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ABSTRACT 

The crucial role of structural support fulfilled by keratin intermediate filaments 

(IFs) in surface epithelia likely requires that they be organized into crosslinked networks.  

For IFs comprised of keratins 5 and 14, found in basal epidermal keratinocytes, formation 

of crosslinked bundles is, in part, self-driven through cis-acting determinants.  Here, we 

targeted the expression of a bundling-competent KRT5/KRT8 chimeric cDNA (KRT8bc), 

or bundling-deficient wildtype KRT8 as a control, to the epidermal basal layer of Krt5 

null mice to assess the functional importance of keratin IF self-organization in vivo.  We 

report that targeted expression of K8bc rescued Krt5 null mice with ~47% frequency, 

while K8 failed to rescue.  This outcome correlated with lower than expected levels of 

K8bc and especially K8 mRNA and protein in the epidermis of E18.5 replacement 

embryos.  Electron microscopy of E18.5 embryonic skin revealed that the defects 

observed in filament bundling, cytoarchitecture, and mitochondria are partially restored 

by KRT8bc expression.  As young adults, viable KRT8bc replacement mice develop 

alopecia and chronic skin lesions, indicating that the skin epithelia are not completely 

normal.  These findings are consistent with a contribution of self-mediated organization 

of keratin IFs to structural support and cytoarchitecture in basal layer keratinocytes of the 

epidermis, and underscore the importance of context-dependent regulation for keratins in 

vivo. 

Structural support is not the only function fulfilled by K5 in skin.  A recent 

genome-wide association study has identified novel single nucleotide polymorphisms 

(SNPs) altering the K5 coding sequence and conferring an increased susceptibility to 
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basal cell carcinoma (BCC).  We conducted an initial assessment of the properties of the 

K5 variants G138E and D197E in cultured HeLa cells.  We found that these two keratin 

variants readily integrate into endogenous filament networks of HeLa cells, and do not 

exhibit any egregious assembly properties.  We also show that these mutants do not alter 

the expression of early effectors in Sonic hedgehog (Shh) or Wnt signaling pathways.  

Relative to wildtype, expression of these KRT5 variants alter the RNA expression of two 

inflammatory cytokines, CCL2 and CXCL5.  These findings point to a possible 

mechanism by which KRT5 SNPs may increase BCC susceptibility. 
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INTRODUCTION 
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The Keratin Gene Family 

The most basic form of life on the planet is the cell, and all cells have some form 

of a cytoskeletal network.  In metazoans, this cytoskeleton consists of three fibrous 

polymers: microfilaments, intermediate filaments, and microtubules.  Together, these 

cytoskeletal proteins fulfill many functions in the cell, including maintenance and 

modification to cell shape, the ability to form cellular structures and appendages, cell 

division, locomotion within their environment, and the ability to fend off stress. 

Intermediate filaments can be categorized into a variety of subtypes according to 

their gene structure and sequence homology (Fig.  1.1).  Intermediate filaments (IFs) 

were first described in muscle by Holtzer and colleagues as 10nm-wide filamentous 

elements, thus distinct from and intermediate in diameter relative to the already known 

actin filaments (6nm) and microtubules (23nm) (Ishikawa et al., 1968).  Although IF-

forming cytoskeletal proteins are quite diverse, they all share a similar tripartite domain 

structure.  The hallmark of this structure is a central rod domain, which is 310 amino 

acids long in virtually all IF proteins and consist of four α-helical subdomains separated 

by three short non-helical linker segments (Fig 1.1).  This central rod domain is flanked 

by a head domain and a tail domain at the amino- and carboxy-terminal ends of the rod 

domain, respectively (Steinert and Parry, 1985).  These head and tail domains vary 

greatly between members of this superfamily in both length and primary structure.  

Keratins make up the majority of this protein superfamily, accounting for 54 of the 70 

functional IF genes in humans (Chung et al., 2013).  Keratin genes can be further divided  
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Figure 1.1: Introduction to Intermediate Filaments (IFs).  A) Classification of IF 

genes and proteins by type, according to gene substructure and sequence homology, and 

cell type-specificity of their distribution in the body (note: the latter list is partial).  B) 

Visualization of assembled 10nm-wide IFs reconstituted from purified recombinant 

proteins (the type II K5 and type I K14; human) by negative staining and transmission 

electron microscopy.  Bar equals 100nm.  C) Schematic representation of the common 

tripartite domain structure shared by all IF proteins.  A central rod domain, comprised of 

heptad repeat-containing α-helical coils 1A, 1B, 2A, and 2B and separated by non-heptad 

repeat-containing linkers L1, L12, and L2, is flanked by ‘head’ and ‘tail’ domains of 

variable length and primary structure at the N-termini and C-termini, respectively.  The 

boundaries of the rod domain (see blue bars) are highly conserved in primary structure 

among IF proteins.  Image reproduced with permission from Chung et al., 2013. 
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Figure 1.1: Introduction to Intermediate Filaments (IFs).  
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into two types: type I, of which there are 28 functional genes encoding smaller sized 

proteins (range: 40-64 kilodaltons [kDa]) with an acidic isoelectric point, and type II 

keratins, of which there are 26 genes encoding proteins of a slightly large size (52-67 

kDa) and a basic to neutral isoelectric point (Moll et al., 1982). 

Assembly of 10nm filaments is initiated by the association of one type I keratin 

and one type II keratin associate along their central α-helical rod domain, in register and 

parallel orientation, to form a structurally asymmetric coiled-coil dimer (Herrmann and 

Aebi, 2004).  Two of these type I/ type II keratin heterodimers then associate with each 

other, in a staggered and antiparallel fashion, resulting in structurally symmetric 

heterotetramers (Herrmann and Aebi, 2004; Bernot et al., 2005).  These heterotetramers 

interact with each other, end-to-end and along their lateral surfaces, to give rise to mature 

10nm filaments (Herrmann and Aebi, 2004; Kim and Coulombe, 2007; Lee et al., 2012). 

On average, mature 10nm filaments are comprised of 32 polypeptide chains across their 

width, which are organized into four so-called protofibrils intertwined along the main 

axis of the fiber (Herrmann and Aebi, 2004; Kim and Coulombe, 2007; Lee et al., 2012). 

The resulting filaments interact with each other, with cell-cell and cell-matrix junctions, 

and with the nuclear surface to form a classic pan-cytoplasmic network (Fuchs and 

Cleveland, 1998; Coulombe and Wong, 2004; Wilhelmsen et al., 2005). 

Organization and Regulation of Keratin Gene Expression 

All functional type I and type II keratin genes are clustered on the long arms of 

chromosomes 17 and 12, respectively, in the human genome, an arrangement that is 
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conserved in other mammalian genomes (Hesse et al., 2004).  The only exception is the 

gene encoding the type I keratin 18, which is located at the telomeric end of the type II 

cluster (Waseem et al., 1990).  This peculiar organization has implications for the 

evolution and regulation of keratin genes (Waseem et al., 1990), but is poorly understood 

at present. 

Because filament assembly is initiated with one of each type of keratin proteins, 

the regulation of keratin genes is tightly regulated in a pairwise fashion, with type I and 

type II proteins being expressed in specific epithelial compartments (Moll et al., 1982; 

Tyner and Fuchs, 1986).  For example, cells in the stratum basale (basal layer) of skin 

epidermis express the type II keratin 5 (K5) and the type I keratins 14 and 15 (K14 and 

K15) (Fuchs and Green, 1980; Nelson and Sun, 1983; Lloyd et al., 1995).  Upon 

commitment to terminal differentiation program, the expression of these keratins is down 

regulated at the transcriptional level, and the expression of the type I keratin K10 and the 

type II keratin K1 is initiated (Fuchs and Green, 1980; Woodcock-Mitchell et al., 1982).  

This shift in keratin expression occurs concomitantly with the cell’s exit from the basal 

compartment and from the cell cycle, and its entry into the stratum spinosum (spinous 

layer) of the epidermis.  Eventually, expression of the type II keratin K2e is initiated in 

the stratum granulosum (granular layer), which corresponds to a more advanced stage of 

terminal differentiation (Collin et al., 1992; Fuchs, 1995).  Finally, cells complete their 

differentiation program and become metabolically-inactive squames, which make up the 

stratum corneum (cornified layers) of the mature epidermis (Fuchs and Green, 1980).  In 

contrast, simple epithelia, e.g., the liver, intestinal tract, and pancreas, primarily express 
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the type II keratins K7/K8 and type I keratins K18, K19, and K20 in combinations that 

are often specific to the tissue (Ku et al., 1999).  For example, hepatocytes express K8 

and K18 exclusively, while the epithelial cells which line the colon also express K19 and 

K20 (Ku et al., 1999). 

The mechanism behind this tight, context-specific regulation of keratin genes is 

an area of active research.  Work in the context of skin epithelia has revealed a unique set 

of binding sites in the promoters of keratins, which overlap in keratin pairs that are 

expressed in specific contexts (Leask et al., 1991; Byrne et al., 1994; Sinha et al., 2000).  

In the case of human KRT5 and KRT14 genes, expression is restricted to the basal cell 

layer in the epidermis by interaction of a combination of transcription factors with 

regions located upstream of the coding region of the genes (Leask et al., 1991; Byrne et 

al., 1994).  Transcription factors such as AP-2 and Sp1 have been shown to be positive 

regulators of the expression of these genes in basal cells (Byrne, 1997).  Conversely, 

POU domain proteins have been shown to negatively regulate the expression of these 

genes in the suprabasal layers of the epidermis (Andersen et al., 1997; Faus et al., 1994).  

Other transcription factors and regulators, including NF-κB and Notch, have also been 

shown to be involved in this complicated regulation paradigm (Seitz et al., 1998; Wang et 

al., 2008). 

Keratins are also regulated at the protein level through several types of post-

translational modifications.  For example, phosphorylation of keratins was first described 

in 1978, and has since been shown to play an important role in regulating keratins (Sun 

and Green, 1978; Omary et al., 2006; Snider and Omary, 2014).  The importance of this 
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modification is reflected by the presence of numerous potential serine/threonine 

phosphorylation sites in their non-helical head and tail domains (Omary et al., 2006; 

Izawa and Inagaki, 2006; Snider and Omary, 2014).  The effect of this post-translational 

modification is, like the keratin proteins themselves, context- and protein- specific (Pan et 

al., 2013; Snider and Omary, 2014).  Since keratin filaments are stable structures within 

the cell, one mode of action of phosphorylation is to regulate the solubility of keratin 

assembly subunits (Nishizawa et al., 1991; Yano et al., 1991; Izawa and Inagaki, 2006).  

For instance, cells undergoing mitosis often reorganize their IF network, and this is 

achieved in part through site-specific phosphorylation (Nishizawa et al., 1991; Yano et 

al., 1991; Toivola et al., 2002; Woll et al., 2007).  Phosphorylation-based regulation of 

IFs also takes place in cells responding to stress or undergoing apoptosis (Toivola et al., 

2002; Ridge et al., 2005; Liao et al., 1997).  It is clear from these studies that 

phosphorylation of keratin proteins on residues located in the C-terminal tail and 

especially the N-terminal head domains induces a reorganization of the filament structure 

(Omary et al., 2006; Snider and Omary, 2014). 

Keratin filaments tend to be long-lasting structures in the epithelial cells in which 

they occur (Omary et al., 2006).  They can be, however, very dynamic depending on the 

biological context.  While phosphorylation of keratin proteins or their interaction with 

cellular proteins (e.g., 14-3-3 proteins) play a role in the reversible reorganization or  

disassembly of filaments into their constituent tetramers, the ubiquitin-proteasome 

pathway is involved in the irreversible degradation of their constituent proteins (Rogel et 

al., 2010).  In this pathway, ubiquitin is covalently attached to target proteins via a three-



9	  
 

enzyme cascade (Ciechanover and Schwartz, 1998).  The first two steps of this cascade, 

the activation of the ubiquitin molecule by E1 and the transfer of the ubiquitin to a 

conjugating enzyme by E2, are generally conserved among the many targets within a cell 

(Ciechanover and Schwartz, 1998).  The final step of covalently linking ubiquitin to 

target proteins is carried out by E3 ubiquitin ligases, which are unique to the proteins 

targeted (Ciechanover and Schwartz, 1998).  A number of stress-related E2 enzymes have 

been implicated in keratin ubiquitylation, including UbcH5b, UbcH5c, Ubc3, and Ubc6 

(Jaitovich et al., 2008; Na et al., 2010; Rogel et al., 2010).  While the E3 ligases specific 

to wildtype keratins are still unknown, the chaperone-associated E3 ligase CHIP/STUB1 

has been shown to target mutant keratins for degradation (Loffek et al., 2010).  This is 

also relevant in the context of human diseases, as both wildtype and mutant keratin 

proteins often form cellular aggregates in keratinopathies (Ku et al., 1996; Jaitovich et al., 

2008; Rogel et al., 2010; Loffek et al., 2010). 

Other post-translational modifications have also been shown to impact keratin 

regulation and dynamics.  For instance, O-linked N-acetylglucosamine glycosylation and 

SUMOylation have both been shown to regulate filament organization (Srikanth et al., 

2010; Snider et al., 2011).  Modification of keratin proteins with these and other adducts 

alters the protein surfaces available for protein-protein interactions.  As such, the 

interactome of modified keratin proteins is likely different from that of unmodified 

keratins (Pan et al., 2013).  For example, in the context of cellular stress, keratins are 

ubiquitylated in a phosphorylation-dependent fashion, indicating a bridge between these 

two post-translational modification pathways (Ku and Omary, 2000; Kwan et al., 2012).  
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Elucidating the roles of these post-translational modifications and differentially-

interacting proteins is an area of emerging discoveries.  Another fruitful field of 

investigation is the role of these post-translational modifications in non-mechanical 

functions distinct from filament reorganization.  These non-mechanical functions will be 

discussed in a later section of this dissertation. 

