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Abstract

Speech is composed of basic speech sounds called phonemes, and these sub-

word units are the foundation of most speech recognition systems. While detailed

acoustic models of phones (and phone sequences) are common, most recognizers model

words themselves as a simple concatenation of phonemes and do not closely model the

temporal relationships between phonemes within words. Human speech production is

constrained by the movement of speech articulators, and there is abundant evidence

to indicate that human speech recognition is inextricably linked to the temporal pat-

terns of speech sounds. Structures such as the hidden Markov model (HMM) have

proved extremely useful and effective because they offer a convenient framework for

combining acoustic modeling of phones with powerful probabilistic language models.

However, this convenience masks deficiencies in temporal modeling. Additionally, ro-

bust recognition requires complex automatic speech recognition (ASR) systems and

entails non-trivial computational costs.

As an alternative, we extend previous work on the point process model

(PPM) for keyword spotting, an approach to speech recognition expressly based on
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ABSTRACT

whole-word modeling of the temporal relations of phonetic events. In our research,

we have investigated and advanced a number of major components of this system.

First, we have considered alternate methods of determining phonetic events from

phone posteriorgrams. We have introduced several parametric approaches to model-

ing intra-word phonetic timing distributions which allow us to cope with data sparsity

issues. We have substantially improved algorithms used to compute keyword detec-

tions, capitalizing on the sparse nature of the phonetic input which permits the system

to be scaled to large data sets. We have considered enhanced CART-based model-

ing of phonetic timing distributions based on related text-to-speech synthesis work.

Lastly, we have developed a point process based spoken term detection system and

applied it to the conversational telephone speech task of the 2006 NIST Spoken Term

Detection evaluation. We demonstrate the PPM system to be competitive with state-

of-the-art phonetic search systems while requiring significantly fewer computational

resources.
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Chapter 1

Introduction

1.1 Introduction

All of the research presented in this work follows a central theme of addressing

the technological challenges necessary to extend the point process model for keyword search

from a prototype research system into a viable word recognition technology. In this chapter

we outline the theoretical motivations for the point process model approach and contrast it

with existing technologies. Much of the inspiration for this model is drawn from research

in human speech perception and the evolving understanding of the importance of temporal

aspects of the speech signal. We review several related works. Finally, the chapter concludes

with an overview of the contributions of this dissertation that are presented in subsequent

chapters.

1



CHAPTER 1. INTRODUCTION

1.2 Conventional speech recognition technology

Since its introduction in the 1970s, the hidden Markov model (HMM) has been

firmly established as the principle architecture upon which all large vocabulary continuous

speech recognition (LVCSR) systems are based, so it is worthwhile to briefly reflect on its

emergence. Originally presented by both Jelinek [1] and Baker [2], the HMM provides a

statistical framework with which to combine multiple sources of knowledge, namely acoustic-

phonetic, lexical, and syntactic, for the recognition of a speech signal. Jelinek, already a

renowned information theorist, had previously done pioneering work developing efficient

decoding algorithms for convolutional codes [3]. In the context of digital communications,

the fundamental problem is given a message corrupted by noise, find the most likely sequence

of symbols that was produced by the sender given the structure imposed by the encoder.

A convolutional code is essentially a finite state machine, its output is truly Markov, and

hence the optimal decoder is a maximum-likelihood sequence estimator such as provided by

the Viterbi algorithm [4]. The fundamental achievement of Jelinek was to cast the speech

recognition problem in this “noisy channel” framework.

To adapt speech recognition to the mathematical structure of an HMM, the acous-

tic speech signal is first converted into feature vectors, typically computed every 10 millisec-

onds. The two dominant feature vector representations, Mel-frequency cepstral coefficients

(MFCCs) [5] and perceptual linear predictive (PLP) [6], both provide a spectral representa-

tion of the speech signal informed by knowledge of the human auditory system. While the

acoustic signal and corresponding sequence of feature vectors are observed variables, the

unseen or “hidden” portion of the model is the set of phonetic states. The acoustic model

2



CHAPTER 1. INTRODUCTION

of each phone permits the calculation of the likelihood of a particular feature vector having

been produced by a given phone. Using a lexicon to map words to their corresponding pho-

netic sequences enables the estimation of the acoustic likelihood of a given word. In order

to determine the sequence of words, the acoustic likelihoods of words are combined with

prior probabilities of word sequences provided by a separate language model. Thus, the

speech decoding problem is one of finding the sequence of words which maximizes posterior

likelihood.

A series of research projects sponsored by the U.S. Department of Defense’s Ad-

vanced Research Projects Agency in the mid-1980s helped propel HMM-based approaches

into the mainstream through regular competitions and the development of several speech

databases [7]. In the years since, substantial growth in the amount of training data has

enabled increasingly sophisticated acoustic and language models. As well, the diminishing

cost of storage and memory and the exponential growth in processing power have allowed

extremely computationally intensive algorithms to become practical. However, significant

improvements in the last decade have tapered and the gap in performance between au-

tomated systems and human listeners persists. A widely cited study by Lippmann [8]

quantified the difference in performance between humans and then state-of-the-art recog-

nizers on several domains and noise conditions. The gulf in performance expanded with

the complexity of the task. Relatively simple tasks consisted of isolated digit recognition

(0.72% error for machine vs. 0.009% error for humans) and isolated spoken letters (5%

error for machine vs. 1.6% error for humans). Domains of increasing difficulty consisted of

read text from the Wall Street Journal (7.2% error for machine vs. 0.9% error for humans)
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and ultimately spontaneous conversational speech as found in the Switchboard corpus (43%

error for machine vs. 4% error for humans). In the time since the original publication

of [8], automatic recognition has made considerable advances and current state-of-the-art

word error rate on Switchboard corpus has come down to approximately 16% [9]. While

the previous performance numbers reflect clean speech, machine recognition, in contrast to

human performance, degrades precipitously with relatively small additions of noise.

Another aspect of HMM-based recognition highlights the crucial role of the lan-

guage model. In [8], a comparison was presented using the Resource Management dataset

in which the regular language model was replaced by a “null grammar” (i.e., all words are

assigned equal probability), and it was observed that word error rate jumped from 3.6% to

17%. Comparable experiments with human recognition of nonsense sentences yielded an

average word error rate of 2.0%, nearly an order of magnitude lower. Human and machine

listeners take advantage of context, but automatic recognition systems are substantially

more dependent on predictable grammar for correct recognition. This partly explains the

apparent difficulty that machine recognition exhibits on spontaneous conversational speech

relative to read text. Clearly, the human listener is significantly more adept at recognizing

words solely based on low-level acoustic-phonetic information.

Without question, the key factor in the improvement of automatic speech recog-

nition systems stems from the vast growth in available training data over the previous

two decades [10]. It has been estimated that two to three orders of magnitude more data

currently exist as compared to the mid-1990s [11]. As with most data-driven approaches,

decreasing word error rates reliably follow from increases in the available training material.
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However, high-quality labeled training corpora such as those published by the Linguistic

Data Consortium represent multimillion dollar investments. Since reliable labeled training

data is expensive, much effort has been expended to bootstrap acoustic models using cheap

and abundant unlabeled data (see [12, 13]). However, even when large amounts of training

data is available, in order to benefit it is necessary to increase model complexity which re-

quires more processing time to estimate a larger number of model parameters. This increase

in the parameter space is best illustrated by the proliferation of deep neural nets in acoustic

modeling [14]. Even with dramatic growth in data, it is unlikely that existing speech models

will ever be able to close the gap between human and machine performance. An analysis

in [15] observed that the reduction in word error rate is linear with the logarithm of the

total quantity of training material, and by extrapolating results from [13], it predicted that

in excess of 600,000 hours of acoustic training data would be required to achieve word error

rates approaching 0% on a broadcast news recognition task. In contrast, it was observed

that by age 10, a human has heard roughly 10,000 hours of speech.

The HMM architecture has been tremendously successful principally because it

provides a means of combing two sources of information: high-level semantic knowledge

from the language model and low-level acoustic phonetic evidence from the speech signal.

While a convenient structure for merging these two vital sources of information, Jelinek

points out that,“These models will have no more than a mathematical reality. No claims

whatever can conceivably be made about their relation to humans’ actual speech production

or recognition.” [16]. Although the HMM framework has been incredibly productive, the

difficulty in closing the gap with human speech recognition should motivate us to look to
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evidence from human speech perception for inspiration.

1.3 Event-based speech recognition

A number of proposals for alternative approaches to speech recognition have arisen

from the field of phonetics, the study of speech production, acoustics and perception. Hu-

man speech is the product of a small number articulators positioned in a discrete number of

possible configurations. The set of speech sounds known as phones are sufficient to specify

words in a language and are naturally organized by articulator configuration in terms of

place, manner and voicing. However, broad phonemic categories mask tremendous vari-

ability in the acoustic realization of these sounds by different speakers in various contexts.

In the study of phonology, binary-valued “features” corresponding to articulator properties

were introduced by Jakobson [17] and enable the characterization of phonetic variation by

general rules.

A notable alternative approach to HMM-based recognition constructed from lin-

guistic features is found in the framework for lexical access based on acoustic landmarks

presented by Stevens [18]. In this model, the analog acoustic input drives parallel streams of

detectors which identify “acoustic landmarks” described as distinct acoustic features such

as “peaks, valleys, and discontinuities in particular frequency ranges” that mark “centers or

regions in the signal where acoustic parameters are examined.” Landmarks initially iden-

tify higher-level features termed “articulator-free” features (e.g., [sonorant], [continuant],

[strident]) which are subsequently used to resolve specific “articulator-bound” features in

the vicinity of landmarks. Stevens proposed specific feature modules to integrate acoustic
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cues and landmark times with phonetic and prosodic context in order to estimate feature

values (+ or −). This approach is distinguished from the segmentation of the acoustic sig-

nal into phones as performed in HMM models; here, the landmarks are first identified then

used to determine segments which form sequences of segmental units. However, multiple

segmental units run in parallel rather than existing as a single partition of the signal. The

ultimate goal of this system was to handle acoustic variability in the production of speech

by seeking to identify the underlying articulatory states and movements, a significantly

more constrained space than the time-frequency plane. He proposed a model in which the

listener’s lexicon consists of bundles of distinct binary-valued features and recognition is

accomplished by the listener matching patterns to items in the lexicon.

The landmark framework is fundamentally different from the HMM-based recog-

nizer paradigm. First, Stevens defines a “knowledge-based” approach that extracts acoustic

correlates of linguistic features, in contrast to a statistically-based system which learns re-

lations from speech feature vectors with limited supervision. Secondly, while the HMM

operates on a single stream of feature vectors, landmarks are derived from many different

cues in the original acoustic signal which can be viewed as parallel streams. Advocates

of a landmark-based approach would argue that speaker independence naturally proceeds

from defining acoustic parameters in relative terms [19]. In contrast, HMM-based recog-

nizers rely on feature design, feature transformations, and parameter adaptation to achieve

speaker independence. Finally, the two approaches differ fundamentally in how the speech

signal is analyzed: HMM systems proceed frame-by-frame, typically in 10ms steps, apply-

ing identical effort to each frame. A landmark-based approach proceeds in an asynchronous
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manner and performs analysis in regions local to acoustic events.

There does not exist a complete ASR system which fully realizes the landmark-

based framework outlined in [18], but portions have been implemented in several works.

In [19], a landmark-based approach is presented to recognize semivowels by first locating

sonorant regions and then relevant acoustic events (energy dip, F2 dip, F2 peak, F3 dip,

F3 peak). Classification proceeds by extracting acoustic properties at acoustic events and

applying explicit rules using a fuzzy logic framework to identify semivowels. A further

iteration of this approach is found in the event-based system presented in [20] where 13

acoustic parameters, correlates of phonetic manner features, are combined using a bank of

five support vector machines (SVM) to produce to a broad-class segmentation of the speech

input. In a later version described in [21,22], the authors combine knowledge-based acous-

tic parameters using a probabilistic phonetic feature hierarchy. The MIT SUMMIT speech

recognition system [23, 24] is perhaps the closest embodiment of a landmark-based recog-

nition system envisioned in [18]. The SUMMIT system described in [24] identifies phone

boundaries using landmarks and employs a phone-based dictionary to recognize words. An

attempt to construct landmark-based acoustic models for ASR using articulatory features

is found in [25]. In this work, SVM-based detectors were trained to identify distinctive

features and landmarks which were then combined to produce word scores for the task of

HMM lattice rescoring.

Another unique approach to keyword search based on the temporal relations be-

tween phonemes is found in [26, 27]. Both systems begin with a phone posteriorgram rep-

resentation, the posterior probability distribution across the phone set estimated for each
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frame (10 ms) of speech. In [26], a phone posterior trajectory, the posterior probability

of a single phone as a function of time, is smoothed using a phone-specific matched filter,

and the local maxima of smoothed trajectories are extracted to create “phoneme-spaced”

posteriors. Words are then detected by finding segments in which the intervals between suc-

cessive phonemes of a keyword fall within minimum and maximum durations. Additionally,

the entire duration of the detected segment corresponding to a keyword must meet mini-

mum and maximum limits on word duration. For each keyword, in this case spoken digits,

phoneme interval and word duration limits are estimated from keyword examples. In [27],

an entirely different approach to identifying keywords is employed based upon the idea of a

matched filter for temporal trajectories of word posteriors. For each keyword, a two-output

MLP is trained using long spans (1010 ms) of 29-phone posterior vectors (2929-dimensional

input), and the word posterior output is subsequently convolved with a keyword matched

filter. The peaks of the filtered trajectories are marked as detections. While the underlying

method of pattern matching is entirely different from the point process model considered

in the present work, there are striking similarities in terms of resolving phones to discreet

points in time and in matching the temporal structure of whole words.

The first work to combine acoustic landmark-based recognition with a point pro-

cess statistical modeling approach is seen in [28]. Drawing inspiration from related work

in the neuroscience community, the paper evaluated a family of point process approaches

including a hidden Markov model of the point process representation, explicit time-mark

model, and several variants of Poisson process models. The preceding approaches were

applied to an obstruent phone recognition task, and the inhomogeneous unmarked Poisson
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process model was observed to outperform the other approaches. Additionally, it offered

improved robustness as detector reliability decreased and operated on a very sparse repre-

sentation. These results motivated the subsequent development of the point process model

for keyword spotting introduced in [29].

1.4 Insights from human speech perception

While the landmark-based approaches previously introduced define a framework

for recognition stemming from human speech production, the persistent gap in performance

between human and machine recognition suggests that we should look to human speech

perception as a source of inspiration. Indeed, some portions of the ASR pipeline have

long benefited by incorporating knowledge of human auditory processes. The dominant

acoustic feature vector representations, Mel-frequecy cepstral coefficients (MFCC) [30] and

perceptual linear prediction (PLP) coefficients [6], both employ a warping of the frequency

spectrum based upon evidence of critical bandwidths in human hearing. PLP features

employ several additional transforms derived from knowledge of human speech perception.

In addition to warping the frequency axis according to the Bark scale which approximates

the shape of auditory filters [5], pre-emphasis consistent with a simulated equal-loudness

curve is applied to account for nonuniform sensitivity of hearing [31], and finally, cubic-root

amplitude compression is used to approximate the power law of hearing, the non-linear

relation between intensity and perceived loudness [32].

While these are examples of low-level attributes of human auditory perception,

other high-level cues known to be extremely relevant to perception are not reflected in cur-
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rent systems. Abundant evidence highlights the critical role of temporal relations in human

speech perception and language acquisition. Given the short duration of analysis windows

commonly used in computing speech feature vectors, spectral information obviously plays

a dominant role. However, it is not clear spectral information is equally critical for human

perception. Experiments conducted in [33] tested the effect of replacing frequency infor-

mation in speech with band-limited white noise while retaining the amplitude envelope of

several frequency bands. Despite a severely degraded signal devoid of frequency information

which might evidence formant structure and voicing, temporal cues alone proved sufficient

to permit 90% word recognition accuracy. It is well known that the human listener can

tolerate significant distortions such as peak clipping [34] and band-reject filtering to remove

mid-frequency speech energy [35] and still retain high recognition accuracies. While human

speech perception is robust to extensive alteration of spectral data, the most severe degra-

dation in speech intelligibility occurs from corruption of temporal information contained in

modulation spectrum between 2 to 10 Hz [36]. The low frequency modulations, commen-

surate with the rate of change of the vocal track, reflect the syllabic and phonetic temporal

structure of speech [37].

Interestingly, there is abundant evidence stressing the importance of temporal

information in the acquisition of language. Children with otherwise normal IQ and no

hearing impairment who demonstrate selective language impairment commonly exhibit a

basic temporal processing impairment [38]. These children are unable to perform basic two-

tone sequencing and serial memory tasks when stimulus is presented in rapid succession (tens

of milliseconds). It is widely believed that these children’s failure to develop a phonological
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inventory stems from their inability to properly segment speech which follows from a failure

of temporal processing. In related work, it has been found that dyslexic children exhibit

difficultly in the the detection of amplitude modulations at rates of 2-10 Hz, and this poor

rhythm detection leads to impaired syllabic and prosodic perception [39].

Despite the evidence indicating the importance of the temporal aspects of hu-

man speech perception, it is well known that HMMs do a poor job of modeling segmental

duration. The actual distribution of phoneme duration is well approximated by the two-

parameter gamma distribution [40,41]. However, the Markov assumption in standard HMM

configurations naturally gives rise to state occupancy duration which follows a geometric

distribution [42]. Examples of augmenting the HMM structure to faithfully reflect phone

duration can be found in hidden semi-Markov models [42], the explicit duration HMM [43],

the continuously variable duration HMM [40], and the expanded state HMM [44]. While

these extensions of the basic HMM structure more accurately model state duration dis-

tributions, the improvement comes at the price of increasing the number of parameters

and additional topological complexity and thus far has yielded only small improvements in

speech recognition accuracies.

