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Abstract 

Tuberculosis (TB) and COVID-19 are two major infectious disease problems. While TB is 

caused by a slow growing bacterium, Mycobacterium tuberculosis (Mtb), and COVID-19 is caused 

by a virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SARS-COV-2), both 

diseases have widespread impact on human health and share many common pathologies. Outcome 

of infection with both pathogens is heavily influenced by the response of host macrophages. Here 

we use a combination of unbiased and targeted approaches, including transcriptomics, 

methylomics, and cytokine analysis to evaluate immunological responses in human macrophages 

exposed to Mtb and SARS-CoV-2. Using in vitro macrophage exposure models and both unbiased 

and targeted analysis approaches, we find that the macrophage response to Mtb is shaped by 

changes in the production of small non-coding RNAs, including microRNAs (miRNAs) and 

tRNA-derived fragments (tRFs), gene expression, methylation, mitochondrial responses, while 

host responses to SARS-CoV-2 are shaped by macrophage-mediated viral sensing and 

inflammasome activation.  

Using next generation sequencing, we show that certain miRNAs are consistently 

dysregulated in Mtb infection. These miRNAs target a number of differentially expressed genes 

involved in processes central to the anti-TB response, including immune cell activation, 

macrophage lipid metabolism, and blood vessel development. Many genes involved in immune 

cell activation and metabolic reprogramming were also subject to changes in methylation. 

Additionally, we investigate dysregulation of tRFs, a novel form of small non-coding RNA that 

have never before been studied in the context of bacterial infections. We find that tRFs are 

significantly dysregulated in infection with Mtb and that dysregulated tRFs derive primarily from 

the host mitochondrial genome. Fluorescent imaging shows that increased abundance of 
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mitochondria-biased tRFs is linked to recruitment of a tRF cleaving enzyme Angiogenin (ANG) 

and the apoptotic suppressor x-linked inhibitor of apoptosis protein (XIAP) to host mitochondria. 

Finally, we investigate the role of the inflammasome in SARS-COV-2 infection and find that 

SARS-COV-2 stimulates activation of the NLRP3 inflammasome through MyD88-mediated 

direct sensing of extracellular virus in macrophages, but not nasal or lung epithelial cells.  

Taken together, our studies show that the macrophage plays a central role in the host 

response to both Mtb and SARS-COV-2 infection and that macrophage responses are shaped by a 

network of pre- and post-transcriptional molecular regulatory factors.  
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“TB is the biggest baddest bug out there.” – Gyanu Lamichhane 

“The only good TB bug is a dead one.” – Jacques Grosset, Petros Karakousis 

“Don’t worry about COVID. Things will be back to normal in a couple months.” – Petros 

Karakousis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Contents 

Abstract .....................................................................................................................................ii 

Preface ...................................................................................................................................... iv 

Dedication ................................................................................................................................. v 

Quotes ....................................................................................................................................... vi 

List of Tables ............................................................................................................................ ix 

List of Figures ........................................................................................................................... x 

Chapter 1: Introduction ........................................................................................................... 1 

1.1 Mycobacterium tuberculosis and SARS-CoV-2, the old and new of pandemic-causing 

diseases ................................................................................................................................... 1 

Chapter 2: Regulation of the Macrophage Response to Mycobacterium tuberculosis 

infection ..................................................................................................................................... 4 

2.1 Background ....................................................................................................................... 4 

2.1.1 Altered microRNA expression and DNA methylation during Mtb infection ................. 4 

2.1.2 Transfer RNA-derived fragments in human disease ..................................................... 5 

2.1.3 Mitochondrial responses to Mycobacterium tuberculosis ............................................. 5 

2.2 Key macrophage responses to infection with Mycobacterium tuberculosis are co-regulated 

by microRNAs and methylation .............................................................................................. 6 

2.2.1 Methodologies ............................................................................................................ 7 

2.2.2 Results ...................................................................................................................... 12 

2.3 Mycobacterium tuberculosis infection drives mitochondria-biased dysregulation of host 

transfer RNA-derived fragments ............................................................................................ 27 

2.3.1 Methodologies .......................................................................................................... 28 

2.3.2 Results ...................................................................................................................... 33 

2.4 Mycobacterium tuberculosis disrupts mitochondrial responses to evade host macrophage 

mediated killing ..................................................................................................................... 44 



viii 
 

2.4.1 Methodologies .......................................................................................................... 45 

2.4.2 Results ...................................................................................................................... 49 

2.5 Conclusions ..................................................................................................................... 57 

2.5.1 Integrated transcriptomic and epigenetic analyses reveal network of pre- and post-

transcriptional regulation of macrophage responses in Mtb infection .................................. 57 

2.5.2 Mtb infection drives over-production of mitochondria-derived tRFs .......................... 65 

2.5.3 Mtb infection is associated with disruption of classic apoptotic cascades and 

recruitment of ANG to host mitochondria .......................................................................... 67 

Chapter 3: Host Response to SARS-CoV-2 ........................................................................... 71 

3.1 Background ..................................................................................................................... 71 

3.1.1 Inflammasome activation in viral infections .............................................................. 71 

3.2 Macrophage sensing of SARS-CoV-2 induces NLRP3-dependent inflammasome activation 

via MyD88 signaling ............................................................................................................. 73 

3.2.1 Methodologies .......................................................................................................... 73 

3.2.2 Results ...................................................................................................................... 77 

3.3 Conclusions ..................................................................................................................... 85 

Chapter 4: Discussion and Future Directions ........................................................................ 90 

Bibliography ............................................................................................................................ 93 

Vita ........................................................................................................................................ 112 

 

 

 

 

 



ix 
 

List of Tables 

Table 1. Significantly down and upregulated miRNAs for each condition. ................................ 14 

Table 2. List of candidate miRNAs to be used for further analysis. ........................................... 17 

Table 3. Contingency table for enrichment of dysregulated miRNA targets. .............................. 19 

Table 4. Contingency table for enrichment of AMPK pathway dysregulation. ........................... 27 

Table 5. Details of small RNA sequencing datasets analyzed. ................................................... 32 

Table 6. Comparison of tRFcluster, MINTmap, tDRmapper, tRFfinder, and tRFdb. .................. 33 

Table 7. Comparison of tRFcluster, MINTmap, tDRmapper, tRFfinder, and tRFdb. .................. 34 

Table 8. tRFs dysregulated in mycobacterial infections are primarily of mitochondrial origin. .. 43 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

List of Figures  

Figure 1. Experimental workflow diagram. ................................................................................. 8 

Figure 2. Assessment of host cell viability in Mtb-infected primary human MDMs. .................... 9 

Figure 3. Assessment of bacterial burden in Mtb-infected primary human MDMs. .................... 10 

Figure 4. miRNA dysregulation increases with time post-infection and MOI. ........................... 13 

Figure 5. Selection of miRNA candidates for pathway analysis. ................................................ 16 

Figure 6. Association of significantly dysregulated miRNAs with differentially expressed 

cognate mRNAs during Mtb infection of human MDMs. .......................................................... 18 

Figure 7. Pathway analysis for significantly dysregulated targets of candidate miRNAs. ........... 21 

Figure 8. Genome wide differential CG methylation patterns show enrichment for genes 

associated with immune activation and metabolic processing. ................................................... 23 

Figure 9. Genes that are both differentially methylated and differentially expressed are involved 

in immune cell functioning and are subject to candidate miRNA regulation. ............................. 25 

Figure 10.  DMRs DEGs and DE miRNA targets intersect at the AMPK signaling pathway. .... 26 

Figure 11. Workflow for creation of tRFcluster and use of the method. ..................................... 30 

Figure 12. Features of tRFs from 345 cell samples. ................................................................... 34 

Figure 13. Virulent strains of Mtb, but not Mycobacterium bovis, significantly dysregulate tRF 

production. ................................................................................................................................ 35 

Figure 14. Listeria monocytogenes shows stark tRF dysregulation compared to other non-

mycobacterial intracellular bacterial pathogens. ........................................................................ 37 

Figure 15. Heat map of tRF abundance during hypoxic stress.................................................... 38 

Figure 16. Venn diagram of tRFs in three hypoxia studies over 3 time points. ........................... 39 

Figure 17. tRF dysregulation increases with severity of Mtb infection. ...................................... 40 



xi 
 

Figure 18. Log2(fold-change) of each significantly dysregulated tRF across Mtb infection 

conditions. ................................................................................................................................ 41 

Figure 19. Mtb infection is associated with uncoupling of Bax recruitment to OMM and 

Cytochrome C release. .............................................................................................................. 51 

Figure 20. Early, but not late, endosomal markers localize to the mitochondria during Mtb 

infection of macrophages. ......................................................................................................... 52 

Figure 21. XIAP recruitment to mitochondria is robust in some cells with high bacillary burden.

 ................................................................................................................................................. 53 

Figure 22. ANG is recruited to the mitochondria in Mtb-infected MDMs. ................................. 54 

Figure 23. ANG does not affect MDM viability or bacterial burden in vitro. ............................. 56 

Figure 24. Hypotheses for cleavage of mtRFs in Mtb infection. ................................................ 66 

Figure 25. Mtb infection is associated with aberrant recruitment of Bax, XIAP, and ANG to 

mitochondria. ............................................................................................................................ 68 

Figure 26. Macrophages inoculated with SARS-CoV-2 produce IL-18 and IL-1b. .................... 78 

Figure 27. SARS-CoV-2 inflammasome activation is primed through MyD88 and is activated 

through NLRP3, Caspase-1, and ASC. ...................................................................................... 80 

Figure 28. Cells with NLRP3 inflammasome pathway knockouts do not show IL-18 production 

in response to positive control agents. ....................................................................................... 81 

Figure 29. Respiratory Epithelial Cells Support SARS-CoV-2 Replication, But Do Not Activate 

Inflammasomes. ........................................................................................................................ 83 

Figure 30. Exogenous IL-1b drives viral replication in SARS-CoV-2-infected lung epithelial 

cells. ......................................................................................................................................... 85 



xii 
 

Figure 31. SARS-CoV-2 infection drives MyD88-dependent activation of the host NLRP3 

inflammasome via direct macrophage sensing. .......................................................................... 88 



 
 

Chapter 1: Introduction 

1.1 Mycobacterium tuberculosis and SARS-CoV-2, the old and new of 

pandemic-causing diseases 

 Tuberculosis (TB) and COVID-19 were the most deadly infectious diseases caused by 

single infectious agents in 2020 [1, 2]. While caused by very different pathogens, these diseases 

are inherently linked as pandemic-causing respiratory infections that disproportionately affect 

those living in poverty [1].  

In 2019, TB caused 1.4 million deaths and approximately 10 million new illnesses [1]. TB 

incidence is heavily influenced by health disparities and ~95% of TB cases occur in low and middle 

income countries [1, 3]. While TB incidence has been steadily declining in recent years, estimates 

from the WHO indicate that global TB deaths may increase by an additional 200,000 – 400,000 in 

2020 alone and that new TB cases may increase by an additional one million per year between 

2020 and 2025 [1].  These increases are largely attributed to disruptions and reprioritizations of 

TB tracking, health services, and economic resources during the COVID-19 pandemic. While 

Mycobacterium tuberculosis (Mtb), the bacterium that causes TB, has been the top cause of death 

due to a single infectious agent since 2015, in 2020, it was surpassed by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19 [4]. By the end of 2020, 

COVID-19 had caused 1.8 million deaths worldwide, and the number continues to increase rapidly 

[2]. Like TB, rates of COVID-19 are higher in economically disadvantaged communities and for 

people of color [5, 6]. 

Due to its sudden and appearance and enormous impact on human health and daily life, 

COVID-19 has received worldwide attention that has resulted in an unprecedented response from 
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governments, industry, academic science, medicine, and public health organizations. This 

response has led to the rapid development of novel vaccines and treatments for COVID-19 that 

have and will continue to prevent severe disease and save lives. However, the “COVID problem” 

is far from solved. Many unknowns regarding the pathobiology of SARS-COV-2 infection and 

COVID-19 disease remain. Even as vaccines and treatments become more widely available, it is 

critical that research continues to learn about the fundamental mechanisms that drive development 

of COVID-19 disease and impact outcome of infection.  

In contrast to COVID19, TB constitutes a persistent public health crisis that has caused 

disease in humans for thousands of years [1, 7]. Despite its long-standing impact on human health, 

the TB problem remains unsolved due to significant gaps in dedicated resources and the 

complexity of the disease itself. Though vaccines and treatments to prevent and cure TB exist, they 

are not sufficient for eradicating the disease from the world population and are becoming less 

effective over time. The Bacille Calmette-Guérin (BCG) vaccine has been in use as an anti-TB 

vaccine since the early 1920s and has limited efficacy in preventing TB in adults, but remains the 

only approved vaccine for TB. [8, 9]. However, multiple new candidates, including the 

M72/AS01E vaccine and intravenous BCG are in development, yielding promising results [1, 10, 

11]. Similarly to the BCG vaccine, the main antibiotic components of the first-line regimen for 

treating drug-susceptible TB (isoniazid, rifampin, pyrazinamide, and ethambutol) have remained 

unchanged for decades. However, major developments for second line treatments have been made 

and new candidates are moving through clinical trials [1, 12]. Despite this progress, the COVID19 

pandemic has significantly derailed TB control efforts around the world. While many COVID19 

response measures were modeled after or built upon existing TB management infrastructure, the 

COVID19 pandemic will undoubtedly delay the achievement of the Sustainable Development 
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Goals for ending TB [1]. Especially in the wake of this most recent pandemic, elimination of TB 

will require a revitalization of integrated efforts similar to those seen in the response to COVID19. 

On a biological level, Mtb and SARS-COV-2 may seem entirely unrelated. Mtb is a slow-

growing bacterium which can survive and proliferate both intra- and extracellularly [13]. SARS-

COV-2 is a positive-sense single-stranded RNA virus which can survive outside of a host for short 

periods of time, requiring invasion of host cells to replicate and cause disease [14, 15]. Mtb 

primarily infects innate immune cells, such as macrophages [13]. SARS-COV-2 relies on infection 

of nasopharyngeal and lung epithelial cells for producing new viable viral particles, however 

infection with SARS-COV-2 also stimulates a response from uninfected immune cells [13, 16, 

17]. Despite these differences, Mtb and SARS-COV-2 display various similarities in their 

pathogenesis. Both organisms can be spread via aerosol transmission, which leads to infection of 

the respiratory tract and lungs. While it is suspected that most people who are exposed to either 

Mtb or SARS-COV-2 will not develop active disease symptoms, those individuals who develop 

disease can experience a spectrum of symptoms ranging from mild cough to death [13-16]. Worse 

outcomes are associated with a dysregulated immune responses that cause severe respiratory 

symptoms and long term residual tissue damage [13, 16].  

For TB and COVID19, the biological factors that determine which individuals mount an 

effective response to clear the infection and which go on to develop severe disease remain largely 

unknown. Research aimed at investigating how host responses shape disease progression are 

critical for understanding infection outcome and for driving development of effective vaccines and 

treatments required for eradication of both TB and COVID19. The following thesis details my 

efforts to improve our understanding of the innate immune responses to infection with Mtb and 

SARS-COV-2. 
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Chapter 2: Regulation of the Macrophage Response to 

Mycobacterium tuberculosis infection 

2.1 Background  

2.1.1 Altered microRNA expression and DNA methylation during Mtb infection 

Macrophages, phagocytic innate immune cells, are the primary cell type infected by Mtb. 

The host’s ability to control Mtb infection is dependent upon regulation of various cellular 

processes, including activation of macrophages which carry out cell-mediated killing of Mtb,  

formation of lipid-laden “foamy macrophages” via alteration of metabolism and lipid synthesis, 

and cell-to-cell signaling to coordinate innate and adaptive immune responses [18-21]. However, 

Mtb has evolved virulence mechanisms to dysregulate such host responses and promote its own 

survival [19, 22]. While it is known that Mtb infection drives changes in expression of host genes 

involved in these pathways, mechanisms by which Mtb alters host transcriptional responses to 

subvert macrophage-mediated killing are not well understood.  

