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Abstract 

Optical coherence tomography (OCT), which provides cross-sectional images 

noninvasively with a micro-scale in real-time, has been widely applied to the diagnosis and 

treatment guidance for various ocular diseases. In this work, we demonstrate OCT-based guidance 

of two ophthalmic therapies, subretinal injection and selective retina therapy (SRT).  

Firstly, the “SMART,” a hand-held robotic surgical device actively guided by a common-

path OCT (CP-OCT) distal sensor, improves in two aspects for being applied to subretinal injection: 

(i) A high-performance fiber probe based on high index epoxy lensed-fiber to enhance the CP-

OCT retinal image quality in a wet environment; (ii) Automated retinal layer identification and 

tracking : retinal layer boundaries, as well as retinal surface, are tracked using convolutional neural 

network (CNN)-based segmentation for accurate subretinal injection guidance. It is shown that 

properly designed high index epoxy lensed-fiber probe improves the signal-to-noise ratio (SNR) 

and retinal image quality of the CP-OCT system. We propose, implement, and study real-time 

retinal boundary tracking of A-scan OCT images using CNNs for automatic depth targeting of a 

selected retinal boundary and accurate localization of a surgical tool (i.e. needle) tip. A simplified 

1-D U-net is used for the retinal layer segmentation of A-scan OCT images which are obtained by 

the lensed-fiber probes. A Kalman filter, combining retinal boundary position measurement by 

CNN-based segmentation and velocity measurement by cross-correlation between consecutive A-

scan images, is applied to optimally estimate the retinal boundary position. Unwanted axial 

motions of the surgical tools are compensated by a piezo-electric linear motor based on the retinal 

boundary tracking. A CNN-based CP-OCT distal sensor successfully tracks retinal boundaries, 

especially the PR/CH boundary for subretinal injection, and automatically guides the needle’s axial 
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position in real-time. The micro-scale depth targeting accuracy of our system shows its promising 

possibility for clinical application. 

We also propose and demonstrate SRT monitoring based on speckle variance OCT (svOCT) 

for dosimetry control. SvOCT quantifies speckle pattern variation caused by moving particles or 

structural changes in biological tissues. M-scans, time-resolved sequence of A-scans, of a phantom, 

ex vivo bovine iris, and ex vivo bovine retina are obtained by a swept-source OCT system during 

laser pulses irradiation. SvOCT images are calculated as interframe intensity variance of the 

sequence, and they show abrupt speckle variance change induced by laser pulse irradiation. The 

axially averaged svOCT signals show a sharp peak corresponding to each laser pulse, and the peak 

values are proportional to irradiated laser pulse energy. For the ex vivo retinal study, microscopic 

images of treated spots are obtained before and after removing the upper neural retinal layer to 

assess the damage in both RPE and neural layers. Spatial and temporal temperature distributions 

in the retina are numerically calculated in a 2D retinal model using COMSOL Multiphysics. We 

find that the svOCT peak values have a reliable correlation with the degree of retinal lesion 

formation. The temperature at the neural retina and RPE is estimated from the svOCT peak values 

using numerically calculated temperature, which is consistent with the observed lesion creation. 

 

  



 iv 

Candidate:  

Soohyun Lee 

 

Dissertation Committee: 

Dr. Jin U. Kang (advisor) 

Dr. Israel Gannot (Second reader) 

Dr. Mark Foster 

 

  



 v 

Acknowledgments 

 

I would like to thank the following people for their help and support during my PhD study. I would 

first like to thank my advisor, Dr. Jin U. Kang, for his patient support and all of the opportunities 

I was given to further my research. I would also like to thank my committee members, Dr. Israel 

Gannot and Dr. Mark foster, for their valuable comments and support. I would like to thank all the 

photonics and optoelectronics group members for their support and for all the fun we have had in 

the last five years. In addition, I must express my very profound gratitude to my parents and to my 

husband for their constant love and support throughout my years of study and through the process 

of researching and writing this thesis. This accomplishment would not have been possible without 

them. Thank you.   



 vi 

Contents 
Abstract ..................................................................................................................................................... ii 

Acknowledgments .................................................................................................................................... v 

Contents ................................................................................................................................................... vi 

List of Tables ......................................................................................................................................... viii 

List of Figures .......................................................................................................................................... ix 

1  Introduction ........................................................................................................................................ 1 

1.1 Motivations ..................................................................................................................................... 1 

1.2 Dissertation overview ..................................................................................................................... 2 

2  Introduction to OCT and Neural Networks ..................................................................................... 4 

2.1 Optical coherence tomography ....................................................................................................... 4 

2.1.1 Time domain and Fourier domain optical coherence tomography ......................................... 4 

2.1.2 Spectral-domain and swept-source optical coherence tomography ...................................... 11 

2.1.3 Common-path optical coherence tomography ...................................................................... 13 

2.1.4 Speckle-variance optical coherence tomography .................................................................. 15 

2.2 Convolutional neural network ...................................................................................................... 16 

2.2.1 Building blocks of CNN architecture.................................................................................... 16 

2.2.1.1 Convolutional layer ................................................................................................... 16 

2.2.1.2 Activation layer ......................................................................................................... 17 

2.2.1.3 Pooling layer .............................................................................................................. 19 

2.2.1.4 Fully connected layer ................................................................................................. 20 

2.2.2 Training a neural network ..................................................................................................... 21 

2.2.2.1 Backpropagation ........................................................................................................ 22 

2.2.2.2 Neural network optimization algorithms ................................................................... 23 

2.2.2.3 Loss function ............................................................................................................. 26 

3  High index epoxy lensed fiber OCT probe for retinal imaging .................................................... 29 

3.1 Introduction ................................................................................................................................... 29 

3.2 Design of lensed fiber probe ......................................................................................................... 30 

3.3 Fabrication of lensed fiber and lens geometry .............................................................................. 32 

3.3.1 Fabrication of lensed-fiber .................................................................................................... 32 

3.3.2 Lens geometry ....................................................................................................................... 34 

3.4 Performance of the lensed fiber probe .......................................................................................... 36 

3.4.1 Signal-to-noise ratio .............................................................................................................. 36 



 vii 

3.4.2 OCT imaging performance ................................................................................................... 38 

3.5 Conclusion .................................................................................................................................... 40 

4  A CNN-based CP-OCT sensor integrated with a subretinal injector for retinal boundary 

tracking and injection guidance ................................................................................................... 41 

4.1 Introduction ................................................................................................................................... 41 

4.2 Experiment and Method................................................................................................................ 43 

4.2.1 Network architecture and training for retinal layer segmentation......................................... 43 

4.2.2 Retinal boundary tracking ..................................................................................................... 45 

4.2.3 Data set ................................................................................................................................. 46 

4.2.4 CP-SSOCT distal sensor guided hand-held microsurgical tool system ................................ 48 

4.3 Experimental results ..................................................................................................................... 50 

4.3.1 Train and test results of CNN-based segmentation and boundary tracking .......................... 53 

4.3.2 Real-time ex vivo bovine retinal boundary tracking and tremor cancellation ...................... 55 

4.4 Conclusion .................................................................................................................................... 61 

5  Selective retina therapy monitoring by speckle variance OCT .................................................... 63 

5.1 Introduction ................................................................................................................................... 63 

5.2 Phantom and ex vivo bovine iris experiment ................................................................................ 65 

5.2.1 Experimental method ............................................................................................................ 65 

5.2.2 Results ................................................................................................................................... 67 

5.3 Ex vivo bovine retinal experiment and temperature estimation .................................................... 72 

5.3.1 Experimental method ............................................................................................................ 72 

5.3.2 Results ................................................................................................................................... 75 

5.4 Conclusion .................................................................................................................................... 81 

6 Conclusions ........................................................................................................................................ 83 

6.1 Summary of contributions ............................................................................................................ 83 

6.2 Future work ................................................................................................................................... 84 

Bibliography .......................................................................................................................................... 85 

Curriculum Vitae .................................................................................................................................. 96 

 

  



 viii 

List of Tables 

Table 1. Reflectivity at the optical surface of various medium .................................................... 14 

Table 2. Fabricated lens geometry and theoretically calculated working distance, beam waist size 

and effective sensing range ............................................................................................. 35 

Table 3. Mean signed error of retinal boundary position (pixels), NB : the number of contracting 

and expanding blocks, NC: the number of feature channels, SS: sampling size, NSC: no 

skip concatenation connections. ...................................................................................... 52 

Table 4. Mean unsigned error of retinal boundary position (pixels) ............................................ 52 

Table 5. Absolute maximum error of retinal boundary position (pixels) ..................................... 53 

Table 6. Thickness, absorption coefficient, and thermal properties of each retinal layer ............ 74 

 

 

 
 
  



 ix 

List of Figures 

Figure 1 Schematic of Michelson-type interferometer used in OCT .............................................. 4 

Figure 2 The reflectivity profile of a discrete-reflectors sample and the resultant A-scan of TDOCT

....................................................................................................................................... 8 

Figure 3 (Left) Spectral interferogram. (Right) The reflectivity profile of a discreate-reflectors 

sample and the resultant A-scan obtained by FDOCT................................................ 10 

Figure 4 Schematic of (left) SD-OCT system and (right) SS-OCT system .................................. 13 

Figure 5 Schematic of (left) free space SD-CPOCT system and (right) fiber optic-based  SS-

CPOCT system............................................................................................................ 14 

Figure 6 Image convolution with an input image of size 5 by 5 and a kernel of size 3 by 3. Both 

stride and zero padding are set to 1. ............................................................................ 17 

Figure 7 Widely used activation functions. Rectified linear unit (ReLU), leaky ReLU, sigmoid 

function, and hyperbolic tangent function .................................................................. 18 

Figure 8 Max pooling and average pooling with a filter size of 2 by 2 and stride of 2 ................ 20 

Figure 9 Illustration of fully connected layer ............................................................................... 21 

Figure 10 Illustration of backpropagation in a simple two-layer neural network ......................... 23 

Figure 11 Calculated (a) working distance, (b) beam waist, (c) DOF and (d) effective sensing range 

as a function of beam expansion length and lens curvature. Red stars indicate geometry 

of lenses we made. ...................................................................................................... 32 

Figure 12 Illustration of fabrication process: (a) preparing bare fiber, (b) constructing expansion 

rod and (c) applying spherical surface on the expansion rod. ..................................... 33 

Figure 13 En-face OCT images of fiber probe with (a) Lens 1, (b) Lens 2, (c) Lens 3 and (d) 240 

µm expansion rod. The dashed line shows interface between bare fiber and epoxy. . 34 



 x 

Figure 14 (a) The erf function result using knife-edge measurement at 1mm away from probe. (b) 

Beam shape from fitting the erf functions in (a). Measured (circle) and calculated (solid 

line) beam width of each lensed fiber in the (c) air and (d) water depending on distance 

from probe. .................................................................................................................. 36 

Figure 15 Theoretically calculated (solid line) and measured (circle) signal-to-noise ratio of each 

lensed fiber in the (a) air and (b) water ....................................................................... 38 

Figure 16 B-mode OCT images of a phantom target made up of several layers of tapes obtained 

by fiber probe (a) without lens (bare fiber), (b) with Lens 1, (c) with Lens 2, and (d) 

with Lens 3 in water .................................................................................................... 39 

Figure 17 B-mode OCT images of a phantom target made up of several layers of tapes obtained 

by fiber probe (a) without lens (bare fiber), (b) with Lens 1, (c) with Lens 2, and (d) 

with Lens 3 in air ........................................................................................................ 39 

Figure 18 Network architectures of (a) our 1-D U-net and (b) the most simplified 1-D U-net we 

applied. N: kernel number, S: kernel size. .................................................................. 44 

Figure 19 (a) A quasi B-scan OCT image of an ex vivo bovine eye obtained using an endoscopic 

CP-OCT lensed fiber probe. (b) A manually segmented OCT image. (c) The averaged 

retinal A-scan over all data set and a sampled retinal A-scan (upper graph) and cross-

correlation between the two A-scans (lower graph). (d) A cropped quasi B-scan OCT 

image consisting of the cropped A-scan images in the train set. ................................ 48 

Figure 20 Schematic of CP-SSOCT distal sensor guided hand-held microsurgical tool system and 

a signal processing flow chart. .................................................................................... 49 

Figure 21 Mean IoU of trained networks on the train and test data sets. (b) Inference time on GPU 

for segmentation of 16 A-scan OCT images of 320 by 1 pixel. NB: the number of 



 xi 

contracting and expanding blocks, SS: sampling size, NSC: no skip concatenation 

connection. .................................................................................................................. 51 

Figure 22 Mean IoU of trained networks on the train and test data sets. (b) Inference time on GPU 

for segmentation of 16 A-scan OCT images of 320 by 1 pixel. NB: the number of 

contracting and expanding blocks, SS: sampling size, NSC: no skip concatenation 

connection. .................................................................................................................. 54 

Figure 23 M-scan OCT images of ex vivo bovine eyes acquired using (a) a stationary OCT distal 

sensor and an OCT distal sensor attached to fixed motor activated for (b) VH/GCL 

boundary targeting and (c) PR/CH boundary targeting. The green and yellow solid lines 

represent tracked VH/GCL and PR/CH boundaries, respectively. (d) SDs of tracked 

boundary positions during depth targeting by an OCT distal sensor attached to fixed 

motor ........................................................................................................................... 57 

Figure 24 M-scan OCT images of ex vivo bovine eyes with and without tremor cancellation when 

(a) a boundary between VH and GCL is targeted and when (b) a boundary between PR 

and CH is targeted. The yellow and green solid lines are targeted boundary and 

untargeted another boundary, respectively. The dashed line represents target depth, and 

white vertical lines indicate the moment when motion compensation has been activated.

..................................................................................................................................... 59 

Figure 25 Box plots of (a) MSEs and (a) SDs of the VH/GCL and PR/CH boundary positions 

during VH/GCL boundary targeting and PR/CH boundary targeting. ....................... 60 

Figure 26 M-scan OCT images of ex vivo bovine eyes when each A-scan image is aligned to the 

targeted boundaries, (a) the VH/GCL boundary and (b) the PR/CH boundary. ......... 61 



 xii 

Figure 27 (Left) The R:GEN system and (right) set up of the R:GEN system combined with swept-

source OCT imaging system. ...................................................................................... 66 

Figure 28 Samples for experiment (Left) Floppy disk film and (right) ex vivo bovine iris ......... 66 

Figure 29 (a) M-scan structural OCT image, (c) M-scan svOCT image, and (d) Averaged svOCT 

signal in ROI during laser pulse train irradiation. ....................................................... 68 

Figure 30 Averaged svOCT signal during a laser-pulse train irradiation with irradiation energy of 

(a) 180uJ, (b) 135uJ, (c) 90uJ, (d) 45uJ, (e) 18uJ and (f) 9uJ in classic mode ........... 68 

Figure 31 (a) Average (blue point) and standard deviation (bar) of svOCT signal peak value 

dependent on radiation energy in classic mode. (b) Microscopic image of a laser-pulse 

irradiated phantom surface. ......................................................................................... 69 

Figure 32 Averaged svOCT signal of a laser-pulse train with radiation energy of (a) 180uJ, (b) 

90uJ, (c) 45uJ and (d) 18uJ. (e) Ratio of each peak to 15th peak of averaged svOCT 

signal. (f) Average (blue point) and standard deviation (bar) of 15th peak values 

depending on radiation energy in ramping mode. ...................................................... 70 

Figure 33 M-scan structural OCT image and its corresponding averaged svOCT signal in ROI 

during laser pulse train irradiation for the energy level of (a) 27 μJ, (b) 45 μJ, (c) 135 

μJ, and (d) 225 μJ. ....................................................................................................... 71 

Figure 34 (a) Box plot of peak intensities of averaged svOCT signal as a function of energy level 

and (b) microscopic image of a laser-pulse irradiated ex vivo bovine iris. ................ 71 

Figure 35 Schematic of a swept-source OCT system integrated into a pulse laser system. BD, 

balanced detector; OL, objective lens. ........................................................................ 73 

Figure 36 (a) The geometry of the bovine retina model. The retina was assumed to consist of two 

layers, neural retina and RPE, and have immediate contact with a choroid. The RPE 



 xiii 

was modeled as a 7-µm layer containing melanosomes that were assumed as diagonally 

distributed spheres of radius 0.3 µm. (b) Temperature time dependence in the neural 

retina and at the melanosome surface in RPE when laser pulse of energy 50 µJ 

irradiated. Spatial distribution of temperature around RPE, when the temperature of the 

neural retina reached a maximum after a (c) 20 µJ, (d) 50 µJ and (e) 100 µJ pulse 

irradiation. ................................................................................................................... 74 

Figure 37 (a) M-scan OCT image of the bovine retina and corresponding (b) svOCT image. 

Photoreceptor and RPE layers, which are highly scattering and absorptive, were set as 

an ROI. (c) Axially averaged svOCT values in the ROI during pulse laser irradiation. 

White triangles mark the moment when each laser pulse (108 µJ) irradiated. ........... 76 

Figure 38 Mean (shapes) and standard deviation (error bar) of peak values of svOCT values 

averaged in ROI depending on laser pulse energy when window size N is (a) 2, (b) 5, 

(c) 10 and (d) 20. ......................................................................................................... 77 

Figure 39 SvOCT values averaged in ROI when pulse laser energy is (a) 150 µJ, (b) 108 µJ, (c) 

86 µJ, (d) 69 µJ, (e) 54 µJ and (f) 30 µJ. .................................................................... 77 

Figure 40 Microscopic image of the retina (a) before and (b) after peeling neural retinal layers off. 

(c) The energy level of treated spots. .......................................................................... 79 

Figure 41 (a) Averaged peak values depending on pulse laser energy and damage range. (b) 

Simulated (lines) and estimated temperature from the svOCT intensity (shapes) at 

neural retina and RPE. (c) Simulated temperature at the neural retina and the RPE as a 

function of laser energy level for three pulse durations, 2 μs, 5 µs, and 10 µs. ......... 80 

 



 1 

1  

Introduction 

1.1 Motivations 

Subretinal injection is becoming increasingly popular in both scientific research and clinical 

communities as an efficient way of treating retinal diseases. The treatments deliver drugs or stem 

cells directly into subretinal space between the RPE and photoreceptor layer, thereby effectively 

affecting resident cells and tissues in the subretinal space. However, the procedure requires micro-

scale precision due to the delicate anatomy of the retina. It makes the procedure challenging 

because of surgeons' physiological hand tremor [1,2] and limited depth perception and limited 

visual feedback from a traditional stereo-microscopic en-face view.  

Optical coherence tomography (OCT)-guided robotic systems have been developed to 

reduce the unintended physiological motion and overcome the limited visual feedback during 

ocular microsurgery. OCT, which provides micro-scale resolution cross-sectional images in real-

time [3], enables improved visualization and accurate guidance of robotic systems. Among them, 

fiber-optic common-path OCT (CP-OCT) distal sensor integrated hand-held surgical devices have 

been developed to implement simple, compact, and cost-effective microsurgical systems [4-7]. In 

those systems, a single fiber probe attached to a surgical tooltip (i.e., needle or micro-forceps) 

guided the hand-held surgical device by real-time A-scan-based surface tracking. However, 

surface tracking-based guidance could induce inaccurate depth targeting for subretinal injection 

because of retinal thickness variations and irregular morphological features caused by retinal 

diseases. The target or near target retinal boundary tracking, which is RPE and photoreceptor 
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boundary tracking for subretinal injection, allows precision guidance. Therefore, we apply 

convolutional neural network (CNN)-based retinal layer segmentation, which already have shown 

promising results for 2D or 3D OCT retinal image segmentation [8-11], for retinal boundary 

tracking and implement hand-held surgical device compensating undesired hand tremor in real-

time using the retinal boundary tracking. 

Selective retina therapy (SRT) is an effective laser treatment method for various retinal 

diseases associated with a degradation of the retinal pigment epithelium (RPE) [12-17]. The RPE, 

which contains a high concentration of melanosomes, can be selectively targeted by using a pulse 

laser having pulse duration shorter than a thermal relaxation time of the RPE (~10 µs) [18]. The 

SRT reduces negative side effects by avoiding thermal damages of the adjacent layers. However, 

the selection of proper laser energy—which is crucial for successful SRT without excessive 

burning and collateral damage—is challenging because lesions in the RPE are invisible 

ophthalmoscopically. In addition, melanin concentration variations among patients or regions even 

within an eye [19] make it impossible to set a static threshold value of pulse energy of a therapeutic 

irradiation window. Fundus fluorescence angiography (FFA) is an accurate method to detect the 

lesions, but it requires the use of fluorescent dye injection [20] and a long delay between treatment 

and detection. SvOCT is expected to work effectively for real-time non-invasive SRT monitoring 

by detecting speckle variation changes induced by morphological and structural changes of retinal 

tissue by laser irradiation. Therefore, we propose and demonstrate svOCT-based SRT monitoring 

method for dosimetry control. 
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1.2 Dissertation overview 

This dissertation presents the development of CNN-based real-time OCT distal sensor and svOCT-

based SRT monitoring system. Chapter 2 reviews the fundamental principles of OCT and CNN. 

Chapter 3 presents design and analysis of high-index lensed fiber probe for retinal imaging. 

