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ABSTRACT 
 

The hematopoietic system provides a unique opportunity to study stem cell 

biology due to the well-defined hierarchy of blood cell production.  Hematopoietic stem 

cells (HSCs) possess both self-renewal capabilities and full lineage potential for life-long 

maintenance of mature blood cells.  The importance of understanding the regulation of 

this complex, highly coordinated process is accentuated by the role of aberrant HSC 

function in disease.  Best understood in chronic and acute myeloid leukemias, leukemic 

stem cells (LSCs) arise from normal hematopoietic stem or progenitor cells and are 

capable of propagating the tumor.  Epigenetic regulation of normal hematopoiesis is 

implicated by unaltered DNA sequences during lineage-specific differentiation, and 

recent evidence supports a role for DNA methylation changes in regulation of normal and 

malignant hematopoiesis.  This work aims to better understand the epigenetic and 

transcriptional programs that regulate normal hematopoietic development as well as the 

molecular mechanisms that are involved in chronic myeloid leukemia (CML) 

leukemogenesis.   

To begin our study, we performed genome-wide transcriptome analysis of highly 

refined CML and normal stem and progenitor cell populations.   The persistence of LSCs 

in CML despite tyrosine kinase inhibition may explain patient relapse.  We explored the 

transcriptional changes in CML LSCs to identify novel targets for the eradication of these 

cells while sparing normal HSCs. We identified genes that were differentially expressed 

in CML versus normal stem and progenitor cells and nominated cell surface genes that 

represent potential therapeutic targets. Further analyses of the LSCs revealed 

dysregulation of normal cellular processes, including downregulation of pro-
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differentiation and TGF-β/BMP signaling pathways; upregulation of oxidative 

metabolism and DNA repair pathways; and activation of multiple oncogenes.  These data 

represent an important resource for understanding the molecular changes in CML LSCs, 

which may be exploited to develop novel therapies for eradication of these cells and to 

achieve cure. 

In order to investigate the epigenetic regulation of hematopoiesis, we utilized 

genome-wide gene expression data to specifically analyze transcriptional changes in 

hematopoietic stem and progenitor cells (HSPCs) from healthy bone marrow donors. We 

identified known epigenetic factors that were differentially expressed in HSPCs, 

including genes previously implicated in the regulation of HSC maintenance and lineage 

commitment programs.  One gene, UHRF1, is a known essential cofactor in DNA 

methylation maintenance.  UHRF1 also binds histone modifications and recruits 

chromatin modifying proteins to hemimethylated DNA, bridging both major forms of 

epigenetic control in cells.  We generated an inducible, conditional knockout mouse 

model in order to explore the functional role of UHRF1 in hematopoietic development.  

We found that UHRF1 expression is indispensable for HSC function and propose that its 

role in lymphoid development may vary with degree of differentiation.  These 

observations confirm that genes involved in epigenetic regulatory mechanisms are critical 

mediators of normal hematopoietic developmental programs.    
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Hematopoietic Stem Cells and Identification 
  
  Hematopoiesis is the process by which all mature blood cells are made and 

initiates from the hematopoietic stem cell (HSC).  HSCs are multipotent and maintain the 

unique ability both to differentiate and self-renew1.  HSCs were one of the first identified 

somatic stem cells and are now easily isolated and tracked by well-defined cell surface 

markers2,3.  The first positive marker identified to enrich for cells possessing in vitro stem 

characteristics was the CD34 antigen4.  CD38 expression was found to further refine this 

stem population, with CD34+CD38- cells being highly enriched for NOD-SCID 

repopulating cells5.  More recently, fluorescent cell staining methods have been 

developed to exploit the elevated expression levels of cytosolic ALDH in HSCs6.   

 In mice, FACS analysis of cell-surface markers is used to identify stem and 

progenitor cells of different developmental stages throughout the hematopoietic 

hierarchy7.  The most mature cells in mouse bone marrow are defined by lineage markers, 

most commonly B220, CD3, Mac-1, Gr-1, and Ter-119, although Mac-1 has also been 

shown to be expressed on active cycling HSCs8 and is often omitted from mature lineage 

panels in mouse models where HSC quiescence may be perturbed.  The first step in 

enrichment of bulk hematopoietic stem and progenitor (HSPC) populations is selection of 

lineage negative (Lin-) cells, followed by positive selection for Sca-1 and c-Kit 

expression to identify a bulk HSC population (LSK; Lin-Sca+Kit+) that includes stem 

and multipotent progenitor (MPP) cells.  The LSK population can be further refined for 

long-term repopulating cells (or LT-HSCs) based on CD34 and FLT39 or CD48 and 

CD15010 expression, as well as Hoechst dye efflux11.  Although the exact phenotype of 

the most primitive long-term repopulating cell has yet to reach a consensus, lymphoid 
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progenitors are classically distinguished by IL7RA expression, where the common 

lymphoid progenitor (CLPs) is Lin-ScamidKitmidIL7Ra+, while myeloid progenitors (MPs) 

are Lin-Sca-Kit+IL7Ra-.  The MP bulk population can be further refined by CD34 and 

FcgRII/III (CD16/32) to identify common myeloid progenitors (CMP; CD34+CD16/32-), 

megakaryocyte-erythrocyte progenitors (MEP; CD34-CD16/32-) and granulocyte-

macrophage progenitors (GMP;CD34+CD16/32+).   

 The gold-standard by which murine HSC function is defined is the long-term 

competitive repopulation assay.  This allows for the identification of a primitive cell with 

the ability to repopulate all mature lineages in the peripheral blood of lethally irradiated 

recipient mice relative to WT competitor bone marrow12.  The success of this assay is 

dependent on the ability to distinguish the origin of transplanted marrow and is made 

possible by the availability of mice with congenic CD45 alleles.  CD45 is a pan-

leukocyte marker and is present on all hematopoietic cells in murine bone marrow as well 

as all differentiated cells in peripheral blood, with the exception of erythrocytes and 

platelets.  In utilizing these markers, hematopoiesis resulting from CD45.2 donor marrow 

can be distinguished from the contribution of competitor CD45.1 marrow to peripheral 

blood repopulation, and percent chimerism and multi-lineage repopulation can be 

quantified.  At 4 weeks following transplantation, repopulation of peripheral blood is 

maintained by a short-term repopulating cell, or bone marrow progenitor.  Only after 16 

weeks can the contribution of LT-HSCs to peripheral blood lineages be assessed in order 

to define the multi-lineage reconstitution capacity of the stem cell. 
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DNA Methylation in Hematopoiesis and Hematologic Malignancies  
  

DNA methylation is a dynamic epigenetic modification necessary for gene 

regulation without specifically altering DNA sequences.  Methylation of CpG 

dinucleotides is controlled by DNA methytransferases (DNMTs)13.  Changes in DNA 

methylation have been shown to be important in stem cell differentiation processes14, 

including lineage-commitment decisions of hematopoietic progenitor cells15.  DNMT1 

deficient mice were found to have reduced HSC self-renewal and impaired lymphoid 

differentiation but normal myeloerythroid development16.  Recent studies utilizing 

genome-wide DNA methylation profiling techniques in both mouse and human have 

begun to elucidate possible genes and pathways involved in lineage commitment15,17.  

However, these studies were limited to more downstream commitments by hematopoietic 

progenitors or heterogeneous bulk CD34+ populations.  Primitive populations comprised 

of exclusively purified HSCs need to be examined at the whole-genome level to better 

understand epigenetic regulation of stem cell function.    

   Altered DNA methylation is a hallmark of cancer, including hematologic 

malignancies.  Indeed, mice deficient in DNMT1 failed to induce leukemia upon 

transduction with leukemic fusion protein MLL-AF916.  Promoter hypermethylation was 

found to be a frequent event in AML with further increased methylation at relapse18.  

Additionally, examination of DNA methylation profiles in 344 AML patients allowed 

classification into 16 subtypes, each with a distinct methylation signature different from 

normal hematopoietic cells19.  Together, these data implicate aberrant DNA methylation 

in leukemogenesis.  In support of this, DNMT inhibitors have demonstrated clinical 

efficacy in myelodysplastic syndrome and acute leukemias20.  More recently, somatic 
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mutations in epigenetic modifying genes, such as DNMT3A, TET2, IDH1/2, EZH2, 

MLL1, and ASXL1, have been identified in hematologic malignancies21 and provide an 

explanation for altered epigenetic patterns in these disorders.  Moreover, characterizing 

these genetic alterations in the context of patient outcomes may inform risk stratification 

and have important therapeutic implications22.   

  
Objectives 
 

We hypothesize that analysis of genome-wide gene expression data from normal 

and leukemic stem and progenitor populations can explain the molecular mechanisms 

regulating normal HSC function and leukemic transformation.  We aim to first: 

understand the molecular changes in chronic phase CML LSCs, which may be exploited 

to develop novel therapies for eradication of these cells and to achieve cure, and second: 

investigate the influence of epigenetic modifying genes on normal hematopoietic 

development.  To address these aims, we will explore differential expression patterns in 

normal and leukemic stem cell populations to identify unique cell surface markers that 

are selectively displayed on the CML LSC.  Further analysis of global expression patterns 

will highlight mechanisms involved in the persistence of CML LSCs.  Additionally, we 

will explore differential expression in epigenetic regulatory pathway components 

observed in normal HSPCs.  Finally, we will use a murine model to understand the 

influence of the DNA methylation modifying gene, UHRF1, on normal hematopoietic 

differentiation. 
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CHAPTER 2: GENOME-WIDE COMPARISON OF THE TRANSCRIPTS OF 
HIGHLY ENRICHED NORMAL AND CHRONIC MYELOID LEUKEMIA 

STEM AND PROGENITOR CELL POPULATIONS1 
 
  

                                                 
1 Reprinted from Oncotarget. 2013;4(5):715-728. Gucwa JL, Gerber JM, Esopi D, Gurel M, Haffner MC, 
Vala M, Nelson WG, Jones RJ, Yegnasubramanian S. Genome-wide comparison of the transcriptomes of 
highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations.  Supplemental 
material can be found at http://www.impactjournals.com/oncotarget.  

http://www.impactjournals.com/oncotarget
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Introduction 
 

Despite the significant improvement in survival rates of chronic phase (CP) 

chronic myeloid leukemia (CML) patients made possible by tyrosine kinase inhibitor 

(TKI) therapy, cures outside of allogeneic blood or marrow transplantation are rare23-26.  