Many key host transcriptional pathways are controlled by microRNAs (miRNAs) and 

epigenetic changes (primarily methylation of promoter regions). Mtb infection has been shown to 

dysregulate miRNA expression and alter methylation patterns in infected host cells [23, 24]. 

However, most of the published studies in this area suffer from two critical limitations: 1) biased 

or limited scope of analysis, and 2) reliance on cancer-derived cell lines [25-30]. Previous studies 

on miRNA and epigenetic regulation focus primarily on specific entities pre-selected as being “of 

interest” based on their known function in TB disease [25-29]. Although targeted approaches are 

very powerful for examining the role of specific miRNAs and methylation changes in Mtb-host 

interactions, they are unable to provide a global understanding of transcriptional networks 
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regulating host defenses against Mtb infection and cannot identify novel host regulatory factors 

involved in these processes. Furthermore, transcriptional and epigenetic analysis of immortalized 

cell lines is limited by the observation that such cells at baseline display dysregulation of small 

regulatory RNAs, epigenetic markers, and messenger RNA (mRNA) [25, 30].  

2.1.2 Transfer RNA-derived fragments in human disease 

Like miRNAs, tRNA-derived fragments (variably termed tRFs, tDRs, tiRNAs, or tRNA 

halves), are a diverse class of small non-coding RNAs, which are generated in response to host 

cell stress across a variety of disease states [31-33]. The term “tRFs” encompasses various 

subtypes of tRNA-derived molecules, including tRF-1, tRF-3, tRF-5, i-tRF, and tiRNAs. These 

tRFs may derive from the cell’s nuclear or mitochondrial genome. The human nuclear genome 

encodes 433 tRNAs and the mitochondrial genome encodes 22 mitochondrial tRNAs (mtRNAs), 

each of which serves as a source of tRFs [34]. tRFs block translation by interfering with the eIF4F 

complex and polysomes [35, 36]. As in the case of miRNAs, they may also complex with 

Argonaute machinery to regulate protein expression via translational repression and mRNA target 

degradation [37-40]. Several studies reported increased tRF formation in cancer [41, 42] and viral 

infection [43]. However, the potential role of tRFs has not been studied during infection with Mtb 

or other bacterial pathogens. 

2.1.3 Mitochondrial responses to Mycobacterium tuberculosis 

 Many of the innate signaling pathways that determine outcome of infection are also 

influenced by mitochondrial responses [44, 45]. During infection with Mtb, mitochondria play a 

particularly important role by determining if a cell will undergo apoptosis or necrosis. When 

infected with avirulent mycobacteria, macrophages tend to initiate apoptosis, which is 

characterized by the recruitment of BAX/BAK pore-forming proteins to the outer mitochondrial 
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membrane (OMM), release of cytochrome C from the mitochondrial intermembrane space into the 

cytoplasm, formation of an apoptosome, and activation of proteolytic caspase enzymes [46]. This 

process is associated with containment of bacteria, clearance of infection, and minimal activation 

of inflammatory processes [47]. Given the overall outcome, in this context, apoptosis can be 

classified as a host-beneficial response. Alternatively, during infection with virulent Mtb, 

macrophages may undergo necrosis, a proinflammatory programmed cell death pathway 

characterized by retention of cytochrome C in the mitochondria, swelling of the mitochondria, and 

eventually rupture of the OMM and degradation of macrophage cell membranes [46, 47]. Largely 

due to the breakdown of macrophage membranes, necrosis leads to bacterial escape, which allows 

previously contained Mtb to infect neighboring cells, or replicate extracellularly within 

granulomas [47]. Some mitochondria-dependent pathways, including apoptosis, can be regulated 

by miRNAs, so it is possible that they may also be associated with tRF production [25]. 

 

2.2 Key macrophage responses to infection with Mycobacterium tuberculosis 

are co-regulated by microRNAs and methylation 

We hypothesized that Mtb alters transcriptional responses in infected macrophages to favor 

intracellular bacillary survival by modulating the expression of miRNAs and the methylation 

patterns of key host defense genes. Using unbiased next-generation sequencing (NGS) and high-

throughput DNA methylation profiling, we provide an integrated analysis of dysregulated small 

RNAs, methylation patterns, and transcriptional pathways during Mtb infection of human 

monocyte-derived macrophages  (MDMs).  
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2.2.1 Methodologies 

Ethics 

 The use of MDMs from human donors for this study was approved by the Johns Hopkins 

University Institutional Review Board (JHU IRB). All samples were de-identified by the Blood 

Donor Center of the Anne Arundel Medical Center, Maryland, USA prior to use in these studies. 

The authors did not have any contact with donors. All experiments using donor-derived MDMs 

were deemed non-human subjects research by the JHU IRB. 

Bacterial cultures 

The virulent Mtb strain H37Rv-lux was used for all studies. H37Rv-lux contains the full 

bacterial luciferase operon, luxAB, which constitutively expresses luciferase and its substrate 

luciferin, thus producing a robust luminescent signal measured in relative light units (RLU), which 

serves as a reliable and instantaneous readout for colony forming units (CFU) [48]. H37Rv-lux 

was cultured in 7H9 + 10% OADC + 0.05% Tween-80 + 0.2% glycerol at 37°C in a shaking 

incubator or made into frozen stocks kept at -80°C in 7H9 + 10% OADC + 0.05% Tween-80 + 

10% glycerol. Three frozen stocks were thawed and used to confirm a viable bacterial density of 

1x108 CFU/ml. These frozen stocks were used directly for infection of primary human MDMs.  

Isolation of primary human MDMs 

Primary human peripheral blood mononuclear cells (PBMCs) were isolated from platelet-

depleted whole blood from healthy human donors using standard Ficoll-paque density gradient 

centrifugation (GE Healthcare, Cat# 17144003). Monocytes were isolated from the buffy coat 

using passive plastic adherence to cell culture plates at 37°C, 5% CO2, for 4 hours in serum-free 

media (RPMI-1640 + 4mM L-glutamine). After a 4-hour incubation, non-adherent lymphocytes 
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and erythrocytes were washed away five times in 1X phosphate buffered saline (PBS). Adherent 

monocytes were allowed to differentiate into macrophages over a period of one week at 37°C, 5% 

CO2, in complete media containing 10% non-heat inactivated fetal bovine serum (FBS) (RPMI 

1640 + 4mM L-glutamine + 10% FBS). Media was changed every 2-3 days.  

Infection of MDMs with Mtb  

 

Figure 1. Experimental workflow diagram.  
Platelet-depleted whole blood from healthy human donors was used for isolation of primary human 
monocytes. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-paque 
gradient separation. PBMCs were incubated in serum-free media for four hours to allow for 
monocyte adherence to cell culture plates. After incubation, non-adherent lymphocytes were 
washed away with 1X PBS. Monocytes were allowed to differentiate in complete media containing 
10% FBS for 1 week, and then infected with luminescent Mtb (H37Rv-lux) for 24 or 48 hours. At 
each time point, cells were lysed in TRIzol for RNA extraction, library preparation, and 
sequencing. Sequencing analysis was performed using miRge2.0 and DESeq2 packages in R.  

 

After 7 days of differentiation, primary human MDMs were infected with Mtb H37Rv-lux 

at a multiplicity of infection (MOI) of 5 or 10 for 24 or 48 hours. Infected cells and uninfected 

controls were incubated in complete cell culture media (described above) at 37°C, 5% CO2 (Figure 

1). At each time point post-infection, MDM viability was measured by 3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay (Figure 2) and 
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measured for bacterial burden by single tube luminometer (Figure 3) [49]. Matched wells for each 

sample were also harvested for RNA isolation in TRIzol reagent (ThermoFisher).  

Assessment of MDM viability  

MDM viability was determined by MTS assay (Promega, CellTiter 96® AQueous One 

Solution Cell Proliferation Assay, Cat # G3582). At 24 and 48 hours post-infection, triplicate wells 

were incubated with MTS reagent for 4 hours, following manufacturer protocol. Reactions were 

read in a BMG Labtech Optima Fluorescence Microplate Reader (Figure 2). 

 

Figure 2. Assessment of host cell viability in Mtb-infected primary human MDMs. 
Macrophage viability of primary MDMs infected with H37Rv-lux for 24 or 48 hours at MOI of 5 
or 10. Viability measured by MTS assay at 24 or 48 hours post-infection (p.i.). n=4. Significance 
determined by two-way ANOVA and Tukey’s multiple comparisons test. ns =  not significant.  

 

Assessment of bacterial burden 

H37Rv-lux contains an integrated bacterial luciferase operon (LuxAB), including genes encoding 

the enzyme luciferase and its substrate luciferin under control of a constitutive promoter [48].  

Therefore, relative luminescent units (RLUs) can be used as a real-time readout for bacterial 

burden, which is directly proportional to colony-forming units (CFUs).  Triplicate MDMs for each 
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donor were lysed in 0.05% sodium dodecyl sulfate (SDS) and immediately read in a single tube 

luminometer (Promega GloMax 20/20) (Figure 3). 

 

Figure 3. Assessment of bacterial burden in Mtb-infected primary human MDMs. 
Primary human MDMs from four human blood donors were infected at either an MOI of 5 or 10 
for 24 or 48 hours post-infection (p.i.). Bacterial burden measured as luciferase signal (Relative 
Light Units, RLU) from live H37Rv-lux. n=4. Significance determined by two-way ANOVA and 
Tukey’s multiple comparisons test. * p = 0.0316, ** p = 0.0018, *** p = 0.0006, **** p = <0.0001.   

 

Small RNA isolation, library preparation, sequencing, and analysis 

Total RNA, including small RNA, was isolated from samples frozen at –80°C in TRIzol 

using the Qiagen miRNeasy mini kit (Qiagen, Cat#217004) according to manufacturer 

instructions. Quality of total and small RNA were assessed using a fragment analyzer at the Johns 

Hopkins University DNA Services Core Facility. 

RNA was converted into small RNA libraries for small RNA sequencing (sRNA-seq) using 

the Qiagen QIAseq miRNA Library Kit (Qiagen, Cat# 331505). Quality, size, and concentration 

of small RNA libraries were then assessed using a fragment analyzer at the Johns Hopkins 

University DNA Services Core Facility. Libraries were pooled to 1ng/µl and sequenced in a single 

run on a NextSeq 500 instrument to a depth of at least 1 million reads per sample at the JHU TSC.  
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sRNA-seq raw data were aligned using miRge2.0, a bioinformatic sequencing analysis tool 

designed specifically for processing sRNA-seq data [50]. Differential expression of miRNAs was 

compared using the DESeq2 package, including Benjamini Hochberg correction, in R. miRNA 

target analysis was performed using miRNet2.0 [51]. Pathway enrichment analysis of differently 

expressed miRNA targets was generated using the R package gprofiler2 [52, 53].  

Total RNA isolation, library preparation, sequencing, and analysis 

Total RNA was isolated with the Qiagen AllPrep DNA/RNA Mini Kit (Qiagen, Cat # 

80204) following manufacturer instructions. Quality of RNA was assessed using a fragment 

analyzer at the Johns Hopkins University Transcriptomics and Deep Sequencing Core Facility 

(JHU TSC).  

Purified total RNA was submitted to the JHU TSC for library preparation and sequencing. 

RNA was converted into total RNA libraries using Illumina TruSeq Stranded Total RNA Library 

Prep Kit (Illumina, Cat # 20020597). RNA library quality, size, and concentration were assessed 

using a fragment analyzer at the JHU TSC. Libraries were pooled to 2nM and sequenced in a single 

run on a NextSeq 500 instrument by single-end sequencing to a depth of approximately 50 million 

reads per sample with a read length of 75 base pairs. Reads were aligned using the Hisat2, Stringtie, 

Ballgown pipeline described previously [54]. Differential expression was assessed using the 

DESeq2 package in R. Benjamini Hochberg correction was used. 

DNA isolation, whole genome bisulfite sequencing library prep, sequencing and analysis 

 Genomic DNA was isolated in parallel with total RNA from identical samples using the 

Qiagen AllPrep DNA/RNA Mini Kit (Qiagen, Cat# 80204). Purified DNA was submitted to the 

JHU TSC and sent to Novogene Co., Ltd. for quality control check, bisulfite conversion, library 
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preparation, and whole genome bisulfite sequencing, and preliminary analysis. DNA was 

fragmented with a Covaris S220 to generate fragments of 200-300bp in length. Adapter ligation 

and library preparation was performed using the EZ DNA Methylation Gold Kit (Zymo Research, 

Cat # D5005). Quality control was performed using a Qubit2.0 and Aligent 2100 bioanalyzer and 

samples were pooled to a concentration of 2nM. Libraries were sequenced on an Illumina HiSeq 

platform using paired-end sequencing. Data analysis pipeline involved alignment to the Ensemble 

Homo sapiens reference genome version GRCH83 release 92 and quantification using Bismark 

[55]. Analysis of differentially methylated regions (DMRs) was performed using DSS [56-58]. 

Gene ontology enrichment analysis of DMRs was using GOseq [59]. Integration with sRNA-seq 

and RNA-seq was performed in R.  

 

2.2.2 Results 

miRNAs in primary human MDMs are dysregulated by Mtb infection 

To investigate Mtb-driven changes in miRNA expression of primary human macrophages, 

we isolated MDMs from healthy donors and infected them ex vivo with Mtb strain H37Rv-lux, 

which produces a bioluminescent signal that serves as a real-time immediate measure of bacterial 

burden [48]. At each time point (24 or 48 hours post-infection (h.p.i.)), the cells were assessed for 

viability and bacterial burden (Figure 2, 3). Matched wells were used to harvest RNA for library 

preparation and sRNA-seq (Figure 1).  

Consistent with the published literature in cell lines [30], we found that some miRNAs in 

primary human MDMs were significantly dysregulated following infection with virulent Mtb 

(Figure 4). Additionally, we found that the number of dysregulated miRNAs and the magnitude 
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of dysregulation increased both with time post-infection and MOI, suggesting that miRNA 

dysregulation increases with severity of infection.  

 

Figure 4. miRNA dysregulation increases with time post-infection and MOI. 
Volcano plots of differentially expressed miRNAs in each condition. n = 4 independent human 
donors. Red lines represent significance thresholds, red numbers represent total number of 
significantly DE miRNAs. Bar plots to the right of each volcano plot show the most significantly 
dysregulated miRNA for that condition. A, B, C, and D in bar plots refer to individual biological 
replicates (individual blood donors). y-axis on bar plots is number of normalized reads. 

 

In the mildest infection condition (MOI= 5 at 24 h.p.i.), there were only two miRNAs 

which were significantly dysregulated. In contrast, 22 miRNAs were significantly differentially 

regulated at 48 h.p.i. At MOI= 10, the number of dysregulated miRNAs increased from 13 at 24 

hours to 23 at 48 h.p.i. (Figure 4, Volcano plots; Table 1). 
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Table 1. Significantly down and upregulated miRNAs for each condition. 

