
INFORMATION EXCHANGE AND CONFLICT

RESOLUTION IN PARTICLE SWARM OPTIMIZATION

VARIANTS

by

Stephyn G. W. Butcher

A dissertation submitted to The Johns Hopkins University in conformity with the
requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland
April, 2018

c© 2018 Stephyn G. W. Butcher
All rights reserved



Abstract

Single population, biologically-inspired algorithms such as Genetic Algorithm and

Particle Swarm Optimization are effective tools for solving a variety of optimization

problems. Like many such algorithms, however, they fall victim to the curse of di-

mensionality. Additionally, these algorithms often suffer from a phenomenon known

as hitchhiking where improved solutions are not unequivocally better for all vari-

ables. Insofar as individuals within these populations are deemed to be competitive,

one solution to both the curse of dimensionality and the problem of hitchhiking has

been to introduce more cooperation. These multi-population algorithms cooperate

by decomposing a problem into parts and assigning a population to each part.

Factored Evolutionary Algorithms (FEA) generalize this decomposition and coop-

eration to any evolutionary algorithm. A key element of FEA is a global solution that

provides missing information to individual populations and coordinates them. This

dissertation extends FEA to the distributed case by having individual populations

maintain and coordinate local solutions that maintain consensus. This Distributed
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ABSTRACT

FEA (DFEA) is demonstrated to perform well on a variety of problems and, some-

times, even if consensus is lost. However, DFEA fails to maintain the same semantics

as FEA.

To address this issue, we develop an alternative framework to the “cooperation

versus competition” dichotomy. In this framework, information flows are modeled as

a blackboard architecture. Changes in the blackboard are modeled as merge opera-

tions that require conflict resolution between existing and candidate values. Conflict

resolution is handled using Pareto efficiency, which avoids hitchhiking. We apply this

framework to FEA and DFEA and develop revised DFEA, which performs identically

to FEA.

We then apply our framework to a single population algorithm, Particle Swarm

Optimization (PSO), to create Pareto Improving PSO (PI-PSO). We demonstrate

that PI-PSO outperforms PSO and sometimes FEA-PSO, often with fewer individu-

als.
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ABSTRACT

Finally, we extend our information based approach by implementing parallel, dis-

tributed versions of FEA and DFEA using the Actor model. The Actor model is

based on message passing, which accords well with our information-centric frame-

work. We use validation experiments to verify that we have successfully implemented

the semantics of the serial versions of FEA and DFEA.

Primary Reader: John Sheppard

Secondary Readers: Scott Smith, Brian Haberman
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Chapter 1

Introduction

There are many complex optimization problems that cannot be solved using exact

methods. Inference in Bayesian networks, learning the weights of artificial neural

networks [1], determining efficient power usage in a sensor network [2] or finding

the best configuration for a satellite antenna [3] are all examples of such problems.

Because we cannot use exact methods, we turn to approximation methods and must

make do with approximate answers.

Nevertheless, we are always looking for ways to improve the performance of these

algorithms so that they find better approximations. Additionally, the No Free Lunch

Theorem (NFLT) [4], proves no single algorithm will outperform random search across

all optimization problems. So we will need many good (and sometimes just “good

enough”) algorithms.

1



CHAPTER 1. INTRODUCTION

There are whole host of these approximation methods including gradient descent,

methods inspired by physics (Simulated Annealing), and methods inspired by biology

(Genetic Algorithm, GA; [5]. Particle Swarm Optimization, PSO; [6]). Most of the

biologically-based algorithms are based on single populations of competing individuals

representing full candidate solutions. As the algorithms manipulate these individuals

to search the solution-space, the best of them emerges as the approximate solution

to our problem.

Research has shown that one way to improve our approximations is to decompose

the problem into sub-problems. These algorithms, such as Cooperative Coevolution-

ary Genetic Algorithm (CCGA) [7] and Cooperative Particle Swarm Optimization

(CPSO) [8], decompose a problem into disjoint subproblems and assign a GA or PSO

to each subproblem. The partial solutions are then recombined into a solution to the

full problem. This cooperative approach helps fight against the curse of dimension-

ality.

The curse of dimensionality describes the phenomenon where, as the dimensional-

ity of a problem increases, we must increase the number of particles we use exponen-

tially, if we are to search the space with the same density. Breaking a problem into

sub-problems helps tackle the curse of dimensionality without completely solving it.

Unfortunately, breaking a problem into sub-problems creates issues of its own, includ-

ing the issue of pseudo-optima. A pseudo-minimum, for example, exists if the global
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minimum in the sub-problem is not also the global minimum in the full problem.

Factored Evolutionary Algorithms (FEA) [9] are a multi-population variant of sin-

gle population-based algorithms such as Particle Swarm Optimization and Genetic

Algorithm. FEA is also very much like CCGA and CPSO but expands on those

algorithms in important ways. First, FEA can use any many different optimization

algorithms as the actual sub-problem optimizer. Second, FEA decomposes the prob-

lem into factors of possibly differing sizes with overlap—they are no longer disjoint

but can have variables in common. And like CCGA and CPSO, this permits FEA

tackle the curse of dimensionality. However, with the proper overlap, FEA can also

prevent pseudo-optima.

Another issue arises in many of these single population algorithms such as GA

and PSO called hitchhiking. These algorithms work by manipulating the individuals

that represent full solutions towards better and better values. Hitchhiking occurs

when the replacement solution is better overall than the current solution but some

individual variables end up with worse values than those in the solution that was

replaced. Because CCGA, CPSO and FEA decompose the problem, they all mitigate

against hitchhiking although in slightly different ways.

If FEA decomposes a problem into subproblems and a “subpopulation” is assigned

to each subproblem, which contains a subset of variables needed for a full solution,

how are individuals in these subpopulations evaluated? FEA maintains a global

3
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context that can be used by an subpopulation to fill in the missing values—values

in the problem but not in the subpopulation. The challenge for this approach is

that the global context is not effective in a distributed setting. Many optimization

problems are computationally intensive. In an age of multi-core, networked machines,

a distributed version of the algorithm would allow us to harness those machines.

The first problem this dissertation seeks to address is FEA’s centralized context.

We solve this problem by introducing Distributed Factored Evolutionary Algorithms

(DFEA), which assigns a local context to each subpopulation. We will show that

DFEA often performs nearly as well as FEA and still better than the corresponding

single population EA. This success is limited, however.

The problem is that FEA and DFEA should, theoretically, perform equally as

well given the same starting conditions and we can demonstrate that they do not. In

order to determine why the performance of FEA and DFEA diverge, we look at the

dichotomy of cooperation versus competition that is often invoked as the reason multi-

population algorithms are more successful than their single-population counterparts.

Although this framework is evocative, it does not help us when both the algorithms

are multi-population algorithms that appear to be cooperating to the same degree.

The problem is that we need a different framework for analyzing these algorithms.

To solve that problem, we develop a new framework that describes the information

flows and conflict resolution mechanism that are central to these algorithms. We
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model information flows as a blackboard architecture [10] where subpopulations are

communicating through the blackboard to suggest their best values for the parameters

in the problem. The subpopulations also read the blackboard to obtain values that

they need in order to optimize the subset of parameters assigned to them. Because

subproblems overlap, there must be a conflict resolution mechanism when more than

one subpopulation is suggesting a new value for a parameter. Looking at FEA and the

algorithms that preceded it, we identified that the conflict resolution mechanism is

guided by Pareto efficiency [11]. The conflict resolution process only accepts values for

individual variables that are Pareto improvements; the new value replaces an existing

value in the global context only if it improves the overall solution. This variable-by-

variable approach to determining better solutions is what eliminates hitchhiking. By

using the framework on FEA, we are better able to understand how the algorithm

works. The new framework enables us to better understand these algorithms whereas

the framework of cooperation and competition did not.

However, we still have the problem of dissimilar performance for FEA and DFEA.

We are able to further validate the usefulness of our framework by applying it to

DFEA and determining where the information exchange differs from FEA. After

determining these differences, we develop a revised DFEA that solves the problem of

divergent performance between the two algorithms.

Based on the insights gained from applying the new blackboard and Pareto-based
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framework to FEA and DFEA, we return to the original problems that FEA and

DFEA were meant to solve: curse of dimensionality and hitchhiking. We model the

information exchange and conflict resolution in PSO exactly the same way we did in

FEA and DFEA. The result is a new algorithm, Pareto Improving Particle Swarm

Optimization (PI-PSO), that does not exhibit hitchhiking. As “solving’ the curse

of dimensionality is relative, PI-PSO solves that problem by outperforming PSO on

most experiments and performing as well as FEA.

Finally, we return to our original problem of creating a distributed version of FEA.

To solve this problem we implement both FEA and DFEA using the Actor model

[12]. We are able to validate that the Actor model implementations preserve the

information exchange and conflict resolution semantics as the original algorithms.

1.1 Contributions

Science is itself subject to a kind of Linnaean classification system with its own

domains, kingdoms, phyla, classes, orders, families, genera, and species. Although our

results ultimately reside in the domain of Computer Science and, within Computer

Science, Artificial Intelligence, the problems we address lie on the outer limbs of that

family tree, among the genera and species as do our contributions.

In this dissertation, we make several significant contributions to the families of
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algorithms generally classified as Evolutionary Computation and Swarm Intelligence.

These algorithms are used to solve complex optimization problems. The contributions

are:

• Distributed Factored Evolutionary Algorithms: We develop the Dis-

tributed Factored Evolutionary Algorithms. DFEA is a extension of Factored

Evolutionary Algorithms [9] in the same way that Distributed Overlapping

Swarm Intelligence (DOSI) [13] extended Overlapping Swarm Intelligence (OSI)

[14] to the distributed case. Like FEA, DFEA can be used with any “evolu-

tionary algorithm” (for example, Genetic Algorithm and Particle Swarm Opti-

mization).

• Information Exchange and Conflict Resolution Framework: FEA and

DFEA are both the latest in a long line of multi-population algorithms that have

emphasized the conflicting roles of cooperation and competition in biologically-

inspired algorithms. As an alternative we develop a framework based on in-

formation exchange via a blackboard architecture and conflict resolution using

Pareto efficiency.

• Revised DFEA: FEA and DFEA (as well as OSI and DOSI) have always had

inconsistent performance when, at least on the surface, it had seemed like the

distributed versions should perform equally as well as the centralized versions.
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By applying the Information Exchange and Conflict Resolution Framework to

DFEA, we identify differences in information flows between FEA and DFEA.

This enables us to revise DFEA to match the information semantics of FEA. As

a result, FEA and DFEA perform identically under identical initial conditions.

• Pareto Improving Particle Swarm Optimization: We apply our Informa-

tion Exchange and Conflict Resolution framework to the selection of the gbest

in the gbest Particle Swarm Optimization algorithm. By making the gbest a

blackboard architecture rather than a simple cache, and extending variable by

variable conflict resolution to particles, we create a single population algorithm

that performs on a par with FEA. We also examine the comparative perfor-

mance and scaling characteristics of the this PI-PSO as compared to PSO.

• Actor-Based DFEA: As developed, DFEA is distributed only in terms of state

but leaves open questions of concurrency, parallelism, and distributed execution.

We provide an implementation based on the Actor model that explores the

implications of parallelism and asynchrony for our blackboard architecture.

1.2 Overview

One of the primary contributions of this dissertation focuses on the development

of a framework for thinking about and analyzing a certain class of multi-population
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evolutionary algorithms used for optimization.

In Chapter 2 we discuss the relevant background in stochastic local optimization.

This includes the problems these algorithms encounter such as the curse of dimension-

ality and “hitchhiking” as well as unsurmountable obstacles such as the conclusions

of the No Free Lunch Theorem. We review the major stochastic local search algo-

rithms such as Hill Climbing and Simulated Annealing, as well as the biologically

inspired, population-based algorithms such as the Genetic Algorithm and Particle

Swarm Optimization. We conclude with a detailed review of the multi-population

Factored Evolutionary Algorithms which are the starting point for the dissertation.

In Chapter 3, we develop a distributed version of FEA called Distributed Factored

Evolutionary Algorithms. Just as FEA generalized OSI [2] from swarm intelligence to

any evolutionary algorithm, DFEA generalizes DOSI [13] to the distributed case. In

FEA, the various populations must share a global context. In DFEA, each population

has its own context that must be coordinated with the other populations. For best

performance, they must maintain identical values for those local solutions or full con-

sensus. Our hypothesis is that, under full consensus, DFEA will perform equivalently

to FEA and better than the single population version of the particular evolutionary

algorithm. For these experiments we concentrate on Particle Swarm Optimization as

the evolutionary algorithm in FEA.

We also perform experiments where full consensus between the individual contexts
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is relaxed. Our hypothesis here is that the performance of DFEA will degrade when

we relax consensus but only to the extent that variables in the optimization problem

are interdependent.

In Chapter 4, we develop a different framework for thinking about multi-population

algorithms such as FEA and DFEA. The line of research of which FEA and DFEA

are a part often puts these algorithms within a spectrum of cooperation and com-

petition. As an alternative, we develop a framework based on information exchange

via a blackboard architecture and conflict resolution based on Pareto efficiency. We

apply this framework to FEA to better understand how FEA is able to improve over

single population algorithms and the evolution of FEA’s blackboard over time.

In Chapter 5 we use the framework developed previously to examine the DFEA

version developed in Chapter 3. By applying the framework to DFEA, we are able

to determine how the information flows for DFEA and FEA differ over time, which

explains the divergent performance of the two algorithms. We then use the framework

to revise DFEA. We argue that previously observed divergence in performance of

DFEA and FEA will be eliminated.

We also examine relaxed consensus with this revised DFEA. As before, we hy-

pothesize that as consensus is relaxed, the DFEA’s performance will degrade.

In Chapter 6, we use our framework from Chapter 4 again and apply it to Particle

Swarm Optimization. We consider a single population PSO as having the same
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kinds of information flows as FEA and apply a blackboard architecture and conflict

resolution to the maintenance of the gbest rather than the selection of the gbest.

We hypothesize that this Pareto Improving Particle Swarm Optimization (PI-PSO)

algorithm will perform better than the standard gbest PSO and equivalently with

FEA-PSO.

In Chapter 7 we examine the relative performance and scaling characteristics of PI-

PSO as compared to PSO. Most experiments in evolutionary computation are carried

out on a variety of problems of a single dimension with the same number of candidate

solutions. We hypothesize, however, that many algorithms might have a certain

amount of overhead; a more complicated or larger problem is required before their

performance exceeds the performance of simpler algorithms. Additionally, while it is

generally fair to keep as many parameters the same when comparing algorithms, once

it has been demonstrated that one algorithm is better than another, it is instructive

to see just how much better it is.

In order to test these hypotheses we perform a number of experiments between

PI-PSO and PSO with varying number of candidates and varying dimensions. The

general hypothesis is that when PI-PSO performs worse than PSO, it will perform

better on a problem of higher dimension. Additionally, we hypothesize that when

PI-PSO does perform better than PSO, it will do so with fewer particles.

DFEA is distributed in the sense of having a distributed state that must be kept in
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sync to some degree. In Chapter 8 we implement a parallel, distributed version of FEA

and DFEA using the Actor model. Using validation experiments, we demonstrate that

the Actor implementations preserve the performance of FEA and DFEA.

12



Chapter 2

Background

In this chapter we discuss Factored Evolutionary Algorithms (FEA) [9] and their

origins in the larger context of stochastic local search. This background informs

discussions in the chapters that follow where we will extend FEAs to the distributed

case (DFEAs), develop an alternative framework for analyzing these multi-population

algorithms, revise DFEA, and devise variant of the canonical gbest Particle Swarm

Optimization Algorithm.

2.1 Stochastic Local Search

The No Free Lunch Theorem for Optimization (NFLT) [4] proves that no al-

gorithm can outperform random search averaged across all optimization problems.
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Aside from the obvious implication that we need more than one search algorithm, the

emphasis on random search is interesting because we can view random search as pure

exploration. If we look at search algorithms in terms of balancing exploration and

exploitation, we can interpret at least part of the NFLT result to mean that there will

always be some problem for which our exploitation mechanism is a poor match. For

example, our algorithm might rely on exploring and exploiting a local gradient in a

continuously valued function that simply does not exist in an problem with variables

that take on categorical values. So a broad array of algorithms and techniques will be

required to solve all of our potential optimization problems. This may be analogous

to inductive and representational bias in Machine Learning [15]. Additionally, the

“solutions” in many cases will be approximate and even then we may have to accept

solutions that are good enough.

One such category of algorithms is called local search. While not all such algo-

rithms have a well-developed stochastic component, enough of them do that we will

refer to them collectively as stochastic local search [16]. In stochastic local search

this randomness is the central engine of both exploration and exploitation. The al-

gorithms mainly differ in how they harness the information they obtain as they face

the Multi-Armed Bandit problem [17]. At least for optimization, the Multi-Armed

Bandit problem presents itself as a dilemma between exploiting a current solution

which may turn out to be a dead-end or exploring new vistas that may not pay off
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better than the current solution. As we will see, not all algorithms neatly separate

their exploration and exploitation so they can be difficult to identify and separate out

the various ways balance they balance these competing aims.

2.1.1 Notation

Throughout this dissertation, unless otherwise specified, lowercase and uppercase

Latin characters like x, xi, c refer to scalar values. They may also refer to functions

as in g() and f() and records or objects such as p.x and S.best. The only exceptions

are in the case of X and R which refer to variables. Thus Xi is the variable X for

the i-th dimension and xi is the value of that variable.

In mathematics, we often only have vectors and matrices. In algorithms, we have

collections: lists, vectors, arrays, sets, and hashmaps, to name but a few. In general,

X refers to a collection. The type of collection may not matter although sometimes it

does. If we use cj to refer to a single value in c then it is an ordered collection and if

we use an iterator of some kind as in x ∈ x, it is an unordered collection. However, we

will often use c[j] in algorithms during assignment as cj ← 2 does not quite capture

what is meant in programming in this case. Finally, we can have nested collections

which are indicated by a bold, script: X or A. Again, the context will indicate if

they are ordered or unordered collections.

No notation is completely airtight so any exceptions will be noted.
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2.1.2 Challenges for Optimization

Consider a continuous real-valued function f() of d variables, X ∈ Rd. We want

to find an optimal value, x∗, for X, either as a global minimum or a global maximum.

Without loss of generality, we will consider the case of a global minimum.

As an illustration of such a function, we will take the Eggholder benchmark opti-

mization function [18].

f(X) =
d−1∑
i=1

[−(Xi+1 + 47) sin
√
|Xi+1 +Xi/2 + 47| −Xi sin

√
|Xi − (Xi+1 + 47)|

Figure 2.1 shows a cross section of a two dimensional (2d) version of the Eggholder

function plotted over the open interval (−512, 512). We have set X2 to −400 for the

purposes of discussion.

The general challenge for any optimization algorithm is to find the global minimum

when there are many local minina. The Eggholder function is a good example of

this challenge; one that often increases as the number of dimensions in the problem

increase. A perhaps less obvious challenge is existence of plateaus.

To illustrate that particular challenge for optimization algorithms, let us consider

the Michalewicz benchmark optimization function [8].

f(X) = −Σd
i=1 sin(Xi)[sin(

iX2
i

π
)]2m

16



CHAPTER 2. BACKGROUND

Figure 2.1: Example Optimization Problem with Multiple Optima
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Eggholder function at x2 = 400

with m = 10. We have plotted a cross-section of the 2d version of the Michalewicz

function on the open interval (−10, 10) with X2 = 0 (Figure 2.2). As we can see,

there is a large plateau around X1 = 0 and the smaller plateaus throughout the entire

interval.

2.1.3 Hill climbing

As with all such algorithms, there are many variants of Hill Climbing (HC) [19].

Because we are only interested in the broad conceptual themes at this juncture, we

will concentrate on the simplest one.

We begin with a candidate solution, x, generated at random. We generate po-

tentially better candidates by using the notion of a neighborhood whereby we take x
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Figure 2.2: Optimization Problem with Multiple Optima and Plateaus
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and use the neighborhood function to calculate possibly better candidate solutions

“near” x. One way to generate x′ is by looking in some ∆-neighborhood of x so that

x′ = x + ∆x.

If f(x′) ≤ f(x) then we will take x′ as the new candidate solution; otherwise,

we keep x. The “less than or equals” allows the algorithm to traverse plateaus to

some degree. More generally, for d > 1, we will examine each xi in turn and pick

the first change with an improvement (“Simple Hill Climbing”). Alternatives include

picking the change with the most improvement (“Steepest Ascent Hill Climbing”)

and generating xi at random (“Stochastic Hill Climbing”). The algorithm continues

until one more more stopping criteria are met as shown in Algorithm 2.1 and the

candidate solution is returned. Throughout this dissertation we refer to the result as
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Algorithm 2.1 Simple Hill Climbing

Input: Objective function f
Output: Candidate Solution x

1: x← initialize()
2: repeat
3: x′ ← neighbor(x)
4: if f(x′) ≤ f(x) then
5: x← x′

6: end if
7: until stopping criteria
8: return x

the “candidate solution” because we are never guaranteed that the solution that was

found was actually the global minimum.

As a side note, we may sometimes use multiple stopping criteria (Line 7) because

we may want to stop if one of any number of criteria are met. For example, we could

stop if we have run some fixed number of iterations or the candidate has stopped

improving. This will be true of all algorithms in this dissertation where stopping

criteria are referenced even though we will always use a single criterion, a fixed

number of iterations, for our experiments.

Considering Algorithm 2.1 applied to the function in Figure 2.2, the most obvious

problem is that Simple Hill Climbing will get stuck in local minima. Although this

depends a bit on the definition of the neighbor function, if the neighbood delta is too

large, Hill Climbing becomes random search. For example, if we start at x1 = 0, we

are likely to move in the direction of the local minimum at about x1 = −2.4 never
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getting to either x1 = −8.0 or x1 = 5.0. There are several alternatives to Simple Hill

Climbing that attempt to solve this problem.

One alternative is simply to run the algorithm multiple times. With Random

Restart Hill Climbing, a Simple Hill Climbing algorithm is executed n times from a

new starting point and the best X found is kept.

2.1.4 Simulated Annealing

Simulated Annealing (SA) [20] is an algorithm related to Hill Climbing with a

critical difference. It sometimes accepts an inferior successor candidate. The basic

algorithm is shown in Algorithm 2.2.

The main difference between the Hill Climbing and Simulated Annealing is in Line

7. Unlike Simple Hill Climbing, Simulated Annealing adds an else branch that enter-

tains the possibility of accepting an x′ that is actually inferior to x. The probability

of inferior exchanges is controlled by the annealing schedule for τ (Line 13). Based on

this schedule, p slowly decreases over time making inferior changes less likely (Line

8).

This particular version of Simulated Annealing is called Boltzmann annealing and

has been proven to converge to the global optimum if τ is decreased logarithmically

with time, t [21]. In practical applications, many more iterations may be required

because of the stochastic nature of the algorithm. Both Hill Climbing and Simulated
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Algorithm 2.2 Simulated Annealing

Input: Objective function f
Output: Candidate solution x

1: τ ← large value
2: x← initialize()
3: repeat
4: x′ ← neighbor(x)
5: if f(x′) ≤ f(x) then
6: x← x′

7: else
8: p← e−

f(X′)−f(X)
τ

9: if rand() < p then
10: x← x′

11: end if
12: end if
13: τ ← τ −∆τ
14: until stopping criteria
15: return x

Annealing harness a random component for exploration. In Hill Climbing, there

is a strong exploitation strategy in accepting only successors that do not make the

objective function worse. In Simulated Annealing, this same strategy exists along with

an augmenting exploration strategy that sometimes accepts transitions to inferior

solutions. This is what permits SA to escape local minima. However, as we move to

more complicated algorithms, the “split” between exploration and exploitation can

get less clear.

In many ways, some of the key differences between the stochastic local search

algorithms reside exactly in how they balance exploration and exploitation. Another

key difference is how many candidate solutions they work with at once.
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Both Hill Climbing and Simulated Annealing have variants that keep track of

multiple candidate solutions and thus can be thought of running many restarts in

parallel. If we think of these multiple candidates as individuals in a population, then

it becomes easy to entertain the idea of using drawing inspiration from biological

processes to design new, different and, hopefully, better algorithms.

2.1.5 Biologically Inspired Algorithms

There are many search and optimization algorithms inspired by nature and nat-

ural processes [22]. Simulated Annealing itself is inspired by the controlled cooling

of metals and the properties of the resulting crystalline structures. Other algorithms

are inspired by biological processes. In many of the biologically-inspired algorithms,

individuals in populations interact in more direct ways as part of the combined ex-

ploration and exploitation strategy. While there are many such algorithms, we will

focus on two of them: Genetic Algorithm and Particle Swarm Optimization.

2.1.5.1 Genetic Algorithm

The Genetic Algorithm (GA) is attributed to Holland [5]. The canonical version

(Algorithm 2.3) follows the general outlines of most population-based algorithms for

stochastic local search. We can think of each individual as a record, individual,

with fields genes and fitness. The algorithm starts out with a randomly initialized
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Algorithm 2.3 Genetic Algorithm

Input: Objective function f , probability of crossover pcrossover, probability of
mutation pmutation
Output: Candidate solution x

1: P← initialize()
2: P← evaluate(P)
3: repeat
4: P′ ← List()
5: for i in len(P)/2 do
6: parent1, parent2 ← select( P)
7: if rand() < pcrossover then
8: i← randint(len(parent1.x))
9: child1.genes← parent1.genes[0 : i] + parent2.genes[i :]

10: child2.genes← parent2.genes[0 : i] + parent1.genes[i :]
11: parent1, parent2 ← child1, child2
12: end if
13: parent1 ← mutate(pmutation, parent1)
14: parent2 ← mutate(pmutation, parent2)
15: P ′.append(parent1)
16: P′.append(parent2)
17: end for
18: P← evaluate(P′)
19: until stopping criteria met
20: x← decode(best(P).genes)
21: return x

population of candidate solutions (Line 1), which is then evaluated (Line 2), filling in

the fitness fields. The algorithm then proceeds to generate a successor population

(Lines 5-17).

In the canonical GA, even if the underlying optimization problem is a contin-

uous numerical function, the candidate solutions are represented as strings of bits

(“bit-strings”). These bit-strings are interpreted to be a genotypic representation of
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a candidate solution with the real valued decoding interpreted as a phenotypic ex-

pression of those genes. The new population is created by manipulating the genomic

representation of individuals in each generation to produce a new one.

First, a set of parents is selected to generate offspring. The selection was originally

through Weighted Roulette Wheel selection where individuals were chosen (with re-

placement) probabilistically proportionate to their fitness (Line 6). The pair selected

then probabilistically generate offspring according to the probability of crossover,

pcrossover (Line 7). If the test fails, the pair are passed to the next step. If crossover

does occur, a locus is chosen randomly on the parents separating each into two sub-

strings: A = parentj.genes[0 : i] and B = parentj.genes[i :]. The children are

assembled by concatenating the substrings from different parents: Aparent1 +Bparent2

and Aparent2 +Bparent1 (Lines 8 - 11).

In the canonical GA, the mutate operator does a bit-by-bit test with pmutation to

see if the bit is flipped. In other formulations, we can do one test to see if a child is

mutated and then pick a random location to flip the bit. After the algorithm runs for

a specified number of generations (Line 19), the algorithm returns the decoded genes

for the best of the final population as the candidate solution (Line 21).

One peculiarity of GA is that it may stumble upon a great solution in Generation

257 and then lose that solution in the next generation, never to recover it. In order

to combat this problem, elitism is sometimes introduced into the algorithm [23].
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The elitism “operator” always copies the best individual of a generation into the next

generation. Unfortunately, elitism can exacerbate a different problem in GA known as

“premature convergence” [24]. Premature convergence happens when the population

has become homogeneous (or mostly so) with respect a particularly fit individual that

represents a local minima. Elitism can encourage this genetic homogeneity.

Following on the previous discussion of exploration versus exploitation, we can see

that many of these elements are a bit muddled together in the Genetic Algorithm.

Selection is probabilistic (exploration), but we are more likely to pick fit individuals

(exploitation). Crossover generates new candidates (exploration) but only out of the

existing genetic material (exploitation). Mutation may perhaps be the only operator

that involves pure exploration.

Perhaps more importantly for the discussion yet to come, one of the most in-

teresting things about the Genetic Algorithm and its accompanying literature is the

importance of analogy for the algorithm. The central analogy of the Genetic Algo-

rithm is “Survival of the Fittest” or competition. In the GA, the members of the

population compete for the chance to spread their genes into the next generation.

Fit individuals are selected and, through crossover and mutation, produce hopefully

more fit variants as offspring. If an individual is fit enough, it is selected many times

to participate, and many variants of its genetic material end up in the successor

generation.
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Algorithm 2.4 Particle Swarm Optimization

Input: Objective function f , inertia ω, exploration parameters φ1, φ2

Output: Candidate solution x

1: P← initialize()
2: repeat
3: for p in P do
4: p.v← ωp.v + φ1u1(gbest.x− p.x) + φ2u2(p.pbest.x− p.x)
5: p.x← p.x + p.v
6: if f(p.x) < f(p.pbest.x) then
7: p.pbest← p
8: end if
9: end for

10: gbest← find-global-best(gbest,P)
11: until stopping criteria
12: return gbest.x

2.1.5.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another biologically inspired algorithm,

although this time the cues are taken from groups or flocks of birds, fish and even

people [25]. Here we describe the gbest variant of PSO [6].

The PSO algorithm operates on a population (swarm) of candidate solutions (par-

ticles), Algorithm 2.4. Each particle has a position, x; velocity, v; fitness, f(x); and

the best position it has attained so far or “personal best”, pbest. The algorithm be-

gins with particles initialized to random positions (Line 1). Each iteration updates

every particle’s velocity and position and, if warranted, its pbest (Lines 3-9). After

all particles are updated, the global best, gbest, is updated from the swarm’s current

set of personal bests (Line 10). Because all particles are updated before the gbest is
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evaluated as opposed to after each particle is updated, this version simulates a parallel

algorithm [26] instead of an sequential one [6].

The velocity update equation combines three components. The first is the ω in-

ertia component applied to the previous velocity. The second is the public or social

component calculated by taking the difference between the swarm’s global best, gbest,

and the particle’s current position, p.x and then mixing in a randomizing effect calcu-

lated by multiplying φ1 times a vector of random numbers on the interval (0, 1), u1.

The third is the cognitive or individual component calculated by taking the difference

between the particle’s personal best’s position, p.pbest.x, and the particle’s current

position, p.x and then mixing in a randomizing effect calculated by multiplying φ2

times a vector of random numbers on the interval (0, 1), u2.

We can once again see a mixture of exploration and exploitation. The second

and third components include both exploitation by taking the difference between a

best position and the current position and exploration by adjusting by an exploration

constant, φi. Because φi is usually between 1 and 2 and each element of ui is between

0 and 1, the exploration factor ranges from 0 to 2.

As each new particle position is calculated, we compare f(p.pbest.x) and f(p.x)

to determine if a new personal best has been achieved (Lines 2-4). After all particles’

pbests are updated, we pick the best as the new global best (Line 10, Algorithm 2.5).

Because each pbest is only updated if p.x is better than the current pbest.x, and gbest
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Algorithm 2.5 PSO find-global-best

Input: Current global best gbest, Current swarm P
Output: New global best gbest

1: for p in P do
2: if f(p.pbest.x) < f(gbest.x) then
3: gbest← p.pbest
4: end if
5: end for
6: return gbest

is only updated if a pbest is better than gbest, the gbest is a non-decreasing function

of pbests.

The update process is repeated a fixed number of iterations or until some other

stopping criterion is met. The gbest (or just the gbest’s position) is returned as the

candidate solution (Line 6).

2.1.6 Challenges

Although both Genetic Algorithm and Particle Swarm Optimization have been

quite successful, they are not without problems. First, like all stochastic local search

algorithms, they are subject to the curse of dimensionality [27, 28, 29]. As the dimen-

sionality of a problem increases, other things being equal, the number of individuals

required in the population to achieve the same level of performance must generally

increase exponentially [8]. Second, both algorithms are susceptible to a phenomenon

known in the GA literature as hitchhiking [30]. In the PSO literature, this has been
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Table 2.1: Hitchhiking in PSO

pbestj X f(x)

1 [1.53, 1.84, 5.29, 0.59] 34.06
2 (gbestnew) [0.42, 2.01, 4.76, 1.84] 30.26
3 [3.23, 0.72, 4.68, 0.47] 33.07
4 [2.83, 3.83, 2.71, 1.27] 31.64
gbestold [2.39, 1.24, 5.71, 0.34] 39.97

called “Two Steps Forward, One Step Back” [8]. We will use the term hitchhiking to

describe the phenomena in both GA and PSO.

Hitchhiking is most easily explained with a concrete example. Suppose we are

trying to minimize the four-dimensional Sphere function (
∑4

i=1X
2
i ) on the interval

[0, 10]4 with four particles, and we find ourselves at the end of an arbitrary iteration

ready to call Algorithm 2.5. Although hitchhiking can occur in all functions, we use

the Sphere function for this example because it is separable. Separability permits the

unambiguous attribution of changes in individual variables to overall fitness. If xi

increases, f(x) increases; if xi decreases, f(x) decreases.