This appears to be due to the resistance of leukemia stem cells (LSCs) in CML to the pro-

apoptotic effects of TKI agents27-30.  Accordingly, most CML patients who discontinue 

TKIs while in molecular remission eventually relapse31.  Moreover, for most of the TKI-

induced cytogenetic remissions that remain durable at least 7 years, CML LSCs in these 

patients can still acquire additions mutations with progression to blast crisis (BC)32.  

Thus, there remains a clear need to identify novel molecular targets specific to the CML 

LSCs33.  

The precise mechanisms of CML LSC resistance to TKIs are not fully defined.  

CML LSCs appear to share many biological properties with their normal counterparts28,34 

that probably limit the effectiveness of therapeutic strategies targeting BCR-ABL 

signaling.  Hematopoietic stem cells (HSCs) are largely quiescent and normally express 

high levels of the multidrug resistance-1 gene35, two factors that may limit the cellular 

uptake of imatinib36.  Moreover, BCR-ABL expression appears to be required for the 

survival of CML progenitors but not CML LSCs, where the BCR-ABL gene can be silent 

likely because HSCs already are long-lived and self-renew34,37.  

Biologic studies on LSCs have been hampered by the relative rarity of these cells, 

as well as the lack of a consensus on their exact phenotype.  LSCs are often 

phenotypically defined as simply the CD34+ leukemia cells or, more recently, the more 

enriched CD34+CD38- subset, but even the CD34+CD38- cells are a heterogeneous 
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population of which the LSCs constitute only a fraction34,38.  Normal CD34+CD38- cells 

can be further refined for HSCs based on low side scatter and high aldehyde 

dehydrogenase (ALDH) 1 activity39,40.  As few as 1,000 normal CD34+CD38-ALDHhigh 

cells will reproducibly engraft NOD/SCID-IL2Rnull (NSG) mice40.  The major biologic 

function of the ALDH1 family, also known as the retinaldehyde dehydrogenases, is the 

biosynthesis of retinoic acid, but they also participate in the detoxification of a variety of 

compounds such as ethanol and active metabolites of cyclophosphamide41.  We 

previously reported that high ALDH expression also can distinguish CML cells capable 

of engrafting NSG mice (i.e. CML LSCs) from more differentiated CML progenitors 

within the CML CD34+CD38- population42.  Importantly, expression of putative 

therapeutic targets by CML progenitor cells was not necessarily representative of that in 

the CML LSCs42, highlighting the need to search for new targets in refined LSC 

populations.  Here, we report a comprehensive transcriptional profile of CML LSCs as 

compared to normal HSCs and identify unique cell surface molecules and mechanistic 

pathways that may serve as potential CML LSC targets. 

 
Methods 
 
Patient and normal donor bone marrow specimens, enrichment of stem and 
progenitor cell populations, and nucleic acid extraction 
 
Bone marrow was obtained from 5 patients with newly-diagnosed and untreated CP 

CML, as well as from 5 healthy bone marrow donors.  Informed consent was obtained 

from all patients and healthy donors prior to sample collection in accordance with the 

Declaration of Helsinki, under a research protocol approved by the Johns Hopkins 

Institutional Review Board.  CD34+CD38-ALDHhigh stem cells and CD34+CD38+ 
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progenitor cells were collected from each marrow specimen as described previously42.  

Briefly, CD34+ cells were selected using Miltenyi Biotec (Auburn, CA) microbeads 

(binding the class II CD34 epitope) followed by column enrichment per the 

manufacturer’s recommendations.  These cells were then stained with Aldefluor 

(Aldagen, Durham, NC) to assess ALDH activity, phycoerythrin-conjugated anti-CD34 

antibodies (binding the class III CD34 epitope), and allophycocyanin-conjugated anti-

CD38 antibodies (BD Biosciences, San Jose, CA), and sorted using a MoFlo cell sorter 

(Beckman Coulter) into CD34+CD38-ALDHhigh and CD34+CD38+ fractions.  DNA and 

RNA were extracted from at least 50,000 cells from each population using the All-prep 

micro kit (Qiagen, Valencia, CA, USA). 

 
Fluorescence in situ hybridization (FISH) 
 
Isolation of leukemic cells was confirmed by FISH for BCR-ABL on cytospins of each 

sorted cell fraction, fixed in 3:1 Methanol: Glacial Acetic acid (Sigma-Aldrich, St. Louis, 

MO, USA).  FISH was performed by the Johns Hopkins Cytogenetics Core, using the 

Vysis LSI BCR-ABL Dual Color, Dual Fusion translocation probe (Abbot Molecular, Des 

Plaines, IL, USA) per manufacturer’s instructions.  Slides were analyzed on a 

fluorescence microscope with a triple-band pass filter for DAPI, Spectrum Orange, and 

Spectrum Green.  

 
Gene expression microarrays and analysis 
 
Total RNA from sorted cell populations was subjected to cDNA synthesis and linear 

amplification using the Ovation RNA Exon Module amplification system (NuGEN, San 

Carlos, CA) according to the manufacturer’s protocols.  The resulting material was then 
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fragmented and biotin-end-labeled using the Encore Biotin Module (NuGEN) and 

hybridized to Human Exon 1.0 ST whole genome gene expression microarrays 

(Affymetrix, Santa Clara, CA) according to the manufacturer’s protocols at the Johns 

Hopkins Microarray facility.  The microarray gene expression data was analyzed with 

Partek Genomic Suite software (http://www.partek.com/partekgs) using the exon array 

workflow with default conditions (data imported and normalized using log2 

transformation, default RMA background correction and normalization of core meta-

probe sets) unless otherwise specified.  Gene expression summaries from the imported 

normalized intensity data was subjected to principal components analysis.  Two-way 

analysis of variance (ANOVA) of gene summary data was performed to find 

differentially expressed genes between all cell populations, focusing on the contrasts 

between CML versus normal samples and CML CD34+CD38-ALDHhigh versus normal 

CD34+CD38-ALDHhigh populations.  Genes with |log2(fold-change)| > 1 and false 

discovery rate (FDR) of 0.05 were identified as significantly differentially expressed.  A 

gene list specifically focusing on contrasts between CML and normal CD34+CD38-

ALDHhigh cells with |log2(fold-change)| > 1 and false discovery rate (FDR) of 0.05 was 

uploaded to the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) v6.7 (http://david.abcc.ncifcrf.gov/) for functional annotation analyses43,44 of 

enriched gene ontology (GO) and KEGG pathway terms.  Lists comprised of all arrayed 

genes with expression data from the CML versus normal CD34+CD38-ALDHhigh 

comparison were subjected to gene-set enrichment analysis (GSEA), as described 

previously45-47, or directly uploaded into Ingenuity Pathway Analysis (IPA) software 

(Ingenuity® Systems, June 2012, www.ingenuity.com).  For GSEA, all GO and KEGG 

http://www.partek.com/partekgs
http://david.abcc.ncifcrf.gov/
http://www.ingenuity.com/


11 
 
 

terms with a q-value less than 0.01 were considered significant.  Core analysis was run in 

IPA utilizing all default settings, with exception of the Human Exon 1.0 ST array as the 

reference gene set.  This analysis generated a list of potential upstream transcriptional 

regulators and predicted the activity of each by calculation of overlap p-value using a 

Fisher’s Exact test and the activation Z-score as described (Ingenuity® Systems, 

www.ingenuity.com).  Calculations were based on known interactions between the 

predicted upstream transcriptional regulators and their downstream target gene set 

according to the Ingenuity® Knowledge Base and measured expression changes in the 

array data set.  Upstream regulators with |z-score| > 2.00 were nominated as significant, 

with a positive Z-score representing activation and a negative value, inhibition.  The list 

of upstream regulators and activation z-score values were also utilized to assign the 

activation state of each component of the TGF- pathway, which was defined using the 

IPA and KEGG pathway map data (http://www.genome.jp/kegg/pathway.html).  The raw 

and normalized data are available from the Gene Expression Omnibus (GEO) with 

accession number GSE43754.  For alternative transcript analysis, exon level microarray 

data from the CML and normal CD34+CD38-ALDHhigh RNA was subjected to ANOVA 

analysis using the default conditions on the Partek alternative transcript workflow.  Genes 

with alternative transcript p-value < 0.01 were subjected to analysis with DAVID v.6.7 as 

described above. For each probeset within a gene, the log2(normalized intensities) for 

each sample was adjusted by the average normalized intensity of the normal samples. The 

resulting mean and standard deviation for CML or normal samples was plotted according 

to probeset number, assigned 5’-3’,  for each representative gene.  

 
 

http://www.ingenuity.com/
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Real-time reverse transcriptase polymerase chain reaction 
 
Excess extracted RNA from patient samples was used to synthesize cDNA using 

SuperScript® III Reverse Transcriptase (RT) (Invitrogen, Carlsbad, CA).  Newly 

synthesized cDNA from unamplified RNA or excess amplified cDNA prior to labeling 

and array hybridization from each CML and normal patient sample was used to validate 

array results by quantitative RT-PCR of GAS2, DPP4, CDH2, IL2RA, GAPDH and ACTB 

using the iQ Supermix (Bio-Rad, Hercules, CA) and gene-specific TaqMan® assays (Life 

Technologies Co., Carlsbad, CA).  The relative amount of the gene of interest was 

determined using the ΔΔCt method, relative to the average expression of all samples for 

that gene and GAPDH expression for GAS2, DPP4, and CDH2 or ACTB for IL2RA.  