Keratin Intermediate Filaments Impart Structural Support to Epithelia 

The complex and context-specific regulation of keratin genes and proteins reflect 

their important functions in epithelia.  Clues of these functions were first uncovered by 

expressing cDNAs of keratin 14 deletion mutants in cells (Albers and Fuchs, 1987; 

Albers and Fuchs, 1989; Coulombe et al., 1990).  The protein products of these cDNAs 

were shown to have a dominant and negative effect on the existing filament network in 

cells (Albers and Fuchs, 1987; Albers and Fuchs, 1989; Coulombe et al., 1990).  It was 

also determined that deletions in the amino terminal rod domain lead to filament 

assembly disruption (Coulombe et al., 1990).  A major breakthrough in skin biology 

occurred when these keratin 14 deletion mutant cDNAs were expressed in the epidermis 

of mice (Vassar et al., 1991; Coulombe et al., 1991b).  Mice expressing these deletion 

mutants presented with basal cell fragility, a phenotype which was similar to the human 

genetic disease Epidermolysis Bullosa simplex (EBS) (Vassar et al., 1991; Coulombe et 

al., 1991b).  The hallmark of this genetic disorder is cell and tissue fragility, and as such 

patients with this disease present with bullous lesions on sites of frictional trauma 

(Coulombe and Fuchs, 1993; Coulombe et al., 2009).  The reason for the similarities 

between the mouse models and EBS patients became clear when keratin 14 was cloned 
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from EBS patients and mutations in the rod domain were identified (Coulombe et al., 

1991a).  The behavior of these keratin mutants were observed in vitro and in transfected 

cells, and suggested a causal relationship between keratin mutation and filament network 

disruption (Coulombe et al., 1991a).  In this setting, it was observed that the filament 

assembly was disrupted in these variants, and that cells expressing these variants did not 

form the pan-cytoplasmic networks observed with wildtype keratins (Coulombe et al., 

1991a).  These data became the first of many pieces of evidence that keratins provide 

structural support to the tissues in which they are expressed (Coulombe et al., 1991b; 

Coulombe et al., 2009).Further evidence in support of this function for keratin 

intermediate filaments was provided by the genetic ablation of Krt14 (Lloyd et al., 1995) 

in mice.  In this model, the animals presented with severe tissue fragility, resulting in the 

formation of large blisters over most of the neonates’ bodies (Lloyd et al., 1995).  It was 

further shown that the blisters were formed as a result of cytolysis of the basal cells of the 

epidermis, with the cytolysis occurring through the plane basal cells, much like what 

occurs in earlier mouse models and EBS patients (Vassar et al., 1991; Coulombe et al., 

1991a; Coulombe et al., 1991b; Lloyd et al., 1995).  The majority of these Krt14 

knockout mice died two days after being born; however, due to the expression of another 

type I keratin in the basal cells, K15, some animals survived to adulthood (Lloyd et al., 

1995). 

Later, the function of keratin filaments as structural support networks was again 

highlighted in the genetic ablation of a keratin gene, this time of K14’s binding partner in 

the basal epidermis, Krt5 (Peters et al., 2001).  However, this mouse model displayed a 
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more severe phenotype than that observed in the Krt14 null mice.  These animals 

experienced severe tissue fragility at the time of birth, and all pups died within an hour of 

birth (Peters et al., 2001).  This phenotype supported the function assigned to keratin 

filaments by previous work.  The fact that the phenotype of the Krt5 null mice was more 

severe than that observed in the Krt14 null mice is likely due to the expression of another 

type I keratin in the basal cells of the epidermis, keratin 15 (Lloyd et al., 1995).  Keratin 5 

is the only type II keratin expressed in these cells, and therefore the consequences of the 

loss of this binding partner was reflected in the increased severity of the mouse 

phenotype (Peters et al., 2001). 

EBS is not the only human disease that provides insight on the function of keratin 

filaments.  A similar disorder, called epidermolytic hyperkeratosis (EHK), was shown to 

also be caused by mutations in keratins 1 and 10, which are expressed in the stratum 

spinosum (Fuchs et al., 1992; Cheng et al., 1992; Chipev et al., 1992).  Another disorder 

called epidermolytic palmoplantar keratoderma (EPPK), which is hallmarked by blisters 

occurring in the palms and soles of patients, has been shown to be caused by mutations in 

keratin 9, a type I keratin specifically expressed in this type of epidermis (Reis et al., 

1994).  Also, genetic ablation of keratin 6 leads to massive blistering secondary to the 

acute fragility of filliform papillae in the dorsal aspect of the tongue (Wong et al., 2000).  

Disorders such as EBS, EHK, EPPK, and others are caused by mutations in keratins that 

are expressed under normal conditions in these tissues; however, tissue fragility is not 

limited to mutations in keratins expressed in intact epithelia.  For example, keratin 6, 

along with keratins 16, and 17 are induced at the wound edge within hours of injury 
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(Paladini et al., 1996).  Hence, the fragility of Krt6 null keratinocytes is also observable 

at the wound edge of skin grafts from these animals (Wong and Coulombe, 2003). 

Further understanding of the structural support function of keratin filaments in 

mice was yielded through a number of protein replacement experiments.  The basis of 

these experiments has been to generate a mouse which is null at a given keratin gene 

locus, and is engineered to express an alternative keratin by means of a transgene.  A 

great deal of information has been garnered from experiments like this.  For instance, 

expression of the simple keratin K18 could not rescue the tissue fragility incurred due to 

the loss of keratin 14 (Hutton et al., 1998), revealing that keratin filaments possess unique 

properties dependent on their protein makeup.  Other replacement experiments revealed 

there is a surprising level of functional diversity between keratins.  For example, the same 

study showed that a chimeric keratin with the head and rod domains of keratin 16 and the 

tail domain of keratin 14 was sufficient to rescue the blistering phenotype in the Krt14 

null mice (Hutton et al., 1998).  In contrast, expression of wildtype human keratin 16 

under the direction of the keratin 14 promoter in the epidermis of transgenic mice results 

in hyperproliferation of these cells, leading to hyperkeratosis of the tissue (Paladini and 

Coulombe, 1998).  When these animals were used in a breeding strategy for replacement 

of keratin 14, the initial phenotype subsided to some degree, but the stratified epithelia of 

the resulting replacement mice were not completely normal (Paladini and Coulombe, 

1999). 

Another experiment highlighted the likelihood of functional redundancy among 

specific subgroups of highly homologous keratin proteins.  For instance, when keratin 17 
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was ectopically expressed in the basal cells of Krt14 null mouse epidermis by either the 

expression of a GLI2 transgene or by treatment with a chemical activator of Nrf2, this 

correlated with a significant rescue of the skin fragility phenotype of Krt14 null mice 

(Kerns et al., 2007).  This finding also provided further evidence for the induction of 

these wound-inducible keratins as the reason most sites of blistering in human EBS 

patients heal without scarring (Coulombe et al., 1991b; El Ghalbzouri et al., 2003; Kerns 

et al., 2007).  In each of these cases, the message was clear: cells and tissues require the 

structural support function provided by intact keratin filaments (Coulombe et al., 2009). 

Organization of Keratin Filaments into Cross-Linked Networks 

A common theme regarding structural support among the classes of cytoskeletal 

proteins is the formation of cross-linked networks to increase mechanical resilience 

(Janmey et al., 1991; Coulombe et al., 2000).  For intermediate filaments, one way this is 

achieved is by the formation of stable non-covalent interactions within filaments as well 

as with interacting proteins (Fuchs and Cleveland, 1998; Yamada et al., 2002; Lee and 

Coulombe, 2009).  At sites of cell-cell and cell-matrix anchorages, keratin filaments 

interact with members of the plakin family, such as desmoplakin and plectin, which serve 

as molecular bridges between cytoplasmic intermediate filaments and the junctional 

complexes of desmosomes and hemidesmosomes, respectively (Fuchs and Cleveland, 

1998; Coulombe and Wong, 2004; Sonnenberg and Liem, 2007).  Keratin intermediate 

filaments are also anchored at the surface of the nucleus via interaction with plectin, and 

plectin’s subsequent interaction with nesprin-3 (Wilhelmsen et al., 2005).  These 

interactions complement one another towards forming a mechanically-sound intra- and 
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supra-cellular network able to withstand deformation (Fuchs and Cleveland, 1998; 

Yamada et al., 2002). 

Keratin filaments are also subject to modification by several cross-linking 

enzymes and interacting proteins.  At a very late stage of terminal differentiation in the 

epidermis, for example, keratins are acted upon by transglutaminases and cross-linked by 

filaggrin, loricrin, and trichohyalin as the cornified envelope forms and matures (Steinert 

and Marekov, 1995; Lee et al., 1993).  For epithelial appendages such as hair, keratins 

participate in extensive cross-linking through the hair keratin proteins’ cysteine-rich non-

helical regions (Fuchs and Cleveland, 1998).  In both of these examples, cross-linking 

keratin filaments results in a rigidly bundled structure, enhancing mechanical resilience 

and aiding in the genesis of chemical and physical barriers. 

Despite the wealth of knowledge pertaining to keratin cross-linking, the 

mechanisms of keratin cross-linking in the general cytoplasm of basal progenitor cells 

remain unclear.  A possible explanation of this was identified during a study of the role of 

keratin protein domain requirements during filament assembly (Wilson et al., 1992).  

This study demonstrated that alterations in the assembly buffer conditions and of the 

keratin protein structure via mutagenesis changed the propensity of the filaments to form 

large bundles in vitro (Wilson et al., 1992).  This observation was later determined to be 

intrinsic to the keratin makeup of the filaments, and correlated with a markedly increased 

elasticity (i.e., mechanical resilience) of filament suspensions (Ma et al., 2001; Bousquet 

et al., 2001; Yamada et al., 2002).  The pursuit of such efforts eventually determined that 

a cross-linked organization of keratin filaments could be promoted in vitro depending on 
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the ionic strength and/or the pH of the assembly buffer (Ma et al., 2001; Yamada et al., 

2002).  This property of self-mediated organization into bundles was established as the 

intrinsic pathway of keratin filament cross-linking (Coulombe et al., 2000; Lee and 

Coulombe, 2009).  Follow-up studies performed with K5 and K14 identified specific 

domains within each protein which were responsible for this phenomenon (Lee and 

Coulombe, 2009).  Specifically, the distal portion of the tail domain in keratin 14 and two 

regions within the rod domain of keratin 5 play key roles in conferring this property, both 

in vitro and in transfected cells in culture (Lee and Coulombe, 2009).  Such findings, 

along with the absence of cytoplasmically-localized filament cross-linkers in basal 

keratinocytes of the epidermis, suggest an important role for the so-called intrinsic 

pathway of keratin filament bundling in their structural support function in vivo (Fig 1.2).  

Initial efforts to explore this role in animal models are the subject of Chapter 2 of this 

dissertation. 

Keratins as Modulators of Cytoarchitecture 

Since keratins make up a significant percentage of cellular protein content (Sun 

and Green, 1978; Feng et al., 2013), they are poised to impact a large number of cellular 

processes (Kim and Coulombe, 2007; Pan et al., 2013).  Moreover, the pan-cytoplasmic 

distribution of keratin filaments, especially in surface epithelia, allows them to play 

significant roles in cytoarchitecture.  A recent study demonstrated that organization of 

keratin filaments into cross-linked networks significantly alters the rate of spreading and 

surface area of skin keratinocytes in culture, likely owing to generation of inward tension 

(Lee and Coulombe, 2009). 
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Figure 1.2: Mechanisms of Keratin Filament Bundling in Basal Keratinocytes of 

Epidermis.  Ultrastructural examination shows that keratin filaments are abundant and 

show a loosely bundled organization in basal layer keratinocytes of epidermis. Although 

the molecular basis for the attachment of keratin filaments at cell–cell and cell–matrix 

adhesion sites is well understood, the mechanisms responsible for filament bundling in 

the general cytoplasm are unknown. We propose that in basal keratinocytes and related 

cell types, this organization results from contributions from both intrinsic (e.g., self-

driven) and extrinsic (e.g., associated proteins such as plectin and epiplakin) 

determinants. Both determinants are postulated to be required for the key structural 

support role fulfilled by K5/K14 filaments in basal keratinocytes. Self-organization of 

K5/K14 filaments into cross-linked networks involves interaction between the short T2 

segment at the extreme C terminus of K14, and two distinct regions in K5 (the “head-1A” 

and “L2-2B” regions) contributed by adjacent filaments within a bundle. Exposure of the 

K14 tail domain at the filament surface is directly supported by experiments that involved 

partial proteolysis of assembled K5/K14 filaments. The two regions in K5 rod domain are 

both required for full expression of the self-organization potential. The “head-1A” and 

“L2-2B” regions are ~300Å apart in K5, implying that the small K14’s T2 segment (25 

residues long) is too short to engage both of them within the same K5 molecule. By 

virtue of its richness in threonine and especially serine residues, K14’s T1 domain is 

poised to regulate T2 function, and thus the intrinsic pathway of K5/K14 filament 

organization, via phosphorylation.  Image reproduced with permission from Lee and 

Coulombe, 2009.  
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Figure 1.2: Mechanisms of Keratin Filament Bundling in Basal Keratinocytes of 

Epidermis. 
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Keratin filaments have also been shown to alter the shape, and in turn the 

function, of specific organelles within the cell, such as mitochondria (Stone et al., 2007; 

Kumemura et al., 2008; Tao et al., 2009).  Interestingly, the effect of keratins on 

mitochondria is dependent on the specific keratin protein and tissue being considered.  In 

the case of keratin 19 null mice, skeletal muscle mitochondria are larger and show 

significant reorganization (Stone et al., 2007).  On the other hand, mitochondria are 

significantly smaller in the liver of keratin 8 null animals, and their hepatocytes are more 

susceptible to apoptosis (Tao et al., 2009).  This is also the case in mice expressing 

mutant keratin 18 (Kumemura et al., 2008).  Keratin filaments are also tethered to another 

organelle, the nucleus, through interactions involving plectin and nesprin-3 (Wilhelmsen 

et al., 2005).  More recently, a trans-dimer, homotypic disulfide bond involving residue 

Cysteine 367 in K14 was shown to promote the formation and/or maintenance of a cage 

of keratin filaments around the nucleus, impacting its size and shape in early 

differentiating epidermal keratinocytes (Lee et al., 2012).  Such an impact on the nucleus 

by keratin filaments suggests a potential role in regulating differentiation, as well as 

impacting other functions of the nucleus (Lee et al., 2012; Pan et al., 2013). 

Keratins Protect Against Cellular Stress 

Keratins 8, 18, and 19 are normally expressed in the simple epithelia of the 

digestive system, including the liver (Ku et al., 1999).  In this setting, the formation of 

intracellular aggregates known as Mallory-Denk bodies is an indicator of disease 

(Zatloukal et al., 2007; Strnad et al., 2012).  Keratins are the major components of these 

aggregates, and are hyperphosphorylated and cross-linked (via transglutaminases) within 



20	  
 

these aggregates (Strnad et al., 2012).  It has been demonstrated that the formation of 

these aggregates is modulated by altering the ratio of K8 to K18 in hepatocytes, with 

higher keratin 8 expression predisposing toward the formation of Mallory-Denk bodies 

(Zatloukal et al., 2007; Strnad et al., 2012).  Post-translational modification of these 

simple epithelial keratins also play significant roles in the maintenance of the organs in 

which they are expressed (Ku and Omary, 2006; Rotty et al., 2010).  For instance, the 

phosphorylation of keratin 8 on serine 73 was shown to be necessary to protect the liver 

from Fas-mediated apoptosis (Ku and Omary, 2006).  Additionally, transgenic mice 

expressing a mutant keratin 18 incapable of being glycosylated appear phenotypically 

normal, but when metabolically challenged present with increased apoptosis (Ku et al., 

2010).  These studies demonstrate that simple epithelial keratins act as cytoprotective 

entities against a variety of insults in the liver (Ku et al., 2007). 

