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Abstract 

 

Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor 

in adults, hallmarked by inter and intratumoral heterogeneity. Current treatment incorporates 

several biomarkers at the genomic and epigenomic levels. However, the efficacy of prognosis 

based on single biopsy was often undermined by the heterogeneous nature of GBM. Studies have 

highlighted the need for multi-sector biopsies to minimize the effect of intratumoral heterogeneity 

in clinical decision-making. In this project, we investigated mutations of geographically different 

regions of 20 primary glioblastoma specimens from seven patients for the selected regions of 13 

genes using a novel targeted deep sequencing technology, Duplex Sequencing (DS). We have 

focused on subclonal (ultralow- and low-frequency) mutations that are not detectable by 

conventional next generation sequencing (NGS) methodologies but are accurately detectable by 

DS.  Our findings indicate the heterogeneity of known GBM biomarkers, TERT promoter C228T 

mutation and IDH1 nonsynonymous mutations (R132H, R132G) in codon 132, in different regions 

of the GBM. Intratumoral heterogeneity of subclonal mutations are mainly found in EGFR, TERT, 

MSH6, PIK3CA, and PIK3R1 genes in most patients (six out of seven). Our results reveal that the 

similarity in mutation sequence context was not significantly higher in closely located specimens 

compared with distally located specimens. These findings could provide information on clinically 

relevant mutations that are unique to different regions of the tumors, and help guide future studies 

that seek to develop multi-sector biopsies for GBM prognosis. 
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Introduction 

 

Glioblastoma multiforme (GBM) is the most common and deadly form of brain tumors, with 

a median survival time of 14.6 months. The standard treatment of GBM involves maximal surgical 

resection followed by radiotherapy (RT) and chemotherapy temozolomide (TMZ) (1–3). The 

treatment of GBM is complicated by the intratumoral molecular and cellular heterogeneity, 

resulting in different cell populations reacting to therapy differently. Previous studies have 

demonstrated the heterogeneity of EGFR and PDGFRA amplification (4) and the mutational 

heterogeneity within different regions of primary GBM (5,6). However, previous studies have 

focused on the mutational heterogeneity at the clonal (high-frequency mutations) level rather than 

at the subclonal (low- and ultralow-frequency mutations) level. Subclonal mutations might account 

for the genetic heterogeneity of tumors that contributes to therapy resistance and tumor 

recurrence. However, subclonal mutations are not accurately detectable using conventional next 

generation sequencing (NGS) methods due to the high error rates (10-2 to 10-3). Mutations with 

allele frequency below NGS’s error frequency are confounded by the false positive variants. 

Duplex Sequencing (DS), a novel deep sequencing technology, improves the sequencing 

accuracy by sequencing both strands of DNA. DS only counts the mutations if the mutations are 

detected as complementary substitutions in both strands of the same DNA molecules (7–10). 

While the conventional sequencing technologies only investigate a single DNA strand, DS 

produce >10,000 fold more accurate results compared with other currently available high-

throughput sequencing methods. The lowest error rate (<5x10-8) among high-throughput DNA 

sequencing methodologies by DS ensures accurate detection of the subclonal mutations and 

clonal mutations. 
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This study presents evidence of intratumoral heterogeneity based on DS data for 20 

primary GBM specimens from seven patients. Each primary GBM was sectioned into different 

geographical regions, and two to four specimens were obtained from each patient. 

 

 

Materials and methods 

 

Glioblastoma (GBM) specimens. Twenty GBM biopsy specimens from seven patients were 

obtained in collaboration with Nameeta Shah, PhD,  Ralph Puchalski, PhD, and Charles S Cobbs, 

MD at the Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish 

Neuroscience Institute (Seattle, WA, USA). All specimens were primary GBMs which were not 

treated with GBM treatments. The study was approved by Western IRB (#20062252, #20091429, 

#20091563). The research was conducted under the guidance of the ethical principles as 

described in the report of the National Commission for the Protection of Human Subjects of 

Biomedical and Behavioral Research entitled "Ethical Principles and Guidelines for the Protection 

of Human Subjects of Research (Belmont Report)". All Patients' written consents were obtained 

for their respective study from Swedish Neuroscience Institute (Seattle, WA) in accordance with 

institutional guidelines. 