Quantitative RT-PCR results from amplified starting material or SuperScript® III 

converted unamplified cDNA were compared for the gene IL2RA and showed consistent 

results.  The remaining genes were verified using amplified starting material only.  All 

quantitative PCR experiments were done in duplicate. 

 
Results 
 
Identification of potential targets that can distinguish CML LSCs from normal 
HSCs 
 

In order to characterize the expression profile of CP CML LSCs and identify 

potential therapeutic targets unique to this population, we sorted CD34+CD38+ and 

CD34+CD38-ALDHhigh cells to obtain highly enriched populations of progenitor and stem 

cells, respectively, from bone marrow of both healthy donors and CP CML patients 

(Figure 1A; Supplementary Table 1).  As already discussed, HSCs are enriched in the 

CD34+CD38-ALDHhigh cells39,40, and these cells contain few of the more differentiated 
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colony-forming unit or progenitor cells, which are enriched in the CD34+CD38+ cell 

fraction48.  Likewise, CD34+CD38-ALDHhigh cells show enrichment for CML LSCs with 

enhanced engraftment capabilities in immune deficient mice compared to the remaining 

CD34+CD38- cells42.  Whole transcriptome profiling of each population was carried out 

by microarray analysis using an Affymetrix Human Exon 1.0 ST array, allowing 

measurement of differential gene expression and analysis of alternative transcripts.  

Principal components analysis of the gene-level data revealed distinct clustering of the 

four populations and showed that global gene expression patterns between the normal and 

CML CD34+CD38-ALDHhigh cells are closer to each other than normal are to their 

matched CD34+CD38+ cells (Figure 1B). Furthermore, the CML subset displayed greater 

variability in the gene expression patterns than their normal counterparts. Part of this 

variability in the CML CD34+CD38-ALDHhigh fraction could be accounted for by the 

presence of residual BCR-ABL negative normal HSC in this cell population; the two 

subjects with the highest fraction of residual normal HSC clustered most closely with the 

normal HSC (Figure 1; Supplementary Table 1). 

Although global gene expression patterns in the CML and normal CD34+CD38-

ALDHhigh cells were fairly similar, gene-level analysis allowed us to identify several 

genes with significant differential expression that may serve as therapeutic targets.  Using 

ANOVA, we identified genes that were significantly differentially expressed between all 

CML vs. normal samples, regardless of sorted population, and also those that were 

significantly differentially expressed specifically between CD34+CD38-ALDHhigh cell 

populations of CML and normal samples (FDR = 0.05, |log2(Fold Change)| > 1).  A total 

of 97 genes were identified through this analysis and a heatmap was created showing the 
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expression patterns of each gene across the four cell populations (Figure 2A).  Notably, 

expression of this gene set was able to distinguish CML stem and progenitor cells from 

their normal counterparts by hierarchical clustering.  Thirty-one transcripts were found to 

be upregulated in CML CD34+CD38-ALDHhigh cells compared to normal CD34+CD38-

ALDHhigh or CD34+CD38+  cells (Figure 2A), representing selective putative CML stem 

cell targets.  These included BLM, FAS, KYNU, NCF4, PTPRD, RAB31, SCD, ABHD10, 

and HPGDS, genes known to be involved in key cell signaling and metabolic pathways.  

The most upregulated gene selectively expressed on CML CD34+CD38-ALDHhigh when 

compared to their normal counterparts was GAS2 (p = 5.96 x 10-11, average fold change = 

23.5; Figure 2B).  To further analyze our list of potential LSC-specific targets, functional 

annotation by the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) of genes differentially expressed on the CML versus normal CD34+CD38-

ALDHhigh cells (FDR = 0.05, |log2(Fold Change)| > 1); represented by ( ) in Figure 2) 

was carried out and highlighted several plasma membrane-associated genes 

(GO:0044459, Plasma Membrane Part), including the most up- and down-regulated 

genes, DPP4 and CDH2, respectively (Table 1).  From this list, DPP4, IL2RA, RAB31, 

PTPRD, CACNA1D, IL1RAP, SLC4A4, and KCNK5 were upregulated in the CML 

CD34+CD38-ALDHhigh population and exhibit a cell surface protein localization.  

Microarray expression levels were verified by quantitative RT-PCR for a few select 

interesting genes (Figure 2B).  Microarray intensity values were highly correlated with 

relative expression levels determined by quantitative RT-PCR analysis. 
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Dysregulation of proliferation, differentiation and molecular pathways in CML 
LSCs 
 

Characterization of the molecular mechanisms underlying malignant 

transformation of the normal HSCs to LSCs may aid in target discovery by uncovering 

pathways critical to initiation, self-renewal, and survival of the CML LSCs.  Gene set 

enrichment analysis (GSEA)45-47 of all Gene Ontology (GO)49 and KEGG50,51 gene sets 

was used to identify pathways that show significant and coordinate up or down regulation 

of pathway components using all genes interrogated by the microarray platform.  

Significant terms with a q-value (multiple hypothesis testing corrected p-value) less than 

0.01 indicated upregulated and downregulated gene sets that are putatively important to 

LSC biology; these terms were categorized by cellular functions (Supplementary Table 2 

shows all significant gene sets).  The top three GO and KEGG terms for each category 

are shown in Figure 3.  Gene sets that were upregulated in CML versus normal 

CD34+CD38-ALDHhigh were involved in cell cycle and proliferation, mRNA processing, 

translation, DNA repair, oxidative metabolism, protein processing, immune response, and 

metabolic processes.  Key downregulated gene sets in the CML CD34+CD38-ALDHhigh 

cells were associated with the cell surface and extracellular matrix, differentiation and 

developmental programs, cellular response to stimuli, and TGF- and BMP signaling 

pathways. 

One challenge in interpreting the results of the gene-set enrichment analyses is 

that, for many molecular pathways, there may be a de-coupling between the 

transcriptional levels of the pathway components and the steady-state downstream output 

of the pathways, often due to complex feedback mechanisms.  Therefore, it would be 

useful to directly examine whether the steady state transcriptional output of the pathway 
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is consistent with overall pathway activation or inactivation.  To carry out this type of 

vectoral analysis, we used the IPA Upstream Regulator analysis, which integrates 

literature-based information on the relationship between a given candidate upstream 

regulator and the direction of its influence on the transcriptional level of each of its 

downstream targets with the differential expression data generated in a given experiment 

to predict the activation (or inactivation) state of the upstream regulator (Ingenuity® 

Systems, www.ingenuity.com).  Each candidate upstream regulator was assigned a Z-

score, representing the confidence with which the regulator is activated or inactivated, 

with high positive Z-scores representing activation and high negative Z-scores 

representing inactivation of the function of each upstream regulator.  We applied this 

analysis to our gene expression data from CML and normal CD34+CD38-ALDHhigh cells.  

A Z-score greater than 2 or less than -2 was considered to be activated or inhibited, 

respectively, in CML relative to normal CD34+CD38-ALDHhigh cells (Supplementary 

Table 3 shows all significant molecules, excluding all “chemical”-related upstream 

molecule types).  The top upstream regulator molecules showed activation of several 

oncogenes, such as MYC, TBX2, and CCND1, and inflammatory chemokines, such as 

CCL2 and CXCL2, and inhibition of several tumor suppressors, including TP53 and 

CDKN2A (Figure 4A, excluding “chemical”-related and “other” upstream molecule 

types; Supplementary Table 3).  Consistent with downregulation of the TGF-/BMP 

pathways as observed by GSEA, we observed a strong inhibition of the transcriptional 

output of the TGF- and BMP signaling pathway (Figure 4B), with inhibition of pathway 

agonists including TGFB1 itself, BMP2, GDF2, and activation of pathway antagonists, 

such as SMAD7 and NOG (Figure 4A,B). 
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Alternative transcriptional isoforms in CML LSCs 
 

Gene sets associated with RNA processing and, more specifically, mRNA 

processing were shown by GSEA to be significantly differentially regulated in the CML 

compared to normal CD34+CD38-ALDHhigh cells (Figure 3).  We, therefore, examined 

the exon array data to explore differential exon usage in the CML versus normal 

CD34+CD38-ALDHhigh cells.  Evidence of alternative splicing, defined for a given gene 

as one or more exons displaying expression patterns different from the behavior of the 

other exons, was apparent in 236 genes (FDR = 0.01; Supplementary Table 4).  The top 

two genes ranked by alternative spicing p-value that showed unique exon behavior were 

CACNA1D and PDE4D (Figure 5A).  CACNA1D also was identified as a top upregulated 

gene in CML stem and/or progenitor populations compared to normal (Figure 2).  This 

differential expression was probably due to extensive alterations in exon usage across the 

gene, whereas PDE4D displayed preferential expression of specific alternative transcript 

isoforms in CML CD34+CD38-ALDHhigh cells compared to their normal counterparts.  

Functional annotation of this alternatively transcribed gene list by DAVID analysis was 

done to gain further insight into the biological processes affected by alternative exon 

usage/alternative splicing in CML CD34+CD38-ALDHhigh cells.  This analysis revealed 

that alternative transcripts in the CML CD34+CD38-ALDHhigh cells, when compared to 

normal counterparts, were enriched in cellular proliferation genes, p53 signaling 

pathway, and kinase binding genes.  There were 29 genes identified to be involved in 

regulation of cellular proliferation, including MYCN and TIMELESS (Figure 5Biii).  

Seven genes were involved in p53 signaling, including CDKN1A, which was also found 
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in the cell proliferation category, and PERP (Figure 5Bi).  Twelve genes had kinase 

binding functions, including MARCKS and DUSP12 (Figure 5Bii).   

 
Discussion 
 

LSCs appear to persist in most CML patients on TKIs, and the persistence of 

these cells remains a major obstacle to cure.27,29,31  We previously reported that ALDH 

expression enriched for CD34+CD38- cells capable of engrafting NSG mice from normal 

marrow40 as well as CML42, thus, presumably representing the primitive stem cell 

fractions in both.  Moreover, expression of some putative targets by the CML LSCs 

differed significantly from that of the more prevalent progenitor cells42, highlighting the 

need to study refined LSC populations.  Additionally, other CML antigens were 

expressed at comparable levels to normal stem/progenitor cells, suggesting a lack of 

leukemia-specificity and a high likelihood that therapies targeting these candidates might 

cause undue toxicity to normal hematopoiesis42. 