 

We also examined which miRNAs were the most significantly dysregulated in each 

infection condition. We found that miR-155-5p was consistently and significantly upregulated in 

both the least (MOI of 5, 24 hours) and most severe (MOI of 10, 48 hours) conditions (Figure 4, 

Bar plots). miR-155-5p was also significantly upregulated at MOI of 5/48 hours, although miR-

MOI Time Post Infection Downregulated miRNAs Upregulated miRNAs 
5 24 hours miR-340-5p miR-155-5p 
5 48 hours miR-340-5p 

miR-374a-5p 
miR-30b-5p/30c-5p 
miR-22-5p 
miR-374b-5p 
miR-22-3p 
miR-15a-5p 
miR-660-5p 
miR-365a-3p/365b-3p 
miR-21-5p 

let-7a-5p/7c-5p 
miR-1307-3p 
miR-3615-3p 
miR-155-5p 
miR-148a-3p 
miR-191-3p 
miR-486-5p 
miR-328-3p 
miR-423-5p 
miR-1275 
miR-122-5p 
miR-12136 

10 24 hours miR-19b-3p 
miR-374a-5p 
miR-15a-5p 
miR-30b-5p/30c-5p 
miR-34a-5p 

miR-423-3p 
miR-486-5p 
miR-328-3p 
miR-3615-3p 
miR-423-5p 
miR-1307-3p 
miR-501-3p 
miR-12136 

10 48 hours miR-1307-5p 
miR-374a-5p 
miR-340-5p 
miR-365a-3p/365b-3p 
miR-22-3p 
miR-30b-5p/30c-5p 
miR-374b-5p 
miR-21-5p 
miR-185-5p 
miR-23a-3p/23b-3p 

let7b-5p 
miR-132-5p 
miR-148a-3p 
miR-155-5p 
miR-501-3p 
miR-1307-3p 
miR-664a-5p 
miR-423-5p 
miR-191-3p 
miR-486-5p 
miR-1275 
miR-122-5p 
miR-12136 
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423-5p was the most statistically significantly different in this condition. miR-1307-3p, the most 

significantly dysregulated miRNA in the MOI of 10 at 24-hour condition was also upregulated, 

although it was not significantly dysregulated in other conditions. 

Taken together, these results suggest that the degree of miRNA dysregulation is driven by 

severity of Mtb infection and that miRNAs which are dysregulated in more than one condition, 

such as miR-155-5p, may be important regulators of the macrophage response to Mtb.  

 

Bioinformatic analysis and literature review allowed identification of 10 candidate miRNAs 

for further analysis 

In order to gain a deeper understanding of how dysregulated miRNAs may be altering the 

macrophage response to infection with Mtb, we developed the following set of criteria for 

prioritizing miRNAs for further study: 1) dysregulation of the miRNA must be significant in more 

than one of the four infection conditions, and must be consistently dysregulated in the same 

direction (i.e., consistently up- or down-regulated); 2) dysregulation of the miRNA must trend 

with MOI or time post-infection; 3) the miRNA itself must be known to be abundant in human 

macrophages (as determined by MiRgeneDB [60]); 4) known, experimentally validated, targets of 

the miRNA must also be abundant in human macrophages (as determined by The Human Protein 

Atlas [61] to ensure stoichiometric probability of miRNA-target interaction in our cell type of 

interest); and 5) miRNAs which have been previously described as being involved in other forms 

of infectious cell stress are given special consideration as positive controls (Figure 5).  
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Figure 5. Selection of miRNA candidates for pathway analysis. 
NGS analysis and literature review led to selection of 10 candidate miRNAs and their respective 
targets. Left) Selection criteria for candidate miRNAs. Right) Venn Diagram showing 20 
differentially expressed miRNAs shared between the three conditions in which we observed the 
most significant miRNA dysregulation (top 3).  

 

From our own sRNA-seq dataset, we identified 6 significantly dysregulated miRNAs 

fitting our selection criteria. These miRNAs were miR-155-5p, miR-191-3p, miR-22-3p, miR-21-

5p, miR-30b-5p, and miR-30c-5p. Due to their high degree of sequence similarity, miR-30b-5p 

and miR-30c-5p are combined for sequencing alignment in miRge2.0. However, as they have some 

distinct gene targets, for integrated network analysis, miR-30b-5p and miR-30c-5p were separated 

and analyzed as distinct entities.  

We added 4 additional candidate miRNAs based on criterion #5, which we included as 

controls known to be involved in altering cellular responses during infection: miR-223-5p, miR-

29a-3p, miR-27a-3p, miR-125b-5p [25-28]. These additional four candidate miRNAs were each 

dysregulated in a consistent direction in more than one condition, but did not meet our conservative 

thresholds for significance (log2(fold-change)  > 1 ; adjusted p-value  < 0.01). These 10 miRNAs 

became candidates for further functional pathway analysis (Table 2).  

 

MOI 10 48 hpi MOI 5 48 hpi

MOI 10 24 hpi

miRNA candidate selection criteria:

       1.   Dysregulated in same direction in more than one condition

       2.   Dysregulation trends with MOI and/or time post-infection

       3.   Abundant in human macrophages

       4.   Validated targets abundant in human macrophages

       5.   (Bonus) previously described in other infections
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Table 2. List of candidate miRNAs to be used for further analysis. 

Source miRNA 
NGS miR-155-5p 

miR-30b-5p 
miR-30c-5p 
miR-191-3p 
miR-22-3p 
miR-21-5p 

Das et al. 2016. [25]  
Dorhoi et al. 2013. [26] 
Sharbati et al. 2012. [27] 
Rajaram et al. 2011. [28] 

miR-29a-3p 
miR-223-5p 
miR-27a-3p 
miR-125b-5p 

Final selection of miRNA candidates for ongoing mechanistic analyses. 6 miRNAs that met 
selection criteria were selected from 20 miRNAs differentially expressed in more than one “top 3” 
condition. 4 additional candidates were selected as positive controls based on their representation 
in relevant literature [25-28]. 

 

Many mRNAs dysregulated in Mtb-infected MDMs are targets of candidate miRNAs 

 To assess dysregulation of host cell pathways at the mRNA level, we performed RNA-seq 

of total RNA extracted from uninfected vs. infected MDMs. A total of 815 mRNAs were 

significantly dysregulated in Mtb infection (log2(fold-change)  > 1 ; adjusted p-value  < 0.05) 

(Figure 6A). We compared these significantly dysregulated genes to a comprehensive list of all  

known targets of each of the 10 candidate miRNAs (via miRTarBase v8.0)[51] to generate a profile 

of 158 genes which are both targeted by at least one candidate miRNA and were significantly 

dysregulated in our RNA-seq dataset (Figure 6B). The number of dysregulated genes that were 

also targets of at least one candidate miRNA ranged between miRNAs. For instance, miR-155-5p 

had the most with 54 target genes that were dysregulated during Mtb infection, while miR-191-3p 

only had two (Figure 6B). All miRNA candidates had at least two significantly dysregulated 

targets.  



18 
 

 

Figure 6. Association of significantly dysregulated miRNAs with differentially expressed 
cognate mRNAs during Mtb infection of human MDMs. 
A) Volcano plot showing all differentially expressed mRNAs during Mtb infection. n = 4 
independent human donors. Red lines represent significance thresholds, red number represent total 
number of significantly DE mRNAs. B) Interaction map showing network of candidate miRNAs 
and their respective targets. Square nodes represent each candidate miRNA (labeled). Circular 
nodes and points represent differentially expressed gene targets (targets identified by miRTarBase 
v8.0 and miRNet). Numbers in parentheses beside each miRNA label represent the number of gene 
targets that are also significantly dysregulated in the RNAseq results. Each miRNA node is 
uniquely color-coded. Edges that extend between miRNA nodes and gene and gene target nodes 
are coded to the same color of their respective miRNA regulator.  

 

We found that 119 out of the 158 dysregulated target genes were downregulated (75.3%), however, 

each miRNA had both down and upregulated targets in Mtb infection, suggesting direct and 

indirect regulation (Figure 6B). Therefore, it is likely that those genes which are dysregulated in 

the opposite direction of their associated miRNA are more likely to be targeted by that miRNA 

during Mtb infection [62]. To determine if the genes dysregulated in our RNA-seq dataset were 

enriched for candidate miRNA targets, we performed a Chi-square analysis with Yates correction 

using a two by two contingency table. We found that the set of 815 differentially expressed genes 

is enriched for targets of our 10 miRNAs of interest (X2 = 14.86, z = 3.86, p = 0.0001), suggesting 
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that it is unlikely that dysregulation of miRNA candidate genes would occur solely due to random 

chance (Table 3). Odds ratio calculation shows that it is 1.42 times more likely for dysregulated 

mRNAs to be candidate miRNA targets compared to non-targets.  

 

Table 3. Contingency table for enrichment of dysregulated miRNA targets. 

 Non-miRNA Targets miRNA Targets Total  
Not dysregulated 17083 2886 19967 
Dysregulated 657 158 815 
Total 17740 3044 20784 
    
Metric X2 z-score p-value 
Results 14.86 3.86  0.0001 

Chi-square analysis with Yates correction to determine if dysregulated genes are statistically 
enriched for miRNA targets. Total number of candidate miRNA targets was determined by 
miRNet [63]. Total number of genes was based on total genes detected by RNA-seq. Genes with 
low reads (sum across all samples less than 10 reads) were filtered out prior to analysis.  
 

Functional enrichment analysis for significantly dysregulated miRNA targets 

 To investigate which host cell response pathways are associated with our observed 

networks of miRNA-target regulation, we used the set of genes targeted by each candidate miRNA, 

independently, and performed functional enrichment analysis and miRNA association validation. 

Using gprofiler2 in R, we searched for Gene Ontology biological processes (GO:BP) that were 

significantly associated with the dysregulated target genes for each candidate miRNA. The target 

genes for miR-223-5p, miR-191-3p, miR-30b-5p, and miR-21-5p did not significantly associate 

with any particular GO functional group. However, each of the other 6 candidate miRNAs were 

associated with biological processes critical for defense against Mtb infection (Figure 7). 

Specifically, significantly dysregulated genes targeted by miR-155-5p were most associated with 

activation of various immune cells, primarily those in myeloid cell lineages.  
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Figure 7. Pathway analysis for significantly dysregulated targets of candidate miRNAs. 
Each shows gprofiler2 (g:OSt) results for a miRNA candidate. g:OSt was used to analyze the 
association of each miRNAs target genes with Gene Ontology biological processes functional 
groups (GO:BP). All significant GO:BP associations are reported. miRNAs which do not have 
GO:BP results listed did not have significant associations with any GO:BP functional group. g:OSt 
MIRNA was used to determine which miRNA is most significantly associated with each list of 
dysregulated targets. The top miRNA hit for each is reported. 

 

miR-125b-5p, miR-27a-3p, and miR-22-3p targets were primarily involved in regulation of 

metabolism and lipid processing. Specific processes included regulation of fat cell differentiation, 

glucose metabolism, macromolecule biosynthesis, and fatty acid oxidation. miR-30c-5p targets 

were involved in regulation of exocytosis and secretion and miR-29a-3p targets were associated 

with regulation of blood vessel development and regulation of angiogenesis. Each list of target 

genes was most significantly associated with the miRNA regulator we had matched it to in our 

network analysis, giving further support to the relationship between each miRNA and the target 

list.  

 Though these results show that many differentially expressed targets of our 10 miRNA 

candidates are involved in regulation of key macrophage processes relevant to the defense against 

Mtb infection, it is likely that their expression is also controlled by other factors, such as 

methylation of gene regulatory regions. 

 

Expression of immune cell pathway genes is also influenced by restructuring of methylation.  

A critical mechanism for pre-transcriptional regulation of immune cell function involves 

epigenetic changes, which may increase or decrease transcriptional machinery access to different 

gene regions [64]. Evidence suggests that Mtb alters methylation of promoter regions, leading to 

changes in gene expression in host cells [65]. However, these methylation changes have not been 
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assessed at a genome-wide scale in Mtb-infected primary macrophages. Furthermore, miRNA 

expression may also be affected by epigenetic changes and it remains to be determined how 

miRNAs and methylation may work together to co-regulate important macrophage signaling 

pathways. Therefore, we hypothesized that Mtb reprograms the macrophage response by 

integrating pre-transcriptional regulation via methylation and post-transcriptional regulation via 

miRNAs of the same pathways. We also posited that changes in candidate miRNA expression may 

be due to differences in methylation of miRNA promoter regions. To test this, we performed whole 

genome next-generation bisulfite sequencing (WGBS) on the same Mtb-infected primary human 

MDMs used for RNA-seq analysis (Figure 6). We then analyzed our WGBS, RNA-seq and sRNA-

seq datasets to identify intersecting networks between these regulatory systems. 

We found that differential methylation of CG sites (DMRs, length > 50bp, target site inside 

DMR ≥ 3CG, p < 1x10-5) were evenly distributed across chromosomes and that more DMRs were 

hypomethylated rather than hypermethylated (Figure 8A, 8B). We also found that differential 

methylation patterns were most common within introns, followed by promoter regions and exons 

(Figure 8B). Functional enrichment GO:BP analysis revealed that hypermethylated CG DMRs 

were most associated with pathways involved in immune cell activation, while hypomethylated 

DMRs were most associated with alteration of positive regulation of metabolic processes (Figure 

8C). We then compared the set of genes we found to have differentially methylated CG regions to 

the differentially expressed genes identified by our RNA-seq study (Figure 6, 8D). Importantly, 

among the upregulated genes, there were more hypomethylated genes (19) compared to 

hypermethylated genes (8). Similarly, we found that more downregulated genes were 

hypermethylated (99) rather than hypomethylated (82) (Figure 8D). 
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Figure 8. Genome wide differential CG methylation patterns show enrichment for genes 
associated with immune activation and metabolic processing. 
A) Genome wide chromosomal alignment of hypo (blue) and hyper (red) methylated CG sites in 
Mtb-infected MDMs. B) Distribution of hypo and hypermethylated CGs (DMRs) over each genetic 
element. C) Functional enrichment gene ontology biological process (GO:BP) analysis for all 
differentially methylated CGs. -Log10(adjusted p-value) values are reported to the right of each 
bar. GO:BP terms associated with hypermethylated CG DMRs are highlighted in red. Terms 
associated with hypomethylated CG DMRs are highlighted in blue. D) Total number of up and 
downregulated genes from RNA sequencing results (Figure 6) with overlay of genes that are also 
hypo or hypermethylated. Number in each color coded segment represents total number of genes 
with a specific expression and methylation state. Number above each bar represents total up or 
downregulated genes. n=4. MDMs were infected with Mtb H37Rv for 48 hours at an MOI of 10. 
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Chi-square analysis revealed that upregulated genes were not statistically enriched for 

hypomethylated DMRs (p = 0.08) and that downregulated genes were significantly less likely to 

be hypermethylated compared to no methylation change (p = 0.0002), suggesting that differential 

methylation alone is not sufficient to explain differences in mRNA expression, and that other 

regulatory systems, such as miRNAs, are likely to contribute to overall changes in gene expression. 

Differential methylation of candidate miRNA-associated gene regions was found for miR-125b, 

though the differences in methylation were not significant, suggesting that miRNAs and 

methylation changes are acting largely independently in regulating mRNA expression.  

To select only genes which may be directly influenced by changes in DNA methylation, we 

identified genes that were both differentially expressed and divergently methylated. We next sought to 

determine which macrophage functions may be influenced by alterations in expression of genes with 

differential methylation. We found that differentially methylated genes that were also differentially 

expressed in either direction were associated with regulation of immune cell activation and exocytosis 

(Figure 9A). We then wanted to determine if any genes that were differentially methylated and 

differently expressed were also targets of any of the previously identified candidate miRNAs. We 

found 26 genes that were differentially methylated, differentially expressed, and targeted by at 

least one candidate miRNA (Figure 9B).  

In performing functional enrichment KEGG analysis on this set of 26 genes, we found that 

these genes were most tightly associated with the AMPK signaling pathway (Figure 10). Three of 

these 26 genes, CyclinD1 (CCND1, an important regulator of cell proliferation), TBC Domain 

Family Member 1 (TBC1D1, regulator of cell growth and differentiation), and cluster of 

differentiation 36 (CD36, involved in antigen processing, cross presentation, and low density 

lipoprotein binding), are central to the AMPK pathway. 
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Figure 9. Genes that are both differentially methylated and differentially expressed are 
involved in immune cell functioning and are subject to candidate miRNA regulation. 
A) Genes that were both differentially methylated and differentially expressed were selected and 
used for gene ontology biological process (GO:BP) functional enrichment analysis. -Log10 
(adjusted p-value) value for each GO:BP term is reported to the right of each bar. GO:BP terms 
related to immune cell activation are highlighted in red. Those related to exocytosis and secretion 
are highlighted in blue. B) Genes that were both differentially methylated and differentially 
expressed were compared to genes that we found to be differentially expressed and targeted by at 
least one candidate miRNA. Overlap represents the number of genes that are differentially 
expressed by RNAseq, targets of one or more miRNA candidate, and differentially methylated.  

