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Abstract

Transcriptional regulation is imperative for proper development of multicellular or-

ganisms, and disregulation of this process can lead to genetic disease. Due to

technical limitations, the full human regulome has not been assayed. Computa-

tional methods provide resources to fill the gaps in our understanding of these pro-

cesses. Sequence based representations of transcription factor DNA motifs have

long been used for this purpose. We developed a model based on estimates of

DNA shape known as Structural Motifs, extending the position weight matrix to

accommodate multiple continuous shape parameters at each position. Using ex-

pectation maximization, Structural Motifs are discovered de novo from transcription

factor binding data, and these motifs are specific to their cognate factors. When

considered jointly with sequence motifs, Structural Motifs improve classification of

transcription factor binding sites. Joint models also provide insight into the readout

mechanisms utilized by transcription factors. DNA shape is an important compo-

nent of the protein-DNA interaction to consider and improves the computational

predictions of transcription factor binding, elevating our understanding of the regu-

latory landscape.
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1. Introduction

The human body is composed of trillions of cells arranged in complex systems and

structures, all working together to carry out the various functions required for life

[1]. This feat of coordination is all the more remarkable when considering that all of

these cells are working from the same set of instructions: they have identical copies

of the DNA code that specifies their jobs [2, 3]. In order to achieve the diversity

observed in cellular morphology and function, tight control over the expression of

the genes in each cell is required [4, 5, 6]. This is accomplished in large part through

the expression and activity of transcriptional regulators.

Sequence specific transcription factors recognize and bind to particular regions

of the genome, and through interactions with other proteins serve to modulate the

transcription of their target genes[6, 7]. The modulations may be activating, thereby

increasing the rate of transcription, or repressive, driving down the rate of transcrip-

tion of the target gene. This layer of regulation allows for fine tuning of both the

temporal and spatial expression of genes across diverse cell types [8, 9].

Variation at the genomic sites that are bound by these transcription factors is

a strong contributor to phenotypic diversity across the population [10]. Loss of

regulation at a specific locus can contribute not only to heterogeneity of individuals,

but also to the development of disease [11]. As such, assaying all of these sites,

across all tissue types would reveal mechanisms of disease and candidates for

treatment. With current technology this is, however, virtually impossible. Many
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tissues and cell types are difficult to sample in high enough quantity and purity to

effectively characterize, and antibodies that show high specificity are lacking for

many known transcription factors [12].

Computational methods for characterizing the binding specificity of transcription

factors seek to fill this gap. Bymodelling and understanding the binding preferences

exhibited by a transcription factor, putative binding sites can be identified in addi-

tional cell types by extrapolating based on other experimental data. This avenue

of identifying binding sites also allows a larger number of transcription factors to

be characterized, as binding preferences can be observed in in vitro experiments

using purified protein as opposed to relying on specific antibodies for immunopre-

cipitation.

To date, one of themost widely usedmodels of transcription factor binding speci-

ficity has been the position weight matrix [13]. This model is a simple probability

matrix that models the probability of seeing any given nucleotide in sequence along

the binding site. The abstraction of the DNA molecule to sequences of letters has

permitted the use of high throughput technologies for assaying transcription factor

binding sites, such as PBMs, ChIP-seq, and SELEX, and has proven to be quite a

robust representation [14]. However, considering the three dimensional structure

of the interacting molecules (the transcription factor and the DNA) can provide ad-

ditional valuable information about the interaction, and therefore about the impact

of variation in either molecule on that interaction [15].

In this work, we present a method for describing the binding preferences of tran-

scription factors by characterizing the distribution of observed three dimensional

DNA shapes at each position across the sequence. Supporting this work we devel-

oped computational methods for discovering the shape motifs from high throughput

sequencing experiments, and support for making binding predictions for additional

sequences. A new Python package provides all of these functions for use in a
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scientific setting.

1.1 Discovery and Description of

Sequence-Specific Transcriptional Regulators

In 1961, eight years after the structure of DNA was discovered [16], but long before

large-scale genome sequencing was common, “structural genes” were a known

component of cells [17]. These genes were defined as those that provide the tem-

plate for a RNA or protein product that carries out one of the many cellular pro-

cesses, for example as enzymes or cytoskeletal factors. Consolidating the data of

the time, largely from the lac operon inEscherichia coli, Jacob andMonod proposed

a revolutionary hypothesis. They deduced that there must be another type of ele-

ment they termed “regulator genes”. They further postulated that these regulators

must produce a cytoplasmic product that interacts specifically with certain “opera-

tor” sites on the chromosomes to exert their regulatory control on the production of

“structural genes” [18].

Following the purification in 1967 of λ phage repressor, the cytoplasmic prod-

uct of one of these regulator genes, M. Ptashne demonstrated that these factors

bind preferentially and specifically to particular DNA sequences [19]. It was later

hypothesized that the hydrogen-bonding potential in the major groove is sufficient

to differentiate between each nucleotide, and that specific amino acid side chains

may be able to specifically recognize these differences [20].

As technology advanced, and collections of sequences were curated, methods

were proposed to represent the specific sequences recognized by these so-called

regulator genes. Since there was some variation in the sequences preferred by a

given regulator, a probabilistic model based on a “Perceptron” was used to describe

the sites [13]. Encoding the rules dictating the specificity of the interaction in this
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way allowed for computational prediction of additional sites where the regulator

may bind.

1.2 Common Structures of DNA binding domains

As more transcription factors have been purified and studied in detail it has been

discovered that, while many factors have a distinct set of sites along the genome to

which they bind, most transcription factors can be classified into one of seven main

structural families describing the general shape of the DNA binding domain. This

classification can be useful, as it has been observed that factors within the same

family tend to have similar DNA motifs. Since the structure of the protein domain

determines the interaction with DNA, and therefore the specificity of the interaction,

the resultant similarity between family members is unsurprising.

1.2.1 Helix-Turn-Helix Proteins

As the name implies, a Helix-Turn-Helix protein is composed of a pair of α helices

separated by a strand of linker amino acids (the turn) [21]. The two helices interact

with each other to maintain a constant orientation and angle, allowing the recog-

nition helix (the more C-terminal of the two) to set along the major groove of the

DNA. These factors often function as dimers, with the two recognition helices be-

ing separated by approximately one turn of the DNA, such that both may sit in the

major groove. Dimerization in this way serves to extend the size of the motif and

increase the specificity of the factor [22]. Examples include lambda Cro, and the

CAP fragment [23, 24].

4



Helix	Turn	Helix	

(a)

Leucine	Zipper	

(b)

Helix	Loop	Helix	

(c)
Homeodomain	

(d)

B	sheet	

(e)

Zinc	Finger	

Zn	

(f)

Figure 1.1: Common transcription factor structures. α-helices are shown as cylin-
ders, and β-strands are shown as arrows, with flexible linkers described as lines.
(a) Helix-Turn-Helix. The recognition helix (orange) sits in the major groove. (b)
Leucine Zipper. The two helices dimerize, forming a Y structure. (c) Helix-Loop-
Helix. The C-terminal helices dimerize, positioning the N-terminal helices sit in
opposing major grooves. (d) Homeodomain. The recognition helix (red) sizes in
the major groove, stabilized by the other helices. (e) β Sheet. In this example,
the two β-strands are joined by a flexible linker. (f) Zinc Finger. One module is
shown, with a helix and sheet stabilized by the zinc atom (black). This would be
one component of a tandem set of fingers.
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1.2.2 Leucine Zipper Proteins

This type of transcription factor gets its name from the way it dimerizes. Each com-

ponent of the dimer has an α helix, and they “zip” together to form a coiled coil,

primarily through hydrophobic interactions of leucine amino acids along the dimer-

ization interface [25]. Beyond the dimerization region of the helices, they separate

and lay in the major groove on opposites of the DNA from one another. Due to

the dimeric mode of binding, these factors often bind palendromes, particularly

those with a core ACGT motif, including the CACGTG (G box), GACGTC (C box),

TACGTA (A box), and AACGTT (T box) motifs [26, 27]. Heterodimerization allows

for more diverse binding specificities, often combining the relative specificities of

each partner [22]. Common examples include c-Fos and c-Jun [28].

1.2.3 Helix-Loop-Helix Proteins

Similar to the leucine zipper class of transcription factors, the Helix-Loop-Helix fam-

ily also uses α helices to dimerize and to bind the major groove of the DNA [29].

This class is distinguished from the leucine zipper in that there is a flexible linker

that loops out between the dimerization and DNA binding domains [30]. The longer

N-terminal helix binds the DNA, while the shorter more C-terminal helix folds such

that it can interact tightly with a comparable dimerization site. This can be either as

a homodimer (usually recognizing a palindromic sequence such as the canonical

E-box sequence CACGTG) or a heterodimer (diversifying the range of sequences

that can be recognized [31]. This is one of the largest families, and examples in-

clude CLOCK, MYC, and MYOD1 [29].
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1.2.4 Homeodomain Proteins

Homeodomain proteins were discovered in Drosophila melanogaster, and are very

important for proper development and patterning [32]. They extend the Helix-Turn-

Helix motif by adding an additional linker and helix. This additional helix forms

additional interactions with the with the nucleotides in the minor groove [33]. The

most common example of homeodomain containing factors are the Hox genes,

which are found throughout the metazoan kingdom and are important for specifying

regions along the developing embryonic anterior-posterior axis [34, 35].

1.2.5 β Sheet DNA Recognition Proteins

While many of the transcription factor families rely on α helices to interact with the

double stranded DNA helix, this class of transcription factor utilizes a β sheet with

at least two strands, sitting in the major groove [36]. In the cases of dimerization,

as is seen with the STAT family of transcription factors, each member of the dimer

can contribute an anti-parallel beta strand to the DNA binding beta sheet [37].

1.2.6 Zinc Finger Proteins

Zinc fingers are highly specific, modular proteins that have been well studied. Each

of the small “finger” modules in a zinc finger protein incorporates a zinc Zn2+ ion

to stabilize its three dimensional structure (Review [38]). This in turn allows for the

finger to be highly specific in recognizing a DNA sequence approximately 3 base

pairs long. Arranging a series of zinc fingers in tandem on a single protein permits

these proteins to form stable and specific bonds with DNA. Due to this modularity

there has been some success in engineering zinc fingers that target specific DNA

sequences. This has been based in part on the structure of Zif 268 [39].
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1.3 Early Representations of Regulator Specificity

Somewhat contemporaneous with the discovery that transcriptional regulators may

bind to specific DNA sequences [19], other types of specific protein-DNA inter-

actions were known, including the activity of restriction enzymes [40, 41]. These

restriction enzymes were so highly specific, that representing their binding prefer-

ences was as straightforward as describing a single sequence. For example, the

enzyme EcoRI recognizes the sequence GAATTC [42]. Representing specificities

in this way is highly efficient, but limited in that it requires an exact match, and not

many interactions follow this rule.

As genetic elements with more variation were discovered, new representations

were required to describe the observed differences across the instances of that

element. One early such example is the Pribnow box sequence discovered in 1975

in bacteria [43]. While between any two instances of this element there may be up

to four sites that differ, if considering the most common nucleotide at each site,

most instances differ in nucleotide composition from this ‘average’ sequence in at

most two sites [44]. This ‘average’ or most common nucleotide sequence is known

as a consensus, and only requires sequences to have a high level of identity to be

identified as a match to the element the consensus describes. Extra flexibility can

be incorporated into this model by utilizing an alphabet that extends beyond the

four standard bases, and includes ambiguous nucleotide codes, such as an R for

a purine (A or G), or Y for a pyrimidine (C or T) [45].

A limitation of this method was well described by Gary Stormo in 2000: “The

concept of the consensus sequence has been widely used to represent the speci-

ficity of transcription factors. But exactly how one is defined is somewhat arbitrary.

In general it refers to a sequence that matches all of the example sites closely, but

not necessarily exactly. There is a trade-off between the number of mismatches al-
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lowed, the ambiguity in the consensus sequence, and the sensitivity and precision

of the representation” [44].

Upon accumulation of deeper and more diverse datasets, other methods were

required to describe the specificity of sites that can be, at times, highly variable.

As described earlier, a Perceptron based approach was found to be effective in

this case [13]. This and other work from the same time led to the development of

the position weight matrix (PWM) and its variants [13, 46]. In short, upon aligning

each of the genetic elements, a distribution across the nucleotides is computed at

each position in the sequence, as a frequency matrix. The log ratio between these

frequencies and the expected background frequencies is then computed. These

weights vary for each nucleotide, at each position, giving more weight to positions

with more information content, and provide relative rankings for the possible sub-

stitutions at each position [47].

Box 1: PWM Example

The following example shows how a position weight matrix can be computed

from a set of aligned known binding sites for a transcription factor, and how

it can be used to score additional sequences. Given the following set of 10

aligned sequences:

TAAGATGATGTAATC

AGGAATGATGTCACG

CAAGGTGAGGTCATC

CTGAGTGACGTCATT

TCCAATGACGGCACA

AGTGATGACGTAATC

GCAAATGATGTCATC
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AATGATAATGCCATC

TTAGGTGATGTCATA

GAGAATGAGATGATA

The occurrence of each of the four nucleotides is counted in each position

in the motif. This distribution of counts at each position is known as a position

frequency matrix. This can be written as follows, where Xi is the i th sequence

in the data set, k is the nucleotide being counted (k ∈ ('A','C','G','T')),

and j is the position in the motif:

PFMk,j =
N∑

i=1

I(Xi ,j = k) (1.1)

PFM =

A

C

G

T



3 4 4 5 7 0 1 10 0 1 0 2 10 0 3

2 2 1 0 0 0 0 0 3 0 1 7 0 2 5

2 2 3 5 3 0 9 0 2 9 1 1 0 0 1

3 2 2 0 0 10 0 0 5 0 8 0 0 8 1


By normalizing each of the columns based on the total number of counts

(N), this matrix can be converted to a position probability matrix, where each

column is now a probability distribution across the nucleotides:

PPMk,j =
1

NPFMk,j (1.2)

PPM =

A

C

G

T



0.3 0.4 0.4 0.5 0.7 0.0 0.1 1.0 0.0 0.1 0.0 0.2 1.0 0.0 0.3

0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.7 0.0 0.2 0.5

0.2 0.2 0.3 0.5 0.3 0.0 0.9 0.0 0.2 0.9 0.1 0.1 0.0 0.0 0.1

0.3 0.2 0.2 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.8 0.0 0.0 0.8 0.1


Finally, by taking the log ratio of each value in the PPM relative to some

background value for each nucleotide (bk , the most basic representation is
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1
4
for a uniform distribution of nucleotides). The values in this position weight

matrix are now analogous to additive energies corresponding to the favorability

of any given nucleotide at that position:

PWMk,j = log2(PPMk,j/bk) (1.3)

PWM =

A

C

G

T



0.26 0.68 0.68 1.00 1.49 ... −0.32 2.00 −∞ 0.26

−0.32 −0.32 −1.32 −∞ −∞ ... 1.49 −∞ −0.32 1.00

−0.32 −0.32 0.26 1.00 0.26 ... −1.32 −∞ −∞ −1.32

0.26 −0.32 −0.32 −∞ −∞ ... −∞ −∞ 1.68 −1.32


Given this PWM, and some new sequence (S), the score con simply be cal-

culated by adding the values across the PWM corresponding to the nucleotides

at each position:

p(S|PWM) =
w∑

i=1

PWMi ,Si

For example, for the sequence GGAGATGACGTCATT:

G G A G A ... C A T T

A 0.26 0.68 0.68 1.00 1.49 ... −0.32 2.00 −∞ 0.26

C −0.32 −0.32 −1.32 −∞ −∞ ... 1.49 −∞ −0.32 1.00

G −0.32 −0.32 0.26 1.00 0.26 ... −1.32 −∞ −∞ −1.32

T 0.26 −0.32 −0.32 −∞ −∞ ... −∞ −∞ 1.68 −1.32

p(SGGAGATGACGTCATT |PWM) = 16.02

These PWMs can be further optimized to fit quantitative data. This variation no

longer describes a pure distribution at each site, but may give a better overall de-
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scription of the site, placing emphasis on highly favorable sequences, and selecting

against unfavorable substitutions [48].

While the PWM is still the most common representation used today, other forms

of motif descriptions have been used for various applications. One such example

is a profile hidden markov model [49]. A major advantage of this representation is

that it can model gaps/insertions and deletions that may be tolerated by the protein-

DNA interaction. It starts with a linear series of states describing each position in

the motif. The emissions for each state describe the observed frequencies of each

nucleotide at that position, much akin to the PWM. In addition to the transitions be-

tween the states corresponding to adjacent positions, there are also insertions and

deletion states available. The weights associated with these alternate transitions

govern the tolerance of the model for describing sites of varying length.