Each patient's tumor was sectioned into different regions, and two to four sections, each 

approximately 1 cm3, were obtained from each patient (Fig. S1). The specimen pairs were 

classified into adjacent or distally located based on the distance between the centers of 

specimens. Specimen pair was classified as closely located if the distance between the centers 

of specimens was less than 2 cm, and classified as distally located otherwise. The distance was 

measured using Fiji software (11). 
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DNA extraction, adapter Synthesis, and DNA library preparation. DNA was isolated using 

DNeasy kit (Qiagen Inc., Germantown, MD), based on a manufacturer’s protocol with 

modifications. The DNA library preparation for Duplex Sequencing (DS) was carried out by the 

previously described protocol (10,12) with modifications. DNA library preparation for DS was 

designed to target selected regions of 13 genes, including CDKN2A, CHEK2, EGFR, H3F3A, 

IDH1, MGMT, MSH6, PIK3CA, PIK3R1, PTEN, RB1, TERT, and TP53, covering 41,515 bases 

(41483 bases after excluding the overlapping regions). DNA library for DS was sequenced for 

paired-end sequencing on an Illumina HiSeq 2500 (Illumina Inc., San Diego, CA, USA). These 

experiments and reviewing and planning of procedures were carried out by Eun Hyun Ahn, PhD, 

Kaitlyn J. Loubet-Senear, Kate Bayliss, MD, PhD, Joon Yup (Jason) Kim, and Seung Hyuk Lee. 

 

Duplex sequencing data processing and analysis. Duplex consensus sequencing (DCS) data 

processing was carried out by Howard Nebeck, MS as described previously (12,13) with some 

modifications. Consensus sequencing-making script was used to merge sequencing data for both 

strands of DNA. GATK 3.7 was used to align the merged DCS files to the human reference 

genome GRCh37 (hg19). All reads with mapping quality scores below 40 or with 5% or more 

unreadable bases were filtered out. The leading seven bases at the 5' end and three bases at the 

3' end of each read were removed to avoid potential artificial variants commonly present at the 

ends of each read. Variant-calling from BAM files was performed using SAMtools software with a 

base quality score of 13. Genome positions with duplex consensus sequencing (DCS) depth 

below 100 were filtered out. When comparing among specimens from the same patient, genome 

positions with DCS depth less than 100 in any of the specimens from the same patient were 

filtered out.  

Subclonal mutation frequency was calculated by dividing the total number of DCS variant 

reads by the total number of DCS sequenced reads across the sequenced genome regions. In all 

other analyses (fraction of mutation types, mutation context spectra, and comparison of mutation 
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positions), the number of unique mutations in each sample was used. This number was calculated 

by counting distinct variants at each genome position only once, regardless of the number of 

occurrences of that variant at that position. If different mutations (i.e. difference nucleotide change) 

occurred at the same genome position, the mutations were considered as different unique 

mutations. Mutations were classified into two classes based on the clonality, which was calculated 

by dividing the number of variants at a genome position by the total number of DCS reads at that 

position. The mutations were classified into subclonal (less than or equal to 10% clonality), and 

clonal (greater than 10% clonality) mutations. 

 

Mutation annotation and blood variant filtering. Point mutations were annotated using the 

Annotate Variation (ANNOVAR) software version 2017 June 01 (annovar.openbioinformatics.org). 

Categories of annotations include protein codon change, point mutation type, presence of 

mutations in population databases including the 1000 Genome Project (14), NHLBI-ESP 6500 

exomes (15), Exome Aggregation Consortium (16). Mutations present in these blood databases 

were filtered out. In specific, mutations that were present in 1000g or ESP6500, or mutations with 

greater than 5 occurrences in the ExAC database were excluded. Sujin Kwon and Seung Hyuk 

Lee contributed to the mutation annotation and filtering out mutations reported in the population 

blood databases. 

