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Abstract

This thesis broadens the space of rich yet practical models for structured prediction. We

introduce a general framework for modeling with four ingredients: (1) latent variables,

(2) structural constraints, (3) learned (neural) feature representations of the inputs, and

(4) training that takes the approximations made during inference into account. The thesis

builds up to this framework through an empirical study of three NLP tasks: semantic role

labeling, relation extraction, and dependency parsing—obtaining state-of-the-art results on

the former two. We apply the resulting graphical models with structured and neural fac-

tors, and approximation-aware learning to jointly model part-of-speech tags, a syntactic

dependency parse, and semantic roles in a low-resource setting where the syntax is unob-

served. We present an alternative view of these models as neural networks with a topology

inspired by inference on graphical models that encode our intuitions about the data.

Keywords: Machine learning, natural language processing, structured prediction, graph-

ical models, approximate inference, semantic role labeling, relation extraction, dependency

parsing.
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iii



Martins, Alexander Rush, and Valentin Spitkovsky. Thanks to David Smith, Zhifei Li, and

Veselin Stoyanov, who did work that was so complementary that we couldn’t resist putting

it all together.

The staff at the CLSP, the HLTCOE, and the CS Department have made everything

a breeze, from high performance computing to finding a classroom at the last minute—

special thanks to Max Thomas and Craig Harman because good code drives research.

My fellow students and postdocs made this thesis possible. My collaborations with Mo

Yu and Meg Mitchell deserve particular note. Mo taught me how to use every trick in the

book, and then invent three more. Meg put up with and encouraged my incessant over-

engineering that eventually led to Pacaya. To my lab mates, I can’t say thank you enough:

Nick Andrews, Tim Vieira, Frank Ferraro, Travis Wolfe, Jason Smith, Adam Teichart,

Dingquan Wang, Veselin Stoyanov, Sharon Li, Justin Snyder, Rebecca Knowles, Nathanial

Wes Filardo, Michael Paul, Nanyun Peng, Markus Dreyer, Carolina Parada, Ann Irvine,

Courtney Napoles, Darcey Riley, Ryan Cotterell, Tongfei Chen, Xuchen Yao, Pushpendre

Rastogi, Brian Kjersten, and Ehsan Variani.

I am indebted to my friends in Baltimore, who graciously kept me around even when

I was far too busy. Thanks to: Andrew for listening to my research ramblings over lunch;

Alan and Nick for much needed sports for the sake of rest; the Bettles, the Kuks, and

the Lofti for mealshare and more; everyone who babysat Esther; Merv and the New Song

Men’s Bible Study for teaching me about scholarship.

Thanks to my padres for telling me that even if I were a hobo they would be proud of

me as long as I loved Jesus. The unexpected parallels between the life of a graduate student

and a vagabond make me even more thankful for their support. Thanks to my anäbixel,
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Chapter 1

Introduction

A common tension in machine learning is the tradeoff between designing models which

are practical to use and those which capture our intuitions about the underlying data. This

tension is particularly salient in natural language processing (NLP). To be useful, an NLP

tool must (often) process text faster than it can be spoken or written. Linguistics pro-

vides explanations of generative processes which govern that data. Yet designing models

that mirror these linguistic processes would quickly lead to intractability for inference and

learning. This is not just a grievance for NLP researchers: for many machine learning prob-

lems there is real-world knowledge of the data that could inform model design but practical

considerations rein in our ambitions. A key goal of machine learning is to enable this use

of richer models.

This thesis broadens the space of rich yet practical probabilistic models for structured

prediction. We introduce a general framework for modeling with four ingredients: (1) la-

tent variables, (2) structural constraints, (3) learned (neural) feature representations of the

inputs, and (4) training that takes the approximations made during inference into account.

The thesis builds up to this framework through an empirical study of three NLP tasks:

semantic role labeling, relation extraction, and dependency parsing—obtaining state-of-

the-art results on the former two. We apply the resulting graphical models with structured

1



1.1. MOTIVATION AND PRIOR WORK

and neural factors, and approximation-aware learning to jointly model syntactic depen-

dency parsing and semantic role labeling in a low-resource setting where the syntax is

unobserved. We also present an alternative view of these models as neural networks with

a topology inspired by inference on graphical models that encode our intuitions about the

data.

In order to situate our contributions in the literature, we next discuss related approaches

and highlight prior work that acts as critical building blocks for this thesis (Section 1.1).

After stating our proposed solution (Section 1.2), we provide a succinct statement of the

contributions (Section 1.3) and organization (Section 1.4) of this dissertation.

1.1 Motivation and Prior Work

In this section, we discuss the reasons behind the design of the modeling framework pre-

sented in this thesis. By considering a simple example, that is representative of many ap-

plication areas in machine learning, we hope to elicit the need for latent variable modeling,

structured prediction, learning with inexact inference, and neural networks. Our focus here

is on the solved and open problems in these areas, leaving detailed discussions of related

work to later chapters.

1.1.1 Why do we want to build rich (joint) models?

One of the major limitations to machine learning is data collection. It is expensive to

obtain and just when we think we have enough, a new domain for our task—or a new

task altogether—comes up. Without annotated data, one might naturally gravitate to un-

supervised learning. For example, in NLP, syntactic treebanks are difficult to build, so re-

searchers (including this one) have looked to grammar induction (the unsupervised learning

of syntactic parsers) for a solution (Smith (2006) and Spitkovsky (2013) represent observ-

able progress). Yet fully unsupervised learning has two problems:

2



1.1. MOTIVATION AND PRIOR WORK

1. It’s not tuned for any downstream task. Thus, the resulting predictions may or may

not be useful.

2. Usually, if you have even a very small number of training examples, you can outper-

form the best fully unsupervised system easily. (Often even a few handwritten rules

can do better, for the case of grammar induction (Haghighi and Klein, 2006; Naseem

et al., 2010; Søgaard, 2012).)

So, the question remains: how can we design high-performing models that are less

reliant on hand annotated data? The solution proposed by this thesis has two related facets:

First, do not throw away the idea of learning latent structure (à la grammar induction);

instead build it into a larger joint model. Second, do not discard data if you have it; build a

joint model that can use whatever informative data you have. Let’s take an example.

Example: Suppose you want to do relation extraction on weblogs. You al-

ready have data for (a) relations on weblogs, (b) syntax on newswire, and (c)

named entities on broadcast news. Certainly it would be foolish to throw away

datasets (b) and (c) altogether. The usual NLP approach is to train a pipeline

of systems: (a) relation extractor, (b) parser, and (c) named entity recognizer,

with features of the latter two providing information to the relation extractor.

However, we don’t actually believe that a parser trained on newswire knows

exactly what the trees on weblogs look like. But without a joint model of rela-

tions, parses, and named entities there’s no opportunity for feedback between

the components of the pipeline. A joint model recognizes that there are latent

trees and named entities on the weblogs; and we should use the equivalent an-

notations on newswire and broadcast news to influence what we believe them

to be.

Should we use this fancy rich model when we have lots of supervision? The jury is still

out on that one; but there are plenty of examples that suggest the gains from joint modeling

may be minimal if you have lots of data (cf. Gesmundo et al. (2009), Hajič et al. (2009),
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and Lluı́s et al. (2013)). The key tradeoff is that incorporating increasingly global features

leads to better models of the data, but it also makes inference more challenging. However,

whether we should use a joint model when supervision is scarce is an open question, and

this thesis begins to address it.

1.1.2 Inference with Structural Constraints

As alluded to above, increasingly rich models often lead to more expensive inference. If

exact inference is too hard, can’t we just rely on approximate inference? That depends

on what sort of models we actually want to build, and just how fast inference needs to

be. Going back to our example, if we assume that we’ll be modeling syntax or semantics

as latent, we’ll need to encode some real-world knowledge about how they behave in the

form of declarative constraints. In the language of graphical models, these constraints

correspond to structured factors that express an opinion about many variables at once. The

basic variants of inference for graphical models don’t know how to account for these sorts

of factors. But there are variants that do.

Graphical models provide a concise way of describing a probability distribution over

a structured output space described by a set of variables. Recent advances in approximate

inference have enabled us to consider declarative constraints over the variables. For MAP

inference (finding the variable assignment with maximum score), the proposed methods use

loopy belief propagation (Duchi et al., 2006), integer linear programming (ILP) (Riedel and

Clarke, 2006; Martins et al., 2009), dual decomposition (Koo et al., 2010), or the alternating

directions methods of multipliers (Martins et al., 2011a). For marginal inference (summing

over variable assignments), loopy belief propagation has been employed (Smith and Eisner,

2008). Common to all but the ILP approaches is the embedding of dynamic programming

algorithms (e.g. bipartite matching, forward-backward, inside-outside) within a broader

coordinating framework. Even the ILP algorithms reflect the structure of the dynamic

programming algorithms.
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At this point, we must make a decision about what sort of inference we want to do:

• Maximization over the latent variables (MAP inference) sounds good if you believe

that your model will have high confidence and little uncertainty about the values of

those variables. But this directly contradicts the original purpose for which we set

out to use the joint model: we want it to capture the aspects of the data that we’re

uncertain about (because we didn’t have enough data to train a confident model in

the first place).

• Marginalization fits the bill for our setting: we are unsure about a particular assign-

ment to the variables, so each variable can sum out the uncertainty of the others. In

this way, we can quantify our uncertainty about each part of the model, and allow

confidence to propagate through different parts of the model. Choosing structured

belief propagation (BP) (Smith and Eisner, 2008) will ensure we can do so efficiently.

Having chosen marginal inference, we turn to learning.

1.1.3 Learning under approximations

This seems like a promising direction, but there’s one big problem: all of the traditional

learning algorithms assume that inference is exact. The richer we make our model, the

less easy exact inference will be. In practice, we often use approximate inference in place

of exact inference and find the traditional learning algorithms to be effective. However,

the gradients in this setting only approximate and we no longer have guarantees about the

resulting learned model. Not to worry: there are some (lesser used) learning algorithms

that solve exactly this problem.

• For approximate MAP inference there exists a generalization of Collins (2002)’s

structured perceptron to inexact search (e.g. greedy or beam-search algorithms) (Huang

et al., 2012) and its extension to hypergraphs/cube-pruning (Zhang et al., 2013).

• For marginal inference by belief propagation, there have been several approaches that

compute the true gradient of an approximate model either by perturbation (Domke,
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2010) or automatic-differentiation (Stoyanov et al., 2011; Domke, 2011).

At first glance, it appears as though we have all the ingredients we need: a rich model that

benefits from the data we have, efficient approximate marginal inference, and learning that

can handle inexact inference. Unfortunately, none of the existing approximation-aware

learning algorithms work with dual decomposition (Koo et al., 2010) or structured BP

(Smith and Eisner, 2008). (Recall that beam search, like dual decomposition, would lose

us the ability to marginalize.) So we’ll have to invent our own. In doing so, we will answer

the question of how one does learning with an approximate marginal inference algorithm

that relies on embedded dynamic programming algorithms.

1.1.4 What about Neural Networks?

If you’ve been following recent trends in machine learning, you might wonder why we’re

considering graphical models at all. During the current re-resurgence of neural networks,

they seem to work very well on a wide variety of applications. As it turns out, we’ll be able

to use neural networks in our framework as well. They will be just another type of factor

in our graphical models. If this hybrid approach to graphical models and neural networks

sounds familiar, that’s because it’s been around for quite a while.

The earliest examples emphasized hybrids of hidden Markov models (HMM) and neu-

ral networks (Bengio et al., 1990; Bengio et al., 1992; Haffner, 1993; Bengio and Frasconi,

1995; Bengio et al., 1995; Bourlard et al., 1995)—recent work has emphasized their com-

bination with energy-based models (Ning et al., 2005; Tompson et al., 2014) and with

probabilistic language models (Morin and Bengio, 2005). Notably absent from this line of

work are the declarative structural constraints mentioned above.

Neural networks have become very popular in NLP, but are often catered to a single

task. To consider a specific example: the use of neural networks for syntactic parsing has

grown increasingly prominent (Collobert, 2011; Socher et al., 2013a; Vinyals et al., 2014;

Dyer et al., 2015). These models provide a salient example of the use of learned features for
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structured prediction, particularly in those cases where the neural network feeds forward

into a standard parsing architecture (Chen and Manning, 2014; Durrett and Klein, 2015;

Pei et al., 2015; Weiss et al., 2015). However, their applicability to the broader space

of structured prediction problems—beyond parsing—is limited. Again returning to our

example, we are interested, by contrast, in modeling multiple linguistic strata jointly.

1.2 Proposed Solution

The far-reaching goal of this thesis is to better enable joint modeling of multi-faceted

datasets with disjointed annotation of corpora. Our canonical example comes from NLP

where we have many linguistic annotations (part-of-speech tags, syntactic parses, semantic

roles, relations, etc.) spread across a variety of different corpora, but rarely all on the same

sentences. A rich joint model of such seemingly disparate data sources would capture all

the linguistic strata at once, taking our uncertainty in account over those not observed at

training time. Thus we require the following:

1. Model representation that supports latent variables and declarative constraints

2. Efficient (assuredly approximate) inference

3. Learning that accounts for the approximations

4. Effective features (optionally learned) that capture the data

Our proposed solution to these problems finds its basis in several key ideas from prior

work. Most notably: (1) factor graphs (Frey et al., 1997; Kschischang et al., 2001) to

represent our model with latent variables and declarative constraints (Naradowsky et al.,

2012a), (3) structured belief propagation (BP) (Smith and Eisner, 2008) for approximate

inference, (4) empirical risk minimization (ERMA) (Stoyanov et al., 2011) and truncated

message passing (Domke, 2011) for learning, and (5) either handcrafted or learned (neural

network-based) features (Bengio et al., 1990). While each of these addresses one or more

of our desiderata above, none of them fully satisfy our requirements. Yet, our framework,

7



1.3. CONTRIBUTIONS AND THESIS STATEMENT

which builds on their combination, does exactly that.

In our framework, our model is defined by a factor graph. Factors express local or

global opinions over subsets of the variables. These opinions can be soft, taking the form

of a log-linear model for example, or can be hard, taking the form of a declarative con-

straint. The factor graph may contain cycles causing exact inference to be intractable in the

general case. Accordingly, we perform approximate marginal inference by structured be-

lief propagation, optionally embedding dynamic programming algorithms inside to handle

the declarative constraint factors or otherwise unwieldy factors. We learn by maximizing

an objective that is computed directly as a function of the marginals output by inference.

The gradient is computed by backpropagation such that the approximations of our entire

system may be taken into account.

The icing on the cake is that neural networks can be easily dropped into this framework

as another type of factor. Notice that inference changes very little with a neural network

as a factor: we simply “feed forward” the inputs through the network to get the scores of

the factor. The neural network acts as an alternative differentiable scoring function for the

factors, replacing the usual log-linear function. Learning is still done by backpropagation,

where we conveniently already know how to backprop through the neural factor.

1.3 Contributions and Thesis Statement

Experimental:

1. We empirically study the merits of latent-variable modeling in pipelined vs.

joint training. Prior work has introduced standalone methods for grammar induc-

tion and methods of jointly inferring a latent grammar with a downstream task. We

fill a gap in the literature by comparing these two approaches empirically. We further

present a new application of unsupervised grammar induction: low-resource seman-

tic role labeling. distantly-supervised, and joint training settings.
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2. We provide additional evidence that hand-crafted and learned features are com-

plementary. For the task of relation extraction, we obtain state-of-the-art results

using this combination—further suggesting that both tactics (learning vs. designing

features) have merits.

Modeling:

3. We introduce a new variety of hybrid graphical models and neural networks.

The novel combination of ingredients we propose includes latent variables, structured

factors, and neural factors. When inference is exact, our class of models specifies a

valid probability distribution over the output space. When inference is approximate,

the class of models can be viewed as a form of deep neural network inspired by the

inference algorithms (see Learning below).

4. We present new models for grammar induction, semantic role labeling, relation

extraction, and syntactic dependency parsing. The models we develop include

various combinations of the ingredients mentioned above.

Inference:

5. We unify three forms of inference: loopy belief propagation for graphical mod-

els, dynamic programming in hypergraphs, and feed-forward computation in neural

networks. Taken together, we can view all three as the feed-forward computation of

a very deep neural network whose topology is given by a particular choice of ap-

proximate probabilistic inference algorithm. Alternatively, we can understand this

as a very simple extension of traditional approximate inference in graphical mod-

els with potential functions specified as declarative constraints, neural networks, and

traditional exponential family functions.

Learning:
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6. We propose approximation-aware training for structured belief propagation

with neural factors. Treating our favorite algorithms as computational circuits (aka.

deep networks) and running automatic differentiation (aka. backpropagation) to do

end-to-end training is certainly an idea that’s been around for a while (e.g. Bengio

et al. (1995)). We apply this idea to models with structured and neural factors and

demonstrate its effectiveness over a strong baseline. This extends prior work which

focused on message passing algorithms for approximate inference with standard fac-

tors (Stoyanov et al., 2011; Domke, 2011).

7. We introduce new training objectives for graphical models motivated by neural

networks. Viewing graphical models as a form of deep neural network naturally

leads us to explore objective functions that (albeit common to neural networks) are

novel to training of graphical models.

Thesis Statement We claim that the accuracy of graphical models can be improved by

incorporating methods that are typically reserved for approaches considered to be distinct.

First, we aim to validate that joint modeling with latent variables is effective at improving

accuracy over standalone grammar induction. Second, we claim that incorporating neural

networks alongside handcrafted features provides gains for graphical models. Third, taking

the approximations of an entire system into account provides additional gains and can be

done even with factors of many variables when they exhibit some special structure. Fi-

nally, we argue that the sum of these parts will provide new effective models for structured

prediction.

1.4 Organization of This Dissertation

This primary contributions of this thesis are four content chapters: Chapters 3, 4, and

5 each explore a single extension to traditional graphical models (each with a different
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natural language application) and Chapter 6 combines these three extensions to show their

complementarity.

• Chapter 2: Background. The first section places two distinct modeling approaches

side-by-side: graphical models and neural networks. The similarities between the

two are highlighted and a common notation is established. We briefly introduce the

types of natural language structures that will form the basis of our application areas

(deferring further application details to later chapters). Using the language of hyper-

graphs, we review dynamic programming algorithms catered to these structures. We

emphasize the material that is essential for understanding the subsequent chapters

and for differentiating our contributions.

• Chapter 3: Latent Variables and Structured Factors (Semantic Role Labeling). This

chapter motivates our approach by providing an empirical contrast of three approaches

to grammar induction with the aim of improving semantic role labeling. Experiments

are presented on 6 languages.

• Chapter 4: Neural and Log-linear Factors (Relation Extraction). We present new

approaches for relation extraction that combine the benefits of traditional feature-

based log-linear models and neural networks (i.e. compositional embedding models).

This combination is done at two levels: (1) by combining exponential family and

neural factors and (2) through the use of the Feature-rich Compositional Embedding

Model (FCM), which uses handcrafted features alongside word embeddings. State-

of-the-art results are achieved on two relation extraction benchmarks.

• Chapter 5: Approximation-aware Learning (Dependency Parsing). We introduce

a new learning approach for graphical models with structured factors. This method

views Structured BP as defining a deep neural network and trains by backpropaga-

tion. Our approach compares favorably to conditional log-likelihood training on the

task of syntactic dependency parsing—results on 19 languages are given.
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• Chapter 6: Graphical Models with Structured and Neural Factors. This chapter

combines all the ideas from the previous chapters to introduce graphical models with

latent variables, structured factors, neural factors, and approximation-aware training.

We introduce a new model for semantic role labeling and apply it in the same low-

resource setting as Chapter 3.

• Chapter 7: Conclusions. This section summarizes our contributions and proposes

directions for future work.

• Appendix A: Engineering the System. This appendix discusses Pacaya, an open

source software framework for hybrid graphical models and neural networks of the

sort introduced in Chapter 6.

1.5 Preface and Other Publications

This dissertation focuses on addressing new methods for broadening the types of graphical

models for which learning and inference are practical and effective. In order to ensure that

this dissertation maintains this cohesive focus, we omit some of the other research areas

explored throughout the doctoral studies. Closest in relation is our work on nonconvex

global optimization for latent variable models (Gormley and Eisner, 2013). This work

showed that the Viterbi EM problem could be cast as a quadratic mathematical program

with integer and nonlinear constraints, a relaxation of which could be solved and repeatedly

tightened by the Reformulation Linearization Technique (RLT).

Other work focused on the preparation of datasets. For relation extraction, we designed

a semi-automatic means of annotation: first a noisy system generates tens of thousands of

pairs of entities in their sentential context that might exhibit a relation. Non-experts then

make the simple binary decision of whether or not each annotation is correct (Gormley

et al., 2010). As well, we produced one of the largest publicly available pipeline-annotated

datasets in the world (Napoles et al., 2012; Ferraro et al., 2014). We also created a pipeline
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for automatic annotation of Chinese (Peng et al., 2015).

We also explored other NLP tasks. We introduced the task of cross-language corefer-

ence resolution (Green et al., 2012). As well we developed hierarchical Bayesian struc-

tured priors for topic modeling (Gormley et al., 2012), applied them to selectional prefer-

ence (Gormley et al., 2011), and developed a new framework for topic model visualization

(Snyder et al., 2013).

The Feature-rich Compositional Embedding Model (FCM) discussed in Chapter 4 was

introduced jointly with with Mo Yu in our prior work (Gormley et al., 2015b)—as such,

we do not regard the FCM as an independent contribution of this thesis. Also excluded

is our additional related work on the FCM (Yu et al., 2014; Yu et al., 2015). Rather,

the contribution of Chapter 4 is the demonstration of the complementarity of handcrafted

features with a state-of-the-art neural network on two relation extraction tasks. For further

study of the FCM and other compositional embedding models, we direct the reader to Mo

Yu’s thesis (Yu, 2015).

Finally, note that the goal of this thesis was to provide a thorough examination of the

topics at hand. The reader may also be interested in our tutorial covering much of the

necessary background material (Gormley and Eisner, 2014; Gormley and Eisner, 2015).

Further, we release a software library with support for graphical models with structured

factors, neural factors, and approximation-aware training (Gormley, 2015).
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Chapter 2

Background

The goal of this section is to provide the necessary background for understanding the details

of the models, inference, and learning algorithms used throughout the rest of this thesis.

Since later chapters refer back to these background sections, the well-prepared reader may

skim this chapter or skip it entirely in favor of the novel work presented in subsequent

chapters.

2.1 Preliminaries

2.1.1 A Simple Recipe for Machine Learning

Here we consider a recipe for machine learning. Variants of this generic approach will

be used throughout this thesis for semantic role labeling (Chapter 3), relation extraction

(Chapter 4), dependency parsing (Chapter 5), and joint modeling (Chapter 6).

Suppose we are given training data {x(d),y(d)}Dd=1, where each x(d) is an observed

vector and each y(d) is a predicted vector. We can encode a wide variety of data in this

form such as pairs (x,y) consisting of an observed sentence and a predicted parse—or an

observed image and a predicted caption. Further, suppose we are given a smaller number

Ddev < D of held out development instances {x(d),y(d)}Ddev
d=1 .
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x The input (observation)
y The output (prediction)

{x(d),y(d)}Dd=1 Training instances
θ Model parameters

f(y,x) Feature vector
Yi, Yj, Yk Variables in a factor graph
α, β, γ Factors in a factor graph

ψα, ψβ, ψγ Potential functions for the corresponding factors
mi→α(yi),mα→i(yi) Message from variable to factor / factor to variable

bi(yi) Variable belief
bα(yα) Factor belief
hθ(x) Decision function
ŷ Prediction of a decision function

ℓ(ŷ,y) Loss function

Table 2.1: Brief Summary of Notation

A simple recipe for solving many supervised machine learning problems proceeds as

follows:

1. Choose a decision function: ŷ = hθ(x
(d)).

2. Choose a loss function: ℓ(ŷ,y(d)) ∈ R.

3. Initialize the model parameters at time t = 0 to a vector of zeros: θ(0) = 0.

4. While the loss on held out development data has not converged, randomly choose a

training instance d and take a small step in the direction of the gradient of the loss

on d: θ(t+1) = θ(t) − ηt∇ℓ(hθ(x(d)),y(d)), where ηt is a learning rate parameter

indicating how far to step.

If the model parameters θ come from some high dimensional continuous space RK , then

the fourth step above solves a continuous optimization problem. The goal of that step is to

(locally) minimize the empirical risk:

θ∗ = argmin
θ
J(θ) (2.1)

where J(θ) =
1

D

D∑

d=1

ℓ(hθ(x
(d)),y(d)) (2.2)
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Depending on the choice of decision function h and loss function ℓ, the optimization prob-

lem may or may not be convex and piecewise constant. Regardless, we can locally opti-

mize it using stochastic gradient descent, the simple first-order optimization method given

in steps 3-4, which takes many small steps in the direction of the gradient for a single

randomly chosen training example.

Road Map for this Section Throughout this section, we will discuss various forms for

the decision function h (Section 2.2 and Section 2.3), the loss function ℓ, details about

stochastic optimization and regularization (Section 2.4), other objective functions (Sec-

tion 2.3.4), and how to compute gradients efficiently (Section 2.2.2). We will give special

attention to graphical models (Section 2.3) in which θ are the parameters of a probabilistic

model.

2.2 Neural Networks and Backpropagation

This section describes neural networks, considering both their topology (Section 2.2.1) and

how to compute derivatives of the functions they define (Section 2.2.2 and Section 2.2.3).

While other more thorough treatments of neural networks can be found in the literature, we

go into some detail here in order to facilitate connections with backpropagation through in-

ference algorithms for graphical models—considered later in this chapter (Section 2.3.4.4).

The material presented here acts as a supplement to later uses of backpropagation such

as in Chapter 4 for training of a hybrid graphical model / neural network, and in Chapter 5

and Chapter 6 for approximation-aware training.

2.2.1 Topologies

A feed-forward neural network (Rumelhart et al., 1986) defines a decision function y =

hθ(x) where x is termed the input layer and y the output layer. A feed-forward neural
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(F) Loss
J = 1

2
(y − y(d))2

(E) Output (sigmoid)
y = 1

1+exp(b)

(D) Output (linear)
b =

∑D
j=0 βjzj

(C) Hidden (sigmoid)
zj =

1
1+exp(aj)

, ∀j

(B) Hidden (linear)
aj =

∑M
i=0 αjixi, ∀j

(A) Input
Given xi, ∀i

Figure 2.1: Feed-forward topology of a 2-layer neural network.

network has a statically defined topology. Figure 2.1 shows a simple 2-layer neural network

consisting of an input layer x, a hidden layer z, and an output layer y. In this example, the

output layer is of length 1 (i.e. just a single scalar y). The model parameters of the neural

network are a matrix α and a vector β.

The feed-forward computation proceeds as follows: we are given x as input (Fig. 2.1

(A)). Next, we compute an intermediate vector a, each entry of which is a linear combi-

nations of the input (Fig. 2.1 (B)). We then apply the sigmoid function σ(a) = 1
1+exp(a)

element-wise to obtain z (Fig. 2.1 (C)). The output layer is computed in a similar fashion,

first taking a linear combination of the hidden layer to compute b (Fig. 2.1 (D)) then apply-

ing the sigmoid function to obtain the output y (Fig. 2.1 (E)). Finally we compute the loss

J (Fig. 2.1 (F)) as the squared distance to the true value y(d) from the training data.

We refer to this topology as an arithmetic circuit. It defines both a function mapping

x to J , but also a manner of carrying out that computation in terms of the intermediate

17



2.2. NEURAL NETWORKS AND BACKPROPAGATION

quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this

way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural

network diagram in two ways. A standard diagram for a neural network does not show this

choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-

ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation

The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing

the gradient of a neural network. Here we generalize the concept of a neural network to

include any arithmetic circuit. Applying the backpropagation algorithm on these circuits

amounts to repeated application of the chain rule. This general algorithm goes under many

other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,

1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward

pass, which computes the output bottom-up, and a backward pass, which computes the

derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain

rule allows us to differentiate a function f defined as the composition of two functions g

and h such that f = (g ◦h). If the inputs and outputs of g and h are vector-valued variables

then f is as well: h : RK → RJ and g : RJ → RI ⇒ f : RK → RI . Given an input

vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an

intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))

can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule

must sum over all the intermediate quantities.

dyi
dxk

=
J∑

j=1

dyi
duj

duj
dxk

, ∀i, k (2.3)
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If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form

of the chain rule:

dy

dx
=
dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic

circuit. To compute the derivative of some loss function (below we use regression) with

respect to the model parameters θ, we can repeatedly apply the chain rule (i.e. backprop-

agation). Note that the output q below is the probability that the output label takes on the

value 1. y∗ is the true output label. The forward pass computes the following:

J = y∗ log q + (1− y∗) log(1− q) (2.5)

where q = Pθ(Yi = 1|x) = 1

1 + exp(−∑D
j=0 θjxj)

(2.6)

The backward pass computes dJ
dθj

∀j.

Forward Backward

J = y∗ log q + (1− y∗) log(1− q)
dJ

dq
=
y∗

q
+

(1− y∗)

q − 1

q =
1

1 + exp(−a)
dJ

da
=
dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)2

a =
D∑

j=0

θjxj
dJ

dθj
=
dJ

da

da

dθj
,
da

dθj
= xj

dJ

dxj
=
dJ

da

da

dxj
,
da

dxj
= θj

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-

lar to the logistic regression example above. We have added a hidden layer z corresponding

to the latent features of the neural network. Note that our model parameters θ are defined

as the concatenation of the vector β (parameters for the output layer) with the vectorized
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matrix α (parameters for the hidden layer).

Forward Backward

J = y∗ log q + (1− y∗) log(1− q)
dJ

dq
=
y∗

q
+

(1− y∗)

q − 1

q =
1

1 + exp(−b)
dJ

db
=
dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)2

b =
D∑

j=0

βjzj
dJ

dβj
=
dJ

db

db

dβj
,
db

dβj
= zj

dJ

dzj
=
dJ

db

db

dzj
,
db

dzj
= βj

zj =
1

1 + exp(−aj)
dJ

daj
=
dJ

dzj

dzj
daj

,
dzj
daj

=
exp(aj)

(exp(aj) + 1)2

aj =
M∑

i=0

αjixi
dJ

dαji
=
dJ

daj

daj
dαji

,
daj
dαji

= xi

dJ

dxi
=
dJ

daj

daj
dxi

,
daj
dxi

=
D∑

j=0

αji

Notice that this application of backpropagation computes both the derivatives with respect

to each model parameter dJ
dαji

and dJ
dβj

, but also the partial derivatives with respect to each

intermediate quantity dJ
daj
, dJ
dzj
, dJ
db
, dJ
dy

and the input dJ
dxi

.