Table 2.1 shows current pbests and fitnesses of the four particles. Particle 1’s pbest

has a fitness of 34.06; Particle 2’s has a fitness of 30.26; Particle 3, 33.07; and Particle

4, 31.64. The current global best, gbestold, is shown at the bottom of Table 2.1. As

previously mentioned, the current gbest must always be one of the particles’ pbest in

the version of PSO we are describing. We do not see that here because the pbests

have been overwritten in the previous loop. This means that if no pbest was better
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than gbestold, then gbestold would have to be one of the pbests in the table. Because

Particle 2’s personal best has the lowest fitness, 30.26, it will become the new global

best, gbestnew.

However, if we make a pairwise comparisons for each xi, we can see that while

the Particle 2 was a global improvement, it was not an improvement for individual

variables. A lower value of Xi is unambiguously better in the Sphere function so we

can see that X1 in gbestold was 2.39 while it is 0.42 in gbestnew. This is similarly true

for X3. However, X2 in gbestnew is actually larger than its counterpart in gbestold,

2.01 versus 1.24. The same is true for X4. The individually inferior values for X2 and

X4 (red/italics) are hitchhikers.

We can see how this might generally arise in the Sphere function by looking at a

Figure 2.3: Selecting gbest in PSO (Sphere) and Hitchhiking
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contour or isoquant plot of the Sphere function and hypothetical pbests. Figure 2.3

shows this for the case of two variables. In this figure, the arcs represent the contours

of the Sphere function for two variables, X1 and X2. The current gbest = (4.2, 3.9)

also defines a contour (dotted) that is the dividing line between pbests that have a

better fitness (a lower contour) or a worse fitness (a higher contour). Additionally,

the gray areas denote the set of points where the pbest lies on a lower contour than

the gbest and thus has a better fitness but one or the other of the variables is larger

than its value in gbest. All points in the gray zones include hitchhiking. We can thus

see that pbests C, D, E, F are all inferior to the current gbest, and pbests A, B and G

involve hitchhikers. Only pbest H has both a better fitness and no hitchhiking. Thus

if H did not exist, pbest A would be chosen as gbest, hitchhikers and all. Although

throughout our research we concentrate on eliminating hitchhikers, it is not clear

that all hitchhiking is bad. Like the acceptance of inferior solutions in Simulated

Annealing, at least some hitchhiking could actually help the algorithm find the global

solution.

2.2 Factored Evolutionary Algorithms

We previously mentioned the importance placed on competition in biologically

inspired algorithms, especially the Genetic Algorithm. One approach researchers have
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taken to solving the problem of hitchhiking in both GA and PSO is by introducing

cooperation via multi-population versions of the algorithms. One such family of multi-

population algorithms is Factored Evolutionary Algorithms.

Factored Evolutionary Algorithms [9, 31, 32] constitute a family of algorithms that

decompose an optimization problem into subsets of variables and apply individual

populations to those factors. They are considered to be a family of algorithms because

any evolutionary algorithm can be used for optimization of a factor. This means there

is an FEA-GA, FEA-PSO, FEA-HC, FEA-SA, etc. All of these share some general

characteristics by virtue of the FEA part but have specific performance characteristics

by virtue of the specific evolutionary algorithm used. In order to better understand

FEA, its use of multiple populations, and the rationale for factoring an optimization

problem, we first discuss the history of the algorithm.

2.2.1 History

As previously discussed, stochastic local search algorithms such as the Genetic

Algorithm and Particle Swarm Optimization are susceptible to the curse of dimen-

sionality. As the size of a problem increases, in general, the resources required for

the same level of performance increase exponentially because the problem space in-

creases exponentially. Additionally, algorithms such as the GA and PSO suffer from

hitchhiking, which appears to be an inherent characteristic of the algorithms. It is
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worth noting that these problems are related. As the size of solutions increase, the

probability of hitchhiking increases as well. We appear to be doubly cursed.

Potter and de Jong developed one of the original approaches to addressing this

issue for the Genetic Algorithm [7]. Their solution was to decompose the problem

down to the individual variables and apply a GA to each variable. At any given mo-

ment, the candidate solution to the problem was the concatenation of the best results

found in each population. For example, if we take a simple 4d problem, we might have

each of X1, X2, X3 and X4 optimized by its own GA. The candidate solution is the

concatenation of the best individuals from the variable-specific GA populations. The

populations thus appeared to be collaborating subspecies each working on a different

section of the problem. This cooperative approach was contrasted with the com-

petitive nature of the canonical Genetic Algorithm and was called the Cooperative

Coevolutionary Genetic Algorithm (CCGA).

Van den Bergh and Engelbrecht [33] applied a CCGA-like version of PSO to train-

ing neural networks. They later generalized their algorithm creating the Cooperative

PSO (CPSO) [8] as an approach to addressing the “Two Steps Forward, One Step

Back” problem, as they characterize hitchhiking in PSO. However, they went a step

further by recognizing that the CCGA approach introduces problems of its own.

Decomposing an optimization problem into its constituent variables and solving

these individually implies strong assumptions about the independence of the vari-
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Figure 2.4: Example Optimization Problem under Different x2 values
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ables’ values. This assumption is true for some problems like Sphere—a fact we have

exploited. However, it is unlikely to hold true for all optimization problems.

In Figure 2.4, we have plotted two cross sections of the Eggholder function from

Section 2.1.2 with different values for X2. The solid (black) line is the same line as

before with X2 = −400. The dotted (red) line is plotted with a value of X2 = 225. If

we compare these two lines, we see that the minimizing values of X1 will sometimes

be at odds with each other. In fact, looking at X1 = −500, under X2 = −400 we are

near a global minimum but under X2 = 225 we are near a global maximum.

In general, if the optimal values of variables are related to each other, then they

must be discovered jointly. In keeping with the genetic metaphor, in the GA literature,

this phenomenon is called epistasis. Potter and de Jong recognized this was a problem.
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In their own research, Van der Bergh and Engelbrecht recognized this was a prob-

lem and that the partitioning of the variables mattered. They labeled this phe-

nomenon pseudo-optima. Again, concentrating on the case of pseudo-minima, one

way that CPSO sought to avoid such problems was by partitioning the problem into

larger groups of variables than CCGA had done. For example, our 4d problem might

be partitioned into (X1, X2) and (X3, X4). Of course, the larger these groups are,

the more likely the individual groups will begin to experience hitchhiking themselves.

Therefore Van der Bergh and Englebrecht introduced the idea of the Hybrid CPSO

that would alternate between a CPSO optimizing smaller groups of variables and a

PSO optimizing all the variables. In keeping with the established metaphor, they

added more competition back into the algorithm.

In a different chain of research starting with Haberman et al. [2] and culminating

with Fortier et al. [34, 35], an alternative solution was developed to address the po-

tential for pseudo-minima in PSO called Overlapping Swarm Intelligence (OSI). The

OSI algorithm differs from the basic PSO in that it subsets the variables of a problem

into overlapping groups, or factors, that are optimized by individual PSOs. This fac-

torization of the optimization problem is similar to how factorization in mathematics

decomposes a polynomial into a product of factors. The important innovation was to

extend the decomposition of a problem into possibly overlapping factors instead of

the CPSO’s disjoint factors.
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OSI has been applied successfully to a wide range of problems, such as energy

aware routing in sensor networks [2], training deep neural networks [14], performing

abductive inference in Bayesian networks [36], and learning Bayesian networks [34,

35].

2.2.2 Algorithm

Factored Evolutionary Algorithms (FEA) [9] generalize and improve upon OSI in

several important ways. First, FEA abstracts out the actual optimization of factors

into an Optimize Step into which any evolutionary algorithm can be inserted. Sec-

ond, while OSI requires the factors to overlap with one another [36], FEA does not.

If we continue our example from above, this means that we could optimize (X1, X2),

(X2, X3) and (X2, X3, X4) as individual factors, and we can use a GA, PSO, or some

other algorithm to do so. FEA is thus more general than both OSI or CPSO because

factors can overlap and because other optimization algorithms can be used. Addi-

tionally, if we wished, we could always include a factor that covered all the variables

(X1, X2, X3, X4). This makes FEA more general than Hybrid CPSO as well.

This enabled FEA to avoid hitchhiking and avoid pseudo-optima while also be-

ing generally applicable to a wide range of evolutionary algorithms, including the

GA, PSO and others. Strasser also demonstrated that CPSO was a special case of

FEA-PSO combination and that FEA-PSO generally performed better than CPSO
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Algorithm 2.6 Factored Evolutionary Algorithms

Input: Function f , Evolutionary Algorithm ea
Output: Context c as candidate solution x

1: X ← factorize(X)
2: S← ea.initialize(f,X )
3: c← initialize-context(S)
4: O ← identify-optimizers(X )
5: repeat
6: repeat
7: for S in S do
8: S ← ea.update(S)
9: end for

10: until stopping criteria
11: c← compete(f,S,O, c)
12: share(f,S, ea, c)
13: until stopping criteria
14: return c

or Hybrid CPSO [9].

The FEA algorithm is shown as Algorithms 2.6–2.8. The main FEA algorithm is

Algorithm 2.6 and basically glues three steps together: Update, Compete, and Share.

The algorithm starts by decomposing X into factors (Line 1). Line 2 uses the con-

stituent Evolutionary Algorithm, A, to initialize the individual populations assigned

to each factor (which we will call “sub” populations), S. Because factors may be of

different sizes and overlap, we must discover the set of optimizers, O. Each element

of O, Oi, is the set of optimizers for Xi. This is accomplished in Line 4. We then

construct an initial context, c, that represents the candidate solution, x (Line 3). The

context could begin as a concatenation of the best individuals of the sub-populations
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as in CCGA or as an algorithm-appropriate individual initialized with values for all

of X. We will use the latter approach in the discussions that follow.

We then begin the main loop (Line 5) that will alternate between the three steps

identified earlier. The Update Step occurs in Lines 6–10. Each population is updated

for one iteration in Line 8 where an iteration might be a single generation in a GA

or single swarm update in a PSO. The number of updates is controlled by the loop.

After the Update Step, FEA applies the Compete Step and Share Step.

The Compete Step is described in Algorithm 2.7. Here the algorithm loops through

each variable, xi. At Line 3, the current context c is evaluated and the value for the

current xi stored (Line 4). The context must be re-evaluated each time through the

loop because it is being updated dynamically, variable by variable. The algorithm

then loops through all the identified optimizers of Xi (Lines 4-11) and compares each

one within the context of c in order to pick the best one. If a better xi is found, then

the context is updated in Line 12. If no better value was found, this is a “no-op.”

The Share Step is described in Algorithm 2.8 and mostly involves bookkeeping

for the individual subpopulations as a result of identifying a new context. In Line

2, we take the set difference of the global context/candidate solution, c, and the

values of X that this particular swarm is optimizing (the actual factor) as the values

of the residuals r. In order for S to use r to evaluate its individuals, we create a

partially applied version of f using r. Next, we identify the worst member of the
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Algorithm 2.7 FEA Compete

Input: Objective function f , Subpopulations S, Optimizers O, Global context c
Output: Global context c

1: for j = 1 to d do
2: fitness← f(c)
3: value← c[j]
4: for i in Oj do
5: candidate← S[i].best
6: c[i]← candidate.x[i]
7: if f(c) ≤ fitness then
8: value← candidate.x[i]
9: fitness← f(c)

10: end if
11: end for
12: c[i]← value
13: end for
14: return c

subpopulation (Line 4) and replace it with the proper values from the context (Line

5), encoding those values if required (for example, for the GA). Finally, we set the

subpopulation’s new, subpopulation specific objective function and re-evaluate the

entire subpopulation (Lines 6 and 7).

2.2.3 Avoiding Hitchhiking

In the previous section, we described FEAs and how they worked. Now we will give

an example of how it avoids hitchhiking. This example covers FEA-PSO and matches

the example given previously in Table 2.1. We will again take up the Sphere function

because its separability property makes changes in the values easy to interpret.
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Algorithm 2.8 FEA Share

Input: Objective function f , Subpopulations S, Evolutionary Algorithm ea,
Context c
Output: Subpopulations S

1: for S in S do
2: r← c \ S.X
3: fr ← partial(f, r)
4: p← ae.worse(S)
5: p.x← c \ r
6: S.f ← fr
7: ae.reevaluate(S)
8: end for

Table 2.2: FEA-PSO Determination of Cnew with Overlapping Factors

gbestj.x X f(x)
c [2.39, 1.24, 5.71, 0.34] 39.97
S1 [1.53, 1.84, ----, ----] 38.45
S2 [----, 2.01, 4.76, ----] 32.53
S3 [----, ----, 4.68, 0.47] 29.37
S4 [----, ----, ----, 1.27] 41.47
cnew [1.53, 1.24, 4.68, 0.34] 25.90

In Table 2.2, we see four subswarms, Si, instead of four particles (previously we

thought of populations as vectors, Si, but here we think of them as records carrying

around additional information). Each swarm optimizes a factor of X that we previ-

ously referred to as S.X. For example, S1 optimizes (X1, X2). The dashes represent

values that are filled in from the context, c. The current context, c, is shown at the

top of the table. The new context is shown at the bottom of the table.

We assume we have just completed an arbitrary Optimize Step and have entered

the Compete Step shown in Algorithm 2.7. Looking down the columns for X1, X2,
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etc., we see that X1 only has the one optimizer, S1. Following Algorithm 2.7, we try

S1.gbest.x1 = 1.53 in c and discover that it is better than the existing value c1 = 2.39.

The new context, cnew, is updated with c1 = 1.53 (blue/bold).

In contrast, if we look at the column for X2, we will see that both S1 and S2

are optimizers for X2. Additionally, neither of the values S1.gbest.x2 = 1.84 or

S2.gbest.x2 = 2.01 are better than the existing value of c2 = 1.24 (blue/bold). There-

fore c2 remains unchanged in the new context, cnew. Repeating this procedure for X3

sees the context updated with S3.gbest.x3 and c4 remaining unchanged. Because the

successor candidate is constructed using variable by variable comparisons, there is no

hitchhiking. Additionally, with overlapping swarms, we have more values for each Xi

to chose from and we may avoid pseudo-minima. These are themes that will recur

throughout this dissertation.

2.3 Summary

There are many categories of optimization algorithms not all of which are ap-

plicable to all problems. For example, it is difficult if not impossible to conceive of

how we might apply an analytical approach to optimization to the parameters of a

simulation. One category of optimization algorithms that has met with success in

these and other situations is stochastic local search. Starting with Hill Climbing and
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Simulated Annealing, these algorithms have also developed in biologically inspired

population-based algorithms such as the Genetic Algorithm and Particle Swarm Op-

timization. Both GA and PSO, however, suffer from two curses. First, as the number

of dimensions in the problem grow, the number of individuals in the population must

theoretically increase exponentially. This is the curse of dimensionality. The second

curse results as the dimensions of individuals increase. As individuals become larger,

they begin to experience more and more hitchhiking.

A particular strand of research starting with CCGA and including CPSO, Hybrid

CPSO, OSI and culminating in FEA, has sought to solve the hitchhiking problem.

The general theme of these algorithms has been to introduce cooperation by decom-

posing the variables into factors and assigning populations to each factor. However,

this solution introduces problems of its own, namely, pseudo-optima. Both Hybrid

CPSO and FEA seek to eliminate pseudo-minima. FEA accomplishes this through

overlapping factors.

In the following chapters we will build on this background bringing in additional

related work as needed. In Chapter 3, we will develop a distributed version of FEAs,

Distributed FEAs. In Chapter 4, we will re-examine the cooperation versus com-

petition dichotomy and focus instead on information sharing and conflict resolution

and present a revised version of DFEAs (Chapter 5). In Chapter 6, we will apply

the insights of Chapter 4 on a single population PSO. Finally, in Chapter 8, we will
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implement a PSO version of FEAs and DFEAs using the Actor model of concurrency

[12].
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Distributed Factored Evolutionary

Algorithms

In this chapter, we build on the previous research on FEA and develop a dis-

tributed version by generalizing the Distributed Overlapping Swarm Intelligence (DOSI)

[13] algorithm. This Distributed Factored Evolutionary Algorithm (DFEA) replaces

a shared, centralized context, C, for a distributed one. In DFEA, every subpopulation

has its own context which is kept in sync with all the others. However, maintaining

this consensus is expensive so we will also investigate what happens when we permit

consensus to be relaxed.
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3.1 Generalizing DOSI to DFEA

One of the downsides to FEA is that making the algorithm completely distributed

is difficult because FEA relies on a single full global solution to be communicated

between all of the factors (subpopulations). There has been work on developing dis-

tributed versions of OSI, called Distributed Overlapping Swarm Intelligence (DOSI),

in which the algorithm no longer requires a single full global solution to be main-

tained between all factors [36, 13]. Instead, each factor in DOSI maintains its own

full solution that is updated during a sharing step. While this allows for DOSI to

be completely distributed, it can increase the runtime. This is because all previous

work on DOSI required factors’ full solutions to reach full consensus during sharing

[36]. Depending on the problem and factor architecture, this can be computationally

expensive.

In this chapter, we provide a generalization of DOSI, called Distributed Factored

Evolutionary Algorithm (DFEA), that is similar to FEA’s generalization of OSI. This

allows for DFEA to use any optimization algorithm for the Optimize Step as with

FEA. Our hypothesis is that DFEA will perform equally as well as FEA. We will test

this hypothesis on a variety of optimization problems including abductive inference

in Bayesian networks, maximizing NK landscapes, and minimizing benchmark test

functions. We will use PSO as the “EA” in both algorithms and compare results to

the global best PSO presented in the previous chapter.
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We also investigate the effect of relaxing the degree of consensus between factors

has on DFEA’s performance using the same optimization problems and constituent

algorithms. We hypothesize that there is a relationship between the amount of con-

sensus required during the Sharing Step in DFEA and the degree of epitasis in the

problem and that this relationship affects the solution quality. In these experiments,

we will reduce the exchange steps between factors by varying amounts including full

consensus, half consensus and a single exchange step.

3.2 DOSI

As previously discussed, FEA itself is related to previous research on OSI. The

first version of OSI was introduced in 2012 by Haberman and Sheppard [2] as Particle-

based Routing with Overlapping Swarms for Energy Efficiency (PROSE). PROSE was

then adapted by Ganesan Pillai and Sheppard to learn the weights of deep artificial

neural networks [14].

Fortier et al. used OSI for inference tasks in Bayesian networks, such as abductive

inference, where the task is to find the most probable set of states for some nodes in

the network given a set of observations [37, 36] Additionally, Fortier et al. used OSI

for structural learning of Bayesian networks [34] and learning latent variables [35].

As discussed at length in the previous chapter, FEA was first introduced by Strasser
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et al., which generalizes OSI so that any evolutionary algorithm can be used as the

underlying optimization technique [9].

DOSI was first developed by Fortier et al. to learn weights on deep neural net-

works [13]. The key distinction from OSI is that a full global solution is not used for

fitness evaluation. Instead, each subswarm maintains its own full personal solution,

which allows for the algorithm to be distributed more effectively. A communication

and sharing algorithm was defined so that subswarms could share values while also

competing with one another. The authors were able to show that DOSI’s perfor-

mance was close to that of OSI’s on several different networks, but there were several

instances when OSI outperformed DOSI.

Similar to OSI, DOSI has been adapted to perform full and partial abductive

inference in Bayesian networks. DOSI was found to be comparable to OSI on most

problems and was only outperformed on large Bayesian networks or when the ex-

planation sets are greater than four [36]. The authors also demonstrated that DOSI

required more fitness evaluations than OSI [36].
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3.3 Background: NK Landscapes, Bayesian

Networks, and DMVPSO

Our experiments with DFEA require a set of test problems and appropriate com-

ponent optimization algorithms. For the test problems we chose NK landscapes,

abductive inference in Bayesian Networks, and some common benchmark optimiza-

tion problems. NK landscapes were included because they represent commonly used

functions for evaluating the performance of evolutionary and swarm algorithms. We

included abductive inference in Bayesian Networks because they are a practical ap-

plication of optimization. Additionally, Fortier et al. showed that OSI outperforms

domain specific algorithms like approximate mini-bucket elimination on complex net-

works [36].

Like FEA, DFEA can use any optimization algorithm for the Update Step. Be-

cause this dissertation focuses on PSO variants, we will use PSO for our experiments.

However, the version of PSO presented in the previous chapter is only suitable for

continuous optimization problems. This means we can use that version of PSO for

the benchmark optimization problems. However, the NK landscapes and Bayesian

Networks are not continuously valued real functions but instead discrete (categorical)

optimization problems. For these problem we will use a version of PSO proposed

by Veeramchaneni et al. called Discrete Multi-Value Particle Swarm Optimization
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(DMVPSO) for those problems [38].

The following sections go into more detail on both the test problems (NK Land-

scapes, Abductive Inference in Bayesian Networks) and DMVPSO. We will defer

describing the benchmark functions until the experiment design section as they are

familiar continuous real valued functions. The continuous version PSO was covered

in the previous chapter.

3.3.1 NK Landscapes

The NK landscape is a mathematical framework that generates tunable fitness

landscapes that are often used as test functions for evaluating EAs [39]. An NK

landscape model contains two parameters, N and K, that control the overall size of

the landscape and the structure or amount of interaction between each dimension,

respectively [40].

An NK landscape is a function f : BN → R+ where BN is a bit string of length

N . K specifies the number of other bits in the string on which a bit is dependent.

This interaction is often referred to as epistasis. Given a landscape, the fitness value

is calculated as

f(X) =
1

N

N∑
i=1

fi(Xi, nbK(Xi))

where nbK(Xi) returns the K bits that are located within Xi’s neighborhood. The
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individual factors fi are then defined as fi : BK → R+ and the values of fi are

generally created randomly.

There are multiple ways to define the neighborhood function. The simplest way

is to return the next K contiguous bits of the string starting at Xi. If the end of the

string is reached, then the neighborhood wraps back around to the beginning of the

string. In other cases, the neighborhood of each bit is created randomly.

3.3.2 Bayesian Networks

A Bayesian network is a directed acyclic graph G = (V,E) that encodes a joint

probability distribution over a set of random variables, where each variable can assume

one of an arbitrary number of mutually exclusive values [41, 42]. In a Bayesian

network, each random variable Xi is represented by a node, and edges between nodes

in the network represent probabilistic relationships between the random variables.

Each root node contains a prior probability distribution while each non-root node

contains a probability distribution conditioned on the node’s parents.

For any set of random variables in the network, the joint probability distribution

can be represented using the local distributions in the network

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|Pa(Xi)).
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where Pa(Xi) corresponds to the parents of Xi.

A node is conditionally independent of all other nodes in the network given its

Markov Blanket. In a Bayesian network, the Markov blanket of a node consists of

the node’s parents, children, and children’s parents.

A common type of query for Bayesian networks is the probability distribution

of a variable given a set of evidence. Another type of query is called abductive

inference, which finds the most probable state assignment x to the variables in XU

given the evidence XO = xO. This is also known as the Maximum A Posteriori

(MAP) probability state of the variables of a network. In addition, users often ask

for the top k hypotheses. When k > 1, this is often referred to as the k-Most Probable

Explanation (k-MPE) problem.

3.3.3 Particle Swarm Optimization

The canonical global best PSO was described in detail in the previous chapter. We

would only emphasize at this point that that version of PSO, developed by Kennedy

and Eberhart, is geared to optimize real valued functions, f : Rn → R [6]. So while

the PSO velocity update (Algorithm 2.4, Line 4) and position update (Algorithm 2.4,

Line 5) have been shown to work well on optimization problems involving continuous

variables, many real-world problems operate over a set of discrete variables.

Veeramachaneni et al. presented an algorithm that allows PSO to optimize dis-
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crete multi-valued functions called Discrete Multi-Valued PSO (DMVPSO). In this

algorithm, the velocity update equations remain mostly unchanged. However, the

semantics of the velocity vector are changed to denote the probability of a particle’s

position term having a value [0,M − 1]. The update to the position vector is also

modified to take advantage of the new velocity vector semantics. Each dimension in

the velocity vector is restricted to values in [0,M − 1], where M is the cardinality of

the dimension. After the velocity is updated, it is mapped into a [0,M − 1] interval

using the sigmoid function

Si,j =
M − 1

1 + exp(−Vi,j)
.

Next, each particle’s position is updated by generating a random number according

to the Gaussian distribution, Xi,j ∼ N(Si,j, σ × (M − 1)) and rounding the result.

Finally, the result is passed through the piecewise function

Xi,j =


M − 1 Xi,j > M − 1

0 Xi,j < 0

Xi,j otherwise

to ensure the values remains in the range [0,M − 1].
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3.4 DFEA: Distributed FEA

DFEA is an extension of FEA that allows the algorithm to be distributed com-

pletely. In FEA, all of the subpopulations require access to the full central context

c to evaluate candidate solutions. DFEA breaks this dependency by having each

subpopulation maintain its own full local context. However, this change requires cer-

tain portions of FEA to be adapted to support competition and sharing between the

distributed, local contexts instead of a single centralized one.

FEA takes a function f : Rn → R with parameters X = 〈X1, X2, . . . , Xn〉 and

creates a set X of factors, Xi. Each factor is assigned to a “sub”-population, Si, that

will optimize that factor using the chosen evolutionary algorithm (as a shorthand we

will often refer to S or Si as a “factor” rather than the more verbose “the factor Xi

of the subpopulation Si”). Note that f can still be optimized over the factor Si if

we supply the remaining values Ri = X \ Si. When |S| = s = 1 and S1 = X, then

S will have just a single population that results in a traditional application of the

population-based algorithm, such as PSO, Differential Evolution (DE) [43], or GA.

However, when s > 1, Si = Xi ∈ X for all factors, and
⋃

Si = X for all populations,

the algorithm becomes a multi-population algorithm.

FEA is the case where there are factors that are proper subsets of X that may

or may not overlap with one another. In this work, we look at problems where every

factor overlaps with some other factor. Should there be a disjoint factor, we have a
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family of FEA and DFEAs.

In FEA, all of the factors’ remainder variables Ri are guaranteed to have identical

state assignments because they were provided by the same context c. However, in

DFEA, the remainder variables Ri are not set by some global c but are, instead,

ultimately assigned set by using Si’s neighbors’ local contexts, cj.

This multitude of contexts presents an interesting challenge for DFEA. Because

DFEA does not have a full global context c and more than one factor may be op-

timizing any given Xi, some factor has to be “in charge” and arbitrate the possibly

conflicting values of Xi and communicate the selected one back out to the other fac-

tors. We must, therefore, designate some subpopulation, S, as the arbiter for variable

Xi that performs the competition for the variable Xi. The arbiter’s full local con-

text is then used to evaluate other values during competition. Each arbiter node for

Xi communicates directly with any subpopulation Sj that contains Xi, inducing a

communication topology between the factors. We define this induced graph H as the

DFEA’s communication graph, where the nodes represent factors. An edge connects

two nodes in H if and only if one of the nodes is an arbiter for a value that the other

node also optimizes over. Note that two subpopulations Si and Sj can overlap with

one another but not communicate directly with one another. This occurs if Si is the

arbiter for variable Xi and Xi /∈ Sj.

The DFEA algorithm is presented in Algorithm 3.9. Although this is a distributed
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Algorithm 3.9 Distributed Factored Evolutionary Algorithm

Input: Function f , Evolutionary Algorithm ae
Output: Best context c as candidate solution x

1: X ← factorize(X)
2: S← ae.initialize(f,X )
3: C ← initialize-contexts(S)
4: O ← identify-optimizers(X )
5: A← identify-arbiters(X )
6: repeat
7: repeat
8: for S in S do
9: S ← ae.update(S)

10: end for
11: until stopping criteria
12: C ← compete(f,S,O,A,C)
13: share(f,S, A,C)
14: until stopping criteria
15: c← select-best-context(f,C)
16: return c

algorithm in theory, the pseudocode shows a high level specification that does not

include an actual parallel implementation. We will actually present such an imple-

mentation in Chapter ??.

The differences between Algorithm 2.6 and Algorithm 3.9 are small but important.

First, we are generating a context for each factor (Line 6). Second, we must select

arbiters for each Xi (Line 5). The arbiters must be passed to the Compete Step (Line

12). And finally, as we will see later when we investigate the relaxing of consensus

between contexts, we should pick the best context to return from the function (Line

15).
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We now describe the Compete and Share Steps for DFEA that update the factors’

full local contexts Ri ∪ Si or Ci.

3.4.1 Compete Step

The purpose of the Compete Step in DFEA is basically the same as that in FEA.

We must determine which factor has the best value for every dimension and resolve

any conflicts all the optimizers of Xi (neighbors in the current scheme) may have

about a variable’s value. The wrinkle again is that for FEA, competition is held

by the full global context C. For DFEA, the competition is held by each variable’s

arbiter. Here we present a general DFEA competition algorithm based on the work

done by Fortier et al. [36] in Algorithm 3.10.

The DFEA Compete Step works as follows. First, in Line 2 the arbiter for Xi is

selected and then used to obtain the context corresponding to that factor. After ini-

tializing the comparison variables in lines 3-4, the algorithm iterates over the variables

of the problem. As before, we loop over the optimizers of Xi (Lines 5-12) substitut-

ing Xi from each factor’s best candidate into the context. The only difference in this

version—as compared to the FEA version—is that this is the arbiter’s context rather

than a single, global one. After Xi is arbitrated, the new value is communicated to

all of the optimizers of Xi (Lines 14-16).

DFEA’s Compete Step only relies on the arbiter factor for Xi and the factors that
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Algorithm 3.10 DFEA Compete

Input: Objective function f(x), subpopulations S, optimizers O, arbiters A,
contexts C
Output: New contexts C

1: for i = 1 to d do
2: c← C[A[i]]
3: fitness← f(c)
4: value← c[i]
5: for j in O[i] do
6: candidate← S[j].best
7: c[i]← candidate.x[i]
8: if f(c) ≤ fitness then
9: value← candidate.x[i]

10: fitness← f(c)
11: end if
12: end for
13: c[i]← value
14: for j in O[i] do
15: C[j].c[i]← c[i]
16: end for
17: end for
18: return C

also optimize Xi. Note that the competition algorithm is not guaranteed to find the

best combination of values from the factors.

3.4.2 Share Step

In DFEA, the Share Step’s purpose is to let factors distribute information to one

another and is much more important than the mere bookkeeping that occurs in the

FEA’s version. Information distribution is accomplished by having two neighboring
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Algorithm 3.11 DFEA Share
Input: Factors S

1: for k = 1 to W do
2: for all Si ∈ S and Sj ∈ neighbors(Si) do
3: Exchange(Si, Sj)
4: end for
5: end for
6: return

factors in the communication graph H exchange information about their full personal

solutions. However, neighboring factors need to be augmented with additional infor-

mation in order for the factors to know which values to share with one another. This

is accomplished by having each factor maintains a δ-map.

For each dimension i, the δ-map stores the minimum number of steps required to

reach a factor learning Xi, where a step can occur only between neighboring factors.

For example, if factor Si learns dimension j, then Si.δj = 0. If Si does not learn

dimension j but neighbors a factor that does, then Si.δj = 1. Let dH(Si, Sj) denote

the distance or the minimum number of hops between nodes corresponding to Si and

Sj in the graph H. Then Si.δk = min{dG(Si, Sj)|Sj knowsXk}. We say that the

factors reach consensus when they all agree on all state assignments.

Initially, Si.δj = 0 if Si optimizes Xj and Si.δj =∞ otherwise. We say that factor

Si knows dimension Xk once Si.δk <∞. The full share and exchange algorithms for

DFEA are shown in Algorithm 3.11 and 3.12, respectively.

The Share algorithm operates as follows. For W iterations, the algorithm iterates
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Algorithm 3.12 DFEA Exchange
Input: Factors Si, Sj

1: for k = 1 to n do
2: if Si.δk > Sj.δk then
3: Si.δ[k]← Sj.δ[k] + 1
4: Si.c[k]← Sj.c[k]
5: else if Si.δk < Sj.δk then
6: Sj.δ[k]← Si.δ[k] + 1
7: Sj.c[k]← Si.c[k]
8: end if
9: end for

10: return

over all neighboring pairs of factors in H and calls the exchange algorithm for those

two factors. During the Exchange algorithm, all of the n dimensions in X are iterated

over. In lines 2-5, the algorithm compares the δ values of the two factors for the

current dimension k. If the δk value for factors Sj is lower than δk from Si, then the

value from Sj is inserted into Si. In addition, δk for Si is updated according to Line

3. Lines 5–8 do the same thing except that information is shared from Si to Sj. Note

that Si.c[ ] is the factor’s full local solution (context) and is equal to xi
⋃

ri.

3.4.3 Complexity of DFEA

In order to analyze the complexity of DFEA, we build on the work of Strasser

[32], which established the algorithmic complexity of FEA. As the main differences

between the FEA and DFEA are the Compete and Share Steps, the general com-

plexity analysis of fitness evaluations and the underlying evolutionary algorithms as
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well as the complexity analysis of the Update Step still apply to DFEA. However, in

terms of algorithmic complexity, only the Share Step is more complex.

The complexity of fitness evaluation is taken to be a function of the dimensionality

of the problem, d = |X|. We define Λ(d) to be a problem specific function that takes

the dimensionality of the problem and returns the cost of fitness evaluation. Therefore

the complexity of a single fitness evaluation is O(Λ(d)).