Box 2: pHMM Example

Profile Hidden Markov Models are a unique formulation of a Hidden Markov

Model. In a traditional HMM, there are a number of hidden states, with tran-

sition probabilities between each. In this example, in addition to the Start and

Stop states specifying the beginning and end of the Markov chain, there are

two states (M1 and M2).

Start

M2

M1

Stop

The transition probabilities along edges departing any state add up to 1.0.
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If there are two states that aren’t connected, for example the Start and Stop

states in the example, the transition probability between those two states is 0.

In each of the hidden states, there is a distribution of emission probabilities.

Again, the emission probabilities from a single state should add up to 1.0. The

emissions are the events that are observed, and are used to infer the order of

the hidden states. There are established algorithms for this purpose.

In a pHMM, there are a number of match states, one each corresponding

to each of the positions in the width of the motif. There are also a set of insert

states, and delete states. These in turn correspond to variations in length of

a sequence that might match the motif. A unique characteristic of a pHMM

relative to the traditional HMM is that these states can only transition from right

to left and never returning to an earlier state. This allows for a different set of

emission probabilities for each position in the motif. The emission probabilities

in a match state are analagous to a column in a PPM.

Start M1 M2 M3 M4 M5 Stop

E1,A
E1,C
E1,G
E1,T

E2,A
E2,C
E2,G
E2,T

E3,A
E3,C
E3,G
E3,T

E4,A
E4,C
E4,G
E4,T

E5,A
E5,C
E5,G
E5,T

D1 D2 D3 D4 D5

EI,A
EI,C
EI,G
EI,T

EI,A
EI,C
EI,G
EI,T

EI,A
EI,C
EI,G
EI,T

EI,A
EI,C
EI,G
EI,T

EI,A
EI,C
EI,G
EI,T

EI,A
EI,C
EI,G
EI,T

I0 I1 I2 I3 I4 I5

TS0,M1 TM1,M2 TM2,M3 TM3,M4 TM4,M5 TM5,S1

T
S
0 ,D

1

T
M

1 ,D
2

T
M

2 ,D
3

T
M

3 ,D
4

T
M

4 ,D
5T D 1

,M
2

T D 2
,M

3

T D 3
,M

4

T D 4
,M

5

T D 5
,S 1
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,I 0

T M
1
,I 1

T M
2
,I 2

T M
3
,I 3

T M
4
,I 4

T M
5
,I 5

T
I0 ,M

1

T
I1 ,M

2

T
I2 ,M

3
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4

T
I4 ,M

5

T
I5 ,S

1
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Above is a diagramatic representation of a profile HMMmotif representation

corresponding to 5 base pairs wide. Every state has a set of transition proba-

bilities T , and the Match (Mi ) and Insert (Ii ) states have emission probabilities,

E , corresponding to the nucleotides present at that position.

Given an ordered sequence (N) of nucleotides (ni ), there is some alignment

(A) corresponding to the best path through a profile HMM. This path can be

determined using the Viterbi algorithm, for example [49]. A scoring scheme

such as the one described below can be used to provide a metric for how well

that particular sequence fits the profile HMM.

N = (n1, n2, n3, n4, n5)

= (C,G,A,T,A)

A = (S0, M1, ..., M5, S1)

p(N , A|pHMM) =
A∏

i=1


TAi−1,Ai · Ei ,ni if Ai = Mi

TAi−1,Ai · EI,ni if Ai = Ii

TAi−1,Ai else

(1.4)

This path probability can be normalized to all possible paths through the

model using the Forward dynamic programming algorithm.

As more complicated problems have been proposed using DNA motifs, addi-

tional methods to encode the inherent sequence variation for use in machine learn-

ing approaches have been proposed. They have been described as filters in ar-

tificial neural nets as early as 1991 [50], and in state-of-the-art methods such as

DeepBind [51] . K-mer counts have also been used as the input vectors in other al-
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gorithms such as kmer SVMs and gapped kmer SVMs by Michael Beer [52]. Table

1.1 gives some examples of various approaches for encoding sequence represen-

tations of DNA motifs. Gary Stormo also provides a good review of these early

methods in [44].

Method Characteristics

Simple Sequence Highly specific – One possible matching sequence.

Consensus One sequence representing the variability, some-
times with ambiguous nucleotide characters.
Doesn’t describe the distribution, just the most
likely sequence.

PWM [13] Weight matrix. Analagous to ∆∆G contribution of
each nucleotide.

DAMO [53] Optimized Weight Matrix. Using the same ap-
proach as the PWM, each value is then optimized to
best fit quantitative binding data, putting more em-
phasis on important positions.

nhmmer [54] Profile Hidden Markov Model framework, allows
for searching for sequence matches in a DNA se-
quence database, including matches with insertions
and deletions.

Gapped kmer SVM [52] Support Vector Machine approach. Uses kmer
counts (including gapped kmers) as inputs.

DeepBind [51] Convolutional Neural Net. Convolutional filters
simulate PWMs, and there can be interactions be-
tween different TFs.

Table 1.1: Examples of sequence based methods for representing DNA motifs.
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1.4 Role of DNA Shape in Motif Recognition

It wasn’t until 20 years after the discovery of the structure of DNA that a group

generated a X-ray crystallography structure with enough resolution to observe and

confirm the proposed (and widely accepted) hydrogen bond interactions between

DNA nucleotide bases and the amino acid side chains in the transcription factor

[55]. Since that time, many crystal structures of DNA have been obtained, allowing

for the analysis at atomic resolution of the structure and geometry of the DNA helix.

By 1986, it was recognized that the shape of DNA is variable, and correlates with

the underlying sequence of basepairs [56]. Subsequently, several groups identified

examples of transcription factors recognizing specific DNA conformations. This

ranges from extreme sequence independent structures like SRY and HMG1 each

binding four-way junctions [57, 58], to more subtle conformational features such

as bending of the promoter sequence to increase the affinity for the TATA binding

factor [59].

Over the years, structures of DNA-protein interactions have been solved for an

increasing number of transcription factors. A comprehensive study of these struc-

tures revealed a number of specific components of DNA shape that participate in

interactions with proteins [15]. In this study, Rohs and colleagues found that posi-

tively charged arginine residues tend to contact regions along the DNA backbone

where the minor groove is narrow, bringing the negatively charged phosphate back-

bones closer together and increasing the overall negative potential of that position.

A common method they observed for creating that narrow minor groove shape was

AT reach regions.

Early on, several groups attempted to model the specificity of regulators not by

the sequences of the recognized sites, but by the shape. One early such example

was Karas, et al (1996) in which they used molecular modelling to convert DNA se-
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quence into structural parameters, and then created a classifier to identify matches

to the TATA sequence motif as a Z-score from a consensus shape profile [60]. Ad-

ditional approaches included using protein-DNA co structures in the Protein Data

Bank to first identify which residues for a given transcription factor interact with the

bases of the binding site, determine interaction potentials, and use that to search for

other sequences that will be bound by that protein structure [61]. This was followed

by other models that relied on known structures to use atom-packing, electrostatics,

and other physical energy terms to predict potential binding sites [62].

1.5 Significance of Transcriptional Regulators

Within the human body trillions of cells work together to create functioning systems

[1]. These cells represent hundreds of distinct cell types that differ both in their

physiology and the processes they carry out [63]. While this is amazing in and of

itself, it is more remarkable given that each of these cells has an identical copy of

the genomic information [2, 3], and yet there is such an incredible diversity.

Throughout the development process as these cells grow and divide, becoming

more specialized during the progression from a single cell to a large multicellular

organism, they develop distinct profiles of gene expression, contributing to their

specialization [4, 5, 6]. Errors in this expression profile can contribute to genetic

disease. While in some cases these disease phenotypes are caused by broken

malformed proteins, in others the cause is a more subtle difference in the timing or

level of expression of that protein [11].

Cis-regulatory regions contribute to controlling the timing and level of gene ex-

pression in order to allow for proper development and maintaining healthy growth

[9]. These are regions of DNA that, when bound by the appropriate factors, serve

to promote or inhibit transcription, and can exist in many different states of activ-
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ity [6, 7]. The best computational approaches to identifying these modules rely on

large amounts of experimental data, primarily targeting transcription factor bind-

ing (e.g. [64]). However, the available data is quite limited, with only a handful

of experiments available at most for many cell types. Experimentally generating a

comprehensive dataset of protein-DNA interactions for all cell types at this point is

intractable due to limitations of the number of cells required for some experiments,

the quality of reagents, and cost.

1.6 Modern Approaches to TFBS Prediction

As described above, the PWM is still one of the most commonly used representa-

tion of DNA motifs and transcription factor specificity. This is likely in part due to

the widely used resources that have been developed on this framework, including

the large number of known motifs available in the JASPAR and TRANSFAC repos-

itories [65, 66, 67], as well as the ease of use of the popular tool suites MEME

and HOMER which are also based on PWM motif format [68, 69]. Furthermore, for

many applications it appears that using simple sequence based methods is suffi-

cient, particularly if they are optimized based on quantitative binding data [53].

For more generalized tasks such as broad transcription factor binding site pre-

diction, however, these methods fall short. This has led to the continual develop-

ment of methods to attempt this problem more effectively. As mentioned earlier,

machine learning methods have been applied to the this problem. While they are

powerful tools, they still only address one part of the problem.

So far, it has been discussed that some transcription factors are able to dis-

criminate between nucleotide bases based on the unique arrangement of hydro-

gen binding partners in the major groove in a mechanism known as direct readout

[70]. Other transcription factors utilize interactions that depend on the shape of
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the DNA at the binding site [71]. It can be considered that relying on sequence

alone uses sequence as an abstraction of the shape information. In fact, it has

been shown that considering dinucleotides can be informative to a similar degree

as some shape methods [72, 53]. Alternately, it can be be thought of as DNA shape

being a superset of the sequence information, since the arrangement of hydrogen

bond partners is arranged by the 3D shape of the DNA.

In this case, shape based methods are required for a more complete view of the

protein-DNA interactions of transcription factors with their target sites. To this end,

a number of new shape based methods have been developed in recent years, a

few of which are summarized here.

Remo Rohs and his coauthors have been at the forefront of developing tools to

be used for evaluating DNA shape, including a method to translate DNA pentamers

into profiles of several shape parameters [73]. They used these shape values in

combination with DNA sequence as input to a gradient boosting decision tree clas-

sifier and saw improvement over using just a PWM [74]. They further refined this

method by using a more directed approach with multiple linear regression on the

shape parameters and various kmers using quantitative data from HT-SELEX ex-

periments to optimize the models [75]. Another recent method from another group

considers one shape feature at a time, finding regions in variably sized windows

that align to generate a shape profile, and uses a hypergeometric distribution to

compute scores in order to search for additional instances of that shape motif [76].

One big limitation that all of the methods discussed so far is that they cannot

easily distinguish between sites that are bound variably across cell types. As de-

scribed above, all cells have the same underlying information encoded in their DNA

sequence, and yet the TF binding landscape can vary widely. In fact, less that 1%

of the available binding motifs are occupied at any given time, in a given cell type

[77, 78, 79]. Additionally, many motifs are relatively short, meaning that even due to
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chance instances of these motifs will exist relatively frequently, especially when the

tolerance for sequence variability is taken into account. In order to make cell-type

specific predictions that will carry functional value, additional methods are needed.

Incorporating cell type-specific additional information in the form of chromatin

accessibility can increase the specificity of sequence-based methods through ap-

proaches such as DNase-footprinting [80, 81, 82, 83, 84, 85]. Traditional footprint-

ing methods largely take a motif-centric approach, placing an emphasis on strong

matches to a PWM.

1.7 Summary of Goals

Significance: Of the many cell types in the human body the majority have the

same underlying genetic code, yet they vary widely both in their form and function.

Disregulation in the reading of the genetic material can lead to disease. Transcrip-

tional regulation is tightly controlled to promote healthy development, and is driven

in part by the activity of transcription factors. To fully understand development and

genetic diseases, a comprehensive view of the regulatory landscape is required.

Problem: While the amount of available data is constantly increasing, there are

still large gaps in our knowledge preventing the generation of comprehensive maps

of the regulatory landscape. Some cell types are too rare to make assaying them

hundreds of times feasible, others are difficult to grow in culture, and even for im-

mortalized cell lines we have incomplete data. Predictive methods can extrapolate

to fill in some of these gaps. In particular, global transcription factor binding data

can be used to derive mechanistic insight into gene regulation.

Goal: The purpose of this dissertation is to provide tools and insight for the study

and prediction of global transcription factor binding site (TFBS) occupancy in a cell
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type specific manner from chromatin accessibility. A DNA shape based represen-

tation of DNA motifs is described that incorporates relevant features in addition to

DNA sequence. Methods are provided for de novo discovery and characteriza-

tion of DNA motifs from high throughput sequencing experiments. These shape

motifs are used to predict binding sites and describe the similarity of diverse tran-

scription factor binding preference. Finally, the use of the models developed here

to make cell type specific predictions of transcription factor binding in conjunction

with DNase accessibility are explored.
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2. Structural Motifs – StruMs

In the pursuit of accuracy in predicting transcription factor binding sites, increas-

ing complex models have been proposed. Often performance is traded for inter-

pretability. Here, an alternative strategy is proposed that aims to accurately model

the protein-DNA interaction while remaining interpretable.

2.1 Theoretical formulation

As has been described, the position weight matrix is the most commonly used de-

scription of transcription factor specificity as DNA motifs. Additionally the value of

considering the shape of the DNA, as opposed to only the sequence of nucleotides,

has been discussed. A theoretical framework may be built up from these two prin-

cipals that results in a model hereafter termed Structural Motifs, or StruMs for short.

As DNA may adopt many possible conformations along a spectrum, and DNA

shape contributes to the recognition of binding sites by transcription factors, it may

be assumed that for a given transcription factor there is an ideal DNA conformation

corresponding to the largest ∆G of interaction. Given that the inside of the cell

is a packed environment, and evidence of the DNA “breathing”, e.g. in the case

of wrapping/unwrapping histones [86], it can further be assumed that transcription

factors can tolerate some variations in the shape of the DNA.

Consider, now, a set of sequences to which the transcription factor is known

to bind with high affinity, and for which the values for a shape parameter is known

22



across the entire site (e.g. the Major Groove Width). The ideal conformation of the

binding site most likely lies within the range of observed values, and one maximum

likelihood estimation of the ideal conformation would the arithmetic mean of the

shape at each position in the site, resulting in a vector of values across the width

of the site. Similarly, the tolerance of variability around this ideal is probably en-

coded in the observed variance, thus the standard deviation at each site provides

an estimate of this tolerated variability.

More formally, given training data (D) composed of a set of binding sites Si of

the same length and orientation,

D = (S1, S2, ..., Sn)

where, if k is the length of the site, there are k values vj in each binding site Si

corresponding to the shape value at that position

Si = (vi ,1, vi ,2, ..., vi ,k)

a set of parameters ϕ can be computed that estimate the ideal conformation (µ)

and the tolerated variability from ideal (σ),

ϕ =

(µ1, ... µj ... µk),

(σ1, ... σj ... σk),

 (2.1)

where µj and σj are computed as follows:

µj =
1

n

n∑
i=1

vi ,j (2.2)

σj =

√√√√1

n

n∑
i=1

(vi ,j − µj)2 (2.3)
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If, at each site, there are now p types of shape parameters known, then the

length of Si will now be k · p = m.

Si = (vi ,1, vi ,2, ..., vi ,m)

The estimates are performed the sameway, so additional parameters are simply

added to the parameter set:

ϕ =

(µ1, ... µj ... µm),

(σ1, ... σj ... σm),

 (2.4)

This formulation provides a way to model the ideal conformation and tolerance

for the DNA shape within a transcription factor binding site. For the purposes of

predicting binding sites, a way to rank or score various new sites is required. With

the binding preferences being modelled with the mean and standard deviation, it

follows that the values vj may be distributed according the Normal distribution:

vj ∼ N (µj ,σ2
j ) (2.5)

One of the foundational assumptions in the position weight matrix framework

is that each of the positions is independent of the others [13]. While this is not

necessarily true in all cases, this assumption has held up well over the years. Using

the same assumption here, and given equation 2.5 then calculating a score for a

new sequence Si becomes:

P(Si |ϕ) =
m∏

j=1

P(vij |µj ,σ2
j ) (2.6)

The result is a model of the DNA shape preferences of transcription factors that

is closely analogous to the time tested and still used position weight matrix: At each

position in the binding site a distribution is computed, categorical for the PWM, and
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continuous for the StruM; assuming each position is independent, the probabilities

at each position of observing the value from a new site are multiplied to obtain

the score. The similarity of these two methods means that the plethora of tools

available for using position weight matrices can be adapted to work with structural

motifs, as is done with the de novo motif finding algorithm in Chapter 3.