Based on the functional annotation from ANNOVAR, the mutations were divided into 16 

different categories (UTR5, UTR3, Upstream, Unknown, Synonymous-splicing, Synonymous, 

Splicing, Nonsynonymous-splicing, Nonsynonymous, Nonsense-splicing, Nonsense, ncRNA-

splicing, ncRNA, Intronic, Intergenic, and Downstream). The number and fraction (%) of each 

mutational annotation category within each of the specimens were determined. 

 Using OpenCRAVAT (17), the mutations found privately in only one specimen within the 

same patient were annotated with predicted scores from CHASMplus-GBM (18), CADD Exome 

(19), and predicted drugs interaction scores from DGIdb (20). Mutations with pathogenicity scores 
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with p value less than 0.01 by CHASMplus-GBM, or mutations with CADD-Exome Phred scores 

greater than 10, were kept for analysis. Mutations with drug interaction scores greater than four 

were kept for analysis.  

 

Cosine similarity and SigProfiler decomposition. For mutation sequence context spectra 

(MCS) analysis, the single base substitutions (SBSs) were divided into 96 classes based on the 

six base changes (C>A, C>G, C>T, T>A, T>C, T>G) and two bases surrounding the mutated 

base, as described previously (13). The cosine similarity measures the similarity between two 

MCS datasets with a score ranging from 0 (completely dissimilar) to 1 (identical). Cosine 

similarities between the MCS of different specimens were calculated.  

 SigProfiler, a nonnegative matrix factorization method (21), was used to determine the 

contributions of each COSMIC signature to each cancer sample. Using SigProfiler, the MCS of 

our subclonal mutations was reconstructed from combinations of COSMIC v3.1 SBS mutational 

signatures, and the reconstructed MCS with the highest cosine similarity score to the original MCS 

was outputted.  

 

Statistical Analysis. Differences in mutation frequencies, in the fraction (%) of mutation types, 

and in the telomerase reverse transcriptase (TERT) promoter mutation clonalities (%) between 

two GBM specimens were analyzed by performing 2-sample equality of proportions with continuity 

correction (also called Chi-Square test) using an R program (version 3.4.4). The Mann-Whitney 

U-test (Wilcoxon Rank-Sum test) was applied to compare the cosine similarity scores between 

the two groups. Differences between the two groups were considered significant if the p value 

was less than 0.05. 
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Results 

  

The majority of mutations exist at the subclonal (low-frequency) level. The number of unique 

mutations from each tumor sample was determined using Duplex Sequencing by counting the 

same nucleotide change at the same genome position only once. The majority of the mutations 

detected in the GBM specimens using DS were subclonal mutations. The average fractions of 

subclonal mutations out of the total mutations at all clonalities (0-100%) in all specimens are 

approximately 76.3%. Within 13 out of 20 specimens, >70% of the total mutations are subclonal 

mutations. Within 5 out of 20 specimens, >90% of the total mutations are subclonal mutations 

(Table. S1).  

 

Intratumoral mutational heterogeneity is mainly observed at the subclonal level. Within 

each patient, the number of mutations exclusive to each specimen, as well as the number of 

mutations shared between specimens, was determined by comparing the mutation positions (Fig. 

S3). Most of the mutations shared among all specimens from the same patient were present as 

clonal (high-frequency, >10% to 100% clonality) mutations. The number of mutations exclusive 

to each specimen was mostly unaffected and the proportion of subclonal unique mutations 

exclusive to one specimen ranged between 86.8% and 96.9%, with a median of 93.8% (Fig. 3). 

Thus, most of the clonal mutations were shared between specimens within the same patient, and 

the subclonal mutations made up the majority of exclusive mutations. These results indicate that 

mutational heterogeneity is observed at the subclonal level in geographically different specimens 

within the same patient. 