 

The AMPK pathway also contains various genes that were differentially methylated alone, 

and one gene, C-C Motif Chemokine Ligand 22 (MCD, a chemoattractant for various immune 

cells), that was differentially expressed despite lack of differential methylation or targeting by any 

candidate miRNA. Chi-square analysis shows that the dysregulation of the AMPK pathway is 

statistically significant (X2 = 22.43, z = 4.74, p = <0.0001) and unlikely to be due to random chance 

(Table 4). An odds ratio of 3.30 suggests that dysregulated genes are over three times more likely 

to be involved in the AMPK pathway than unrelated pathways. 
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Figure 10.  DMRs DEGs and DE miRNA targets intersect at the AMPK signaling pathway. 
Genes that were differentially methylated, differentially expressed, or targeted by candidate 
miRNAs were subjected to functional enrichment KEGG analysis. These genes were most 
significantly associated with the AMPK signaling pathway. Genes which are only differentially 
methylated are highlighted in cyan. Genes which are only differentially expressed are highlighted 
in red. Genes which are differentially methylated, differentially expressed, and regulated by one 
or more miRNA are highlighted in purple. Light green boxes represent other pathway genes that 
were not found to be significantly in our studies.  

 

AMPK Signaling Pathway
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Table 4. Contingency table for enrichment of AMPK pathway dysregulation. 

 Non-AMPK Genes AMPK Pathway Genes Total  
Not dysregulated 17934 45 17979 
Dysregulated 2782 23 2805 
Total 20693 68 20784 
    
Metric X2 z-score p-value 
Results 22.43 4.74 <0.0001 

Chi-square analysis with Yates correction to determine if dysregulated genes (differentially 
methylated or expressed) are statistically enriched for AMPK pathway genes. Total number of 
AMPK Pathway Genes was based on KEGG pathway. Total number of genes was based on total 
genes detected by RNA-seq. Genes with low reads (sum across all samples less than 10 reads) 
were filtered out prior to analysis.  
 

 

2.3 Mycobacterium tuberculosis infection drives mitochondria-biased 

dysregulation of host transfer RNA-derived fragments 

* This work was published in the Journal of Infectious Diseases in September 2020 [49]. 

Because we and others have shown that Mtb dysregulates miRNAs, we hypothesized that 

Mtb may also significantly dysregulate the production of tRFs. We also predicted that patterns of 

tRF dysregulation in Mtb infection may differ from patterns observed during infection with other 

bacterial pathogens, such as Mycobacterium bovis (M. bovis), Salmonella typhimurium (S. 

typhimurium), Listeria monocytogenes (L. monocytogenes), and Yersinia pseudotuberculosis (Y. 

pseudotuberculosis). Here, we tested these hypotheses by comparing tRF dysregulation in Mtb-

infected primary human macrophages with dysregulation in infections with other intracellular 

bacterial pathogens from publicly available RNA-seq datasets. In order to determine tRF 

abundance, we developed and validated a new tRF-finding tool, tRFcluster, which was 

incorporated into our miRNA alignment tool, miRge2.0 [50]. 
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2.3.1 Methodologies 

Ethics 

This study was approved by the Johns Hopkins University Institutional Review Board. 

Usage of primary human MDMs is consistent with that detailed in section 2.2.1. 

Isolating human macrophages 

Isolation of human MDMs was done following the protocol laid out in section 2.2.1. 

Mycobacterium tuberculosis infection  

 Primary human MDMs from each donor were infected with H37Rv-lux [48], for 24 or 48 

hours (multiplicity of infection (MOI) of 5 or 10) (Figure 1). To avoid altering cellular 

transcriptional responses, extracellular bacteria were not removed by washes or antibiotic 

treatment. Infected cells were incubated at 37°C with 5% CO2. At each time point, matched wells 

were used for assessment of MDM viability and bacterial burden (described above, see section 

2.2.1, Figure 2, 3). Cells were also harvested for RNA for small RNA-seq library preparation. 

RNA extraction and sRNA-seq library preparation 

 RNA was extracted with the miRNeasy Mini Kit (Qiagen, Cat # 217004), following 

manufacturer instructions. RNA was converted into sRNA-seq libraries using the QIAseq miRNA 

Library Kit (Qiagen) following kit protocol. This protocol allows for preparation of small RNA 

libraries that include tRFs. RNA and library quantity and quality were assessed by fragment 

analyzer at the Johns Hopkins DNA Services Core Facility. 
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sRNA-sequencing of Mtb-infected human MDMs 

 Libraries were pooled to a concentration of 1 ng/µl for sRNA-seq. Sequencing was 

performed on an Illumina NextSeq 500 at the Transcriptomics and Deep Sequencing Core Facility 

at the Johns Hopkins University. Samples were sequenced with sufficient depth to achieve at least 

1 million reads per sample. Sequencing run quality, including total reads, trimmed reads, and 

number of reads per type of small RNA, was assessed using miRge2.0. All samples were 

sequenced within one run to avoid batch effects.  

Analyzing tRF reads through miRge2.0 

FASTQ files were analyzed in miRge 2.0 for tRFs calling the –trf function. tRF-related 

output comprises one tRF folder showing all exact alignments and three tRF files: tRF.Counts.csv, 

tRF.RP100K.csv and tRFs.potential.report.tsv reporting counts.  

Exclusion of unwanted variation normalization of tRF samples 

The remove-unwanted-variation algorithm [66] using replicate samples (RUVSeq R/BioC 

package) was used to estimate twenty latent factors separately for adjustment of batch effects in 

the 345 samples (data not shown).  

Analysis of differential expression of tRFs  

DESeq2 was used for differential analysis of tRFs [67]. Benjamini-Hochberg correction 

was performed. Significantly differentially expressed tRFs were applied to hierarchical clustering, 

where pairwise distance was based euclidean distance. Average linkage clustering was used as 

agglomeration criteria.  
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Use of comparison tools 

tDRmapper and MINTmap [68, 69] were installed locally and used to detect tRFs for the 

samples in (data not shown). The parameters were set as default. 

Generating a new miRge2.0-based tRF detection method, tRFcluster  

433 mature tRNA sequences were downloaded from the GtRNAdb database (Release 2.0) 

[34]. The 22 human mitochondrial tRNAs sequences were obtained from MINTmap [69].  

sRNA-seq FASTQ files from various primary human cell types were obtained from 

Bioprojects PRJNA358331, PRJNA391912, and PRJNA385925 [70-72]. Samples with fewer than 

10,000 tRNA-mapped reads were excluded, resulting in 711 samples for further analysis (data not 

shown). 

 

Figure 11. Workflow for creation of tRFcluster and use of the method. 

Input FASTQ file(s) were analyzed using the standard miRge2.0 workflow modified only 

to have separate alignment to mature tRNA and precursor tRNA 3’trailer [50, 73]. Due to known 

RNA editing of tRNAs, the search strategy employed allowed one mismatch to mature tRNA 
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sequences. For tRF-1 alignments to the pre-tRNA tail, reads are required to have poly-T (≥ 3“T”s) 

tails and no mismatch in the read sequence region where the poly-Ts are excluded. Since some 

sRNA-seq reads can be mapped equally to several tRNA families, all best alignments to mature 

tRNA and precursor tRNA 3’-trailers were reported (Figure 11).  

Clustering potential tRFs by means of density peak clustering 

tRFcluster uses an unsupervised clustering algorithm to detect centers with local maxima 

in the density as a basis for assigning clusters. The cluster centers are empirically determined when 

local density ρi is ≥ rhomin 5.0 and ≥ deltamin 8.0. 

The most abundant read in any given cluster is determined as the representative tRF and 

the tRF read count and RP100K values are the sum of the read counts and RP100K values of all 

reads in the cluster core.  

Refining tRF entities from tRF clusters 

The 711 sRNA-seq samples generated 36,901 possible tRF clusters across the tRNA 

libraries. These were secondarily collapsed together using the same clustering method, as 

described above, resulting in 2,463 tRFs. The sequence and genomic loci information of these tRF 

clusters is listed in (data not shown). Many of the tRFs had high similarity, with equal sequences 

but of different lengths (ex 24 vs 25 bp), or differing by a single nucleotide. Using a pairwise 

distance strategy, 540 tRF entities were generated. The entities and their tRFs members are listed 

in (data not shown). i-tRF, tRF-1, -3 and -5, 5’ half and 3’ half assignments were made on these 

540 tRFs and all halves were ≥31 nt.  
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Biologic sRNA-seq Datasets  

To validate this tRF tool, FASTQ files of nine cell types (macrophage, B lymphocyte, T 

lymphocyte, fibroblast, endothelial cell, retinal pigment epithelial cell, smooth muscle cell, 

monocyte, and neural stem cell) were chosen because they were represented in two or more of 

BioProjects PRJNA358331, PRJNA391912, PRJNA385925 [70-72] (N=345) (data not shown). 

 Raw data from human sRNA-seq studies in cell culture models involving bacteria or 

hypoxia were mined from public NCBI BioProjects PRJNA206504, PRJNA480576, 

PRJNA298741, PRJNA297139, PRJNA270244 (Table 5). FASTQ files were analyzed using 

tRFcluster in miRge2.0. Samples were compared across studies with DESeq2 (R).   

Table 5. Details of small RNA sequencing datasets analyzed. 

Type Agent/Treatment Cell Type Cases Controls Time MOI BioProject # 

Bacteria Salmonella 
typhimurium Macrophage 24 24 2 &  

24 hr  10 PRJNA297139 

Bacteria Listeria 
monocytogenes Macrophage 24 24 2 &  

24 hr  5 PRJNA297139 

Bacteria Mycobacterium 
tuberculosis Macrophage 8 16 24 &  

48 hr  1 Looney, et al. 
GSE151050 

Bacteria 

Yersinia 
pseudotuberculosis 
Salmonella 
typhimurium 
Mycobacterium 
tuberculosis 
Mycobacterium 
bovis 

Dendritic 
cells 98 18 4, 18, & 

48 hr  1 PRJNA270244 

-- Hypoxia HUVEC 12 2 Multiple 
cycles  N/A PRJNA480576 

-- Hypoxia MCF7 6 2 16, 32 & 
48 hr  N/A PRJNA206504 
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2.3.2 Results 

Creation and validation of tRFcluster 

 Due to the complexity of tRNA structure, we currently lack a widely accepted 

nomenclature for cataloguing tRFs. Our new miRge2.0-based tool, tRFcluster, which uses a 

clustering approach optimized to account for tRF sequence complexities, was validated using 711 

samples (Table 6). After alignment to 455 human tRNA sequences, reads were clustered together. 

Clusters of 2,461 unique tRFs were collapsed into 540 tRF entities comprising tRFs and tRNA 

halves (Table 6). Each entity has between 1 and 33 clusters (average 4.5) assigned to it with ~50% 

having only one specific sequence. Eight entities had sequences that could be aligned to more than 

one tRNA type. This new clustering method balances the total number of tRFs to be counted with 

appropriate alignment that accounts for sequences mapping to more than one genetic locus. 

Table 6. Comparison of tRFcluster, MINTmap, tDRmapper, tRFfinder, and tRFdb. 

 tRFcluster MINTmap tDRmapper tRFfinder tRFdb 

Runs locally Yes Yes Yes No No 

Catalogs 
tRFs and 
miRNAs 

Yes No No No No 

Number of 
human tRFs 2,461*/540** 594,972 NA NA 552 

tRF-5 Yes Yes Yes Yes Yes 

tRF-3 Yes Yes Yes Yes Yes 

i-tRF Yes Yes Yes No Yes 

tRF-1 Yes No Yes Yes Yes 
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Table 7. Comparison of tRFcluster, MINTmap, tDRmapper, tRFfinder, and tRFdb. 

 

We then validated tRFcluster against MINTmap and tDRmapper to test our ability to 

generate robust and meaningful analyses of sRNA-seq data. We determined the distributions of 

tRFs in 345 human primary cell samples, comprising nine cell types, across tRFcluster, MINTmap 

and tDRmapper (Table 7). We found that the most abundant tRF subtype was 5’ tRNA halves 

(31%) (Figure 12A). The most abundant tRFs came from valine, glycine, glutamine, and lysine 

tRNAs (Figure 12B). These data suggest that our goal of developing a robust new tRF analysis 

tool that captures a high number of tRF reads in a reasonable number of entities was achieved.  

 

Figure 12. Features of tRFs from 345 cell samples. 
A) Distribution of tRNA fragments (tRFs and tRNA halves) showing that 5’ halves and tRF-3 
segments are the most abundant. B) Distribution of tRF entities by tRNA family. Abundance of 
tRF reads does not fully correlate with number of tRF entities by tRNA family.  
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A B

Tool Alignment 
strategy 

Total read 
counts of 
tRFs 

Total read 
counts of 
tRFs after 
filter 

Proportion 
of tRF 
reads after 
filter 

Total 
tRF 
counts 

Total 
tRF 
counts 
after 
filter 

tRFcluster 1 mismatch 176,584,695 175,683,293 0.99 540 324 

MINTmap 0 mismatch 143,792,494 133,141,746 0.93 79,404 858 

tDRmapper 2 mismatches 
& 3 deletions  193,952,012 187,599,715 0.97 1469 374 
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tRFs show pathogen-specific patterns of alteration during infection 

Using tRF cluster, we examined how tRFs differed in infection with Mtb compared to other 

intracellular bacterial pathogens. We infected primary human MDMs ex vivo with virulent Mtb 

strain H37Rv-lux [48]. Small RNAs from uninfected MDMs and MDMs infected at MOIs of 5 or 

10 were sequenced and analyzed at 24 and 48 hours post-infection. We found that tRFs were 

significantly dysregulated by infection with Mtb at all MOIs and time points (Figure 13A).  

 

Figure 13. Virulent strains of Mtb, but not Mycobacterium bovis, significantly dysregulate 
tRF production. 
A) tRF changes between uninfected and primary human MDMs. Top bar indicates infection type. 
Uninfected (black), infected with Mtb strain H37Rv-lux at an MOI of 5 (green) or 10 (red). Identity 
of each of the four biological replicates (donors) are color coded by the second horizontal bar to 
show inter-donor variability. B) Assessment of tRFs in infection with virulent Mtb strains from 
publicly available dataset (SRP051119). tRFs were assessed in uninfected DCs (black) vs. DCs 
infected with Mtb strain H37Rv (green) or Beijing GC1237 (red) for 48 hours. C) Assessment of 
tRFs in infection with non-tuberculous mycobacteria (NTM) Mycobacterium bovis strain BCG 
from publicly available dataset (SRP051119). tRFs were compared between uninfected DCs and 
DCs infected with BCG for 48 hours.  

 

A B C
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To validate these findings, we performed the same tRF analysis using a publicly available 

sRNA-seq dataset of dendritic cells (DCs) that had been infected with virulent Mtb strain H37Rv 

(lineage 4) or Mtb Beijing strain GC1237 (lineage 2) [74]. We found strikingly similar patterns of 

tRF dysregulation between our own dataset and the publicly available Mtb dataset (Figure 13B). 

Additionally, H37Rv and Beijing strains did not cluster separately, suggesting that Mtb infection 

drives significant lineage-independent changes in tRF production. Unlike other intracellular 

pathogens, Mtb possessed unique mechanisms of immune evasion, allowing it to survive within 

host cells [75-77]. Therefore, we hypothesized that Mtb-induced patterns of tRF dysregulation may 

be distinct from those of other, less virulent intracellular bacterial pathogens. To test this, we 

analyzed publicly available datasets containing sRNA-seq data of cells infected with M. bovis, S. 

typhimurium, L. monocytogenes, and Y. pseudotuberculosis [74, 78]. We then used tRFcluster to 

examine tRF dysregulation during each of these infection conditions. 

Interestingly, compared to virulent strains of Mtb, M. bovis strain BCG, a live attenuated 

strain of M. bovis used as a vaccine for TB [79, 80], did not cluster based on infection status 

(Figure 13C). This suggests that tRFs are not significantly dysregulated by infection with BCG 

and implies that there may be a connection between degree of virulence and tRF dysregulation. 