2.2.3 Numerical Differentiation

Numerical differentiation provides a convenient method for testing gradients computed by

backpropagation. The centered finite difference approximation is:

∂

∂θi
J(θ) ≈ (J(θ + ϵ · di)− J(θ − ϵ · di))

2ϵ
(2.7)

where di is a 1-hot vector consisting of all zeros except for the ith entry of di, which has

value 1. Unfortunately, in practice, it suffers from issues of floating point precision. There-

fore, it is typically only appropriate to use this on small examples with an appropriately
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Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5 

ψ1 ψ3 ψ5 ψ7 ψ9 

(a)

Y1 

ψ1 

ψ2 

Y2 

ψ3 

ψ4 

Y3 

ψ5 

ψ6 

Y4 

ψ7 

ψ8 

Y5 

ψ9 

Y6 

ψ10 

Y7 

ψ12 

ψ11 
ψ11 

(b)

Figure 2.2: Example factor graphs. The top factor graph (a) is a chain and acyclic. The

bottom factor graph (b) contains cycles (i.e. it’s “loopy”).

chosen ε.

2.3 Graphical Models

This section describes some of the key aspects of graphical models that will be used

throughout this thesis. This section contains many details about model representation,

approximate inference, and training that form the basis for the SRL models we consider

in Chapter 3. Further, these methods are considered the baseline against which we will

compare our approximation-aware training in Chapter 5 and Chapter 6. The level of detail

presented here is intended to address the interests of a practitioner who is hoping to explore

these methods in their own research.

21



2.3. GRAPHICAL MODELS

2.3.1 Factor Graphs

A graphical model defines a probability distribution pθ over a set of V predicted variables

{Y1, Y2, . . . , YV } conditioned on a set of observed variables {X1, X2, . . . , }. We will con-

sider distributions of the form:

p(y | x) = 1

Z(x)

∏

α∈F
ψα(yα,x) (2.8)

Each α ∈ F defines the indices of a subset of the variables α ⊂ {1, . . . , V }. For each α,

there is a corresponding potential function ψα, which gives a non-negative score to the

variable assignments yα = {yα1 , yα2 , . . . yα|α|}. The partition function Z(x) is defined

such that the probability distribution p(· | x) sums to one:

Z(x) =
∑

y

∏

α

ψα(yα,x) (2.9)

For convenience, we will sometimes drop the conditioning on x when it is clear from

context that the observations are available to all ψα, giving distributions of the form:

p(y) =
1

Z

∏

α

ψα(yα) (2.10)

where it is implied that the observations x are available to each of the potential functions

ψα.

A factor graph (Frey et al., 1997; Kschischang et al., 2001) provides a visual represen-

tation for the structure of a probability distribution of the form in equation (2.8). Examples

are given in Figure 2.2. Formally, a factor graph is a bipartite graph G = (V ∪ F , E)

comprised of a set of variable nodes V , factor nodes F , and edges E . A variable Yi ∈ V is

said to have neighbors N (Yi) = {α ∈ F : i ∈ α}, each of which is a factor α. Here we

have overloaded α to denote both the factor node, and also the index set of its neighboring

variables N (α) ⊂ V . The graph defines a particular factorization of the distribution pθ
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over variables Y . The name factor graph highlights an important consideration throughout

this thesis: how a probability distribution factorizes into potential functions will determine

greatly the extent to which we can apply our machine learning toolbox to learn its parame-

ters and make predictions with it.

The model form in equation (2.10) described above is sufficiently general to capture

Markov random fields (MRF) (undirected graphical models), and Bayesian networks (di-

rected graphical models)—though for the latter the potential functions ψα must be con-

strained to sum-to-one. Trained discriminatively, without such a constraint, the distribution

in equation (2.8) corresponds to a conditional random field (CRF) (Lafferty et al., 2001).

2.3.2 Minimum Bayes Risk Decoding

From our earlier example, we noted that it is sometimes desirable to define a decision func-

tion hθ(x), which takes an observation x and predicts a single ŷ. However, the graphical

models we describe in this section instead define a probability distribution pθ(y | x) over

the space of possible values y. So how should we best select a single one?

Given a probability distribution pθ and a loss function ℓ(ŷ,y), a minimum Bayes risk

(MBR) decoder returns the variable assignment y with minimum expected loss under the

model’s distribution (Bickel and Doksum, 1977; Goodman, 1996).

hθ(x) = argmin
ŷ

Ey∼pθ(·|x)[ℓ(ŷ,y)] (2.11)

= argmin
ŷ

∑

y

pθ(y | x)ℓ(ŷ,y) (2.12)

Consider an example MBR decoder. Let ℓ be the 0-1 loss function: ℓ(ŷ,y) = 1− I(ŷ,y),

where I is the indicator function. That is, ℓ returns loss of 0 if ŷ = y and loss of 1 otherwise.
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Regardless of the form of the probability distribution, equation (2.12) reduces to:

hθ(x) = argmin
ŷ

∑

y

pθ(y | x)(1− I(ŷ,y)) (2.13)

= argmax
ŷ

pθ(ŷ | x) (2.14)

That is, the MBR decoder hθ(x) will return the most probable variable assignment accord-

ing to the distribution. Equation (2.14) corresponds exactly to the MAP inference problem

of equation (2.18).

For other choices of the loss function ℓ, we obtain different decoders. Let our loss

function be Hamming loss, ℓ(ŷ,y) =
∑V

i=1(1 − I(ŷi, yi)). For each variable the MBR

decoder returns the value with highest marginal probability:

ŷi = hθ(x)i = argmax
ŷi

pθ(ŷi | x) (2.15)

where pθ(ŷi | x) is the variable marginal given in equation (2.16).

2.3.3 Approximate Inference

Given a probability distribution defined by a graphical model, there are three common

inference tasks:

Marginal Inference The first task of marginal inference computes the marginals of the

variables:

pθ(yi | x) =
∑

y′:y′i=yi

pθ(y
′ | x) (2.16)
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and the marginals of the factors

pθ(yα | x) =
∑

y′:y′
α=yα

pθ(y
′ | x) (2.17)

Partition Function The second task is that of computing the partition function Z(x) given

by equation (2.9). Though the computation is defined as the sum over all possible

assignments to the variables Y , it can also be computed as a function of the variable

(2.16) and factor marginals (2.17) as we will see in Section 2.3.3.3.

MAP Inference The third task computes the variable assignment y with highest probabil-

ity. This is also called the maximum a posteriori (MAP) assignment.

ŷ = argmax
ŷ

pθ(ŷ | x) (2.18)

2.3.3.1 Belief Propagation

The belief propagation (BP) (Pearl, 1988) algorithm can be used to compute variable

marginals pθ(yi | x) and factor marginals pθ(yα | x) when the factor graph correspond-

ing to pθ is acyclic. BP is a message passing algorithm and defines the following update

equations for messages from variables to factors (i → α) and from factors to variables

(α → i):

mi→α(yi) =
1

κi→α

∏

β∈N (i)\α
mβ→i(yi) (2.19)

mα→i(yi) =
1

κα→i

∑

yα∼yi
ψα(yα)

∏

j∈N (α)\i
mj→α(yi) (2.20)

where N (i) and N (α) denote the neighbors of yi and α respectively, and where yα ∼ yi

is standard notation to indicate that yα ranges over all assignments to the variables partic-

ipating in the factor α for which the ith variable has value yi. Above, κi→α and κα→i are
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normalization constants ensuring that the vectors mi→α and mα→i sum to one. BP also

defines update equations for beliefs at the variables and factors:

bi(yi) =
1

κi

∏

α∈N (i)

m
(tmax)
α→i (yi) (2.21)

bα(yα) =
1

κα
ψα(yα)

∏

i∈N (α)

m
(tmax)
i→α (yi) (2.22)

where κi and κα ensure the belief vectors bi and bα are properly normalized.

There are several aspects of the form of these update equations to notice: (1) The mes-

sages are cavity products. That is, they compute the product of all but one of the incoming

messages to a variable or factor node. This is in contrast to the beliefs, which include

a product of all incoming messages. (2) The message vectors mi→α and mα→i always

define a distribution over a variable yi regardless of whether they are sent to or from the

variable yi. (3) The update equations must be executed in some order, a topic we take up

below.

There are two basic strategies for executing BP:

1. An asynchronous (serial) update order picks the next edge e ∈ E , where e may be

a variable-to-factor or factor-to-variable edge. It then executes the message update

equations (2.19) and (2.20) for that edge so that the corresponding message vector is

updated based on the current values of all the other messages.

2. By contrast, a synchronous (parallel) update strategy runs all the update equations at

once ((2.19) and (2.20)) caching the results in temporary storage. Once the message

vectors for all edges e ∈ E have been stored, it sets the current values of the messages

to be the ones just computed. That is, all the messages at time t are computed from

those at time t− 1.

An update of every message constitutes an iteration of BP. In practice, the asynchronous

approach tends to converge faster than the synchronous approach. Further, for an asyn-
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chronous order, there are a variety of methods for choosing which message to send next

(e.g. (Elidan et al., 2006)) that can greatly speed up convergence.

The messages are said to have converged when they stop changing. When the factor

graph is acyclic, the algorithm is guaranteed to converge after a finite number of iterations

(assuming every message is sent at each iteration).

The BP algorithm described above is properly called the sum-product BP algorithm

and performs marginal inference. Next we consider a variant for MAP inference.

Max-product BP The max-product BP algorithm computes the MAP assignment ((2.18))

for acyclic factor graphs. It requires only a slight change to the BP update equations given

above. Specifically we replace equation (2.20) with the following:

mα→i(yi) =
1

κα→i

max
yα∼yi

ψα(yα)
∏

j∈N (α)\i
mj→α(yi) (2.23)

Notice that the new equation ((2.23)) is identical to sum-product version ((2.20)) except

that the summation
∑

yα∼yi was replaced with a maximization maxyα∼yi . Upon conver-

gence, the beliefs computed by this algorithm are max-marginals. That is, bi(yi) is the

(unnormalized) probability of the MAP assignment under the constraint Yi = yi. From the

max-marginals the MAP assignment is given by:

y∗i = argmax
yi

bi(yi), ∀i (2.24)

2.3.3.2 Loopy Belief Propagation

Loopy belief propagation (BP) (Murphy et al., 1999) is an approximate inference algorithm

for factors with cycles (i.e. “loopy” factor graphs as shown in Figure 2.2). The form of the

algorithm is identical to that of Pearl (1988)’s belief propagation algorithm described in

Section 2.3.3.1 except that we ignore the cycles in the factor graph. Notice that BP is

fundamentally a local message passing algorithm: each message and belief is computed
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only as a product of (optionally) a potential function and messages that are local (i.e. being

sent to) to a single variable or factor. The update equations know nothing about the cyclicity

(or lack thereof) of the factor graph.

Accordingly, loopy BP runs the message update equations ((2.19) and (2.20)) using one

of the update orders described in Section 2.3.3.1. The algorithm may or may not converge,

accordingly it is typically run to convergence or for a maximum number of iterations, tmax.

Upon termination of the algorithm, the beliefs are computed with the same belief update

equations ((2.21) and (2.22)). Upon termination, the beliefs are empirically a good estimate

of the true marginals—and are often used in place of true marginals in high-treewidth factor

graphs for which exact inference is intractable. Hereafter, since it recovers the algorithm

of Section 2.3.3.1 as a special case, we will use “BP” to refer to this more general loopy

sum-product BP algorithm.

2.3.3.3 Bethe Free Energy

Loopy BP is also an algorithm for locally optimizing a constrained optimization problem

(Yedidia et al., 2000):

min FBethe(b) (2.25)

s.t. bi(yi) =
∑

yα∼yi
bα(yα) (2.26)

where the objective function is the Bethe free energy and is defined as a function of the

beliefs:

FBethe(b) =
∑

α

∑

yα

bα(yα) log

[
bα(yα)

ψα(yα)

]

−
∑

i

(ni − 1)
∑

yi

bi(yi) log bi(yi)
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where ni is the number of neighbors of variable Yi in the factor graph. For cyclic graphs,

if loopy BP converges, the beliefs correspond to stationary points of FBethe(b) (Yedidia

et al., 2000). For acyclic graphs, when BP converges, the Bethe free energy recovers the

negative log partition function: FBethe(b) = − logZ. This provides an effective method of

computing the partition function exactly for acyclic graphs. However, in the cyclic case,

the Bethe free energy also provides an (empirically) good approximation to − logZ.

2.3.3.4 Structured Belief Propagation

This section describes the efficient version of belief propagation described by Smith and

Eisner (2008).

The term constraint factor describes factors α for which some value of the potential

function ψα(yα) is 0—such a factor constrains the variables to avoid that configuration of

yα without regard to the assignment of the other variables. Notice that constraint factors

are special in this regard: any potential function that returns strictly positive values could

always be “outvoted” by another potential function that strongly disagrees by multiplying

in a very large or very small value.

Some factor graphs include structured factors. These are factors whose potential func-

tion ψα exhibits some interesting structure. In this section, we will consider two such fac-

tors:

1. The Exactly1 factor (Smith and Eisner, 2008) (also termed the XOR factor in Martins

et al. (2010a)) constrains exactly one of its binary variables to have value 1, and all

the rest to have value 0.

2. The PTree factor (Smith and Eisner, 2008) is defined over a set of O(n2) binary

variables that form a dependency tree over an n word sentence.

This section is about efficiently sending messages from structured factors to variables. That

is, we will consider cases where a factor α has a very large number of neighbors |N (α)|. In
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these cases, the naive computation of mα→i(yi) according to equation (2.20) would be pro-

hibitively expensive (i.e. exponential in the number of neighboring variables). Smith and

Eisner (2008) show how to make these computations efficient by the use of dynamic pro-

gramming. This variant of efficient loopy BP with structured factors is called structured

BP.

Smith and Eisner (2008) give two key observations that assist in these efficient compu-

tations: First, a factor has a belief about each of its variables:

bα(yi) =
∑

yα∼yi
bα(yα) (2.27)

This is simply another variable belief computed from the factor marginal (not to be con-

fused with bi(yi) in equation (2.21) which has a different subscript). Second, an outgoing

message from a factor is the factor’s belief with the incoming message divided out:

mα→i(yi) =
bα(yi)

mi→α(yi)
(2.28)

This follows directly from the definition of the factor belief and the messages. Notice then

that we need only compute the factor’s beliefs about its variables bα(yi) and then we can

efficiently compute the outgoing messages.

Exactly1 Factor The potential function for the Exactly1 factor is defined as:

ψExactly1(yα) =

⎧
⎪⎪⎨
⎪⎪⎩

1, if ∃ exactly one j s.t. yj = ON and yk = OFF, ∀k ̸= j

0, otherwise
(2.29)

where each binary variable Yi has domain {ON, OFF}. We can compute the Exactly1 fac-

tor’s beliefs about each of its variables efficiently. Each of the parenthesized terms below
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needs to be computed only once for all the variables in N (α).

bα(Yi = ON) =

⎛
⎝ ∏

j∈N (α)

mj→α(OFF)

⎞
⎠ mi→α(ON)

mi→α(OFF)
(2.30)

bα(Yi = OFF) =

⎛
⎝ ∑

j∈N (α)

bα(Yj = ON)

⎞
⎠− bα(Yi = ON) (2.31)

PTREE Factor The potential function for the PTREE factor is defined as:

ψα(yα) =

⎧
⎪⎪⎨
⎪⎪⎩

1, if yα define a valid projective dependency tree

0, otherwise
(2.32)

In order to compute the factor’s variable belief efficiently, the first step is to utilize the fact

that ψ(yα) ∈ {0, 1}.

⇒ bα(yi) =
∑

yα∼yi,
ψ(yα)=1

∏

j∈N (α)

mj→α(yα[j]) (2.33)

(2.34)

where yα[j] is the value of variable Yj according to yα. Next given that Yi ∈ {ON, OFF}, ∀Yi ∈

N (α), we have:

⇒ bα(Yi = ON) =

⎛
⎝ ∏

j∈N (α)

mj→α(OFF)

⎞
⎠ ∑

yα∼yi,
ψ(yα)=1

∏

j∈N (α):
yα[j]=ON

mj→α(ON)

mj→α(OFF)
(2.35)

and ⇒ bα(Yi = OFF) =

⎛
⎝∑

yα

b(yα)

⎞
⎠− bα(Yi = ON) (2.36)

The form of (2.35) exposes how an efficient dynamic programming algorithm can carry

out this computation. The initial parenthetical is simply a constant that can be multiplied

in at the end. The key is that the equation contains a sum over assignments y, which all
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correspond to projective dependency trees
∑

yα∼yi,
ψ(yα)=1

. The summands are each a product of

scores, one for each edge that is included in the tree,
∏

j∈N (α):
yα[j]=ON

. This sum over exponen-

tially many trees has a known polynomial time solution however.

Accordingly, Smith and Eisner (2008) first run the inside-outside algorithm where the

edge weights are given by the ratios of the messages to PTREE: m
(t)
i→α(ON)

m
(t)
i→α(OFF)

. Then they

multiply each resulting edge marginal given by inside-outside by the product of all the OFF

messages π =
∏

im
(t)
i→α(OFF) to get the marginal factor belief bα(Yi = ON). The sum

of the weights of all the trees computed by the inside algorithm can be multiplied by π to

obtain the partition function
∑

yα
b(yα) which is used to compute bα(Yi = OFF) by (2.36).

Finally they divide the belief by the incoming message m(t)
i→α(ON) to get the corresponding

outgoing message m(t+1)
α→i (ON).

2.3.4 Training Objectives

In this section, we describe several training objectives: conditional log-likelihood (Lafferty

et al., 2001), empirical risk, and empirical risk minimization under approximations (Stoy-

anov et al., 2011). Except where it is relevant to introduce appropriate terminology, we

defer any discussion of regularization until Section 2.4.1.

2.3.4.1 Conditional Log-likelihood

When we have labeled examples Dl = {(x(d),y(d))}Dd=1, we can discriminatively train

to maximize the likelihood of the latent variables, y, conditioned on the observations, x.

This discriminative training approach is also called conditional log-likelihood (CLL) max-

imization and corresponds to the CRF training of Lafferty et al. (2001). The conditional

log-likelihood is given by:

L(θ) =
D∑

d=1

log pθ(y
(d) | x(d)) (2.37)
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where the probability is given by equation (2.8) to have the form p(y | x) = 1
Z(x)

∏
α∈F ψα(yα,x).

In this section, we consider a special case of models described in Section 2.3.1, where all

of the potential functions are defined so they come from the exponential family:

ψα(yα) = exp(θ · fα(yα,x)), ∀α (2.38)

where fα is a vector-valued feature function, usually of high dimension but sparse. For

factor graphs with this restriction, the CLL is:

L(θ) =
D∑

d=1

(
θ · f(y,x)− log

∑

y

exp(θ · f(y,x))
)

(2.39)

where f(y,x) =
∑

α fα(yα,x)). The derivative of the log-likelihood takes on the familiar

form from CRF training,

∂L(θ)
∂θ

=
D∑

d=1

(
fj(y

(d),x(d))− Ey∼pθ(·|x(d))[fj(y,x
(d))]

)
(2.40)

=
D∑

d=1

∑

α

(
fα,j(y

(d),x(d))−
∑

yα

pθ(yα | x(d))fα,j(yα,x
(d))

)
(2.41)

The first form of the derivative (2.40) shows its form to be the difference of the observed

feature counts minus the expected feature counts. The second form (2.41) shows that it can

be computed easily given the factor marginals from equation (2.17).

In practice, the exact marginals needed to compute this derivative can be replaced with

an approximation, such as the beliefs from loopy BP (Section 2.3.3.2). This gives the

gradient of a different objective function, termed the surrogate log-likelihood (Wainwright,

2006). We discuss this setting in greater detail in Chapter 5.
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2.3.4.2 CLL with Latent Variables

Suppose instead we want to maximize the likelihood of a subset of the variables, treating

the others as latent. In this case, we have a probability distribution of the form:

pθ(y) =
∑

z

pθ(y, z) =
∑

z

1

Z

∏

α

ψα(yα, zα) (2.42)

where y are values of the predicted variables, z are values of the latent variables, and the

dependence on x is not shown. This distribution can be rewritten in terms of two partition

functions:

pθ(y) =
Z(y)

Z
(2.43)

where

Z(y) =
∑

z

∏

α

ψα(yα, zα) (2.44)

(2.45)

The derivative of the conditional log-likelihood in this case reduces to the following differ-

ence of expectations:

∂L(θ)
∂θ

=
D∑

d=1

(
Ez∼pθ(·|y(d))[fj(y

(d), z)]− Ey,z∼pθ(·,·)[fj(y, z)]
)

(2.46)

=
D∑

d=1

∑

α

(∑

zα

pθ(zα | y(d))fα,j(y
(d), z)−

∑

yα,zα

pθ(yα, zα)fα,j(yα, zα)

)

(2.47)

where p(zβ|y) is the marginal distribution over zβ conditioned on a fixed assignment to

the variables y. In practice, this marginal is computed by making a copy of the original

factor graph and clamping the values of y, then running inference to obtain the marginals
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of zβ . The other marginal pθ(yα, zα) gives the distribution of the joint assignment to yα

and zα. See Sutton and McCallum (2007) for additional details about this latent variable

case.

2.3.4.3 Empirical Risk Minimization

The choice to minimize empirical risk in our simple recipe from Section 2.1.1 is a well

motivated one. In fact, we usually aim to find parameters θ∗ that minimize expected loss

on the true data distribution over sentence/parse pairs (X, Y ):

θ∗ = argmin
θ

E[ℓ(hθ(X), Y )] (2.48)

Since the true data distribution is unknown in practice, we estimate the objective by the

expected loss over the training sample, {(x(d),y(d))}Dd=1. This estimate is called the em-

pirical risk:

θ∗ = argmin
θ

1

D

D∑

d=1

ℓ(hθ(x
(d)),y(d)) (2.49)

There are two problems associated with this objective function. First, the optimization itself

can be difficult depending on the choice of loss function ℓ. The risk could be nonconvex

and piecewise constant—properties which cause problems for most typical first- or second-

order optimization algorithms, such as the ones we will discuss in Section 2.4. Second, if

we do successfully minimize it, the model may overfit the training data. For this reason,

we usually minimize the regularized empirical risk.

θ∗ = argmin
θ

1

D

(
r(θ) +

D∑

d=1

ℓ(hθ(x
(d)),y(d))

)
(2.50)
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where r(θ) is a regularization function that discourages large (absolute values) or non-zero

values in θ. Examples are given in Section 2.4.1.

2.3.4.4 Empirical Risk Minimization Under Approximations

When inference is exact and the decoder and loss function are differentiable, it is possible to

do empirical risk minimization (2.49) and regularized empirical risk minimization (2.50).

Sometimes the derivatives are simple enough to be computed by hand—for neural networks

they are computed by backpropagation.

Stoyanov et al. (2011) and Stoyanov and Eisner (2012) introduce empirical risk min-

imization under approximations (ERMA), which treats the entire system including ap-

proximate inference, decoding, and loss as if it were an arithmetic circuit. That arithmetic

circuit (up to but not including loss) defines some decision function hθ(x) and its deriva-

tive can be computed by backpropagation. Figure 2.3 depicts such an arithmetic circuit.

For a differentiable loss, Stoyanov et al. (2011) train the system to minimize empirical

risk—taking the approximations into account.

We defer a more detailed discussion of this method until Chapter 5.

2.4 Continuous Optimization

Recent advances in stochastic optimization and online learning have been critical to the

recent success of large-scale machine learning. The approaches considered in this thesis

have similarly benefitted from these advances. Only on very rare occasions is it advisable

to treat optimization as a black box that takes a function and returns a local optimum—on

the contrary, one should open the black box to know what’s inside before using it blindly.

To choose an effective optimization method, we consider three desiderata: (1) efficient

use of first-order gradient computations, (2) sparse updates with regularization, and (3)

low bounds on regularized regret. In this section, we discuss stochastic gradient descent
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(E) Decode and Loss
J(θ;x,y∗) = . . .

(D) Beliefs
bi(yi) = . . ., bα(yα) = . . .

(C) Messages at time tmax

m
(tmax)
i→α (yi) = . . .,

m
(tmax)
α→i (yi) = . . .

· · ·

(C) Messages at time t
m

(t)
i→α(yi) = . . .,

m
(t)
α→i(yi) = . . .

· · ·

(C) Messages at time t = 1

m
(1)
i→α(yi) = . . .,

m
(1)
α→i(yi) = . . .

(A) Compute Potentials
ψα(yα) = exp(θ · f(yα,x))

(B) Initial Messages
m

(0)
i→α(yi) = 1

m
(0)
α→i(yi) = 1

Figure 2.3: Feed-forward topology of inference, decoding, and loss according to ERMA
(Stoyanov et al., 2011).

(SGD), mirror descent (MD) (Nemirovsky and Yudin, 1983; Beck and Teboulle, 2003),

Composite Mirror Descent (COMID) (Duchi et al., 2010b), and AdaGrad (Duchi et al.,

2010a; Duchi et al., 2011). Our treatment of these algorithms is very brief and primarily

aims to explain how our desiderata are met by AdaGrad with Composite Mirror Descent

and ℓ22-regularization via lazy updates.

The methods are presented in a tutorial style. The success of this thesis certainly de-

pends on effective algorithms for continuous optimization. However, the main contribu-

tions can certainly be understood without the details discussed here. AdaGrad will be put
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to use repeatedly for supervised and semi-supervised learning in Chapter 3, Chapter 4,

Chapter 5, and Chapter 6.

2.4.1 Online Learning and Regularized Regret

Here we highlight an important connection between regularized loss minimization (the

setting of the optimization problems solved in this thesis) and online learning.

Regularized Loss Minimization Throughout this thesis, our focus is generally on the

problem of regularized loss minimization for some loss function fd(θ), which is defined

in terms of the training example pair (x(d),y(d)). This gives us an optimization problem

based on the regularized loss R(θ).

θ∗ = argmin
θ∈Θ

R(θ) where R(θ) =
1

D

D∑

d=1

Jd(θ) + r(θ) (2.51)

where θ ∈ Rd are the model parameters, Jd : Θ → R is a loss function, and r : Θ → R is

a regularization function. Θ is a convex set of possible parameters. Jd is differentiable and

convex. r is convex. Example regularizers include

• ℓ1-regularization, r(θ) = λ||θ||1

• ℓ22-regularization, r(θ) = λ
2
||θ||22. This is equivalent to a spherical Gaussian prior

on the parameters where λ is the inverse variance. We also informally refer to this

regularizer as ℓ2 in order to better coincide with the NLP literature.

The hyperparameter λ trades off between the regularizer and loss and is typically tuned on

held out data. Example loss functions include conditional log-likelihood (Section 2.3.4.1)

or empirical risk (Section 2.3.4.3).

Online Learning In the online learning setting, we choose a sequence of parameters

θ(t) for time steps t = 1, 2, 3, . . .. At each time step t, an adversary gives us another loss
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function Jt and we receive the loss Jt(θ(t)). The goal is then to ensure that the total loss

up to each time step T ,
∑T

t=1 Jt(θ
(t)), is not much worse (larger) than minθ

∑T
t=1 Jt(θ),

which is the smallest total loss of any fixed set of parameters θ chosen retrospectively. This

is the regret:

RT :=
T∑

t=1

Jt(θ
(t))−min

θ

T∑

t=1

Jt(θ) (2.52)

The regularized regret simply incorporates the regularizer r.

R̄T :=
T∑

t=1

(Jt(θ
(t)) + r(θ(t)))−min

θ

T∑

t=1

(Jt(θ)− r(θ)) (2.53)

The goal is then to choose an optimization algorithm that bounds this (regularized) regret.

Connection Consider an online learning setting where at time step t we randomly select

a training example d, defining the loss function Jt = Jd to be the loss function for that train-

ing example. If our optimization algorithm bounds the regularized regret (equation (2.53)),

intuitively it will also be attempting to minimize the regularized loss (equation (2.51)).

Cesa-Bianchi et al. (2004) make an even stronger claim: given a bound on equation (2.53)

we can obtain convergence rate and generalization bounds for equation (2.51). More to

the point, if optimization algorithm has a tight bound on the regularized regret, we will

converge to (local) optimum faster.

2.4.2 Online Learning Algorithms

Next we consider a sequence of four online learning algorithms—each of which extends

the previous—with the goal of providing a clearer understanding of the development of the

AdaGrad-COMID algorithm.
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2.4.2.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) defines a simple update for each iteration.

θ(t+1) = θ(t) − ηt(J
′
t(θ

(t)) + r′(θ(t))) (2.54)

where J ′
t(θ) is the gradient of Jt or one of its subgradients at point θ, and r′(θ) is equiva-

lently a gradient or subgradient of r(θ). Note that we have departed from the notation of

∇Jt(θ) for gradients, used elsewhere in this thesis, for clarity in the introduction of subse-

quent optimization algorithms. Intuitively, SGD takes a small step in the direction of the

gradient of the regularized loss. Typically, to ensure convergence, the learning rate ηt is

chosen to decay over time.

2.4.2.2 Mirror Descent

Let ϕt = Jt+r denote the sum of the loss function and regularizer at time t. Intuitively, the

Mirror Descent algorithm (Nemirovsky and Yudin, 1983; Beck and Teboulle, 2003) update

given below minimizes a linear approximation of the function ϕt at the current parameters

θ(t) while ensuring that the next θ(t+1) is close to θ(t). Hereafter, for vectors a and b, we

use ⟨a, b⟩ to denote their dot product. The update for Mirror Descent is:

θ(t+1) = argmin
θ∈Θ

η
⟨
ϕ′
t(θ

(t)),θ − θ(t)
⟩
+Bψ(θ,θ

(t)) (2.55)

= argmin
θ∈Θ

η
⟨
J ′
t(θ

(t)) + r′(θ(t)),θ − θ(t)
⟩
+Bψ(θ,θ

(t)) (2.56)

where η is a learning rate parameter, ϕ′
t is a (sub)gradient of ϕt, Bψ is a Bregman di-

vergence, and ψ is a carefully chosen function (more discussion below). The Bregman

divergence for ψ is defined as:

Bψ(w,v) = ψ(w)− ψ(v)− ⟨ψ′(v),w − v⟩ (2.57)
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where ψ′ is the gradient of ψ. Duchi et al. (2010b) require that ψ have two properties: (a)

continuously differentiable, and (b) α-strongly convex with respect to a norm ||·|| on the set

of possible model parameters Θ. An example of such a function would be ψ(w) = 1
2
||w||22.

2.4.2.3 Composite Objective Mirror Descent

Composite objective mirror descent (COMID) (Duchi et al., 2010b) uses the following

update.

θ(t+1) = argmin
θ∈Θ

η
⟨
J ′
t(θ

(t)),θ − θ(t)
⟩
+ ηr(θ) +Bψ(θ,θ

(t)) (2.58)

This update is identical to that of Mirror Descent in equation (2.56), except that r(θ) is not

linearized, but instead included directly in the minimization. Duchi et al. (2010b) give a

O(
√
T ) bound for the regret in the general case, and a O(log T ) bound when Jt(θ) + r(θ)

is strongly convex. Note that we have not yet specified exactly how one would compute the

argmin above. For many choices of r(θ) and ψ(w), this update has a closed form. We will

give such a derived algorithm for AdaGrad-COMID below.

2.4.2.4 AdaGrad

The AdaGrad family of algorithms (Duchi et al., 2010a; Duchi et al., 2011) is defined in

two forms. The first is based on Composite Objective Mirror Descent, and is our focus

in this section. The second is derived similarly from Regularized Dual Averaging (Xiao,

2009), though we do not describe it here. The updates for both cases are defined for a

very careful choice of ψ, which is adapted over time such that it is sensitive to the data.