2.2 Normality of HMBOX1 shape preferences

The structural motif model described above is an intuitive progression from several

base assumptions. The application of this model will therefore depend on how

well the assumptions hold. The first assumption to be considered is that, for a

given position in a motif, the values for a shape feature are normally distributed

across the various observed instances of matches to the motif, and therefore well

represented by the mean (µ) and standard deviation (σ).

The ENCODE project has provided a variety of uniformly processed data files for

a whole range of transcription factors [87]. Using the peaks identified from a ChIP-

seq experiment mapped to genome build hg19 for the human HMBOX1 transcrip-

tion factor in K562 cells (accession ENCFF558DSF), a sequence motif was derived

using the popular de novo motif discovery tool MEME, using the MEME-ChIP vari-

ation [88, 89].

Within the output of MEME is a list of the specific sites, and their sequences, that

contribute to the motif. Using these sequences as the set of aligned binding sites

of the same length and orientation mentioned above, the tool DNAshapeR was

used to obtain estimates across the sites for four shape features: minor groove

width (MGW), Roll, propeller twist (ProT), and helix twist (HelT) (Figure 2.1) [73].

The DNAshape method using all-atom Monte Carlo simulations of short DNA frag-

ments to derive shape profiles for each of the 512 unique DNA pentamers [90].

25



Minor	Groove	Width	 Roll	

Propeller	Twist	 Helical	Twist	

A	 B	

C	 D	

Figure 2.1: Diagrammatic representation of common DNA geometries. For base-
pair geometries the base(s) associated with the positive strand is blue, and the
negative strand is orange. (a) The minor groove width (MGW) measured as the
distance between the phosphate backbones. Shown here relative to a cartoon
representation of a DNA decamer (PDB ID: 6JV5). (b) Roll, measured as an angle
relative to parallel for two consecutive basepairs. (c) Propeller twist (ProT) mea-
sured as the relative angle between to bases in a pair along the long axis. (d)
Helical twist (HelT) measured as the angle of rotation along the length of the DNA
strand between two consecutive basepairs.
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Figure 2.2: Distribution of sequence values for the HMBOX1 motif. The black line
represents a kernel density estimation of the true distribution. The red line repre-
sents the maximum likelihood estimate of the normal distribution fitting that data.
(Roll: Roll; ProT: Propeller Twist; HelT: Helix Twist; MGW: Minor Groove Width)

These profiles are highly correlated with known structures of DNA fragments as

determined by Nuclear Magnetic Resonance spectroscopy, and a sliding window

approach can be used to predict the overall shape of a DNA sequence. Using the

DNAshape method, two distributions were computed for each of these four shape

features, at each of the positions across the width of the binding site: a kernel

density estimation across the 46 observed sites; and the described maximum like-

lihood estimation, corresponding to the Normal distribution defined by the mean

and standard deviation of the observed values.

Figure 2.2 shows these two distributions, with the observed data in black, and

the expected distribution in red. While there are a number of cases where bimodal-

ity is observed, the expected Normal distribution is a reasonable approximation

of a majority of the observed distributions. The observed discrepancies can be

explained, at least in part, by two factors. First, our resolution in structure-space

is limited, rendering our values discrete, while we expect these shape features to

come from a continuous distribution in vivo. Second, this data only encompasses

46 sequences, and sampling error could be contributing to the instances of non-

normality being observed, which would be overcome by increased sample sizes at
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with high throughput ChIP-seq data, for instance. This supports the parameteri-

zation of structural motifs given in equation 2.4 and the assumption from equation

2.5.

2.3 Independence of positions

The second assumption that needs investigated is whether the positions in themotif

(and the shape values) can be considered independent. This is required to score

observed sequences given a structural motif according to equation 2.6, without

taking into account covariation of the variables.

Taking each shape feature one at a time, at each position (hereto referred to

as a position-specific shape feature) in the same HMBOX1 motif sequences, the

pairwise Pearson correlations between each position-specific shape feature were

taken.

As can be observed by the striations in Figure 2.3a, there is some amount of

correlation between the features at a given position, but limited correlation between

adjacent positions. Looking at the distribution of these pairwise correlations in Fig-

ure 2.3b, the mean value is 0.01, and the standard deviation is 0.26, meaning that

the majority of the features have a correlation close to zero. Along with the evi-

dence of the efficacy of the independence assumption used by the position weight

matrix, this provides support for the given scoring scheme (equation 2.6).
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Figure 2.3: Correlation between position-specific shape features in the HMBOX1
structural motif. (a) Heat map of the pairwise correlation values for each feature,
across all positions. For example, index values 1-15 correspond to MGW at posi-
tions 1-15, followed by HelT. The color of the cells corresponds to the correlation,
as described by the colorbar. (b) Distribution of the values in (a). Black histogram
represents the observed values, red line is the best-fit Gaussian.
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3. DNA shape complements

sequence-based representations

of transcription factor binding sites

3.1 Introduction

The human body has trillions of cells and hundreds of cell types that have many

distinct morphologies and functional roles [1, 63]. Yet each of these cells has an

identical copy of the underlying developmental program encoded in the DNA [2, 3].

The diversity of form and function that is observed is only possible through tight

control of the expression of genes throughout the developmental process [4, 5,

6]. Understanding the mechanisms guiding this control will provide insight into the

development of complex multicellular organisms, and associated diseases.

Transcription is controlled by the activity of cis-regulatory modules; regions of

DNA that, when bound by the appropriate factors, serve to promote or inhibit tran-

scription, and can exist in many different states of activity [6, 7]. The best compu-

tational approaches to identifying these modules rely on large amounts of exper-

imental data, primarily targeting transcription factor binding (e.g. [64]). However,

the available data is quite limited, with only a handful of experiments available at

most for many cell types. Experimentally generating a comprehensive dataset of
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protein-DNA interactions for all cell types at this point is intractable due to limita-

tions of the number of cells required for some experiments, the quality of reagents,

and cost.

Computational methods that predict transcription factor (TF) binding comple-

ment the available data, and allow for extrapolation across rare or otherwise un-

wieldy cell types. Historically this is done by representing the chains of nucleotides

that make up DNA as sequences composed of an alphabet of 4 letters. Patterns

within these sequences can be identified, for example using letter frequencies at

each position within a set of aligned binding sites as in the position weight ma-

trix (PWM) [13]. This can be quite effective, and has been shown to perform well

for many transcription factors [14]. Some transcription factors have been shown

to be especially well represented in this manner, displaying extreme sequences

preferences enforced through base pair-specific contacts along the major groove.

This mode of binding site recognition by transcription factors is known as direct- or

sequence-readout.

In reality, DNA is a complex three-dimensional macromolecule that is tightly

packed into the nucleus. Other transcription factors have been shown to take ad-

vantage of the three dimensional shape of DNA molecule to recognize their binding

sites in a mode known as indirect- or shape-readout [15, 91, 71]. For example,

it has been shown that the narrowing of the minor groove and corresponding in-

crease in electrostatic potential drives interactions with positively charged arginine

side chains in Oct-1/PORE complex binding [15].

The sequence representation of DNA and the associated TF binding site (TFBS)

models are in reality an abstraction of the chemical and physical interactions of

the protein molecules with the DNA. As indicated above, even sequence-readout

relies on the proper 3D positioning and electrostatic compatibility of hydrogen bond

donors and acceptors between the two molecules.
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We hypothesized that TF binding preferences could be modeled using esti-

mates of DNA shape parameters across the binding site, and this would provide

increased discrimination over sequence-based approaches. To this end we de-

signed a set of methods adapting the time-tested position weight matrix to incorpo-

rate DNA shape instead of sequence, known as Structural Motifs (StruMs). StruMs

specifically model TFBSs and are complementary to sequence-based methods.

--CTGACAGATAAGACTATGACGGTACC--
--TGCTGATCGGTACGAGATAAGAGGGG--
--AGACCGAGGGAGATAAAGAAATCTAT--
--CGGGATGATAACCTGCTATGTCACTA--
--AAACTTTCCAAACGTTTGATATACCC--

----CTGACAGATAAGACTATGACG-
--CGGTACGAGATAAGAGGGG-----
--CCGAGGGAGATAAAGAAATCTAT-
----CGGGATGATAACCTGCTATGT-
--AAACGTTTGATATACCC-------

   1   2   3   4   5   6   7   8   9
A 0.2 0.7 0.0 1.0 0.0 1.0 0.9 0.2 0.4
C 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2
G 0.3 0.0 1.0 0.0 0.0 0.0 0.1 0.6 0.3
T 0.1 0.3 0.0 0.0 1.0 0.0 0.0 0.0 0.1

Rise

Twist

Turn

A B

C D

Figure 3.1: Graphical overview of structural motifs. (a) A series of DNA regions
with a known binding site for GATA1 (orange). (c) These same regions are aligned
by their binding site. (b) The alignment is used to calculate a distribution of base
frequencies at each position, represented as a traditional PWM. (d) For the StruM
paradigm, a distribution (mean, standard deviation) is computed at each position
of the binding site for several shape features.

3.2 Materials and Methods

3.2.1 Structural Motifs

The StruM is an extension of the PWM [13, 92]. Each position-specific feature

is assumed to be independent allowing for log-probabilities to be combined addi-

tively, and the model finds a simple distribution across each of these features. The
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construction of a motif requires two things: 1) aligned sequences corresponding to

binding sites; and 2) a method for estimating shape features. It has been shown

that, as with proteins, the primary sequence of the DNA plays a large role in deter-

mining the local shape of the DNA [15]. Here the Dinucleotide Property Database

(DiProDB) [93] is used to estimate shape parameters for each dinucleotide in the

sequence.

Definition

Given a set of n training sequences, each sequence is converted to a structural

representation. In this case each consecutive dinucleotide is looked up in DiProDB,

and that column is appended to the feature vector. The length of this vector is k (the

length of the binding site) times p (the number of shape features being considered);

this value k · p is noted hereafter as m. This set of training structures (D) is used to

compute the parameters (ϕ). These are represented as a mean (µ) and standard

deviation (σ) for each feature at each position.

D =



(v11, v12, ... v1m),

(v21, v22, ... v2m),
... ... ... ...

(vn1, vn2, ... vnm),


ϕ =

(µ1, µ2, ... µm),

(σ1, σ2, ... σm),


The model begins with the assumption that the DNA shapes preferred for in-

teraction with a given transcription factor at any given position specific feature (vj)

have an optimum shape, and sample adjacent shapes according to a normal dis-

tribution.

vj ∼ N (µj ,σ2
j )

Assuming that each feature and each position is independent, then calculating
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the score (s) for the i-th sequence becomes:

si =
m∏

j=1

P(vij |µj ,σ2
j )

In order to avoid underflow issues during computation, all calculations are done

in log space.

3.2.2 Data

All experimental data is obtained from ENCODE [87]. The ChIP-seq data used

Transcription Factor ChIP-seq data from K562 cells mapped to hg19. This data was

filtered for targets that were annotated as being sequence specific transcription fac-

tors in [94]. Specifically the conservative IDR thresholded peaks were downloaded

in the ENCODE narrowPeak BED format. TF family assignments were done using

the assignments in [95]. Accession numbers for all datasets used are available in

the Supplementary Information.

3.2.3 ChIP peak classification

De novo motif finding

For each TF analyzed, the sequences for the top 500 peaks were retrieved based

on signal enrichment. The sequence corresponding to 100 bp around the peak

identified in the BED file was then extracted. A PWMwas learned usingmeme-chip

[89] with the parameters -norand -meme-nmotifs 1 -dreme-m 0

-spamo-skip -dna -nmeme 500 -seed. The model was left as the de-

fault (zoops, and the random seed was set by hashing each TF’s accession num-

ber. The sites reported by MEME as being used to train the final motif were ex-

tracted from the output. These aligned binding sites were used to compute posi-

tion specific frequencies for mononucleotides (PWM) [13] and dinucleotides (din-
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ucleotide weight matrix, DWM) [96]. After translation into structural space, the

distribution of shape values at each position was calculated for the StruM. This

variation will be referred to as the Maximum Likelihood StruM (ML-StruM). Addi-

tionally, the 100 bp centered sequences were used to fit an additional structural

motif by expectation-maximization, matching its length to that of the PWM learned

by MEME (StruM). Similarly to the incorporation of pseudocounts in nucleotide fre-

quency estimations, a minimum threshold of 0.1 was imposed on σ for the StruM.

Motif performance

For the next 500 sequences in the ChIP-seq experiment, the maximum score for

each motif type was calculated. To generate scores for a matched set of negative

sequences, two strategies were employed: shuffling these testing sequences, or

taking 100 bp flanking sequences from the top 500 peaks. Upon generation of the

negative set, the scoring process was repeated. A simple threshold was varied

across the scores to generate a receiver operating characteristic (ROC) curve and

a precision-recall curve (PRC) and the area under the curve (AUC) was calculated.

This process was repeated for 355 TF ChIP-seq experiments in K562 cells.

Specificity of StruM by TF family

Using TF family assignments in TFClass ([95]), the second 500 sequences for each

TF was pooled by TF family. For each TF, the second 500 sequences for that TF

were compared to 500 sequences randomly sampled from the other TF families.

As a control, 500 sequences randomly selected from that TF’s family pool were

compared to the subset from the other families.
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Complementarity of methods

To assess the complementarity of StruMswith sequence-basedmethods, the scores

for each sequence were passed as a vector of length two (PWMscore, StruM score)

to a logistic regression classifier as implemented in Python’s sklearn[97, 98].

Ten-fold cross validation was performedwithsklearn.cross_validation.

cross_val_score, and the average AUC was retrieved.

3.2.4 Proximity of PWMs and StruMs

Given the motif derived by MEME for the ChIP-seq experiments described above,

FIMO was used to scan the input sequences for statistically significant matches, as

executed by meme-chip [88, 89, 99]. These significant matches were merged if

they were within 100 bp of each other.

The sequences within 100 bp of the center of the clusters of significant matches

were extracted, and scored with the EM derived StruM. The highest scoring position

for each sequence was recorded. The average distance between the genomic

locations of these best StruM matches to the nearest significant match to the PWM

was then computed.

3.2.5 Program Versions

All programs and packages used in this analysis were downloaded and installed

on a system running Ubuntu 16.04.6 LTS (GNU/Linux 4.4.0-150-generic x86_64)

using Conda (4.6.2). The following packages and versions were used: MEME-

suite (meme-chip, fimo) (4.12.0), Bedtools (2.27.1), Sci-kit learn (0.20.1), numpy

(1.15.4), matplotlib (2.2.3), python (2.7.15), scipy (1.1.0).
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A

B

Figure 3.2: Motif for FOXA1. (a) Standard web logo representation of PWM for
FOXA1. (b) Graphical representation of a StruM based on the same sequences
as (a). The line plot represents the average value, and the shaded region is one
standard deviation above and below.
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3.3 Results

3.3.1 Overview of the StruM model

The traditional representation of binding preferences for transcription factors, or

their motifs, is the PWM. Given a set of sequences that are known to be bound by

a TF, e.g. GATA1 (Figure 3.1a), these sequences can be aligned by the binding

site (Figure 3.1c). Assuming that each of the positions in the binding site are inde-

pendent, they can each be represented by a distribution of nucleotide frequencies;

one distribution per position in the motif (Figure 3.1b).

While most binding site representations are sequence-based, the physical inter-

action between the TF and TFBSmust be compatible in both terms of electrostatics

and sterics [100]. It has been shown that some transcription factors prefer specific

shape configurations of the DNA [91, 70, 71]. It may be that the PWM and other

sequence-based representations of TF binding motifs are abstracting these shape

preferences, as sequence and DNA shape are tightly linked. We hypothesized that

binding motifs could be modeled directly by DNA shape parameters.

The StruM model operates under the same basic assumptions as the PWM,

but extends the model to correspond to shape values. If quantitative values can

be obtained for characteristics of the DNA such as the Rise, Twist, and Turn, a

distribution can be computed at each position of the binding site for these features.

The StruM model parameterizes these distributions with the mean value and the

observed standard deviation (Figure 3.1d).