Chapter 4 describes CNN-based CP-OCT distal sensor integrated with a subretinal injector for 

retinal boundary tracking and injection guidance. Chapter 5 presents SRT monitoring method 

using svOCT and temperature estimation. Chapter 6 summarizes the dissertation and proposes 

future directions of research. 
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2  

Introduction to OCT and Neural Networks 

2.1 Optical coherence tomography 

2.1.1 Time domain and Fourier domain optical coherence tomography 

A Michelson-type interferometer is typically used for an OCT system with a low-coherence light 

source as shown in Fig.1. The low coherent, broadband light is split into a reference and a sample 

arm by a beam splitter, and the returning light from each arm, which is reflected and backscattered 

from a reference mirror or sample, is recombined and produces an interference pattern. A 

             

Figure 1 Schematic of a Michelson-type interferometer used in OCT 
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reflectivity profile of a sample can be reconstructed from the interferometric measurements, and 

its mathematical derivation will be described in this section. 

The light source emits a polychromatic plane wave, whose electric field can be written as  

𝐸𝑖 = 𝑠(𝑘, 𝜔)𝑒𝑖(𝑘𝑧−𝜔𝑡). Here, 𝑠(𝑘, 𝜔) is the electric field amplitude as a function of wave number 

k and angular frequency ω. The reference reflector is assumed to have electric field reflectivity 𝑟𝑅  

and power reflectivity 𝑅𝑅 = |𝑟𝑅|2. In general, depth-dependent electric field reflectivity profile of 

sample, 𝑟𝑆(𝑧𝑆), is continuous, resulting from continuously changing refractive index of samples. 

However, for simplification, we assume a series of N discrete, real delta-function reflections of the 

form 𝑟𝑆(𝑧𝑆) = ∑ 𝑟𝑆𝑛𝛿(𝑧𝑆 − 𝑧𝑆𝑛)𝑁
𝑛=1 , with each reflection characterized by its electric field 

reflectivity, 𝑟𝑆𝑛, and path length from the beam splitter, 𝑧𝑆𝑛. When the surface of beam splitter is 

set to 𝑧 = 0, returning light from the reference and sample arms are given by  

𝐸𝑅 =
𝐸𝑖

√2
𝑟𝑅𝑒𝑖2𝑘𝑧𝑅                                                             (1) 

𝐸𝑆 =
𝐸𝑖

√2
(𝑟𝑆(𝑧𝑆) ⊗ 𝑒𝑖2𝑘𝑧𝑆) =

𝐸𝑖

√2
∑ 𝑟𝑆𝑛𝑒𝑖2𝑘𝑧𝑆𝑛𝑁

𝑛=1                                 (2) 

where ⊗ represents convolution operation. The intensity of the interference pattern obtained by 

the returning light can be expressed as   

𝐼𝐷(𝑘, 𝜔) =
1

2
〈|𝐸𝑅 + 𝐸𝑆|2〉 =  

1

2
〈(𝐸𝑅 + 𝐸𝑆)(𝐸𝑅 + 𝐸𝑆)∗〉 

=
1

2
〈|

𝑠(𝑘,𝜔)

√2
𝑟𝑅𝑒𝑖(2𝑘𝑧𝑅−𝜔𝑡) +

𝑠(𝑘,𝜔)

√2
∑ 𝑟𝑆𝑛𝑒𝑖(2𝑘𝑧𝑆𝑛−𝜔𝑡)𝑁

𝑛=1 |
2

〉,         (3) 

where the factor of two counts for the second pass of each field through the beam splitter and the 

angular brackets indicate integration over the response time of the detector. Because the response 

time of current detectors is much longer than light wave oscillations, the terms dependent on the 

temporal angular frequency, 𝜔 , can be eliminated by integrating the terms over the detector 

response time. Then, we can obtain temporally invariant interference intensity expressed as  
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𝐼𝐷(𝑘) =  
1

4
[𝑆(𝑘)[𝑅𝑅 + ∑ 𝑅𝑆𝑛

𝑁
𝑛=1 ]] +

1

4
[𝑆(𝑘)[∑ √𝑅𝑅𝑅𝑆𝑛(𝑒𝑖2𝑘(𝑧𝑅−𝑧𝑆𝑛) + 𝑒−𝑖2𝑘(𝑧𝑅−𝑧𝑆𝑛))𝑁

𝑛=1 ]]  

+
1

4
[𝑆(𝑘)[∑ √𝑅𝑆𝑛𝑅𝑆𝑚(𝑒𝑖2𝑘(𝑧𝑆𝑛−𝑧𝑆𝑚) + 𝑒−𝑖2𝑘(𝑧𝑆𝑛−𝑧𝑆𝑚))𝑁

𝑛≠𝑚=1 ]],                              (4) 

where 𝑆(𝑘) = 〈|𝑠(𝑘, 𝜔)|2〉 is a wave number power spectrum of the light source, and 𝑅𝑆𝑛 = |𝑟𝑆𝑛|2 

is power reflectivity of the sample reflectors. Using Euler’s rule, Eq. (4) is simplified to  

𝐼𝐷(𝑘) =  
1

4
[𝑆(𝑘)[𝑅𝑅 + ∑ 𝑅𝑆𝑛

𝑁
𝑛=1 ]] +

1

2
[𝑆(𝑘)[∑ √𝑅𝑅𝑅𝑆𝑛 cos(2𝑘(𝑧𝑅 − 𝑧𝑆𝑛))𝑁

𝑛=1 ]]  

 +
1

2
[𝑆(𝑘)[∑ √𝑅𝑆𝑛𝑅𝑆𝑚 cos(2𝑘(𝑧𝑆𝑛 − 𝑧𝑆𝑚))𝑁

𝑛≠𝑚=1 ]].                                         (5) 

The first part of Eq. (5) is DC terms independent of the path length 𝑧𝑅 and 𝑧𝑆𝑛, and it is scaled by 

the light source power spectrum and the sum of power reflectivities of the reference mirror and 

sample reflectors. This is the largest component of the interference intensity because the reference 

reflectivity generally dominates the sample reflectivity which is typically very small on the order 

of 10-4 to 10-5. The second part is cross-correlation terms representing the interference between the 

beams from the reference mirror and each sample reflector. These are the desired terms for OCT 

image reconstruction that visualize sample reflectivity profile. Since these terms are proportional 

to the multiplication of the square root of the reference reflectivity and sample reflectivity, they 

are typically smaller than the DC component. The last part is autocorrelation terms representing 

interference between the different sample reflectors, and it is considered as artifacts in a typical 

OCT system. These terms are linearly dependent on the power reflectivity of the sample and small 

compared to the DC and cross-correlation terms with dominant reference reflectivity.  

In a time-domain OCT (TDOCT) system, a single photodetector, which cannot resolve the 

individual contributions of the wavenumber k, is used to measure the interference intensity 𝐼𝐷(𝑘) 

in Eq. (5), while the reference delay 𝑧𝑅 is scanned to reconstruct an approximation of the internal 
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sample reflectivity profile √𝑅𝑆(𝑧𝑆). The measurement corresponds to integration of 𝐼𝐷(𝑘) over all 

k as 

𝐼𝐷(𝑧𝑅) =  
1

4
[∫ 𝑆(𝑘)𝑑𝑘

∞

0
[𝑅𝑅 + ∑ 𝑅𝑆𝑛

𝑁
𝑛=1 ]] +

1

2
[∑ √𝑅𝑅𝑅𝑆𝑛 ∫ 𝑆(𝑘) cos(2𝑘(𝑧𝑅 − 𝑧𝑆𝑛)) 𝑑𝑘

∞

0
𝑁
𝑛=1 ]  

=
1

4
[𝑆0[𝑅𝑅 + ∑ 𝑅𝑆𝑛

𝑁
𝑛=1 ]] +

1

2
[𝑆0 ∑ √𝑅𝑅𝑅𝑆𝑛 𝛾(𝑧𝑅−𝑧𝑆𝑛) cos(2𝑘0(𝑧𝑅 − 𝑧𝑆𝑛))𝑁

𝑛=1 ],        (6) 

where 𝑆0 is the spectrally integrated power of the source, and the coherence function 𝛾(𝑧𝑅−𝑧𝑆𝑛) 

is the inverse Fourier transform of the normalized light source spectrum 𝑆(𝑘). Autocorrelation 

terms are removed as being assumed to be negligible compared to the DC terms and cross-

correlation terms. The sample reflectivity √𝑅𝑆𝑛  is convolved with the coherence function 

𝛾(𝑧𝑅−𝑧𝑆𝑛) and modulated by a cosinusoidal carrier at a frequency proportional to the central wave 

number of the light source spectrum, k0. The sample reflectivity profile could be obtained by 

envelop detection of the cross-correlation terms as a form of convolved reflectivity. In the 

followings, the interference intensity as a function of 𝑧𝑅, A-scans, of a discrete-reflectors sample 

is derived assuming a Gaussian light source, which approximates the shape of actual light sources 

and also has useful Fourier transform properties as below: 

𝛾(𝑧) = exp(−𝑧2Δ𝑘2)
𝐹
↔ 𝑆(𝑘) =

1

∆𝑘√𝜋
exp (− (

𝑘−𝑘0

Δ𝑘
)

2
).                               (7) 

Here, 𝑘0 represents the central wave number of the light source spectrum, and Δ𝑘 represents its 

spectral bandwidth. The interference intensity is expressed as  

                    𝐼𝐷(𝑧𝑅) =  
1

4
[𝑆0[𝑅𝑅 + ∑ 𝑅𝑆𝑛

𝑁
𝑛=1 ]]  

+
1

2
[𝑆0 ∑ √𝑅𝑅𝑅𝑆𝑛 exp(−(𝑧𝑅 − 𝑧𝑆𝑛)2∆𝑘2) cos(2𝑘0(𝑧𝑅 − 𝑧𝑆𝑛))𝑁

𝑛=1 ]           (8) 

and Fig. 2 shows the illustrative example of the measurement.  
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Figure 2 The reflectivity profile of a discrete-reflectors sample and the resultant A-scan of TDOCT 

 In a Fourier-domain OCT (FD-OCT) system, the wave number-dependent interference 

intensity ID(k) in Eq. (5) is captured and processed using Fourier analysis to reconstruct an 

approximation of the sample reflectivity profile √𝑅𝑆(𝑧𝑆) . In contrast to TD-OCT, the 

interferogram contains information for the entire depth profile of the sample simultaneously and 

does not need mechanical scanning of the optical path length. Using the Fourier transform pair 

1

2
[𝛿(𝑧 − 𝑧0) + 𝛿(𝑧 + 𝑧0)]

𝐹
↔ cos(𝑘𝑧0) and the convolution property of Fourier transform, the 

inverse Fourier transform of Eq. (5) can be expressed as  

𝑖𝐷(𝑧) =
1

4
[𝛾(𝑧)[𝑅𝑅 + ∑ 𝑅𝑆𝑛

𝑁
𝑛=1 ]] +

1

4
[𝛾(𝑧) ⊗ [∑ √𝑅𝑅𝑅𝑆𝑛[𝛿(𝑧 ± 2(𝑧𝑅 − 𝑧𝑆𝑛))]𝑁

𝑛=1 ]]  

+
1

4
[𝛾(𝑧) ⊗ [∑ √𝑅𝑆𝑛𝑅𝑆𝑚[𝛿(𝑧 ± 2(𝑧𝑆𝑚 − 𝑧𝑆𝑛))]𝑁

𝑛≠𝑚=1 ]],                                     (9) 

where the sample reflective profile 𝑟𝑆(𝑧𝑆) = ∑ 𝑟𝑆𝑛𝛿(𝑧𝑆 − 𝑧𝑆𝑛)𝑁
𝑛=1  which we would like to obtain 

is embedded within cross-correlation terms of Eq. (9). Conducting convolutions by using shift 
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property of the delta function, A-scan, the reflectivity profile of sample in depth, is expressed as 

below: 

𝑖𝐷(𝑧) =
1

4
[𝛾(𝑧)[𝑅𝑅 + ∑ 𝑅𝑆𝑛

𝑁
𝑛=1 ]] +

1

4
[[∑ √𝑅𝑅𝑅𝑆𝑛[𝛾(2(𝑧𝑅 − 𝑧𝑆𝑛)) + 𝛾(−2(𝑧𝑅 − 𝑧𝑆𝑛))]𝑁

𝑛=1 ]]  

+
1

4
[[∑ √𝑅𝑆𝑛𝑅𝑆𝑚[𝛾(2(𝑧𝑆𝑚 − 𝑧𝑆𝑛)) + 𝛾(−2(𝑧𝑆𝑚 − 𝑧𝑆𝑛))]𝑁

𝑛≠𝑚=1 ]].                             (10) 

The sample reflectivity profile is reconstructed in the cross-correlation terms with some 

modifications. It appears as a function of the difference between the reference reflector distance zR 

and the sample reflector distance zS rather than just zS. The displacement of each sample reflector 

from the reference position is doubled in A-scan because the interferometer measures the round-

trip distance to each reflector. In addition, each sample reflector is broadened or blurred out to a 

width of about a coherence length by convolution with the coherence function γ(z).  

Additional image artifacts also appear in each term of Eq. (10). As seen in the cross-

correlation terms, a mirror image of the blurred reflectors appears on the opposite side of zero path 

length, which is the reference reflector distance. It is called mirror image artifact or complex 

conjugate artifact in FDOCT, and it is simply understood from the fact that inverse Fourier 

transform of real function (interferometric spectrum) must be Hermitian symmetric. This artifact 

can be easily dealt with by displaying only the positive or negative distances if the sample is placed 

on one side of zero path length. However, if the sample strays over the zero-path length border, it 

starts to overlap its mirror image, and the mirror artifact cannot be removed by image processing 

alone. The DC terms produce a large artifactual signal centered at zero path length difference. The 

signal amplitude is so much larger than the desired cross-correlation terms due to the dominant 

reference reflectivity. A simple method to eliminate that component is to record the amplitude of 

the spectral signal with only the reference reflector and then to subtract this signal component from 

each subsequent spectral interferometric signal acquired. The autocorrelation terms in Eq. (10) 
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also give rise to artifactual signals. However, if reference reflectivity is sufficiently high, which is 

the most case in practice, its amplitude could be negligible compared to cross-correlation terms. 

The spectral interferogram and A-scan for the example of a discrete-reflectors sample and 

Gaussian-shaped source spectrum is illustrated in Fig. 3 including all the artifacts described 

previously. 

 

Figure 3 (Left) Spectral interferogram. (Right) The reflectivity profile of a discreate-reflectors 

sample and resultant A-scan obtained by FDOCT 

The axial and transverse resolution of OCT is decoupled from each other. The axial 

resolution is determined by the coherence length of a light source, which is the full width at half 

the maximum (FWHM) of coherence function γ(z). It is an explicit function of the light source 

bandwidth, stated in both wave number and wavelength terms as 

𝛿𝑧 =
2√𝑙𝑛2

Δ𝑘
=

2 ln(2)

𝜋

𝜆0
2

Δ𝜆
                                                   (11) 

where 𝜆0 =
2𝜋

𝑘0
 is the center wavelength of the light source and Δ𝜆 is its wavelength bandwidth 

defined as the FWHM of its wavelength bandwidth (so that Δ𝑘 =
𝜋

√ln(2)

Δ𝜆

𝜆0
2 ). The transverse 

resolution is determined by the minimum spot size of the focused sample beam, a parameter which 

is inversely proportional to the numerical aperture (NA) of the focusing lens [21]: 
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𝛿𝑥 = 0.37
𝜆0

𝑁𝐴
                                                          (12) 

It should be noted that there is a trade-off between transverse resolution and depth of field. A high 

NA features a great focusing power which allows high transverse resolution with a corresponding 

short depth of field. Meanwhile, a low NA would result in a greater diameter of the beam at the 

focal point but a large depth of field.   

 

2.1.2 Spectral-domain and swept-source optical coherence tomography 

FD-OCT techniques have allowed a dramatic improvement in signal-to-noise ratio (SNR) and 

imaging speed [22-24] compared to TD-OCT. FD-OCT could be implemented either through the 

use of a wavelength-swept light source and a standard photodiode receiver or a broadband light 

source and a spectrometer. The configuration using a spectrometer has been referred to as spectral 

domain OCT (SD-OCT); and the configuration using the wavelength-swept light source has been 

referred to as swept source OCT (SS-OCT).  

SD-OCT is depicted in Fig. 4 (left): it is similar to TD-OCT, but the point detector is 

replaced by a spectrometer and a charge-coupled device (CCD) or CMOS linear array. The 

spectrometer uses a diffractive element to spatially separate the different wavelength contributions 

into a line image which is recorded by a CCD array. A superluminescent diode (SLD) is commonly 

used as a broadband light source, because it has a broad bandwidth and a relatively high-power 

output. The depth range (zmax) is determined by the wavenumber spacing between pixels (δk) of 

the spectrometer, and is given by 

𝑧𝑚𝑎𝑥 =
𝜋

2𝛿𝑘
                                                               (13) 

 𝛿𝑘 =
2𝜋Δ𝜆

𝑁𝜆0
2                                                                (14) 

https://link.springer.com/chapter/10.1007/978-3-030-16638-0_3#Fig3
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where N is pixel number of the detector the spectrum is imaged on. The acquisition speed is limited 

by the line-scan rate of the CCD camera. In addition, non-linear k-sampling of SD-OCT, which is 

due to spectrometer angular dispersion, should be properly converted during the preprocessing of 

the wavelength to k-space mapping to avoid a depth-dependent broadening of the coherence 

function similar in appearance to dispersion in structural OCT images. 

SS-OCT also has a similar optical setup with TD-OCT, but the broadband light source is 

replaced by an optical source which rapidly sweeps a narrow line-width over a broad range of 

wavelengths as shown in Fig. 4 (right). During one sweep, each wavelength component of the 

interferometric signal is detected sequentially by a high-speed photodetector. In SS-OCT, the 

acquisition rate is given by the sweep rate of the swept-source and subsequent analog-digital (AD) 

conversion, and commercially available sources can realize high sweep rates (>100 kHz), which 

require ultrafast detection and AD conversion in the GHz range. One wavelength sweep constitutes 

a spectral interferogram with fringe patterns, as in SD-OCT. The depth range (zmax) is also 

determined by the wavenumber resolution (δk), which is limited by the instantaneous line shape 

of the sweeping laser source and expressed by Eq. (14), where N is the number of readouts of the 

photodetector during one sweep of the light source. In addition, linear k-sampling can be achieved 

in a hardware scheme by using external sampling clocks, called k-clocks, coupled with high-end 

acquisition electronics capable of nonuniform sampling frequencies. 



 13 

 

Figure 4 Schematic of (left) SD-OCT system and (right) SS-OCT system 

 

2.1.3 Common-path optical coherence tomography 

Common-path OCT (CP-OCT) uses a shared beam path for the reference and the sample arms. An 

optical surface (i.e. glass plate surface, cleaved fiber surface) placed near the sample serves as a 

reference reflector. Light reflected from the reference reflector and the sample interferes with each 

other and is directed back to the optical sensor. Figure 5 shows a schematic of SD-CPOCT in free 

space, in which the back surface of the glass plate serves as a reference reflector, and fiber-optic 

based SS-CPOCT, in which cleaved fiber surface serves as a reference reflector. The CP-OCT 

approach requires no alignment and has higher image stability [25]. The architecture could be 

simple, compact, and cost-effective. Especially, fiber-optic-based CP-OCT system allows a single 

optical fiber to work as an OCT probe and be easily integrated into existing medical 

instrumentation (i.e. a microsurgical tool) [26]. In addition, it is free from polarization and 

dispersion mismatch caused by optical elements in the interferometer and insensitive to vibration 

[27].  
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Figure 5 Schematic of (left) free space SD-CPOCT system and (right) fiber optic-based  

SS-CPOCT system 

Nevertheless, one issue of using CP-OCT system is the unadjustable reference reflection 

which mostly comes from the Fresnel (partial) reflection at a reference surface. Fresnel reflection 

at a reference surface is expressed by 

𝑅 = (
𝑛1−𝑛2

𝑛1+𝑛2
)

2

                                                           (15) 

for the case of normal incidence, where n1 and n2 is refractive index of incident and refracted 

medium. It is more challenging for the CP-OCT system to adjust reference reflection to optimal 

reflection than standard OCT system. Table 1 shows the reflectivity at the optical surface of various 

medium. 

Table 1 Reflectivity at the optical surface of various medium. 

Incident medium(n1) Glass (1.5) Glass (1.5) Fiber core 

(1.464) 

Fiber core 

(1.464) 

Refracted medium (n2) Air (1) Water (1.33) Air (1) Water (1.33) 

Reflection 4 x 10-2 3.6 x 10-3 3.56 x 10-2 2.3 x 10-3 
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2.1.4 Speckle-variance optical coherence tomography 

Speckle is a random phenomenon generated by interference of mutually coherent waves with 

random phases. It is a fundamental property of signals and images acquired by all types of 

narrowband detection systems, which include radar, ultrasound, and radio astronomy. In addition 

to the optical properties and motion of the target object, the speckle is influenced by the size and 

temporal coherence of the light source, multiple scattering and phase aberrations of the 

propagating beam, and the aperture of the detector. All of these variables contribute to the observed 

characteristics of speckle in optical coherence tomography of living tissue [28]. Its role in imaging, 

however, is mainly that of noise, so considerable attention has been devoted to methods for speckle 

reduction. In medical OCT, speckle can mask diagnostically significant image features and reduce 

the accuracy of segmentation algorithms. 

