still assigning relatively high probability to the correct token. Some of the failures

are near-synonyms (numbers instead of levels, or increasing instead of rising) that we

might expect would be accepted by real human users of the system. For the purposes

of our evaluation, we count even these near-synonyms as incorrect (as they are not
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exact string matches).

For English, we can use WordNet (Fellbaum, 1998) as a resource for automatically

determining synonymy. Words in WordNet are related to one another in terms of

synonymy, hypernymy, hyponymy, meronymy, and other semantic relations. For our

purposes in this section, we define words to be synonyms if their Wu-Palmer similarity

(Wu and Palmer, 1994) in WordNet is equal to 1. This Wu-Palmer similarity between

words x and y is computed using their least common superconcept c as 2∗d(c)
d(x)+d(y)

, where

d is the depth (number of nodes on the path to the root). We use the NLTK (Bird,

Klein, and Loper, 2009) implementation.

It is worth noting the prevalence of these synonyms and near-synonyms: in the

neural versions, we find that 21.0% of incorrect predictions (22.4% with beam search)

are synonyms of the correct answer; in the phrase-based system, this drops to 17.7%.

Were these to be accepted by a real translator, overall system accuracy scores would

improve. We hypothesize that the difference between the prevalence of synonyms in

the neural and phrase-based approaches could be partly due to the neural system

having additional information about the semantics of words (as represented by their

embeddings), while the search graph system treats synonyms and non-synonyms alike.
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5.7 Speed Considerations

Having shown that the neural method delivers superior prediction accuracy, we

turn to the issue of speed for use in a live system and address some details of

implementation. To be used in an interactive user interface, the method has to quickly

produce alternative sentence completion predictions. A common time limit in human

computer interaction is 100 milliseconds for the system’s response. Any longer feels

sluggish and annoying to the user.

5.7.1 Implementation Details

In the initial description of neural interactive translation prediction, we showed the

conditional probability equation for generating the single token immediately following

a translator’s prefix (Eq. 5.2). In practice, however, we generate more than just the

next predicted token to show to the translator, so it is more accurately described as

follows: given a translator prefix of length m, and some number of new tokens which

we wish to show to the translator, we have two equations.

p(ym+1|{y∗1, · · · , y∗m}, ~x) = g(y∗m, ct, st) (5.3)

p(ym+n|{y∗1, · · · , y∗m, ŷm+1, · · · , ŷm+n−1}, ~x) = g(ŷm+n−1, ct, st)∀n > 1 (5.4)

In Equation 5.3, we see that the word immediately following the user-generated

77



CHAPTER 5. NEURAL INTERACTIVE TRANSLATION PREDICTION

prefix is conditioned on the user-generated prefix. In Equation 5.4, we see that all

subsequent words are conditioned on a user-generated prefix followed by predicted

words (until such time as the translator accepts or rejects them).

If a translator rejects a suggestion and provides their own, there are two possible

cases: either the translator has added a complete word to the translation, or they

have added a partial word. In the case of a complete word, we follow Equations 5.3

and 5.4. That word becomes part of the prefix, and the generation of the subsequent

tokens is conditioned on it.

If, however, the translator has only generated a partial word (which we will call

a character prefix), this is slightly more complicated. We provide some additional

technical detail here. We must first determine whether this character prefix is the

prefix to any item in our (subword) vocabulary. If it is the prefix of at least one

vocabulary item, we predict the completion to this word (or subword) by selecting the

highest probability item in the vocabulary that starts with our character prefix (this

can be described as a modification to the softmax and/or as a mask applied to the

distribution prior to performing the softmax). Given the character prefix r∗:

p(yt|{y∗1, . . . , y∗t−1, r∗}, ~x) ∝ 1(yt)p(yt|{y∗1, . . . , y∗t−1}, ~x) (5.5)
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where

1(yt) =


1 if yt starts with the string r∗

0 otherwise

(5.6)

We then continue predicting the remaining tokens in the standard fashion.

In the case that the character prefix is not the prefix to any item in our vocabulary,

we must first apply BPE to it.7 Once BPE has been applied, we have the model

consume (forced decode) all but the last subsegment. This last subsegment could be a

complete vocabulary item on its own, or again a prefix to a vocabulary item. Thus we

return to our approach of predicting the highest probability vocabulary item which

has the last subsegment as a prefix, and then continue prediction.

5.7.2 Speed Measurements

In a basic setup, the neural machine translation decoder has to step through the

user’s prefix, and then produce predicted words until the end of the sentence. In

other words, it has to translate the entire sentence for a response to a user interaction.

Table 5.6 gives numbers for decoding speed, running on a multi-core CPU (32 core

3.20GHz Intel Xeon CPU E5-2667 v3, although only 2-3 cores are utilized on average)

and a GPU (Tesla K80).

Decoding time is spent mostly on the matrix multiplications to compute hidden

7This has potentially interesting consequences, as the BPE segments produced here may not be
the ones that would have been produced had the translator produced the entire vocabulary item
in one go. That is, applying BPE to a prefix (and then a suffix) will not always result in the same
segmentation of a word as applying BPE to the whole word at once.
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Length 1-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 100-104
CPU 108.6 115.7 122.7 127.0 131.3 136.1 140.7 145.2 184.4
GPU 7.0 7.2 7.4 7.4 7.4 7.4 7.6 7.6 7.6

Table 5.6: Decoding speed per word in milliseconds (neural model, no beam search)
for different sentence lengths.

and output layer vectors. The computational cost of the argmax operation to pick

the best word is negligible, hence the computational cost is essentially the same for

matching words in the user prefix and predicting new words.

To predict a single word, the CPU requires over 100 milliseconds, which is clearly

too slow. The time it takes to translate a single word slightly increases with the length

of the sentence, since the attention mechanism has to sum over a larger context of

source language words.

On a Tesla K80 GPU, the cost to predict one word drops to 7 milliseconds. For a

20-word sentence, this means 140 milliseconds (7 × 20) which is also beyond our 100

millisecond time limit.

5.7.3 Optimizations

In casmacat, the server expects to receive full sentence translation output from

the machine translation server each time that a new translation or prefix completion

is requested and subsequently returned to it (Alabau et al., 2014). As we noted, CPU

implementations of neural interactive translation prediction are too slow to be used in

a real-life setting, and very long sentences may also be difficult to translate fast enough
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even on a GPU. In order to deliver translation predictions at an adequate speed, we

perform translation using a GPU and implement several time-saving approaches.

We employ the following optimizations:

Precompute: We precompute the initial translation for each sentence. We allow a

long time limit for this (5 seconds) as it is done in the background when the

page opens, before translators begin translating. We also limit the output to

100 tokens.

Timeout: At any other point, when we are computing the predicted translation suffix

for a translator-produced prefix, we only continue generating token predictions

while fewer than 80ms have elapsed. This does mean that sometimes we will be

left with only a partial sentence completion, which we attempt to turn into a

full sentence using patching (described below).

Cache: We also perform caching to improve speed. As we produce a hypothesis

translation, we also save the hidden states and probability distributions that were

used to produce that hypothesis. That way, if the translator accepts part of the

hypothesis but then diverges from it, we do not need to recompute those values,

and can simply consume the new divergent continuation of the translation before

predicting new tokens. Similarly, if the translator returns to edit an earlier part

of the sentence which has been cached, this can save computation time as well.

However, should they then return to editing the end of the sentence, having
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introduced new tokens in the middle, the system will still need to force-decode

again until it reaches the end. One could also implement caching by translator

and/or by document.

Patch: When the prediction of the remaining tokens in the sentence stops early due

to timeout, we patch together the current tokens and the end of a previous

longer (complete) translation. (If none exists, we simply return the partial

translation without patching.) Assuming a longer previous translation exists,

we select where to patch using KL-divergence between probability distributions.

We describe patching in more detail below.

(1) Initial hypothesis A sovereign prel@@ ate of the Champions League season .
(2) Translator prefix A confident
(3) New prediction start to the

(4) Alignment start to the → prel@@ ate of the Champions
(5) New hypothesis A confident start to the Champions League season .

Figure 5.5: Example of patching a 3-word prediction into the original sentence
completion.

The patching method (without beam search) that we propose patches together

a limited (say, 3 word) new prediction with the existing sentence completion each

time that the translator diverges from the predicted translation. An example of this

is shown in Figure 5.5 (we reference the row numbers parenthetically in the following

description). We begin by precomputing a full translation when the document is

uploaded (row 1). If and when the translator diverges from this (row 2), we compute
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predictions for the next 3 words only (row 3) and attempt to patch them together

with the original translation.

We find the patch position by computing the KL divergence between the probability

distribution that produced the last of the 3 new words and the stored probability

distributions that produced the words in a 5-word window (following the position of

the the last word in the translator prefix). This results in an alignment between the

last of the 3 new words and the index of some word in the existing translation (row 4).

The new translation hypothesis consists of concatenating the translator prefix, the

3 newly predicted words, and any words following the position of the index in the

existing translation hypothesis that minimized the KL divergence (row 5).

By patching together earlier predictions with a short sequence of predictions based

on new input from the translator, we can guarantee that we can serve the translator

new predictions quickly. The new prediction and patching combined takes an average

of 54.3 milliseconds to compute. This approach yields a word prediction accuracy of

56.4% and a letter prediction accuracy of 84.2% for German–English on the WMT

2016 news test set (a drop from the full search neural model by 5.2% and 2.4%,

respectively, but still vastly outperforming the phrase-based search graph system).

In a real-life setting, we may sometimes have enough time to recompute the

full sentence in the background, rather than relying on patching together different

predictions, so we could expect performance closer to the performance noted earlier.

Additionally, we could use beam search (or other improvements to the neural model)
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Figure 5.6: Ratio correct after first failure for the 4th and 5th words in the window.
The horizontal axis represents the alignment position found by the patching heuristic.

in order to precompute better initial sequences, which we expect would also improve

performance.

We analyze the performance of this patching heuristic. In the example in Figure 5.5,

the new hypothesis is in fact the correct translation. If the initial error by the system

is a single-token error (for example a synonym), we might expect the last of the 3

newly translated tokens to align to the token at the center of the window. In this

case it (correctly) aligns one position to the right of this and produces the desired

hypothesis.

An alignment position of 3 indicates that the 3rd newly translated token aligned

with the 3rd token in the window (as would be expected if no reordering were needed).

Similarly, an alignment position of 1 indicates that the 3rd newly translated token

aligned to the 1st token following the failure, and so on. In the example in Figure 5.5,

we are attempting to patch together some portion of the initial hypothesis (A sovereign

prel@@ ate of the Champions League season .) with the translator prefix (A confident)

and the new partial prediction (start to the). As there are two tokens in our
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translator prefix, we look for a token following the first two tokens of the initial

hypothesis as a place to patch. Our window of five tokens is prel@@ ate of the

Champions, with prel@@ being in alignment position 1, ate in 2, of in 3, the in 4,

and Champions in 5. After computing the KL divergence between the probability

distribution that produced the last token (the) of the new partial prediction with each

of the stored probability distributions that generated the tokens in the window of five

tokens, we find that the in alignment position 4 had the lowest KL divergence of all

five. This is then the position that we use for patching together our new hypothesis:

A confident start to the Champions League season .

When the alignment is close to the center of the window, this suggests that the

sentence does not require much reordering. The patching heuristic is somewhat impre-

cise and has difficulty handling sentences with long-range reordering. In Figure 5.6

we compute the failure recovery ratios for the 4th and 5th words in the window

following the first error,8 conditioned on the alignment position. We see that when

a longer-distance alignment occurs (aligning to position 1 or 5, rather than 3), the

ratio drops, demonstrating either an error of alignment or the system’s difficulty in

handling long-distance reordering.

8We show only performance for the 4th and 5th words in the window; performance on the first
three is identical to the no-beam-search values reported in Table 5.5, as the patching occurs after
this sequence of 3 new predictions.
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5.8 Conclusion

In this chapter, we demonstrate that neural machine translation systems can be

effectively applied to interactive translation prediction, improving upon the perfor-

mance of phrase-based statistical methods. We show that they recover well from errors,

have shorter sequences of incorrect predictions, and, when they do make errors, more

frequently predict synonyms than phrase-based systems do. We demonstrate that a

combination of speed-related heuristics and use of GPU hardware can make them

fast enough for practical application, though there remains room for improvement. In

particular, most of our approaches assume that the translators generate their text from

start to finish, without returning to edit earlier sections; while the caching heuristic

may help with this, it is not guaranteed to solve all related challenges.
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Chapter 6

User Study

6.1 Introduction

This chapter draws primarily on work published in: Knowles, Sanchez-
Torron, and Koehn (2019). This paper was a collaboration, with equal
contributions from the first two authors: I built the neural machine trans-
lation system used, integrated the neural interactive translation prediction
system into the CAT interface, extracted user logs, and performed word
prediction accuracy analysis. My coauthor, Marina Sanchez Torron, re-
cruited the translators, selected the texts to be used in the study, developed
the experimental protocol and instructions, and processed the logs and user
survey responses.

We investigate the use of neural interactive translation prediction through a user

study with professional English–Spanish translators. We integrated our Nematus-

based neural interactive translation prediction implementation into the open-source

casmacat translation workbench (Alabau et al., 2014) and conducted a user study.

The goals of the study were to examine productivity with interactive translation
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prediction, to determine whether translation productivity increased as translators

became more familiar with the technology, and to collect translator impressions about

interactive translation prediction.

The eight translators who participated in the study (who we refer to as TrA through

TrH) were Castilian Spanish professional translators, experienced in translating from

English into Spanish. All but two of them (TrA and TrB) had degrees in translation,

and all had some level of higher education. With the exception of TrB, all translators

had some prior post-editing (PE) experience. Details regarding their post-editing

experience are shown in Table 6.2; additional detail and analysis can be found in

Sanchez Torron (2017).

The study consisted of eight sessions spanning four weeks. During each session,

translators were asked to translate one of eight news texts. In the first session,

translators were asked to post-edit one news document each (N=231 sentences total).

In the remaining seven sessions, they performed translation using the interactive

translation prediction tool, translating one document per session (N=1377 sentences

total). The post-editing session provided us with a baseline for each translator’s

productivity.

The news texts used in the study were selected controlling for length and syntactic

complexity. Texts had on average 29.13 sentences (SD=1.24), 822.75 tokens (SD=

37.48), and a dependency length of 103 (SD= 2.99) and were assigned randomly to

translators, while ensuring that each text was presented only once in each session
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Figure 6.1: Interactive translation prediction in casmacat: The system suggests to
continue the translation with the words algoritmo puede escribir, which the user can
accept by pressing the tab key.

and only once to each translator throughout the study. Translators were asked to

produce publication quality translations that used as much of the machine translation

output as possible, and they were asked not to perform preferential changes that would

not improve text quality. We used the English–Spanish neural machine translation

system described in Section 4.2.3 to produce translations for post-editing as well as

for interactive translation prediction.

The original sample size was reduced by about 17% due to technical issues (server

down) invalidating two interactive translation prediction translator sessions and due

to one translator (TrB) choosing not to follow instructions. We still report data on

TrB’s background and reactions to the tool, as those may shed light on interesting

avenues to pursue when examining who will benefit the most from such tools.
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6.2 Translator Interactions

Translators received instructions about the study (including compensation, the

modes of interaction that they would use, the expectations of translation quality,

etc.) and also had access to a help page through the casmacat interface. Before

beginning the study proper, translators conducted short warm-up exercises consisting

of 5 sentences to familiarize themselves with casmacat as well as both the interactive

translation prediction and post-editing modes.

The casmacat system logs all keystrokes, mouse clicks, and movements between

segments in the interface, along with timestamps. The system also logs requests to the

translation server, source data, initial translation data from the machine translation

system, and final translation output produced by the translators. While the underlying

translation system vocabulary consists of subword segments, user interactions are

performed at the character level (by typing individual characters) and at the whole-

word level (by hitting tab to accept a suggestion). All byte pair operations are

performed behind the scenes and are not shown to the user.

In the user interface (UI), shown in interactive translation prediction mode in

Figure 6.1, translators see a source sentence on the left and a space to enter their

translation on the right. They translate the document sentence-by-sentence. During

post-editing, the right side is initially populated with MT output, which the translator

then edits, as in a standard word processor. During interactive translation prediction,

a floating box to the right and below the translator-produced prefix shows the next
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three suggested words. The translator can accept a word using the tab key, or type a

new word one character at a time.

6.3 User Study Results

We evaluate neural interactive translation prediction both in terms of translator

productivity and translator satisfaction. Productivity was measured in terms of

temporal effort, technical effort, and final translation quality, across eleven variables

derived from the casmacat logs and the final translation output. This evaluation is

described in Section 6.3.1. We evaluated translator impressions using a post-study

survey, as described in Section 6.3.2.

6.3.1 Sample Results

We considered three categories of translator productivity, measured by eleven

unique variables. Temporal effort was measured in terms of processing time (seconds

per source token). Technical effort was measured through the counts of Manual

Insertions, Manual Deletions, Navigation and Special Key Presses (up, down, left,

right, ctrl, alt, shift, and tab), Mouse Clicks, and Tokens of MT Origin (the

count of tokens in the final translator output that were accepted by the translator

exactly and then kept unchanged). The final translation quality was measured by
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manual annotations of MQM Score,1 Accuracy Issues, Fluency Issues, Minor Issues,

and Major Issues. We also separately examined word prediction accuracy for each

translator.

Table 6.1 shows summary statistics (mean and standard deviation) for translation

productivity indicators across all translators, broken down by translation condition.

As Table 6.1 indicates, these results favor interactive translation prediction for eight

out of the eleven productivity indicators. No critical issues were observed in any

submitted translations (as expected given that the participants were professional

translators).

We expected that we might observe consistent trends over time in interactive

translation prediction, and examined this through exploratory graphs.2 None of these

exploratory graphs showed consistent trends that would indicate an increasing comfort

or productivity with the tool, with the exception of Mouse Clicks. Mouse Clicks

showed a steady decrease from the first interactive translation prediction session (M

= 0.34, SD = 0.40) gradually to the last interactive translation prediction session

(M = 0.28, SD = 0.46). This change may indicate that translators modify how they

interact with the tool (decreasing mouse use) over time.

As Table 6.2 shows, the effect of interactive translation prediction on individual

1Multidimensional Quality Metrics (MQM) is a framework for translation quality assessment, which
provides a set of issue (problem) types, guidance for categorizing those, and outlines severity levels
(minor issues like extra spaces, major issues like spelling errors that do not make text uninterpretable
but that could require extra reader effort, and critical issues that change text meaning). The MQM
annotations for our output were produced by Marina Sanchez Torron, who analyzed the translations.
Details of MQM are here: http://www.qt21.eu/mqm-definition/definition-2015-12-30.html

2These exploratory plots and additional analysis can be found in Sanchez Torron (2017).