We employed exon microarray technology to perform whole transcriptome 

analysis of highly enriched CP CML and normal stem and progenitor cell populations 

with the goal of identifying unique putative LSC targets.  Interestingly, principal 

components analysis revealed that expression patterns were remarkably similar between 

the CD34+CD38-ALDHhigh cells from CML patients and those from normal donors. In 

fact, the similarities were greater than those observed between the CML LSCs 

(CD34+CD38-ALDHhigh cells) and the CML progenitors (CD34+CD38+ cells), 

underpinning the challenge in selectively targeting LSCs without injuring normal HSCs.  

Nonetheless, the comprehensive approach and highly refined populations utilized in this 

analysis allowed identification of important new putative LSC targets that were more 
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highly expressed by the CML LSC and/or progenitor cell fractions compared to normal 

stem/progenitor cell fractions. 

A significant number of genes over-expressed in CML LSCs compared to their 

normal counterparts encoded cell surface proteins, including, IL2Rα, DPP4, PTPRD, 

CACNA1D, IL1RAP, SLC4A4, and KCNK5.  The surface location of these candidates 

may render them particularly vulnerable to targeting by immune-based strategies.  DPP4, 

also known as CD26, encodes dipeptidyl peptidase 4, and is especially interesting as a 

possible target for LSC-directed therapy.  One of the known targets of its peptidase 

cleavage activity is CXCL1252, and upregulation of DPP4 on the surface of CML LSCs 

may allow these cells to escape the homing/niche interactions imposed by the 

CXCL12/CXCR4 chemokine-receptor system53, leading to dysregulated LSC growth and 

survival.  Therefore, drugs capable of inhibiting the DPP4 dipeptidyl peptidase catalytic 

activity, which are currently FDA-approved for treatment of diabetes54, may have utility 

in targeting CML LSCs.  IL2RA is also a particularly attractive LSC target since multiple 

biologic agents directed against it are currently under clinical investigation55.  IL1RAP 

has been identified previously as a putative therapeutic stem cell-specific target in 

CML56, as well as in acute myeloid leukemia (AML) and myelodysplastic syndrome 

(MDS) patients, with high expression correlating with poor overall survival in AML57.  

Similarly, in this study, we identified IL1RAP upregulation on CML LSCs; the 

availability of IL-1 receptor antagonists or decoy receptors that are currently FDA-

approved for the treatment of several inflammatory disorders58 may allow effective 

targeting of the CML LSC.  Among the other genes found to be upregulated in LSCs 

compared to normal HSCs, BLM,,KYNU, PTPRD, RAB31, and HPGDS are known to 
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have enzymatic activities involved in key signaling and metabolic pathways; 

development of inhibitors of these enzymes may allow LSC targeting. 

Taking advantage of the comprehensive coverage of the exon array platform, we 

also identified several genes that were dysregulated in LSCs at the level of alternative 

transcriptional isoforms and alternative exon usage.  Interestingly genes showing 

alternative splicing were enriched in p53 signaling, protein kinase binding and cell 

proliferation.  Therefore, alternative splicing may account in part for the increased cell 

proliferation, resistance to apoptosis, and dysregulated kinase signaling characteristic of 

CML59.  It is expected that these pathways and their components are susceptible to 

pharmacologic inhibition.  Of particular interest, the cyclic-AMP specific 

phosphodiesterase, PDE4D, was found to be upregulated in CML LSCs compared to 

normal HSCs by preferential expression of a specific alternative transcript isoform.  

Likewise, the dual specificity phosphatase, DUSP12, and the voltage-dependent L-type 

calcium channel, CACNA1D, appear to become upregulated in CML LSCs via alternative 

exon usage.  It is possible that alternative splicing of DUSP12 in CML LSCs could 

underlie immunogenic responses that seem to correlate with improved survival after 

donor lymphocyte infusion60.  Although PDE4 inhibitors and L-type calcium channel 

blockers are available, development of isoform specific inhibitors may aid in CML LSC 

targeting.  Therefore, such alternative transcription analyses could be used to identify 

functionally critical exons and their corresponding protein domains for development of 

targeted and immunomodulatory therapies. 

Using these comprehensive transcriptome data, we were able to identify key 

pathways that were altered in the LSCs compared to normal HSCs.  Consistent with 
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previous findings of Bruns et al 61, we observed upregulation of several pathways 

involved in cell proliferation/cell cycle, and downregulation of pathways involved in cell 

surface interactions, development, and differentiation.  These pathway alterations may 

underlie the increased cell proliferation and resistance to apoptosis that are characteristic 

of CML and may also play a significant role in recognized resistance mechanisms of 

LSCs, such as dysregulation of niche interactions, cell cycle, survival, self-renewal, and 

metabolism.  Interestingly, and somewhat unexpectedly, we also observed upregulation 

of pathways involved in oxidative metabolism, suggesting that LSCs may not be as 

metabolically quiescent as previously thought62.  The accompanying upregulation of 

DNA repair pathways in the CML LSCs may indicate a requirement for guarding against 

DNA damage induced by a potential increase in production of reactive oxygen species 

during oxidative metabolism.  Additionally, we identified a number of signaling 

pathways that showed evidence of activation in the LSCs.  Particularly interesting are the 

targets with specific inhibitors already under clinical investigation, including a 

neutralizing monoclonal antibody to CCL263 and cyclin dependent kinase 4/6 inhibitors, 

inhibiting activation by partnering cyclin CCND164,65.  Additionally, we found that the 

TGF-/BMP pathway was coordinately downregulated in the CML LSC compared to 

normal HSC, and pathway antagonists, such as SMAD7 were highly activated.  The likely 

contribution of SMAD7 activation to the observed TGF-β pathway inhibiton in CML 

LSCs compared to normal HSCs and the current clinical investigation of antisense 

oligonucleotides for SMAD7 inhibition in Crohn’s disease66 make it an attractive target 

for CML LSC-directed therapy.  Although previous reports have shown that the TGF- 

pathway is critical for CML LSC survival67-69, it also has been suggested that TGF-β has 
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a dual role in tumor progression, acting as a tumor suppressor in the very early stages of 

tumorigenesis70,71.    

 We have developed an important resource for identifying the gene expression 

changes, pathway alterations, and alternative exon usage that can allow selective 

targeting of CP CML LSCs.  Some of these targets, such as IL2RA and DPP4, may be 

amenable to immediate clinical translation with currently available therapies.  While this 

work requires further functional validation and target credentialing, it offers the promise 

of LSC-targeted therapies, which may prove curative in CML while minimizing harm to 

normal hematopoiesis. 
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Tables and Figures 
 
Table 1. Plasma Membrane-Associated Genes that are Differentially Expressed in 
CML versus Normal Stem Cells 

Gene 
Symbol 

Fold 
Change 

Expression* 
P Genomic 

Location† Gene Name 

DPP4 9.77 1.23E-06 2q24.3 dipeptidyl-peptidase 4 
IL2RA 6.08 3.27E-07 10p15-p14 interleukin 2 receptor, alpha 
RAB31 5.13 7.92E-06 18p11.3 RAB31, member RAS oncogene family 
PTPRD 5.01 5.02E-06 9p23-p24.3 protein tyrosine phosphatase, receptor type, D 

CACNA1D 3.53 8.39E-07 3p14.3 
calcium channel, voltage-dependent, L type, 
alpha 1D subunit 

IL1RAP 2.90 7.69E-05 3q28 interleukin 1 receptor accessory protein 

SLC4A4 2.50 6.28E-05 4q21 
solute carrier family 4, sodium bicarbonate 
cotransporter, member 4 

KCNK5 2.06 5.58E-05 6p21 potassium channel, subfamily K, member 5 
CADPS2 -2.29 2.74E-05 7q31.3 Ca++-dependent secretion activator 2 

GEM -2.52 1.58E-05 8q13-q21 
GTP binding protein overexpressed in skeletal 
muscle 

ANK3 -2.87 1.35E-05 10q21 ankyrin 3, node of Ranvier (ankyrin G) 
PGM5 -2.96 1.13E-04 9q13 phosphoglucomutase 5 
IGF1R -2.96 1.28E-05 15q26.3 insulin-like growth factor 1 receptor 
EMCN -3.12 4.91E-05 4q24 endomucin 
CNTN1 -4.32 2.28E-05 12q11-q12 contactin 1 
PERP -4.41 1.31E-04 6q24 PERP, TP53 apoptosis effector 
CDH2 -4.73 5.75E-07 18q11.2 cadherin 2, type 1, N-cadherin (neuronal) 
 

 

 

 

 

 

  

Functional annotation results by DAVID are represented in the table, showing genes 
enriched for gene ontology term “Plasma Membrane Part” (GO:0044459).  
*Calculated between CML and normal stem (CD34

+
CD38

-
ALDH

high
) cell populations 

from five CML or normal marrow donors from log2 transformed, default RMA 
background corrected array intensities.  Positive values (red) indicate upregulation of 
gene in CML compared to normal, and negative values (blue) indicate downregulation 
in CML.  
†Genomic coordinates refer to the human reference genome hg19 (GRCh37).  
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Figure 2.1 

Figure 2.1.  Global gene expression patterns in CML and normal stem and 
progenitor populations.  (A) Cell sorting schematic for isolation of stem CD34+CD38-