The underlying evolutionary algorithm (EA) has a complexity that depends both

on the cost of fitness evaluations and the cost of updating the individuals. We define

a function U(d) that returns the cost of updating an individual of dimension d for

the particular EA we are using. This includes the fitness evaluation. In general, most

algorithms will update each individual and evaluate its fitness so the total cost for an

individual is O(U(d)) = O(d+ Λ(d)). The total cost for a population of size p = |S|

is O(pU(d)).

Strasser established the complexity of FEA’s Update, Compete and Share steps

as follows:

• Update Step: O(skpU(d))

Rationale: Let s = |S|, the number of factors/subpopulations, and k be the

number of Update iterations (specified as “stopping criteria” in the pseudocode,

then our previous single iteration complexity of the underlying EA is O(pU(d))

and it is repeated s× k times.
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• Compete Step: O(ndΛ(d))

Rationale: Let n be the number of optimizers for Xi, then there are n×d fitness

evaluations required to establish the new value of the global context, c.

• Share Step: O(sd)

Rationale: For each swarm/factor, s, the Share Step replaces the worst indi-

vidual in the population with values from the global context, c. Replacing the

worst individual requires iterating over the d variables in the worst individual’s

position and setting each value to the corresponding value in c.

If there are m total iterations of the FEA (Compete and Share Step), then the

total complexity of FEA is:

O(FEA) = O(mskpU(d)) +mndΛ(d) + msd)

We can do a similar analysis for DFEA. As we previously mentioned, all steps

except the Share Step are the same in terms of algorithmic complexity.

• Share Step: O(dWs2)

Rationale: For the Share step, the algorithm has to iterate over all pairs of

neighboring factors and share values between the two factors. Iterating over all

pairs has a complexity of O(s2). During each pairwise Share Step, the algorithm
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iterates over every variable and compares the factors’ δ values. Because the

algorithm iterates over d dimensions s2 times, the complexity of each share

iteration is O(ds2). This step must is repeated W times such that all factors

reach consensus, giving a total complexity of O(dWs2).

The total algorithmic complexity is thus:

O(DFEA) = O(mskpU(d)) +mndΛ(d) + mdWs2)

as with FEA, for DFEA, any of the Solve, Compete, and Share Steps can dominate.

When the number of update iterations performed on each subpopulation k and the

number of individuals p is very large, the dominating step in DFEA will be Solve.

When k is small and the number of individuals p for each factor is smaller than d,

the dominating step in DFEA will be either Compete or Share. For Compete to be

the dominating step, the number of sharing iterations W must be small. However, in

several applications, the authors required DFEA to reach full consensus. To do so, W

must be equal to the diameter of the factor communication network H. In the worst

case this requires W = s, meaning the computation complexity of Share is O(ms4);

therefore, in many applications, the dominating step will be the Share Step.
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3.5 Comparison of DFEA to FEA with

Full and Relaxed Consensus

One of the defining differences between FEA and DFEA is the necessity of the

Share Step. Each subpopulation (factor) in DFEA has a local rather than central

view of a current best-so-far solution in the form of the context, ci. The Share Step

is thus necessary to exchange information between subpopulations in order for them

to reach consensus. Depending on the size and complexity of the communication

topology, this can increase the runtime of DFEA significantly. In order to reduce

this runtime, we investigate the effect that relaxing the amount of consensus between

factors has on DFEA’s performance. To test this, we relax the number of sharing

iterations W that are used in DFEA, which in turn causes the subpopulations to

reach a lower level of consensus. We also applied DFEA and consensus relaxation to

several general optimization problems which had not been done before.

3.5.1 Design

To test our hypothesis, we created three different versions of DFEA: DFEA-1,

DFEA-1/2, and DFEA-Full. DFEA-1 used only 1 sharing iteration during the Share

algorithm while DFEA-1/2 used Round(D/2) sharing iterations, where D is the diam-
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eter of the graph induced by the communication topology. DFEA-Full ran D sharing

iterations. The diameter of the graph represents the maximum distance between an

arbiter and any subpopulation. D is thus the most number of exchanges we need to

make to move a new value from an arbiter to any subpopulation. We also ran FEA

for an additional comparison. All FEA and DFEA versions ran for 10 inter-swarm

optimization iterations since this value was found by Strasser et al. [9] to allow FEA

to converge.

For our experiments we used three sets of problems: maximizing NK landscapes,

performing abductive inference on Bayesian networks, and optimizing several stan-

dard benchmark functions.

For the NK landscapes and abductive inference, FEA and DFEA used DMVPSO

as the underlying optimization algorithm. On the benchmark problems, we used

canonical PSO. For both PSOs, the ω parameter was set to 0.729, and φ1 and φ2

were both set to 1.49618.

We applied these same versions of PSO, FEA, and DFEA, as well as the relaxed

versions of DFEA to the benchmark optimization problems. The individual and

component PSO parameters were the same. The individual PSO was run for 100

iterations with population sizes of 10 times the dimensions. The FEA and DFEA

were run for 20 Compete-and-Share iterations with the component PSOs running for

5 iterations. This gives single swarm algorithms the same total number of iterations
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as the factors in DFEA. Each factor for FEA and DFEA had a population size of

10, which gives FEA and DFEA the same number of individuals as the single swarm

algorithms.

3.5.1.1 NK Landscapes

We generated NK landscapes with parameters N = 25 and 40 and K = 2, 5 and

10. For each set of parameters, we created 30 random landscapes.

In applying DFEA to NK landscapes, we used the Neighborhood architecture

proposed by Strasser et al. [9] since it outperformed competing factor architecture

approaches. In general, the Neighborhood architecture controls how factors commu-

nicate during the Share Step. This particular Neighborhood architecture creates a

factor for each variable Xi and adds to the factor variable Xi and all variables in the

set nbK(Xi). This results in factors of size K + 1.

3.5.1.2 Bayesian Networks

For abductive inference on Bayesian networks, we used the Hailfinder, Hepar2,

Insurance, and Win95pts Bayesian networks from the Bayesian Network Repository

[44] (Table 3.1). These networks were chosen to be consistent with [36]. To evaluate

the fitness of a state assignment we used the log likelihood `, which is calculated
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Table 3.1: Bayesian Network Characteristics

Network Nodes Arcs Parameters Avg. MB Size

Hailfinder (Ha) 56 66 2656 3.54
Hepar2 (He) 70 123 1453 4.51
Insurance (I) 27 52 984 5.19
Win95pts (W) 76 112 574 5.92

`(x) =
n∑
i=1

logP (xi|Pa(xi))

where x = {x1, x2...xn} is a complete state assignment and Pa(xi) corresponds to the

assignments for the parents of Xi.

The factor architecture chosen was the Markov architecture proposed by Fortier et

al. since this was shown to outperform all other architectures on Bayesian networks

[36, 9]. This uses the Markov blanket of every node to create subpopulations, because

it offers one of the most natural ways to subdivide a Bayesian network and provide

overlap. Additionally, it gives the algorithm an advantage because every node in

the network is conditionally independent of all other nodes when conditioned on its

Markov blanket. For our experiments we used an empty evidence set to keep results

comparable.
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3.5.1.3 Benchmark Optimization Problems

We picked a variety of benchmark optimization problems: Sphere, Exponential,

Schwefel 1.2, Dixon-Price, Ackley’s, Rosenbrock, and Griewank [18] (See Appendix

A more information the benchmark functions). All of the problems are minimization

problems with global minima at 0.0 except for the Exponential which has a minimum

at –1.0. All of the problems are scalable, meaning they can be optimized for versions

of any dimension. The Sphere function is separable. The remaining functions are

non-separable with most functions depending on adjacent, overlapping dimensions

such as Xi and Xi+1. Because of this, we used a factor size of two for all of the

benchmark optimization problems.

3.5.2 Results

Table 3.2 shows the results comparing FEA and all versions of DFEA on perform-

ing abductive inference on Bayesian networks and maximizing NK landscapes. Note

that these are maximization problems. Results comparing PSO, FEA, and DFEA on

minimizing the benchmark functions are in Table 3.3 while the results comparing the

different versions of DFEA on the benchmark functions are in Table 3.4. All results

are expressed as means over 30 trials with standard errors in parentheses.

In the Bayesian network problems, there are only small differences between all
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versions of DFEA. In most cases, DFEA-Full performs the best. DFEA-1/2 performs

better than DFEA-1 and DFEA-Full only on the Win95pts network. In the Insurance

network, DFEA-1 performs better than DFEA-Full, but only by a small margin. On

all networks, all DFEA algorithms are competitive with FEA.

For the NK-landscape results, DFEA-1 almost always performed worse than the

other DFEA algorithms. In some landscapes, such as N = 25 and K = 2, DFEA-

1/2 performs better than DFEA-Full but for when N = 25 and K = 10, DFEA-1/2

performs slightly worse than DFEA-Full. When N = 40 and K = 2, 10, DFEA-1/2

outperforms DFEA-Full, but when N = 40 and K = 5, DFEA-Full outperforms

DFEA-1/2.

On the benchmark optimization problems, DFEA-Full outperformed PSO except

for the Schwefel 1.2 function. Overall, DFEA was slightly worse than FEA on all the

benchmark problems. When looking at the consensus results in Table 3.4 relaxation

results are presented. DFEA-Full performed better that DFEA-1 and DFEA-1/2 on

Sphere, Exponential, Dixon-Price, and Ackley’s. However, DFEA-1 performed the

best on Rosenbrock while DFEA-1/2 performed the best on Griewank. DFEA-1/2

outperformed DFEA-1 on all functions except for Schwefel and Rosenbrock, but was

outperformed by DFEA-Full except on Schwefel and Griewank.
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Table 3.2: Results from varying the amount of consensus between factors.

Diameter PSO FEA DFEA-1 DFEA-1/2 DFEA-Full

B
ay

es
ia

n Hailfinder 8 −86.94 (23.70) −33.85 (0.46) −38.70 (0.49) −38.58 (0.58) −36.86 (0.66)
Hepar2 5 −49.47 (0.45) −16.85 (0.34) −20.05 (1.13) −21.03 (1.01) −19.62 (1.16)

Insurance 5 −23.83 (0.24) −11.22 (0.29) −12.76 (0.59) −13.75 (0.48) −12.78 (0.44)
Win95pts 5 −90.41 (1.65) −16.41 (1.34) −29.86 (1.28) −28.50 (2.00) −31.16 (2.07)

N
K

s

N = 25
K = 2 12 17.96 (0.02) 18.56 (0.09) 17.69 (0.09) 18.06 (0.10) 18.00 (0.09)
K = 5 5 18.23 (0.02) 19.23 (0.05) 18.38 (0.06) 18.46 (0.06) 18.23 (0.07)
K = 10 3 18.21 (0.01) 18.99 (0.04) 18.27 (0.04) 18.38 (0.06) 18.40 (0.05)

N = 40
K = 2 20 26.88 (0.03) 29.55 (0.10) 26.58 (0.11) 28.91 (0.11) 28.73 (0.11)
K = 5 8 27.43 (0.05) 30.85 (0.07) 28.37 (0.09) 29.21 (0.11) 29.55 (0.10)
K = 10 4 27.54 (0.05) 30.53 (0.06) 27.47 (0.06) 28.17 (0.08) 28.75 (0.09)

Table 3.3: Benchmark Problem results for PSO, FEA, and DFEA

PSO FEA DFEA-Full

B
en

ch
m

ar
k
s

Sphere 3.8E + 00 (1.7E − 01) 1.7E − 09 (1.5E − 10) 1.5E − 09 (1.4E − 10)
Exponential −1.00E + 00 (3.7E − 05) −1.0E + 00 (1.7E − 09) −1.0E + 00 (0.0E + 00)

Schwefel 4.4E + 03 (9.6E + 01) 1.8E + 04 (1.2E + 03) 2.5E + 05 (6.3E + 03)
Dixon-Price 2.1E + 01 (7.4E − 01) 5.6E − 01 (1.8E − 01) 1.2E + 00 (1.7E − 01)

Ackley’s 2.2E + 00 (4.5E − 02) 1.9E − 05 (8.4E − 07) 2.3E − 05 (1.9E − 06)
Rosenbrock 1.7E + 02 (6.5E + 00) 5.6E + 00 (1.1E + 00) 6.8E + 00 (2.5E + 00)
Griewank 6.3E − 01 (2.3E − 02) 2.6E − 03 (1.1E − 03) 8.6E − 02 (2.5E − 02)

3.6 Discussion of Experimental Results

Based on the Bayesian network results, we can see that DFEA does not need to

reach full consensus during each Share Step in order to find quality solutions. To

investigate this, we looked at the the average Hamming distance between DFEA’s

factors on the Hailfinder Bayesian network (Figure 3.1). We also looked at fitness

curves (Figure 3.2). In Figure 3.1, the major X-axis on the chart is the inter-factor

optimization iterations while the minor X-axis is the number of sharing iterations for

the different DFEA versions. The X-axis in Figure 3.2 is the inter-factor iteration.

Based on the charts, one can see that in DFEA-1 and DFEA-1/2, the factors
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Table 3.4: Benchmark problem results with varying degrees of DFEA consensus

DFEA-1 DFEA-1/2 DFEA-Full

B
en

ch
m

ar
k
s

Sphere 2.2E − 09 (2.4E − 10) 3.1E − 09 (4.5E − 10) 1.5E − 09 (1.4E − 10)
Exponential −4.7E − 05 (3.6E − 06) −1.0E + 00 (2.1E − 09) −1.0E + 00 (0.0E + 00)

Schwefel 2.2E + 05 (4.9E + 03) 2.4E + 05 (5.6E + 03) 2.5E + 05 (6.3E + 03)
Dixon-Price 9.6E + 00 (1.8E + 00) 1.2E + 00 (1.9E − 01) 1.2E + 00 (1.7E − 01)

Ackley’s 6.9E + 00 (1.2E − 01) 3.1E − 05 (1.6E − 06) 2.3E − 05 (1.9E − 06)
Rosenbrock 4.8E + 00 (2.7E − 01) 7.5E + 00 (2.6E + 00) 6.8E + 00 (2.5E + 00)
Griewank 4.7E − 02 (5.4E − 03) 4.1E − 02 (1.7E − 02) 8.6E − 02 (2.5E − 02)

Figure 3.1: Average consensus between factors over time of DFEA performing abductive
inference on the Hailfinder Network.

are still able to reach consensus over the lifetime of the algorithms because they all

eventually reach a Hamming distance of zero. We believe this is because when opti-

mizers start converging in their search spaces, the number of values changed during

the exchange step decreases and therefore, the factors are able to reach consensus

over several DFEA iterations.

We performed a similar analysis for NK landscapes N = 25 and K = 10. However,
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Figure 3.2: Fitness over time of DFEA performing abductive inference on Hailfinder Net-
work.

we set the number of inter-factor iterations to 50. Figures 3.3 and 3.4 show the

consensus and fitness graphs for NK landscapes N = 25 and K = 10 .

For NK landscapes N = 25 and K = 10, DFEA-1 reaches consensus at a much

slower rate than DFEA-1/2 and DFEA-Full. Meanwhile, DFEA-1/2 reaches consen-

sus and fitness at about the same rate as DFEA-Full. DFEA-1 may be able to reach

the same fitness as DFEA-1/2 and DFEA-Full in more iterations, but the cost of

needing more iterations greatly outweighs the reduction in runtime by only having 1

sharing step. This appears to be the case where there is high epistasis in the prob-

lems, like on NK landscapes when K = 5, 10. When there is high epistasis, the solve

and competition steps increase the differences between factors. This necessitates the

need for more sharing iterations in order to reduce the difference. When there is
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Figure 3.3: Average consensus between factors in DFEA on maximizing NK Landscapes
N = 25 and K = 10.

low epistasis, the increase in the factors’ difference during the solve and competition

steps in DFEA is small enough that only 1 sharing iteration is enough to reduce the

difference between factors.

The results for the benchmark optimization problems are interesting. DFEA out-

performed PSO on all of the problems with results that are often several orders of

magnitude better than PSO. For example, on Ackley’s function, PSO achieved a mean

minimum of 2.2E+00 whereas DFEA achieved a mean minimum of 2.3E-05. The one

exception is the Schwefel 1.2 function where all three algorithms performed poorly.

In general, DFEA results were the same or slightly worse than the FEA results.

As previously mentioned, DFEA-Full performed better on Sphere, Exponential,

Dixon-Price, and Ackley’s while DFEA-1 performed better on Rosenbrock and Griewank.
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Figure 3.4: Fitness of DFEA on maximizing NK Landscapes N = 25 and K = 10.

It is not altogether clear why this would be the case because we would generally ex-

pect consensus to be more important on harder problems. Rosenbrock and Griewank

are generally considered to be harder problems than Sphere or Exponential. The pat-

tern for DFEA-1/2 is harder to summarize. It lies outside the DFEA-1 to DFEA-Full

range on several problems (Sphere and Griewank), is sometimes closer to the winner

(Exponential, Dixon-Price, Ackley’s, Griewank) but is also sometimes closer to the

loser (Rosenbrock).
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3.7 Conclusions

Just as FEA generalized OSI, we have generalized DOSI into the Distributed

Factored Evolutionary Algorithms, DFEA, which like FEA, can use any constituent

optimization algorithm and, which like DOSI, does not rely on a global context. We

have shown that DFEA performs similarly to FEA but not always identically.

We also examined the possibility of relaxing consensus in DFEA. We have demon-

strated that in problems with low epistasis, DFEA is able to perform well when using

a reduced number of sharing iterations. However, for problems with high epistasis,

DFEA performs worse with less sharing iterations. This drop in performance can be

combated by performing more inter-factor iterations, but may negate the complexity

reduction gained when the sharing iterations are reduced.

In this version of DFEA, we explored one possible interpretation of distributed

by emphasizing distributed, local state instead of centralized global state. In a later

chapter we will investigate both parallelism and asynchrony as other possible inter-

pretations of “distributed.” However, we first turn towards the observation that FEA

and DFEA did not always perform similarly and note that this was often true of OSI

and DOSI as well.
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Chapter 4

Information Exchange and Conflict

Resolution

In this chapter, we re-examine a recurring theme in multi-population approaches

to solving the problem of hitchhiking: cooperation versus competition. In its place, we

develop an alternative framework based on the information exchange via a blackboard

architecture and Pareto efficiency as a standard for conflict resolution. We then apply

this framework to Factored Evolutionary Algorithms. In later chapters we will explore

the implications of this framework for DFEA and PSO.
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4.1 Cooperation and Competition

As we saw in Chapter 2, competition and cooperation are among the big themes

in many biologically inspired optimization algorithms. This is especially true for the

Genetic Algorithm (GA), based as it is on “Survival of the Fittest.” However, it

often is just as true for kindred population-based algorithms such as Particle Swarm

Optimization (PSO). As previously discussed, improvements in these algorithms have

often come from varying the degrees of cooperation and competition. Potter and de

Jong [7] developed the Cooperative Coevolutionary Genetic Algorithm (CCGA) to

combat hitchhiking in the GA by using multiple populations or “subspecies” that

cooperated by focusing on the individual variables of an optimization problem. This

line of research also includes van den Bergh and Engelbrecht’s CPSO [8], Fortier

et al.’s OSI and DOSI [36], [13], Strasser et al.’s Factored Evolutionary Algorithms

(FEA) [9], discussed in Chapter 2, and our own DFEA introduced in the last chapter.

The imagery is very powerful; van den Bergh and Engelbrecht state, “Although

competition among individual humans usually improves their performance, much

greater improvements can be obtained through cooperation.” [8]. Even in their

Hybrid CPSO they emphasize the cooperation between the CPSO and PSO steps

rather than the necessity of re-introducing competition, in the form of a PSO step,

in order to escape pseudo-optima. Strasser et al. [9] emphasizes competition without

mentioning cooperation at all. In contrast, Strasser [32] includes “Cooperative” in
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the title. So while the trade off between competition and cooperation has been a

major theme of this research, we believe a different perspective could increase our

understanding of these algorithms.

Van den Burgh and Engelbrecht refer to Clearwater et al.’s blackboard architecture

and cooperating agents [45] as informing their thinking about their own algorithms,

CPSO and Hybrid CPSO [8]. For Clearwater et al., any agents that exchange infor-

mation through a blackboard structure are deemed to be cooperative. Those that do

not are not-cooperative.

For example, even the population-based Hill Climbing algorithm that we alluded

to in Chapter 2 would be considered non-cooperative by Clearwater because the

individual Hill Climbers do not share information with each other. The mere existence

of a population of agents is not sufficient to make them cooperative. In contrast,

the multi-population algorithms, such as FEA, that we have been discussing in this

dissertation are clearly cooperative in Clearwater’s sense. What we suggest here

is that looking at how the blackboard is used, either implicitly or explicitly, might

provide a better framework for thinking about these multi-population algorithms,

analyzing their execution, making improvements and designing new algorithms.
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4.2 Blackboard Architecture

In Clearwater et al. [45] the focus is on agents that are trying to solve cryptarith-

metic problems such as SEND+MORE = MONEY . As agents search the solution

space they can read hints from the blackboard and write hints based on the new states

explored. For our purposes, there are several interesting characteristics of how the

blackboard is used.

First, a blackboard uses an explicit structure or shared state to store information.

Second, there is no sense of conflicting information; there can be multiple hints that

cover the assignment of, say, S, D, and M . A hint might be something like {S =

3, D = 4,M = 7} Second, multiple hints may contain different and contradictory

information about the solution, but any hint an agent selects (usually at random) is

internally consistent. Again, there may be a hint like the one above and another hint

{S = 2, D = 5,M = 1, N = 3} on the blackboard. These hints are not consistent for

S but this is acceptable as long as there is no hint that is internally inconsistent as

in {S = 2, S = 7}.

Corkill et al. [46] take a more general look at blackboard architectures and how

they can be designed for flexibility, efficiency, and generality. They define four opera-

tions that blackboard architectures usually implement: insertion, merging, retrieval,

and deletion. Insertion covers the placing of new information about an entity on

the blackboard. Merging involves the reconciliation of information about identical
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entities. Retrieval is about obtaining information about an entity. Deletion involves

removing information about an entity from the blackboard which is no longer re-

quired. Of course, the nature of these operations can differ widely depending on

the actual blackboard implementation, whether it is a relational database or an in-

memory HashMap. The actual operators will often be problem specific.

4.2.1 Information Exchange

For the algorithms we are discussing, the central concept is information exchange

via a blackboard between multiple populations and the definition of the various op-

erations (as applicable). We start with the nature of the blackboard structure itself.

Interestingly, in CCGA [7] the global solution, c (or context as we have been calling

it in FEA), is implicit. Using FEA notation, c is the concatenation of the Si.best of

all the subpopulations where Si.best is the best individual of the subpopulation. If we

wish to evaluate some xi in subpopulation Si, we must assemble the remaining values

ri from all the other subpopulations. For the canonical GA, this can present some

problems. First, the fitness of the best individual in the canonical GA can go up or

down because the actual best individual is just a member of the population subject

to selection, crossover and mutation. Second, while we can always preserve the best

individual at every generation using elitism, elitism itself is not without problems

as it often causes premature convergence [24]. Overall, this means that the global
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solution is not guaranteed to improve throughout the course of the algorithm.

Although van den Burgh and Engelbrecht cite Clearwater et al. [45], their global

solution, c, is actually implicit as well. Defined as a function, b(), the global solution

is a concatenation of the global bests of all the subpopulations (swarms). As with

CCGA, for any particular swarm Si optimizing xi, b(xi, ri) returns a vector con-

catenating the relevant swarm’s xi and the remaining values that Si requires. This

represents a full solution that can then be evaluated by f .

The main difference between CCGA and CPSO in this regard is that the canonical

gbest PSO is monotonically non-increasing (for minimization) in the fitness of the

gbest. That is, the current gbest really is the best position observed so far throughout

the run of the algorithm and may not match the position of any particle in the current

swarm. And if a better candidate is never found, this gbest does not change and does

not get lost. In a sense, a form of elitism is built into PSO but does not appear to

wreak the same havoc as in GA.

It is not until OSI [14] that the global solution appears as a recognizable state

which subpopulations use to read and write information, a blackboard architecture

for information exchange. This is further developed by Fortier et al. in OSI and

DOSI (for example, [37], [35]) and Strasser et al. [9]. In the previous chapter we

saw a distributed version of the blackboard developed for DFEA. In the following

discussion we will concentrate on FEA. The application of this framework to DFEA
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will be covered in the next chapter.

In FEA, the insertion operation is straight forward. At the start of the algorithm,

the blackboard as c is initialized into a random state. Retrieval is equally straight

forward. At least in the current implementations and algorithms, c is an in-memory

array or List which can be accessed as needed to provide Ri to any given subpopulation

Si. As mentioned previously, FEA does not use the delete operation on c because we

always require a value in c for each Xi in X.

For our particular use case, the most important operation of the four for FEA

is, arguably, the merge operation. Using Corkill et al.’s [46] concept of operators,

Clearwater et al.’s cooperative agents have a merge operation that basically says

“post all hints” [45]. We can contrast that merge operator with Corkill et al.’s example

where when there are two rules in a knowledge system that cover the same entity, the

merge operation is to generalize the two rules to cover both antecedents. In FEA, we

only keep a single value, ci, for each variable on the blackboard, c. Thus, given an

existing value ci and possibly many potentially better values, xi, we require a merge

operation that handles conflict resolution.

We note that one could imagine many different merge schemes for accomplishing

conflict resolution. We submit that this is one of the chief benefits to using this

framework rather than appealing to a tension between sometimes vague concepts of

cooperation and competition.
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4.2.2 Conflict Resolution

Looking at FEA, we have a global context c that operates as a blackboard through

which subpopulations exchange information. They are able to read from c (retrieval)

in order to fill in the missing values of xi (ri or remaining values) that make the

optimization of a factored problem by individual subpopulations possible. In FEA,

we see the “read” during the Share Step.

After the Optimize Step is completed, we want to update the blackboard, c, with

any new and better information that has been discovered by the individual subpopu-

lations. But we do not want to accept arbitrary writes to c from the subpopulations.

This is the essence of the Compete Step in FEA.

Each optimizer of Xi wishes to write its value to the blackboard. But we already

have a value for xi in c, ci. Before we overwrite ci with xi, we need to evaluate it. If

f(c1, c2, ..., xi, ..., cn) is better than f(c1, c2, ..., ci, ..., cn), then we will accept xi as the

new value of ci. Otherwise, we keep ci. Note that this conflict resolution mechanism

is required even if the factors do not overlap (as in a CPSO/CCGA equivalent FEA).

We must always at least resolve the single xi and ci. If factors overlap, there will

merely be more optimizers of xi attempting to write to c and therefore more values

for xi to reconcile.

The main difference between FEA and CPSO, for example, is that this conflict

resolution occurs in the Compete Step for FEA and in the underlying selection of the
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gbest for CPSO. In FEA, we avoid hitchhiking in c because we evaluate writes to the

blackboard on a variable by variable basis. In CPSO, we avoid hitchhiking in gbest

only when the factors are comprised of single variables.

However, in both cases, if the factor size is greater than one, the individual factors

themselves are subject to hitchhiking even if the global context is not. We will return

to this theme later in Chapter 6 when we apply this framework to PSO directly. For

now, we will proceed by applying the idea of information exchange via a blackboard

and conflict resolution to PSO, FEA-PSO without overlapping swarms and FEA-PSO

with overlapping swarms.

We look first at how we might apply this framework to PSO itself and see how

and why hitchhiking arises. In order to do this, we return to our previous example of

the minimization of a 4d Sphere function. The current gbest is shown in the first row

of Table 4.1 to emphasize the blackboard nature of recording the gbest in PSO. It is

worth noting as an aside that PSO contains a second blackboard in the form of each

particle’s pbest through which each particle is able to exchange information with its

best past performance.

When we consider the gbest update equation from Algorithm 2.4, we note that the

gbest as a blackboard is updated wholesale with the information from an individual

particle if any particle has a pbest with a better fitness than the current gbest. The

fitness of the current gbest is 39.97. And while in this case every particle’s pbest
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Table 4.1: Hitchhiking in PSO

pbestj X f(x)

gbestcurrent [2.39, 1.24, 5.71, 0.34] 39.97
1 [1.53, 1.84, 5.29, 0.59] 34.06
2 [0.42, 2.01, 4.76, 1.84] 30.26
3 [3.23, 0.72, 4.68, 0.47] 33.07
4 [2.83, 3.83, 2.71, 1.27] 31.64
gbestnew (#2) [0.42, 2.01, 4.76, 1.84] 30.26

has a better fitness than the current gbest, Particle 2’s pbest has the best fitness of

30.26. Thinking of the gbest as a blackboard, Particle 2 gets to write its pbest to the

blackboard. During the next iteration, all of the particles will read both from the

gbest and their individual pbests to update their velocities.

As before, we can identify hitchhiking when examining the Sphere function be-

cause variable values should be decreasing in the direction of [0.0, 0.0, 0.0, 0.0] for a

global minimum. If we compare the values of X1 and X3 in gbestnew to their corre-

sponding values in gbestcurrent, we see that they have decreased. However, looking at

X2 and X4 in gbestnew and comparing them to their previous values in gbestcurrent,

we see that they have increased. The merge operation is thus a complete replacing

of the contents of the blackboard with the pbest with the best fitness. The downside

to this definition of merge is that we can lose potentially better information.

Let us compare this to an FEA-PSO example for the same problem but with

non-overlapping factors with size = 1. With size = 1, hitchhiking is impossible

in the constituent factors when using PSO for optimization. The example is shown
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Table 4.2: FEA-PSO Determination of Cnew with Non-overlapping Factors

gbest X f(x)
C [2.39, 1.24, 5.71, 0.34] 39.97
s1 [1.53, ----, ----, ----] 36.59
s2 [----, 2.01, ----, ----] 42.47
s3 [----, ----, 4.68, ----] 29.27
s4 [----, ----, ----, 1.27] 41.47
Cnew [1.53, 1.24, 4.68, 0.34] 25.90

in Table 4.2. In this Table, we can see the current c, the gbests of each constituent

PSO/factors, and what will be the new c. Thinking of c as a blackboard and x1 = 1.53

as a new value to be written to the blackboard, we invoke our merge operation.

Because we can only have one value for c1, our merge operation is a conflict resolution

mechanism whereby the x1 or c1 that leads to the best fitness is the value chosen.

In this case, because we are working with the Sphere function (which is separable),

we know that x1 = 1.53 is better than c1 = 2.39, so c′1 should be 1.53. This is

shown in cnew. We now move to x2, and so on. Eventually, we have evaluated all

merges individually to make sure that overall fitness has not worsened. So the main

difference between PSO and FEA-PSO is that the merge operation is global in PSO

and variable by variable in FEA-PSO.

As we can see with Table 4.3, although we have more conflicts to resolve when

the factors overlap, our merge operation is still able to handle a variable by variable

resolution of those conflicts.

Interestingly enough, this test of variable by variable information exchange for an
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Table 4.3: FEA-PSO Determination of Cnew with Overlapping Factors

gbest X f(x)
C [2.39, 1.24, 5.71, 0.34] 39.97
s1 [1.53, 1.84, ----, ----] 38.45
s2 [----, 2.01, 4.76, ----] 32.53
s3 [----, ----, 4.68, 0.47] 29.37
s4 [----, ----, ----, 1.27] 41.47
Cnew [1.53, 1.24, 4.68, 0.34] 25.90

improvement in fitness is related to another form of exchange found in economics.

Specifically this floor-like constraint on fitness with respect to the individual values

of the variables is reminiscent of the concept, Pareto efficiency.

4.2.3 Pareto Efficiency

Pareto efficiency, named for Italian economist Vilfredo Pareto, is usually applied to

changes in the distribution of resources for individuals or groups of individuals subject

to some constraint such as a preference function.1 Although Edgeworth [47] developed

the original analysis of beneficial trade between two individuals, Pareto refined the

theory and added the concept of Pareto improvements and Pareto efficiency [11].

Nash later applied game theory to these ideas [48] and there is a definite resemblance

between strongly dominating strategies and Pareto efficiency.

Consider the case where Jane and Sam each have a basket of apples and oranges

1Pareto efficiency is also known as Pareto optimality. We eschew the term optimality in this
discussion to avoid confusion.
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(economics never says where these come from). Given their individual preferences,

modeled by utility functions, there is a possibility of mutually beneficial exchange

between Jane and Sam if they can trade apples for oranges or oranges for apples.

If Jane trades three apples for four of Sam’s oranges and the utility functions for

each are higher, then we have made a Pareto improvement. Jane and Sam can keep

exchanging apples and oranges until no Pareto improvement can be made, at which

point we have a Pareto efficient situation.

We can view our information exchange via a blackboard and our conflict resolution

mechanism as using the same standard, even if the analogy is not exact. As we

showed in the previous section, in a single objective optimization problem, for FEA

information exchange occurs if the candidate new value, xi, for the ci in the context,

C, improves fitness. This is similar to the exchange of apples and oranges between

Jane and Sam.

In the case of PSO, however, we have a much blunter instrument. In that algo-

rithm, we must find an entire solution that has a higher fitness than the current gbest.

This candidate has to come from the swarm’s current collection of pbests. And while

the fitness of a particular pbest may be greater than the current gbest, as we have

seen, it is possible for the desirability of specific variables to be less than if we could

have exchanged information variable by variable. The “lumpiness” of the transaction

leads to inefficiencies or hitchhiking.
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4.2.4 Pareto Efficiency and PSO

This application of Pareto Efficiency to a PSO-like algorithm appears to be unique.