AdaGrad-COMID starts with the update from equation (2.58). The first change is that it

defines a different ψ for each time step t. That is we replace ψ in equation (2.58) with ψt.

The key contribution of AdaGrad is defining the proximal functions ψt to be the squared
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Mahalanobis norm:

ψt(θ) =
1

2
⟨θ, Htθ⟩ (2.59)

where Ht is a diagonal matrix defined such that each Ht,i,i = δ +
√∑t

s=1(f
′
s(θ)i)

2 is a

smoothed version of the square root of the sum of the squares of the ith element of the

gradient over all time steps up to t. With this definition of ψt, the update in equation (2.58)

can then be simplified to:

θ(t+1) = argmin
θ∈Θ

⟨
ηJ ′

t(θ
(t))−Htθ

(t),θ
⟩
+ ηr(θ) +

1

2
⟨θ, Htθ⟩ (2.60)

Intuitively, large partial derivatives along dimension i will lead to smaller (more conserva-

tive) steps in that dimension.

Derived Algorithms for AdaGrad-COMID Finally, the derived algorithms for AdaGrad-

COMID for the regularizers from Section 2.4.1, can be given as closed form updates to the

parameters. For the ℓ1-regularizer, r(θ) = λ||θ||1, we have the following update.

θ
(t+1)
i = sign

(
θ
(t)
i − η

Ht,i,i

gt,i

)[⏐⏐⏐⏐θ
(t)
i − η

Ht,i,i

gt,i

⏐⏐⏐⏐−
λη

Ht,i,i

]

+

(2.61)

where [x]+ = max(0, x), sign(x) is the sign of x, and gt,i is shorthand for the ith element

of f ′
t(θ).

For the ℓ22-regularizer, r(θ) = λ
2
||θ||22, we have the following update.

θ
(t+1)
i =

Ht,i,iθ
(t)
i − ηgt,i

ηλδ +Ht,i,i

(2.62)

where the hyperparameter δ helps deal with the initially noisy values in Ht,i,i and typically

takes a small positive value ≤ 1.
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Regret Bound The same O(
√
T ) and O(log T ) bounds apply to AdaGrad-COMID be-

cause it is just a special case of the COMID algorithm. However, Duchi et al. (2011) further

prove that the bound on the regret they obtain is as good as the best possible choice for ψ

in hindsight.

AdaGrad-COMID with Lazy Updates Of importance to this work is the fact that these

algorithms can be modified to support lazy updates of the model parameters (Duchi et

al., 2010a; Duchi et al., 2011). This is important since the gradients we compute J ′
t(θ) are

based on a single training example d and are therefore very sparse (e.g. only a few thousand

parameters out of tens of millions). However, due to the regularizer every parameter θi

would be updated at each time step.

In the lazy-updates version of AdaGrad-COMID (Duchi et al., 2010a; Duchi et al.,

2011), the update is only applied in equation (2.62) to those parameters θi where the ith

value in J ′
t(θ) is non-zero. For all the other parameters the update θ(t+1)

i = θ
(t)
i is used. For

model parameter θi, let t0 denote the last time step at which the ith value of the gradient

J ′
t0
(θ) was non-zero. Then we can lazily compute θ(t)i from θ

(t0)
i as below:

θ
(t)
i = θ

(t0)
i

(
Ht,i,i

ηλδ +Ht0,i,i

)(t−t0)
(2.63)
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Chapter 3

Latent Variables and Structured Factors

The primary goal of this chapter1 (within the broader context of the thesis) is to motivate

the use of joint modeling in low-resource settings. Our focus is the interface of syntax

and semantics. To that end, we choose a specific task, semantic role labeling (SRL), for

which there is strong evidence that additional structure, syntactic dependencies, is highly

informative.

A possible criticism of this choice is that SRL does not represent an end-task. Ideally,

to establish the dominance of joint modeling in the low-resource setting, we would pick

a field such as computer vision, and jointly model all the tasks that field believes to be

important and relevant—or at least as many as the field has data for. Unfortunately, we

run into a chicken-and-egg problem since carrying this out would almost certainly require

a framework for joint modeling of the variety we intend to motivate. Accordingly, we

chose the task of SRL because (a) a wealth of prior work has been invested into building

state-of-the-art models without fancy new machinery (e.g. neural nets), (b) it permits us

to define a joint model of syntax/semantics for which exact inference is possible, (c) the

question of whether joint modeling is beneficial for the high-resource setting has already

been studied: namely, the results from the CoNLL-2009 shared task (Hajič et al., 2009)

and subsequent work are not a negative result, but the tradeoff of a richer model with more
1A previous version of this work was presented in Gormley et al. (2014).
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challenging inference vs. the rich features of a pipeline but with easy inference remains

unclear (Gesmundo et al., 2009; Hajič et al., 2009; Lluı́s et al., 2013).

Finally, note that the low-resource setting is one that has been explored before (Boxwell

et al., 2011; Naradowsky et al., 2012a). However, the empirical studies to date leave our

question unanswered: is joint modeling worth it? This is because prior work did not include

a controlled comparison of joint and pipelined systems in the low-resource setting.

We begin to address this question by exploring the extent to which high-resource man-

ual annotations such as treebanks are necessary for the task of semantic role labeling (SRL).

We examine how performance changes without syntactic supervision, comparing both joint

and pipelined methods to induce latent syntax. This work highlights a new application of

unsupervised grammar induction and demonstrates several approaches to SRL in the ab-

sence of supervised syntax. Our best models obtain competitive results in the high-resource

setting and state-of-the-art results in the low-resource setting, reaching 72.48% F1 averaged

across languages.

3.1 Introduction

The goal of semantic role labeling (SRL) is to identify predicates and arguments and label

their semantic contribution in a sentence. Such labeling defines who did what to whom,

when, where and how. For example, in the sentence “The kids ran the marathon”, ran

assigns a role to kids to denote that they are the runners; and a distinct role to marathon

since it denotes the type of event in which they are participating. By contrast, the sentence

“The kids ran the horse around the track” assigns a different semantic role to kids even

though it remains in the syntactic subject position.

Models for SRL have increasingly come to rely on an array of NLP tools (e.g., parsers,

lemmatizers) in order to obtain state-of-the-art results (Björkelund et al., 2009; Zhao et

al., 2009). Each tool is typically trained on hand-annotated data, thus placing SRL at the
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end of a very high-resource NLP pipeline. However, richly annotated data such as that

provided in parsing treebanks is expensive to produce, and may be tied to specific domains

(e.g., newswire). Many languages do not have such supervised resources (low-resource

languages), which makes exploring SRL cross-linguistically difficult.

In this work, we explore models that minimize the need for high-resource supervision.

We examine approaches in a joint setting where we marginalize over latent syntax to find

the optimal semantic role assignment and a pipeline setting where we first induce an un-

supervised grammar. We find that the joint approach is a viable alternative for making

reasonable semantic role predictions, outperforming the pipeline models. These models

can be effectively trained with access to only SRL annotations, and mark a state-of-the-art

contribution for low-resource SRL.

To better understand the effect of the low-resource grammars and features used in these

models, we further include comparisons with (1) models that use higher-resource versions

of the same features; (2) state-of-the-art high resource models; and (3) previous work on

low-resource grammar induction. This chapter makes several experimental and modeling

contributions, summarized below.

Experimental contributions:

• Comparison of pipeline and joint models for SRL.

• Subtractive experiments that consider the removal of supervised data.

• Analysis of the induced grammars in unsupervised, distantly-supervised, and joint

training settings.

Modeling contributions:

• Simpler joint CRF for syntactic and semantic dependency parsing than previously

reported.

• New application of unsupervised grammar induction: low-resource SRL.
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• Constrained grammar induction using SRL for distant-supervision.

• Use of Brown clusters in place of POS tags for low-resource SRL.

The pipeline models are introduced in § 3.2.1 and jointly-trained models for syntactic

and semantic dependencies (similar in form to Naradowsky et al. (2012a)) are introduced

in § 3.2.2. In the pipeline models, we develop a novel approach to unsupervised grammar

induction and explore performance using SRL as distant supervision. The joint models

use a non-loopy conditional random field (CRF) with a global factor constraining latent

syntactic edge variables to form a tree. Efficient exact marginal inference is possible by

embedding a dynamic programming algorithm within belief propagation as in Smith and

Eisner (2008).

The joint model can not efficiently incorporate the full rich feature set used by the

pipeline model. Despite this shortcoming, the joint models best pipeline-trained models

for state-of-the-art performance in the low-resource setting (§ 3.5.2). When the models

have access to observed syntactic trees, they achieve near state-of-the-art accuracy in the

high-resource setting on some languages (§ 3.5.1).

Examining the learning curve of the joint and pipeline models in two languages demon-

strates that a small number of labeled SRL examples may be essential for good end-task

performance, but that the choice of a good model for grammar induction has an even greater

impact.

3.2 Approaches

We consider an array of models, varying:

1. Pipeline vs. joint training (Figures 3.1 and 3.4)

2. Types of supervision

3. The objective function at the level of syntax
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Parsing
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Semantic
Dependency

Model
Corpus
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Text Labeled
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Train Time, Constrained Grammar Induction:
Observed Constraints

Figure 3.1: Pipeline approach to SRL. In this simple pipeline, the first stage syntactically
parses the corpus, and the second stage predicts semantic predicate-argument structure for
each sentence using the labels of the first stage as features. In our low-resource pipelines,
we assume that the syntactic parser is given no labeled parses—however, it may optionally
utilize the semantic parses as distant supervision. Our experiments also consider ‘longer’
pipelines that include earlier stages: a morphological analyzer, POS tagger, lemmatizer.

3.2.1 Unsupervised Syntax in the Pipeline

Typical SRL systems are trained following a pipeline where the first component is trained

on supervised data, and each subsequent component is trained using the 1-best output of

the previous components. A typical pipeline consists of a POS tagger, dependency parser,

and semantic role labeler. In this section, we introduce pipelines that remove the need

for a supervised tagger and parser by training in an unsupervised and distantly supervised

fashion.

Brown Clusters We use fully unsupervised Brown clusters (Brown et al., 1992) in place

of POS tags. Brown clusters have been used to good effect for various NLP tasks such as

named entity recognition (Miller et al., 2004) and dependency parsing (Koo et al., 2008;

Spitkovsky et al., 2011).

The clusters are formed by a greedy hierarchical clustering algorithm that finds an as-

signment of words to classes by maximizing the likelihood of the training data under a

latent-class bigram model. Each word type is assigned to a fine-grained cluster at a leaf of

the hierarchy of clusters. Each cluster can be uniquely identified by the path from the root

cluster to that leaf. Representing this path as a bit-string (with 1 indicating a left and 0 indi-

cating a right child) allows a simple coarsening of the clusters by truncating the bit-strings.

We train 1000 Brown clusters for each of the CoNLL-2009 languages on Wikipedia text.2

2The Wikipedia text was tokenized for Polyglot (Al-Rfou’ et al., 2013): http://bit.ly/
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We restrict the vocabulary for each language to the 300,000 most common unigrams. The

open source implementation of Liang (2005) is used for training.

Unsupervised Grammar Induction Our first method for grammar induction is fully un-

supervised Viterbi EM training of the Dependency Model with Valence (DMV) (Klein and

Manning, 2004), with uniform initialization of the model parameters. We define the DMV

such that it generates sequences of word classes: either POS tags or Brown clusters as in

Spitkovsky et al. (2011). The DMV is a simple generative model for projective dependency

trees. Children are generated recursively for each node. Conditioned on the parent class,

the direction (right or left), and the current valence (first child or not), a coin is flipped to

decide whether to generate another child; the distribution over child classes is conditioned

on only the parent class and direction. Spitkovsky et al. (2010a) show that Viterbi (hard)

EM training of the DMV with simple uniform initialization of the model parameters yields

higher accuracy models than standard soft-EM training. In Viterbi EM, the E-step finds the

maximum likelihood corpus parse given the current model parameters. The M-step then

finds the maximum likelihood parameters given the corpus parse. We utilize this approach

to produce unsupervised syntactic features for the SRL task.

We follow Spitkovsky et al. (2010a) by starting with an E-step where the model pa-

rameters are uniformly initialized. Concurrently, Cohen and Smith (2010) observed that

starting with an M-step where the trees are chosen uniformly at random is also effective.

For the approach we take, ties must be broken randomly in the M-step parser. Otherwise,

undesirable bias may creep in during the first M-step.3 Again following Spitkovsky et al.

(2010a), we break ties within each chart cell. While this does not perfectly sample from the

set of maximum likelihood trees, we found it to be empirically effective and much simpler

than the algorithm required for breaking ties by sampling uniformly among trees.

embeddings
3This was observed experimentally and resolved via personal correspondence with the first author of

Spitkovsky et al. (2010a).
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Juan_Carlos su abdica reino $ 

A0 A1 
A0 

Figure 3.2: Example of a pruned parse chart for constrained grammar induction. The

pruned edges are determined by the given semantic role labeling of the sentence. Each

chart cell (a square) contains a right edge (top triangle) and a left edge (bottom triangle).

Only tokens filling at least one semantic role have edges to the possible parents pruned

(black filled triangles). The chart cells with the word “reino” as a child correspond to the

right diagonal of the chart (highlighted in yellow)—all parents except for “abdica” have

been pruned since it is the only available semantic parent. The token “Juan Carlos” has

two possible semantic parents—all other possible parents are pruned (highlighted in red).

The English gloss is “Juan Carlos abdicates his throne”, where $ indicates the special root

node of the dependency parse. As usual, all edges with $ as a child are disallowed—along

the left diagonal of the chart.
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Constrained Grammar Induction Our second method, which we will refer to as DMV+C,

induces grammar in a distantly supervised fashion by using a constrained parser in the E-

step of Viterbi EM. Since the parser is part of a pipeline, we constrain it to respect the

downstream SRL annotations during training. At test time, the parser is unconstrained.

Dependency-based semantic role labeling can be described as a simple structured pre-

diction problem: the predicted structure is a labeled directed graph, where nodes corre-

spond to words in the sentence. Each directed edge indicates that there is a predicate-

argument relationship between the two words; the parent is the predicate and the child the

argument. The label on the edge indicates the type of semantic relationship. Unlike syntac-

tic dependency parsing, the graph is not required to be a tree, nor even a connected graph.

Self-loops and crossing arcs are permitted.

The constrained syntactic DMV parser treats the semantic graph as observed, and con-

strains the syntactic parent to be chosen from one of the semantic parents, if there are any.

See Figure 3.2 for an example. In some cases, imposing this constraint would not permit

any projective dependency parses—in this case, we ignore the semantic constraint for that

sentence. We parse with the CKY algorithm (Younger, 1967; Aho and Ullman, 1972) by

utilizing a PCFG corresponding to the DMV (Cohn et al., 2010). Each chart cell allows

only non-terminals compatible with the constrained sets. This can be viewed as a variation

of Pereira and Schabes (1992).4

Semantic Dependency Model As described above, semantic role labeling can be cast

as a structured prediction problem where the structure is a labeled semantic dependency

graph. We define a conditional random field (CRF) (Lafferty et al., 2001) for this task. We

describe the model here as a factor graph, as discussed in Section 2.3.1. Because each word

in a sentence may be in a semantic relationship with any other word (including itself), a

sentence of length n has n2 possible edges. We define a single L+1-ary variable for each
4The constrained grammar induction methods described here and our reimplementation of Spitkovsky

et al. (2010a) are one of the few aspects of this thesis that is not released as part of the Pacaya framework
described in Appendix A. However, we intend to release this grammar induction code separately.
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2 1 3 4 

Ag. 

Th. 

Hl. 

Juan_Carlos su abdica reino 

Agent Theme
Holder

Figure 3.3: Example semantic roles for sentence and the corresponding variable assignment

of the factor graph for the semantic dependency model. A parse chart is overlaid to provide

a visual analogy with the parse chart in Figure 3.2. Each possible semantic edge has a

single L+1-ary variable. The variable corresponding to the edge from “abdica” to “reino”

has value “Theme” (abbr. Th.) corresponding to the assigned semantic role shown below

the sentence. The two variables with value “Agent” (abbr. Ag.) and “Holder” (abbr. HL)

indicate that “Juan Carlos” fills two semantic roles for “abdica” and “reino” respectively.

All other variables have value ∅ to indicate that they assign no semantic role.

edge, whose value can be any of L semantic labels or a special label indicating there is no

predicate-argument relationship between the two words. In this way, we jointly perform

identification (determining whether a semantic relationship exists) and classification (de-

termining the semantic label). This use of an L+1-ary variable is in contrast to the model

of Naradowsky et al. (2012a), which used a more complex set of binary variables and re-

quired a constraint factor permitting AT-MOST-ONE. We include one unary factor for each

variable.

We optionally include additional variables that perform word sense disambiguation for

each predicate. Each has a unary factor and is completely disconnected from the semantic

edge (similar to Naradowsky et al. (2012a)). These variables range over all the predicate

senses observed in the training data for the lemma of that predicate.
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0 2 1 3 4 
Juan_Carlos su abdica reino $ 

Y2,1 

Z2,1 

Y1,2 

Z1,2 

Y3,2 

Z3,2 

Y2,3 

Z2,3 
Y3,1 

Z3,1 

Y1,3 

Z1,3 

Y4,3 

Z4,3 

Y3,4 

Z3,4 
Y4,2 

Z4,2 

Y2,4 

Z2,4 
Y4,1 

Z4,1 

Y1,4 

Z1,4 

Z0,1 

Z0,3 

Z0,4 

Z0,2 

Figure 3.4: Factor graph for the joint syntactic/semantic dependency parsing model. For

each of the O(n2) possible semantic edges between words i and j, there is a L+1-ary

semantic role variable Yi,j (yellow). Each possible syntactic edge has a corresponding

binary variable Zi,j (blue). Variable pairs are connected by factors (black). The structured

PTREE factor (red) connects to the binary syntactic dependency variables and enforces that

they form a projective tree. As in Figure 3.3, the special node $ is the syntactic root.

3.2.2 Joint Syntactic and Semantic Parsing Model

In Section 3.2.1, we introduced pipeline-trained models for SRL, which used grammar

induction to predict unlabeled syntactic parses. In this section, we define a simple model

for joint syntactic and semantic dependency parsing.

This model extends the CRF model in Section 3.2.1 to include the projective syntactic

dependency parse for a sentence. This is done by including an additional n2 binary vari-

ables that indicate whether or not a directed syntactic dependency edge exists between a

pair of words in the sentence. Unlike the semantic dependencies, these syntactic variables

must be coupled so that they produce a projective dependency parse; this requires an addi-

tional global constraint factor to ensure that this is the case (Smith and Eisner, 2008). The
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constraint factor touches all n2 syntactic-edge variables, and multiplies in 1.0 if they form

a projective dependency parse, and 0.0 otherwise. We couple each syntactic edge variable

to its semantic edge variable with a binary factor. Figure 3.4 shows the factor graph for this

joint model.

Note that our factor graph does not contain any loops, thereby permitting efficient exact

marginal inference just as in Naradowsky et al. (2012a). This is an instance of structured

belief propagation (cf. Section 2.3.3.4). We train our CRF models by maximizing condi-

tional log-likelihood (cf. Section 2.3.4.1) using stochastic gradient descent with an adaptive

learning rate (AdaGrad) (Duchi et al., 2011) over mini-batches (cf. Section 2.4.2.4).

The unary and binary factors are defined with exponential family potentials. In the

next section, we consider binary features of the observations (the sentence and labels from

previous pipeline stages) which are conjoined with the state of the variables in the factor.

3.2.3 Features for CRF Models

Our feature design stems from two key ideas. First, for SRL, it has been observed that

feature bigrams (the concatenation of simple features such as a predicate’s POS tag and

an argument’s word) are important for state-of-the-art performance (Zhao et al., 2009;

Björkelund et al., 2009). Second, for syntactic dependency parsing, combining Brown

cluster features with word forms or POS tags yields high accuracy even with little training

data (Koo et al., 2008).

We create binary indicator features for each model using feature templates. Our feature

template definitions build from those used by the top performing systems in the CoNLL-

2009 Shared Task, Zhao et al. (2009) and Björkelund et al. (2009) and from features in

syntactic dependency parsing (McDonald et al., 2005; Koo et al., 2008).

54



3.2. APPROACHES

Property Possible values
1 word form all word forms
2 lower case word form all lower-case forms
3 5-char word form prefixes all 5-char form prefixes
4 capitalization True, False
5 top-800 word form top-800 word forms
6 brown cluster 000, 1100, 010110001, ...
7 brown cluster, length 5 length 5 prefixes of brown clusters
8 lemma all word lemmas
9 POS tag NNP, CD, JJ, DT, ...
10 morphological features Gender, Case, Number, ...

(different across languages)
11 dependency label SBJ, NMOD, LOC, ...
12 edge direction Up, Down

(a) Word and edge properties in SRL feature templates. For each property (left column) we show
examples of its possible values or a brief description of those values (right column).

i, i-1, i+1 noFarChildren(wi) linePath(wp, wc)
parent(wi) rightNearSib(wi) depPath(wp, wc)
allChildren(wi) leftNearSib(wi) depPath(wp, wlca)
rightNearChild(wi) firstVSupp(wi) depPath(wc, wlca)
rightFarChild(wi) lastVSupp(wi) depPath(wlca, wroot)
leftNearChild(wi) firstNSupp(wi)
leftFarChild(wi) lastNSupp(wi)

(b) Word positions used in SRL feature templates. Based on current word po-
sition (i), positions related to current word wi, possible parent, child (wp, wc),
lowest common ancestor between parent/child (wlca), and syntactic root (wroot).

Template Possible values
relative position before, after, on
distance, continuity Z+

binned distance > 2, 5, 10, 20, 30, or 40
geneological relationship parent, child, ancestor,

descendant
path-grams the NN went

(c) Additional standalone feature templates for SRL.

Table 3.1: Feature templates for semantic role labeling
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Template Creation The feature templates are defined over triples of:

⟨property, positions, order⟩

The properties, listed in Table 3.1a, are extracted from word positions within the sentence,

shown in Table 3.1b. Single positions for a word wi include its syntactic parent, its leftmost

farthest child (leftFarChild), its rightmost nearest sibling (rightNearSib), etc. Following

Zhao et al. (2009), we include the notion of verb and noun supports and sections of the

dependency path. Also following Zhao et al. (2009), properties from a set of positions

can be put together in three possible orders: as the given sequence, as a sorted list of

unique strings, and removing all duplicated neighbored strings. We consider both template

unigrams and bigrams, combining two templates in sequence.

Additional templates we include, listed in Table 3.1c, are the relative position (Björkelund

et al., 2009), genealogical relationship, distance (Zhao et al., 2009), and binned distance

(Koo et al., 2008) between two words in the path. From Lluı́s et al. (2013), we use 1, 2, 3-

gram path features of words/POS tags (path-grams), and the number of non-consecutive

token pairs in a predicate-argument path (continuity).

3.2.4 Feature Selection

Constructing all feature template unigrams and bigrams would yield an unwieldy number

of features. We therefore determine the top N template bigrams for a dataset and factor a

according to an information gain measure (Martins et al., 2011b):

IGa,m =
∑

f∈Tm

∑

xa

p(f, xa) log2
p(f, xa)

p(f)p(xa)
(3.1)

where Tm is the mth feature template, f is a particular instantiation of that template, and

xa is an assignment to the variables in factor a. The probabilities are empirical estimates
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computed from the training data. This is simply the mutual information of the feature

template instantiation with the variable assignment.

This filtering approach was treated as a simple baseline in Martins et al. (2011b) to

contrast with increasingly popular gradient based regularization approaches. Unlike the

gradient based approaches, this filtering approach easily scales to many features since we

can decompose the memory usage over feature templates.

As an additional speedup, we reduce the dimensionality of our feature space to 1 million

for each clique using a common trick referred to as feature hashing (Weinberger et al.,

2009): we map each feature instantiation to an integer using a hash function5 modulo the

desired dimensionality.

3.3 Related Work

Our work builds upon research in both semantic role labeling and unsupervised gram-

mar induction (Klein and Manning, 2004; Spitkovsky et al., 2010a). Previous related

approaches to semantic role labeling include joint classification of semantic arguments

(Toutanova et al., 2005; Johansson and Nugues, 2008), latent syntax induction (Boxwell

et al., 2011; Naradowsky et al., 2012a), and feature engineering for SRL (Zhao et al., 2009;

Björkelund et al., 2009).

High-resource SRL As discussed in the introduction, semantic role labeling is tradition-

ally approached by first identifying syntactic features of the sentence and then predicting

predicates and their arguments. These often use a pipeline of classifiers for predicate disam-

biguation, argument identification, and argument classification (Gildea and Jurafsky, 2000;

Gildea and Jurafsky, 2002; Surdeanu et al., 2008). Such pipeline approaches rely heavily

on the accuracy of the syntactic parser (Gildea and Palmer, 2002; Punyakanok et al., 2005).

This decomposition prohibits the parser from utilizing the labels from the end task.

5To reduce hash collisions, we use MurmurHash v3 https://code.google.com/p/smhasher.
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Toutanova et al. (2005) introduced one of the first joint approaches for SRL and demon-

strated that a model that scores the full predicate-argument structure of a parse tree could

lead to significant error reduction over independent classifiers for each predicate-argument

relation.

Johansson and Nugues (2008) and Lluı́s et al. (2013) extend this idea by coupling pre-

dictions of a dependency parser with predictions from a semantic role labeler. In the model

from Johansson and Nugues (2008), the outputs from an SRL pipeline are reranked based

on the full predicate-argument structure that they form. The candidate set of syntactic-

semantic structures is reranked using the probability of the syntactic tree and semantic

structure. Lluı́s et al. (2013) use a joint arc-factored model that predicts full syntactic paths

along with predicate-argument structures via dual decomposition.

Low-resource SRL Boxwell et al. (2011) and Naradowsky et al. (2012a) observe that

syntax may be treated as latent when a treebank is not available. Boxwell et al. (2011)

describe a method for training a semantic role labeler by extracting features from a packed

CCG parse chart, where the parse weights are given by a simple ruleset. Naradowsky et al.

(2012a) marginalize over latent syntactic dependency parses.

Both Boxwell et al. (2011) and Naradowsky et al. (2012a) suggest methods for SRL

without supervised syntax, however, their features come largely from supervised resources.

Even in their lowest resource setting, Boxwell et al. (2011) require an oracle CCG tag

dictionary extracted from a treebank. Naradowsky et al. (2012a) limit their exploration to a

small set of basic features, and included high-resource supervision in the form of lemmas,

POS tags, and morphology available from the CoNLL 2009 data.

There has not yet been a comparison of techniques for SRL that do not rely on a syn-

tactic treebank, and no exploration of probabilistic models for unsupervised grammar in-

duction within an SRL pipeline that we have been able to find.
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Grammar Induction Related work for the unsupervised learning of dependency struc-

tures separately from semantic roles primarily comes from Klein and Manning (2004), who

introduced the Dependency Model with Valence (DMV). This is a robust generative model

that uses a head-outward process over word classes, where heads generate arguments.

Grammar induction work has further demonstrated that distant supervision in the form

of ACE-style relations (Naseem and Barzilay, 2011) or HTML markup (Spitkovsky et al.,

2010b) can lead to considerable gains. Recent work in fully unsupervised dependency

parsing has supplanted these methods with even higher accuracies (Spitkovsky et al., 2013)

by arranging optimizers into networks that suggest informed restarts based on previously

identified local optima. We do not reimplement these approaches within the SRL pipeline

here, but provide comparison of these methods against our grammar induction approach in

isolation in § 3.5.4.

Feature Templates for SRL In both pipeline and joint models, we use features adapted

from state-of-the-art approaches to SRL (§ 5.7.1). This includes Zhao et al. (2009) fea-

tures, who use feature templates from combinations of word properties, syntactic positions

including head and children, and semantic properties; and features from Björkelund et al.

(2009), who utilize features on syntactic siblings and the dependency path concatenated

with the direction of each edge.

3.4 Experimental Setup

3.4.1 Data

The CoNLL-2009 Shared Task (Hajič et al., 2009) dataset contains POS tags, lemmas,

morphological features, syntactic dependencies, predicate senses, and semantic roles an-

notations for 7 languages: Catalan, Chinese, Czech, English, German, Japanese,6 Spanish.

6We do not report results on Japanese as that data was only made freely available to researchers that
competed in CoNLL 2009.
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The CoNLL-2005 and -2008 Shared Task datasets provide English SRL annotation, and

for cross dataset comparability we consider only verbal predicates (more details in § 3.5.2).

To compare with prior approaches that use semantic supervision for grammar induction,

we utilize Section 23 of the WSJ portion of the Penn Treebank (Marcus et al., 1993).

3.4.2 Feature Template Sets

Our primary feature set IGC consists of 127 template unigrams that emphasize coarse prop-

erties (i.e., properties 7, 9, and 11 in Table 3.1a). We also explore the 31 template unigrams7

IGB described by Björkelund et al. (2009). Each of IGC and IGB also include 32 template

bigrams selected by information gain on 1000 sentences—we select a different set of tem-

plate bigrams for each dataset.

We compare against the language-specific feature sets detailed in the literature on high-

resource top-performing SRL systems: From Björkelund et al. (2009), these are feature

sets for German, English, Spanish and Chinese, obtained by weeks of forward selection

(Bde,en,es,zh); and from Zhao et al. (2009), these are features for Catalan Zca.8

3.5 Results

We are interested in the effects of varied supervision using pipeline and joint training for

SRL. To compare to prior work (i.e., submissions to the CoNLL-2009 Shared Task), we

also consider the joint task of semantic role labeling and predicate sense disambiguation.

Our experiments are subtractive, beginning with all supervision available and then succes-

sively removing (a) dependency syntax, (b) morphological features, (c) POS tags, and (d)

lemmas. Dependency syntax is the most expensive and difficult to obtain of these various

7Because we do not include a binary factor between predicate sense and semantic role, we do not include
sense as a feature for argument prediction.

8This covers all CoNLL languages but Czech, where feature sets were not made publicly available in
either work. In Czech, we disallowed template bigrams involving path-grams.
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forms of supervision. We explore the importance of both the labels and structure, and what

quantity of supervision is useful.

3.5.1 CoNLL-2009: High-resource SRL

We first compare our models trained as a pipeline, using all available supervision (syntax,

morphology, POS tags, lemmas) from the CoNLL-2009 data.

Gold Syntax Table 3.4(a) shows the results of our model with gold syntax and a richer

feature set than that of Naradowsky et al. (2012a) (NRS’12), which only looked at whether

a syntactic dependency edge was present. Table 3.2 provides a brief summary of

SRL Approach Feature Set Avg. F1

Pipeline IGC 84.98

Pipeline IGB 84.74

NRS’12 72.73

Table 3.2: Inline summary of Table 3.4(a): Test
F1 of supervised SRL and sense disambiguation on
CoNLL’09 with gold (oracle) syntax.