ALDHhigh and CD34+CD38+ cells.  A representative CML sample is shown.  An 
analogous strategy was used to sort normal (NL) samples.  (B) Principal components 
analyses (PCA) were done on microarray gene-level expression data for CML and normal 
CD34+CD38-ALDHhigh and CD34+CD38+ cell populations.  CML_S (blue symbols), 
chronic myeloid leukemic stem (CD34+CD38-ALDHhigh) cells; CML_P (red symbols), 
chronic myeloid leukemic progenitor (CD34+CD38+) cells; NL_S (purple symbols), 
normal stem (CD34+CD38-ALDHhigh) cells; NL_P (yellow symbols), normal progenitor 
(CD34+CD38+) cells.  Sample IDs correspond to Supplementary Table 1.   
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Figure 2.2 
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Figure 2.2.  Differentially expressed genes between CML and normal stem and 
progenitor cells.  CML_S, chronic myeloid leukemic stem (CD34+CD38-ALDHhigh) 
cells; CML_P, chronic myeloid leukemic progenitor (CD34+CD38+) cells; NL_S, normal 
stem (CD34+CD38-ALDHhigh) cells; NL_P, normal progenitor (CD34+CD38+) cells.  A) 
Heatmap showing expression patterns of genes found by ANOVA to be differentially 
expressed between CML and normal CD34+CD38-ALDHhigh and CD34+CD38+ cells.  
Sample IDs correspond to Supplementary Table 1.  Blue dots ( ) represent genes 
differentially expressed in CML versus normal CD34+CD38-ALDHhigh cells with FDR = 
0.05 and |log2(Fold Change)| > 1.  Upregulated and downregulated expression levels are 
indicated in red and blue, respectively.  *FAM38B is represented by 2 separate 
Affymetrix transcript IDs (3798778; 3798829).  †No gene name associated with 
Affymetrix transcript ID 3430125.  B)  Four candidate differentially expressed genes are 
shown.  cDNA was prepared for each sample as described in Methods.  To visualize 
quantitative RT-PCR (qPCR) results (blue axes labels,♦), the relative amount of the gene 
of interest was determined using the ΔΔCt method.  Microarray expression was plotted 
using log2 transformed, default RMA background corrected array intensities (red axes 
labels,□).   
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Figure 2.3
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Figure 2.3.  Altered cellular functions and pathways in CML LSCs compared to 
normal HSCs.  Gene-set enrichment analyses (GSEA) were carried out to identify 
upregulated or downregulated GO and KEGG terms in CML versus normal CD34+CD38-

ALDHhigh cells.  Upregulated or downregulated GO and KEGG terms were categorized 
by common cellular function among a group of associated terms, indicated by bar color.  
Gene sets with a q-value < 0.01 (red dotted line) were considered significant.  Q-value 
represents the false discovery rate of the p-value, as previously described.72  Top three 
GO or KEGG terms in each category are shown.  Bold text indicates KEGG terms.  
Italicized text indicates GO terms.   
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Figure 2.4
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Figure 2.4.  TGF-beta signaling pathway activity is altered in CML LSCs.  A) The 
IPA Upstream Regulator analysis was used to identify key regulatory molecules 
predicted to explain the gene expression differences observed between CML and normal 
CD34+CD38-ALDHhigh cells.  Activation Z-scores were calculated for each candidate 
regulator.  Upstream regulators with Z-scores > 2 were considered to be activated (red 
bars) in CML CD34+CD38-ALDHhigh cells.  Those with Z-scores < -2 were considered to 
be inhibited (blue bars) in CML CD34+CD38-ALDHhigh cells.  Names of activated or 
inhibited TGF- pathway members are distinguished in red or blue text, respectively.  B) 
TGF- signaling pathway.  Activated upstream regulators are colored in red; inhibited, 
blue.  Red to blue gradient denotes Z-score value.  Activated molecules with a significant 
Z-score > 2 are distinguished with red text; Inhibited molecules with a significant Z-score 
< -2, blue text; upstream regulators with a Z-score between -2 and 2, black text.  White 
molecules with orange outline are not considered upstream regulators by IPA.  Shape of 
molecule corresponds to molecule type, as described (Ingenuity® Systems, 
www.ingenuity.com).  A group of molecules with similar functions, depicted by a slash 
(/) in group name, is colored by a representative molecule with the greatest absolute value 
Z-score.  *indicates a complex of upstream regulators where the activity of the complex 
is dependent on the activity of all molecules represented.  In this case, a separate Z-score 
was assigned for the complex as a whole and is colored accordingly.  Fold change 
expression values of pathway output transcripts are colored by yellow to green gradient.  
Yellow indicates upregulation and green, downregulation, of gene expression observed 
by differential expression analysis of microarray, as discussed in “Methods”.       
 
 
 
 
 
 
 
 
  

http://www.ingenuity.com/
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Figure 2.5
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Figure 2.5. Exon-level analysis reveals evidence of alternative splicing in CML 
LSCs.  A) Exon-level microarray data was analyzed for evidence of alternative transcript 
expression by ANOVA using the default conditions on the Partek alternative transcript 
workflow.  Genes with an alternative splicing p-value < 0.01 were considered significant.  
The top two genes with the most significant alternative splicing p-values are shown.  For 
each probeset within a gene, the log2(normalized intensities) for each sample was 
adjusted by the average normalized intensity of the normal samples. The resulting mean 
and standard deviation for CML or normal samples was plotted according to probeset 
number, assigned 5’-3’,  for each representative gene.  B) Functional annotation of genes 
with a p(alternative splicing) < 0.01 revealed that alternative transcripts in CML 
compared to normal CD34+CD38-ALDHhigh cells were enriched for genes involved in 
pathways commonly altered in cancer; (i) p53 signaling, (ii) kinase binding, (iii) cell 
proliferation.  Plots were constructed based on the human reference genome hg19 
(GRCh37).  Schematics of known refseq transcriptional isoforms are positioned below 
each graph and are drawn with respect to location of probesets interrogating each 
exon/intron. 
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CHAPTER 3: THE EPIGENETIC REGULATOR UHRF1 IN NORMAL 
HEMATOPOIESIS 

 
  



34 
 
 

Introduction 
 

Hematopoiesis is a complex and tightly regulated process integrating both genetic 

and epigenetic mechanisms for the maintenance of homeostasis.  Dysregulation of these 

processes can perturb the delicate balance between HSC self-renewal and differentiation 

programs and result in pathologies related to under- or over-production of HSCs, as in 

bone marrow failure syndromes or hematologic malignancies.  The clinical success of 

DNA methyltranferase inhibitors in myelodysplastic syndromes and acute leukemias20 

establishes the importance of epigenetic regulatory mechanisms in HSC function.  Likely 

contributing to the efficacy of these agents, DNA methylation modifying genes, TET2, 

IDH1/2, and DNMT3A, were found to be frequently mutated in AML73,74.  In addition, 

components of epigenetic machinery have been nominated as promising therapeutic 

targets75, further underpinning the critical role of epigenetic pathways in HSC 

maintenance.   

The use of genome-wide DNA methylation profiling techniques in both mouse 

and human have begun to elucidate possible genes and pathways involved in lineage 

commitment15,17.  These studies have largely focused on DNA methylation patterns and 

were limited to more downstream commitments by hematopoietic progenitors or 

heterogeneous bulk CD34+ populations. DNMT1 deficient mice were found to have 

reduced HSC self-renewal and impaired lymphoid differentiation16,76, establishing a 

critical role for DNA methylating enzymes in HSC maintenance.  Recent studies 

investigating the mechanism of DNA methylation maintenance have identified UHRF1 as 

an essential cofactor required for DNMT1 activity.  UHRF1 recognizes hemimethylated 

DNA and recruits DNMT1 to the replication fork77,78.  Through its multiple functional 
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domains, UHRF1 has been shown to recruit HDAC179, bind di- and tri-methyl H3K980, 

and confer E3 ubiquitin ligase activity on histone H381, linking DNA methylation with 

histone modes of epigenetic regulation82.  UHRF1 has been shown to be overexpressed in 

many cancers, including leukemias83, and functions in the silencing of tumor suppressor 

genes via promoter hypermethylation79 as well as ubiquitination-mediated degradation84.  

These observations suggest that UHRF1 promotes tumorigenesis and is, therefore, a 

potential therapeutic target85.  Despite its critical role in DNA methylation maintenance 

and more recent implications in tumorigenesis, the functional importance of UHRF1 in 

the reading and inheritance of epigenetic marks that dictate normal tissue development 

has largely been understudied. 

Utilizing hematopoiesis as a paradigm of epigenetic regulation of stem cell fate 

decisions and tissue-specific differentiation programs, we employed genome-wide gene 

expression analysis to identify critical epigenetic regulatory factors that contribute to the 

phenotypic changes observed in the hematopoietic stem to progenitor cell transition.  

Furthermore, we show that UHRF1 is an essential factor in maintenance of adult 

hematopoiesis in a mouse model. 

 
Methods 
 
Patient samples and microarray analysis 
 
Bone marrow specimens from five healthy donors were enriched for stem and progenitor 

cell fractions, and gene expression changes were analyzed using whole transcriptome 

exon microarrays, as previously described86.  Array intensities from paired stem (CD34+ 

CD38- ALDHhigh) and progenitor (CD34+ CD38+) samples were normalized to each 

other, and one-way paired ANOVA of gene expression summaries was used to identify 
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differentially expressed genes.  Genes with |log2(fold-change)| > 1 and false discovery 

rate (FDR) of 0.05 were identified as significantly differentially expressed.  This list of 

genes was searched manually for overlap with known genes involved in epigenetic 

pathways, including histone or DNA modifying proteins, chromatin remodeling factors, 

histone chaperones, or essential cofactors in modifying complexes87.  Hierarchical 

clustering of Z-score transformed array intensities matching the overlapping gene list was 

performed according to default conditions(https://software.broadinstitute.org/morpheus/).  