Role of Keratins in Apoptosis 

Exploration into the mechanisms behind the observed cytoprotection in simple 

epithelia has revealed that keratins are involved in a number of signaling cascades within 

the cell.  In this setting, keratins 8 and 18 can protect against TNFα-induced apoptosis 

through the binding and sequestration of TRADD, a downstream signaling molecule in 

the TNFα-induced apoptotic pathway (Inada et al., 2001).  Mice lacking keratin 8 have an 

increased susceptibility to apoptosis via this pathway (Inada et al., 2001).  The interaction 

between keratins and TRADD does not seem to be limited to simple epithelia.  Keratins 

6, 16 and 17 are normally expressed in epithelial appendages, such as the hair follicle 

(McGowan and Coulombe, 1998).  In this setting, loss of keratin 17 was revealed to 
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result in an early entry into the catagen (involution) phase of the hair cycle, which is 

mediated by physiological apoptosis (McGowan et al., 2002).  In vitro and in vivo data 

demonstrated that the loss of keratin 17 lead to an increase in TNFα signaling, suggesting 

that K17 participates in the regulation of the hair cycle via regulation of apoptosis 

(McGowan et al., 2002; Tong and Coulombe, 2006). 

Keratins as Modulators of Cell Growth 

Another cellular function in which keratins are involved is cell growth.  One way 

in which keratins influence cell growth is by modulating protein synthesis by interacting 

with protein elements of the translational machinery (Hesketh and Pryme, 1991).  An 

example of this is the direct interaction of keratin 17 with the adaptor protein 14-3-3σ 

(Kim et al., 2006).  Protein synthesis is abnormally low in keratin 17 null keratinocytes 

stimulated to grow, correlating with reduced activity of the Akt-mTOR signaling axis 

(Kim et al., 2006).  Phosphorylation of keratin 17 on serine 44 by the growth-promoting 

kinase p90 RSK1 may represent the key molecular event regulating the interaction 

involving keratin 17 and 14-3-3σ, and the associated impact on cell growth (Pan et al., 

2011).  Additionally, keratin 17 (along with other skin-expressed keratins) was shown to 

interact directly with eukaryotic elongation factor 1γ, illustrating another mechanism 

through which keratins modulate protein synthesis (Kim et al., 2007). 

There is also evidence that keratins 8 and 18 regulate protein synthesis in the liver 

(Galarneau et al., 2007).  Hepatocytes from livers of keratin 8-null mice exhibit a reduced 

rate of protein synthesis thought to be due to perturbed plectin/RACK1 distribution 
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(Galarneau et al., 2007).   Further information on the regulations of protein synthesis by 

keratins was revealed through the ablation of the entire type II keratin gene cluster on 

chromosome 15 in mice, effectively generating a complete keratin null mouse model 

(Vijayaraj et al., 2009).  In this model, it was discovered that keratins modulate protein 

synthesis and regulate the cellular localization of glucose transporters GLUT-1 and -3 

(Vijayaraj et al., 2009).  In this setting, keratins were also revealed to play a role in 

vasculogenesis and hematopoiesis in the developing embryo, providing further evidence 

for keratins modulating cell growth (Kellner and Coulombe, 2009; Kim and Coulombe, 

2010; Kroger et al., 2013). 

Role of Keratins in Cell Migration 

Another cellular function in which keratins are involved is motility.  Perhaps the 

best example of keratins’ involvement in motility is provided by tissue repair following 

injury to the skin.  In this context, keratinocytes originating from the edges of a wound 

must migrate to participate in its re-epithelialization and restoration of the vital barrier 

properties.  Within hours after injury to the epidermis, expression of keratins 6, 16, and 

17 is induced at the expense of the normal differentiation-related keratins 1 and 10 

(Paladini et al., 1996).  Expression of these wound-inducible keratins correlates with a 

massive reorganization of the keratin filament network, which impacts a number of 

cellular processes related to re-epithelialization, including cell growth as related above 

(Paladini et al., 1996; Kim et al., 2006).  Seemingly paradoxically, genetic ablation of 

keratin 6 results in an increased migration phenotype in various ex vivo culture paradigms 

(Wong and Coulombe, 2003).  This enhanced migration is due to the activation of Src, a 
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kinase that is physically bound to and negatively regulated by keratin 6 (Rotty and 

Coulombe, 2012).  In the case of keratins 8 and 18, keratins and their associated proteins 

modulate migration by binding to upstream effectors of cell migration, such as protein 

kinase C (PKC) and focal adhesion kinase (FAK) (Bordeleau et al., 2010). 

Keratins Modulate Skin Pigmentation 

Several clinical findings have revealed a role for keratins in the pigmentation 

process of the skin.  EBS with mottled pigmentation (EBS-MP) is a rare subtype of EBS 

disease often caused by a specific mutation in the KRT5 gene (P25L) (Uttam et al., 1996).  

EBS-MP presents with 2-5mm hyper- or hypo-pigmented spots in addition to blistering 

(Fischer and Gedde-Dahl, 1979).  Additionaly, EBS Migrating (EBS-Migr) is another 

rare EBS subtype presenting with lesions which heal with increased pigmentation (Gu et 

al., 2003).  Several non-EBS skin disorders also present with pigmentation defects.  One 

such disorder is Dowling-Degos disease (DDD), which occurs as a result of K5 

haploinsufficiency (Dowling and Freudenthal, 1938).  Also, Naegeli–Franceschetti–

Jadassohn syndrome and dermatopathia pigmentosa reticularis are disorders caused by 

mutations in keratin 14 which also present with aberrant skin pigmentation patterns.  

Finally, a mutagenesis screen in mice revealed a role for keratins 1 and 2e in 

pigmentation, with mutants developing hyperkeratosis and epidermal thickening followed 

by hyperpigmentation (Fitch et al., 2003).  The mechanism of keratins modulating the 

complex process of skin pigmentation is still unclear, and remains an active area of 

research (Gu and Coulombe, 2007). 
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Keratins and Cancer 

Several early studies in cancer biology hinted at roles for keratins in this setting.  

For example, analysis of cancerous lesions from a number of sources revealed that 

keratin immunoreactivity was detectable in epithelial neoplasms, but not in non-epithelial 

cancers such as mammary adenocarcinomas (Schlegel et al., 1980; Gabbiani et al., 1981; 

Ramaekers et al., 1981).  Later, it was determined that keratins 5, 6, and 17 were 

consistently induced in cancers of basal cell origin (Ordonez, 1998; Markey et al., 1992).  

In fact, keratin 17 was shown to correlate with poorer patient prognosis in breast cancer 

(van de Rijn et al., 2002) and epithelial ovarian cancer (Wang et al., 2013).  Given the 

consistent expression of keratins in cancers as well as the roles keratins are now known to 

fulfill in signaling pathways, it is plausible that keratins are more than mere cellular 

bystanders in this type of condition.  The overexpression of keratin 8 in the skin epithelia 

of transgenic mice provided evidence in support of a positively- influential role for 

keratins in tumorigenesis (Casanova et al., 2004).  These animals presented with an 

apparent disruption of the differentiation of the skin, as well as severe dysplasia of the 

hair follicles and an increase in the progression of papillomas toward malignancies 

(Casanova et al., 2004).  Another cancer context which consistently correlates with the 

expression of keratin 17 is basal cell carcinoma (BCC), which is caused by aberrant sonic 

hedgehog (Shh) signaling and is the most common cancer in European descendants 

(Epstein, 2008).  Development of BCC-like lesions in mouse models with constitutive 

expression of a downstream Shh effector, Gli2, was examined in the presence and 

absence of a functional Krt17 locus (Depianto et al., 2010).  In this setting, tumor onset  
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Table 1.1: Proposed Functions for Keratin 5 

 

List of functions ascribed to keratin 5.  EBS, Epidermolysis Bullosa simplex; EBS-MP, 

EBS with mottled pigmentation; EBS-Migr, EBS Migratory; DDD, Dowling-Degos 

disease; BCC, basal cell carcinoma.  
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was significantly delayed in the absence of keratin 17.  This delay correlated with 

decreased cell proliferation and reduced inflammation (Depianto et al., 2010).  To 

explore this further, specific markers of inflammation were assessed, and it was 

concluded that the loss of keratin 17 caused a polarization of the immune response from 

what should be a Th1/Th17-dominated profile to a Th2-dominated immune profile in 

GLI2Tg, Krt17-/- skin (Depianto et al., 2010; Pan et al., 2013).  These findings suggest 

immune modulation as a potential mechanism behind the K17-dependent modulation of 

tumor formation in mouse skin.  Interestingly, the loss of keratin 5 also results in an 

alteration of immune status in neonatal mouse skin, resulting in an increase in specific 

cytokines such as Ccl2, Ccl19, and Ccl20, which are involved in the recruitment of 

Langerhans cells (Roth et al., 2009).  Additionally, a recent genome-wide association 

study identified two variants of keratin 5 as markers of increased susceptibility to basal 

cell carcinoma, an intriguing finding that is examined in Chapter 3 (Stacey et al., 2009). 

Goal of this Dissertation 

It is clear from this wealth of data that keratins fulfil both structural support 

functions and non-mechanical functions in a number of epithelial contexts.  The intent of 

this dissertation is to present data that can hopefully shed further light on these biological 

functions, and perhaps reveal novel roles for keratins in epithelial cell biology.  Chapter 2 

of this dissertation will address ongoing efforts to explore the contribution of intrinsic 

determinants of keratin filament bundling to their structural support in vivo, and Chapter 

3 will present ongoing efforts to explore the properties of the newly defined variants of 

keratin 5 that are associated with a modestly increased risk of developing BCC.  
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ABSTRACT 

 The crucial role of structural support fulfilled by keratin intermediate filaments 

(IFs) in surface epithelia likely requires that they be organized into cross-linked 

networks.  For IFs comprised of keratins 5 and 14, which occur in basal keratinocytes of 

the epidermis, formation of cross-linked bundles is, in part, self-driven through cis-acting 

determinants.  Here, we targeted the expression of a bundling-competent KRT5/ KRT8 

chimeric cDNA (KRT8bc), or bundling-deficient wildtype KRT8 as a control, to the 

epidermal basal layer of Krt5 null mice to assess the functional importance of keratin IF 

self-organization in vivo.  We report that targeted expression of K8bc rescued Krt5 null 

mice with a 47% frequency, while K8 completely failed to do so.  This outcome 

correlated with lower than expected levels of K8bc and especially K8 mRNA and protein 

in the epidermis of E18.5 replacement embryos.  Ex vivo culture of embryonic skin 

keratinocytes confirmed the ability of K8bc to form IFs in the absence of K5.  

Additionally, electron microscopy analysis of E18.5 embryonic skin revealed that the 

striking defects observed in keratin IF bundling, cytoarchitecture, and mitochondria are 

partially restored by K8bc expression.  As young adults, viable KRT8bc replacement 

mice develop alopecia and chronic skin lesions, indicating that the skin epithelia are not 

completely normal.  These findings are consistent with a contribution of self-mediated 

organization of keratin IFs to structural support and cytoarchitecture in basal layer 

keratinocytes of the epidermis, and underscore the importance of context-dependent 

regulation for keratin genes and proteins in vivo. 
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INTRODUCTION 

 The contribution of intermediate filaments (IFs) to the maintenance of cell and 

tissue integrity is essential in surface epithelia (e.g.  skin, oral mucosa), muscle, and other 

tissues routinely subjected to stress.  Loss or disruption of this function accounts for the 

cell and tissue fragility that underlies a large number of genetically-determined diseases 

that are individually rare but debilitating (Omary et al., 2004; Szeverenyi et al., 2008; 

Coulombe et al., 2009).  Epidermolysis bullosa simplex (EBS), for instance, is a 

condition in which the basal cell layer of epidermis and related stratified epithelia 

ruptures in response to trivial frictional trauma, and is associated with dominantly-acting 

mutations in either keratins 5 or 14 (K5 or K14), the main keratin pairing that is 

expressed in this epithelial setting (Bonifas et al., 1991; Coulombe et al., 1991a; Lane et 

al., 1992).  EBS is the first among more than 80 IF-based disorders (Szeverenyi et al., 

2008).  There is as yet no effective treatment for EBS and other disorders rooted in 

defective IFs (McLean and Moore, 2011; Coulombe and Lee, 2012). 

 The role of keratin IFs towards the maintenance of cell and tissue integrity is a 

composite function of their unique micromechanical properties (Janmey et al., 1991; Ma 

et al., 2001) and extensive integration within the cytoskeleton and cell adhesion apparati 

(Fuchs and Cleveland, 1998; Coulombe and Wong, 2004; Kroger et al., 2013).  In 

particular, this function reflects several key attributes of keratin IFs, including their 

intracellular abundance (Feng et al., 2013), their organization as cross-linked networks 

(Ma et al., 2001; Yamada et al., 2002), and their attachment at sites of cell-cell and cell-

matrix adhesions (Fuchs and Cleveland, 1998; Coulombe and Wong, 2004) and at the 
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surface of the nucleus (Wilhelmsen et al., 2005).  The molecular basis for IF anchorage at 

sites of integrin-based cell-matrix adhesions and cadherin-based cell-cell adhesions is 

quite well understood (Simpson et al., 2011; Suozzi et al., 2012).  By comparison, the 

basis for the cross-linked organization of IFs is poorly understood in most types of cells.  

In epidermal and hair keratinocytes, for instance, the filament bundling-promoting 

influence of filaggrin (Steinert and Marekov, 1995) and trichohyalin (Lee et al., 1993) is 

well-established but restricted to late stages of terminal differentiation, whereas the 

influence of plectin, epiplakin, and related plakin family members (Stappenbeck et al., 

1993; Jang et al., 2005; Green et al., 2005) and/or inter-filament disulfide bonding (Lee et 

al., 2012; Sun and Green, 1978) remains unclear. 