Figure 3.2 shows the motif for FOXA1, learned using MEME [88]. Figure 3.2a

is the traditional web logo representation of the PWM. A StruM trained on the same

binding site regions identified by MEME show several interesting features (Figure

3.2b). The first thing to note is that there are indeed clear patterns. If there was no
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preference for a given shape, the average values would all be near zero, and the

standard deviations would consistently be near one, given the scaled shape values

used in the model. Rather, clear patterns are observed in both the average values

and the variance. For example, the variance trends from high to low from left to

right, corresponding to the information content in the PWM across the positions.
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Figure 3.3: Specificity of StruMs. (a) The area under the ROC curve or PRC for TFs
that could be unambiguously assigned to a TF family. Blue points correspond to the
ability of the StruM to discriminate between ChIP-seq peaks for that TF vs. peaks
for a different TF family (Cross Family). The orange colored points are the AUCs for
the StruMs ability to discriminate between peaks from other TFs in the same family
vs. peaks for a different TF family (Control). (b) Distribution of average distances
from each StruM match to nearest significant PWM match. (c) The majority of
correlations between scores assigned to kmers by PWMs and StruMs are near
zero.

3.3.2 StruMs specifically model TF binding sites

There is evidence to suggest that promoters and other similar genomic elements

may share certain general shape features [101]. A simple example of conserved

promoter structure would be the prevalence of the TATA-box [102, 103]. One possi-

bility in evaluating the performance of shape based models to recognize TF binding

sites is that they may be instead modeling general features of the type of genomic

element that TF may target.
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To determine whether a StruM is specific to the binding sites of the TF targeted in

the ChIP experiment used to train the TFBS model the StruM was presented with a

simple classification task to evaluate its ability to discriminate between ChIP peaks

for its cognate TF from ChIP peaks deriving from other TF families. As a control, it

was assessed whether StruM could distinguish between ChIP peaks from the same

TF structural family versus the set of peaks from other TF families.

As shown in Figure 3.3a, StruMs were well able to distinguish between cognate

TF binding sites and those belonging to other TF families (Avg. auROC = 0.77, Avg.

auPRC = 0.77). In contrast, the control sequences appeared indistinguishable from

the extra familial sequences (Avg. auROC = 0.53, Avg. auPRC = 0.54). Using a

two-sided paired t-test this was a statistically significant difference (auROC: p-value

= 4.33×10−78, auPRC: p-value = 1.62×10−71) indicating that the StruMs are specific

to the TF on which they were trained.

Once peaks are called from a ChIP-seq experiment and a motif is identified, the

next step is frequently to identify the probable binding locations of the target factor at

a higher resolution. One approach is to look for significant matches to the identified

motif near the peak summit. If StruMs are accurately describing the binding sites of

their cognate factors, high scoring positions within the peak should correspond with

significant matches to the PWM. In order to evaluate this, FIMO [99] was used to

identify significant matches to the PWM in the original ChIP sequences. The 200

bp surrounding each significant match was scored using the StruM, and the top

scoring position for each sequence was retained. For each ChIP experiment, the

average distance between each StruM match site and the nearest site identified by

FIMO was calculated. As observed in the distribution in Figure 3.3b, the majority of

StruMs recognized sites on average within 15 bp of the sites identified by FIMO. In

many of these instances this offset seems to be the result of the motifs not aligning

perfectly on the TFBS (Figure B.1, Figure B.3). The other peak in the distribution
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near 50 bp corresponds with StruMs that failed to accurately model the binding site

(e.g. Figure B.1), as there is a strong negative correlation between the average

distance and the auROC of the StruM model (Figure B.2, R = −0.69).
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Figure 3.4: Classification of ChIP-seq peaks vs non-peak sequences. (a-d) Area
under the curve for each TFBS model trained on the top 500 peaks, and tested
using the next 500 sequences as the positive examples. The combined model
used 10-fold cross validation to generate the score. The negative sequences came
either from (a,c) shuffled peak sequences or (b,d) flanking sequences. Panels (a-b)
represent the area under the ROC curve, and panels (c-d) represent the area under
the PRC. Significance for each pairwise comparison is shown in the inset, with the
following abbreviations: P–PWM, D–DWM, S–StruM, C–Combined model.

In the previous experiment, the PWM was used as the baseline for confirming

the specificity of the StruM. To extend this analysis, a comparison was made of the

ability of three models to discriminate between regions identified via ChIP-seq ex-
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periments and a negative control: either randomized peak sequences, or flanking

sequences. The three models compared for each factor were: Position weight ma-

trix (PWM), Dinucleotide weight matrix (DWM), and a Structural Motif (StruM). The

area under the receiver operating characteristic curve (auROC) and the area under

the precision-recall curve (auPRC) were calculated for each ChIP-seq experiment,

using each of the models (Figure 3.4).

After evaluating 229 ChIP-seq experiments in K562 cells from the ENCODE

consortium, StruMs perform at a similar level with the sequence based methods.

It is interesting to note that using shuffled sequences as the negative set resulted

in performance that was quite comparable across the three models. When using

flanking sequences, the sequence-based approaches showed a slight but statisti-

cally significant edge over the StruM.

3.3.3 StruMs encode motifs differently than sequence-based

methods

It is quite interesting to note that models constructed in this way (a probability dis-

tribution at each position of the motif, assuming independence between positions)

perform relatively similarly, regardless of the feature being considered, be it mono-

or dinucleotides, or shape features estimated from dinucleotides. In addition to

similar performance in a simple classification problem, the different representations

identify similar positions as being the putative targets for a given TF.

One might therefore expect there to be a strong correlation between the scores

produced by each model for a given sequence. However when scoring a set of

1000 randomly generated sequences themodels have near zero correlation (Figure

3.3c. Average correlation = 0.059, standard deviation = 0.22). This indicates that

while the separate motif representations model the same site, they are encoding

the information at that site very differently.
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3.3.4 Shape and sequence are complementary

Given that both sequence- and shape-based methods can model the same sites

with a similar level of accuracy, we investigated whether these methods were in

fact redundant, despite showing very little relatedness between the ordering of ran-

dom sequences. If these models are in fact parameterizing distinct features of the

binding site, one would expect a combined model to outperform either model alone.

Towards this end a simple logistic regression model was trained for each TF,

passing the maximum score from the PWM and the StruM as a length 2 vector

for each sequence as input. Using 10-fold cross validation the combined model

significantly outperformed each motif alone. (Figure 3.4a-d. Paired t-test; p-values

< 4× 10−12).

As further evidence of the complementarity of the models, the increase in au-

ROC vs. shuffled sequences was plotted by the combined model over the StruM

against the increase over the PWM performance (Figure 3.5a). In the event where

the combined model simply agreed with the best performing model one would ex-

pect the points to fall along the x- and y-axes. Rather it was found that the majority

of the points (68%) fall in the first quadrant off of the axes again indicating the

complementarity of sequence and structural motif representations. Most of the re-

mainder, accounting for 22% of all experiments, performed best with the StruMs

alone.

3.3.5 Towards distinguishing between direct- and

indirect-readout mechanisms

Despite the similarity in performance on average between the sequence- and shape-

based TFBS representations, there were several factors that showed a stronger

than average preference for one method over another. We sought to understand
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Figure 3.5: Combined PWM-StruM model. (a) The improvement of the combined
model over StruMs (y-axis) was plotted against the improvement over PWMs (x-
axis) for each TF. Points falling into the first quadrant show a positive impact on
performance by joining multiple motif representations. (b) TFs that are known to
utilize the base-readout mechanism (orange diamonds) fall on both sides of the
line, while known shape-readers (blue circles) are generally better predicted by
StruMs. (c) Coefficients for PWM and StruM from the combined logistic regression
model were plotted against their rank improvement of the combined model over
PWM alone. The absolute value of that improvement is indicated by the red line
and corresponds to the values on the right-hand axis. The known sequence- and
shape-readers are identified by gold and blue lines, respectively.
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whether these differences were limited to a subset of factors. First, the relationship

between the AUC values for PWMs and StruMs for specific factors was examined

(Figure 3.5b). Points falling along the dashed line representing y = x represent

experiments where both representations perform equally well in predicting whether

a sequence is likely to be bound by the factor.

We hypothesized that factors falling above the line employ shape- or indirect-

readout mechanisms, whereas points below the line represent factors employing

primarily base- or direct-readout. Several examples of known base- and shape-

reading TFs are highlighted. In line with this hypothesis, those factors with a larger

than average residuals tend to segregate by their readout mechanism.

Next, the coefficients of the combined logistic regression model were consid-

ered. One would expect that shape-readers would give more weight to the PWM

than to the StruM. In direct contrast to the previous observations, the logistic re-

gression model prefers the PWM amajority of the time, regardless of the annotated

readout mechanism of the factor (Figure 3.5c). In fact only 1 out of 8 shape-readers

weighted the StruM score more strongly, and the model preferred the StruM for only

1 out of 10 experiments for the known sequence-readers.

3.4 Discussion

In this work we have presented a novel representation of transcription factor binding

site preferences termed Structural Motifs, or StruMs. This model is an extension

of the formulation behind the time-tested PWM that accommodates distributions

of shape features. The flexibility of this model allows for variations of the StruM

that can be tailored to specific tasks, and the incorporation and integration of addi-

tional data types. The DiProDB is used as a simple and fast system for converting

sequences to a structural representation [93]. Other methods for shape estimation
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such as the DNAshapeR package would fit well within this representation [73]. Arbi-

trary other data types such as DNase hypersensitivity may likewise be incorporated,

as long as quantitative values can be generated for each position in the sequence.

The StruM representation shows an ability to specifically model TF binding sites,

as well as differentiate between ‘peak’ and ‘non-peak’ sequences in a ChIP-seq

experiment.

Despite an average similarity to sequence methods in performance for these

tasks, representingmotifs using shape features is not universally appropriate. Some

transcription factors employ a direct-readout mechanism whereby they recognize

their binding site via interactions with specific base pairs. For these factors, the

shape is an abstraction of the sequence information, rather than the other way

around, and the PWM (or other sequence-based representation) is preferable for

predicting binding sites.

A number of methods have been developed recently which seek to discover TF

binding motifs in local DNA shape [76, 74]. As with StruMs, the values used for

DNA shape are estimated directly from the sequence using a table like DiProDB

[93] or from simulations like DNAshape [73]. The local structure of naked DNA

is likewise determined by the sequence composition. This raises the question of

whether consider higher order nucleotide features could fully capture the informa-

tion contained in shape features. Indeed recent work has shown that given appro-

priate training data, dinucleotide features alone are sufficient to model most shape

features [72, 14].

While it is possible to model the contribution of shape features indirectly through

dinucleotide models, and indeed the dinucleotide model (DWM) displayed a strong

performance, the StruM parameterizes the same information in a very different

manner from these sequence-based methods. This disparity between the scores

generated by the different model types turned out to be useful; combining the scores
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into a single model performed even better than either method alone. Thus the dif-

ferent mechanisms of encoding the same information are complementary to one

another.

In summary, StruMs provide a novel way of considering transcription factor bind-

ing sites, which is complementary to sequence-based approaches. In fact many

transcription factors may utilize a blend of direct- and indirect-readout mechanisms,

agreeing with recent evidence (Reviewed in [91]). In this context, and given the

observed complementarity, representing motifs using StruMs provides valuable in-

formation about the binding site preferences of transcription factors, and that when

used in conjunction with sequence based methods can produce high confidence

cell type-specific predictions of TFBSs. This will be valuable especially for study-

ing the TF binding landscape of rare cell types for which carrying out extensive TF

ChIP-seq experiments would be prohibited either by cost or the ability to collect

enough cells for those experiments.

3.5 Availability

Source code for StruMs and related tools as well documentation are available in the

GitHub repository (https://github.com/pdeford/StructuralMotifs). All code required

to replicate the analyses in this paper are available at (https://github.com/pdeford/

strum_paper).
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4. Intrafamilial Discrimination

One challenge in predicting transcription factor binding sites is that members of the

same transcription factor family have very similar motifs [104]. Intuitively this makes

sense, as the transcription factor families are defined based on the structural simi-

larity of their DNA binding domains. High structural conservation and similarities in

these functional domains result in sequence preferences that are quite similar.

We hypothesized that, compared to sequence based approaches, Structural

Motifs might be better able to discriminate between binding sites within a tran-

scription factor family. Having more parameters associated with each position in

the binding site may allow for increased sensitivity to variations from the preferred

shape of a given transcription factor.

To assess this we used the motifs discovered in Chapter 3, and evaluated sev-

eral key characteristics. First we determined the similarity of the discovered motifs

for replicate experiments for the same TF. Secondly we assessed the within cluster

similarity when TFs were clustered based on their PWM or StruM representation.

Finally, we consider next steps for utilizing the observed differences in motif simi-

larity between PWMs and StruMs to improve the discriminatory power of predictive

methods when presented with similar motifs.
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Figure 4.1: Similarity of motifs from replicate experiments. X-axis is the rank of
replicate motifs given that all motifs are ranked by their similarity to the reference
motif. The blue line corresponds to position weight matrices, and the orange line
corresponds to Structural Motifs. Left: The density distribution of replicate ranks.
Right: The cumulative density distributions of replicate ranks, used to calculate the
KS statistic.

4.1 Replicate experiments yield the most similar

motifs

Firstly, we assessed the similarity between motifs from several transcription factor

families. The main ones considered were bZIP, C2H2 Zinc Finger (C2H2 ZF), ba-

sic Helix-Loop-Helix (bHLH), and Ets transcription factors. As the position weight

matrix is the most widely used representation of sequence motifs, it was used as

the standard to which the Structural Motif was compared.

There are several methods for aligning position weight matrices and scoring

the similarity between any two models (e.g. TOMTOM [105]). The extensions to

Structural Motifs were complicated, and it was unclear if the two sets of similarity

scores would be comparable. Another method of scoring similarity between motifs
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that is agnostic to alignment was recently introduced, known as the MoSBAT en-

ergy score [106]. In short, many sequences are assigned a score by each of the

motifs being considered. Then, for any two motifs, the relatedness is the Pearson

correlation between the scores assigned to all of those sequences by the motifs.

Before comparing position weight matrices to structural motifs at a broad scale,

the MoSBAT energy score was applied to the Structural Motifs for many ChIP

datasets. Some transcription factors had replicate datasets. For those with repli-

cates, the Pearson Dissimilarity was computed for all other datasets, the motifs

were sorted by that distance, and the ranks of the replicate motifs were extracted.

As shown in Figure 4.1, the distributions of replicate ranks for position weight ma-

trices and structural motifs were quite similar. A Kolmogorov-Smirnov test between

the distributions had a p-value of 0.0018. This indicated that while the structure of

the distributions is quite similar with the mode near zero, the Structural Motifs do

show a heavier right tail, indicating that the replicate motifs are consistent, but less

similar overall compared to the position weight matrices.

Overall this demonstrates that the MoSBAT energy score is an appropriate dis-

tance measure for Structural Motifs, as the replicates are generally the most sim-

ilar motifs for a given reference. Additionally, this provides a model agnostic way

of comparing motif similarity, that can be applied in the exact same way for both

sequence- and shape-based motifs, allowing for better comparisons.
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(a) PWM (b) StruM

(c) PWM vs. StruM: Similarity (d) PWM vs. StruM: TF Family

Figure 4.2: Clustering of motifs. (a-b)Motifs are clustered by Pearson Dissimilarity
on the MoSBAT energy scores. Leaves are colored by what Structural family the TF
belongs to. (a) PWM Motifs. (b) StruMs Motifs. (c-d) Joint clustering by PWM and
StruM. The heatmap is clustered in one direction by StruM similarity (bottom) and
the other by PWM similarity (left). Orange dots mark where the same TF appears
in both clustering schemes. (c) Similarity heatmap. Upper triangle corresponds
to the similarity of StruM motifs. Upper triangle corresponds to the similarity of
StruM motifs. (d) Colormap indicates which leaves in the opposite dendrogram
correspond to the same TF family.
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4.2 Structural Motifs are less similar within

transcription factor families than position

weight matrices.

Based on the Pearson dissimilarity metric computed above on the MoSBAT energy

scores for position weight matrices and Structural Motifs, the motifs can be clus-

tered hierarchically. The identified clusters reveal which motifs are the most similar.

We expect, based on the level of conservation observed among members of the

same family, that the motifs will cluster predominantly by their family membership.

Clustering the position weight matrix motifs, there are large blocks of C2H2 zinc

fingers that cluster together (Figure 4.2a). Additionally, blocks of bZIP, Nuclear

receptor, and bHLH motifs can be observed. In contrast, the structural motifs ap-

pear to cluster more randomly, and the single family blocks of motifs are generally

smaller (Figure 4.2b).

Assessing both sets of clustering together reveals the differences between the

similarities identified in both motif types. In Figure 4.2c, the similarity matrix was

clustered and sorted according to the same dendrograms from panels (a) and (b).

The upper triangle represents the similarities between StruMs, while the lower tri-

angle is the similarities between PWMs. If the cluster memberships were similar,

there would be blocks of color corresponding to each of the clusters. Additionally,

orange points indicate where each single TF was positioned in both dendrograms.