92

http://www.qt21.eu/mqm-definition/definition-2015-12-30.html


CHAPTER 6. USER STUDY

ITP PE

Mean SD Mean SD

↓ Processing Time (seconds per source token) 4.56 3.88 4.79 6.31

↓ Manual Insertions (count per source token) 2.55 2.31 3.52 3.85

↓ Manual Deletions (count per source token) 1.18 1.54 3.37 3.78

↓ Navigation and Special Key Presses 1.13 0.66 0.29 0.48

(count per source token)

↓ Mouse Clicks (count per source token) 0.31 0.41 0.54 0.45

↑ Tokens of MT Origin (count per 100 source tokens) 61.93 30.22 59.36 33.33

↑ MQM Score (percentage) 98.52 4.01 98.25 6.02

↓ Fluency Issues (count per 1000 source tokens) 6.18 17.91 2.14 8.62

↓ Adequacy Issues (count per 1000 source tokens) 4.71 15.87 8.12 25.58

↓ Minor Issues (count per 1000 source tokens) 9.9 23.11 8.19 25.52

↓ Major Issues (count per 1000 source tokens) 0.97 6.3 2.08 12.22

Table 6.1: Summary statistics for translation productivity indicators in ITP and PE.
Arrows indicate whether a decrease or increase indicates improvement (i.e., a lower
processing time is better, so it is marked with ↓, while a higher MQM score is better,
so it is marked with ↑).
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TrA TrB TrC TrD TrE TrF TrG TrH

PE cert. N N Y N N Y N N

PE exp.(yrs) 2-5 0 2-5 2-5 5-10 5-10 <2 2-5

I prefer ITP + - - + ++ + + - =

I’d use ITP + - - + + ++ ++ - -

Processing ITP 3.19 3.77 2.55 5.43 5.84 3.2 5.89 5.9

Time PE 2.42 3.61 2.57 3.56 7.04 3.63 9.4 4.98

Manual ITP 3.56 6.11 1.15 4.15 1.98 0.76 1.7 4.96

Insertions PE 3.9 5.17 3.21 1.67 1.49 1.92 8.73 4.01

Manual ITP 1.2 0.65 1.95 1.15 1.12 0.47 0.75 1.62

Deletions PE 3.78 5.13 3.18 1.49 1.45 1.89 8.43 3.68

Nav. and ITP 1.21 0.29 1.88 0.82 0.98 1.31 1.08 0.6

Special Key PE 0.49 0.08 0.68 0.08 0.03 0.72 0.03 0.06

Mouse ITP 0.14 0.19 0.37 0.67 0.14 0.11 0.32 0.49

Clicks PE 0.32 0.32 0.3 0.45 0.6 0.34 0.91 0.85

Tokens of ITP 55.63 10.9 81.73 35.85 68.91 86.48 61.8 37.75

MT origin PE 53.62 26.82 59.33 74.9 79.17 75.23 21.51 49.68

WPA
ITP 65.92 52.02 78.82 59.31 76.58 83.92 68.36 61.01

PE 68.04 55.32 69.38 79.27 76.56 76.50 37.32 68.51

MQM Score
ITP 99.51 96.48 98.22 99.23 98.01 97.95 98.52 98.42

PE 99.4 99.42 98.65 99.25 98.51 97.13 96.05 98.6

Fluency
ITP 2.51 10.28 3.08 5.47 9.57 13 6.73 2.23

PE 3.54 0 0.49 3.22 1.91 1.43 4.66 0

Adequacy
ITP 1.90 10.27 8.06 2.14 5.47 4.02 3.47 7.18

PE 3.08 5.76 4.29 4.47 9.49 22.96 9.66 3.55

Minor
ITP 4.04 19.06 9.41 7.62 14.10 15.94 9.19 7.78

PE 6.61 5.76 1.81 7.69 10.39 22.96 6.84 1.40

Major
ITP 0.37 1.48 1.72 0 0.98 0.99 1.01 1.55

PE 0 0 2.96 0 1.01 1.43 7.48 2.15

Table 6.2: Translators’ main translation productivity indicators and impressions.
Processing Time is measured in seconds per source token; Manual Insertions, Manual
Deletions, Navigation and Special Key Presses, and Mouse Clicks are measured as
counts per source token. Tokens of MT origin are measured as counts per 100 source
tokens; MQM Score as a percentage, and translation issues as count per 1000 source
tokens. Word Prediction Accuracy (WPA) is a percentage. Likert responses are ranked
from most negative to most positive: - -; -; =; +; ++.
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translators’ productivity indicators varies. All translators made more Navigation and

Special Key presses and fewer Manual Deletions in interactive translation prediction,

and all but two (TrC and TrD) made fewer Mouse Clicks in interactive translation

prediction. The increase in Special Key presses is directly attributable to the use of

the tab key to accept translation suggestions in the interactive translation prediction

interface. The decrease in Mouse Clicks seems intuitive given the interaction modes; a

mouse click should only be required in interactive translation prediction if a translator

chooses to return to an early part of the sentence to make changes, whereas it may

be a more natural way to navigate and interact during post-editing (just as it is

during editing of a standard text document in most word processors). Additionally,

all but one translator (TrA) produced texts with more Fluency Issues in interactive

translation prediction, and all but one translator (TrC) produced texts with fewer

Adequacy Issues in interactive translation prediction.3

We observe a wide range of word prediction accuracy scores (obtained by rerunning

neural interactive translation prediction as a simulation on the final translator output)

for both interactive translation and post-editing, showing (as also shown in the Tokens

of MT Origin) that the usefulness of the suggestions varies by translator. In all cases

3In addition to the lack of spell checking in our interface, a bug in tokenization for ITP may
have introduced some spelling errors when the translator’s spacing (for example, leaving whitespace
between a number and the character “%”) did not match the automatic detokenization performed by
the system on the backend. This resulted in system suggestions of words with a character missing.
These errors were quite rare and only reported by one translator. Spelling errors (including Spanish
vs. Catalan spelling differences) were also introduced naturally by translators. It is possible that
translators did not catch these errors before continuing to the next sentence, perhaps due to the
lack of spell checker or if they were less thorough than they would typically be in checking their
translations.
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(except TrB), the word prediction accuracy for a translator using interactive translation

prediction is higher than the reference-simulated overall word prediction accuracy

(59.1%), indicating that this automatic metric underestimates the tool’s usefulness to

translators. While there is not a strict correlation between the positivity of translator

reactions to interactive translation prediction and word prediction accuracy or Tokens

of MT Origin, the three translators with the highest word prediction accuracy do

agree strongly or agree that they would use interactive translation prediction in

real-life scenarios, while the translator with the lowest word prediction accuracy

strongly disagreed (this is TrB, who also chose not to follow task instructions due

to dissatisfaction with the translation mode). The two translators with the most

post-editing experience agreed that they would use interactive translation prediction

in their work and both have high word prediction accuracy scores; this may suggest

that they are adept at using machine translation output in their translations.

Four translators were faster in interactive translation prediction, the same number

(though not the exact same set) that applied fewer Manual Insertions and made more

use of MT in interactive translation prediction, as measured by Tokens of MT Origin.4

This is similar to earlier studies that have found notable between-translator variation.

We discuss potential reasons for variation in Section 6.3.2.

4In particular, TrG’s “outlying” indicators in post-editing are partly due to replacing English
quotation marks in the translation by guillemets: TrG copied the guillemets from an outside source
and pasted them into casmacat’s interface, but in the process also pasted whitespaces and line
breaks (adding to the count of Manual Insertions), some of which TrG then manually deleted, hence
the higher temporal and technical effort indicators.
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6.3.2 Translators’ Impressions

We used a 5-level Likert scale questionnaire to collect translators’ impressions of

the following statements:

• I prefer ITP to PE

• ITP is less tiring than PE

• As the study progressed, I took better advantage of the ITP suggestions

• ITP helps me translate faster than PE

• ITP helps me translate to better quality than PE

• I would use ITP in real-life scenarios.

The survey also provided them the opportunity to answer open questions: Do you

have any suggestions for improvement of any aspect of interactive translation’s use?

and Please provide any additional comments about your experience with interactive

translation prediction.

Translators’ impressions of ITP were very positive overall. Of the eight translators,

five agreed (TrA, TrC, TrE, TrF) or strongly agreed (TrD) that they preferred the

interactive translation prediction mode over post-editing. Five agreed (TrA, TrC, TrD)

or strongly agreed (TrE, TrF) that they would use interactive translation prediction

in real-life translation scenarios. Six translators agreed (TrD, TrE, TrF, TrG,TrH) or

strongly agreed (TrA) that they felt that they took better advantage of the system’s
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suggestions as the study progressed. Three translators agreed (TrG,TrH) or strongly

agreed (TrD) that interactive translation prediction was less tiring than post-editing,

with one strongly disagreeing (TrB), and the rest giving neutral answers.

Our sample size of translators is quite small, so we should be cautious about drawing

strong conclusions or overly broad generalizations. Nevertheless, we do see some

patterns emerge which are worth noting as a basis for future consideration and study.

In their study on post-editing, Moorkens and O’Brien (2015) find that experienced

translators have more negative views of post-editing than novices (translation students).

In our study, we do not observe a comparable pattern of more experienced translators

expressing more negative views of interactive translation prediction. Instead, we

observe that the participants with more post-editing experience in their backgrounds

generally tended to have more favorable views of interactive translation prediction.

Both of the translators with 5-10 years of experience (TrE, TrF) expressed positive

views of interactive translation prediction, preferring it to post-editing. In fact, the

most experienced translator (TrA), both in terms of length of experience (> 10 yrs)

and translation volume in the previous 12 months (> 55k words) – who had 2-5 years

of post-editing experience – expressed, as detailed above, consistently positive views

of interactive translation prediction. In terms of translation productivity indicators,

as shown in Table 6.2, TrA logged the fastest post-editing time and the second fastest

interactive translation prediction time of all translators. TrA also produced the

highest quality texts in the post-editing condition and the highest quality texts of
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all translators in the interactive translation prediction condition. Similarly, three

of the four translators with 2-5 years of experience (TrA, TrC, TrD) preferred it to

post-editing and would consider using it in their work. The remaining translator with

2-5 years of experience (TrH) was neutral in terms of preference and weakly negative

towards the use of interactive translation prediction in their work. The two translators

with the most negative impressions of interactive translation prediction (TrB, TrG)

were the two translators with the least post-editing experience (0 and < 2 years,

respectively). One of these translators (TrB) strongly rejected interactive translation

prediction, as evidenced by strongly disagreeing to all Likert scale questions and

expressing negative views in the open questions. TrB chose to ignore the interactive

translation prediction assistance altogether after just one session, not accepting a single

token the interactive translation prediction system suggested afterwards (instead typing

all translations character-by-character, even those that matched the suggestions). This

reaction may be related to TrB experiencing prediction delays (see Section 6.3.3). The

translation activity data produced by TrB was deemed invalid and discarded, as any

measures collected would not be representative of working in interactive translation

prediction (and because the translator had ignored the task instructions to use as much

machine translation output as possible), but rather of unassisted translation.5 Finally,

there is some indication that translators who have formal post-editing training or

provide post-editing services frequently benefited the most from interactive translation

5We did compute word prediction accuracy on TrB’s translations in simulation; with a score of
52.0%, TrB was the only translator who had a lower word prediction accuracy than the simulated
WMT test set word prediction accuracy.
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prediction. In fact, of the four translators who were faster in interactive translation

prediction than in post-editing, two have post-editing industry certifications (TrC

[TAUS]; TrF [SDL]) and one (TrE) provides frequent post-editing services.

This all raises a number of questions for future study.

• Are the translators with more post-editing experience more open to using

machine-produced output?

• Do they see it as an improvement compared to post-editing and translating from

scratch, or simply the former?

• The translators in this study chose to participate in a study of new translation

technologies; are they more comfortable with or positively predisposed towards

machine translation technologies, as compared to the general population of

translators?

It may be that some translators are not willing to engage with post-editing or interactive

translation prediction, possibly because they already have a working routine they are

comfortable with. In this sense, the views expressed by Vasconcellos and León (1985),

O’Brien (2002), Rico Pérez and Torrejón (2012) and De Sutter (2011) that post-editing

requires that the translator has a positive or open attitude towards machine translation

also seem to resonate for interactive translation prediction. All of these – along with

the question of whether there really is meaningful correlation between post-editing

experience and positive reactions to interactive translation prediction – are questions

100



CHAPTER 6. USER STUDY

that could be examined in a larger scale study.

In addition to sharing positive and negative impressions, translators commented

on their experiences with the interface and the machine translation system. Three

translators (TrA,TrD,TrE) identified desirable UI features such as keyboard shortcut

customization and search and replace options. Four translators (TrB, TrC, TrD, TrH)

noted machine translation issues in terms of orthography, grammar, translation, style,

and discourse and three translators (TrC, TrE, TrF) pointed out variation in machine

translation quality level from sentence to sentence. One translator reacted to this

by treating confusing suggestions as a post-editing task (accepting all suggestions

and then post-editing a full sentence). Two translators (TrB, TrF) felt that not

being able to see the whole machine-translated text (only being shown the next three

suggested words in interactive translation prediction) slowed their overall translation

workflow, because otherwise they could quickly perform triage to determine whether

or not the MT output was going to be helpful.6 This highlights two potential ways of

improving interactive translation prediction: providing confidence or quality estimation

information (perhaps even to allow translators to determine which way they would

prefer to interact with the output) and improving underlying machine translation

system quality. Knowles and Koehn (2018b) provides initial steps towards confidence

estimation for neural interactive translation prediction.

6Showing the full sentence is a display option, which we did not examine in this study.
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Translators also commented on the differences between interactive translation

prediction and post-editing. Two translators (TrA, TrG) noted the cognitive and

translation process differences between the two, such as interactive translation pre-

diction resulting in “less time researching terminology” (TrG) and it involving “a

mental process different to PE, consisting of constantly comparing ITP’s suggestions

to the translator’s own mental translations, a process that, while seemingly complex,

nevertheless sped up translation times” (TrA). These two translators also expressed

their worries about the translator’s role: machine translation priming may mean that

“the voice of the translator is lost” (TrG), and the user-friendliness and speed of the

interactive translation prediction system may generate overconfidence and “lead to

mistakes or wrong decisions if the required exigence and rigor levels are not there,

on the user’s side” (TrA). It would be helpful to perform larger-scale comparisons

between unassisted translation, post-editing, and interactive translation prediction

in order to determine the level of influence of the machine translation system, and

indeed whether translators do place too much trust in the systems. We observed

similar overall quality between post-editing and interactive translation prediction, and

observed mixed results (varying by translator) as to the tokens of machine translation

origin that appeared in their output. While we did not observe clear trends over time,

three translators did feel that some time had to elapse before making the most out of

interactive translation prediction:

“As the experience went on [ITP] helped me finish the tasks in a shorter time
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and with a higher level of confidence in the quality of my work.” (TrA);

“By the end of the study I found [ITP] to be a user friendly and straightforward

tool” (TrF);

“I had the distinct feeling that, on average, the suggestions were more and more

spot on as I proceeded”7 (TrD).

6.3.3 Speed

As noted in Section 5.7.2 and shown in Table 5.6, it is necessary to use a GPU

and other time-saving heuristics in order to perform computation quickly enough to

make neural interactive translation prediction usable. While we used a Tesla K80

GPU for benchmarking in our simulation work, we used a machine with an NVIDIA

GeForce GTX 1080 GPU for our user study. On this GPU, our speed increases to an

average of one token every 3.7ms, an improvement over the 7 or more milliseconds we

observed with the Tesla K80.

We aimed to return each suggestion to the translator in under 100ms, in order to

avoid the user sensing a lag. In our study, 73.5% of the suggestion requests during

valid ITP sessions were returned to the user in under 100ms (99.1% in under 300ms).

Nevertheless, two translators (TrB, TrH) explicitly reported experiencing delays or

concerns about the speed of translation suggestions. This is likely due to: (1) having

7While our setup did not include adaptation to translator corrections, future work could create
additional gains by doing so, as in Kothur, Knowles, and Koehn (2018) and Peris and Casacuberta
(2019). We examine this in simulation in Chapter 9.
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experienced one of the few instances of slower response times, (2) accepting all tokens

and reaching the end of the current prediction (after which point new suggestions will

not be generated until the translator makes a change to the prefix), or (3) network

lag (the server was located in the United States, and the translators, based in Europe,

accessed the tool through a web interface). To mitigate the first, future work could

use a faster NMT decoder adapted for ITP, or set lower thresholds. For the second,

we could change the interaction between the user interface and the MT backend such

that accepting a token triggers additional translation (if the suggestion produced so

far has not yet reached an end-of-sentence token).

6.4 Conclusion

In this chapter, we presented the results of a user study of interactive transla-

tion prediction. Eight translators participated in the study, translating news story

documents from English to (Castilian) Spanish using post-editing and interactive

translation prediction. Most of the translators had positive reactions to interactive

translation prediction, and about half of them translated more quickly using interactive

translation prediction. Collecting both logging data regarding tool use as well as user

reactions, we show that this approach is a viable tool for some translators, and raise

additional questions for future research into computer aided translation tools.
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Fine-Grained Adaptation
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This section of the dissertation examines fine-grained adaptation for improving

neural machine translation performance on individual documents. We examine ap-

proaches that incrementally adapt to single sentences (as a translator would produce

while working through the translation of a document) and to document-specific dictio-

naries of novel words. As background and motivation for this, in Chapter 7 we first

provide analysis of neural machine translation performance on rare and novel words,

and then examine how neural machine translation systems copy observed and novel

words. After demonstrating the challenges that these types of words pose to neural

machine translation systems (as well as where they may find success), in Chapter 8

we show that we can quickly and effectively adapt neural machine translation systems

to perform better overall as well as specifically on these challenging words.
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Chapter 7

Analysis of Word-Level

Performance

7.1 Introduction

We begin by demonstrating and analyzing the challenge that different types of

rare words pose. In particular, we first consider words that were unobserved or rarely

observed during training (Section 7.2). One particular case stands out among these:

words that can or should be copied from the source to the target. We examine copying

behavior in neural machine translation systems in Section 7.3. The analysis of rare

and copied words provides a justification for research into improving translation of

rare and novel words, including through fine-grained adaptation.

One important issue to note is that of the distinction between words and subwords.
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Human users of machine translation will generally experience translation output –

either when reading translated text, post-editing, or performing some form of inter-

active translation – at the whole word level, while in the background the systems

are operating at the subword level. Since our interest is in the human use case, in

this chapter we focus on measuring the translation accuracy of whole words, not

the subword units on which the models are trained. The consequence of this is that

when we refer to the frequency of a word in the training corpus, we may actually

be referring to the frequency of a full sequence of subword tokens, of which some

subsequences may be more frequent than the sequence as a whole. In some instances,

the greater frequency of individual subsequences may be what enables successful

translation (e.g., in the case of inflected words), while in other cases translation can

be successful without that (e.g., in the case of certain proper nouns). We examine

these phenomena in more depth in Sections 7.2.2 and 7.3.