We next examined tRF dysregulation in non-mycobacterial infections. We found that L. 

monocytogenes drove the strongest changes in tRF dysregulation. In contrast, neither S. 

typhimurium nor Y. pseudotuberculosis showed significant tRF dysregulation (Figure 14). 

Interestingly, all species examined here are known to alter miRNA expression [74, 78]. However, 

our data show that only some dysregulate tRFs. This suggests that tRF dysregulation may be 

species-specific and independent of miRNA dysregulation.  
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Figure 14. Listeria monocytogenes shows stark tRF dysregulation compared to other non-
mycobacterial intracellular bacterial pathogens. 
A) tRF production was compared for uninfected macrophages (black) vs. macrophages infected 
with Salmonella typhimurium (green) or Listeria monocytogenes (red) for 24 hours. Raw data 
from publicly available dataset (SRP064235). B) tRFs were compared between uninfected 
macrophages (black) and macrophages infected with Salmonella typhimurium (green) or Yersinia 
pseudotuberculosis (red) for 48 hours. Raw data from publicly available dataset (SRP051119).  

 

 

Finally, we sought to compare Mtb infection-mediated tRF dysregulation with that of other 

TB pathology-related cell stresses. As hypoxia is known to be an important stress encountered by 

Mtb within necrotic lung granulomas and is known to drive tRF dysregulation [81, 82], we selected 

this as our non-infectious comparison. We found that hypoxic stress led to alterations in tRF 

A B
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production that increased with degree of hypoxia (Figures 15, 16). While this is unlikely to be 

relevant to the tRF dysregulation observed during ex vivo Mtb infection of primary human MDMs, 

it may be important to understand in the context of how cells respond to disease within a human 

host.  

 

 
 
Figure 15. Heat map of tRF abundance during hypoxic stress. 
MCF7 cells were exposed to hypoxic conditions (1.0% oxygen) for increasing intervals up to 48 
hours. 21% oxygen for 48 hours was used as a negative control and represents normoxia (black). 
Raw data obtained from publicly available dataset (SRP023533).  
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Figure 16. Venn diagram of tRFs in three hypoxia studies over 3 time points. 
In all three studies the number of tRFs increased with increasing hypoxia and most tRFs at the 
earliest time point remained significant at the later time points. A) Two, five, or nine cycles of 1 
hour of hypoxia (0.9% O2) followed by 36 minutes of normoxia in pooled HUVECs. B) 3, 8, or 
14 hours of hypoxia (0.9% O2) in pooled HUVECs. C) 16, 32, or 48 hours of hypoxia (1% O2) in 
MCF7 cells. D) The distribution of 51 tRFs that were present at all three time points across each 
study. tRFs in bold indicate those that had specific tRF entities found across two studies. Only one 
tRF, His_Comb_5, was identified at all 9 time points evaluated in the three studies. Raw data were 
obtained from publicly available datasets (SRP153017, SRP023533). 

 

tRF dysregulation increases with severity of Mtb infection  

Next, we sought to determine whether there was a relationship between tRF production 

and intracellular bacillary burden and/or duration of Mtb infection. To test this, we assessed tRF 

production for all Mtb-infected samples, and for each individual condition, and compared them to 
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matched uninfected controls. When considering all samples without distinguishing between MOI 

or time post-infection, we found 66 tRFs which met our thresholds for significant dysregulation 

(|log2(fold change)|  > 1 ; adjusted p-value  < 0.01) (Figure 17A).  

 

Figure 17. tRF dysregulation increases with severity of Mtb infection. 
A) Volcano plot showing differentially produced tRFs in Mtb-infected primary human MDMs. 
tRFs from four infection conditions (MOI of 5 - 24 hours, MOI of 5 - 48 hours, MOI of 10 - 24 
hours, and MOI of 10 - 48 hours) are compared to tRFs from uninfected cells at matched time 
points. Red lines indicate significance cutoffs (|log2(fold change)|  > 1 ; adjusted p-value  < 0.01), 
adjusted p-value < 0.01). Red points indicate tRFs which are significantly dysregulated between 
infected and uninfected conditions. Red points indicate tRFs which are significantly dysregulated 
between infected and uninfected conditions. Red points indicate tRFs which are significantly 
dysregulated between infected and uninfected conditions (66 total). B) Volcano plots showing 
differential production of tRFs in each independent infection condition separated by MOI and time 
post-infection. Significance indicators are the same as in (A) Red bolded numbers in upper left 
corner of each volcano plot represent the total number of significantly dysregulated tRFs. C) Venn 
diagram showing the number of significantly dysregulated tRFs shared in each infection condition. 
Bolded numbers outside each oval represent the MOI and time point (in parentheses).  

 

BA

C

All Conditions 24 hours 48 hours

M
O

I 5
M

O
I 1

0

66 6

8

50

45



41 
 

 

Figure 18. Log2(fold-change) of each significantly dysregulated tRF across Mtb infection 
conditions. 
All 66 tRFs which were significantly dysregulated in more than one Mtb infection condition are 
reported to show consistency in direction of dysregulation between infection conditions.  

  

The number of dysregulated tRFs for each MOI increased between 24 and 48 hours post-

infection. A similar increase was observed at each time point with increasing MOI (Figure 17B). 

Importantly, many of the tRFs dysregulated by less severe infection conditions were also 

significantly dysregulated in the more severe conditions. Five of six tRFs that were significantly 
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differentially abundant at MOI of 5/24 hours were also observed at 48 hours. All of the tRFs that 

were significantly dsyregulated at an MOI of 10 at 24 hours were also significantly dysregulated 

at 48 hours. Cells infected at MOIs of 5 and 10 shared approximately 50% of their significantly 

different tRFs at 48 hours (Figure 17C). Importantly, all tRFs that were significantly dysregulated 

in more than one condition were dysregulated in the same direction (Figure 18). The consistent 

dysregulation of these tRFs suggests that their altered abundance likely reflects a true biological 

phenomenon.   

 

Mtb infection is associated with a bias towards dysregulation of mitochondria-derived tRFs 

 Given the stark differences in tRF dysregulation among various bacterial species, and the 

propensity for Mtb to induce mitochondrial distress, we next sought to assess the origin of 

significantly dysregulated tRFs by determining whether the sequence originated from the host 

nuclear or mitochondrial genome. We then compared the percent of significantly dysregulated 

mitochondrial-derived tRFs (mtRFs) from our own dataset to that from publicly available datasets 

generated for host cells infected by Mtb, L. monocytogenes, Y. pseudotuberculosis, and S. 

typhimurium. Hypoxia in MCF7 cells was again used as a non-infectious control. In addition to its 

relevance to TB disease, hypoxia also alters mitochondrial function [83],  allowing us to determine 

whether mtRF dysregulation is specific to Mtb infection or simply due to general stress-induced 

mitochondrial dysfunction. Interestingly, we found that Mtb infections were associated with a 

strong bias toward mtRFs, whereas other intracellular bacterial pathogens and hypoxia were not. 

Of the significantly dysregulated tRFs in Mtb infections, 59-76% originated from mitochondria. 

For datasets that showed clear clustering of tRFs based on infection status (Mtb and L. 

monocytogenes), we examined mtRF dysregulation among all time points, as well as at the last 
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Table 8. tRFs dysregulated in mycobacterial infections are primarily of mitochondrial 
origin. 

 Time (hrs) mtRF non-mtRF % mtRF X2 p-value 
Mtb all 57 18 76.0% 1.04E+02 2.20E-16 
Mtb 48 54 24 69.2% 8.09E+01 2.20E-16 
Mtb (Looney, et al.) all 44 22 66.7% 5.72E+01 3.94E-14 
Mtb (Looney, et al.) 48 27 19 58.7% 2.42E+01 8.60E-07 
L. monocytogenes 24 45 72 38.5% 9.51E+00 2.05E-03 
Hypoxia MCF7 cells all 29 66 30.5% 5.80E-01 4.46E-01 
L. monocytogenes all 17 44 27.9% 1.40E-03 9.70E-01 
Y. pseudotuberculosis all 3 21 12.5% 1.92E+00 1.65E-01 
S. typhimurium* all 1 11 0.1% N/A N/A 
BCG* all 0 1 0% N/A N/A 

Genomic origins of significantly dysregulated tRFs for each dataset were analyzed using 
miRge2.0. Percent of significantly dysregulated tRFs for each dataset that originated from the 
mitochondrial genome (% mtRF) are reported along with X2 test results, with p-values. * X2 
analysis was excluded due to insufficient data points.  

 

time point only. The last time points were analyzed independently, as tRF dysregulation increases 

with time post-infection. For datasets that did not show clustering, we included all time points, as 

time post-infection did not significantly alter tRF dysregulation. Analysis of our independently 

generated dataset showed that mtRFs accounted for 66.7% of all dysregulated tRFs (X2 = 57.20; 

p= 3.94x10-14) across all time points and 59% at 48 hours post-infection (X2 =24.20, p=8.60x10-

07). Similarly, the analysis of the publicly available Mtb dataset showed that mtRFs accounted for 

76% of all dysregulated tRFs (X2=104.00, p=2.20x10-16) across all time points and 69% at 48 hours  

post-infection (X2=80.86, p=2.20x10-16). In contrast, mtRFs comprised a smaller proportion of 

dysregulated tRFs following macrophage infection with other intracellular bacteria or exposure to 

hypoxia. L. monocytogenes was the only other organism which achieved statistical significance, 

though a smaller proportion of dysregulated tRFs were mitochondria-derived compared to Mtb 

infections (39%, p=2.05x10-3, Table 8). This suggests that Mtb infections bias towards tRF 

production from mitochondrial tRNAs. 
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2.4 Mycobacterium tuberculosis disrupts mitochondrial responses to evade host 

macrophage mediated killing 

*This study was done in collaboration with Grant Butschek and Anna Saorin of the Anne 

Hamacher-Brady Laboratory 

Given our finding that the large majority of dysregulated tRFs in Mtb infection derive from 

the host mitochondrial genome, we hypothesized that Mtb may shift the balance towards necrosis 

by altering expression and recruitment of protein factors associated with mitochondrial distress 

and cell death. We also suspected that the mtRF bias observed in Mtb infection may be related to 

an aberrant mitochondrial response to infection. To examine this, we performed a series of 

widefield imaging-based and mechanistic studies to determine if Mtb infection is associated with 

perturbation of various markers of mitochondrial function and/or angiogenin (ANG), the RNase 

responsible for cleavage of tRNAs into tRFs. Mitochondrial markers of interest were selected 

based on their known roles in regulating the mitochondrial response and include Tom20, an OMM 

translocase used as a broad mitochondrial marker, Bax, an OMM associated pore-forming protein 

that facilitates release of cytochrome c to initiate apopotosis, cytochrome c, typically sequestered 

to the mitochondrial intermembrane space but released during apoptosis initiation to activate 

caspases 9, 3, and 7, Rab5, an early endosome marker and intracellular trafficking-associated 

GTPase, Rab7, a late endosomal marker and endocytosis-associated GTPase, and XIAP, a TRAF 

1 and TRAF 2 binding apoptotic suppressor known to inhibit activation of caspase 3 and 7  [84-

86]. Though it is known that Mtb pushes macrophages towards necrosis to promote its own growth 

and survival, little is known about how Mtb inhibits apoptosis to shift the balance towards necrosis. 

To test this, we examined the aforementioned markers in combination with ANG for their 
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subcellular localization in Mtb-infected primary human MDMs to determine their roles in 

regulating the mitochondrial response to Mtb infection. 

 

2.4.1 Methodologies 

Ethics 

 This study was approved by the Johns Hopkins University Institutional Review Board 

and does not classify as human subjects research. Blood samples used for MDM isolation were 

deidentified prior to use.  

Macrophage culture 

 Primary human MDMs were isolated from platelet-depleted whole blood from healthy 

human donors at the Anne Arundel Medical Center, Maryland. MDM isolation was done as 

described above (section 2.2.1, Figure 1) using Ficoll-paque density centrifugation and passive 

plastic adherence. Isolated MDMs were plated in Ibidi-treat 8 well µ-slides (Ibidi, Cat # 80826) in 

250µl of RPMI-1640 + 4mM L-glutamine + 10% regular FBS for one week to allow differentiation 

into macrophages. Media was changed every 2-3 days.  

Bacterial culture 

 Mtb strain H37Rv-lux was cultured and maintained as described above (section 2.2.1). Mtb 

strain H37Rv-GFP was provided as a gift from Alvaro Ordoñez and originally generated by Jeff 

Cirillo. H37Rv-GFP constitutively expresses GFP from a kanamycin-resistant cassette. H37Rv-

GFP was grown in 7H9 broth media or on 7H10 agar containing 50mg/ml kanamycin. P1 glycerol 

stocks for all strains were frozen from single colonies.  
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MDM viability and bacterial load 

 MDM viability and bacterial load were assessed by MTS assay and luminescence assay, 

respectively, described in detail above in section 2.2.1. 

Bacterial infections for imaging 

 For imaging experiments, MDMs plated in Ibidi chambers were washed once with 1X PBS 

to remove residual complete culture media. Cells were then infected with H37Rv-lux or H37Rv-

GFP at an MOI of 10 for 4 hours in RPMI-1640 + 4mM L-glutamine + 2.5% regular FBS low-

serum infection media. After 4 hour incubation, cells were washed 3X with 1X PBS to remove 

extracellular bacteria and media was replaced with fresh bacteria-free low-serum infection media 

and allowed to incubate for an additional 24-48 hours. After 24 or 48 hours of infection, cells were 

washed once in 1X PBS and fixed in 4% paraformaldehyde (PFA) at room temperature for 20 

minutes. After fixation cells were washed once with 1X PBS to remove residual PFA and stored 

at 4°C until staining and imaging.  

Antibodies and stains 

 The following primary antibodies and stains were used for widefield imaging studies. 

Mouse anti-Tom20 (Santa Cruz, Cat # 17764, 1:200 dilution), rabbit anti-Bax (AB clonal, Cat # 

A12009, 1:800 dilution), mouse anti-cytochrome c (BD biosciences 556432, 1:500 dilution), 

mouse anti-Rab5 (Cell Signaling, Cat # 46449S, 1:300 dilution), rabbit anti-Tom20 (AB Clonal, 

Cat # A6774, 1:500 dilution), mouse anti-XIAP (Santa Cruz, Cat # 55551, 1:200 dilution), rabbit 

anti-Rab7 (Cell Signaling 9367, 1:100 dilution), and mouse anti-ANG (AB Cam, Cat # 10600, 

1:800 dilution). Secondary fluorophore-conjugated antibodies were interchanged based on 

imaging needs and included Alexa Flour 546 and Alexa Fluor 647 (ThermoFisher) and were 

exchanged depending on primary antibody combinations.  
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Fluorescent staining and imaging 

 Fixed cells were washed once with 1X PBS and permeabilized using Triton X-100 

(ThermoFisher, Cat # 85111) for 10 minutes and blocked with 3% w/v bovine serum albumen 

(ThermoFisher, Cat # B14) in 1X PBS for 1 hour at room temperature.  Following 

permeabilization, cells were incubated with primary antibodies at room temperature for 1 hour or 

at 4°C overnight (based on optimizations). Cells were then stained with fluorophore-conjugated 

secondary antibodies for 1 hour at room temperature and with Hoechst stain for 15 minutes at 

room temperature. Stained cells were imaged in 1X PBS on a DeltaVision widefield microscope 

(GE Health Care) equipped with a Scientific CMOS camera (Chip size: 2560 32160 pixels, an 

Ultra Fast solid-state illumination, oil emersion objective, Ultimate Focus module, and 488 nm 

and 568 nm laser modules. Images were taken at 40X or 60X magnification with oil emersion. Z 

stacks were taken with 0.3 µm step size Raw images were processed and analyzed using Fiji 

(Image J). 3D colocalization analysis was generated using Colocalization Colormap [87].  