1.5 Point process modeling of speech

Given strong evidence suggesting a central role for the temporal structure of

sound in human speech perception, the focus of the research presented in this work will

be extending the development of the point process model (PPM) for keyword search, a

recently proposed whole-word modeling approach originally presented in [29]. As studies
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have demonstrated the importance of temporal information in speech intelligibility and lan-

guage acquisition, the PPM system expressly seeks to model the relative timing of phonetic

events within words. This model arises from the same motivation as Stevens’ landmark

framework [18], namely that speech is the product of the highly-coupled movement of ar-

ticulators and is robustly encoded by characteristic patterns of landmarks in time. While

clearly an event-based approach, the structure of the point process model diverges funda-

mentally from other event-based recognition implementations in [19,21,24]. The probabilis-

tic framework underlying the PPM approach is a Poisson counting process in which words

are distinguished by inhomogeneous Poisson rate parameters that give rise to the character-

istic pattern of phonetic events within the word. In addition to its probabilistic structure,

the PPM approach also differs in its definition of events. Landmarks in Stevens’ system

corresponded to low-level, distinctive acoustic changes, whereas the point process model

envisions higher-level perceptual events, specifically the occurrence of phonemes. The use

of phonetic events results in an extremely sparse representation which has clear advantages

for a speech recognition system in offering the potential for extremely fast processing. The

development of the point process model will be reviewed in detail in Chapter 2.

1.6 Contributions and thesis organization

The original presentation of the point process model for keyword search in [29]

detailed the theoretical development of this novel approach to keyword search and demon-

strated its feasibility in experiments on the TIMIT and BURadio news corpus. These simple

experiments yielded encouraging results but also highlighted a limitation common to most
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whole-word approaches, namely the requirement for large numbers of word examples to

build accurate models. Additionally, despite being based on an extremely sparse represen-

tation, the direct implementation of the detection function did not take advantage of this

fact and proceeded in a slower, frame-by-frame manner. The objective of the research efforts

contained in this dissertation was to develop the point process model into a competitive

keyword search technology and to evaluate it relative to conventional phonetic approaches

on a standard benchmark evaluation. The specific contributions in support of this goal are

enumerated below.

1.6.1 Optimizing phonetic event selection

Central to point process framework is the concept of discrete phonetic events. In

the original work [29], phonetic events were defined as the local maxima of the posterior

trajectory above a threshold of δ = 0.5 (a posterior trajectory refers to the posterior proba-

bility of a phone as function of time). In this work we address the fundamental question of

how best to define phonetic events and how to describe a minimal set of events. We demon-

strate the sufficiency of a representation in which each instance of a phone is described by

a single phonetic event. We accomplish this through the use of phonetic matched filters,

develop a metric for evaluating event selection threshold δ, and evaluate PPM keyword

search performance using these filtered events (Chapter 3).

1.6.2 Bayesian approaches to whole-word acoustic modeling

Data sparsity is a common problem in systems that estimate whole-word models

from data. To investigate alternatives to the original word models based on maximum likeli-
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hood parameter estimates, we consider several alternative parametric modeling approaches.

Inspired by the finding that phonetic events are well described by the Gaussian distribution,

we develop a Bayesian approach to whole-word modeling which exploits prior knowledge of a

word’s phonetic form to overcome the limitation of insufficient training examples. Addition-

ally, the model compensates for common phone confusions and pronunciation variation. We

demonstrate significant gains in keyword search performance when word training examples

are limited (Chapter 4).

1.6.3 Improving whole-word models without word examples

The MAP estimated whole-word models introduced in Chapter 4 achieved sig-

nificantly better estimates of inhomogeneous rate parameters despite the use of a rather

simplistic prior model. In this chapter we explore gains possible from using more sophisti-

cated models of phone duration. Drawing upon previous work in text-to-speech synthesis,

we develop a procedure for estimating phonetic timing distribution using CART analysis to

model context dependence in segmental duration and a Monte Carlo approach to estimating

phone-timing distributions (Chapter 5).

1.6.4 Speeding up PPM decoding

A recognition system based on a sparse set of discrete phonetic events should

provide a substantial computational advantage over those which operate on dense, frame-

by-frame representations. We reengineer the evaluation of the keyword detection function

to capitalize on its discrete nature. We evaluate approaches to efficiently approximating the

PPM detection function using an upper bound. By employing this bound, we reduce the
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complexity of decoding from being linear in the number of frames to linear in the number of

events. We demonstrate decoding speeds a factor of 50 times faster than previous decoding

methods (Chapter 6).

1.6.5 Spoken term detection on conversational telephone speech

Previous experimental keyword search evaluations have only considered read text

such as TIMIT and the Wall Street Journal corpora. Conversational telephone speech

presents an appreciably more challenging task because of its spontaneous nature and pro-

nunciation variation. In order to assess the PPM approach relative to known benchmarks,

we tested it on the 2006 NIST Spoken Term Detection (STD) evaluation. This assess-

ment required the development of several techniques including score normalization, han-

dling multi-term queries and the modeling of words not present in training. In addition to

achieving performance competitive with other phonetic keyword search systems, the PPM

index construction time and size were better than any keyword search system entered in

the NIST evaluation (Chapter 7).
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Chapter 2

The Point Process Model for

Keyword Search

Consistent with the importance of the temporal structure of the speech signal, the

point process model provides a probabilistic framework for word recognition based on temporal

patterns of discrete phonetic events. In this chapter we detail the original development of

the point process model which will be used throughout this work.

2.1 Background

As noted in Chapter 1, the first example of an event-based speech recognition

constructed on top of a point process representation appeared in [28]. In that work, the

superior performance of an obstruent phone recognition system based on an inhomogeneous

Poisson process modeling approach laid the groundwork for the point process model for

keyword search presented in [29]. The framework detailed in [29] is the starting point for
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Figure 2.1: System diagram of the point process model for keyword search.

the research in this dissertation, and in this chapter we review its development.

The general structure of the point process model for keyword search is depicted

in Figure 2.1. First, the acoustic speech signal input is converted into discrete phonetic

events. We assume the existence of a set of phone detectors gp for each phone p in the

phone set P whose output is converted to discrete points in time to evidence the occurrence

of a particular phone. The specific detector implementations and methods of generating

events will be addressed in Chapter 3. Candidate occurrences of a keyword are identified

from the detection function defined as the ratio of the likelihood of a set phonetic events

under a keyword model relative to its likelihood under a background model. Formally, given

a keyword w and a set of observed phonetic events O(t) beginning at time t, the detection

function dw(t) is given by

dw(t) = log

[
P (O(t)|θw)

P (O(t)|θbg)

]
, (2.1)

where θw corresponds to the keyword-specific model parameters and θbg corresponds to

background model parameters. This detection function is simply a log likelihood ratio

18



CHAPTER 2. THE POINT PROCESS MODEL FOR KEYWORD SEARCH

evaluated at time t which takes large values when it is likely that keyword w occurred. For

each phone p ∈ P, we define Np = {t1, . . . , tnp}, the set of points in time at which phone p

occurs relative to time t. The observation O(t) = {Np}p∈P is thus the collection of these

sets of points. Assuming for the moment a fixed keyword duration T , we will now specify

the form of the models which yield estimates of P (O(t)|T, θw) and P (O(t)|T, θbg).

2.2 Poisson process models

A Poisson counting process is a discrete random process in which the time between

arrivals of events are independent, identically distributed exponential random variables. If

η(t) is defined as the total count of events in the interval (0, t], then the probability of k

arrivals in the interval ta to tb is given by the Poisson probability mass function,

P{η(tb)− η(ta) = k} =
(λτ)k

k!
e−λτ , (2.2)

where τ = tb − ta. Because the exponential distribution is memoryless (i.e., the probability

of an arrival after time t is independent of the time elapsed from the previous arrival), it

follows that the Poisson counting process has independent increments, meaning that the set

of n random variables {η(t1), η(t2)− η(t1), . . . , η(tn)− η(tn−1)} are jointly independent for

all t1 < t2 < · · · < tn and for all n ≥ 1. Consequently, it can be readily shown that the

likelihood of the set of events Np in the interval (0, T ] is given by

P (Np) = (λp)
npe−λpT , (2.3)

where λp is the Poisson rate parameter corresponding to phone p and np = |{ti ∈ Np|ti ∈

(0, T ]}|. The constant or homogeneous rate parameter λp is not a function of time and
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corresponds to the average or background arrival rate of the phonetic events for phone p

independent of any particular word. Under the simplifying assumption that the Poisson

process for each phone p is independent of other phones, we can then express the likelihood

of the entire collection of events O(t) under the background model given T as

P (O(t)|T, θbg) =
∏
p∈P

(λp)
npe−λpT .

To calculate λp, if we have N example segments each of duration T and observe a total of

K events corresponding to phone p, then the maximum likelihood estimate of λp is given

by

λ∗p = argmax
λ

K log λ− λNT =
K

NT
. (2.4)

The background model θbg consists of the set of homogenous rate parameters {λp}p∈P .

Now we consider a Poisson model describing the generation of phonetic events

within a word. For the inhomogeneous Poisson process, the rate parameter λp(t) is not

constant but is instead a function of time. In the context of a word, λp(t) takes large

values within segments of the word at which phone p is likely to occur. While λp(t) is

assumed to be a continuous function of time, we will consider approximating it as a piecewise

constant function over D uniformly spaced divisions in (0, T ], with the inhomogeneous rate

parameters for phone p denoted λp,d for d = 1, . . . , D. We make a corresponding subdivision

in our collection of observations Np into D partitions specified as

Np,d ≡ {ti ∈ Np|ti ∈ ((d− 1)∆T, d∆T ], i = 1, · · · , np,d},

where ∆T = T/D. Just as in Equation (2.3), the likelihood of the event set Np,d for the

dth segment is given by

P (Np,d) = (λp,d)
np,de−λp,d∆T , (2.5)
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and applying the independent increments property, the likelihood of the event set Np under

the inhomogeneous model is

P (Np) =

D∏
d=1

P (Np,d) =

D∏
d=1

(λp,d)
np,de−λp,d∆T .

In a similar manner to Equation (2.4), the maximum likelihood estimates of λp,d can be

calculated

λ∗p,d =
Kp,d

N∆T
,

where Kp,d denotes to the total count of events corresponding to phone p in the dth segment

over N keyword examples. The set of inhomogeneous rate parameters {λp,d}p∈P,d=1,...,D is

referred to as the word model θw. An example word model for the keyword “greasy” is

depicted in Figure 2.2. Thus, the likelihood of the entire collection of points O(t) under the

word model can be expressed

P (O(t)|T, θw) =
∏
p∈P

D∏
d=1

(λp,d)
np,de−λp,d∆T . (2.6)

2.3 Point process model detection function

To this point we have assumed a fixed keyword duration T , so we will now describe

how keyword duration is incorporated into the model. Underlying our entire approach is

the assertion that words are distinguished by a characteristic pattern of phonetic events in

time. We now make a further simplifying assumption that this representative pattern is

independent of actual keyword duration. In other words, multiple observations of the same

keyword scaled to the interval (0, 1] will result in the same pattern and thus can be modeled

by the same set of inhomogeneous rate parameters. To incorporate this, we define a new
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set of points with respect to a normalized time scale as N ′p = {t′i|t′i = ti/T, ∀ti ∈ Np,d} with

O′(t) = {N ′p}p∈P . After a change of variables, the probability in Equation (2.6) with O′(t)

becomes

P (O′(t)|T, θw) =
∏
p∈P

D∏
d=1

(Tλp,d)
np,de−λp,d/D.

Our estimates of P (O′(t)|T, θw) and P (O(t)|T, θbg) are conditioned on the latent variable

T , therefore, we may compute the detection function in Equation (2.1) on an unknown

utterance by integrating over T in

dw(t) = log

[∫ ∞
0

P (O′(t)|T, θw)P (T |θw)

T |O(t)|P (O(t)|T, θbg)
dT

]
.

In practice this integral is approximated by a summation over a discrete set T of candidate

durations spaced at even intervals. We estimate P (T |θw) for each T ∈ T based upon

keyword examples from training. After finding the parameters for θw, θbg and P (T |θw), we

can calculate dw(t) given an observation O(t). A keyword detection occurs whenever dw(t)

exceeds threshold δw which may be determined from development data.

2.4 Keyword search performance metrics

Putative keyword detections are marked by a detection time and a detection score

(i.e., the magnitude of the detection function at the time of detection). The reliability of

detections varies directly with detection score. The keyword search performance metric

adopted throughout most of this work is average figure of merit (FOM), the mean detec-

tion rate given 1, 2, . . . , 10 false alarms per keyword per hour as the detection threshold is

varied [45]. FOM provides a summary of the performance at the higher precision portion

of the receiver operating characteristic curve.
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In more recent years, an alternative performance metric called term-weighted value

(TWV) has become the standard in the spoken term detection (STD) community. As

defined in [73], the term-weighted value at a detection threshold θ is given by

TWV(θ) = 1− average
term

{Pmiss(term, θ) + β PFA(term, θ)},

and represents the average over all query terms. The factor β is a penalty for false alarms,

and while the maximum possible TWV is 1.0, negative values of TWV are possible for high

false alarm rates. In the 2006 NIST STD evaluation, a value of β = 999.9 was specified. In

addition to providing a list of detections and associated detection scores, participants in that

STD evaluation were also required to specify a binary “YES/NO” decision corresponding

to a specific decision threshold θ. The TWV computed at this specific θ was defined as

the actual term-weighted value (ATWV), and this metric will be used in the evaluation

presented in Chapter 7.
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the TIMIT corpus. Segments correspond to inhomogeneous rate parameters for D = 20
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.
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Chapter 3

Optimizing Phonetic Event

Selection

In this chapter we develop and assess methods for defining the phonetic events,

the most basic element of our representation of the acoustic speech signal within the Pois-

son process modeling framework. Building from previous work, we evaluate phonetic events

derived by convolving phone posterior trajectories with phonetic matched filters and present

a mutual information based metric for optimizing event selection thresholds. Importantly,

we demonstrate that the representation of a phoneme using a single event yields improved

keyword search performance and a significantly sparser representation of speech. The tech-

niques presented in this chapter are used in all subsequent work.

25
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3.1 Phonetic events and the point process model

The event-based approaches reviewed in Chapter 1 diverge fundamentally from

common HMM systems in that speech is represented by an asynchronous collection of

distinct points in time rather than a continuous sequence of feature vectors. Most of the

event-based methods previously described had a common root in the Stevens’ landmark

framework detailed in [18]. In the context of Stevens’ work, events or landmarks are defined

as “peaks, valleys, and discontinuities in particular frequency ranges.” A common attribute

of the preceding systems is that feature streams correspond to traditional, linguistically-

based articulatory features which can serve as a basis set for identifying phonemes.

In the point process implementation presented in this work, we start with a pho-

netic representation of speech instead of low-level articulatory features. There are several

reasons for beginning at a phonetic, or more precisely, a phonemic representation. Princi-

ple among our motivations is the hypothesis that the structure of words is encoded in the

temporal sequence of phonemes. Another more practical reason to begin with a phonetic

representation is the abundance of labelled phonetic data necessary for the training of phone

detectors. In many of the previously presented event-based systems that utilize articulatory

features, the availability of corpora which include acoustic feature labeling was extremely

limited. Additionally, many corpora lacking explicit phonetic labels can nonetheless be used

via phonetic forced alignments derived from large vocabulary speech recognition systems.

Finally, a phonetic representation allows us to construct models for unseen words based

upon their dictionary (phonetic) form.
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3.2 Phone detectors

Defining phonetic events first requires some means of detecting the presence of

phonemes in a speech signal. In general, given the set of all phones P, one can construct

independent detector functions gp for each p ∈ P which take as input speech feature vectors

in RD and generate a real-valued output which takes large values when phone p is present.

Furthermore, detectors can be constrained to produce values in [0, 1] such that for a given

acoustic feature vector x ∈ RD, gp(x) = Pr(p|x). Thus, at each time t, the collection of gp(x)

for all p ∈ P represents posterior probability distributions across the phone set. The vector

time series of posterior distributions across the phone set as a function of time is commonly

referred to as a phone posteriorgram. Further, we refer to the posterior probability of a

single phone as a function of time as a posterior trajectory. Both are illustrated for a

sample sentence from the TIMIT corpus in Figure 3.1.

A posteriorgram is a general representation for any collection of mutually exclu-

sive detection functions which estimate posterior probability and is independent of a specific

machine learning implementation. In this chapter, we consider two forms of acoustic models

for estimating phone posterior probabilities typical of speech recognition systems. For the

first approach, phone detectors are based on Gaussian mixtures models (GMM), the stan-

dard acoustic modeling architecture common to the majority of speech recognition systems

since the advent of HMMs. The GMM acoustic models employed for the experiments in this

chapter use standard 39-dimensional MFCC features for each speech frame with 8 mixture

components (full covariance) to estimate Pr(x|p) for each frame where x ∈ R39 and p ∈ P.

From Pr(x|p) and the prior phone probabilities Pr(p) , the posterior probabilities P (p|x)
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Phone posteriorgram

Posterior trajectory for phone /z/

phone /z/

Figure 3.1: Phone posteriorgram for the TIMIT sentence “This was easy for us.” For the
plot of Pr(p|x) for each frame of the utterance, the darker shades depict higher probability.
A posterior trajectory illustrated for the phone /z/ is defined as the posterior probability
of a single phone as a function of time.

are computed using Bayes’ rule. Further details of this GMM implementation are found

in [29].

While GMM-based acoustic modeling has predominated for more than three decades,

in the last few years discriminative acoustic models in the form of multilayer perceptrons (or

neural networks) have surpassed GMMs and currently define state-of-the-art performance

in phonetic recognition [14]. As an alternative to GMM-based posterior data, we now briefly

describe a discriminative modeling approach to the estimation of phone posteriorgrams us-

ing multilayer perceptrons (MLP). In the simplest form, the MLP acts as a function which

maps x ∈ RD corresponding to a D-dimensional feature vector for one frame of speech to

a distribution of probabilities over the phone set P. In a 3-layer MLP, an input layer of
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D nodes is followed by a hidden layer whose dimensionality is much larger than the input

layer. The hidden layer nodes are connected to an output layer nodes where each node

corresponds to a phone class. Network weights are learned by choosing a cost function

relating input feature and output target values, and then determining the set of network

weights to minimize cost, typically by gradient descent with recursive back propagation of

error.

For multiclass classification, it has been shown that multilayer perceptrons can be

trained to provide good estimates of Bayesian a posteriori class probabilities [46]. To learn

such a mapping, we begin with a set of training examples consisting of acoustic feature

vectors for frames of speech and the corresponding phonetic class labels. Phone class labels

are encoded as “one-high” binary targets; the target value of the output node corresponding

to the true phone class is 1 and remaining nodes all take value 0. To ensure the output

node values correspond to a proper probability distribution (i.e., all output values lie in

[0, 1] and the sum of all output nodes is unity), we construct the network using the softmax

function for the output units [47]. The squared-error cost function is appropriate for many

tasks, however, with binary output targets the use of the cross-entropy cost function has the

theoretical justification of minimizing the Kullback-Liebler distance between the estimated

output distribution and the true target distribution.