Table 3.4(a). This highlights

an important advantage of the

pipeline trained model: the fea-

tures can consider any part of the

syntax (e.g., arbitrary subtrees),

whereas the joint model is limited

to those features over which it can

efficiently marginalize (e.g., short

dependency paths). This holds true even in the pipeline setting where no syntactic supervi-

sion is available.

Supervised Syntax Table 3.4(b) contrasts our high-resource results for the task of SRL

and sense disambiguation with the top systems in the CoNLL-2009 Shared Task, giving fur-

ther insight into the performance of the simple information gain feature selection technique.

SRL Approach Feature Set Avg. F1

Björkelund et al. (2009) 81.55

Zhao et al. (2009) 80.85

Pipeline IGC 78.03

Pipeline IGB 75.68

Table 3.3: Inline summary of Table 3.4(a): Test
F1 of supervised SRL and sense disambiguation on
CoNLL’09 with supervised syntax.

Table 3.3 provides a brief sum-

mary of Table 3.4(b). With su-

pervised syntax, our simple in-
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formation gain feature selection

technique (§ 3.2.4) performs ad-

mirably. However, the origi-

nal unigram Björkelund features

(Bde,en,es,zh), which were tuned

for a high-resource model, obtain

higher F1 than our information gain set using the same features in unigram and bigram tem-

plates (IGB). This suggests that further work on feature selection may improve the results.

We find that IGB obtain higher F1 than the original Björkelund feature sets (Bde,en,es,zh) in

the low-resource pipeline setting with constrained grammar induction (DMV+C).

3.5.2 CoNLL-2009: Low-Resource SRL

In this section, we contrast our three approaches to handling the case where we have su-

pervised data for semantic roles, but have no syntactic training data available. Then we

consider an even lower-resource setting in which we subtract out other forms of syntactic

supervision: morphology, lemmas, and POS tags. The key takeaway is that a pipeline per-

mits rich features of previous stages, but doesn’t permit errors to propagate between stages.

By contrast, a joint model might not be able to incorporate the same rich features effi-

ciently, but it allows confidence in one part of the model (e.g. syntax) to influence another

(e.g. semantics).

Latent Syntax Table 3.4(c) includes results for our low-resource approaches and Narad-

owsky et al. (2012a) on predicting semantic roles as well as sense. Table 3.5 provides a brief

SRL Feature Set Dep. Parser Avg. F1

Joint IGC Marginalized 72.48

Joint IGB Marginalized 72.40

NRS’12 Marginalized 71.27

Pipeline IGC DMV+C (bc) 70.08

Pipeline IGC DMV (bc) 69.26

Pipeline IGB DMV (bc) 66.81

Pipeline IGB DMV+C (bc) 65.61

Table 3.5: Inline summary of Table 3.4(c): Test
F1 of supervised SRL and sense disambiguation on
CoNLL’09 with no supervision for syntax.

summary of Table 3.4(c). In

the low-resource setting of the

CoNLL-2009 Shared task with-

out syntactic supervision, our
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3.5. RESULTS

joint model (Joint) with marginal-

ized syntax obtains state-of-the-

art results with features IGC de-

scribed in § 3.4.2. This model

outperforms prior work (Narad-

owsky et al., 2012a) and our

pipeline model (Pipeline) with

constrained (DMV+C) and un-

constrained grammar induction (DMV) trained on brown clusters (bc).

In the low-resource setting, training and decoding times for the pipeline and joint meth-

ods are similar as computation time tends to be dominated by feature extraction.

These results begin to answer a key research question in this work: The joint models

outperform the pipeline models in the low-resource setting. This holds even when using the

same feature selection process. Further, the best-performing low-resource features found

in this work are those based on coarse feature templates and selected by information gain.

Templates for these features generalize well to the high-resource setting. However, analysis

of the induced grammars in the pipeline setting suggests that the book is not closed on the

issue. We return to this in § 3.5.4.

Subtractive Study In our subsequent experiments, we study the effectiveness of our

models as the available supervision is decreased. We incrementally remove dependency

syntax, morphological features, POS tags, then lemmas. For these experiments, we utilize

the coarse-grained feature set (IGC), which includes Brown clusters.

Across languages, we find the largest drop in F1 when we remove POS tags; and we

find a gain in F1 when we remove lemmas. This indicates that lemmas, which are a high-

resource annotation, may not provide a significant benefit for this task. The effect of remov-

ing morphological features is different across languages, with little change in performance
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3.5. RESULTS

Rem #FT ca de es

– 127+32 74.46 72.62 74.23
Dep 40+32 67.43 64.24 67.18
Mor 30+32 67.84 59.78 66.94
POS 23+32 64.40 54.68 62.71
Lem 21+32 64.85 54.89 63.80

Table 3.6: Subtractive experiments. Each row contains the F1 for SRL only (without sense
disambiguation) where the supervision type of that row and all above it have been removed.
Removed supervision types (Rem) are: syntactic dependencies (Dep), morphology (Mor),
POS tags (POS), and lemmas (Lem). #FT indicates the number of feature templates used
(unigrams+bigrams).

for Catalan and Spanish, but a drop in performance for German. This may reflect a dif-

ference between the languages, or may reflect the difference between the annotation of the

languages: both the Catalan and Spanish data originated from the Ancora project,9 while

the German data came from another source.

Figure 3.5 contains the learning curve for SRL supervision in our lowest resource set-

ting for two example languages, Catalan and German. This shows how F1 of SRL changes

as we adjust the number of training examples. We find that the joint training approach to

grammar induction yields consistently higher SRL performance than its distantly super-

vised counterpart.

3.5.3 CoNLL-2008, -2005 without a Treebank

In this section, we return to the “no syntax” setting of the previous section. We do so in

order to contrast our dependency-based SRL models with that of a state-of-the-art span-

based SRL model. This provides the first such comparison in the low-resource setting.

We contrast our approach with that of Boxwell et al. (2011), who evaluate on SRL in

isolation (without sense disambiguation, as in CoNLL-2009). They report results on Prop-

CCGbank (Boxwell and White, 2008), which uses the same training/testing splits as the

9http://clic.ub.edu/corpus/ancora

65



3.5. RESULTS

Number of Training Sentences
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Figure 3.5: Learning curve for semantic dependency supervision in Catalan and German.

F1 of SRL only (without sense disambiguation) shown as the number of training sentences

is increased.

train
test 2008

heads
2005
spans

2005
spans

(oracle
tree)

�� PRY’08

20
05

sp
an

s 84.32 79.44

� B’11 (tdc) — 71.5

� B’11 (td) — 65.0

�� JN’08

20
08

he
ad

s 85.93 79.90

� Joint, IGC 72.9 35.0 72.0

� Joint, IGB 67.3 37.8 67.1

Table 3.7: F1 for SRL approaches (without sense disambiguation) in matched and mis-

matched train/test settings for CoNLL 2005 span and 2008 head supervision. We contrast

low-resource (�) and high-resource settings (��), where the latter uses a treebank. See

§ 3.5.2 for caveats to this comparison.

CoNLL-2005 Shared Task. Their results are therefore loosely10 comparable to results on

the CoNLL-2005 dataset, which we can compare here.

There is an additional complication in comparing SRL approaches directly: The CoNLL-

2005 dataset defines arguments as spans instead of heads, which runs counter to our head-

based syntactic representation. This creates a mismatched train/test scenario: we must

train our model to predict argument heads, but then test on our models ability to predict

10The comparison is imperfect for two reasons: first, the CCGBank contains only 99.44% of the original

PTB sentences (Hockenmaier and Steedman, 2007); second, because PropBank was annotated over CFGs,

after converting to CCG only 99.977% of the argument spans were exact matches (Boxwell and White, 2008).

However, this comparison was adopted by Boxwell et al. (2011), so we use it here.
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3.5. RESULTS

argument spans.11 We therefore train our models on the CoNLL-2008 argument heads,12

and post-process and convert from heads to spans using the conversion algorithm available

from Johansson and Nugues (2008).13 The heads are either from an MBR tree or an oracle

tree. This gives Boxwell et al. (2011) the advantage, since our syntactic dependency parses

are optimized to pick out semantic argument heads, not spans.

Table 3.7 presents our results. Boxwell et al. (2011) (B’11) uses additional supervision

in the form of a CCG tag dictionary derived from supervised data with (tdc) and without

(tc) a cutoff. Our model does very poorly on the ’05 span-based evaluation because the

constituent bracketing of the marginalized trees are inaccurate. This is elucidated by instead

evaluating on the oracle spans, where our F1 scores are higher than Boxwell et al. (2011).

We also contrast with relevant high-resource methods with span/head conversions from

Johansson and Nugues (2008): Punyakanok et al. (2008) (PRY’08) and Johansson and

Nugues (2008) (JN’08).

3.5.4 Analysis of Grammar Induction

Table 3.8 shows grammar induction accuracy in low-resource settings. We find that the

gap between the supervised parser and the unsupervised methods is quite large, despite the

reasonable accuracy both methods achieve for the SRL end task. This suggests that refining

the low-resource grammar induction methods may lead to gains in SRL.

Interestingly, the marginalized grammars best the DMV grammar induction method;

however, this difference is less pronounced when the DMV is constrained using SRL labels

as distant supervision. This could indicate that a better model for grammar induction would

result in better performance for SRL. We therefore turn to an analysis of other approaches to

11We were unable to obtain the system output of Boxwell et al. (2011) in order to convert their spans to
dependencies and evaluate the other mismatched train/test setting.

12CoNLL-2005, -2008, and -2009 were derived from PropBank and share the same source text; -2008 and
-2009 use argument heads.

13Specifically, we use their Algorithm 2, which produces the span dominated by each argument, with spe-
cial handling of the case when the argument head dominates that of the predicate. Also following Johansson
and Nugues (2008), we recover the ’05 sentences missing from the ’08 evaluation set.
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Dependency Parser Avg. ca cs de en es zh
Supervised* 87.1 89.4 85.3 89.6 88.4 89.2 80.7
DMV (pos) 30.2 45.3 22.7 20.9 32.9 41.9 17.2
DMV (bc) 22.1 18.8 32.8 19.6 22.4 20.5 18.6
DMV+C (pos) 37.5 50.2 34.9 21.5 36.9 49.8 32.0
DMV+C (bc) 40.2 46.3 37.5 28.7 40.6 50.4 37.5
Marginal, IGC 43.8 50.3 45.8 27.2 44.2 46.3 48.5
Marginal, IGB 50.2 52.4 43.4 41.3 52.6 55.2 56.2

Table 3.8: Unlabeled directed dependency accuracy on CoNLL’09 test set in low-resource
settings. DMV models are trained on either POS tags (pos) or Brown clusters (bc). *Indicates
the supervised parser outputs provided by the CoNLL’09 Shared Task.

grammar induction in Table 3.9, evaluated on the Penn Treebank. We contrast with methods

using distant supervision (Naseem and Barzilay, 2011; Spitkovsky et al., 2010b) and fully

unsupervised dependency parsing (Spitkovsky et al., 2013). Following prior work, we

exclude punctuation from evaluation and convert the constituency trees to dependencies.14

The approach from Spitkovsky et al. (2013) (SAJ’13) outperforms all other approaches,

including our marginalized settings. We therefore may be able to achieve further gains in

the pipeline model by considering better models of latent syntax, or better search techniques

that break out of local optima. Similarly, improving the nonconvex optimization of our

latent-variable CRF (Marginalized) may offer further gains.

3.6 Summary

We have compared various approaches for low-resource semantic role labeling at the state-

of-the-art level. We find that we can outperform prior work in the low-resource setting by

coupling the selection of feature templates based on information gain with a joint model

that marginalizes over latent syntax.

We utilize unlabeled data in both generative and discriminative models for dependency

syntax and in generative word clustering. Our discriminative joint models treat latent syn-

14Naseem and Barzilay (2011) and our results use the Penn converter (Pierre and Heiki-Jaan, 2007).
Spitkovsky et al. (2010; 2013) use Collins (1999) head percolation rules.
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WSJ∞ Distant
Supervision

SAJM’10 44.8 none
SAJ’13 64.4 none
SJA’10 50.4 HTML
NB’11 59.4 ACE05
DMV (bc) 24.8 none
DMV+C (bc) 44.8 SRL
Marginalized, IGC 48.8 SRL
Marginalized, IGB 58.9 SRL

Table 3.9: Comparison of grammar induction approaches on the Penn Treebank. We con-
trast the DMV trained with Viterbi EM+uniform initialization (DMV), our constrained
DMV (DMV+C), and our model’s MBR decoding of latent syntax (Marginalized) with
other recent work: Spitkovsky et al. (2010a) (SAJM’10), Spitkovsky et al. (2010b)
(SJA’10), Naseem and Barzilay (2011) (NB’11), and the CS model of Spitkovsky et al.
(2013) (SAJ’13).

tax as a structured-feature to be optimized for the end-task of SRL, while our other gram-

mar induction techniques optimize for unlabeled data likelihood—optionally with distant

supervision. We observe that careful use of these unlabeled data resources can improve

performance on the end task.

Our subtractive experiments suggest that lemma annotations, a high-resource annota-

tion, may not provide a large benefit for SRL. Our grammar induction analysis indicates

that relatively low accuracy can still result in reasonable SRL predictions; still, the mod-

els do not outperform those that use supervised syntax, and we aim to explore how well

the pipeline models in particular improve when we apply higher accuracy unsupervised

grammar induction techniques.
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Chapter 4

Neural and Log-linear Factors

Over a decade of research has been spent carefully crafting features by hand for the task

of relation extraction (Zelenko et al., 2003; Culotta and Sorensen, 2004; Bunescu and

Mooney, 2005; Jiang and Zhai, 2007; Sun et al., 2011; Plank and Moschitti, 2013; Nguyen

and Grishman, 2014). Yet, there has been much recent effort in attempting to show that

these sorts of features can be learned automatically with neural networks. One of the con-

veniences of the proposed framework of this thesis is that these neural networks can easily

be incorporated. However, for areas in which decades of research have been spent care-

fully crafting features by hand, does the application-blind machinery of neural networks

still have something to offer?

In this chapter,1 we pose this question and study it experimentally. We augment a

baseline relation extraction system consisting of handcrafted features with a state-of-the-

art neural network architecture—this hybrid model is the focus of this chapter. Our goal

is to demonstrate the complementarity of the two submodels. There have been increas-

ingly many results that suggest handcrafted features are complementary to those learned

by (current) neural networks; see for example Socher et al. (2012). Similar results in rela-

tion extraction (Hashimoto et al., 2015; Liu et al., 2015) and constituency parsing (Durrett

and Klein, 2015) appeared while this thesis was in preparation. However, we believe that
1A previous version of this work was presented in Gormley et al. (2015c).
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Class Sentence Snippet
(a) ART(M1,M2) [M1 A man ] driving what appeared to be [M2 a taxicab ]
(b) PART-WHOLE(M1,M2) direction of [M1 the southern suburbs ] of [M2 Baghdad ]
(c) PHYSICAL(M2,M1) in [M1 the united states ], [M2 284 people ] died

Table 4.1: Examples from ACE 2005. In (a), the word “driving” is a strong indicator of the
relation ART between M1 and M2. A feature that depends on the embedding for this con-
text word could generalize to other lexical indicators of the same relation (e.g. “operating”)
that don’t appear with ART during training. But lexical information alone is insufficient;
relation extraction requires the identification of lexical roles: where a word appears struc-
turally in the sentence. In (b), the word “of” between “suburbs” and “Baghdad” suggests
that the first entity is part of the second, yet the earlier occurrence after “direction” is of
no significance to the relation. Even finer information can be expressed by a word’s role
on the dependency path between entities. In (c), we can distinguish the word “died” from
other irrelevant words that don’t appear between the entities.

ours is a particularly salient testing ground for the question at hand since we start with a

neural network which itself is infused with carefully constructed real-world knowledge of

the data.

This chapter serves a secondary goal: to demonstrate the ease with which neural net-

works fit into our framework. Our full hybrid model provides for one of the simplest

examples of training in our framework—in the case where inference (as in the previous

chapter) makes no approximations. We reserve the case of approximate inference for the

final two chapters.

4.1 Introduction

Two common NLP feature types are lexical properties of words and unlexicalized linguis-

tic/structural interactions between words. Prior work on relation extraction has extensively

studied how to design such features by combining discrete lexical properties (e.g. the iden-

tity of a word, its lemma, its morphological features) with aspects of a word’s linguistic

context (e.g. whether it lies between two entities or on a dependency path between them).

While these help learning, they make generalization to unseen words difficult. An alter-
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4.1. INTRODUCTION

native approach to capturing lexical information relies on continuous word embeddings.2

Embedding features have improved many tasks, including NER, chunking, dependency

parsing, semantic role labeling, and relation extraction (Miller et al., 2004; Turian et al.,

2010; Koo et al., 2008; Roth and Woodsend, 2014; Sun et al., 2011; Plank and Moschitti,

2013; Nguyen and Grishman, 2014). Embeddings can capture lexical information, but

alone they are insufficient: in state-of-the-art systems, they are used alongside features of

the broader linguistic context.

In this chapter, we introduce a hybrid log-linear and neural network model for relation

extraction, a task in which contextual feature construction plays a major role in generalizing

to unseen data. Our baseline log-linear model directly uses handcrafted lexicalized features.

The compositional model combines unlexicalized linguistic context and word embeddings.

The compositional model is called the Feature-rich Compositional Embedding Model

(FCM) and was introduced in Gormley et al. (2015c). FCM allows for the composition of

embeddings with arbitrary linguistic structure, as expressed by hand crafted features. In

the following sections, we describe the model starting with a precise construction of com-

positional embeddings using word embeddings in conjunction with unlexicalized features.

Various feature sets used in prior work (Turian et al., 2010; Nguyen and Grishman, 2014;

Hermann et al., 2014; Roth and Woodsend, 2014) are captured as special cases of this con-

struction. Adding these compositional embeddings directly to a standard log-linear model

yields a special case of the full FCM model. Treating the word embeddings as parameters

gives rise to the powerful, efficient, and easy-to-implement log-bilinear model. The model

capitalizes on arbitrary types of linguistic annotations by better utilizing features associated

with substructures of those annotations, including global information. Features are chosen

to promote different properties and to distinguish different functions of the input words.

Our full hybrid model involves four stages. First, it decomposes the annotated sentence

2Such embeddings have a long history in NLP, including term-document frequency matrices and their
low-dimensional counterparts obtained by linear algebra tools (LSA, PCA, CCA, NNMF), Brown clusters,
random projections and vector space models. Recently, neural networks / deep learning have provided several
popular methods for obtaining such embeddings.
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4.2. RELATION EXTRACTION

into substructures (i.e. a word and associated annotations). Second, it extracts features

for each substructure (word), and combines them with the word’s embedding to form a

substructure embedding. Third, we sum over substructure embeddings to form a composed

annotated sentence embedding, which is used by a final softmax layer to predict the output

label (relation). Fourth, it multiplies in the score of each label according to the standard

feature-based log-linear model.

The result is a state-of-the-art relation extractor for unseen domains from ACE 2005

(Walker et al., 2006) and the relation classification dataset from SemEval-2010 Task 8

(Hendrickx et al., 2010).

Contributions This chapter makes several contributions, including:

1. We introduce a new hybrid model for relation extraction that combines a log-linear

model and the FCM, a compositional embedding model.

2. We obtain the best reported results on ACE-2005 for coarse-grained relation extrac-

tion in the cross-domain setting with this model.

3. We obtain results on SemEval-2010 Task 8 competitive with the best reported results.

Note that other work has already been published that builds on the FCM, such as Hashimoto

et al. (2015), Nguyen and Grishman (2015), Santos et al. (2015), Yu and Dredze (2015)

and Yu et al. (2015). Additionally, the FCM has been extended to incorporate a low-rank

embedding of the features (Yu et al., 2015), with a focus on fine-grained relation extraction

for ACE and ERE. Here, we obtain better results than the low-rank extension on ACE

coarse-grained relation extraction.

4.2 Relation Extraction

In relation extraction we are given a sentence as input with the goal of identifying, for all

pairs of entity mentions, what relation exists between them, if any. For each pair of entity

mentions in a sentence S, we construct an instance (y,x), where x = (M1,M2, S, A).
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4.2. RELATION EXTRACTION

S = {w1, w2, ..., wn} is a sentence of length n that expresses a relation of type y between

two entity mentions M1 and M2, where M1 and M2 are sequences of words in S. A is the

associated annotations of sentence S, such as part-of-speech tags, a dependency parse, and

named entities. We consider directed relations: for a relation type Rel, y=Rel(M1,M2)

and y′=Rel(M2,M1) are different relations. Table 4.1 shows ACE 2005 relations, and

has a strong label bias towards negative examples. We also consider the task of relation

classification (SemEval), where the number of negative examples is artificially reduced.

Embedding Models Word embeddings and compositional embedding models have been

successfully applied to a range of NLP tasks, however the applications of these embedding

models to relation extraction are still limited. Prior work on relation classification (e.g. Se-

mEval 2010 Task 8) has focused on short sentences with at most one relation per sentence

(Socher et al., 2012; Zeng et al., 2014). For relation extraction, where negative examples

abound, prior work has assumed that only the named entity boundaries and not their types

were available (Plank and Moschitti, 2013; Nguyen et al., 2015). Other work has assumed

that the order of two entities in a relation is given while the relation type itself is unknown

(Nguyen and Grishman, 2014; Nguyen and Grishman, 2015). The standard relation extrac-

tion task, as adopted by ACE 2005 (Walker et al., 2006), uses long sentences containing

multiple named entities with known types3 and unknown relation directions. The FCM was

the first application of neural language model embeddings to this task.

Motivation and Examples Whether a word is indicative of a relation depends on multi-

ple properties, which may relate to its context within the sentence. For example, whether

the word is in-between the entities, on the dependency path between them, or to their left or

right may provide additional complementary information. Illustrative examples are given

in Table 4.1 and provide the motivation for our model. In the next section, we will show

3Since the focus of this chapter is relation extraction, we adopt the evaluation setting of prior work, which
uses gold named entities to better facilitate comparison.

74



4.3. BACKGROUND: COMPOSITIONAL EMBEDDING MODEL
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[A man]M1 driving what appeared to be [a taxicab]M2

Figure 4.1: Example construction of FCM substructure embeddings. Each substructure is a

word wi in S, augmented by the target entity information and related information from an-

notation A (e.g. a dependency tree). The diagram shows the factorization of the annotated

sentence into substructures (left), the concatenation of the substructure embeddings for the

sentence (middle), and a single substructure embedding from that concatenation (right).

The annotated sentence embedding (not shown) would be the sum of the substructure em-

beddings, as opposed to their concatenation.

how the FCM develops informative representations capturing both the semantic informa-

tion in word embeddings and the contextual information expressing a word’s role relative

to the entity mentions. The FCM was the first model to incorporate all of this information

at once. The closest work is that of Nguyen and Grishman (2014), who use a log-linear

model for relation extraction with embeddings as features for only the entity heads. Such

embedding features are insensitive to the broader contextual information and, as we show,

are not sufficient to elicit the word’s role in a relation.

4.3 Background: Compositional Embedding Model

In this section, we review a general framework to construct an embedding of a sentence with

annotations on its component words (Gormley et al., 2015c). While we focus on the relation

extraction task, the framework applies to any task that benefits from both embeddings and

typical hand-engineered lexical features. Our attention to detail on this model is to assure

the reader of its suitability for the task, just as our results should demonstrate its strong

performance in isolation.
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4.3. BACKGROUND: COMPOSITIONAL EMBEDDING MODEL

4.3.1 Combining Features with Embeddings

We begin by describing a precise method for constructing substructure embeddings and

annotated sentence embeddings from existing (usually unlexicalized) features and em-

beddings. Note that these embeddings can be included directly in a log-linear model as

features—doing so results in a special case of the full FCM model presented in the next

subsection.

An annotated sentence is first decomposed into substructures. The type of substructures

can vary by task; for relation extraction we consider one substructure per word4. For each

substructure in the sentence we have a handcrafted feature vector fwi
and a dense embed-

ding vector ewi
. We represent each substructure as the outer product ⊗ between these two

vectors to produce a matrix, herein called a substructure embedding: hwi
= fwi

⊗ ewi
.

The features fwi
are based on the local context in S and annotations in A, which can in-

clude global information about the annotated sentence. These features allow the model to

promote different properties and to distinguish different functions of the words. Feature

engineering can be task specific, as relevant annotations can change with regards to each

task. In this work we utilize unlexicalized binary features common in relation extraction.

Figure 4.1 depicts the construction of a sentence’s substructure embeddings.

We further sum over the substructure embeddings to form an annotated sentence em-

bedding:

ex =
n∑

i=1

fwi
⊗ ewi

(4.1)

When both the handcrafted features and word embeddings are treated as inputs, as has

previously been the case in relation extraction, this annotated sentence embedding can be

used directly as features of a log-linear model. In fact, we find that the feature sets used in

prior work for many other NLP tasks are special cases of this simple construction (Turian et

4We use words as substructures for relation extraction, but use the general terminology to maintain model
generality.
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4.3. BACKGROUND: COMPOSITIONAL EMBEDDING MODEL

al., 2010; Nguyen and Grishman, 2014; Hermann et al., 2014; Roth and Woodsend, 2014).

This highlights an important connection: when the word embeddings are constant, the

constructions of substructure and annotated sentence embeddings are just specific forms of

polynomial (specifically quadratic) feature combination—hence their commonality in the

literature. The experimental results suggest that such a construction is more powerful than

directly including embeddings into the model.

4.3.2 The Log-Bilinear Model

The full log-bilinear model first forms the substructure and annotated sentence embeddings

from the previous subsection. The model uses its parameters to score the annotated sen-

tence embedding and uses a softmax to produce an output label. We call the entire model

the Feature-rich Compositional Embedding Model (FCM).

Our task is to determine the label y (relation) given the instance x = (M1,M2, S, A).

We formulate this as a probability.

P (y|x;T, e) = exp (
∑n

i=1 Ty ⊙ (fwi
⊗ ewi

))

Z(x)
(4.2)

where ⊙ is the ‘matrix dot product’ or Frobenious inner product of the two matrices.

The normalizing constant which sums over all possible output labels y′ ∈ L is given by

Z(x) =
∑

y′∈L exp (
∑n

i=1 Ty′ ⊙ (fwi
⊗ ewi

)). The parameters of the model are the word

embeddings e for each word type and a list of weight matrix T = [Ty]y∈L which is used

to score each label y. The model is log-bilinear 5 (i.e. log-quadratic) since we recover a

log-linear model by fixing either e or T . This chapter studies both the full log-bilinear and

the log-linear model obtained by fixing the word embeddings.

5Other popular log-bilinear models are the log-bilinear language models (Mnih and Hinton, 2007;
Mikolov et al., 2013).
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4.3. BACKGROUND: COMPOSITIONAL EMBEDDING MODEL

4.3.3 Discussion of the Compositional Model

Substructure Embeddings Similar words (i.e. those with similar embeddings) with sim-

ilar functions in the sentence (i.e. those with similar features) will have similar matrix rep-

resentations. To understand the selection of the outer product, consider the example in Fig.

4.1. The word “driving” can indicate the ART relation if it appears on the dependency path

between M1 and M2. Suppose the third feature in fwi
indicates this on-path feature.

The FCM can now learn parameters that give the third row a high weight for the ART la-

bel. Other words with embeddings similar to “driving” that appear on the dependency path

between the mentions will similarly receive high weight for the ART label. On the other

hand, if the embedding is similar but is not on the dependency path, it will have 0 weight.

Thus, the model generalizes its model parameters across words with similar embeddings

only when they share similar functions in the sentence.

Smoothed Lexical Features Another intuition about the selection of outer product is

that it is actually a smoothed version of traditional lexical features used in classical NLP

systems. Consider a lexical feature f = u∧w, which is a conjunction (logic-and) between

non-lexical property u and lexical part (word)w. If we representw as a one-hot vector, then

the outer product exactly recovers the original feature f . Then if we replace the one-hot

representation with its word embedding, we get the current form of the FCM. Therefore, the

model can be viewed as a smoothed version of lexical features, which keeps the expressive

strength, and uses embeddings to generalize to low frequency features.

Time Complexity Inference in FCM is much faster than both CNNs (Collobert et al.,

2011b) and RNNs (Socher et al., 2013b; Bordes et al., 2012). FCM requires O(snd) prod-

ucts on average with sparse features, where s is the average number of per-word non-zero

feature values, n is the length of the sentence, and d is the dimension of word embedding.

In contrast, CNNs and RNNs usually have complexity O(C · nd2), where C is a model
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dependent constant.

4.4 A Log-linear Model

Our log-linear model uses a rich binary feature set from Sun et al. (2011) (Baseline)—this

consists of all the baseline features of Zhou et al. (2005) plus several additional carefully-

chosen features that have been highly tuned for ACE-style relation extraction over years of

research. We exclude the Country gazetteer and WordNet features from Zhou et al. (2005).

For a detailed description of the features, we direct the reader to Zhou et al. (2005) and

Sun et al. (2011). Here, we provide a summary of the types of context considered by them:

• The words of each mention, their head words, and combinations of these

• Words in between the mentions plus indicators of the number of words intervening

• Words appearing immediately before or after the mentions

• Entity types and phrase types of the mentions

• Counts of the number of intervening mentions

• Indicators for whether the mentions overlap and their direction

• Features based on the heads of the chunks intervening between the mentions, before

or after the mentions

• Combinations of labels of the chunks between the mentions

• Features combining information from a dependency tree (e.g. head of mention, de-

pendent of mention) with entity type information

• Features combining information from a constituency tree (e.g. is head contained

within an NP) with entity type information

• Labels along shortest path through constituency tree

• Bigrams of the words in between the mentions

• The full sequence of words in between the mentions

• Labels of a high cut through the constituency tree
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Yi,j 

fwn

P(y|x)

fw1 ew1

hw1 hwn

ex

ewn

Figure 4.2: Factor graph of the hybrid model. The variable Yi,j ranges over possible rela-

tions for the ith and jth entity mentions in the sentence. The top factor (blue) multiplies in

the score according to a log-linear model. The bottom factor (red) multiplies in the score

of the FCM, a compositional embedding model—depicted here as a neural network.

• Parts-of-speech, words, or labels of the shortest dependency tree path between the

mentions

The features incorporate information from entity types, mention types, parts-of-speech, a

dependency tree, constituency tree, and chunking of the sentence.

The log-linear model has the usual form:

ploglin(y|x) ∝ exp(θ · f(x, y)) (4.3)

where θ are the model parameters and f(x, y) is a vector of features.

4.5 Hybrid Model

We present a hybrid model, which combines the FCM with an existing log-linear model.

We do so by defining a new model:

pFCM+loglin(y|x;T, e,θ) = 1

Z
pFCM(y|x;T, e)ploglin(y|x;θ) (4.4)
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The integration treats each model as providing a score which we multiply together. The

constant Z ensures a normalized distribution. We can view this as a very simple factor

graph (Section 2.3.1) consisting of just one variable and two factors—corresponding to the

two submodels. This representation of our hybrid model is shown in Figure 4.2.