Bacterial infections for ANG knock downs and knock ins 

Cells were infected as detailed above for 72 hours with or without siRNAs or recombinant 

ANG. During infection, cells were incubated with either a scrambled non-targeting negative 

control Accell siRNA (Dharmacon, Cat# D-001950-01-50, sequence 

UGGUUUACAUGUCGACUAA), an ANG-targeting experimental Accell siRNA SMARTpool 

(Dharmacon, Cat# E-011206-00-0050, sequences CUUGGAUCAGUCAAUUUUC, 

UCAGAAACGUUGUUGUUGC, CCCUCACAGAGAAAACCUA, and UGACCCAGC-

ACUAUGAUGC) in primary cell optimized Accell siRNA delivery media (Dharmacon, Cat# B-

005000-500) and siRNA buffer (Dharmacon, Cat# B-002000-UB-100) for knockdown, or 

incubated with complete cell culture media supplemented with 500ng/ml recombinant human 
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ANG (abcam, Cat# ab151351). After infection, cells were washed once with 1X PBS and lysed in 

Trizol. Following infection, supernatant was collected and cells were lysed in RIPA buffer. All 

supernatants and lysates were stores at -80°C until use in RNA extraction and ELISA. 

ELISA 

 ELISA was performed using the Human Angiogenin ELISA Kit following manufacturer 

instructions (abcam, Cat # ab219629). Starting samples were cell culture supernatant and RIPA 

buffer cell lysates.   

RNA extraction 

 RNA was extracted from samples homogenized in TRIzol and frozen at -80°C. RNA 

extractions were performed using the Qiagen RNeasy Mini Kit (Qiagen, Cat # 74104) following 

manufacturer instruction. RNA quality was assessed via Nanodrop prior to qRT-PCR.  

qRT-PCR   

 cDNA conversion was performed using the High-Capacity RNA-to-cDNA reverse 

transcriptase kit (Applied Biosystems, Cat# 4387406) following manufacturer instructions and 

using 10ng of total RNA input per reaction. qPCR to quantify expression of ANG compared to 

cyclophilin D housekeeping gene was performed following manufacturer instructions for the 

Power SYBR Green PCR Master Mix (Applied Biosystems, Cat# 4368577) and primers designed 

with NCBI Primer Blast and ordered from IDT (sequences for ANG: forward 

TTGTTCTGAGGCCGAGGAGC, reverse GGCATCATAGTGCTGGGTCA; sequences for 

cyclophilin D: forward CTTCCGGCCTCAGCTGTC, reverse 

AGGTCAAAATACACCTTGACGG). qPCR reactions were run on a StepOnePlus Real-Time 

PCR system (ThermoFisher).  
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Data and statistical analysis 

 ELISA and qRT-PCR data was analyzed in GraphPad Prism v8.0. Significance was 

calculated by two-way ANOVA using the Holm-Sidak correction for multiple comparisons.  

 

2.4.2 Results 

Mtb infection of macrophages drives cytochrome C retention in mitochondria despite BAX 

recruitment to the outer mitochondrial membrane 

 Healthy uninfected MDMs and MDMs infected with Mtb strain H37Rv were stained with 

the broad mitochondrial marker, Tom20, the OMM transporter, Bax, and cytochrome c, which is 

released into the cytoplasm during the initial phase of apoptosis. In uninfected controls, we did not 

observe any Bax upregulation of mitochondrial colocalization, suggesting that the uninfected cells 

were not stressed or initiating apoptosis (Figure 19A, top row). In contrast, we found Bax is 

strongly upregulated and recruited to mitochondria during infection with Mtb, suggesting initiation 

of the apoptotic pathway (Figure 19A, bottom rows). In conditions which stimulate apoptosis, 

Bax recruitment to the OMM is normally accompanied by robust release of cytochrome c from the 

mitochondria to the cytoplasm, resulting in the activation of downstream apoptotic signaling 

cascades, such as the activation of caspase 9, 3, and 7. Interestingly, we found that in Mtb-infected 

cells, despite the robust upregulation and recruitment of Bax to the OMM, cytochrome c was 

retained in mitochondria (Figure 19B). 
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Figure 19. Mtb infection is associated with uncoupling of Bax recruitment to OMM and 
Cytochrome C release. 
A) Representative images of uninfected (top row) vs. MDMs infected with Mtb at an MOI of 10 
for 48 hours (two bottom rows) stained with Hoechst (gray, far right), anti-Tom20 (green, second 
right), anti-Bax (red, second left), and merge image (far left). B) Shows uninfected and Mtb 
infected cells stained with Hoechst (gray, far right), anti-Bax (green, second right), anti-
cytochrome c (red, second left), and merge images (far left). Images taken on widefield fluorescent 
microscope at 60X resolution under oil emersion. 
 
 

Upregulation and mitochondrial localization of early, but not late, endosomal markers 

during Mtb infection  

Mtb is known to disrupt progression of endosomal maturation and endosome-lysosome 

fusion in infected macrophages [88]. To study the relationship of early and late endosomes with 

the mitochondria in Mtb infection, and to determine if any differences were unique to Mtb-infected 

cells or if disruptions could be seen in neighboring, uninfected cells, we infected MDMs with a 

GFP-expressing strain of Mtb, H37Rv-GFP, at an MOI of 10 for 48 hours and examined 

recruitment of Rab5, an early endosomal marker, and Rab7, a late endosomal marker, to 

mitochondria.  We found that Rab5, but not Rab7, showed mitochondrial localization in Mtb-

infected cells (Figure 20). Rab5 appeared to be expressed and diffusely present throughout the 

cytoplasm in uninfected cells, however, in cells infected with Mtb, Rab5 was more tightly 

colocalized with mitochondria. Conversely, Rab7, which was not detectable in uninfected cells, 

was highly abundant in the cytoplasm of Mtb-infected macrophages, but did not colocalize with 

mitochondria. Given these findings, it appears that Rab5 may be more likely to influence 

mitochondrial responses in Mtb-infected macrophages compared to Rab7. 
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Figure 20. Early, but not late, endosomal markers localize to the mitochondria during Mtb 
infection of macrophages. 
Representative images of MDMs infected with Mtb strain H37Rv-GFP (cyan, middle) at an MOI 
of 10 for 48 hours. anti-Tom20 (red, far right), anti-Rab5 (A) or anti-Rab7 (B) (green, second 
right), and Hoechst (gray, second left). Merge images are shown far right. Images were taken on a 
widefield microscope at 60X with oil emersion.  
 
 

Recruitment of the apoptosis inhibitor, XIAP, is seen in some infected cells and may increase 

with intracellular bacterial burden. 

 As Mtb inhibits apoptosis to promote necrosis, it is likely that the expression and/or activity 

of certain anti-apoptotic factors are increased in Mtb infection. Additionally, since apoptosis is 

initiated by mitochondria, it is possible that those anti-apoptotic factors may be recruited to 
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mitochondria during Mtb infection. We observed that X-linked inhibitor of apoptosis protein 

(XIAP), a member of a family of apoptotic suppressors that binds TNF receptor-associated factors 

1 and 2 (TRAF1 and TRAF2, respectively) and inhibits caspases 3 and 7, is upregulated and 

localized to the mitochondria in some, but not all Mtb-infected and neighboring cells. As not all 

cells are infected with Mtb and some may have higher bacterial burdens than others, we examined 

the association between XIAP expression/localization and intracellular Mtb burden. We found that 

XIAP expression and mitochondrial localization in cells was positively correlated with higher 

intrabacillary content, suggesting that XIAP may be recruited to the mitochondria to inhibit 

apoptotic processes in macrophages with high infection burdens (Figure 21). Images show a 

representative field containing two cells, one with many Mtb bacilli and one with comparatively 

few. Only the cell with a high Mtb burden shows XIAP recruitment to mitochondria. 

 

Figure 21. XIAP recruitment to mitochondria is robust in some cells with high bacillary 
burden. 
Representative images of MDMs infected with Mtb H37Rv-GFP (cyan, middle) at an MOI of 10 
for 48 hours. Cells were stained with anti-Tom20 (red, far right), anti-XIAP (green, second right), 
and Hoechst (gray, second left). Merge images are shown far right. Top row shows two cells, one 
with high bacillary burden (left) and one with lower bacillary burden (right). The cell with high 
bacillary burden that shows robust XIAP upregulation and mitochondrial localization is shown in 
a zoomed-in version in the bottom row. Images were taken on a widefield microscope at 60X with 
oil emersion. Scale bar = 10µm. 
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ANG upregulation and recruitment to mitochondria is robust and specific to cells with high 

intracellular Mtb burden.   

 

Figure 22. ANG is recruited to the mitochondria in Mtb-infected MDMs. 
A) Top row shows an image field showing 5 cells, including four low-burden or uninfected cells 
and a central highly infected cell. Cells are stained with anti-Tom20 (red, far right), ANG (green, 
second right), and Hoechst (gray, second left). Merge images are shown far left. Bottom row shows 
a zoomed-in image of the central cell with high infection burden. B) 3D modeling of Tom20 (red) 
and ANG (green) marker localization (right). 3D heatmap showing degree of marker 
colocalization. Scale bar = 10µm. 
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We found previously that tRFs produced in Mtb infection derive primarily from tRNAs 

encoded by the mitochondrial genome (Table 8) [49]. Therefore, we hypothesized that ANG, the 

enzyme responsible for cleaving most tRFs, may be trafficked to mitochondria during Mtb 

infection where it may gain access to otherwise inaccessible mitochondrial tRNAs and cleave them 

into mtRFs.  

We found that ANG is, in fact, recruited to mitochondria in Mtb-infected MDMs and that 

ANG is most robustly upregulated and mitochondria-localized in cells that have high Mtb burden. 

Neighboring uninfected cells show relatively low expression of ANG or mitochondrial 

colocalization, suggesting that these processes are Mtb infection-dependent (Figure 22A). 3D 

modeling of ANG and Tom20 colocalization shows that ANG is very tightly colocalized with 

mitochondria during Mtb infection (Figure 22B). 

 

ANG production is not associated with altered overall infection outcome in vitro  

 Given the specificity of the ANG response seen in Mtb-infected MDMs, we suspected that 

ANG levels within the cell may alter outcome of infection. To test this hypothesis, we used ANG 

siRNA or exogenous recombinant human ANG (rhANG) to silence or knock in, respectively, 

expression of ANG in Mtb-infected MDMs. We found that neither intervention resulted in 

significant differences in MDM viability or bacterial burden over 3 days post-infection (Figure 

23). Despite this finding, it is possible that ANG upregulation and recruitment to mitochondria 

may still play a role in a more complex system, such as in vivo. 
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Figure 23. ANG does not affect MDM viability or bacterial burden in vitro. 
A) ANG was knocked down in MDMs using an anti-ANG siRNA pool and infected with Mtb. 
ANG expression was assessed by qRT-PCR on day 3 post infection. Cell viability was assessed 
by MTS assay at days 1, 2, and 3 post-infection. Bacterial load was assessed by luminescence 
assay at days 1, 2, and 3 post infection. B) MDMs were cultured in regular complete media or in 
media supplemented with 500ng/ml rhANG. ANG protein in cell lysates and supernatant was 
assessed by ELISA on day 3 post-infection. MDM viability and bacterial load were assessed as in 
A.  
 

 
 

 
 

A 

B 



57 
 

2.5 Conclusions 

2.5.1 Integrated transcriptomic and epigenetic analyses reveal network of pre- and post-

transcriptional regulation of macrophage responses in Mtb infection 

Taken together, our results show that critical innate immune processes and signaling are 

influenced by both pre-transcriptional regulation via changes in DNA methylation and post-

transcriptional regulation via altered miRNA expression. Application of next generation sRNA-

seq allowed us to identify a small profile of candidate miRNAs that are likely to serve a biological 

function during Mtb infection. By integrating our sRNA-seq data with total RNA-seq, we found 

that all of our candidate miRNAs had mRNA targets that were also differentially expressed in Mtb-

infected cells. These miRNA-targeted differentially expressed genes were involved in various 

biological processes that are critical for the host defense against Mtb infection. The pathways that 

were most significantly represented amongst these miRNA-targeted differentially expressed 

mRNAs included innate immune cell activation, regulation of metabolic and lipid synthesis 

processes, vasculature development, and intracellular transport, exocytosis, and secretion.  

More specifically, dysregulated targets of miR-155-5p are associated with activation of 

various immune cell types. Macrophages are responsible for initiating many of the signaling 

cascades to drive activation of different immune cells. Defense against Mtb requires a complex, 

but coordinated, cascade of immune cell activation. Disruption of these pathways may impede the 

host’s ability to recognize and respond to Mtb infection [21, 22]. Additionally, Mtb may disrupt 

host metabolic pathways to induce lipid accumulation and synthesis in host macrophages to 

increase access to nutrients and facilitate persistence [89-91]. miR-30c-5p targets were involved 

in regulation of exocytosis and secretion which is important for cell-to-cell signaling, and miR-
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29a-3p targets were associated with regulation of blood vessel development, which is a critical 

process involved in the formation of granulomas and nutrient acquisition in Mtb infection [92-94].   

Though this study is the first to integrate multiple next-generation sequencing-based 

analyses of miRNAs, mRNAs, and methylation in primary human monocyte-derived macrophages 

infected with Mtb, previous studies have investigated each of these components individually and 

in different models. Consistent with the published literature, we found that miR-155-5p was 

robustly upregulated. miR-155-5p is one of the most studied miRNAs in TB disease and known to 

be dysregulated by infection in different systems [95]. In dendritic cells, upregulation of miR-155-

5p in Mtb infection is associated with suppression of autophagy, suggesting a host-detrimental 

effect [96]. However, miR-155-5p knock out mice display increased susceptibility to Mtb infection 

and higher bacterial burden in the lung. This is also associated with altered immune cell infiltrates 

in the lung, such that miR-155-5p knock out mice lungs have fewer T cells and more monocytes 

and neutrophils [97]. miR-155-5p has also been associated with increased survival of Mtb-infected 

bone marrow-derived macrophages (BMDMs), which is thought to provide a more stable niche 

environment that promotes survival of intracellular bacteria. However, this increased macrophage 

survival is balanced by increased survival of Mtb-specific T cells, which is critical for elimination 

of infection [98]. Taken together, these studies show that miR-155-5p is involved in regulating 

cellular immune responses to Mtb, but that it may have both host-beneficial and host-detrimental 

effects depending on when it is expressed and what genes are targeted. This is in line with our 

study which shows many of the miRNA-155-5p targets that are dysregulated are involved in 

immune cell activation and coordination of cellular immune responses, but also that some targets 

are upregulated while others are downregulated.  
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While miR-125b-5p was not statistically different in our study, it has been shown to be 

upregulated by qRT-PCR in previous studies. Previously, miR-125b-5p was found to be 

upregulated in Mtb infection and upregulation was associated with lower levels of TNF, suggesting 

suppression of an inflammatory response [28]. Despite lack of significantly different expression 

of miR-125b-5p by sRNA-seq in our study, we found significantly altered expression of miR-

125b-5p targets, which are involved in regulation of metabolism, lipid processing, and small 

molecular transport and subcellular localization. This may suggest that even small changes in 

miRNA expression that failed to meet our stringent statistical thresholds may still have biological 

impact. Also, given that gene targets within any pathway can be targeted by multiple miRNAs, 

there may be redundancies in which more than one miRNA may target different genes within the 

same pathway such that the expression change in each individual miRNA may be small, but the 

combined effects are sufficient to alter the activation of the downstream pathway. This is 

represented by functional enrichment pathways for miR-125b-5p, miR-27a-3p, and miR-22-3p. 

These three miRNAs all targeted pathways involved in regulation of metabolism and lipid 

processing, which is important for shaping the intracellular environment in Mtb-infected 

macrophages. 

In line with the likely additive or complimentary effects of multiple non-significantly 

dysregulated miRNAs that target the same pathways, miR-27a-3p was also not significantly 

dysregulated, though its dysregulated targets were involved in biosynthetic and metabolic 

processes as described above. This miRNA was included in our studies due to its representation in 

relevant literature, which has shown its involvement in the cellular response to mycobacterial 

infections. miR-27a-3p was shown to be downregulated and to target IRAK4 in THP1 cells. 