Applications of Pareto efficiency to PSO have generally focused on multi-objective

optimization rather than single objective optimization. Pareto efficiency is a natural

approach to resolving conflicts in problems with shared inputs and incommensurable

outputs. There are many different possible combinations of minimizations of those

outputs, and one needs a way to evaluate them. In this sense, the outputs are

like the apples and oranges of the example above. Applications to multi-objective

optimization in PSO have included magnetostatics [49], job shop scheduling [50] [51],

power dispatch [52] [53], and portfolio optimization [54] to name a few.

There has been research on transforming single-objective optimization problems

into multi-objective optimization problems via helper objectives and then applying

Pareto efficiency [55], [56]. For example, in Chapter 2, we discussed how elitism in

GA can lead to premature convergence. With a helper objective such as “maintain

diversity”, the conventionally single objective GA (minimize f) is cast as a multi-

objective problem, “minimize f and maintain diversity” [55]. However, our approach

is distinct from this research in that it focuses on the characteristics of information

exchange and conflict resolution “as is” in PSO and, more generally, FEA without

introducing auxiliary objectives. We do not apply helper objectives and in no way

transform our problems to be multi-objective. Our approach is still single objective
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optimization.

Although our approach involves Pareto improvements, FEA and similar algo-

rithms are not necessarily Pareto efficient. The algorithms simply guarantee that if

some ci in c is replaced, it will be a Pareto improvement under the function being op-

timized. Pareto efficiency requires that we be unable to make a Pareto improvement.

A Pareto improvement in the FEA case involves allocating the information contained

in all the subpopulations to get a better successor context, cnew. We obtain this re-

sult by considering c and a particular ordering of the variables. While any particular

ordering does not matter, we cannot know if the ordering we picked leads to the best

possible cnew. Additionally, we can only change a single variable at a time. A Pareto

efficient outcome would use all the information contained in the subpopulations to

create the best possible cnew. Unfortunately, determining a Pareto efficient outcome

would be exponential in both the factor overlap and the dimension of the problem,

O(|Oi|d), since all combinations would need to be tried to find the best successor(s).

4.3 The Context over Time

Blackboard architectures generally require four operations to be defined: insertion,

merge, retrieval and deletion. When applying this framework to algorithms like FEA,

we have generally acknowledged that insertion and retrieval pose no problems and that
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deletion is not applicable. This leaves the merge operation. Because our blackboard

can only contain one value for ci in c at a time, and we want any change in c to be a

Pareto improvement, every time a subpopulation suggests a candidate xi to replace ci,

we evaluate xi by replacing ci in c and either pick xi if it is better or stay with ci if it

is not. Thus our conflict resolution mechanism always leads to a Pareto improvement.

While in some cases, differences in the merge operation are a sufficient basis of

comparison between two algorithms (such as FEA and PSO), in cases where two

algorithms use the same merge operation, we may need to look at the evolution of C

over time. In this section, we will look at how c changes in FEA over time, developing

a notation and nomenclature that will be put to use in the next chapter when we

examine the evolution of c under DFEA introduced in the last chapter.

In the FEA Compete Step, the information flows from the swarms to the context.

At minimum, at least one swarm will have been optimizing some variable xi and this

new, potentially better, value will need to be evaluated against the existing value,

ci, in the context, c. This is our merge operation which involves conflict resolution.

If we have an existing context, [c1, c2, c3, c4] and a new x2, we will evaluate both

f([c1, c2, c3, c4]) and f([c1, x2, c3, c4]) and either keep c2 or select x2 depending on

which gives the better fitness. More generally, there may be many swarms optimizing

xj, the set of which we will designate Oj, and there will be |Oj| + 1 conflicting

possibilities for xj, including cj.
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Algorithm 4.13 FEA Compete

Input: Objective function f , Subpopulations S, Optimizers O, Global context c
Output: Global context c

1: for j = 1 to d do
2: fitness← f(c)
3: value← c[j]
4: for i in Oj do
5: candidate← S[i].best
6: c[i]← candidate.x[i]
7: if f(c) ≤ fitness then
8: value← candidate.x[i]
9: fitness← f(c)

10: end if
11: end for
12: c[i]← value
13: end for
14: return c

The order of variable resolution can be arbitrary, but this does not mean that

every order will end up with the same result for C. Let us consider the case where

factors have only one variable, thus Xi is the factor, xi is the value from the factor,

and ci is the corresponding value from the context, c. If we evaluate the factors in

the following order, X1, X3, X4, X2, we will almost assuredly end up with a different

value for c than if we evaluated the factors in this order, X1, X2, X3, X4. Throughout

the following discussion, we will use the order X1, X2, X3, X4 but the results do not

depend on this order. It just makes the bookkeeping and exposition clearer. As a

reminder, the FEA Compete Step pseudocode is reproduced here as Algorithm 4.13.

In our previous discussions, we could focus on the values that variables could take,
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either xi or ci, depending. Now we are concerned with differences over time and the

context in which conflicting values are resolved. Thus, we need a notation that is

more abstract than the value-based notation of Tables 4.1, 4.2 or 4.3.

Instead of values, we will use symbols. First, we use the term reconciliation to

cover both the sharing of new values of xj from optimizers of xj, Oj, and the resolution

of the conflicting values against c. A variable, Xi, that has not been reconciled yet

will be denoted by
⊙

. For a variable that has been reconciled we will use
⊕

. Note

that this says nothing about whether ci was kept or one of xki , ∀i = 1 . . . |Oj| replaced

it.

As an example we return to our d = 4 Sphere problem although the actual problem

is not as important. After the Optimize Step, just as the Compete Step begins,

the context, C, appears as [
⊙⊙⊙⊙

]. This means that none of the variables

X1, X2, X3, X4 have been reconciled.

When X1 is reconciled, the context becomes [
⊕⊙⊙⊙

]. The important thing

to note here is that X1, whether it is c1 or x1, is determined in relation to the other

variables: X2, X3, X4. If we continue with X2, we have [
⊕⊕⊙⊙

], followed by

[
⊕⊕⊕⊙

], and finally followed by the reconciliation of X4, [
⊕⊕⊕⊕

]. If we

look at the evolution of the blackboard context, C, over time then we see the pattern

in Table 4.4. The importance of the patterns that emerge will become more apparent

in the next chapter.
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Table 4.4: FEA Context C over Time

ti C
1 [

⊕⊙⊙⊙
]

2 [
⊕⊕⊙⊙

]
3 [

⊕⊕⊕⊙
]

4 [
⊕⊕⊕⊕

]

The important point here is not the values but that X1 is reconciled in relation

to the starting values of X2, X3, X4. X2 is reconciled in relation to the reconciled

value of X1 and the unreconciled values of X3 and X4. X3 is reconciled in relation to

the reconciled values of X1, X2 and the unreconciled value of X4. And, finally, X4 is

reconciled in the presence of reconciled values for X1, X2, and X4.

4.4 Conclusions

In this chapter, we have abandoned the dichotomy of cooperation versus coopera-

tion when thinking about these multi-population algorithms. Instead we introduced

the concept of information exchange via a blackboard architecture as a potentially

more fruitful way of analyzing and improving these algorithms. Additionally, we iden-

tified the Compete Step in FEA as a merge operation involving conflict resolution.

We identified the conflict resolution mechanism being based on Pareto improvement.

Finally, we developed a symbolic notation for identifying the evolution of the context

or blackboard over time. This notation will allow us to easily identify differences in
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the evolution of blackboards between different FEA variants.
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Chapter 5

Distributed Factored Evolutionary

Algorithms Revisited

Armed with a conceptual framework based on information exchange via a black-

board architecture and conflict resolution, in this chapter we revisit the Distributed

Factored Evolutionary Algorithm. One of the persistent puzzles for both OSI/DOSI

and FEA/DFEA has been that the distributed versions, against expectations, have

not always performed as well or at least similarly to their centralized counterparts.

Using the framework developed in the previous chapter, we will determine the reason

for the differences between FEA and DFEA.
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5.1 Discrepancies between FEA and DFEA

At first glance, DFEA and FEA appear to be nearly identical algorithms. The

main difference is that, instead of having single context like FEA, c; in DFEA, each

subpopulation, Si, has its own context, ci. As the algorithm progresses these multiple

contexts need to communicate with each other in order to stay synchronized. But

there may be many optimizers of Xj and so some Si must be designated as having

the definitive value of cj in its context. The solution is to designate one of the swarms

optimizing Xj to be the arbiter of Xj, which we denote a(Xj). During the DFEA

Compete Step, all optimizers of Xj communicate their values of Xj to the arbiter and

the arbiter compares those values (including its own) with cj found in its context.

This is the DFEA Compete Step discussed in Chapter 3 (Algorithm 5.14).

Because neither the Compete Step nor the Share/Exchange Steps consume random

numbers, if the algorithms start with the same initial state (random seed) and use the

same evolutionary algorithm, they should get the same results. As we see in Listing

5.1, this is not the case. We can use the framework developed in the previous chapter

to begin to unravel why this is so.

The DFEA Compete Step reconciles all the contexts, ci ⊂ C, using the notation

developed in the previous chapter we can analyze changes in all the ci over time. We

assume that the arbiter for Xj is cj (c in Line 2 of Algorithm 5.14), and as before

we take the variables in order, X1, X2, X3, X4. Once again, we start at the end of the
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Algorithm 5.14 DFEA Compete

Input: Objective function f(x), subpopulations S, optimizers O, arbiters A,
contexts C
Output: New contexts C

1: for i = 1 to d do
2: C← C[A[i]]
3: fitness← f(C)
4: value← C.ci
5: for j in O[i] do
6: candidate← S[j].best
7: C.ci ← candidate.xi
8: if f(C) is better than fitness then
9: value← candidate.xi

10: fitness← f(C)
11: end if
12: end for
13: C.ci ← value
14: for j in O[i] do
15: C[j].ci ← C.ci
16: end for
17: end for
18: return C

Listing 5.1: Execution of FEA and DFEA with same random seed

$ python test.py --benchmark ackley -1

benchmark ackley -1

seed 1521996906

starting FEA

fitness = 4.648499585258037e-08

starting DFEA

fitness = 0.1089753263218296

Update Step and assume all the contexts are identical. Using our example from Table

4.4, when we reconcile X1, we will have c1 = [
⊕⊙⊙⊙

], and when we reconcile

X2, we will have c2 = [
⊙⊕⊙⊙

]. Similarly, [
⊙⊙⊕⊙

] and [
⊙⊙⊙⊕

] follow
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Table 5.1: Evolution of Context(s) in FEA and DFEA

t FEA DFEA

1 [
⊕⊙⊙⊙

]

[
⊕⊙⊙⊙

]1
[
⊙⊙⊙⊙

]2
[
⊙⊙⊙⊙

]3
[
⊙⊙⊙⊙

]4

2 [
⊕⊕⊙⊙

]

[
⊕⊙⊙⊙

]1
[
⊙⊕⊙⊙

]2
[
⊙⊙⊙⊙

]3
[
⊙⊙⊙⊙

]4

3 [
⊕⊕⊕⊙

]

[
⊕⊙⊙⊙

]1
[
⊙⊕⊙⊙

]2
[
⊙⊙⊕⊙

]3
[
⊙⊙⊙⊙

]4

4 [
⊕⊕⊕⊕

]

[
⊕⊙⊙⊙

]1
[
⊙⊕⊙⊙

]2
[
⊙⊙⊕⊙

]3
[
⊙⊙⊙⊕

]4

for X3 and X4.

We would now like to compare the state of the two algorithms after their respective

Compete Steps. To do this we observe, that since our examples have used the same

order of reconciliation, we can line up the single FEA context at time ti with the

corresponding DFEA context ci. This is shown in Table 5.1.

Aligned this way, the difference between the algorithms becomes immediately

apparent. For FEA, X2 is reconciled at t2 in the presence of the reconciled value of

c1 from t1 (
⊕

). For DFEA, X2 is reconciled in c2 with the unreconciled value of

c1 (
⊙

). While it is possible that c2 will be the same value in both cases, it is not

guaranteed. Additionally, it seems unlikely that every cj would reconcile exactly the
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same way for both algorithms over all variables and iterations.

This analysis so far has been only for the Compete Steps. Both FEA and DFEA

have an additional step, the Share Step, which has a greater importance for DFEA.

In FEA, the Share Step is mostly a bookkeeping step where the new context is

communicated back to the individual populations and fitness values are re-evaluated.

Additionally, a form of elitism introduces the context as an actual individual in the

population. In DFEA, the Share Step includes this same bookkeeping but also moves

information about the arbitrated values about the induced network we discussed

in Chapter 3. We will now look at how this influences information sharing. As a

reminder, ci is a vector of values assigned to X for swarm Si whereas ci is the value

of Xi in ci.

Consider two swarms that are regarded to be neighbors. The neighbors relation

can be defined in a number of ways, but in Chapter 3 we defined it in the context of

the set of optimizers, O. If two swarms, Sj and Sk, are both members of some set

of optimizers Oi, then they are considered to be neighbors. During the Share Step,

those two swarms will compare how recent the values of all variables in their contexts,

cj and ck, are using the δs. If cj has a newer value of ci than ck, then ck will take

cj’s value of ci. If the reverse is true, cj will take ck’s value of ci.

The neighbor relation sets up the possibility of swarms being indirect neighbors

as well. If Sj and Sk are both members of Oi and Sk and Sm are both members
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of Oq then Sj and Sm are indirectly neighbors. Information will flow from one to

the other, depending on the number of iterations in the Share Step. The neighbor

relation induces a topology on the swarms through which information travels, and if

the Share Step iterates a sufficient number of times, information will flow from c1 to

cd. As a result, all ci will be identical. This is called (full) consensus.

Relative to FEA, however, this sharing takes place too late to affect how recon-

ciliation plays out in the DFEA Compete Step. Consider reconciliation of c1 and c2.

First c1 is reconciled with the optimizers O1, and we have c1 = [
⊕⊙⊙⊙

]. Next,

c2 is reconciled with optimizers O2, and we have c2 = [
⊙⊕⊙⊙

]. During the

Share Step, c1 from c1 will be shared with c2, but c1 will not have been determined

in the context of c2. In fact, when c1 is changed to c′1 in c2, c2 is not re-evaluated at

all. We thus have no way of knowing if the change is Pareto improving or not. To

signify this, we use the
⊗

symbol: c2 = [
⊗⊕⊙⊙

]. With full consensus, c2 will

eventually look like [
⊗⊕⊗⊗

]. Although each of the values c1, c2, c3, and c4 will

have been Pareto improvements when they were evaluated during reconciliation, at

no point were they evaluated collectively. Even with full consensus, the contexts in

DFEA do not collectively preserve the information semantics of the context in FEA.
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5.2 Revising DFEA

In order to preserve the information flow and conflict resolution semantics of FEA

in DFEA, we will need to revise DFEA. Based on Table 5.1 it would appear that

the Share Step and Compete Step need to happen simultaneously. Additionally, if

we wish the right-hand side of the table to match the left-hand side of the table,

in the ideal case, we need to start by considering all swarms to be neighbors of all

other swarms. Later we will investigate what relaxing consensus might mean for the

revised algorithm. This new Reconcile Step that combines both information sharing

and conflict resolution is described as Algorithm 5.16. As before, this is a high level

specification that does not describe a specific parallel implementation. We will present

an Actor model-based implementation in Chapter ??.

By adding a broadcast loop at Line 14 every time some ci is reconciled, the rec-

onciliation is communicated to all the other contexts. For any cj to be reconciled,

all ck, ∀k < j will be their reconciled values, just as in the FEA Compete Step. The

revised DFEA relegates the Share Step to performing similar bookkeeping functions

as it does in FEA.

Using our previous notation, when X1 is reconciled to c1 = [
⊕⊙⊙⊙

], all

the other contexts cj will have X1 updated as well: c2 = [
⊕⊙⊙⊙

], C3 =

[
⊕⊙⊙⊙

], and c4 = [
⊕⊙⊙⊙

]. And when X2 is reconciled it will be in the

context of the reconciled value of X1 just as in FEA: C2 = [
⊕⊕⊙⊙

]. Table 5.2
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Algorithm 5.15 Distributed Factored Evolutionary Algorithm

Input: Function f , Evolutionary Algorithm ae
Output: Best context c as candidate solution x

1: X ← factorize(X)
2: S← ae.initialize(f,X )
3: C ← initialize-contexts(S)
4: O ← identify-optimizers(X )
5: A← identify-arbiters(X )
6: repeat
7: repeat
8: for S in S do
9: S ← ae.update(S)

10: end for
11: until stopping criteria
12: C ← reconcile(f,S,O,A,C)
13: until stopping criteria
14: c← select-best-context(f,C)
15: return c

shows the end result as compared to FEA. Now all four DFEA contexts, ci, are the

same as the FEA context at t4.

This section has demonstrated how looking at these algorithms in terms of in-

formation flow and conflict resolution (reconciliation) can reveal a deeper structure

and more interesting semantics than invoking cooperation versus competition. We

examined how reconciliation works in FEA and original DFEA and showed that the

semantics of the two were not identical as previously supposed. Using the same frame-

work, we devised a revised DFEA that does preserve the semantics of FEA. Finally,

we encountered something new. In the original DFEA, a value cj that was a Pareto

improvement in Cj was communicated to Ck without any evaluation (
⊗

). What
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Algorithm 5.16 DFEA Reconcile

Input: Function f , Subpopulations S, optimizers O, arbiters A, Local contexts C
Output: Local contexts C

1: for j = 1 to d do
2: c← C[A(xj)]
3: fitness← f(c)
4: value← c[j]
5: for k in Oj do
6: candidate← S[k].best
7: c[j]← candidate.x[j]
8: if f(c) ≤ fitness then
9: value← candidate.x[j]

10: fitness← f(c)
11: end if
12: end for
13: c[j]← value
14: for k = 1 to d do
15: C[k].c[j]← c[j]
16: end for
17: end for
18: return C

impact this might have on the operation of the algorithm and what it means for per-

formance relative to FEA is not entirely clear. For now, we refer to these values as

discordant because they are injected into a context without any conflict resolution.
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Table 5.2: Final Context(s) in FEA and Revised DFEA

t FEA DFEA

1 [
⊕⊙⊙⊙

]

[
⊕⊙⊙⊙

]1
[
⊕⊙⊙⊙

]2
[
⊕⊙⊙⊙

]3
[
⊕⊙⊙⊙

]4

2 [
⊕⊕⊙⊙

]

[
⊕⊕⊙⊙

]1
[
⊕⊕⊙⊙

]2
[
⊕⊕⊙⊙

]3
[
⊕⊕⊙⊙

]4

3 [
⊕⊕⊕⊙

]

[
⊕⊕⊕⊙

]1
[
⊕⊕⊕⊙

]2
[
⊕⊕⊕⊙

]3
[
⊕⊕⊕⊙

]4

4 [
⊕⊕⊕⊕

]

[
⊕⊕⊕⊕

]1
[
⊕⊕⊕⊕

]2
[
⊕⊕⊕⊕

]3
[
⊕⊕⊕⊕

]4

5.2.1 Complexity of the Revised DFEA

In Chapter 3, we established the complexity of DFEA to be: The total algorithmic

complexity is thus:

O(FEA) = O(mskpU(d)) +mndΛ(d) + mdWs2)

where m is FEA iterations, s is the number of factors/subpopulations, k is the number

of EA or update iterations, p is the number of individuals in each subpopulation, d

is the number of variables, and n is the number of optimizers (largest) of any Xi.

With the Revised DFEA, the Share Step is now the same as FEA and the Compete
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Step is now different. The complexity of FEA was:

O(DFEA) = O(mskpU(d)) +mndΛ(d) + msd)

There are two inner loops in the Compete Step, the first updates the arbiter’s context

for a specific variable. It does this by looping over the number of optimizers for Xi

which we take to be n. The second broadcasts the arbitrated value of Xi to all of the

factors/subpopulations, s. The complexity of the inner loop is thus O(nΛ(d) + s).

Because the evaluation of an individual is going to be at least O(d), we claim that d

is always at least as larger and usually larger than s and therefore the complexity of

the inner loop is O(nΛ(d). This gives the revised DFEA’s Compete Step the same

complexity as FEA and thus the same overall complexity as FEA.

5.3 Comparing FEA, Original DFEA and

Revised DFEA

Based on the previous discussion and analysis, our hypothesis is that the revised

DFEA and FEA will perform the same. The revision that was made ensures that,

other things being equal, FEA and the revised DFEA will end up with the same

result. As for the original DFEA, it is difficult to say how the discordant values
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Listing 5.2: Execution of FEA, original DFEA, and revised DFEA with same random
seed

$ python test.py --benchmark ackley -1

benchmark ackley -1

seed 1521996906

starting FEA

fitness = 4.648499585258037e-08

starting DFEA

fitness = 0.1089753263218296

seed 1521996906

starting Revised DFEA

fitness = 4.648499585258037e-08

influence the performance of the algorithm. Because [57] showed that the original

DFEA was sometimes better and sometimes worse than FEA, we also hypothesize

that the results will be mixed. We will revisit this hypothesis and the results later in

the discussion of future work. As a starting point, we re-execute our test script from

Listing 5.1 for all three algorithms and show the results in Listing 5.2.

As a broader test of our hypothesis, we ran a large number of experiments on

standard benchmark functions from different categories for FEA-PSO, revised DFEA-

PSO, and original DFEA-PSO. We include results for the single population gbest PSO

as a baseline. The following sections describe the design, results, and discussion of

those experiments.
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Table 5.3: Benchmark Optimization Functions by Category

Category Benchmark Function
Bowl Exponential, Sargan, Sphere
Many Local Optima Ackley-1, Eggholder, Griewank,

Rastrigin, Salomon, Stretched-V
Plate Brown, Schwefel-2.23, Whitley,

Zakharov
Ridge Michalewicz, Schaffer-F6,

Schwefel-2.22
Valley Dixon-Price, Rosenbrock,

Schwefel-1.2

5.3.1 Design

We selected benchmark optimization problems from [8] and [18] that were scalable

to multiple dimensions (See Appendix A more information the benchmark functions).

The problems selected are shown in Table 6.3, arranged by categories inspired by

[58]. All of the problems are minimization problems, and with the exception of the

Exponential and Eggholder functions, they all have a minimizing solution and value

of f([0]d) = 0. The Exponential function has a minimum at [−1]d, and the Eggholder

function has a dimension-dependent minimum and minimizing vector. None of the

functions except the Sphere function are separable in their current forms.

Experiments consisted of 50 runs of each algorithm on each benchmark function

with a dimension of 32. Because we noticed that the results were not always normally

distributed—hardly a surprise for optimization problems—the confidence intervals

were 500 replications of the Bootstrap to estimate 95% confidence intervals [59].
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Following [60], each algorithm used the same number of candidate solutions. In this

case we chose 10 particles per dimension, that is d× 10 = 320.

PSO, the PSO portion of FEA, and the various DFEA versions all used the same

parameters: ω = 0.729 and φ1 = φ2 = 1.49618. While PSO was run for 100 iterations,

FEA versions were run for 20 FEA/DFEA iterations separated by 5 PSO iterations

for a total of 100 PSO iterations. All FEA/DFEA variants used the “Simple Cen-

tered” factor of i, i+ 1, which followed the functional form of most of the benchmark

functions—they are functions of adjacent x values—and shown by Strasser et al. to

perform well [9]. With d − 1 such factors, and d = 32, there were b(320/31)c = 10

particles per swarm for the FEA/DFEA-PSO variants.

5.3.2 Results

The results are shown in Table 5.4. Independent of which algorithm is best,

what we are looking for, in general, is for FEA-PSO and the new DFEA-PSO to

have similar performance. This appears to be true for Ackley, Brown, Exponential,

Salomon, Schaffer-F6, Schwefel-1.2, Schwefel-2.22, Schwefel-2.23, Sphere, Stretched-

V, and Zakharov. There were 19 benchmark functions overall, so our experiments

show that the results were similar for FEA-PSO and the new DFEA-PSO for 11 of

them (58%).

There were six cases where the original or old DFEA-PSO performed the same as
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the new DFEA-PSO, five where they performed better than FEA-PSO: Dixon-Price,

Eggholder, Griewank, Michalewicz, Rosenbrock, and one where they were worse then

FEA-PSO: Rastrigrin. In three cases, FEA-PSO was better than either version of

DFEA-PSO (Rastrigrin, Sargan, Whitley). In three cases, PSO was better than any

FEA variant: Salomon, Schwefel-1.2 and Zakharov.

5.3.3 Discussion

Given that FEA and the revised DFEA are demonstrably equivalent, it is sur-

prising that there are eight cases out of 19 where they did not have the same results.

All FEA/DFEA variants depend on PSO as the underlying optimizer. The variants

all have the same numbers of factors for each problem and thus the same number of

swarms. In the code tested, they are all initialized the same way and at the same

time. Furthermore, the (D)FEA Compete/Share/Reconcile Steps as presented do not

have any stochastic elements that might cause a purely random divergence.

Because of this we decided to run a second set of experiments on the same bench-

mark functions. This time each run, i, of FEA-PSO, old DFEA-PSO and revised/new

DFEA-PSO used the same random seed, seedi. As we can see in these results, shown

in Table 5.5, FEA-PSO and revised DFEA-PSO had exactly the same results as we

would expect. Thus it appears that the random seed was the culprit in generating

the differences in performance.

109



CHAPTER 5. DFEA REVISITED

Table 5.4: Comparison of PSO, FEA-PSO and both variants of DFEA-PSO

Benchmark PSO FEA-PSO Revised DFEA-PSO Old DFEA-PSO

ackley-1
1.84e+00

(1.77e+00, 1.90e+00)
2.81e-03

(5.23e-06, 7.00e-03)
2.78e-03

(3.82e-08, 6.99e-03)
2.83e-03

(1.39e-08, 6.98e-03)

brown
7.56e+00

(6.69e+00, 8.55e+00)
1.22e-25

(3.72e-26, 2.42e-25)
1.21e-25

(5.11e-26, 1.98e-25)
1.02e-23

(1.36e-24, 2.42e-23)

dixon-price
4.23e+01

(2.54e+01, 6.34e+01)
1.18e+02

(1.07e+02, 1.28e+02)
3.85e+01

(2.93e+01, 4.70e+01)
3.87e+01

(2.98e+01, 4.92e+01)

eggholder
-1.68e+04

(-1.71e+04, -1.64e+04)
-1.77e+04

(-1.79e+04, -1.74e+04)
-2.10e+04

(-2.13e+04, -2.07e+04)
-2.05e+04

(-2.07e+04, -2.02e+04)

exponential
-9.99e-01

(-1.00e+00, -9.99e-01)
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)

griewank
4.96e-01

(4.47e-01, 5.45e-01)
9.49e-01

(8.99e-01, 9.91e-01)
1.49e-01

(6.92e-02, 2.23e-01)
1.35e-01

(7.51e-02, 2.02e-01)

michalewicz
-8.65e+00

(-9.02e+00, -8.33e+00)
-2.59e+01

(-2.63e+01, -2.56e+01)
-3.06e+01

(-3.07e+01, -3.04e+01)
-3.06e+01

(-3.07e+01, -3.04e+01)

rastrigin
1.03e+02

(9.59e+01, 1.11e+02)
2.60e-02

(1.97e-05, 6.59e-02)
7.28e-02

(1.36e-02, 1.51e-01)
1.01e-01

(3.98e-02, 1.99e-01)

rosenbrock
1.95e+02

(1.56e+02, 2.51e+02)
2.20e+02

(1.69e+02, 2.88e+02)
4.60e+01

(1.96e+01, 7.77e+01)
5.09e+01

(1.31e+01, 1.04e+02)

salomon
1.41e+00

(1.33e+00, 1.48e+00)
2.29e+00

(2.12e+00, 2.49e+00)
1.96e+00

(1.78e+00, 2.12e+00)
1.93e+00

(1.77e+00, 2.17e+00)

sargan
9.76e+00

(8.55e+00, 1.11e+01)
2.04e-12

(1.37e-12, 2.91e-12)
5.67e+02

(1.32e+02, 1.15e+03)
3.19e+03

(1.54e+03, 5.07e+03)

schaffer-f6
2.49e+00

(2.31e+00, 2.67e+00)
1.99e+00

(1.78e+00, 2.20e+00)
9.86e-01

(8.60e-01, 1.09e+00)
9.34e-01

(8.23e-01, 1.04e+00)

schwefel-1.2
7.96e+03

(7.19e+03, 8.84e+03)
6.59e+04

(5.72e+04, 7.60e+04)
6.53e+04

(4.59e+04, 8.85e+04)
6.88e+04

(5.55e+04, 8.44e+04)

schwefel-2.22
3.01e+02

(2.91e+02, 3.13e+02)
1.22e-12

(7.73e-13, 1.75e-12)
1.35e-12

(5.74e-13, 2.40e-12)
1.54e-12

(8.63e-13, 2.41e-12)

schwefel-2.23
2.44e-01

(1.18e-01, 4.15e-01)
8.65e-102

(7.25e-116, 2.31e-101)
5.07e-102

(2.39e-111, 1.67e-101)
1.39e-101

(8.93e-103, 3.02e-101)

sphere
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)

stretched-v
1.20e+01

(1.14e+01, 1.28e+01)
4.37e+00

(3.78e+00, 5.02e+00)
4.24e+00

(3.91e+00, 4.54e+00)
3.58e+00

(3.31e+00, 3.86e+00)

whitley
9.82e+02

(9.67e+02, 9.99e+02)
3.51e+02

(2.97e+02, 3.91e+02)
5.35e+02

(4.84e+02, 5.80e+02)
5.62e+02

(5.20e+02, 6.02e+02)

zakharov
1.39e+02

(1.28e+02, 1.51e+02)
1.60e+03

(3.09e+02, 3.77e+03)
8.16e+02

(7.80e+02, 8.45e+02)
7.97e+02

(7.67e+02, 8.23e+02)
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In this second set of experiments, what is perhaps more interesting is that, for

most of the problems, the differences in the DFEA versions did not seem to mat-

ter. For 14 of the 19 benchmark problems, all three algorithms performed about

the same. For two benchmark problems, the old DFEA-PSO performed better than

FEA-PSO/revised DFEA-PSO (Rosenbrock, Stretched-V). For three of the bench-

mark problems, FEA-PSO/revised DFEA-PSO performed better than old DFEA-

PSO (Salomon, Sargan, Zakharov).

5.4 Relaxing Consensus

Not only did we introduced the distributed version of FEA or DFEA in Chapter

3, we also examined the implications of relaxing consensus. We now examine what

relaxing consensus might mean for our revised DFEA. In Chapter 3, relaxed consen-

sus was achieved in the DFEA Share Step when newly reconciled values were not

communicated throughout the network of contexts induced by the neighbor relation.

In the revised DFEA, however, we have replaced the Compete and Share Steps with

a Reconcile Step. The Reconcile Step replaces a network model using “hops” with

a network model using broadcasted messages. In order to introduce an effect like

relaxed consensus in the revised DFEA, we introduce the idea of dropped messages.

Referring back to Line 14 in Algorithm 5.16, we see that after a new cj is reconciled
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Table 5.5: FEA-PSO, Old and New DFEA-PSO with Same Random Seeds

Benchmark FEA-PSO Revised DFEA-PSO Old DFEA-PSO

ackley-1
3.37e-03

(5.38e-07, 8.96e-03)
3.37e-03

(5.38e-07, 8.96e-03)
2.01e-03

(5.46e-08, 5.95e-03)

brown
2.90e-21

(4.32e-25, 9.17e-21)
2.90e-21

(4.32e-25, 9.17e-21)
2.96e-21

(1.51e-24, 9.30e-21)

dixon-price
3.73e+01

(2.82e+01, 4.72e+01)
3.73e+01

(2.82e+01, 4.72e+01)
3.20e+01

(2.22e+01, 4.14e+01)

eggholder
-2.12e+04

(-2.15e+04, -2.10e+04)
-2.12e+04

(-2.15e+04, -2.10e+04)
-2.07e+04

(-2.10e+04, -2.03e+04)

exponential
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)

griewank
7.14e-02

(2.57e-02, 1.28e-01)
7.14e-02

(2.57e-02, 1.28e-01)
1.71e-01

(8.22e-02, 2.66e-01)

michalewicz
-3.09e+01

(-3.10e+01, -3.08e+01)
-3.09e+01

(-3.10e+01, -3.08e+01)
-3.09e+01

(-3.10e+01, -3.08e+01)

rastrigin
2.28e-01

(1.12e-01, 3.40e-01)
2.28e-01

(1.12e-01, 3.40e-01)
2.28e-01

(1.12e-01, 3.40e-01)

rosenbrock
1.58e+01

(6.38e+00, 2.70e+01)
1.58e+01

(6.38e+00, 2.70e+01)
3.16e+00

(2.40e+00, 3.97e+00)

salomon
1.79e+00

(1.64e+00, 1.93e+00)
1.79e+00

(1.64e+00, 1.93e+00)
2.82e+00

(2.63e+00, 3.05e+00)

sargan
1.67e+03

(5.58e+02, 2.84e+03)
1.67e+03

(5.58e+02, 2.84e+03)
1.35e+05

(1.04e+05, 1.77e+05)

schaffer-f6
9.26e-01

(8.24e-01, 1.02e+00)
9.26e-01

(8.24e-01, 1.02e+00)
8.85e-01

(7.79e-01, 9.71e-01)

schwefel-1.2
8.80e+04

(5.37e+04, 1.24e+05)
8.80e+04

(5.37e+04, 1.24e+05)
1.39e+07

(7.09e+06, 2.02e+07)

schwefel-2.22
4.63e-12

(1.06e-12, 1.11e-11)
4.63e-12

(1.06e-12, 1.11e-11)
4.63e-12

(1.06e-12, 1.11e-11)

schwefel-2.23
2.27e-94

(6.55e-100, 6.92e-94)
2.27e-94

(6.55e-100, 6.92e-94)
1.12e-99

(3.06e-101, 3.28e-99)

sphere
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)

stretched-v
4.23e+00

(3.91e+00, 4.53e+00)
4.23e+00

(3.91e+00, 4.53e+00)
2.83e+00

(2.54e+00, 3.14e+00)

whitley
5.46e+02

(5.05e+02, 5.87e+02)
5.46e+02

(5.05e+02, 5.87e+02)
6.68e+02

(5.82e+02, 7.55e+02)

zakharov
7.62e+02

(7.34e+02, 7.87e+02)
7.62e+02

(7.34e+02, 7.87e+02)
3.46e+11

(2.01e+11, 4.81e+11)
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by the arbiter of Xj, it is broadcast to all other swarms. By broadcasting cj, any

ck, ∀k > j that is subsequently reconciled has the benefit of this new information.