To train we optimize a conditional log-likelihood objective (Section 2.3.4.1):

ℓ(D;T, e,θ) =
∑

(x,y)∈D
logP (y|x;T, e,θ)

where D is the set of all training data, e is the set of word embeddings, T is the FCM

tensor parameters, and θ are the parameters of the log-linear model. To optimize the

objective, for each instance (y,x) we perform stochastic training on the loss function

ℓ = ℓ(y,x;T, e,θ) = logP (y|x;T, e,θ).

The gradients of the model parameters are obtained by backpropagation (Section 2.2.2)

(i.e. repeated application of the chain rule). For the hybrid model, this is easily computed

since each sub-model has separate parameters. When we treat the word embeddings as

parameters (i.e. the log-bilinear FCM), we also fine-tune the word embeddings with the

FCM model. As is common in deep learning, we initialize these embeddings from a neural

language model and then fine-tune them for our supervised task.

4.6 Main Experiments

Our primary experiments consider two settings: relation extraction on ACE 2005 and rela-

tion classification on SemEval-2010 Task 8.

4.6.1 Experimental Settings

Features Our FCM features (Table 4.2) use a feature vector fwi
over the word wi, the

two target entities M1,M2, and their dependency path. Here h1, h2 are the indices of the
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Set Template
HeadEmb {I[i = h1], I[i = h2]}

(wi is head of M1/M2) ×{ϕ, th1 , th2 , th1 ⊕ th2}
Context I[i = h1 ± 1] (left/right token of wh1)

I[i = h2 ± 1] (left/right token of wh2)
In-between I[i > h1]&I[i < h2] (in between )

×{ϕ, th1 , th2 , th1 ⊕ th2}
On-path I[wi ∈ P ] (on path)

×{ϕ, th1 , th2 , th1 ⊕ th2}

Table 4.2: Feature sets used in FCM.

two head words of M1,M2, × refers to the Cartesian product between two sets, th1 and

th2 are entity types (named entity tags for ACE 2005 or WordNet supertags for SemEval

2010) of the head words of two entities, and ϕ stands for the empty feature. ⊕ refers to the

conjunction of two elements. The In-between features indicate whether a word wi is in

between two target entities, and the On-path features indicate whether the word is on the

dependency path, on which there is a set of words P , between the two entities.

We also use the target entity type as a feature. Combining this with the basic features

results in more powerful compound features, which can help us better distinguish the func-

tions of word embeddings for predicting certain relations. For example, if we have a person

and a vehicle, we know it will be more likely that they have an ART relation. For the ART

relation, we introduce a corresponding weight vector, which is closer to lexical embeddings

similar to the embedding of “drive”.

All linguistic annotations needed for features (POS, chunks6, parses) are from Stan-

ford CoreNLP (Manning et al., 2014). Since SemEval does not have gold entity types we

obtained WordNet and named entity tags using Ciaramita and Altun (2006). For all exper-

iments we use 200-d word embeddings trained on the NYT portion of the Gigaword 5.0

corpus (Parker et al., 2011), with word2vec (Mikolov et al., 2013). We use the CBOW

model with negative sampling (15 negative words). We set a window size c=5, and remove

types occurring less than 5 times.

6Obtained from the constituency parse using the CONLL 2000 chunking converter (Perl script).
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Models We consider several methods. (1) FCM in isolation without fine-tuning. (2) FCM

in isolation with fine-tuning (i.e. trained as a log-bilinear model). (3) the log-linear model

alone (Section 4.4). The two remaining methods are hybrid models that integrate FCM as a

submodel within the hybrid model (Section 4.5). We consider two combinations. (4) The

feature set of Nguyen and Grishman (2014) obtained by using the embeddings of heads of

two entity mentions (+HeadOnly). (5) Our full FCM model (+FCM). All models use L2

regularization tuned on dev data.

Datasets and Evaluation

ACE 2005 We evaluate our relation extraction system on the English portion of the ACE

2005 corpus (Walker et al., 2006).7 There are 6 domains: Newswire (nw), Broadcast Con-

versation (bc), Broadcast News (bn), Telephone Speech (cts), Usenet Newsgroups (un),

and Weblogs (wl). Following prior work we focus on the domain adaptation setting, where

we train on one set (the union of the news domains (bn+nw), tune hyperparameters8 on

a dev domain (half of bc) and evaluate on the remainder (cts, wl, and the remainder of

bc) (Plank and Moschitti, 2013; Nguyen and Grishman, 2014). The LDC release of the

ACE data contains four distinct annotations: fp1, fp2, adj, timex2norm. Following Plank

and Moschitti (2013), we use the adjudicated fileset (adj) – these are files which were an-

notated twice and for which discrepancies were resolved.

We assume that gold entity spans and types are available for train and test. We use all

pairs of entity mentions to yield 43,497 total relations in the training set, of which 3,658

are non-nil. One curious aspect of the ACE data is that some relations are self-referential.

7Many relation extraction systems evaluate on the ACE 2004 corpus (Mitchell et al., 2005). Unfortunately,
the most common convention is to use 5-fold cross validation, treating the entirety of the dataset as both
train and evaluation data. Rather than continuing to overfit this data by perpetuating the cross-validation
convention, we instead focus on ACE 2005.

8For each ACE 2005 model, we performed a grid-search over hyperparameters and selected the model
which obtained the highest F1 on the development set. There were four hyperparameters tuned by the grid
search: (1) the variance of the L2 regularizer σ2 ∈ {40000, 400000}, (2) a constant γ ∈ {0.1, 1, 10} used
to scale the initial embeddings after they were renormalized to sum-to-one, (3) the AdaGrad learning rate
η ∈ {0.01, 0.1}, and (4) AdaGrad’s initial value for the sum of the squares δ ∈ {0.1, 1}.
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That is, the pair of entities is some entity and itself. We also included these self-referential

relations so that the number of non-nil relations would be identical to that reported in the

original ACE dataset. We did not include any negative examples of self-referential rela-

tions. We followed Table 6 of the ACE 2005 annotation guidelines to determine which of

the relations should be treated as symmetric (METONYMY, PER-SOC, and PHYS) and

asymmetric (ART, GEN-AFF, ORG-AFF, and PART-WHOLE). The nil relation is treated

as symmetric. Thus, the total output space for our models would be 12 labels, but the

METONYMY relation never appears in any explicit relation mentions in the ACE dataset.

So the total number of observed labels in the training data is only 11. We report precision,

recall, and micro F1 for relation extraction. While it is not our focus, for completeness

we include results with unknown entity types following Plank and Moschitti (2013) (Sec-

tion 4.7).

SemEval 2010 Task 8 We evaluate on the SemEval 2010 Task 8 dataset9 (Hendrickx et

al., 2010) to compare with other compositional models and highlight the advantages of our

models. This task is to determine the relation type (or no relation) between two entities in

a sentence. We adopt the setting of Socher et al. (2012). We use 10-fold cross validation

on the training data to select hyperparameters and do regularization by early stopping. The

learning rates for FCM with/without fine-tuning are 5e-3 and 5e-2 respectively. We report

macro-F1 and compare to previously published results.

As noted earlier, we distinguish between two tasks: ACE 2005 relation extraction and

SemEval 2010 Task 8 relation classification. The key distinction between them is the pro-

portion of entity pairs that are labeled as having no relation. In the ACE 2005 training set,

only 10.1% of training instances are non-nil relations, the rest are nil. In the SemEval data,

82.6% of the instances are labeled with one of the 9 standard relations and 17.4% relations

are labeled as Other (a category which could include nil relations).

9
http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw
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4.6. MAIN EXPERIMENTS

4.6.2 Results

ACE 2005 Despite FCM’s (1) simple feature set, it is competitive with the log-linear

baseline (3) on out-of-domain test sets (Table 4.3). In the typical gold entity spans and types

setting, both Plank and Moschitti (2013) and Nguyen and Grishman (2014) found that they

were unable to obtain improvements by adding embeddings to baseline feature sets. By

contrast, we find that on all domains the combination baseline + FCM (5) obtains the highest

F1 and significantly outperforms the other baselines, yielding the best reported results for

this task. We found that fine-tuning of embeddings (2) did not yield improvements on our

out-of-domain development set, in contrast to our results below for SemEval. We suspect

this is because fine-tuning allows the model to overfit the training domain, which then

hurts performance on the unseen ACE test domains. Accordingly, Table 4.3 shows only the

log-linear model.

Finally, we highlight an important contrast between FCM (1) and the log-linear model

(3): the latter uses over 50 feature templates based on a POS tagger, dependency parser,

chunker, and constituency parser. FCM uses only a dependency parse but still obtains better

results (Avg. F1).

SemEval 2010 Task 8 Table 4.4 compares our models to the best reported results from

the SemEval-2010 Task 8 shared task and several other compositional models.

For the FCM we considered two feature sets. We found that using NE tags instead

of WordNet tags helps with fine-tuning but hurts without. This may be because the set

of WordNet tags is larger making the model more expressive, but also introduces more

parameters. When the embeddings are fixed, they can help to better distinguish different

functions of embeddings. But when fine-tuning, it becomes easier to over-fit. Alleviating

over-fitting is a subject for future work (Section 4.9).

With either WordNet or NER features, FCM achieves better performance than the RNN

and MVRNN. With NER features and fine-tuning, it outperforms a CNN (Zeng et al.,
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2014) and also the combination of an embedding model and a traditional log-linear model

(RNN/MVRNN + linear) (Socher et al., 2012). As with ACE, FCM uses less linguistic

resources than many close competitors (Rink and Harabagiu, 2010).

We also compared to concurrent work on enhancing the compositional models with

task-specific information for relation classification, including Hashimoto et al. (2015) (RelEmb),

which trained task-specific word embeddings, and Santos et al. (2015) (CR-CNN), which

proposed a task-specific ranking-based loss function. Our Hybrid methods (FCM + linear)

get comparable results to theirs. Note that their base compositional model results without

any task-specific enhancements, i.e. RelEmb with word2vec embeddings and CR-CNN

with log-loss, are still lower than the best FCM result. Our main finding is that the hybrid

model again performs better than either of its submodels alone.

Finally, a concurrent work (Liu et al., 2015) proposes DepNN, which builds representa-

tions for the dependency path (and its attached subtrees) between two entities by applying

recursive and convolutional neural networks successively. Compared to their model, the

FCM achieves comparable results. Of note, the FCM and the RelEmb are also the most effi-

cient models among all above compositional models since they have linear time complexity

with respect to the dimension of embeddings.

4.7 Additional ACE 2005 Experiments

Next we present results in a distinct setting for ACE 2005 in which the gold entity types are

not available. This allows for additional comparison with prior work (Plank and Moschitti,

2013).

4.7.1 Experimental Settings

Data For comparison with Plank and Moschitti (2013), we (1) generate relation instances

from all pairs of entities within each sentence with three or fewer intervening entity mentions—
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labeling those pairs with no relation as negative instances, (2) use gold entity spans (but not

types) at train and test time, and (3) evaluate on the 7 coarse relation types, ignoring the

subtypes. In the training set, 34,669 total relations are annotated of which only 3,658 are

non-nil relations. We did not match the number of tokens they reported in the cts and wl

domains. Therefore, in this section we only report the results on the test set of bc domain.

We will leave experiments on additional domains to future work.

Models and Features We run the same models as in Section 4.6.2 on this task. Here

the FCM does not use entity type features. Plank and Moschitti (2013) also use Brown

clusters and word vectors learned by latent-semantic analysis (LSA). In order to make a fair

comparison with their method, we also report the FCM result using Brown clusters (prefixes

of length 5) of entity heads as entity types. Furthermore, we report non-comparable settings

using WordNet super-sense tags of entity heads as types. The WordNet features were also

used in their paper but not as substitution of entity types. We use the same toolkit to get the

WordNet tags as in Section 4.6.1. The Brown clusters are from (Koo et al., 2008)10.

4.7.2 Results

Table 4.5 shows the results under the low-resource setting. When no entity types are avail-

able, the performance of the FCM only model greatly decreases to 48.15%, which is con-

sistent with our observation in the ablation tests. The baseline model also relies heavily on

the entity types. After we remove all the hand-engineering features that contain entity type

information, the performance of our baseline model drop to 40.62%, even lower than the

reduced FCM only model.

The combination of baseline model and head embeddings (Baseline + HeadOnly) greatly

improve the results. This is consistent with the observation in Nguyen and Grishman (2014)

that when the gold entity types are unknown, information of the entity heads provided by

10http://people.csail.mit.edu/maestro/papers/bllip-clusters.gz

89

 http://people.csail.mit.edu/maestro/papers/bllip-clusters.gz


4.8. RELATED WORK

their embeddings will play a more important role. Combination of the baseline and FCM

(Baseline + FCM) also achieves improvement but not significantly better than Baseline +

HeadOnly. A possible explanation is that FCM becomes less efficient on using context

word embeddings when the entity type information is unavailable. In this situation the

head embeddings provided by FCM become the dominating contribution to the baseline

model, making the model have similar behavior as the Baseline + HeadOnly method.

Finally, we find Brown clusters can help FCM when entity types are unknown. Although

the performance is still not significantly better than Baseline + HeadOnly, it outperforms

all the results in Plank and Moschitti (2013) as a single model, and with the same source

of features. WordNet super-sense tags further improve FCM, and achieves the best reported

results on this low-resource setting. These results are encouraging since it shows FCM may

be more useful under the end-to-end setting where predictions of both entity mentions and

relation mentions are required in place of predicting relation based on gold tags (Li and Ji,

2014).

Recently Nguyen et al. (2015) proposed a novel way of applying embeddings to tree-

kernels. From the results, our best single model achieves comparable result with their best

single system, while their combination method is slightly better than ours. This suggests

that we may benefit more from combining the usages of multiple word representations; and

we will investigate it in future work.

4.8 Related Work

Compositional Models for Sentences In order to build a representation (embedding)

for a sentence based on its component word embeddings and structural information, recent

work on compositional models (stemming from the deep learning community) has designed

model structures that mimic the structure of the input. For example, these models could

take into account the order of the words (as in Convolutional Neural Networks (CNNs))
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bc
Model P R F1
PM’13 (Brown) 54.4 43.4 48.3
PM’13 (LSA) 53.9 45.2 49.2
PM’13 (Combination) 55.3 43.1 48.5
(1) FCM only 53.7 43.7 48.2
(3) Baseline 59.4 30.9 40.6
(4) + HeadOnly 64.9 41.3 50.5
(5) + FCM 65.5 41.5 50.8
(1) FCM only w/ Brown 64.6 40.2 49.6
(1) FCM only w/WordNet 64.0 43.2 51.6
Linear+Emb 46.5 49.3 47.8
Tree-kernel+Emb (Single) 57.6 46.6 51.5
Tree-kernel+Emb (Combination) 58.5 47.3 52.3

Table 4.5: Comparison of models on ACE 2005 out-of-domain test sets for the low-resource
setting, where the gold entity spans are known but entity types are unknown. PM’13 is the
results reported in Plank and Moschitti (2013). “Linear+Emb” is the implementation of our
method (4) in (Nguyen et al., 2015). The “Tree-kernel+Emb” methods are the enrichments
of tree-kernels with embeddings proposed by Nguyen et al. (2015).

(Collobert et al., 2011b) or build off of an input tree (as in Recursive Neural Networks

(RNNs) or the Semantic Matching Energy Function) (Socher et al., 2013b; Bordes et al.,

2012).

While these models work well on sentence-level representations, the nature of their

designs also limits them to fixed types of substructures from the annotated sentence, such as

chains for CNNs and trees for RNNs. Such models cannot capture arbitrary combinations

of linguistic annotations available for a given task, such as word order, dependency tree,

and named entities used for relation extraction. Moreover, these approaches ignore the

differences in functions between words appearing in different roles. This does not suit more

general substructure labeling tasks in NLP, e.g. these models cannot be directly applied to

relation extraction since they will output the same result for any pair of entities in a same

sentence.

Compositional Models with Annotation Features To tackle the problem of traditional

compositional models, Socher et al. (2012) made the RNN model specific to relation extrac-
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tion tasks by working on the minimal subtree that spans the two target entities. However,

these specializations to relation extraction does not generalize easily to other tasks in NLP.

There are two ways to achieve such specialization in a more general fashion:

1. Enhancing Compositional Models with Features. A recent trend enhances composi-

tional models with annotation features. Such an approach has been shown to significantly

improve over pure compositional models. For example, Hermann et al. (2014) and Nguyen

and Grishman (2014) gave different weights to words with different syntactic context types

or to entity head words with different argument IDs. Zeng et al. (2014) use concatenations

of embeddings as features in a CNN model, according to their positions relative to the target

entity mentions. Belinkov et al. (2014) enrich embeddings with linguistic features before

feeding them forward to a RNN model. Socher et al. (2013a) and Hermann and Blunsom

(2013) enhanced RNN models by refining the transformation matrices with phrase types

and CCG super tags.

2. Engineering of Embedding Features. A different approach to combining traditional

linguistic features and embeddings is hand-engineering features with word embeddings and

adding them to log-linear models. Such approaches have achieved state-of-the-art results

in many tasks including NER, chunking, dependency parsing, semantic role labeling, and

relation extraction (Miller et al., 2004; Turian et al., 2010; Koo et al., 2008; Roth and

Woodsend, 2014; Sun et al., 2011; Plank and Moschitti, 2013). Roth and Woodsend (2014)

considered features similar to ours for semantic role labeling.

However, in prior work both of above approaches are only able to utilize limited infor-

mation, usually one property for each word. Yet there may be different useful properties

of a word that can contribute to the performances of the task. By contrast, our model can

easily utilize these features without changing the model structures.

Task-Specific Enhancements for Relation Classification An orthogonal direction of

improving compositional models for relation classification is to enhance the models with
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task-specific information. For example, Hashimoto et al. (2015) trained task-specific word

embeddings, and Santos et al. (2015) proposed a ranking-based loss function for relation

classification.

4.9 Summary

We have presented a new hybrid model for combining a log-linear model with the FCM, a

compositional model for deriving sentence-level and substructure embeddings from word

embeddings. Compared to existing compositional models, our hybrid model can easily han-

dle arbitrary types of input and handle global information for composition, while remaining

easy to implement. We have demonstrated that the compositional model FCM alone attains

near state-of-the-art performances on several relation extraction tasks, and in combination

with traditional feature based log-linear models it obtains state-of-the-art results.
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Chapter 5

Approximation-aware Learning for

Structured Belief Propagation

Having motivated the use of latent variables, structured factors, and neural factors, we turn

to the remaining problem: learning with inexact inference. Of course, it is possible to

build effective models without resorting to inexact inference—the previous two chapters

exemplified this fact. However, joint modeling is fundamentally about enabling factors that

express opinions about wider contexts of variables. Doing so is what leads to the sort of

high treewidth models that require approximate inference.

This chapter1 develops a learning framework that will cope with inexact marginal in-

ference in the types of structured models that we care about. Viewed under a different lens,

this chapter is about defining new models that resemble neural networks whose topology is

inspired by structured belief propagation run on a graphical model. Though joint modeling

is our end goal, we currently consider a simpler class of models for which approximate

inference is fast, but for which we also have efficient exact inference algorithms. This

allows us to better study the behavior of our new learning algorithm for structured belief

propagation.

1A previous version of this work was presented in Gormley et al. (2015a).
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We show how to train the fast dependency parser of Smith and Eisner (2008) for im-

proved accuracy. This parser can consider higher-order interactions among edges while re-

taining O(n3) runtime. It outputs the parse with maximum expected recall—but for speed,

this expectation is taken under a posterior distribution that is constructed only approxi-

mately, using loopy belief propagation through structured factors. We show how to adjust

the model parameters to compensate for the errors introduced by this approximation, by

following the gradient of the actual loss on training data. We find this gradient by back-

propagation. That is, we treat the entire parser (approximations and all) as a differentiable

circuit, as others have done for loopy CRFs (Domke, 2010; Stoyanov et al., 2011; Domke,

2011; Stoyanov and Eisner, 2012). The resulting parser obtains higher accuracy with fewer

iterations of belief propagation than one trained by conditional log-likelihood.

5.1 Introduction

Recent improvements to dependency parsing accuracy have been driven by higher-order

features. Such a feature can look beyond just the parent and child words connected by a

single edge to also consider siblings, grandparents, etc. By including increasingly global

information, these features provide more information for the parser—but they also com-

plicate inference. The resulting higher-order parsers depend on approximate inference and

decoding procedures, which may prevent them from predicting the best parse.

For example, consider the dependency parser we will train in this chapter, which is

based on the work of Smith and Eisner (2008). Ostensibly, this parser finds the minimum

Bayes risk (MBR) parse under a probability distribution defined by a higher-order depen-

dency parsing model. In reality, it achieves O(n3tmax) runtime by relying on three approx-

imations during inference: (1) variational inference by loopy belief propagation (BP) on

a factor graph, (2) truncating inference after tmax iterations prior to convergence, and (3)

a first-order pruning model to limit the number of edges considered in the higher-order

95



5.1. INTRODUCTION

model. Such parsers are traditionally trained as if the inference had been exact.2

In contrast, we train the parser such that the approximate system performs well on the

final evaluation function. We treat the entire parsing computation as a differentiable circuit,

and backpropagate the evaluation function through our approximate inference and decoding

methods to improve its parameters by gradient descent. The system also learns to cope

with model misspecification, where the model couldn’t perfectly fit the distribution even

absent the approximations. For standard graphical models, Stoyanov and Eisner (2012)

call this approach ERMA, for “empirical risk minimization under approximations.” For

objectives besides empirical risk, Domke (2011) refers to it as “learning with truncated

message passing.”

Our primary contribution is the application of this approximation-aware learning method

in the parsing setting, for which the graphical model involves a global constraint. Smith

and Eisner (2008) previously showed how to run BP in this setting (by calling the inside-

outside algorithm as a subroutine). We must backpropagate the downstream objective func-

tion through their algorithm so that we can follow its gradient. We carefully define an em-

pirical risk objective function (à la ERMA) to be smooth and differentiable, yet equivalent

to accuracy of the minimum Bayes risk (MBR) parse in the limit. Finding this difficult to

optimize, we introduce a new simpler objective function based on the L2 distance between

the approximate marginals and the “true” marginals from the gold data.

The goal of this work is to account for the approximations made by a system rooted

in structured belief propagation. Taking such approximations into account during training

enables us to improve the speed and accuracy of inference at test time. We compare our

training method with the standard approach of conditional log-likelihood (CLL) training.

We evaluate our parser on 19 languages from the CoNLL-2006 (Buchholz and Marsi, 2006)

and CoNLL-2007 (Nivre et al., 2007) Shared Tasks as well as the English Penn Treebank

(Marcus et al., 1993). On English, the resulting parser obtains higher accuracy with fewer

2For perceptron training, utilizing inexact inference as a drop-in replacement for exact inference can badly
mislead the learner (Kulesza and Pereira, 2008; Huang et al., 2012).
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Figure 5.1: Factor graph for dependency parsing of a 4-word sentence; $ is the root of

the dependency graph. The boolean variable Yh,m encodes whether the edge from parent

h to child m is present. The unary factor (black) connected to this variable scores the

edge in isolation (given the sentence). The PTREE factor (red) coordinates all variables to

ensure that the edges form a tree. The drawing shows a few higher-order factors (purple for

grandparents, green for arbitrary siblings); these are responsible for the graph being cyclic

(“loopy”).

iterations of BP than CLL. On the CoNLL languages, we find that on average it yields

higher accuracy parsers than CLL, particularly when limited to few BP iterations.

5.2 Dependency Parsing by Belief Propagation

This section describes the parser that we will train.

Model A factor graph (Frey et al., 1997; Kschischang et al., 2001) (as described in Sec-

tion 2.3.1) defines the factorization of a probability distribution over a set of variables

{Y1, Y2, . . .}. It is a bipartite graph between variables Yi and factors α. Edges connect

each factor α to a subset of the variables {Yα1 , Yα2 , . . .}, called its neighbors. Each fac-

tor defines a potential function ψα, which assigns a nonnegative score to each configura-
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tion of its neighbors yα = {yα1 , yα2 , . . .}. We define the probability of a given assign-

ment y = {y1, y2, . . .} to be proportional to the product of all factors’ potential functions:

p(y) = 1
Z

∏
α ψα(yα).

Smith and Eisner (2008) define a factor graph for dependency parsing of a given n-word

sentence: n2 binary variables indicate which of the directed arcs are included (yi = ON)

or excluded (yi = OFF) in the dependency parse. One of the factors plays the role of a hard

global constraint: ψPTREE(y) is 1 or 0 according to whether the assignment encodes a pro-

jective dependency tree. Another n2 factors (one per variable) evaluate the individual arcs

given the sentence, so that p(y) describes a first-order dependency parser. A higher-order

parsing model is achieved by also including higher-order factors, each scoring configu-

rations of two or more arcs, such as grandparent and sibling configurations. Higher-order

factors tend to create cycles in the factor graph. See Figure 5.1 for an example factor graph.

We define each potential function to have a log-linear form: ψα(yα) = exp(θ·fα(yα,x)).

Here x is the assignment to the observed variables such as the sentence and its POS tags;

fα extracts a vector of features; and θ is our vector of model parameters. We write the

resulting probability distribution over parses as pθ(y | x), to indicate that it depends on θ.

Loss For dependency parsing, our loss function is the number of missing edges in the

predicted parse ŷ, relative to the reference (or “gold”) parse y∗:

ℓ(ŷ,y∗) =
∑

i: ŷi=OFF I(y∗i = ON) (5.1)

I is the indicator function. Because ŷ and y∗ each specify exactly one parent per word

token, ℓ(ŷ,y∗) equals the directed dependency error: the number of word tokens whose

parent is predicted incorrectly.

Decoder To obtain a single parse as output, we use a minimum Bayes risk (MBR) de-

coder (Section 2.3.2 contained a more general discussion of MBR decoding), which returns
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the tree with minimum expected loss under the model’s distribution (Bickel and Doksum,

1977; Goodman, 1996). Our ℓ gives the decision rule:

hθ(x) = argmin
ŷ

Ey∼pθ(·|x)[ℓ(ŷ,y)] (5.2)

= argmax
ŷ

∑

i: ŷi=ON

pθ(yi = ON | x) (5.3)

Here ŷ ranges over well-formed parses. Thus, our parser seeks a well-formed parse hθ(x)

whose individual edges have a high probability of being correct according to pθ (since it

lacks knowledge y∗ of which edges are truly correct). MBR is the principled way to take a

loss function into account under a probabilistic model. By contrast, maximum a posteriori

(MAP) decoding does not consider the loss function. It would return the single highest-

probability parse even if that parse, and its individual edges, were unlikely to be correct.3

All systems in this chapter use MBR decoding to consider the loss function at test

time. This implies that the ideal training procedure would be to find the true pθ so that its

marginals can be used in (5.3). Our baseline system attempts this. Yet in practice, we will

not be able to find the true pθ (model misspecification) nor exactly compute the marginals

of pθ (computational intractability). Thus, this chapter proposes a training procedure that

compensates for the system’s approximations, adjusting θ to reduce the actual loss of hθ(x)

as measured at training time.

To find the MBR parse, we first run inference to compute the marginal probability

pθ(yi = ON | x) for each edge. Then we maximize (5.3) by running a first-order depen-

dency parser with edge scores equal to those probabilities.4 When our inference algorithm

is approximate, we replace the exact marginal with its approximation—the belief from BP,

given by bi(ON) in (5.6) below.

3If we used a simple 0-1 loss function within (5.2), then MBR decoding would reduce to MAP decoding.
4Prior work (Smith and Eisner, 2008; Bansal et al., 2014) used the log-odds ratio log pθ(yi=ON)

pθ(yi=OFF) as the
edge scores for decoding, but this yields a parse different from the MBR parse.
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Inference Loopy belief propagation (BP) (Murphy et al., 1999) computes approxima-

tions to the variable marginals pθ(yi | x) =
∑

y′:y′i=yi
pθ(y

′ | x), as needed by (5.3), as

well as the factor marginals pθ(yα | x) = ∑y′:y′
α=yα

pθ(y
′ | x). We reiterate the key de-

tails from Section 2.3.3 for the reader’s convenience. The algorithm proceeds by iteratively

sending messages from variables, yi, to factors, α:

m
(t)
i→α(yi) ∝

∏

β∈N (i)\α
m

(t−1)
β→i (yi) (5.4)

and from factors to variables:

m
(t)
α→i(yi) ∝

∑

yα∼yi
ψα(yα)

∏

j∈N (α)\i
m

(t−1)
j→α (yi) (5.5)

where N (i) and N (α) denote the neighbors of yi and α respectively, and where yα ∼ yi

is standard notation to indicate that yα ranges over all assignments to the variables partici-

pating in the factor α provided that the ith variable has value yi. Note that the messages at

time t are computed from those at time (t− 1). Messages at the final time tmax are used to

compute the beliefs at each factor and variable:

bi(yi) ∝
∏

α∈N (i)

m
(tmax)
α→i (yi) (5.6)

bα(yα) ∝ ψα(yα)
∏

i∈N (α)

m
(tmax)
i→α (yi) (5.7)

We assume each of the messages and beliefs given in (5.4)–(5.7) are scaled to sum-to-one.

For example, bi is normalized such that
∑

yi
bi(yi) = 1 and approximates the marginal

distribution over yi values. Messages continue to change indefinitely if the factor graph is

cyclic, but in the limit, the messages may converge. Although the equations above update

all messages in parallel, convergence is much faster if only one message is updated per
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timestep, in some well-chosen serial order.5

For the PTREE factor, the summation over variable assignments required for m(t)
α→i(yi)

in Eq. (5.5) equates to a summation over exponentially many projective parse trees. How-

ever, we can use an inside-outside variant of Eisner (1996)’s algorithm to compute this in

polynomial time (we describe this as hypergraph parsing in §5.3). The resulting “struc-

tured BP” inference procedure—detailed by Smith and Eisner (2008) and described in Sec-

tion 2.3.3.4—is exact for first-order dependency parsing. When higher-order factors are

incorporated, it is approximate but remains fast, whereas exact inference would be slow.6

5.3 Approximation-aware Learning

We aim to find the parameters θ∗ that minimize a regularized objective function over the

training sample of (sentence, parse) pairs {(x(d),y(d))}Dd=1.

θ∗ = argmin
θ

1

D

(( D∑

d=1

J(θ;x(d),y(d))
)
+
λ

2
||θ||22

)
(5.8)

where λ > 0 is the regularization coefficient and J(θ;x,y∗) is a given differentiable func-

tion, possibly nonconvex. We locally minimize this objective using ℓ2-regularized Ada-

Grad with Composite Mirror Descent (Duchi et al., 2011)—a variant of stochastic gradient

descent that uses mini-batches, an adaptive learning rate per dimension, and sparse lazy

updates from the regularizer.7

5Following Dreyer and Eisner (2009) footnote 22, we choose an arbitrary directed spanning tree of the
factor graph rooted at the PTREE factor. We visit the nodes in topologically sorted order (from leaves to root)
and update any message from the node being visited to a node that is later in the order. We then reverse this
order and repeat, so that every message has been passed once. This constitutes one iteration of BP.