Downregulation of miR-27a-3p resulted in less repression of IRAK4 and subsequent increases in 
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production of IFNg, IL-1b, IL-6, and TNFa, which are key cytokines associated with a successful 

anti-TB response [99]. miR-27a was also shown to inhibit intracellular survival of non-tuberculous 

mycobacteria by targeting IL-10 and TAB2 in RAW264.7 cells and murine BMDMs [100]. 

Differences between studies could be due to differences in model systems, experimental 

conditions, and detection methods.  

While miR-22-3p is less well characterized in TB models, we found it to be significantly 

downregulated in Mtb-infected primary MDMs by sRNA-seq. Though this is the first time it has 

been described in macrophages, miR-22-3p has been found to be differentially abundant in the 

plasma of TB patients vs. healthy controls and has been considered for inclusion as a potential 

blood-based TB biomarker [101]. More work should be done to investigate the role of miR-22-3p 

in Mtb infection.  

Both miR-30b-5p and miR-30c-5p were significantly downregulated in our study. Like 

miR-155-5p, the miR-30 family has been implicated in host immunity to TB, given its known role 

in targeting genes involved in important anti-TB responses, such as autophagy [102]. Earlier 

studies have shown dysregulation of miR-30a and miR-30e in THP1 cells, whereas miR-30c and 

miR-30d were not differentially expressed as measured by qRT-PCR [103]. While the GO:BP 

enrichment analysis of differentially expressed miR-30c-5p targets showed significant 

involvement in exocytosis and secretion, the miR-30b-5p and miR-30c-5p target, IL-1a, was 

significantly upregulated and is known to induce autophagy in macrophages [104, 105]. Taken 

together, these findings suggest that downregulation of miR-30c-5p and miR-30b-5p in Mtb 

infection may reflect the macrophage’s effort to induce autophagy and cell-to-cell communication 

via exocytosis.  
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miR-29a-3p was included in our studies, as it has been found previously to be dysregulated 

in human MDMs infected with Mycobacterium avium by qPCR, and was shown to target caspase 

7, which is involved in apoptosis [106]. While we did not observe significant dysregulation of 

miR-29a-3p in Mtb-infected primary human MDMs by sRNA-seq, targets of miR-29a-3p, 

including those involved in angiogenesis and blood vessel development, were significantly 

differentially regulated. The variability in miRNA expression between studies may be a result of 

differences in detection method but may also indicate that miR-29a-3p is more dysregulated 

following infection by non-tuberculous mycobacterial infections relative to Mtb. Additionally, the 

lack of dysregulation of miR-29a-3p expression in our study may suggest that dysregulation of 

angiogenesis may be mediated via altered macrophage responses, but occur independently of miR-

29a-3p. This association has not yet been described in the context of TB and may be an important 

relationship to pursue for further investigation in more complex animal models, in which blood 

vessel formation may influence granuloma formation and dissemination of disease.  

We found dysregulation of miR-191-3p, which has not yet been well-characterized in TB 

disease, though there were only two differentially expressed target genes, which did not associate 

with a specific biological process. Nonetheless, miR-191-3p has been implicated in other disease 

states and may warrant further study [107]. 

Unlike previous studies, we found that miR-21-5p was significantly downregulated in Mtb-

infected MDMs. Earlier studies have shown upregulation of miR-21-5p in Mtb-infected murine 

RAW264.7 cells and human THP1 cells, which are both cancer-derived macrophage cell lines. 

Induction of miR-21-5p expression was associated with increased Mtb survival and reduced 

production of inflammatory cytokines, such as IL-1b, IL-6, and TNFa [108]. Conversely, we 

found that miR-21-5p was downregulated while its target, IL-1b, was significantly upregulated. 
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This suggests that compared to the cancerous cell lines, primary MDMs may generate more pro-

inflammatory cytokines through downregulation of miR-21-5p.  

We included miR-223-5p in our analyses based on previous literature, which has shown 

increased susceptibility of miR-223-5p knock out mice to TB [26]. In our study, we did not find 

miR-223-5p to be significantly dysregulated and we did not find a significant pathway association 

for the differentially expressed miR-223-5p target genes. This could indicate differences in the 

roles of this miRNA between model systems, such that changes in miR-223-5p expression are 

more important in non-macrophage cell types that are present in vivo. For instance, increased 

susceptibility of miR-223-5p knock out mice to TB disease is associated with robust neutrophil-

mediated lung inflammation, which suggests that neutrophils may be critical for mediating the 

effects of miR-223-5p expression changes [26]. It may also indicate that changes in miR-223-5p 

expression must be quite large in order to have a biological effect.  

Analysis of genome wide methylation changes in Mtb-infected cells by WGBS showed no 

significant methylation of promoter or gene regions of candidate miRNAs, suggesting that changes 

in the expression of miRNAs is likely to occur in a methylation-independent manner. On the other 

hand, various differentially expressed genes were also found to be differentially methylated by 

WGBS following Mtb infection in macrophages. Like differentially expressed genes targeted by 

the 10 miRNA candidates, macrophage genes that were both differentially expressed and 

divergenty methylated following Mtb infection were involved in various pathways important for 

anti-Mtb responses. Importantly, hypermethylated genes appeared to be involved in driving 

activation of innate and adaptive immune cells. This suggests that one mechanism by which Mtb 

may suppress immune activation is by increasing methylation of genes involved in related 

pathways in infected macrophages. Conversely, hypomethylated genes were most significantly 
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associated with the positive regulation of metabolic processes, which may underlie the ability of 

Mtb to alter macrophage metabolic processes to increase access to nutrient sources and promote 

bacterial growth and survival.  

Finally, integration of sRNA-seq and RNA-seq data with WGBS showed that processes 

affected by changes in miRNA and mRNA expression are also divergently methylated. Most 

DMRs were hypomethylated, which may indicate the macrophage’s effort to open chromatin to 

allow for rapid changes in transcriptional reprogramming during infection. Interestingly, in line 

with our miRNA and mRNA data, hypermethylation was associated with suppression of immune 

cell activation, while hypomethylation was associated with enhanced macrophage metabolism. 

Together, these opposing effects may reflect the generation of an environment in which 

intracellular bacilli are shielded from immune-mediated killing and able to access metabolic 

resources required for growth and survival within the host.  

Genes that were differentially expressed, divergently methylated and targeted by at least 

one miRNA of interest were significantly associated with the AMPK signaling pathway, which is 

central to various cellular processes that shape the response to Mtb infection, including regulation 

of autophagy, fatty acid biosynthesis, glucose metabolism, and cell proliferation [109]. This 

pathway is of particular importance given that AMPK-targeting host-directed therapies, such as 

metformin, have been shown to promote Mtb killing in macrophages and in lungs of Mtb-infected 

mice [110] and to improve mortality when included in treatment regimens for TB patients with 

diabetes mellitus [111].  

Overall, our data, combined with findings from previous literature, suggest that miRNAs 

are multifunctional in that they may target multiple genes from redundant and complimentary 

pathways. Additionally, multiple miRNAs may co-regulate the same targets or pathways, which 
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indicates that even small changes in a group of miRNAs may be biologically relevant. 

Additionally, alternate forms of gene regulation, including DNA methylation changes, also control 

miRNA-targeted pathways during Mtb infection of macrophages. This emphasizes the complexity 

of regulation of host responses and shows that the overall response of the macrophage is shaped 

by multiple contributing factors that must coordinate with one another in order to generate the 

appropriate response required to eliminate infection. While reductionist evaluations of these 

regulatory elements is powerful for determining specific targets, to understand how they shape 

disease outcome, they must also be examined in a broader context that provides insight into how 

they fit into broader regulatory networks.  

These large scale transcriptomic and methylomic studies are descriptive by nature. 

Limitations include absence of non-tuberculous mycobacterial controls and individual validation 

of each differentially expressed miRNA, gene, or DMR. However, this study is not intended to 

investigate the impact of specific dysregulated elements on overall outcome of Mtb infection, but 

rather to provide an unbiased, global analysis of the complex network of macrophage 

transcriptional regulation. As such, these studies are valuable for providing novel insights into how 

multiple forms of regulation integrate to shape the overall macrophage response to Mtb infection. 

These findings are intended to serve as a roadmap for future studies exploring the relationship 

between pre-transcriptional DNA methylation and post-transcriptional miRNA regulatory 

mechanisms. Additional work should focus on targeted analysis of candidate miRNA-

differentially expressed gene target pairs and genes which are both differentially methylated and 

differentially expressed. Overall, these studies show that dysregulation of methylation and miRNA 

candidate target genes centers on suppression of immune activation. Understanding how to restore 

balance of these elements may have implications for altering outcome of Mtb infection in 
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macrophages, particularly in the context of developing host-directed therapies which target AMPK 

signaling and other key regulatory pathways. 

2.5.2 Mtb infection drives over-production of mitochondria-derived tRFs 

Until now, tRFs had not been assessed in the context of bacterial infections. We found that 

Mtb drives significant dysregulation of tRFs and that tRF dysregulation increased with severity of 

infection. L. monocytogenes induced a pattern of tRF dysregulation that was similar to that seen in 

Mtb infection. However, other bacteria tested here did not significantly alter tRF abundance.   

Only Mtb infection drove strongly biased dysregulation of mtRFs. This may reflect the 

severity of mitochondrial distress during Mtb infection, manifested by disruption of membrane 

potential and a shift towards necrosis, which is associated with mitochondrial swelling, 

mitochondrial outer membrane permeabilization, and bacterial release and survival [112-116]. 

These changes to mitochondrial membrane architecture can allow movement of certain protein and 

nucleic acid factors across the membrane [117, 118]. We predict that ANG, one of the RNAses 

that cleaves tRFs, and/or mtRNAs may be among these factors. Under normal conditions, ANG is 

sequestered to the nucleus. However, during cell stress, ANG is translocated to the cytoplasm 

[119]. Mtb infection induces cell stress and may drive translocation of ANG out of the nucleus. 

Given this, we have developed two hypotheses that may help explain the overabundance of mtRFs 

produced in Mtb infection: 1) Mitochondrial tRNAs are cleaved within the mitochondria after 

ANG (or other tRF-cleaving RNAses) is translocated into the mitochondria, or 2) Intact 

mitochondrial tRNAs are released from mitochondria into the cytoplasm, allowing them to be 

cleaved by ANG. These two hypotheses are represented diagrammatically below (Figure 24). 

Reasons for the lack of mtRF-biased dysregulation in other infections remain unclear. Host 

cells infected with Mtb exhibit robust, stable signs of mitochondrial distress at least through 24 

hours [113, 114]. This may allow for sustained interaction between mtRNAs and ANG and could 

result in increased producion of mtRFs. In contrast, though L. monocytogenes and S. typhimurium 

induce mitochondrial fragmentation, this effect is transient and mitochondria recover within 24 
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hours [120, 121]. There is no clearly defined link between Y. pseudotuberculosis infection and 

mitochondrial distress. It is, therefore, possible that the degree of mtRF dysregulation is 

proportional to the duration and extent of mitochondrial distress. However, additional research is 

required to elucidate this mechanism.  

In hypothesis 1, during Mtb infection, angiogenin is upregulated and transported to the cytoplasm. 
Intact mtRNAs are exported or released from the mitochondria where they may encounter ANG 
in the cytoplasm. ANG binds mtRNA cleavage sites and cleaves mtRNAs into mtRFs. In 
hypothesis 2, ANG is upregulated and trafficked to the mitochondria so that it may bind mtRNAs 
and cleave mtRFs within the mitochondria.  

In this study, we also designed tRFcluster as a module to miRge2.0. This tool allows for 

simultaneous identification of miRNAs and tRFs for downstream analyses. Herein, we validated 

our clustering approach for these complicated reads, successfully identified tRF clusters, and had 

performance at least equivalent to stand-alone tRF tools. Our approach is intermediate between 

MINTmap/MINTbase v2.0, which take a maximalist approach in uniquely identifying and naming 
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Figure 24. Hypotheses for cleavage of mtRFs in Mtb infection. 
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each sequence aligning to tRNA, resulting in 23,413 human tRFs, and the minimalist approach of 

tRFdb which lists only 552 human tRF sequences [69, 122, 123]. Despite our bacterial focus, this 

tool should have generalizable utility for analysis of tRF production and regulation in virtually any 

biological condition or disease state. 

Limitations of this study include the inherent variability in experimental conditions 

between datasets. Factors that may have impacted comparisons are different cell types, library 

preparation protocols, and equipment for sRNA-seq. However, despite these methodological 

differences, we observed good consistency between our Mtb dataset and the publicly available Mtb 

dataset, suggesting that our results are reproducible and biologically relevant. 

Overall, our results suggest that host cell tRFs are dysregulated by infection with certain 

bacterial pathogens, but the particular pattern is dependent on the infecting bacterial species. 

Additionally, our tRF data suggest that Mtb infection may alter mitochondrial physiology in such 

a way that creates a unique opportunity for interaction between mitochondrial tRNAs and tRF-

cleaving enzymes.  

2.5.3 Mtb infection is associated with disruption of classic apoptotic cascades and 

recruitment of ANG to host mitochondria 

 The unique overproduction of mtRFs led us to hypothesize that either ANG is being 

actively trafficked to mitochondria or intact mitochondrial tRNAs are being released to the 

cytoplasm during Mtb infection. As technology to adequately study the subcellular localization of 

tRFs does not yet exist, we aimed to investigate the first possibility by examining ANG localization 

in Mtb-infected primary human MDMs. We found that, not only is ANG upregulated and recruited 

to mitochondria during infection, but also that the ANG response is highly specific and appears to 

occur mostly in cells with high intracellular Mtb burden.   

 Our investigations also showed perturbations of some additional mitochondria-associated 

markers, including cytochrome c and XIAP. The retention of cytochrome c in the mitochondria  
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Figure 25. Mtb infection is associated with aberrant recruitment of Bax, XIAP, and ANG to 
mitochondria. 
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During a typical apoptotic cascade, an apoptotic stimulus triggers expression of Bax and 
translocation of Bax to the OMM. Formation of Bax/Bak pores allow the release of cytochrome c, 
formation of the apoptosome, activation of caspases, and cell death by apoptosis. In Mtb infection, 
we observe internalization of Mtb, cytoplasmic replication of Mtb, upregulation of Bax, XIAP, and 
ANG and translocation of all three proteins to the OMM. Recruitment of ANG may allow for the 
cleavage of mtRNAs into mtRFs while XIAP may suppress apoptosis. Despite Bax recruitment, 
cytochrome c remains retained within the mitochondria which may lead to mitochondrial rupture 
and necrosis.  

despite normal Bax recruitment to the OMM suggests that in Mtb infection, one of the mechanisms 

of suppressing apoptosis may involve preventing the formation of functional Bax pores [114]. In 

this scenario, even if apoptotic cascade is initiated through recruitment of Bax to the OMM, Bax 

may not complex properly to allow the release of cytochrome c to the cytoplasm. As a result of 

cytochrome sequestering, mitochondria may undergo swelling, followed by activation of the 

necrotic programmed cell death pathway. Additionally, upregulation and mitochondrial 

localization of XIAP in cells with higher Mtb burden suggests that XIAP may also play a role in 

inhibiting apoptosis. Understanding the pivot point between apoptosis and necrosis is critical given 

that necrosis allows for release and survival of Mtb [112, 115, 116, 124].  A graphical summary of 

these changes is included above (Figure 25).  

 Our study investigated only the effects of Mtb infection vs. uninfected controls. Future 

work expanding on the difference between Mtb infection and infection with various non-

tuberculous mycobacteria, such as BCG or Mycobacterium avium, would provide additional value 

and rigor to these findings. Additionally, thus far, these analyses are qualitative in nature and 

relatively low resolution, future work should focus on supplementing these findings with 

quantitative measurement of each observed phenotype and higher resolution analyses of 

subcellular localization, including electron microscopy.  