At the same time, there have been many attempts to utilize speckle as an information carrier. 

One of the attempts is the development of speckle variance OCT (svOCT), which is mostly applied 

for OCT angiography. If an OCT image is acquired in a stationary object, the speckle pattern is 

temporally stationary as well [29]. When moving particles exist in biological tissues (such as red 

blood cells), the speckle pattern varies with time and can be quantified by speckle variance 

calculations using either interframe or interline comparisons. SvOCT evaluates the speckle 

variance in the OCT structure intensity across the desired number of B-scan images, preferably 

acquired at the same location, using the following equation: 

𝐼𝑆𝑉(𝑗,𝑘) =
1

𝑁
∑ (𝐼𝑖,𝑗,𝑘 −

1

𝑁
∑ 𝐼𝑖,𝑗,𝑘

𝑁
𝑖=1 )

2
𝑁
𝑖=1                                   (16) 

where N is the number of B-scans, j and k are the lateral and depth indices of the B-scan images, 

respectively, and i denotes the B-scan slice index within N.  
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SvOCT angiography allows detection of small blood vessel networks because of its angle 

independence and fast image acquisition capability. It has also been applied to monitor protein 

denaturation and coagulation [30] and estimate tissue temperature during laser therapy [31-32]. 

 

2.2 Convolutional neural network (CNN) 

2.2.1 Building blocks of CNN architecture [33-35] 

2.2.1.1 Convolutional layer 

The convolutional layer is the core building block of CNNs that performs feature extraction. The 

layer's parameters consist of a set of learnable filters (or kernels) having a small receptive field, 

but extend through the full depth of the input volume. Each neuron is only connected to a small 

local region of the input volume by using the kernel smaller than the input. The local connectivity 

of the convolutional layer allows to exploit the spatial local correlation of the input (for a natural 

image, a pixel is more correlated to the nearby pixels than to the distant pixels). They detect small, 

meaningful features such as edges with kernels that occupy only tens or hundreds of pixels. The 

small kernels also allow to store fewer parameters, which both reduces memory requirements of 

the model and improve its statistical efficiency, and to reduce computational load. In addition, 

each member of the kernel is slid across the width and height of the input and used at every spatial 

position of the input. The parameter sharing reduces the number of parameters for efficiency of 

expression, efficiency of learning, and good generalization [36]. 

The output of the convolutional layer is calculated by dot products between the input, I, 

and kernel, K, at every spatial position. The output is calculated by 

𝑂(𝑖, 𝑗) = 𝐾 ∗ 𝐼(𝑖, 𝑗) = ∑ ∑ ∑ 𝐾(𝑥, 𝑦, 𝑧)𝐼(𝑖 − 𝑥, 𝑗 − 𝑦, 𝑧)𝑛
𝑧=1

𝑏
𝑦=−𝑏

𝑎
𝑥=−𝑎             (17) 

https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://www.sciencedirect.com/topics/engineering/spatial-position
https://www.sciencedirect.com/topics/engineering/spatial-position
https://www.sciencedirect.com/topics/engineering/spatial-position
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where kernel size is 2a+1 by 2b+1 and input and kernel depth are n. Figure 6 depicts how the 

convolution operation works with an input image of size 5 by 5 and a kernel of size 3 by 3. Both 

stride and zero padding are set to 1. The resultant output spatial size is expressed by 

𝑊−𝐹+2𝑃

𝑆
+ 1                                                              (18) 

 

Figure 6 Image convolution with an input image of size 5 by 5 and a kernel of size 3 by 3. Both 

stride and zero padding are set to 1. 

where W is the input size, F is the kernel size, S is the stride, and P is the amount of zero padding 

used on the border. Output depth is determined by the number of kernels. 

 

2.2.1.2 Activation layer 

An activation layer applies a function that decides whether a neuron should be activated or not. It 

helps neural networks learn complex patterns in the data by introducing nonlinearity into neural 

networks. The important characteristic of an activation function is that it should be differentiable 

to enable error backpropagation to train the model. There are many widely used activation 

functions including rectified linear unit (ReLU), Leaky ReLU, sigmoid function, and hyperbolic 

tangent function. The activation functions are depicted in Fig. 7.  
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Figure 7 Widely used activation functions. Rectified linear unit (ReLU), leaky ReLU, sigmoid 

function, and hyperbolic tangent function 

 The ReLU is the most widely used activation function defined as  

𝑓(𝑥) = max(0, 𝑥).                                                      (19) 

It is a piecewise linear function that outputs the input directly if it is positive, and outputs zero 

otherwise. ReLU is computationally efficient and allows the network to converge very quickly. 

However, it has the dying ReLU problem – if too many activations get negative values then most 

of the neurons in the network with ReLU will simply output zero, in other words, die and thereby 

prohibiting learning. To solve the problem, leaky ReLU is applied, and it is defined as 

𝑓(𝑥) = {
𝑥              𝑖𝑓 𝑥 > 0
𝑎𝑥           𝑖𝑓 𝑥 < 0

                                               (20) 
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where a is a small positive constant. The leaky ReLU has an advantage of the nonzero gradient at 

all points (except 0 where the gradient is not defined). 

 The sigmoid function is a saturating function that transforms the input into a value between 

0 and 1. It is especially used for models predicting the probability as an output because probability 

always exists only between the range of 0 and 1. It is defined as  

𝑓(𝑥) =
1

1+𝑒−𝑥 =
𝑒𝑥

𝑒𝑥+1
.                                                 (21) 

It has the useful property that its gradient is defined everywhere and smooth. However, it is 

computationally expensive and has vanishing gradient problem for very high or very low values 

of input. 

 The hyperbolic tangent function is another saturating function producing output a value 

between -1 and 1. Its shape is similar to that of the sigmoid function. It is defined as  

𝑓(𝑥) =
e𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥.                                                      (22) 

The advantage of this function is that the negative inputs will be mapped to negative and the zero 

inputs will be mapped near zero in the tanh graph.  

 

2.2.1.3 Pooling layer 

A pooling layer is used to down-sample feature maps and reduce the number of parameters, 

memory footprint, and computation in the network, and thus also control overfitting. It is common 

to periodically insert a pooling layer between successive convolutional layers in a CNN 

architecture, and each one is typically followed by an activation function (i.e. ReLU layer). The 

pooling helps to make the representation approximately invariant to small translations of the input. 

Invariance to translation means that if we translate the input by a small amount, the values of most 

https://en.wikipedia.org/wiki/Convolutional_neural_network#ReLU_layer
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of the pooled outputs do not change. Invariance to local translation can be a useful property if we 

care more about the feature’s rough location relative to other features than its exact location.  

There are two common pooling methods: max pooling and average pooling method. As the 

name suggests the max pooling calculates the maximum value for each rectangular subregion of 

the feature map. The average pooling involves calculating the average value for each subregion of 

the feature map. Figure 8 shows how the max and average pooling work on a 4 by 4 feature map 

with filter size of 2 by 2 and stride of 2. 

 

Figure 8 Max pooling and average pooling with a filter size of 2 by 2 and stride of 2 

The pooling layer applied to input size of m by n yields output size of (m – f) / s by (n - f) / s where 

f is pool size and s is stride. In addition, it generally operates independently on every depth channel 

of the input, so the depth dimension remains unchanged. 

 

2.2.1.4 Fully connected layer 

Neurons in a fully connected layer have connections to all activations in the previous layer. When 

the previous layer is a final pooling or convolutional layer, not the fully connected layer, output 

from the previous layer is flattened and then fed into the fully connected layer (Fig. 9). If present, 
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they typically form the last few layers of the network to classify the data into various classes using 

features extracted from previous convolutional and max pooling layers.  

 

Figure 9 Illustration of fully connected layer 

 

2.2.2 Training a neural network 

Training a network is a process of finding kernels in convolution layers and weights in fully 

connected layers which minimize error (loss) between output predictions and given ground truth 

labels on a training dataset. The backpropagation algorithm is the method commonly used for 

training neural networks where loss function and gradient descent optimization algorithm play 

essential roles. A model performance under particular kernels and weights is calculated by a loss 

function through forward propagation on a training dataset, and learnable parameters, namely 

kernels and weights, are updated according to the loss value through an optimization algorithm 

called backpropagation and gradient descent. 
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2.2.2.1 Backpropagation 

Backpropagation is an algorithm used for training feed-forward neural networks. Given an 

artificial neural network and a loss function (cost function), the method calculates the gradient of 

the loss function with respect to the neural network's weights. Computing an analytical expression 

for the gradient is straightforward, but numerically evaluating such an expression can be 

computationally expensive. The backpropagation algorithm does so by computing the gradient by 

the chain rule. Partial computations of the gradient from one layer are reused in the computation 

of the gradient for the previous layer. This backward flow of the cost information provides efficient 

computation of the gradient at each layer versus the naive approach of calculating the gradient of 

each layer separately. This efficiency allows using of gradient methods such as gradient descent 

or its variant stochastic gradient descent for training multilayer networks, updating weights to 

minimize cost.  

The chain rule of calculus states that  

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
                                                              (23) 

where f and g both are functions mapping from a real number to a real number such as y=g(x) and 

z=f(y)=f(g(x)). It can be generalized to vector notation for 𝒙 ∈ ℝ𝑚, 𝒚 ∈ ℝ𝑛, g maps from ℝ𝑚 to 

ℝ𝑛, and f maps form ℝ𝑛 to ℝ such as  

∇𝒙𝑧 = (
𝑑𝒚

𝑑𝒙
)

𝑇

∇𝒚𝑧                                                      (24) 

where 
𝑑𝒚

𝑑𝒙
 is the n by m Jacobian matrix of function g. From this we see that the gradient of a 

variable x can be calculated by multiplying a Jacobian matrix 
𝑑𝒚

𝑑𝒙
 and a gradient ∇𝒚𝑧. The back-

propagation algorithm consists of performing such a Jacobian-gradient product for each layer in 

the neural network. 

https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Gradient_method
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 Backpropagation for a simple two layers neural network is illustrated as an example (Fig. 

10). The forward propagation is calculated by 

𝒛[𝑖] = 𝑾[𝑖]𝒂[𝑖−1]                                                          (25) 

𝒂[𝑖] = 𝑎(𝒛[𝑖])                                                            (26) 

where input is a vector 𝒙 = [𝑥1 𝑥2]𝑇 = 𝒂[0] and output is a scalar  𝑦̂ = 𝒂[2]. 𝑾[𝑖] is a matrix of 

which elements are weights of ith layer and a(.) is an element-wise activation function. Then, the 

gradient of loss function L with respect to network weights 𝑾[𝑖] is calculated by 

𝑑𝑾[2] =
𝜕𝐿

𝜕𝑾[2] =
𝜕𝐿

𝜕𝒂[2]

𝜕𝒂[2]

𝜕𝒛[2]

𝜕𝒛[2]

𝜕𝑾[2]                                               (27) 

𝑑𝑾[1] =
𝜕𝐿

𝜕𝑾[1] =
𝜕𝐿

𝜕𝒂[2]

𝜕𝒂[2]

𝜕𝒛[2]

𝜕𝒛[2]

𝜕𝒂[1]

𝜕𝒂[1]

𝜕𝒛[1]

𝜕𝒛[1]

𝜕𝑾[1]                                       (28) 

and used to update the weights by optimization algorithms described in the next section.  

 

Figure 10 Illustration of backpropagation in a simple two-layer neural network 

 

2.2.2.2 Neural network optimization algorithms 

An optimization algorithm is needed to find weights minimizing the loss function. Optimization 

algorithms commonly used for CNN training is described in the following. 
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 Gradient descent is a first-order optimization gradient algorithm which is dependent on the 

first-order derivative of a cost function. The idea of gradient descent is to take repeated steps in 

the opposite direction of the gradient of the function at the current point, because this is the 

direction of the steepest descent. The weights are updated by  

𝑤𝑡+1 = 𝑤𝑡 − 𝜂
𝜕𝐶

𝜕𝑤𝑡
                                                         (29) 

𝜕𝐶

𝜕𝑤𝑡
= ∇𝑤𝐶(𝑤𝑡)                                                          (30) 

where η is the learning rate controlling the rate at which the algorithm updates the parameter 

estimates. C(.) is the cost function and wt are the weights at step t. Batch gradient descent updates 

the network weights after scanning the whole training dataset. Convergence takes much time 

because the whole dataset needs to be reevaluated at every step (i.e., epoch). It converges smoothly 

to the global minimum for convex loss functions, but it could converge to a local minimum for 

non-convex functions. Stochastic gradient descent was introduced in order to overcome the 

shortcomings of batch gradient descent. It updates the network weights for each training data and, 

thus, is generally noisier due to the high variance between different data. However, it is 

computationally much less expensive, even though it requires a higher number of iterations to 

reach the minima than batch gradient descent, and in most cases, especially with large data set, 

stochastic gradient descent is preferred for optimizing a learning algorithm. Mini-batch gradient 

descent was introduced to overcome the shortcomings of the previous two algorithms, because it 

allows for the weights to be updated per batch, and not per data. It makes a compromise between 

the fast convergence and the noise associated with gradient update, so it could be a more flexible 

and robust algorithm.  

The mini-batch gradient descent still has an issue of oscillations during the updating of the 

weights. Momentum, also known as moving average gradients, helps to avoid oscillations in the 
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wrong directions. Momentum gradient descent adds a fraction of the previous update, which gives 

the optimizer the momentum needed to continue moving in the right direction. The weights are 

updated by 

𝑣𝑡 = 𝜆𝑣𝑡−1 + 𝜂
𝜕𝐶

𝜕𝑤𝑡
                                                          (31) 

𝑤𝑡+1 = 𝑤𝑡 − 𝑣𝑡                                                            (32) 

where v is the velocity and initialized to 0. λ is used to select the amount of information needed 

from the previous update. η is the learning rate, wt are the weights at step t, and C(.) is the cost 

function. 

There are also several algorithms using adaptive learning rates. AdaGrad establishes 

different updates for different weights. The learning rate is tuned automatically, by dividing the 

learning rate by the sum of squares of all previous gradients [37]. It gives a high learning rate for 

the least frequent gradients and a low learning rate for the more frequent gradients. Each weight is 

updated by 

𝑤𝑡
𝑖 = 𝑤𝑡−1

𝑖 −
𝜂

√∑ (∇𝑤𝐶(𝑤𝜏
𝑖 ))

2
𝑡
𝜏=1 +𝜀

∇𝑤𝐶(𝑤𝑡
𝑖)                               (33) 

where η is the learning rate, wt is the weights at step t, C(.) is the cost function, and ∇wC(wt) is the 

gradient of weight parameters wt. It is well-suited for dealing with sparse data, but it has a problem 

that the learning rate decreases monotonically.  

RMSProp was introduced to address the problem of the monotonically decreasing learning 

rate. It divides the learning rate by an average of squared gradients, and each weight is updated by 

𝐺𝑖,𝑡 = ∇𝑤𝐶(𝑤𝑡
𝑖)                                                              (34) 

𝐸[𝐺𝑖
2]𝑡 = 𝜆𝐸[𝐺𝑖

2]𝑡−1 + (1 − 𝜆)𝐺𝑖,𝑡
2                                          (35) 

𝑤𝑡
𝑖 = 𝑤𝑡−1

𝑖 −
𝜂

√𝐸[𝐺𝑖
2]

𝑡
+𝜀

𝐺𝑖,𝑡                                                (36) 
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where η is the learning rate, wt are the weights at step t, C(.) is the cost function, and ∇wC(wt) is 

the gradient of weight parameters wt. λ is used to select the amount of information needed from 

the previous update. E[G2] is the running average of the squared gradients. 

Adaptive Moment Estimation (Adam) [38] is another method that computes adaptive 

learning rates for each parameter. In addition to storing an average of past squared gradients vt like 

RMSprop, Adam also keeps an average of past gradients mt, similar to momentum. The weights 

are updated by  

𝑤𝑡
𝑖 = 𝑤𝑡−1

𝑖 −
𝜂

√𝑣𝑡̂+𝜀
𝑚𝑡̂                                                       (37) 

𝑚𝑡̂ =
𝑚𝑡

1−𝛽1
𝑡                                                                  (38) 

𝑣𝑡̂ =
𝑣𝑡

1−𝛽2
𝑡                                                                   (39) 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝐺                                                  (40) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝐺2                                                 (41) 

where η is the learning rate hyperparameter, wt are the weights at step t, C(.) is the cost function, 

and ∇wC(wt) is the gradient of weight parameters wt. βi is used to select the amount of information 

needed from the previous update, where βi ∈ [0, 1], mt is the running average of the gradients, also 

known as the first moment, vt is the running average of the squared gradients, and known as the 

second moment. 

 

2.2.2.3 Loss function 

A loss function is used to evaluate how well the model performs over the training dataset and train 

neural network. There are various tasks neural networks can perform such as regression, 

classification and image segmentation, and each task requires a different type of loss function since 

https://ruder.io/optimizing-gradient-descent/index.html#fn14
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the output format is different. A type of loss function is one of the hyperparameters that needs to 

be determined according to the given tasks. 

Mean squared error (MSE), also known as L2 loss, is the most commonly used regression 

loss function. MSE is the average of squared distances between target variable, 𝑦, and predicted 

values, 𝑦̂, and it is expressed by  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1 .                                                   (42) 

Mean Absolute Error (MAE) is another regression loss function. MAE is the average of absolute 

differences between target and predicted values, and it is expressed by  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1 .                                                   (43) 

MAE is more robust to outliers, but its constant gradient, which means it has a relatively large 

gradient even for a small loss, make it harder to converge. 

For classification, cross-entropy loss, or log loss, is commonly used. Cross-entropy builds 

upon the idea of entropy from information theory and is designed to quantify the difference 

between two probability distributions. The multi-class cross-entropy loss function is expressed by  

𝐶𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 = − ∑ 𝑦𝑐 log 𝑦̂𝑐
𝐶
𝑐=1                                    (44) 

where C is the number of classes, 𝑦𝑐  is the binary indicator (0 or 1) if class c is the correct 

classification, and 𝑦̂𝑐 is the predicted probability value between 0 and 1.  

The popular loss function for image segmentation is a pixel-wise cross entropy loss and 

dice loss function. A pixel-wise cross loss examines each pixel individually, comparing the class 

predictions (depth-wise pixel vector) to its one-hot encoded target vector using Eq. (44). Dice loss 

uses the Dice coefficient which is a measures of overlap between two segmented images. The Dice 

https://medium.com/@ewuramaminka/mean-absolute-error-mae-sample-calculation-6eed6743838a
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
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coefficient ranges from 0 to 1 where the score of 1 denotes perfect and complete overlap. Dice 

loss is expressed by 

𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 = 1 − 2
∑ ∑ 𝑦𝑐𝑚𝑦̂𝑐𝑚

𝑀
𝑚=1

𝐶
𝑐=1 +𝜀

∑ ∑ 𝑦𝑐𝑚
𝑀
𝑚=1

𝐶
𝑐=1 +∑ ∑ 𝑦̂𝑐𝑚

𝑀
𝑚=1

𝐶
𝑐=1 +𝜖

                           (45) 

where C is the number of classes, M is the number of pixels and 𝜖 is used to avoid dividing by 0. 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
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3  

High index epoxy lensed fiber OCT probe for 

retinal imaging 

3.1 Introduction 

CPOCT-based compact all-fiber probes allow their insertion into small and tight areas of the body 

(i.e. eye ball), enabling cathedral-based endoscopic imaging. They can be integrated into small-

scale surgical tools such as a needle and a forceps and work for guidance of ophthalmic surgery 

and microsurgery [4, 5, 39-43]. An example includes hand-held automatic CPOCT-distal sensor-

guided ophthalmic surgical devices that can compensate physiological tremors during surgery [4-

5, 40]. One of important advantage of CPOCT-based probes is that they can be easily disposed 

after having been inserted into body due to no need for optical path matching. CP-OCT system is 

also tolerable to system vibrations and free from dispersion and polarization mismatches.   

However, bare fiber probes, commonly used as a sensing probe for CP-OCT, have two 

main drawbacks: small depth of focus caused by strong divergence of the sample beam; and 

dependence of OCT sensitivity on the refractive index of the working environment. To overcome 

the strong divergence of bare fiber probes, various lensed probe systems have been proposed and 

demonstrated. These include fused coreless fiber [44,45], ball lens [46-49], GRIN lens [50], and 

conical-frustum tip [51]. Whereas most work well for standard OCT configurations, they do not 

work well for common-path setups, especially in vitreous media (i.e., water). This is mainly caused 

by the inability to readily fabricate the reference surface with an optimized reflectivity. Those 

designed for CP-OCTs [45,47,50-51] used lens/air interfaces as the reference, and their 
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performance could degrade significantly for retinal imaging through vitreous media because the 

lens effectiveness and/or the reference power level are significantly reduced.  