    
Mice 
 
All procedures were approved by the Institutional Animal Care and Use Committee at the 

Johns Hopkins University School of Medicine.  Mice heterozygous for a “knockout first” 

allele targeting exon 3 of UHRF1 were purchased from the European Mutant Mouse 

Archive (EMMA) as strain B6Dnk;B6N-Uhrf1tma1(EUCOMM)Wtsi/Ieg.  These mice were 

crossed to FLPe mice (Jackson Laboratories) to remove the gene trap and generate mice 

with conditional potential through loxp sites flanking exon 3 (Uhrf1fl/fl).  B6.Cg-Tg(Mx1-

cre)1Cgn/J (referred to as Mx1-Cre) mice were obtained as a gift from the laboratory of 

Gabriel Ghiaur and were crossed to Uhrf1fl/fl to generate Mx1-Cre;Uhrf1wt/fl.  Mx1-Cre+ 

and Mx1-Cre-; Uhrf1wt/fl littermates were crossed to produce all genotypes used in 

experiments: Uhrf1wt/wt, Uhrf1wt/fl, Uhrf1fl/fl and Mx1-Cre;Uhrf1wt/wt, Mx1-Cre;Uhrf1wt/fl, 

Mx1-Cre;Uhrf1fl/fl. All mice used for experiments were 8-12 week old littermates.  PIPC 

(Invivogen) was injected intraperitoneally every other day at 250ug for 4 or 5 total 

injections.  Total injection number (4 or 5 injections) was not associated with statistically 

significant differences in mouse phenotypes, independent of genotype.  All figures 

represent mice that received 4 total injections, unless otherwise noted.  Uhrf1wt/Δ and 

https://software.broadinstitute.org/morpheus/
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Uhrf1Δ/Δ symbols describe the genotypes of mice in which PIPC injections were given to 

induce Cre expression, resulting in the recombination of loxP sites and deletion of Uhrf1 

loci.  Phenotypic analysis of all injected mice was performed at 19 days after the first 

PIPC injection, unless otherwise specified.    

 
Tissue Collection and Histology 
 
Peripheral blood was collected by submandibular venous puncture into a heparin-coated 

capillary tube and transferred to a K3EDTA vial.  Differential counts were obtained on a 

ProCyte Dx A5904 (Idexx Laboratories, Inc.) in the JHU mouse phenotyping core 

facility.  At specified timepoints, mice were euthanized by CO2 and cervical dislocation.  

Spleen, kidney, liver, and tail specimens were harvested, flash-frozen in liquid nitrogen, 

and stored at -80 C.  Bone marrow was extracted from femurs, tibiae, iliac crests, and 

spine of each mouse by crushing with a mortar and pestle, as previously described88.  One 

million bone marrow cells or 50uL of blood were reserved and flash-frozen for DNA 

analysis.  Fresh bone marrow or blood was used for complete blood counts and flow 

cytometric analysis.  Humeri from PIPC injected mice were fixed for 48 hours in 

phosphate-buffered formalin, then stored in PBS at 4 C until further processing.  Fixed 

bones were submitted to the JHU Oncology Tissue Services core facility for 

decalcification, paraffin block preparation, and hematoxylin and eosin staining (H&E).  

Images of stained bone sections were taken at 400x magnification. 
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DNA extraction and genotyping 
 
Genomic DNA was extracted from frozen tissue using a DNeasy Blood and Tissue kit 

(Qiagen) according to manufacturer’s instructions.  Genotyping PCR was performed by 

amplifying 30ng of genomic DNA with the following primers (5’-3’):  

LoxP_F: CTTGATCTGTGCCCTGCAT 

LoxP_R: ACCTCTGCTCTGATGGCTGT 

UHRF1,del_R: CCGAGGACACTCAAGAGAGC.   

PCR reactions underwent electrophoresis on a 2% agarose gel, and band intensities were 

quantified using GeneTools imaging software (Syngene). 

 
Flow cytometry 
 
Mouse blood or bone marrow samples were treated according to manufacturer’s 

instructions with RBC lysis buffer (ebioscience) to eliminate red cell contamination 

during flow cytometric acquisition.  Following lysis, blood samples were labeled with 

fluorochrome-conjugated antibodies.  For bone marrow analysis, stem and progenitor 

populations were identified using biotin-labeled CD3 (145-2C11), B220 (RA3-6B2), Gr1 

(RB6-8C5), and Ter119, PerCP-Cy5.5-streptavidin, Pe-Cy7-Sca1 (D7), APC-cKit (2B8), 

PE-Flt3 (A2F10.1) acquired from BD Pharmingen, and APC-eFluor®780-IL7Ra 

(A7R34) from eBioscience. For the UHRF1 flow cytometric assay, cells were fixed and 

permeabilized using a Foxp3 intracellular staining kit according to manufacturer’s 

instructions (eBioscience).  UHRF1 antibody was obtained from LSBio (Th-10a) and 

conjugated to Ax647 via an antibody labeling kit (Molecular Probes).   

Blood and bone marrow specimens from congenic mice were distinguished by FITC-

CD45.1 (A20) and PE-CD45.2 (104) antibodies, and lineage repopulation was 
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determined using PerCP-Cy5.5-B220, Pe-Cy7-CD3, APC-Mac1 (M1/70), and APC-Gr1 

(BD Pharmingen).  For each experiment, viable bone marrow cells were distinguished 

using Fixable Viability Dye eFluor® 450 (ebioscience), whether cells ultimately 

underwent fixation or not.  All samples were acquired on a LSRII flow cytometer (BD 

Biosciences), and data were analyzed using FlowJo software version 10.2 (Treestar).  

 
Transplantation assays 
 
Congenic CD45.1+ recipient mice (B6.SJL-Ptprca Pepcb/BoyJ, Jackson Laboratories) 

were lethally irradiated with a split dose (8+4 Gy) delivered less than 4 hours apart. WT 

competitor cells were obtained from the F1 cross of WT CD45.1 (Jackson laboratories) 

and WT CD45.2 mice (Uhrf1wt/wt, without Mx1-Cre).  All mice used in experiments were 

8-12 weeks old.  To generate chimeric transplanted mice, 1x106 unfractionated CD45.2 

donor WBM mixed with 1x106 WT CD45.1/CD45.2 competitor WBM was transplanted 

by tail-vein injection into lethally irradiated CD45.1 female recipient mice.  Peripheral 

blood engraftment was assessed at 11 weeks post-transplant.  PIPC was delivered 

intraperitoneally at 250ug for 4 total injections.  Peripheral blood chimerism was assessed 

for 24 weeks following the first injection.  At week 25, recipient mice were euthanized, 

and tissues were harvested for further analysis. 

 
Statistics 
 
All statistical analyses used in mouse studies were performed using GraphPad Prism 

version 5.01 (GraphPad Software, San Diego California USA, www.graphpad.com).  P-

values were calculated by unpaired t-test, unless otherwise noted.  
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Results 
 
Identification of UHRF1 as a critical epigenetic regulatory factor in hematopoietic 
development 
 
 In order to investigate the regulatory mechanisms involved in normal 

hematopoietic development, we analyzed whole transcriptome gene-level expression data 

from highly enriched stem (CD34+CD38-ALDHhigh) and progenitor (CD34+CD38+) 

fractions obtained from five healthy bone marrow donors86.  ANOVA was used to 

nominate differentially expressed genes that may define critical mediators involved in the 

regulation of normal hematopoietic stem to progenitor cell transition.  A total of 1183 

transcripts were found to be significantly differentially expressed in CD34+CD38-

ALDHhigh compared to CD34+CD38+ populations (FDR = 0.05, |log2(Fold Change)| > 1).  

Of these, 45 transcripts were identified as known factors involved in epigenetic 

regulatory mechanisms87 (Figure 3.1). These include EZH2 (FC -3.94, p = 5.57E-6), 

DNMT1 (FC -3.03, p = 8.66E-6), and TET2 (FC 2.07, p = 3.13E-4), which have been 

implicated previously in normal or malignant hematopoietic development, along with 

UHRF1 (FC -3.73, p = 8.10E-5), a known DNMT1 binding partner.  These expression 

data, combined with the known multifunctional role of UHRF1 in reading both histone 

tail and DNA modifications, suggest UHRF1 is an important epigenetic regulator of 

differentiation programs in hematopoiesis.   

 
Generating an inducible, conditional UHRF1 knockout mouse model  
 

In adult mice, hematopoietic stem and progenitor cell subtypes are easily 

identified by well-defined cell surface markers2, making the mouse an ideal model to 

study HSC differentiation.  Previous studies have shown constitutive, homozygous 
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deletion of Uhrf1 in a conventional knockout mouse model results in embryonic lethality 

by E9.578.  Attempts to breed a conditional knockout, specific to the hematopoietic 

system via a Vav1-Cre model, failed to yield viable Uhrf1Δ/Δ pups (data not shown).  In 

order to assess the role of Uhrf1 specifically in adult hematopoiesis, we sought to 

generate an inducible, conditional knockout mouse.  Mice with loxP sites flanking exon 3 

of Uhrf1 (Uhrf1fl/fl) were crossed to Mx1-Cre transgenic mice, and deletion was induced 

by intraperitoneal injection of PIPC in 8-12 week old adults (Figure 3.2A).  Homozygous 

Uhrf1 deletion efficiency was assessed by genomic PCR of whole bone marrow (WBM) 

19 days after initial injection (mean + SD: 75.4+10.4%, n=10) (Figure 3.2B).  Coordinate 

depletion of protein expression was measured by flow cytometry in Uhrf1Δ/Δ WBM, 

while expression levels were maintained in Uhrf1wt/Δ compared to Mx1-Cre;Uhrf1wt/wt 

control mice (Figure 3.2E,F).  Because Cre expression is controlled under the Mx1 

promoter in this model, all cells that produce an IFN response will induce Uhrf1 deletion.  