 

The majority of mutational heterogeneity is found in missense and synonymous mutations. 

Point mutations (single base substitutions) we identified were annotated into eight different 
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categories using ANNOVAR. Missense and synonymous mutations made up the majority of 

mutations private to each specimen within the same patient. Combined together, missense and 

synonymous mutations made up 65.5% to 77.6% (average 72.1%) of the exclusive mutations in 

each patient (Fig. 4). Differences in the fractions of the mutation types were observed for most 

patients. For example, the section A from patient W4 had a higher ratio of missense mutations 

and a lower ratio of synonymous mutations than the other two specimens from the same patient 

(specimen B, F). The section A from patient W50 had a lower ratio of missense mutations and a 

higher ratio of synonymous mutations than the other specimens from the same patient (specimen 

B, I). For patient W33, sample F had a higher ratio of synonymous mutation than sample L. These 

results suggest that it is worthwhile to study not only the missense mutations but also the 

synonymous mutations that do not directly alter the amino acid sequence.  

  

Most of the private mutations present in only one specimen within the same patient are 

found in EGFR, TERT, MSH6. The numbers of subclonal mutations exclusive to each specimen 

within the same patient for each of the selected 13 genes were determined using DS. The EGFR 

gene harbored the most exclusive mutations, followed by TERT, MSH6, PIK3CA, and PIK3R1 

(Fig. 5). While other genes had up to 58 exclusive mutations in one specimen, the EGFR gene 

had up to 502 exclusive mutations in one specimen. Section C from patient W3, section H from 

patient W22, section E from patient W48, and section C from patient W53 had much higher 

numbers of exclusive mutations compared to other specimens from the same patient. Looking 

further into these exclusive mutations gave us insight into the heterogeneity within the patient.  

 

Heterogeneity of subclonal mutations in TERT promoter region and IDH1 gene were 

observed. TERT promoter (TERTp) mutations C>T at Chromosome 5 position 1295228 (C228T) 

and at position 1295250 (C250T) were often reported in GBM patients and were related to shorter 

survival periods (22). In our GBM specimens, TERTp mutation C228T was found in every 
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specimen in six out of seven patients. However, C250T mutation was not found in any specimen. 

For patients W3, W4, and W22, the mutational clonality (%) of C228T was significantly different 

between any pairs of two specimens within the same patient (Table. 3, p<10-5 by Chi-squared 

test). The significant difference in TERTp mutation clonality suggests that the generation of 

TERTp mutation during early tumorigenesis was distributed unevenly in different subclones of 

GBM cells.  

IDH1 mutation in codon 132 is often present in GBM patients and is used to stratify GBM 

patient diagnosis (23). In our study, the G>A mutation at Chromosome 2 position 209113112, 

R132H, was found in only section C of the patient W3, while R132G was found in all three 

specimens of the patient W50 (Table. 1). Our results are aligned with a previous study which 

reported that TERTp mutations (C228T, C250T) and IDH1 mutations are inversely correlated (22).  

 

Heterogeneity of subclonal mutations are regional-specific. After filtering out the population 

blood mutations present in 1000 genome, ESP6500, and ExAC databases, 165 subclonal 

mutations remained as exclusive mutations to each specimen within the same patient in all 20 

specimens from seven patients. We queried these subclonal exclusive (private) mutations against 

previously reported driver mutations in GBM (24–33). The five published mutations were found in 

more than one specimen within the same patient, while 15 published mutations were exclusive to 

only one specimen within the same patient. Nine out of the 15 subclonal exclusive mutations were 

reported in GBM patients by the ClinVar database, and eight out of the nine subclonal mutations 

were reported to be pathogenic or likely-pathogenic (34). Out of the six subclonal mutations not 

previously reported in GBM by ClinVar, four had unknown effects, and two had pathogenic or 

likely-pathogenic effects in other diseases, suggesting that they were likely to contribute to GBM 

tumorigenesis.  