 Keratin IFs assembled from the type II K5 (590 residues; ~58 kDa in humans 

(Lersch and Fuchs, 1988)) and type I K14 (472 residues; ~50 kDa in humans (Hanukoglu 

and Fuchs, 1983)) exhibit the remarkable property of self-organization into cross-linked 

networks, both as purified entities in vitro (Wilson et al., 1992; Bousquet et al., 2001; Ma 

et al., 2001; Lee and Coulombe, 2009) and when expressed in keratin-free fibroblasts 

(Lee and Coulombe, 2009).  The property of self-organization enhances the mechanical 

resilience of K5-K14 filament assemblies, and depends on interactions involving the 

distal 25 amino acids of K14’s C-terminal domain, which is exposed at the filament 

surface, and two separate regions within K5, the so-called head-1A (70 residues) and L2-

2B subdomains (129 residues)(Lee and Coulombe, 2009; Kim and Coulombe, 2010).  

The property of self-organization appears to be specific to natural keratin pairings (e.g., 

K5-K14 and K8-K18 (Yamada et al., 2002)), but is transferable upon “chimeragenesis”.  
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For instance, K8 (511 residues; ~54 kDa in humans (Leube et al., 1986)), a type II keratin 

normally restricted to simple epithelial linings, readily co-polymerizes to yield 10nm 

filaments when paired with K14, but the resulting assemblies cannot undergo self-

organization, either in vitro or in transfected cells (Lee and Coulombe, 2009).  

Transferring the head-1A and L2-2B subdomains from K5 into K8 confers the property 

of self-organization to the resulting chimera (designated K8bc) when artificially paired 

with K14, in vitro as well as in transfected fibroblasts (Lee and Coulombe, 2009).   

 Lee and Coulombe (Lee and Coulombe, 2009) predicted that the property of self-

organization is a significant determinant of K5-K14’s ability to provide structural support 

in the basal layer of the epidermis.  A corollary from this prediction is that targeted 

expression of the K8bc chimera, but not wildtype K8, to basal layer keratinocytes should 

rescue the extensive skin blistering and perinatal lethality phenotype of mice carrying a 

null mutation at the Krt5 locus (Peters et al., 2001).  Here, we report on our effort to carry 

out such an experiment using Krt5 null mice. 

EXPERIMENTAL PROCEDURES 

 Cells and transgenic mouse lines.  All protocols involving mice were approved by 

the Johns Hopkins University Animal Care and Use Committee (Baltimore, MD).  Mouse 

lines were maintained under specific pathogen-free (SPF) conditions, and fed chow and 

water ad libitum.  The plasmids pIRES2-GFP hK8bc and pIRES2-GFP hK8 (Lee and 

Coulombe, 2009) were digested with EcoRI and NheI (New England Biolabs), and the 

resulting cDNA inserts were treated with calf intestinal phosphatase (New England 
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Biolabs), gel-purified using QIAquick gel extraction kit (Qiagen), and subcloned into the 

BamHI site of the modified KRT14 expression vector (Saitou et al., 1995) containing 

approximately 2500 base pairs (bp) of 5' upstream and approximately 700 bp of 3' 

downstream KRT14 sequence, as well as a rabbit β-globin intron for mRNA stability.  

Clones of the correct orientation were transiently transfected into cell line NIH-3T3 

(ATCC CRL-1658) with GeneJuice® transfection reagent (EMD Millipore) for 

preliminary observations.  Plasmids were then linearized with KpnI and AseI (New 

England Biolabs), and the final linearized ~5kb DNA fragment was used to generate 

transgenic mice by pronuclear injection.  Genomic DNA was isolated from potential 

founders at approx.  6 weeks of age, and the DNA was subjected to PCR-based 

genotyping with Accustart™ II mouse genotyping kit (Quanta Biosciences) according to 

manufacturer’s instructions, using the primers 5’- TGCATATAAATTCTGGCTGGCG-

3’ (forward) and 5’- GCATGAACATGGTTAGCAGAGGG-3’ (reverse), which are 

directed to the rabbit β-globin intron contained within the expression vector.  All 

subsequent progeny were genotyped using this method. 

 Krt5 null mice were previously described (Peters et al., 2001; Kerns et al., 2007), 

and were maintained in a mixed genetic background.  These mice were genotyped using a 

multiplex PCR assay using the universal forward primer 5’- 

CCCACTAATCATTCACAGCTCG-3’, Krt5 reverse primer 5’- 

ACCAAAACCAAATCCACTGCCG-3’, and HPRT reverse primer 5’- 

CGAGTCTGAAGCTCTCGATTTCC-3’.  Replacement mice were generated by 

breeding KRT8bcTg/- or KRT8Tg/- mice with Krt5+/- mice to yield KRT8bcTg/-Krt5+/- or 
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KRT8Tg/-Krt5+/- mice, respectively.  These mice were then bred with Krt5+/- mice to yield 

the following genotypes: Krt5+/+ or Krt5+/- (control), KRT8bcTg/Krt5+/+ or KRT8Tg/-

Krt5+/+ (referred to herein as KRT8bc or KRT8 transgenic mice), Krt5-/- (Krt5 null), and 

KRT8bcTg/-Krt5-/- or KRT8Tg/-Krt5-/- (referred to herein as KRT8bc or KRT8 replacement 

mice).   

 Statistical analyses.  All statistics were performed using Graphpad Prism 

software.  One- or two-way analyses of variance (ANOVA) were used to test for 

significance where appropriate, and adjusted P values were reported. 

 Protein purification and analysis of transgene expression.  Plasmids pET-K5 and 

pET-K8 (Lee and Coulombe, 2009) were transformed into the E.  coli strain BL21 (DE3) 

to produce the corresponding recombinant proteins as inclusion bodies (Coulombe and 

Fuchs, 1990; Lee and Coulombe, 2009).  These recombinant proteins were purified as 

previously described (Ma et al., 2001; Yamada et al., 2002) using Hi-TrapQ and MonoQ 

ion exchange chromatography columns (GE Healthcare).  Protein concentrations were 

determined using a Bradford assay kit (Bio-Rad), and serial dilutions were performed to 

yield standards of known concentration for analyses outlined below. 

 For analysis of transgene expression in development stage 18.5 (E18.5) embryos, 

pregnant mice were sacrificed 18 days post-timed mating and the skins of the embryos 

were harvested.  Skins were chopped repeatedly with a razor blade and urea-soluble 

proteins were then extracted as previously described (Paladini and Coulombe, 1998).  

Protein concentrations were determined with a Bradford assay kit (Bio-Rad).  To 
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determine expression levels of endogenous K5 protein and of transgenic proteins, 

standards of known concentration were run alongside E18.5 samples.  Otherwise, equal 

quantities of protein from genotypes of interest were resolved on 10% SDS-PAGE and 

transferred to nitrocellulose membranes.  Membranes were blocked and antibody 

incubations were performed in 5% milk in 1x TBS-T.  Protein epitopes were detected 

with the following antibodies: rabbit anti-K5 AF-138, (Covance) rabbit anti-K14 AF-64 

(Covance), chicken anti-human K8 antibody ab107115 (Abcam), and mouse anti-

GAPDH antibody sc-365062 (Santa Cruz Biosciences).  Secondary antibodies used were 

horseradish peroxidase- conjugated goat anti-rabbit, goat anti-chicken, and goat anti-

mouse.  Blots were developed using the SuperSignal West Pico Chemiluminescent 

substrate kit and were imaged with FluorChem® Q MultiImage III (Alpha Innotech).  

Band signal intensity was measured from these images with the AlphaView® Q software.  

Standard curve line of best fit equation and R2 values were calculated using Graphpad 

Prism.  Calculation of K5, K8bc and K8 quantities was performed using the standard 

curve equations in Microsoft Excel. 

 For analysis of transgenic protein expression in adult animals, wildtype and 

transgenic animals were sacrificed at 6wks of age and the back skins were harvested.  

The tissue was snap-frozen and urea-soluble proteins were extracted as previously 

described (Paladini and Coulombe, 1998).  Equal quantities of urea-soluble protein were 

resolved on 10% SDS-PAGE and transferred onto nitrocellulose membranes.  Blots were 

developed using the SuperSignal West Pico Chemiluminescent substrate kit and were 
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imaged with FluorChem® Q MultiImage III (Alpha Innotech).  All images were inverted 

and cropped using ImageJ software. 

 Quantitative real-time PCR.  Total RNA from either 6wk adult animals or E18.5 

embryos was isolated using TRIzol® reagent according to manufacturer’s instructions.  

Complementary DNA was synthesized using iScript™ cDNA synthesis kit (Bio-Rad) 

according to manufacturer’s instructions.  Quantitative real-time PCR was carried out 

using SYBR® Green Real-Time PCR Master Mix from Life Technologies on a Bio-Rad 

C1000™ thermocycler and CFX™ Real-Time System.  Primers used were directed 

toward KRT8 (5’-CAAGGTGTCCACCTCTGGC-3’ and 5’-

ATAGCCGCCGCCCAGGCCA-3’), Krt14 (5’-AGCGGCAAGAGTGAGATTTCT-3’ 

and 5’-CCTCCAGGTTATTCTCCAGGG-3’) Actb (5’-GGCTGTATTCCCCTCCATCG-

3’ and 5’-CCAGTTGGTAACAATGCCATGT-3’) and Gapdh (5’-

AAATGGTGAAGGTCGGTGT-3’ and 5’-ACTCCACGACATACTCAGCAC-3’).  

Delta Cq (ΔCq) and delta-delta Cq (ΔΔCq) for each target was determined by first 

subtracting the averaged Cq values for Actin and GAPDH from the Cq of the target, and 

then by subtracting the ΔCq of the wildtype sample from each of the other samples when 

applicable.  Relative RNA quantity was calculated by taking 2-ΔCq, and relative fold 

change was calculated by taking 2-ΔΔCq.  Calculations were performed using Microsoft 

Excel. 

 Histopathology.  Phenotypic adult KRT8bc replacement and control mice were 

harvested at various ages for morphological study.  Prior to sacrifice, images of the mice 

were taken with a Samsung Digimax S500 digital camera.  Tissues analyzed included 
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hairy skin, hairless skin (if present), ulcerative skin, tongue, forepaws, and tail.  Tissues 

were fixed overnight in Bouin’s fixative (Bio-Rad), dehydrated, and processed for 

paraffin embedding by AML Laboratories.  Sections were cut 5µm thick and stained with 

hematoxylin and eosin.  Images were taken on a Zeiss AxioObserver inverted microscope 

with an AxioCam HRc camera.  Images were cropped and scale bars were added in 

ImageJ. 

 Immunofluorescence.  For analysis of cultured keratinocytes, E18.5 embryos were 

again harvested and the skins removed.  The keratinocytes were isolated using a modified 

version of the protocol reported by Reichelt and Haase (Reichelt and Haase, 2010).  After 

incubation with dispase solution, keratinocytes were isolated as previously reported 

(Bernot et al., 2005).  Keratinocytes were cultured on collagen I-coated coverslips in 

CnT-57 media (CellnTec) supplemented with Pen/Strep at 37°C and 5% CO2 in the 

absence 3T3-J2 feeder cells.  Sub-confluent coverslips were fixed with ice-cold methanol 

at -20°C or with 3.3% paraformaldehyde (PFA) at room temperature for 10 min.  

Coverslips fixed with PFA were extracted with 1% Triton X-100 in PBS buffer for 5 min 

at room temperature.  Antibodies used to detect K5 and K14 were described above.  K8 

was detected with chicken anti-human K8 antibody ab14053 (Abcam).  Secondary 

antibodies used were goat anti-chicken Alexa-488 and goat anti-rabbit Alexa-594, and 

nuclei were stained with Hoechst fluorescent dye.  Images were taken on a Zeiss 

AxioObserver inverted microscope with an AxioCam MRm camera. 

 For analysis of adult transgenic back skin, animals were harvested as described 

above and a portion of the back skin was embedded in Tissue-Tek® O.C.T.  media 
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(Sakura) and frozen in liquid nitrogen.  5µm thick frozen sections were cut and washed 

once with PBS buffer before probing with the antibodies described above.  Images were 

taken on a Zeiss AxioObserver inverted microscope with an AxioCam MRm camera.  All 

images were cropped and scale bars were added using ImageJ. 

 Electron microscopy of skin tissue.  Skins from 6wk adult animals or E18.5 

embryos were harvested and immersed in 2% paraformaldehyde/2% glutaraldehyde for 

48hrs.  After primary fixation, tissue samples were post fixed in 1% osmium tetroxide in 

0.1M cacodylate buffer for 1 hour on ice.  Tissue samples were then rinsed and en bloc 

stained with 2% aqueous Uranyl acetate for 1 hour at room temperature.  Samples were 

then dehydrated in a graded series of ethanol (50%, 70%, 95% and 100%).  Tissue was 

cleared in propylene oxide and then infiltrated in a graded series of Epon 812/ propylene 

oxide (50/50 and 70/30) for one hour and overnight, respectively, followed by two 

changes of pure Epon 812, and then polymerized for 48 hours at 60ºC.  Semithin sections 

(1µm) were cut using glass knives on a Sorvall MT2B Ultramicrotome.  Sections were 

mounted on glass slides and stained with 1% Toluidine blue in 1% Sodium borate and 

coverslipped with Permount.  Areas of interest were selected and thin sections (60nm- 

80nm) were cut using a diamond knife.  The sections were mounted on formvar-carbon 

coated 150 mesh copper grids and were post-stained with 2% aqueous Uranyl acetate and 

Reynold’s Lead citrate (REYNOLDS, 1963).  Sections were analyzed using a Hitachi 

HU12A electron microscope.  Kodak Electron Microscope Film 4489 was developed and 

negatives were scanned using an Epson Perfection V500 Photo Scanner.  Images were 

cropped and scale bars were added in ImageJ.  For cell and nuclear aspect ratio analysis, 
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lines were drawn from the basement membrane to the top of the cells (height) and from 

side to side (width) at the greatest distance for each cell measured using ImageJ.  The 

lines were measured and the height was divided by the width.  Basal cell desmosomes, 

hemidesmosomes, and mitochondria were assessed individually from 5000x images. 

RESULTS 

KRT8 and KRT8bc transgenes are expressed in transgenic mouse epidermis.  

The cDNAs encoding wildtype human K8 (Yamada et al., 2002) and the K8bc chimera 

(Lee and Coulombe, 2009) were subcloned into the KRT14 gene promoter-based 

expression vector (Saitou et al., 1995) as described (Paladini and Coulombe, 1998).  

Transfection of the final DNA constructs (Fig. 2.1A) into NIH-3T3 cells, along with 

wildtype KRT14, gave rise to keratin IFs (data not shown), indicating that K8 and K8bc 

can each co-polymerize with K14 as reported (Lee and Coulombe, 2009).  The two 

constructs were isolated and used to generate transgenic founders by pronuclear injection.  