6How slow is exact inference for dependency parsing? For certain choices of higher-order factors, poly-
nomial time is possible via dynamic programming (McDonald et al., 2005; Carreras, 2007; Koo and Collins,
2010). However, BP will typically be asymptotically faster (for a fixed number of iterations) and faster in
practice. In some other settings, exact inference is NP-hard. In particular, non-projective parsing becomes
NP-hard with even second-order factors (McDonald and Pereira, 2006). BP can handle this case in polyno-
mial time by replacing the PTREE factor with a TREE factor that allows edges to cross.

7θ is initialized to 0 when not otherwise specified.
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Objective Functions The standard choice for J is the negative conditional log-likelihood

(§5.6). However, as in Stoyanov et al. (2011), our aim is to minimize expected loss on the

true data distribution over sentence/parse pairs (X, Y ):

θ∗ = argminθ E[ℓ(hθ(X), Y )] (5.9)

Since the true data distribution is unknown, we substitute the expected loss over the training

sample, and regularize our objective in order to reduce sampling variance. Specifically, we

aim to minimize the regularized empirical risk, given by (6.7) with J(θ;x(d),y(d)) set to

ℓ(hθ(x
(d)),y(d)). Note that this loss function would not be differentiable—a key issue we

will take up below. This is the “ERMA” method of Stoyanov and Eisner (2012). We will

also consider simpler choices of J—akin to the loss functions used by Domke (2011).

Gradient Computation To compute the gradient ∇θJ(θ;x,y
∗) of the loss on a single

sentence (x,y∗) = (x(d),y(d)), we apply automatic differentiation (AD) in the reverse

mode (Griewank and Corliss, 1991). This yields the same type of “back-propagation”

algorithm that has long been used for training neural networks (Rumelhart et al., 1986). It is

important to note that the resulting gradient computation algorithm is exact up to floating-

point error, and has the same asymptotic complexity as the original decoding algorithm,

requiring only about twice the computation. The AD method applies provided that the

original function is indeed differentiable with respect to θ. In principle, it is possible to

compute the gradient with minimal additional coding. There exists AD software (some

listed at autodiff.org) that could be used to derive the necessary code automatically.

Another option would be to use the perturbation method of Domke (2010). However, we

implemented the gradient computation directly, and we describe it here.

Inference, Decoding, and Loss as a Feedforward Circuit The backpropagation algo-

rithm is often applied to neural networks, where the topology of a feedforward circuit is
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statically specified and can be applied to any input. Our BP algorithm, decoder, and loss

function similarly define a feedforward circuit that computes our function J . The circuit’s

depth depends on the number of BP timesteps, tmax. Its topology is defined dynamically

(per sentence x(d)) by “unrolling” the computation into a graph.

Figure 5.2 shows this topology. The high level modules consist of (A) computing

potential functions, (B) initializing messages, (C) sending messages, (D) computing be-

liefs, and (E) decoding and computing the loss. We zoom in on two submodules: the first

computes messages from the PTREE factor efficiently (C.1–C.3); the second computes a

softened version of our loss function (E.1–E.3). Both of these submodules are made effi-

cient by the inside-outside algorithm.

The next two sections describe in greater detail how we define the function J (the for-

ward pass) and how we compute its gradient (the backward pass). Backpropagation through

the circuit from Figure 5.2 poses several challenges. Eaton and Ghahramani (2009), Stoy-

anov et al. (2011), and Domke (2011) showed how to backpropagate through the basic BP

algorithm, and we reiterate the key details below (§5.5.2). The remaining challenges form

the primary technical contribution of this chapter:

1. Our true loss function ℓ(hθ(x),y∗) by way of the decoder hθ contains an argmax

(5.3) over trees and is therefore not differentiable. We show how to soften this de-

coder (by substituting a softmax), making it differentiable (§5.4.1).

2. Empirically, we find the above objective difficult to optimize. To address this, we

substitute a simpler L2 loss function (commonly used in neural networks). This is

easier to optimize and yields our best parsers in practice (§5.4.2).

3. We show how to run backprop through the inside-outside algorithm on a hypergraph

(§5.5.4) for use in two modules: the softened decoder (§5.5.1) and computation of

messages from the PTREE factor (§5.5.3). This allows us to go beyond Stoyanov et

al. (2011) and train structured BP in an approximation-aware and loss-aware fashion.
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(E) Decode and Loss

J(θ;x,y∗) =
(E.3) Expected Recall

(E.2) Inside-Outside

(E.1) Anneal Beliefs

(D) Beliefs
bi(yi) = . . ., bα(yα) = . . .

(C) Messages at time tmax

m
(tmax)
i→α (yi) = . . ., m(tmax)

α→i (yi) = . . .

m
(tmax)
PTREE→i(yi) =

(C.3) Outgoing Messages

(C.2) Inside-Outside

(C.1) Message Ratios

· · ·

(C) Messages at time t
m

(t)
i→α(yi) = . . ., m(t)

α→i(yi) = . . .

m
(t)
PTREE→i(yi) =

(C.3) Outgoing Messages

(C.2) Inside-Outside

(C.1) Message Ratios

· · ·

(C) Messages at time t = 1

m
(1)
i→α(yi) = . . ., m(1)

α→i(yi) = . . .

m
(1)
PTREE→i(yi) =

(C.3) Outgoing Messages

(C.2) Inside-Outside

(C.1) Message Ratios

(A) Compute Potentials
ψα(yα) = exp(θ · f(yα,x))

(B) Initial Messages
m

(0)
i→α(yi) = 1

m
(0)
α→i(yi) = 1

(C.3) Outgoing Messages

(C.2) Inside-Outside

(C.1) Message Ratios

(E.3) Expected Recall

(E.2) Inside-Outside

(E.1) Anneal Beliefs

Figure 5.2: Feed-forward topology of inference, decoding, and loss. (E.1–E.3) show the
annealed risk, one of the objective functions we consider.

5.4 Differentiable Objective Functions

5.4.1 Annealed Risk

Minimizing the test-time loss is the appropriate goal for training an approximate system

like ours. That loss is estimated by the empirical risk on a large amount of in-domain

supervised training data.

Alas, this risk is nonconvex and piecewise constant, so we turn to deterministic an-

nealing (Smith and Eisner, 2006) and clever initialization. Directed dependency error,
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ℓ(hθ(x),y
∗), is not differentiable due to the argmax in the decoder hθ. So we redefine

J(θ;x,y∗) to be a new differentiable loss function, the annealed risk R1/T
θ (x,y∗), which

approaches the loss ℓ(hθ(x),y∗) as the temperature T → 0. Our first step is to define a

distribution over parses, which takes the marginals pθ(yi = ON | x) as input, or in practice,

their BP approximations bi(ON):

q
1/T
θ (ŷ | x) ∝ exp

(∑
i:ŷi=ON

pθ(yi=ON|x)
T

)
(5.10)

Using this distribution, we can replace our non-differentiable decoder hθ with a differen-

tiable one (at training time). Imagine that our new decoder stochastically returns a parse

ŷ sampled from this distribution. We define the annealed risk as the expected loss of that

decoder:

R
1/T
θ (x,y∗) = E

ŷ∼q1/Tθ (·|x)[ℓ(ŷ,y
∗)] (5.11)

As T → 0 (“annealing”), the decoder almost always chooses the MBR parse,8 so our risk

approaches the loss of the actual MBR decoder that will be used at test time. However, as

a function of θ, it remains differentiable (though not convex) for any T > 0.

To compute the annealed risk, observe that it simplifies toR1/T
θ (x,y∗) = −∑i:y∗i =ON q

1/T
θ (ŷi =

ON | x). This is the negated expected recall of a parse ŷ ∼ q
1/T
θ . We obtain the required

marginals q1/Tθ (ŷi = ON | x) from (5.10) by running inside-outside where the edge weight

for edge i is given by exp(pθ(yi = ON | x)/T ).

Whether our test-time system computes the marginals of pθ exactly or does so approxi-

mately via BP, our new training objective approaches (as T → 0) the true empirical risk of

the test-time parser that performs MBR decoding from the computed marginals. Empiri-

cally, however, we will find that it is not the most effective training objective (§5.7.2). Stoy-

8Recall from (5.3) that the MBR parse is the tree ŷ that maximizes the sum
∑

i:ŷi=ON pθ(yi = ON | x).
As T → 0, the right-hand side of (5.10) grows fastest for this ŷ, so its probability under q1/Tθ approaches 1
(or 1/k if there is a k-way tie for MBR parse).
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anov et al. (2011) postulate that the nonconvexity of empirical risk may make it a difficult

function to optimize, even with annealing. Our next two objectives provide alternatives.

5.4.2 L2 Distance

We can view our inference, decoder, and loss as defining a form of deep neural network,

whose topology is inspired by our linguistic knowledge of the problem (e.g., the edge vari-

ables should define a tree). This connection to deep learning allows us to consider training

methods akin to supervised layer-wise training (Bengio et al., 2007). We temporarily re-

move the top layers of our network (i.e. the decoder and loss module, Fig. 5.2 (E)) so that

the output layer of our “deep network” consists of the variable beliefs bi(yi) from BP. We

can then define a supervised loss function directly on these beliefs. We don’t have super-

vised data for this layer of beliefs, but we can create it artificially. Use the supervised parse

y∗ to define “target beliefs” by b∗i (yi) = I(yi = y∗i ) ∈ {0, 1}. To find parameters θ that

make BP’s beliefs close to these targets, we can minimize an L2 distance loss function:

J(θ;x,y∗) =
∑

i

∑

yi

(bi(yi)− b∗i (yi))
2 (5.12)

We can use this L2 distance objective function for training, adding the MBR decoder and

loss evaluation back in only at test time.

5.4.3 Layer-wise Training

Just as in layer-wise training of neural networks, we can take a two-stage approach to

training. First, we train to minimize the L2 distance. Then, we use the resulting θ as ini-

tialization to optimize the annealed risk, which does consider the decoder and loss function

(i.e. the top layers of Fig. 5.2). Stoyanov et al. (2011) found mean squared error (MSE)

to give a smoother training objective, though still nonconvex, and used it to initialize em-

pirical risk. Though their variant of the L2 objective did not completely dispense with the
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decoder as ours does, it is a similar approach to our proposed layer-wise training.

5.4.4 Bethe Likelihood

A key focus of this work is differentiating our method from traditional CLL training. How-

ever, it is also possible to define an objective which obtains CLL training as a special case

when inference is exact. We call this objective the Bethe likelihood since we obtain it by

replacing the true value of the log-partition function with its approximation given by the

Bethe free energy. Since we do not consider this objective function in our experiments, we

defer details about it to the appendix (Appendix B).

5.5 Gradients by Backpropagation

Backpropagation computes the derivative of any given function specified by an arbitrary

circuit consisting of elementary differentiable operations (e.g. +,−,×,÷, log, exp). This

is accomplished by repeated application of the chain rule. Backpropagating through an al-

gorithm proceeds by similar application of the chain rule, where the intermediate quantities

are determined by the topology of the circuit—just as in Figure 5.2. Running backwards

through the circuit, backprop computes the partial derivatives of the objective J(θ;x,y∗)

with respect to each intermediate quantity u—or more concisely the adjoint of u: ðu =

∂J(θ;x,y∗)
∂u

. This section describes the adjoint computations we require. Section 2.2.2 also

showed additional examples of its use.

5.5.1 Backpropagation of Decoder / Loss

The adjoint of the objective itself ðJ(θ;x,y∗) is always 1. So the first adjoints we must

compute are those of the beliefs: ðbi(yi) and ðbα(yα). This corresponds to the backward

pass through Figure 5.2 (E). Consider the simple case where J is L2 distance from (5.12):

the variable belief adjoint is ðbi(yi) = 2(bi(yi) − b∗i (yi)) and trivially ðbα(yα) = 0. If J
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5.5. GRADIENTS BY BACKPROPAGATION

is annealed risk from (5.11), we compute ðbi(yi) by applying backpropagation recursively

to our algorithm for J from §5.4.1. This sub-algorithm defines a sub-circuit depicted in

Figure 5.2 (E.1–E.3). The computations of the annealed beliefs and the expected recall are

easily differentiable. The main challenge is differentiating the function computed by the

inside-outside algorithm; we address this in §5.5.4.

5.5.2 Backpropagation through Structured BP

Given the adjoints of the beliefs, we next backpropagate through structured BP—extending

prior work which did the same for regular BP (Eaton and Ghahramani, 2009; Stoyanov et

al., 2011; Domke, 2011). Except for the messages sent from the PTREE factor, each step of

BP computes some value from earlier values using the update equations (5.4)–(5.7). Back-

propagation differentiates these elementary expressions. First, using the belief adjoints,

we compute the adjoints of the final messages (ðm(tmax)
j→α (yj), ðm

(tmax)
β→i (yi)) by applying the

chain rule to Eqs. (5.6) and (5.7). This is the backward pass through Fig. 5.2 (D). Recall

that the messages at time t were computed from messages at time t − 1 and the potential

functions ψα in the forward pass via Eqs. (5.4) and (5.5). Backprop works in the oppo-

site order, updating the adjoints of the messages at time t − 1 and the potential functions

(ðm(t−1)
j→α (yj), ðm

(t−1)
β→i (yi), ðψα(yα)) only after it has computed the adjoints of the mes-

sages at time t. Repeating this through timesteps {t, t− 1, . . . , 1} constitutes the backward

pass through Fig. 5.2 (C). The backward pass through Fig. 5.2 (B) does nothing, since

the messages were initialized to a constant. The final step of backprop uses ðψα(yα) to

compute ðθj—the backward pass through Fig. 5.2 (A).

For the explicit formula of these adjoints, see Table 5.1, which provides a more com-

plete illustration of the larger context of our backpropagation implementation. The equa-

tions are identical to those given in the appendix of Stoyanov et al. (2011), except that they

are slightly modified to accommodate the notation of this thesis. The next section handles

the special case of ðm(t)
j→PTREE(yj).
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5.5.3 BP and Backpropagation with PTREE

The PTREE factor has a special structure that we exploit for efficiency during BP. Smith

and Eisner (2008) give a more efficient way to implement Eq. (5.5), which computes the

message from a factor α to a variable yi, in the special case where α = PTREE. They

first run the inside-outside algorithm where the edge weights are given by the ratios of the

messages to PTREE: m
(t)
i→α(ON)

m
(t)
i→α(OFF)

. Then they multiply each resulting edge marginal given by

inside-outside by the product of all the OFF messages
∏

im
(t)
i→α(OFF) to get the marginal

factor belief bα(yi). Finally they divide the belief by the incoming message m(t)
i→α(ON) to

get the corresponding outgoing message m(t+1)
α→i (ON). These steps are shown in Figure 5.2

(C.1–C.3), and are repeated each time we send a message from the PTree factor.

Similarly, we exploit the structure of this algorithm to compute the adjoints ðm(t)
j→PTREE(yj).

The derivatives of the message ratios and products mentioned here are simple. In the next

subsection, we explain how to backpropagate through the inside-outside algorithm. Though

we focus here on projective dependency parsing, our techniques are also applicable to non-

projective parsing and the TREE factor; we leave this to future work.

5.5.4 Backprop of Hypergraph Inside-Outside

Both the annealed risk loss function (§5.4.1) and the computation of messages from the

PTREE factor (§5.5.3) use the inside-outside algorithm for dependency parsing. Here we

describe inside-outside and the accompanying backpropagation algorithm over a hyper-

graph. This general treatment (Klein and Manning, 2001; Li and Eisner, 2009) enables our

method to be applied to other tasks such as constituency parsing, HMM forward-backward,

and hierarchical machine translation. In the case of dependency parsing, the structure of

the hypergraph is given by the dynamic programming algorithm of Eisner (1996).

For the forward pass of the inside-outside module, the input variables are the hyper-

edge weights we∀e and the outputs are the marginal probabilities pw(i)∀i of each node i in

the hypergraph. The latter are a function of the inside βi and outside αj probabilities. We
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5.5. GRADIENTS BY BACKPROPAGATION

initialize αroot = 1.

βi =
∑

e∈I(i)
we

∏

j∈T (e)
βj (5.13)

αj =
∑

e∈O(i)

we αH(e)

∏

j∈T (e):j ̸=i
βj (5.14)

pw(i) = αiβi/βroot (5.15)

For each node i, we define the set of incoming edges I(i) and outgoing edges O(i). The

antecedents of the edge are T (e), the parent of the edge is H(e), and its weight is we.

For the backward pass of the inside-outside module, the inputs are ðpw(i)∀i and the

outputs are ðwe∀e. We also compute the adjoints of the intermediate quantities ðβj, ðαi.

We first compute ðαi bottom-up. Next ðβj are computed top-down. The adjoints ðwe are

then computed in any order.

ðαi = ðpw(i)∂pw(i)
∂αi

+
∑

e∈I(i)

∑

j∈T (e)
ðαj

∂αj

∂αi
(5.16)

ðβroot =
∑

i̸=root

ðpw(i)∂pw(i)
∂βroot

(5.17)

ðβj = ðpw(j)∂pw(j)
∂βj

+
∑

e∈O(j)

ðβH(e)
∂βH(e)

∂βj

+
∑

e∈O(j)

∑

k∈T (e):k ̸=j
ðαk ∂αk

∂βj
∀j ̸= root (5.18)

ðwe = ðβH(e)
∂βH(e)

∂we
+
∑

j∈T (e)
ðαj

∂αj

∂we
(5.19)
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Below, we show the partial derivatives required for the adjoint computations in §5.5.4.

∂pw(i)

∂αi
= βi/βroot,

∂pw(i)

∂βroot
= −αiβi/(β

2
root),

∂pw(i)

∂βi
= αi/βroot

For some edge e, let i = H(e) be the parent of the edge and j, k ∈ T (e) be among its

antecedents.

∂βi
∂βj

= we
∏

k∈T (e):k ̸=j
βk,

∂βH(e)

∂we
=

∏

j∈T (e)
βj

∂αj
∂αi

= we
∏

k∈T (e):k ̸=j
βk,

∂αj
∂we

= αH(e)

∏

k∈T (e):k ̸=j
βk

∂αk
∂βj

= weαH(e)
∏

l∈T (e):l ̸=j,l ̸=k
βl

This backpropagation method is used for both Figure 5.2 (C.2) and (E.2).

5.6 Other Learning Settings

Loss-aware Training with Exact Inference Backpropagating through inference, de-

coder, and loss need not be restricted to approximate inference algorithms. Li and Eisner

(2009) optimize Bayes risk with exact inference on a hypergraph for machine translation.

Each of our differentiable loss functions (§5.4) can also be coupled with exact inference.

For a first-order parser, BP is exact. Yet, in place of modules (B), (C), and (D) in Figure

5.2, we can use a standard dynamic programming algorithm for dependency parsing, which

is simply another instance of inside-outside on a hypergraph (§5.5.4). The exact marginals

from inside-outside (5.15) are then fed forward into the decoder/loss module (E).

Conditional and Surrogate Log-likelihood The standard approach to training is condi-

tional log-likelihood (CLL) maximization (Smith and Eisner, 2008) without taking inexact

112



5.7. EXPERIMENTS

inference into account: J(θ;x,y∗) = − log pθ(y | x). The gradient is computed by hand

as the difference between observed and expected feature counts. When inference is ex-

act, this baseline computes the true gradient of CLL. When inference is approximate, this

baseline uses the factor beliefs bα(yα) from BP in place of the exact marginals in the gra-

dient. The literature refers to this approximation-unaware training method as surrogate

likelihood training since it returns the “wrong” parameters even under the assumption of

infinite training data drawn from the model being used (Wainwright, 2006). For BP, the

exact objective it is optimizing (i.e. antiderivative of the gradient) is not known, so one

must use an optimizer that doesn’t require the function value (e.g. SGD). Despite this, the

surrogate likelihood objective is commonly used to train CRFs. CLL and approximation-

aware training are not mutually exclusive. Training a standard factor graph with ERMA

and a log-likelihood objective recovers CLL exactly (Stoyanov et al., 2011).

5.7 Experiments

5.7.1 Setup

Features As the focus of this work is on a novel approach to training, we look to prior

work for model and feature design (§5.2). We add O(n3) second-order grandparent and

arbitrary-sibling factors as in Riedel and Smith (2010) and Martins et al. (2010a). We use

standard feature sets for first-order (McDonald et al., 2005) and second-order (Carreras,

2007) parsing. Following Rush and Petrov (2012), we also include a version of each part-

of-speech (POS) tag feature, with the coarse tags from Petrov et al. (2012). We use feature

hashing (Ganchev and Dredze, 2008; Weinberger et al., 2009) and restrict to at most 20

million features. We leave the incorporation of third-order features to future work.

Pruning To reduce the time spent on feature extraction, we enforce the type-specific de-

pendency length bounds from Eisner and Smith (2005) as used by Rush and Petrov (2012):
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the maximum allowed dependency length for each tuple (parent tag, child tag, direction) is

given by the maximum observed length for that tuple in the training data. Following Koo

and Collins (2010), we train a first-order model with CLL and for each token prune any

parents for which the marginal probability is less than 0.0001 times the maximum parent

marginal for that token. On a per-token basis, we further restrict to the ten parents with

highest marginal probability as in Martins et al. (2009) (but we avoid pruning the fully

right-branching tree, so that some parse always exists).9 This lets us simplify the factor

graph, removing variables yi corresponding to pruned edges and specializing their factors

to assume yi = OFF. We train the full model’s parameters to work well on this pruned

graph.

Data and Evaluation We consider 19 languages from the CoNLL-2006 (Buchholz and

Marsi, 2006) and CoNLL-2007 (Nivre et al., 2007) Shared Tasks. We also convert the

English Penn Treebank (PTB) (Marcus et al., 1993) to dependencies using the head rules

from Yamada and Matsumoto (2003) (PTB-YM). We evaluate unlabeled attachment ac-

curacy (UAS) using gold POS tags for the CoNLL languages, and predicted tags from

TurboTagger (Martins et al., 2013) for the PTB. Following prior work, we exclude punc-

tuation when evaluating the English PTB data, but include punctuation for all the CoNLL

datasets. Unlike most prior work, we hold out 10% of each CoNLL training dataset as

development data for regularization by early stopping.10

Some of the CoNLL languages contain non-projective edges, but our system is built

using a probability distribution over projective trees only. ERMA can still be used with such

a badly misspecified model—one of its advantages—but no amount of training can raise

CLL’s objective above −∞, since any non-projective gold tree will always have probability

0. Thus, for CLL only, we replace each gold tree in training data with a minimum-loss

9The pruning model uses a simpler feature set as in Rush and Petrov (2012). Pruning is likely the least
impactful of our approximations: it obtains 99.46% oracle UAS for English.

10In dev experiments, we found L2 distance to be less sensitive to the ℓ2-regularizer weight than CLL. So
we added additional regularization by early stopping to improve CLL.
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Figure 5.3: Speed/accuracy tradeoff of English PTB-YM UAS vs. the total number of BP

iterations tmax for standard conditional likelihood training (CLL) and our approximation-

aware training with either an L2 objective (L2) or a staged training of L2 followed by

annealed risk (L2+AR). The UAS excludes punctuation. Note that the x-axis shows the

number of iterations used for both training and testing. We use a 2nd-order model with

Grand.+Sib. factors.

projective tree (Carreras, 2007).11 This resembles ERMA’s goal of training the system to

find a low-loss projective tree. At test time, we always evaluate the system’s projective

output trees against the possibly non-projective gold trees, as in prior work.

To test the statistical significance of our results on UAS, we use the approximate ran-

domization test (aka. paired permutation test) with 106 samples. We found the p-values

were similar (slightly more conservative) than those given by the paired bootstrap test.

Learning Settings We compare three learning settings. The first, our baseline, is condi-

tional log-likelihood training (CLL) (§5.6). As is common in the literature, we conflate two

distinct learning settings (conditional log-likelihood/surrogate log-likelihood) under the

single name “CLL,” allowing the inference method (exact/inexact) to differentiate them.

The second learning setting is approximation-aware learning (§5.3) with either our L2 dis-

11We also ran a controlled experiment with L2 and not just CLL trained on these projectivized trees: the

average margin of improvement for our method widened very slightly.
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Figure 5.4: English PTB-YM UAS vs. the types of 2nd-order factors included in the model

for approximation-aware training and standard conditional likelihood training. The UAS

excludes punctuation. All models include 1st-order factors (Unary). The 2nd-order models

include grandparents (Grand.), arbitrary siblings (Sib.), or both (Grand.+Sib.)—and use 4

iterations of BP. For each of these models, the improvement given by training with our

method instead of CLL is statistically significant at the p < 0.005 level.

tance objective (L2) (§5.4.2) or our layer-wise training method (L2+AR) which takes the

L2-trained model as an initializer for our annealed risk (§5.4.3). The annealed risk objec-

tive requires an annealing schedule: over the course of training, we linearly anneal from

initial temperature T = 0.1 to T = 0.0001, updating T at each step of stochastic optimiza-

tion. The third learning setting uses the same two objectives, L2 and L2+AR, but with exact

inference (§5.6). The �2-regularizer weight in (6.7) is λ = 1. Each method is trained by

AdaGrad for 5 epochs with early stopping (i.e. the model with the highest score on dev

data is returned). Across CoNLL, the average epoch chosen for CLL was 2.02 and for L2

was 3.42. The learning rate for each training run is dynamically tuned on a sample of the

training data.

5.7.2 Results

Our goal is to demonstrate that our approximation-aware training method leads to im-

proved parser accuracy as compared with the standard training approach of conditional
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log-likelihood (CLL) maximization (Smith and Eisner, 2008), which does not take inex-

act inference into account. The two key findings of our experiments are that our learning

approach is more robust to (1) decreasing the number of iterations of BP and (2) adding

additional cycles to the factor graph in the form of higher-order factors. In short: our

approach leads to faster inference and creates opportunities for more accurate parsers.

Speed-Accuracy Tradeoff Our first experiment is on English dependencies. For English

PTB-YM, Figure 5.3 shows accuracy as a function of the number of BP iterations for our

second-order model with both arbitrary sibling and grandparent factors on English. We find

that our training methods (L2 and L2+AR) obtain higher accuracy than standard training

(CLL), particularly when a small number of BP iterations are used and the inference is

a worse approximation. Notice that with just two iterations of BP, the parsers trained by

our approach obtain accuracy greater than or equal to those by CLL with any number of

iterations (1 to 8). Contrasting the two objectives for our approximation-aware training, we

find that our simple L2 objective performs very well. In fact, in only two cases, at 3 and 5

iterations, does risk annealing (L2+AR) further improve performance on test data. In our

development experiments, we also evaluated AR without using L2 for initialization and we

found that it performed worse than either of CLL and L2 alone. That AR performs only

slightly better than L2 (and not worse) in the case of L2+AR is likely due to early stopping

on dev data, which guards against selecting a worse model.

Increasingly Cyclic Models Figure 5.4 contrasts accuracy with the type of 2nd-order

factors (grandparent, sibling, or both) included in the model for English, for a fixed bud-

get of 4 BP iterations. Adding higher-order factors introduces more loops, making the

loopy BP approximation more problematic for standard CLL training. By contrast, under

approximation-aware training, enriching the model with more factors always helps perfor-

mance, as desired, rather than hurting it.

The UAS improvements given by our training method over CLL are significant at the
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5.7. EXPERIMENTS

TRAIN INFERENCE DEV UAS TEST UAS
CLL Exact 91.99 91.62
CLL BP 4 iters 91.37 91.25
L2 Exact 91.91 91.66
L2 BP 4 iters 91.83 91.63

Table 5.2: The impact of exact vs. approximate inference on a 2nd-order model with
grandparent factors only. Results are for the development (§ 22) and test (§ 23) sections of
PTB-YM.

p < 0.005 level for each model we considered in Figure 5.4. The UAS for Sib. and

Grand.+Sib. with CLL training are statistically indistinguishable in Figure 5.4, despite the

noticeable drop. However, with approximation-aware training, the improvement from Sib.

to Grand.+Sib. is significant with p = 0.006.

Notice that our advantage is not restricted to the case of loopy graphs. Even when

we use a 1st-order model, for which BP inference is exact, our approach yields higher-

accuracy parsers than CLL training. We speculate that this improvement is due to our

method’s ability to better deal with model misspecification—a first-order model is quite

misspecified! Note the following subtle point: when inference is exact, the CLL estimator

is actually a special case of our approximation-aware learner—that is, CLL computes the

same gradient that our training by backpropagation would if we used log-likelihood as the

objective.

Exact Inference with Grandparents §5.2 noted that since we always do MBR decoding,

the ideal strategy is to fit the true distribution with a good model. Consider a “good model”

that includes unary and grandparent factors. Exact inference is possible here in O(n4)

time by dynamic programming (Koo and Collins, 2010, Model 0). Table 5.2 shows that

CLL training with exact inference indeed does well on test data—but that accuracy falls if

we substitute fast approximate inference (4 iterations of BP). Our proposed L2 training is

able to close the gap, just as intended. That is, we succesfully train a few iterations of an

approximate O(n3) algorithm to behave as well as an exact O(n4) algorithm.
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Figure 5.5: Improvement in unlabeled attachment score on test data (UAS) given by us-
ing our training method (L2) instead of conditional log-likelihood training (CLL) for 19
languages from CoNLL-2006/2007. The improvements are calculated directly from the
results in Table 5.3.

Other Languages Our final experiments train and test our parsers on 19 languages from

CoNLL-2006/2007 (Table 5.3). We find that, on average across languages, approximation-

aware training with an L2 objective obtains higher UAS than CLL training. This result holds

for both our poorest model (1st-order) and our richest one (2nd-order with grandparent and

sibling factors), using 1, 2, 4, or 8 iterations of BP. Figure 5.5 presents the results of Table

5.3 visually. Notice that the approximation-aware training doesn’t always outperform CLL

training—only in the aggregate. Again, we see the trend that our training approach yields

larger gains when BP is restricted to a small number of maximum iterations. It is possible

that larger training sets would also favor our approach, by providing a clearer signal of how

to reduce the objective (6.7).

5.8 Discussion

The purpose of this work was to explore ERMA and related training methods for models

which incorporate structured factors. We applied these methods to a basic higher-order

dependency parsing model, because that was the simplest and first instance of structured BP
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5.9. SUMMARY

(Smith and Eisner, 2008). In future work, we hope to explore further models with structured

factors—particularly those which jointly account for multiple linguistic strata (e.g. syntax,

semantics, and topic). Another natural extension of this work is to explore other types of

factors: here we considered only log-linear potential functions (commonly used in CRFs),

but any differentiable function would be appropriate, such as a neural network (Durrett and

Klein, 2015; Gormley et al., 2015c).

Our primary contribution is approximation-aware training for structured BP. We have

specifically presented message-passing formulas for any factor whose belief’s partition

function can be computed as the total weight of all hyperpaths in a weighted hypergraph.

This would suffice to train the structured BP systems that have been built for projective

dependency parsing (Smith and Eisner, 2008), CNF grammar parsing (Naradowsky et al.,

2012b), TAG (Auli and Lopez, 2011), ITG-constraints for phrase extraction (Burkett and

Klein, 2012), and graphical models over strings (Dreyer and Eisner, 2009).