 Using OpenCRAVAT, the subclonal exclusive mutations were annotated with predicted 

pathogenicity scores (CHASMplus-GBM, CADD) and drug-interaction scores (DGIdb). 
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CHASMplus score ranges between 0 and 1, with higher scores reflecting a greater likelihood for 

a mutation to be driver. Combined Annotation Dependent Depletion (CADD) quantifies the 

deleteriousness of variants by integrating multiple databases. The Phred-scaled scores reflect the 

ranking of the CADD scores among ~8.6 billion single nucleotide variations (SNVs) from the hg19 

reference, with the top 10% equivalent to CADD-Phred of 10, top 1% equivalent to CADD-Phred 

of 20. We found 22 subclonal mutations with significant CHASMplus-GBM scores (p < 0.01), and 

69 mutations with CADD Phred scores greater than 10. The result shows that there is a high 

number of potentially deleterious mutations that are region-specific in glioblastomas. The 

exclusive subclonal mutations might be potential druggable targets. Using DGIdb, the drug 

interaction database, we found that 31 mutations could be targeted by Tertomotide (drug 

interaction score 9.88), five mutations druggable by Durvalumab (interaction score 9.47), five 

mutations druggable by O6-[3-(Aminomethyl)Benzyl]Guanine (interaction score 6.82), and 8 

mutations druggable by Milciclib (PHA-848125AC, interaction score 5.16). 

 

Intratumor mutation sequence context (MCS) heterogeneity is manifested as low scores of 

cosine similarity. The unique mutations determined using DS were divided into 96 classes to 

generate mutation sequence context spectra (MCS) for each of the 20 specimens (Fig. S5). 

Cosine similarity scores between the MCS of each pair of specimens were calculated. The score 

measures the similarity between mutational profiles of samples, and ranges from 0 (not similar) 

to 1 (identical). For a specific patient, we here defined the comparison between any two 

specimens from the same patient as ‘within a patient’, while the comparison between specimens 

from a patient and specimens from other patients as ‘across patients’. The ‘within a patient’ 

comparison results demonstrate that tumor specimens located closely to each other do not show 

significantly higher similarities in their MCS (Fig. 6). For example, within patient W22, the highest 

similarity score was found between sections F and H. However, these two specimens were not 

located closely within the tumor. The ‘within a patient’ cosine similarity scores indicate only 
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moderate levels of similarity between specimens within the same patient. Furthermore, no 

statistically significant difference is observed between ‘within a patient’ cosine similarity scores 

and ‘across patients’ similarity scores (p>0.05, Mann-Whitney U test) for six out of seven patients 

(Fig. 6B). The ‘within a patient’ comparisons have significantly higher cosine similarity scores than 

‘across patient’ comparisons for patient W3 (p=0.044, Mann-Whitney U test), and when all 

patients’ MCS are pooled together (Fig. 6C). However, this difference seen in the pooled data of 

all patients is not significant when the patient W3 is excluded (Fig. 6D). Taken together, the results 

indicate that GBM specimens do not necessarily carry significantly higher mutation sequence 

context similarity with other specimens from the same patient than with specimens from different 

patients.  

We also compared our subclonal mutation sequence context with the Catalogue of 

Somatic Mutations in Cancer (COSMIC) SBS signatures. SigProfiler (21) was used to decompose 

the mutational context spectra data into the COSMIC SBS signatures (Fig. 7). The results support 

our findings from cosine similarity analysis (Fig. 6). Sections F and H from patient W22 have a 

high cosine similarity score, and the decompositions of these two specimens’ MCS have similar 

types and proportions of the SBS signatures. For pairs of specimens that have low cosine 

similarity scores, the decomposed signatures depict differences in the SBS signatures with 

proposed etiology. For example, signature 10b associated with polymerase epsilon exonuclease 

domain mutations, is related to only section A from patient W4, sections F and H from patient 

W22, section A from patient W48, and section L from patient W33. Signature 14 associated with 

defect DNA mismatch repair (MMR), was only related to section F from patient W33. Signature 

18 associated with possible reactive oxygen species damage, was only related to section L from 

patient W33, and section A from patient W53. Signature 29 associated with tobacco chewing, is 

only related to section F from patient W4, only sections F and H from patient W22, section E from 

patient W48, and section C from patient W53.  
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Discussion 

 

In this study, we demonstrate that the majority of intratumor mutational heterogeneity is 

observed at subclonal levels. A previous whole exome sequencing study by Mahlokozera et al. 