Transgene-positive founders were then bred to establish transgenic mouse lines.  For each 

construct, the two lines showing the highest transgene copy number in a single insertion 

site (based on internally-controlled PCR and frequency of F1 transgenic offspring; data 

not shown) were retained for further analysis. 

The resulting progeny from these transgenic lines, designated KRT8bc-1, 

KRT8bc-3, KRT8-1, and KRT8-3 respectively, did not exhibit any visible phenotype.  

Back skin tissue was harvested from age- and sex-matched animals from these lines for 

analysis of transgene expression.  Of these four lines, two expressed transgene mRNA at  
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Figure 2.1: Generation and Characterization of Transgenes.  A) Schematic depiction 

of the transgenes used in this study.  The human KRT14 gene promoter was used to drive 

the tissue-specific expression of keratin cDNAs (KRT8, KRT8bc), while the rabbit beta-

globin intron and human KRT14 3’UTR sequence (“PolyA”) serve to stabilize the 

transgene mRNA in mouse cells.  B, C) qRT-PCR analysis by of transgenic human KRT8 

mRNA (B), and endogenous mouse Krt14 mRNA (C), in back skin harvested from age- 

and sex-matched 6-weeks old animals.  Relative RNA amount is normalized to both actin 

and GAPDH.  CRTL indicates Krt5+/+ skin.  Error bars represent standard error of the 

mean.  A one-way ANOVA (Dunnett’s test) was used to test for significance, and the 

adjusted P values are reported.  n.s., not significant; *, P<0.04; **, P<0.002.  D) Analysis 

of total skin protein extracts (10µg/lane) by Western blot in 6wk old sex-matched adult 

animals.  Two mice are analyzed for each of four transgenic lines; CRTL indicates 

Krt5+/+ skin.  E) Analysis of transgene expression in frozen skin sections of 6wk old sex-

matched adult animals.  K8 epitopes are only present in basal layer keratinocytes (see 

brackets) of KRT8bc-1 and KRT8-1 transgenic epidermis, and co-localizes with 

endogenous K14 in a normal keratin filament network.  Control indicates Krt5+/+ skin.  

Arrows depict the interface between the epidermis (Epi) and dermis.  Bars = 10µm.  
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Figure 2.1: Generation and Characterization of Transgenes. 
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appreciable levels by qRT-PCR: lines KRT8bc-1 and KRT8-1 (Fig. 2.1B).  Expression of 

Krt14 mRNA was unaffected relative to wildtype (Fig. 2.1C).  Western blot analyses 

assessing protein expression revealed similar results, with appreciable and comparable 

levels of transgenic protein detectable for lines KRT8bc-1 and KRT8-1 only (Fig. 2.1D).  

Analysis of frozen sections of mouse back skin by immunofluorescence confirmed that 

K8-specific epitopes occurred in the basal layer of the epidermis, as expected (Fig. 2.1E).  

The KRT8bc-1 and KRT8-1 lines were selected to test whether KRT14 promoter-driven 

expression of K8 or K8bc protein can rescue the Krt5 null phenotype. 

 The KRT8bc, but not the KRT8 transgene, is able to rescue the Krt5 null 

phenotype.  Krt5 null mice exhibit severe fragility and blistering of the skin, and die with 

complete penetrance within the first hour of birth (Peters et al., 2001), providing a clear 

readout for the ability of other type II keratins (e.g., K8, K8bc) to functionally substitute 

for endogenous K5.  The KRT8bc-1 and KRT8-1 transgenic mice (Fig. 2.1) were each 

bred to Krt5 hemizygous null (Krt5+/-) mice.  Once sexually mature, the resulting 

KRT8bctg/-Krt5+/- and KRT8tg/-Krt5+/- offspring were crossed with Krt5+/- mice.  While 

this strategy ensures a uniform number of rescue transgene copies within the progeny, 

only 1 of every 8 offspring is predicted to be a candidate for phenotypic rescue (KRT8bc 

or KRT8 replacement mice).  Replacement events wherein the mouse survived to 

weaning age (P21) were scored as successful rescues.  Of 411 live births analyzed, 16 out 

of 34 mice with the KRT8bc replacement genotype (47%) survived to weaning (Table 

2.1).  The surviving KRT8bc replacement animals did not show any detectable blistering 

at the time of birth, and grew normally to adulthood, indicating the transgene could  
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Table 2.1: Summary of Type II Keratin Protein Replacement Experiment in Mouse. 

 

Progeny from the replacement breeding strategy (see Methods) were monitored at and 

following birth.  “Viable replacement” implies that the mouse survived at least until 

weaning. 
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functionally substitute for endogenous K5.  By contrast, none of the 11 mice born with 

the KRT8 replacement genotype from 191 live births showed rescue (Table 2.1); in fact, 

none lived beyond the first few hours after birth, demonstrating that the KRT8 transgene 

cannot rescue the K5 deficiency. 

 Expression of K8bc and K8 replacement proteins and mRNAs in the skin of E18.5 

Krt5 null mice.  Next, we assessed the amount of K8bc and K8 replacement proteins in 

the skin of KRT8bc and KRT8 replacement mice, relating them to the levels of K5 protein 

in control mice.  This analysis was conducted in E18.5 embryos, just prior to birth, to 

enable a direct comparison between the two types of rescue proteins and to avoid the 

complications stemming from the extensive skin blistering seen in Krt5 null and KRT8 

replacement mice.  Purified recombinant proteins were used to generate standard curves 

for K5 and K8 epitopes (see Methods), enabling the determination of transgenic protein 

amount in these lines (Fig. 2.2A, B and data not shown).  Using this strategy we found 

that endogenous K5 is expressed at 96.6ng per 10µg of total skin proteins in control 

E18.5 embryos (n=3; Fig. 2.2C).  KRT8bc replacement embryos express 47.9ng K8bc 

protein per 10µg of total protein extract (n=3), corresponding to ~50% of the 

concentration of endogenous K5 in control embryos (Fig. 2.2C).  The KRT8 replacement 

embryos were determined to express 19.7ng K8 protein per 10µg of total protein extract 

(n=3), accounting for ~20% of endogenous K5 levels (Fig. 2.2C).  The difference 

between K8bc and K8 expression is also observed at the mRNA level in E18.5 mouse 

embryos (Fig. 2.2D).  We infer that the “half-normal” levels of K8bc protein may 

explain, in part, the partial rescue (47% frequency) observed in KRT8bc replacement  
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Figure 2.2: Analysis of Transgene Expression in E18.5 Mouse Embryos.  A, B) 

Quantification of transgenic protein expressed in lines KRT8bc-1 (A) and KRT8-1 (B) 

using standard curves of purified recombinant human K8.  Line of best fit and R2 values 

were calculated using Graphpad Prism.  C) Summary of the transgenic protein 

quantification from multiple biological (n) and technical replicates.  D) Transgene RNA 

expression levels for lines KRT8bc-1 and KRT8-1 in E18.5 skin.  E, F) Expression of 

transgenic and endogenous proteins for lines KRT8bc-1 (E) and KRT8-1 (F) in E18.5 skin 

is shown by western blot analysis.  G) Intensity of K14 protein signal relative to loading 

control signal was quantified, and the increase of K14 in the replacement mouse skin 

setting is illustrated.  H) Endogenous Krt14 RNA expression levels for lines KRT8bc-1 

and KRT8-1 in E18.5 skin.  RNA levels are illustrated relative to Actin and GAPDH.  

Error bars represent standard error of the mean.  A two-way ANOVA (Sidak’s test) was 

used to test for significance, and the adjusted P values are reported.  n.s., not significant; 

*, P<0.005; **, P<0.0001. 
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Figure 2.2: Analysis of Transgene Expression in E18.5 Mouse Embryos. 
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mice, while the markedly lower levels of K8 protein may have played a role in the failure 

to obtain successful rescues in KRT8 replacement mice (see Discussion). 

There is substantive evidence indicating interdependence in the steady-state levels 

of type I and type II keratin proteins in epithelial cells (Kulesh et al., 1989; Lersch et al., 

1989).  Accordingly, the levels of K5 protein are reduced in newborn Krt14-/- mouse skin 

(Lloyd et al., 1995), while the levels of K14 protein are reduced in newborn Krt5-/- mouse 

skin (Peters et al., 2001).  In the Krt5 null case, in particular, the levels of Krt14 mRNA 

are also substantially reduced (Peters et al., 2001), hinting at the complexity of 

mechanisms regulating the balance between type I and II keratins in epidermal 

keratinocytes in vivo.  We analyzed K14 expression as a surrogate marker for the 

“effective dosage” of type II keratin expression in the skin of E18.5 embryos.  At the 

protein level, very weak K14 expression occurs in Krt5 null embryos, as well as in KRT8 

replacement embryos (Fig. 2.2E, F), respectively emulating the complete absence of type 

II keratins and the low levels of K8 rescue protein observed in these settings.  By 

comparison, and as expected, expression of K14 protein is stimulated ~2.7 fold in 

KRT8bc replacement embryos over Krt5 null levels (Fig. 2.2G), consistent with the 

phenotypic rescue of viable KRT8bc replacement mice (Table 2.1). 

 Examination of Krt14 mRNA levels in E18.5 embryos of relevant genotypes 

provides additional insight.  Similar levels of Krt14 mRNAs occur in KRT8 and KRT8bc 

transgenic skin (with a normal Krt5 locus), and these levels are slightly elevated relative 

to that seen in control embryos (albeit in a non-statistically significant fashion; Fig. 

2.2H).  Krt14 mRNA levels are increased nearly 2-fold in the setting of KRT8bc 
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replacement embryos, exhibiting a striking and statistically-significant increase compared 

to KRT8 replacement E18.5 embryos (Fig. 2.2H).  These data clearly point to a 

mechanism(s) by which basal keratinocytes are able to sense the anomaly stemming from 

ectopically expressing other type II keratins, as well as sensing the difference between 

K8bc and K8 at the mRNA and/or protein level. 

 Analysis of keratin IFs in basal keratinocytes in primary culture and in the 

epidermis in situ.  To further assess the behavior of the K8bc protein in vivo, control, 

Krt5 null, and KRT8bc replacement E18.5 embryos were processed for skin keratinocyte 

isolation, primary culture and analysis via indirect immunofluorescence.  In control 

cultures, K5 and K14 were co-localized (data not shown) and formed a classic pan-

cytoplasmic array (Fig. 2.3A, A’’), while K8 was typically absent (Fig. 2.3A’) except in 

rare cells that may correspond to Merkel cells (data not shown), which express K8 

naturally (Moll et al., 1984).  In Krt5 null keratinocyte cultures, no signal was detected 

for K5 and K8 antigens, as expected, while the signal for K14 was weak (Fig. 2.3C-C”).  

In KRT8bc replacement cultures, there was no signal for K5 (as expected), and K8bc and 

K14 were consistently co-localized in the context of normal-looking arrays of keratin IFs 

(Fig. 2.3D’, D” and data not shown).  Images of control and KRT8bc replacement 

keratinocytes taken under identical exposure conditions did not exhibit reduced levels of 

K14 protein, in contrast to the western blot data presented in Fig. 2.2E.  This may be due 

in part to the induced expression of other keratins in the context of primary culture of 

keratinocytes (Weiss et al., 1984; McGowan and Coulombe, 1998).  These findings, 

obtained in mouse skin keratinocytes, significantly extend our previous work  
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Figure 2.3: Analysis of Embryonic Skin Keratinocytes in Primary Culture by 

Indirect Immunofluorescence.  Conventional fluorescence microscopy of keratinocytes 

harvested from Krt5+/+ (control) (A-A’’’’), Krt5-/- (Krt5 null) (B-B’’), or KRT8bcTg/-Krt5-

/- (KRT8bc replacement) (C-C’’) E18.5 embryos (as indicated on top).  Fixed cells were 

immunostained for keratin 5, keratin 8, and keratin 14 epitopes, as indicated at left.  Nu, 

nucleus.  Bars = 10µm.  
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Figure 2.3: Analysis of Embryonic Skin Keratinocytes in Primary Culture by 

Indirect Immunofluorescence. 
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demonstrating that K8bc is competent for 10nm filament assembly and IF network 

formation when paired with type I K14 (Lee and Coulombe, 2009). 

To further examine the innate features of basal keratinocytes including their 

keratin IF network, we processed E18.5 skin for routine transmission electron 

microscopy.  At this late embryonic stage, the epidermis is mature, and adult-like barrier 

properties have been acquired (Lee and Coulombe, 2009).  In this setting, basal 

keratinocytes are columnar in shape, with an ovoid nucleus oriented along the long axis 

of the cell (Fig. 2.4A-C).  Hemidesmosomes and desmosomes are numerous and 

regularly spaced at the basal pole of basal keratinocytes and at sites of cell-cell contact, 

respectively, and exhibit association with electron-dense filamentous structures indicating 

attachment to keratin IFs (Fig. 2.4B, C).  In addition, long bundles of keratin IFs oriented 

along the long axis of the cell can be readily be found on each side of the nucleus, and the 

mitochondria appear healthy (Fig. 2.4B,C).  In areas of Krt5 null embryonic skin for 

which the epidermis is intact, the overall thickness, stratification, and differentiated layers 

of the epidermis appear normal (Fig. 2.4D).  That said, the basal keratinocytes are 

markedly flattened, and their nucleus is oriented parallel, rather than perpendicular, to the 

skin surface (Fig. 2.4D-F; Table 2.2).  While desmosomes and hemidesmosomes persist, 

they do not appear to associate with electron-dense filaments; in fact, no keratin IF 

bundles can be detected anywhere in the cytoplasm of the basal cells (Fig. 2.4E, F).  

Virtually all mitochondria appear severely damaged in basal cells, as seen through their 

swelling, loss of cristae, and loss of matrix as reflected by the electron-lucent appearance 

(Fig. 2.4F, Table 2.2).  The latter does not result from a fixation artifact, as mitochondria  
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Figure 2.4: Ultrastructural Analysis of E18.5 Epidermis in situ.  Krt5+/+ (control) (A-

C), Krt5-/-(Krt5 null) (D-F), and KRT8bcTg/-Krt5-/- (KRT8bc replacement) (G-I) mouse 

epidermis at E18.5 was analyzed by routine transmission electron microscopy of thin 

sections.  Frames A, D, and G provide low-magnification surveys of the living layers of 

epidermis (basal, spinous, granular), while all other frames provide details of basal 

keratinocytes.  kif, keratin intermediate filament bundles; mi, mitochondria; Nu, nucleus.  