The main point of the previous discussion about reconciliation in the original DFEA

was that this did not happen. In effect, the original DFEA never had full consensus

in the sense that FEA does.

Now we introduce the idea that the message containing the new cj may be dropped.

This is accomplished through a success rate, r, which determines if a message is

delivered from some arbiter of Xj to each of the remaining swarms. If r = 0.8, there

is a 20% probability that the message from the arbiter of X1, for example, to X2 will

go missing, in which case when c2 is reconciled, c2 will not have the new value of c1.

This could happen for several iterations of the DFEA Reconcile Step, depending on

r. But this also means that for any given iteration of the DFEA Reconcile Step, some

arbiters will get c1, and some will not, with probability 1− r.

5.4.1 Experiment

In order to test the effects of dropped messages and their implications for relaxing

consensus, we re-ran the benchmark experiments from above. All the parameters are

the same. The only difference is that we simulated different success rates of r = 1.0

(the baseline), 0.8, 0.6, and 0.4. The results are presented in Table 5.6.
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5.4.2 Discussion

Looking at the results, we can see how well the revised DFEA did on the various

benchmarks with different success rates. The first column in Table 5.6 is a baseline

of 100% success. Comparing the results for a 100% and 80% success rate, we can see

that the revised DFEA required a success rate of 100% on 10 of 19 benchmarks. These

benchmarks were Ackley, Brown, Griewank, Rosenbrock, Schwefel-1.2, Schwefel-2.22,

Schwefel-2.23, Sphere, Whitley, and Zakharov. Perhaps the most surprising appear-

ance in this list is the Sphere function. The Sphere function is fairly simple and

separable in its variables. Our a priori belief was that missed messages would be

more important for non-separable functions where the optimizing values of variables

would have a high degree of correlation (what we have previously called epistasis

following the GA literature). One would think this would make missed messages less

important relative to some of the other benchmark functions. Evidently, this was not

the case.

Conversely, the revised DFEA continued to do well on nine of 19 benchmarks even

with a success rate of 80% (drop rate of 20%). The benchmarks were Dixon-Price,

Eggholder, Exponential, Michalewicz, Rastrigin, Salomon, Sargan, Schaffer-F6, and

Stretched-V. Strangely, on Michalewicz, although the difference was not statistically

significant, the lower success rate of 80% actually led to an increase in performance.

On a few benchmarks, the revised DFEA did fairly well even with a success rate
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Table 5.6: Relaxing Consensus by Success Rates

Benchmark 1.0 0.8 0.6 0.4

ackley-1
2.78e-03

(3.82e-08, 6.99e-03)
3.34e-02

(2.08e-02, 4.52e-02)
1.10e-01

(9.15e-02, 1.28e-01)
4.61e-01

(3.58e-01, 5.86e-01)

brown
1.21e-25

(5.11e-26, 1.98e-25)
3.53e-20

(3.02e-21, 8.93e-20)
7.02e-15

(9.67e-17, 2.31e-14)
1.05e+00

(1.09e-10, 3.29e+00)

dixon-price
3.85e+01

(2.93e+01, 4.70e+01)
1.62e+02

(2.81e+01, 3.57e+02)
1.05e+03

(5.62e+02, 1.54e+03)
1.78e+04

(9.39e+03, 2.88e+04)

eggholder
-2.10e+04

(-2.13e+04, -2.07e+04)
-2.05e+04

(-2.09e+04, -2.02e+04)
-1.98e+04

(-2.03e+04, -1.94e+04)
-1.71e+04

(-1.77e+04, -1.66e+04)

exponential
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)
-9.98e-01

(-1.00e+00, -9.93e-01)

griewank
1.49e-01

(6.92e-02, 2.23e-01)
7.52e-01

(6.98e-01, 8.03e-01)
5.78e-01

(5.23e-01, 6.21e-01)
4.90e-01

(4.45e-01, 5.42e-01)

michalewicz
-3.06e+01

(-3.07e+01, -3.04e+01)
-3.08e+01

(-3.10e+01, -3.07e+01)
-3.06e+01

(-3.08e+01, -3.04e+01)
-2.85e+01

(-2.87e+01, -2.82e+01)

rastrigin
7.28e-02

(1.36e-02, 1.51e-01)
1.89e-01

(5.97e-02, 3.45e-01)
2.77e-01

(1.10e-01, 4.70e-01)
4.14e+00

(2.07e+00, 6.33e+00)

rosenbrock
4.60e+01

(1.96e+01, 7.77e+01)
1.14e+03

(2.70e+02, 2.29e+03)
4.67e+03

(2.83e+03, 6.75e+03)
1.04e+05

(6.43e+04, 1.44e+05)

salomon
1.96e+00

(1.78e+00, 2.12e+00)
1.74e+00

(1.69e+00, 1.79e+00)
1.90e+00

(1.85e+00, 1.96e+00)
2.44e+00

(2.37e+00, 2.52e+00)

sargan
5.67e+02

(1.32e+02, 1.15e+03)
2.80e+03

(9.57e+02, 4.94e+03)
8.00e+03

(4.44e+03, 1.22e+04)
1.23e+04

(9.67e+03, 1.50e+04)

schaffer-f6
9.86e-01

(8.60e-01, 1.09e+00)
9.52e-01

(8.56e-01, 1.06e+00)
1.38e+00

(1.27e+00, 1.48e+00)
2.32e+00

(2.09e+00, 2.56e+00)

schwefel-1.2
6.53e+04

(4.59e+04, 8.85e+04)
3.22e+05

(2.86e+05, 3.55e+05)
2.97e+05

(2.74e+05, 3.24e+05)
2.75e+05

(2.56e+05, 2.95e+05)

schwefel-2.22
1.35e-12

(5.74e-13, 2.40e-12)
2.94e-06

(9.51e-08, 7.99e-06)
5.25e+00

(1.90e+00, 9.10e+00)
5.72e+01

(4.40e+01, 7.15e+01)

schwefel-2.23
5.07e-102

(2.39e-111, 1.67e-101)
5.22e+06

(1.27e+06, 1.00e+07)
1.02e+09

(6.05e+08, 1.56e+09)
4.07e+09

(2.89e+09, 5.48e+09)

sphere
0.00e+00

(0.00e+00, 0.00e+00)
4.46e+01

(3.64e+01, 5.39e+01)
1.54e+02

(1.36e+02, 1.71e+02)
3.75e+02

(3.50e+02, 4.02e+02)

stretched-v
4.24e+00

(3.91e+00, 4.54e+00)
4.16e+00

(3.82e+00, 4.46e+00)
5.40e+00

(5.05e+00, 5.76e+00)
9.26e+00

(8.70e+00, 9.82e+00)

whitley
5.35e+02

(4.84e+02, 5.80e+02)
9.54e+02

(9.02e+02, 1.00e+03)
5.52e+03

(4.28e+03, 7.94e+03)
4.38e+05

(3.31e+05, 5.62e+05)

zakharov
8.16e+02

(7.80e+02, 8.45e+02)
4.66e+03

(1.29e+03, 1.35e+04)
1.19e+04

(1.47e+03, 2.48e+04)
5.14e+03

(9.58e+02, 9.91e+03)

of 60%, which is fairly low (a drop rate of 40% per variable, per iteration). These

benchmarks were Eggholder, Exponential, Michalewicz, Rastrigrin, and Salomon. On

a single benchmark, Exponential, the revised DFEA’s performance was statistically

indistinguishable whether the success rate was 0%, 20%, 40% or 60%.
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These results seem to suggest that some tolerance to noise is acceptable for some

problems but that full consensus is best during the Reconcile Step.

5.5 Conclusions

In the previous chapter we developed a framework based on information exchange

and conflict resolution. Information exchange is modeled as a blackboard architec-

ture and four operations: insert, merge, retrieve and delete. The conflict resolution

mechanism is based on Pareto efficiency. We also developed a notation for looking at

patterns in the temporal evolution of the blackboard. In Chapter 3 we developed the

Distributed Factored Evolutionary Algorithms, DFEA.

Like DOSI before it, DFEA did not always perform as expected when compared

to its centralized counterpart, in this case, FEA. In this chapter we applied our

framework to DFEA in order to discover the cause of the discrepancy. We were able

to determine that the order of reconciliation in the original DFEA differed markedly

from that in FEA. We presented a revised version of DFEA that reproduced FEA

exactly. We also looked at what relaxing consensus might look like under this revised

DFEA.
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Chapter 6

Pareto Improving Particle Swarm

Optimization

In Chapter 4 we developed a framework around the Blackboard architecture that

emphasized information exchange and conflict resolution. We then applied this frame-

work to FEA and, in Chapter 3, to DFEA. In this chapter we apply this framework

to gbest PSO itself and develop a single-population version of gbest PSO that does

not exhibit hitchhiking.
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6.1 gbest and Blackboards

At least for PSO, hitchhiking does not arise in a problem of one dimension. Either

f(x′1) is better than f(x1) or is it is not. For problems of two or more dimensions,

hitchhiking becomes possible.

Let us revisit the example of two dimensions from Chapter 2. When comparing

any given particle’s pbest with the current gbest, we have two possibilities for each

variable and four for the pairs of variables. We know that x1 is either better or worse

and that x2 is either better or worse than their previous values. This leads to three

zones for potential successor gbest values (the current set of pbests). These zones

and the implications for Pareto improvements in the selection of a new gbest are

illustrated in Figure 6.1.

In this figure the arcs represent the contours of the Sphere function for two vari-

ables, x1 and x2. The current gbest = (4.2, 3.9) also defines a contour (dotted) that

is the dividing line between pbests that have a better fitness (a lower contour) or a

worse fitness (a higher contour). Additionally, the gray areas denote the set of points

where the pbest lies on a lower contour than the gbest and thus has a better fitness

but one or the other of the variables is larger than its value in gbest. All points in

the gray zones include hitchhiking. We can thus see that pbests C, D, E, F are all

inferior to the current gbest. Points A, B and G involve hitchhikers. Only Point H

has both a better fitness and no hitchhiking.
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Figure 6.1: Selecting gbest in PSO (Sphere) - No Hitchhiking
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Figure 6.2: Selecting gbest in PSO (Sphere) - Hitchhiking
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Table 6.1: Hitchhiking in PSO

pbestj X f(x)

gbestcurrent [2.39, 1.24, 5.71, 0.34] 39.97
1 [1.53, 1.84, 5.29, 0.59] 34.06
2 [0.42, 2.01, 4.76, 1.84] 30.26
3 [3.23, 0.72, 4.68, 0.47] 33.07
4 [2.83, 3.83, 2.71, 1.27] 31.64
gbestnew (#2) [0.42, 2.01, 4.76, 1.84] 30.26

Of course, it need not have worked out this way. Figure 6.2 presents an alternate

outcome where H has the values (4.25, 0, 85). Although H lies on a lower contour

than the current gbest and thus has a better fitness, the value for x1 is worse than

the value in the current gbest and is thus hitchhiking.

We also looked at a 4d example for the Sphere function, reproduced here in Table

6.1. In this table we can see directly that hitchhiking arises because the gbestcurrent is

replaced wholesale by a successor that is more fit overall but potentially loses valuable

information.

In previous chapters we developed the argument that FEA and similar algo-

rithms mitigate hitchhiking, not because of cooperation, but because the context

c is treated as a blackboard for information exchange and because of how the merge

operation resolves conflicting information in the multi-swarm (or, more generally,

multi-population) setting. Any conflicting information is reconciled in such a way

that cnew is always a Pareto improvement. Our previous example is shown again in

Table 6.2. Here we can once again see that the problems of the single swarm version
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Table 6.2: FEA-PSO Determination of Cnew with Non-overlapping Factors

gbestj.x X f(x)
C [2.39, 1.24, 5.71, 0.34] 39.97
S1 [1.53, ----, ----, ----] 36.59
S2 [----, 2.01, ----, ----] 42.47
S3 [----, ----, 4.68, ----] 29.27
S4 [----, ----, ----, 1.27] 41.47
Cnew [1.53, 1.24, 4.68, 0.34] 25.90

of PSO are avoided.

But we also identified a problem with the approach exemplified by Table 6.2.

Problems that are inappropriately factored are possibly subject to pseudo-optima

when the values of variables are highly interrelated (epistasis). It has been shown

that overlapping factors mitigate this problem [9]. We even went so far as to suggest

that one could always include one factor that covered all the variables. The challenge

with this solution is that such a factor, covering the entire problem space as it does,

would be subject to the hitchhiking we are trying to avoid.

If we look at both Table 6.1 and Table 6.2 together, however, a possible solution

arises. The way PSO uses gbest certainly has the characteristics of a blackboard

discussed in Chapter 4. It is used as a vehicle for information exchange between

particles when particle velocities are updated (Algorithm 2.4, Line 4). If we think

of how we might interpret the merge operation for this blackboard, it is “winner

take all.” We could, instead, apply our variable-by-variable Pareto improving merge

operation from FEA to the gbest in PSO.
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Figure 6.3: Selecting gbest in PSO with new Merge operation
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6.2 PSO to PI-PSO

Although we have put our own interpretation on it, the gbest is generally inter-

preted to be something more like a cache of the best value seen so far in the swarm.

We propose changing the role of the gbest in PSO from being a cache to being a black-

board. In addition, instead of applying a merge operation based on “winner take all,”

we apply the merge operation developed for FEA. Our context c becomes the gbest,

and instead of reconciling conflicting information between swarms, we reconcile con-

flicting information between particles. Figure 6.3 shows how this leads to a outcome

different from the one shown in Figure 6.2. The gbestnew is now a combination of

pbest A’s X2 value and pbest H’s X1 value.
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We hypothesize that if the global best were constructed in a similar way, the per-

formance would be on a par or better than FEA, and certainly better than PSO.

The reason for the first claim is that, by not factoring the variables, we would avoid

pseudo-optima. The reason for the second claim is that, by using the global best as

a blackboard and resolving information conflicts between particles in a Pareto im-

proving way, we avoid hitchhiking. We call this algorithm Pareto Improving Particle

Swarm Optimization (PI-PSO).

The difference between PSO and PI-PSO is fairly minimal, but we claim that the

effect is significant. The basic PSO algorithm remains exactly the same except in how

the global best is constructed. The pseudocode is shown in Algorithm 6.17. Basically,

the algorithm takes the current global best, all the current personal bests and begins

by taking x1 out of each particle’s personal best and trying it in the global best. At

the end of the loop, X1 either has the value we started with or it is the best one out

of all the particles. This process repeats for all remaining variables, X2...Xd. Unlike

FEA-PSO, however, we do not practice elitism by replacing the worst particle in the

swarm with our gbest. This means that the gbest may not necessarily ever be an

actual particle or pbest from the swarm.

Unfortunately, as we have previously mentioned, we cannot be guaranteed of a

Pareto efficient gbest. If we have a swarm of 320 particles with 32 dimensions, we

would need to test 32032 combinations to find the best use of the information contained
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Algorithm 6.17 PI-PSO Select Global Best

Input: Function f to optimize, current global best pgbest, current personal bests,
ppbest.
Output: New pgbest.

1: for i = 1 to d do
2: fitness← f(pgbest)
3: value← pgbest.xi
4: for j = 1 to n do
5: candidate← pjpbest.xi
6: pgbest.xi ← candidate
7: candidate fitness← f(pgbest)
8: if candidate fitnessis better thanfitness then
9: fitness← candidate fitness

10: value← candidate
11: end if
12: pgbest.xi ← value
13: end for
14: end for
15: return pgbest

on each variable in the swarm. So while we admit the theoretical existence of a Pareto

Efficient Particle Swarm Optimization (PE-PSO) algorithm, we hope to work towards

better approximations of it. We will return to a discussion of this PE-PSO in the

conclusion.

As previously discussed in Chapter 3, the complexity of an EA like PSO is:

O(PSO) = O(pΛ(d))

The complexity of PI-PSO is now dominated by the more complicated global best

update. The algorithm iterates over every individual (p of them) for each variable (d
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of them). This puts the algorithmic complexity of PI-PSO at:

O(PSO) = O(dpΛ(d))

We will discuss this increased complexity below.

6.3 Comparing PSO, FEA-PSO, and PI-

PSO

In order to test our hypothesis that PI-PSO would be at least as good as FEA-PSO

and better than basic PSO, we ran a large number of experiments on standard bench-

mark functions. The following sections describe the design, results, and discussion of

those experiments.

6.3.1 Design

We selected Benchmark optimization problems from [8] and [18] (See Appendix A

more information the benchmark functions). The problems selected are shown in Ta-

ble 6.3, arranged by categories inspired by [58]. All of the problems are minimization

problems, and almost all have a minimizing solution and value of f([0]d) = 0. The

notable exceptions are Exponential, which has a minimum at [−1]d, and Eggholder,
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Table 6.3: Benchmark Optimization Functions by Category

Category Benchmark Function

Bowl Exponential, Sargan, Sphere
Many Local Optima Ackley-1, Eggholder, Griewank, Rastrigin,

Salomon, Stretched-V
Plate Brown, Schwefel-2.23, Whitley, Zakharov
Ridge Michalewicz, Schaffer-F6, Schwefel-2.22
Valley Dixon-Price, Rosenbrock, Schefel-1.2

which has a dimension-dependent minimum and minimizing vector. Additionally,

Sphere is separable, which means each dimension could be optimized individually. All

of the other functions are non-separable in their current forms.

Each algorithm was run against each problem 50 times, and the average minimum

value discovered was recorded. Each problem was instantiated with 32 dimensions,

d = 32. The results were then bootstrapped 500 times to estimate 95% confidence

intervals/credible intervals [59]. Following [60] each algorithm used the same number

of candidate solutions. In this case we chose 10 particles per dimension or d×10 = 320.

The PSO, PI-PSO, and PSO portion of FEA-PSO all used the same parameters:

ω = 0.729 and φ1 = φ2 = 1.49618. Both PSO and PI-PSO were run for 100 iterations.

FEA-PSO was run for 20 FEA iterations separated by 5 PSO iterations for a total of

100 PSO iterations. The FEA-PSO used a “Simple Centered” factor of i, i+ 1 which

followed the functional form of most of the benchmark functions—they are functions

of adjacent x values—and shown by Strasser et al. to perform well [9]. With d−1 such

factors, and d = 32, there were b(320/31)c = 10 particles per swarm for FEA-PSO.
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Table 6.4: “Bowl” Results - PSO, FEA-PSO, and PI-PSO

Benchmark PSO FEA-PSO PI-PSO

exponential
-9.99e-01

(-1.00e+00, -9.99e-01)
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)

sargan
9.76e+00

(8.55e+00, 1.11e+01)
2.04e-12

(1.37e-12, 2.91e-12)
1.55e-06

(1.16e-06, 2.00e-06)

sphere
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)

Table 6.5: “Many Local Optima” Results - PSO, FEA-PSO, and PI-PSO

Benchmark PSO FEA-PSO PI-PSO

ackley-1
1.84e+00

(1.77e+00, 1.90e+00)
2.81e-03

(5.23e-06, 7.00e-03)
4.44e-16

(4.44e-16, 4.44e-16)

eggholder
-1.68e+04

(-1.71e+04, -1.64e+04)
-1.77e+04

(-1.79e+04, -1.74e+04)
-2.38e+04

(-2.40e+04, -2.35e+04)

griewank
4.96e-01

(4.47e-01, 5.45e-01)
9.49e-01

(8.99e-01, 9.91e-01)
1.08e-01

(8.07e-02, 1.40e-01)

rastrigin
1.03e+02

(9.59e+01, 1.11e+02)
2.60e-02

(1.97e-05, 6.59e-02)
0.00e+00

(0.00e+00, 0.00e+00)

salomon
1.41e+00

(1.33e+00, 1.48e+00)
2.29e+00

(2.12e+00, 2.49e+00)
1.69e+00

(1.57e+00, 1.79e+00)

stretched-v
1.20e+01

(1.14e+01, 1.28e+01)
4.37e+00

(3.78e+00, 5.02e+00)
2.84e+00

(2.59e+00, 3.04e+00)

Table 6.6: “Plate” Results - PSO, FEA-PSO, and PI-PSO

Benchmark PSO FEA-PSO PI-PSO

brown
7.56e+00

(6.69e+00, 8.55e+00)
1.22e-25

(3.72e-26, 2.42e-25)
1.23e-09

(1.01e-09, 1.45e-09)

schwefel-2.23
2.44e-01

(1.18e-01, 4.15e-01)
8.65e-102

(7.25e-116, 2.31e-101)
5.35e-41

(0.00e+00, 1.63e-40)

whitley
9.82e+02

(9.67e+02, 9.99e+02)
3.51e+02

(2.97e+02, 3.91e+02)
7.51e+00

(6.20e+00, 8.76e+00)

zakharov
1.39e+02

(1.28e+02, 1.51e+02)
1.60e+03

(3.09e+02, 3.77e+03)
1.41e+02

(1.28e+02, 1.57e+02)
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Table 6.7: “Ridge” Results - PSO, FEA-PSO, and PI-PSO

Benchmark PSO FEA-PSO PI-PSO

michalewicz
-8.65e+00

(-9.02e+00, -8.33e+00)
-2.59e+01

(-2.63e+01, -2.56e+01)
-3.19e+01

(-3.19e+01, -3.19e+01)

schaffer-f6
2.49e+00

(2.31e+00, 2.67e+00)
1.99e+00

(1.78e+00, 2.20e+00)
4.85e-01

(4.20e-01, 5.40e-01)

schwefel-2.22
3.01e+02

(2.91e+02, 3.13e+02)
1.22e-12

(7.73e-13, 1.75e-12)
0.00e+00

(0.00e+00, 0.00e+00)

Table 6.8: “Valley” Results - PSO, FEA-PSO, and PI-PSO

Benchmark PSO FEA-PSO PI-PSO

dixon-price
4.23e+01

(2.54e+01, 6.34e+01)
1.18e+02

(1.07e+02, 1.28e+02)
8.65e-05

(7.44e-05, 9.85e-05)

rosenbrock
1.95e+02

(1.56e+02, 2.51e+02)
2.20e+02

(1.69e+02, 2.88e+02)
9.64e-01

(6.73e-01, 1.26e+00)

schwefel-1.2
7.96e+03

(7.19e+03, 8.84e+03)
6.59e+04

(5.72e+04, 7.60e+04)
3.28e+02

(2.86e+02, 3.68e+02)

6.3.2 Results

The results of the experiments are reported in Tables 6.4-6.8 for the mean mini-

mum found by each algorithm during each experiment. The 95% confidence/credible

intervals are show in parentheses. The algorithms with the best performance are

shown in bold, if there is a clear winner, or italics for multiple winners. We now

examine the results by Benchmark category.

It is no surprise that all the algorithms did well on the Bowl benchmarks (Ex-

ponential, Sargan, and Sphere). All of these functions have a single global optimum

without any trapping local optima. All three algorithms tied on the Sphere func-

tion, learning it perfectly without variance. The same cannot be said for Sargan
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where FEA-PSO did better than the others, or for Exponential where FEA-PSO and

PI-PSO were tied for best performance. In all cases, PI-PSO did better than PSO.

In stark contrast to the Bowl benchmarks, the six benchmark functions in the Lo-

cal Optima category are highly irregular (Ackley-1, Eggholder, Griewank, Rastrigin,

Salomon, and Stretched-V). Consistent with previous research [9], FEA-PSO usually

did better than PSO (four out of six). However, PI-PSO beat the other algorithms

on five of six benchmarks.

The Plate benchmarks (Brown, Schwefel-2.23, Whitley, and Zakharov) have large,

flat plateaus over their domains with spiky minima. FEA-PSO and PI-PSO each

split these benchmarks with FEA-PSO performing better on Brown and PI-PSO

performing better on Whitley. PI-PSO tied on each of the other functions. On

Schwefel-2.23, PI-PSO tied with FEA-PSO. On Zakharov, PI-PSO tied with PSO.

PI-PSO did better than PSO on all benchmarks except Zakharov.

Michalewicz, Schaffer-F6, and Schwefel-2.22 are all Ridge benchmarks character-

ized by sharp drop offs at various points in their domain. The PI-PSO did better on

all of these benchmarks than the other algorithms.

Finally, we have the Valley benchmark functions that look like a tilted tube sawed

in half (Dixon-Price, Rosenbrock, Schwefel-1.2). The PI-PSO again did better than

all the other algorithms on these problems.

Overall, PI-PSO was the strongest performing algorithm. It was the best perform-
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ing algorithm in 12 out of 19 benchmarks with three ties (Exponential, Sphere, Za-

kharov) and four losses (Sargan, Salomon, Brown, Schwefel-2.23). Comparing solely

to PSO, however, PI-PSO was the best performer for 16 of 19 benchmarks with two

ties (Sphere, Zakharov) and one loss (Salomon). PI-PSO performed better than FEA-

PSO on 15 of 19 benchmarks, losing twice (Brown, Sargan) and tying twice (Sphere

and Schwefel-2.23).

On the other hand, FEA-PSO was better than PSO on 12 of 19 benchmarks, tying

twice (Sphere, Rosenbrock) and losing five times (Dixon-Price, Griewank, Salomon,

Schwefel-1.2, Zakharov). PSO performed best only on Salomon, tied on three (Sphere,

Zakharov, Rosenbrock), and lost the rest.

6.3.3 Discussion

As we hypothesized, PI-PSO was much better than PSO, beating the basic algo-

rithm on 16 of 19 benchmarks. We attribute this both to the elimination of hitchhiking

and the lack of pseudo-minima in PI-PSO.

PI-PSO also did well when compared to FEA-PSO, beating it on 15 of 19 bench-

marks. Given that FEA-PSO did so well against PSO (12 out of 19 benchmarks), it

is difficult to attribute all of this success to pseudo-minima in FEA-PSO that were

avoided in PI-PSO, though this may have played a part. What we hypothesize in-

stead is that although both algorithms use the same basic algorithm to construct
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their context, c for FEA-PSO and gbest for PI-PSO, PI-PSO has significantly more

information to evaluate because instead of working with relatively few factors repre-

senting only partial solutions, PI-PSO works with many particles representing entire

solutions.

Although all the algorithms start with the same number of candidate solutions,

PI-PSO definitely requires more fitness evaluations. If p is the number of particles,

d the number of dimensions, s the number of swarms (factors), m the number of

FEA iterations, and i the average width of a factor, then our estimates of fitness

evaluations per PSO iteration are:

PSO = p

FEA-PSO = ps+
di+ ps+ 1

m

PI-PSO = dp+ p+ 1

Given the difficulty of comparing algorithms with different structures, informa-

tion, and information processing, it is difficult to say that fitness evaluations are a

fair means of comparison, which is why we looked at candidate solutions. Different

algorithms use the information differently. However, ultimately all factors should be

presented so that users of these algorithms can make informed choices.
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6.4 Conclusions

In this chapter, we introduced the Pareto Improving Particle Swarm Optimization

(PI-PSO) algorithm. The algorithm is built on the ideas of information exchange via

a blackboard architecture and conflict resolution taken from FEA. However, instead

of applying these concepts to multiple populations in the construction of a shared

context, c, we applied them to the particles of a single swarm in the construction of

the gbest. We hypothesized that this PI-PSO would perform better than regular gbest

PSO and on a par with FEA-PSO. In order to test our hypothesis we ran multiple

experiments on PSO, FEA-PSO and PI-PSO. PI-PSO outperformed PSO in 16 out

of 19 functions.
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Chapter 7

Comparative Scaling and

Performance of PI-PSO

In this chapter, we further explore PI-PSO developed in the previous chapter.

Specifically, we look at the comparative scaling and performance characteristics of

PI-PSO relative to PSO.

7.1 Introduction

In the previous chapter, we ran experiments on 19 standard benchmark optimiza-

tion functions for a given dimension, d = 32. Additionally, following Engelbrech

[60], we evaluated the stochastic optimization algorithms by using the same number
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of candidate solutions for each algorithm. Under those conditions, we showed that

PI-PSO outperforms PSO. In this chapter, we want to explore the broader scaling

and performance characteristics of PI-PSO relative to PSO. In order to do this, we

will take advantage of the fact that the benchmark functions we chose are scalable

to different dimensionalities. Additionally, we will look at the performance of both

algorithms with different numbers of candidate solutions.

7.2 PSO and PI-PSO with Different Pop-

ulation Sizes and Problem Dimensions

In the previous chapter we showed that PI-PSO performed well on standard bench-

mark problems, besting the gbest PSO (or just “PSO” hereafter) on 16 out of 19 of

them. However, by looking only at problems with 32 dimensions and using only 10

particles per dimension, we are left unsure of PI-PSO’s comparative performance vis-

a-vis PSO as dimensions increase and as differing numbers of particles are used. The

purpose of the experiments in this chapter is to expand on the initial results of the

previous chapter and test the comparative performance and scalability of PI-PSO by

varying both problem dimension and swarm size.

A very general interpretation of the curse of dimensionality suggests that, for a

given level of performance on a 4-dimensional problem with 16 particles, we would
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need 256 particles to achieve the same level of performance on an 8-dimensional

problem. And to achieve that same level of performance on a 16-dimensional problem,

we would need 65,536 particles. But these requirements quickly become untenable

with a 32-dimensional problem where we would theoretically require 4,294,967,296

particles. Of course, there are attenuating factors, such as the simplicity of the

problem and the nature of our algorithm, but NFLT suggests we cannot expect to

surmount these difficulties across all problems.

7.2.1 Design

We use the same benchmark functions as we have used throughout this disserta-

tion from [8, 18] (See Appendix A more information the benchmark functions). The

benchmark functions are presented in Table 6.3 by categories suggested by [58]. These

are all minimization problems with the same solution, [0]d, except for Exponential,

Eggholder, and Michalewicz. Departing from [60], we are specifically interested in the

comparative performance of these algorithms with different numbers of candidates.

Thus, for these experiments, a “problem” consisted of a benchmark optimization

function, a dimensionality, and a number of particles per dimension. The range of

particles per dimension was {2, 4, 8, 16, 32, 64, 128, 256} and the number of dimensions

was {4, 8, 16, 32}. Each algorithm was run against each problem 50 times, and the

average minimum value discovered was recorded. Because of the asymmetries en-
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Table 7.1: Benchmark Optimization Functions by Category

Category Benchmark Function

Bowl Exponential, Sargan, Sphere
Many Local Optima Ackley-1, Eggholder, Griewank,

Rastrigin, Salomon, Stretched-V
Plate Brown, Schwefel-2.23, Whitley,

Zakharov
Ridge Michalewicz, Schaffer-F6,

Schwefel-2.22
Valley Dixon-Price, Rosenbrock, Schefel-1.2

countered in optimization problems, we opted to use bootstrap estimates of the 95%

confidence intervals/credible intervals [59]. PSO and PI-PSO both used the same

parameters: ω = 0.729 and φ1 = φ2 = 1.49618 with 100 iterations.

Such a large number of experiments gives rise to an even larger matrix of possible

outcomes. Although we believe that PI-PSO both eliminates hitchhiking and better

exploits the information in the swarm, which should make it better than PSO in

general, we do not believe that it will be comparatively better in all cases. We

already know from previous results that PI-PSO did not perform as well as PSO on

some problems. As a result, we make the following hypotheses:

1. Hypothesis I – On a given problem, with a given dimension, we expect PI-

PSO to perform better than PSO as particles per dimension increase. As the

swarm gets larger, there is more information for PI-PSO to exploit. We are

unsure what to expect with PSO. It would seem like, given our discussion on

the curse of dimensionality, that as particles per dimension increase for PSO,
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performance should increase as well but some have found that more particles

can “get in the way” [60].

2. Hypothesis II – Because PI-PSO can better exploit the information in the

swarm, the 2 particle per dimension (PPD) version of PI-PSO will outperform

the 256 PPD version of PSO for a given problem of a given dimension. This

comparison is may be seen as a proxy for an approximate run-time comparison

of the two algorithms, at least in terms of fitness evaluations that heavily favors

PSO. PSO requires O(p) fitness evaluations to select the gbest (256 × 32 =

8, 192 fitness evaluations) whereas PI-PSO requires O(pd) fitness evaluations

(2× 32× 32 = 2, 048 fitness evaluations).