In the previous description of a basic 3-layer perceptron, the dimension of the

input layer was D-dimensions, the same dimensionality as the feature vector corresponding

to a single frame of speech. The typical frame of speech is derived from 20-30 ms analysis

windows sampled every 10 ms. However, this period is significantly shorter than the physical
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movement of speech articulators, auditory perception phenomena and typical syllable length

which reside in timescales on the order of hundreds of milliseconds [37]. In many previous

MLP-based phone recognition experiments, it has been demonstrated that the inclusion

of feature vectors for the adjacent 5 frames (i.e., a 9-frame context window) results in

significant improvements in accuracy [48].

Another variation of the basic MLP structure that has also demonstrated improved

phone accuracy is the sparse multilayer perceptron (SMLP) [49]. The SMLP is composed

of a hierarchical structure consisting of two MLPs in tandem. The first MLP uses a 9-

frame context at the input layer, a 1000 node hidden layer, and a 3-state phone posterior

probability output layer. Instead of an output layer which consists of targets representing

just the individual phone classes, the output nodes correspond to a partition of the labels

into three sub-phone labels which differentiate the beginning, middle and end as separate

classes. For the first MLP the usual cross-entropy cost function includes an additional sparse

regularization term to enforce sparsity in the outputs of the first hidden layer. Further, the

input of the second MLP includes 23 frames of context from the preceding 3-state phone

posterior output of the first MLP, a 3500 unit hidden layer, and an output consisting of

49 phone classes. In has been claimed that the extended temporal context (150-230ms) of

the second MLP is valuable in learning patterns of phonetic confusions of the first MLP

and the phonotactics of the language [50]. Both GMM and MLP-based systems produce

posteriorgram outputs, thus phonetic events can be generated in the same manner.
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3.3 Phonetic event selection by local maxima

Given the posteriorgram representation, we now address the question of how to

distill this dense, frame-by-frame posterior data into a sparse set of phonetic events. We

begin by considering a single phone and its corresponding posterior trajectory as depicted

in Figure 3.1. In the original presentation of point process models for keyword search [29],

phonetic events were defined as the points in time corresponding to local maxima of the

posterior trajectories exceeding a threshold of δ = 0.5. The choice of this threshold value

was motivated by the intuition that probability one-half corresponds to the Bayes optimal

binary classification decision. A simple illustration of how events are derived from posterior

trajectories in this manner is depicted in Figure 3.2a. We will subsequently refer to these

as local maxima based events. For events defined in this manner, it is common to observe

several local maxima occuring in the duration of a particular phone resulting in multiple

phonetic events per phone instance. However, the sparsest representation would be charac-

terized by just one event per phone. It should be noted that although these points appear

to convey magnitude and timing information, for the point process model, time of arrival

is the only relevant statistic. Magnitude information merely determines whether a local

maxima is sufficient to be deemed an event. Thus, the phonetic events for the example

Figure 3.2a are {28, 47, 52, 77, 80, 149, 168, 170}, the frames at which the points occur.

We now consider alternative methods of deriving phonetic events. To begin, let us

imagine for the moment the existence of ideal phone detectors whose outputs are either 0

or 1 and operate with 100% accuracy, perfectly matching phonetic labels for every frame.
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δ = 0.5

δ 

δ = 0.5

δ 

δ = 0.5

δ 

Figure 3.2: Examples of posterior trajectories of phone /iy/. Symbols indicate the set of
points which would be marked as events given the threshold δ and correspond to (a) local
maxima events, (b) oracle events, and (c) filtered events.

Given such detectors, for each phone trajectory we could define a phonetic event as the

midpoint of the phone labels (see Figure 3.2b) yielding precisely one event per label. Any

fewer points would imply a loss of phonetic information, so this set represents a lower bound

on the number of events that we could hope to obtain. While such ideal detectors do not

exist, it is a simple matter to derive the set of events they would produce using phonetically

labeled data. Thus, we will refer to these ideal events as oracle events. While this represents

the sparsest set of events, it is not immediately apparent that the point process keyword

search system will perform well with such a limited set of points.

3.4 Phone matched filters

The posterior trajectories obtained from real detectors as shown in Figure 3.2a

differ significantly from the ideal binary-valued output shown in 3.2b. However, it is ap-
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parent that both trajectories evidence the same underlying phonetic events. If we consider

the problem from the perspective of a communications system, the speaker of the utter-

ance is transmitting information as a sequence of distinct phones which is converted into

an acoustic signal. In a sense, our phone detector acts as a receiver, outputting, albeit

imperfectly, the presence of a particular phone at each frame. Yet, what we really desire

is the original underlying phone string which constitutes the message. In a manner similar

to [51], if we consider the phone labels to be the clean transmitted signal and posterior

output as noise-corrupted received signal, one mechanism for detecting the original symbols

would be to apply matched filters. Since phone instances vary in duration, we obviously do

not have a fixed waveform from which to design a matched filter, so we consider the average

signal profile instead. In [51], filters specific to each phone were obtained by averaging 0.5

second windows of the actual posterior trajectory (as in Figure 3.2a) for all occurrences of

the phone aligned to the true phone centers determined from the labels. In this work, we

derived equivalent filters by instead averaging 0.5 second windows of the ideal trajectory

(as in Figure 3.2b) extracted directly from phone labels. Figure 3.3 shows the filter shapes

resulting for a selection of phones. Given these filters, we then convolve each raw posterior

trajectory with its corresponding filter to obtain a smoothed posterior trajectory as shown

in Figure 3.2c. We then define filtered events as the local maxima of the smoothed trajectory

exceeding a threshold δ. Visually, these events align very closely with the oracle events in

Figure 3.2b.

The purpose of the matched filter is to act as a smoothing function for the posterior

trajectories, integrating probability estimates over a contiguous span of speech frames. It
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Figure 3.3: Examples of matched filters for a selection of phones. Filter profiles colored
blue were derived from oracle posterior trajectories based upon phonetic labeling. Filter
profiles colored red were derived from actual posteriorgram trajectories.

is desirable that the resulting filtered output be bounded in the range [0, 1]. To ensure

this, after the filter parameters are estimated from label data, we normalized the filter

coefficients to sum to one. Had this normalization not been performed, phones with long

average durations (e.g., vowels, semivowels) would result in filtered local maxima with larger

values while the opposite would be true of those phones with short average durations (e.g.,

plosives). This would have complicated the search for an optimal event threshold δ since it

is unlikely that a single threshold would been appropriate for all phones.
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3.5 Evaluating phonetic event selection techniques

To compare phonetic event selection techniques, we now propose a metric formu-

lated using the mutual information between phone labels and the resulting phonetic events.

We envision the phone detector output and the event selection mechanism in the “noisy

channel” framework as depicted in Figure 3.4. Each channel input is a single phone (span-

ning successive frames) uttered by the speaker as indicated by the phone labeling. The

channel output consists of all the phonetic events which occur during the span of the input

phone. For the simplest case consider oracle events for which there exists a single phonetic

event output for each input phone produced by the speaker. For this ideal channel there is

no loss of information, so the mutual information between the input and output distribution

is just the entropy of the input.

Channel

/iy/
/ih/

label inputs

/v/
/z/

/iy/

/ih/

event outputs

/v/
/z/
erasure

Figure 3.4: “Noisy channel” model illustration of phonetic event detection.

The diagram in Figure 3.5 illustrates the process of estimating the distribution of

input and output events. The left side of the figure shows sample phonetic events annotated

with phone labels at the top. In a normal communication channel, each symbol input to

the channel results in a single, possibly corrupted, symbol being received. For local maxima

and filtered events, our communications analogy requires some augmentation since a single
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phone label input does not always result in a single phonetic event output. First, it is

possible that an input produces no output, so we will augment our set of outputs with an

erasure (deletion) event as shown for the missing phonetic event at frame 37 in Figure 3.5.

It is also possible that a single input produces multiple outputs (insertions). We propose

handling this with fractional counts. Consider a count matrix in which the rows are input

phones and the columns are output phones with the erasure symbol. Suppose the phone

/s/ is uttered resulting in phonetic events /s/,/s/,/s/, and /z/. In row /s/ of the count

matrix we would record a count of 3/4 in the column corresponding to output /s/ and 1/4

in column /z/. This matrix corresponds to an estimate of the joint distribution of input

and output events, and from it we can compute mutual information.

3.5.1 Choosing an optimal phonetic event threshold

As illustrated in Figure 3.2, the set of phonetic events extracted from a posteri-

orgram is a function of the threshold δ which dictates whether a posterior trajectory local

maxima is recorded as an event. Hence, the fractional count matrix shown in Figure 3.5 is

unique to a particular choice of δ. As would be expected, setting a high threshold produces

many erasures and results in low mutual information. Alternatively, a very low threshold

produces numerous false alarms also resulting in low mutual information. Thus, it was

hoped that this measure would allow us to find good thresholds between these extremes

in order to maximize mutual information between phone labels and the resulting phonetic

events.
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Figure 3.5: An illustration of computing the fractional count matrix used to calculate
mutual information between input and output phonetic events.

3.5.2 Optimal single threshold

To explore approaches to identifying an optimal threshold δ, we considered the

simplest case, a single common threshold used for all phones. This one dimensional search

only required the accumulation of count matrices and computation of mutual information

as threshold was swept from 0 to 1. For this evaluation, we began by generating both GMM

and SMLP-based phone posteriors for the TIMIT database and then derived local maxima

and filtered events over a range of thresholds. To compare these sets of events, we computed
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our mutual information metric sweeping over a range of values of δ. The results are plotted

in Figure 3.6 and show that mutual information for SMLP events exceeds GMM events, and

that filtered events yield a slightly higher mutual information than local maxima events in

both GMM and SMLP cases. The filtering operation necessarily reduces the magnitude of

the peaks in filtered trajectories which accounts for the difference in location of the peak

mutual information. The SMLP posteriors employed here yield state-of-the-art performance

in standard TIMIT phone recognition experiments, so it is not surprising that they exhibited

higher mutual information than GMM posteriors. Finally, the mutual information of the

oracle events at 5.16 bits is exactly the entropy of the input distribution.

3.5.3 Experiments with phone-specific event thresholds

In addition to a single threshold, we also explored optimizing the thresholds of

each individual phone or phone class. A grid search of 10 thresholds for 49 phones would

require 1049 evaluations of mutual information, clearly not a feasible task. A more tractable

option is to group phonemes into two classes and to optimize just two thresholds. Based

on standard broad class phone assignments, we grouped vowels and semivowels into one

class and the everything else in the other. The plot in Figure 3.7 shows the results of a grid

search for optimal thresholds for vowels/semivowels (t1) and other (t2) for the TIMIT si/sx

data using a threshold step size of 0.02. We observed that the gain in mutual information

is only 0.000396 bits as compared to a single common threshold. Similar evaluations were

performed for each of the five broad classes. The largest gain in mutual information was

only 0.001581 bits, an insignificant improvement.

While a grid search of 49 phone classes is infeasible, other approaches to the
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Figure 3.6: Mutual information as a function of threshold for local maxima and filtered
events using GMM and SMLP-based posteriorgrams of TIMIT si/sx test sentences.

maximization problem exist. Unfortunately, it is not possible to compute the gradient of

the mutual information as a function of thresholds of each of the phones. One approach

to finding a maximum is coordinate descent. We began by initializing the thresholds of

all 49 phones to a single common value, then checked for the maximum change in mutual

information as one threshold was changed by +∆t and −∆t and the other 48 were held

constant. This was repeated for all 49 phones. The threshold of the phone for which ∆t

produced the largest increase in mutual information was changed, and the process was

39



CHAPTER 3. OPTIMIZING PHONETIC EVENT SELECTION

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

t_1 (vowels/semivowels)

t_
2 

(o
th

er
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

●

(0.22,0.24)

Figure 3.7: Mutual information as a function of two thresholds for filtered local maxima of
SMLP-based posteriorgrams of TIMIT si/sx test sentences. Threshold t1 was applied to
vowels/semivowels and t2 was applied to all other phones.

repeated until the incremental improvement in mutual information fell below a threshold

ε = 0.000001. The approach has no guarantee of finding the optimal solution, but it will

necessarily find a better solution than the single common threshold of Figure 3.6. Also,
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there is reason to believe based on the preceding plots that the mutual information function

is fairly smooth. We considered ∆t = 0.10 and began the search from uniform threshold

vectors of 0.1, 0.2, . . . , 0.9. Each of these initializations converged to the same solution

yielding a mutual information of 4.541056 bits for TIMIT si/sx train data, an improvement

of 0.006324 bits compared with the single common threshold of 0.24. When this optimal

threshold was applied to the TIMIT si/sx test data, the resulting mutual information was

3.445719, an improvement of 0.003649 bits over the common threshold of 0.24. Given that

optimizing thresholds for each phone provides at most a 0.14% improvement in mutual

information on the training data, we concluded that there was little to gain over choosing

a single threshold for all phones.

3.6 TIMIT keyword search experiments

In the following set of keyword search experiments, we seek to answer two ques-

tions. The first pertains to our proposed metric for selection of event threshold δ. Our

criterion permits us to maximize mutual information between phone labels and phonetic

events as a function of event threshold, but we have yet to correlate high mutual infor-

mation with improved keyword search performance. Secondly, all previous work on the

point process model did not address the size of the phonetic event set. In this work we

have explicitly sought to minimize the number of phonetic events through the application

of phonetic matched filters, thus we must investigate possible ramifications of an extremely

sparse event set on keyword search performance.

For consistency with previous work, we have replicated the identical set of keyword
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search experiments presented in [29] using the TIMIT corpus. The TIMIT corpus consists

of 6300 sentences of phonetically-balanced, read speech and manually labeled, time-aligned

phonetic transcripts [52]. Each of the 630 speakers recorded 2 identical dialect sentences

(sa sentences) and 8 sentences drawn from a set of 2340 sentences (si/sx sentences). The

si/sx portion of the corpus is split into training and test sets consisting of 3696 and 1344

sentences, respectively. The original TIMIT labeling differentiated 61 phonetic classes,

however, consistent with many other phone recognition experiments, we operated on a

reduced set of 48 phones as defined in [53]. For these experiments we used two distinct

phone detectors to produce phone posteriorgrams, GMM and SMLP.

The GMM detectors were identical to those described in [29] and used standard 39-

dimensional MFCC features based on 25 ms windows sampled every 10 ms. Feature vectors

were further processed using cepstral mean subtraction and principal component diagonal-

ization. For each phone p ∈ P, the parameters of a full-covariance, mixture of 8 component

Gaussian model were derived using the expectation maximization algorithm. The GMM

models produced estimates of Pr(x|p), from which the phone detector posterior estimates

gp(x) = Pr(p|x) are computed using Bayes’ rule where the prior phone probabilities Pr(p)

are taken as the fraction of frames labeled p in the training set.

The SMLP-based phone detectors were trained as detailed in [49] using 39-dimensional

PLP features estimated over 25 ms windows every 10 ms. Based upon psychophysical prop-

erties of hearing, PLP features provide a low dimensional representation of the speech signal

with increased speaker independence while retaining linguistically relevant portions of the

signal [6]. With SMLP detectors the original 61 TIMIT phonetic classes were mapped to a
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reduced set of 49 classes based on the consolidated set of 48 phones listed in [53] with the

addition of oth (i.e., “other”) used as a garbage class.

For comparison, we replicated the toy experiments on TIMIT presented in [29]

using local maxima and filtered events for GMM and SMLP posteriors extracted using the

thresholds δ = 0.22, 0.26, 0.72, 0.81 as indicated in Figure 3.6. Keyword model parameters

and duration statistics for each of the 11 words in the TIMIT sa1 training sentence were

computed using transcriptions. The background model parameters were derived from 3696

si/sx type sentences because they were more phonetically balanced. As in the previous

work, the test set consisted of 1512 sentences from sa1, si and sx test sentences. After

applying the model, keyword detections were declared for local maxima of the keyword

detection function dw(t) above threshold δw, and detections within 100 ms of the beginning

of the keyword in the transcript were marked as correct. Multiple correct detections of

the same keyword were discarded, and all other detections were recorded as false alarms.

For the results listed in Table 3.1, we calculated average figure of merit (FOM), the mean

detection rate given 1, 2, . . . , 10 false alarms per keyword per hour as the threshold δw was

varied [45]. In another series of tests, we evaluated FOM as the number of training examples

used to generate the keyword model was varied. The average FOM performance for the

keywords in Table 3.1 plotted as a function of the number of keyword training examples is

shown in Figure 3.8.

We observe that the use of filtered events resulted in 23% and 14% relative improve-

ment in average FOM over local maxima for SMLP and GMM, respectively. Examining

the mutual information in Figure 3.6, we also note that that peak mutual information is
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Figure 3.8: Average figure of merit vs. number of examples used in model construction for
various TIMIT sa1 keywords using oracle, GMM and SMLP phonetic events.

highly correlated (ρ = 0.9) with average FOM in Table 3.1. In some instances better FOM

results can be obtained by choosing a threshold lower than indicated by our metric. For

instance using filtered SMLP events, FOM for “greasy” is 98.0 with δ = 0.10 compared

to 96.1 with δ = 0.22. While decreasing threshold increases false alarms, we find that the

keyword search model is much more sensitive to missing true events than false alarms.
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Table 3.1: Average FOM for various TIMIT sa1 keywords.

filtered local maxima
keyword oracle SMLP GMM SMLP GMM

had 87.2 66.8 54.9 57.1 51.6
dark 98.2 92.2 79.8 67.8 63.6
suit 84.1 67.7 53.9 44.6 38.2

greasy 99.2 96.1 87.6 88.3 89.2
wash 96.4 93.4 85.9 86.3 78.6
water 97.8 77.6 56.9 64.1 40.8
year 91.0 73.3 34.7 52.9 37.1

averages: 93.4 81.0 64.8 65.9 57.0

3.7 Conclusions

In this chapter we have considered methods of extracting phonetic events from

phone posteriorgrams. Drawing on related work in [51], we applied phonetic matched

filters to smooth posterior trajectories and introduced a mutual information based metric to

determine appropriate thresholds for selecting events. It was previously demonstrated in [29]

that Poisson process based keyword search models operate with performance comparable to

traditional HMM-based keyword filler approaches while using a far sparser representation.