Again, if there was consistency between the two clustering schemes, there would

be groups of points that co-occur in close proximity. Rather, there is a fairly even

distribution of the orange points, and the striations observed in the heatmap indi-

cate that the two methods result in very different clusters. This is further confirmend

by Figure 4.2d, where instead of the similarity heatmap, for each TF the position of
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the other TFs of the same family are indicated. The number of blocks for each color

is different depending on the reference axis being considered, and again striations

appear, preferentially positioned up and down indicating that the StruM clusters are

less pure.

To examine the purity of the clusters more rigorously, the composition of TF

families present in each cluster was evaluated using two related measures: the

Entropy and the Gini Impurity. If the clustering is totally random, the composition

of the clusters will be fairly uniform, maximizing the Entropy and Impurity of each

cluster. In contrast, clusters with a bias towards a single transcription factor family

will have lower values. In Figure 4.3 it is fairly clear that the composition of the

StruM clusters (b) are more uniform in general than the PWM clusters (a). In fact,

the χ2 Distance among the StruM clusters is less on average than the Distance

among the PWM clusters (Figure 4.3c–e).

We can directly compare each of the clusters from the PWM similarity tree to

each of the clusters in the StruM similarity tree. Using the Jaccard index to assess

the similarity of each pairwise combination of clusters between the two motif types

by considering the membership of each. Figure 4.4a is a heatmap showing each

of these pairwise comparisons. These values are summarized in the distribution

in Figure 4.4b, and show that majority of the scores are fairly close to zero (aver-

age=0.1, standard devation=0.06), with the maximum being an outlier, and still only

0.26. This suggests that the clusters are very different from one another. In fact,

even if only the maximum score for each cluster is considered, the average Jac-

card score is still only 0.15 and 0.17 for either the PWMs and StruMs, respectively

(Figure 4.4c).

Thus far, it has been established that the similarities identified by both motif

types are different, resulting in clusters with low overall levels of identity between

the two methods. In addition, the Structural Motif clusters are generally less pure
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Figure 4.3: Motif cluster composition. a–b The composition of TF families present
in each of the motif clusters for PWMs (a) or StruMs (b). The right-hand axis cor-
responds to the Entropy (Red line) and Gini Impurity (Blue line). c–e χ2 Distance
between each of the PWM (c) or StruM (d) clusters, or the distribution of values
from those heatmaps (e).
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Figure 4.4: Similarity between motif clusters. (a) Heatmap of the Jaccard score be-
tween each of the PWM clusters (left) with the StruM clusters (bottom) from Figure
4.2a-b. (b) Distribution of Jaccard scores from panel a. (c) Distribution of Jac-
card scores from panel a (grey), the maximum score for each PWM cluster (blue),
or StruM cluster (orange). The points along the bottom indicate the scores being
included in each density plot. The diamond is the average of the distribution.

than the position weight matrix clusters. This implies that, if considered together,

transcription factors should become more separable from the other members in

their structural family.

4.3 Future applications

A more useful extension of separating motifs from within the same transcription

factor family is the ability to identify to which transcription factor a given sequence

is a binding site for, from within the structural family.

Due to the extreme degree of similarity observed between motifs for members

of the same structural transcription factor family, simple sequence or shape based

models may be insufficient, as the most preferred series of DNA bases (the consen-

sus sequence for sequence-based methods) is often identical for multiple members

of that family.

As will be discussed in the next chapter, additional features might be able to
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be incorporated into the structural motif to improve this resolution, though surpris-

ingly we found that DNase sensitivity is insufficient for this task. The more likely

solution is to include more of the putative binding site’s genomic context as input to

a higher order model. For example by considering the motifs of potential binding

partners for transcription factors that are known to dimerize. This type of interaction

is easily captured through convolutional layers in artificial neural network methods,

as has been observed with models like DeepBind for transcription factor binding,

and Basset for predicting the impact of sequence variation on DNase accessibility

[51, 107].
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5. Areas Needing Further

Development

5.1 Cell Type-specific Predictions of Binding Sites

5.1.1 DNase signatures

One important feature of the way the structural motif model was constructed, is that

it can incorporate an arbitrary number of shape features, as long as a quantitative

measure can be produced for each position in the binding site. The literature has

long described DNase signatures that are present at TFBSs due to unequal pro-

tection of the nucleotides by the bound transcription factor [108]. As a result we

extended the StruM to include DNase-seq signals to promote the discrimination

between bound and unbound sites that are otherwise similar. In theory, this would

allow for the distinction between bound and unbound instances of the motif, even

if they are identical at the sequence level.

However, recent work by Sung, et al. (2014) has shown that these apparent

DNase signatures are directly a result of the sequence bias of the nuclease, and

can be predicted from DNA tetramers [109]. Due to this fact, directly incorporating

DNase accessibility merely contributes an abstraction of the overall level of acces-

sibility in the model. As such, this avenue of cell type specific predictions proved
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unfruitful.

5.1.2 Modulated StruMs

Many of the available measurements for DNA shape are derived from essentially

naked DNA. This includes those found in the Dinucleotide Property Database [93]

as well as those produced by simulations in DNAshapeR [73]. Naked DNA would

represent DNA in its most accessible form. At any given time, however, the majority

of the genome is inaccessible.

We hypothesize that in inaccessible regions, the DNA undergoes distortions

that make individual nucleotides appear more similar, sterically. Effectively, the

differences between nucleotides are minimized relative to the distortion that may

be present. We propose that in cases where the DNA is not sensitive to DNase, and

therefore inaccessible, the shape values across distinct sequences should appear

more similar. In practice we will make these sequences appear more “average”,

scaled according to the sensitivity to DNase.

Box 3: DNA accessibility model

Inaccessible DNA

• Shape distortions out-

weigh differences between

bases.

• Shape features are forced

towards the mean value,

here normalized to 0.

Accessible DNA

• Naked DNA, comparable

to results of shape estima-

tors.

• Observe shape features

as their true values (vi ,j).

f (vi ,j |Ai)
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In the accessible state, the differences in shape between nucleotides will

be overshadowed by the larger scale torsion on the helix. Bases that are com-

pletely inaccessible will appear completely identical, in that sense, to a tran-

scription factor scanning for its binding site. On the other end of the spectrum,

completely accessible DNA is largely equivalent to naked DNA, with much

fewer stresses on the helix. In this state, the shape features should agree

with the values produced by shape prediction tools. Intermediate values of ac-

cessibility should therefore correspond to an intermediate value of the shape

value, between the predicted value and the average.

This can be expressed in terms of a scaling factor that is a function of ac-

cessibility, f (A). In the inaccessible state, the scaling factor should be zero. In

the perfectly accessible state, the scaling factor should be one.

f (0%) = 0

f (100%) = 1

The particular function used to scale based on the accessibility should be

monotonically increasing, but may not be linear. In fact, as will be discussed,

a logistic function may be appropriate.

Theoretical Framework

The standard method for calculating scores is shown in equation 2.6, reproduced

here:

P(Si |ϕ) =
m∏

j=1

P(vij |µj ,σ2
j ) (2.6 revisited)
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The structural motif is trained on ”naked” DNA and so all of the parameters will

reflect that. If a region of DNA is inaccessible, we would expect the the sequence’s

shape values would diverge from the transcription factor’s preferred conformation.

In short we would have a modulated form of the scoring function:

P(Si |ϕ, Ai) =
m∏

j=1

P
(

f (vij |Ai)
∣∣∣ µj ,σ2

j

)
(5.1)

An appropriate function for f (v) may be the logistic function. It will buffer many

low accessibilities as being in accessible. At the high end it will eventually reach a

level that will be considered essentially naked. In the middle it will have a transition

region, with a slope specific to each TF/StruMmodel. The formmay look something

like:

f (vij |Ai ; θ) =
vij

1 + e−θ(Ai−A0)
(5.2)

where Ai is the accessibility of the region, A0 is a parameterized factor to shift

the distribution appropriately, and θ is the transcription factor-specific scaling factor

that determines the slope of the middle region.

5.1.3 Methods.

TrainingData All data was obtained from the ENCODEUniformProcessing Pipeline.

For a given transcription factor several datasets are required. First are the peaks

from ChIP-seq experiments in at least three cell types. These provide sufficient

numbers of regions that are known to be bound by the transcription factor, that are

unbound in the cell type of interest. The cell type of interest is then determined

by the second dataset required: the DNase signal for at least one of the three (or

more) cell types represented in the ChIP experiments. Finally the sequences for

those ChIP peaks are required.
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The initial structural motif is computed de novo from the top 500 peaks from the

union of all available cell types. For the rest of the peaks, the sequence±50 bp from

the peak of each region was scored with the motif, and the highest scoring position

was considered the binding site. The positive examples will be those peaks that

are present in the cell type of interest, and the negative examples are those peaks

from the other cell types that share no overlap with any of the positive examples.

These positive and negative sets were then split into a training and testing set of

data.

Parameter Initialization. Parameter fitting by gradient descent (described in the

next section) is computationally expensive in this case. It has the additional risk

that, given the dimensionality of the data, the loss function may have local minima

which may trap optimization algorithm. To accommodate these two factors a good

initial guess at the parameters is important. This is achieved by fitting a simple

logistic regression classifier to the accessibility data, with the classes being defined

as whether the peaks come from the positive or negative training sets. In this

case, the intercept of the classifier will correspond to A0, and the coefficient will

approximate θ.

Parameter optimization. Each transcription factor will have a different charac-

teristic response to DNA accessibility. Pioneer transcription factors, for example,

should be relatively invariant to the accessibility of the region, while others may be

completely dependent on the state of the chromatin. Thus each structural motif will

need modulated individually, in a way that represents that particular transcription

factor’s activity. This is done through fitting the parameters A0 and θ by gradient

descent, using a Cross Entropy loss function.

The general form of the Cross Entropy loss function [110] is:
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J(θ, A0) = − 1

m

m∑
i=1

[
yi ln

(
P(xi)

)
+ (1− yi) ln

(
1− P(xi)

)]
(5.3)

Given the similarity in construction of the structural motif to the position weight

matrix, similar methods can be employed. In fact, the principals for defining P(xi)

were derived from those used in the PWM tool GOMER [111]. In short, P is deter-

mined as a biochemical value depending on concentrations and energies.

P =
[x ]

Kd + [x ] (5.4)

where [x ] is the concentration of the factor x , and the dissociation constant Kd

is defined as

Kd = e−∆G/RT (5.5)

Based on the the Gibbs free energy of reaction (∆G), the ideal Gas Constant

(R), and temperature (T ).

∆G =
∑

i
RT ln fbi

pb
(5.6)

∆∆G = RT ln fbi

pb
(5.7)

While this method was conceptualized for the discrete basepair frequencies of

the PWM, it can be adapted for use in the structural motif case by changing fj and bj

to derive from a continuous distribution (assuming that the data is normalized such

that, under a uniform distribution of nucleotides, the mean value for any shape

would be zero, and the standard deviation would be one):
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fj =
1√
2πσ2

e
−(f (vij )−µ)2

2σ2 (5.8)

bj =
1√
2π

e
−(f (vij ))

2

2 (5.9)

With one final simplifying assumption that the temperature is the same for train-

ing and testing, this produces a final value for P of:

P =
[x ]

[x ] + e
−

∑p
j=1

f (vij )2

2
−

(f (vij )−µj )2

2σ2
j

−lnσj

(5.10)

Due to the risk of local minima, a grid of parameters were explored centered on

the initialized parameters. This grid encompassed 4 values evenly spaced ±2 from

each parameter (A0 and θ), for a total of 16+1 parameter sets to be optimized.

5.1.4 Results

Optimization

Three transcription factors were selected as representative for this analysis: GATA2,

MNT, and SUZ12. Following the initialization step of using a logistic regression

classifier on the average accessibility, gradient descent was used with the cross

entropy loss function to further optimize the model parameters. A grid of parame-

ters centered on the initialized values was selected to optimize. As can be observed

in Figure 5.1, this grid was important. Some initializations were in local minima and

could not be further optimized, others were partially optimized before being like-

wise caught, but the majority led to a more optimum solution, minimizing J(θ) for

example.
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Figure 5.1: Optimization of parameters for the MNT model. Shown here are the
cost function values at each step in the gradient descent optimization of θ. Each
line represents one parameter set used as the starting place for the optimization.

Cell type specific predictions

To evaluate the utility of the DNase modulated structural motif, it was applied to a

simple classification problem. Non-overlapping ChIP-seq peaks from two or more

cell types were used. Using DNase accessibility from one of the cell types, the

model was used to predict which of the peaks originated from the same cell type as

the DNase data by scoring each peak. An ROC curve and a precision recall curve

was generated to evaluate the performance.

Four models were evaluated in this way. First was a naïve structural motif that is

unmodulated. Second is a modulated structural motif using the logistic regression

initialized values of θ and A0. The third model is the fully optimized modulated

structural motif. Finally is a simple logistic regression classifier on the accessibility

of the region (given that a motif has been identified).

Figure 5.2 shows the performance curves for these four models applied to each
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Figure 5.2: Performance of the Modulated StruM. The left panels are the ROC
curve, the right are precision-recall curves. The curves shown are for a naïve StruM
(blue), a ModStruM with the initialized values (green), the optimized ModStruM
(orange), and logistic regression (purple). (a) GATA2, (b) MNT, (c) SUZ12.
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of the three representative transcription factors. As both the positive and nega-

tive training sets include regions that are bound by the factors at some point, it

is expected that a model without cell type specific information would be unable to

distinguish between the two, and the area under the ROC curve would be close

to 0.5. This is indeed what is observed as the performance of the unmodulated

structural motif. In all three cases the area under the ROC curve is less than 0.6.

Surprisingly, this poor performance is mirrored almost exactly by that of the fully

optimized modulated structural motif. The modulated structural motif utilizing the

logistic regression intialized parameters gains some improvements over the naïve

version, but is vastly overshadowed by the performance of the logistic regression

control.

5.1.5 Discussion

Based on the Figure 5.1 it initially appeared that the optimization strategy of the

modulated structural motif parameters was successful. However the poor perfor-

mance of the optimized model displayed in Figure 5.2 contradicts that assessment.

This may suggest that the cross entropy loss function may not have been appro-

priate for this application. Interestingly the logistic regression initialized modulated

strum did show an improvement, indicating that this form of parameter selection

may be sufficient. This has the benefit of being much faster, both due to the re-

duced complexity of the problem, and the obviation of the need to sample multiple

possible parameter sets.

Despite the success of the modulated structural motif in improving the cell type

specific predictive power of the structural motif model, its performance was still

overshadowed by a simple logistic regression model. This model still requires the

identification of putative binding sites through the use of a structural motif or similar.

We conclude that traditional DNase footprinting methods used in conjunction with
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structural motifs is more effective than incorporating the DNase information directly

into the structural motif itself.
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6. Discussion

Sequence based DNA motifs have long been used to represent the genomic sites

that can be bound by TFs. These abstractions of transcription factor DNA binding

preferences are intuitive, computationally lightweight, and have been shown to be

quite robust. Shape based models have the potential to better capture the binding

preferences by more directly modelling the protein-DNA interaction.

The Structural Motif uses estimates of of DNA shape features derived from

sequence-to-shape methods, such as the Dinucleotide Property Database. This

method models the shape preferences at each position in a motif with a Normal

distribution. By assuming the independence of positions across the binding site,

novel sequences can be scored in a straightforward manner, by computing the

probability at each position of observing the DNA as or more distorted from the

transcription factors preferred configuration as the given shape, and multiplying

those probabilities across the sites and shapes.

Using expectation maximization, we demonstrate that de novo Structural Motifs

are discovered within the output from ChIP-seq experiments. Aligning with our hy-

pothesis, these de novo motifs are highly specific to their cognate TFs, accurately

distinguishing true binding sites from a mixed pool of transcription factor binding

sites of other transcription factors (Average auROC = 0.77, SD = 0.14). This is

reinforced by the finding that for a given sequence the high quality matches to a

Structural Motif are generally quite close to the best match to the position weight
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matrix for the same transcription factor (Average Distance = 20 bp, SD = 16.6).

In a simple classification experiment, identifying sequences containing a true tran-

scription factor binding site versus background sequences, Structural Motifs show

a similar degree of specificity as not only the position weight matrix, but also the

higher order dinucleotide weight matrix (Average auROC: PWM=0.76, DWM=0.77,

StruM=0.76).