In order to resolve the problem, we designed and fabricated elliptical high-refractive-index 

epoxy-lensed fiber probes that exhibit long working distances and large depths of focus (DOF) in 

vitreous media (i.e., water) compared to standard bare or half-ball lensed-fiber probes. The 

refractive index difference between the high refractive index epoxy and fiber core keeps the 

reference beam power independent of the working environment. Additionally, the availability of 

a wide range of epoxies with different indices allows fine-tuning of the reference reflectivity by 

mixing them in proportion. To validate our approach, we fabricated multiple probes with a range 

of beam expansion lengths and lens curvatures. We then measured the SNR of the lensed OCT 

probes as a function of the target depth and compared them with theoretically calculated SNR. The 

endoscopic OCT probes were then tested for B-mode OCT imaging using a phantom target 

comprising several layers of tape to confirm the improved imaging performance of the proposed 

lensed-fiber probes. 

 

3.2 Design of lensed fiber probe 

A key performance metrics of OCT-distal sensors is beam size and effective sensing range, which 

is defined as the region of DOF outside the probe. The working distance, DOF, and beam waist 

depends on the beam expansion length and the curvature of lenses, and they can be calculated by 

the ABCD matrix method [52]. For the lensed-fiber, ABCD can be calculated as       

                             [
𝐴 𝐵
𝐶 𝐷

] = [
1 𝑥
0 1

] [
1 0

𝑛𝑒−𝑛ℎ

𝑛𝑒𝑅

𝑛ℎ

𝑛𝑒

] [
1 𝐿
0 1

]                                         (46) 

where L is the length of expansion region, R is surface radius of the lens, ne and nh are the refractive 

indices of the sample environment (i.e., in air or in water) and high-index epoxy, respectively. x is 
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the propagation distance from the lens surface. For the case of bare fiber probes, the second and 

third matrices are identity matrices, and x is the distance from the fiber end. Working distance can 

be calculated by finding x, satisfying AC+a2BD=0, where a is λ/ngπω0
2 for lensed-fiber and λ/πω0

2 

for bare fiber. Beam waist diameter (2ωf) at the focal length is expressed by [53] 

2𝜔𝑓 = 2𝜔0 [(
𝑛𝑔

𝑛𝑒
)

𝐴2+𝑎2𝐵2

𝐴𝐷−𝐵𝐶
]

1

2
,                                              (47) 

where 2ω0 is the mode-field diameter of the fiber, and λ is the wavelength in vacuum. The DOF 

can be expressed as  

                                             𝐷𝑂𝐹 =
2𝜋𝑛𝑒𝜔𝑓

2

𝜆
.                                                   (48) 

Figure 11 shows the calculated working distance, beam waist diameter, DOF, and effective 

sensing range as a function of beam expansion length and lens curvature. The working distance is 

a distance from lens surface to the beam waist where a plus/minus sign indicates which side of the 

lens surface the beam waist places. It is positive when the beam waist places outside the probe, 

and, conversely, it is negative when the beam waist is virtual and occurs inside the fiber probe. To 

obtain effective sensing range longer than 500 µm, 1,000 µm, 1,500 µm, or 2,000 µm, beam 

expansion length must be longer than 157 µm, 228 µm, 282 µm, and 327 µm, respectively. Lens 

curvature must be around 1/5 of the expansion length. Because the fiber has a 125-µm cladding, it 

is easier to make a lens of 60-µm curvature. Therefore, we set the lens curvature to 60 µm and 

targeted expansion region length around 300 µm, because it provides the longest effective sensing 

range (1.6 mm) for the curvature. The beam waist diameter of the targeted lensed-fiber was 

expected to be 31 µm in water. The red stars indicate the geometry of fabricated lenses.  
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Figure 11 Calculated (a) working distance, (b) beam waist, (c) DOF and (d) effective sensing range as a function 

of beam expansion length and lens curvature. Red stars indicate geometry of lenses we made. 

 

3.3 Fabrication of lensed fiber and lens geometry 

3.3.1 Fabrication of lensed-fiber 

The lensed-fiber OCT sensor was fabricated using UV curable epoxy (Norland Optical Adhesive, 

n=1.7). First, a semi-spherical lensed probe was fabricated by applying the epoxy to the fiber end, 

which naturally forms a semi-spherical shaped lens, owing to surface tension. Two fibers having 

semi-spherical epoxy ends were placed inline and brought together so that the epoxy lenses were 

in contact. We controlled axial and transverse positions of the fibers using x-y-z linear stages while 
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monitoring them using digital microscopes and our CP-SSOCT system to ensure they were 

perfectly aligned. A beam expansion rod was fabricated by curing the combined epoxy using ultra-

violet light and breaking connection with one of the fibers. The length of the expansion rod was 

controlled by changing the distance between fiber ends. The fabricated expansion rod length was 

limited to around 120 µm because of the limited amount of epoxy that could be applied to bare 

fibers. A beam expansion rod of approximately 240 µm was fabricated by applying more epoxy 

on the 120-µm expansion rod via repeating the process. The end of the expansion rod was capped 

by applying a semi-spherical epoxy lens. This process can be highly reproducible when the 

direction and position of the fiber is controlled precisely. Another factor in the reproducibility is 

the amount of the epoxy picked up by the fiber.  This is also related to the precise control of the 

fiber. An epoxy lens can be quickly distorted when even a small amount of epoxy touches the 

sidewall of the fiber or the expansion rod. However, once epoxy forms a spherical shape at fiber 

end and expansion rod end, the shape of the lens is highly repeatable and durable. Figure 12 

schematically shows the fabrication steps from bare fiber to the designed elliptical-lensed-fiber. 

For comparison, we also constructed lensed fibers having different expansion region lengths and 

lens curvatures. Lens 1, Lens 2, and Lens 3 were fabricated by applying and curing spherical epoxy 

on bare fiber, 120 µm beam expansion rod, and 240 µm beam expansion rod, respectively. 

 
Figure 12 Illustration of fabrication process: (a) preparing bare fiber, (b) constructing expansion rod and (c) 

applying spherical surface on the expansion rod. 
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3.3.2 Lens geometry 

Figure 13 shows en-face OCT images of the fabricated lensed-fiber probe with Lens 1, Lens 2, 

Lens 3, and a 240-µm expansion rod. The curvature of the spherical surface was measured using 

OCT images with customized Matlab code, which uses least-squares to fit a sphere on a manually 

selected edge. The length of beam expansion region was measured by our OCT system. Beam 

expansion lengths and curvatures of fabricated lenses are listed in Table 2. Lens 3 is the one closest 

to our design. Only Lens 3 has positive working distance because it has a sufficient beam 

expansion area that allows the focusing of the beam. Lens 1 and Lens 2 simply reduce beam 

divergence. 

 

Figure 13 En-face OCT images of fiber probe with (a) Lens 1, (b) Lens 2, (c) Lens 3 and (d) 240 µm expansion 

rod. The dashed line shows interface between bare fiber and epoxy. 
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Table 2 Fabricated lens geometry and theoretically calculated working distance, beam waist size and effective 

sensing range 

 Lens length 

(µm) 

Surface radius 

(µm) 

Working distance 

(µm) 

Beam waist 

size 

(µm) 

Effective sensing 

range 

(µm) 

Lens 1 57.2 71 -43 8 14 

Lens 2 173.6 53 -240 18 80 

Lens 3 288 61 476 33 1600 

 

We measured and verified the output-beam characteristics of the fabricated probes by 

comparing the beam spot diameter measured from knife-edge method [54] to simulated beam 

diameter via the ABCD method. Figure 14(a) and (b) show the erf function result using the knife-

edge measurement and resultant beam shapes of bare fiber and each lensed-fiber at 1-mm distance. 

We performed knife-edge measurements of each lensed-fiber at various distances. Figure 14(c) 

shows the measured and calculated beam diameter in air. The mode-field diameter was 3.2 µm, 

and the lens geometry listed in Table 1 was used for calculation. Calculated and measured beam 

diameters match reasonably well throughout the distance ranges, confirming the measured 

geometry of our lens and calculation. Thus, whereas it is difficult to measure beam diameter in 

water, we can use the calculated values shown in Fig. 14(d).  
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Figure 14 (a) The erf function result using knife-edge measurement at 1mm away from probe. (b) Beam shape 

from fitting the erf functions in (a). Measured (circle) and calculated (solid line) beam width of each lensed 

fiber in the (c) air and (d) water depending on distance from probe. 

 

3.4 Performance of the lensed fiber probe 

3.4.1 Signal-to-noise ratio 

The SNR versus depth was measured to show improved performance of the lensed-fiber probes. 

Theoretical SNR was also calculated using the following equation to confirm the measured SNR.  

                                
𝑆

𝑁
=

2
1

𝐿𝑃𝑟𝑜𝑐
(

𝜂𝑞

ℎ𝜐
)

2
𝑃𝑟𝑃𝑠

[(
𝜂𝑞

ℎ𝑣
)

2
𝑁𝐸𝑃2+2

𝜂𝑞2

ℎ𝑣
(𝑃𝑟+𝑃𝑠)+(

𝜂𝑞

ℎ𝑣
)

2
𝑅𝐼𝑁(𝑃𝑟+𝑃𝑠)2]

2𝐵

𝑁

.                                  (49) 

For the calculation, the detector quantum efficiency (η) was 0.9, noise equivalent power 

was 5pW/√Hz at 1-mm depth, relative intensity noise was -130 dB/Hz, the bandwidth of the optical 
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receiver (B) was 68.8 MHz, and the number of samples (N) was 1,376. The digital processing loss 

was set to 1.8 dB for a Hann window [55]. Sample power at each depth was estimated by returned 

sample beam diameter at the fiber end because the peak intensity of a Gaussian beam is inversely 

proportional to the square of the beam diameter. Coupling loss was considered when Pr and Ps 

were calculated. For reflected sample beam diameters, ABCD can be calculated by 

         [
𝐴 𝐵
𝐶 𝐷

] = [
1 𝐿
0 1

] [
1 0

−
𝑛ℎ−𝑛𝑒

𝑛ℎ𝑅

𝑛𝑒

𝑛ℎ

] [
1 𝑥
0 1

] [
1 𝑥
0 1

] [
1 0

𝑛𝑒−𝑛ℎ

𝑛𝑒𝑅

𝑛ℎ

𝑛𝑒

] [
1 𝐿
0 1

].                 (50) 

A mirror was used as a sample, and the power at the fiber end was set to 0.15 mW to avoid 

saturation. Noise was limited by detector noise because of the low power. Detector noise has 

frequency dependence [55]. Thus, we estimated NEP from the measurement of detector noise (i.e., 

A-scan image without an input signal) assuming NEP at 1 mm is 5 pW/√Hz.  

Figure 15(a) and (b) respectively show the SNR of each lensed-fiber versus its depth in 

both air and water. Bare fiber showed relatively high SNR in air, despite its large divergence 

caused by higher reference power. However, it degraded significantly in water. Lens 3 showed the 

highest SNR in water. The 10-dB range of the bare fiber was 200 µm, and it increased to 1,600 

µm with Lens 3. The measured and calculated SNR fits reasonably well throughout the distance 

range, except for Lens 3 in water. The difference is probably caused by the large mode 

mismatching caused by the tight beam focus. 
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Figure 15 Theoretically calculated (solid line) and measured (circle) signal-to-noise ratio of each lensed fiber 

in the (a) air and (b) water 

 

3.4.2 OCT imaging performance 

To confirm the improved SNR and resolution, B-scan images of a phantom target comprising 

several layers of tape were obtained at various distances using the lensed fibers. The fiber probe 

was attached to a motorized translation stage (Thorlabs MT1-Z8), and the probe was scanned 

horizontally across the phantom. Figure 16 and 17 show the OCT images working in water and air, 

respectively. The OCT images showed similar trends as with the previous beam diameters and 

SNR measurements. In water, the designed lensed-fiber showed the best image quality at all 

distances. All probes showed similar image quality at 300-µm distance except bare fiber, which 

has a lower SNR because of low reflection at the fiber end. However, the designed lensed-fiber 

showed better quality than other lensed fibers when the probe was further away from the sample 

because of its long working distance and DOF. The quality improvement from the designed lensed-

fiber can be clearly seen at the 1500 µm distance. In the air, fiber probes without a lens and with 

Lens 2 showed better quality, as expected. A fiber probe with Lens 3, optimized for working in 
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wet environments, showed the worst image quality because of strong divergence and smaller 

reference than bare fiber. 

 

 

Figure 16 B-mode OCT images of a phantom target made up of several layers of tapes obtained by fiber probe 

(a) without lens (bare fiber), (b) with Lens 1, (c) with Lens 2, and (d) with Lens 3 in water 

 

 
Figure 17 B-mode OCT images of a phantom target made up of several layers of tapes obtained by fiber probe 

(a) without lens (bare fiber), (b) with Lens 1, (c) with Lens 2, and (d) with Lens 3 in air 
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3.5 Conclusion 

We have demonstrated that CP-SSOCT imaging and sensing in water can be enhanced by using a 

high refractive index elliptical epoxy-lensed fiber probe. We designed lensed fibers having long 

working distances and DOFs in water to obtain sufficiently long effective distal sensing ranges. 

Enhanced performance was confirmed by SNR and B-scan OCT images. The SNR of the proposed 

fiber probe, compared to a bare fiber at a distance of 1.5 mm, was increased by 25 dB, and the 

resolution improved from 476 µm to 47 µm. We can conclude that the improved performance in 

water indicates that such high refractive index epoxy-lensed fibers can work effectively in 

ophthalmic and vascular applications. 
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4  

A CNN-based CP-OCT sensor integrated with a 

subretinal injector for retinal boundary tracking 

and injection guidance 

4.1 Introduction 

Subretinal injection is becoming increasingly prevalent in both scientific research and clinical 

communities as an efficient way of treating retinal diseases. It has been used for gene and cell 

transplant therapies to treat many degenerative vitreoretinal diseases, such as retinitis pigmentosa, 

age-related macular degeneration, and Leber’s congenital amaurosis [56]. The treatments involve 

the delivery of drugs or stem cells into subretinal space between the RPE and photoreceptor layer, 

thereby directly affecting resident cells and tissues in the subretinal space. However, the procedure 

requires surgeons’ high dexterity and micro-scale precision due to the delicate anatomy of the 

retina. The procedure is further complicated by the existence of physiological motions by patients, 

surgeons' hand tremor [1,2] and limited depth perception, and limited visual feedback from a 

traditional stereo-microscopic en-face view.  

   OCT-guided robotic systems have been developed to reduce the unintended 

physiological motion and overcome the limited visual feedback during ocular microsurgery. OCT, 

which provides micro-scale resolution cross-sectional images in real-time [3], enables improved 

visualization and accurate guidance of robotic systems. Microscope-integrated OCT systems were 

applied for surgical tool localization and robotic system guidance by intraoperatively providing 

volumetric images of tissues and surgical tools [57-61]. Fiber-optic CP-OCT distal sensor 
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integrated hand-held surgical devices have also been developed to implement simple, compact, 

and cost-effective microsurgical systems [4-7]. In those systems, a single fiber distal sensor 

attached to a surgical tooltip (i.e., needle or micro-forceps) guided the hand-held surgical device 

by real-time A-scan-based surface tracking. However, surface tracking-based guidance could 

induce inaccurate depth targeting for subretinal injection because of retinal thickness variations 

and irregular morphological features caused by retinal diseases. The target or near target retinal 

boundary tracking, which is RPE and photoreceptor boundary tracking for subretinal injection, 

allows precision guidance, but previous researches on retinal layer segmentation of OCT images 

using active contours [62,63], graph search [64-66], and shortest path methods [67,68] are not 

adequate for A-scan images due to the absence of lateral information. In recent years, 

convolutional neural network (CNN)-based retinal layer segmentation have been proposed and 

showed promising results [8-11]. Although the proposed CNN-based methods were developed for 

B-scan or C-scan OCT image segmentation, they could also be applied to A-scan images and 

operate in real-time by simplifying networks and using GPU parallel computing. 

    In order to resolve the problem, we present real-time retinal boundary tracking based on 

CNN segmentation of A-scan OCT images for accurate depth targeting of a selected retinal 

boundary. The U-net [69], which is widely used in medical image segmentation, was simplified 

and applied for segmentation on A-scan images. A Kalman filter, combining retinal boundary 

position measurement by CNN and velocity measurement by cross-correlation between 

subsequent A-scan images, is applied to estimate the retinal boundary position optimally. 

Undesired axial motions of the surgical tool are compensated by a piezo-electric linear motor using 

the tracked boundary position. An ex vivo bovine eye model is used to evaluate the retinal 

boundary tracking and depth targeting performance of the hand-held microsurgical device.   
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4.2 Experiment and Method 

4.2.1 Network architecture and training for retinal layer segmentation 

We applied a simplified 1-D U-net for A-scan retinal OCT image segmentation. The U-net is a 

fully convolutional neural network consisting of a contracting path to capture context followed by 

a symmetric expanding path that enables precise localization. In our design, double convolutional 

layers of the original U-net were reduced to a single convolutional layer, and the identical number 

of feature channels was used for all convolutional layers.   

Figure 18(a) shows the 1-D U-net architecture we designed. The contracting path 

composed of four contracting blocks containing a convolutional layer, batch normalization layer, 

ReLU activation layer, and max-pooling layer in sequence. Similarly, the expanding path 

composed of four expanding blocks containing a transposed convolution layer, concatenation layer, 

convolutional layer, batch normalization layer, and ReLU activation layer in sequence. The 

convolutional kernel size of 15 by 1 was used to ensure the receptive field to be larger than the 

image size. The receptive field is expressed as [70] 

𝑟 = 𝑠𝑏(1 + 2(𝑘 − 1)) − 𝑘                                              (51) 

where s is the sampling size, which equals the kernel size of max-pooling layer and the transposed 

convolutional layer, b is the number of contracting blocks, and k is the convolutional kernel size. 

The kernel size of the max-pooling layer and the transposed convolutional layer was set to 2 by 1, 

and, in this case, the receptive field is calculated as 450 by 1. Since improving inference speed is 

important for our application, the 1-D U-net illustrated in Fig. 18(a) was simplified stepwise, and 

the performance of four architectures was compared. The number of contracting and expanding 

blocks was reduced to three while keeping other conditions the same, and also, max-pooing and 

transposed convolutional kernels were sized up to 4 by 1 for compensating reduced receptive field. 
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We then removed skip concatenation layers to see the effect of the skip connections, and the 

simplest 1-D U-net is illustrated in Fig. 18(b).  

The 1-D U-net models were implemented using Pytorch on a computer with Intel i9-

10900X CPU, NVIDIA Quadro RTX 4000 GPU, and 32GB RAM for training. A generalized dice 

loss function was used, and the network parameters were updated via back-propagation and Adam 

optimization process. Max epoch was 20, and the mini-batch size was 128. The learning rate was 

initialized as 10-3, which then decreases by 10 times after 10 epochs.  

The trained CNN model was implemented on CUDA by customized CUDA function, and 

the inference time of the CNN models on GPU was measured using the NVIDIA Nsight tool in 

Visual Studio on the workstation described in the section 4.2.4. 

 

 

Figure 18 Network architectures of (a) our 1-D U-net and (b) the most simplified 1-D U-net we applied. 

N: kernel number, S: kernel size. 
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4.2.2 Retinal boundary tracking 

The axial distance between a fiber (needle) end and a target boundary can be measured from the 

target boundary position at A-scan images since the fiber end, working as a reference reflector, 

locates at the top edge of the images. A target boundary position was measured from a segmented 

image by averaging the bottommost pixel position of an adjacent upper layer and the topmost pixel 

position of an adjacent lower layer. Then, the Kalman filter [71] was applied to optimally estimate 

the boundary position using the dynamic and measurement model described as 

𝐱𝑘 = [
𝑥𝑘

𝑣𝑘
] = 𝐹𝐱𝑘−1 + 𝐵𝑢𝑘−1 + 𝐰𝑘 = [

1 ∆𝑡
0 1

] 𝐱𝑘−1 + [
1
0

] 𝑢𝑘−1 + [
1

2
∆𝑡2

∆𝑡
] 𝑎𝑘          (52) 

𝑧𝑘 = 𝐻𝐱𝑘 + 𝐧𝑘 = [
1 0
0 1

] 𝐱𝑘 + 𝐧𝑘                                         (53) 

 

where xk, vk and ak are the axial position, velocity, and acceleration of the target boundary. The 

control of the linear motor, uk, is a distance that the linear motor moves forward or backward. The 

velocity, vk, was measured by the ratio of movement distance of the sample (i.e. target boundary) 

to a known constant time duration. The movement distance was calculated by displacement of the 

sample in two consecutive A-scan images, which is the shift value maximizing cross-correlation 

between two consecutive A-scan images, subtracted by the previous control uk-1. The uk was 

defined as c (xtarget – xk) using proportional control, where (xtarget – xk) is an error and c is a 

proportional gain. The bias for control was set to zero because the linear motor is supposed to be 

stationary when the boundary position is at the target position. The proportional gain, c, was 

determined experimentally. The wk and nk are the process noise and observation noise, 

respectively, and they were assumed to be zero-mean Gaussian white noise. The algorithm works 

in a two distinctive process and is given by, 
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Prediction : 

𝐱̂𝑘|𝑘−1 = 𝐹𝐱𝑘−1|𝑘−1 + 𝐵𝑢𝑘−1                                               (54) 

𝑃𝑘|𝑘−1 = 𝐹𝑃𝑘−1|𝑘−1𝐹𝑇 + 𝑄                                                 (55) 

Correction : 

𝐱̂𝑘|𝑘 = 𝐱̂𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝐱̂𝑘|𝑘−1)                                       (56) 

𝐾𝑘 = 𝑃𝑘|𝑘−1 + 𝑃𝑘|𝑘−1𝐻𝑇(𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅𝑘)
−1

                           (57) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘|𝑘−1                                                (58) 

where P, Q, and R are covariance of error, process noise, and observation noise, and K is Kalman 

gain.  