In this this chapter we have demonstrated the use of phonetic matched filters to produce an

even sparser set of events, reducing the event set by 40%, while simultaneously improving

average keyword search performance by 23%. The event selection techniques introduced

in this chapter are employed in all subsequent work in this dissertation. Furthermore,

the finding that the minimal representation of speech consisting of only a single phonetic

event per phone is sufficient for point process model keyword search facilitates parametric

modeling presented in Chapter 4 and enhances keyword search speed in Chapter 6.
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Chapter 4

Bayesian Approaches to

Whole-Word Acoustic Modeling

Previous experiments with point process model keyword search identified a core

limitation of the approach, namely the large numbers of keyword examples necessary to ac-

curately estimate word model parameters. Indeed, the intrinsic advantages of whole-word

acoustic modeling are frequently offset by the problem of data sparsity. To address this, we

present several parametric approaches to estimating intra-word phonetic timing models. We

present evidence that the distributions of phonetic event timing are well described by the

Gaussian distribution. We explore the construction of models in the absence of keyword

examples (dictionary-based models), when keyword examples are abundant (Gaussian mix-

ture models), and also present a Bayesian approach which unifies the two. Applying these

techniques in a point process model keyword search framework, we demonstrate a substantial

improvement in performance for models constructed from few examples.
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4.1 Background

Isolated word recognition systems in the early days of speech recognition were

often constructed by modeling entire words. While practical for limited vocabulary size,

the advent of large vocabulary systems based on hidden Markov models necessitated the

use of subword units to enable the sharing of training examples across contexts and to

permit the modeling of unseen words. However, if training examples are available, by

maintaining the structure of the word, whole-word models have long been known to offer

superior performance to subword-based systems [54].

The synthesis of words from subword units and the resulting geometric state dura-

tion distributions are partially responsible for the HMM’s well-known deficiency in duration

modeling. Additional constructs within the HMM framework such as segment models [55]

have been introduced to address these shortcomings at the cost of increased complexity. As

HMMs have been shown lacking in their ability to model duration, a large body of research

has documented the importance of temporal cues in human speech perception [56].

Maximum a posteriori (MAP) approaches have been applied to HMM parameter

estimation for purposes such as parameter smoothing and speaker adaptation [57]. Prior

HMM parameter distributions based on context independent phone models can be used in

the estimation of context dependent models. Likewise, speaker adaptation can be enhanced

by using speaker independent prior models when speaker-specific data is limited. In both

these cases, the prior is based on class-independent HMM parameter averages and MAP
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estimation enables smoothed estimates of class-specific HMM parameters. Unlike HMM

models, we are specifically modeling the timing of phonetic events, and our prior will take

a very natural form derived from a word’s phonetic composition.

In the point process model framework, whole-word models are characterized by

an inhomogeneous Poisson process, and keyword detections are derived from the relative

timing of a sparse set of phonetic events. Like other whole-word approaches, data sparsity is

a problem. In previous PPM experiments in [29] and in Chapter 3, the Poisson rate param-

eters have been calculated using maximum likelihood estimation (MLE). As documented

in [29], system performance depends on the accurate estimation of Poisson rate parameters

which in turn requires large numbers of example keywords. In this chapter we confront

the issue of data sparsity by introducing parametric models of phonetic event distributions.

Using MAP estimation with simple dictionary-based prior distributions, we overcome the

need for large amounts of training data and provide a seamless transition between subword

and whole-word frameworks.

4.2 Word models based on maximum likelihood estimates

The defining features of the point process word model are the inhomogeneous Pois-

son process rate parameters which characterize the generation of phonetic events within a

word. As detailed in Chapter 2, these rate parameters can be estimated from keyword exam-

ples using a maximum likelihood approach. Given N keyword training examples containing

a total of Kp,d phonetic events in the dth partition of phone p, the maximum likelihood
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estimate of the inhomogeneous Poisson rate parameter λp,d is given by

λ∗p,d =
Kp,d

N∆T
. (4.1)

The quality of the estimates of λp,d and hence the quality of the resulting word model is a

function of the number of training examples N , and we observe this characteristic in the

performance of MLE-based point process models presented in Chapter 3. In Figure 3.8, note

the rapid decay in average FOM when the number of keyword training examples falls below

approximately 50 words. Interestingly, a comparable decrease in performance in models

estimated from oracle phonetic events required only 20 keyword training examples. The

plot in Figure 3.8 reflects the performance of keyword models based on a fixed number of

training examples averaged over many random draws of training example sets. While the

plot presents average performance, it does not reveal another significant shortcoming of the

MLE-based approach: model variance. This characteristic was also remarked upon in [29]

and it was suggested that parameterized models for the Poisson rate function λp(t) could

reduce the required number of model parameters and “provide more stability as we decrease

the number of training examples.”

4.3 Empirical distributions of phonetic events

To begin our investigation of suitable parametric models for phonetic events, con-

sider Figure 4.1 which illustrates the distribution of phonetic events relative to normalized

word duration derived from 462 examples of the keywords in the TIMIT dataset. Viewing

the distribution of phonetic events suggests the possibility of modeling phonetic events us-

ing a Gaussian density. To qualify this intuition we present normal quantile-quantile (Q-Q)
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Figure 4.1: Distributions of phonetic events for 462 training examples of TIMIT words (a)
dark, (b) greasy, (c) water, (d) year based on oracle phonetic events.

plots in Figure 4.2 for four TIMIT keywords comparing the empirical distribution with a

Gaussian distribution. In these plots, empirical quantiles are depicted on the vertical axis

and theoretical (Gaussian) quantiles on the horizontal. With the exception of the phone

/k/ in “dark,” we observed that the distributions of phonetic events are reasonably well

modeled by the Gaussian distribution.

50



CHAPTER 4. BAYESIAN APPROACHES TO WHOLE-WORD ACOUSTIC
MODELING

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●●

●●

●

●

●
●

●
●

●●
●

●
●

●

●
●

●●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●●

●●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
1

0.
2

0.
3

0.
4

/ d /

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●●

●
●●

●

●●●

●
●

●

●

●

●●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●
●

●
●

●●

●

●●●●
●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●
●

●

●●●

●

●

●

●
●●●

●

●
●●

●●
●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3
0.

3
0.

4
0.

5
0.

6 / aa /

●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●
●

●

●●

●●

●
●●

●●

●

●●

●●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●●●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●
●

●

●
●

−3 −2 −1 0 1 2 3

0.
50

0.
60

0.
70

0.
80 / r / ● ●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●
●

●● ●●

●

●

●

●

●
●

●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●●

●

●●●
●

●

●
●

●
●●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●●● ●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●●●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●
●

●
● ●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
90

0.
92

0.
94

0.
96

0.
98

/ k /

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●●
●

●

●●

●

●●

●

●

●

●
●

●●

●

●●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

−3 −2 −1 0 1 2 3

0.
00

0.
10

0.
20

0.
30 / g /

●

●
●

●

●

●●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●●

●

●

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●●●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
10

0.
20

0.
30

0.
40 / r /

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3
0.

35
0.

40
0.

45
0.

50
0.

55
0.

60

/ iy /
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
55

0.
60

0.
65

0.
70

0.
75 / s /

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
84

0.
86

0.
88

0.
90

0.
92

0.
94 / iy /

●

●

●

●

●

●

●
●

●
●

●●
●●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●

●●

●

●●

● ●●●

●

●

●

●●
●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●
●

●●

●●

●

●

●

●●

●
●

●

●
●

●
●

●●
●

●●●●●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●●
●
●

●

●

●●
●●

●

●

●
●●

●

●

●

●●●
●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●
●

●
●

●
●●

●

●
●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●
●

●● ●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●
●●

●●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

−3 −2 −1 0 1 2 3

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

/ w /

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●●●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●
●

●

●

●

●

●●
●

●

●
●

●
●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50 / ao /

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●
●

●●
●

●●●

●

●

●●

●●
●

●●●

●

●●●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
45

0.
55

0.
65

0.
75 / dx /

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●●●●

●

●
●

●

●
●

●
●

●●

●

●
●
●

●
●
●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●
●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

−3 −2 −1 0 1 2 3

0.
75

0.
80

0.
85

0.
90 / er /

●

●

●

●

●●●
●

●●
●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
10

0.
15

0.
20

0.
25

0.
30 / y /

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−3 −2 −1 0 1 2 3

0.
4

0.
5

0.
6

0.
7 / ih /

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●
●
●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●●

●
●

●

●
●●

●●

●●

●

●

●
●
●

●
●

−3 −2 −1 0 1 2 3

0.
75

0.
80

0.
85

0.
90 / er /

Figure 4.2: Normal Q-Q plots of phonetic timing distributions for TIMIT words (a) dark,
(b) greasy, (c) water, (d) year showing approximate normality of timing distributions. Data
quantiles are shown on the vertical axis and theoretical quantiles on the horizontal axis.

4.4 Word modeling based on Gaussian mixtures

In light of the normal Q-Q plots in Figure 4.2, an obvious choice to parametrically

describe phonetic timing distributions is the Gaussian mixture model (GMM). In the MLE-

based word model, each phone p ∈ P necessitated the estimation of D inhomogeneous

rates parameters λp,d. For typical applications, |P| = 48 phone classes and D = 10 word

divisions which requires the estimation of 480 parameters. Although a significant fraction
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these parameters are zero, construction of a representative distribution demands a large

number of word examples as apparent in performance plots of MLE-based models found in

Figure 3.8. Ideally, the use of Gaussian modeling should reduce the number of parameters

to just two parameters per phone in a word’s dictionary (phonetic) form. Additionally, the

Gaussian density imposes strong constraints on the shape of estimated distributions.

4.4.1 Computing Poisson rate parameters using parametric distributions

of phonetic events

We now address the method by which rate parameters are calculated given a

parametric distribution of the phonetic events. We will consider the estimation of the

inhomogeneous Poisson rate parameter λp,d corresponding to phone p in the dth partition

of normalized word duration. Since the following derivation is valid for any phone, we will

drop the p subscript for the remainder of this section to simplify the notation. As noted

previously, the maximum likelihood estimate λ∗d is given by

λ∗d =
Kd

N∆T
. (4.2)

In the expression for λ∗d, the total count of phonetic events in the interval d for N word

examples is given by Kd = X1
d +X2

d + · · ·+XN
d where Xn

d is the count of events in interval

d for example n. Note that Xn
d are independent, identically distributed Poisson random

variables drawn from Poisson(λ(t)), the true but unknown distribution for phone p with the

continuous-valued rate parameter λ(t). It follows that λ∗d is also a random variable and its
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expected value is given by

E[λd] = E
[ Kd

N∆T

]
= E

[ N∑
n=1

Xn
d

N∆T

]
=

1

N∆T
E
[ N∑
n=1

Xn
d

]
=

1

∆T
E
[
Xn
d

]
=

1

∆T

∫ td+1

td

λ(τ)dτ

(4.3)

where the limits of the dth partition are given by td and td+1. Therefore, for any parametric

description of λ(t), instead of using observed counts of phonetic events to calculate λ∗d, we

can determine λd directly by simply integrating λ(t).

4.4.2 Estimation of GMM-based word model parameters

We calculate a Gaussian mixture to model the inhomogeneous Poission rate func-

tion λp(t) for each phone p using phonetic event data extracted from N length-normalized

example words. This is an unsupervised process, and we first determine an appropri-

ate number of mixtures by performing k-means clustering of the phonetic events for each

phone. The number of clusters k should reflect the notion that each phone instance within

a word can be modeled by a single Gaussian (i.e., the phone /iy/ in “greasy” should be

modeled using k = 2 Gaussians). While our clustering is not informed by the word’s dic-

tionary form, we can encourage clustering consistent with this idea by allowing the number

of clusters k to incrementally grow as long as successive cluster means are separated by

roughly 4 standard deviations. With the number of mixtures k determined, we then em-

ploy expectation-maximization to obtain the mean, variance and mixture coefficients for
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each phone GMM.

While this model does reflect the distribution of events in time, ultimately we

will be using it to compute the expected counts of phonetic events. We are really modeling

the rate parameter functions λp(t) which do not share the constraints of a true probability

density function. For example, the GMM for the phone /iy/ should have a bimodal shape

reflecting the two instances of /iy/ in the word’s phonetic form. In a generative sense, if we

were drawing samples of the word “greasy” using a collection of GMMs corresponding to

each phone, we would need a mechanism to ensure that we draw from the GMM for /iy/

twice. Therefore, it was necessary to weight the component distributions relative to the

total number of keyword examples from which the phonetic events were drawn. Thus, if we

observe np phonetic events from nw keyword examples, applying a scale factor of np/nw to

the GMM for phone p allows us to correctly compute expected counts. To illustrate this

point, the GMM-based model for the word “greasy” shown in Figure 4.3 was estimated from

462 training examples. From these keyword instances, we observed 793 phonetic events for

the phone /iy/ which clustered into two groups of size 451 and 342 centered at 0.43 and

0.90, respectively (see Figure 4.3). Thus, the mixture of two Gaussians for phone /iy/ are

weighted relative to the 462 examples resulting in mixture weights of 0.976 and 0.740.

GMM-based models for selected TIMIT keywords are shown in Figure 4.3. Note

that the models capture both speaker pronunciation variation and phone detector confu-

sions. The models depicted in this figure are based on all 462 training examples. For a

fixed number of word examples, when multiple models are estimated using different sam-

ples, the variation across models will increase as sample size decreases. However, given that
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Figure 4.3: GMM-based phone timing distributions for TIMIT keywords (a) dark, (b)
greasy, (c) water, (d) year, each estimated using 462 keyword examples.
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each Gaussian requires the estimation of only 2 parameters, we would expect GMM-based

models to exhibit less variation than is observed when estimating 10 parameters per phone

as is typically the case with MLE estimation of rate parameters.

4.5 Dictionary-based models

MLE and GMM-based models are both derived entirely from keyword examples

with no prior assumptions about the phonetic composition of the word. Such models result

in good keyword search performance when training examples are plentiful, but they suffer

when only a few examples are available and fail completely for words with no training

examples. In the absence of any actual keyword examples, we can intuit much of the

structure of a word’s phone distribution solely from the word’s dictionary (phonetic) form.

Without any word examples, we can construct a naive dictionary model by assigning a

single Gaussian to each phone in the dictionary form with equally spaced means µ and a

fixed standard deviation σ. Such a models for selected TIMIT keywords are depicted in

Figure 4.4 with σ = 0.05.

4.5.1 Dictionary-based models incorporating phone confusions

Comparing the GMM-based models in Figure 4.3 and the dictionary models in

Figure 4.4, an obvious shortcoming of the dictionary model is its inability to accommodate

pronunciation variation and likely phone confusions. Variation which arises from differ-

ent speaker productions could be incorporated using weighted combinations of alternate

dictionary forms. Lacking this information, a very simple alternative is to apply phone
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Figure 4.4: Simple dictionary-based phone timing distributions for TIMIT keywords (a)
dark, (b) greasy, (c) water, (d) year. Each phone distribution has a fixed standard deviation
σ = 0.05.
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confusion matrix data associated with the phone detectors. If rows of the confusion matrix

correspond to actual phone classes and columns correspond to predicted phone classes, then

each matrix element Cij = Pr(pj |pi). An example confusion matrix is shown in Figure 4.5.

Hypothesis
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y
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s
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dh
v
b
d
dx
g
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cl
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Figure 4.5: Example phonetic event confusion confusion matrix based on filtered SMLP
posteriorgrams with δ = 0.22. Matrix elements Cij = Pr(pj |pi) where darker color represent
higher probability.

There are a few possible ways to estimate Cij = Pr(pj |pi). We could compute

it directly given per frame likelihoods from phone posteriorgrams and the corresponding

phonetic labels. However, using frame-by-frame probabilities does not reflect the discrete

phonetic events of this model. Another option which is consistent with phonetic events is

to use the fractional count matrix presented Section 3.5 and depicted in Figure 3.5. The

fractional counts are used as proxies for estimating each Pr(pj |pi).
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Next, we introduce the likely confusions into our dictionary model in the following

manner. For each phone appearing in a word’s dictionary form, the mixture coefficient is

re-weighted by the confusion matrix diagonal element Cii = Pr(pi|pi). For phones which

are confusable (i.e., Pr(pj |pi) > 0 for i 6= j ), we introduce new Gaussian with with mixture

weight Cij but the same mean µi and standard deviation σ. The resulting models are

depicted in Figure 4.6.

4.6 Bayesian modeling of phonetic event distributions

We have presented model construction at two ends of the spectrum: a model

assembled without examples (dictionary-based) and an efficient parametric model built

entirely from data (GMM). The significant shortcoming of the example-based approaches

stems from the absence of constraints guiding the estimation of the parameters despite the

fact phonetic events within words are strongly governed by the word’s phonetic form. While

dictionary-based models are a poor approximation of the true underlying phonetic event

distributions, they can serve as reasonable, informative prior distributions for estimating

the true parameters. These facts strongly suggest the use of a Bayesian approach to Poisson

rate parameter estimation which permits the creation of reasonable models when few word

examples are available and provides a mechanism for adapting to additional training data.

Before describing our Bayesian approach in detail, consider first the two limiting

cases as depicted in Figure 4.7 for the TIMIT keyword “greasy.” The distributions depicted

in Figure 4.7a are based upon the word’s dictionary form and likely phone confusions and

this represents our prior knowledge absent actual word examples. The distributions shown
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Figure 4.6: Dictionary-based phone timing distributions incorporating phonetic confusions
for TIMIT keywords (a) dark, (b) greasy, (c) water, (d) year. Each phone distribution has
a fixed standard deviation σ =0.05.
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in 4.7b are based on GMM models estimate using 462 keyword examples. The contrast

between these extremes illustrates two requirement for our Bayesian approach. First, we

must model the change the location and scale of the individual phone distributions as

illustrated by the change in the mean µ and variance σ2 of the phone /g/ in Figure 4.7.

Second, the model should adapt the mixture weights to the phonetic variation observed in

training examples as can be seen in the phone /z/.