7.2 Rare Words

This section draws on work from Koehn and Knowles (2017).

Conventional wisdom states that neural machine translation (NMT) models perform

particularly poorly on rare words, (Luong et al., 2015; Sennrich, Haddow, and Birch,

2016c; Arthur, Neubig, and Nakamura, 2016) due in part to the smaller vocabularies

used by NMT systems.1 We examine this claim by comparing performance on rare

1The fact that NMT models require large amounts of training data to perform comparably to
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Figure 7.1: Precision of translation and deletion rates by frequency of the source
word’s type. SMT (light blue) and NMT (dark green). The horizontal axis represents
the corpus frequency of the source types, with the axis labels showing the upper end
of the bin. Bin width is proportional to the number of word types in that frequency
range. The upper part of the graph shows the precision averaged across all word types
in the bin. The lower part shows the proportion of source tokens in the bin that were
deleted.

word translation between NMT and SMT (phrase-based statistical machine translation)

systems of similar quality for German–English2 and find that NMT systems actually

outperform SMT systems on translation of very infrequent words. However, both

NMT and SMT systems do continue to have difficulty translating some infrequent

words, particularly those belonging to highly-inflected categories.

Both models have case-sensitive BLEU scores of 34.5 on the WMT 2016 news test

set (for the NMT model, this reflects the BLEU score resulting from translation with

a beam size of 1). We use a single corpus for computing our lexical frequency counts

SMT systems (as we do note in the Amount of Training Data section of Koehn and Knowles (2017))
may also give weight to this idea.

2These are the same models described in Sections 4.2.1 and 4.2.2 and used in Chapter 5 to compare
phrase-based and neural interactive translation prediction.
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(a concatenation of Common Crawl, Europarl, and News Commentary).

7.2.1 Examining the Effect of Source Word Fre-

quency

We follow the method described by Koehn and Haddow (2012) for examining the

effect of source word frequency on translation accuracy.

First, we automatically align the source sentence and the machine translation

output. We use fast-align (Dyer, Chahuneau, and Smith, 2013) to align the full

training corpus (source and reference) along with the test source and MT output. We

use the suggested standard options for alignment and then symmetrize the resulting

alignment with grow-diag-final-and.

Each source word is either unaligned (“dropped”) or aligned to one or more target

language words. For each target word to which the source word is aligned, we check if

that target word appears in the reference translation. If the target word appears the

same number of times in the MT output as in the reference, we award that alignment

a score of one. If the target word appears more times in the MT output than in

the reference, we award fractional credit. If the target word does not appear in the

reference, we award zero credit. We then average these scores over the full set of

target words aligned to the given source word to compute the accuracy for that source

word. Source words can then be binned by their frequency in the training corpus and
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average translation accuracies can be computed.

7.2.2 Results

The overall average accuracy is quite similar between the NMT and SMT systems,

with the SMT system scoring 70.1% overall and the NMT system scoring 70.3%. This

reflects the similar overall quality of the MT systems. Figure 7.1 gives a detailed

breakdown. The values above the horizontal axis represent accuracies, while the lower

portion represents what proportion of the words were deleted. The first item of note is

that the NMT system has an overall higher proportion of deleted words. Of the 64, 379

words examined, the NMT system is estimated to have deleted 3769 of them, while

the SMT system deleted 2274. Both the NMT and SMT systems delete very frequent

and very infrequent words at higher proportions than words that fall into the middle

range. Across frequencies, the NMT system deletes a higher proportion of words than

the SMT system does. This finding is consistent with the results regarding sentence

length discussed in the Long Sentences section (3.4) of Koehn and Knowles (2017);

those experiments showed that SMT outperformed NMT on sentences of length 60 or

greater, with the NMT system producing output that was too short.3

The next observation of interest is what happens with unknown words (words

which were never observed in the training corpus). The SMT system translates these

3It is worth noting several factors that can contribute to this. Preprocessing for NMT training
typically removes very long sentences from the training data. Also, unlike the SMT systems, the
NMT systems examined did not incorporate any coverage mechanism.
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Label Unobserved Observed Once
Adjective 4 10
Named Entity 40 42
Noun 35 35
Number 12 4
Verb 3 6
Other 6 3

Table 7.1: Breakdown of the first 100 tokens that were unobserved in training or
observed once in training, by hand-annotated category.

correctly 53.2% of the time, while the NMT system translates them correctly 60.1%

of the time. This is reflected in Figure 7.1, where the large gap in performance on

unknown words is visible.

Both SMT and NMT systems actually have their worst performance on words

that were observed a single time in the training corpus, dropping to 48.6% and

52.2%, respectively; this is even worse than for unobserved words. Table 7.1 shows

a breakdown of the categories of words that were unobserved in the training corpus

or observed only once. The most common categories across both are named entity

(including entity and location names) and nouns. The named entities can often be

passed through unchanged (for example, the surname “Elabdellaoui” is broken into

“E@@ lab@@ d@@ ell@@ a@@ oui” by the byte pair encoding for NMT and is correctly

passed through unchanged by both the NMT and SMT systems). We delve into this

phenomenon of copying more deeply in Section 7.3. Many of the nouns are compound

nouns; when these are correctly translated, it may be attributed to compound-splitting

(SMT) or byte pair encoding (NMT), respectively. For example, consider the word

“Sozialstiftung” (“social foundation”, successfully segmented by byte pair encoding
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for NMT along the morphological boundary “Sozial@@ stiftung”); despite never

having been observed in training, it is successfully translated by both the NMT and

SMT systems. Byte pair encoding is not guaranteed to always provide morphology-

respecting segmentations, but the morphological soundness of a segmentation is not

a prerequisite for successful translation; the NMT system successfully translates the

word “Ligaspielen” (“league games”) despite the fact that it was segmented as “Lig@@

asp@@ ielen” (a more morphologically meaningful segmentation would be splitting

the compound noun into “Liga | spielen” or even to break off the inflected ending as

well).4 In contrast to overall performance, we find that for the NMT systems, overall

performance on nouns (NN tag5) is quite high. The worst performance is on NN

words that were observed just once (55.7%), but this represents a smaller drop than is

observed across all words; the performance on unknown words is only slightly higher

(59.7%). The SMT system has lower performance for rare NN words, as shown in

Figure 7.2.

The categories which involve more extensive inflection (adjectives and verbs) are

arguably the most interesting. Adjectives and verbs have worse accuracy rates and

higher deletion rates than nouns across most word frequencies. We show this in figures

7.3 and 7.4.

The factored SMT system also has access to the stemmed form of words, which

can play a similar role to byte pair encoding in enabling translation of unobserved

4The SMT system also translates this correctly, perhaps on the basis of compound-splitting.
5All tags used here were generated as part of the Moses preprocessing pipeline for the source side

of the data.
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Figure 7.2: Accuracy of translation and deletion rates of NN (noun) tokens by frequency
of the source word’s type. SMT (light blue) and NMT (dark green).

Figure 7.3: Accuracy of translation and deletion rates of ADJ (adjective) tokens by
frequency of the source word’s type. SMT (light blue) and NMT (dark green).
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Figure 7.4: Accuracy of translation and deletion rates of V (verb) tokens by frequency
of the source word’s type. SMT (light blue) and NMT (dark green).

inflected forms (e.g., adjectives, verbs). Consider, for example, this inflected adjective

“hochgiftiges”6 meaning “highly toxic” (segmented as “hoch@@ gif@@ tiges”, though a

more morphologically meaningful segmentation would be “hoch | gift | ig | es”). Both the

NMT and SMT systems accurately translate this word, despite never having observed

it in training. While this particular inflection was unobserved, other inflections of

the word were observed in training, and all of these share the same stemmed form

(“hochgiftig”), allowing the SMT system to successfully translate the novel form.

The NMT system is also successful, despite breaking up morphemes in the byte pair

encoding segmentation. There are also many numbers that were unobserved in the

training data; these tend to be translated correctly (with occasional errors due to

formatting of commas and periods, resolvable by post-processing).

We show examples in Figures 7.5 and 7.6 of situations where the NMT system

6Neuter, nominative/accusative, singular form of “hochgiftig”.
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Source ... choreographiertes Gesamtkunstwerk ...
BPE chore@@ ograph@@ iertes
NMT ... choreographed overall artwork ...
SMT ... choreographiertes total work of art ...
Reference ... choreographed complete work of art ...

Figure 7.5: Example 1: a word that was unobserved in the training corpus, successfully
translated by NMT.

Source ... die Polizei ihn einkesselte.
BPE ein@@ kes@@ sel@@ te
NMT ... police stabbed him.
SMT ... police einkesselte him.
Reference ... police closed in on him.

Figure 7.6: Example 2: a word that was unobserved in the training corpus, unsuccess-
fully translated by NMT and SMT.

succeeds and fails, and contrast it with the failures of the SMT system. In Example 1,

the NMT system successfully translates the unobserved adjective choreographiertes

(choreographed), while the SMT system does not. In Example 2, the SMT system

simply passes the German verb einkesselte (closed in on) unchanged into the output,

while the NMT system fails silently, selecting the fluent-sounding but semantically

inappropriate “stabbed” instead.

While there remains room for improvement, NMT systems (at least those using

byte pair encoding) perform better on very low-frequency words than SMT systems do.

Byte pair encoding is sometimes sufficient (much like stemming or compound-splitting)

to allow the successful translation of rare words even though it does not necessarily

split words at morphological boundaries. As with the fluent-sounding but semantically

inappropriate examples that have been observed for domain mismatch (Koehn and
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Knowles, 2017), NMT may sometimes fail similarly when it encounters unknown words

even in-domain. This phenomenon (which we observe in the “einkesselte” example)

has also been noted by Arthur, Neubig, and Nakamura (2016), who show examples

of mistranslations of low frequency content words (e.g., substituting “Tunisia” for

“Norway”). In the following section, we provide analysis of two related issues to those

considered in this section: how context influences translation, and when tokens are

copied rather than translated.

7.3 Context and Copying

This section contains work published in the following: Knowles and Koehn
(2018a).

In translation, certain tokens – such as names and numbers – should almost always

be copied from the source sentence to the target sentence. As observed in Section 7.2,

word copying is fairly straightforward in phrase-based statistical machine translation,

where unknown words can be left untranslated (copied to the target side – one of

the ways that statistical machine translation systems could succeed at translating

out-of-vocabulary words).7 It poses more of a challenge in neural machine translation

systems, which often use limited or subword vocabularies and soft attention rather

than strict alignment. The use of subword vocabularies means that in order for words

to be copied, a whole sequence of tokens must be copied, one subword at a time.

7Due to the coverage tracking in SMT systems, they are encouraged or required to produce a
translation for every word, even if that simply means copying a source word.
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Nevertheless, neural machine translation models that use subword vocabularies to

perform (near) open-vocabulary translation have been observed to correctly translate

unknown words or copy words even when the full word to be translated or copied was

not observed in training. As described in Section 7.2, we found that neural machine

translation systems using subword vocabularies outperformed phrase-based statistical

machine translation systems on the translation of unknown words, which does include

copying (Koehn and Knowles, 2017).

The challenge of copying in neural machine translation has resulted in a variety

of approaches to copying, which make use of pre-/post-processing and/or network

modifications (e.g., explicit switching between generation and copying). By modifying

the available training data rather than the neural architecture, Currey, Miceli Barone,

and Heafield (2017) find that training a neural machine translation system to do both

translation and copying of target language text improves results on low-resource neural

machine translation and learns to pass untranslated words through to the target.

They do this by mixing monolingual target data (as source-target pairs) with parallel

training data. In contrast, Khayrallah and Koehn (2018) find that this dramatically

hurts performance (in a higher-resource setting). These network- and data-modifying

approaches are discussed in Section 7.3.1.

Together, these observations raise questions that we seek to answer here: to what

extent does byte pair encoding (Sennrich, Haddow, and Birch, 2016c) solve the copying

problem (without requiring modifications to the network structure)? More generally,
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what are subword neural machine translation models learning about copying?

We address this by focusing on two main questions: (1) Do certain contexts

encourage copying? (2) Do certain words exhibit features that make them more likely

to be copied (regardless of context)?

In this section, we do not modify the machine translation system to influence

copying performance; instead we provide an analysis of standard existing systems.

We find that neural machine translation systems (with attention, trained on joint

source-target subword vocabularies) learn to copy words (both novel and observed)

based on their sentential contexts. Additionally, though the models have no knowledge

about the components of each subword unit, they learn that certain categories of

tokens (e.g., capitalized tokens) tend to be copied. We use quantitative and qualitative

evaluations to shed light on what these models learn about copying tokens and about

the contexts in which copying occurs.

7.3.1 Related Work on Copying

Quite a bit of prior work has focused on the challenge that rare or unknown words

pose to neural machine translation systems, as well as copying words in particular. We

provide an additional discussion of other rare word issues in Section 8.2. Broadly, this

can be divided into work that modifies the training data and work that modifies the

network. We first discuss data augmentation techniques and then describe network

modification.
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Luong et al. (2015) augment data with word alignments to train neural machine

translation systems (without attention) that emit both a translation and source

word positions for any out-of-vocabulary (OOV) tokens emitted. Using automatic

alignments between source and target training sentences, they propose three data

augmentation schemes. Their “copyable” model assignes a unique UNK token to

each unknown word in the source sentence. Any unknown target side word aligned to

a source unknown token is assigned the same unique UNK token as its aligned source

word. The remaining target side unknown words are assigned a special UNKnull token.

Their “positional all” model uses a single UNK token, but inserts a positional token

after each word, which indicates the relative position of its aligned source word. To

limit the number of positional tokens used, aligned words more than 7 tokens apart

are considered unaligned and assigned a null positional token. The best performing

of their models is the “positional UNK” model, which uses a single UNK token on

the source side and then uses unique target side UNKi tokens to indicate that the

aligned source word is i tokens away (for i ∈ {−7, . . . , 7}). They then post-process

OOVs with a dictionary lookup or copying of the aligned source word.

Currey, Miceli Barone, and Heafield (2017) augment training data with monolingual

target language text as bitext (where the source and target are identical target language

sentences). They find that in a low-resource setting this training data combination

produces BLEU score gains and improves accuracy for copied words like named

entities for translation between the following language pairs: English–Turkish, English–
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Romanian, and English–German (in both translation directions). Ott et al. (2018)

point to copied source sentences (where the source and target are identical source

language text) as a source of degradation for overall machine translation quality in

experiments on English–German and English–French translation. Khayrallah and

Koehn (2018) found that such copied source sentences resulted in major BLEU

score quality decreases in a higher-resource setting; in fact, they found them to be

the worst possible kind of noise in terms of their impact on translation quality for

German–English translation.

The work described so far has only involved modifications to (or observations about)

the training data. We turn now to approaches that involve network modification.

Both Gu et al. (2016) and Gulcehre et al. (2016) modify neural sequence to sequence

models to explicitly perform copying. Gu et al. (2016) focus on monolingual tasks

(dialogue systems and summarization), proposing a model that can both generate and

copy text. In CopyNet, the output vocabulary for a particular sentence consists

of the standard vocabulary, an UNK token, and the full source sentence vocabulary

(which may contain tokens that would otherwise be considered out-of-vocabulary). At

each timestep, the probability of generating a token is the combined probability of

producing the token in the standard manner and the probability of copying it from the

source sentence; they describe this as the two modes “competing through a softmax

function.” Gulcehre et al. (2016) perform experiments on neural machine translation

(with attention), using whole-word vocabularies (and an UNK token to represent
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unknown words). Their model incorporates a switching variable that determines

whether to copy or generate a translation, and two softmax layers to do the copying

and generation: one to predict a source sentence token location (for copying) and

one to predict the output word from a shortlist vocabulary. They find that using the

pointer softmax model improves BLEU scores for English–French translation.

In this chapter’s work, we focus on subword vocabularies for neural machine

translation, using byte pair encoding (BPE; Sennrich, Haddow, and Birch (2016c)).

The other approaches described above are somewhat orthogonal to the use of subword

vocabularies, but may require modifications to handle subwords.

7.3.2 Data and Models

We train German–English (DE–EN) and English–German (EN–DE) neural machine

translation models with attention, similar to the University of Edinburgh’s WMT

2016 submissions (Sennrich, Haddow, and Birch, 2016a). Models are trained using the

Marian toolkit (Junczys-Dowmunt et al., 2018). We use recommended settings and

early stopping,8 with results comparable to WMT 2016 systems: BLEU scores of 39.9

(DE–EN) and 33.2 (EN–DE) on the 2016 test set. We use the WMT parallel text9

(Europarl, News Commentary, and CommonCrawl) along with synthetic backtranslated

8These include: model type amun, vocabulary of 85000, embedding dimension 512, RNN dimension
1024, one layer GRU encoder and decoder, layer normalization, dropout, early-stopping, and Adam
(Kingma and Ba, 2014) for optimization. Decoding was performed with beam size 6 and length
normalization (set to the default of 0.6).

9http://www.statmt.org/wmt16/translation-task.html
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data.10 The system is trained with a joint source-target vocabulary, but without tied

embeddings.

7.3.3 Initial Analysis

We analyze the training data to learn about the prevalence and characteristics of

words that should be copied in translation and the contexts in which they occur. We

consider both the full training data (including backtranslations and CommonCrawl)

and cleaner subsets. We restrict our search for copied words to tokens of length 3 or

more characters. This has the benefit of removing words like in which are the same

in German and English, but may nonetheless be considered translations rather than

copies. Our heuristic for detecting copied tokens is this: a word is a “copied token” if

it appears the same number of times in both the source and target sentence.11 As we

will show, copied words tend to belong to specific categories (proper nouns, numbers,

etc.) which coincide with their repeated appearance in certain contexts (e.g., names

following titles like “Ms” or “Prime Minister”).

10http://data.statmt.org/rsennrich/wmt16_backtranslations/
11In DE–EN, we find one notable exception to this heuristic – was – which is a homograph, not a

copy. It makes up < 1% of copied tokens in Europarl/News Commentary.
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Data % Tokens Copied

DE EN

Europarl 1.8% 2.0%

News Commentary 2.9% 3.3%

Full Training (EN–DE) 7.6% 8.1%

Full Training (DE–EN) 8.6% 9.2%

Table 7.2: Percentage of tokens which should be copied, as measured across training
data sources. The DE column indicates the percentage of the tokens in the German
text that it was determined should be copied, while the EN column indicates that for
the English side of the given data.

7.3.3.1 Where do copied words appear?

In Table 7.2, we see that between 1.8% and 9.2% of tokens are copied.12 Though

the majority (or near-majority) of sentences do not contain any copied words (of length

3 or more), copied words are still quite prevalent: approximately 18% of sentences in

each full training dataset contain one, 4% to 5% contain four, and there is a long tail

(one sentence contains 70). Sentences with many copied words often contain direct

quotations, third language text (not source/target), or a sequence of copied words

(e.g., comma-separated numbers or names).