If desired, the charts can be used to make a closer comparison by using 4ppd

for PI-PSO and 128ppd for PSO.

3. Hypothesis III – Because hitchhiking should theoretically be lower at lower

dimensions and because there is relatively less information to exploit, the rela-

tive performance of PI-PSO will be the same as PSO on 4-dimensional versions

of problems and then increase as dimensionality increases.

With 19 benchmarks × 4 dimensions × 8 particles per dimension × 3 metrics,

we have 1,824 individual results. To limit the number of tables of results, we present

categories of results along with examples of each (Tables for all 32d results and charts
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for all results are in Appendix B). While our hypotheses were supported overall, the

deviations are perhaps the most interesting so we will concentrate more on those.

All tables showing results for a single benchmark function are for the 32-dimensional

version of the function. They include results for both PSO and PI-PSO. Each row

shows results for a given PPD showing the mean discovered minimum as well as

the 95% confidence interval for the mean. The summary table shows results for all

benchmark functions (Table 7.3) but only for 2 and 256 PPD.

All figures show results for all dimensions of the problems at all particles per

dimension. The blue dots and lines are for PSO. The red dots and lines are for

PI-PSO. The dots are the mean discovered minimum. The lines represent the 95%

confidence interval. The x-axis is the range of mean discovered minima and are not

necessarily the same for all charts within a figure.

7.2.2 Results - Hypotheses I and II

Our findings for the Ackley-1 benchmark function (Table B.1) are typical for

benchmark results that support both Hypothesis I and Hypothesis II. For PSO, the 2d

version had a mean discovered minimum of 2.42 (2.35, 2.49) and the 256d version had

a mean discovered minimum of 1.14 (1.08, 1.20). For PI-PSO, the 2d version results

were 1.54e-04 (1.20e-04, 1.88e-04) and 256d version results were 4.44e-16 (4.44e-16,

4.44e-16). Looking at Table B.1 we see that performance progressively improved for

138



CHAPTER 7. COMPARATIVE SCALING AND PERFORMANCE OF PI-PSO

Table 7.2: Ackley-1 Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 2.42e+00 (2.35e+00, 2.49e+00) 1.54e-04 (1.20e-04, 1.88e-04)
4 (128) 2.14e+00 (2.08e+00, 2.20e+00) 1.01e-05 (5.73e-06, 1.54e-05)
8 (256) 1.93e+00 (1.86e+00, 1.98e+00) 1.11e-07 (4.44e-16, 3.32e-07)
16 (512) 1.85e+00 (1.77e+00, 1.92e+00) 4.44e-16 (4.44e-16, 4.44e-16)
32 (1024) 1.65e+00 (1.58e+00, 1.72e+00) 4.44e-16 (4.44e-16, 4.44e-16)
64 (2048) 1.41e+00 (1.33e+00, 1.49e+00) 4.44e-16 (4.44e-16, 4.44e-16)
128 (4096) 1.25e+00 (1.18e+00, 1.30e+00) 4.44e-16 (4.44e-16, 4.44e-16)
256 (8192) 1.14e+00 (1.08e+00, 1.20e+00) 4.44e-16 (4.44e-16, 4.44e-16)

both PSO and PI-PSO as the number of particles per dimension increased. Addi-

tionally, the performance of the 2 PPD version of PI-PSO (1.54e-04) was significantly

better than the performance of the 256 PPD version of PSO (1.14e+00).

Results for all of the benchmark functions are presented in Table 7.3. Each bench-

mark function has a row showing the performance of both PSO and PI-PSO for 2

and 256 PPD. These results are for the 32d version of the benchmark function. The

table is divided into four sections: those results that support both Hypothesis I and

II, those that support only Hypothesis I, those that support only Hypothesis II, and

those results that support neither hypothesis. Recall that Hypothesis I is that per-

formance increases as PPD increases for both algorithms, and Hypothesis II is that

the performance of PI-PSO at 2 PPD will be better than PSO 256 PPD. Thus we

can see that the results support Hypotheses I and II in 12 of 19 (63%) cases.

Hypothesis I was supported but not Hypothesis II in four cases: Exponential

(Table B.5), Schwefel-1.2 (Table B.14), Sphere (Table B.17, Figure 7.2), and Zakharov
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Table 7.3: Summary of Hypothesis I and II Results

PSO PI-PSO
Benchmark 2 ppd 256 ppd 2 ppd 256 ppd

Hypothesis I and II

ackley-1
2.42e+00

(2.35e+00, 2.49e+00)
1.14e+00

(1.08e+00, 1.20e+00)
1.54e-04

(1.20e-04, 1.88e-04)
4.44e-16

(4.44e-16, 4.44e-16)

brown
1.95e+01

(1.42e+01, 2.50e+01)
1.57e+00

(1.15e+00, 2.01e+00)
2.16e-07

(1.62e-07, 2.87e-07)
2.90e-13

(2.36e-13, 3.57e-13)

dixon-price
2.34e+02

(1.82e+02, 2.86e+02)
7.07e+00

(1.21e+00, 1.41e+01)
1.03e-01

(6.61e-03, 3.02e-01)
4.32e-08

(3.62e-08, 5.33e-08)

eggholder
-1.52e+04

(-1.56e+04, -1.49e+04)
-1.86e+04

(-1.90e+04, -1.83e+04)
-2.30e+04

(-2.33e+04, -2.27e+04)
-2.37e+04

(-2.40e+04, -2.33e+04)

michalewicz
-7.42e+00

(-7.77e+00, -7.13e+00)
-1.07e+01

(-1.12e+01, -1.03e+01)
-3.18e+01

(-3.19e+01, -3.18e+01)
-3.19e+01

(-3.19e+01, -3.19e+01)

rastrigin
1.56e+02

(1.46e+02, 1.66e+02)
5.54e+01

(5.09e+01, 6.02e+01)
4.54e-06

(1.39e-06, 9.46e-06)
0.00e+00

(0.00e+00, 0.00e+00)

rosenbrock
8.56e+02

(6.13e+02, 1.28e+03)
6.38e+01

(5.03e+01, 7.84e+01)
1.56e+01

(7.57e+00, 2.46e+01)
1.20e+00

(7.09e-01, 1.82e+00)

sargan
9.83e+01

(8.47e+01, 1.12e+02)
1.22e-01

(1.04e-01, 1.40e-01)
6.93e-04

(5.52e-04, 8.65e-04)
2.42e-10

(1.03e-12, 8.31e-10)

schaffer-f6
3.49e+00

(3.26e+00, 3.73e+00)
1.83e+00

(1.69e+00, 1.95e+00)
6.12e-01

(5.42e-01, 6.90e-01)
3.98e-01

(3.44e-01, 4.55e-01)

schwefel-2.22
4.70e+02

(4.52e+02, 4.89e+02)
1.09e+02

(9.45e+01, 1.23e+02)
3.14e-04

(0.00e+00, 9.03e-04)
0.00e+00

(0.00e+00, 0.00e+00)

schwefel-2.23
3.59e+02

(1.53e+02, 6.52e+02)
2.73e-09

(6.32e-10, 5.86e-09)
8.61e-25

(1.89e-25, 1.92e-24)
0.00e+00

(0.00e+00, 0.00e+00)

stretched-v
1.60e+01

(1.52e+01, 1.68e+01)
9.20e+00

(8.69e+00, 9.72e+00)
3.52e+00

(3.21e+00, 3.83e+00)
3.01e+00

(2.67e+00, 3.38e+00)
Hypothesis I only

exponential
-9.93e-01

(-9.94e-01, -9.92e-01)
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)

schwefel-1.2
1.69e+04

(1.54e+04, 1.84e+04)
1.23e+03

(9.41e+02, 1.50e+03)
1.52e+03

(1.37e+03, 1.66e+03)
2.68e+02

(2.40e+02, 2.96e+02)

sphere
2.73e+01

(1.20e+01, 4.20e+01)
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)

zakharov
3.74e+02

(3.42e+02, 4.04e+02)
2.29e+01

(1.91e+01, 2.71e+01)
2.29e+02

(2.08e+02, 2.45e+02)
1.37e+02

(1.25e+02, 1.49e+02)
Hypothesis II only

griewank
1.03e+00

(1.02e+00, 1.04e+00)
2.66e-02

(2.10e-02, 3.32e-02)
1.65e-02

(1.00e-02, 2.33e-02)
2.16e-01

(1.88e-01, 2.44e-01)

whitley
5.52e+03

(4.03e+03, 7.26e+03)
6.80e+02

(6.65e+02, 6.96e+02)
3.59e+01

(1.70e+01, 5.96e+01)
3.93e+02

(3.30e+02, 4.47e+02)
Neither

salomon
3.18e+00

(2.93e+00, 3.54e+00)
4.14e-01

(3.96e-01, 4.30e-01)
1.79e+00

(1.67e+00, 1.91e+00)
1.91e+00

(1.82e+00, 2.02e+00)

(Table B.20, Figure 7.8). Using the categories from Table 7.1, we find no commonality

between these four functions. Both Exponential and Sphere are considered to have a

140



CHAPTER 7. COMPARATIVE SCALING AND PERFORMANCE OF PI-PSO

Table 7.4: Exponential Benchmark Results 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) -9.93e-01 (-9.94e-01, -9.92e-01) -1.00e+00 (-1.00e+00, -1.00e+00)
4 (128) -9.98e-01 (-9.98e-01, -9.97e-01) -1.00e+00 (-1.00e+00, -1.00e+00)
8 (256) -9.99e-01 (-9.99e-01, -9.99e-01) -1.00e+00 (-1.00e+00, -1.00e+00)

16 (512) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
32 (1024) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
64 (2048) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)

128 (4096) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
256 (8192) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)

Table 7.5: Schwefel-1.2 Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 1.69e+04 (1.54e+04, 1.84e+04) 1.52e+03 (1.37e+03, 1.66e+03)
4 (128) 1.31e+04 (1.16e+04, 1.44e+04) 6.73e+02 (6.07e+02, 7.39e+02)
8 (256) 1.07e+04 (9.56e+03, 1.19e+04) 4.21e+02 (3.84e+02, 4.63e+02)

16 (512) 7.22e+03 (6.16e+03, 8.29e+03) 3.03e+02 (2.65e+02, 3.38e+02)
32 (1024) 5.48e+03 (4.60e+03, 6.48e+03) 3.05e+02 (2.80e+02, 3.33e+02)
64 (2048) 3.21e+03 (2.66e+03, 3.79e+03) 3.22e+02 (2.80e+02, 3.64e+02)

128 (4096) 2.17e+03 (1.67e+03, 2.79e+03) 2.74e+02 (2.51e+02, 3.00e+02)
256 (8192) 1.23e+03 (9.41e+02, 1.50e+03) 2.68e+02 (2.40e+02, 2.96e+02)

Table 7.6: Sphere Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 2.73e+01 (1.20e+01, 4.20e+01) 0.00e+00 (0.00e+00, 0.00e+00)
4 (128) 8.22e+00 (2.00e+00, 1.80e+01) 0.00e+00 (0.00e+00, 0.00e+00)
8 (256) 5.94e+00 (0.00e+00, 1.40e+01) 0.00e+00 (0.00e+00, 0.00e+00)

16 (512) 1.74e+00 (0.00e+00, 6.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)
32 (1024) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)
64 (2048) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)

128 (4096) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)
256 (8192) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)

general Bowl shape, Schwefel-1.2 is Valley-shaped and Zakharov is Plate-shaped.

In those cases where only Hypothesis II was supported (Griewank and Whitley),
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Table 7.7: Zakharov Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 3.74e+02 (3.42e+02, 4.04e+02) 2.29e+02 (2.08e+02, 2.45e+02)
4 (128) 2.46e+02 (2.25e+02, 2.69e+02) 1.90e+02 (1.69e+02, 2.11e+02)
8 (256) 1.68e+02 (1.54e+02, 1.83e+02) 1.53e+02 (1.42e+02, 1.64e+02)

16 (512) 1.15e+02 (1.05e+02, 1.24e+02) 1.45e+02 (1.31e+02, 1.57e+02)
32 (1024) 7.12e+01 (6.50e+01, 7.73e+01) 1.42e+02 (1.28e+02, 1.57e+02)
64 (2048) 5.09e+01 (4.61e+01, 5.55e+01) 1.39e+02 (1.25e+02, 1.51e+02)

128 (4096) 3.25e+01 (2.81e+01, 3.65e+01) 1.47e+02 (1.34e+02, 1.65e+02)
256 (8192) 2.29e+01 (1.91e+01, 2.71e+01) 1.37e+02 (1.25e+02, 1.49e+02)

Table 7.8: Griewank Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 1.03e+00 (1.02e+00, 1.04e+00) 1.65e-02 (1.00e-02, 2.33e-02)
4 (128) 8.65e-01 (8.31e-01, 8.98e-01) 1.03e-01 (7.75e-02, 1.30e-01)
8 (256) 5.90e-01 (5.40e-01, 6.42e-01) 1.44e-01 (1.15e-01, 1.72e-01)

16 (512) 3.22e-01 (2.79e-01, 3.64e-01) 1.75e-01 (1.46e-01, 2.08e-01)
32 (1024) 1.49e-01 (1.27e-01, 1.73e-01) 1.97e-01 (1.65e-01, 2.29e-01)
64 (2048) 9.10e-02 (7.36e-02, 1.09e-01) 1.77e-01 (1.46e-01, 2.05e-01)

128 (4096) 4.13e-02 (3.16e-02, 5.15e-02) 1.60e-01 (1.25e-01, 1.92e-01)
256 (8192) 2.66e-02 (2.10e-02, 3.32e-02) 2.16e-01 (1.88e-01, 2.44e-01)

the results for PSO actually improved as PPD increased but they did not for PI-

PSO. Neither of these functions belongs to the same general shape class. Griewank

has Many Local Optima while Whitley is Plate-shaped. The results for Griewank are

shown in Table B.7.

The only results that supported neither hypothesis were those for Salomon (Ta-

ble B.11). Like the results for Griewank and Whitley, increasing PPD for PI-PSO

decreased performance (although performance for PSO increased as PPD increased).

Additionally, the 256 PPD version of PSO outperformed the 2 PPD version of PI-
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Table 7.9: Salomon Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 3.18e+00 (2.93e+00, 3.54e+00) 1.79e+00 (1.67e+00, 1.91e+00)
4 (128) 2.31e+00 (2.17e+00, 2.43e+00) 1.74e+00 (1.61e+00, 1.87e+00)
8 (256) 1.67e+00 (1.60e+00, 1.74e+00) 1.90e+00 (1.77e+00, 2.03e+00)

16 (512) 1.18e+00 (1.11e+00, 1.23e+00) 1.87e+00 (1.74e+00, 1.97e+00)
32 (1024) 8.55e-01 (8.18e-01, 8.94e-01) 1.88e+00 (1.79e+00, 1.98e+00)
64 (2048) 6.39e-01 (6.14e-01, 6.64e-01) 1.85e+00 (1.74e+00, 1.95e+00)

128 (4096) 5.18e-01 (4.92e-01, 5.40e-01) 1.79e+00 (1.66e+00, 1.91e+00)
256 (8192) 4.14e-01 (3.96e-01, 4.30e-01) 1.91e+00 (1.82e+00, 2.02e+00)

PSO. However, there were some situations where PI-PSO outperformed PSO. The

interesting “problem” is that at lower dimensions, those same PPDs did not outper-

form PSO.

7.2.3 Results - Hypothesis III

Hypothesis III relates to how the algorithms’ relative performance as the dimen-

sion of the problem increased. Specifically, we hypothesized that at low dimensions

(4d), the results of PI-PSO and PSO overall could be indistinguishable as lower di-

mensional problems are less likely to exhibit hitchhiking, other things being equal.

However, we generally believed that at least Hypotheses I would continue to hold

across all dimensions. For any given problem of a certain dimension, as one increases

particles per dimension, the performance of both algorithms will increase. It is cer-

tainly possible that weaker versions of Hypothesis II might be true. For example,
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Figure 7.1: Ackley-1 Benchmark
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Figure 7.2: Sphere Benchmark
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PI-PSO with 8 PPD, rather than 2 PPD, might exceed the performance of PSO at

256 PPD.

Figure 7.1 presents the results for the Ackley-1 benchmark function. With only

minor variation, these results represent those cases where the results support Hy-

pothesis III. The results for 12 of 19 (63%) benchmark functions strongly support

Hypothesis III (Ackley-1, Brown, Dixon-Price, Eggholder, Michaelwicz, Rastrigin,

Rosenbrock, Sargan, Schaffer-F6, Schwefel-1.2, Schwefel-2.22, and Stretched-V). The

results for Stretched-V (Figure 7.5) are probably closer to those we envisioned. At 4d,

the performance of both algorithms are indistinguishable, but by the time we reach

32d, there is a clear separation in favor of PI-PSO.

Another interesting case is the Sphere function (Figure 7.2). Much maligned
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Figure 7.3: Schwefel-2.23 Benchmark
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Figure 7.4: Dixon-Price Benchmark
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for its simplicity, the results show that even this simple function is not immune to

hitchhiking and the curse of dimensionality. Although the results for PSO and PI-

PSO are nearly identical for problem sizes of 4d through 16d, when we consider 32d,

there are lower particles per dimension where PSO starts to perform worse that PI-

PSO. In the case of Exponential, Schwefel 2.23 (Figure 7.3), and Sphere, based on the

emerging pattern in the data, it is possible that Hypothesis III is true in dimensions

higher than 32.

The Dixon-Price benchmark function, Figure 7.4, exhibited some interesting char-

acteristics as well. Although the overall trend as dimensions increased followed the

expected pattern of Hypothesis III, PSO showed a much larger variance relative to

PI-PSO on low PPD (2–16 PPD).

145



CHAPTER 7. COMPARATIVE SCALING AND PERFORMANCE OF PI-PSO

Figure 7.5: Stretched-V Benchmark
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Figure 7.6: Griewank Benchmark
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There were four benchmark functions whose results did not support Hypothesis

III. In Figure 7.6, we see that the hypothesis generally holds for 4d and 8d versions

of the problem but as we cross into 16d and certainly by 32d, PI-PSO seems to

exhibit aberrant behavior. Specifically, as the particles per dimension increase, the

performance of PI-PSO deteriorates. Note that this is happening in the context

of results that support Hypothesis II: PI-PSO with 2 PPD obtains the best results

overall for the 32d problem.

We previously noted that the results for Salomon were interesting (Figure 7.7).

They did not support Hypothesis I or II. They do not support Hypothesis III either.

However, if one looks at the pattern in the results, one can imagine that as the

dimensionality of the problem increases, all three hypothesis might be true. That is,

146



CHAPTER 7. COMPARATIVE SCALING AND PERFORMANCE OF PI-PSO

Figure 7.7: Salomon Benchmark
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Figure 7.8: Zakharov Benchmark
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Figure 7.9: Whitley Benchmark

0 2 4
Average Min.

2
4
8

16
32
64

128
256

pa
rti

cl
es

 p
er

 d

4d

0 10 20 30
Average Min.

8d

0 100 200
Average Min.

16d

0 2500 5000 7500
Average Min.

32d

one could imagine a 128d problem where PI-PSO is better than PSO in the ways we

have been describing.

The results for the Zakharov function might be another case similar to that of

Salomon (Figure 7.8). The performance of both algorithms starts out nearly the

same at low dimensions, but as the dimensionality increases, the increasing particles

appears to help PSO more than PI-PSO to the point where PI-PSO almost appears

stuck.
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Whitley appears to occupy a strange position with respect to the hypotheses

(Figure 7.9). For all dimensions, as the number of particles per dimension increases,

the performance of PI-PSO diminishes (which does not support Hypothesis I). And

yet the performance at low PPD is almost always better than PSO, which supports

Hypothesis II. Yet it does appear that the trend, as the dimensionality of the problem

increases, is for PI-PSO to perform better overall.

7.2.4 Discussion

Looking across all the problems and dimensions, there is no single parameteri-

zation that is always better than another. With 19 benchmarks and four possible

dimensions, there are 76 sets of results. PI-PSO has the same results or better than

PSO in 52 of them (68.4%) using 2 particles per dimension. However, this does not

represent the best performance achievable by PI-PSO. In most cases, increasing par-

ticles per dimension, increases performance, for both PI-PSO and PSO. For PI-PSO,

the problem lies in the cases where they do not.

In those cases, the results appear to suggest something like premature conver-

gence is happening. This could be due to similarities in the properties of the bench-

mark functions studied. Further research is needed to determine if there are classes

of benchmark functions that suffer from this performance degradation. PI-PSO is

greedier than PSO for two reasons. While both algorithms only accept a new gbest
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if it is better than the last one, PI-PSO eliminates hitchhiking by only permitting

Pareto improving gbests. It may be possible that “Two Steps Forward, One Step

Back” [8] prevents PSO from climbing the wrong hill. While not exactly like Sim-

ulated Annealing, which allows successor states to be inferior to predecessor states,

there may be occasional benefits from locally inferior changes in the gbest.

7.3 Conclusions

We set out to explore the comparative performance and scalability of the Pareto

Improving Particle Swarm Optimization (PI-PSO) algorithm against the standard

gbest PSO. Across a wide variety of standard benchmark optimization functions,

at different dimensions and different particles per dimension, PI-PSO out-performed

PSO. There were, however, a few notable exceptions. The success of PI-PSO suggests

that the information exchange and conflict resolution mechanism, which works on a

variable by variable basis using Pareto efficiency, may also utilize more information

in the swarm than the standard algorithm. The exceptions, however, indicate that

sometimes this mechanism might be overly greedy.

So far, we have only seen PI-PSO applied to the standard, continuous benchmark

problems. In future research, we would like to see the algorithm applied to different

kinds of problems such as discrete and combinatorial optimization problems (such
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as the NK landscape or Bayesian abductive inference problems discussed in Chapter

3. The exploration of PI-PSO versus PSO performance across other accepted bench-

mark functions may provide clues to the function attributes that affect behavior with

respect to dimensionality and the number of particles per dimension. It might also

be interesting to explore the possibility of stochastically chosen inferior adjustments

to avoid the potential for premature convergence.

150



Chapter 8

Actor Based (D)FEA

Evolutionary algorithms of all stripes can be computationally intensive and expen-

sive. This computational cost can come from either the actual evolutionary algorithm

or fitness/objective function evaluations. However, because these operations are all

CPU-bound, they are not likely to get much help from mere concurrency. And with

the apparent demise of Moore’s Law [61, 62], we find ourselves in the same position

as everyone else in software engineering: how do we take advantage of more cores (ei-

ther on a single machine or across multiple machines)? One solution to this problem

is distributed parallelism, but there is more than one way to implement distributed

parallelism.

In this chapter we describe an Actor model implementation of FEA (Chapter 2)

and DFEA (Chapter 3). As multi-population models, both FEA and DFEA are prime
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candidates for a parallel implementation. Additionally, the computational needs of

optimization suggest that they could benefit from a distributed implementation as

well, whether across cores or across machines. However, both algorithms have a basic

structure that involves iterative divide-and-conquer, so we must address the more

general problem of concurrency as well. Although there are many programming mod-

els for concurrency and parallelism such as Software Transactional Memory (STM)

[63] and Communicating Sequential Processes (CSP) [64], we have chosen the Actor

model for its ability to execute distributed algorithms transparently. We begin with

a discussion of the Actor model.

8.1 Actor Model

The Actor model was originally proposed by Hewitt et al. as a modular compu-

tational architecture for artificial intelligence [12]. The architecture was developed

further by Agha into a metalinguistic model of the potentially concurrent process exe-

cution [65]. Later, Ericsson built the the Actor model into the OTP (originally “Open

Telecom Platform”), part of the runtime of the Erlang programming language [66].

Using Erlang, OTP, and the Actor model, the AXD301 project was able to achieve

“nine nine’s” (i.e., 99.9999999%) reliability [67]. As a metalinguistic construct, there

are Actor libraries available for many programming languages such as Akka [68] (for
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JVM languages such as Java [69] and Scala [70]) and Thespian [71] (for Python [72]).

In the following, we will focus mostly on the Akka/Thespian-style implementations

of the “Classic Actor” model [73].

The key properties of an actor are:

1. they may only communicate via asynchronous messages;

2. messages may be received at anytime and are queued in a mailbox (queue); and

3. upon reading a message, the actor may perform a computation.

A variety of inferences can be drawn from these properties. First, there is no way to

access the state of an actor without sending it an asychronous message. This differs

from the Object model as we have generally come to know it, where “messages” are

synchronous method calls. It has been reported apocryphally that Alan Kay—who

coined “object oriented”— stated the Actor model is the closest to what he originally

meant by the term. While the statement cannot be verified, Kay has repeated that

message passing was the key idea of object oriented programming, and not inheritance

or types [74]:

OOP to me means only messaging, local retention and protection and
hiding of state-process, and extreme late-binding of all things.

which, although not an explicit endorsement of the Actor model, is a fairly good

description of it.
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Second, although actors are not operating system or green threads, they do repre-

sent a mechanism of concurrent programming. The actual details are handled by the

Actor System, which is responsible for spawning actors, maintaining their addresses,

monitoring mailboxes and delivering messages, restarting failed actors, and making

sure every actor gets a chance to execute. The last point is handled by a thread pool-

ing mechanism and load balancing. The default implementation is something like a

“round robin” approach where every actor has a chance to act on a single message in

its mailbox. However, actors are still subject to deadlocks if the state machines and

messages are not designed properly.

Third, an actor can be run anywhere. An actor has local state and an interface

defined by the messages it understands. When an actor sends a message to another

actor, it sends it to the actor’s address maintained by the Actor System. The receiving

actor may be on the same core, a different core, or even a different machine.

In object oriented languages like Java and Python, actors are generally imple-

mented as a subclass of some Actor base class. The instance fields of the Actor

become its state and the subclass overrides something like a receive method with

formal parameters message and sender. When it is the actor’s turn to execute, the

Actor System will call the actor’s receive method if there is a message in the actor’s

mailbox. The actor may also implement instance methods for code organization but

clients may only interact with an actor instance via messages through the actor’s
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Algorithm 8.18 Actor A - receive

Input: message message, sender sender
Output: None

1: if message instanceOf IncrementCount then
2: count← count+message.increment
3: else if message instanceOf RetrieveCount then
4: tell(sender, CurrentCount(count))
5: end if

address (although we use the shorthand “sends a message to the actor”).

Algorithm 8.18 shows a simple example of such a receive method. Actor A accepts

two messages: IncrementCount and RetrieveCount. If an instance of Actor A receives

an IncrementCount message (Line 1), the count is incremented by the value indicated

(Line 2). If, instead, the instance of Actor A receives a RetrieveCount message (Line

3), a new message CurrentCount is sent back to the sender containing the current

count, count (Line 4). This is a common pattern for implementing an Actor’s receive

method and in many respects acts like a finite state machine. For example, an actor

may receive a message and update its state, and then optionally send a message as a

result (or not).

Algorithm 8.19 shows a simple driver for Actor A. To start, we instantiate the

Actor System (Line 1). In Line 2, we instantiate an instance of Actor A–although the

variable actor is just the actor address. The best design principles for actor-based

programs only permit actors to send messages to each other asynchronously; some

libraries enforce this. An interesting result of this is that such programs become
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Algorithm 8.19 Main

1: system← ActorSystem()
2: actor ← system.actorOf(ActorA)
3: system.tell(actor, IncrementCount(10))
4: system.tell(actor, IncrementCount(5))
5: result← system.ask(actor, RetrieveCount()) . count is 15
6: system.stop()

reactive programs [75]. Such programs are event-driven, and nothing happens until

something, somewhere sends a message to an actor.

In order to bridge the divide between the synchronous process main and the asyn-

chronous actor, the Actor System provides a way for non-actor processes (like main)

to send messages to actors. The tell method delivers the message asynchronously to

the actor and is non-blocking. It works just like send between actors. The ask method

delivers the message synchronously and is blocking. We require a blocking call—or

something like it—because the main thread could finish before Actor A completed

its computation and returned a message. For our example, we send two asynchronous

messages to increment the count (Lines 3 and 4) and a single blocking call to retrieve

the count (Line 5).

8.2 (D)FEA Actor Implementation

In this section, we discuss the translation of each algorithm from a serial version

to an Actor model version. We will start with FEA and give an overview of the main
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components of the algorithm. Following that discussion, we will explain a correspond-

ing Actor model implementation. We will then do the same thing for DFEA. We will

then walk through a sequence diagram for the DFEA actor implementation.

8.2.1 Translating FEA into FEA Actor

For reference, the pseudocode for FEA from Chapter 2, Algorithm 2.6 has been

reproduced here as Algorithm 8.20. As we analyze the algorithm in order convert it

to the Actor model, we can identify four main sections of code:

1. Initialization Step

(a) Overall initialization (Lines 1, 3–4)

(b) Swarm initialization (Line 2)

2. Update Step (Lines 6–10)

3. Compete Step (Line 11, also Algorithm 8.21)

4. Share Step (Line 12, also Algorithm 8.22)

A common pattern in Actor model implementations is a manager/workers pattern

where a job is divided into units of work, and each unit is given to a worker to

complete. The results are then aggregated back together and returned to the original

client. Here our “units” are factors and the subpopulations assigned to them. We can
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Algorithm 8.20 Factored Evolutionary Algorithms

Input: Function f , Evolutionary Algorithm ea
Output: Context c as candidate solution x

1: X ← factorize(X)
2: S← ea.initialize(f,X )
3: c← initialize-context(S)
4: O ← identify-optimizers(X )
5: repeat
6: repeat
7: for S in S do
8: S ← ea.update(S)
9: end for

10: until stopping criteria
11: c← compete(f,S,O, c)
12: share(f,S, ea, c)
13: until stopping criteria
14: return c

Algorithm 8.21 FEA Compete

Input: Objective function f , Subpopulations S, Optimizers O, Global context c
Output: Global context c

1: for j = 1 to d do
2: fitness← f(c)
3: value← c[j]
4: for i in Oj do
5: candidate← S[i].best
6: c[i]← candidate.x[i]
7: if f(c) ≤ fitness then
8: value← candidate.x[i]
9: fitness← f(c)

10: end if
11: end for
12: c[i]← value
13: end for
14: return c
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Algorithm 8.22 FEA Share

Input: Objective function f , Subpopulations S, Evolutionary Algorithm ea,
Context c
Output: Subpopulations S

1: for S in S do
2: r← c \ S.X
3: fr ← partial(f, r)
4: p← ae.worse(S)
5: p.x← c \ r
6: S.f ← fr
7: ae.reevaluate(S)
8: end for

thus plan to create one actor for each factor/subpopulation. The worker will initialize

the swarm and then complete the Update step. The manager will perform all the other

steps including Overall initialization, Compete Step, and at least part of the Share

Step. We will break the algorithm into two actors: the FEA Actor (Algorithm 8.23,

and the FEA Factor Actor (Algorithm 8.24). The main challenge here is that the

“disperse and collect” flow that normally accompanies the manager/workers pattern

is repeated until some stopping criterion is met. We will thus require some way to

coordinate workers before each Compete and Share Step starts.

The FEA actor responds to two messages: InitFEA (Line 1) and NewValue (Line

14). Additionally, it will send InitFactor (Line 10), Update (Lines 12 and 21), New-

Solution (Line 20), and CandidateSolution (Line 23) messages. Whereas an object

oriented solution might have a synchronous method call solve as an interface, the

FEA actor’s interface is the asynchronous messages InitFEA and CandidateSolution.
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Algorithm 8.23 FEA Actor - receive

Input: message message, sender sender
Output: None

1: if message instanceOf InitFEA then
2: client← sender
3: problem← message.problem
4: X ← factorize(X)
5: S← ea.initialize(f,X )
6: c← initialize-context(S)
7: O ← identify-optimizers(X )
8: for X in X do
9: worker ← actorOf(FEAFactor())

10: worker.send(InitFactor(problem,X))
11: workers[X]← worker
12: worker.send(Update())
13: end for
14: else if message instanceOf NewV alue then
15: cache[message.xi]← message.value
16: if new values received from all actors then
17: if FEA iterations not complete then
18: compete()
19: clearCache()
20: broadcast(workers, NewSolution())
21: broadcast(workers, Update())
22: else
23: client.send(CandidateSolution(c))
24: end if
25: end if
26: end if

Upon receipt of the InitFEA message, the FEA actor proceeds almost identically

to the first part of Algorithm 8.20. The main difference is in Lines 2–3 and Lines

8–13. In Line 2 we save the client who sent the FEA actor the InitFEA message

so that we can respond later. We also save the problem record, which encapsulates
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Algorithm 8.24 FEA Factor Actor - receive

Input: message message, sender sender
Output: None

1: if message instanceOf InitFactor then
2: problem← message.problem
3: S ← ae.initialize(f,X)
4: else if message instanceOf Update then
5: for i times do
6: S ← ae.update(S)
7: end for
8: sender.send(NewV alue(X, S.best)
9: else if message instanceOf NewSolution then

10: applySolution(S,message.c)
11: end if

information both about the problem and parameters for the algorithm. In Lines 8–13

we create the workers, FEA Factor actors, sending them both an InitFactor message

and a Update message, after saving the reference to each worker’s address.