4.6.1 Bayesian estimation of unknown mean and variance

As presented in Section 4.3, phonetic event timing distributions can be reasonably

well described by Gaussian distributions. Therefore, the basis of our approach is standard

Bayesian inference for the Gaussian distribution where both the mean µ and precision

λ , 1/σ2 are unknown. As derived in [58, 59], the conjugate prior is given by the normal-

gamma distribution:

NG(µ, λ|µ0, κ0, α0, β0) , N (µ|(κ0λ)−1) Gam(λ|α0, β0)

=
1

ZNG(µ0, κ0, α0, β0)
λ

1
2 exp

(
−κ0λ

2
(µ− µ0)2

)
λα0−1 exp−λβ0

=
1

ZNG(µ0, κ0, α0, β0)
λα0−1

2 exp
(
−λ

2

[
κ0 (µ− µ0)2 + 2β0

])
where the normalizing factor ZNG is defined as

ZNG(µ0, κ0, α0, β0) =
Γ(α0)

βα0
0

(
2π

κ0

)1
2

The normal-gamma prior is specified four hyperparameters µ0, κ0, α0, and rate β0 which

describe the distributions of µ and λ. The prior marginal distribution of precision λ is a
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Figure 4.7: Limiting cases for Bayesian estimation of phonetic timing distributions for
TIMIT keyword “greasy.” (a) Prior model based on dictionary form with likely phone
confusions, (b) GMM model estimated from 462 word examples.
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Gam(λ|α0, β0) distribution and its mean and variance are given by

E [λ] =
α0

β0
(4.4)

Var [λ] =
α0

β2
0

, (4.5)

reflecting our prior uncertainty about the variance of a phone distribution. The prior

marginal distribution of µ is a Student’s t-distribution, T2α0 (µ|µ0, β0/(α0κ0)), for which

mean and variance are given by

E [µ] = µ0 (4.6)

Var [µ] =
β0

κ0(α0 − 1)
. (4.7)

As shown in [58,59], after observing data D = (x1, x2, . . . , xn) with data likelihood

p(D|µ, λ), the posterior distribution for µ and λ has the form

p(µ, λ|D) ∝ NG(µ, λ|µ0, κ0, α0, β0) p(D|µ, λ)

∝ λ
1
2λα0+

n
2−1 exp(−β0λ) exp .

(
−λ

2

[
κ0 (µ− µ0)2 +

∑
i
(xi − µ)2

])
∝ NG(µ, λ|µn, κn, αn, βn) (4.8)

The posterior hyperparameters µn, κn, αn, βn can be expressed as

µn =
κ0µ0 + nx̄

κ0 + n
(4.9)

κn = κ0 + n (4.10)

αn = α0 + n/2 (4.11)

βn = β0 +
1

2

n∑
i=1

(xi − x̄)2 +
κ0n (x̄− µ0)2

2 (κ0 + n)
(4.12)
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Initial values of the hyperparameters are determined from our prior estimates of the mean

and variance of µ and λ. Since the precision λ is gamma distributed, α0 and β0 are de-

termined using the relations in Equations (4.4) and (4.5). The random variable µ is t-

distributed with 2α0 degrees of freedom, location parameter µ0, and precision parameter

κ0α0/β0. Thus, with α0, β0 and Var[µ], Equation (4.7) allows us to compute κ0. Given

the form of the posterior distribution of µ and λ in Equation (4.8), once we have observed

data D = (x1, x2, . . . , xn), we can directly compute the posterior hyperparameters as shown

by Equations (4.9)–(4.12). Finally, using the hyperparameters of posterior, we can easily

extract maximum a posteriori (MAP) estimates for µ and λ.

A graphical model representation of the generation of phonetic event timing is

depicted in Figure 4.8. The observed variable t represents the phonetic event time which is

drawn from the N (t|µ, 1/λ) distribution where µ and λ are unobserved random variables.

The parameters µ and λ are generated from the normal-gamma prior distribution with

associated hyperparameters α0, β0, κ0, and µ0. Each constituent phone in a word would be

governed by its own model of this form.

Figure 4.8: Graphical model representation depicting the process of generating a phonetic
event time t ∼ N (t|µ, 1/λ) where parameter µ and λ are drawn a normal-gamma prior
distribution with associated hyperparameters.
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4.6.2 Selection of normal-gamma hyperparameters

The hyperparameters α0, β0, κ0, and µ0, reflect our confidence in prior estimates

of µ and λ and determine how rapidly the posterior distribution adapts to the introduc-

tion of new data observations. In this section we discuss our approach to hyperparameter

initialization.

The most straightforward of the four hyperparameters is µ0, the prior expected

value of µ. We have chosen the prior mean µ0 just as described in Section 4.5 on dictionary-

based models using the word’s canonical dictionary form. In the dictionary model we fixed

the standard deviation of each Gaussian to σ = 0.05 which was chosen after considering

a range values: 0.025, 0.05, and 0.10. Setting σ = 0.05 implies that for precision λ, the

expected value E[λ] = 400. The gamma distribution governing the random variable λ is

fully specified by two hyperparameters, α0 and β0, which are related to moments of λ in

Equation (4.4) and (4.5). In order to reduce the number of free parameters, we coupled α0

and β0 by introducing the variable ρ and setting Var[λ] = ρE[λ]. Increasing ρ corresponds

to an increase in the prior uncertainty over the value of precision. After considering a range

of values (0.1, 0.5, and 0.9), we found the estimation of λ to be fairly insensitive to the

choice of ρ and subsequently used ρ = 0.5 for all experiments. Thus, for a fixed valued of

ρ, α0 and β0 are determined by specifying E[λ].

The final hyperparameter to be considered, κ0, corresponds to the equivalent sam-

ple size of the prior. As indicated by Equation (4.7), κ0 is inversely proportional to the

variance of µ, so rather than choosing a prior value for Var[µ] it is more intuitive to set

κ0 = 1. This is akin to saying that our prior carries the same weight as a single observation.
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This notion is also consistent with posterior parameter κn in Equation (4.10).

4.6.3 Example of the MAP estimation process

To illustrate the steps previously described, we present the following example of

computing the MAP estimate of the distribution corresponding to the phone /g/ in the

TIMIT keyword “greasy.” Using the simple dictionary model depicted in Figure 4.4, we

observe the prior mean µ0 = 0.25 and standard deviation σ = 0.05. For this value of σ,

the expected value of precision E[λ] = 400 and with ρ = 0.5, it follows that α0 = 4.0

and β0 = 0.01. Together with µ0 = 0.25 and κ0 = 1, these hyperparameters yield the

conjugate prior distribution plotted in Figure 4.10. After having observed 16 examples of

the keyword and extracted the phonetic events shown in Figure 4.9, we can calculate the

posterior updated hyperparameters using Equations (4.9)–(4.12). From this data we obtain

αn = 12.0, βn = 0.031, µn = 0.131 and κn = 17 where n = 16 examples, and the resulting

posterior distribution is shown in Figure 4.10. From this posterior distribution, it follows

that the MAP estimates µ′ = µn = 0.131 and λ′ = (αn − 1
2)/βn = 370.

4.6.4 Bayesian estimation of mixture coefficients

We have provided a Bayesian approach to deriving estimates of phone distribution

mean and variance, but another critical element is the estimation of mixture weights in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.9: Phonetic event data observations for phone /g/ based on 16 examples of keyword
“greasy.”
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Figure 4.10: Normal-gamma prior and posterior distributions for the example of phone /g/
in “greasy.” The conjugate prior distribution is specified by α0 = 4.0, β0 = 0.01, µ0 = 0.25
and κ0 = 1. After observing phonetic events from 16 keyword examples in Figure 4.9, the
updated hyperparameters are αn=12.0, βn=0.031, µn=0.131 and κn=17 resulting in the
normal-gamma posterior distribution shown.

order to account for pronunciation variation and phone detector errors. As a prior estimate

of the mixture coefficient, we apply the same idea used in the dictionary models pictured in

Figure 4.6 where each distribution is weighted by the corresponding phone confusion matrix

element. As the number of keyword examples increases, our model should asymptotically

approach the mixture weights of GMM-based models.

We can explain the production of phonetic events using the following generative

story: a phonetic event is the result of two independent random variables, the first being a
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Bernoulli random variable which dictates whether the event is actually observed. The second

is a Gaussian random variable which specifies the event’s time of occurrence within a word.

In our Bayesian treatment, the parameter π associated with the Bernoulli random variable

is itself a random quantity with conjugate prior distribution Beta(π|a, b) as illustrated in

Figure 4.11. Under this distribution, E[π] = a/(a + b) and the sum a + b constitutes the

effective number of observations. Lacking a more sophisticated model for phonetic variation,

we set the prior mean E[π] equal to the phone confusion matrix value Cij . This and our

choice of the effective number of observations fully specify the values a and b.

Figure 4.11: Graphical model representation depicting the process of generating a phonetic
event from two independent processes. Event time t is generated as previously described in
Section 4.6.1. Event occurrence is governed by random variable z ∼ Bernoulli(π)
where π is drawn from conjugate prior Beta(a, b) distribution.

We will now describe the posterior update. If we have a total of n keyword

examples in which a phonetic event for the phone we are modeling is present in m cases and

absent in l = n−m cases, then the posterior distribution of π will be Beta(π|a+m, b+ l).

Thus, we will take the mean of the posterior distribution (a+m)/(a+b+n) as the posterior
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updated value of the parameter π′. However, other cases are more complex. Words in which

a phone is repeated (e.g., /iy/ in “greasy”) require a distinct π and prior distribution for

each instance of the phone in the word. Next, after having observed word examples, we

must decide which phonetic events are associated with which distributions. To handle this

situation, we performed k-means clustering and assigned phonetic event examples according

to their cluster index.

4.6.5 Bayesian model example for “greasy”

An illustration of how the Bayesian model for “greasy” evolves as we increase

the number of keyword examples is shown in Figure 4.12. For the case n = 0 examples,

the Bayesian model is identical to the prior dictionary model with phonetic confusions in

Figure 4.6b. Likewise at n = 462 examples, the Bayesian model largely mirrors the GMM-

based model in Figure 4.3 with a few minor differences such as the handling of the phone

/ix/. As the number of examples increases, the mean of each Gaussian shifts rapidly towards

its limiting value and the variance contracts. Additionally, we observe the development of

pronunciation variation (/s/ with /z/ and final /iy/ with /ix/).

4.7 Experiments

In this chapter we have proposed several approaches to modeling phonetic event

distributions, and in this section we apply these techniques to constructing point process

models for keyword search, specifically in the estimation of inhomogeneous Poisson rate

parameters. In previous work on point process models, MLE rate parameter estimates were
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Figure 4.12: Bayesian estimated phone timing models for the keyword “greasy” constructed
using various numbers of examples.

derived from the counts of events in each word subdivision. As detailed in Section 4.4.1,

given any model of the phonetic event distribution, we can simply replace the “hard” counts

with expected counts under the model. The specific aim of our work on parametric modeling
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was to significantly improve keyword search performance when keyword examples are lim-

ited. We conducted experiments using TIMIT as in Chapter 3 and we also present results

on the Wall Street Journal (WSJ) corpus.

4.7.1 TIMIT experiments

Keyword search experiments were first conducted on the TIMIT database in the

same manner previously detailed in Section 3.6. PLP acoustic features were transformed

into phone posteriorgrams using a sparse multilayer perceptron based system from [49].

Posteriorgrams were then converted into phonetic events by applying phonetic matched

filters to the posterior trajectories and selecting local maxima above a threshold δ = 0.22.

Given previous results of Section 3.6, we did not consider posterior data derived from

GMM-based phone detectors, nor did we consider “local maxima” phonetic events (see

Section 3.3).

The TIMIT corpus provides numerous examples of selected keywords which al-

lowed us to evaluate model construction as a function of sample size. In Figure 4.13 we

show keyword search performance measured using average figure of merit (FOM) as a func-

tion of the number of training examples used in model construction. The plot for each

keyword includes results from each of the parametric modeling approaches as well as the

original MLE-based model. Our test keywords were necessarily limited to the few suffi-

ciently long TIMIT sa1/sa2 words. The dictionary-based model with phone confusions

does not depend on any keyword examples, thus its performance is constant. The results

depicted for GMM, MLE and Bayesian models represent the mean performance of many

models based on random draws of examples.
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Figure 4.13: Average figure of merit vs. number of examples used in model construction

for various TIMIT sa1 keywords.

4.7.2 WSJ experiments

The TIMIT dataset consists of roughly 8 hours of speech. In order to explore point

process model performance on a larger scale with more keywords, we conducted a series of

keyword search experiments using the Wall Street Journal (WSJ0 and WSJ1) datasets.

The WSJ corpora consist of readings from newspaper articles recorded with high quality

microphones [60]. Phonetic alignments for WSJ0/1 totaling 35270 utterances and 76 hours

of speech (SI-284 data) were provided by the SCARF team from the 2010 CLSP Summer

Workshop at Johns Hopkins University [61].

The audio data was processed into PLP features and then transformed into a phone

posteriorgram representation using a hierarchical MLP [50]. The first MLP stage consisted

of 351 input units (9 context frames of 39-dimensional features), followed by a 5000 unit

hidden layer and then an output layer of 126 targets (42 three-state phone classes). The

second stage MLP included 23 context frames, a 3000 unit hidden layer and a 42 unit output

layer producing posterior probabilities for the phone classes. MLP training on the 35270
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utterances employed a 6-fold cross-validation procedure. We then extracted phonetic events

from the posteriorgram data using phonetic matched filters as described in Section 3.4 with

a threshold of δ = 0.24. For keyword search experiments, we partitioned the data into

fold1, fold2, dev, and test folds consisting of 23, 23, 15.3, and 14.5 hours of speech,

respectively.

Due to the very limited size of the TIMIT dataset, the number of keywords with

sufficient training examples to estimate PPM word models consisted of just the words

present in sa1 and sa2 utterances which were recorded by all 630 speakers. The considerably

larger WSJ data set permitted a much more diverse set of search terms. In preparation

for keyword search experiments, we first assembled a list of 1521 keywords from the WSJ

corpus which satisfied the following criteria: 1) words contained a minimum of 4 phones,

2) minimum average word duration was 200 ms, and 3) words occurred at least 10 times

in both fold1 and fold2. For each of these terms we evaluated models constructed using

keyword example counts of 1, 2, 4, 8, 16, 32, 64, 128, and 256, assuming that sufficient

examples existed. For each example count size, we constructed multiple model instances

using distinct random draws of keyword examples, and the FOM at each example count

size represented the average over these model instances. Training was performed using

keyword example data from one data fold, and then keyword search was evaluated on the

opposite fold. We assessed the performance of three PPM keyword model types: MLE-

based, dictionary model with phone confusions, and Bayesian models. A few representative

plots of FOM versus the number of keyword examples are shown for four WSJ keywords

in Figure 4.14. A summary of the relative performance of the three model types (MLE,
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Figure 4.14: Average FOM vs. number of training examples used in model construction
MLE, dictionary, and Bayesian PPM models for WSJ keywords: funds, identify, past, and
senior.

dictionary, and Bayesian) averaged over all 1521 WSJ keywords is presented in Table 4.1.

4.8 Discussion

In comparing the various modeling approaches in experiments on TIMIT, we first

note that the dictionary-based model dramatically outperforms both the GMM and MLE

models in the low example count regime. Clearly, when there are fewer than 10 examples,
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Table 4.1: Average percentage improvement in FOM of Bayesian models relative to MLE
and dictionary models as a function of the number of keyword examples on WSJ data.

Number of Bayesian models Bayesian models
keyword relative to relative to
examples MLE models dictionary models

1 1449.4% 6.5%
2 566.3% 10.0%
4 222.0% 12.9%
8 97.9% 15.3%
16 47.2% 16.2%
32 21.7% 25.3%
64 9.8% 30.0%
128 4.3% 5.0%
256 1.7% 4.3%

insufficient data exists to estimate the distributions. However, when training data is abun-

dant, the MLE and GMM models provide as much as 20% absolute increase in performance

relative to dictionary-based models since they more accurately describe the word’s phonetic

events. Between the GMM and MLE models, we note that the GMM model provides a small

improvement, approximately 6%, over the original MLE model for small example counts,

likely because the GMM model has fewer parameters to estimate. Given the relatively

small difference in performance on between GMM and MLE models on TIMIT, further

experiments with GMM-based word models were not conducted on WSJ data.

Using the Bayesian model which incorporates both the canonical dictionary form

and evidence from keyword examples, we achieve strong performance in all regimes. Par-

ticularly notable, Bayesian word models provide significant gains in keyword search per-

formance when few keyword examples are available. Specifically, in TIMIT experiments

we have achieved a 55% relative increase in keyword search performance over MLE models

with 10 or fewer keyword examples. Considering a much larger set of search terms on the
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WSJ corpus, we attained a 97.9% relative increase in performance for models constructed

from 8 or fewer keyword examples.

Interestingly, these gains from MAP estimation occur despite using an extremely

simple prior model. In Chapter 5, we will consider the gains possible by constructing more

sophisticated prior models of phonetic timing. It should also be noted that the performance

of the Bayesian and dictionary models is identical when the number of training examples

is zero, but the logarithmic scale of the horizontal axes in Figures 4.13 and 4.14 did not

permit this point to be shown. In a minor change from previous experiments in Chapter 3

and [29], we have incorporated a parametric model of word duration. In the experiments

reported in this chapter, keyword duration is modeled using a gamma distribution whose

parameters are estimated using maximum likelihood. For the keywords considered in TIMIT

experiments, having 462 word examples permitted using the empirical distribution as a word

duration model. For many WSJ keywords for which relatively few examples are available,

a parametric model was required. We will further elaborate on word duration models in

Chapter 5.

As previously mentioned, each point in the plots in Figures 4.13 and 4.14 repre-

sent the average performance of many models constructed from random draws of keyword

examples. Although we have not included error bars, it is worth noting that the perfor-

mance of MLE-based models exhibits very large variance. Bayesian models, on the other

hand, are heavily constrained by prior distributions at small sample sizes and this results

in dramatically smaller variance in performance. In fact, for the TIMIT experiments, we

observed that variance in average FOM was reduced by a factor of 14 for cases of few (≤8)
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training examples.