The cleaner Europarl and News Commentary corpora have lower percentages of

copied tokens than the overall training data. Of particular note, the backtranslated

data contains some examples of copying that we’d prefer for the system not to learn,

such as target language words appearing untranslated in the (backtranslated) source

side data.

12The two full training sets differ due to the synthetic backtranslated data; the rest of the corpora
are identical.
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7.3.3.2 What words are copied?

We first examine the part-of-speech (POS) tags13 of copied words. In the EN–DE

training data, most copied words are tagged on the English side as NNP (proper noun,

singular), including names of individuals, places, or organizations (e.g., González,

Wales, Union). The next most frequent categories are CD (cardinal number) – including

numbers like 42 that should be copied and ones like seven which should be translated

– and NN (noun, singular or mass). The results are similar for DE–EN training data

(tagged on German with a different tag set): PROPN (proper noun) is the most

frequent tag for copied words, followed by NUM (numbers) and NOUN. Punctuation

would rank highly if we included short tokens.

7.3.4 Contexts

In this section, we address our first question of interest: Do certain contexts

encourage copying? Working from the intuition that certain contexts indicate that

copying should occur – for example, a name following a title like “Ms” or “Frau”

should often be copied – we examine the relationship between context and copying.

We show that the machine translation system learns that certain contexts are so

indicative of copying that it will even copy (not translate) words that it has learned

to translate if they are seen in a sufficiently copy-prone context. We use left bigram

13POS tags are generated by the Stanford POS tagger (Toutanova et al., 2003). For English:
english-left3words-distsim.tagger. For German: german-ud.tagger.
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contexts as a proxy to evaluate the contexts in which words are copied.14 For each

POS, we collect the full set of left bigram contexts that ever precede a word with

that tag, then filter by frequency and subsequent token diversity. We then filter by

frequency and diversity of tokens following the bigram. The following section describes

this process in more detail.

7.3.4.1 Collection of Contexts

For each POS, first, we find all left bigram contexts (tok0, tok1, copiedword) that

occur in the training data (where the copied word was tagged with the given POS).

We then filter this set so that it only contains contexts (tok0, tok1) that appeared at

least 1000 times (left of NNP/PROPN) or 500 times (left of CD/NN/NUM/NOUN) in

the training data. To ensure that we’re not simply capturing collocations (“European

Union”), we filter out left bigram contexts that have been followed by fewer than 150

unique types with that particular POS. This results in between 53 and 276 contexts,

depending on POS, as shown in Table 7.3.

Each context is then associated with a copying rate, calculated as the number of

times the token (with the given POS tag) following (tok0, tok1) is copied, divided by

the total number of times (tok0, tok1) was observed to be followed by a token with

that POS tag. In Table 7.4, we show the most- and least-copy-prone contexts for

EN–DE (those with the highest and lowest copying rates).

14Since neural machine translation systems have access to both left and right context, there is
reason to expect that right context also plays a role, but we leave that for future study.
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POS Num. Contexts

NNP 176
NN 82
CD 74

PROPN 276
NOUN 66
NUM 53

Table 7.3: Context counts by POS tag (NNP, NN, CD for EN–DE; PROPN, NOUN,
NUM for DE–EN), selected as described in Section 7.3.4.

POS Context Copy Rate
NNP Finance Minister 94.5%

rates for 94.0%
congratulate Mr 91.7%
between the 10.5%
President , 7.7%

CD updated on 94.0%
the B 0.1%

NN notified when 97.3%
the first 0.6%

Table 7.4: Left bigram contexts with the highest/lowest copying rates (EN–DE), by
POS tag.

For each context-POS pair, we select 50 random templates from the training data

containing the bigram context followed by a word with that POS. We select contexts

and templates from the full training data, rather than only the cleaner Europarl/News

Commentary data, because we are interested in what patterns the model is learning

from all data to which it has been exposed. Each context-POS pair is associated with

a percentage that represents how often it exhibited copying in the training data. For

example, in the copy-prone context “Finance Minister [NNP]” the NNP was copied
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S : Therefore, Mrs Ashton, your role in this is invaluable.
R: Darum, Frau Ashton, ist Ihre Aufgabe in diesem Zusammenhang von
unschätzbarem Wert.
T : Therefore, Mrs [NNP], your role in this is invaluable.
E1 : Therefore, Mrs BBC, your role in this is invaluable.
D1 : Deshalb, Frau BBC, ist Ihre Rolle hierbei von [...]
E2 : Therefore, Mrs June, your role in this is invaluable.
D2 : Deshalb, Frau June, ist Ihre Rolle dabei von [...]
E3 : Therefore, Mrs Lutreo, your role in this is invaluable.
D3 : Daher, Frau Lutreo, ist Ihre Rolle hierbei von [...]

Table 7.5: Source, reference, template, and examples of template-token combinations.
E1 has a word usually (76.0% of the time) copied in training, E2 has one rarely (0.8%
of the time) copied, and E3 has a novel one. In training, 84.8% of NNPs with this
left bigram context (“, Mrs”) were copied.

94.5% of the time, compared to 10.5% of the time in “between the [NNP]”. For DE–EN

translation, we see similar patterns: two of the three most copy-prone PROPN left

bigram contexts are “sagte Frau” and “sagte Herr” (“said Ms/Mr”), while many less

copy-prone ones end with articles.

7.3.4.2 Collection and Labeling of Copy/Non-Copy Words

We take all word types with a given POS tag from the WMT 2016 test set, dividing

them into four categories based on two binary distinctions: observed (in training data)

or novel (not observed in training), and copy (typically copied) or non-copy (not

typically copied) and filter the observed ones based on training frequency. We count

words as non-copy if they were copied ≤ 30% of the time, and as copy if they were

copied ≥ 70% of the time.

All words that we examine are labeled as either copy or non-copy. For words
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Novel Observed
POS Copy Non-C. Copy Non-C.
NNP 96 22 251 263
NN 14 16 13 1664
CD 3 29 60 44

PROPN 92 76 463 418
NOUN 12 222 29 2176
NUM 2 29 55 68

Table 7.6: Counts of each word type by novel/observed, copy/non-copy distinction
and POS tag (NNP, NN, CD are EN–DE; PROPN, NOUN, NUM are DE–EN).

that were observed in training, we discard those that appeared fewer than 1000 times.

We label the remainder as copy if they were copied ≥ 70% of the time in training

data (according to the heuristic described in Section 7.3.3), and as non-copy if they

were copied ≤ 30% of the time in training data. For words that were unobserved in

training, we used the same copying threshold but calculate it over all instances in the

test data (with no requirement that they appear a certain number of times). Table

7.6 shows the number of words selected after filtering and thresholding.

7.3.4.3 Translation Experiments

We then combine each word with each POS-appropriate example template and

perform preprocessing (including BPE) and translation.15 Table 7.5 shows examples.

For each context, we calculate the percentage (across all example templates for that

context and all words, separated by observed/novel and copy/non-copy categories)

15We use the Marian batch decoder, with recommended settings: beam size 6 and length normal-
ization penalty of 0.6.
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Figure 7.7: Percent of NNP (EN–DE) tokens copied by how copy-prone the context
is, by category. Each point is the percentage of copying for all within-category words,
across all example templates for one particular context (averaged over between 1,100
(novel-non-copy) and 13,150 (observed-non-copy) binary copy values).

of the time that the words in that context were copied. We then compare it to the

percentage of the time that copying occurred for that context-POS tag pair in training.

Figure 7.7 shows NNP (EN–DE) results. Both observed-copy and novel-copy words

behave almost identically, with copying percentages generally above 80%, and a slight

trend upward as contexts become more copy-prone (moving to the right along the

horizontal axis). Novel-non-copy words shadow these, but with a drop in copying

percentage (see Section 7.3.5.2). Most interesting is the observed-non-copy category.

In contexts that are not copy-prone, minimal copying occurs.16 However, as they

16Note that some of the non-copy words were sometimes copied in training data, even if only in
backtranslations.
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are placed in increasingly copy-prone contexts, even these words that the system has

learned it should translate are being copied. We observe the same trend for words

tagged NN and CD, and for PROPN, NOUN, and NUM words in the DE–EN direction.

Fig. 7.8 shows DE–EN PROPN (proper nouns). It shows similar trends to Fig. 7.7,

but with a greater gap between novel- copy/non-copy words. This demonstrates that

Figure 7.8: Percent of PROPN (DE–EN) tokens copied by how copy-prone the context
is, by category. Each point is the percentage of copying for all within-category words,
averaged across all example templates for one particular context.

the machine translation system has learned that certain contexts are copy-prone.

We manually analyze outliers that appear much more or less copy-prone than

expected. In both cases, the cause appears the same: the context occurred repeatedly

in many very similar sentences in the training data. Highly copy-prone contexts that

produced copying percentages greater than 70% even in observed-non-copy tokens
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Drop Change Other

Novel-Copy 24 102 60

Novel-Non-Copy 14 128 50

Observed-Copy 51 6 126

Observed-Non-Copy 12 1 186

Table 7.7: Counts of automatically detected output categories (drop, change, and
other) for a sample of NNP tokens (EN–DE) that were not copied.

often appeared in common boilerplate text (e.g., “stay at [NNP]” or “rates for [NNP]”

followed by “Hotel”).17 Where we observe lower than expected rates (e.g., “) of

[NNP]”), we find that the system may have memorized training sentences.

7.3.5 Words

In this section, we examine what is happening to words when they are not copied,

and take a closer look at both the types of translation behavior occurring, as well as

features of the words themselves. This enables us to consider the second question of

interest: Do certain words exhibit features that make them more likely to be copied

(regardless of context)?

7.3.5.1 Analysis of Words That Are Not Copied

When words are not copied, what sort of output is the system producing? We find

that it typically falls into one of four categories: drop (no target token aligns with the

source token), change (the word is changed: partially translated, transliterated, or

17Since hidden representations contain whole sentence information, right side context may influence
copying too, though we leave a more detailed analysis to future work.
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inflected even if it is not a target language word), substitution (the word is replaced

with a fluent but not adequate substitute), or translation (translated into a target

language word).

We begin with an automatic analysis. We randomly sample 200 examples each

of sentences containing words that were not copied for novel-copy, novel-non-copy,

observed-copy, and observed-non-copy NNPs (EN–DE). We retranslate each sentence

and produce a soft alignment matrix from the attention mechanism, then convert the

soft alignments between BPE segments into hard alignments between the source word

and one or more target words. We produce soft alignments (the attention matrix)

using the AmuNMT decoder with the “return-nematus-alignment” flag set (Junczys-

Dowmunt, Dwojak, and Hoang, 2016). It performs normalization differently than

Marian’s decoder (producing slightly different outputs for many sentences, including

sometimes copying words that were not copied in our original translations).

For each target (subword) token, we align it to the source (subword) token with

the highest soft alignment weight. Given our source word of interest s (composed of

subword segments s1 . . . sn), we define its translation to be the list of all target words

t (composed of subword segments t1 . . . tm) for which any subword ti was aligned to a

subword sj of s.

A word has been dropped if it is unaligned. We count a word as being changed if

any words it is aligned to have any subword (BPE segment) overlap with the original

word’s subwords. Both substitution and translation fall under other ; we analyze those
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manually.

Results are shown in Table 7.7.18 For all novel words, the most frequent output

type is change. For example, the novel NNP Bishnu is changed into Bischnu in

German.19 Other changes include translations of parts of the word, and concatenation

with other tokens. The output token often starts with the same character or sequence

of characters as the source token.

We manually inspect examples in the other category. For observed-non-copy words,

almost all are translations (e.g., Sea translated correctly as Meer), as expected. For

observed-copy words, we see a mix of translations and other changes to the words,

which are almost evenly split between substitutions and small changes. These include

inflections (e.g., Bremen magazine reasonably translated as Bremer Magazin20).

There are also partial translations when BPE segments are full source language

words – like Thneed (segmented “Th@@ need”) becoming ThNotwendigkeit (segmented

“Th@@ Notwendigkeit” – Notwendigkeit is a valid translation of need). Sometimes, a

token is copied but then concatenated with another token.

Even without overlap of BPE segments between the source and the translation,

changed words sometimes share a number of characters (especially at the beginning

or end of a word). Half of the other category output of Thneed (“Th@@ need”) begin

with the letter “T” (but not the BPE token “Th@@”). This may suggest some level of

18Rows do not sum to 200 because some words in our random sample were copied by the the
AmuNMT decoder.

19A near-transliteration – the “sh”/“sch” transformation is seen in EN–DE cognates, e.g., “ship”
and “Schiff”.

20Bremen and Bremer are unique BPE segments, so the change heuristic could not be applied.
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character-awareness in the representations of BPE segments, produced as a byproduct

of training, but we do not examine this in this work.

Within the other category, perhaps the most interesting cases are those where

words appear to be substituted with a fluent but not adequate alternative. Many

substitutions occur when the rare word is inserted next to a word that often forms

a collocation (like “United States” – in sentences that include “in the [NNP] States”

the translation sometimes defaults to a translation of “United States” regardless of

the actual NNP inserted in place of “United”). Others have a less common NNP

swapped for one that belongs to a similar semantic category (e.g., the place name

Dublin being generated instead of the less common Halle – as Arthur, Neubig, and

Nakamura (2016) and others observed). These findings provide additional support

and nuance to the study of this phenomenon of neural machine translation system

errors. Many substitutions occur when the rare word is inserted next to a word that

often forms a collocation (like “United States” or “European Union” or “Madam

President”). For example, in a template where “in the [NNP]” is followed by “States”,

inserting the NNP Accies results in “in the Accies States” – which was then translated

by the system as “in den Vereinigten Staaten” (gloss: “in the United States”). We

also observe examples that may have to do with a combination of (in)frequency of

tokens and the context. For example, we have the novel NNP Sloveina (perhaps

a misspelling of Slovenia), which is often replaced with Slowaken (Slovakia) when

translated to German in various different context templates. In another sentence, we
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find that “this year, Angela expects” is translated to “in diesem Jahr erwartet Merkel”

despite Merkel appearing nowhere in the source text. The first and last names of

German chancellor Angela Merkel appear frequently together in training data, and

thus likely have sufficiently similar representations. We see other similar substitutions:

Mitt for Romney, US for Obama, and Thomas for Sarah. Sometimes a specific name

is replaced with a title, such as “your prime minister, York” being translated as “ihr

Premierminister, Herr Präsident” (glossed as “your prime minister, Mr. President”).

For novel-copy words labeled as other, three quarters are substitutions and one quarter

exhibit small changes. The reverse is true for novel-non-copy words: the majority

exhibit small changes while almost thirty percent are substitutions.

7.3.5.2 Properties of Copied Words

Certain words exhibit properties that make them more likely to be copied, regardless

of context. At first glance, it seems unintuitive that the rate of copying of novel-copy

words and novel-non-copy words differs (Fig. 7.7) – the model has never observed any

of these words, and they are being presented in identical contexts to one another –

why does it differentiate between them? Doing so indicates that the model has learned

what makes a sequence of subwords likely to be copied.

Belinkov et al. (2017) observe that neural machine translation models may encode

information about part-of-speech, which could be used when determining whether or

not to copy (but does not explain within-POS differences). For numbers, it mainly
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Figure 7.9: Copying rate based on casing and number of BPE segments for novel NNP
words (EN–DE), averaged across all NNP contexts.

learns to copy numerical portions while changing commas to periods and vice versa

(as required by the target language’s conventions). Nouns and proper nouns are more

interesting: some should be translated (e.g., novel noun compounds like hallmate),

or, in the case of misspellings (e.g., manfacturer), corrected, while others should be

copied. For novel NN words, there is another striking difference between copy and

non-copy: most of the former contain capital letters and most of the latter do not.

7.3.5.3 Capitalization and Copying

To experiment with the influence of capitalization on copying, we take each novel

NNP word (96 copy and 22 non-copy) and convert it to all lowercase, leave it in its

natural case (all have at least one uppercase letter), or convert it to all uppercase

letters. We then translate all of them in all NNP contexts (from previous EN–DE
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experiments). Using only novel words sidesteps the issue of truecasing.

Lowercase words are the least frequently copied (average copy rate of 40.2%),

uppercase words are the most copied (94.4%), and the natural case falls in the middle

(81.7%). However, changing casing changes the BPE segmentation, and uppercase

words tend to be split into more pieces: a mean of 4.4 segments, as compared to

means of 3.1 (lowercase) and 2.9 (natural case). The number of subword segments

correlates positively with copying rate (Fig. 7.9), but, controlling for that, we still find

that NNP words that are completely capitalized tend to be copied more than those

with the same number of subword segments but only lowercased letters, suggesting

that the system is encoding information about the connection between capitalization

and copying. We also perform this experiment with PROPN words in the DE–EN

direction, and find that increased capitalization increases copying, though we do not

find there that an increase in the number of BPE segments increases copying. This

occurs despite the capitalization of all nouns in German. Figure 7.10 shows these

results for DE–EN. The true casing of the word consistently falls between these two

extremes. The high copying rate of fully-capitalized words is intuitive: acronyms

are often both uppercased and copied from source to target. That is not to say that

the model always learns to copy acronyms; it also learns to translate them when

appropriate (such as GDP to BIP). There is always an interplay between learned

translations and features that may encourage copying.

The connection between copying rate and capitalization provides one explanation
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Figure 7.10: Copying rate based on casing and number of BPE segments for novel
PROPN words (DE–EN), averaged across all PROPN contexts.

for the gap in behavior of the two novel word types, and demonstrates that features of

words influence copying. Note that it learns this behavior based on parallel training

data, without access to information at a finer granularity (character-level) than

the subword units; the model is never explicitly told that certain subwords contain

capitalization.

7.3.6 Conclusion

We show that subword vocabulary neural machine translation systems learn about

copying from context and the subwords themselves. The effect of context is strong

enough to cause words that would otherwise be translated to be copied. Characteristics

of subword tokens play a role in copying behavior, with capitalized tokens more likely to

be copied. We leave as future work a deeper analysis of the level of character-awareness
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encoded in representations of the BPE segments as a byproduct of training. We provide

an analysis of what happens when words are not copied, showing expected differences

between novel words and words that were observed during training. Additionally,

we provide more examples and evidence of the problem of substituting fluent but

non-adequate translations for rare or unknown words. All of this provides useful

context for examining how neural models translate or copy known and novel words,

as a starting point for examining how to adapt them to perform better on those

challenging words.

7.4 Consistency

In any given document, a translator may encounter a number of words or phrases

for which there exist multiple valid translation options.21 The choice of a particular

translation option may be influenced by many factors: formality, fixed terminological

resources or style guides that they are required to adhere to, dialect, intended audience,

and so on. Within a document or translation project, these choices are not made

in a vacuum. As Carpuat (2009) observed, there is a tendency for translators to

produce translations such that the “one translation per discourse” hypothesis holds

within a particular document.22 That is, human translators tend to prefer consistent

translations of individual terms throughout a document. Other work on “translationese”

21A portion of this section draws on work published in Kothur, Knowles, and Koehn (2018).
22This work follows from “one sense per discourse” (Gale, Church, and Yarowsky, 1992), which

found that the vast majority of polysemous words share only one sense within a given document.
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has also found that translations show regularities in syntax and punctuation (Baroni

and Bernardini, 2005).