(4) reported that 46% of the mutations were exclusive to only one section from the same primary 

GBM. In comparison, by using Duplex Sequencing, we here found that 86.8% to 96.9% of the 

subclonal mutations were are in only one specimen within the same patient. Among these 

subclonal (ultralow and low-frequency) mutations, we found more evidence of known GBM 

genetic markers as well as novel mutations that could potentially serve as druggable targets. 

Using DS with higher sensitivity and accuracy, we have found high numbers of mutations 

exclusive to only one specimen within the same patient. The exclusive mutations were mainly 

observed in the EGFR gene, with 6 specimens having more than 60 exclusive subclonal 

mutations (W22-A/F/H; W48-E; W53-A/C). A previous study showed that EGFR was among the 

most frequently mutated genes, resulting in the expression of diverse transcripts (35). The similar 

trend is observed in our study. Our results further confirm that EGFR is the most frequently 

mutated gene among the 13 genes we examined. Other frequently mutated genes in our results 

include MSH6, PIK3CA, PIK3R1, and TERT.  

Certain specimens are more highly mutated than other specimens from the same patient. 

For example, three specimens (W3-C, W22-H, and W48-E) carry higher number of subclonal 

unique mutations compared with the other specimens (W3-B/E, W22-A/E/F, and W48-A/G) from 

the same patients. The three specimens have greater numbers of mutations by > 4-fold compared 

with the specimen with the lowest number of mutations from the same patient. This difference is 

not confounded by differences of sequencing depth because the ratio of average DCS sequencing 

depth to the lowest depth within the same patient was not proportionally higher for the three 

specimens (W3-C, W22-H, and W48-E) (Fig S4). This result suggests that each of the three 
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patients exhibits a putative hypermutation phenotype in the 13 genes in one region of the GBM. 

Our finding is consistent with an observation by Mahlokozera et al. (4), which reported that the 

majority of mutational load in hypermutated GBM was region-specific.  

We demonstrated the heterogeneity of well-known mutations of the promoter regions of 

TERT and isocitrate dehydrogenase 1 (IDH1) genes in glioblastoma. IDH1 mutations were 

reported in ~90% of GBM and known as a marker of better prognosis (36). In our study, we report 

the regional heterogeneity of IDH1 mutation: IDH1 mutation R132H is found in only section C 

from patient W3 while a less common allelic change, R132G, is found in all three sections from 

patient W50. TERT promoter mutations C228T and C250T were reported to be prognostic 

biomarkers for poorer survival (22). We have found the C228T mutation with varying degrees of 

clonalities in different specimens from the same patient (Table. 3). This finding suggests that the 

regional heterogeneity of the well-known mutations of TERTp and IDH1 genes could confound 

the molecular diagnosis based on a single biopsy.  

Our subclonal mutation context spectra analysis indicate that the primary GBM samples 

were dissimilar to samples from the same patient. In only one patient (W22), cosine similarity 

scores are significantly higher in ‘within a patient’ than ‘across patients’. The MCS between 

specimens that are spatially located closely is not significantly more similar than specimens that 

are distally located within the same tumor. Our results suggest that multiple biopsies do not need 

to occur at distal regions of the tumor sample to detect mutational heterogeneity. Decomposing 

the MCS into the COSMIC SBS signatures also supports that different tumor regions could be 

associated with different DNA damage, repair, or replication mechanisms. Our results suggest 

that a single biopsy is not sufficient for a clinical decision-making based on selected oncogenetic 

targets.  