Examples of hemidesmosomes and desmosomes are circled and boxed, respectively. 
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Figure 2.4: Ultrastructural Analysis of E18.5 Epidermis in situ.
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with normal size and ultrastructure can readily be found in epidermis-proximal dermal 

fibroblasts and in the upper layers of the epidermis (data not shown).  Further, the 

ultrastructural features of the nuclei and cytoplasm clearly convey that basal 

keratinocytes are not undergoing apoptosis in intact skin of Krt5 null E18.5 embryos (Lu 

et al., 2007).  In addition to engendering acute tissue fragility, the genetic loss of Krt5 

leads to several major cytoarchitectural defects in the epidermis (see Table 2.2) that are 

largely confined to basal layer keratinocytes. 

 Several of these ultrastructural attributes are partially restored in basal 

keratinocytes of KRT8bc replacement E18.5 skin, correlating with a more mechanically 

sound tissue during harvesting and preparation (data not shown).  Basal keratinocytes are 

cuboidal in shape, and their nuclei are consistently oriented perpendicular to the main 

axis of epidermis (Fig. 2.4G-I, Table 2.2).  Interestingly, their nuclei still exhibit an 

aberrant contour, rather than the round or ovoid shape observed in control and Krt5 null 

epidermis.  The mitochondrial defects observed in Krt5 null embryonic skin are also 

partially restored in the KRT8bc replacement skin (Table 2.2).  Ultrastructural features 

including an electron-dense matrix and intact cristae are present in approximately half of 

observed mitochondria (Fig. 2.4H, I, and Table 2.2).  Desmosomes and 

Hemidesmosomes appear normal, and are more likely to exhibit association with filament 

networks (Fig. 2.4H, I).  Finally, electron-dense bundles of keratin IFs along the cellular 

periphery and in the general cytoplasm are observed (Fig. 2.4I).  These bundles are 

smaller, however, and occur less frequently in KRT8bc replacement mice relative to  
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Table 2.2: Summary of Ultrastructural Observations Made in E18.5 (Pre-Birth) 

Epidermis. 

 

Control indicates Krt5+/+, Krt5 null indicates Krt5-/-, and KRT8bc replacement indicates 

KRT8bcTg/-Krt5-/-. 
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control epidermis (Table 2.2).  A summary of the observed ultrastructural phenotypes, 

and their frequency, is presented in Table 2.2. 

Adult KRT8bc replacement animals exhibit several skin abnormalities.  KRT8bc 

replacement mice that survived to adulthood were indistinguishable from their littermates 

for the first several weeks after birth.  To examine the status of the epidermis in these 

animals, tissue was harvested from a successful KRT8bc replacement adult and a control 

littermate, and processed for transmission electron microscopy.  Analysis of these 

samples revealed a striking similarity between control and KRT8bc replacement 

epidermis.  The shape and orientation of basal keratinocytes and the orientation of their 

nuclei appeared similar in both samples (Fig. 2.5).  Keratin filament bundles were visible 

in the cytoplasm and near the nucleus, and were observed to be associated with 

hemidesmosomes and desmosomes in both samples (Fig. 2.5).  Most notably, the 

mitochondria appear healthy in KRT8bc replacement epidermis, comparable to control 

epidermis (Fig. 2.5B, D).  The most striking difference between the control and rescued 

skin is the persistence of the aberrant contour of the nuclei (Fig. 2.5B, D). 

As the KRT8bc replacement mice aged, however, multiple phenotypes began to 

manifest.  Most of the rescued mice developed alopecia starting as early as 6 weeks of 

age.  Hair loss occurred consistently on the nape, and often progressed into larger hairless 

regions along the back, flanks, and occasionally on the face and other body areas (Fig. 

2.6A).  Additionally, all KRT8bc replacement animals developed severe ulcerative 

dermatitis on the ears and nape (Fig. 2.6D).  These areas of ulcerative dermatitis did not 

respond to topical antibiotic ointment, and resulted in the formation of chronic lesions. 
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Figure 2.5: Ultrastructural Analysis of Adult Control and KRT8bc Replacement 

Epidermis in situ. 

 

Krt5+/+ (control) (A-C), and KRT8bcTg/-Krt5-/- (KRT8bc replacement) (D-F) epidermis in 

11wk old mice by routine transmission electron microscopy of thin sections.  Frames A 

and D provide low-magnification surveys of the living layers of epidermis (basal, 

spinous, granular), while frames B,C, E, and F provide details of basal keratinocytes.  kif, 

keratin intermediate filament bundles; mi, mitochondria; Nu, nucleus.  Examples of 

hemidesmosomes and desmosomes are circled and boxed, respectively.  
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To further assess this phenomenon, routine histology was performed on normal-looking, 

hairy skin and on regions of affected skin.  Hairy skin from KRT8bc replacement mice 

was comparable to normal control animal skin (data not shown), with a normal epidermis 

and telogen-stage hair follicles (Fig. 2.6B, E).  Hairless regions of replacement animals 

showed an increased epidermal thickness compared to hairy skin (as expected), and 

enlarged sebaceous glands (Fig. 2.6C).  Moreover, hair follicles were aberrantly shaped 

and oriented in hairless regions, and frequently appeared to be at the anagen stage of their 

cycle (Fig. 2.6C).  In regions of lesional skin, the epidermis was markedly hyperplastic 

and the dermis was heavily inflamed (Fig. 2.6F).  As with hairless skin, lesional skin 

contained hair follicles in anagen stage (when present), and were often improperly-

oriented.  Many hair follicles were without a visible hair shaft, and the associated 

sebaceous glands were greatly enlarged (Fig. 2.6F).  Also of note was that the lesional 

skin contained numerous large cysts of pilosebaceous origin (data not shown). 

DISCUSSION 

 In the current study, we set out to test the functional importance of the property of 

K5/K14 filament self-organization into cross-linked networks by targeting the expression 

of K8bc or wildtype K8 to the epidermis of Krt5 null mice.  K8bc is a chimera that is 

polymerization and self-organization competent when paired with K14, while K8 readily 

co-polymerizes with K14 but is unable to form cross-linked networks (Lee and 

Coulombe, 2009).  We found that KRT14 promoter-driven expression of K8bc rescued 

Krt5 null mice from massive perinatal blistering and death with a 47% frequency, 

whereas expression of K8 was unable to afford any rescue in this setting.  While the  
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Figure 2.6: Analysis of Late-Onset Phenotypes in Adult KRT8bc Replacement 

Animals.  Macroscopic survey (A, D) and histology (B, C, E, F) illustrating the late-

onset phenotype arising in KRT8bc replacement animals.  A) Six month old adult 

KRT8bc replacement animals showing areas of both normal skin and areas of alopecia are 

shown.  B) Hairy skin from KRT8bc replacement animal (see box “B” in frame A) 

showing normal histology.  C) Phenotypic skin sample from KRT8bc replacement animal 

(see box “C” in frame A) showing misoriented, anagen-staged hair follicles and 

thickened epidermis.  D) A 3 month old adult KRT8bc replacement animal showing both 

normal skin and areas of inflamed and hyperkeratotic, scaly skin.  E) Hairy skin from 

KRT8bc replacement animal showing normal histology (see box “E” in frame D).  F) 

Phenotypic skin from replacement animals (see box “F” in frame D) depicting 

hyperplastic epidermis, pilosebaceous cysts, and a high level of dermal infiltration 

suggesting an inflammatory and immune infiltration.  Epi, epidermis; hf, hair follicle; sg, 

sebaceous gland.  Bars= 100µm. 
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Figure 2.6: Analysis of Late-Onset Phenotypes in Adult KRT8bc Replacement 

Animals. 
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rescued KRT8bc replacement mice reached adulthood and were reproductively 

competent, most eventually developed alopecia and all developed skin erosions; also, 

their basal keratinocytes exhibited persisting ultrastructural anomalies (see Table 2.2).  

These observations imply that, even when expressed at approximately half the levels of 

endogenous K5 in control skin, the K8bc chimeric protein cannot fully support the 

function(s) of K5 in mouse epidermis in vivo.  Further, the occurrence of rescue from 

overt cell and tissue fragility in neonatal and adult skin could be correlated with the 

presence of keratin IF bundles in basal keratinocytes, consistent with (but not proving) 

the hypothesis put forth in Lee and Coulombe (Lee and Coulombe, 2009). 

In the first approximation, the significance of our protein replacement findings, 

and of the differences observed between K8bc and K8, is mitigated by the relatively low, 

and uneven, levels at which they were each expressed in Krt5 null mouse epidermis.  

However, recent studies suggest that much less than 50% of the normal (control) 

complement of K5/K14 proteins suffices to rescue key phenotypic traits in keratin-free 

keratinocytes in culture (Seltmann et al., 2013a; Seltmann et al., 2013b; Kroger et al., 

2013).  Besides, our data suggest that the steady state levels of rescue transgene mRNA 

differ depending on genotype (e.g. in transgenic mice vs. replacement mice) and the 

rescue construct being expressed (e.g. K8 vs. K8bc), extending a previous observation of 

striking context-dependent post-transcriptional regulation for ectopic keratin mRNAs in 

basal keratinocytes (Paladini and Coulombe, 1999).  While we cannot formally compare 

the effectiveness of the K8 and K8bc proteins in replacing K5 in basal epidermal 

keratinocytes, it is quite remarkable that sub-normal levels of K8bc (Fig. 2.2C), alongside 
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a partial rescue of endogenous K14 protein levels (Fig. 2.2E), were sufficient to 

effectively rescue skin blistering and death in nearly 50% of KRT8bc replacement 

newborns.  Otherwise, the outcome of our study conveys that the property of 10nm 

filament formation, in vitro and in vivo, does not suffice to dictate a normal fate and/or 

function for an IF protein in basal keratinocytes of the epidermis, thereby significantly 

extending previous rescue efforts of a similar nature (Paladini and Coulombe, 1999; 

Kirfel et al., 2002). 

Additionally, our KRT8 transgenic mice did not feature a visible phenotype, likely 

the result of low expression levels, whereas Casanova et al.  (Casanova et al., 2004) 

observed severe skin anomalies in transgenic mice that ectopically express wildtype K8 

(at higher levels) in the epidermis.  Our findings with KRT8 transgenic mice are, in fact, 

similar to those reported by Kirfel et al.  (Kirfel et al., 2002), who showed that ectopic 

desmin was able to form 10nm filaments in basal keratinocytes but could not rescue the 

Krt5 null mice to any extent, correlating with low expression.  In both the Kirfel et al.  

study and the current one, the data in hand precludes a formal assignment of the failure to 

rescue to the low prevailing levels of rescue protein expression achieved vs.  abnormal 

protein properties in an ectopic setting. 

Our ultrastructural assessment of late-stage embryonic Krt5 null mice as well as 

adult KRT8bc replacement mice revealed novel and potentially important irregularities 

associated with K5 protein deficiency in mouse epidermis.  Our findings corroborate the 

previous description of a complete lack of detectable keratin IFs in the cytoplasm of basal 

keratinocytes, and of largely normal-appearing suprabasal keratinocytes (Peters et al., 
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2001).  In addition to these observations, we also observed major cytoarchitectural 

defects, e.g., aberrancies in cell shape and orientation, the shape and orientation of the 

nucleus in basal keratinocytes, and major mitochondrial defects.  At least in part, the 

differences between our study and that of Peters et al. may be rooted in the use of 

different protocols when preparing samples for analysis by transmission electron 

microscopy (Peters et al., 2001).  The marked alterations observed in the shape of basal 

keratinocytes in Krt5 null skin may alter their physical relationship with other key cell 

types in the epidermis, including melanocytes and Langerhans cells.  As such, they may 

contribute to the aberrations observed in skin pigmentation (Betz et al., 2006) and 

Langerhans cell density (Roth et al., 2009) in mouse models and/or individuals with 

genetic alterations at the Krt5 locus.  In addition, our observations may well be related to 

the findings of Lee et al. (Lee et al., 2012), who proposed that perinuclear K5/K14 

filaments impart an oxidation-state dependent influence upon the size and shape of the 

nucleus in newborn epidermis.  On another front, the observation of a difference in the 

number of desmosomal and hemidesmosomal plaques in Krt5 null basal keratinocytes 

(which are devoid of keratin IFs) is not surprising in light of similar findings obtained 

when analyzing type II keratin-free keratinocytes (Kroger et al., 2013), and considering 

the roles recently assigned to keratins in the localization and maintenance of desmosomes 

(Seltmann et al., 2013b; Liovic et al., 2009). 

The mitochondrial defects observed in late-stage embryonic Krt5 null mice are 

particularly interesting.  The shape and position of mitochondria within cells has been 

shown to be influenced by keratin IFs in a number of contexts.  For example, we note that 
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similar mitochondrial defects have been reported in Krt14 null mouse neonates (Lloyd et 

al., 1995), though they were shown to be associated with cytolysis, and therefore may 

have been a consequence of overt, post-lysis cellular distress.  Also, we previously 

reported on the occurrence of intriguing electron dense inclusions in the mitochondrial 

matrix of epidermal keratinocytes from both KRT16-overexpressing transgenic mice 

(Takahashi et al., 1994) and Krt16 null mice (Lessard et al., 2013).  Additionally, a 

reduced mitochondrial size was reported in livers of Krt8 null mice and in mice carrying 

the KRT18 R89C mutation (Tao et al., 2009; Kumemura et al., 2008), while Stone et al.  

(Stone et al., 2007) described an increased mitochondrial size in the skeletal muscle of 

Krt19 null mice.  Ongoing efforts in several laboratories, including our own, should shed 

light on the implications and mechanisms of K5’s involvement in mitochondrial 

physiology and other important determinants of the structure and function of the 

epidermis and related epithelia. 
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INTRODUCTION 

Keratins are intracellular fibrous heteropolymers that are expressed in epithelia of 

higher metazoans.  While a primary function of keratin filaments is to provide structural 

support, the list of biological functions assigned to keratins is still expanding, and 

includes the modulation of cellular function through an impact on signaling pathways 

(Pan et al., 2013).  Although these emerging functions play significant roles in the normal 

biological processes of the cell, keratins are also known to be involved in the pathology 

of several human diseases (Omary et al., 2009; Karantza, 2011; Pan et al., 2013).  Cancer 

is one such disorder, and studies of a number of tumor settings are revealing potential 

roles for keratins in cancer.  It has been determined that keratins 5, 6, and 17 are faithful 

markers of cancer of basal cell origin (Markey et al., 1992; Ordonez, 1998).  In fact, 

expression of keratins 5 and 17 is shown to correlate with poorer patient prognosis in a 

number of cancer paradigms (van de Rijn et al., 2002; Karantza, 2011; Ide et al., 2012; 

Wang et al., 2013).  Additionally, the aberrant expression of the simple epithelial keratin 

K8 in the skin induces severe dysplasia of the hair follicles and an increase in the 

progression of papillomas toward malignancies (Casanova et al., 2004).  Given the 

recurring misregulation of keratins in cancers, as well as the known roles of keratins in 

signaling pathways, it is plausible that keratins are more than mere bystanders in this 

disease. 