We examine human translator consistency with an eye towards improving machine

translation consistency in a computer aided translation setting. Even expanding

beyond words with multiple senses or synonymous translation options, we expect that

learning from the translator’s lexical, syntactic, and stylistic choices at the beginning

of a document should result in a well-tailored system that is better at translating

subsequent sentences. We can think of fine-grained adaptation over a document as

producing a document-specific machine translation system that encodes or highlights

document context (even as the machine translation system still performs translation

of each sentence individually).

7.4.1 Consistency Case Study

As a case study of consistency in translation, we examine the translation of the

“(Laughter)” annotation in TED talk data. We first examine human consistency in

translation, and then compare this to machine translation. This particular phrase is

selected because of its frequency across many documents.

The Multitarget TED talk dataset (Duh, 2018) consists of transcriptions of TED

talks (in English) along with their translations. As these talks are delivered in front of

live audiences, the speaker’s words are sometimes interspersed with audience laughter

or applause, which is then included in the transcript. For example:
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“It was unequivocally not something a squirrel could chew on. (Laughter) But

that in fact seemed to be the case.”23

Subsequent translations of these transcripts often (but not always) include translations

of these transcriptions of non-speech phenomena. Transcription guides generally

have fixed style guides for how to incorporate these phenomena, and transcribers are

encourage to be consistent. In the English TED training data (transcriptions in English

of spoken English), transcribers are quite consistent in how they annotate laughter,

typically using “(Laughter)” to indicate it. This follows official TED guidance on how

to transcribe non-speech phenomenon like sounds (represented in parentheses) and

on-screen text (in square brackets). In fact, “(Laughter)” is one of the examples shown

in a training video on TED transcriptions. There are 4545 instances of “(Laughter)”

in the 152, 606 lines of English TED training data and fewer than 5 instances in which

a misspelled variant appears.24

There are multiple possible translations for “(Laughter)” when translating from

English to German. If there is no specific translation lexicon enforced, we might find

multiple translations in the data, and we do find this to be the case in English–German

translation. Table 7.8 shows the distribution of the translations of the 4545 instances

of “(Laughter)” in the training data. The list of translations is collected by manually

examining a sample of German sentences aligned to English sentences containing

23From Andrew Blum’s 2012 TED talk, Discover the physical side of the internet : https://www.
ted.com/talks/andrew_blum_what_is_the_internet_really

24There are also 28 instances of “(Laughs)”, which typically appears to be used to indicate the
speaker’s own laughter, rather than audience laughter. We actually compute these statistics over
tokenized and lowercased text, but show the raw text here for readability.
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“(Laughter)” and then the counts are obtained automatically by string matching in

the set of German sentences aligned to English sentences containing “(Laughter)”.

The most common translation, “(Gelächter)”, appears 49.97% of the time, while the

second most common translation, “(Lachen)”, appears 44.33% of the time. In some

cases, no translation appears at all, or another infrequent translation is used.

We would, however, expect that human translations of individual documents

would be internally consistent in how they translate. That is, a single document’s

translation will likely use the same translation for every instance of “(Laughter)” in

the source document, but the translation may vary from document to document or

translator to translator (unless there is a clear language-specific guideline for that

translation). Observing that there are two very common translations of “(Laughter)”

in the English–German data, we now examine whether they are used consistently

within specific documents. We begin with the training data, which contains 1212

unique documents. Of these, 876 include at least one instance of “(Laughter)” and

686 include more than one instance. For each of the documents containing more than

one instance, we count the number of appearances of each of the translations (as listed

in Table 7.8). We label a document consistent if only one of the translations appeared

in the German translation of the document. We label a document as inconsistent

if multiple different translations from the list appeared. A total of 648 documents

(94.5%) of the documents with more than one instance of “(Laughter)” on the source

side in the training data were consistent, while only 38 (5.5%) were inconsistent. In
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the majority of inconsistent documents, exactly two different translations were used.

Thus we observe that, consistent with expectations about human translators, most

documents contain consistent translations of “(Laughter)”.

We now examine how machine translation consistency compares to human trans-

lation consistency. The model is trained using Sockeye (Hieber et al., 2017) on a

concatenation of general domain data (WMT 2017) and Open Subtitles 2018 (Lison,

Tiedemann, and Kouylekov, 2018) and then domain-adapted with continued training

to TED data. Data is preprocessed with the Moses tokenizer (Koehn et al., 2007),

lowercasing, and byte pair encoding with a vocabulary size of 30, 000 (trained on the

general domain data and applied to all data). Since we use standard sentence-level

NMT systems, each sentence in a document is translated independently from every

other sentence in the document. This is, of course, in contrast to the human translator,

who is translating each sentence with knowledge of its surrounding context. To exam-

ine this, we consider the test set, which contains 12 documents with more than one

instance of “(Laughter)”. The human translators are completely consistent in each of

these documents. The neural machine translation system, however, only translates 5 of

these documents consistently. The remaining 7 documents are translated inconsistently

by the neural machine translation system. In all inconsistent documents, translations

are divided between “(Gelächter)” and “(Lachen)”, the two most common translations

in the training data. In 4 of the 7 inconsistent documents the majority of instances are

“(Gelächter)”, in 2 documents there is one of each, and in one document “(Lachen)” is

144



CHAPTER 7. ANALYSIS OF WORD-LEVEL PERFORMANCE

Translation of “(Laughter)” Percent of Examples
(Gelächter) 49.97%
(Lachen) 44.33%
(Schallendes Gelächter) 0.35%
(Lacht) 0.31%
(Gelächter.) 0.20%
(Gelaechter) 0.18%
(Lachten) 0.07%
None/Other 4.60%

Table 7.8: Prevalence of various translations of the 4545 instances of “(Laughter)” in
the English–German TED talk training data.

used more than “(Gelächter)”.

The inconsistency of the neural machine translation system is a concern from a

computer aided translation perspective. First, we know that human translators will

prefer to use consistent translations within a document, so inconsistencies here will be

errors that the translator will need to correct. Secondly, translators may be working

within a particular style guide that may or may not match training data. Ideally, the

system should be able to perform translations in accordance with the desired style

guide or translation lexicon. We examine approaches to incorporating lexicons and

improving consistency in Chapter 8.

7.4.2 Apparent Inconsistency

While examples of consistency are relatively easy to examine through automatic

means – the “(Laughter)” example is particularly helped by the fact that it is always

enclosed in parentheses – examples of inconsistency provide more of a challenge. We
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performed manual qualitative analyses of repeated source language tokens in English–

German TED documents (ignoring verbs, which we know are more heavily inflected

in German than in English, and whose consistency is therefore not expected25). In

general, repeated nouns and noun phrases are translated quite consistently within a

single document. Adverbs like “actually”, which can be translated as “eigentlich”,

“wirklich”, or “tatsächlich” (among other translations) do not always appear to be

translated consistently, because of subtle semantic distinctions between various uses

of “actually”.26

In Table 7.9, we show examples of apparently inconsistent human translations of

the English word “music” across several documents and how they compare to machine

translations of the word. In most cases where the word “music” appears in the

English sentence, the corresponding word in the German sentence is “Musik”. We also

observe cases where we instead see compound nouns: “Musikformen” (in the context

of “traditional dress and dance and music” translating to “traditionellen Trachten

, Tänzen und Musikformen”), “Musikvideos” (“music videos”), or “Musiksendern”

(“music channels”). Thus while it might appear that the word “music” is being

translated inconsistently, it is more appropriate to consider that the multi-word phrase

is being translated as a unit. We also observe cases where no translation appears,

often due to differences of sentence structure that allow the word to be implied rather

than explicitly stated. Finally, we see one case where “music” is translated as “Takt”

25We might still expect consistency in terms of the choice of verb itself, but the inflections are
determined grammatically.

26This could arguably provide a counterexample to the “one sense per discourse” claim.
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Doc. German (ref.) German (MT)
684 Musik (3), Musikformen Musik (4)
710 Musik (2), Musikvideos, Musik (2), Musikvideos,

Musiksendern Musikkanälen
755 Musik (2), Takt (1) Musik (3)
805 Musik (15), [none] (2) Musik (15), [none] (2)

Table 7.9: Examples of translations of the word “music” in documents from the
English–German TED development set, manually analyzed. Parenthetical numbers
indicate counts when a particular translation appeared multiple times.

(“beat” or “rhythm”), in a situation where “Takt zählen” likely sounds more fluent

and appropriate than using “Musik” would. This occurs in the following sentence pair:

“So, you can hear it not just in the phrasing, but the way they count off their

music: two, three, four, one.”

“Das kann man nicht nur in der Phrasierung hören, sondern auch in der Art,

wie sie ihren Takt zählen. Zwei, drei, vier, eins.”

All of these examples suggest that human translators do tend toward consistency

in translation, except when there are clear reasons (multi-word expressions, specific

contexts, differences in cross-lingual semantics, etc.) to deviate.

The machine translation system, on the other hand, tends to be more consistent

and literal than the human translator. In the example of “music”, we sometimes see

the machine translation system using “Musik” even when a different option might

be more appropriate in the translation, with the notable exception of several of the

compound nouns, which it also generates (or generates variations of).
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Manual exploration uncovered one common example of easily measurable apparent

inconsistency in human translation: the translation of the English word “percent”,27

which is sometimes rendered as “Prozent” and sometimes rendered as “%”. There

is some internal consistency in this behavior: “%” only ever appears after numerical

tokens (tokens ending in an integer character in the range from 0 to 9). “Prozent”,

which is overall more common in the training and test data, appears after both

numerical and non-numerical tokens. Of the 340 training documents that contain

multiple instances of “percent” on the source side, 228 are consistent (always using

“Prozent” or always using “%”), but 112 are inconsistent (using a mix of the two). Initial

intuition suggested that this might tie in with the fact that “%” only appears following

numerical tokens – perhaps translators are following some internally consistent rules

and alternating on the basis of the previous token. However, this is not generally

supported by the evidence – only 17 of the 112 inconsistent documents follow that

pattern. The machine translation system is more consistent than the human translators

on test documents, remaining entirely consistent and always using the more common

“Prozent”, while 5 of 7 human translated documents in the test set were consistent.

While this is evidence of a human inconsistency in notation, the question of whether

it should be considered an inconsistency in translation is more complicated: both “%”

and “Prozent” are read aloud identically.

27The English word “percent” is much more common than “%” in the training source data. The
latter appears there in fewer than 10 documents.
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7.4.3 Conclusion

We observe through automatic metrics that human translators (but not machine

translation systems) are extremely consistent within document (or within translator) in

their translations of certain special tokens. In seeking to find cases of real inconsistency

by human translators, the cases of apparent examples of human inconsistency that we

did find (“actually” and similar adverbs, “music”, and “percent”) still suggest that

human translators are quite consistent within the bounds of a single document, as

described by Carpuat (2009). When they appear to vary from a consistent translation,

there is often an alternate explanation to be found, such as a larger phrase being

translated or a different grammatical structure being used in the target language.

We find that in some cases the neural machine translation system is more consistent

than the human (biased towards the more frequent of two nearly-interchangeable

translations, as in the case of “percent”), while at other times it is less consistent (in

the case of “(Laughter)”).
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Chapter 8

Fine-Grained Adaptation

This chapter draws on work from Kothur, Knowles, and Koehn (2018).
The paper represents a collaboration, with equal contributions from the first
two authors: I wrote the code for and ran the experiments on dictionary
adaptation, while my coauthor, Sachith Sri Ram Kothur, wrote the code for
and ran the experiments on single-sentence adaptation. We both contributed
to the experimental design and analysis.

8.1 Introduction

The challenge of adapting a machine translation model to a new domain is a

well-studied one, but even a strong domain-adapted system may be able to perform

better on a particular document if it were to learn from a translator’s corrections

within the document itself. In fact, each new document may pose unique challenges

due to novelty of vocabulary, word senses, style, and more.1 It stands to reason that

1For example, Carpuat et al. (2012) decompose errors into seen, sense, score, and search; the first
two are most relevant to this work.
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fine-grained adaptation using information from within a document (for example, as

it is being translated by a human translator in a computer aided translation (CAT)

environment) could provide the added benefit of a closer in-domain match than

existing approaches that use data from other documents within the same domain.

We focus on adaptation within a single document – appropriate for an interactive

translation scenario where a model adapts to a human translator’s input over the

course of a document. We propose two methods: single-sentence adaptation (which

performs online adaptation one sentence at a time) and dictionary adaptation (which

specifically addresses the issue of translating novel words). These two approaches

are complementary, and we show that the combination of approaches outperforms

baselines as well as each approach individually, resulting in an improvement of +1.8

BLEU points and +23.3% novel word translation accuracy on WMT news data and

an improvement of +2.7 BLEU points and +49.2% novel word translation accuracy

on EMEA data (descriptions of medications). Both approaches address aspects of

consistency in translation, and the dictionary adaptation approach in particular focuses

on improving recurring machine translation errors, as desired by human translators

(Moorkens and O’Brien, 2017).

Continued training of neural machine translation (NMT) systems has been shown

to be an effective and efficient way to tune them for a specific target domain (Luong

and Manning, 2015). One such technique is incremental updating – comparing the

system’s predicted translation of an input sentence to a reference translation and
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Source Reference Baseline MT Output

Ambirix (Ambi | rix) Ambirix (Ambi | rix) Hampshire, Glaurix,
Tandemrix, ...

Prepandemic
(Prep | an | demic)

Präpandemischer
(Prä |pandem | ischer)

Proteasehemmer

Cataplexy (Cat | ap | lex | y) Kataplexie
(Kat | ap | lex | ie)

Cataplexy

hormone-dependent hormonabhängig hormonell
(hormon | e- | dependent) (hormon | abhängig)

Table 8.1: Examples of novel words and their mistranslations. The subword segmenta-
tion (in parentheses) is indicated by “ | ” for the source and reference.

then updating the model parameters to improve future predictions. Though this is

typically done in batches during training, a single-sentence pair or even a word and

its translation can be treated as a training instance.

Computer aided translation provides an ideal use case for exploring model adapta-

tion at such a fine granularity. As a human translator works, each sentence that they

translate (or each novel word for which they provide a translation) can then be used

as a new training example for a neural machine translation system. In an interactive

translation setting or a post-editing scenario, rapid incremental updating of the neural

model will allow the neural system to adapt to an individual translator, a particular

new domain, or novel vocabulary over the course of a document.

As discussed in Sections 7.2 and 7.3, novel words are split by byte pair encoding

into subwords, which the machine translation system may either copy or attempt to

translate, with varying levels of success and with varying levels of consistency. We ex-

amine translation consistency in Section 7.4. Table 8.1 shows example mistranslations
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of novel words in the EMEA dataset.

We test our approaches (dictionary training and single-sentence adaptation) to fine-

grained NMT adaptation on two very different domains: news and formal descriptions

of medications, each of which provide their own challenges. In our datasets, just under

80% of news documents and just over 90% of medical documents contain at least one

word that was unobserved in the training data. In the news documents, 12.8% of lines

contain at least one novel word, whereas in the medical data, 38.3% of lines contain

at least one novel word. We show that models can learn to correctly translate novel

vocabulary items and can adapt to document-specific terminology usage and style,

even in short documents.

8.2 Related Work on Rare Words and

Adaptation

In this section we describe related work on rare words and fine-grained adaptation.

Much like the approaches used for copying (as discussed in Section 7.3.1), the work on

rare words can broadly be divided into approaches that require network modifications

and approaches that involve data augmentation. We first describe network modifying

approaches and then examine data augmentation. With the exception of some copying

work, these approaches require knowledge of the rare words during training, meaning

they are not applicable to novel words. We then describe work on neural machine
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translation adaptation using very small datasets, including approaches that can handle

novel words (with the use of a subword vocabulary).

Arthur, Neubig, and Nakamura (2016) propose to improve the translation of rare

(low-frequency) content words through the incorporation of translation probabilities

from discrete lexicons into neural machine translation models. To begin with, values

in the lexicon need to be converted into translation probabilities. For a count-based

lexicon (such as one extracted through automatic alignment of a corpus), this can

be done by computing expected counts and normalizing. For a dictionary-based

lexicon, this can be done by assigning a uniform distribution to all translations of

a word, and 0 to all words that are not a translation. These probabilities pl(y|x)

(the probability of the target being y, given the source word x) are referred to as

“lexicon probabilities” in the paper. Neural machine translation systems, however,

use probabilities conditioned on the source sentence ~x and the previously translated

words {ŷ1, · · · , ŷt−1} in order to determine the probability of the target ŷt−1; this is

the model probability pm(yt|{ŷ1, · · · , ŷt−1}, ~x). For each source sentence, a matrix of

lexicon probabilities (rows corresponding to output vocabulary items and columns

corresponding to each token in the source sentence) can be computed, and the attention

mechanism can be used to provide a lexicon probability from the weighted average

of the columns. This can then be used to bias the model’s standard probability

distribution in favor of the lexicon probabilities. They find that their methods improve

translation for English–Japanese in terms of BLEU score, in both directions.
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Nguyen and Chiang (2018) propose to train a feed-forward neural network to

generate a target word based directly on a source word. Like Arthur, Neubig, and

Nakamura (2016) they then weight these probabilities using the attention mechanism

and combine them with the standard translation approach. They perform their

evaluation on eight language pairs, finding substantial BLEU score improvement

especially for low-resource languages. As described in Section 7.3.1, Gu et al. (2016)

propose a (monolingual) sequence-to-sequence model, CopyNet, that can select input

sequences to copy to the output within the course of generating a single sequence. All

of these approaches require modifications to the neural network architecture.

Fadaee, Bisazza, and Monz (2017) propose to learn better translations of rare

words by generating new sentences that include them to add to the training data.

Taking existing sentences from the training data and a list of rare words and their

translations, a language model is used to score plausible replacements of words in

training sentences with words from the rare word list. If a plausible replacement is

found, automatic alignment is performed over the source and target sentences, and

the aligned word in the target sentence is replaced by the translation of the rare word

that has been inserted into the source sentence. This new modified sentence pair is

added to the training corpus. They find that this improves translation quality and

increases the number of rare words produced during translation (for both translation

directions of English–German).

Work like Freitag and Al-Onaizan (2016) and Luong and Manning (2015) provide
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an approach to domain adaptation for neural machine translation by simply fine-tuning

existing models on new – often smaller – datasets. Taking this idea to the extreme

conclusion, we can consider ways of adapting to just a handful of sentences or even

a single sentence, a task that is often relevant for computer aided translation or

document-level translation.

Farajian et al. (2017) propose such a model in the context of handling translation

requests from multiple domains on the fly with a single model. Given a new sentence

to translate, they select sentence pairs from the training data that are similar to

this new sentence, adapt the general model to those sentences through fine-tuning

(dynamically adapting parameters on the basis of the similarity between the sentence

to be translated and those source sentences retrieved from the training data), and then

reset to the original model before translating the next sentence in the same manner.