In spite of the similar level of performance in these classification experiments,

overall the scores produced by the sequence and shape models were very poorly

correlated. For the 229 transcription factor ChIP-seq experiments considered, the

average correlation between StruM and PWM scores was only 0.06. Because of

this poor correspondence, we hypothesized that these different representations of

binding sites were encoding the transcription factor preferences in fundamentally

different ways. This hypothesis was borne out by observing that the performance

in these classification experiments could be further improved by integrating the two

motif representations into a joint logistic regression model. The joint model outper-

formed both single models in 68% of the experiments.

Taking advantage of the differences in the types of information encoded by

sequence- and shape-based models, we utilized the model agnostic MoSBAT en-

ergy score to investigate whether shape models might increase the ability to dis-

criminate between binding sites for highly similar motifs. After first confirming that

motifs derived replicate experiments for a given transcription factor were generally

more similar than motifs from other transcription factors, we investigated the sim-

ilarity of motifs across a variety of transcription factor families. Upon clustering of

the transcription factor based on either the similarity of the position weight matri-

ces or Structural Motifs, we determined that the Structural Motifs had a higher level

of entropy (avg PWM = 1.5, avg StruM = 1.8) and lower overall χ2 distance (avg

PWM = 0.22, avg StruM = 0.12) than the position weight matrix, indicating that the
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clusters had a more uniform composition in terms of the transcription factor families

represented there. The difference in these cluster compositions is highlighted by

considering the Jaccard score between each of the position weight matrix clusters

and each of the Structural Motif clusters. The maximum Jaccard score between

any pair of clusters was only 0.26, indicating that the clustering was significantly

different.

In the initial design of the Structural Motif model, one of the main objectives was

to create a model that was not only simple and intuitive, but also extensible. The

Structural Motif framework allows for inclusion of arbitrary features in addition to the

shape estimates from DiProDB. We hypothesized that the inclusion of experimen-

tal data from other assays would provide the requisite context for making cell type

specific predictions. We successfully incorporated DNase-seq data into the Struc-

tural Motif as a proof of concept. Contrary to our hypothesis, we did not achieve

making cell type specific predictions, which is explained by nucleotide resolution

DNase signals showing an extreme sequence bias, as opposed the the previously

hypothesized transcription factor specific protection of bases within a binding site.

Sequence based methods have remained popular in part due not only to the

robustness of the models, but also due to their relatively lightweight computa-

tional requirements. With modern high performance computing resources avail-

able even on personal laptops, more complex models are now much more feasible

even for simple applications. Even so, Structural Motifs are fairly computationally

lightweight, being constructed as an extension of the position weight matrix. The

main increase in computational complexity comes from two sources: the increased

number of parameters required to model each site in the motif, and the computation

time for calculating p-values. Using the provided Python package, a Structural Mo-

tif requires a maximum of up to 48 times the number of parameters as the position

weight matrix, depending on the shape features included in the model. Addition-
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ally, since the p-values are computed from a Normal distribution, there are fast

implementations for calculating the probabilities, and depending on the application

precalculated probabilities tables can be used to provide estimated p-values. In our

experience, a de novomotif can be calculated (with 5 random restarts) from the top

500 peaks in a high quality ChIP-seq experiment in a matter of minutes on a per-

sonal laptop. This design makes these models not only intuitive, but accessible for

general use due to their simplicity and speed.

Although at present these models are intrinsically linked to the underlying DNA

sequence as the shape parameters are estimated from sequence, the structural

models capture a unique set of information relative to the sequence models. This

difference turns out to be useful beyond just a new perspective on the interaction,

as it allows for a more complete representation of the transcription factor binding

preferences when sequence and shape are considered together, resulting in overall

higher quality predictions from joint models. Our results imply that this increased

specificity may even extend to discriminating between binding sites within the same

transcription factor families, though additional work is required in this area. Higher

order models may be required that can consider multiple motifs simultaneously to

best address this problem.

While estimating the shape parameters from the underlying sequence does not

restrict the structural models to parallel the sequence models, it does force some

strict assumptions on the shape models. Namely, this method of defining shape

parameters operates under the assumption that the sequences being analyzed are

from naked DNA, not taking into account local distortions of DNA shape, for exam-

ple as a result even of histone wrapping or tension/DNA bending introduced by the

binding of other proteins nearby. For this reason we expect that Structural Motifs

will perform poorly for binding sites located in regions of more complex three dimen-

sional DNA structure. Particularly, these models are poorly suited for predicting the
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binding sites of pioneer transcription factors that bind primarily to packaged DNA.

An additional limitation of Structural Motifs is that chromatin state is not natively

included. This prevents “vanilla” Structural Motifs from making cell type specific

predictions, as has been described. And while the model allows for integration of

additional relevant features, DNase sensitivity, for example, doesn’t provide infor-

mation at high enough resolution to be useful directly incorporated into the model.

Other feature types may, in the future, be used in this manner, but we have not yet

explored that possibility.

Finally, we have found that not all transcription factors are well represented by

shape motifs. Transcription factors with known sequence preferences that oper-

ate via the direct base readout method of binding site recognition tend to be well

represented with sequence based methods. In these situations models based on

indirect-readout, such as Structural Motifs, tend to provide a less complete repre-

sentation of the binding site than sequence methods.

Ultimately, based on our findings we recommend considering both sequence-

and shape-based methods for making predictions of transcription factor binding

sites. While the ease of use and widespread acceptance of the position weight ma-

trix is great for many applications, for broad scale predictions Ensemble methods

will likely produce better results. Combining shape and sequence methods allow

for more confident predictions by considering a broader view of the binding pref-

erences. Additionally, integrating both types of methods into higher order models

that enable the consideration of coordination or competition between transcription

factors as well as cooperative binding will further refine these predictions. Models

such as DeepBind [51] and Basset [107] have demonstrated the utility of applying

convolutional neural networks for this purpose.

While incorporating DNase directly into structural motifs was insufficient for

making cell type predictions, it still has significant utility in identifying potential bind-
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ing sites. Incorporating other feature types informing the model of the chromatin

state context of a given transcription factor binding site (such as methylation or

available ChIP-seq data from other factors) will lead to the most confident pre-

dictions. As better or additional sequence-to-shape estimating methods become

available, such as DNAshapeR [73], these can also be included in the structural

motif model to improve its overall performance by increasing the accuracy of the

shape representation of the binding sites.

This work demonstrates the utility of shape based methods for representing

DNA motifs. Importantly, these methods don’t stand alone but are better suited

to be evaluated alongside sequence methods. With additional work incorporating

chromatin state information and integrating multiple models cell type specific pre-

dictions will become yet more confident, expanding our overall understanding of the

regulatory landscape that contributes to healthy development, as well as providing

insight into the mechanisms and treatment of genetic diseases.

Consistent with the goal of providing a model that is intuitive and accessible

for general use, the Python package developed for working with Structural Motifs

is freely available on GitHub, and was designed for use with Python 2.7. It can

be found at https://github.com/pdeford/StructuralMotifs and installation instructions

and documented is also provided there. The documentation is included in the ac-

companying website https://pdeford.github.io/StructuralMotifs/, and provides a de-

scription of all of the available functions, as well as examples of how to use the

package.
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A. Supplementary Methods

A.1 Training Structural Motifs

Two methods were applied to training the Structural Motifs used in this paper.

These approaches differ in whether they take a sequence-centric approach to iden-

tifying the binding site. In the case where the training is directed by sequence, the

kmers identified by MEME as contributing to the meme-chip PWM are taken as

being representative of the binding site. Each one of these aligned binding site

sequences is translated to ‘structural space‘. This is done by iteratively consider-

ing each dinucleotide in the sequence, and looking up the corresponding values in

DiProDB for the features associated with the ‘full’ filter mode in the StruM pack-

age (see Table A.1). If the binding site identified by the PWM is of width k, and there

are p features, the size of the feature vector for this sequence is of length (k −1) ·p.

The ‘Maximum Likelihood’ StruM, is then computed by taking the arithmetic mean

and standard deviation at each of these (k − 1) · p position-specific features across

all of the aligned binding sites.

The second method used to train Structural Motifs was an Expectation Maxi-

mization approach (algorithm described more fully below) directly on the structural

representation of the training sequences. This version of the StruM was trained

on the same set of sequences passed to MEME, i.e. the 100 bp surrounding the

peak summit of the top 500 most enriched peaks in the ChIP experiment. In order
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to speed up the training time, the Expectation Maximization algorithm was done

using the ‘proteingroove’ filter mode of the StruM package (see Table A.2). This fil-

ter mode only uses 14 features related to the major and minor grooves and values

derived from protein-DNA complexes. 10 random restarts were used to initialize

the motif. After convergence of the models, the one with the highest likelihood was

retained. This intermediate ‘proteingroove‘ StruM was used to score the training

sequences, and the best scoring kmer from each sequence was extracted. These

were then translated to structural space with full 96 features available in the ‘full’

mode, and the parameters derived in a maximum likelihood fashion from this set of

kmers.

Count Feature

1 Bend

1 Clash Strength

2 Enthalpy

2 Entropy

1 Flexibility_shift

1 Flexibility_slide

9 Free energy

1 Major Groove Depth

1 Major Groove Distance

1 Major Groove Size

1 Major Groove Width

2 Melting Temperature

1 Minor Groove Depth

1 Minor Groove Distance

1 Minor Groove Size

1 Minor Groove Width
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1 Persistance Length

1 Probability contacting nucleosome core

1 Propeller Twist

3 Rise

2 Rise (DNA-protein complex)

1 Rise stiffness

1 Rise_rise

4 Roll

2 Roll (DNA-protein complex)

1 Roll stiffness

1 Roll_rise

1 Roll_roll

1 Roll_shift

1 Roll_slide

2 Shift

2 Shift (DNA-protein complex)

1 Shift stiffness

1 Shift_rise

1 Shift_shift

1 Shift_slide

3 Slide

2 Slide (DNA-protein complex)

1 Slide stiffness

1 Slide_rise

1 Slide_slide

4 Stacking energy

3 Tilt
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2 Tilt (DNA-protein complex)

1 Tilt stiffness

1 Tilt_rise

1 Tilt_roll

1 Tilt_shift

1 Tilt_slide

1 Tilt_tilt

1 Tip

6 Twist

2 Twist (DNA-protein complex)

1 Twist stiffness

1 Twist_rise

1 Twist_roll

1 Twist_shift

1 Twist_slide

1 Twist_tilt

1 Twist_twist

1 Wedge

Table A.1: Features from the Dinucleotide Property

Database used in the ‘full’ filtering mode of the StruM

package. The ‘Count’ column represents how many

times that feature appears, as the DiProDB table ref-

erences some features multiple times, from different

source in the literature.
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Feature

Major Groove Depth

Major Groove Distance

Major Groove Size

Major Groove Width

Minor Groove Depth

Minor Groove Distance

Minor Groove Size

Minor Groove Width

Rise (DNA-protein complex)

Roll (DNA-protein complex)

Shift (DNA-protein complex)

Slide (DNA-protein complex)

Tilt (DNA-protein complex)

Twist (DNA-protein complex)

Table A.2: Features from the Dinucleotide Property

Database used in the ‘proteingroove’ filtering mode of

the StruM package.
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A.2 Expectation Maximization training of StruMs

Our approach to expectation maximization was modeled after the OOPS model

(only one per sequence) used by MEME [88]. Due to the formulation of StruMs

as a combination of normal distributions, the parameters can be estimated using a

variation of a weighted average.

A.2.1 E-step

The likelihood (lij) of the j-th position in the i-th sequence being the start of the

binding site is taken to be the score of the StruM at that position multiplied by the

likelihood of the flanking regions matching the background model (ϕB):

lij =
j−1∏
n=1

P(vij |ϕB)

j+k−1∏
n=j

P(vij |ϕi−j+1)
N∏

n=j+k

P(vij |ϕB)

The likelihoods are then normalized on a by-sequence basis to produce M, the

matrix of expected start positions:

Mij =
lij∑m

j′=1 lij′

A.2.2 M-step

The maximization step takes these likelihoods and calculates maximum likelihood

values for µ and σ for each of the m position-specific features:

µj =
n∑

i=1

∑
v

vij · Mij∑
i
∑

j Mij

σj =
n∑

i=1

∑
v

(vij − µj)
2 · Mij∑

i
∑

j Mij −
∑

i
∑

j M2
ij∑

i
∑

j Mij
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A.3 Filtering Position-Specific Features

As is the case with PWMs, not all position-specific features will contribute equally

to the specificity of the motif. Analagously to positions with very low information

content in a PWM, position-specific features in a StruM with large values for σ don’t

reveal much information about the binding site, and can tolerate high amounts of

variability at that site.

These non-specific features may contribute to the noisiness of the signal without

appreciably contributing to the specificity of the motif. By filtering out non-specific

features, not only might the signal to noise ration be improved, but also reduce the

time required to score a kmer with the motif.

Two methods of identifying non-specific features in the StruM were explored.

The first was simply based on the value of σ. Large values of σ by definition corre-

spond to large amounts of variation in the training data for that feature. Excluding

position-specific features with a value for σ greater than some threshold would limit

the score for a sequence to only derive from specific features.

The second method considered was to use a Fisher score, based on the Fisher

Linear Discriminant. This strategy requires a negative set, and for each feature

compares the difference in mean values for the positive and negative sets, to the

difference in variability observed for the positive and negative sets for that feature.

More specifically, the Fisher score V for the i-th position-specific feature can be

computed as:

Vi =
(µi+ − µi−)

2

σ2
i+ + σ2

i−
(A.1)

A larger value for Vi corresponds to a larger difference between the two sets,

after accounting for their variability. After training the StruM, the positive set was

constructed by taking the best scoring kmer from each training sequence. The
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negative set was then generated by randomly shuffling each of the kmers in the

positive set.

In order to automatically identify a threshold for these two methods, the position

specific features were rank-ordered by each of the metrics. A univariate spline was

fit to these rank-ordered values. The point of inflection in this spline was selected

as the threshold. Features with values above the threshold were retained for the

log10Fisher score (Figure A.1) and features with values below the threshold were

retained for σ (Figure A.2).

The performance of using the full StruM and each of the filtered versions was

evaluated using three metrics: The Fisher score, auROC, and auPRC (Figure A.3).

In general, the the filtered versions performed as well as or slightly better than

the original full version of the motif (data not shown). We therefore elected to use

filtered-StruMs for this analysis. Specifically, filtering on the variance threshold was

used as it does not require any sort of negative set to compute.
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Figure A.1: Position-specific StruM features were rank ordered by their log Fisher
score determined from the binding sites, and a shuffled set of sequences. A uni-
variate spline was fit (orange line) and the point of inflection determined as the
threshold (vertical grey line). The residuals from the fit are on the right hand side.
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Figure A.2: Position-specific StruM features were rank ordered by their value for
σ. A univariate spline was fit (orange line) and the point of inflection determined as
the threshold (vertical grey line). The residuals from the fit are on the right hand
side.
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Figure A.3: The performance of the the full StruM compared to the filtered version.

83



A.4 Dataset accessions

The following table describes the accessions for the datasets used in Chapter 3.

The columns specify which of the analyses each dataset was included in, as follows:

1. Target: The target of the ChIP-seq experiment.

2. Accession: The ENCODE accession number for the dataset used.

3. coefficients: Whether the experiment was included in the calculations for as-

sessing the relative size of the coefficients in the logistic regression model.

4. alignments: Whether the experiment was included in the calculations for

aligning the PWM and StruM motifs.

5. classification: Whether the experiment was included in the calculations for the

performance of the motif representations in classifying sequences as coming

from the TF vs. background.

6. correlation: Whether the experiment was included in the calculations for cor-

relations for scores between the PWMs and StruMs.

7. positions: Whether the experiment was included in the calculations for dis-

tances between best PWM and StruM matches in a sequence.