5.9 Summary

We introduce a new approximation-aware learning framework for belief propagation with

structured factors. We present differentiable objectives for both empirical risk minimization

(à la ERMA) and a novel objective based on L2 distance between the inferred beliefs and the

true edge indicator functions. Experiments on the English Penn Treebank and 19 languages

from CoNLL-2006/2007 shows that our estimator is able to train more accurate dependency

parsers with fewer iterations of belief propagation than standard conditional log-likelihood

training, by taking approximations into account.
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Chapter 6

Graphical Models with Structured and

Neural Factors and

Approximation-aware Learning

The previous chapters have illustrated three key points: (1) latent variables are an effective

modeling tool that can outperform some grammar induction systems (Chapter 3), (2) both

traditional hand-crafted features and learned features can be treated as factors in a factor

graph (Chapter 4), and (3) for structured graphical models with cycles, approximation-

aware training can yield faster and more accurate systems (Chapter 5).

In this chapter, we combine the methods from the previous three chapters in order to

obtain the benefits of them all. We propose graphical models with structured factors, neural

factors, and approximation-aware training in a semi-supervised setting. Following our orig-

inal motivation, we focus here on a low-resource setting for semantic role labeling where a

joint model with latent dependency and tagging syntax improves our overall performance.
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6.1. INTRODUCTION

6.1 Introduction

Many tasks in NLP focus on a single linguistic strata when in fact we care about several.

The reasons for this are often practical: machine learning does not provide the tools that

allow one to readily create a joint model of multiple levels of linguistic data.

The types of models we hope to build would elegantly handle low-resource settings,

taking advantage of whatever data is available. Though fully unsupervised methods (e.g.

(Smith, 2006; Spitkovsky, 2013)) provide one option, they are not catered to a specific

task and a small amount of supervision can often outperform them (Naseem et al., 2010;

Søgaard, 2012). For the task of semantic role labeling (SRL), it is difficult to say whether

joint modeling is worth the extra effort when supervised training data abounds.1 However,

in low-resource settings, the advantages of joint modeling are clearer (Boxwell et al., 2011;

Naradowsky et al., 2012a; Gormley et al., 2014) (Chapter 3).

Because our focus is on NLP, we seek to build models that allow declarative constraints

to be specified over a set of variables. This arises in many tasks such as dependency parsing

(Riedel and Clarke, 2006; Smith and Eisner, 2008; Martins et al., 2009), constituency

parsing (Naradowsky et al., 2012b), phrase extraction (Burkett and Klein, 2012), TAG (Auli

and Lopez, 2011), and SRL (Das et al., 2012). Dual decomposition and other techniques

allow for MAP inference in these sorts of models (Duchi et al., 2006; Riedel and Clarke,

2006; Martins et al., 2009; Koo et al., 2010; Martins et al., 2011a). However, because of

our interest in low-resource settings we expect that it will be useful to marginalize over

the unobserved variables in our model—so we turn to marginal inference by structured BP

(Smith and Eisner, 2008).

These inexact inference techniques can cause problems for standard learning algorithms

(Kulesza and Pereira, 2008). For MAP inference there exist algorithms that can handle this

inexact inference (Huang et al., 2012; Zhang et al., 2013). But for marginal inference the

1The top performers in the CoNLL-2009 shared task (Gesmundo et al., 2009; Hajič et al., 2009; Lluı́s
et al., 2013) for joint syntactic and semantic dependency parsing provide evidence of this.

123



6.1. INTRODUCTION

existing algorithms can’t handle structured factors (Stoyanov et al., 2011; Domke, 2011).

Finally, a variety of work old (Bengio et al., 1990; Bengio et al., 1992; Haffner, 1993;

Bengio and Frasconi, 1995; Bengio et al., 1995; Bourlard et al., 1995) and new (Ning et al.,

2005; Tompson et al., 2014; Morin and Bengio, 2005) has explored hybrids of graphical

models and neural networks for structured prediction. Applications of these techniques

have included SRL (Collobert and Weston, 2008; Foland and Martin, 2015; FitzGerald

et al., 2015). However, none of this work handles the case of structured factors, latent

variables, neural factors, and inexact inference that we are concerned with here.

In this chapter we introduce a framework that permits (a) structural constraints over

latent variables, (b) learned features, (c) efficient approximate inference, and (d) learning

that performs well despite any approximations made by our system. We demonstrate its

effectiveness on the task of low-resource semantic role labeling. The introduction of this

framework is at the core of the contributions of this chapter:

• We introduce a new variety of hybrid graphical models and neural net-

works.

• We propose approximation-aware training for structured belief propaga-

tion with neural factors.

• We unify three forms of inference: BP on factor graphs, inside-outside

on a hypergraph, and feed-forward computation in a neural network.

• We introduce a joint model of this type for semantic role labeling, syn-

tactic dependency parsing, and part-of-speech tagging.

• We study this model in a low-resource setting for SRL that treats the

syntax (parse and tags) as latent and trains in a semi-supervised fashion.

We begin by introducing a novel graphical model with structured and neural factors (Sec-

tion 6.2). Taking a probabilistic perspective of the model, we describe how to carry out

approximate inference (Section 6.3), decoding (Section 6.4), and approximation-unaware

surrogate likelihood training (Section 6.5.1). Finally, we train the same system to be
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6.2. MODEL

approximation-aware (Section 6.5.2). Doing so leads to an alternative perspective of our

model as a deep neural network whose topology is inspired by approximate inference on

the graphical model of this section.

6.2 Model

We introduce a model for joint semantic role labeling, syntactic dependency parsing, and

part-of-speech tagging. Note however that we will use this model in a semi-supervised

setting: during training, we will observe semantic roles for each sentence, but not syntactic

dependencies or part-of-speech tags. Accordingly, the syntax will be treated as latent and

will only act in the service of our semantic role labeler.

Semantic Role Labeler Our semantic role labeler is a conditional model pθ(r | x),

which is defined in terms of our joint model for syntax and semantics pθ(r, e, t | x). For the

conditional model, the input x is a sentence. An output assignment r encodes a semantic

role labeling of the sentence. The latent structure {e, t} consists of a syntactic dependency

tree e and a part-of-speech tagging t. The probability of a semantic role labeling r for a

given sentence x can thus be written in form:

pθ(r | x) =
∑

e,t

pθ(r, e, t | x) (6.1)

This distribution defines the probability of the output variables R given the input variables

X , marginalizing over the latent variables {E,T }. The form of the joint model pθ(r, e, t |

x) is discussed below.

Joint Model of Syntax and Semantics Our joint model pθ(r, e, t | x) defines the prob-

ability of the semantics r and latent syntax {e, t} given the sentence x. We will describe

this joint model as a factor graph (Frey et al., 1997; Kschischang et al., 2001). We fol-
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6.2. MODEL

low our definition of factor graphs given in Section 2.3.1. For conciseness, we abbreviate

the full set of output variables for the joint model as Y = {R,E,T }. The probability is

proportional to a product of non-negative potential functions ψα:

pθ(r, e, t | x) = pθ(y | x) = 1

Z(x)

∏

α

ψα(yαx) (6.2)

where Z(x) is the sentence-specific partition function ensuring that the distribution sums

to one. One of the main contributions of this chapter is that the potential functions (which

are in one-to-one correspondence with factors α) come in one of three forms:

Log-linear factors These constitute the standard potential function for a con-

ditional random field (CRF) (Lafferty et al., 2001) having the formψα(yα) =

exp(θ · fα(yα,x)). In our model, we define a log-linear factor for each

variable. However, we also include factors over pairs of variables. These

connect the dependency edge variables E to the roles R, and the tag

variables T to the roles R.

Neural factors Potential functions for these factors are defined by the score

of an FCM neural network from Section 4.3. While these neural factors

would be appropriate for all the variables, we only include them as unary

factors on the semantic roles R, since they are more computationally

intensive during inference and learning than the log-linear factors.

Structured factors We include only one structured factor, PTREE, which con-

strains the syntactic dependency variables E to form a projective tree.

See Section 2.3.3.4 for a detailed description of the form of this factor.

Figure 6.1 depicts the factor graph for a short sentence. The factor graph for our joint

model has elements of those given earlier in this thesis: The model of syntactic/semantic

dependencies is akin to our models from Section 3.2.2 and Section 5.2. The combination
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6.3. INFERENCE

of exponential family factors and the neural network FCM factors is similar to those used

in our relation extraction model from Section 4.5.

6.3 Inference

The goal of marginal inference is to compute or approximate the variable and factor marginals

(reiterated from equation (2.16) and equation (2.17)):

pθ(yi | x) =
∑

y′:y′i=yi

pθ(y
′ | x) (6.3)

pθ(yα | x) =
∑

y′:y′
α=yα

pθ(y
′ | x) (6.4)

and the partition function (reiterated from equation (2.9)):

Z(x) =
∑

y

∏

α

ψα(yα,x) (6.5)

Exact inference in our model is intractable due to high treewidth of the factor graph. How-

ever, we can carry out approximate marginal inference by structured loopy belief propaga-

tion (BP) (Smith and Eisner, 2008). For a detailed discussion of this algorithm, we refer the

reader to Section 2.3.3.4, Section 5.2, and Section 5.5.3. Here, we highlight the important

characteristics of applying this algorithm to our model.

Structured BP is a message passing algorithm, where each message takes the form of

a (possibly unnormalized) distribution over a single variable in the factor graph. Messages

from structured factors (i.e. those with a large set of neighboring variables) are computed

by variants of familiar dynamic programming algorithms—for our model the PTREE factor

uses a variant of the inside-outside algorithm of Eisner (1996). The other messages are

easily computed with standard tensor operations—these include messages from our log-

linear factors and neural factors. These message computations are local in that they only
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Figure 6.1: Factor graph for joint semantic and syntactic dependency parsing and syntactic

tagging of a 4-word sentence; $ is the root of the dependency graph. The semantic role

variable Rp,a (yellow) encodes whether and what type of role holds between a predicate

p and an argument a. The boolean variable Eh,m (blue) encodes whether the syntactic

dependency edge from head h to modifier m is present. The tag variable Ti gives the part-

of-speech tag for word i. The structured PTREE factor (red) coordinates all the syntactic

dependency variables to ensure that the edges form a tree. Each unary FCM factor (green)

scores a semantic role variable using a neural network. The remaining factors (black)

score one or more variables according to a log-linear function using hand-crafted features.

The simplest of these are unary and score each variable in insolation. The binary factors

between semantic role and syntactic dependency variables score the syntax/semantics in-

terface. The binary factors between pairs of tag variables score tag-bigrams. The drawing

shows a few factors between the semantic role variables and the tag variables. Note that

the combination of all these factors yields a cyclic (“loopy”) graph.
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6.4. DECODING

look at the incoming messages and, for messages from factors, one potential function.

On acyclic graphs (examples include our SRL and relation extraction models from

Chapter 3 and Chapter 4), this algorithm performs exact marginal inference. On cyclic

graphs (i.e. those with loops), such as our joint model (Section 6.2), the algorithm per-

forms approximate inference by ignoring the loops. It terminates either at convergence or

after a fixed number of iterations. The outputs of BP are beliefs (i.e. approximate variable

and factor marginals). The objective functions we consider for training (Section 6.5) will

rely on these beliefs.

6.4 Decoding

To facilitate comparison with prior work and to evaluate our models, we wish to obtain a

single assignment to the output variables. For the semantic role labeling task we consider in

Section 6.6, our true loss function is F1 score: the harmonic mean of precision and recall for

the semantic role variables R. A minimum Bayes risk (MBR) decoder for this task should

take this loss function into account. However, doing so is not straightforward because

the loss function doesn’t decompose over the factors—by contrast, it is coupled across

sentences. For simplicity, we instead use the MBR decoder for Hamming loss (reiterated

from equation (2.15)):

r̂i = hθ(x)i = argmax
r̂i

pθ(r̂i | x) (6.6)

This same decoder was employed in Chapter 3 for SRL and Chapter 4 for relation extrac-

tion.
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6.5 Learning

The training data for SRL in the low-resource setting consist of a dataset of pairs {x(d), r(d)}Dd=1

where x(d) is a sentence, and r(d) a role labeling. We do not observe either a syntactic de-

pendency parse e or a tagging t. The goal of learning is to find model parameters θ which

yield a decision function hθ(x) whose predictions give low loss on the unobserved test

sentences. As in Section 5.3, we minimize an ℓ2-regularized objective function:

θ∗ = argmin
θ

1

D

(( D∑

d=1

J(θ;x(d), r(d))
)
+
λ

2
||θ||22

)
(6.7)

where λ > 0 is the regularization coefficient and J(θ;x, r∗) is a given differentiable ob-

jective function. Our model parameters θ consist of all those needed for the log-linear and

neural factors in our model.

6.5.1 Approximation-Unaware Training

The standard approach to training a graphical model is conditional log-likelihood maxi-

mization. We can also apply this technique to our graphical model with structured and

neural factors. We set J(θ;x, r∗) = log pθ(r | x) in order to maximize the marginal like-

lihood in equation (6.1). This log-likelihood is computed as the difference of two partition

functions (see Section 2.3.4.1 for details). We can approximate those partition functions

using the Bethe Free Energy (see Section 2.3.3.3 for an explanation) which is a simple

function of the beliefs output by Structured BP, given in equation (2.27).

Section 2.3.4.1 describes how to compute the gradient of this marginal log-likelihood

objective when all of the factors are log-linear. This is not the case in our model, because we

include neural factors. Instead, we compute the partial derivatives of the conditional log-

likelihood pθ(r|x) with respect to the log potential functions logψα(yα). These partials

require the true factor marginals, but we replace them with the final beliefs from structured

BP. Finally, we backpropagate from these partials through the factors to the model pa-
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rameters. This gives the gradient of the surrogate marginal log-likelihood, the marginal

variant of Wainwright (2006)’s surrogate likelihood. This is akin to the surrogate likeli-

hood objective we considered in Section 5.6, yet there we did not marginalize out any of

the variables.

For some of the models we will consider, structured BP computes the true marginals,

in which case we are maximizing the conditional marginal log-likelihood.

6.5.2 Approximation-Aware Training

The surrogate likelihood training described above may perform poorly when the inference

approximation is poor. Here, we instead consider training in an approximation-aware fash-

ion. Following Section 5.3 we could treat our entire system (inference, decoding, loss) as

a differentiable circuit and minimize the regularized empirical risk. We take the simpler

approach of minimizing the L2 distance objective presented in Section 5.4.2 which does

not incorporate the decoder or (true) loss function into the system during backpropagation

training. That is, we set J(θ;x, r∗) =
∑

i

∑
ri
(bi(ri) − b∗i (ri))

2, where the L2 distance is

computed only over the semantic role labeling variables R observed during training.

In Section 6.3, we used a probabilistic definition of inference for our graphical model

(i.e. two of the three inference tasks from Section 2.3.3). By contrast, inference in a

neural network amounts to a straightforward feedforward computation (see examples in

Section 2.2) that might have no probabilistic interpretation. By training our approximation-

aware model, we have effectively defined a new deep neural network, where inference is

a feed-forward computation. Note however, that in our deep network, this feed-forward

computation incorporates several iterations of BP and any embedded dynamic program-

ming algorithms used to compute messages from structured factors. In this way, inference

could be said to have no probabilistic interpretation (we gave this up as soon as we chose

to do approximate inference by BP!). However, our inference procedure provides a unified

method of combining BP on a factor graph, dynamic programming on a hypergraph, and
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the feed-forward computation of a neural network. The goal of training is therefore to tune

the parameters so that these algorithms perform well in concert with each other.

6.6 Experiments

The goal of our experiments is to explore the merits of graphical models with structured

factors, neural factors, and approximation-aware training. To that end, we consider the task

of low-resource SRL.

6.6.1 Experimental Setup

Data We consider five languages from the CoNLL-2009 Shared Task (Hajič et al., 2009):

Catalan, Czech, German, English, and Spanish. For each language, we use only the first

1000 sentences from the training set and discard the rest. We use the standard development

and test sets. We also remove all the supervised or automatically annotated data (e.g.

lemmas, part-of-speech tags, morphology, dependency trees) except for the words and the

semantic roles. Note that our use of the full development set is somewhat artificial for the

low-resource setting since its size for most languages is comparable to the training set size.

However, using this dev set allows us to carefully regularize our models by early stopping

(see below)—thereby improving the stability of our results.

Evaluation Metrics Following the standard evaluation for the shared task, we report

Precision, Recall, and F1 on the test set. Each of these can be computed for two settings:

unlabeled and labeled. The unlabeled case assesses whether the correct arguments were

identified. The labeled case further asks whether the argument was given the correct role

label (arg0, arg1, argM, etc.). Regardless of the evaluation method, we always train on the

full labeled training set. These quantities are computed by the standard evaluation script

from the shared task.
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Hyperparameters The learning rate is selected automatically on a subsample of the

training data. The embeddings are rescaled so that ||e||2 = 1. The weight of the ℓ2-

regularizer is λ = 1. We also regularize by early stopping; that is we select the model with

the highest labeled F1 on the development set, checking at the end of each epoch.

Models We consider a sequence of models, starting with a baseline and additively build-

ing up to our full model.

(A) Our baseline SRL model consisting only of the semantic role labeling

variables R with unary log-linear factors. This is the SRL-only model

from Section 3.2.1 and Gormley et al. (2014).

(B) We next add the latent syntactic dependency edge variables E and the

binary factors connecting them to the role variables R.

(C) This model additionally includes the structured factor, PTREE, which con-

strains the dependency edge variables E to form a tree. This is the joint

SRL model from Section 3.2.2 and Gormley et al. (2014).

(D) Next we add the latent tag variables T and the factors connecting them to

the role variables R. This is our first cyclic (“loopy”) model. We run BP

for only 4 iterations using the same message passing schedule described

in footnote 5 of Section 5.2.

(E) We then add the neural factors which score the role variables R according

to a log-linear FCM submodel.

(F) Finally, we allow for fine-tuning of the word embeddings, thereby replac-

ing the log-linear FCM submodel with its log-bilinear equivalent.

(D̄), (Ē), (F̄) For each loopy model above we also consider the variant trained

with approximation-aware learning to maximize the L2 distance objective

function. (F̄) constitutes our full model.
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Features The feature set we use for the unary and binary log-linear factors on the role R

and parse E variables are identical to those described in Section 3.4.2 for the low-resource

setting (there they are denoted by IGC). We do the same feature selection by information

gain described in Section 3.2.4.

For the FCM factors we use a feature set that is similar to those given for relation ex-

traction in Table 4.2: In place of the heads of first and second named entity, we consider the

predicate and argument heads. In place of the named entity types, we use a brown cluster

cutoff to length 4. We consider fewer in-between features: only those up to a maximum of

4 words away from either the predicate or argument heads. Since we do not observe any

dependency trees, we do not include the on-path features.

6.6.2 Results

Additive Experiment Our main results, presented in Table 6.1, are an additive exper-

iment on five CoNLL-2009 languages. We compare labeled (Table 6.1b) and unlabeled

(Table 6.1a) F1 for 7 models from the sequence of models described in Section 6.6.1. Our

aim is to better understand the contributions of different aspects of the full model (F̄). We

highlight two baselines from among this sequence: The ‘SRL unary only’ baseline (A) is

the semantics-only model from Section 3.2.1. The row ‘+PTREE factor’ (C) corresponds

to our joint syntax-semantics model from Section 3.2.2.

Adding the latent syntax tree variables T , the PTREE factor, the FCM factor, and

approximation-aware training all improve performance. The biggest average gain (+14.82)

is given by the addition of the structured factor. Two additions to the model hurt average

F1: the addition of the latent tag variables T and the incorporation of fine-tuning. The

bulk of the drop in performance when adding the latent tags comes from the German (de)

language setting, the annotations for which are very sparse. It seems reasonable that fine

tuning would cause the model to overfit—however both the train and dev F1 go down when

adding fine tuning. Because the learning rate is automatically selected and we only run for
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Unlabeled F1
ca cs de en es Avg. Avg. Diff.

(A) SRL unary only 42.42 39.26 18.37 46.75 44.12 38.18 –
(B) +latent tree vars 45.55 45.73 18.79 47.33 47.16 40.91 +2.73
(C) +PTREE factor 65.51 56.23 31.79 59.01 66.11 55.73 +14.82
(D) +latent tag vars 66.55 57.09 25.37 59.45 66.56 55.00 -0.73
(E) +FCM factors 70.08 63.79 34.63 63.23 70.04 60.35 +5.35
(Ē) +approx.-aware 70.03 61.95 39.78 63.43 72.52 61.54 +1.19
(F̄) +fine tuning 66.95 57.90 38.13 63.20 69.69 59.17 -2.37

(a)

Labeled F1
ca cs de en es Avg. Avg. Diff.

(A) SRL unary only 31.99 33.65 13.38 39.56 32.20 30.16 –
(B) +latent tree vars 33.95 38.26 13.54 39.80 33.83 31.88 +1.72
(C) +PTREE factor 44.89 43.04 20.95 46.70 44.30 39.98 +8.10
(D) +latent tag vars 45.42 43.49 18.28 47.51 44.95 39.93 -0.05
(E) +FCM factors 49.86 50.90 24.57 51.36 50.36 45.41 +5.48
(Ē) +approx.-aware 50.38 47.72 28.37 52.94 51.86 46.25 +0.84
(F̄) +fine tuning 47.85 43.65 27.43 50.46 49.40 43.76 -2.50

(b)

Table 6.1: Additive experiment for five languages from CoNLL-2009: Catalan (ca), Czech
(cs), German (de), English (en), and Spanish (es). Results on both unlabeled (a) and labeled
(b) F1 are shown. We also include the average F1 (Avg.) and the average difference in F1
for each model and the one above it (Avg. Diff.). Details of the models are given in
Section 6.6.1.

a fixed number of epochs, the lack of overfitting may be evidence that training did not con-

verge. On average, our best model (Ē) (in both labeled and unlabeled F1) is obtained by

combining all of the ingredients except for fine-tuning.

Precision and Recall on English While our discussion above focused on F1, we also

considered the performance of the same sequence of models on precision and recall. Fig-

ure 6.2 shows the results for English only. Observe that any increase of more than 0.5 in F1

is always accompanied by an improvement to both precision and recall. The precision is

fairly high for all the models and only improves slightly: our baseline (A) obtains precision

80.21 and it increases only to 86.74 with our best model (Ē). By contrast, recall remains
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ca de en es Avg.
CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL

(D) all latent 66.55 -1.77 25.37 +11.22 59.45 -1.89 66.56 -1.09 54.48 +1.62
(E) +FCM factors 70.08 -0.05 34.63 +5.15 63.23 +0.20 70.04 +2.48 59.50 +1.95
(F) +fine tuning 68.70 -1.75 23.64 +14.49 61.30 +1.90 68.43 +1.26 55.52 +3.98

(a) Unlabeled F1.

ca de en es Avg.
CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL

(D) all latent 45.42 +0.23 18.28 +5.74 47.51 -1.07 44.95 +0.24 39.93 +0.86
(E) + FCM factors 49.86 +0.52 24.57 +3.80 51.36 +1.58 50.36 +1.50 60.35 +1.19
(F) +fine tuning 47.62 +0.23 17.09 +10.34 49.48 +0.98 48.53 +0.87 40.68 +3.08

(b) Labeled F1.

Table 6.2: Effect of approximation-aware learning. Results are show for both unlabeled
(a) and labeled (b) F1. We report absolute F1 for the surrogate likelihood baseline (CLL)
and the improvement in F1 for L2 over CLL (L2 − CLL) with positive/negative differences in
blue/red.

low for all of our models, though the increase is larger: the baseline performance of (A) at

32.99 increases to 50.00 for our best model (Ē).

Effects of Approximation-aware Learning Finally, we consider the effects of approximation-

aware learning on three different models. The first is our loopy model obtained by includ-

ing both latent parsing E and tagging T variables and the accompanying factors (D). The

second additionally includes the FCM factors on the role variables R (E). The third adds

fine-tuning of the word embeddings (F). We contrast surrogate likelihood training (Sec-

tion 6.5.1) with training by backpropagation with the L2 distance objective (Section 6.5.2).

Training with the latter corresponds to the models (D̄), (Ē), and (F̄) described in Sec-

tion 6.6.1.

Table 6.2 presents our results on labeled and unlabeled F1. On average, L2 distance

training performs better across the four languages shown than surrogate likelihood training.

However, for Catalan (ca), surrogate likelihood always performs better in unlabeled F1.

Further, for unlabeled F1, most of the gains in that average come from German (de). The

gains in labeled F1 are more stable. In all but one case, approximation-aware learning

outperforms the baseline.
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Figure 6.2: Unlabeled precision (P), recall (R), and F1 for additive experiment on English

data from CoNLL-2009. The sequence of models and the F1 results are the same as that in

Table 6.1a—the P/R results shown here are not given in the table.

137



6.6. EXPERIMENTS

Unlabeled Labeled
Model # Parameters P R F1 P R F1

NB 6,757,191 84.62 51.23 63.82 74.22 44.93 55.98
NB+PTREE 6,757,191 86.37 57.73 69.20 74.85 50.03 59.97

NB+FCM 9,316,039 86.01 57.99 69.28 76.01 51.25 61.22
NB+PTREE+FCM 9,316,039 87.63 62.66 73.07 77.18 55.19 64.36

Table 6.3: Comparison of labeled and unlabeled precision (P), recall (R), and F1 across four
models described in Section 6.6.3. Each model is trained on 5,000 sentences from English
CoNLL-2009. We also report the number of model parameters for each model considered
in the error analysis on English CoNLL-2009. Since the New Baseline already includes
the latent syntactic variables, adding the PTREE factor (+PTREE) does not increase the
number of parameters. By contrast, adding the FCM (+FCM) adds an additional 2.5 million
parameters

6.6.3 Error Analysis

In this section, we attempt to isolate the contributions of specific model components on

English performance. Specifically, we focus on the two additions to the model that gave

the largest gains in F1 on English in our main results: the PTREE factor and the FCM

factors. We consider a set of four models:

1. New Baseline (NB): This model, trained with approximation-aware learning and an L2-

distance objective, contains the semantic and syntactic dependency variables, and

their associated unary factors. It also includes binary factors connecting each pair.

2. NB+PTREE: This model adds a PTREE factor to the New Baseline. Notice that this

new factor does not introduce any additional model parameters since it is a purely

declarative constraint over the latent syntactic variables.

3. NB+FCM: Next, we take the New Baseline and add the FCM factors. Table 6.3 shows

that, unlike PTREE, the FCM factors introduce a very large number of model param-

eters yielding a much higher capacity model.

4. NB+PTREE+FCM: Finally, we combine the PTREE factor and the FCM factors into the

New Baseline model.
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The experiments in this section mirror the experimental setup described in Section 6.6.1,

except that we train on the first 5,000 sentences in the CoNLL-2009 English dataset. The

development and test sets remain the same. Table 6.3 presents the main results for this

setting. First, we observe that Labeled F1 for the best model on these 5,000 training sen-

tences (64.36 F1) is only +0.9 F1 higher than our best model trained on 1,000 sentences

(63.43 F1). Next, we turn to a comparison between the two additions to the new baseline:

Adding the PTREE factor to New Baseline model (NB+PTREE) yields improvements of

+3.99 Labeled F1 and +5.38 Unlabeled F1. Adding the FCM factors (NB+FCM) gives simi-

lar improvements: +5.24 Labeled F1 and +5.46 Unlabeled F1. This leads us to contrast the

relative benefits of the two very different sorts of factors: a structured PTREE factor with no

parameters vs, the high capacity FCM neural factors. While the improvement of NB+FCM

over NB+PTREE is noticeable on Labeled F1 (+1.25 F1), it is very minimal on Unlabeled

F1 (+0.08 F1). This suggests that incorporating domain-knowledge (e.g. these latent vari-

ables should form a projective tree) can be almost as effective as greatly increasing the

capacity and generalizability of the model with learned features. Finally, we observe that

the two types of factors yield complementary improvements as seen in Section 6.6.2.

Next, we consider three different views of the same results in search of whether the two

primary models (NB+PTREE and NB+FCM) under consideration exhibit different patterns

of errors.

Predicate-Argument Distance Next, we divide all the possible predicate-argument pairs

into bins by the number of tokens separating the predicate head and argument head. For

each bin, we compute the F1 score of each model on only the corresponding subset of

predicate-argument pairs. These results are summarized in Figure 6.4. The largest relative

improvements are found on longer dependencies (e.g. 3 to 6 tokens apart, and more than

7 tokens apart) for both NB+PTREE and NB+FCM. However, these relative improvements

also correspond to the settings which, without those added factors, were performing the
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Figure 6.3: F1 of SRL for predicate-argument distance. We divide each possible predicate-

argument pair into a bin based on the number of tokens separating the two heads: 1 token,

2 tokens, 3 to 6 tokens apart, or 7 or more tokens. The F1 computation is restricted to only

the semantic edges in the respective bin for the four models in Section 6.6.3.

worst. The distribution of the gold predicate-argument pairs between the bins was fairly

even: 38.13% separated by 1 token, 23.74% by 2 tokens, 25.05% by 3-6, and 13.08% by 7

or more.

Nominal vs. Verbal Predicates We can also divide the predicate-argument pairs by the

(gold) part-of-speech tag for the predicate head. The full set of such Penn Treebank tags

when truncated to the first two characters includes CC, CD, IN, JJ, NN, PD, RP, VB, WP,

and WR. However, 99.70% of them are accounted for by the nominal (NN, 39.47%) and

verbal (VB, 60.23%) predicates. So we focus our discussion only on these two types of

predicates. Figure 6.4 gives the F1 results for our four models binning by whether the

predicate was nominal or verbal.

Despite there being over 1.5 times as many verbal predicate-argument training exam-

ples, each model performs respectively better on nominal predicates than verbal. We find

that relative improvement of NB+FCM over NB+PTREE is much higher on the nominal

than verbal predicates.
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Figure 6.4: F1 of SRL across nominal and verbal predicates. We bin the predicate-argument

pairs based on whether the predicate is nominal (has a gold POS tag starting with NN) or

verbal (POS tag starting with VB). F1 is computed separately for each bin on each of the

four models in Section 6.6.3.

Semantic Role Types Finally, we ask whether there are observable differences in the

relative improvements across role labels for the two types of factors. We again bin the

pairs, this time by the label of the predicate-argument pair. These post-hoc results are

akin to what we would observe if we trained a separate model for each role. One of the

smallest differences in the relative improvement given by +PTREE and +FCM is found in

the most frequently occurring role, A1, which usually corresponds to an Patient or Theme

role. The advantage of +FCM over +PTree seems particularly pronounced by the second

most common role, A0, which is often an Agent role.

6.7 Summary

In this chapter, we present graphical models with structured factors, neural factors, and

approximation-aware training. We introduce a model for joint semantic role labeling, syn-

tactic dependency parsing, and part-of-speech tagging. By treating the syntax as latent, we
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Role Label % of Gold NB NB+PTREE NB+FCM NB+PTREE+FCM

A1 37.06% 59.21 64.05 64.75 68.44
A0 25.15% 60.41 63.35 64.90 67.81
AM 20.78% 45.75 50.93 52.46 55.99
A2 11.31% 54.67 56.44 57.69 59.89
A3 2.22% 51.84 51.83 54.02 54.55
R- 2.07% 48.13 54.55 61.42 61.99
C- 0.88% 48.23 56.64 54.60 57.14
A4 0.50% 56.67 57.59 60.00 62.00
A5 0.03% 0.00 0.00 0.00 0.00

Table 6.4: F1 of four models from Section 6.6.3 across role labels. For each row, we treat
all but one label (Role Label) as corresponding to the nil label. We take only the first two
characters of the role so that the many various roles starting with AM- are combined under
the row AM. We report the results ordered by the proportion of each role appearing in the
gold data (% of Gold).

can train in a semi-supervised fashion where only the semantics are observed. We find that

structured factors, neural factors, and our training method all improve performance over

our baseline models.
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Chapter 7

Conclusions

7.1 Summary of the Thesis

The primary contribution of this thesis was the introduction of graphical models with struc-

tured factors, neural factors, and approximation-aware training.