The quantitative evaluation of the retinal layer tracking performance was based on three 

metrics: mean signed error (MSE), mean unsigned error (MUE), and absolute maximum error 

(AME) of each layer boundary position.   

 

4.2.3 Data set 

A-scan OCT images of the retina were obtained from 11 ex vivo bovine eyes using 

endoscopic CP-OCT lensed fiber probes [72]. The cornea and lens of the eyes were removed, and 

the lensed fiber probes were inserted into the vitreous humor and horizontally scanned by a 

motorized linear translation stage (Z812B, Thorlabs, USA). More details about the CP-OCT 

system are described in section 4.2.4. Eight A-scan images were averaged to improve the signal-

to-noise ratio. The resultant A-scan images were combined to present a quasi B-scan image for 

easy visualization as shown in Fig. 19(a). The quasi B-scan images were then manually segmented 

into the vitreous humor (VH), the six retinal layers, labeled as ganglion cell layer (GCL), inner 

plexiform layer (IPL), inner nuclear layer (INL) - outer plexiform layer (OPL), outer nuclear layer 
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(ONL) - external limiting membrane (ELM), photoreceptor layers (PR), and choroid (CH), and 

region below the retina by a single observer using ImageJ software. Figure 19(b) shows the 

manually segmented image. 8,400 A-scan OCT retinal images from 9 eyes were used for training, 

and 1,000 A-scan OCT retinal images from 2 eyes were used for testing.  

A-scan images of 1 by 1024 pixels were cropped into 1 by 320 pixels along the axial 

direction, keeping only the region around retinal tissues, to reduce computation time. The retinal 

tissue area was found by using cross-correlation between the averaged A-scan image over all data 

set and each A-scan image. All A-scan images in the data set were averaged, after being shifted 

such that the retinal layer surface lays on zero position, and then thresholded to remove background 

noise. The upper graph of Fig. 19(c) shows the averaged A-scan image and a sampled A-scan 

image from Fig. 19(a), and the lower graph shows cross-correlation between the two A-scans as a 

function of displacement. Since the retinal surface position of the averaged A-scan is set to zero, 

the displacement maximizing the cross-correlation indicates approximately the retinal surface 

location of each A-scan image. Figure 19(d) is the cropped image obtained from Fig. 19(a).  

The cropped images for the train data set were augmented by random vertical translation. 

For each A-scan image, five additional training samples were created with random translation 

values between -15 to 15. The final train and test sets consist of 46,530 A-scan images and 1,000 

A-scan images, respectively. The image pixel size along the axial direction is 2.7 um. 
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Figure 19 (a) A quasi B-scan OCT image of an ex vivo bovine eye obtained using an endoscopic CP-

OCT lensed fiber probe. (b) A manually segmented OCT image. (c) The averaged retinal A-scan over 

all data set and a sampled retinal A-scan (upper graph) and cross-correlation between the two A-

scans (lower graph). (d) A cropped quasi B-scan OCT image consisting of the cropped A-scan images 

in the train set. 

 

4.2.4 CP-SSOCT distal sensor guided hand-held microsurgical tool 

system 
 
Figure 20 shows the schematic of the CP-SSOCT distal sensor-guided hand-held microsurgical 

tool system and a signal processing flow chart. The CP-SSOCT system uses a commercial swept-

source engine (Axsun Technologies Inc., Billerica, USA) operating at a 100 kHz sweep rate. The 

center wavelength and sweeping bandwidth of the system are 1060 nm and 100 nm, respectively. 

A lensed fiber probe of the CP-SSOCT system is encased in a 25-gauge blunt needle and fixed 
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along the needle using UV curable glue. The fiber probe guides the needle to maintain a specified 

distance from a target boundary using a piezo-electric linear motor (LEGS LT20, PiezoMotor, 

Uppsala, Sweden). More details about the microsurgical tool system are described in [5]. A 

workstation (Dell Precision T5810) with an NVIDIA Quadro K4200 GPU processes the sampled 

spectral data to measure a distance between a target boundary and a needle and controls the linear 

motor. Most parts of the signal processing including CNN inference are performed on GPU by 

CUDA to reduce processing time. Specifically, 128 spectra were transmitted from a frame grabber 

and processed at the same time. A-scan images were obtained by performing the fast Fourier 

transform on the spectral data. After background noise subtraction, eight sequential A-scan images 

were averaged to increase the signal-to-noise ratio and cropped into 16 by 320 pixels. CNN-based 

segmentation is performed on the 16 cropped images of 1 by 320 pixels, and a target boundary 

distance is measured as described in section 4.2.2. The Kalman filter is applied using the measured 

position and velocity, and the optimally estimated position was used for motor control. 

 

Figure 20 Schematic of CP-SSOCT distal sensor guided hand-held microsurgical tool system and a 

signal processing flow chart. 
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4.3 Experimental results 

The CNN-based retinal layer segmentation performance was evaluated by mean 

intersection over union (IoU). The mean IoU is calculated by averaging the IoU score of each class 

as follows: 

𝑀𝑒𝑎𝑛 𝐼𝑜𝑈 = ∑
𝑛𝑐,𝑇𝑃

𝑛𝑐,𝑇𝑃+𝑛𝑐,𝐹𝑃+𝑛𝑐,𝐹𝑁

𝐶
𝑐=1                                        (59) 

where nc,TP, nc,FP, and nc,FN are the number of true-positive pixels, false-positive pixels, and false-

negative pixels of the class c, respectively, and C is the total number of classes. 

Figure 21(a) shows the mean IoU on the train and test data set as a function of the number 

of feature channels calculated by networks described in section 4.2.1. Each CNN architecture was 

trained five times, and the plots indicate average values. As expected, mean IoU on the train set 

increases with learnable parameters, which increase with the number of contracting and expanding 

blocks, the number of feature channels, and sampling size, and mean IoU on the test set decreases 

or increases and then decreases with learnable parameters due to overfitting. Also, the removal of 

the skip concatenation connections does not degrade performance distinctively. This could be 

because our network is not very deep and high-resolution features passed from the contracting path 

to the expanding path do not advantageously affect the task due to the speckle noise of the images. 

We achieve the best mean IoU of 79.1 % on the test set with three contracting and expanding 

blocks and a sampling size of 4. The inference time of the trained networks on GPU was measured 

considering real-time axial tremor compensation. The most time-consuming layer is a 

convolutional layer, so inference time is significantly affected by the number of channels, sampling 

size, and skip concatenation connection as shown in Fig. 21(b). Inference time for 16 images of 1 

by 320 pixels is at most 1.6 ms with an optimal number of features for each architecture. 

Physiological hand tremor has a frequency of 7 to 13 Hz, and its amplitude in the axial direction 
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is around 50 μm2. The speed of physiological hand tremor is approximately calculated as 1 µm/ms 

assuming a frequency of 10Hz and linear movement. Therefore, inference time of 1.6 ms is 

considered reasonably fast for physiological tremor cancellation since other computation and 

communication delay of our system is around 1.5 ms and image pixel size along the axial direction, 

the smallest distance we can detect, is 2.7 μm. 

 

Figure 21 Mean IoU of trained networks on the train and test data sets. (b) Inference time on GPU 

for segmentation of 16 A-scan OCT images of 320 by 1 pixel. NB: the number of contracting and 

expanding blocks, SS: sampling size, NSC: no skip concatenation connection. 

Tables 2, 3, and 4 show the MSE, MUE, and AME of retinal boundary position calculated 

with an optimal number of feature channels before and after applying the Kalman filter. The MSE, 

MUE, and AME are defined as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑ 𝑝𝑖̂ − 𝑝𝑖

𝑁
𝑛=1                                                     (60) 

𝑀𝑈𝐸 =
1

𝑁
∑ |𝑝𝑖̂ − 𝑝𝑖|

𝑁
𝑛=1                                                    (61) 

𝐴𝑀𝐸 = max
𝑛=1..𝑁

|𝑝𝑖̂ − 𝑝𝑖|                                                    (62) 

where 𝑝𝑖̂ and 𝑝𝑖 are the estimated and true retinal boundary position of the i-th A-scan images, and 

N is the total number of A-scan images in the test set. The Kalman filtering does not affect MSE 

distinctively, but it reduces MUE and AME by removing unexpected high-frequency motion of 
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tracked position. Overall, the errors are comparable for the networks presented in the tables, and 

we selected the last network architecture for our tremor cancellation system because it tracked 

boundaries more stably with lower MUEs and AMEs. Using the selected parameters for CNN, 

MSE, MUE, and AME of PR/CH boundary after Kalman filtering were -0.45 pixels (-1.2 μm), 

2.48 pixels (6.7 μm), and 16 pixels (43.2 μm), respectively. Relatively larger errors than that of 

other CNN-based OCT retinal segmentation could be caused by the absence of lateral information 

and limited image quality obtained from a fiber probe. 

Table 3 Mean signed error of retinal boundary position (pixels), NB : the number of contracting and 

expanding blocks, NC: the number of feature channels, SS: sampling size, NSC: no skip 

concatenation connections. 

Retinal 

Boundary 

Convolution Filter Size and Number, and Sampling Size 

NB 4, NC 4, 

SS 2 

NB 3, NC 8, 

SS 2 

NB 3, NC 4, 

SS 4 

NB 3, NC 12 

SS 4, NSC 

CNN KF CNN KF CNN KF CNN KF 

VH/GCL -1.46 -1.54 0.22 0.14 -0.72 -0.79 0.67 0.60 

GCL/IPL 1.34 1.27 0.35 0.28 0.96 0.88 1.54 1.48 

IPL/INL-OPL 0.46 0.39 -5.37 -5.51 -0.017 -0.09 -0.068 -0.13 

INL-OPL/ 

ONL-ELM 
-2.49 -2.57 -1.36 -1.43 -1.45 -1.53 -1.06 -1.12 

ONL-ELM/PR -1.08 -1.16 -0.92 -1.00 -0.92 -1.00 -1.41 -1.49 

PR/CH -0.23 -0.31 -0.83 -0.90 -0.59 -0.69 -0.38 -0.45 

Table 4 Mean unsigned error of retinal boundary position (pixels) 

Retinal 

Boundary 

Convolution Filter Size and Number, and Sampling Size 

NB 4, NC 4, 

SS 2 

NB 3, NC 8, 

SS 2 

NB 3, NC 4, 

SS 4 

NB 3, NC 12 

SS 4, NSC 

CNN KF CNN KF CNN KF CNN KF 

VH/GCL 3.81 3.01 2.86 2.04 3.11 2.50 2.68 2.15 

GCL/IPL 4.10 3.71 5.09 4.61 4.24 3.75 4.21 3.79 

IPL/INL-OPL 3.82 3.37 8.72 7.94 3.93 3.34 3.61 3.14 

INL-OPL/ 

ONL-ELM 
4.06 3.88 3.71 3.45 3.55 3.36 3.29 3.01 

ONL-ELM/PR 2.79 2.43 2.97 2.51 2.65 2.37 2.93 2.56 

PR/CH 2.99 2.56 3.44 2.84 3.20 2.77 2.88 2.48 
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Table 5 Absolute maximum error of retinal boundary position (pixels) 

Retinal 

Boundary 

Convolution Filter Size and Number, and Sampling Size 

NB 4, NC 4, 

SS 2 

NB 3, NC 8, 

SS 2 

NB 3, NC 4, 

SS 4 

NB 3, NC 12 

SS 4, NSC 

CNN KF CNN KF CNN KF CNN KF 

VH/GCL 27.5 19.9 61 21.2 39.5 22.1 15 14.6 

GCL/IPL 21 15.3 45 31.3 21 17 16 17.2 

IPL/INL-OPL 32.5 18.6 61.5 53 48 18.6 22 15 

INL-OPL/ 

ONL-ELM 
35.5 17.9 53 24.4 18 15.1 31.5 16.2 

ONL-ELM/PR 31 17.1 41 16.8 25.5 15.4 22 14.3 

PR/CH 27 18 48.5 22.9 88 40.6 24.5 16 

 

4.3.1 Train and test results of CNN-based segmentation and boundary 

tracking 

The CNN-based retinal layer segmentation performance was evaluated by mean intersection over 

union (IoU). The mean IoU is calculated by averaging the IoU score of each class as follows: 

𝑀𝑒𝑎𝑛 𝐼𝑜𝑈 = ∑
𝑛𝑐,𝑇𝑃

𝑛𝑐,𝑇𝑃+𝑛𝑐,𝐹𝑃+𝑛𝑐,𝐹𝑁

𝐶
𝑐=1                                        (59) 

Figure 22(a) shows the mean IoU on the train and test data set as a function of the number 

of feature channels calculated by networks described in section 4.2.1. Each CNN architecture was 

trained five times, and the plots indicate average values. As expected, mean IoU on the train set 

increases with learnable parameters, which increase with the number of contracting and expanding 

blocks, the number of feature channels, and sampling size, and mean IoU on the test set decreases 

or increases and then decreases with learnable parameters due to overfitting. Also, the removal of 

the skip concatenation connections does not degrade performance distinctively. This could be 

because our network is not very deep and high-resolution features passed from the contracting path 

to the expanding path do not advantageously affect the task due to the speckle noise of the images. 

We achieve the best mean IoU of 79.1 % on the test set with three contracting and expanding 
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blocks and a sampling size of 4. The inference time of the trained networks on GPU was measured 

considering real-time axial tremor compensation. The most time-consuming layer is a 

convolutional layer, so inference time is significantly affected by the number of channels, sampling 

size, and skip concatenation connection as shown in Fig. 22(b). Inference time for 16 images of 1 

by 320 pixels is at most 1.6 ms with an optimal number of features for each architecture. 

Physiological hand tremor has a frequency of 7 to 13 Hz, and its amplitude in the axial direction 

is around 50 μm2. The speed of physiological hand tremor is approximately calculated as 1 µm/ms 

assuming a frequency of 10Hz and linear movement. Therefore, inference time of 1.6 ms is 

considered reasonably fast for physiological tremor cancellation since other computation and 

communication delay of our system is around 1.5 ms and image pixel size along the axial direction, 

the smallest distance we can detect, is 2.7 μm. 

 

 

Figure 22 Mean IoU of trained networks on the train and test data sets. (b) Inference time on GPU 

for segmentation of 16 A-scan OCT images of 320 by 1 pixel. NB: the number of contracting and 

expanding blocks, SS: sampling size, NSC: no skip concatenation connection. 
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   Tables 2, 3, and 4 show the MSE, MUE, and AME of retinal boundary position calculated 

with an optimal number of feature channels before and after applying the Kalman filter. The MSE, 

MUE, and AME are defined as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑ 𝑝𝑖̂ − 𝑝𝑖

𝑁
𝑛=1                                                     (60) 

𝑀𝑈𝐸 =
1

𝑁
∑ |𝑝𝑖̂ − 𝑝𝑖|

𝑁
𝑛=1                                                    (61) 

𝐴𝑀𝐸 = max
𝑛=1..𝑁

|𝑝𝑖̂ − 𝑝𝑖|                                                    (62) 

where 𝑝𝑖̂ and 𝑝𝑖 are the estimated and true retinal boundary position of the i-th A-scan images, and 

N is the total number of A-scan images in the test set. The Kalman filtering does not affect MSE 

distinctively, but it reduces MUE and AME by removing unexpected high-frequency motion of 

tracked position. Overall, the errors are comparable for the networks presented in the tables, and 

we selected the last network architecture for our tremor cancellation system because it tracked 

boundaries more stably with lower MUEs and AMEs. Using the selected parameters for CNN, 

MSE, MUE, and AME of PR/CH boundary after Kalman filtering were -0.45 pixels (-1.2 μm), 

2.48 pixels (6.7 μm), and 16 pixels (43.2 μm), respectively. Relatively larger errors than that of 

other CNN-based OCT retinal segmentation could be caused by the absence of lateral information 

and limited image quality obtained from a fiber probe. 

 

4.3.2 Real-time ex vivo bovine retinal boundary tracking and tremor 

cancellation 
 

We evaluated the retinal boundary tracking and depth targeting performance of the hand-

held microsurgical instrument guided by CNN using an ex vivo bovine retina model.  

At first, we produced an estimate of noise for retinal boundary tracking by measuring 

standard deviations (SDs) of VH/GCL and PR/CH boundary position using a stationary OCT distal 
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sensor. Fig. 23(a) shows the M-scan OCT images for 1s and tracked boundary position obtained 

using the stationary OCT distal sensor. Overall speckle pattern doesn't change as expected, but 

local intensity variations, which could be caused by OCT noise and micro-oscillations inside a 

sample, induce small fluctuations of tracked retinal boundary positions. Therefore, although the 

SDs of boundary positions are supposed to be zero because the distance between the retina and the 

OCT distal sensor doesn't vary, the SDs acquired from 13 trials of 5 eyes are 2.83 ± 0.69 um (1.04 

± 0.26 pixel) for VH/GCL boundary and 3.09 ± 0.92 um (1.14 ± 0.34 pixel) for PR/CH boundary. 

Depth targeting system noise was then evaluated using a piezo-electric motor fixed to a 

stationary stage. The motor was integrated with an OCT sensor attached needle and activated for 

depth targeting of the needle. Ideally, the motor should be stabilized when the needle reaches a 

target depth since both the motor and the sample are stationary. However, due to retinal boundary 

tracking noise and control error, the motor kept working actively as shown in Fig. 23(b) and (c). 

Fig. 23(b) and (c) show M-scan OCT images for 1s when VH/CGL boundary and PR/CH boundary 

are targeted, respectively. The SDs of VH/GCL and PR/CH boundary position during depth 

targeting were measured with 13 trials from 5 eyes and shown in Fig. 23(d). The SDs of VH/GCL 

and PR/CH boundary position are 2.75 ± 0.35 um (1.02 ± 0.13 pixel) and 4.8 ±1.46 um (1.78 ±0.54 

pixel), respectively, when the VH/CGL boundary is targeted. When the PR/CH boundary is 

targeted, the SDs of VH/GCL and PR/CH boundary positions are 4.41 ± 0.31 um (1.63 ± 0.12 

pixel) and 4.28 ±1.02 μm (1.58 ±0.38 pixel), respectively. Theoretically, the speckle pattern 

doesn't change with axial motion only, so the overall speckle pattern doesn't change significantly 

except shifts in the axial direction. However, local intensity variations of the speckle pattern 

increase with axial motion because the OCT sensing beam is not perfectly perpendicular to the 

retina surface and axial motion could induce slight transverse motion. Moreover, since the sensing 
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beam is focused on the retina, the axial motion changes the integration volume inside the retina, 

which also could increase local intensity variations. Therefore, PR/CH boundary tracking, which 

has a larger tracking error, is degraded more by the intensity variations and shows larger SDs than 

that of VH/GCL boundary tracking.  

 

Figure 23 M-scan OCT images of ex vivo bovine eyes acquired using (a) a stationary OCT distal 

sensor and an OCT distal sensor attached to fixed motor activated for (b) VH/GCL boundary 

targeting and (c) PR/CH boundary targeting. The green and yellow solid lines represent tracked 

VH/GCL and PR/CH boundaries, respectively. (d) SDs of tracked boundary positions during depth 

targeting by an OCT distal sensor attached to fixed motor 

Tremor compensation and depth targeting performance were evaluated for a hand-held 

microsurgical instrument. The microsurgical instrument was held by a free-hand and proceeded 

toward the retina until automatic depth targeting was activated. We used a tremor compensation 

algorithm we developed earlier and more details can be found in our previous work13. A VH/GCL 

boundary, as well as a PR/CH layer boundary, were tracked, and one of them was used for depth 
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targeting. We performed 12 trials of depth targeting each for VH/CGL and PR/CH boundaries 

using 5 eyes. Figure 24 shows the M-scan OCT images of the bovine retina obtained with and 

without tremor compensation for ~ 13 seconds. In Fig. 24(a), the VH/GCL boundary (yellow line) 

was used for depth targeting, and its target depth represented by dashed lines was set to 700 um 

away from fiber probe ends. Similarly, in Fig. 24(b), the PR/CH boundary (yellow line) was 

targeted, and its target depth was set to 1000 um. The green solid lines are untargeted boundaries 

(VH/GCL or PR/CH), and the white vertical lines indicate the moment when motion compensation 

has been activated. The left side of the vertical line with a highly irregular boundary profile 

represents duration without the tremor compensation, however, once the tremor compensation has 

been activated (right side of the vertical line), the targeted boundary becomes flat and fixed around 

the target depth indicating that the motion compensation is working effectively. As expected, when 

VH/GCL or PR/CH boundary is targeted, the axial variation of another boundary position 

increases, and it is quantitatively verified by comparing the MSEs and SDs of the tracked boundary 

positions for each trial. Here, the MSE is defined as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑ 𝑝𝑖̂ − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡

𝑁
𝑛=1                                              (63)  

where 𝑝𝑖̂ and 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 are the estimated and targeted retinal boundary position, respectively, and N 

is the total number of A-scan images of each trial. In Fig. 25(a), the MSEs of targeted boundaries 

are -0.15 ± 1.02 um for VH/CGL boundary and -0.11± 0.96 um for the PR/CH boundary, and the 

MSEs of untargeted boundaries are -319.52 ± 10.13 um for the VH/GCL boundary and 325.72 ± 

11.35 um for PR/CH boundary. Untargeted boundaries have almost ten times larger variations of 

MSEs than that of targeted boundaries because of retinal thickness variations between different 

eyes and different areas, and this result supports the necessity of PR/CH boundary tracking rather 

than just surface tracking for accurate subretinal injection guidance. The SDs of targeted 
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boundaries are 9.42 ± 0.80 um for VH/GCL boundary and 10.8 ± 0.90 um for the PR/CH boundary. 