The estimation of Bayesian models does require decisions about prior distributions

for the mean µ and precision λ which arise in the choice of hyperparameters. In this work

we have made no effort to optimize these values. For prior estimates of precision λ, we

tried E[λ] = 100, 400, and 2500. Likewise for the parameter ρ relating the mean and

variance of the gamma distribution for precision λ, we ran trials with ρ = 0.25, 0.50 and

0.75. For all cases, we observed little difference in the models or the resulting keyword

search performance. The one parameter which we would expect to have the most dramatic

effect is our estimate of average phone timing, µ0. This could be improved by designing

a more sophisticated approach to estimating prior phone timing distributions and will be

considered in Chapter 5.

4.9 Conclusions

In previous applications of the point process model for keyword search, the chief

limitation was the large numbers of keyword examples (>50) required to construct repre-

sentative keyword models. Though simple models based solely on a word’s dictionary form

offer reasonable performance, they are incapable of benefiting when examples are available.

In this chapter we have demonstrated that the use of Bayesian estimation techniques pro-

vides a principled method of combining both prior knowledge of phonetic composition and

timing information from keyword training examples. Furthermore, we have shown the evo-

lution in model distributions as the number of keyword examples grows ultimately results

in an optimal interpolation of the performance gap.

77



Chapter 5

Improving Whole-Word Models

Without Word Examples

In Chapter 4 we substantially improved the construction of whole-word acoustic

models by using MAP estimation with a simple prior which included no information about

the individual durations of constituent phones. The problem of modeling segmental duration

has long been studied in the text-to-speech (TTS) community. We draw upon this work to

develop a classification and regression tree (CART) approach for constructing prior models

of phonetic timing which considers factors such as syllable stress, syllable position, adjacent

phone class and voicing. This improved prior model closes 33% of the gap in keyword search

performance between highly supervised whole-word models and those estimated without any

examples.
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5.1 Approaches to improving phonetic timing models

As previously reviewed, a large body of evidence suggests the preeminent impor-

tance of temporal properties of the speech signal in human speech perception. Likewise,

temporal structure also plays a crucial role in producing natural sounding synthetic speech.

Early attempts to predict the systematic changes in the duration of phonetic segments in-

volved defining a set of hand-designed rules based on contextual factors such as adjacent

segment identity, within-word position, syllable stress, among others [62]. A more statisti-

cally grounded approach that offers greater ability to model the interaction between factors

is found in the sum-of-products model presented in [63]. CART-based modeling is another

widely used approach to predicting segmental duration that provides automatic selection

of relevant features, accommodates both categorical and continuous features, and produces

easily interpretable rules [64].

In Chapter 4, we introduced a Bayesian approach to the estimation of whole-word

acoustic models to overcome the problem of data sparsity. Phonetic timing is modeled using

a Gaussian distribution, each Gaussian in this model requires the estimation of a mean

and variance (or precision). MAP estimation of these parameters presumes the existence

of reasonable prior distributions. In the initial presentation of MAP-estimated whole-word

acoustic models, a very basic prior distribution was assembled from equally-spaced Gaussian

means with uniform variance. This simple model suffices as an initialization point when

combined with training examples. However, we would like to improve the estimation of word

models for cases when no examples exist, and this naive prior ignores obvious differences

in phone duration. As suggested, the problem of constructing a reasonable prior model of
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phonetic timing is very closely related to that of computing segmental duration for TTS

synthesis. In the following sections, we consider three approaches to defining phonetic

timing distributions in the absence of any keyword examples. We begin by reviewing the

simple dictionary model and then introduce two enhanced models.

5.1.1 Simple dictionary prior model

As presented in Section 4.5, if no training examples of a keyword are available,

it is possible to construct a naive model of phonetic timing using the keyword’s dictionary

pronunciation. Given a normalized word duration of 1.0, we simply assign one Gaussian

to each phone in the dictionary form using equally spaced means µ and a fixed standard

deviation σ. An example of such a model with σ = 0.05 for the word “often” is depicted

in Figure 5.5a. Despite its simplicity, we have shown this to be a practical method of

assembling a prior for subsequent MAP estimation.

We have also found that introducing phonetic variation is a critical element in

obtaining reasonable keyword search performance with such models. The use of alternate

pronunciations could account for different speaker productions. However, another significant

source of differences in observed phonetic events is caused by errors which occur in our

phone posteriorgrams. A reasonable means of accounting for both errors and variation

is to factor in phone confusion matrix data associated with the phone detectors. In the

confusion matrix, each element Cij represents Pr(pj |pi) where the rows correspond to actual

phone classes (pi) and columns correspond to predicted phone classes (pj). Here, we have

obtained a phone confusion matrix from the count matrix employed in phonetic event

selection described in Section 3.5. To incorporate likely confusions into our dictionary
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Figure 5.1: Simple dictionary phone timing model for the word “often.”

model, we replace the single Gaussian for phone pi from a word’s dictionary form with

multiple Gaussians for the confusable phones pj each weighted by Cij but sharing a common

µ and σ as illustrated in Figure 5.1.

5.1.2 Monte Carlo prior using average phone durations

In the simple dictionary model, assigning Gaussian means at equal intervals cor-

responds to an assumption that all phones are identical in duration. The fixed standard

deviation σ = 0.05 was chosen empirically to produce satisfactory keyword search perfor-

mance over many keywords. To develop a more realistic model which accounts for phone

duration, we first introduce the following expression for the relative timing of phonetic

events. Given a word with baseform pronunciation p1, p2, . . . , pN , where each pi is drawn

from the set of all phones P, we define Di as a random variable representing the duration

of the pi. We can then define Ri as the midpoint of pi (after word duration normalization),

which is given by

Ri =

∑i−1
j=1Dj + 0.5Di

D1 +D2 + · · ·+DN
. (5.1)

These variables are depicted in Figure 5.2 for the example word “capital.”

81



CHAPTER 5. IMPROVING WHOLE-WORD MODELS WITHOUT WORD
EXAMPLES

k ae p ih t ax l

D1 D2 D3 D4 D5 D6 D7

R3 R4

× ×
R1

×
R2

×
R5

×
R6

×
R7

× normalized 
duration

0 1.0

Figure 5.2: Illustration of how the midpoints (Ri) of phone segments within normalized
word duration are calculated from constituent phone durations (Di) for the example word
“capital”, /k,ae,p,ih,t,ax,l/.

As a starting point we assume that the distribution of the phone duration Di is derived

from the duration statistics of phone pi realized across all words in the corpus and that

Di is independent of the other phones in the word. A convenient distribution for modeling

phone duration is the two-parameter gamma distribution [40]. Studies have shown that

the gamma distribution provides a high-quality fit to empirical phone and word duration

distributions [41]. Figure 5.3 shows the empirical distributions of selected phones and the

corresponding gamma distributions fit to the data extracted from the WSJ corpus.
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Figure 5.3: Empirical distribution of phone duration in frames for selected phones derived
from the WSJ corpus data. The continuous distribution overlaid in red is MLE estimate of
the gamma distribution fit to this data.
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The random variable Ri is a function of N independent, gamma-distributed ran-

dom variables and there is no simple closed-form solution for its distribution. Fortunately,

it is sufficient for our purposes to estimate just the mean and variance of Ri. These quan-

tities are easily obtained from a Monte Carlo simulation as follows: (i) compute gamma

parameters (α, λ) to fit all of the phones based upon examples across the entire corpus;

(ii) for a particular word, independently generate N sample phone durations corresponding

to each Di distribution; (iii) from the N duration samples Di, compute the corresponding

N values of Ri; (iv) repeat over many (10,000) iterations and compute sample mean and

variance for each Ri; (v) construct a model from N Gaussian distributions using the mean

and variances of each Ri.

An example of a model computed using this approach is shown for the word “often”

depicted in Figure 5.5b. Unlike the simple dictionary model shown in Figure 5.1, we observe

that the positions of the means better respect the average phone durations. Additionally,

we find that the variances of the distributions are smaller for phones nearest the word

beginning and ending, and larger for phones in the middle of the word. This is a natural

byproduct of normalizing word durations and is evident in Equation (5.1) and can also be

seen in models estimated from many keyword examples (Figure 5.5d).

5.1.3 Monte Carlo prior using CART-based phone durations

While the incorporation of average phone duration clearly improves the fidelity

of the model compared with the simple dictionary version, it is well known that segmental

duration is a function of many factors such as phonetic context, stress, syllable position. The

text-to-speech community has developed several approaches to model segmental duration
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and here we adopt the method based on classification and regression trees (CART). In

order to perform CART training, we begin with a pool of example phone durations and

an associated set of linguistically relevant features for each example. In speech synthesis,

the prediction of duration is performed for an entire utterance, but our prediction can only

consider a word in isolation. Therefore, it is not possible to consider some commonly used

features such as utterance and phrase position. To compile a training set, we extracted

phone durations from our corpus and generated a feature vector for each sample. The

features associated with each phone and each word position were derived from the syllable

and stress markings provided by the CMU dictionary [65]. We used the following set of

features:

• wsl - word syllable count ( 7 levels)

• swinit - syllable word initial (boolean)

• swfinal - syllable word final (boolean)

• sp - syllable position ( 3 levels: onset, nucleus, coda)

• stress - stressed syllable (boolean)

• prevoice - previous phone voiced (boolean)

• postvoice - next phone voiced (boolean)

• prev bc - previous phone broad class (5 categories)

• post bc - next phone broad class (5 categories )

For each of the phones, we constructed a regression tree using the package tree in the

statistical software package R. An example tree for the phone /ih/ is shown in Figure 5.4.

In our example for the word “often” (/ao,f,t,ih,n/), the phone /ih/ which is preceded by a
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stop consonant, is not in a stressed syllable, is followed by a nasal and is not word initial,

the decision tree shown would predict an expected duration Dih of 39.4 ms compared with

the population average of 53.1 ms.

Unlike speech synthesis where it is sufficient to predict just a duration, we need to

predict the distribution of the phone /ih/ in its context. We accomplish this by using the

decision tree to cluster training examples and then estimate gamma distribution parameters

(α, λ) at each node of the tree. The root node contains all examples, and its distribution

represents the entire population independent of context. Each question in the tree partitions

the examples into two subsets from which we compute corresponding gamma distribution

parameters. Continuing to split our examples at each tree node allows us to compute

distribution parameters for each context as shown in Figure 5.4. For cases in which the

decision tree question is not applicable, the tree returns the parameters at the node where

the question fails.
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Having estimated the context-dependent gamma distribution parameters, the con-

struction of a word model follows in a similar manner to the Monte Carlo model based on

average phone durations in the previous section. However, instead of drawing samples

for Di from the distribution of the entire population, we instead use each phone’s con-

text determined by a word’s dictionary form to identify the context-dependent distribution

parameters contained in the decision tree.

An example of a model computed using this approach is shown for the word “often”

depicted in Figure 5.5c. For reference, the model in Figure 5.5d is generated using MAP

estimation with many training examples of the keyword. Note that in the progression of

models from simple to more complex, the locations of the distributions better reflect the

models derived from keyword data. To quantify the effect of improved timing models,

we computed the root mean squared error (rmse) between the mean values of Ri under

these three models and the positions determined from keyword examples. We found that

the Monte Carlo average model provided a 16.7% reduction in rmse relative to the simple

dictionary model, and the Monte Carlo CART model yielded a 21.3% relative reduction.
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(b) Monte Carlo prior model using average phone duration
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(c) Monte Carlo prior model using CART−based durations
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Figure 5.5: Example of phone timing models for the word “often.”
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5.2 Experiments

To measure the impact of more precise timing models, we conducted a series of

keyword search experiments using the Wall Street Journal (WSJ0 and WSJ1) datasets.

The training portions of this corpus were partitioned into two folds of 23 hours of speech.

The audio data was processed into perceptual linear prediction (PLP) features and then

transformed into a phone posteriorgram representation using a hierarchical MLP with 9

context frames [66]. From posteriorgram data, we then extracted phonetic events using

phonetic matched filters as described in [67] with a threshold of δ = 0.24. In order to

evaluate models over a wide variety of words, we assembled a list of 1521 keywords from

the WSJ corpus with minimum average duration of 200 ms, a minimum of 4 phones, and

which occurred at least 10 times in each data fold.

For each keyword and each data fold, we created 4 types of keyword models: 1)

simple dictionary model, 2) Monte Carlo estimated model based on average phone duration

statistics, 3) Monte Carlo estimated model using CART-based phone duration statistics,

and 4) Bayesian estimated models as described in Chapter 4. Of these four phone timing

model types, the first three were constructed without using keyword examples and only

relied on duration statistics of their constituent phones. On the other hand, the Bayesian

model used all available keyword examples. All training and model parameter estimation

(phone duration statistics, CART estimation, etc.) was performed on one data fold and

evaluation was performed on the other, unseen data fold. Performance reported represents

an average per keyword over both folds.

We evaluated keyword detection performance using average figure of merit (FOM).
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A summary of results of keyword search experiments is shown in Figure 5.6. The average

performance of the various models is enumerated in Table 5.1. In addition to the average

over all 1521 keywords, the table also shows the average over the subset of keywords which

ranked below the bottom 10th percentile with the simple dictionary model.

We observe from Table 5.1 that improvements in estimating the prior models of

phone timing distributions do result in improvements in FOM, on average. However, it

would appear most of the gain in prior model performance is obtained from the Monte

Carlo estimation of relative timing. The additional gain achieved through the inclusion of

CART duration modeling was limited. There were several keywords for which the CART

model provided improvements compared to the Monte Carlo average model, as evidenced
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Figure 5.6: Boxplots depicting average figure of merit for 1521 WSJ keywords for each
model type.
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Table 5.1: Comparison of figure of merit based on 1) average over all 1521 keywords, and 2)
average over subset of keywords which scored in the lowest 10th percentile using the simple
dictionary model.

model type mean FOM mean FOM
all words dict lowest 10%

Simple dictionary 0.704 0.322
Monte Carlo (average) 0.725 0.385
Monte Carlo (CART) 0.733 0.413

Bayesian 0.791 0.605

by the significant increase in the minimal FOM value. However, we were unable to identify

a systematic keyword property that accounted for these occurrences. While generating a

more sophisticated prior model for phonetic timing was a logical place to look for improved

performance, we observe other factors in Bayesian models which account for their supe-

rior performance. Chiefly, Bayesian models more accurately represent phonetic variation

observed in keyword examples. This suggests that further improvement might come by

adding alternate pronunciations in our dictionary. Additionally, more investigation may

reveal systematic errors in phone posteriorgram estimates which may be predictable from

context instead of using on phone confusion matrix data.

5.3 Conclusions

In our previous work on MAP estimation of whole-word acoustic models in Chap-

ter 4 and [68], we demonstrated that a Bayesian approach to estimating phone timing

models provided significant gains in keyword search performance in the case that few key-

word examples are available. In Chapter 4, the prior model of phone timing used in MAP

estimation was based on the simple dictionary model. The motivation for this work was to
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assess the gains possible by considering more sophisticated prior models. By incorporating

a Monte Carlo approach to estimating phone-timing distributions, we were able to obtain a

4.2% relative improvement in average FOM compared to using a simple dictionary model.

While modest in absolute terms, this gain represents 33% of the difference in performance

between simple dictionary and MAP-estimated models.
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Chapter 6

Speeding up PPM Decoding

In this chapter we consider the evaluation of the point process model detection

function. Normally, the calculation proceeds incrementally, frame-by-frame. However, in

decomposing the likelihood ratio which comprises the detection function, we observe that the

effect of each phonetic event is a simple additive contribution. Each word can be represented

by a “score matrix” and the contribution of a phonetic event is a time-reversed “score vec-

tor.” In place of a frame-by-frame evaluation, we can instead proceed event-by-event. This

view enables huge speedups; runtime no longer depends on the frame rate and is instead

linear in the number of events. We apply this intuition to redesign the runtime engine be-

hind the point process model for keyword search. In this chapter, we demonstrate impressive

real-time speedups (500,000x faster than real-time) with minimal loss in search accuracy.
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6.1 Background

State-of-the-art spoken term detection (STD) systems based on ASR lattice search

offer very strong performance, but it comes at a high cost. Assuming the existence of an

appropriate ASR pipeline, there is a non-trivial computational overhead associated with

running full recognition, and after having processed the speech, we are confronted with the

issue of storing and searching the resulting lattices. In order to provide reasonable access

speed, it is typical to employ an inverted index the size of which can easily be on par with the

word lattice itself. A recently published state-of-the-art STD system for Turkish Broadcast

News in [69] using a finite-state transducer based index reports an average search time of

4 ms per query on 163 hours of audio (nearly 150,000,000x real-time). However, achieving

this search speed requires an index more than twice the size of the corresponding word

lattice. Handling out-of-vocabulary (OOV) terms poses a further challenge. By definition

these terms will not be present in ASR word lattices, therefore many STD systems fall back

on searching potentially larger phonetic lattices in order to handle these queries.

In addition to the size of the index, there is also significant processing overhead in-

volved with index construction. The figures reported in [70] on the IBM system constructed

for the NIST 2006 STD evaluation provides some insight. This system recorded an average

query time of 0.0041 sec per hour of speech (878,000x real-time) and an index size of 0.327

MB per hour of speech. However, these numbers do not account for the index construction

time (including audio processing, word/phonetic lattice generation and index creation) of

7.56 hours of processing per hour of speech (8 times slower than real-time). Furthermore, if

we are dealing with a constant stream of audio, we need to consider the ease with which an
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index can be augmented with new data. Consider the task of spoken term detection applied

to the intake of a typical day at YouTube. At the time of writing, YouTube reports that its

users upload 100 hours of video on average every single minute (or equivalently, 16.4 years

of content per day). Considering the volume of this stream, perhaps a less complex solution

has merit for certain scenarios.

The dynamic match lattice search STD system presented in [71] is not based

on an LVCSR system. It offers open vocabulary search on phonetic lattices and reports

an average search speed of 2 sec per hour of speech (1,800x real-time). Certainly, older

HMM-based keyword search systems, which predate ASR lattice-based approaches, have

reasonable results with relatively low complexity, but search speed is lacking. The basic

HMM-based system described in [71] was implemented in [72], which reported a search

speed of roughly 33 times real-time.

With these issues in mind, we begin by arguing the advantages of a sparse repre-

sentation and outline a novel detection framework. After reviewing the evaluation of the

detection function in PPM keyword search, we develop an efficient upper bound consistent

with our proposed approach. Finally, we validate these ideas in keyword search experiments.