The current study did not examine the heterogeneity of copy number variation (CNV) 

within the primary GBM. Common CNV present within GBM includes EGFR amplification and 

alpha-type platelet-derived growth factor receptor (PDGFRA) amplification, with EGFR 
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amplification present in ~40% of primary GBM (37) and PDGFRA amplification present in about 

15% of tumors (38). Future experiments with proper control samples such as blood from the 

matching patients will help explore the heterogeneity of CNV in primary GBM in support of the 

findings by previous groups (39). 

 

 

Conclusion 

 

We present evidence of intratumor mutational heterogeneity in primary glioblastomas. Our 

results demonstrate that the majority of mutational heterogeneity occurs at the subclonal (ultralow 

and low frequency) levels. Investigating these low-frequency mutations using targeted deep 

sequencing methods provides insight into the clonal evolution of GBM, and elucidates the 

mechanisms of treatment resistance based on oncogenetic targets. Our results suggest that the 

subclonal mutation context differences between different regions of the same tumor do not 

correlate with the spatial distance between the specimens within the same patient. 
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Appendices – Figures and Tables 
 
 
Table 1. Clinical features of glioblastoma patients.  The status of TERT promoter mutations C>T 
at Chromosome 5 position 1295228 (C228T) and T>C at position 1295394 (T349C) and IDH1 
G>A at Chromosome 2 position 209113112 (R132H) and G>C at position 209113112 (R132G) 
nonsynonymous mutations was examined using Duplex Sequencing. 
  

Patient Gender Age at 
diagnosis 

(yr) 
Surv 
days 

RT+ 
TMZ(1)

 
Other 

Chemo 
Therapies 

Tissue 
section 

TERT 
promoter 
mutations 

IDH1 
mutations 

W3 F 66 980 Y Y 
B C228T - C C228T R132H E C228T - 

W4 F 51 541 Y N 
A C228T,T349C - B C228T,T349C - F C228T,T349C - 

W22 F 53 2038 Y N 
A C228T,T349C - E C228T,T349C - F C228T,T349C - H C228T,T349C - 

W48 M 52 455 Y N 
A C228T,T349C - E C228T,T349C - G C228T,T349C - 

W50 M 27 1327 Y N 
A - R132G B - R132G I - R132G 

W33 M 61 2464 Y N F C228T,T349C - L C228T,T349C - 
W53 M 55 Alive(a) 

(>2050) Y Y A C228T,T349C - C C228T,T349C - 
(1) Treatment given after the first surgery (2) Last confirmed January 27, 2020 
Abbreviations used are: RT, radiotherapy; TMZ, temozolomide; -, mutation is not 
present in the respective category 
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Figure S1. Tissue sections of primary glioblastomas from seven patients examined in the current 
study are highlighted with blue boxes. 
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Table. S1: The number of total and subclonal mutations and fraction (%) of subclonal mutations 
in glioblastomas were identified using Duplex Sequencing. 
  

Patient  Tissue 
section 

No. of 
subclonal 

muts (0-10% 
clonality) 

No. of total 
muts (0-100% 

clonality) 
Fraction (%) 

of 
subclonal 

muts 
W3 

B 78 104 75.0 
C 379 405 93.6 
E 88 114 77.2 

W4 
A 91 114 79.8 
B 33 57 57.9 
F 36 57 63.2 

W22 
A 179 196 91.3 
E 59 86 68.6 
F 142 170 83.5 
H 484 512 94.5 

W48 
A 48 68 70.6 
E 752 772 97.4 
G 48 68 70.6 

W50 
A 38 65 58.5 
B 43 69 62.3 
I 56 84 66.7 

W33 F 51 85 60.0 
L 92 126 73.0 

W53 A 188 215 87.4 
C 491 519 94.6 

Average   168.8 194.3 76.3 
 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