Due to this, we assessed homozygous deletion by genomic PCR in non-hematopoietic 

tissues as well as the spleen, the major site of extramedullary hematopoiesis.  Although 

efficiency of homozygous deletion in the spleen was comparable to that in bone marrow 

specimens (Figure 3.2C), spleen weight was not significantly affected.  In heterozygous 

knockout mice, the significant increase compared to controls was not determined to be 

physiologically relevant upon consideration of the range of spleen weights in PIPC-

injected Uhrf1fl/fl mice.  Therefore, we chose to focus subsequent analyses on the effects 

of Uhrf1 depletion in hematopoietic development in the bone marrow.      
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Homozygous deletion of UHRF1 in adult hematopoiesis 
 

Homozygous deletion of Uhrf1 induced rapid lethality in all mice by 21 days 

post-injection (Figure 3.3A; median survival 18 days, n=6, p < 0.001).  Genomic deletion 

was confirmed in moribund WBM specimens (Figure 3.3B). At 19 days after PIPC 

injection, peripheral blood counts revealed pancytopenia, as seen in all mature lineages of 

the blood (Figure 3.3C).  Massive bone marrow hypoplasia was apparent in histological 

sections of humerus and confirmed by absolute cell counts of viable WBM (Figure 

3.3D,E).  Notably, this extreme phenotype was not seen in the bone marrow of 

heterozygous knockout mice.  Although blood counts from the erythroid lineage of 

Uhrf1wt/Δ mice reached statistical significance compared to controls, the mild reduction in 

counts did not reach physiological significance, as the counts did not qualify as anemic or 

affect overall survival.  Further analysis of bone marrow stem and progenitor populations 

revealed significantly reduced frequencies of Kit-expressing cells, including bulk stem 

cell (LSK, Lin-Sca+Kit+) and myeloid progenitor (MP, Lin-Sca-Kit+) populations, with 

a complete absence of a common lymphoid progenitor (CLP, Lin-Flt3+IL7Ra+) 

population, in Uhrf1Δ/Δ compared to Uhrf1wt/Δ and control mice (Figure 3.4A,B).   

 
Competitive Bone Marrow transplantation 
 

Due to the hierarchical nature of hematopoietic development and the complex 

feedback mechanisms regulating its homeostasis, absence of a committed or terminally 

differentiated population activates proliferation and differentiation programs in stem and 

progenitor populations to replenish low cell numbers in more mature populations89.  One 

possible scenario to explain the global reduction in all bone marrow and blood cell 

populations in Uhrf1Δ/Δ mice is a requirement of UHRF1 expression for survival in one or 
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more lineage committed cell populations but not in the stem and progenitor cell 

compartments.  A cycle of cell death in mature populations followed by proliferation of 

immature cells would eventually lead to exhaustion of stem and progenitor 

compartments, independent of an autonomous requirement of UHRF1.  

In order to distinguish a role for Uhrf1 in each individual subpopulation along the 

hematopoietic hierarchy, we introduced WT cells in a competitive transplantation model 

to reduce the burden of daily hematopoietic requirements on Uhrf1 knockout cells and 

eliminate the limitations of the rapid lethality phenotype.  To generate chimeric mice 

harboring both Uhrf1Δ/Δ and WT hematopoiesis, lethally-irradiated recipient mice were 

injected with whole bone marrow (WBM) from either Mx1-Cre;Uhrf1fl/fl or Mx1-

Cre;Uhrf1wt/wt control mice that was mixed 1:1 with WT competitor marrow.  Whole 

bone marrow from WT mice lacking the Mx1-Cre transgene was used as an additional 

donor control to account for any deleterious effects of Cre expression.  Donor (CD45.2), 

competitor (CD45.1/CD45.2), and host (CD45.1) mice were bred on congenic CD45 

backgrounds in order to trace the origin of engrafted bone marrow populations.  

Peripheral blood engraftment was confirmed at 11 weeks post-transplantation, and all 

mice were injected with PIPC (Figure 3.5A).  Long-term follow-up showed a significant 

and steady decline in peripheral blood engraftment of Uhrf1Δ/Δ donor marrow after PIPC 

injection (Figure 3.5B).  Assessment of multi-lineage repopulation beyond 16 weeks did 

not show any stable, statistically significant changes in donor contribution to myeloid 

(Mac1+ and/or Gr1+), B cell (B220+), or T cell (CD3+) lineages compared to controls 

(Figure 3.5C).  Genotyping of peripheral blood at 16 weeks post-injection confirmed the 

presence of homozygous deleted cells in the remaining terminally differentiated donor 
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populations (Figure 3.5D), suggesting that these mature blood cells were generated from 

a Uhrf1Δ/Δ long-term repopulating subpopulation in the bone marrow.  Together, these 

data indicate that a long-term primitive cell that is void of UHRF1 expression is capable 

of producing all mature populations in the blood but at a greatly reduced efficiency 

compared to WT competitor cells.   

In order to determine the potential source of Uhrf1Δ/Δ cells in the periphery, 

CD45.2+  donor marrow was examined for the presence of stem and progenitor 

populations and revealed a near absence of LSK, MP, and CLP fractions (Figure 3.6A,B).  

Although the CLP (Lin- Flt3+ IL7Ra+) population was absent in bone marrow from 

Uhrf1Δ/Δ donors, the bulk Lin- IL7Ra+ population was overrepresented in total marrow 

compared to control donors (Figure 3.6C, left panel), with IL7Ra+ cells comprising over 

half of the Lin- compartment (Figure 3.6C, right panel).  Since Flt3 has been shown to be 

essential during early stages of B-lymphopoiesis90, the presence of a Lin- Flt3- IL7Ra+ 

population suggests that a potential lymphoid-committed cell that is more differentiated 

than the CLP remains in Uhrf1Δ/Δ marrow.  To investigate this further, we gated on 

CD45.2+ donor cells to assess the contribution of Uhrf1Δ/Δ cells to mature populations in 

the bone marrow.  We exploited the differences in side scatter distribution and CD45 

expression to distinguish bulk lymphoblast, granulocyte, and lymphocyte populations.  

We first confirmed the loss of UHRF1 expression in Uhrf1Δ/Δ donor cells to ensure that 

any residual hematopoiesis was not due to remaining cells with floxed alleles that failed 

to recombine upon PIPC injection (Figure 3.6D,E).  In viable WBM of control mice, all 

three major bulk populations are represented.  In contrast, lymphocytes are 

overrepresented in knockout donor marrow, with near absent blast and granulocyte 
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populations (Figure 3.6D,F).  After gating on UHRF1+ cells from control donor marrow, 

only granulocytes and blasts remain, while lymphocytes are nearly absent (Figure 

3.6D,F).  These data indicate that a majority of mature lymphocytes do not express 

UHRF1 and suggest that a loss of dependence on UHRF1 expression for survival and 

differentiation occurs within a Lin- IL7Ra+ progenitor subset that is capable of 

maintaining a mature lymphocyte population.  

 
Discussion 
 

Understanding the epigenetic regulation of transcriptional programs responsible 

for guarding HSC function is of great interest due to the broad clinical applications of 

HSC transplantation and the contribution of aberrant pathway regulation to malignant 

transformation.  In this study, we have identified several important factors involved in 

epigenetic regulatory mechanisms and demonstrate that UHRF1 is essential for 

hematopoietic stem and progenitor function and lineage commitment programs. 

Genome-wide gene expression analysis of highly-refined stem and progenitor 

fractions from healthy bone marrow donors revealed that key epigenetic regulatory 

factors, including DNMT1, EZH2, TET2, and UHRF1 were differentially expressed in the 

early commitment decisions of hematopoietic stem cells.  These findings were consistent 

with recent studies in knockout mice and indicate a role for DNA methylation and histone 

modifying proteins in hematopoietic development, including the maintenance of self-

renewal and lineage commitment decisions of HSCs.  Dnmt1 hypomorphs showed 

impaired HSC self-renewal and displayed myeloerythroid lineage restriction16.  Ezh2 

knock-in mice demonstrate increased HSC cell number and proliferation with progression 

to myeloproliferative disorder91.  Similarly, studies using Tet2-deficient mice showed 
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increased HSC self-renewal and myeloproliferation in vivo, with progression to a 

transformed phenotype92.  Furthermore, EZH2 and TET2 have also been shown to be 

mutated in hematologic malignancies, validating the essential role for chromatin-

modulating proteins in the stable inheritance of HSC functional programs73,93. 

Because the role of UHRF1 in hematopoiesis was not previously explored, we 

next studied the role of UHRF1 in murine hematopoiesis.  Homozygous deletion of 

UHRF1 in adult hematopoiesis induced rapid lethality in all mice with profound blood 

and bone marrow deficiencies, similar to the phenotypes observed in an Mx1-cre 

DNMT1 knockout mouse model16.  This is consistent with the function of UHRF1 in 

DNA methylation maintenance.  This profound phenotype contrasted with results from 

Trowbridge et al.76, but differences may have been due to differing PIPC injection doses 

and schedules resulting in incomplete DNMT1 knockout in that prior study.  When 

hematopoiesis was supported with the addition of WT competitor cells in a 

transplantation model, we were able to circumvent the limitations of the rapid lethality 

phenotype and isolate specific cell lineages that were most affected by loss of UHRF1 

expression.  These data confirmed the complete ablation of primitive cell compartments 

seen in initial experiments but, surprisingly, B- and T- lymphoid and myeloid mature 

cells were still detectable in the periphery.  Previous results from DNMT1 hypomorphs 

indicated an essential role for DNA methylation in suppressing myeloid developmental 

pathways for lymphopoiesis16.  In this study, we propose that UHRF1-dependent 

epigenetic regulation is critical in early lymphoid development.  However, such 

dependence on UHRF1 may be lost further along lymphoid development, evidenced by 

an observed lack of Kit-expressing stem and progenitor cells and relative enrichment of 
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Flt3 negative, IL7Ra-expressing cells within the Lin- compartment of UHRF1 knockout 

marrow.  Supporting this, c-kit-deficient mice showed severely reduced CLP numbers, 

while prepro- and pro-B cells were not affected94.  Additionally, a subpopulation of Lin- 

Sca+ Kit- (LSK-) cells that express high levels of CD25 and are exclusively Flt3-IL7Ra+ 

were able to be generated from CLPs in vitro95.  Although we did not assess CD25 

expression in our competitive transplant model, it is possible that the remaining 

population is heterogeneous and contains lymphoid-primed cells that are more 

differentiated and lineage restricted than the CLP fraction.  Together, this suggests that 

dependence on UHRF1 may vary during lymphoid development, with complete loss in 

later stages of lymphopoiesis. 