They find that this instance-based adaptation approach outperforms phrase-based

statistical machine translation systems, generic neural machine translation systems,

and oracle domain-specific machine translation systems on English–French translation.

Li, Zhang, and Zong (2018) also proposes to learn a general domain model, select a

batch of between 1 and 128 sentence pairs from the training data for which the source

sentence is similar to the new sentence to be translated, and then fine-tune on this

batch of sentences. They evaluate their approach on Chinese–English translation.

Turchi et al. (2017) examine several combinations of an instance-based adaptation

approach like those described above and an approach where a model is incrementally
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updated on new sentence pairs (like our single-sentence adaptation approach). They

demonstrate BLEU score improvements on a general domain English–German neural

machine translation system used to translate information technology data, as well

as a domain-specific English–Latvian system for translating data in the medical

domain (EMEA data). In both cases, they use existing datasets of post-edits, though

there is not a guarantee that their initial machine translation output matches the

machine translation output that was used for the post-editing. Our experiments

are complementary to theirs; they explore a high-resource but domain-mismatched

scenario (information technology) and a lower-resource but domain-matched scenario

(EMEA), while we examine a high-resource domain-matched scenario (WMT) and

a high-resource domain-adapted scenario (EMEA). Karimova, Simianer, and Riezler

(2018) have recently shown in a user study with translation students that an online

adaptation approach (similar to our single-sentence adaptation approach and to Turchi

et al. (2017)) can decrease post-editing effort.

8.3 Approaches

We propose two complementary approaches for adapting an NMT model over the

course of a single document’s translation and the combination of the two. For each

approach, adaptation is done at or within the document level and the model is reset
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to baseline between documents.2

8.3.1 Single-Sentence Adaptation

In this approach, the model is iteratively adapted over the previous translated

sentence (and its reference), then the updated model is used to translate the next

sentence. Thus, line n of the document is translated by a model which has been

incrementally adapted to all previous lines (1 through n− 1) of the document. See

Algorithm 2 for details. Such an approach could be applied in a computer aided

translation tool, which would allow the machine translation system to adapt to

translator corrections as produced by post-editing, through an interactive translation

prediction interface, or any other computer aided translation approach. Single-sentence

adaptation allows the model to learn the translator’s preferred translations, which

may be specific to the particular document. For example, the system might initially

produce a valid translation for a word in the document, while the translator prefers

an alternate translation; after single-sentence adaptation, the system can learn to

produce the translator’s preferred translation in future sentences.

2In cases where the domain is fairly homogeneous, it may be beneficial not to reset the model
between documents, while in heterogeneous domains it may be desirable to always reset the model
(or maintain several models, each of which is fine-tuned to a particular subdomain).
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Algorithm 2 Single-Sentence Adaptation

m0 : baseline model
s, r : document (source language) and reference translation (target language)
si, ri : line i of s and r, respectively; zero-indexed
n : number of lines in s (and r)
t : translation output (initially empty)

t0 ← Translate(m0, s0)
for i ∈ {1 . . . n} do

mi ← Adapt(mi−1, si−1, ri−1)
ti ← Translate(mi, si)

end for
. We compute BLEU score between t and r.

8.3.2 Dictionary Training

This approach aims to adapt models with the specific goal of better translating

novel words. Given a new document to translate, we identify words that are novel

(have not appeared in any training or adaptation data). Next, we obtain a single

translation for each of these words (in a computer aided translation setting, this

might consist of asking a human translator to provide translations; along the lines of

terminology curation). In this work, we simulate the collection of such dictionaries

(or terminology banks) using the reference. We then treat the list of novel words and

their respective translations as bitext and continue model training, producing a model

specifically adapted to this document’s novel vocabulary, which we can then use to

decode the complete document. Note that this is a very small bitext to train on, and

each line of the bitext contains a single word (segmented into multiple tokens by byte

pair encoding).
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To simulate a translator-produced dictionary, we build a dictionary of novel word

translations from the source and reference. First we run fast-align (Dyer, Chahuneau,

and Smith, 2013) over the byte pair encoded representations of the source and reference

sentences.3 The target-side token whose subword segments most frequently align to the

subword segments of the source-side token is selected as a candidate translation, and

a single final translation is selected based on the most common candidate translation

within the document. Note that, particularly for words with morphological variants

in the target language, there may have been more than one correct translation. We

account for this in evaluation, but only train on one translation option.

8.3.3 Single-Sentence Adaptation with Dictionary

Training

Dictionary training and sentence adaptation offer distinct benefits when adapting

over a document. Dictionary training helps the model learn the right translations for

novel words and single-sentence adaptation can provide a more general adaptation.

The latter can also learn correct translations of repeated novel words, but may

require multiple instances to do so. Doing dictionary adaptation before adding

single-sentence adaptation could ensure that the novel terminology is correctly and

consistently translated from the beginning of the document, which could eliminate

3The fast-align model is trained over the byte pair encoded representations of the full training
data: WMT data, backtranslations released by Sennrich, Haddow, and Birch (2016c), and EMEA
data used for adaptation.
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a pain point for human translators. In this combined approach, we begin with the

document’s dictionary trained model and use that as the initial model for single-

sentence adaptation.

8.4 Data and Models

We use two datasets and baseline models to evaluate our approaches, translating

from English into German. We evaluate on WMT news data and EMEA medical

data using baseline WMT and EMEA domain adapted models, respectively. The

different domains (news vs. medical) allow us to evaluate our approaches in different

scenarios. While the data and models have been introduced in Sections 4.1.1 and

4.1.2, we elaborate on details like the document splits in the following sections. The

news data is a very commonly used dataset, and features a range of news domains,

with a wide range of vocabulary and styles, making it challenging for MT in general.

The EMEA data, on the other hand, is highly repetitive and structured, but comes

with a challenge of frequently repeated novel vocabulary in almost every document.

Experimenting with both of these datasets lets us see the strengths and weaknesses

of each of our approaches. For example, we would expect the dictionary adaptation

approach to be particularly useful in the EMEA scenario (due to the high frequency

of those novel words), so testing it on WMT as well gives us a chance to see how it

performs in a more average scenario and not just its best case scenario.
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8.4.1 WMT

WMT Data: We test on the full English–German WMT 2017 news translation test

set (Bojar et al., 2017), splitting it into 130 unique documents (derived from the

document splits in the original SGM file). Each document is a short news story. These

stories are drawn from a number of news sources, covering a wide range of topics.

While all documents are in the “news” domain, this is a fairly heterogeneous dataset.

The documents range in length from 2 to 64 lines, with an average length of 22.1 lines

(median 20).

We used the first 20 documents from the 2016 WMT news translation test set

(Bojar et al., 2016) as a development set for selecting training parameters for dictionary

training experiments, and a subset of 8 of these documents for selecting parameters

for the single-sentence training experiments. The development set documents had a

similar range of lengths (3 lines to 62 lines, with an average of 19.0).

The number of novel word types per document in our test set ranged from 0 (no

novel words; no dictionary adaptation) to 15 novel words. There are 295 novel types

(across all documents combined) and 442 novel tokens. Across the test set, 12.8% of

lines contain at least one novel word. In some cases, up to 75% of the lines within a

single document contain at least one novel word.

WMT Baseline Model: We use the University of Edinburgh’s publicly available

WMT 2016 English–German model, as described in Section 4.2.2.4 As this was trained

4http://data.statmt.org/rsennrich/wmt16_systems
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for the 2016 WMT evaluation, both the 2016 and 2017 test sets can be safely used for

development and testing, respectively, as they were not included in training data.

8.4.2 EMEA

EMEA Data: We use a subset of the English–German portion of the European

Medicines Agency (EMEA) parallel corpus5 of documents focusing on medical products

(Tiedemann, 2009). The corpus contains high levels of domain-specific terminology

and repetition, making it appropriate for this task. For more detail about the corpus,

see Section 4.1.2.

We select only those documents labeled as “humandocs” and then filter out very

long and very short documents and those that contain only or primarily highly-

repetitive dosage information. In particular, we removed all documents that contained

in their names “Annex”, “RQ”, or “de2”, as those tended to contain tables or very

repetitive dosage information. Each document describes a new medication, meaning

that new documents contain novel vocabulary. The medication name is typically

repeated frequently within the document. Other novel vocabulary items include

highly-specific medical terminology; these tend to appear fewer times within the

document.

We divide the documents into training, development, and test sets such that

all documents about a particular medication are in the same set. Thus most novel

5http://opus.lingfil.uu.se/EMEA.php
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medication names in the development and test data will have been unobserved in the

training data. We use four splits of the data: 500 document pairs (375, 000 sentence

pairs) for training a baseline EMEA-adapted model, 22 document pairs (5000 sentence

pairs) as validation for that training, 5 document pairs (285 sentence pairs) for a small

grid search over parameters, and 47 documents (2755 sentence pairs) for testing.

Test documents ranged in length from 48 lines to 95 lines. In general, the EMEA

documents have a greater variation in length than this (with some having 1000 or more

lines). For data with several hundred or more lines, considerable BLEU improvements

have been documented with online adaptation and continued training (Servan, Crego,

and Senellart, 2016). However, we seek to demonstrate that adaptation can be done

with even shorter documents, and so focus this test set on documents with fewer than

100 lines.

The number of novel types per document in our test set ranged from 0 (no novel

words; no dictionary adaptation) to 10 novel words. There are a total of 151 novel

types (all documents combined) and 1129 novel tokens. Across the test set, 38.3% of

lines contain at least one novel word. In some cases, up to 63.5% of the lines within a

single document contain at least one novel word. Some novel word types occurred

more than 30 times within a single document.

EMEA Baseline Model: The WMT model is trained on data which is significantly

different from the EMEA data’s medical domain. We see considerable differences in

terms of vocabulary and sentence lengths. If we were to use the unadapted WMT

164



CHAPTER 8. FINE-GRAINED ADAPTATION

model as our baseline, we might expect high gains from very small amounts of data

due to the domain differences. Instead, in order to determine what marginal gains are

possible in a real-life use scenario where a client already has access to a domain-specific

model, we first adapt the WMT model on the EMEA train data so that it is familiar

with the general style and vocabulary of the new dataset. Thus, improvements are

attributable to document-specific adaptation rather than general domain adaptation.

We use the 375, 000 sentence pair training set, validating on the 5000 sentence pair

development set, to perform continued training (Freitag and Al-Onaizan, 2016; Luong

and Manning, 2015). We use the same subword vocabulary and preprocessing pipeline

as the WMT model. We limit sentence lengths to 50 tokens and train with a batch

size of 80 over 15 epochs. We use a learning rate of 0.001 with the Adam optimizer

(Kingma and Ba, 2014).

While training, external validation is done every 1000 batches and models are

saved accordingly. We choose the model that gives the best validation score over the

development set. Results are consistent with prior work: performance on the new

domain peaks around the first few epochs and then tails off (Freitag and Al-Onaizan,

2016; Luong and Manning, 2015).

The performance of the baseline WMT model on the EMEA development set gives

a BLEU score of 18.2. Our best adapted model gives a BLEU of 51.5. With an increase

of over 30 BLEU points, the adapted model is well-tuned to the EMEA corpus. We

use this adapted model as the baseline for further document-level adaptation.
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Source This was a massive and , at the same time , very delicate operation .

Reference Dies war eine massive und gleichzeitig sehr heikle Tätigkeit .

Baseline Das war ein massiver und zugleich sehr delikater Betrieb .

Dict.-Adapt. Das war ein massiver und zugleich sehr delikater Betrieb .

Sent.-Adapt. Das war eine massive und zugleich sehr heikle Tätigkeit .

Dict.+Sent. Dies war eine massive und zugleich sehr heikle Tätigkeit .

Table 8.2: Example of improvement from single-sentence adaptation and dictionary-
and-single-sentence adaptation. The preferred translation of “delicate operation”
(“heikle Tätigkeit”) is observed in an earlier sentence in the document, and the model
learns to reproduce it.

Source Breast-feeding should be stopped while taking Siklos .

Reference Das Stillen sollte während der Behandlung mit Siklos eingestellt werden .

Baseline Während der Einnahme von Xenlos sollte abgestillt werden .

Dict.-Ad. Während der Einnahme von Siklos sollte abgestillt werden .

Sent.-Ad. Während der Behandlung mit Ivlos sollte abgestillt werden .

Dict.+Sent. Während der Behandlung mit Siklos sollte abgestillt werden .

Table 8.3: Complementary nature of two approaches: single-sentence approach learns
the preferred translation of “while taking” (“Während der Behandlung”), but mis-
translates Siklos as Ivlos. Dictionary training produces Siklos correctly, but makes no
other changes. Combined, the overall translation is improved, though it would still
require post-editing for correctness. (Note that all translations use abgestillt rather
than the noun Stillen for breast-feeding.)

8.5 Experiments

The two domains and their respective baseline models provide us two distinct

scenarios to evaluate our methodology. Both simulate a relatively data-rich realistic

setting in which translators have completed translations of in-domain data and continue

to work on new documents (with novel terminology) within the same domain. Each

domain provides its own challenges: the WMT data covers a wide range of topics

and sources of news stories, while the EMEA data includes highly technical medical
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vocabulary, presented in fairly consistent ways. Due to the way our EMEA data

splits were produced,6 this in particular means that the new EMEA documents will

likely contain novel vocabulary (such as names of medications and other specific

terminology). Similarly, we expect news stories to cover new names, locations, and

more as news breaks over time.

8.5.1 Single-Sentence Adaptation

For hyperparameter optimization, we did a complete grid search over a number of

learning rates (0.1, 0.01, 0.001, 0.0001, 0.00001), training epochs (1, 5, 10, 20), and

optimizers (Adam, SGD) on WMT data and a partial search on EMEA data. The

batch size is set to 1, so setting the training epochs to n means that the model trains

for n iterations on each individual sentence (before decoding the full remainder of the

document and moving on to train on the next sentence). We use BLEU (Papineni

et al., 2002) to measure the effect of adaptation. We found the optimum configurations

(optimizer, learning rate, epochs) of (SGD, 0.01, 5) for EMEA7 and (SGD, 0.1, 20)

for WMT. The difference in optimum configurations can be partly attributed to the

different domains of the two datasets. We note that the best EMEA configuration

6When there exists more than one document about a given medication, all of the documents
about that particular medication are placed in the same split. For example, if one document about a
medication is in the test set, all other documents about the drug will also be in the test set. This
ensures that we do not train on documents about that medication during domain adaptation, and
neither do we gain unfair additional knowledge about it during our parameter search. This also
mimics a real-world scenario, in which we would expect that we have trained on existing medical
documents and now need to continue adapting as new medications enter the market.

7During hyperparameter selection, document lengths were clipped to the first 60 lines.
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matched the second-best WMT configuration.

8.5.2 Dictionary Training

For the EMEA dictionary experiments, we completed a grid search over number

of epochs (1, 2, 5, 10) and learning rate (0.1, 0.5, 1.0) using SGD as the optimizer.8

Finding consistent results, we ran a smaller grid search (epochs: 2 and 5 and learning

rates 0.1, 0.5, and 1.0) over a development set of the first 20 documents from WMT

2016. Setting the learning rate and/or number of epochs too low resulted in minimal

changes, while setting them too high resulted in pathological overfitting (loops of

repeated tokens, etc.). Based on these initial experiments, we set a learning rate of

0.5 for both datasets, with 5 epochs for EMEA data and 2 epochs for WMT data.

The parameters chosen were those that maximized BLEU score on the appropriate

development set.

8.5.3 Lexically Constrained Decoding

We compare our dictionary training approach against an approach that uses the

same dictionaries and enforces a lexical constraint: if one of the dictionary entries

appears in the source, its translation (acquired as described in Section 8.3.2) must

appear in the translated output. We do this using the grid beam search approach

8We also considered lower learning rates (0.01, 0.001, 0.0001), but found that they did not result
in much, if any, change to the model.
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Model BLEU Nov. Acc.
EMEA-Adapt. Baseline 51.1 39.9%

Single-Sent. Adapt. 52.8 62.3%
Lex. Const. Decoding 50.4 86.5%
Dictionary Training 53.3 87.9%
Dict. + Single-Sent. 53.8 89.1%

Table 8.4: Results of baseline and dictionary training across the full set of EMEA test
documents. Accuracy is computed for novel words only.

described in Hokamp and Liu (2017). Rather than adapting the underlying machine

translation model, this approach constrains the search space to translations containing

specified subsequences (in this case, the byte pair encoded representations of the

translation of any words from the dictionary which appears in the source sentence).

We use the publicly released implementation for Nematus, with a beam size of 12.

8.5.4 Single-Sentence Adaptation with Dictionary

Training

Here we combine the approaches: for every document, we first do dictionary

training. Using that as the starting point, we perform single-sentence adaptation.

We use the best hyperparameters obtained from the grid search for the individual

methods.
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Model BLEU Nov. Acc.
WMT Baseline 25.1 48.9%

Single-Sent. Adapt. 26.7 58.4%
Lex. Const. Decoding 25.0 76.9%
Dictionary Training 25.1 71.7%
Dict. + Single-Sent. 26.9 72.2%

Table 8.5: Results of baseline and dictionary training across the full set of WMT test
documents. Accuracy is computed for novel words only.

8.6 Results and Analysis

We evaluate on two metrics: BLEU and novel word accuracy. First, we compute

BLEU over the full set of test documents and compare against the baseline translations.

Across both domains, single-sentence adaptation provides consistent improvements

in BLEU score (1.6 BLEU points on WMT data and 1.7 BLEU points on EMEA

data). The dictionary training approach has more varied results. We see no clear

improvement on the WMT data, but training on these small dictionaries does not hurt

BLEU score overall. However, for the EMEA data, dictionary training produces a 2.2

BLEU point improvement. This gain can be primarily attributed to producing correct

translations of the novel vocabulary, which can make a large difference in n-gram

matches.9

The lexically constrained decoding approach results in a decrease in BLEU score

on both domains. In their work on an alternate constrained decoding algorithm, Post

and Vilar (2018) describe a phenomenon that they call reference aversion, where

9Consider the case of the baseline translation Was ist AFluntis ? and the (correct) dictionary-
adapted version Was ist Aflunov ? – the former contains no 4-gram matches.
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forcing the output to contain a word or words from the reference increases BLEU

score while decreasing model score. They also note that another effect of reference

aversion is that their beam often contains weak competing hypotheses, arguing that

when the decoder is forced into generating low-probability sequences of tokens, it may

revert to generating high probability target language output (like a language model),

without clear connection to the input. What we observe here is closer to the latter:

both the model score and the BLEU score are decreasing, particularly for EMEA data.

We suspect that the model assigns low probability to the novel vocabulary items,

especially drug names (which are quite different from standard German or English

words), and subsequently suffers when forced to generate them. We show this to be

the case in Chapter 9, and examine it in more detail there.