 
Figure S2. Number of unique mutations at any clonalities (0-100%) shared between specimens 
or exclusive to each specimen within the same patient for 20 GBM specimens from seven patients 
were determined using DS. 
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Figure 1. Numbers of subclonal unique mutations shared between specimens or exclusive to 
each specimen within the same patient for 20 GBM specimens from seven patients were 
determined using Duplex Sequencing. 
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Figure 2. Subclonal unique mutations in different mutation annotation categories exclusive to 
each specimen within the same patient were determined using Duplex Sequencing. Numbers (A) 
and fractions (%) (B) of the subclonal mutations in each mutation annotation category for all 13 
genes of  each GBM specimen.   
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Figure S3. Subclonal unique mutations in different mutation annotation categories in 
glioblastomas were determined using Duplex Sequencing. Numbers (A), average DCS depths 
(B), ratios of the number of subclonal mutations in each mutation annotation category to the lowest 
number of total subclonal mutations of a specimen within the same patient (C) and ratios of the 
average DCS depths for each specimen to the lowest depth within the same patient (D). 
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Figure 3. Number of subclonal unique mutations exclusive to each specimen within the same 
patient for each of the selected regions of 13 genes were determined using Duplex Sequencing 
for 20 GBM specimens from seven patients 
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Table 2. Differences of the clonalities of TERT promoter mutation C>T at Chromosome 5 position 
1295228 (C228T) between specimens within the same patient were examined (*p < 0.05, **< 
5x10-4, ***< 5x10-10 by the Chi-Square test). 
 

Patient Tissue 
section 

comparison 
within a 
patient 

p  value Significance 

W3 
B vs C 6.06*10-10 ** 
B vs E 5.03*10-20 *** 
C vs E 1.14*10-2 * 

W4 
A vs B 3.71*10-39 *** 
A vs F 2.98*10-4 ** 
B vs F 8.51*10-29 *** 

W22 

A vs E 1.55*10-22 *** 
A vs F 5.92*10-3 * 
A vs H 4.78*10-9 ** 
E vs F 2.73*10-5 ** 
E vs H 2.17*10-4 ** 
F vs H 1.56*10-1 ns  

W48 
A vs E 1.80*10-2 * 
A vs G 1.34*10-1  ns 
E vs G 3.61*10-1  ns 

W33 F vs L 1.93*10-1  ns 
W53 A vs C 8.65*10-1  ns 
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 Figure S4. Fractions (%

) of the subclonal m
utation sequence context spectra (M

C
S) w

ere 
determ

ined using D
uplex Sequencing for 20 G

BM
 specim

ens from
 seven patients. Trinucleotide 

contexts are m
utated bases surrounded by all possible com

binations to its flanking 5’ and 3’ bases. 
To keep the graph concise, these point m

utation trinucleotides are com
plem

ented as necessary 
to alw

ays depict the reference base as the pyrim
idine of its pair. 
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Figure 4. The sequence context spectra of subclonal mutations between specimens were 
compared within a patient and across patients using Cosine similarity. (A) Cosine similarity scores 
between each pair of specimens within the same patient. The specimens located closely to each 
other are highlighted in blue. (B-D) Average (Avg) cosine similarity scores ‘within a patient’ reflect 
comparisons between each pair of specimens within the same patient (gray bars). Avg cosine 
similarity scores ‘across patients’ indicate comparisons between a pair of specimens from two 
different patients (black bars). Avg cosine similarity scores for within a patient and across patients 
from all the seven patients (C) or from six patients except a patient W3 (D). *p < 0.05 by the Mann-
Whitney U test. 
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Figure 5. Fraction (%) of COSMIC v3.1 signatures. The sequence context spectra of subclonal 
unique mutations were decomposed to compare with the single base substitution (SBS) 
signatures of the COSMIC v3.1. Fractions (%) of major SBS signatures identified by SigProfiler 
for 20 GBM specimens of seven patients are displayed. 
 
 
 
 
 
 