Our observations confirm that genes involved in epigenetic regulatory 

mechanisms, including factors known to be perturbed in bone marrow disorders, are 

differentially expressed in hematopoietic stem and progenitor cells from normal bone 

marrow donors.  Also, for the first time, we show that UHRF1 is obligatory for normal 

HSC function, while its role in lymphoid development may vary with degree of 

differentiation.     
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Tables and Figures 
Figure 3.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Gene expression changes of epigenetic regulatory factors involved in 
hematopoietic stem to progenitor cell differentiation. Heatmap showing the expression 
levels of known epigenetic regulatory genes that are differentially expressed between 
normal stem (CD34+CD38−ALDHhigh) and progenitor (CD34+CD38+) cells with FDR = 
0.05 and |log2(Fold Change)| > 1. Upregulated and downregulated expression levels are 
indicated in red and blue, respectively.  Gene symbols in bold represent DNA 
methylation and Polycomb group factors that have been previously studied in 
hematopoietic development. NL_S, normal stem cells; NL_P, normal progenitor cells.  
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Figure 3.2 

 
Figure 3.2. Induced conditional deletion of UHRF1 in the hematopoietic system. A) 
Schematic of mouse model depicting PIPC injection schedule used to induce deletion of 
Uhrf1 in the hematopoietic system.  All mice received 250ug of PIPC every other day for 
four total injections.  Tissues were harvested 19 days after the first PIPC injection. B,C) 
Genotyping PCR results of Uhrf1Δ/Δ tissues. WBM (B) or tail,T; kidney,K; liver,L; 
spleen,S (C). D) Dot plot of spleen weights (g) of PIPC injected mice. E,F) UHRF1 
expression in viable WBM samples by flow cytometry. Histogram plot of one 
representative sample of each genotype (E) and dot plot of mean fluorescence intensity, 
MFI (F). wt/wt (red outline or diamonds) refers to PIPC injected Mx1-Cre; Uhrf1wt/wt; 
wt/Δ (green outline or diamonds), Uhrf1wt/Δ (PIPC injected Mx1-Cre; Uhrf1wt/fl); Δ/Δ 
(purple outline or diamonds), Uhrf1Δ/Δ (PIPC injected Mx1-Cre; Uhrf1fl/fl). Dot plots: 
Each point on graph represents one mouse. Black horizontal bars represent means. 
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Figure 3.3 
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Figure 3.3 (con’t) 

 
Figure 3.3. Conditional deletion of UHRF1 induces rapid lethality with 
pancytopenia and diminished bone marrow cellularity. A) Kaplan-Meier curve 
displaying cumulative survival.  Arrow heads represent PIPC injections. P = 0.0008 by 
log-rank test.  B) Genotyping PCR results of WBM samples collected at 21 days post-
PIPC injection. All genotypes in A,B represent mice that were injected with 250ug PIPC 
every other day for five total injections. fl/fl, (PIPC injected Uhrf1fl/fl, without Mx1-Cre 
transgene).  C) Peripheral blood counts at 19 days post-PIPC injection.  Horizontal black 
bar signifies mean.  P-values determined by Mann-Whitney test.  D) H&E stain of 
formalin-fixed, paraffin-embedded humerus sections. One representative section per 
genotype is shown. Original magnification, 400x. E) Absolute bone marrow counts per 
femur. Viable cells were counted by trypan blue exclusion on a hemacytometer. Bar plots 
represent mean + SD; wt/wt n = 4, wt/Δ n = 2, Δ/Δ n = 3; *P < 0.05, **P < 0.01, ***P < 
0.001. 
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Figure 3.4 

 
Figure 3.4. Defective HSPC compartment in UHRF1 KO mice. A) Representative 
FACS plots and gating strategy for bone marrow stem and progenitor populations.  Total 
viable bone marrow was defined by FSC v. SSC size-selection, single cell gating, and 
viability dye exclusion.  Top row: Stem and progenitor fractions of Lin- (CD3-, Gr-1-, 
B220-, Ter119-) bone marrow. Bottom row: CLP fraction of ScamidKitmid (SmKm) cells.   
B) Frequency of gated populations in total viable bone marrow.  Data expressed as mean 
+ SD.  *P < 0.05, **P < 0.01.  LSK, Lin-Sca+Kit+; MP, myeloid progenitors; CLP, 
common lymphoid progenitor.  
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Figure 3.5 
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Figure 3.5 (con’t) 

 
Figure 3.5. Reduced peripheral blood engraftment in UHRF1 KO competitive 
transplant model. A) Schematic of competitive transplant model.  B) Average 
normalized peripheral blood chimerism of transplant recipients.  Arrow heads indicate 
PIPC injections.  C) Average percent Lin+ donor cells in peripheral blood.  Data in B and 
C represented as mean + SD, n = 5 recipients per genotype at each timepoint. Blue 
asterisks indicate statistics for Uhrf1Δ/Δ vs Uhrf1wt/wt donors. Red asterisks indicate 
Uhrf1Δ/Δ vs Mx1-Cre;Uhrf1wt/wt comparison.  *P < 0.05, **P < 0.01, ***P < 0.001. D) 
Genomic PCR results of peripheral blood of recipient mice at 16 weeks post-PIPC 
injection. 
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Figure 3.6 
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Figure 3.6 (con’t) 
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Figure 3.6. Survival of a lymphoid committed population in UHRF1 KO competitive 
transplant model. A) Representative FACS plots of viable bone marrow from transplant 
recipient mice at 25 weeks post-PIPC injections.  Top row: Mx1-Cre;Uhrf1wt/wt viable 
donor marrow.  Bottom row: Uhrf1Δ/Δ viable donor marrow.  B) Frequency of gated 
populations represented as percentage of CD45.2 donor marrow for each genotype.  Data 
expressed as mean + SD; WT n = 2, wt/wt n = 2, Δ/Δ n = 3; *P < 0.05, **P < 0.01.  C) 
Frequency of IL7Ra+ cells within the Lin- compartment.  Left bar plot: Data expressed as 
mean percentage of total viable CD45.2 donor cells. Right dot plot: Data expressed as 
percentage of CD45.2 donor Lin- cells.  Each point on plot represents one mouse. WT n 
= 2, wt/wt n = 2, Δ/Δ n = 3; **P < 0.01, ***P < 0.001.   D) Representative FACS plots.  
Top row: Mx1-Cre;Uhrf1wt/wt viable donor marrow.  Bottom row: Uhrf1Δ/Δ viable donor 
marrow.  Histogram plots: UHRF1 expression in total viable bone marrow gated on 
CD45.2 donor compartment.  Dot plots, left column: CD45.2 expression in viable donor 
marrow.  Dot plots, right column: CD45.2 expression in UHRF1+ viable donor marrow. 
E) Percentage of UHRF1+ cells within viable CD45.2 donor marrow compartment.  Each 
point represents data from one recipient mouse.  Horizontal black bars represent means. 
F) Contribution of lymphoblasts (blasts), granulocytes, or lymphocytes to total marrow, 
expressed as percentage of total CD45.2 viable cells.  Top plot: Gated on viable WBM. 
Bottom plot: Gated on UHRF1+ WBM. Data expressed as mean values. WT n = 2, wt/wt 
n = 2, Δ/Δ n = 3.  Donor marrow genotypes: WT (Uhrf1wt/wt), wt/wt (Mx1-Cre;Uhrf1wt/wt), 
Δ/Δ (Uhrf1Δ/Δ). 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 
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 In this dissertation, genome-wide gene expression of highly-refined HSPCs from 

normal and leukemic bone marrow donors was used to develop insights on the molecular 

mechanisms of normal HSC function and LSC transformation.  In studying chronic phase 

CML LSCs, we were able to identify unique cell surface molecules and mechanistic 

pathways that may serve as potential CML LSC targets.  We were able to isolate highly-

enriched leukemic stem cell fractions to avoid contamination by bulk tumor cells and 

subsequent limitations in defining purely LSC-specific targets.  In this way, optimal 

therapeutic intervention could selectively eliminate the LSC fraction responsible for 

propagating the tumor, while sparing normal hematopoiesis in the patient.  One 

particularly promising target identified was DPP4, or CD26, for which there are FDA-

approved inhibitors for the treatment of diabetes mellitus.  Although we did not 

investigate the influence of DPP4 inhibition on patient prognosis, one study reported 

decreased BCR/ABL1 transcript levels in two patients who were co-treated with a 

tyrosine kinase and DPP4 inhibitors, demonstrating the successful therapeutic potential of 

targeting DPP4 in chronic phase CML96.   

 In the second half of our study, we focused on epigenetic regulatory mechanisms 

in normal hematopoiesis. Understanding the complex mechanisms involved in stem cell 

function can shed light on critical programs that may be perturbed in leukemic 

development.  We nominated UHRF1 as an essential epigenetic regulator in normal 

hematopoiesis and described its role in this process in a murine model.  Further 

investigation could include a look into the mechanism by which UHRF1 regulates stem 

cell fate decisions in our mouse model, including any alterations in DNA or H3K9 

methylation and downstream influence on expression of UHRF1-regulated genes.   



60 
 
 

 Accumulating evidence supports UHRF1 as an oncogene and potential 

therapeutic target in hematologic malignancies and other cancers.  Several UHRF1 

knockdown studies have shown reduced cell growth in cervical97 and esophageal98 

squamous cell carcinoma and ovarian99, gallbladder100, breast101,102, and anaplastic 

thyroid103 cancer.  Additionally, previous data from our lab showed heterozygous 

knockout of UHRF1 reduced tumor burden in an APC-driven mouse model of colon 

cancer.  While the data from our hematopoietic model suggests that complete knockout of 

UHRF1 in a patient would have detrimental, possibly lethal, side-effects in the 

hematopoietic system, the striking absence of a heterozygous phenotype and the 

promising results from previous knockdown studies supports the possibility of an optimal 

therapeutic dose with little harm to normal hematopoiesis.  Building on this hypothesis, 

we could examine the role of UHRF1 in a leukemic model and assess the efficacy of 

UHRF1 inhibition or depletion on disease progression in mice.     
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