Basal cell carcinoma (BCC) is the most common cancer in patients of European 

descent.  The majority of incidences of BCC occur sporadically, although BCC is one of 
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the phenotypes associated with the hereditary disorder called basal-cell nevus syndrome 

(BCNS) (Gorlin, 1987; Epstein, 2008).  BCNS, also known as Gorlin syndrome, can be 

caused by mutation in the PTCH1 gene, a transmembrane receptor that inhibits hedgehog 

signal transduction in the absence of its ligand (Johnson et al., 1996).  The discovery 

made in the context of Gorlin syndrome lead to the subsequent finding that the genetic 

and molecular basis of most cases of BCC in skin is aberrant Sonic hedgehog (Shh) 

signaling (Gailani et al., 1992; Hahn et al., 1996; Johnson et al., 1996; Epstein, 2008).  

Indeed, the overwhelming majority of sporadic BCC cases harbor mutations in PTCH1, 

while 10% of cases have mutations in the Shh downstream effector SMO that most likely 

render it resistant to inhibition by PTCH1 (Aszterbaum et al., 1998; Xie et al., 1998; 

Epstein, 2008). 

To examine the role of keratin 17 in the onset and progression of this disease, a 

mouse model with constitutive expression of a Shh transcriptional effector, Gli2, were 

crossed to a mouse strain harboring a null mutation at the KRT17 locus (Depianto et al., 

2010).  In this setting, ear tumor onset was significantly delayed in the absence of keratin 

17.  This delay correlated with decreased cell proliferation along with major alterations in 

inflammation and immune response (Depianto et al., 2010).  Specifically, the loss of 

keratin 17 caused a polarization of the immune response from a Th1/Th17-dominated to a 

Th2-dominated profile (Depianto et al., 2010).  Such findings suggested that keratins are 

involved in immune modulation in the tumor setting, with an impact on tumor initiation 

and progression. 
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The type II keratin binding partner for keratin 17 in several cancer settings is 

keratin 5 (van de Rijn et al., 2002; Depianto et al., 2010).  A recent genome-wide 

association study identified two single nucleotide polymorphisms (SNPs) that affect the 

coding region of keratin 5 and confer increased susceptibility to BCC (Stacey et al., 

2009).  These variants encode the following substitutions: glycine (Gly) to glutamic acid 

(Glu) at position 138 (referred to herein as K5 G138E) within the non-helical head 

domain, and aspartic acid (Asp) to glutamic acid (Glu) at position 197 (referred to herein 

as K5 D197E) within the central rod domain.  These substitutions represent novel 

variants of keratin 5, in that they have not been previously identified as associated with 

human diseases, including Epidermolysis Bullosa Simplex (Stacey et al., 2009).  While 

the process of tumorigenesis is a complex and multifactorial one, the molecular genetics 

of BCC and the known functions of keratin 5 point to several possible mechanisms by 

which these SNPs increase BCC susceptibility. 

First, it is possible that these variants alter the keratin filament assembly, 

structure, and/or dynamics.  While these variants have not been identified as a cause of 

EBS to date, Stacey et al. predicted that these substitutions would be deleterious (Stacey 

et al., 2009).  EBS is caused by single substitutions in the coding region of KRT5 in 

nearly 50% of all cases (Szeverenyi et al., 2008; Coulombe and Lee, 2012).  There is 

some clinical evidence suggesting that these mutant proteins alter filament function in a 

subtle and sub-clinical fashion (Trufant et al., 2010; Shurman et al., 2006).  One report 

described a transient EBS-like phenotype following the treatment with a retinoid for 

cutaneous T cell lymphoma (Trufant et al., 2010).  Mutational analysis revealed that this 
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patient carried one allele encoding the K5 G138E variant (Trufant et al., 2010).  At the 

proper dosage, retinoids attenuate epidermal keratin expression (Torma, 2011), and this 

may have led to K5 G138E attaining the stoichiometry needed to elicit a fragility 

phenotype.  Another clinical report described a family with a mild form of EBS that 

presented with the unique co-morbidity of hyperkeratotic papules on the extremities of 

select offspring (Shurman et al., 2006).  Mutational analysis of this family identified the 

EBS-causing mutation to be KRT5 c.74C>T (encoding the substitution P25L normally 

associated with a rare EBS subtype with pigmentation anomalies; see below), but the co-

morbidity presented only in individuals carrying both this mutation and the allele 

encoding the K5 D197E variant (Shurman et al., 2006). 

Another potential mechanism of increased BCC susceptibility by these keratin 5 

variants is altered ultraviolet damage response.  The most significant environmental risk 

factor for BCC is sunlight exposure; therefore, variants that affect the protection against, 

and repair of, UV-induced DNA damage repair could alter the susceptibility to develop 

BCC (Epstein, 2008).  Consistent with this, variants of genes that regulate pigmentation 

in skin correlate with susceptibility to BCC (Han et al., 2006).  A number of disease 

contexts have linked keratin 5 mutations with alterations in pigmentation (Gu and 

Coulombe, 2007).  For example, EBS with mottled pigmentation (EBS-MP) (Uttam et 

al., 1996) and EBS Migratory (EBS-Migr) (Gu et al., 2003) are subtypes of EBS which 

presents with altered skin pigmentation in the form of hypo- or hyperpigmented patches 

(Fischer and Gedde-Dahl, 1979).  Also, Dowling Degos Disease (DDD) is a non-EBS 

disease caused by haploinsufficiency of keratin 5 which also presents with aberrant 
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pigmentation (Dowling and Freudenthal, 1938; Betz et al., 2006).  However, Stacey et al. 

(2009) found that body areas exposed to sunlight did not have more incidence of BCC 

than areas not exposed to sunlight (P=0.09), nor do these variants associate with any 

pigmentation trait in patients carrying the keratin 5 SNPs.  While these data suggest that 

these variants modulate risk of BCC through mechanisms other than altered response to 

UV exposure (Stacey et al., 2009), this possibility deserves a deeper investigation. 

A third possible mechanism by which the K5 G138E and K5 D197E variants 

could increase BCC susceptibility is via alterations in the emerging role of keratins as 

immune response modulators.  As mentioned above, investigation of the role of keratin 

17 in BCC has revealed immune response modulation as a potentially powerful 

mechanism by which keratins can influence tumor initiation and progression (Depianto et 

al., 2010).  Genetic ablation of keratin 5 has also been shown to alter the immune profile 

in embryonic mouse skin, specifically increasing the expression of the cytokines Ccl2, 

Ccl19, and Ccl20 (see Table 3.2) (Roth et al., 2009).  Therefore, one should consider the 

potential of these keratin 5 variants to impact the immunological landscape of the skin in 

such a way as to promote the cellular transformations leading to BCC. 

Finally, another mechanistic possibility is a heretofore unidentified role for 

keratin 5 in modulation of Shh signaling.  While there is no direct evidence for this, the 

number of signaling pathways modulated by keratins continues to increase steadily (see 

Chapter 1) (Pan et al., 2013).  In the study presented in this Chapter, we continue the 
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analyses initiated by Andrew Sawaya (Sawaya, 2011) in an effort to determine the impact 

of these keratin 5 variants on cellular functions in HeLa cells. 

EXPERIMENTAL PROCEDURES 

Plasmids.  Plasmids pEGFP-N1, pEGFP-N1-K5, pEGFP-N1-K5G138E, and 

pEGFP-N1-K5D197E were described previously (Sawaya, 2011).  The open reading 

frame of wildtype KRT5, KRT5 variant K5 G138E, and KRT5 variant K5 D197E were 

PCR-amplified by the primers indicated in Table 3.1, digested with EcoRI and KpnI, and 

subcloned into pEGFP-C3 vector.  The resulting plasmids were designated pEGFP-C3 

(Vector), pEGFP-C3-K5 (wildtype KRT5), pEGFP-C3-K5G138E (designated KRT5 

G138E), and pEGFP-C3-K5D197E (designated KRT5 D197E).  Plasmid pEGFP-C3-

K5E477K (designated KRT5 E477K), which expresses a mutated and EBS-causing 

keratin that severely disrupts keratin filaments (Gu and Coulombe, 2005), was generated 

by site-directed mutagenesis of the wildtype KRT5 plasmid using QuikChange II KL 

Site-Directed Mutagenesis kit (Agilent Technologies) and the primers indicated in Table 

3.1. 

Cell lines and transfections.  All transfection experiments were performed in 

HeLa cells (ATCC CCL-2) using GeneJuice® reagent (EMD Millipore) according to the 

manufacturer’s instruction.  Cells were maintained in low glucose Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) and 

Penicillin/Streptomycin.  Cells were treated with 12-O-tetradecanoylphorbol-13-acetate  
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Table 3.1: List of Primers 
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Table 3.2: Biological Relevance of qRT-PCR Targets 
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(TPA, Sigma) dissolved in DMSO or DMSO alone, added to complete media to a final 

concentration of 200 nM for 12h (Pan et al., 2011). 

Protein analysis.  For analysis of protein expression, urea-soluble proteins were 

extracted from transfected HeLa cells as previously described (Lee and Coulombe, 2009).  

Protein concentrations were determined with a Bradford assay kit (Bio-Rad).  Equal 

quantities of protein were resolved on 10% SDS-PAGE and transferred to nitrocellulose 

membranes.  Membranes were blocked and antibody incubations were performed in 5% 

milk in 1x TBS-T.  Protein epitopes were detected with the following antibodies: rabbit 

anti-K5 AF-138, (Covance) and mouse anti- β-actin antibody (Sigma).  Secondary 

antibodies used were horseradish peroxidase- conjugated goat anti-rabbit and goat anti-

mouse.  Blots were developed using the SuperSignal West Pico Chemiluminescent 

substrate kit (Bio-Rad) and were imaged with FluorChem® Q MultiImage III (Alpha 

Innotech).  Band signal intensity was measured from these images with the AlphaView® 

Q software. 

Immunofluorescence.  HeLa cells were plated on coverslips and grown in DMEM 

supplemented with 10% FBS and Pen/Strep at 37°C and 5% CO2.  For analysis of 

filament networks, cells were transfected with the plasmids described above overnight 

with GeneJuice reagent according to manufacturer’s instructions.  Cells were allowed to 

grow for 72h, and then coverslips were fixed with ice-cold methanol at -20°C for 10 min.  

K5 was detected with rabbit anti-K5 AF-138 antibody (Covance).  Secondary antibody 

used was goat anti-rabbit Alexa-594, and nuclei were stained with Hoechst fluorescent 
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dye.  Images were taken on a Zeiss AxioObserver inverted microscope with an AxioCam 

HRc camera.  “Bundled” networks were quantified using ImageJ by counting the number 

of cells with fluorescent signal above the maxima threshold of 60 per 40x frame.  Cells 

with “aggregated” keratins were counted manually, and cells with “distributed” networks 

were determined by subtracting the bundled and aggregated cells from the total number 

of transfected cells.  Images were cropped and scale bars were added also using ImageJ. 

Quantitative real-time PCR.  Total RNA was isolated from HeLa cells using 

RNEasy isolation kit (Qiagen) according to manufacturer’s instructions.  Complementary 

DNA was synthesized using iScript™ cDNA synthesis kit (Bio-Rad) according to 

manufacturer’s instructions.  Quantitative real-time PCR was carried out using SYBR® 

Green Real-Time PCR Master Mix from Life Technologies on a Bio-Rad C1000™ 

thermocycler and CFX™ Real-Time System.  Oligonucleotide primers used are defined 

in Table 3.1.  Delta Cq (ΔCq) was determined by subtracting the averaged Cq values for 

Actin and GAPDH from the Cq of the target, and delta-delta Cq (ΔΔCq) for each 

targetwas determined by subtracting the ΔCq of the control samples (DMSO-treated) 

from the TPA-treated samples (Lessard et al., 2013).  Relative fold change was calculated 

by taking 2-ΔΔCq.  Calculations were performed using Microsoft Excel. 

Statistical analyses.  All statistics were performed using Graphpad Prism 

software.  Two-way analyses of variance (ANOVA) were used to test for significance, 

and adjusted P values are reported. 

  



76	  
	  
	  

	  

RESULTS 

Mutant keratins form normal pan-cytoplasmic networks in HeLa cells.  In a 

previous effort, purified recombinant wildtype and mutant keratin 5 proteins were co-

assembled with keratin 17 in vitro and the resulting assemblies were assessed by electron 

microscopy (Sawaya, 2011).  In this setting, the filaments formed by the variants K5 

G138E and K5 D197E are not distinguishable from wildtype K5 (Sawaya, 2011).  The 

filaments appear to be normal in diameter (~10 nm), and no obvious aberration in 

filament assembly or structure was evident (Sawaya, 2011).  To assess the ability of the 

keratin 5 variants to integrate into preexisting keratin filament networks in epithelial 

cells, HeLa cells were transfected with wildtype KRT5 or the KRT5 variant cDNAs, and 

keratin filament networks were visualized by indirect immunofluorescence.  This analysis 

revealed only subtle differences between WT K5 and K5 variants (Fig.  3.1).  Each of the 

K5 proteins tested (WT K5, K5 G138E, and K5 D197E) readily integrated into the 

keratin IF networks, which in the majority of cases maintained their pan-cytoplasmic 

distribution and normal appearance (Fig.  3.1).  For the purpose of quantitation, 

transfected cells were assessed based on their appearance and labeled as “distributed”, 

“bundled”, or “aggregated” (Fig. 3.2A).  Analysis of over 1000 cells for each of the 

keratin 5 constructs tested revealed that the variants K5 G138E and K5 D179E were more 

likely to be associated with filament bundles relative to wildtype keratin 5 (Fig.  3.2B).  

This resulted in a statistically significant decrease in the so-called “dispersed” filament 

networks in HeLa cells transfected with cDNA encoding K5 G138E or K5 D197E, and a 

corresponding increase in “bundled” filament networks (Fig.  3.2B).  None of the type II    
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Figure 3.1: Observation of Keratin Filament Networks in HeLa Cells. 

 

Figure 3.1: Observation of Keratin Filament Networks in HeLa Cells. 