Combining both dictionary training and single-sentence adaptation results in

modest improvements (0.2 on WMT and 0.5 on EMEA) over the best single approach

for each domain. Full results are shown in Tables 8.4 and 8.5. The combined

approach produces BLEU score improvements over the baseline for 79.2% of the WMT

documents and 83.0% of the EMEA documents.

Figure 8.1 shows how single-sentence adaptation improves translation quality (as

measured by BLEU score) over the course of adapting to EMEA documents. We

examine this as follows: for each sentence (indexed by n) in a document, we take

the model trained on the first n sentences and decode all remaining sentences in

the document (all sentences si in the document, where i > n), compute the BLEU
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Figure 8.1: The X-axis shows the number of sentences to which the model has been
adapted. The Y-axis shows the difference in BLEU score between this adapted model
and the baseline on the document’s remaining lines (higher Y values indicate greater
improvement over the baseline). Dotted lines represent individual documents; the
average trend is shown in bold. This plot displays EMEA results.

score over that document subset, and compare it to the BLEU score of the baseline

model (computed over the same subset of sentences). We then calculate and plot the

difference in BLEU score (baseline score subtracted from adapted score). The overall

trend is an increasing improvement in the BLEU score difference of the remaining

lines of the document, starting from around the 10 sentence mark.

We observe qualitative results that suggest that single-sentence adaptation is
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performing as expected, learning document- or translator-specific translations. For

example, as shown in Table 8.2 the baseline WMT system initially translates the

English bigram “delicate operation” as “delikater Betrieb” while the reference trans-

lation prefers “heikle Tätigkeit” as the translation. In the next sentence in which

“delicate operation” is observed, the sentence-adapted model successfully translates it

as “heikle Tätigkeit” instead. Table 8.3 shows another example in which the two ap-

proaches combine to produce improvements: the single-sentence adaptation produces

the desired translation “Behandlung” for the word “taking”, while the dictionary

adaptation correctly copies the medication name (“Siklos”). Together they successfully

produce both of these corrections. Even with this adaptation, the translation may still

contain non-adaptive errors (the reference uses the noun “Stillen” for “breast-feeding”,

while the machine translation output uses an inflected form of the verb “abgestillen”,

meaning “to wean” or “to stop breast-feeding”).

We also compute accuracy for the translations of novel words.10 To compute

accuracy, we first run a trained fast-align model over the byte pair encoded source and

the byte pair encoded reference. We use this alignment to map full tokens from the

source to full tokens in the reference (as was done for producing the dictionaries). We

then align the source sentence and the machine translation output the same way. For

each instance of a novel word, we score its aligned machine translated token as correct

if it matches the aligned reference token. The dictionary training approach shows,

10Since the publication of this work, Simianer, Wuebker, and DeNero (2019) have also proposed
approaches to measuring zero-shot and one-shot adaptation effects for lexical items.
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as expected, a major jump in translation accuracy. The single-sentence adaptation

approach shows results that fall between the baseline and the dictionary approach.

Lexically constrained decoding underperforms dictionary training on EMEA data (in

part because it sometimes produces medication names that are concatenated with

other subwords, or produces the medication name more times than required), while it

outperforms other methods on the WMT data (at a cost to the overall BLEU score,

whereas all other methods produce improvements in BLEU). Table 8.4 shows that

EMEA improves from a baseline accuracy of 39.9% to an accuracy of 87.9% after

dictionary training, and Table 8.5 shows a slightly smaller jump from 48.9% to 71.7%

for WMT. Both show slight improvements after combining single-sentence adaptation

and dictionary training.

With this increase in accuracy comes an increase in consistency of translating the

novel words. In the baseline EMEA-adapted model, the average type-token ratio11

for translations of novel words that occur at least 3 times (in the source text) is 0.29.

With dictionary adaptation, this drops to 0.14 – lower than the reference type-token

ration of 0.16 – meaning that the new model produces the exact translation from

the dictionary even when a variant (e.g., different case ending) may be appropriate.

As we use only one translation per novel source token in the dictionaries used for

training, the model overfits slightly. This issue could potentially be alleviated by

training on multiple translation options, at the risk of introducing errors from incorrect

11The number of different machine translation outputs for the source type, divided by the number
of times that source type appears.
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Model WMT EMEA
Copy Trans. Copy Trans.

Baseline 80.8% 11.3% 41.9% 28.4%
Single-Sent. Adapt. 87.9% 23.6% 67.2% 32.7%
Dictionary Adapt. 92.5% 47.3% 92.5% 60.5%
Dict. + Single-Sent. 94.6% 45.8% 92.9% 66.7%

Table 8.6: Novel word accuracy divided into tokens to be copied (Copy) vs. translated
(Trans.).

alignments.

We perform more detailed analysis across two kinds of novel words: those which

should simply be copied from source to target (e.g., medication names) and those

which must be translated. Table 8.6 shows results for the baseline and our approaches.

WMT data is almost evenly split between these: 46.8% of novel types (54.1% of tokens)

must by copied, while EMEA data is skewed towards words that should be copied,

with 51.7% of novel types (85.7% of tokens). On WMT data, baseline accuracy of

terms to be copied is already quite high, but accuracy of terms to be translated is

very low. The EMEA baseline has a much harder time with tokens that should be

copied, but does better on non-copied terms. The analysis in Section 7.3 provides

additional insight into why this may be. The set of WMT novel words contains many

names of people or places, as well as some morphological variants of known words.

We observed that context can influence copying rate, and in particular that certain

contexts (including those in which names often appear) tend to result in more copying

of novel vocabulary. Some of these names do appear near job titles and other such
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potentially copy-prone contexts, which may increase their successful copying. On the

other hand, novel words in EMEA tend to be a mix of medication names, which tend

to contain character sequences not frequent in either source or target language, or

highly-specialized medical terminology. The medication names in particular are quite

morphologically and orthographically distinct from either German or English. We

observe that for many of the medication names, it takes 10 or more instances of the

name being observed for the single-sentence adaptation approach alone to successfully

learn to copy the word (if ever). Though there remains a gap between novel word

accuracy on tokens that should be copied and those that should be translated, our

approaches demonstrate improvements for both types of novel words.

A concern with training on a dictionary as bitext is that the model may overfit to

the sentence length; we do not find that to be the case here, as the difference between

the full hypothesis lengths is 48, 641 tokens for the EMEA-adapted data compared to

48, 627 for the dictionary-trained models. However, this is dependent on choosing the

correct learning rate and number of epochs. Similarly, there’s a potential concern that

single-sentence training on the previous sentence may cause some type of overfitting

(memorization of the sentence, etc.). We do not observe that to be the case either.
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8.7 Conclusions

We propose two approaches to document-level adaptation of NMT systems (single-

sentence adaptation, dictionary training) and their combination, which can be ef-

fectively used to improve performance, both in terms of BLEU score and in the

translation of novel words. Both approaches have minimal training data requirements,

can be effectively applied with an existing NMT architecture, and show considerable

improvements even for short documents.
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Chapter 9

Applications of Adaptation to CAT

9.1 Introduction

This section of the dissertation brings together the two main contributions of this

thesis: combining neural interactive translation prediction and fine-grained adaptation

of neural machine translation systems. We perform this work in simulation, evaluating

the potential for success using several metrics: BLEU score (as examined in prior

work), word prediction accuracy (WPA), and examining the probability assigned by

the model to various tokens of interest. In examining adaptation in the interactive

translation prediction setting, we observe that the model probability assigned to novel

words does increase and that this results in higher word prediction accuracy. This also

ties back in to Chapter 5; we know that interactive translation prediction recovers

more quickly from making an error when the correct token received relatively high
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model probability. Increasing the model probability of these novel words serves to

increase the chance that they are correctly generated, but also has the potential to

positively influence the word prediction accuracy of the remainder of the sentence.

9.2 Experimental Setup and Evaluation

We reuse the WMT and EMEA English–German models and data from Chapter

8. These consist of a publicly released model from the University of Edinburgh’s

submission to the WMT news translation task as a baseline for WMT (Sennrich,

Haddow, and Birch, 2016a) and the same model domain-adapted to EMEA data for use

as a baseline for EMEA. In particular, we focus on the baseline model, the dictionary

adapted model, and the combined dictionary and single-sentence adaptation model.

The combined model is the best performing across both datasets, while examining the

dictionary adapted model in this setting allows us to closely examine the effects on

the translation of novel words. Instead of standard decoding, we simulate interactive

translation prediction (beam size 1) as described in Chapter 5. In our evaluation, we

consider novel words; again, these match those from Chapter 8.

9.2.1 Word Prediction Accuracy

One way we can measure improved performance (in addition to BLEU score)

is to consider the effects of adaptation on word prediction accuracy. We expect
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that a system that has successfully performed adaptation should demonstrate this

improvement through an increase in word prediction accuracy. For example, after

performing dictionary training, we would expect the system to be more likely to

output target language dictionary items in sentences containing source side dictionary

items, increasing word prediction accuracy just as it increased BLEU. Similarly, in

single-sentence adaptation (or the combination of the two), we would expect to be more

likely to produce the translator’s preferred phrases, thus increasing word prediction

accuracy.

9.2.2 Novel Word Prediction Accuracy

We measure word prediction accuracy restricted only to words of interest, such as

the novel words that were trained on for dictionary training (which we call novel word

prediction accuracy). That is, whenever a target language word from the dictionary

used for dictionary training appears in the reference output (which we are using to

simulate a human translator), we check whether the interactive translation prediction

system produced it, and calculate this targeted word prediction accuracy by dividing

the number of times the system correctly generated such a word by the total number

of such words in the reference. This differs from our earlier analysis, which used

word alignments on free translations. In the case of interactive translation prediction,

we can dispense with the need for alignments because the reference itself indicates

181



CHAPTER 9. APPLICATIONS OF ADAPTATION TO CAT

precisely where the target words should appear.1

9.2.3 Model Probabilities

Our second approach to examining the generation of tokens of interest is to examine

the probability assigned to these novel words of interest. We expect to see this increase

with adaptation. While we could measure this in free translation output, measuring it

with a constrained prefix and forced decoding in the interactive translation prediction

setting provides a more consistent context for measuring the probability assigned to

these novel tokens. We plot the average negative log probability (averaged by type) to

examine the changes that the adaptation methods produce in individual novel words.

We also consider the average negative log probability as averaged across three sets:

the full test data, the novel words only, and the complement of the novel words only.

By comparing each of these sets across the different adaptation scenarios, we can see

the effect of adaptation in general, on the novel words, and on the remainder of the

words, which helps to explain the performance improvements observed in BLEU score

and word prediction accuracy.

1We can connect interactive translation prediction and constrained decoding: checking the word
prediction accuracy here is similar to checking the word prediction accuracy following a constraint,
where the constraint includes the beginning of sentence token. Similarly, interactive translation
prediction in simulation has a strong connection to forced decoding, the only difference being the
generation of predicted tokens at each timestep (to compare to the reference), rather than decoding
the reference only.
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9.3 EMEA Experiments

9.3.1 WPA and NWPA

In Table 9.1 we show results for word prediction accuracy, novel word prediction

accuracy, letter prediction accuracy, and novel letter prediction accuracy on the EMEA

data. We saw in Chapter 8 that the EMEA baseline begins at quite a high BLEU

score (51.1). This corresponds to a high baseline word prediction accuracy (74.5%).

Dictionary adaptation increases this more than one percentage point (to 75.6%), while

single-sentence training provides a slight improvement above this (to 75.9%). The

letter prediction accuracy improvements are smaller but follow the same trend.

When we restrict to novel words only, the scores and improvements track almost

identically with the novel word accuracy. The novel word accuracy starts low, at

37.2%, rising to 87.0% with dictionary training, and increasing slightly to 89.1%

with combined dictionary and single-sentence adaptation. The novel letter prediction

accuracy follows a similar trend. The fact that novel word prediction accuracy under

interactive translation prediction so closely tracks the novel word accuracy in free

translation is not in itself surprising; the underlying model is the same, it is merely

the generation process that differs.

In Table 9.2 we compute word and letter prediction accuracy restricted to the words

immediately following instances of novel words in the simulated interactive translation

prediction output. We know that errors in interactive translation prediction can
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Model BLEU N. Acc. WPA N. WPA LPA N. LPA
EMEA-Ad. Base. 51.1 39.9% 74.5% 37.2% 93.0% 79.0%

Dict. Training 53.3 87.9% 75.6% 87.0% 93.5% 95.6%
Combined 53.8 89.1% 75.9% 89.1% 93.5% 96.0%

Table 9.1: Results of EMEA-adapted baseline and dictionary training across the full
set of EMEA test documents. BLEU and novel word accuracy (Nov. Acc.) are
computed with standard decoding (from Table 8.4), while WPA, Novel Word WPA,
and Letter Prediction Accuracy (LPA) are computed with interactive translation
prediction (using the reference for simulation).

set off subsequent (though often short) cascades of other errors, especially when the

translator’s desired translation was assigned low probability by the model. As such,

we might expect that word prediction accuracy would suffer for the words immediately

following novel words (particularly for the baseline system which struggles when

translating them). However, we don’t find that to be the case for EMEA data: the

word prediction accuracy computed over words following novel words is in some cases

slightly higher than the overall word prediction accuracy. A manual examination of

this suggests that it may partly be a quirk of the structure of EMEA documents. In

particular, for a given medication (which we’ll represent as “MEDICATION”) they

often begin with “What is [MEDICATION] ?” (translated as “Was ist [MEDICATION]

?”), and then state “[MEDICATION] is ...” (translated as “[MEDICATION] ist ...”).

So, perhaps even in the case where the system has failed to correctly translate the

medication name, it is still able to compensate through the sheer repetitiveness of this

particular data; we do not observe the same trend with WMT data. This effect could

also be related to the high proportion of novel words in the training data lowering the
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Model Following Word WPA Following Word LPA
Baseline 75.7% 93.2%

Dict. Training 75.4% 93.3%
Combined 77.9% 93.9%

Table 9.2: Results of baseline, dictionary training, and combined dictionary with
single-sentence adaptation across the full set of EMEA test documents. WPA and
LPA are computed over each of the first tokens following a novel token.

overall word prediction accuracy.

9.3.2 Model Probabilities

We now examine the probability assigned to the words in the reference by the

model during interactive translation prediction. We begin with the novel words. The

dictionary adaptation approach in particular was designed to improve translation

of these novel words, and we show that this does increase the probability that the

model assigns to those words (with minimal negative consequences for other words).

Figure 9.1 shows the change in negative log probability averaged over each novel type

after dictionary adaptation. In the figure, types are sorted by their average negative

log probability under the baseline model; it is clear to see that in almost all cases,

the adapted models show a decrease in negative log probability, indicating that the

adapted models now assign higher probability to the novel words than the baseline

model did. The values for the combined dictionary and single-sentence adapted models

had near identical performance.

Table 9.3 examines model average negative log probabilities across all tokens, just
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Model All Tokens Novel Tokens Other Tokens
EMEA-Adapted Base. 1.78 3.45 1.68

Dictionary Training 1.64 0.82 1.69
Combined 1.59 0.74 1.65

Table 9.3: Average negative log probability of all tokens, novel tokens, and all other
tokens (non-novel tokens). Lower values indicate improvement.

the novel tokens, and other tokens (the complement of the novel tokens). This allows

us to tease apart the impact of the different adaptation techniques on different words.

The most drastic improvement is from the baseline to dictionary training as measured

over the novel words, a relative change of 76.2%. While there is improvement for

all tokens and for novel words, it comes at a cost to the non-novel tokens. However,

this cost is quite small in comparison, a relative change of only 0.6%. The combined

dictionary and single-sentence adaptation shows improvements across all subsets of

the tokens (over both the baseline and the dictionary training).

9.4 WMT Experiments

9.4.1 WPA and NWPA

Table 9.4 shows word prediction accuracy results for the 2017 WMT news test

data in English–German. In contrast to the highly-repetitive EMEA data, WMT data

consists of a variety of news stories, covering a range of topics. The baseline begins with

a lower overall BLEU score (25.1) and corresponding word prediction accuracy (43.4%)
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Figure 9.1: Change in average negative log probability assigned to novel words in
the EMEA dataset (averages computed over types, with each type represented by
a point in the plot), with horizontal axis sorted by baseline average negative log
probability. Each point shows the change in average negative log likelihood after
dictionary adaptation (combined dictionary and single-sentence adaptation values are
nearly identical). All points below the horizontal axis show improvement (decrease in
average negative log probability).
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Model BLEU N. Acc. WPA N. WPA LPA N. LPA
Baseline 25.1 48.9% 43.4% 27.1% 78.0% 68.9%

Dict. Training 25.1 71.7% 56.3% 71.6% 86.6% 92.5%
Combined 26.9 72.2% 59.2% 71.8% 88.3% 93.4%

Table 9.4: Results of baseline, dictionary training, and combined dictionary with
single-sentence adaptation across the full set of WMT test documents. BLEU and
novel word accuracy (Nov. Acc.) are computed with standard decoding (from Table
8.5), while WPA, Novel Word WPA, and Letter Prediction Accuracy (LPA) are
computed with interactive translation prediction (using the reference for simulation).

than the EMEA dataset. While we saw no change in BLEU score through dictionary

adaptation, we did see an improvement in novel word translation accuracy in Chapter 8

(repeated here in Table 9.4). This corresponds to an (even greater) improvement in

novel word prediction accuracy (jumping from 27.1% using the baseline model to 71.6%

with the dictionary adaptation model). We also see an increase in word prediction

accuracy with dictionary training, which may be primarily attributable to the large

increase in novel word prediction accuracy. Moving from dictionary training alone

to the combined dictionary and single-sentence adaptation, we again see increases

in both word prediction accuracy and novel word prediction accuracy. This time,

however, the magnitude of the change is different; the novel word prediction accuracy

only increases by 0.2 percentage points (0.3% relative improvement), while the overall

word prediction accuracy increases 2.9 percentage points (5.2% relative), suggesting

that the single-sentence adaptation is improving translation of other words in the

document or making other stylistic improvements. Letter prediction accuracy follows

similar trends.
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Model Following Word WPA Following Word LPA
Baseline 41.5% 76.0%

Dict. Training 58.5% 87.2%
Combined 58.1% 87.6%

Table 9.5: Results of baseline, dictionary training, and combined dictionary with
single-sentence adaptation across the full set of WMT test documents. WPA and LPA
are computed over each of the first tokens following a novel token.

In Table 9.5 we show results for the word prediction accuracy restricted to only

the word immediately following a novel word. For these words, we see a drop in word

prediction accuracy with the baseline model, then an increase in the adapted models.

This does suggest that, for this dataset, improving the translation of novel words has

a positive impact on the translation of subsequent tokens, as we might expect from

evidence in neural interactive translation prediction simulations.