8. specificities: Whether the experiment was included in the calculations for the

performance of motifs in classifying sequences as coming from the cognate

TF or other sequences.
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3xFLAG-ATF1 ENCFF948LKX Y Y Y Y Y N

3xFLAG-PBX2 ENCFF003PSH Y Y Y Y Y N

AFF1 ENCFF466GTG Y Y Y Y Y N

AFF1 ENCFF579KSC Y Y Y Y Y N

ARHGAP35 ENCFF991AML Y Y Y Y Y N

ARID1B ENCFF676SJQ Y Y Y Y Y Y

ARID2 ENCFF056IYP Y Y Y Y Y Y

ARID3A ENCFF974QZG Y Y Y Y Y Y

ARNT ENCFF032MDN Y Y Y Y Y Y

ARNT ENCFF521JOW Y Y Y Y Y Y

ARNT ENCFF934MUQ Y Y Y Y Y Y

ASH1L ENCFF701QFG Y Y Y Y Y N

ATF2 ENCFF525YRJ Y Y Y Y Y Y

ATF3 ENCFF737ZGG Y Y Y Y Y Y

ATF7 ENCFF280UZU Y Y Y Y Y Y

BCLAF1 ENCFF145KNX Y Y Y Y Y N

BCLAF1 ENCFF401FXT Y Y Y Y Y N

BCOR ENCFF467YYR Y Y Y Y Y N

BHLHE40 ENCFF432TSX Y Y Y Y Y N

BMI1 ENCFF259NPX Y Y Y Y Y N

BRD4 ENCFF868NFS Y Y Y Y N N

BRD9 ENCFF148RRJ Y Y Y Y Y N

CBFA2T2 ENCFF339YXQ Y Y Y Y Y N

CBFA2T3 ENCFF202JYJ Y Y Y Y Y N

CC2D1A ENCFF209YTE Y Y Y Y Y N
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CDC5L ENCFF820ZHR Y Y Y Y Y Y

CEBPB ENCFF819GCB Y Y Y Y Y Y

CEBPZ ENCFF803JOE Y Y Y Y Y N

CHAMP1 ENCFF131TQV Y Y Y Y Y N

CHAMP1 ENCFF201PDX Y Y Y Y Y N

CREB3L1 ENCFF719NIX Y Y Y Y Y Y

CREM ENCFF744NXL Y Y Y Y Y Y

CTBP1 ENCFF125XVE Y Y Y Y Y N

CTCF ENCFF559HEE Y Y Y Y Y Y

CTCF ENCFF681OMH Y Y Y Y Y Y

CTCFL ENCFF985NLY Y Y Y Y Y Y

CUX1 ENCFF010SPN Y Y Y Y Y Y

DACH1 ENCFF318UQW Y Y Y Y Y N

DEAF1 ENCFF633OQQ Y Y Y Y Y N

DNMT1 ENCFF997JHM Y Y Y Y Y Y

DPF2 ENCFF206HJJ Y Y Y Y Y N

DPF2 ENCFF663KFV Y Y Y Y Y N

E2F1 ENCFF414ZZX Y Y Y Y Y Y

E2F1 ENCFF666FOX Y Y Y Y Y Y

E2F6 ENCFF142VQA Y Y Y Y Y Y

E2F7 ENCFF987GXS Y Y Y Y Y Y

E2F8 ENCFF749OIM Y Y Y Y Y Y

E4F1 ENCFF211YKN Y Y Y Y Y Y

eGFP-ADNP ENCFF219ZRU Y Y Y Y Y N

eGFP-ATF1 ENCFF884CMO Y Y Y Y Y N

eGFP-ATF3 ENCFF820BLL Y Y Y Y Y N

eGFP-BACH1 ENCFF476YGX Y Y Y Y Y N

eGFP-CEBPB ENCFF231HJU Y Y Y Y Y N

eGFP-CEBPG ENCFF674WGB Y Y Y Y Y N
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eGFP-CREB3 ENCFF459GME Y Y Y Y Y N

eGFP-CUX1 ENCFF193JMA Y Y Y Y Y N

eGFP-ELF1 ENCFF140VIF Y Y Y Y Y N

eGFP-ETS2 ENCFF392QMP Y Y Y Y Y N

eGFP-ETV1 ENCFF332WRL Y Y Y Y Y N

eGFP-FOXJ2 ENCFF797AAQ Y Y Y Y Y N

eGFP-GATA2 ENCFF879REQ Y Y Y Y Y N

eGFP-GTF2A2 ENCFF915SSM Y Y Y Y Y N

eGFP-GTF2E2 ENCFF394WVZ Y Y Y Y Y N

eGFP-HDAC8 ENCFF531QQR Y Y Y Y Y N

eGFP-HDAC8 ENCFF621HTW Y Y Y Y N N

eGFP-HINFP ENCFF413OIG Y Y Y Y Y N

eGFP-ID3 ENCFF792DSI Y Y Y Y Y N

eGFP-IRF1 ENCFF372XLP Y Y Y Y Y N

eGFP-IRF9 ENCFF850QMO Y Y Y Y Y N

eGFP-KLF13 ENCFF387ZED Y Y Y Y Y N

eGFP-KLF1 ENCFF581HPR Y Y Y Y Y N

eGFP-MAFG ENCFF921SVE Y Y Y Y Y N

eGFP-MEF2D ENCFF776UTN Y Y Y Y Y N

eGFP-NFE2 ENCFF759YKT Y Y Y Y Y N

eGFP-NFE2L1 ENCFF573QWP Y Y Y Y Y N

eGFP-NFE2L1 ENCFF625IYZ Y Y Y Y Y N

eGFP-NR2C1 ENCFF633PGJ Y Y Y Y Y N

eGFP-NR2C2 ENCFF978GHB Y Y Y Y Y N

eGFP-NR4A1 ENCFF837QOK Y Y Y Y Y N

eGFP-PTTG1 ENCFF320ZVD Y Y Y Y Y N

eGFP-RELA ENCFF939ETO Y Y Y Y Y N

eGFP-TAF7 ENCFF511GKD Y Y Y Y Y N

eGFP-TEAD2 ENCFF006PAK Y Y Y Y Y N
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eGFP-TFDP1 ENCFF179TYN Y Y Y Y Y N

eGFP-TSC22D4 ENCFF494TFV Y Y Y Y Y N

eGFP-VEZF1 ENCFF053OWV Y Y Y Y Y N

eGFP-ZBTB11 ENCFF624CZP Y Y Y Y Y N

eGFP-ZBTB40 ENCFF413TRG Y Y Y Y Y N

eGFP-ZFX ENCFF575JXW Y Y Y Y Y N

eGFP-ZKSCAN8 ENCFF115ZHW Y Y Y Y Y N

eGFP-ZNF175 ENCFF197LEN Y Y Y Y Y N

eGFP-ZNF24 ENCFF048DTR Y Y Y Y Y N

eGFP-ZNF354B ENCFF504AID Y Y Y Y Y N

eGFP-ZNF395 ENCFF632AQL Y Y Y Y Y N

eGFP-ZNF507 ENCFF610XQH Y Y Y Y Y N

eGFP-ZNF512 ENCFF617CTX Y Y Y Y Y N

eGFP-ZNF584 ENCFF498DWU Y Y Y Y Y N

eGFP-ZNF589 ENCFF433UZU Y Y Y Y Y N

eGFP-ZNF639 ENCFF644EZR Y Y Y Y Y N

eGFP-ZNF644 ENCFF377ZLR Y Y Y Y Y N

eGFP-ZNF740 ENCFF583QKD Y Y Y Y Y N

eGFP-ZNF740 ENCFF669BPX Y Y Y Y Y N

eGFP-ZNF83 ENCFF755MMS Y Y Y Y Y N

EGR1 ENCFF529GVQ Y Y Y Y Y Y

EGR1 ENCFF630ANY Y Y Y Y Y Y

ELF1 ENCFF067ZUO Y Y Y Y Y Y

ELF1 ENCFF368HEW Y Y Y Y Y Y

ELF4 ENCFF976WHF Y Y Y Y Y Y

ELK1 ENCFF519LUE Y Y Y Y Y Y

EP300 ENCFF821GNB Y Y Y Y Y N

ESRRA ENCFF200PMR Y Y Y Y Y N

ETV6 ENCFF095DJV Y Y Y Y Y Y
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ETV6 ENCFF808CFK Y Y Y Y Y Y

EWSR1 ENCFF414CVQ Y Y Y Y N N

FOXA1 ENCFF547KFA Y Y Y Y Y Y

FOXK2 ENCFF540IYS Y Y Y Y Y Y

FOXK2 ENCFF960WIT Y Y Y Y Y Y

FOXM1 ENCFF869BQV Y Y Y Y Y Y

FUS ENCFF137NMV Y Y Y Y Y N

GABPA ENCFF678KYI Y Y Y Y Y Y

GATA1 ENCFF178NBS Y Y Y Y Y Y

GATA1 ENCFF715NLX Y Y Y Y Y Y

GATA2 ENCFF727SRR Y Y Y Y Y Y

GATAD2A ENCFF987JFX Y Y Y Y Y Y

GATAD2B ENCFF540MNX Y Y Y Y Y Y

GMEB1 ENCFF815MOP Y Y Y Y Y N

GTF2F1 ENCFF334QGA Y Y Y Y Y N

GTF2F1 ENCFF449AHL Y Y Y Y Y N

GTF2F1 ENCFF988FFD Y Y Y Y Y N

HCFC1 ENCFF780MBM Y Y Y Y Y N

HDAC1 ENCFF130EPK Y Y Y Y Y N

HDAC1 ENCFF652JEE Y Y Y Y Y N

HDAC1 ENCFF925QJY Y Y Y Y Y N

HDAC1 ENCFF951GMF Y Y Y Y Y N

HDAC2 ENCFF458TCO Y Y Y Y Y N

HDAC2 ENCFF631IAC Y Y Y Y Y N

HDAC2 ENCFF713HRG Y Y Y Y Y N

HDAC2 ENCFF809VBW Y Y Y Y Y N

HDAC3 ENCFF765UDL Y Y Y Y Y N

HDAC6 ENCFF025HHM Y Y Y Y Y N

HES1 ENCFF419FNX Y Y Y Y Y Y
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HMBOX1 ENCFF829KBM Y Y Y Y Y Y

HNRNPK ENCFF936IJD Y Y Y Y Y N

HNRNPL ENCFF650VQU Y Y Y Y Y N

IKZF1 ENCFF570TDY Y Y Y Y Y Y

IKZF1 ENCFF766NVP Y Y Y Y Y Y

IRF1 ENCFF256GYM Y Y Y Y Y Y

IRF1 ENCFF546ZGF Y Y Y Y Y Y

IRF1 ENCFF999SXR Y Y Y Y Y Y

IRF2 ENCFF324USK Y Y Y Y Y Y

JUNB ENCFF209OUI Y Y Y Y Y Y

JUN ENCFF934OCU Y Y Y Y Y N

KAT8 ENCFF567GFO Y Y Y Y Y N

KDM1A ENCFF526UKS Y Y Y Y Y N

KDM1A ENCFF569IJM Y Y Y Y Y N

KLF16 ENCFF063BGI Y Y Y Y Y Y

LEF1 ENCFF595DQM Y Y Y Y Y N

LEF1 ENCFF866QXR Y Y Y Y Y N

MAFF ENCFF483XQO Y Y Y Y Y Y

MAFK ENCFF715WON Y Y Y Y Y Y

MAX ENCFF221GAR Y Y Y Y Y Y

MAX ENCFF679HVZ Y Y Y Y Y Y

MBD2 ENCFF496CSN Y Y Y Y Y N

MEF2A ENCFF883WDT Y Y Y Y Y N

MEIS2 ENCFF678QHT Y Y Y Y Y Y

MGA ENCFF582HCK Y Y Y Y Y Y

MIER1 ENCFF945LXQ Y Y Y Y Y Y

MITF ENCFF522LWR Y Y Y Y Y Y

MLLT1 ENCFF148VLB Y Y Y Y Y N

MLLT1 ENCFF460XQR Y Y Y Y Y N
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MNT ENCFF228QNJ Y Y Y Y Y Y