Chapter 3 We presented the most thorough study to date of semantic role labeling in

low-resource settings. We introduced distant semantic supervision for grammar induction

by way of a constrained E-step in Viterbi EM. Further, we presented the first empirical

study of joint vs. pipelined training of SRL with latent syntax. Our alteration of the model

from Naradowsky et al. (2012a) obtained the best results, and strong results in the fully

supervised setting.

Chapter 4 We investigated the role of neural and handcrafted features on relation extrac-

tion. Our primary finding was that the two types of features are highly complementary in

relation extraction when using the FCM of Gormley et al. (2015c). We obtained state-of-

the-art results on ACE 2005 relation extraction in a domain adaptation setting. Our results

on SemEval-2010 Task 8 relation classification approach the best reported result on that

benchmark.
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Chapter 5 We introduce approximation-aware learning for structured belief propagation

(BP)—an extension of the ERMA method of (Stoyanov et al., 2011) to structured factors.

We further introduce a new objective function based on the L2 distance between the beliefs

and the one-hot representation we want them to take on. Our results demonstrate that our

method trains parsers that are faster and more accurate than those trained by traditional

conditional log-likelihood.

Chapter 6 We present a new framework for hybrids of graphical models with structured

factors and neural networks. When the factor graph contains cycles, our method treats the

forward pass through a neural network, approximate inference, any embedded dynamic

programming algorithms, decoding, and loss as defining a deep network, which can be

trained by backpropagation. We apply this method to a new model for joint syntactic and

semantic dependency parsing.

7.2 Future Work

This section mentions a few of the possible directions for extending and building upon this

work.

7.2.1 Other Structured Factors and Applications

In Chapter 5 we only considered second order dependency parsing, however the third-order

features of Martins et al. (2013) could be adapted to our framework. Further, we could

consider neural features akin to recent work in neural networks for dependency parsing

(Chen and Manning, 2014).

While this work has focused on dependency structures, there are many other appli-

cations that we could consider. For example, most existing applications of structured

BP would likely benefit from our approach. Structured BP has already been applied to
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CNF grammar parsing (Naradowsky et al., 2012b), TAG parsing (Auli and Lopez, 2011),

an ITG-constraint for phrase extraction (Burkett and Klein, 2012), graphical models over

strings (Dreyer and Eisner, 2009), and taxonomy induction (Bansal et al., 2014)—among

others.

Other areas for application include computer vision tasks such as scene parsing, pose

estimation, and image captioning. In computational biology, the problems of folding, align-

ing, and modeling RNA sequences also provide a natural problem space for the types of

models proposed here.

7.2.2 Pruning-aware Learning

Multi-pass coarse-to-fine inference has proven to be a very effective method for tasks in

NLP such as constituency parsing (Petrov et al., 2006; Petrov and Klein, 2007; Pauls and

Klein, 2009) and machine translation (Petrov et al., 2008; Petrov, 2009). Traditionally,

these approaches have relied on maximum likelihood training of the coarse models. Struc-

tured prediction cascades (Weiss and Taskar, 2010) instead define an objective function

for each intermediate pruning model that encourages a high oracle pruning accuracy. Ap-

plied to MAP inference for dependency parsing (Rush and Petrov, 2012) these structured

prediction cascades lead to significant speedups with minimal loss in accuracy.

A natural extension of our work is to treat the complete sequence of pruning models

and the final decoder as a single (approximate) system. By carefully defining the pruning

decisions by a subdifferentiable “hinge” function, we could backpropagate through them

just as we would any other part of our model. The pruning would be active not just at test

time, but also during training—so that both would see efficiency gains.

7.2.3 Hyperparameters: Optimizing or Discarding

A deficiency of the methods in this thesis—as with deep learning—is the need for tuning

of hyperparameters. In this work, we relied on manual tuning, grid search, and random
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Newswire: President elect Mohammed Morsi leads the
”Freedom Justice Party” (FJP), an emanation of
the Muslim Brotherhood

Twitter: b/c egypt’s morsi chaired the fjp!!!

Table 7.1: Example sentences from newswire and Twitter domains.

search (Bergstra et al., 2011; Bergstra and Bengio, 2012) for hyperparameter optimiza-

tion. Yet more sophisticated methods, such as tree-structured Parzen estimators (Bergstra

et al., 2011) or Gaussian process optimization (Snoek et al., 2012) would likely yield better

results. A particularly complementary approach would be the efficient backpropagation

method of Maclaurin et al. (2015), which treats hyperparameters as another tunable weight

in the system.

Hyperparameter optimization should not be left to guesswork. It should be treated as

an essential part of the scientific process (Bergstra et al., 2013). Our strong emphasis on

continuous optimization in Section 2.4 was (in part) because choosing the right optimiza-

tion algorithm was an important part of our process of hyperparameter optimization. Thus,

we take the position that careful work in this area is just as important as any of the other

extensions mentioned here.

Since many of the most important hyperparameters relate to the learning algorithm, an

alternative would be to consider the algorithms that have fewer (or at least less sensitive)

hyperparameters. For example, the online learning method of Martins et al. (2010a) and

Martins et al. (2010b) could possibly be adapted to the approximation-aware setting.

7.2.4 Multi-task Learning for Domain Adaptation

Most natural language processing (NLP) tools are brittle: having been trained on one lan-

guage, style, and domain, the quality of their annotations erodes when transferred to a

different setting, and ad-hoc domain adaptation techniques help only slightly. Consider

transferring across writing styles from newswire to Twitter data (see Table 7.1). We would

expect that the most prominent changes will come about in spelling, where letters and
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sometimes entire words are dropped. To a lesser extent we anticipate the syntax to change.

If the text emphasizes sports, we might expect that the entities and relations discussed will

change relatively little. The stability of these things is what allows us to puzzle out the

most plausible interpretation, despite many changes to orthography and relatively few to

syntax and the facts. In this sense, the correct interpretation would be overdetermined in

the correct model.

One of the primary motivations for this work was the goal of jointly modeling multiple

linguistic strata: orthography, syntax, shallow semantics, topic, and knowledge. Model pa-

rameters can then be tied across styles/genres in a hierarchical Bayesian setting. This would

allow the model to transfer only the appropriate levels of linguistic knowledge, while learn-

ing which parameters must adapt to account for variation across these settings. Critically,

our model will allow for confidence in one level to propagate to all the others. For exam-

ple, we might not know how spelling works in one setting, so we rely on a higher level

of the model to figure it out. The learned constraints on language are propagated across

two different axes inherent in the data: linguistic strata (e.g. semantics to orthography) and

domains (e.g. newswire to twitter). The value proposition is that if our model knows about

more constraints on language, it can better withstand and adapt to perturbations of the data.

Learning in this model would likely take on a semi-supervised form. Out-of-domain

annotated data will be essential to guide learning in its early stages. Yet we will decrease

its influence as we gradually build confidence on the in-domain data, marginalizing over

the levels of the model for which there is the most uncertainty. Consider a case where

our target domain is weblogs, for which we have only relation annotations. Parameter

estimation would also utilize data from other domains such as a newswire treebank and

named entity annotations on broadcast news; allowing the parameters for these domains to

influence the marginalized parses and named entities on the weblogs.
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Appendix A

Pacaya: A General Toolkit for Graphical

Models, Hypergraphs, and Neural

Networks

Graphical models, neural networks, and inference on hypergraphs are traditionally treated

as distinct. This is reflected in the numerous software frameworks that handle one of the

three in isolation. See the related work section below for examples. By contrast, Pacaya1 is

a framework for hybrids of graphical models and neural networks, which perform approxi-

mate inference with hypergraph algorithms as a subroutine. The design and engineering of

this framework was critical to the study of the new types of models discussed in this thesis.

A.1 Code Layout

The Pacaya framework is made up of four Java libraries:

Prim Prim is a Java primitives library with an emphasis on sparse representations of vec-

tors and matrices. Unlike C++, the Java compiler does not provide built-in support for

1https://github.com/mgormley/pacaya
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templates/generics over primitives data types (e.g. int, long, float, double).

Prim instead uses a canonical definition of a class as a template for code generation.

For example, a sorted map is parameterized by the key type (K) and the value type

(V ). The canonical class is the one where (K, V ) = (long, double). Code gen-

eration uses this canonical version to create the sorted map classes for other pairs:

(int, float), (short, int), etc.

Optimize This library provides a variety of modern algorithms for numerical optimiza-

tion. The primary focus of the library is on variants of SGD, which have proven to

be critical to training large-scale machine learning systems. It includes several of

the algorithms described in Section 2.4. The Optimize library easily allows one to

switch between optimizers at training time. (A separate library provides wrappers to

optimization routines from other toolkits e.g. quasi-Newton methods.)

Pacaya This library is the core of the framework. Pacaya is a Java library for hybrid

graphical models and neural networks. Just like other neural net libraries, Pacaya

implements module-based automatic differentiation (AD). The novelty in Pacaya is

that it includes modules which are a departure from the usual building blocks of neu-

ral networks: such as modules for approximate inference by BP, inside-outside on

a hypergraph, MBR decoding – these tend to be very sparse. It also includes some

more standard NN modules that manipulate dense tensors. Unlike most other graph-

ical models libraries, Pacaya was designed to support arbitrary factors (structured,

neural). Such factors act as just another module (in the autodiff sense). In this thesis,

we consider models where a neural network feeds into approximate inference which

calls out to exact inference on a hypergraph. However, the framework would per-

mit other architectures as well, such as approximate inference feeding forward into a

neural network.

Pacaya NLP Applications of Pacaya to natural language processing (NLP) reside in this
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library. The part-of-speech tagger (Chapter 6), dependency parser (Chapter 5), se-

mantic role labeler (Chapter 3), and relation extractor (Chapter 4) are all included.

They can be trained and tested as individual components or as a single joint model.

A.2 Feature Sets from Prior Work

Many of the models we consider in this thesis are either identical to or inspired by prior

work. Pacaya NLP includes a number of feature sets from these models.

SRL For SRL, we include the features from Björkelund et al. (2009), Zhao et al. (2009),

and Naradowsky et al. (2012a). We also include most of the features from Johansson

(2009) and Lluı́s et al. (2013), with missing features noted in the code.

Dependency Parsing We re-implement the syntactic dependency parsing feature sets of

McDonald et al. (2005), McDonald and Pereira (2006), Carreras (2007), and Koo

et al. (2008). We also include the first- and second- order features from Martins et al.

(2013). The library does not (yet) support consecutive sibling factors.

Relation Extraction For relation extraction, we re-implement the features from Zhou et

al. (2005) and Sun et al. (2011) with the exception of the relation-specific features

requiring a country list, trigger word list, and title list.

Pacaya NLP includes a feature template language that is catered to extracting these

sorts of features. In discriminative models, it is common to distinguish between features

and properties. As noted in Sutton and McCallum (2007), features can be defined using

a function of the form: fα,ỹα,k(yα,x) = I(ỹα = yα) ∧ gk(x), where I is the indicator

function, ỹα is a fixed assignment to the variables, and gk extracts the kth property of the
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observations.2 The vector of features becomes:

f(y,x) = [fỹ1,1(y,x), fỹ1,2(y,x), fỹ1,3(y,x), . . . , (A.1)

fỹ2,1(y,x), fỹ2,2(y,x), fỹ2,3(y,x), . . . , (A.2)

fỹ3,1(y,x), fỹ3,2(y,x), fỹ2,3(y,x), . . .] (A.3)

where the α subscripts have been dropped for readability, and ỹi is the ith configuration of

the variables in factor α. Pacaya NLP provides a little language for defining the property

extractors gk(x).

The documentation for Pacaya NLP describes where to find feature sets from prior

work in the code. They are implemented declaratively in the little language, imperatively

when speed is particularly important (e.g. dependency parsing), and in some cases both

declaratively and imperatively.

A.3 Design

A.3.1 Differences from Existing Libraries

There are a variety of other excellent libraries for graphical models, neural networks, and

hypergraphs. These include but are by no means limited to the following:

• Graphical model libraries:

– Factorie (Scala) (McCallum et al., 2009)

– LibDAI (C++) (Mooij, 2010)

– OpenGM (C++) (Andres et al., 2012)

– Infer.NET (.NET) (Minka et al., 2012)

• Neural network libraries:

– Torch7 (Lua) (Collobert et al., 2011a)
2Sutton and McCallum (2007) refer to gk as an observation function.
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– Theano (Python) (Bergstra et al., 2010)

– Caffe (C++) (Jia et al., 2014)

• Hypergraph libraries:

– Pydecode3 (Python)

– cdec4 (C++) (Dyer et al., 2010)

Many of these libraries represent the state-of-the-art for machine learning technology. They

are also built on certain restrictive assumptions that made them unsuitable for the goals of

this work. For example, the graphical models libraries are designed to support factors of

only a few variables, while we needed to support structured factors of many variables. The

neural network libraries are built to do very fast processing of dense Tensors, yet they don’t

readily support the sorts of sparse data structures needed in order to treat inference as a

feed-forward network. The hypergraph libraries are likely suitable for our needs, yet it

only represents a small portion of the overall codebase. Accordingly, we designed Pacaya

from the ground up with the overall design goal of hybrid models in mind. Of course,

Pacaya has its own restrictive assumptions, and we discuss some of these below.

A.3.2 Numerical Stability and Efficient Semirings in Java

Numerical stability is an important consideration for both the forward computation and

backpropagation of approximate inference in a factor graph. Following Li and Eisner

(2009), we rely on a semiring that represents each real number as a pair containing the

log of the absolute value of the number and a sign bit. This representation permits very

small positive and negative numbers. We extend this semiring to its equivalent abstract

algebra, in order to accomodate the broader scope of elementary operations we need (add,

subtract, times, divide, exp, log, etc.).

Since these operations are often at the most deeply nested inner loops it is important

3https://github.com/srush/PyDecode
4hypergraphs for machine translation decoding
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that they be inlined and compiled by the Java Virtual Machine’s (JVM) just-in-time (JIT)

compiler. We implement each abstract algebra as an object with methods for each of the

elementary operations. The data itself is always stored in a double. With careful use of

bit shifts and masking, we can carve up the 64-bits into (very primitive) data structures

such as two floats, or a log-absolute value and a sign bit. Unpacking, processing, and

repacking the bits in this way can be inlined in most modern JVM’s whenever exactly one

class implementing the abstract algebra interface is loaded – since the JVM can rule out any

other possible code paths. However, we often reuse the same data structure (e.g. a tensor

object) with two abstract algebras (e.g. log-sign and real). Thus, there may be two possible

branches that could be taken. Modern JVM’s support bimorphic inlining, which handles

exactly this case efficiently. Unfortunately, current JVM’s do not support megamorphic

inlining (i.e. inlining three or more possibilities) – so we generally avoid that setting.

A.3.3 Comments on Engineering the System

Maximizing speed, minimizing memory usage, and handling a variety of architectures

(CPU and GPU) are some of the main considerations that influence the early design choices

of any framework for graphical models, neural networks, or hypergraphs. The frameworks

mentioned above prioritize speed of certain dense matrix computations that are particu-

larly useful for deep feed-forward neural networks. Pacaya prioritizes speed of the sparse

computations for inference by belief propagation on a factor graph and inside-outside on a

hypergraph.

However, the choice of Java over other languages is a concession in speed/memory in

favor of portability, quality of tooling (IDEs, debuggers, profilers, etc.), and the flow of

an interpreted scripting language (with the Eclipse compiler). While speed comparisons

between languages are very nuanced, we present two here that give a flavor for the speed

tradeoffs that exist between Java and C++.
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A.3.3.1 Experiment 1: Inside-Outside Algorithm

The purpose of this experiment was to assess the differences in speed available to the C++

and Java programmer implementing the inside algorithm for dependency parsing (Eisner,

1996). A key aspect of any parser implementation is the representation of the parse chart.

For a dependency parser this can be viewed as a four dimensional table (parent, child,

direction, complete) of size n × n × 2 × 2. We consider the effect that this has on parser

speed.

Setup In Java, all arrays must be heap allocated—stack allocation only exists for prim-

itives. However, the size of any array (even high-dimensional arrays) can be specified at

runtime. A Java 4D array permits multidimensional indexing. In C++, a 4D vector of

the type vector<vector<vector<vector<double>>>> permits multidimensional in-

dexing and can be sized at runtime. In both Java and C++, we can also use a 1D array

allocated on the heap with the indexing computed by 3 multiplications and 3 additions.5

Java was compiled with Eclipse Luna’s JDT and one round of warm-up was given to the

JIT compiler. C++ was compiled with clang v6.0 and either included debug symbols (□✓)

or did not (□). The latter case used -O3 compiler optimizations.

Results Table A.1a compares the speed of these Java and C++ parsers with a max/+

semiring and backpointers to recover the Viterbi parse. We report the average number

of tokens per second on 10,000 runs of the inside algorithm using synthetic sentences of

length 30. Not surprisingly, the 1D array implementations give a significant speedup over

their 4D counterparts. C++ is only somewhat faster than the Java Viterbi parser.

Table A.1b repeats the same experiment running the inside-outside algorithm with a

+/log-add semiring and no backpointers. The implementation in log-add for both languages
5We also tested a true multidimensional array in C++, which must have its dimensions specified at compile

time. The advantage of this method is that the parse chart can be allocated on the stack. However, this comes
with a disadvantage that the parser cannot parse sentences beyond a fixed length—so we do not include those
results here. The speedup over the 1D array was about a factor of 2 for the max/+ semiring and gave no
observable speedup for the +/log-add semiring.
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Language Debug Storage Tok./Sec.
C++ □✓ 4D vector 9,576
C++ □ 4D vector 20,648
C++ □✓ 1D array 23,997
Java □✓ 4D array 54,044
Java □✓ 1D array 186,567
C++ □ 1D array 270,459

(a) Viterbi parser with max/+ semiring and backpointers
Language Debug Storage Tok./Sec.
C++ □✓ 4D vector 1,853
Java □✓ 4D array 3,017
Java □✓ 1D array 3,401
C++ □ 4D vector 3,639
C++ □✓ 1D array 5,039
C++ □ 1D array 9,710

(b) Inside-outside algorithm with +/log-add semiring

Table A.1: Speed comparison of Java and C++ parser implementations. The tokens per
second were averaged over 10,000 trials for max/+, and over 1,000 trials for +/log-add.

Framework Language Algorithm Total Seconds
LibDAI C++ BP (DAI BP FAST=0) 25.25
Pacaya Java BP (standard) 19.68
Pacaya Java BP (divide-out) 11.45
LibDAI C++ BP (DAI BP FAST=1) 10.38

Table A.2: Speed comparison of Pacaya (Java) and LibDAI (C++) implementations of
belief propagation (BP) with parallel message passing.

relies on a native call to log1p.6 This operation is dramatically faster in C++ than Java and

dramatically effects the results. The parse chart representation is no longer as important as

the language choice in this case.

These results suggest that for these algorithms, if test-time performance is the end-goal,

then C++ exhibits a clear advantage over Java. However, if a balance between test-time and

debug performance is desired, Java should be preferred.

155



A.3. DESIGN

A.3.3.2 Experiment 2: Parallel Belief Propagation

In this section, we compare two implementations of belief propagation with parallel mes-

sage passing: Pacaya (Java) and LibDAI (C++) (Mooij, 2010). The two libraries exhibit

significant differences in the implementation of the algorithm and the choice of data struc-

tures. However, Pacaya took inspiration from LibDAI in various design choices. One

notable difference is that LibDAI is optimized for pairwise MRFs and does not cache the

messages from variables to factors.

Setup LibDAI implements the inner-loops of the message passing algorithm in two ways:

one uses a tensor data structure and is very readable (DAI BP FAST=0) and the other is

highly optimized for speed (DAI BP FAST=1). Pacaya can optionally cache variable and

factor beliefs during message passing which allows messages to be computed by dividing

out a message from the beliefs. We consider two versions of Pacaya: one with the dividing

out trick (divide out) and one without (standard). Each framework performs 10 iterations

of parallel BP. The same compilers were used as in the above experiment. In order to warm-

up the JVM, both implementations were run for 3 trials and the time on the third trial was

used. We test on a single factor graph. The model is from Chapter 5 and corresponds to a

2nd-order parser with unary, grandparent, and arbitrary sibling factors. We do not include

the PTREE factor since LibDAI does not support structured factors. No pruning was used,

so each edge variable is connected to O(n) other edges by grandparent and sibling factors.

Results The results are summarized in Table A.2. The standard implementation in Pacaya

is slightly faster than the “readable” implementation in LibDAI, but 2x slower than the op-

timized version. Using the divide-out trick on this particular factor graph gives a significant

speedup, such that Pacaya is almost as fast as LibDAI.

6In Pacaya, we often approximate log1pwith a lookup table for additional speed, though we don’t report
those results here since it degrades numerical stability.
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Bethe Likelihood

In this section, we propose an objective function which has the log-likelihood as a special

case. We refer to this objective as the Bethe log-likelihood because it is identical to the log-

likelihood except that we replace the true partition function Z with its Bethe Free Energy

approximation ZBethe.

log p(y) =
∑

α

logψα(yα)− logZBethe (B.1)

We define − logZBethe = FBethe(b) where FBethe(b) is the Bethe Free Energy. When in-

ference is exact, the Bethe Free Energy is equal to the negative log partition function:

FBethe(b) = − logZ, and in this case the Bethe log-likelihood recovers log-likelihood.

Backpropagating through the first term of the Bethe likelihood is simple. We add to the

adjoints of the potential function for each yα that we observe in the training data:

ðψα(yα) +=
ðp(y)
ψα(yα))

(B.2)

Next we consider how to do the forward and backward computations for the Bethe free

energy.
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Bethe Free Energy with Structured Factors The Bethe Free Energy is computed as a

function of the beliefs:

FBethe(b) =
∑

α

∑

yα

bα(yα) log

[
bα(yα)

ψα(yα)

]
(B.3)

−
∑

i

(Ni − 1)
∑

yi

bi(yi) log bi(yi)

For most factors α, this computation is straightforward. However, for the PTREE factor,

we require a more efficient method of computing the summation over assignments yα.

This reduces to the expected log-beliefs (i.e. entropy) of the distribution over trees for that

factor. Li and Eisner (2009) show that this can be computed as a simple linear function of

the tree marginals.

Backpropagation through the Bethe Free Energy (B.3) is very simple for the variable

beliefs and those of the factors for which we can compute the expected log belief by brute

force.

ðbi(yi) += ðFBethe(b)(log bi(yi) + 1) (B.4)

ðbα(yα) += ðFBethe(b)(log bα(yα) + 1− logψα(yα)) (B.5)

ðψα(yα) += ðFBethe(b)
bα(yα)

ψα(yα)
(B.6)

However, we cannot simply enumerate the belief table for structured factors like PTREE.

Next we consider how to deal with this issue.

Expected Log Beliefs for PTREE To compute the term
∑

yα
bα(yα) log

[
bα(yα)
ψα(yα)

]
for

α = PTREE, we first observe that we can drop the value ψα(yα) since it always has value

1.0 except when bα(yα) is also zero. We then find that these expected log beliefs are just
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the negative entropy of the distribution over derivations for the hypergraph given by bPTREE:

−H(bα) =
∑

yα:ψα(yα)=1

bα(yα) log bα(yα) (B.7)

where α = PTREE. Computing this negative entropy term requires running the inside-

outside algorithm, followed by a simple iteration over the hyperedges (Li and Eisner, 2009).

To see that this is the case, we can rewrite the negative entropy as below:

−H(bα) =
∑

yα:ψα(yα)=1

qα(yα)

Zq
log

qα(yα)

Zq
(B.8)

=
q̄

Zq
− logZq (B.9)

where qα(yα) =
∏

i:yi=ON

m
(tmax)
i→α (ON)

m
(tmax)
i→α (OFF)

are the message ratios, Zq =
∑

yα:ψα(yα)=1 qα(yα)

is the partition function computed by the inside-outside algorithm on a hypergraph, and

q̄ =
∑

yα
qα(yα) log qα(yα). Notice that we have played slight of hand with the product of

all the OFF messages, which is implicitly included in Zq. Following Li and Eisner (2009)

we compute q̄ by running the inside-outside algorithm with hyperedge weights we. Here

we use the same hypergraph structure used to compute the beliefs for PTREE and the same

hyperedge weights. Namely, a hyperedge e which corresponds to yi = ON has weight

we =
m

(tmax)
i→α (ON)

m
(tmax)
i→α (OFF)

. Any other hyperedge e has weight we = 1. Finally, we compute the

following from the the inside and outside scores, βe, αe, and the logs of the hyperedge

weights:

q̄ =
∑

e

αH(e) logwe
∏

j∈T (e)
βj (B.10)

to obtain the desired quantity.1

In order to backpropagate through the expected log beliefs, we assume access to the

1The alternative approach would be to run the inside algorithm with a first-order expectation semiring
where the hyperedge weights are ⟨we, we logwe⟩ (Li and Eisner, 2009).
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adjoint of the negative entropy ð(-H(b)). The computation then proceeds as below:

ðq̄ += ð(-H(b))
1

Zq
(B.11)

ðZq += ð(-H(b))
q̄

Z2
q

− 1

Zq
(B.12)

Since we can already backpropagate through the inside-outside algorithm, we only need

to define the contribution to the adjoints made by the simple computation of q̄ in (B.10).

The values below act as the initial values of the adjoints when running the backward pass

through inside-outside.

ðαi +=
∑

e∈I(i)
ðq̄ logwe

∏

j∈T (e)
βj (B.13)

ðβj +=
∑

e∈O(j)

ðq̄ αH(e) logwe
∏

k∈T (e):k ̸=j
βk (B.14)

ðwe += ðq̄ αH(e)
1

we

∏

j∈T (e)
βj (B.15)

Recall that the input to this inside-outside computation on the forward pass were message

ratios. That is, we =
m

(tmax)
i→α (ON)

m
(tmax)
i→α (OFF)

for edge e corresponding yi = ON. Thus, the final step is

to backpropagate through this to update the adjoints of the messages. This is in contrast to

all the other objectives functions considered in this thesis which are a function only of the

beliefs.
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Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and Stan Szpakowicz (2010).

“SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations Between Pairs

of Nominals”. In: Proceedings of SemEval-2 Workshop.

Hermann, Karl Moritz and Phil Blunsom (2013). “The role of syntax in vector space models

of compositional semantics”. In: Association for Computational Linguistics, pp. 894–

904.

Hermann, Karl Moritz, Dipanjan Das, Jason Weston, and Kuzman Ganchev (2014). “Se-

mantic Frame Identification with Distributed Word Representations”. In: Proceedings

of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol-

ume 1: Long Papers). Baltimore, Maryland: Association for Computational Linguistics,

pp. 1448–1458.

Hockenmaier, Julia and Mark Steedman (2007). “CCGbank: A Corpus of CCG Derivations

and Dependency Structures Extracted from the Penn Treebank”. In: Computational Lin-

guistics 33.3, pp. 355–396.

Huang, Liang, Suphan Fayong, and Yang Guo (2012). “Structured Perceptron with Inexact

Search”. In: Proceedings of NAACL-HLT.

Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-

shick, Sergio Guadarrama, and Trevor Darrell (2014). “Caffe: Convolutional architec-

ture for fast feature embedding”. In: Proceedings of the ACM International Conference

on Multimedia. ACM, pp. 675–678.

Jiang, Jing and ChengXiang Zhai (2007). “A Systematic Exploration of the Feature Space

for Relation Extraction”. In: Association for Computational Linguistics, pp. 113–120.

170



BIBLIOGRAPHY

Johansson, Richard (2009). “Statistical Bistratal Dependency Parsing”. In: Proceedings of

the 2009 Conference on Empirical Methods in Natural Language Processing. Singa-

pore: Association for Computational Linguistics, pp. 561–569.

Johansson, Richard and Pierre Nugues (2008). “Dependency-based Semantic Role Label-

ing of PropBank”. In: Proceedings of the 2008 Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics.

Klein, Dan and Christopher Manning (2004). “Corpus-Based Induction of Syntactic Struc-

ture: Models of Dependency and Constituency”. In: Proceedings of the 42nd Meeting

of the Association for Computational Linguistics (ACL’04), Main Volume.

Klein, Dan and Christopher D. Manning (2001). “Parsing and Hypergraphs”. In: Proceed-

ings of the International Workshop on Parsing Technologies (IWPT).

Koo, Terry, Xavier Carreras, and Michael Collins (2008). “Simple Semi-supervised De-

pendency Parsing”. In: Proceedings of ACL-08: HLT. Columbus, Ohio: Association for

Computational Linguistics, pp. 595–603.

Koo, Terry and Michael Collins (2010). “Efficient third-order dependency parsers”. In:

Proceedings of ACL.

Koo, Terry, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag

(2010). “Dual decomposition for parsing with non-projective head automata”. In: Pro-

ceedings of the 2010 Conference on Empirical Methods in Natural Language Process-

ing, pp. 1288–1298.

Kschischang, Frank R., Brendan J. Frey, and Hans-Andrea Loeliger (2001). “Factor graphs

and the sum-product algorithm”. In: IEEE Transactions on Information Theory 47.2.

Kulesza, Alex and Fernando Pereira (2008). “Structured Learning with Approximate Infer-

ence.” In: Advances in Neural Information Processing Systems.

Lafferty, J., A. McCallum, and F. Pereira (2001). “Conditional random fields: Probabilistic

models for segmenting and labeling sequence data”. In: Proc. 18th International Conf.

on Machine Learning.

171



BIBLIOGRAPHY

Li, Qi and Heng Ji (2014). “Incremental Joint Extraction of Entity Mentions and Relations”.

In: Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers). Baltimore, Maryland: Association for Computational

Linguistics, pp. 402–412.

Li, Zhifei and Jason Eisner (2009). “First- and Second-Order Expectation Semirings with

Applications to Minimum-Risk Training on Translation Forests”. In: Proceedings of the

2009 Conference on Empirical Methods in Natural Language Processing. Singapore:

Association for Computational Linguistics, pp. 40–51.

Liang, Percy (2005). “Semi-supervised learning for natural language”. PhD thesis. Mas-

sachusetts Institute of Technology.

Liu, Yang, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, and Houfeng WANG (2015). “A

Dependency-Based Neural Network for Relation Classification”. In: Proceedings of

the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 2: Short Pa-

pers). Beijing, China: Association for Computational Linguistics, pp. 285–290.

Lluı́s, Xavier, Xavier Carreras, and Lluı́s Màrquez (2013). “Joint Arc-factored Parsing of
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