The axial motion mostly from the hand tremor, which includes low-frequency draft in the order of 

hundreds of micrometers and physiological tremor in the order of tens of micrometers, are reduced 

significantly. The residual variations are caused by a boundary tracking error and the time delay 

between the signal processing and motor control. The slightly better performance of the VH/GCL 

boundary targeting could be explained by the more accurate tracking of the VH/GCL boundary as 

shown in section 4.3.1. The SDs of untargeted boundaries are 13.03 ± 1.96 um for VH/GCL 

boundary and 13.67 ± 1.79 um for the PR/CH boundary. Retinal thickness variations within an eye 

increased SDs of the untargeted boundaries due to lateral motion of hand tremor.  

 

Figure 24 M-scan OCT images of ex vivo bovine eyes with and without tremor cancellation when (a) 

a boundary between VH and GCL is targeted and when (b) a boundary between PR and CH is 

targeted. The yellow and green solid lines are targeted boundary and untargeted another boundary, 

respectively. The dashed line represents target depth, and white vertical lines indicate the moment 

when motion compensation has been activated. 
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Figure 25 Box plots of (a) MSEs and (a) SDs of the VH/GCL and PR/CH boundary positions during 

VH/GCL boundary targeting and PR/CH boundary targeting. 

 

It is difficult to obtain a precise ground-truth segmentation label from our M-scan OCT images 

(Fig. 24) because of high-frequency longitudinal fluctuations and speckle noise and, thus, to 

evaluate the accuracy of the tracked boundary positions quantitatively. Nevertheless, we can assess 

it visually by checking how flat and smooth the targeted retinal boundary is when each A-scan 

image is aligned to the tracked boundary position. The more accurate boundary tracking brings the 

flatter and smoother target boundaries in the aligned M-scan images. Figure 26 (a) and (b) show 

the aligned M-scan images to the targeted boundaries, the VH/GCL boundary, and the PR/CH 

boundary, represented by yellow dashed lines. High-frequency fluctuations shown in Fig. 24 were 

significantly reduced in the regions around the targeted boundaries, and we could infer that retinal 

boundary tracking works effectively. 
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Figure 26 M-scan OCT images of ex vivo bovine eyes when each A-scan image is aligned to the 

targeted boundaries, (a) the VH/GCL boundary and (b) the PR/CH boundary. 

 

4.4 Conclusion 

In this work, we presented real-time A-scan-based CNN segmentation and automatic retinal 

boundary targeting for hand-held subretinal needle guidance. A-scan retinal OCT images are 

segmented using a simplified 1D U-net, and the Kalman filter reduces retinal boundary tracking 

error by combining boundary position measurement and velocity measurement. We achieve the 

MUE of around 3 pixels (8.1 μm) using an ex vivo bovine retina model. GPU parallel computing 

allows real-time inference (~1.6 ms) and, thus, real-time retinal boundary tracking. The MSE 

between target depth and target boundary position of the depth targeting experiment is -0.15 μm 

and 0.11 μm for the VH/GCL and the PR/CH boundary, respectively. Involuntary tremors, which 

include low-frequency draft in the order of hundreds of micrometers and physiological tremor in 

the order of tens of micrometers, are reduced significantly, and the SDs of target boundary 
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positions are 9.42 μm for the VH/GCL boundary and 10.8 μm for the PR/CH boundary. Our 

networks currently work only for normal bovine retina, but, in the future, we will expand its utility 

to diseased retina having irregular morphology by including diseased retinal images into our train 

data set. We also plan to perform ex vivo and in vivo studies of subretinal injection using our system 

to validate its clinical applicability. 
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5  

Selective retina therapy monitoring by speckle 

variance OCT 

5.1 Introduction 

Selective retina therapy (SRT) is an effective laser treatment method for various retinal diseases 

associated with a degradation of the retinal pigment epithelium (RPE), such as diabetic macular 

edema, central serous chorioretinopathy, and age-related macular degeneration [12-17]. The RPE, 

which contains a high concentration of melanosomes, absorbs 50~60% of incident green light. 

However, in order to selectively target the RPE layer, the laser pulse duration needs to be shorter 

than a thermal relaxation time of the RPE (~10 µs) [18]. The SRT reduces negative side effects 

and facilitates healing of the induced retinal lesions by avoiding thermal damages of the adjacent 

photoreceptors, the neural retina, and the choroid. However, the selection of proper laser energy—

which is crucial for successful SRT without excessive burning and collateral damage—is 

challenging because lesions in the RPE are invisible ophthalmoscopically. In addition, different 

melanin concentrations among patients or regions even within an eye [19] make it impossible to 

set a static threshold value of pulse energy of a therapeutic irradiation window.  

Fundus fluorescence angiography (FFA) is an accurate method to detect the lesions, but it 

requires the use of fluorescent dye injection [20] and a long delay between treatment and detection. 

For real-time non-invasive SRT monitoring, several approaches have been proposed. These 

include the detection of microbubble formation and collapse, which induce mechanical disruption 

and damage to RPE cells [73]. This approach measures the acoustic transient [74] or light reflection 
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changes [75]. Although these methods have already been used in several clinical studies [74,76,77], 

they do not provide visual feedback during the treatment. Optical coherence tomography (OCT), 

which can provide depth-resolved imaging, was also applied for the SRT monitoring [78-82]. The 

treatments are considered successful when OCT signal variations, i.e., intensity decrease, are 

detected, and the results show good agreement with the evaluation of lesions by FFA. 

Speckle variance OCT (svOCT) quantifies the speckle pattern variation caused by moving 

particles or structural changes in biological tissues. It calculates the interframe intensity variance 

of a sequence of structural OCT images. The svOCT has been developed extensively in recent 

years for OCT angiography, which is used to visualize retinal micro-vasculatures [83]; it has also 

been applied to monitor protein denaturation and coagulation [30] and to estimate tissue 

temperature during laser therapy [31]. 

Thus, it is expected that svOCT could be an effective way to detect speckle variation 

changes induced by morphological and structural changes of retinal tissue during the thermal-

induced micro-bubble formation and collapse by laser irradiation. In this work, we studied and 

demonstrated SRT monitoring based on the svOCT. At first, a SS-OCT imaging system integrated 

with a micro-second pulsed laser system was tested for phantom (floppy disk film) and ex vivo 

bovine iris to examine its availability for monitoring of each laser-pulse irradiation in real-time. 

The svOCT values of phantom and iris tissue were averaged along the axial direction, and peak 

values of the averaged svOCT at each pulse laser irradiation were analyzed. The microscopic 

images of the treated spots were taken after laser-pulse irradiation. Then, the SS-OCT imaging 

system was used for ex vivo bovine retina study. SvOCT images corresponding to various laser 

pulse energies and the various number of frames were obtained during laser-pulse irradiation. 

Similarly, the svOCT values of RPE and photoreceptor layers were averaged along the axial 
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direction, and peak values of the svOCT at each pulse laser irradiation were analyzed. The 

microscopic images of the treated spots were taken before and after removing the upper neural 

retinal layers to assess the degree of retina and RPE damage. Spatial and temporal thermal effects 

in the retina induced by pulse laser irradiation were simulated and correlated to the peak values of 

svOCT. 

 

5.2 Phantom and ex vivo bovine iris experiment 

5.2.1 Experimental method 

An in-house built swept-source OCT imaging system was integrated into a R:GEN system 

as shown in Fig. 27. The OCT system uses a commercial swept source engine (Axsun 

Technologies, Inc.), operating at 100 kHz sweep rate, the center wavelength of 1060 nm and the 

sweeping bandwidth of 100 nm. The wavelength of ophthalmic pulse laser is 527 nm, and the laser 

pulse train consists of 15 pulses with 100Hz repetition rate and 1.7 µs duration. Iris was extracted 

from ex vivo bovine eyes and cut into small pieces. A phantom and bovine iris used for experiment 

are shown in Fig. 28. 

M-scan OCT images of a phantom (floppy disk film) and bovine iris were acquired during 

laser-pulse trains irradiation. For phantom, we calculated variance of each A-scan from the 

averaged A-scan before laser pulse radiation by 

𝑆𝑉𝑖𝑗 = [𝐼𝑖(𝑗) − 𝐼𝑚𝑒𝑎𝑛(𝑗)]2                                         (64) 

where i and j are indices of frame and axial position of the M-scan, and Imean is average of 1024 

A-scans before laser pulse radiation. 80 pixels around the sample surface were set as ROI and the 

svOCT images in the ROI was averaged in axial direction. For ex vivo bovine iris, ten A-scans 

were averaged to reduce high frequency noise after background subtraction and numerical 
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dispersion compensation, and the averaged M-scans were used for obtaining svOCT images. The 

svOCT signal was calculated by Eq. (16).  

We tested two different radiation modes of the laser system called classic and ramping 

mode, where classic mode radiated constant energy for all the pulses while the ramping mode 

radiated laser pulse energy linearly increased for a laser pulse train.  

 

Figure 27 (Left) The R:GEN system and (right) set up of the R:GEN system combined with swept-

source OCT imaging system.  

 

 

Figure 28 Samples for experiment (Left) Floppy disk film and (right) ex vivo bovine iris 
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5.2.2 Results 

M-scan OCT image of a phantom is shown in Fig. 29(a). It is consisting of 20,000 A-scans, and it 

shows visible temporal signal variations by a laser pulse train marked with white arrows. The 

intensity of A-scans was reduced abruptly after laser pulse radiation and recovered slowly during 

the time between each laser pulse. Overall shapes of A-scans almost don’t change. The phantom 

has a simple structure consisting of multi-plastic layer on a substrate, and its dominant reflection 

is Fresnel reflection rather than backscattering. It was thought that a sufficient laser pulse energy 

would melt the phantom surface, and the reflection from the surface would decrease without any 

substructural change. In order to see the intensity changes more clearly, which is different from 

signal variations of biological sample, we calculated variance of each A-scan from the averaged 

A-scan before laser pulse radiation by Eq. (64). Figure 29(b) and(c) are the svOCT image of Fig. 

5.3(a) averaged svOCT signal in the ROI, respectively. Each laser pulse irradiation shows abrupt 

increase and exponential decay in the averaged svOCT signal. These results seem consistent with 

the sharp increase in the temperature following laser energy absorption and exponential cooling of 

the sample without the laser pulse. 

Figure 30 shows averaged svOCT signals for laser-pulse train with different energy level 

in classic mode. The pulse energy was set to 9uJ, 18uJ, 45uJ, 90uJ, 135uJ and 180uJ. The averaged 

svOCT signals have 15 distinctive peaks corresponding to 15 pulses, and the peak intensities seem 

to linearly depend on the laser energy. We calculated average and standard deviation value of the 

svOCT peak signals as a function of the pulse energy, and the average peak value linearly increased 

with the energy until 135uJ where it saturated as shown in Fig. 31(a). The picture of the laser- 

pulse irradiated floppy disk surface in Fig 31(b) also shows similar result where the burn mark 

expands with increasing energy level until 135uJ and it stays relatively constant for the energy 
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higher than 135uJ. In addition, the svOCT signal shows distinctive peaks with 9uJ radiation, 

although the picture doesn’t show any burn mark at the energy level.  

 

Figure 29 (a) M-scan structural OCT image, (c) M-scan svOCT image, and (d) Averaged svOCT 

signal in ROI during laser pulse train irradiation. 

 

 

Figure 30 Averaged svOCT signal during a laser-pulse train irradiation with irradiation energy of 

(a) 180uJ, (b) 135uJ, (c) 90uJ, (d) 45uJ, (e) 18uJ and (f) 9uJ in classic mode 
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Figure 31 (a) Average (blue point) and standard deviation (bar) of svOCT signal peak value 

dependent on radiation energy in classic mode. (b) Microscopic image of a laser-pulse irradiated 

phantom surface. 

In ramping mode, the laser pulse energy level ramped up during the pulse train and the 

corresponding svOCT signal peaks increased proportional to the increasing laser pulse energy. 

Figure 32(a)-(d) are the averaged svOCT signals with the peak energy level of pulse trains of 180uJ, 

90uJ, 45uJ and 18uJ, respectively. The ratio of each peak to the 15th peak was calculated and box-

plotted in Fig. 32(e), and it showed linear dependence over the15 laser-pulses during a single pulse 

train sequence. The 15th peak values at which laser-pulse is irradiated with peak energy were also 

linearly dependent on the target energy until 180uJ as shown in Fig. 32(f). The 15th peak value in 

ramping mode were much smaller (less than 60%) than peaks of classic mode except at 180uJ 

energy level. It was thought to be caused by smaller accumulated thermal energy by ramping mode, 

and it is expected that it would saturate with energy higher than 180uJ.  

Figure 33 shows M-scan OCT images and its averaged svOCT signals of ex vivo bovine 

iris during laser-pulse train irradiation. The temporal signal variations by each laser pulse 

irradiation are identifiable in the M-scan OCT images, and they become more significant as energy 

level increases. Averaged svOCT signals show 15 distinctive peaks for the laser-pulse train 

irradiation, and peak intensities increase with the energy level until it is saturated at 135uJ. The 
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peak intensities as a function of energy level are boxplotted in Fig. 34(a). Relatively high standard 

deviation of the peaks at each energy level is possibly caused by the different melanin 

concentration and the wetness of each sample. At the energy level of 27 uJ, the svOCT signal 

shows distinctive peaks, but microscopic image doesn’t show any burn mark in Fig. 34(b). From 

this, it is expected that peak detection of the svOCT signal could be more sensitive and effective 

than analysis of the microscopic image of lesion for laser therapy monitoring. 

 
 

Figure 32 Averaged svOCT signal of a laser-pulse train with radiation energy of (a) 180uJ, (b) 90uJ, 

(c) 45uJ and (d) 18uJ. (e) Ratio of each peak to 15th peak of averaged svOCT signal. (f) Average (blue 

point) and standard deviation (bar) of 15th peak values depending on radiation energy in ramping 

mode. 
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Figure 33 M-scan structural OCT image and its corresponding averaged svOCT signal in ROI during 

laser pulse train irradiation for the energy level of (a) 27 μJ, (b) 45 μJ, (c) 135 μJ, and (d) 225 μJ. 

 

Figure 34 (a) Box plot of peak intensities of averaged svOCT signal as a function of energy level and 

(b) microscopic image of a laser-pulse irradiated ex vivo bovine iris. 
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5.3 Ex vivo bovine retinal experiment and temperature estimation 

5.3.1 Experimental method 

An in-house built swept-source OCT imaging system was integrated with a frequency-doubled 

Nd:YLF laser based SRT system (Lutronic, Goyang, Korea). The schematic of the system is shown 

in Fig. 35. The OCT system used a commercial swept-source engine (Axsun Technologies Inc., 

Billerica, USA) operating at 100 kHz sweep rate. The center wavelength and sweeping bandwidth 

of the system was 1060 nm and 100 nm, respectively. The OCT laser was combined with the pulse 

laser using a dichroic mirror; a Galvano mirror was used to direct the OCT laser to a treated spot 

on the retina. The wavelength of the pulse laser was 527 nm, and the pulse laser operated at 100 

Hz repetition rate and 1.7 µs duration. The pulse laser energy was adjusted from 22 µJ to 190 µJ 

using neutral-density filters. In this study, fresh ex vivo bovine eyes were acquired from a local 

butcher and immersed in a cooled saline solution. Bovine eyes have tapetum fibrosum, which has 

the retinal epithelial layer completely unpigmented, over the central and mid-region of the retina 

[84]. Because the RPE layer exists in the periphery of the retina, it was difficult to focus the beam 

on the RPE layer using the crystalline lens of an eye itself. Therefore, the bovine eye’s cornea and 

lens were removed, and the beam was focused on a tilted eye using an objective lens.  A total of 

39 treated spots were tested on two eyes. M-scan OCT images of the bovine retina were acquired 

during the laser-pulse irradiation. 

SvOCT images were calculated by Eq. (16). The photoreceptor and RPE layers, which are 

highly scattering and absorptive, were set as a region of interest (ROI), and the svOCT values in 

the ROI were averaged along the axial direction. Microscopic images of the treated spots were 

obtained using a CCD camera (DCC1645C, Thorlabs, USA) and a 10X magnification zoom lens.  
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Figure 35 Schematic of a swept-source OCT system integrated into a pulse laser system. BD, balanced 

detector; OL, objective lens. 

Spatial and temporal temperature distribution in the retina were numerically calculated by 

COMSOL Multiphysics software. Spatial distribution was calculated in 2D, and the geometry of 

the bovine retina model used for the simulation is shown in Fig. 36(a). The RPE was modeled as 

a 7-µm layer containing melanosomes that were assumed as spheres of radius 0.3 µm by a discrete 

absorber model [85]. Melanosomes were diagonally distributed, and the distance between adjacent 

melanosomes was set to 1.2 µm. The model applied a heat equation shown below, 

𝝆𝑪𝒑
𝝏𝑻

𝝏𝒕
= 𝛁 ∙ (𝒌𝛁𝑻) + 𝑸,                                                 (65) 

where T is temperature as a function of time (t) and spatial coordinate x and y, ρ is the density, k 

is the thermal conductivity, and Cp is the heat capacity of the material. The Q refers to the heat 

source from laser irradiation. The coefficient values used are shown in Table 5, which include the 

thickness, absorption coefficient and thermal physical constant values [87] of each retinal layer. 

The absorption coefficient of retinal melanosomes at 532 nm wavelength was estimated from 2370 

cm-1 to 13000cm-1 [88-89], and 6500 cm-1, which makes the absorption in RPE around 50% of the 

total, was used for our simulation. 
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Figure 36 (a) The geometry of the bovine retina model. The retina was assumed to consist of two 

layers, neural retina and RPE, and have immediate contact with a choroid. The RPE was modeled as 

a 7-µm layer containing melanosomes that were assumed as diagonally distributed spheres of radius 

0.3 µm. (b) Temperature time dependence in the neural retina and at the melanosome surface in RPE 

when laser pulse of energy 50 µJ irradiated. Spatial distribution of temperature around RPE, when 

the temperature of the neural retina reached a maximum after a (c) 20 µJ, (d) 50 µJ and (e) 100 µJ 

pulse irradiation. 

 
Table 6 Thickness, absorption coefficient, and thermal properties of each retinal layer 

 Neural 
retina 

RPE layer 
outside of 

melanosome 

Melanosome Choroid Sclera 

Thickness[µm] 270 7 0.3 (radius) 200 700 
Absorption 

coefficient[cm-1] 
10.4[86] 0 6500 245[86] 4.9 

Heat capacity  
[J/Kg·K] 

3680 3680 3680 3680 4178 

Density [Kg/m3] 1000 1000 1000 1000 1000 
Thermal 

conductivity  

[W/m·K] 

0.565 0.565 0.565 0.530 0.58 

 

The duration and frequency of the pulse laser were set to 2 µs and 100 Hz, respectively; the peak 

temperature was calculated over 1.5ms. Gaussian laser-beam profile with a diameter of 150 µm 

was used for the simulation. 
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The temperature of the neural retina was calculated by averaging the temperature in a rectangular 

region (30 µm by 20 µm) 2.5 µm away from RPE, and the temperature of the melanosome surface 

in RPE was calculated by averaging the temperature on seven melanosome surfaces at the first two 

melanosome layers located in the center of the Gaussian beam. Fig. 36(b) shows the time-

dependent temperature variation in the neural retina (in red) and at the melanosome surface in RPE 

(in blue). Spatial distributions of temperature around RPE, when the temperature of neural retina 

reached a maximum after a 20 µJ, 50 µJ and 100 µJ pulse irradiation, are shown in Fig. 36(c)-(e). 

The calculated peak temperatures in each region were correlated to the peak values of svOCT and 

tissue damage.  

 

5.3.2 Results 

Figure 37(a) and (b) show an M-scan OCT image and the corresponding svOCT image of the 

bovine retina when 108 µJ energy per pulse irradiated. The M-scan OCT image shows the visible 

temporal signal variations induced by the laser pulse at the moment marked with white triangles. 

The signal variation increases the svOCT value. Figure 37(c) shows svOCT values averaged in 

ROI, and it shows a distinctive peak for each pulse irradiation.  