HeLa cells were transfected with cDNA encoding WT K5 (A-A”), K5 G138E (B-B”), or 

K5 D197E (C-C”), and keratin filament networks were observed by indirect 

immunofluorescence.  In this setting, both keratin variants (B-C”) properly integrated 

into the endogenous keratin filament network of HeLa cells, and did not trigger any 

obvious difference relative to networks containing wildtype K5 (A-A”).  Nu, nucleus.  

Bar=10μm 
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Figure 3.2: Analysis of Keratin Filament Networks in HeLa Cells. 

A) Representative examples of each of the filament networks observed in HeLa cells 

transfected with cDNA encoding WT K5, K5 G138E, or K5 D197E.  The examples of 

filament network phenotypes (dispersed, bundled, aggregated) shown are from cells 

transfected with wildtype KRT5 cDNA.  B) Frequency of filament network phenotypes in 

transfected HeLa cells.  Cells transfected with cDNA encoding WT K5, K5 G138E, or 

K5 D197E were methanol-fixed and processed for indirect immunofluorescence.  

Filament networks were qualified as “bundled” if their fluorescent signal was above the 

maxima threshold of 60, as determined by the ImageJ software.  “Aggregated” cells were 

counted manually, and cells with “distributed” networks were determined by subtracting 

“bundled” and “aggregated” cells from the total number of transfected cells.  The 

percentages of each form of observed network is illustrated in graphical format.  *, 

P=0.0001; **, P>0.0001.  C) Steady-state protein levels of WT K5 (WT), K5 G138E 

(G138E), and K5 D197E (D197E) in transfected HeLa cells.  Total protein was extracted 

from HeLa cells transfected with equal concentrations of cDNA and resolved by standard 

western blot analysis.  ACTB protein was used as a loading control.  Both K5 variants 

had higher steady-state protein levels when compared to wildtype K5. 
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Figure 3.2: Analysis of Keratin Filament Networks in HeLa Cells. 
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keratins assessed resulted in a significant increase in “aggregated” filament networks 

(Fig.  3.2B). 

Since the characterization of keratin filaments as bundled networks is dependent 

on fluorescence signal intensity, one potential explanation for the significant increase in 

“bundled” networks in the KRT5 variant transfectants is an increased amount of variant 

K5 protein content compared to WT K5 transfectants.  To address this, the steady-state 

levels of keratin proteins were determined by extracting urea-soluble proteins from 

transfected HeLa cells and resolving by western blot (Fig. 3.2C).  Using this analysis, the 

steady-state levels of variant K5 proteins were demonstrated to be higher than WT K5 

despite the transfection of equal concentrations of cDNA (Fig. 3.2C).  Whether this 

increased amount of variant K5 protein is the result of increased expression or sequence-

related resistance to degradation remains unclear, and warrants follow-up analyses in the 

future. 

To assess the impact of KRT5 variant expression has on cellular signaling 

pathways relevant to BCC, transcript levels for specific genes (designated as “targets”) 

was carried out using customized quantitative real-time PCR (qRT-PCR) arrays.  Targets 

were selected from several paradigms, including some whose expression is elevated in 

known mouse tumor models (HPVTg, GLI2Tg) (Depianto et al., 2010), some determined 

to be differentially modulated in Krt17-/- mice compared to Krt17+/+ mice (Depianto et 

al., 2010), and others found to be overexpressed in human BCC (Fig. 3.3a) (Bonifas et 

al., 2001; Katoh and Katoh, 2009).  As an additional stimulus, transfected HeLa cells  
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Figure 3.3: Impact of K5 Variants on Cytokine Expression by qRT-PCR Analysis. 

A) List of targets chosen for custom qRT-PCR analysis, and the setting in which they are 

upregulated or differentially regulated in a keratin- and/or cancer-specific manner (see 

Table 3.2 for associated biological significance).  B) Targets that were unaffected by the 

expression of the two KRT5 variants tested.  Total RNA was queried with custom qRT-

PCR arrays, and the relative fold change of TPA-treated cells over DMSO-treated cells is 

reported.  The majority of targets assessed did not demonstrate a difference between 

wildtype and variant KRT5 expression, including effectors of Shh and Wnt signaling 

pathways known to be markedly upregulated in BCC.  C) Targets that demonstrated 

differential expression as a result of TPA treatment concomitant with the expression of 

K5 variants.  Total RNA was queried with custom qRT-PCR arrays, and the relative fold 

change of TPA-treated cells over DMSO-treated cells is illustrated.  The mRNA 

transcripts for genes CCL2 and CXCL5 exhibit distinct levels in cells expressing wildtype 

keratin 5 compared to cells expressing KRT5 variants.  *, P<0.01; **, P<0.001. 
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Figure 3.3: Impact of K5 Variants on Cytokine Expression by qRT-PCR Analysis.  
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were treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) at a 

final concentration of 200nM.  Using this method of analysis, we determined that the 

targets AIRE, IL6, IFNG, IL1B, CCL3, CCR1, CXCR2, and HHIP do not produce signal 

above levels detected in no reverse transcriptase control wells (data not shown), 

indicating they are either not expressed in HeLa cells, or below the levels of detection by 

this assay. 

Of the remaining targets analyzed, the majority did not show significant 

differences between cells transfected with wildtype keratin 5 and cells transfected with 

keratin 5 variants (Fig. 3.3B).  Included in this group are PTCH1 and GLI1, two effectors 

in the Shh signaling pathway, and WNT2B and WNT5A, which are effectors of the Wnt 

signaling pathway that are upregulated in human BCC (Fig. 3.3A, B) (Yang et al., 2008).  

Also unaffected by the expression of the KRT5 variants is their binding partner, KRT17, 

which is known to be upregulated in a variety of cancer paradigms (see Introduction; Fig. 

3.3A, B). 

Interestingly, two genes were found to be differentially regulated depending on 

the keratin variant being transfected.  Specifically, CCL2 was found to be upregulated as 

a result of TPA treatment in HeLa cells transfected with wildtype KRT5 (Fig. 3.3C).  

Although the trend of increased CCL2 expression is maintained in HeLa cells transfected 

with the KRT5 variants K5 G138E and K5 D197E, the latter were determined to not be 

statistically significant relative to vector control (Fig. 3.3C).  Another target, CXCL5, 

remained unchanged in HeLa cells transfected with wildtype KRT5 when compared to 
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vector control; however, cells transfected with either KRT5 variant displayed 

significantly reduced levels of CXCL5 (Fig. 3.3C). 

DISCUSSION 

The current study set out to address whether two SNPs resulting in single amino 

acid substitutions in keratin 5 and associated with an increase risk in developing BCC 

(Stacey et al., 2009) modulate either the properties of keratin filaments or expression of 

specific genes in cultured HeLa cells.  We found that, contrary to the predictions offered 

by Stacey et al., the K5 G138E variant (as well as the K5 D197E variant) did not impact 

keratin filament assembly or network formation in a deleterious fashion (Stacey et al., 

2009).  While the filament dynamics must be explored in more detail, the fact that both 

variants integrate into normal filament networks allows for the possibility that they 

impact BCC susceptibility through non-structural mechanisms. 

Another possible mechanism by which keratin variants could impact BCC 

susceptibility is by interacting with specific signaling pathways in a manner differing 

from wildtype K5.  It is still not clear whether keratins interact with these signaling 

pathways as small subunits or as filaments (Pan et al., 2013).  Since both variants were 

associated with an increase in “bundled” networks, it is possible that they are not as 

readily available as subunits to interact with signaling pathways, relative to wildtype K5.  

Conversely, if IF-associating proteins with a role in signaling prefer a “bundled” moiety 

to bind to keratin intermediate filaments, the increase in such “bundled” networks in the 

presence of the keratin variants would likely augment such signaling cascades. 
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The observation that expression of these variants affects the expression of CCL2 

and CXCL5 differently than wildtype KRT5 provides the possibility of immune 

modulation as the mechanism by which these keratin variants influence BCC risk.  

Interestingly, these variants did not increase the expression of their binding partner, 

KRT17 (see Fig. 3.3), which is normally expressed in HeLa cells (Moll et al., 1982).  

These data provide evidence suggesting that keratin 5 exhibits immunomodulatory 

behavior independent of that observed with K17 (Depianto et al., 2010).  Overall, the 

findings of this preliminary study provide a number of promising avenues to pursue in 

future studies. 
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The work presented in this dissertation addresses several outstanding questions in 

epithelial biology.  In Chapter 2, we presented strong evidence supporting the importance 

of keratin filament self-organization towards their structural support function in vivo.  We 

replaced the endogenous keratin 5 with a bundling-competent chimeric keratin, KRT8bc, 

and the resulting replacement animals survived to adulthood with a 47% frequency.  This 

finding is quite remarkable, given that greater than 30% of the wildtype human K8 

coding sequence is replaced by the corresponding coding sequence of human K5 in the 

KRT8bc chimera.  For instance, this substitution far exceeds the threshold required to 

cause EBS in the human population, where often only a single amino acid substitution is 

necessary for the presentation of disease (Coulombe and Lee, 2012).  We also 

demonstrated that this chimeric keratin becomes part of filament bundles (albeit to a 

lesser degree than K5) in basal keratinocytes of the epidermis in adult replacement 

animals.  Finally, we uncovered a previously unidentified role of keratin 5 in the 

maintenance of cellular architecture and the integrity of mitochondria.  Both of these new 

phenotypic traits were ameliorated by the expression of KRT8bc in the epidermis of 

keratin 5 null mice. 

Despite the production and characterization of quite a large number of transgenic 

founders and lines, the highest expression levels achieved for a replacement protein, 

namely K8bc,  were at ~50% of endogenous keratin 5 levels prevailing in wildtype skin.  

This fact precluded a direct comparison between the KRT8bc and KRT8 transgenes.  

Because of this, future studies exploring the functions of keratin chimeras would be best 

served to use a knock-in strategy in lieu of a transgenic approach.  Nonetheless, the 
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partial rescue of keratin 5 null mice with KRT8bc represents a significant finding that 

warrants further study.  For example, in unaffected skin of adult replacement mice, the 

mitochondria exhibited a healthier morphology, and filament bundles were apparent.  

However, mitochondrial status was not assessed in the phenotypic skin of KRT8bc 

replacement mice.  One clinical study revealed that hair and skin abnormalities can be 

indicators of underlying mitochondrial disorders (Bodemer et al., 1999).  The role of 

thyroid hormones in the regulation and maintenance of the epidermis, especially of 

epidermal mitochondria, is coming to light (Tiede et al., 2010; Paus, 2010; Vidali et al., 

2014).  In fact, thyroid hormones have been shown to influence keratin expression in hair 

follicle stem cells (Tiede et al., 2010).  Another recent study proposed that mitochondrial 

biogenesis is necessary for the proper development of hair follicles (Vidali et al., 2014).  

It is therefore possible that one explanation of the alopecia observed in adult replacement 

animals is reflecting the incomplete rescue of the mitochondrial phenotype observed at 

E18.5.  This emerging keratin-mitochondrial link is an area which would warrant further 

investigation. 

Also of interest was the observed disruption in the cellular architecture in KRT5 

null E18.5 animals.  Previous studies have suggested a role for keratins 5 and 14 in 

regulation of basal cell architecture (see Chapter 1).  A recent study revealed that a trans-

dimer, homotypic disulfide bond involving residue Cysteine 367 in K14 impacts nuclear 

size and shape in early differentiating epidermal keratinocytes (Lee et al., 2012).  

Therefore, the aberrant cell and nuclear shape is likely the result of the keratin deficiency 

in basal cells of KRT5 null animals.  This altered cell shape and aberrant nuclear contour 
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potentially alters their physical relationship with other key cell types in the epidermis, 

including melanocytes and Langerhans cells.  As such, these observations offer an 

explanation for the differences in skin pigmentation (Betz et al., 2006) and Langerhans 

cell density (Roth et al., 2009) seen in mouse models and/or individuals with genetic 

alterations at the Krt5 locus.  The persisting nuclear contour defect observed in KRT8bc 

replacement embryos may also potentially explain the ulcerative dermatitis that presents 

in all replacement animals.  Therefore, the underlying cause of this phenotype also 

warrants further inquiry.  Since the genetic ablation of keratin 5 results in increased 

Langerhans cell infiltration within the epidermis (Roth et al., 2009), it is possible that 

either the genetic ablation of K5 or the expression of K8bc is promoting a pro-

inflammatory environment within the mouse epidermis.  Therefore, the immune status of 

adult KRT8bc replacement mice should be explored in more detail. 

In Chapter 3, we presented an initial analysis of the effects that two KRT5 variants 

have on keratin filament networks and specific target mRNA expression in HeLa cells.  

We found that, relative to WT K5, the K5 G138E and K5 D197E variants generated 

detectable differences in filament organization, steady-state protein levels, and cytokine 

expression.  However, these findings need to be reproduced and expanded, and otherwise 

there are still many unanswered questions in this line of investigation.  For example, it is 

unclear whether the increase in “bundled” networks is a real phenomenon, or rather a 

consequence of higher steady-state levels of variant protein on average in transfected 

cells.  To further distinguish these two possibilities, protein stability experiments should 

be undertaken.  Also, additional information on the filament dynamics would be garnered 
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by high- and low-speed sedimentation experiments using in vitro filament assemblies.  

This has been attempted previously, though the results were unclear (Sawaya, 2011).  

Also, examination of high-salt protein extracts prepared from transfected cells would 

shed further light on the potential differences in solubility between these keratin variants. 

A recently developed reagent that could prove useful in the examination of these 

KRT5 variants is the global type II keratin knockout mouse model (Vijayaraj et al., 2009; 

Seltmann et al., 2013b).  Indeed, reintroduction of a single type II keratin results in the re-

formation of keratin filament networks comprised of a single type I and type II keratin 

pair (Seltmann et al., 2013b).  Using such keratin-free cells will allow for a clear readout 

of differences in the keratin filament networks comprised of keratin 5 variant proteins.  

Analysis of these cells might also sharpen our understanding of the immunomodulatory 

effects specific to these variants in a more biologically relevant context. 

Finally, it is important to note that the process of tumorigenesis is not one that can 

be easily replicated using short-term expression of these keratin variants in a cell culture 

setting.  In fact, the impact that these variants have on BCC risk in patients is modest 

(combined odds ratio of 1.35), and manifest their effects over much of the patient’s 

lifetime (Stacey et al., 2009).  To assess the impact these keratin variants would have on a 

model organism over its lifetime, a knock-in approach should be used.  This model would 

allow investigators to observe the effect of the variants as either heterozygous or as 

homozygous alleles.  It would also be possible to subject these animals to a variety of 
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external stimuli pertinent to BCC, including ultraviolet radiation, and compare wildtype 

mice to mice expressing variants of KRT5.	    
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