9.4.2 Model Probabilities

Table 9.6 shows average negative log probabilities of all tokens in the WMT test

set, as well as those same tokens separated into novel tokens (which were trained on

in the dictionary adaptation approach) and all other tokens. We find that dictionary

training decreases average negative log probabilities across all sets of words examined,

most strongly for the novel tokens (which were the focus of that training), which

saw a 77.1% relative drop. However, in contrast to what we observed on the EMEA

data, dictionary training also resulted in a noticeable drop in the average negative

log probability of the non-novel tokens. This difference could be related to the very
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Model All Tokens Novel Tokens Other Tokens
Baseline 5.55 6.06 5.54

Dictionary Training 3.31 1.39 3.35
Combined 3.06 1.33 3.10

Table 9.6: Average negative log probability of all tokens, novel tokens, and all other
tokens (non-novel tokens) for WMT data.

different types of novel words that exist in the two datasets. In EMEA, most novel

words are names of medications, while in WMT novel words span a wider range of

categories: numbers, proper nouns, compound nouns, previously unobserved inflections

of adjectives and verbs, and so on. Some of these may have subword overlap with

other words in the document, something which is less likely to be the case in EMEA

data where the novel drug names are quite different from English or German text. For

example, we see that when training on 2015-16 (with BPE segments 20@@ 15-@@

16 – in the context of “in der Saison 2015-16” or “in [the] 2015-16 [season]”), the

probability of 20@@ in the context 20@@ 13-@@ 14 also improves. Improving the

probability assigned to novel tokens could also be improving the probability of the

subsequent tokens.

9.5 Conclusion

In this section, we examine the combination of neural interactive translation

prediction and fine-grained adaptation in simulation experiments. We show that

improvements from both dictionary training and combined dictionary training with
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single-sentence adaptation do correspond to improvements in interactive translation

prediction metrics. These benefits do extend beyond just improvements to novel token

translation, showing their benefits for two very different types of datasets. This result

has positive implications for the potential usefulness of adaptation in an interactive

translation prediction setting.
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Chapter 10

Conclusions

10.1 Conclusions

In this dissertation, we have described work in the areas of machine translation

and computer aided translation. In particular, we have shown that neural interactive

translation prediction outperforms phrase-based statistical machine translation ap-

proaches, even when the underlying machine translation systems are of similar quality.

By performing a user study with professional translators, we have demonstrated the

feasibility of neural interactive translation prediction as a competitive alternative to

post-editing, and have observed primarily positive translator reactions to the tool. We

have provided an analysis of challenges facing machine translation systems in terms

of the translation of rare words as well as translation consistency, topics that are

highly relevant to computer aided translation work. We show that dictionary and
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single-sentence adaptation can successfully perform extremely fine-grained adapta-

tion, improving already-strong neural machine translation systems. In simulation, we

apply those adaptation tools to a computer aided translation task and demonstrate

improvements on metrics that may correlate with translator efficiency and satisfaction.

Machine translation is playing an increasingly large role in the world – free online

machine translation services are used to translate hundreds of billions of words every

day.1 However, for companies, governments, and individuals interested in localization

or publishing content in multiple languages, the quality of machine translation output

is often insufficient. For this, they turn to translators and language service providers,

who often use computer aided translation tools to produce high-quality translations

efficiently. In an increasingly connected world where over 7000 languages are spoken

(and for only a small portion of which machine translation technology currently

exists),2 translation is a growing industry with a major impact in a wide range of

areas, from government to technology to medicine to communication and beyond.3

The ability to access information in one’s own language also has a more qualitative

impact on individuals. The work in this dissertation seeks to make progress towards

both improved machine translation quality and improved experiences for translators

using computer aided translation tools in their daily lives.

1https://www.blog.google/products/translate/ten-years-of-google-translate/
2https://www.ethnologue.com/guides/how-many-languages/
3To measure this impact financially, the global market of “language services and technology,”

including translation was estimated at $46.5 billion in 2018, and is expected to continue growing,
according to the Globalization and Localization Association. https://www.gala-global.org/

industry/industry-facts-and-data/
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10.2 Future Work

There remain, as ever, a number of promising directions for future work in this

area. As machine translation systems continue to improve, the question of how best

to form a human and machine partnership continues to evolve. We face questions

about whether the high quality of neural machine translation may produce errors

that are harder to catch or more inconsistent than those made by phrase-based

statistical machine translation systems. We must also consider what it means for

translator interaction modes: is post-editing a near-perfect translation faster than

using interactive translation prediction? Is there a threshold of quality that makes

one tool better than the other?

10.2.1 Human Variability

If experience is any guide, the answer to many questions about the usefulness of any

given computer aided translation tool is that it will vary greatly by translator. One

of the areas ripest for exploration is to examine which tools work best for individual

translators on the basis of their strengths, areas of expertise, and personal preferences.

In Chapter 5, we observed possible correlation between post-editing experience and

higher word prediction accuracy scores for interactive translation prediction, but our

small sample size made it difficult to draw concrete conclusions. Future study would

benefit from larger groups of study participants (though this also comes with greater
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costs) in order to be able to confidently measure correlations between metrics of tool

usefulness and translator-specific variables.

There are a number of translator-specific variables that would be worth exploring

in large-scale studies of interactive translation prediction (or other CAT tools). We

examined experience, education, and certification, particularly with respect to post-

editing background. We did not measure typing speed, but it is very plausible that

this might play a role; slower typists may benefit from word and sentence completion

(or even just from post-editing text), while faster typists might see different benefits.

Other factors such as a translator’s receptive and productive vocabulary may also

come into play. A translator with a strong receptive vocabulary but weaker productive

vocabulary might benefit from being presented with translation options, which they

can then verify. On the other hand, a system that incorrectly primes a translator who

has a weaker vocabulary has the potential to backfire by leading them astray.

The choice of participants for a user study is also important; many studies choose

to use students (of translation or in any field), while others use professional translators.

The selection of participants should take into account the intended audience for the tool.

If the tool is being built for professional translators, evaluation by non-professionals

may not be representative of the results that would be obtained with professional

translators. Moorkens and O’Brien (2015) discuss these and other differences between

student and professional translators acting as user study participants. If the tool is

being built with the goal of use by a wide range of professional and amateur translators,

196



CHAPTER 10. CONCLUSIONS

the study participants should reflect that. The types of tools that are most useful to

each of these various groups are likely to be both task-specific and translator-specific,

and translators’ experience with and preference for certain workflows is likely to have

an impact on their perception of a CAT tool, their interest in trying new tools, and

the tool’s usefulness for them as part of a new or existing workflow.

One major challenge in evaluation is the tradeoff between examining the impact of

a particular computer aided translation technology in isolation as opposed to having

a more realistic setting. Teixeira and O’Brien (2017) perform eyetracking, screen

recording, key logging, and interviews with translators to observe their translation

processes, a complicated data collection process in itself. They find that translators

often switch between different tools in the course of their work, sometimes even using

tools other than the computer, such as their phones. In our work, we perform key

and mouse click logging in a simple computer aided translation interface. Each of

these approaches has its own strengths: the Teixeira and O’Brien (2017) approach

can help draw conclusions about translator workflows through detailed analysis of

the tools a translator uses in their typical process, while our approach allows for

much more automatic analysis of productivity with a particular tool in a constrained

setting. Recent work (Daems and Macken, 2019) has compared statistical and neural

interactive prediction in the commercial interface Lilt, examining the approaches in a

tool with more of the industry-standard bells and whistles enabled (in the case of this

study, though, Lilt was a new tool for most of the participants).
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While it may be challenging to run sufficiently large-scale user studies to untangle

the influences of human variables and specific tools (or improvements to tools), large-

scale user surveys like Moorkens and O’Brien (2017) may provide some guidance for

high-impact areas of future research and development. Features desired by translators

interviewed in that work include dynamically updating machine translation systems

to improve recurring errors (as we examined in the fine-grained adaptation work in

Chapter 8), interactive machine translation (as we explored in Chapters 5 and 6),

and confidence scores (which we will discuss in Section 10.2.3). As suggested in the

description of a translator’s amanuensis in Kay (1980), translators today would still

prefer that these interfaces be customizable, allowing them to pick and choose which

features they would like to use.

10.2.2 CAT-Specific Architectures

Much of the core of machine translation research is aimed at improving translation

in an assimilative context (i.e., translating webpages for a reader to access in their

preferred language), and architectures are designed with that in mind. The work

in this dissertation has taken existing machine translation architectures and used

them, with occasional modifications, for the task of computer aided translation. An

alternative approach would be to build machine translation architectures for the

specific goal of use in computer aided translation. What could a CAT-specific machine

translation architecture look like? What factors should a CAT-specific architecture
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take into account?

Tools like casmacat offer a number of different interaction modes for translators,

including interactive translation prediction, post-editing, translation by selecting

words from a visualization of a search graph, and so on. There are also a number of

additional optional visualizations, like alignment, source coverage based on the text

translated so far, and confidence. Some of these are intimately tied to phrase-based

statistical machine translation approaches, where information about alignment and

coverage are produced as byproducts of the translation process. For example, one may

wish to either see which source words have already been translated or to see what

source words are being translated by the system as a particular target word. In the

phrase-based statistical approach, this is relatively simple: the alignment delivers it.

As shown in Koehn and Knowles (2017), though, this may be more challenging in

neural machine translation systems because attention is not always alignment and

thus cannot be relied upon as such (and attention in architectures like transformer

(Vaswani et al., 2017) may be even less interpretable). Recent work in Ding, Xu, and

Koehn (2019), however, has proposed a potential solution to this, through the use of

saliency, which can be applied to a range of architectures. Alternatives would include

training architectures to explicitly model alignment as well as translation.

Architectures designed with CAT-related goals in mind may also contribute back

to the core machine translation literature. In Chapter 8, we examined ways to adapt

machine translation models to perform better on documents by adapting to document-
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specific vocabulary or by performing sentence-level adaptation throughout the process

of translating a document. Document-level machine translation and evaluation has

seen growing interest in recent years (Läubli, Sennrich, and Volk, 2018; Maruf and

Haffari, 2018; Barrault et al., 2019), with recent success at WMT (Junczys-Dowmunt,

2019). There are a number of potential approaches to document-level neural machine

translation, including conditioning translation on one or more previous sentences or, as

in Junczys-Dowmunt (2019), treating documents as very long sequences with sentence

separating tokens. Both approaches have the potential to be more computationally

expensive than standard decoding, especially if multiple passes over the document

are required. In the computer aided translation setting, one would also want to be

able to take into account any corrections made by a translator to early portions of

the document in later portions (potentially by a sentence-adapation approach or a

constrained decoding approach). Approaches that condition on previous sentences

(and their translations) may appear to be more easily suited to this, as one could simply

condition on post-edited or interactively translated output from earlier sentences in

the document. With the increasingly high quality of neural machine translation

output, producing document-level coherence is an exciting challenge, one that will

have benefits for a range of machine translation use cases, including but not limited

to computer aided translation.

Due to the need for and challenges of human evaluation of CAT tools, it will

often take time for certain CAT tools to adapt to novel architectures. While any
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machine translation architecture can be used for post-editing, human translators will

need to learn how to adjust to the kinds of errors the systems make. Interactive

translation prediction and other types of CAT tools tend to be intimately tied to

a particular architecture, so changing architectures may require new approaches to

interactive translation prediction, as has been the case for neural machine translation.

Torregrosa, Pérez-Ortiz, and Forcada (2017) propose black-box approaches to inter-

active translation prediction to resolve this, but their approach involves translating

segments of sentences, which is a task that may be quite different from the training

data and may result in differing performance between different paradigms of systems.

As an alternative to building CAT-specific architectures, one could also seek to build

architecture-agnostic CAT tools, though the risk is that new machine translation

paradigms may fail to adhere to the assumptions with which the CAT tools were built.

10.2.3 Trust, Confidence, and Mistakes

When neural machine translation models make mistakes, they typically do so

in ways that are quite different from phrase-based statistical machine translation

systems. For example, they may start to generate fluent text that has no apparent

connection to the source (what is sometimes described as “switching to language

modeling mode”) or they may replace words with grammatically reasonable but

semantically incorrect substitutions. While we have some understanding of certain

aspects of performance, such as why they typically produce output of the correct
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length (Shi, Knight, and Yuret, 2016), they can be somewhat opaque otherwise. The

unique paradigm of mistakes and the challenges associated with explaining them may

result in user mistrust in a neural machine translation system. On the other hand,

the high rates of fluency may lure readers or translators into a false sense of security,

causing them to miss errors. Martindale and Carpuat (2018) provide an overview of

how readers of machine translation output may react to fluency or adequacy errors,

finding that they react more negatively to fluency errors.

When translators use translation memories in a computer aided translation tool,

they are typically presented along with a “fuzzy match score” which lets the translator

know how close they should expect the translation to be to a correct translation.

Many translators would also like to see a confidence score for machine translation

output that they are expected to post-edit (Moorkens and O’Brien, 2017), and this

could also be implemented for individual words in interactive translation prediction.

There is a rich body of literature on quality and confidence estimation for machine

translation (Callison-Burch et al., 2012), including for interactive translation prediction

(Gandrabur and Foster, 2003; González-Rubio, Ortiz-Mart́ınez, and Casacuberta,

2010). We examined simple approaches to word-level confidence for neural interactive

translation prediction in Knowles and Koehn (2018b) and found that the score assigned

to the current token by the neural machine translation model could be used (via

thresholding or in a regression model) for confidence estimation. It is by no means

perfect, though, and sometimes the model assigned very high probability to completely
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incorrect tokens. Building machine translation systems that are penalized more heavily

for overconfidence in incorrect translations, or that are rewarded for emitting some

information to indicate when they may need human oversight could potentially help

to ameliorate this.

For translators accustomed to working with translation memories or phrase-based

statistical machine translation output, the different types of errors made by neural

systems may require a period of adjustment or changes to their workflow to ensure

that they catch adequacy errors in otherwise fluent translations. In general, producing

more interpretable models (or finding ways to make existing models more interpretable,

such as in Ding, Xu, and Koehn (2019), or through better indications of confidence)

could enhance user trust and understanding. It comes with a risk, though: poor

estimates of confidence could cause users to miss errors or to waste time examining

correct tokens, either of which could also result in either an overabundance of trust or

a loss of trust in the system.
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Jean, Sébastien, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua

Bengio (2015). “Montreal Neural Machine Translation Systems for WMT’15”. In:

Proceedings of the Tenth Workshop on Statistical Machine Translation. Lisbon,

Portugal: Association for Computational Linguistics, pp. 134–140. url: https:

//www.aclweb.org/anthology/W15-3014.

Junczys-Dowmunt, Marcin (2012). “A Phrase Table without Phrases: Rank Encoding

for Better Phrase Table Compression”. In: Proceedings of th 16th International

Conference of the European Association for Machine Translation (EAMT). Ed.

by Mauro Cettolo, Marcello Federico, Lucia Specia, and Andy Way. Trento,

Italy, pp. 245–252. url: http://www.mt-archive.info/EAMT-2012-Junczys-

Dowmunt.

Junczys-Dowmunt, Marcin (2019). “Microsoft Translator at WMT 2019: Towards

Large-Scale Document-Level Neural Machine Translation”. In: Proceedings of the

Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day

1). Florence, Italy: Association for Computational Linguistics, pp. 225–233. url:

https://www.aclweb.org/anthology/W19-5321.

Junczys-Dowmunt, Marcin, Tomasz Dwojak, and Hieu Hoang (2016). “Is Neural

Machine Translation Ready for Deployment? A Case Study on 30 Translation

Directions”. In: Proceedings of the 9th International Workshop on Spoken Language

221

http://www.iro.umontreal.ca/~foster/papers/trans-tmi93.pdf
https://www.aclweb.org/anthology/W15-3014
https://www.aclweb.org/anthology/W15-3014
http://www.mt-archive.info/EAMT-2012-Junczys-Dowmunt
http://www.mt-archive.info/EAMT-2012-Junczys-Dowmunt
https://www.aclweb.org/anthology/W19-5321


BIBLIOGRAPHY

Translation (IWSLT). Seattle, WA. url: http://workshop2016.iwslt.org/

downloads/IWSLT_2016_paper_4.pdf.

Junczys-Dowmunt, Marcin, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang,

Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri
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Machine Translation. Montréal, Canada: Association for Computational Linguistics,

pp. 181–190. url: https://www.aclweb.org/anthology/W12-3123.

227

http://mt-archive.info/JEC-2010-Koehn.pdf
https://www.aclweb.org/anthology/P14-2094
https://www.aclweb.org/anthology/P/P07/P07-2045
https://www.aclweb.org/anthology/W12-3123


BIBLIOGRAPHY

Koponen, Maarit (2016). “Is Machine Translation Post-editing Worth the Effort? A

Survey of Research into Post-editing and Effort”. In: The Journal of Specialised

Translation, pp. 131–148.

Kothur, Sachith Sri Ram, Rebecca Knowles, and Philipp Koehn (2018). “Document-

Level Adaptation for Neural Machine Translation”. In: Proceedings of the 2nd

Workshop on Neural Machine Translation and Generation. Melbourne, Australia:

Association for Computational Linguistics, pp. 64–73. url: https://www.aclweb.

org/anthology/W18-2708.

Kumar, Shankar and William Byrne (2004). “Minimum Bayes-Risk Decoding for Sta-

tistical Machine Translation”. In: Proceedings of the Human Language Technology

Conference of the North American Chapter of the Association for Computational

Linguistics: HLT-NAACL 2004. Boston, Massachusetts, USA: Association for Com-

putational Linguistics, pp. 169–176. url: https://www.aclweb.org/anthology/

N04-1022.

Lam, Tsz Kin, Julia Kreutzer, and Stefan Riezler (2018). “A Reinforcement Learning

Approach to Interactive-Predictive Neural Machine Translation”. In: url: http://

www.cl.uni-heidelberg.de/~riezler/publications/papers/EAMT2018.pdf.

Langlais, Philippe, George Foster, and Guy Lapalme (2000). “TransType: a Computer-

Aided Translation Typing System”. In: ANLP-NAACL 2000 Workshop: Embedded

Machine Translation Systems. url: https://www.aclweb.org/anthology/W00-

0507.

228

https://www.aclweb.org/anthology/W18-2708
https://www.aclweb.org/anthology/W18-2708
https://www.aclweb.org/anthology/N04-1022
https://www.aclweb.org/anthology/N04-1022
http://www.cl.uni-heidelberg.de/~riezler/publications/papers/EAMT2018.pdf
http://www.cl.uni-heidelberg.de/~riezler/publications/papers/EAMT2018.pdf
https://www.aclweb.org/anthology/W00-0507
https://www.aclweb.org/anthology/W00-0507


BIBLIOGRAPHY

Langlois, Lucie, Michel Simard, and Elliott Macklovitch (2016). “Machine Translation

of Canadian Court Decisions”. In: Proceedings of the Conference of the Association

for Machine Translation in the Americas (AMTA). url: https://amtaweb.

org/wp- content/uploads/2017/02/AMTA2016_User_Track_Proceedings_

v9updated_gov_papers.pdf.
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