To find appropriate N for calculating the svOCT image, we first tested different values of 

N and compared the average peak values of the svOCT spikes, the standard deviation of those 

peaks, and background noise level. Since the speckle variation induced by each laser pulse lasts 

for only around 50 µs, only 5 frames of the speckle variances show high signal while the rests 

show very low signal. Intuitively, if we choose a larger window size N, the lower portion of sv 

signal in the window will be significant, and it will decrease the overall value of the sv signal 

inside the window, i.e., the peak value of svOCT spikes. Furthermore, the variance of those peak 



 76 

 

Figure 37 (a) M-scan OCT image of the bovine retina and corresponding (b) svOCT image. Photoreceptor 

and RPE layers, which are highly scattering and absorptive, were set as an ROI. (c) Axially averaged svOCT 

values in the ROI during pulse laser irradiation. White triangles mark the moment when each laser pulse (108 

µJ) irradiated. 

 

values will also decrease. Fig. 38(a)-(d) show how the average peak values (shapes) and standard 

deviation (error bar) change depending on laser energy level when N is 2, 5, 10 and 20, respectively. 

We can see that, as expected, both the average peak value and the standard deviation decrease 

when N increases. Relative standard deviation, defined as the ratio of the standard deviation to the 

mean, was 0.53, 0.46, 0.43 and 0.46 for N of 2, 5, 10 and 20, respectively. Therefore, a mid-range 

of N values between 5-10 are suitable for calculating svOCT in terms of the precision and 

repeatability. In addition, note that the background noise level increases with increasing N. For N 

of 2, 5, 10 and 20, the average upper bound levels of background noise were 0.54 ± 0.24, 0.74 ± 

0.31, 1.03 ± 0.41 and 1.64 ± 0.66, respectively. The background noise levels were bounded by µ 

+ 3σ upper limit, where µ was svOCT values averaged in ROI before or after laser irradiation, and 

σ was the standard deviation. The increase in background noise was caused by the bulk motion of 

the sample and other environmental changes. 
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Figure 38 Mean (shapes) and standard deviation (error bar) of peak values of svOCT values averaged in ROI 

depending on laser pulse energy when window size N is (a) 2, (b) 5, (c) 10 and (d) 20. 

 

Figure 39 SvOCT values averaged in ROI when pulse laser energy is (a) 150 µJ, (b) 108 µJ, (c) 86 µJ, (d) 69 

µJ, (e) 54 µJ and (f) 30 µJ. 
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Shorter integration time will decrease these effects and so will the smaller value of N. Considering 

both the effects of relative standard deviation and background noise levels, we choose N as 5.  

Figure 39 shows svOCT values averaged in ROI depending on pulse laser energy when N 

is 5. Peak values increased with increasing pulse laser energy, and the distinctive peaks were 

observed when the laser pulse energy was as low as 54 µJ. Figure 40(a) and (b) show microscopic 

images of the treated spots before and after peeling upper neural retinal layers off, respectively. 

The energy level of each spot is shown in Fig. 40(c). The denaturation of neural retina can be 

observed as whitish spots (pointed by white triangles) in Fig. 40(a), but the lesions confined only 

to the RPE layer are invisible. The leftmost and rightmost columns are high energy lesions marking 

pattern of the spots. In Fig. 40(b), lesions in the RPE layer (pointed by arrows) can be detected by 

peeling off the upper neural retinal layers.  

Average peak values of svOCT depend on the laser pulse energy; the result is summarized 

in Fig. 41(a). The data with blue circles indicate when the laser pulses induce a lesion in the upper 

neural layers in addition to inducing a lesion in the RPE layer (corresponding to the indicated spots 

in Fig. 40(a)). The data represented by orange squares represent the cases when the lesions were 

induced only on the RPE layer, indicated by white triangle arrows on Fig. 5.14(b). The laser-

induced lesion confined only to the RPE layer can be considered as a successful treatment. Fifteen 

peaks for each spot are averaged, and the standard deviation is shown by the error bar. As expected, 

it was difficult to define the threshold energy level that induces lesion only in the RPE layer. If the 

null hypothesis is defined as a successful treatment and the treatment is decided to be successful 

when the energy level is in the range from 41.9 µJ to 92.1 µJ, which is determined by logistic 

regression, the type I error and the type II error were 26.7 % and 25 %, respectively. Compared to 

the energy level, the average peak values of svOCT showed a better correlation with the lesion 
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creation. Average sv peak values ranged from 12.4 to 38.7 when the induced lesions were observed 

in both neural and RPE layers; sv values ranged from 0.3 to 18.3 when the lesion was confined 

only to the RPE layer. In the range of sv peak values from 0.7 to 1.9, no induced lesion was 

observed at all. When the treatment is decided to be successful with the average svOCT peak value  

 

 

Figure 40 Microscopic image of the retina (a) before and (b) after peeling neural retinal layers off. (c) The 

energy level of treated spots. 

 

between 1.88 and 15.3 based on logistic regression, the type I error and the type II error were 20% 

and 0.083%, which was better than the case when the threshold was set by the energy level. For 

dosimetry control, the method is designed to be used with a power ramped pulsed mode in which 

laser energy increases linearly from pulse to pulse within one pulse train and automatically stop 

the next pulse irradiation when the svOCT peak values reached the predetermined threshold value. 

In addition, the average peak value of svOCT intensities was correlated to the simulated 

temperature of the neural retina and melanosome surface in RPE. The linear regression of average 

peak values of svOCT on laser energy was calculated for photocoagulated lesions and selectively 

damaged lesions. Then, each of them was correlated to the simulated temperature of neural retina 

and RPE because the tissue damage process was different from each other. Since the simulated 

temperature of melanosome surface in the RPE was also linear to pulse laser energy, it was  
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Figure 41 (a) Averaged peak values depending on pulse laser energy and damage range. (b) Simulated (lines) 

and estimated temperature from the svOCT intensity (shapes) at neural retina and RPE. (c) Simulated 

temperature at the neural retina and the RPE as a function of laser energy level for three pulse durations, 2 

μs, 5 µs, and 10 µs. 

 

correlated to the average peak values of selectively damaged lesions as, 

T𝑀 = 124.5 + 12.4P,                                                       (66) 

temperature of melanosome surface in the RPE was also linear to pulse laser energy, it was 

correlated to the average peak values of selectively damaged where TM is the temperature of 

melanosome surface in RPE, and P is the average peak values of svOCT. Fig. 41(b) shows the 

simulated temperature (solid line) and estimated temperature (square shapes) from the average 

peak values of svOCT. Most of the estimated temperatures at RPE were higher than 150 °C, while 
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the lowest temperature was 127.7 °C. This is reasonable since the micro-vaporization is known to 

occur at around 150 °C. Similarly, the average peak values of the photocoagulated lesions were 

correlated to the temperature of the neural retina and empirically fitted to a line as, 

T𝑁 = 25.5 + 1.5P.                                                         (67) 

Fig. 41(b) shows that the temperature of the neural retina was mostly estimated to increase higher 

than 50 °C when the neural retina was photocoagulated.   

We also simulated temperatures of the neural retina and the melanosome surface in RPE 

as a function of laser energy level for three pulse durations, 2 μs, 5 µs, and 10 µs as shown in Fig. 

41(c). The temperature of the neural retina does not change significantly, but the temperature of 

the melanosome surface in RPE decreases as pulse duration increases. The decrease in temperature 

can be explained by less heat confinement with longer pulse duration due to heat diffusion during 

irradiation.  

5.4 Conclusion 

In conclusion, it was shown that the SRT could be successfully monitored by the svOCT imaging 

system when integrated with the SRT system. We tested our SS-OCT imaging system integrated 

with a micro-second pulsed laser system using a phantom and bovine iris models in order to 

examine its availability for monitoring of each laser-pulse irradiation in real-time. Then, our 

system performance was tested using ex vivo bovine eyes; the svOCT showed distinctive signal 

variation corresponding to each laser pulse irradiation. The signal variations were proportional to 

pulse energy levels, and it had a reliable correlation with the creation of lesion within the retina. 

The temperature at the neural retina and RPE was estimated by svOCT peak values using 

temperature simulation results, which was consistent with the observed lesion creation. However, 

we could have missed some minor tissue damages when assessing the photocoagulation and RPE 
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cell damage from the microscopic images. Therefore, more studies that incorporate further analysis 

supported by histology or fluorescence microscopy would be needed to obtain a more accurate 

correlation between the svOCT signal and retinal damage range. In addition, we plan to perform 

in vivo studies using a live animal model to fully validate the utility of this method as an automatic 

dosimetry control in clinical SRT systems.  
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6 

Conclusions 

In this Chapter, the technical achievements and contribution of this dissertation are summarized 

along with some discussion of future research directions. 

6.1 Summary of contributions 

We presented automatic axial motion guidance of microsurgical tools (i.e., a subretinal injector) 

using a fiber-optic CP-SSOCT distal sensor. A high-index epoxy lensed fiber was designed and 

fabricated to have sufficiently long effective distal sensing ranges in water (or vitreous humor) 

and, thus, to obtain improved retinal image quality. Enhanced performance was confirmed by SNR 

measurement and B-scan OCT imaging. The SNR of the proposed fiber probe, compared to a bare 

fiber, was increased by 25 dB at a distance of 1.5 mm, and the resolution improved from 476 µm 

to 47 µm. Real-time A-scan-based CNN segmentation was applied for retinal boundary tracking 

and automatic retinal boundary targeting. A-scan retinal OCT images are segmented using a 

simplified 1D U-net, and the Kalman filter reduces retinal boundary tracking error by combining 

boundary position measurement and velocity measurement. We achieve the MUE of around 3 

pixels (8.1 µm) using an ex vivo bovine retina model. GPU parallel computing allows real-time 

inference (~1.6 ms) and, thus, real-time retinal boundary tracking. The MSE between target depth 

and target boundary position of the depth targeting experiment is -0.15 μm and 0.11 µm for the 

VH/GCL and the PR/CH boundary, respectively. Involuntary tremors, which include low-

frequency draft in the order of hundreds of micrometers and physiological tremor in the order of 
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tens of micrometers, are reduced significantly, and the SDs of target boundary positions are 9.42 

μm for the VH/GCL boundary and 10.8 µm for the PR/CH boundary.  

It was shown that the SRT could be successfully monitored by the svOCT imaging system 

when integrated with the SRT system. We found a reliable correlation between the svOCT peak 

values and the degree of retinal lesion formation, which can be used for selecting proper laser 

energy during SRT. SvOCT images show abrupt speckle variance changes when samples are 

irradiated by laser pulses. The averaged svOCT intensities along the axial direction show sharp 

peaks corresponding to each laser pulse, and the peak values were proportional to the laser pulse 

energy.  The peak values also had a reliable correlation with the creation of lesion within the retina. 

The temperature at the neural retina and RPE was estimated by svOCT peak values using 

temperature simulation results, which was consistent with the observed lesion creation.  

 

6.2 Future work 

So far, progress has been made in applying OCT imaging system to ophthalmic therapy guidance. 

The method to stably integrate the CP-OCT lensed-fiber probe to injector needle needs to be 

considered, and we plan to perform ex vivo and in vivo studies of subretinal injection using our 

system to validate its clinical applicability. In addition, in vivo studies using a live animal model 

will be performed to fully validate the utility of svOCT-based monitoring method as an automatic 

dosimetry control in clinical SRT systems.  

 

 

 

 



 85 

Bibliography  

[1] L. F. Hotraphinyo and C. N. Riviere, “Three-dimensional accuracy assessment of eye 

surgeons,” in 2001 ConferenceProceedings of the 23rd Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3458–3461 (2001). 

[2] S. P. N. Singh and C. N. Riviere, “Physiological tremor amplitude during retinal 

microsurgery,” in Proceedings of the IEEE 28th Annual Northeast Bioengineering 

Conference (IEEE Cat. No.02CH37342), pp. 171–172 (2002). 

[3] A. F. Fercher, W. Drexler, C. K. Hitzenberger et al., “Optical coherence tomography – 

principles and applications,” Reports on Progress in Physics 66, 239–303 (2003). 

[4] C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor 

guided “smart” micro-forceps for microsurgery,” Biomed. Opt. Express 4, 1045–1050 (2013). 

[5] G. W. Cheon, Y. Huang, J. Cha, P. L. Gehlbach, and J. U. Kang, “Accurate real-time depth 

control for CP-SSOCT distal sensor based handheld microsurgery tools,” Biomed. Opt. 

Express 6, 1942–1953 (2015). 

[6] G. W. Cheon, B. Gonenc, R. H. Taylor, P. L. Gehlbach, and J. U. Kang, “Motorized 

microforceps with active motion guidance based on common-path SSOCT for epiretinal 

membranectomy,” IEEE/ASME Transactions on Mechatronics 22, 2440–2448 (2017). 

[7] J. U. Kang and G. W. Cheon, “Demonstration of subretinal injection using common-path 

swept source OCT guided microinjector,” Appl. Sci. 8, 1287 (2018). 

[8] A. G. Roy, S. Conjeti, S. P. K. Karri, D. Sheet, A. Katouzian, C. Wachinger, and N. Navab, 

“ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography 

using fully convolutional networks,” Biomed. Opt. Express 8, 3627–3642 (2017). 

[9] A. Shah, L. Zhou, M. D. Abrámoff, and X. Wu, “Multiple surface segmentation using 



 86 

convolution neural nets: application to retinal layer segmentation in OCT images,” Biomed. 

Opt. Express 9, 4509–4526 (2018). 

[10] S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. 

Mari, K. S. Chin, T. A.Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, 

“DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head 

tissues in optical coherence tomography images,” Biomed. Opt. Express9,3244–3265 (2018). 

[11] S. Borkovkina, A. Camino, W. Janpongsri, M. V. Sarunic, and Y. Jian, “Real-time retinal 

layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, 

low-latency neural network,” Biomed. Opt. Express11, 3968–3984 (2020). 

[12] J. Roider, S. H. M. Liew, C. Klatt, et al., “Selective retina therapy (SRT) for clinically 

significant diabetic macular edema,” Graefes Arch. Clin. Exp. Ophthalmol. 248(9), 1263 

(2010). 

[13] Y.G. Park, J. R. Kim, S. Kang, et al., “Safety and efficacy of selective retina therapy (SRT) 

for the treatment of diabetic macular edema in Korean patients,” Graefes Arch. Clin. Exp. 

Ophthalmol. 254, 1703 (2016).  

[14] H. Elsner, E. Pörksen, C. Klatt, et al. “Selective retina therapy in patients with central serous 

chorioretinopathy,” Graefe's Arch. Clin. Exp. Ophthalmol. 244(12), 1638 (2006).  

[15] C. Klatt, M. Saeger, T. Oppermann, et al., “Selective retina therapy for acute central serous 

chorioretinopathy,” Br. J. Ophthalmol. 95, 83-88 (2011). 

[16] C. Framme, A. Walter, L. Berger, P. Prahs, C. Alt, D. Theisen-Kunde, J. Kowal, and R. 

Brinkmann, “Selective retina therapy in acute and chronic-recurrent central serous 

chorioretinopathy,” Ophthalmologica 234, 177-188 (2015). 

[17] C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after 



 87 

selective RPE laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. 

Ophthalmol. 86, 1099-1106 (2002). 

[18] R. Brinkmann, J. Roider, R. Birngruber, “Selective retina therapy (SRT): a review on methods, 

techniques, preclinical and first clinical results,” Bull. Soc. Belge. Ophtalmol. 302, 51 (2010). 

[19] J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal pigment epithelial lipofuscin and 

melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145-152 

(1986). 

[20] A. Chopdar, T. Aung, “Ch 1 Fundus fluorescein angiography,” in Multimodal retinal imaging, 

JP Medical Ltd, Victoria (2014). 

[21] Izatt J.A., Choma M.A., “Theory of Optical Coherence Tomography,” In: Drexler W., 

Fujimoto J.G. (eds) Optical Coherence Tomography. Biological and Medical Physics, 

Biomedical Engineering. Springer, Berlin, Heidelberg (2008). 

[22] Choma M, et al., “Sensitivity advantage of swept source and Fourier domain optical coherence 

tomography,” Opt. Express. 11(18):2183 (2003).  

[23] Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs time domain optical 

coherence tomography. Opt Express. 11(8):889 (2003).  

[24] Johannes F. de Boer, Barry Cense, B. Hyle Park, Mark C. Pierce, Guillermo J. Tearney, and 

Brett E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-

domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003) 

[25] Andrei B. Vakhtin, Daniel J. Kane, William R. Wood, and Kristen A. Peterson, "Common-

path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 

6953-6958 (2003) 

[26] Kang J.U., Han J.H., Liu X, Zhang K. Common-Path Optical Coherence Tomography for 



 88 

Biomedical Imaging and Sensing. J Opt Soc Korea. 14(1):1-13 (2010).  

[27] Zhang K, Wang W, Han J, Kang JU. “Surface Topology and Motion Compensation System 

for Microsurgery Guidance and Intervention based on Common-Path Optical Coherence 

Tomography,” IEEE Trans. Biomed. Eng. 56:2318–2321 (2009). 

[28] Joseph M. Schmitt, S. H. Xiang, and Kin Man Yung “Speckle in optical coherence 

tomography,” J. Biomed. Opt. 4(1) (1999).   

[29] X. Liuet al., “Spectroscopic-speckle variance OCT for microvasculature detection and 

analysis,” Biomed. Opt. Express 2 (11), 2995 –3009 (2011).   

[30] Changho Lee, Gyeongwoo Cheon, Do-Hyun Kim, Jin U. Kang, “Feasibility study: protein 

denaturation and coagulation monitoring with speckle variance optical coherence 

tomography,” J. Biomed. Opt. 21(12) 125004 (2016). 

[31] S. Guo, S. Wei, S. Lee, M. Sheu, S. Kang and J. U. Kang, “Intraoperative Speckle Variance 

Optical Coherence Tomography for Tissue Temperature Monitoring During Cutaneous Laser 

Therapy,” in IEEE Journal of Translational Engineering in Health and Medicine, vol. 7, pp. 

1-8, Art no. 1800608 (2019). 

[32] Soohyun Lee, Shuwen Wei, Shoujing Guo, Jongmin Kim, Bongkyun Kim, Gihoon Kim, Jin 

U. Kang, “Selective retina therapy monitoring by speckle variance optical coherence 

tomography for dosimetry control,” J. Biomed. Opt. 25(2) 026001 (2020).  

[33] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural 

network," 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 

1-6, doi: 10.1109/ICEngTechnol.2017.8308186. 

[34] Ghosh A., Sufian A., Sultana F., Chakrabarti A., De D. (2020) Fundamental Concepts of 

Convolutional Neural Network. In: Balas V., Kumar R., Srivastava R. (eds) Recent Trends 

https://www.spiedigitallibrary.org/profile/Joseph.Schmitt-31390
https://www.spiedigitallibrary.org/profile/notfound?author=S._Xiang
https://www.spiedigitallibrary.org/profile/notfound?author=Kin_Yung


 89 

and Advances in Artificial Intelligence and Internet of Things. Intelligent Systems 

Reference Library, vol 172. Springer, Cham.  

[35] Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview 

and application in radiology. Insights Imaging 9, 611–629 (2018). 

[36] I. Goodfellow, Y. Bengio, and A. Courville, “Chapter 9 Convolutional Networks,” Deep 

learning, MIT Press (2016). http://www.deeplearningbook.org. 

[37] Duchi, J.C.; Hazan, E.; Singer, Y. “Adaptive Subgradient Methods for Online Learning and 

Stochastic Optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).    

[38] Kingma, D.; Ba, J. Adam, “A Method for Stochastic Optimization,” Available online: 

https://arxiv.org/abs/1412. 6980 (accessed on 22 August 2020). 

[39] Shuo Han, Marinko V. Sarunic, Jigang Wu, Mark S. Humayun M.D., Changhuei Yang, 

"Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography 

inspection," J. Biomed. Opt. 13(2) 020505(2008) 

[40] J. U. Kang, J. -H. Han, X. Liu, K. Zhang, C. G. Song and P. Gehlbach, "Endoscopic Functional 

Fourier Domain Common-Path Optical Coherence Tomography for Microsurgery," in IEEE 

Journal of Selected Topics in Quantum Electronics, vol. 16, no. 4, pp. 781-792 (2010). 

[41] Karen M. Joos and Jin-Hui Shen, "Miniature real-time intraoperative forward-imaging optical 

coherence tomography probe," Biomed. Opt. Express 4, 1342-1350 (2013). 

[42] Tetsu Asami, Hiroko Terasaki, Yasuki Ito, Tadasu Sugita, Hiroki Kaneko, Junpei Nishiyama, 

Hajime Namiki, Masahiko Kobayashi, Norihiko Nishizawa; Development of a Fiber-Optic 

Optical Coherence Tomography Probe for Intraocular Use. Invest. Ophthalmol. Vis. Sci. 57(9): 

OCT568-OCT574 (2016). 

[43] Mura, M., Iannetta, D., Nasini, F., Barca, F., Peiretti, E., Engelbrecht, L., de Smet, M.D. and 



 90 

Verbraak, F., Use of a new intra-ocular spectral domain optical coherence tomography in 

vitreoretinal surgery. Acta Ophthalmol, 94: 246-252 (2016). 

[44] Seon Young Ryu, Hae Young Choi, Jihoon Na, Woo June Choi, and Byeong Ha Lee, "Lensed 

fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. 

Opt. 47, 1510-1516 (2008). 