6.2 Characteristics of an efficient keyword search system

An ideal keyword search system is one which offers compact representation, pro-

vides fast query times, and can easily incorporate new data. Before addressing approaches

to keyword search, we should pause to consider the representation of the signal upon which

our decoder must operate. For a signal T frames in duration and an HMM with N states,
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the signal representation consists of the observation likelihoods at every state and every

frame, O(NT ) real-valued quantities. It is on top of this representation which the Viterbi

algorithm operates. Determining the most likely path requires that we consider all transi-

tions into every state and thus, in the absence of pruning, decoding is constrained to proceed

in time O(N2T ).

While HMMs operate on a dense frame-based representation, one possible starting

point for developing faster alternatives begins with a sparse representation of the speech

signal. Consider a framework in which the speech input is reduced to a discrete set of

impulses, each corresponding to a phonetic event. The density of this representation is

solely a function of the phone production rate, significantly lower than the typical 100-Hz

frame rate. Further, it is independent of the phone set or state space dimension N .

The goal is to identify keywords. We desire a system which takes as input discrete

phonetic events and efficiently produces a real-valued output where high values correspond

to the presence of a keyword. In subsequent sections we will demonstrate that the contri-

bution of each phonetic event to the total detection function in the PPM system can be

seen as the addition of a time-reversed score vector. A keyword model can be viewed as a

collection of filters hp(t) for each phone p whose impulse response is the score vector. The

score vector for phone p relates to the log likelihood of observing phone p at each position

within the word. Phonetic events can be viewed as impulses. Computing a detection func-

tion becomes a simple convolution of impulses with filters which can be made to run very

fast and no longer depends on frame rate or alphabet size. An example of this operation

in the point process keyword search framework is shown in Figure 6.1. In the following
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Figure 6.1: A visual representation of the calculation of a keyword detection function (top)
by summing over scores from each phonetic event impulse response. Dark red indicates
large positive score and blue indicates negative score. The detection function is computed
at each frame by summing the scores across the phone set.

sections, we detail how the point process model decoding can be cast in this form.

6.3 Bounding the detection function

In this section we review the point process detection function previously presented

in 2.3, and then we present approximations to enable fast searches. In the point process

model framework, the input speech signal is represented by an extremely sparse set of

phonetic events. As introduced in Chapter 3, we consider events taken as the maxima of a

filtered posterior trajectory function which results in a single event per phone occurrence.

An illustration of phonetic events for the TIMIT utterance “This was easy for us” is shown

in Figure 6.2. Models built upon this representation take advantage of not only the identities

of the phones detected but also the sequence and relative timing between the events.

Keyword detections are marked as the maxima of the detection function dw(t)

defined as the ratio of the likelihood of the collection of phonetic events O(t) in the interval

(t, t+ ∆T ] under the word model (θw) relative to its likelihood under a background model
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Figure 6.2: Phonetic events for the TIMIT utterance “This was easy for us”.

(θbg). As presented in Section 2.3, the keyword detection function dw(t) is given as

dw(t) = log

[∫ ∞
0

P (O′(t)|T, θw)P (T |θw)

T |O(t)|P (O(t)|T, θbg)
dT

]
. (6.1)

To simplify the evaluation of Equation (6.1), we will consider the approximate detection

function

dw(t) ≈ max
T

log

[
P (O′(t)|T, θw)P (T |θw)

T |O(t)|P (O(t)|T, θbg)

]
(6.2)

and show how terms can be combined. First, note that |O(t)| =
∑

p np and np =
∑

d np,d.

Also, using λp =
∑

d λp,d/D, we may rewrite the argument of the log in Equation (6.2) as

P (T |θw)
∏
p∈P

D∏
d=1

(
λp,d
λpT

)np,d

eλpT/D−λp,d/D.

After taking the log, we find the approximate detection function consists of three terms,

dw(t) ≈ max
T

logP (T |θw) +
∑
p∈P

(
λpT −

1

D

D∑
d=1

λp,d

)

+
∑
p∈P

D∑
d=1

np,dφp,d


(6.3)
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t t +T

Figure 6.3: Overview of frame-by-frame evaluation of the detection function dw(t). At each
frame t and candidate duration T , the detection function is evaluated by first accumulating
counts of phonetic events for each phone p and division d, the quantity np,d. The sum over
the product of np,d and weighting factor φp,d is used to compute the detection function at
frame t.

where φp,d , log(λp,d/λpT ). Note that the first two terms depend only on the word duration

model P (T |θw) and the Poisson rate parameters (λp, λp,d) but are independent of observed

phonetic events. Thus the detection function depends on the total event count np,d for

each phone p and word division d times a weighting factor φp,d. As illustrated in Figure 6.3,

direct evaluation of this function proceeds as follows: (i) for each time t and sample keyword

duration T , determine O(t), the set of phonetic events which occur in the interval (t, t+T ];

(ii) from O(t) accumulate the total count np,d for each phone and word division; (iii) sum

over the product of np,d and its corresponding weighting factor φp,d; and, (iv) repeat for

each candidate duration T and take the max.

6.3.1 A simple upper bound

Although computationally simple, the direct implementation of (6.3) requires that

for each event we determine the word division d to which it belongs as the window of length

T slides right one frame at a time. Our first approach to speeding up the computation of
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Figure 6.4: Diagram illustrating how simple upper bound is extracted from score matrix
for TIMIT keyword “greasy.” The bound is maximum score for each phone (row) across all
time divisions. A score vector and bound are plotted for phone /s/.

the detection function was to replace full evaluation of (6.3) with a simple upper bound on

the score vector. As shown in Figure 6.4, it is easy to see that using φmax,p , maxd φp,d,

the maximum weighting factor over all divisions d, provides an upper bound on dw(t) and

liberates us from evaluating np,d (i.e., np suffices).

To demonstrate the effect of the simple upper bound, we present the original and

bounded detection functions for a TIMIT sa1 utterance based to two different sources

of phone posterior data in Figure 6.5. The upper plot shows oracle phonetic events (i.e.,

phonetic events derived directly from the true phone labels) and the lower plot shows SMLP-

based events are derived from a sparse multilayer perceptron (SMLP) phone recognizer [49]

with phonetic matched filtering [67]. Oracle phonetic events represent perfect phonetic
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information. Since this simplification reduces the model to a “bag of phones,” it is not

surprising that the upper bound is loose. We observe that the upperbound is not sufficiently

tight except for the case of oracle phonetic event data, and this is corroborated by the poor

performance observed in keyword search experiments.
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Figure 6.5: Detection function dw(t) and the simple upperbound for keyword “greasy” using
oracle and SMLP-based phonetic events.

Another feature of the bounded detection function is that changes in dw(t) only

occur when an event enters or exits a window of duration T . Instead of storing the value of

the detection function at each frame, we may instead retain the much sparser set of changes

to the detection function. With delta coding we maintain one accumulator array and only

perform two additions for each phonetic event. Since we observe 16 phonetic events per

second on average, a factor of 6 lower than the frame rate of 100 Hz, recording only score

changes entails significantly fewer additions.
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6.3.2 Tightening the detection function upper bound

What accounts for the difference in the two bounds in Figure 6.5? The matrix of

weights φp,d is computed from the homogeneous and inhomogeneous Poisson rate parame-

ters. Intuitively, phonetic events consistent with the keyword (i.e., the correct phone and

relative timing) result in positive weights, and those which are inconsistent with the model

have large negative weights. Keyword detections are marked at the peaks of the detection

function and occur when phonetic events are maximally aligned with positive weights φp,d.

By considering only the maximal score φmax,p for each phone and ignoring intra-word pho-

netic timing, we purchase computational simplicity at the cost of reducing a model’s ability

to discriminate based on timing.

This approximation is particularly detrimental with non-oracle phonetic data which
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Figure 6.6: Score matrix corresponding to TIMIT keyword “greasy” using oracle (left)
and SMLP (right) posterior data. The color red represents large positive score values and
blue represents large negative score values. The concentration of positive score values in
the oracle matrix due to absence of phone confusions results in more discriminative model
particularly when using a simple upperbound.
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contains phone detector confusions. This contrast is evident when comparing the difference

in score matrices between oracle and non-oracle models as shown in Figure 6.6. In this

figure, red denotes scores with large positive values and blue represents large negative val-

ues. Comparing two models, the more discriminative one will contain a higher fraction of

large negative values in the φp,d terms. Large negative φp,d terms are produced when the

total number of events observed in keyword training examples corresponding to phone p

and division d is zero. Phonetic confusions result in non-zero counts, which is exacerbated

by simple upper bound which takes only the maximum φp,d for all d.

Keyword models derived from oracle data do not exhibit the errors present in real

phone detectors which results in relatively few phones with positive scores as illustrated in

Figure 6.7. This accounts for the difference in the tightness of the bounds seen in Figure 6.5

and it also offers insight into improving the bound.
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Figure 6.7: Distribution of maximum score φmax,p values for oracle and SMLP-based pho-
netic events for the word “greasy” used in the simple upperbound. The larger fraction
of negative scores results in a more discriminative model, and explains the difference in
tightness of the bounds in Figure 6.5.
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The simple upper bound φmax,p is fast because it requires that we encode only

two score changes per event. To tighten the bound, we can instead consider multi-segment,

piecewise constant upper bounds as illustrated in Figure 6.8. The 3-segment bound may

contain up to 4 score changes, but we permit fewer depending on the score vector. Likewise,

the D-segment bound may contain as many segments as word subdivisions. By considering

multi-segment bounds, we significantly improve the ability to discriminate by phonetic event

position, while retaining most of the computational advantage of only evaluating changes

in the detection function.
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Figure 6.8: Multiple upper bounds for the score vector for phone /s/ in the TIMIT keyword
“greasy.” The simple upperbound (i.e., 1-segment bound) is just the maximum over all time
divisions. The D-segment bound corresponds to partitioning the score vector with as many
as D different partitions so as to minimize the difference between the bound and the score
vector. The case of D = 3 is shown.

6.4 Detection function as a convolution

Another way to envision the computation of the detection function is to recognize

it as the summation over all phones of a sequence of phonetic events (i.e., an impulse train

for phone p) convolved with its corresponding score vector (i.e., a filter impulse response,
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hp(t)). This is depicted more clearly in Figure 6.9. The convolution operation alone does

not suggest any computational savings, but because the input is a sparse set of impulses, we

are liberated from shifting and multiplying. Direct implement of (6.2) requires computing

an event’s position within a sliding window (t, t + T ] for each frame t. The alternate view

just described allows us to invert the process; we proceed event-by-event and immediately

record incremental contributions to the detection function using the time-reversed score

vector. Thus, we make the calculation of the detection function linear in the number of

phonetic events, rather than the number of frames.
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Figure 6.9: Inverting the calculation of the PPM detection function. Each phonetic event
(red dot) is shown with its score contribution (i.e., time-reversed score vector). Frame-by-
frame calculations can be avoided by only considering score changes. The detection function
is computed by summing score contributions across phones.
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6.5 Experiments

In this section we report results of keyword search experiments using various de-

tection function bounds. We utilized the Wall Street Journal (WSJ0 and WSJ1) datasets

which were partitioned into two folds of 23 hours of speech. The audio data was processed

into perceptual linear prediction features and then transformed into a phone posteriorgram

representation using a hierarchical MLP with 9 context frames. We then extracted phonetic

events from posteriorgram data using phonetic matched filters as described in [67] with a

threshold of δ = 0.24.

As detailed in Chapter 4, we assembled a list of 1521 keywords from the WSJ

corpus with minimum average duration of 200 ms, a minimum of 4 phones, and which

occurred at least 10 times in each data fold. For each keyword and each data fold, we

computed keyword model parameters θw using all available keyword examples in that fold.

The models in these experiments were based on MLE parameter estimates so performance

depended on the number of keyword examples. Models from one fold were used to search

for keywords in the other fold, and detections were declared at local maxima of dw(t) above

threshold δw. Detections within 100 ms of the beginning of the keyword in the transcript

were marked as correct. Multiple correct detections of the same keyword were discarded,

and all other detections were recorded as false alarms. For the results listed in Table 6.1, we

calculated average figure of merit (FOM), the mean detection rate given 1, 2, . . . , 10 false

alarms per keyword per hour as the threshold δw was varied.

We evaluated four versions of the decoding algorithm: (i) the frame-by-frame,

direct implementation of Equation (6.2); (ii) the simple (1-segment) upper bound using
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φmax,p; (iii) a 3-segment upper bound; and, (iv) a D-segment upper bound with a maximum

number of segments D = 10. All versions were coded in Java, but we also include results

for a C++ version of (iv). In computing the real-time speedup (RTS), we included in the

processing time the overhead of reading phonetic event data, scoring the detections, and

saving the results. These results represent processing on a single-core of a 2.66-GHz Intel

E5430 Xeon processor. The relative performance is plotted in Figure 6.10.

In Table 6.1 we observe that compared to the direct implementation of the detec-

tion function, computing the simple upper bound is 57 times faster, but results in a 75%

relative decrease in average FOM. A simple 3-segment upper bound on φp,d reduces speed

by only 8% yet recovers almost all of the previous loss in FOM. Finally, a D-segment bound

is 13% slower than the simple bound, but offers virtually identical FOM performance as the

direct implementation. Finally, we note that with a C++ implementation of the D-segment

bound, we can obtain search speeds in excess of 500,000x faster than real-time.

0 100 200 300 400 500

fully segmented upper bound (C++)

fully segmented upper bound (java)

3−segment upper bound (java)

simple upper bound (java )

direct implementation (java)

Decoding speed (1000x real−time)

Figure 6.10: Relative search speed performance of various decoding algorithms in terms of
real-time factors.
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Table 6.1: Comparison of median FOM and search speed on 1521 keyword set using various
decoding algorithms.

algorithm FOM ∆FOM Speed (RTS)

direct implementation (java) 70.9 – 7,483
simple upper bound (java) 17.9 -74.7% 431,594
3-segment bound (java) 68.4 -3.5% 397,752
D-segment bound (java) 70.5 -0.5% 374,195
D-segment bound (C++) 70.5 -0.5% 524,189

6.6 Conclusions

In this chapter we have presented a novel framework for keyword search in which

speech is represented as a sparse set of phonetic impulses and keyword detection is imple-

mented as convolution with an ensemble of filters. By approximation with an upper bound,

we have shown that the point process model keyword detection function can be cast in this

framework. Finally, we have demonstrated keyword search experiments which averaged

better than 500,000x faster than real time with only negligible loss in FOM. The ability to

conduct rapid keyword searches is a key advantage of the point process model approach and

makes it possible to consider queries on very large volumes of speech data. This attribute

will be highlighted in Chapter 7.
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Chapter 7

Spoken Term Detection on

Conversational Telephone Speech

Previous chapters have been focused on improved model estimation techniques and

efficient search algorithms, but evaluations have been limited to searching relatively easy

scripted corpora for simple unigram queries. In this chapter, we introduce techniques for

score normalization and the processing of multi-word and out-of-training query terms as re-

quired by the 2006 NIST Spoken Term Detection (STD) evaluation, permitting the first com-

prehensive benchmark of PPM search technology against state-of-the-art word and phonetic-

based search systems. We demonstrate the PPM system to be the fastest phonetic system

while posting accuracies competitive with the best phonetic alternatives. Moreover, we show

that PPM index construction time and size are better than any keyword search system en-

tered in the NIST evaluation.
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7.1 PPM for spoken term detection

Previous evaluations of PPM keyword search compared system performance to

older HMM-based keyword-filler approaches on relatively simple datasets. To establish a

more definitive benchmark against other well documented STD systems, we decided to

quantify PPM performance on the 2006 NIST STD evaluation. To complete this evalua-

tion, we addressed several challenges necessary for extending PPM techniques to the task

of spoken term detection on conversational telephone speech. Earlier PPM experiments

considered the modeling and search for single-word queries and assumed that training ex-

amples for all words were available. In contrast, the 2006 NIST STD evaluation plan [73]

required the search for “terms” defined as sequences of consecutively spoken words with

gaps of up to 0.5 seconds allowable between words. In the following section we consider the

modeling of multi-word terms as single units in the PPM framework and briefly address

performing multi-word queries by searching for the individual term subcomponents. Be-

yond the issue of multi-word search terms, the 2006 STD evaluation also necessitated the

development of techniques to handle queries which do not appear in training, specifically in

the PPM context, the need to estimate word duration absent any word examples. Building

from earlier work in Chapter 5, we introduce a Monte-Carlo approach for estimating word

duration distributions. Finally, maximization of the actual term-weighted value (ATWV)

performance metric used in the NIST evaluation requires accurate assessment of detection

confidence level, so we consider the normalization of PPM detection scores.
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7.1.1 Whole-word modeling approaches to multi-word terms

We considered four approaches to handling multi-word terms. The first and most

basic is a simple concatenation of the phonetic forms of the individual terms. For example,

the search term “health insurance” would be constructed from the phonetic (dictionary)

form for “health” concatenated with the phonetic form for “insurance.” A word model

is constructed directly from the phonetic sequence using equidistantly spaced Gaussian

distributions with a fixed variance (see dictionary-based models in Section 4.5). We refer to

this as the simple dictionary concatenation and it has the advantage of requiring no actual

training examples.

In all previous work we have found that long keywords are much easier to identify

than short ones, and we expect multi-word terms to be consistent with this finding. However,

word model performance is also highly correlated with number of word examples available,

and it is likely that we will observe fewer examples of multi-word terms in their entirety. We

have previously demonstrated in Chapter 4 that MAP estimation is an effective technique for

synthesizing word models from few training examples. Therefore, beginning with a simple

dictionary concatenation model prior, we incorporate all the training examples of the term

to compute a MAP-estimated whole-word model. We refer to this as a MAP-estimated

model using a simple dictionary prior.

Multi-word terms offer another possible approach. It is very likely the case that we

have many more examples of the individual words which comprise a multi-word term than

we have complete examples of the multi-word term. For instance, for “health insurance”

it is probable that there are numerous examples of the individual components “health”

112



CHAPTER 7. SPOKEN TERM DETECTION ON CONVERSATIONAL TELEPHONE
SPEECH

Table 7.1: A comparison of multi-word modeling techniques of 571 multi-word terms on
the Switchboard development corpus.

model id description ATWV

ppm1 simple dictionary concatenation 0.4002
ppm2 MAP-estimated using simple 0.4925

dictionary (ppm1) prior
ppm3 concatenated MAP-estimated unigram prior 0.5179
ppm4 MAP-estimated whole-word using 0.5247

unigram (ppm3) prior

and “insurance.” This offers the possibility of improving our prior model by starting with

individual MAP-estimated models of the words “health” and “insurance,” and then con-

catenating them together to form an improved prior. We refer to this as a concatenated

MAP-estimated unigram prior. Finally, the few examples of the complete multi-word term

can then be used in a new MAP-estimated model which starts from this improved prior.