Before continuing with the FEA actor and the NewV alue message, we describe

the FEA Factor actor (Algorithm 8.24). The FEA Factor actor responds to three

messages: InitFactor (Line 1), Update (Line 4), and NewSolution (Line 9). When

the FEA Factor actor receives the InitFactor message it saves the problem from the

message and then initializes the subpopulation based on the particular evolutionary

algorithm, optimization problem, and factor. When it receives the Update message,

the actor updates the subpopulation for i iterations. This is exactly the same as the

corresponding lines in Algorithm 8.20. In order to make the loop in Algorithm 8.20

run concurrently, we have turned the iteration loop (Algorithm 8.20, Line 6) into a
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Algorithm 8.25 Broadcast Helper Function
Input: actors actors, message message

1: for actor in actors do
2: actor.send(message)
3: end for

message sending loop (Algorithm 8.23, Line 12 and Line 21). The inner loop from

Algorithm 8.20 then runs on the individual actors. When the FEA Factor actor’s

part in this distributed Update Step is done, it sends a NewValue message back to

the FEA actor.

Returning to Algorithm 8.23, the FEA actor responds to the NewValue message

by caching the value (Line 15). It then tests to see if it has received all the expected

new values. This cache-and-test pattern is one way to coordinate all the workers

and the algorithm implements the bookkeeping required to implement the pattern.

If all the expected new values have been received—and the desired number of FEA

iterations have been completed—the Compete Step is executed. This Compete Step

is otherwise identical to Algorithm 8.21 except that, instead of extracting the values

from the subpopulations, the values have already been extracted and saved to the

cache. After this new Compete Step is finished, the cache is cleared for the next

round, and a NewSolution message is sent to all the workers.

In the context of this paper, broadcast is just a helper function (Algorithm 8.25)

that loops over the actor references, sending each the same message. It is not a “fire-
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and-forget” broadcast or any other type of pub/sub message passing. Actors always

send messages to specific actors. This is followed by an Update message to everyone.

If the FEA iterations (or, more generally, stopping criteria) have completed, then the

FEA actor sends a CandidateSolution message to the original client.

8.2.2 Translating DFEA into DFEA Actor

In this section we discuss the conversion of DFEA (Algorithms 3.9 and 5.16, repro-

duced here as Algorithms 8.26 and 8.27) to the Actor model. Looking at Algorithm

8.26, it would appear that DFEA and FEA have the same structure and we could use

the same actors as above. There is one crucial difference between FEA and DFEA,

however. DFEA was designed with distributed state in mind with each subpopu-

lation having its own local context, ci, instead of the centralized one in FEA. This

means that the Update and Share Steps should belong to the workers instead of the

supervisor. This makes the DFEA Actor implementation more of a peer pattern

than supervisor/worker pattern although we will need a supervisor for the overall

initialization. Changing the top-down, outside-in pseudocode to a decentralized but

coordinated peer pattern will require more work than we had to do above.

The DFEA actor’s “receive” implementation is shown in Algorithm 8.28. It is

simpler than the corresponding FEA actor because the DFEA actor simply spawns

DFEA Factor actors in response to a InitDFEA message (Line 1) and sends a Can-
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Algorithm 8.26 Distributed Factored Evolutionary Algorithm

Input: Function f , Evolutionary Algorithm ae
Output: Best context c as candidate solution x

1: X ← factorize(X)
2: S← ae.initialize(f,X )
3: C ← initialize-contexts(S)
4: O ← identify-optimizers(X )
5: A← identify-arbiters(X )
6: repeat
7: repeat
8: for S in S do
9: S ← ae.update(S)

10: end for
11: until stopping criteria
12: C ← compete(f,S,O,A,C)
13: share(f,S, A,C)
14: until stopping criteria
15: c← select-best-context(f,C)
16: return c

didateSolution message in response to a CandidateSolution message from a worker.

The complexity of the DFEA Factor actor follows directly from the nature of

the algorithm, which distributes a local context to each individual subpopulation.

However, the algorithm does not specify a concurrent means of manipulating and

coordinating those local contexts. This is to be expected since there is no single way

to specify pseudocode appropriate for all possible concurrency implementations, and

picking one could make the translation to another equally complicated. In this case,

we at least have a clear idea of the intended semantics.

Nevertheless, the DFEA Factor actor requires nine messages: InitFactor (Algo-
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Algorithm 8.27 DFEA Reconcile

Input: Function f , Subpopulations S, optimizers O, arbiters A, Local contexts C
Output: Local contexts C

1: for j = 1 to d do
2: c← C[A(xj)]
3: fitness← f(c)
4: value← c[j]
5: for k in Oj do
6: candidate← S[k].best
7: c[j]← candidate.x[j]
8: if f(c) ≤ fitness then
9: value← candidate.x[j]

10: fitness← f(c)
11: end if
12: end for
13: c[j]← value
14: for k = 1 to d do
15: C[k].c[j]← c[j]
16: end for
17: end for
18: return C

rithm 8.29), ArbiterOf (Algorithm 8.30), Update (Algorithm 8.31), NewValue (Algo-

rithm 8.32), ReadyToArbitrate (Algorithm 8.33), StartArbitration (Algorithm 8.34),

ArbitedValue (Algorithm 8.35), and ArbitrationComplete (Algorithm 8.36). These

are all shown individually as “message handler” code fragments intended to be part

of a larger receive method similar to the one shown for the FEA Factor actor (Algo-

rithm 8.24). Additionally, as the ideas and patterns are similar to those we have seen

before, we will refer mostly to algorithms rather than line-by-line descriptions unless

a specific detail requires attention.
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Algorithm 8.28 DFEA Actor - receive

Input: message message, sender sender
Output: None

1: if message instanceOf InitDFEA then
2: client← sender
3: problem← message.problem
4: X ← factorize(X)
5: S← ae.initialize(f,X )
6: c← initialize-context()
7: O ← dfeaa:identify-optimizers(X )
8: A← dfeaa:identify-arbiters(X )
9: for X in X do

10: workers[X]← actorOf(DFEAFactor())
11: end for
12: broadcast(workers, InitFactor(problem, c,X,A))
13: broadcast(workers, Update())
14: else if message instanceOf CandidateSolution then
15: if all candidate solutions received then
16: c← select-best-context(f,C)
17: client.send(CandidateSolution(c))
18: end if
19: end if

Algorithm 8.29 InitFactor Message Handler

1: S ← ae.initialize(message.problem)
2: broadcast(coworkers, ArbiterOf(A[X]))

As we saw in the DFEA actor, the worker actors—DFEA Factors—are all spawned

and initialized with an InitFactor message (Algorithm 8.29). In response to a similar

message, FEA Factors immediately send themselves an Update message after initial-

ization. Instead, DFEA Factors send an ArbiterOf message to all the other workers.

In the original algorithm, all the information needed to match optimizers and arbi-
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Algorithm 8.30 ArbiterOf Message Handler

1: arbiters[message.X]← sender
2: if all arbiters accounted for then
3: self.send(Update())
4: end if

Algorithm 8.31 Update Message Handler

1: for i times do
2: S ← ae.update(S)
3: end for
4: for X in X do
5: sender.send(arbiters[X ], NewV alue(X,S.best[X]))
6: end for

trators is available to the algorithm itself, which still acts as a central coordinator

of the local contexts. Although the DFEA actor still initializes factors, optimizers,

and arbitrators, we opted to implement arbiter discovery through peers. Using the

cache-and-test pattern, the DFEA Factor actor will send an Update message to itself

when it knows who all of the arbiters are (Algorithm 8.30).

The Update message will start the Update Step just as with FEA/DFEA/FEA

Actor (Algorithm 8.31). When the Update Step is complete, the actor will then send

a NewValue message to the arbiter of each variable in its factor. Thus, if the actor

is optimizing (X1, X2, X3), it will send a NewValue message to the arbiter of X1, one

to the arbiter of X2, and one to the arbiter of X3. Again, from an implementation

perspective, the interesting detail here is that the current actor may actually be the

arbiter of one, all, or none of those variables.

As actors collect new values, they check to see if they have heard from all of
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Algorithm 8.32 NewV alue Message Handler

1: if message.x ∈ X then
2: newValueCache[message.x]← message.value
3: if all values received from optimizers of x then
4: broadcast(coworkers, ReadyToArbitrate(message.x)
5: end if
6: end if

Algorithm 8.33 ReadyToArbitrate Message Handler

1: arbitrationCache[message.X ]← True
2: if all actors ready to arbitrate and self is first in arbitration order then
3: send(self, StartArbitration(message.X)
4: end if

their optimizers (Algorithm 8.32). This is yet another instance of the cache-and-test

pattern. When all actors have heard from all of their optimizers, the Update phase

is over, and the Arbitration phase begins.

Using the cache-and-test pattern again, when all the actors have heard that all

the other actors are ready to arbitrate, the actor whose factor contains the first vari-

able in the arbitration order sends itself a StartArbitration message (Algorithm 8.33).

Upon receiving a StartArbitration message, the DFEA Factor actor conducts a sim-

plified version of FEA’s Compete Step using the cached values from its optimizers. It

then broadcasts an ArbitedValue message to all co-workers (Algorithm 8.34). If the

current actor contains the last variable in the arbitration order, it sends an Arbitra-

tionComplete message to all its peers; however, if it is not the last variable, it sends

a StartArbitration message to the actor who is next in variable arbitration order.

The easiest message to handle is the ArbitedValue message, in which case the
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Algorithm 8.34 StartArbitration Message Handler

1: c← compete(message.X, newV aluesCache[message.X ])
2: broadcast(coworkers, ArbitedV alue(message.X, c[message.X ])
3: if this is the last arbiter then
4: broadcast(coworkers, ArbitrationComplete())
5: else
6: next← arbitrationOrder(message.X)
7: arbiters[next].send(StartArbitration(next))
8: end if

Algorithm 8.35 ArbitedV alue Message Handler

1: c[message.X ]← message.value

Algorithm 8.36 ArbitrationComplete Message Handler

1: if all FEA iterations completed then
2: client.send(CandidateSolution(X, c)
3: else
4: clearCaches()
5: broadcast(coworkers, Update())
6: end if

actor sets the corresponding value of its local context, c (Algorithm 8.35). As noted

previously, the last actor to arbitrate sends an ArbitrationComplete message. All

actors handle the message by checking to see if the FEA stopping criteria are met.

If they are, then the client (DFEA Actor) is sent the current context as a candidate

solution. Otherwise, the caches are cleared and the Arbitration phase is over and a

new Update phase begins (Algorithm 8.36).
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8.2.3 DFEA Sequence Diagram

In this section we will work through a concrete example of the DFEA actor and

DFEA Factor actors using a sequence diagram. Our particular implementation uses

eleven messages: InitDFEA, InitFactor, ArbiterOf, Update, NewValue, ReadyToAr-

bitrate, StartArbitration, ArbitedValue, ArbitrationComplete, and CandidateSolution.

Assuming a problem of 4d, there will be four variables: X1, X2, X3, and X4. Factor

1 is optimizing (X1, X2) and arbitrating X1. Factor 2 is optimizing (X2, X3) and

arbitrating X2. Factor 3 is optimizing (X3, X4) and arbitrating X3 and X4. As a

result there will be four actors: one DFEA actor that spawns three DFEA Factor

actors. The sequence diagram for this actor system is shown in Figure 8.1.
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Figure 8.1: Sequence Diagram for DFEA and DFEA Factor Actors

DFEA Actor Factor 1 (1,2) Factor 2 (2, 3) Factor 3 (3, 4)

InitDFEA

1 InitFactor

ArbitratorOf 2

Update 3

NewValue

ReadyToArbitrate 4

StartArbitration

5
StartArbitration

StartArbitration

ArbitedValue

ArbitedValue

ArbitedValue

ArbitrationCompleted

Update

CandidateSolution

6

7
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We start in an Initialization phase. At 1 in Figure 8.1, an asynchronous InitD-

FEA message is sent to the DFEA actor’s mailbox (All the messages are sent asyn-

chronously in this example; denoted by open arrowheads). The message contains

information about the problem being solved and the parameters for DFEA itself such

as stopping criteria. Just as with the serial version (Algorithm 8.26, Lines 1, Lines4–

5), the Actor model version begins by initializing factors, optimizers, and assigning

arbiters to each factor. This is followed by creating a Factor actor for each factor, in

this case: Factor 1, Factor 2 and Factor 3. After these actors are created, they each

receive an InitFactor message on their individual mailboxes.

The InitFactor message signals each actor to take the information on the prob-

lem, factors, optimizers and arbitrators contained in the message and initialize their

subpopulation using the indicated evolutionary algorithm. This corresponds to Al-

gorithm 8.26, Line 2 in the serial version of the algorithm. After each Factor actor

has initialized, 2 they send an ArbiterOf message to all their peers indicating the

variables for which they are the arbiter. There is a corresponding coordination point

(black diamond) where a Factor actor must wait until it has heard from all the ar-

biters for the variables it is optimizing. Using Factor 1 as an example, after it has

been initialized, it sends an ArbiterOf message to all its peers indicating that it is

the arbiter for X1. Because Factor 1 is optimizing X1 and X2, it waits to hear from

the Factors optimizing X1 and X2 before proceeding. This is a pattern that we saw
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before in the FEA Actor, where a cache is used to coordinate multiple actors and

then tested to change to the next state. We indicate this cache-and-test pattern with

the black diamond in the diagram. The difference in this case is that when Factor 1

sent the ArbiterOf messages, it sent one to itself. We do this to avoid special case

code in the actors which would require the actor to know who it is; as we will see

later, we were not entirely successful.

After a Factor has discovered which actors will arbitrate each of the variables it

optimizes, 3 , it sends itself an Update message, which starts the Update phase.

At this point, the Factor will run its evolutionary algorithm on its subpopulation

until the stopping criteria are met. This corresponds to Algorithm 8.26, Lines 7–11.

Upon completion, the factor will send a NewValue message for each of the variables

it optimizes to the arbiter of that variable. In the case of Factor 1, it will send a

NewValue message for X1 and one for X2. Again we see the pattern of avoiding

special code: Factor 1 sends the message about X1 to itself. It does not send a new

value message to itself for X2 because it is not an arbiter of X2.

With 4 we enter another coordination point that uses the cache-and-test pattern.

A Factor is ready to arbitrate X1 if it has heard from all the optimizers of X1. When

it has, it sends a ReadyToArbitrate message to all of the actors. Factor 3, because it

is the arbiter of X3 and X4 will await messages for both variables and send a message

for each variable.
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Once all of the Factor actors have received all of the ReadyToArbitrate messages,

the Arbitration phase begins, 5 . We have assumed that the variables will be arbi-

trated in order, X1, X2, X3 then X4, for simplicity. As a result, when Factor 1 knows

that all the factors are ready to arbitrate, it sends itself a StartArbitration message.

This message begins the reconciliation process described in Algorithm ?? with a few

key differences. First, instead of iterating from the “outside” over all the variables,

in the Actor model implementation, the actor is working from the “inside” with a

specific variable to arbitrate. Second, the Factor does not have global access to the

subpopulation information so it cannot reach into the subpopulations of optimizers of

Xi and find xi. Instead, these were the values communicated via NewValue messages

before arbitration commenced.

When the current factor (Factor 1) is finished, it sends ArbitedValue messages

to all of its peers. This will enable factors further down the arbitration order to

use those values during reconciliation just as with the serial version. After sending

those messages, it sends a single StartArbitration message to the next factor in the

arbitration order. We can easily calculate this from the current information in Factor

1. If it arbitrates X1 then the next arbiter must be X2. If a different or changing

arbitration order were desired, this would need to be communicated and coordinated

as well.

When the final factor finishes arbitration, 6 , it sends an ArbitrationCompleted
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message to all of its peers. Factor 3 is able to discover that it is the final factor when it

finishes arbitrating X4 and discovers there is no “next” variable to arbitrate. At this

point, we have another cache-and-test pattern as all the factors await the message

indicating that the Arbitration phase is over. If the stopping criteria for the DFEA

are not met, all the factors will send themselves Update messages and the Update

phase begins anew (this is the case shown in the diagram). If the stopping criteria

have been met, each Factor sends a CandidateSolution message to the DFEA actor,

7 . Because each individual actor knows what the stopping criteria are, this message

does not have to be coordinated on the Factor side.

We have not shown how the DFEA actor handles the CandidateSolution messages.

For testing, we used the cache-and-test pattern to await all of the messages. When

they were all received, the best solution was chosen and sent back to the driver

program. However, there is no reason that the DFEA actor cannot maintain a single

best solution and revise it as CandidateSolution messages come in. The DFEA actor

could then be queried via a message at any time for what it thinks is the best solution

so far.
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8.3 Validating the Implementations

DFEA was meant to preserve the semantics of FEA in the presence of distributed

state in the form of local contexts. Because of the similarities in the algorithms

and the fact that neither the Compete/Reconcile or Share Steps consume random

numbers, the output of each algorithm when initialized with the same random seed

is identical. We can thus see that DFEA preserved the semantics of FEA.

The above Actor model implementations of both FEA and DFEA are meant to

preserve the semantics of the original algorithms. However, because these are dis-

tributed algorithms running on multiple threads, we are unable to verify the imple-

mentations against the baseline the same way that we did for DFEA. Instead we have

turned to experimental means.

8.3.1 Design

In order to test the hypothesis that the Actor implementations preserved the

semantics of the original algorithm, we executed FEA (baseline), FEA Actor, and

DFEA Actor implementations against 19 benchmark optimization functions. We

picked benchmark optimization functions that were scalable to multiple dimensions

from [18] and [8]. These are all minimization problems, and most of them have

a minimum at x∗ = [0, 0, ..., 0] and f(x∗) = 0. The notable exceptions are the
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Exponential, Eggholder and Michalewicz functions. For these experiments we used

32d versions of the functions.

For our evolutionary algorithm we chose PSO. The PSO parameters were ω =

0.729 and φ1 = φ2 = 1.49618. In all cases, there were 20 FEA iterations with 5 update

iterations per iteration. The factor architecture was the same for all algorithms and

functions: we used a “Simple Centered” factor architecture of (Xi, Xi+1), thus, the

first factor was (X1, X2), the second was (X2, X3), etc. Each subpopulation (swarm)

had 10 particles.

8.3.2 Results

Each function was optimized by each algorithm 50 times, and the mean minimum

value found was recorded for each run. The results were then bootstrapped 500 times

to estimate 95% confidence intervals/credible intervals [59]. These mean minima and

confidence intervals are shown in Table 8.1.

In every case, the FEA Actor implementation performed as well as the FEA base-

line (serial) implementation. This was also true for the DFEA Actor implementation.

Additionally, in almost every case except one (18 out of 19), the FEA Actor and

DFEA Actor implementations performed equally as well. The odd function out was

the Zakharov function where the DFEA Actor implementation appears to have per-

formed slightly better than the FEA Actor implementation (last row of Table 8.1).

177



CHAPTER 8. ACTOR BASED (D)FEA

Table 8.1: Results for FEA Baseline and FEA and DFEA Actor Implementations

Function FEA Baseline Actor FEA Actor DFEA

ackley-1
1.70e-07

(1.60e-09, 4.75e-07)
4.85e-07

(7.67e-10, 1.55e-06)
1.62e-04

(7.10e-09, 5.00e-04)

brown
1.45e-23

(2.49e-25, 4.23e-23)
4.05e-24

(3.50e-26, 9.68e-24)
1.53e-21

(1.04e-24, 5.66e-21)

dixon-price
2.75e+01

(2.01e+01, 3.52e+01)
3.20e+01

(2.35e+01, 4.05e+01)
3.22e+01

(2.25e+01, 4.17e+01)

eggholder
-2.13e+04

(-2.16e+04, -2.10e+04)
-2.14e+04

(-2.17e+04, -2.11e+04)
-2.13e+04

(-2.16e+04, -2.10e+04)

exponential
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)
-1.00e+00

(-1.00e+00, -1.00e+00)

griewank
1.26e-01

(6.27e-02, 2.02e-01)
3.50e-02

(1.62e-02, 6.27e-02)
1.08e-01

(4.60e-02, 1.79e-01)

michalewicz
-3.07e+01

(-3.08e+01, -3.06e+01)
-3.08e+01

(-3.10e+01, -3.07e+01)
-3.08e+01

(-3.10e+01, -3.07e+01)

rastrigin
2.49e-01

(1.30e-01, 3.89e-01)
1.35e-01

(4.49e-02, 2.24e-01)
1.65e-01

(5.99e-02, 2.59e-01)

rosenbrock
1.26e+01

(7.00e+00, 1.95e+01)
2.20e+01

(1.19e+01, 3.26e+01)
1.95e+01

(1.12e+01, 2.76e+01)

salomon
1.83e+00

(1.71e+00, 1.96e+00)
1.73e+00

(1.62e+00, 1.87e+00)
1.83e+00

(1.69e+00, 1.97e+00)

sargan
3.43e+03

(1.71e+03, 5.28e+03)
1.71e+03

(6.06e+02, 3.03e+03)
2.09e+03

(9.22e+02, 3.69e+03)

schaffer-f6
8.35e-01

(7.37e-01, 9.42e-01)
8.57e-01

(7.57e-01, 9.46e-01)
8.16e-01

(7.25e-01, 9.21e-01)

schwefel-1.2
5.78e+04

(4.52e+04, 7.12e+04)
6.71e+04

(5.22e+04, 8.46e+04)
7.78e+04

(5.39e+04, 1.06e+05)

schwefel-2.22
3.29e-12

(7.00e-13, 7.67e-12)
9.14e-13

(3.12e-13, 1.72e-12)
1.84e-12

(1.05e-12, 2.87e-12)

schwefel-2.23
1.42e-94

(1.38e-99, 5.58e-94)
5.12e-98

(1.45e-109, 1.52e-97)
7.56e-96

(1.28e-100, 2.21e-95)

sphere
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)
0.00e+00

(0.00e+00, 0.00e+00)

stretched-v
4.08e+00

(3.78e+00, 4.38e+00)
3.91e+00

(3.68e+00, 4.16e+00)
4.03e+00

(3.73e+00, 4.35e+00)

whitley
4.96e+02

(4.56e+02, 5.35e+02)
5.07e+02

(4.63e+02, 5.54e+02)
5.20e+02

(4.75e+02, 5.63e+02)

zakharov
8.09e+02

(7.82e+02, 8.34e+02)
8.21e+02

(7.92e+02, 8.51e+02)
7.56e+02

(7.29e+02, 7.83e+02)
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Given the consistent performance of the algorithms, however, this is likely to have

been a statistical fluke. We believe the evidence supports the hypothesis that the

Actor implementations preserved the semantics of the baseline algorithms.

8.4 Discussion

Surprisingly, although DFEA was designed to represent distributed state, the

translation of FEA into the Actor model was easier than DFEA’s translation. This

is largely because although the Actor model is effective for concurrency, it lacks

primitives for coordinated, distributed state. It is thus easier for the FEA Actor to

launch as many Factor Actors as needed and take care of the coordination required for

the Compete and Share Steps than for the DFEA Actor to do the same. In the case

of the DFEA Actor implementation, the DFEA Actor delegates any coordinating role

to its Factor Actors who then coordinate among themselves. Another way to think

of this is that DFEA Factor actors are cooperative peers whereas the FEA Factor

actors are solitary workers.

When thinking about implementing a peer pattern using the Actor model, the

implementation often becomes confusing because we have to think of the actor not

only as the sender of the message but also the receiver of the message. There are a few

places where this breaks down. For example, in order to start the Arbitration phase,
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we have to test the current actor to see if they are supposed to go first. Similarly,

when the Arbitration phase is over, we have to check to see if the current actor is the

last arbiter to go and then it sends out a different message.

The reactive nature of the Actor model has interesting implications that are not

fully utilized in these experiments. In some instances, we may have a very difficult

optimization problem for which we would want a provisional answer and then updates

to that answer. The Actor model, by virtue of its reactive nature, would support this

use case directly. Either implementation could be reconfigured to run indefinitely

rather than for some fixed number of FEA iterations. An API service could be

launched in an Actor System that could talk to the Actor System this running (D)FEA

Actor instance. The API service could then send a RequestSolution message to the

(D)FEA Actor instance and wait for the reply returning it to the user. This API

could be then be used to get up-to-date estimates by the client actually using the

value as needed.

8.5 Conclusions

In this chapter we presented an Actor model implementation of Factored Evolu-

tionary Algorithms and Distributed Factored Evolutionary Algorithms. The Actor

implementation of FEA involved a fairly straight-forward translation of the serial
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pseudocode to a parallel implementation. This involved a common pattern in Actor-

based implementations where a supervisor breaks a task into pieces and then spins

up a worker Actor for each piece. This pattern matched FEA exactly.

Although DFEA has the same general steps as FEA, the semantic intent is closer to

that of peers rather than workers. This made the translation of the serial pseudocode

into a parallel implementation a bit more challenging, even though the basics had

been worked out. The Actor-based implementation involved using a peer pattern,

which required us to think of each Actor as not only the sender of the message but

the receiver of the message. In some cases, this required code to handle special cases

as in the start of the Arbitration phase.

The evidence presented by our validation experiments strongly indicate that our

implementations faithfully reproduce the semantic intent of the original algorithms.

Using PSO as the evolutionary algorithm, we ran experiments for three implementa-

tions: FEA baseline, FEA Actor, and DFEA Actor. Using 19 benchmark optimiza-

tion functions, we showed that both the FEA Actor and the DFEA Actor performed

comparably to the FEA baseline. There was one strange case where the DFEA Actor

implementation performed better than the FEA actor.
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Conclusions

The previous chapters have presented various results as we have applied a model of

information exchange and conflict resolution to various single- and multi-population,

biologically inspired algorithms. Although many of the results are perfectly general

(DFEA, for example), we have concentrated on Particle Swarm Optimization variants

(FEA-PSO, DFEA-PSO, Actor DFEA-PSO, PI-PSO). With respect to FEA and

DFEA, the “-PSO” part does not affect the results but serves to focus and unify the

research.

Traditionally, researchers have attributed the success of these algorithms over their

single population counterparts to an increased degree of cooperation. This cooper-

ation (multiple populations) versus competition (individuals within a population)

way of looking the algorithms is very powerful, especially for algorithms rooted in
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biological analogies.

In this dissertation, we have taken a different approach. After developing an initial

version of DFEA and finding that the performance relative to FEA was not what we

anticipated, we sought to understand better how these algorithms worked. We iden-

tified two main characteristics of these multi-population algorithms. First, they used

a blackboard architecture through which the individual populations communicate.

Second, the implicit merge operation for the blackboard involved a conflict resolution

mechanism based on Pareto efficiency. We have applied these framework to analyze

and develop various PSO variants.

9.1 Contributions

In this dissertation we make several significant contributions to the evolutionary

computation and swarm intelligence in the field of computer science. These are:

• Distributed Factored Evolutionary Algorithms (DFEA): We developed

a generalized version of Factored Evolutionary Algorithms (FEA) in the same

way that Distributed Overlapping Swarm Intelligence (DOSI) extended Over-

lapping Swarm Intelligence (OSI) to the distributed case. Like FEA, DFEA can

be used with any “evolutionary algorithm” (for example, Genetic Algorithm and

Particle Swarm Optimization).
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Our results showed that DFEA was competitive with FEA on a variety of prob-

lems including Bayesian Networks, NK Landscapes, and a selection of con-

tinuous function benchmark optimization problems. However, DFEA did not

always perform identically to FEA which led us to consider how the informa-

tion flow semantics were different between the two algorithms. This led us to

consider a different way of looking at these kinds of algorithms. We also showed

that it is possible to relax consensus in DFEA and still achieve relatively good

performance, at least on problems with low epistasis.

• Information Exchange and Conflict Resolution Framework: FEA and

DFEA are both the latest in a long line of multi-population algorithms that have

emphasized the roles of cooperation and competition in biologically inspired

algorithms. As an alternative we develop a framework based on information

exchange via a blackboard architecture and conflict resolution using Pareto

improvements. We then applied this framework to FEA and identified how

information flow and conflict resolution work in that family of algorithms.

• Revised DFEA: FEA and DFEA (as well as OSI and DOSI) have always had

inconsistent performance when, at least on the surface, it had seemed like the

distributed versions should perform equally as well as the centralized versions.

By applying the Information Exchange and Conflict Resolution Framework, we
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are able to identify and improve the information flows in DFEA so that the

performance of the two algorithms, DFEA and FEA matches.

Our results show that the revised DFEA performs identically to FEA when

both are initialized identically. Even more interesting, our results showed that

the original DFEA sometimes out-performed both FEA and DFEA.

• Pareto Improving Particle Swarm Optimization: We apply our Informa-

tion Exchange and Conflict Resolution framework to the gbest Particle Swarm

Optimization algorithm. By making the gbest a full blackboard architecture

and extending variable by variable conflict resolution to particles, we create a

single population algorithm that performs on a par with FEA. We also examine

the comparative performance and scaling characteristics of the this PI-PSO as

compared to PSO.

Our results showed that PI-PSO performed better than PSO on our continu-

ous function benchmark optimization problems and sometimes even better than

FEA-PSO. The main problem is that PI-PSO requires many more fitness eval-

uations than the other algorithms. However, our comparative performance and

scaling experiments showed a number of interesting results. First, PI-PSO with

two particles per dimension was often able to achieve the same or better perfor-

mance than PSO with 128 particles per dimension. Second, even in those cases
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where PI-PSO did not perform as well as PSO on a problem of a particular

dimension, when the dimension was increased, PI-PSO would often outperform

PSO.

• Actor-Based DFEA: As developed, DFEA is distributed only in terms of

state but leaves open questions of concurrency and synchrony. We provide an

implementation based on the Actor model that explores the implications of

parallelism and asynchrony for our blackboard architecture.

9.2 Future Work

A tree can get taller or broader, and the same is true for research. Here we sum-

marize the problems and questions that the research in this dissertation has generated

for future work.

• Best Factor Architecture. For our benchmark functions, the structure of the

functions suggested a simple factor size of two, which limited us to an overlap

size of one. But what is the best factor architecture for any given problem

where factor architecture concerns both the factor size and the factor overlap?

One obstacle to investigating this problem is that as factor sizes increase, they

become subject to hitchhiking—the very problem we were trying to avoid. If we

were to use PI-PSO as the optimizer in either FEA or DFEA, we could avoid
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this problem. Additionally, the use of PI-PSO might improve the inclusion of

a factor covering all variables to avoid pseudo-optima. Finally, the best factor

architecture might also evolve as the algorithm progresses and this may be

specific to the local contexts.

• Neighbor Relation. Throughout it was assumed that the neighbor relation in-

duced a fully connected communications topology on the sub-population. Even

with relaxed consensus, if there are sufficient Share Steps, any arbitrated value

will make it to any local context eventually. But if future research on the best

factor architecture found that a factor architecture favored some set of factors

that were disjoint, the current neighbor relation would lead to a disconnected

communications topology. Future research would need to modify the algorithm

and investigate the ramifications of such communication topologies.

• Optimal Arbitration Order. All of the experiment used variable order

X1, X2, ..., Xd as the arbitration order. Although this order leads to Pareto

improvements, any order would lead to Pareto improvements under the current

merge operation. Future research would investigate the optimal arbitration or-

der and whether this is dependent on the factor architecture. If it turns out to

be the case that the factor architecture should change over time, how does the

arbitration order change?
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• Alternative Merge Operations. All of our algorithms, FEA, DFEA, and

PI-PSO use a merge operation for the blackboard architecture. First, we can

only have one value of any given variable. Second, when we have conflicting

values, we pick the value that leads to an improvement in fitness. This is just

one possible merge operation, and there may be other alternatives.

For example, the original DFEA uses this merge operation for individual black-

boards. This means that any given ci was determined to be a Pareto improve-

ment in the context of the other cj. However, when the blackboards are brought

into consensus, the result is not a set of values that were ever evaluated together.

And yet the original DFEA does not perform badly. This suggests there may

be other ways to think about the merge operation.

Another example is suggested by the case of Simulated Annealing. In Simulated

Annealing, we sometimes accept inferior successors. Using our framework, these

are not Pareto improvements. In the context of our research, this might mean

that not all hitchhiking is bad. We might need to look at hitchhiking with a

more nuanced view.

• Apply Framework to Other EAs. We only applied the framework to Particle

Swarm Optimization to develop PI-PSO. It is worth exploring whether and how

we can apply the framework to Genetic Algorithm, Hill Climbing, and other
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algorithms to get single population results similar to the FEA variants.

• Pareto Efficiency versus Pareto Improvements. All of our algorithms

are based on making Pareto improvements. In fact, they are based on making

very particular Pareto improvements. While Pareto efficiency would require

an exponential number of comparisons, it might be possible to explore other

options. For example, we might try to sample from a number of randomly

generated Pareto improvements that try more and different combinations. We

might also investigate how we could combine the significantly smaller number

of possibilities in FEA as compared to PI-PSO.

• Apply Algorithms to Different Problems. For the most part, in order to

keep reign in the research to a certain degree and have largely comparable re-

sults, we used the continuous function benchmark optimization problems. But

there are other forms of optimization problems such as Integer optimization,

Categorical optimization and Combinatorial optimization. It would be interest-

ing to see how these algorithm would perform on those kinds of problems and

what, if any, changes would need to be made.

• Improve Actor Implementation First, one of the hallmarks of the Actor

model is resilience, and Erlang is famous for the aphorism, “let it crash.” In

the Actor model, exceptions are not caught. Instead, the actor is crashed and
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its parent brings up a fresh version. How does this actor recover its state or, if

the actor never comes back, how do the other actors adjust to this situation?