[45] Y. Qiu, Y. Wang, K. D. Belfield, and X. Liu, "Ultrathin lensed fiber-optic probe for optical 

coherence tomography," Biomed. Opt. Express 7, 2154-2162 (2016). 

[46] Mingtao Zhao, Yong Huang, and Jin U. Kang, "Sapphire ball lens-based fiber probe for 

common-path optical coherence tomography and its applications in corneal and retinal 

imaging," Opt. Lett. 37, 4835-4837 (2012). 

[47] Kanwarpal Singh, Daisuke Yamada, Guillermo Tearney, “Common Path Side Viewing 

Monolithic Ball Lens Probe for Optical Coherence Tomography,” Sovremennye tehnologii v 

medicine 7(1): 29–33 (2015).  

[48] Sy-Bor Wen, Vijay M. Sundaram, Daniel McBride, and Yu Yang, "Low-cost, high-precision 

micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light 

focusing," Opt. Lett. 41, 1793-1796 (2016). 

[49] Marica Marrese, Hidde Offerhaus, Erik Paardekam, and Davide Iannuzzi, "70 μm diameter 

optical probe for common-path optical coherence tomography in air and liquids," Opt. Lett. 43, 

5929-5932 (2018). 

[50] Donglin Wang, Can Duan, Xiaoyang Zhang, Zhao Yun, Antonio Pozzi, and Huikai Xie, 

"Common-path optical coherence tomography using a microelectromechanical-system-based 

endoscopic probe," Appl. Opt. 55, 6930-6935 (2016). 

[51] J. Kim, J. Han and J. Jeong, "Common-Path Optical Coherence Tomography Using a Conical-



 91 

Frustum-Tip Fiber Probe," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 

20, no. 2, pp. 8-14, March-April 2014, Art no. 6800407 

[52] Herwig Kogelnik, "On the Propagation of Gaussian Beams of Light Through Lens like Media 

Including those with a Loss or Gain Variation," Appl. Opt. 4, 1562-1569 (1965). 

[53] W. Emkey and C. Jack, "Analysis and evaluation of graded-index fiber lenses," in Journal of 

Lightwave Technology, vol. 5, no. 9, pp. 1156-1164, September 1987, doi: 

10.1109/JLT.1987.1075651. 

[54] J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, and J. M. 

Franke, "Technique for Fast Measurement of Gaussian Laser Beam Parameters," Appl. 

Opt. 10, 2775-2776 (1971). 

[55] B. Johnson et al., “Swept light sources,” Optical Coherence Tomography, 639 –658 Springer, 

Cham (2015). 

[56] Y. Peng, L. Tang, and Y. Zhou, “Subretinal injection: a review on the novel route of 

therapeutic delivery for vitreoretinal diseases,” Ophthalmic Res.58, 217–226 (2017). 

[57] Jin U. Kang, Yong Huang, Kang Zhang, Zuhaib Ibrahim, Jaepyeong Cha, W.P. Andrew Lee, 

Gerald Brandacher, and Peter L. Gehlbach, “Real-Time 3-D Fourier-Domain Optical 

Coherence Tomography Video Image Guided Microsurgeries,” J. Biomed. Opt. 17, 081403 

(2012). 

[58] Kang Zhang and Jin U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the 

dual graphics processing units architecture for microsurgery guidance,” Biomedical Optics 

Express, Vol. 2, Issue 4, pp. 764-770 (2011). 

[59] M. Draelos, G. Tang, B. Keller, A. Kuo, K. Hauser, and J. A. Izatt, “Optical coherence 

tomography guided robotic needle insertion for deep anterior lamellar keratoplasty,” IEEE 



 92 

Transactions on Biomed. Eng.67, 2073–2083 (2020). 

[60] M. Zhou, Q. Yu, K. Huang, S. Mahov, A. Eslami, M. Maier, C. P. Lohmann, N. Navab, D. 

Zapp, A. Knoll, and M. A.Nasseri, “Towards robotic-assisted subretinal injection: A hybrid 

parallel-serial robot system design and preliminary evaluation,” IEEE Transactions on Ind. 

Electron.67, 6617–6628 (2020). 

[61] M. Sommersperger, J. Weiss, M. A. Nasseri et al., “Real-time tool to layer distance estimation 

for robotic subretinal injection using intraoperative 4D OCT,” Biomed. Opt. Express 12, 

1085–1104 (2021). 

[62] A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation 

in optical coherence tomography using an active contour approach,” in Medical Image 

Computing and Computer-Assisted Intervention– MICCAI 2009,G.-Z. Yang, D. Hawkes, D. 

Rueckert, A. Noble, and C. Taylor, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 

649–656) (2009). 

[63] A. González-López, J. de Moura, J. Novo, M. Ortega, and M. Penedo, “Robust segmentation 

of retinal layers inoptical coherence tomography images based on a multistage active contour 

model,” Heliyon5, e01271 (2019). 

[64] Kang Li, Xiaodong Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in 

volumetric images-a graph-theoretic approach,” IEEE Transactions on Pattern Analysis Mach. 

Intell.28, 119–134 (2006). 

[65] M. K. Garvin, M. D. Abramoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 

3-d intraretinal layer segmentation of macular spectral-domain optical coherence tomography 

images,” IEEE Transactions on Med.Imaging28, 1436–1447 (2009). 

[66] Z. Hu, X. Wu, A. Hariri, and S. R. Sadda, “Multiple layer segmentation and analysis in three-



 93 

dimensional spectral-domain optical coherence tomography volume scans,” J. Biomed. 

Opt.18, 1 – 9 (2013). 

[67] S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic 

segmentation of seven retinal layers in SDOCT images congruent with expert manual 

segmentation,” Opt. Express18, 19413–19428 (2010). 

[68] J. Tian, B. Varga, G. M. Somfai, W.-H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time 

automatic segmentation of optical coherence tomography volume data of the macular region,” 

PLoS ONE10, e0133908. 

[69] O. Ronneberger, P. Fischer, and T. Brox, “U-Net:  Convolutional networks for 

biomedicalimage segmentation,” inMedical Image Computing and Computer-Assisted 

Intervention –MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells et al., Eds., 234–241, 

Springer Interna-tional Publishing, (Cham) (2015). 

[70] F. G. Venhuizen, B. van Ginneken, B. Liefers et al., “Robust total retina thickness 

segmentation in optical coherence tomography images using convolutional neural networks,” 

Biomed. Opt. Express 8, 3292–3316 (2017). 

[71]  G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Siggraph Course8, 1–16 

(2006). 

[72] S. Lee, C. Lee, R. Verkade, G. W. Cheon, and J. U. Kang, “Common-path all-fiber optical 

coherence tomography probe based on high-index elliptical epoxy-lensed fiber,” Opt. Eng.58, 

1 – 5 (2019). 

[73] R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, C. P. Lin, “Origin of retinal 

pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond 

time regimen,” Lasers in Surgery and Medicine 27, 451–464 (2000). 



 94 

[74] G. Schuele, H. Elsner, C. Framme, J. Roider, R. Birngruber, and R. Brinkmann, “Optoacoustic 

real-time dosimetry for selective retina treatment,” J. Biomed. Opt. 10(6), 064022 (2005). 

[75] E. Seifert, Y.-J. Roh, A. Fritz, Y. G. Park, S. Kang, D. Theisen-Kunde, and R. Brinkmann, 

“Automatic irradiation control by an optical feedback technique for selective retina treatment 

(SRT) in a rabbit model,” in Medical Laser Applications and Laser-Tissue Interactions VI, L. 

Lilge and R. Sroka, Ed., Proc. SPIE 8803, 880303 (2013). 

[76] S. Kang, Y. G. Park, J. R. Kim, E. Seifert, T.-K. Dirk, B. Ralf, Y. J. Roh, “Selective retina 

therapy in patients with chronic central serous chorioretinopathy: a pilot study,” Medicine 

(Baltim.), 95(3), e2524 (2016). 

[77] Y. J. Kim, Y. G. Lee, D. W. Lee, and J. H. Kim, “Selective retina therapy with real-time 

feedback-controlled dosimetry for treating acute idiopathic central serous chorioretinopathy 

in Korean Patients,” Journal of Ophthalmology, vol. 2018, Article ID 6027871 (2018). 

[78] P. Steiner, A. Ebneter, L. E. Berger, M. Zinkernagel, B. Považay, C. Meier, J. H. Kowal, C. 

Framme, R. Brinkmann, S. Wolf, and R. Sznitman, “Time-resolved ultra–high resolution 

optical coherence tomography for real-time monitoring of selective retina therapy,” Invest. 

Ophthalmol. Vis. Sci. 56(11), 6654-6662 (2015). 

[79] S. Zbinden, Ş.S. Kucur, P. Steiner et al., “Automatic assessment of time-resolved OCT images 

for selective retina therapy,” Int. J. CARS. 11, 863 (2016). 

[80] D. Kaufmann, C. Burri, P. Arnold, V. M. Koch, C. Meier, B. Považay, and J. Justiz, 

“Dosimetry control and monitoring of selective retina therapy using optical coherence 

tomography,” Proc. SPIE 10416, Optical Coherence Imaging Techniques and Imaging in 

Scattering Media II, 1041604 (2017). 

[81] T. Fountoukidou, P. Raisin, D. Kaufmann, et al., “Motion-invariant SRT treatment detection 



 95 

from direct M-scan OCT imaging” Int J CARS 13: 683 (2018). 

[82] D. Kaufmann, C. Burri, P. Arnold, et al., “Selective retina therapy enhanced with optical 

coherence tomography for dosimetry control and monitoring: a proof of concept study,” 

Biomed. Opt. Express. 9(7), 3320-3334 (2018).  

[83] M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. 

D. Yang, "Review of speckle and phase variance optical coherence tomography to visualize 

microvascular networks," J. Biomed. Opt. 18(5) 050901 (2013). 

[84] F. J. Ollivier, D. A. Samuelson, D. E. Brooks, P. A. Lewis, M. E. Kallberg, and A. M. 

Komáromy, “Comparative morphology of the tapetum lucidum (among selected species),” 

Veterinary Ophthalmology 7, 11-22 (2004).  

[85] J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective 

effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA. 90(18):8643-7 (1993). 

[86] D. K. Sardar, F. S. Salinas, J. J. Perez, and A. T. Tsin, “Optical characterization of bovine 

retinal tissues,” J. Biomed. Opt. 9(3) (2004). 

[87] S. A. Mirnezami, M. Rajaei Jafarabadi, and M. Abrishami, “Temperature distribution 

simulation of the human eye exposed to laser radiation,” Journal of lasers in medical 

sciences, 4(4), 175-181 (2013). 

[88] S. L. Jacques, R. D. Glickman, and J. A. Schwartz, "Internal absorption coefficient and 

threshold for pulsed laser disruption of melanosomes isolated from retinal pigment 

epithelium," Proc. SPIE 2681, Laser-Tissue Interaction VII, (1996). 

[89] R. Brinkmann, G. Hüttmann, J. Rögener, J. Roider, R. Birngruber, and C. P. Lin, “Origin of 

retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to 

microsecond time regimen,” Lasers in Surgery and Medicine 27:451–464 (2000). 



 96 

Curriculum Vitae 

Soohyun Lee 
+1-443-875-4953  

slee452@jhu.edu, soohyunlee87@gmail.com 

 
EDUCATION 

Johns Hopkins University                                                                                              Baltimore, MD 

Ph. D., Department of Electrical Engineering                                              Aug. 2021 (Expected date) 

Advisor: Prof. Jin U. Kang 

                

Korea Advanced Institute of Science and Technology (KAIST)                                 Daejeon, Korea 

M.S., Department of Electrical Engineering                                                                            Feb. 2012 

Advisor: Prof. Seunghyup Yoo 

 

Korea Advanced Institute of Science and Technology (KAIST)                                   Daejeon, Korea 

B.S., Department of Electrical Engineering                                                                             Jan. 2010 

 

SKILLS 
Software: C, C++, Python, Matlab, DiffactMOD 

Language: English, Korean (native) 

  

WORK & RESEARCH EXPERIENCE 
Johns Hopkins University                                                                                              Baltimore, MD 

Research Assistant, Photonics and optoelectronics Lab.                                        Sep. 2016 – Present 

 Developed retinal boundary tracking method using 1D CNN-based segmentation of A-scan optical 

coherence tomography (OCT) retinal images 

 Realized real-time retinal boundary tracking by parallel programming on CUDA and integrated it 

into OCT-guided microsurgical tool for subretinal injection 

 Optimized and fabricated lensed-fiber OCT probe for retinal imaging  

 Proposed and developed real-time laser therapy monitoring method using speckle variance OCT 

 

Electronics and Telecommunications Research Institute (ETRI)                             Daejeon, Korea 

Research Engineer, Digital Holography Research Group                                 Sep. 2012 – May. 2016 

 Designed a computer-generated-hologram algorithm for viewing-window-based digital holographic 

display system  

 Researched noise reduction of holographic 3D images based on optical image processing 

 Simulated observation of holographic display using numerical reconstruction of holographic 3D 

images  

 Proposed integral imaging-based objective quality assessment of holographic 3D images  

 

Korea Advanced Institute of Science and Technology (KAIST)                                Daejeon, Korea 

Research Assistant, Integrated Organic Electronics Lab.                                    Jul. 2009 – Aug. 2012 

 Analyzed and optimized metallic multilayer electrode using thin-film optics for semitransparent, 

parallel tandem, and inverted organic photovoltaic cells 

 Simulated efficiency of diffractive grating-based non-tracking planar solar concentrator combining 

geometrical and diffractive optics 

mailto:slee452@jhu.edu
mailto:soohyunlee87@gmail.com


 97 

PUBLICATIONS 

Journal Paper 
1. Soohyun Lee, Jin U. Kang, "CNN-based CP-OCT sensor integrated with a subretinal injector for 

retinal boundary tracking and injection guidance," J. Biomed. Opt. 26(6) 068001 (2021). 

2. Soohyun Lee, Shuwen Wei, Shoujing Guo, Jongmin Kim, Bongkyun Kim, Gihoon Kim, Jin U. 

Kang, “Selective retina therapy monitoring by speckle variance optical coherence tomography for 

dosimetry control,” J. Biomed. Opt. 25(2) 026001 (2020). 

3. Soohyun Lee, Changho Lee, Ruben Verkade, Gyeong Woo Cheon, Jin U. Kang, “Common-path 

all-fiber optical coherence tomography probe based on high-index elliptical epoxy-lensed fiber,” 

Opt. Eng. 58(2) 026116 (2019).  

4. Shoujing Guo, Shuwen Wei, Soohyun Lee, Mary Sheu, Sewon Kang, and Jin U. Kang, 

“Intraoperative Speckle Variance Optical Coherence Tomography for Tissue Temperature 

Monitoring During Cutaneous Laser Therapy,” IEEE Journal of Translational Engineering in 

Health and Medicine, vol. 7, pp. 1-8, Art no. 1800608 (2019).  

5. Yongjun Lim, Keehoon Hong, Hwi Kim, Hyun-Eui Kim, Eun-Young Chang, Soohyun Lee, 

Taeone Kim, Jeho Nam, Hyon-Gon Choo, Jinwoong Kim, and Joonku Hahn, “360-degree tabletop 

electronic holographic display,” Opt. Express 24, 24999-25009 (2016). 

6. Soohyun Lee, Tae Eui Kang, Donggeon Han, Hoyeon Kim, Bumjoon J Kim, Jongjin Lee, 

Seunghyup Yoo, “Polymer/small-molecule parallel tandem organic solar cells based on MoOx–

Ag–MoOx intermediate electrodes,” Sol. Ener. Mater. and Sol. Cells 137, 34-43 (2015).   

7. Hoyeon Kim, Soohyun Lee, Donggeon Han, Seunghyup Yoo "High-density organic photovoltaic 

modules: Mask-free fabrication using nozzle jet printing and oblique deposition,” Sol. Ener. Mater. 

and Sol. Cells, 120, pp.561-565 (2014) 

8. Donggeon Han, Soohyun Lee, H. Kim, S. Jeong, Seunghyup Yoo, “Cathodic multilayer 

transparent electrodes for ITO-free inverted organic solar cells,” Org. Electron, 14(6), pp.1477-

1482 (2013) 

9. Jungmin Choi, Tae-Wook Koh, Soohyun Lee, and Seunghyup Yoo, “Enhanced light extraction in 

organic light-emitting devices: using conductive low-index layers and micropatterned indium tin 

oxide electrodes with optimal taper angle,” App. Phys. Lett. 100, 233303 (2012) 

10. Maengsun Eo, Soohyun Lee, Myung Hwan Park, Min Hyung Lee, Seunghyup Yoo, Youngkyu Do, 

“Vinyl-Type Polynorbornenes with Pendant PCBM: A Novel Acceptor for Organic Solar Cells,” 

Macromol. Rap. Comm. 33(13), 1119-1125 (2012) 

11. Donggeon Han, Hoyeon Kim, Soohyun Lee, Myungsoo Seo, Seunghyup Yoo, “Realization of 

efficient semitransparent organic photovoltaic cells with metallic top electrodes: utilizing the 

tunable absorption asymmetry,” Opt. Express, Vol. 18, No.S4, A513-A521 (2010) 

 

Conference 

 
1. Mandeep S Singh, Shoujing Guo, Shuwen Wei, Soohyun Lee, Jin Kang, “Optical coherence 

tomography distal-sensor guided manual injection device for transscleral subretinal access,” Invest. 

Ophthalmol. Vis. Sci. 2019;60(9):5800, ARVO Annual Meeting (2019, Vancouver, Canada) 

2. Shoujing Guo, Shuwen Wei, Nicolas Sarfaraz, Soohyun Lee, William G. Gensheimer, Axel 

Krieger, Jin Kang, “Optical coherence tomography distal-sensor guided manual trephine/dissection 

system for DALK,” Invest. Ophthalmol. Vis. Sci. 2019;60(9):1870, ARVO Annual Meeting 

(2019, Vancouver, Canada) 



 98 

3. Soohyun Lee, Changho Lee, Gyeongwoo Cheon, Jongmin Kim, Dongki Jo, Jihoon Lee, Jin U. 

Kang, “Ophthalmic laser system integrated with speckle variance optical coherence tomography 

for real-time temperature monitoring,” Proc. SPIE 10483, Optical Coherence Tomography and 

Coherence Domain Optical Methods in Biomedicine XXII, 104832C (2018, San Francisco). 

4. Kristina Irsch, Soohyun Lee, Sanjukta N. Bose, Jin U. Kang, "Motion-compensated optical 

coherence tomography using envelope-based surface detection and Kalman-based prediction," Proc. 

SPIE 10484, Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI, 

104840Q (2018, San Francisco, USA). 

5. Soohyun Lee, Changho Lee, Soohyun Lee, J Jeremy Chae, Gyeongwoo Cheon, Berk Gonenc, Peter 

L Gehlbach, Jin U Kang, “Evaluation of optical coherence tomography distal sensor with high-

index elliptical cone epoxy lens,” 2017 Conference on Lasers and Electro-Optics (CLEO), JTu5A. 

3 (2017, San jose, USA). 

6. Soohyun Lee, Eun-Young Chang, Hyon-Gon Cho and Jinwoong Kim, “Computer-Generated-

Hologram for Viewing Window Based Holographic Display and Removal of Conjugate Images,” 

3DSA 2015 (2015, Taipei, Tiwan). 

7. Joongki Park, Soohyun Lee, Min Sung Yoon, Jaehan Kim, Hyon-Gon Choo, Jinwoong Kim and 

Taegeun Kim, “Reconstruction of Optically-scanned Hologram Using Amplitude-only or Phase-

only Spatial Light Modulator,” 3DTV-CON 2015 (2015, Lisbon, Portugal). 

8. Eun-Young Chang, Soohyun Lee, Hyon-Gon Choo, Jinwoong Kim, “Computer-generated Stereo 

Hologram Using Inter-view Redundancy,” 3DSA 2015 (2015, Taipei, Taiwan). 

9. Soohyun Lee, Jeho Nam, Eun-Young Jang, Sung-Keun Lee, Kyungae Moon, Jinwoong Kim, 

“Measurement of depth representation using integral imaging for quality evaluation of computer-

generated hologram,” Three-Dimensional Imaging, Visualization, and Display 2014, 911706 (2014, 

Baltimore, USA). 

10. Soohyun Lee, Hyon-Gon Choo, Kyungae Moon, and Jinwoong Kim, “Floating image display 

system combined with eye-tracking for simulating observation of holographic display,” 3DSA 2014 

(2014, Seoul, Korea) 

11. Seunghyup Yoo, Donggeon Han, Hoyeon Kim, Sooyeon Lim, Soohyun Lee, “Metal-based 

transparent electrodes for versatile organic photovoltaics,” 2011 Spring European Material 

Research Society Meeting (2010, Nice, France) 

 

 

http://www.spie.org/profile/Soohyun.Lee-4069113
http://www.spie.org/profile/Gyeongwoo.Cheon-100611
http://www.spie.org/profile/Jongmin.Kim-2097
http://www.spie.org/profile/Dongki.Jo-4110261
http://www.spie.org/profile/Jin.Kang-27323
http://www.spie.org/profile/Jin.Kang-27323
javascript:void(0)
javascript:void(0)