To evaluate the relative performance of these approaches, we constructed an STD

experiment on 230 hours of the Switchboard dataset and considered detection performance

on multi-word terms. Results are listed in Table 7.1. While significant gains are evident

between the simple dictionary prior and the MAP-estimated model, the more sophisticated

prior and subsequent MAP estimation yielded smaller improvements.

As an alternative to modeling a multi-word term in its entirety, we also considered

searching for a term as the ordered union of sub-term detections with loose constraints

on timing. Conceivably, this approach has two immediate advantages. First, individual

words or sub-term models can be constructed independently which permits flexibility in

the creation of detailed models. Second, detections of word sequences with intermediate

silences are possible. Unfortunately, this method also raises a number of other issues such as

how best to assign scores to multi-word detections. Additionally, conducting independent
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searches does incur a search speed performance hit. After some preliminary experiments,

we determined that further investigation was not warranted.

7.1.2 Duration modeling of unseen terms

The estimation of word duration is an integral component of PPM search. In

its most basic form, searching for a keyword consists of sliding a set of windows over the

set of phonetic events and the evaluating the log-likelihood of events under the keyword

model. Since the duration of a candidate detection is not known a priori, we consider a

set of possible candidate duration windows which are drawn from an estimate of the word’s

duration distribution. In earlier PPM work with TIMIT in [29] and Chapter 3, every

keyword had 462 training examples, sufficiently many to use the empirical distribution. For

later experiments on the Wall Street Journal (WSJ) corpus, the number of training examples

for each keyword was much lower and use of the empirical distribution was infeasible.

In its place, we adopted a parametric description of word duration based on the gamma

distribution.

Handling words for which zero training examples exist requires an alternative

approach, and we considered three. Admittedly crude, our first approach was to compute

distributions based solely on the number of phones in a word’s canonical dictionary form.

We simply pooled all word examples of a given phone count and computed MLE estimates

for the gamma distribution parameters. For a second and more sophisticated model, we

compiled duration models for all the constituent phones. Then, utilizing a technique similar

to the Monte Carlo method in Section 5.1.2, we constructed Monte Carlo samples of word

duration by sampling from the distributions of the constituent phone duration models and
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then estimated MLE gamma parameters from the Monte Carlo word duration examples.

Clearly, this model failed to capture any dependencies due to phonetic context on phone

duration.

The identical problem was addressed in Section 5.1.3 using a classification and

regression tree (CART) approach inspired by text-to-speech synthesis work. In that work,

phone duration models were estimated from the pool of examples at each node of the

regression tree. Here, we opted for a simpler method to incorporate phonetic context.

Our goal was to estimate phone duration models for all phonetic contexts as permitted by

the number of examples available. We began by collecting pools of duration examples for

each trigram phone context. Of course, many of the O(403) possible combinations appear

relatively infrequently, so if a context contained fewer than 100 examples, we backed off to

the corresponding bigram phone context (and likewise from bigram to unigram). Having

established the pools of examples, we then estimated gamma parameters of the duration

model of each context. Finally, the estimation of a word duration model proceeded as before

with Monte Carlo word duration examples constructed from these context-dependent phone

duration models.

To evaluate these three approaches, we considered 230 hours of Switchboard data

partitioned into two folds. Assessment was based on computing the likelihood of the word

durations observed in one data fold based on training data from the opposite fold using

each modeling approach. These results are depicted in Figure 7.1 which shows average

word likelihood as a function of word phone count. The context-dependent estimation

approach (labeled Monte Carlo (3g) in Figure 7.1) proved to be the best and was adopted
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Figure 7.1: Evaluation of word duration modeling approaches. Word duration models were
estimated on half the development data and likelihood was computed for the corresponding
word examples on the other half of the data. Likelihood was averaged over all words of a
given phone count for each of the four modeling approaches.

for all subsequent experiments.

7.1.3 Score normalization

A critical element in properly assessing detections is the conversion from a de-

tection score into the estimated probability of a detection. PPM keyword detections are

marked at the local maxima of the detection function (a log-likelihood ratio) as detailed

in Section 2.3. A suitable cutoff point for reliable detections varies with the number of
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phones in a word. In previous evaluations on TIMIT and WSJ datasets, keyword search

performance was reported in terms of average figure of merit and an absolute detection

threshold was not required. For the 2006 NIST STD evaluation, the performance metric is

ATWV which requires the specification of a uniform decision threshold and a binary deci-

sion associated with each putative detection. To map PPM detection scores to a detection

probability, we trained a log-linear model using keyword detections from a comparable STD

experiment on Switchboard development data. In addition to PPM score, the model also

used the logarithm of the keyword duration as an input parameter. These estimates of

detection probability also enabled us to calculate expected counts of search terms which is

necessary for the use of term-specific thresholding in ATWV calculation as described in [74].

7.2 Experiments

Prior to testing on the 2006 STD evaluation data, we conducted extensive develop-

mental work on a 230 hour portion of the Switchboard corpus in order to assess the methods

described in the previous section (multi-word modeling, duration modeling of unseen terms

and score normalization). We created a Switchboard term list with a composition roughly

the same as the 2006 STD evaluation term list in percentages of multi-word terms. For

acoustic models, we trained 5-layer deep neural networks to estimate posterior probabilities

for 40 phonetic classes, and used them for all subsequent experiments. The Switchboard

audio was transformed into 476-dimensional FDLP-M feature vectors [75] and subsequently

used to train 5 multilayer perceptrons each of size 476×1500×1500×1500×40 using 5-fold

cross validation training. We then processed the phone posterior data into phonetic events
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using phonetic matched filters as described in [67]. Finally, the data was partitioned into

two data folds for PPM training and evaluation.

Having completed developmental work on Switchboard, we then performed a series

of trials using the 2006 NIST STD evaluation data, and the resulting XML detection list

was scored using the original NIST STDEval tools. STD results are reported at the bottom

of Table 7.2 for ppm4 multi-word models (see description in Table 7.1) along with the

results of systems in the original 2006 evaluation. In addition to STD performance, we

also provide data on system processing requirements. Additionally, in Table 7.3 we provide

system hardware descriptions and processor benchmark data.

7.2.1 Reference systems

To provide context for the PPM system performance, we have included the results

from notable LVCSR and phonetic STD systems in the 2006 evaluation (available at [76]).

Overall, BBN fielded the top performing entry in the category of English conversational

telephone speech (CTS) achieving an ATWV of 0.8335 [74]. The structure of BBN’s system

consisted of a large-vocabulary, HMM-based speech recognition system to process audio

into deep word lattices upon which word posterior probabilities were estimated and a word

index was generated. Multi-word term detections were determined by locating sequences

of constituent words in the index that satisfied ordering and timing constraints. A key

advantage of the BBN system over similar LVCSR entries came from the determination of

an optimal detection threshold for each term using the expected term counts from word

posterior probability estimates. Another notable entrant was the LVCSR system from IBM

which achieved an ATWV of 0.7392 [70]. Both of these entries benefited tremendously from
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the presence of a large language model, which provided better estimates of word posterior

probabilities (especially for short words) compared with systems that relied on phonetic

likelihoods alone.

In contrast to the LVCSR systems, we also present two phonetic-based systems

from Brno University of Technology (BUT) and Queensland University of Technology

(QUT). The top performing phonetic system fielded by BUT achieved an ATWV of 0.2977.

In this system the acoustic models, trained on 277 hours of primarily Switchboard data [77],

were the same used in BUT’s LVCSR-based primary system except that the decoding pro-

duced phoneme lattices using a phoneme bigram language model. Locating candidate detec-

tions was performed by converting the search term into a phonetic sequence using grapheme-

to-phoneme tool and then obtaining candidate sequences of overlapping phoneme trigrams

from an inverted index of the phone lattice. Next, candidate sequence scores were derived

from the ratio of the likelihood of the term’s phone sequence to the likelihood of the best

path in the phone lattice [78].

The QUT system was also based on phonetic lattice search and it yielded an

ATWV of 0.0873. As described in [79], tied-state triphone HMM acoustic models were

constructed using PLP acoustic features with a bigram phone language model to generate

phonetic lattices. Next, a hierarchical index of the phone sequences and broad phone class

(vowels, nasals, etc.) sequences was constructed. Query terms were converted into phonetic

sequences, and then a technique termed Dynamic Match Lattice Spotting (DMLS) [80]

returned putative detections of the sequences in the lattice using minimum edit distance to

allow for phonetic substitutions.
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In terms of performance, the PPM approach to STD falls in between that of BUT

and QUT’s phonetic-based entries. The QUT system accomplishes relatively fast lattice-

based search, however, we observed that the inherently sparse representation of the PPM

system permits it to search 8 times faster than DMLS with more than twice the accuracy

(note: this value has been normalized based on relative processor speed benchmarks in

Table 7.3). On the other hand, the BUT approach trades speed for accuracy and achieves

the best ATWV for phonetic-base systems. Nonetheless, our PPM results are 75% of BUT’s

accuracy while operating 400-times faster (also normalized) with a significantly smaller

footprint.
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7.2.2 System description and processing resources

In addition to detection results, the 2006 STD evaluation also required participants

to report resource and processing utilization for both indexing and search. In general, pro-

cessing time is roughly 10 times slower than real time for producing LVCSR word lattices.

Phonetic lattices contain significantly more connections and require even more processing

time. In the PPM system, what we call an “index” is just the collection of phonetic events.

In addition to being very compact, its creation is a relatively straightforward process of

feature extraction, MLP forward-pass, and matched filtering of the resulting phone posteri-

orgrams. The extraction of phonetic events from audio can be accomplished at roughly 17

times faster real time. We should note that in the phonetic event production pipeline, only

the MLP software currently takes advantage of the GPU; feature extraction and filtering

code is not currently GPU aware. Table 7.2 shows both GPU and non-GPU performance.

For search, both LVCSR systems achieve very fast search times thanks to the

inverted word index. Searching a phonetic lattice is a more complex endeavor [78,80]. The

BUT triphone lattice is three orders of magnitude larger than its corresponding LVCSR

word lattices and search is three orders of magnitude slower. The DMLS approach in the

QUT phonetic system is somewhat faster. The PPM search, while fairly fast, is still basically

a linear search. However, phonetic events represent an extremely sparse representation of

speech, and search speed benefits because of the tiny index size. The quoted index size of

492KB for 3 hours of speech represents an uncompressed index (compression such as gzip

provides a further 20% reduction in this case).

The extremely compact size of the PPM index is a significant advantage of our
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approach. It permits our system to consider extremely large volumes of audio data without

being overwhelmed by either processing time or storage considerations. Additionally, the

small memory footprint required by phonetic events will permit our approach to be ported

to multiprocessor devices (GPU) enabling extremely fast parallel search.

In evaluating the relative system performance, it is necessary to consider the com-

putation speed of the systems at the time of the original evaluation. To offer some per-

spective on the relative speed, we present system descriptions and benchmarks in Table 7.3.

Overall the t02 GPU machine is roughly 3-4 times faster than 2006-era machines and a07

is approximately twice as fast.

7.3 Conclusions

In this chapter we have addressed many of technical challenges required to enable

the PPM system to accomplish spoken term detection. Furthermore, this study provides the

first side-by-side comparison of a PPM system for spoken term detection in the context of

other well documented systems on a standard evaluation dataset. Unquestionably, LVCSR-

based systems will outperform systems that do not currently benefit from a language model.

Yet, we clearly observe that PPM keyword search achieves performance results competitive

with other state-of-the-art phonetic-based systems. More significantly, PPM keyword search

accomplishes this while requiring a fraction of the computational and storage resources.

124



Chapter 8

Conclusions

The body of work contained in this dissertation records the many significant im-

provements to various components of the point process model for keyword search which

enabled its evolution from proof-of-concept experiments on TIMIT into a fast, lightweight

spoken term detection system for conversational speech that is competitive with other well-

documented phonetic STD approaches. Underlying the modeling decisions which give rise

the point process framework is the notion that speech is the product of the physical move-

ment of articulators, and thus robustly coded by temporal relations between distinct acous-

tic events. While the use of phonetic events is a departure from the original conception

of acoustic landmarks and distinctive binary features of [18], it significantly facilitates sys-

tem development by enabling compatibility with a wealth of existing phonetic recognition

systems and labeled training resources while preserving the essential whole-word temporal

structure of distinct events in time. Studies of human physiology have a well-developed un-

derstanding of the spectral-resolving ability of lower levels of the auditory system, and this
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knowledge has long been reflected in speech feature design. However, the use of short term

analysis windows that is common to all HMM-based recognizers has no parallel in human

speech perception [81]. On the other hand, strong evidence exists for the preeminence of

temporal cues in human recognition from the robustness of human recognition to corrup-

tion of spectral information [33] to the inability of children with basic temporal processing

deficits to develop language skills normally [38]. The HMM framework is mathematically

tractable because of the assumption of conditional independence, but this condition renders

HMMs ill-suited to model long-term correlations between variables.

The first aspect of the point process model considered Chapter 3 was the deriva-

tion of phonetic events. As an alternative to drawing events from the local maxima of

unfiltered phone posterior trajectories, we instead considered trajectories smoothed using

phone-specific matched filters. Filtering had the effect of integrating posterior estimates

over a long windows. A secondary benefit was the resulting reduction in the number of

events towards a minimal representation consisting of one event per phone, an attribute

which greatly simplified parametric modeling approaches developed in Chapter 4. A nec-

essary component of phonetic event selection is the determination of an appropriate event

threshold which we addressed using a mutual information based event selection metric.

Experiments detailed in Chapter 3 demonstrated the use of events derived from filtered

posteriorgrams reduced the number of events by 40% and simultaneously improved average

keyword search performance by 23% [67].

As documented in [29], a basic deficiency limiting the utility of the point pro-

cess modeling of keywords was the need for numerous keyword training examples. The

126



CHAPTER 8. CONCLUSIONS

parametric approaches developed in Chapter 4 addressed this limitation. An examination

of phonetic event distributions in length-normalized word examples suggested that they

could be properly modeled using Gaussian distributions. Further, this finding suggested

that variation in parameter estimates arising from insufficient examples could be mitigated

through Bayesian estimation techniques and a natural prior estimate could be derived from

the word’s phonetic form. An equally important finding was the necessity of introducing

phonetic variation into the models which was also incorporated in the Bayesian approach.

Besides TIMIT experiments, we further evaluated these techniques on the significantly

larger Wall Street Journal corpus and demonstrated a 97% relative improvement in key-

word search performance when limited keyword examples were available [68]. The modeling

techniques developed in Chapter 4 were fundamental to all subsequent work.

Substantial improvements in keyword search performance were realized in Chap-

ter 4 through a Bayesian approach to model parameter estimation using the simplest prior

model of phonetic timing. In Chapter 5 we examined several improved methods of estimat-

ing prior models using techniques inspired by text-to-speech synthesis. Applying a Monte

Carlo approach, we estimated the means and variances of phonetic timing distributions

by sampling examples of words synthesized from individual phone duration distributions.

To capture contextual dependencies between phones, we adapted a CART model to learn

context dependent distributions. Ultimately, these more complex approach to estimating

phone-timing distributions yielded a modest 4.2% relative improvement in average FOM

compared to using a simple dictionary models [82].

Distinct from frame-by-frame, dense representations and Viterbi decoding, the
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PPM keyword system is inherently lightweight due to its sparse representation of the speech

signal and had the potential of achieving extremely fast search speeds. In Chapter 6, we

reformulated the process of keyword detection to capitalize on this sparse phonetic event

representation. Factoring the keyword detection function revealed that it could be simplified

into a sum over the product of phonetic event counts and a score matrix. Further, it

facilitated the determination of an upperbound on the keyword detection function. We next

demonstrated how the evaluation of the detection function could be inverted; instead of a

frame-by-frame sliding evaluation we proceed event-by-event and only accumulate changes

in the score. These refinements resulted in a factor of 50 times improvement in decoding

speed [83].

In Chapter 7 we drew upon all of the advances previously introduced in order to

benchmark the performance of the point process model relative to other phonetic keyword

search systems on the NIST 2006 STD evaluation. In addition to addressing the modeling

of multi-word terms, we also introduced improvements to word duration modeling and

detection score normalization necessary for ATWV calculation. Notably, these experiments

marked the first trial of a PPM system on conversational telephone speech data. The NIST

2006 STD evaluation results showed that PPM keyword search performs on par with other

state-of-the-art phonetic-based systems, furthermore it accomplishes this significantly faster

and while requiring a fraction of the computational and storage resources.
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8.1 Future directions

In Chapter 6 we demonstrated the potential of PPM methods to achieve extremely

fast search speeds, and these techniques were employed in the STD evaluation reported in

Chapter 7. The end-to-end processing time numbers listed in Table 7.2 were a concatenation

of the times for several sequential operations from feature extraction to MLP forward pass

to PPM keyword search. While only the MLP computations currently benefit from the

use of GPUs, we believe the point process keyword search could also benefit tremendously.

In current implementations, keyword search is accomplished sequentially one word at a

time but every search operates on the same set of phonetic events and only differs in the

word model being evaluated. The process is a natural candidate for parallelization since

the algorithm is simple, requiring mainly addition operations, and does not have a large

memory footprint. The ideal implementation for PPM search would be to simultaneously

evaluate all keywords in a single pass through the data.

The improvements to point process modeling, decoding and other enhancements

have enabled the PPM system’s viability relative to other phonetic systems while requiring

significantly less processing overhead. Yet, common to all phonetic-based systems, a per-

sistent gap in performance still exists between phonetic and LVCSR approaches. Without

question, the source of this discrepancy is the tremendous power of language modeling in

the estimation of the likelihoods of alternative decodings. Methods of incorporating lan-

guage modeling into the estimation of PPM word detection scores is an obvious area for

future investigations. This effort would naturally benefit from the simultaneous search for

all keywords suggested in the previous paragraph. Additionally, the decoding algorithm
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would likely benefit from changing the denominator term of the likelihood ratio. Instead

of considering the likelihood of a background model, we could instead consider likelihood

relative to all other words.
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