This would present challenges for our current DFEA Actor implementation.

Second, research on DFEA has suggested that for many problems, coordination

between the peers (consensus) can be relaxed. We would like to enhance our

current DFEA Actor implementation to address both of these areas.
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Appendix A

Benchmark Optimization

Functions

This Appendix includes information about the Benchmark Optimization Func-

tions used throughout this dissertation. Most of the functions are from [18] with a

few coming from [8]. These particular functions were chosen because they are scalable

to any dimension. For each function, we show the formula, interval of interest, min-

imizing vector and value, and plot a 3-dimensional projection of the function with

(X1, X2) and a heatmap version showing the function from above. The color map

used is the perceptually uniform “Viridis.”
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A.1 Ackley-1

f(X) = −20e−0.02
√
d−1

∑d
i X

2
i − ed−1

∑d
i cos(2πXi) + 20 + e

on interval: − 35.0 ≤ Xi ≤ 35.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.1: Ackley-1 in 2 dimensions
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A.2 Brown

f(X) =
d−1∑
i

(x2i )
(x2i+1+1) + (x2i+1)

(x2i+1)

on interval: − 1.0 ≤ Xi ≤ 4.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.2: Brown in 2 dimensions
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A.3 Dixon-Price

f(X) = (x1 − 1)2 +
d∑
i=2

i(2x2i − xi−1)2

on interval: − 10.0 ≤ Xi ≤ 10.0

minimum at: [2( 2
i−2

2i ] = 0

Figure A.3: Dixon-Price in 2 dimensions
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A.4 Eggholder

f(X) =
d−1∑
i

[−(Xi+1 + 47) sin
√
|Xi+1 +Xi/2 + 47| −Xi sin

√
|Xi − (Xi+1 + 47)|

on interval: − 512.0 ≤ Xi ≤ 512.0

minimum at: varies

Figure A.4: Eggholder in 2 dimensions
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A.5 Exponential

f(X) = −exp(−0.5
d∑
i

X2
i )

on interval: − 1.0 ≤ Xi ≤ 1.0

minimum at: [0, 0, 0, ..., 0] = −1

Figure A.5: Exponential in 2 dimensions
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A.6 Griewank

f(X) =
d∑
i

X2

4000
−

d∏
i

cos(
Xi√
i
) + 1

on interval: − 1.0 ≤ Xi ≤ 1.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.6: Griewank in 2 dimensions
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A.7 Michalewicz

f(X) = −Σd
i=1 sin(Xi)[sin(

iX2
i

π
)]2m

on interval: 0 ≤ Xi ≤ 10.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.7: Michalewicz in 2 dimensions
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A.8 Rastrigin

f(X) = 10d+
d∑
i=1

(X2
i + 10 cos(2πXi))

on interval: − 5.12 ≤ Xi ≤ 5.12

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.8: Rastrigin in 2 dimensions
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A.9 Rosenbrock

f(X) =
d−1∑

[100(Xi+1 −X2
i )2 + (Xi − 1)2]

on interval: − 10.0 ≤ Xi ≤ 10.0

minimum at: [1, 1, 1, ..., 1] = 0

Figure A.9: Rosenbrock in 2 dimensions

X1

-10.0-7.5-5.0-2.50.0 2.5 5.0 7.510.0

X 2

-10.0
-7.5

-5.0
-2.5

0.0
2.5

5.0
7.5
10.0

f

200000

400000

600000

800000

1000000

1200000

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
X1

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

X 2

200



APPENDIX A. BENCHMARK OPTIMIZATION FUNCTIONS

A.10 Salomon

f(X) = 1− cos(2π

√√√√ d∑
i=1

X2
i ) + 0.1

√√√√ d∑
i=1

X2
i

on interval: − 100.0 ≤ Xi ≤ 100.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.10: Salomon in 2 dimensions
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A.11 Sargan

f(X) =
∑
i=1

d(X2
i + 0.4

∑
j 6=i

XiXj)

on interval: − 100.0 ≤ Xi ≤ 100.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.11: Sargan in 2 dimensions
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A.12 Schaffer-F6

f(X) =
d∑
i=1

0.5 +
sin2(

√
X2
i +X2

i+1)− 0.5

1 + 0.001(X2
i +X2

i+1)
2

on interval: − 10.0 ≤ Xi ≤ 10.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.12: Schaffer-F6 in 2 dimensions
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A.13 Schwefel

f(X) = 418.9829d−
d∑
i=1

xi sin
√
|xi|

on interval: − 500.0 ≤ Xi ≤ 500.0

minimum at: [420.9867, 420.9867, ..., 420.9867] = 0

Figure A.13: Schwefel in 2 dimensions
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A.14 Schwefel-1.2

f(X) =
d∑
i=1

(
i∑
j

Xj)
2

on interval: − 100.0 ≤ Xi ≤ 100.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.14: Schwefel-1.2 in 2 dimensions
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A.15 Schwefel-2.22

f(X) =
d∑
i=1

|Xi|+
d∏
i

|Xi|

on interval: − 100.0 ≤ Xi ≤ 100.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.15: Schwefel-2.22 in 2 dimensions
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A.16 Schwefel-2.23

f(X) =
d∑
i=1

X10
i

on interval: − 10.0 ≤ Xi ≤ 10.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.16: Schwefel-2.23 in 2 dimensions
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A.17 Sphere

f(X) =
d∑
i

X2
i

on interval: 0.0 ≤ Xi ≤ 10.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.17: Sphere in 2 dimensions
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A.18 Stretched-V

f(X) =
d−1∑
i

(X2
i+1 +X2

i )0.25[sin2[50(X2
i+1 +X2

i )0.1] + 0.1]

on interval: − 10.0 ≤ Xi ≤ 10.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.18: Stretched-V in 2 dimensions
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A.19 Whitley

f(X) =
d∑
i=1

d∑
j

[
(100(X2

i −Xj)
2 + (1−Xj)

2)2

4000
− cos(100(X2

i −Xj)
2 + (1−Xj)

2 + 1)]

on interval: − 10.0 ≤ Xi ≤ 10.0

minimum at: [1, 1, 1, ..., 1] = 0

Figure A.19: Whitley in 2 dimensions
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A.20 Zakharov

f(X) =
d∑
i=1

X2
i + (0.5

d∑
i=1

iXi)
2 + (0.5

d∑
i=1

iXi)
4

on interval: − 5.0 ≤ Xi ≤ 10.0

minimum at: [0, 0, 0, ..., 0] = 0

Figure A.20: Zakharov in 2 dimensions
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Appendix B

Extended Chapter 7 Results

This chapter includes the full results for the 32d problems and charts for all

dimensions for all 19 benchmark problems presented in Chapter 7.

Table B.1: Ackley-1 Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 2.42e+00 (2.35e+00, 2.49e+00) 1.54e-04 (1.20e-04, 1.88e-04)
4 (128) 2.14e+00 (2.08e+00, 2.20e+00) 1.01e-05 (5.73e-06, 1.54e-05)
8 (256) 1.93e+00 (1.86e+00, 1.98e+00) 1.11e-07 (4.44e-16, 3.32e-07)
16 (512) 1.85e+00 (1.77e+00, 1.92e+00) 4.44e-16 (4.44e-16, 4.44e-16)
32 (1024) 1.65e+00 (1.58e+00, 1.72e+00) 4.44e-16 (4.44e-16, 4.44e-16)
64 (2048) 1.41e+00 (1.33e+00, 1.49e+00) 4.44e-16 (4.44e-16, 4.44e-16)
128 (4096) 1.25e+00 (1.18e+00, 1.30e+00) 4.44e-16 (4.44e-16, 4.44e-16)
256 (8192) 1.14e+00 (1.08e+00, 1.20e+00) 4.44e-16 (4.44e-16, 4.44e-16)
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Figure B.1: Ackley-1 Benchmark: PSO v. PI-PSO Scaling
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Table B.2: Brown Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 1.95e+01 (1.42e+01, 2.50e+01) 2.16e-07 (1.62e-07, 2.87e-07)
4 (128) 1.30e+01 (1.02e+01, 1.66e+01) 1.99e-08 (1.62e-08, 2.37e-08)
8 (256) 1.04e+01 (7.92e+00, 1.36e+01) 2.41e-09 (1.91e-09, 3.08e-09)

16 (512) 7.23e+00 (6.30e+00, 8.07e+00) 3.41e-10 (2.90e-10, 3.91e-10)
32 (1024) 6.46e+00 (5.29e+00, 7.59e+00) 5.72e-11 (4.75e-11, 6.74e-11)
64 (2048) 3.51e+00 (2.75e+00, 4.24e+00) 8.90e-12 (7.47e-12, 1.04e-11)

128 (4096) 2.96e+00 (2.26e+00, 3.49e+00) 1.51e-12 (1.32e-12, 1.71e-12)
256 (8192) 1.57e+00 (1.15e+00, 2.01e+00) 2.90e-13 (2.36e-13, 3.57e-13)

Figure B.2: Brown Benchmark: PSO v. PI-PSO Scaling
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Figure B.3: Dixon-Price Benchmark: PSO v. PI-PSO Scaling
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Table B.3: Dixon-Price Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 2.34e+02 (1.82e+02, 2.86e+02) 1.03e-01 (6.61e-03, 3.02e-01)
4 (128) 9.24e+01 (7.03e+01, 1.17e+02) 1.11e-03 (9.33e-04, 1.30e-03)
8 (256) 9.03e+01 (6.01e+01, 1.24e+02) 1.88e-04 (1.64e-04, 2.12e-04)

16 (512) 3.74e+01 (1.94e+01, 6.39e+01) 2.96e-05 (2.49e-05, 3.45e-05)
32 (1024) 4.61e+01 (2.30e+01, 7.35e+01) 5.96e-06 (4.81e-06, 7.25e-06)
64 (2048) 2.87e+01 (1.21e+01, 5.35e+01) 9.67e-07 (8.08e-07, 1.09e-06)

128 (4096) 1.20e+01 (4.95e+00, 1.90e+01) 1.85e-07 (1.63e-07, 2.10e-07)
256 (8192) 7.07e+00 (1.21e+00, 1.41e+01) 4.32e-08 (3.62e-08, 5.33e-08)

Table B.4: Eggholder Benchmark Results 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) -1.52e+04 (-1.56e+04, -1.49e+04) -2.30e+04 (-2.33e+04, -2.27e+04)
4 (128) -1.56e+04 (-1.61e+04, -1.52e+04) -2.32e+04 (-2.34e+04, -2.28e+04)
8 (256) -1.64e+04 (-1.68e+04, -1.61e+04) -2.35e+04 (-2.37e+04, -2.32e+04)

16 (512) -1.67e+04 (-1.71e+04, -1.63e+04) -2.33e+04 (-2.36e+04, -2.30e+04)
32 (1024) -1.72e+04 (-1.77e+04, -1.68e+04) -2.37e+04 (-2.39e+04, -2.34e+04)
64 (2048) -1.76e+04 (-1.79e+04, -1.73e+04) -2.39e+04 (-2.42e+04, -2.36e+04)

128 (4096) -1.85e+04 (-1.88e+04, -1.82e+04) -2.38e+04 (-2.42e+04, -2.36e+04)
256 (8192) -1.86e+04 (-1.90e+04, -1.83e+04) -2.37e+04 (-2.40e+04, -2.33e+04)

Figure B.4: Eggholder Benchmark: PSO v. PI-PSO Scaling
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Table B.5: Exponential Benchmark Results 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) -9.93e-01 (-9.94e-01, -9.92e-01) -1.00e+00 (-1.00e+00, -1.00e+00)
4 (128) -9.98e-01 (-9.98e-01, -9.97e-01) -1.00e+00 (-1.00e+00, -1.00e+00)
8 (256) -9.99e-01 (-9.99e-01, -9.99e-01) -1.00e+00 (-1.00e+00, -1.00e+00)

16 (512) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
32 (1024) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
64 (2048) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)

128 (4096) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
256 (8192) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)

Figure B.5: Exponential Benchmark: PSO v. PI-PSO Scaling
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Table B.6: Eggholder Benchmark Results 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) -1.52e+04 (-1.56e+04, -1.49e+04) -2.30e+04 (-2.33e+04, -2.27e+04)
4 (128) -1.56e+04 (-1.61e+04, -1.52e+04) -2.32e+04 (-2.34e+04, -2.28e+04)
8 (256) -1.64e+04 (-1.68e+04, -1.61e+04) -2.35e+04 (-2.37e+04, -2.32e+04)

16 (512) -1.67e+04 (-1.71e+04, -1.63e+04) -2.33e+04 (-2.36e+04, -2.30e+04)
32 (1024) -1.72e+04 (-1.77e+04, -1.68e+04) -2.37e+04 (-2.39e+04, -2.34e+04)
64 (2048) -1.76e+04 (-1.79e+04, -1.73e+04) -2.39e+04 (-2.42e+04, -2.36e+04)

128 (4096) -1.85e+04 (-1.88e+04, -1.82e+04) -2.38e+04 (-2.42e+04, -2.36e+04)
256 (8192) -1.86e+04 (-1.90e+04, -1.83e+04) -2.37e+04 (-2.40e+04, -2.33e+04)

Figure B.6: Eggholder Benchmark: PSO v. PI-PSO Scaling
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Table B.7: Griewank Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 1.03e+00 (1.02e+00, 1.04e+00) 1.65e-02 (1.00e-02, 2.33e-02)
4 (128) 8.65e-01 (8.31e-01, 8.98e-01) 1.03e-01 (7.75e-02, 1.30e-01)
8 (256) 5.90e-01 (5.40e-01, 6.42e-01) 1.44e-01 (1.15e-01, 1.72e-01)

16 (512) 3.22e-01 (2.79e-01, 3.64e-01) 1.75e-01 (1.46e-01, 2.08e-01)
32 (1024) 1.49e-01 (1.27e-01, 1.73e-01) 1.97e-01 (1.65e-01, 2.29e-01)
64 (2048) 9.10e-02 (7.36e-02, 1.09e-01) 1.77e-01 (1.46e-01, 2.05e-01)

128 (4096) 4.13e-02 (3.16e-02, 5.15e-02) 1.60e-01 (1.25e-01, 1.92e-01)
256 (8192) 2.66e-02 (2.10e-02, 3.32e-02) 2.16e-01 (1.88e-01, 2.44e-01)

Figure B.7: Griewank Benchmark: PSO v. PI-PSO Scaling
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Table B.8: Michalewicz Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) -7.42e+00 (-7.77e+00, -7.13e+00) -3.18e+01 (-3.19e+01, -3.18e+01)
4 (128) -8.03e+00 (-8.40e+00, -7.66e+00) -3.19e+01 (-3.19e+01, -3.19e+01)
8 (256) -8.24e+00 (-8.54e+00, -7.96e+00) -3.19e+01 (-3.19e+01, -3.19e+01)

16 (512) -8.57e+00 (-8.90e+00, -8.23e+00) -3.19e+01 (-3.19e+01, -3.19e+01)
32 (1024) -9.30e+00 (-9.60e+00, -9.06e+00) -3.19e+01 (-3.19e+01, -3.19e+01)
64 (2048) -9.59e+00 (-9.90e+00, -9.27e+00) -3.19e+01 (-3.19e+01, -3.19e+01)

128 (4096) -1.00e+01 (-1.04e+01, -9.68e+00) -3.19e+01 (-3.19e+01, -3.19e+01)
256 (8192) -1.07e+01 (-1.12e+01, -1.03e+01) -3.19e+01 (-3.19e+01, -3.19e+01)
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Figure B.8: Michalewicz Benchmark: PSO v. PI-PSO Scaling
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Table B.9: Rastrigin Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 1.56e+02 (1.46e+02, 1.66e+02) 4.54e-06 (1.39e-06, 9.46e-06)
4 (128) 1.33e+02 (1.24e+02, 1.42e+02) 1.48e-07 (2.33e-08, 3.55e-07)
8 (256) 1.15e+02 (1.07e+02, 1.23e+02) 0.00e+00 (0.00e+00, 0.00e+00)

16 (512) 1.04e+02 (9.70e+01, 1.11e+02) 0.00e+00 (0.00e+00, 0.00e+00)
32 (1024) 7.97e+01 (7.35e+01, 8.62e+01) 0.00e+00 (0.00e+00, 0.00e+00)
64 (2048) 7.21e+01 (6.65e+01, 7.77e+01) 0.00e+00 (0.00e+00, 0.00e+00)

128 (4096) 6.69e+01 (6.23e+01, 7.22e+01) 0.00e+00 (0.00e+00, 0.00e+00)
256 (8192) 5.54e+01 (5.09e+01, 6.02e+01) 0.00e+00 (0.00e+00, 0.00e+00)

Figure B.9: Rastrigin Benchmark: PSO v. PI-PSO Scaling
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Figure B.10: Rosenbrock Benchmark: PSO v. PI-PSO Scaling
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Table B.10: Rosenbrock Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 8.56e+02 (6.13e+02, 1.28e+03) 1.56e+01 (7.57e+00, 2.46e+01)
4 (128) 5.72e+02 (3.17e+02, 9.80e+02) 5.87e+00 (1.77e+00, 1.05e+01)
8 (256) 2.97e+02 (2.25e+02, 3.69e+02) 1.25e+00 (8.62e-01, 1.67e+00)

16 (512) 1.99e+02 (1.30e+02, 2.75e+02) 1.11e+00 (7.71e-01, 1.54e+00)
32 (1024) 1.26e+02 (7.53e+01, 1.85e+02) 1.17e+00 (7.63e-01, 1.61e+00)
64 (2048) 1.38e+02 (8.22e+01, 2.02e+02) 1.41e+00 (9.75e-01, 1.83e+00)

128 (4096) 9.59e+01 (6.11e+01, 1.36e+02) 1.86e+00 (9.17e-01, 3.77e+00)
256 (8192) 6.38e+01 (5.03e+01, 7.84e+01) 1.20e+00 (7.09e-01, 1.82e+00)

Table B.11: Salomon Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 3.18e+00 (2.93e+00, 3.54e+00) 1.79e+00 (1.67e+00, 1.91e+00)
4 (128) 2.31e+00 (2.17e+00, 2.43e+00) 1.74e+00 (1.61e+00, 1.87e+00)
8 (256) 1.67e+00 (1.60e+00, 1.74e+00) 1.90e+00 (1.77e+00, 2.03e+00)

16 (512) 1.18e+00 (1.11e+00, 1.23e+00) 1.87e+00 (1.74e+00, 1.97e+00)
32 (1024) 8.55e-01 (8.18e-01, 8.94e-01) 1.88e+00 (1.79e+00, 1.98e+00)
64 (2048) 6.39e-01 (6.14e-01, 6.64e-01) 1.85e+00 (1.74e+00, 1.95e+00)

128 (4096) 5.18e-01 (4.92e-01, 5.40e-01) 1.79e+00 (1.66e+00, 1.91e+00)
256 (8192) 4.14e-01 (3.96e-01, 4.30e-01) 1.91e+00 (1.82e+00, 2.02e+00)

Figure B.11: Salomon Benchmark: PSO v. PI-PSO Scaling
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Table B.12: Sargan Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 9.83e+01 (8.47e+01, 1.12e+02) 6.93e-04 (5.52e-04, 8.65e-04)
4 (128) 3.57e+01 (3.06e+01, 4.01e+01) 8.23e-05 (6.31e-05, 1.00e-04)
8 (256) 1.37e+01 (1.21e+01, 1.57e+01) 6.60e-06 (4.31e-06, 9.03e-06)

16 (512) 5.14e+00 (4.56e+00, 5.71e+00) 4.11e-07 (2.10e-07, 6.74e-07)
32 (1024) 1.91e+00 (1.63e+00, 2.16e+00) 7.54e-09 (1.13e-09, 1.82e-08)
64 (2048) 8.20e-01 (7.06e-01, 9.33e-01) 1.20e-11 (0.00e+00, 3.60e-11)

128 (4096) 3.38e-01 (3.00e-01, 3.75e-01) 0.00e+00 (0.00e+00, 0.00e+00)
256 (8192) 1.22e-01 (1.04e-01, 1.40e-01) 2.42e-10 (1.03e-12, 8.31e-10)

Figure B.12: Sargan Benchmark: PSO v. PI-PSO Scaling
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Table B.13: Schaffer-F6 Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 3.49e+00 (3.26e+00, 3.73e+00) 6.12e-01 (5.42e-01, 6.90e-01)
4 (128) 3.09e+00 (2.90e+00, 3.27e+00) 6.54e-01 (5.67e-01, 7.56e-01)
8 (256) 2.81e+00 (2.64e+00, 3.00e+00) 5.15e-01 (4.47e-01, 5.80e-01)

16 (512) 2.61e+00 (2.44e+00, 2.76e+00) 5.38e-01 (4.66e-01, 6.16e-01)
32 (1024) 2.23e+00 (2.06e+00, 2.39e+00) 4.61e-01 (3.92e-01, 5.36e-01)
64 (2048) 2.25e+00 (2.09e+00, 2.40e+00) 4.72e-01 (4.07e-01, 5.32e-01)

128 (4096) 1.96e+00 (1.79e+00, 2.14e+00) 4.66e-01 (3.97e-01, 5.37e-01)
256 (8192) 1.83e+00 (1.69e+00, 1.95e+00) 3.98e-01 (3.44e-01, 4.55e-01)
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Figure B.13: Schaffer-F6 Benchmark: PSO v. PI-PSO Scaling
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Table B.14: Schwefel-1.2 Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 1.69e+04 (1.54e+04, 1.84e+04) 1.52e+03 (1.37e+03, 1.66e+03)
4 (128) 1.31e+04 (1.16e+04, 1.44e+04) 6.73e+02 (6.07e+02, 7.39e+02)
8 (256) 1.07e+04 (9.56e+03, 1.19e+04) 4.21e+02 (3.84e+02, 4.63e+02)

16 (512) 7.22e+03 (6.16e+03, 8.29e+03) 3.03e+02 (2.65e+02, 3.38e+02)
32 (1024) 5.48e+03 (4.60e+03, 6.48e+03) 3.05e+02 (2.80e+02, 3.33e+02)
64 (2048) 3.21e+03 (2.66e+03, 3.79e+03) 3.22e+02 (2.80e+02, 3.64e+02)

128 (4096) 2.17e+03 (1.67e+03, 2.79e+03) 2.74e+02 (2.51e+02, 3.00e+02)
256 (8192) 1.23e+03 (9.41e+02, 1.50e+03) 2.68e+02 (2.40e+02, 2.96e+02)

Figure B.14: Schwefel 1.2 Benchmark: PSO v. PI-PSO Scaling
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Figure B.15: Schwefel 2.22 Benchmark: PSO v. PI-PSO Scaling
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Table B.15: Schwefel-2.22 Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 4.70e+02 (4.52e+02, 4.89e+02) 3.14e-04 (0.00e+00, 9.03e-04)
4 (128) 3.97e+02 (3.84e+02, 4.11e+02) 0.00e+00 (0.00e+00, 0.00e+00)
8 (256) 3.42e+02 (3.29e+02, 3.53e+02) 0.00e+00 (0.00e+00, 0.00e+00)

16 (512) 2.72e+02 (2.63e+02, 2.81e+02) 0.00e+00 (0.00e+00, 0.00e+00)
32 (1024) 2.40e+02 (2.28e+02, 2.51e+02) 0.00e+00 (0.00e+00, 0.00e+00)
64 (2048) 1.93e+02 (1.84e+02, 2.02e+02) 0.00e+00 (0.00e+00, 0.00e+00)

128 (4096) 1.56e+02 (1.47e+02, 1.64e+02) 0.00e+00 (0.00e+00, 0.00e+00)
256 (8192) 1.09e+02 (9.45e+01, 1.23e+02) 0.00e+00 (0.00e+00, 0.00e+00)

Table B.16: Schwefel-2.23 Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 3.59e+02 (1.53e+02, 6.52e+02) 8.61e-25 (1.89e-25, 1.92e-24)
4 (128) 2.36e+01 (9.92e+00, 4.46e+01) 3.03e-29 (1.53e-30, 7.17e-29)
8 (256) 1.45e+00 (6.85e-01, 2.66e+00) 1.35e-38 (4.47e-42, 3.46e-38)

16 (512) 3.39e-02 (1.52e-02, 5.94e-02) 0.00e+00 (0.00e+00, 0.00e+00)
32 (1024) 1.60e-03 (1.98e-04, 3.82e-03) 0.00e+00 (0.00e+00, 0.00e+00)
64 (2048) 1.17e-05 (2.35e-06, 2.65e-05) 0.00e+00 (0.00e+00, 0.00e+00)

128 (4096) 1.81e-07 (6.14e-08, 3.32e-07) 0.00e+00 (0.00e+00, 0.00e+00)
256 (8192) 2.73e-09 (6.32e-10, 5.86e-09) 0.00e+00 (0.00e+00, 0.00e+00)

Figure B.16: Schwefel 2.23 Benchmark: PSO v. PI-PSO Scaling
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Table B.17: Sphere Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 2.73e+01 (1.20e+01, 4.20e+01) 0.00e+00 (0.00e+00, 0.00e+00)
4 (128) 8.22e+00 (2.00e+00, 1.80e+01) 0.00e+00 (0.00e+00, 0.00e+00)
8 (256) 5.94e+00 (0.00e+00, 1.40e+01) 0.00e+00 (0.00e+00, 0.00e+00)

16 (512) 1.74e+00 (0.00e+00, 6.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)
32 (1024) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)
64 (2048) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)

128 (4096) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)
256 (8192) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)

Figure B.17: Sphere Benchmark: PSO v. PI-PSO Scaling
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Table B.18: Stretched-V Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 1.60e+01 (1.52e+01, 1.68e+01) 3.52e+00 (3.21e+00, 3.83e+00)
4 (128) 1.43e+01 (1.34e+01, 1.51e+01) 3.31e+00 (3.04e+00, 3.58e+00)
8 (256) 1.32e+01 (1.25e+01, 1.39e+01) 3.17e+00 (2.84e+00, 3.48e+00)

16 (512) 1.16e+01 (1.11e+01, 1.23e+01) 3.04e+00 (2.69e+00, 3.32e+00)
32 (1024) 1.10e+01 (1.03e+01, 1.17e+01) 3.15e+00 (2.85e+00, 3.47e+00)
64 (2048) 1.00e+01 (9.43e+00, 1.06e+01) 2.71e+00 (2.43e+00, 2.99e+00)

128 (4096) 9.67e+00 (9.07e+00, 1.03e+01) 2.77e+00 (2.47e+00, 3.14e+00)
256 (8192) 9.20e+00 (8.69e+00, 9.72e+00) 3.01e+00 (2.67e+00, 3.38e+00)
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Figure B.18: Stretched-V Benchmark: PSO v. PI-PSO Scaling
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Table B.19: Whitley Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 5.52e+03 (4.03e+03, 7.26e+03) 3.59e+01 (1.70e+01, 5.96e+01)
4 (128) 1.36e+03 (1.23e+03, 1.50e+03) 1.94e+01 (8.74e+00, 3.34e+01)
8 (256) 1.04e+03 (1.02e+03, 1.06e+03) 2.02e+01 (1.01e+01, 3.58e+01)

16 (512) 9.37e+02 (9.23e+02, 9.50e+02) 6.26e+01 (2.56e+01, 1.08e+02)
32 (1024) 8.78e+02 (8.66e+02, 8.90e+02) 2.04e+02 (1.46e+02, 2.59e+02)
64 (2048) 8.07e+02 (7.91e+02, 8.26e+02) 3.95e+02 (3.57e+02, 4.32e+02)

128 (4096) 7.56e+02 (7.34e+02, 7.72e+02) 4.29e+02 (3.86e+02, 4.70e+02)
256 (8192) 6.80e+02 (6.65e+02, 6.96e+02) 3.93e+02 (3.30e+02, 4.47e+02)

Figure B.19: Whitley Benchmark: PSO v. PI-PSO Scaling
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Figure B.20: Zakharov Benchmark: PSO v. PI-PSO Scaling
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Table B.20: Zakharov Benchmark 32d Results for Different Particle Counts

p PSO PI-PSO

2 (64) 3.74e+02 (3.42e+02, 4.04e+02) 2.29e+02 (2.08e+02, 2.45e+02)
4 (128) 2.46e+02 (2.25e+02, 2.69e+02) 1.90e+02 (1.69e+02, 2.11e+02)
8 (256) 1.68e+02 (1.54e+02, 1.83e+02) 1.53e+02 (1.42e+02, 1.64e+02)

16 (512) 1.15e+02 (1.05e+02, 1.24e+02) 1.45e+02 (1.31e+02, 1.57e+02)
32 (1024) 7.12e+01 (6.50e+01, 7.73e+01) 1.42e+02 (1.28e+02, 1.57e+02)
64 (2048) 5.09e+01 (4.61e+01, 5.55e+01) 1.39e+02 (1.25e+02, 1.51e+02)

128 (4096) 3.25e+01 (2.81e+01, 3.65e+01) 1.47e+02 (1.34e+02, 1.65e+02)
256 (8192) 2.29e+01 (1.91e+01, 2.71e+01) 1.37e+02 (1.25e+02, 1.49e+02)

224



Bibliography

[1] S. J. Russell and P. Norvig, Artificial intelligence: A modern approach, 3rd ed.

Prentice Hall, 2009.

[2] B. K. Haberman and J. W. Sheppard, “Overlapping particle swarms for energy-

efficient routing in sensor networks,” Wireless Networks, vol. 18, no. 4, pp. 351–

363, 2012.

[3] G. Hornby, A. Globus, D. Linden, and J. Lohn, “Automated antenna design with

evolutionary algorithms,” in Space 2006, 2006, p. 7242.

[4] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[5] J. H. Holland, Adaptation in natural and artificial systems: An introductory anal-

ysis with applications to biology, control, and artificial intelligence. U Michigan

Press, 1975.

225



BIBLIOGRAPHY

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of

the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.

[7] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach to

function optimization,” in Parallel Problem Solving from Nature (PPSN III).

Springer, 1994, pp. 249–257.

[8] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle

swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8,

no. 3, pp. 225–239, 2004.

[9] S. Strasser, N. Fortier, J. Sheppard, and R. Goodman, “Factored evolutionary

algorithms,” IEEE Transactions on Evolutionary Computation, vol. 21, no. 3,

pp. 281–293, 2017.

[10] R. Engelmore, Blackboard Systems, T. Morgan, Ed. Reading, MA: Addison

Wesley, 1988.

[11] V. Pareto et al., “Manual of political economy,” 1906.

[12] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for

artificial intelligence,” in IJCAI, vol. 3. Stanford Research Institute, 1973, pp.

235–245.

[13] N. Fortier, J. W. Sheppard, and K. Pillai, “DOSI: training artificial neural

226



BIBLIOGRAPHY

networks using overlapping swarm intelligence with local credit assignment,”

in Joint 6th International Conference on Soft Computing and Intelligent Sys-

tems (SCIS) and 13th International Symposium on Advanced Intelligent Systems

(ISIS), 2012, pp. 1420–1425.

[14] K. G. Pillai and J. Sheppard, “Overlapping swarm intelligence for training artifi-

cial neural networks,” in Proceedings of the IEEE Swarm Intelligence Symposium

(SIS), 2011, pp. 1–8.

[15] T. M. Mitchell, “The need for biases in learning generalizations,” New Brunswick,

New Jersey, USA, Tech. Rep. CBM-TR 5-110, 1980.

[16] J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation,

Simulation, and Control. John Wiley & Sons, 2005.

[17] M. N. Katehakis and J. Arthur F. Veinott, “The multi-armed bandit problem:

Decomposition and computation,” Mathematics of Operations Research, vol. 12,

no. 2, pp. 262–268, 1987.

[18] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for global

optimisation problems,” International Journal of Mathematical Modelling and

Numerical Optimisation, vol. 4, no. 2, pp. 150–194, 2013.

227



BIBLIOGRAPHY

[19] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.

Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[20] K.-L. Du and M. N. S. Swamy, Search and Optimization by Metaheuristics: Tech-

niques and Algorithms Inspired by Nature, 1st ed. Birkh&#228;user Basel, 2016.

[21] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 6,

no. 6, pp. 721–741, Nov. 1984.

[22] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes, 1st ed.

Lulu.com, 2011.

[23] S. Baluja and R. Caruana, “Removing the genetics from the standard genetic

algorithm,” Pittsburgh, PA, USA, Tech. Rep., 1995.

[24] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs

(3rd Ed.). London, UK, UK: Springer-Verlag, 1996.

[25] R. Eberhart, J. Kennedy, and Y. Shi, Swarm Intelligence. San Francisco, CA:

Morgan Kaufman, 2001.

[26] K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimization and Intelli-

gence: Advances and Applications. Hershey, PA: Information Science Reference

- Imprint of: IGI Publishing, 2010.

228



BIBLIOGRAPHY

[27] F. J. Solis and R. J.-B. Wets, “Minimization by random search techniques,”

Mathematics of operations research, vol. 6, no. 1, pp. 19–30, 1981.

[28] Y.-C. Ho, “On the numerical solutions of stochastic optimization problem,” IEEE

Transactions on Automatic Control, vol. 42, no. 5, pp. 727–729, 1997.

[29] S. Chen, J. Montgomery, and A. Bolufé-Röhler, “Measuring the curse of dimen-
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