MNT ENCFF578SWL Y Y Y Y Y Y

MTA1 ENCFF407VAS Y Y Y Y Y Y

MTA2 ENCFF752DRC Y Y Y Y Y Y

MTA2 ENCFF778TXT Y Y Y Y Y Y

MTA3 ENCFF120WQF Y Y Y Y Y Y

MXI1 ENCFF413YYC Y Y Y Y Y Y

MYBL2 ENCFF865IDL Y Y Y Y Y N

MYC ENCFF390IMT Y Y Y Y Y N

MYC ENCFF596JXE Y Y Y Y Y N

MYC ENCFF623EST Y Y Y Y Y N

MYC ENCFF836PBB Y Y Y Y Y N

MYC ENCFF884VNW Y Y Y Y Y N

MYNN ENCFF795LBM Y Y Y Y Y Y

NCOA1 ENCFF152WSS Y Y Y Y Y Y

NCOA1 ENCFF271LVS Y Y Y Y Y Y

NCOA1 ENCFF939JEH Y Y Y Y Y Y

NCOA2 ENCFF082PCH Y Y Y Y Y Y

NCOA2 ENCFF550NJW Y Y Y Y Y Y

NCOA4 ENCFF074DBO Y Y Y Y Y N

NCOA6 ENCFF758SJG Y Y Y Y Y N

NCOR1 ENCFF062BMU Y Y Y Y Y Y

NCOR1 ENCFF098XOZ Y Y Y Y Y Y

NCOR1 ENCFF691VAI Y Y Y Y Y Y

NEUROD1 ENCFF852XSD Y Y Y Y Y Y

NFATC3 ENCFF185YRG Y Y Y Y Y Y

NFATC3 ENCFF358IAH Y Y Y Y Y Y

NFE2 ENCFF496KKT Y Y Y Y Y Y

NFIC ENCFF072WWL Y Y Y Y Y N
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NFRKB ENCFF220IME Y Y Y Y Y N

NFRKB ENCFF739UMP Y Y Y Y Y N

NFXL1 ENCFF015PTS Y Y Y Y Y N

NFYB ENCFF561PGE Y Y Y Y Y N

NONO ENCFF219YST Y Y Y Y Y N

NONO ENCFF591UOR Y Y Y Y Y N

NR2C1 ENCFF297OMH Y Y Y Y Y Y

NR2C2 ENCFF541SHT Y Y Y Y Y Y

NR2F1 ENCFF078SJN Y Y Y Y Y Y

NR2F2 ENCFF823SRC Y Y Y Y Y Y

NR2F6 ENCFF510ZUJ Y Y Y Y Y Y

NR3C1 ENCFF091PDT Y Y Y Y Y Y

NR3C1 ENCFF571LPJ Y Y Y Y Y Y

NRF1 ENCFF450JCL Y Y Y Y Y N

NRF1 ENCFF836FKF Y Y Y Y Y N

NUFIP1 ENCFF517GZV Y Y Y Y Y N

PCBP1 ENCFF632GIY Y Y Y Y Y N

PCBP2 ENCFF970WJK Y Y Y Y Y N

PHB2 ENCFF505XYY Y Y Y Y Y N

PHF20 ENCFF128DRH Y Y Y Y Y N

PHF21A ENCFF894CCA Y Y Y Y Y N

PKNOX1 ENCFF853VOT Y Y Y Y Y Y

PML ENCFF070CZW Y Y Y Y Y N

POLR2A ENCFF231OJM Y Y Y Y Y N

POLR2A ENCFF275TFD Y Y Y Y Y N

POLR2A ENCFF278KVO Y Y Y Y Y N

POLR2A ENCFF286HZT Y Y Y Y Y N

POLR2A ENCFF772UWM Y Y Y Y Y N

POLR2A ENCFF845UBO Y Y Y Y Y N
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POLR2A ENCFF998LIN Y Y Y Y Y N

POLR2B ENCFF810SHF Y Y Y Y Y N

POU5F1 ENCFF577BMW Y Y Y Y Y Y

PRDM10 ENCFF548RXT Y Y Y Y Y Y

RB1 ENCFF400NKF Y Y Y Y Y N

RBM22 ENCFF301USB Y Y Y Y Y N

RCOR1 ENCFF796XFQ Y Y Y Y Y Y

REST ENCFF120MVT Y Y Y Y Y Y

REST ENCFF603SNP Y Y Y Y Y Y

RFX1 ENCFF611GXL Y Y Y Y Y Y

RFX1 ENCFF934JXG Y Y Y Y Y Y

RFX5 ENCFF581CEN Y Y Y Y Y Y

RLF ENCFF569QYK Y Y Y Y Y Y

RNF2 ENCFF321RTR Y Y Y Y Y N

RNF2 ENCFF513CNT Y Y Y Y Y N

RNF2 ENCFF697DZC Y Y Y Y Y N

RNF2 ENCFF885TLC Y Y Y Y Y N

RUNX1 ENCFF168KBY Y Y Y Y Y Y

RUNX1 ENCFF259VDF Y Y Y Y Y Y

SAFB ENCFF189QCJ Y Y Y Y Y N

SETDB1 ENCFF865APC Y Y Y Y Y N

SIN3A ENCFF210HYN Y Y Y Y Y N

SIN3A ENCFF435GRA Y Y Y Y Y N

SIN3B ENCFF004IKJ Y Y Y Y Y N

SIX5 ENCFF615QOD Y Y Y Y Y Y

SKIL ENCFF048GFY Y Y Y Y Y N

SMAD1 ENCFF388JWW Y Y Y Y Y N

SMAD5 ENCFF410JJC Y Y Y Y Y N

SMARCA4 ENCFF171AYO Y Y Y Y Y N
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SMARCA4 ENCFF251WLL Y Y Y Y Y N

SMARCA4 ENCFF670PUR Y Y Y Y Y N

SMARCA5 ENCFF989TYW Y Y Y Y Y Y

SMARCB1 ENCFF056FNQ Y Y Y Y Y N

SMARCC2 ENCFF287WLC Y Y Y Y Y Y

SMARCE1 ENCFF811SJN Y Y Y Y Y N

SMC3 ENCFF483CZB Y Y Y Y Y N

SP1 ENCFF321TMN Y Y Y Y Y Y

SPI1 ENCFF387FGQ Y Y Y Y Y Y

SREBF1 ENCFF318KNL Y Y Y Y Y Y

STAT1 ENCFF270FXG Y Y Y Y Y Y

STAT1 ENCFF595BKT Y Y Y Y Y Y

STAT1 ENCFF964OWK Y Y Y Y Y Y

STAT2 ENCFF273MGI Y Y Y Y Y Y

STAT5A ENCFF126MOY Y Y Y Y Y Y

SUZ12 ENCFF019XTP Y Y Y Y Y N

SUZ12 ENCFF319JHV Y Y Y Y Y N

TAF1 ENCFF052NLP Y Y Y Y Y N

TAL1 ENCFF519DOC Y Y Y Y Y Y

TAL1 ENCFF661CJD Y Y Y Y Y Y

TARDBP ENCFF059VEO Y Y Y Y Y N

TARDBP ENCFF063ILV Y Y Y Y Y N

TARDBP ENCFF235UZG Y Y Y Y Y N

TBP ENCFF159SBO Y Y Y Y Y N

TCF12 ENCFF139SRI Y Y Y Y Y N

TCF12 ENCFF766PSK Y Y Y Y Y N

TCF7 ENCFF850HGO Y Y Y Y Y N

TCF7L2 ENCFF205MMX Y Y Y Y Y N

TEAD4 ENCFF857RDC Y Y Y Y Y Y
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THAP1 ENCFF981YOM Y Y Y Y Y Y

THRA ENCFF752OUI Y Y Y Y Y N

TRIM24 ENCFF608XIU Y Y Y Y Y N

TRIM24 ENCFF647EPQ Y Y Y Y Y N

TRIM28 ENCFF016PZU Y Y Y Y Y N

TRIM28 ENCFF600QVD Y Y Y Y Y N

TRIM28 ENCFF906BNB Y Y Y Y Y N

U2AF1 ENCFF342ZVG Y Y Y Y Y N

UBTF ENCFF005KSQ Y Y Y Y Y N

UBTF ENCFF613NZO Y Y Y Y Y N

YBX3 ENCFF300XAN Y Y Y Y Y N

YY1 ENCFF049NZU Y Y Y Y Y Y

YY1 ENCFF100JMN Y Y Y Y Y Y

YY1 ENCFF291MOZ Y Y Y Y Y Y

ZBED1 ENCFF373FBG Y Y Y Y Y Y

ZBTB2 ENCFF593XRH Y Y Y Y Y Y

ZBTB33 ENCFF681IOP Y Y Y Y Y Y

ZBTB40 ENCFF593VVO Y Y Y Y Y Y

ZBTB5 ENCFF414CUZ Y Y Y Y Y Y

ZBTB5 ENCFF654HDK Y Y Y Y Y Y

ZBTB7A ENCFF345YFV Y Y Y Y Y Y

ZBTB8A ENCFF383KZY Y Y Y Y Y N

ZC3H11A ENCFF804JPD Y Y Y Y Y N

ZEB2 ENCFF132ZXL Y Y Y Y Y Y

ZEB2 ENCFF568FLE Y Y Y Y Y Y

ZFP36 ENCFF262ZUB Y Y Y Y Y N

ZFP91 ENCFF277XFF Y Y Y Y Y Y

ZHX1 ENCFF908BDF Y Y Y Y Y Y

ZKSCAN1 ENCFF090QJO Y Y Y Y Y Y
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ZMYM3 ENCFF988WAF Y Y Y Y Y N

ZNF143 ENCFF480IMY Y Y Y Y Y Y

ZNF184 ENCFF077KPD Y Y Y Y Y Y

ZNF184 ENCFF951UWN Y Y Y Y Y Y

ZNF24 ENCFF015AWN Y Y Y Y Y Y

ZNF24 ENCFF016XTQ Y Y Y Y Y Y

ZNF24 ENCFF933ZIS Y Y Y Y Y Y

ZNF274 ENCFF521HBG Y Y Y Y Y Y

ZNF280A ENCFF346SGM Y Y Y Y Y Y

ZNF282 ENCFF188ZMQ Y Y Y Y Y Y

ZNF316 ENCFF663HVK Y Y Y Y Y Y

ZNF318 ENCFF737LSF Y Y Y Y Y N

ZNF384 ENCFF641YZX Y Y Y Y Y Y

ZNF407 ENCFF478DQU Y Y Y Y Y Y

ZNF407 ENCFF571OOG Y Y Y Y Y Y

ZNF592 ENCFF575STA Y Y Y Y Y Y

ZNF639 ENCFF360FDG Y Y Y Y Y Y

ZNF639 ENCFF774SSI Y Y Y Y Y Y

ZNF830 ENCFF413PJP Y Y Y Y Y N

ZSCAN29 ENCFF496FNH Y Y Y Y Y Y

ZSCAN29 ENCFF609XKW Y Y Y Y Y Y

ZZZ3 ENCFF056MQX Y Y Y Y Y N
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B. Supplemental Figures
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Figure
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Figure B.2: The performance of the StruM is inversely related to the distance be-
tween the top StruM matches and the nearest binding site identified by FIMO using
the PWM.
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Figure B.3: Distribution of top scoring StruM positions relative to PWM matches
identified by FIMO. (top) Example of good correlation, small average distance with
a single peak. (bottom) Example of good correlation, at a consistent small flanking
distance..
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D. Other Collaborative Projects

In addition to the work described in this document, I was actively engaged in open

and collaborative science. This took the form of supporting colleagues in the anal-

ysis of their data, supervising computational projects, and providing both technical

and domain specific expertise. A number of these projects are summarized below.

Published Collaborations

Natural variation in stochastic photoreceptor specification and color

preference in Drosophila.

Anderson, C., Reiss, I., Zhou, C., Cho, A., Siddiqi, H., Mormann, B.,

Avelis, C.M., DeFord, P., Bergland, A., Roberts, E., Taylor, J., Vasili-

auskas, D., Johnston, R.J. (2017) Elife, doi: 10.7554/eLife.29593.

The Johnston lab investigates themechanisms determining how cells make fate de-

cisions, particularly through their study of the stochastic expression of theDrosophila

melanogaster transcription factor, Spineless (Ss). Caitlin Andersen identified a

genetic variant affecting the ratio of SsON to SsOFF cells, due to altering the affin-

ity for the transcription factor Klumpfuss (Klu). To provide quantitative insight on

the impact of the variant on Klu binding, we analyzed high throughput SELEX-seq

(Systematic evolution of ligands by exponential enrichment) to determine relative

enrichments of sequence either with or without the variant of interest. The variant,

known as sin was demonstrated to increase the affinity of the site for Klu binding.
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The insulator protein BEAF-32 is required for Hippo pathway activity in the

terminal differentiation of neuronal subtypes.

Jukam, D., Viets, K., Anderson, C., Zhou, C., DeFord, P., Yan, J.,

Cao, J., Johnston, R.J. (2016)Development, doi: 10.1242/dev.134700.

In an analysis of the role of BEAF-32 in regulating Hippo signaling in determining

R8 photoreceptor neuron fates, ChIP data was employed to show direct interac-

tions between BEAF-32 and a subset of genes in the R8 regulatory network. We

analyzed ChIP-chip and ChIP-seq data to identify both putative direct ChIP peaks

(enrichment > 2.5 fold) and putative indirect ChIP peaks (enrichment < 2.5 fold).

The peaks were found to be specific to genes related to Hippo signaling.

A cloud-based learning environment for comparing RNA-seq aligners.

Baskin, E., DeFord, P.M., Dennis, A., Misner, I., Tan, F.J., Busby, B.

(2016) F1000R, doi: 10.12688/f1000research.8684.1.

As part of a 2015 hackathon hosted by the National Center for Biotechnology Infor-

mation, our team investigated educational environments for teaching novices about

the process of RNA-sequencing, in particular the alignment step. To facilitate this,

we developed a tutorial guiding users through RNA-seq alignment, and provided

tools for comparing the output from different aligners. This provides users the tools

and background they need to make educated decisions about which tools to use

for their particular project, and encourages them to think deeply about each step of

their analysis.
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Unpublished Data

Sisterless A activity in Drosophila melanogaster

Collaboration with Raghav Goyal, Mark Van Doren.

Sisterless A (sisA) is a transcription factor being studied by the Van Doren lab,

due to its role in activating the sex-specific promoter of the sex lethal (Sxl) gene in

somatic tissues. We analyzed novel ChIP-seq data for sisA binding to describe the

first motif identified for sisA as well as the genes sisA targets in different contexts.

Analysis of 21U-RNA regulation by GEI-11 in C. elegans via ChIP-exo

Collaboration with Rebecca Tay, Charlotte Choi, John Kim.

GEI-11 has been implicated in the regulation of piRNAs in C. elegans. To hone in

on its role, particularly via the use of alternate promoters, a ChIP-exo experiment

was run to increase the resolution of the identified peaks, given the small size of

targets. The results of the analysis suggested refinements to the experimental

design to increase the power to detect these interactions.

Investigating the role of DNA methylation in social insects.

Supervision of student project by Sage Corzine and Claudia Perez.

Some insects are highly social while others are notably individualized. The level of

cooperativity also depends somewhat on each individuals role (picture the queen

vs. the workers). DNA methylation data for queens and workers in Apis melif-

era and Solenopsis invicta were compared to identify patterns corresponding with

social behavior.

117



E. Curriculum Vitae

Peter M. DeFord

Johns Hopkins University

3400 N Charles St

Baltimore, MD 21218

RESEARCH INTERESTS

Mechanisms regulating gene expression. Qualities and characteristics of cis-regulatory

elements. Transcription factor binding. Applying statistical models to high-throughput

next generation sequencing datasets.

EDUCATION

Johns Hopkins University Baltimore, Maryland

Ph.D. Biology 2021

Program in Cell, Molecular, Developmental Biology and Biophysics

Boise State University Boise, Idaho

B.S. Biology, Cell and Molecular Biology emphasis, Chemistry minor 2014

Honors Scholar, Cum Laude

118



AWARDS AND HONORS

Victor Corces Teaching Award (Cell Biology, Spring) 2016

Department of Biology, Johns Hopkins University

Owen Scholars Fellowship 2014–2017

Department of Biology, Johns Hopkins University

Student Research Initiative Fellow 2014

Boise State University

Idaho INBRE Fellow 2013

Idaho IDeA Network of Biomedical Research Excellence

RESEARCH EXPERIENCE AND TRAINING

Graduate Research Advisor: James Taylor 2015-2020

Johns Hopkins University Baltimore, Maryland
• Developed statistical models to describe transcription factor motifs with DNA

shape.

• Used machine learning to model and predict features of transcriptional regu-

lation.

• Analyzed mechanisms of protein-DNA interactions through feature reduction

of statistical models.

Undergraduate Honors Research Advisor: Allan R. Albig 2012–2014

Boise State University Boise, Idaho
• Investigated initiation events of angiogenesis.

• Investigated integrin and Notch signaling pathway interactions through lu-

ciferase reporters in an over expression cell culture model.

• Cloned proteins of interest into a strong promoter context to investigate ex-

tracellular matrix molecule mediated control of angiogenesis.

119



• Analyzed the relative strengths of pro- and anti-angiogenic signals contribut-

ing to the angiogenic switch by cell migration assays through purified matrix

proteins.

TEACHING EXPERIENCE

Johns Hopkins University Baltimore, Maryland
• Certificate of Completion, Teaching Academy 2019

• Guest Lecturer, Introduction to Scientific Computing in BME 2018

using Python, Matlab, and R

• Teaching Assistant, Undergraduate Cell Biology Lab 2016

• Teaching Assistant, Undergraduate Biochemistry Lab 2015

• Teaching Assistant, Graduate Quantitative Biology Bootcamp 2015–2019

• Teaching Assistant, Graduate Quantitative Biology Lab 2015–2019

Cold Spring Harbor Laboratory Cold Spring Harbor, New York
• Teaching Assistant, Computational Genomics 2016–2019

Boise State University Boise, Idaho
• Teaching Assistant, Applied Statistics with Computers 2012–2014

PUBLICATIONS

• DeFord, P.M., & Taylor, J. (2019) DNA shape complements sequence-based

representations of transcription factor binding sites. bioRxiv [Preprint], doi:

10.1101/666735

• Anderson, C., Reiss, I., Zhou, C., Cho, A., Siddiqi, H., Mormann, B., Avelis,

C.M., DeFord, P., Bergland, A., Roberts, E., Taylor, J., Vasiliauskas, D.,

Johnston, R.J. (2017) Natural variation in stochastic photoreceptor specifi-

cation and color preference in Drosophila. Elife, doi: 10.7554/eLife.29593.

• Jukam, D., Viets, K., Anderson, C., Zhou, C., DeFord, P., Yan, J., Cao, J.,

Johnston, R.J. (2016) The insulator protein BEAF-32 is required for Hippo

120



pathway activity in the terminal differentiation of neuronal subtypes. Devel-

opment, doi: 10.1242/dev.134700.

• DeFord, P.M., Brown, K., Richards, R.L., King, A., Newburn, K., Westover, K.,

Albig, A.R. (2016) MAGP2 controls Notch via interactions with RGD binding

integrins: Identification of a novel ECM-integrin-Notch signaling axis. Exp.

Cell Res.,

doi: 10.1016/j.yexcr.2016.01.011.

• Baskin, E., DeFord, P.M., Dennis, A., Misner, I., Tan, F.J., Busby, B. (2016) A

cloud-based learning environment for comparing RNA-seq aligners. F1000R,

doi: 10.12688/f1000research.8684.1.

PRESENTATIONS

• DeFord, P.M., Taylor, J. StruMs—A flexible and information-rich representa-

tion of DNA motifs. Invited talk at the 2016 Biological Data Sciences Meeting,

Cold Spring Harbor Laboratory, NY.

• DeFord, P.M. Invited talk at the Waksman Student Scholars event, Johns

Hopkins University. Invited by Dr. Forrest Spencer. May 22, 2016.

• DeFord, P.M., Albig, A.Characterization of basement membrane induced en-

dothelial cell quiescence in the presence of growth factors. Poster presented

at the 2014 Boise State University Undergraduate Research and Scholarship

Conference, Boise, ID.

• DeFord, P.M., Westover, K., Albig, A. The Influence of Integrin Binding RGD

domains on Notch Signaling and Angiogenesis. Poster presented at the 2014

National Conference on Undergraduate Research, Lexington, KY.

121


	Abstract
	Dedication
	Preface
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Discovery and Description of Sequence-Specific Transcriptional Regulators
	Common Structures of DNA binding domains
	Helix-Turn-Helix Proteins
	Leucine Zipper Proteins
	Helix-Loop-Helix Proteins
	Homeodomain Proteins
	β Sheet DNA Recognition Proteins
	Zinc Finger Proteins

	Early Representations of Regulator Specificity
	Role of DNA Shape in Motif Recognition
	Significance of Transcriptional Regulators
	Modern Approaches to TFBS Prediction
	Summary of Goals

	Structural Motifs – StruMs
	Theoretical formulation
	Normality of HMBOX1 shape preferences
	Independence of positions

	DNA shape complements  sequence-based representations of transcription factor binding sites
	Introduction
	Materials and Methods
	Structural Motifs
	Data
	ChIP peak classification
	Proximity of PWMs and StruMs
	Program Versions

	Results
	Overview of the StruM model
	StruMs specifically model TF binding sites
	StruMs encode motifs differently than sequence-based methods
	Shape and sequence are complementary
	Towards distinguishing between direct- and indirect-readout mechanisms

	Discussion
	Availability
	Funding

	Intrafamilial Discrimination
	Replicate experiments yield the most similar motifs
	Structural Motifs are less similar within transcription factor families than position weight matrices.
	Future applications

	Areas Needing Further  Development
	Cell Type-specific Predictions of Binding Sites
	DNase signatures
	Modulated StruMs
	Methods.
	Results
	Discussion


	Discussion
	Supplementary Methods
	Training Structural Motifs
	Expectation Maximization training of StruMs
	E-step
	M-step

	Filtering Position-Specific Features
	Dataset accessions

	Supplemental Figures
	References
	Other Collaborative Projects
	Curriculum Vitae