Some of the major technical limitations of this study include our inabilities to perform live 

cell imaging of Mtb-infected cells and single molecule detection of tRFs within cells. As Mtb is a 

biosafety level 3 (BSL3) pathogen and we do not have access to a fluorescent widefield or confocal 

microscope inside our BSL3 facilities, all Mtb-infected samples must be fixed prior to removal 
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from BSL3 facilities and imaging. As fixation kills both the macrophages and bacteria, it is not 

possible to perform live capture imaging on infected samples [125, 126]. Live capture imaging 

would allow us to examine the change in these markers in real time as opposed to only at several 

discrete time points post-infection. Though technology for single molecule detection, including 

optimizations for single molecule fluorescence in situ hybridization (smFISH), has improved 

significantly over the last decade, lower size limits for target molecules remain a major challenge 

[65]. Often RNA targets of less than 0.5-1kb are not recommended for smFISH as the technique 

requires binding of multiple 20-100 base long probes, ligation of adaptors and detectors, which is 

simply not feasible for a tRF target, which may only be 18-24 nucleotides in length [65, 127]. 

Despite these limitations, we believe our studies have uncovered a novel association 

between ANG and dysregulation of mitochondrial responses in Mtb infection. The process of ANG 

recruitment to host mitochondria in Mtb infected cells may drive the overproduction of mtRFs and 

affect the balance between apoptosis and necrosis.  
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Chapter 3: Host Response to SARS-CoV-2 

3.1 Background  

3.1.1 Inflammasome activation in viral infections 

Like Mtb, SARS-COV-2 pathogenesis is driven by various host responses. One hallmark 

of severe disease appears to be immune dysregulation in the later stages of illness that is 

characterized by elevated proinflammatory markers (such as C-reactive protein) and inflammatory 

cytokines, such as IL-6 [128-132]. Early investigation into the innate immunological programs 

induced by SARS-CoV-2 demonstrated that type I and type III interferon stimulation appears to 

be decreased by SARS-CoV-2 infection compared to infection with influenza [133], suggesting an 

alternative immune pathway may be responsible for the robust inflammation seen in COVID-19.  

Inflammasomes are another innate immune antiviral pathway known to be critical in both the 

control of and pathogenesis of other viral infections [134-136]. Activation of this intracellular 

signaling cascade by infection or tissue damage leads to an inflammatory type of cell death called 

pyroptosis and release of the proinflammatory cytokines, including IL-1b and IL-18 [137]. Lactate 

dehydrogenase (LDH), which is released by cells undergoing pyroptosis [138, 139] is elevated in 

plasma of COVID-19 patients, [131, 140] IL-1b transcripts are elevated in bronchoalveolar lavage 

fluid (BALF), and inflammasome cytokines, IL-1b and IL-18, are elevated in patients with severe 

COVID-19 [132, 141] suggesting that inflammasome activation is occurring in vivo. Whether 

cellular sensing of SARS-CoV-2 directly activates the inflammasome or whether viral replication 

in cells and associated tissue damage caused by the immune response triggers this pathway remains 

unknown. 
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A number of RNA viruses, including SARS-CoV-1, are known to directly activate 

inflammasome signaling [135, 138, 142-145]. This process typically starts with recognition of 

pathogen-associated molecular patterns (PAMPs), including viral RNA, by a pattern recognition 

receptor (PRR), such as one of the Toll-Like receptors (TLR) or retinoic acid-inducible gene I 

(RIG-I)-like receptors [146, 147]. This primes the cell by inducing the nuclear factor kB (NF-kB) 

pathway, which leads to upregulation and synthesis of inflammasome components, particularly 

pro-caspase-1 and pro-IL-1b. The second signal occurs when one of multiple inflammasome 

adaptor proteins senses a viral structure or cellular stress signal (such as potassium flux or 

mitochondrial damage). Many of these adapter proteins come from the nucleotide-binding domain 

and leucine-rich repeat-containing receptors (NLR) family of proteins, which are capable of 

sensing a diverse array of danger or stress signals [148, 149]. Once activated, these adapter proteins 

lead to assembly and oligomerization of the inflammasome complex via apoptosis-associated 

speck-like molecule containing a caspase recruitment domain (ASC). In turn, pro-caspase-1 is 

recruited to the complex, and through autocatalysis becomes active caspase-1. Caspase-1 then 

cleaves pro-IL-1b, pro-IL-18, and gasdermin-D (GSDMD) leading to GSDMD-based pores in the 

cellular membrane and release of active IL-1b and IL-18 [137, 150, 151]. NLRP3 is an 

inflammasome adapter that is central to inflammasome signaling in many viral infections, 

including SARS-CoV-1 [135, 138, 152]. Specifically, several SARS-CoV-1 gene products, 

including ORF3a, ORF8b, and viral protein E have been shown to trigger NLRP3 inflammasome 

signaling through multiple mechanisms [138, 142, 144]. However, danger-associated molecular 

patterns (DAMPs), such as mitochondrial DNA, ATP, and heat shock proteins, released by dying 

or damaged cells are also capable of activating inflammasomes [153]. It is unclear if 

inflammasome activation in response to SARS-CoV-2 is directly dependent on viral PAMPs,  
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release of DAMPs during infection, and/or sensing of these molecules by bystander cells, including 

macrophages. Moreover, it is not known whether nasal and respiratory epithelial cells (the primary 

targets of SARS-CoV-2 infection) activate inflammasomes in response to infection [154].  

 

3.2 Macrophage sensing of SARS-CoV-2 induces NLRP3-dependent 

inflammasome activation via MyD88 signaling 

*This study was done in collaboration with Andrew Karaba, Lee-Yang Hsieh, and Alexis Figueroa 

of the Andrea Cox Laboratory  

We sought to determine in what cell types inflammasome activation occurs in response to 

SARS-CoV-2 and whether it is due to direct sensing of SARS-CoV-2. Our study demonstrates that 

SARS-CoV-2 directly activates inflammasomes through an NLRP3-, caspase-1-, and ASC- 

dependent process in human macrophages, but not in respiratory epithelial cells. 

 

3.2.1 Methodologies 

Ethics 

For experiments involving primary human macrophages, deidentified human blood Leuko 

Paks were obtained from the Anne Arundel Medical Blood Donor Center (Anne Arundel, 

Maryland, USA). The researchers had no interaction with the donors and did not have any 

knowledge about them beyond their status as volunteer blood donors. This is considered non-

human subjects research by the institutions where the research was conducted and US Department 

of Health and Human Services guidelines. 
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Cells and Viruses 

Cells were incubated at 37°C and 5% CO2 unless otherwise stated. The generation of the 

THP-1 cell was described previously [155]. VeroE6 cells were maintained in low-glucose 

Dulbecco’s modification of Eagle medium plus GlutaMAX supplement and sodium pyruvate 

(ThermoFisher Scientific, Cat # 10567022) with 10% heat-inactivated fetal bovine serum (Corning 

Cellgro, Cat # 35-011-CV) and penicillin/streptomycin (100 U/mL, ThermoFisher Scientific, Cat 

# 15140122) (DMEM). THP-1 cells were maintained in RPMI 1640 media, 10% heat-inactivated 

fetal bovine serum, MEM nonessential amino acids (1:100, Corning, cat# 25–025), 

Penicillin/Streptomycin, sodium pyruvate, and L-glutamine (2mM) at a density of 5x105 – 

2x106 cells/mL. To differentiate into macrophages, THP-1 cells were plated at a density of 

2x105 cells/well in a sterile U-bottom 96-well plate and stimulated overnight in RPMI 1640 media, 

2% heat-inactivated fetal bovine serum, Penicillin/Streptomycin, L-glutamine (2mM), and phorbol 

12-myristate 13-acetate (PMA) 5 ng/mL.  

PBMCs were isolated by Ficoll-Hypaque gradient centrifugation. Primary monocytes were 

magnetically sorted by negative isolation per the manufacturer’s specifications (Miltenyi Biotec, 

Somerville, Massachusetts) and cultured in RPMI 1640 (Invitrogen, Waltham, Massachusetts) 

with 10% heat-inactivated fetal bovine serum, Penicillin/Streptomycin, L-glutamine (2mM) and 

50 ng/mL of recombinant human M-CSF (R&D Systems, Minneapolis, Minnesota) for 6 to 7 days 

to differentiate them to macrophages. Adherent macrophages were washed with sterile PBS and 

then incubated with the non-enzymatic cell disassociation media, CellStripper (Corning, 

Tewksbury, Massachusetts), for 30-60 minutes at 37°C and 5% CO2 followed by counting, 

centrifugation at 400g for 5 min, and plating at a density of 2x105 cells/well in a sterile U-bottom 

96-well plate. For differentiation, macrophages were cultured overnight in RPMI 1640 with 10% 
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heat-inactivated fetal bovine serum, Penicillin/Streptomycin, L-glutamine (2mM), 100ng/mL LPS 

(Cell Signaling Technologies), and IFNγ (50ng/mL) (Peprotech, Rocky Hill, New Jersey). M0 

macrophages were cultured in the same base media, but without IFNγ or LPS.  

VeroE6 cells for propagation of SARS-CoV-2 (see below) were obtained from the National 

Institute of Infectious Diseases (Tokyo, Japan) and the Japanese Collection of Research 

Bioresources and Sekisui XenoTech, LLC (JCRB1819 Takeda, Makoto). 

Cytokine measurement 

Supernatants from THP-1, hNEC, HBE, and MDM cultures were collected and human IL-

18 was measured with the human IL-18 ELISA Kit (MBL, Woburn, Massachusetts) according to 

the manufacturer’s instructions using cell culture supernatant at a 1:5 dilution and data were 

acquired on a SpectraMax M2 with a lower limit of detection of 12 pg/mL. Additionally, cytokines 

from cell culture supernatants (IFN, IL-18, IL-1b, and IL-6) were measured using the meso scale 

discovery system described above. Data were analyzed using R version 3.6.3.  

Influenza A Virus (IAV) was the generous gift of Richard Longnecker (Northwestern 

University). Virus was propagated in Vero cells (also a gift from R. Longnecker) cultured in 

Dulbecco’s modification of Eagle medium with 1% fetal bovine serum as previously described 

[156]. Standard plaque titrations to determine viral titers were performed on confluent monolayers 

of Vero cells. 

SARS-CoV-2/Wuhan-1/2020 virus was obtained through the US Center for Disease 

Control and Prevention (CDC). The virus was propagated in a Biosafety Level 3 (BSL3) laboratory 

in VeroE6 cells using methods described previously [157, 158]. Briefly, VeroE6 cells were 

infected at an MOI 0.01 for 1 hour, rocking every 10 minutes, at 37°C. After one-hour incubation, 

supernatant was removed and replaced with fresh serum-free infection media and incubated for 
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24-72 hours (whenever cultures showed ~50% cytopathic effect (CPE)). After incubation, cell-

free supernatants were collected and stored at -80°C. Frozen stocks were used immediately upon 

thawing and were not subjected to multiple rounds of freeze-thaw. Original virus stocks were only 

passaged once before use in the described experiments. SARS-CoV-2/Wuhan-1/2020 virus stocks 

were thawed once and titered in VeroE6 cells using a standard Median Tissue Culture Infectious 

Dose (TCID50) assay using methods described previously [157, 158]. 

In vitro experiments with macrophages 

Unless otherwise stated, all infections in THP-1 cells were carried out at an MOI of 0.2 for 

SARS-CoV-2. Inoculations of primary MDMs were carried out at an MOI of 5. For SARS-CoV-

2 infection and nigericin stimulation, media were gently aspirated from the cell culture wells 

containing the indicated cells and replaced with RPMI 1640 media containing 2% heat-inactivated 

fetal bovine serum (R2) and either SARS-CoV-2 or nigericin (5µM) (MilliporeSigma, Burlington, 

Massachusetts) and LPS (1 µg/mL), or no additional reagents (mock/media control). Twenty-four 

hours later, supernatant was removed and used for downstream assays. To deactivate any virus in 

the cell culture supernatant, all samples were incubated in 1% TX-100 for 30 minutes at room 

temperature prior to removal from BSL-3.  

In vitro experiments with epithelial cells 

 Human nasal epithelial (hNEC), human bronchial epithelial (HBE), and ACE2-

overexpressing human lung epithelial (A549-ACE2) cells were grown in standard cell culture 

conditions. hNEC and HBE cells were infected with SARS-CoV-2 or IAV at an MOI of 2 for 24 

hours after which supernatants were harvested, inactivated in 1% TX-100 for 30 minutes at room 

temperature, removed from the BSL-3, and used for assessment of IL-18 and IL-1b levels by 

ELISA (described above). Viral titers from apical surfaces of infected hNEC cultures were 



77 
 

measured by TCID50. Infected and mock-infected control cultures were imaged by confocal 

microscopy. Microtubules in epithelial cells were stained with goat anti-mouse 555 anti-beta 

tubulin IV antibody and SARS-CoV-2 was detected with goat anti-rabbit 488 anti-nucleocapsid 

antibody. A549-ACE2 cells were exposed to SARS-CoV-2 at an MOI of 2 and physiological levels 

of exogenous human IFN, IL-18, IL-1b, or IL-6 for up to 72 hours. At each 24 hour time interval, 

supernatants were collected for measurement of viral burden by both qRT-PCR and TCID50. 

Measurement of LDH Activity 

 LDH activity was measured in cell culture supernatants using the Cytotoxicity Detection 

Kit (LDH) (Roche, Cat # 11644793001) according the manufactures instructions. 

 

3.2.2 Results 

SARS-CoV-2 activates inflammasomes in vitro 

 Although data from our group and many others [132, 159-161] strongly support a role for 

inflammasome activation in SARS-CoV-2 infection, inflammasomes can be activated by cellular 

stress and damage independent of direct sensing of a pathogen [162, 163]. Macrophages are one 

of the primary producers of inflammasome cytokines in many viral infections, [136, 164-166] 

therefore we inoculated phorbol-12-myristate-13-acetate (PMA) stimulated THP-1 cells (a human 

monocyte/macrophage cell) with SARS-CoV-2, nigericin and LPS (Ng+LPS, a potent activator of 

the NLRP3 inflammasome [167], or media alone, collected cell culture supernatants at 24 hours 

post-inoculation (PI), inactivated virus, and measured IL-18 and IL-1b. SARS-CoV-2 exposure 

led to significantly increased amounts of both IL-18 and IL-1b compared to media control (Figure 

26A). To determine whether THP-1 cells are capable of supporting SARS-CoV-2 replication we 

collected supernatants at 24, 48, and 72 hours post-infection and found that viral titers decreased 
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by a full log within 24 hours and then were undetectable after that indicating that THP-1 cells are 

not capable of supporting SARS-CoV-2 replication (Figure 26B). 

 

 

Figure 26. Macrophages inoculated with SARS-CoV-2 produce IL-18 and IL-1b.  
PMA stimulated THP-1 cells were inoculated with SARS-CoV-2 (blue), Ng+LPS (green), or 
media alone (red). 24hrs later, supernatants were collected and IL-18 (A left panel), IL-1b (A right 
panel), and viral titers (B) were measured. Primary human monocytes were differentiated into 
macrophages with M-CSF. Resting (C, left panel) or PMA stimulated (C, right panel) were 
inoculated with SARS-CoV-2 (blue), Ng+LPS (green), or media alone (red). Supernatants were 
collected 24 hours later and IL-18, IL-1b and viral titers were measured. Differences between 
groups indicated by brackets were determined by a Student’s t-test. NS, *,** indicate p-values  
>0.05, <0.05, <0.01, respectively. 
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Taken together these results suggest SARS-CoV-2 is capable of inducing inflammasome 

activation directly in THP-1 cells. Next, we investigated whether SARS-CoV-2 also induced 

inflammasome activation in primary MDMs. We inoculated both resting MDMs and PMA 

stimulated MDMs with media, SARS-CoV-2, or Ng+LPS and measured IL-18 and IL-1b in 

supernatants 24 hours post-infection. While SARS-CoV-2 inoculation did not result in significant 

amounts of IL-18, the PMA-stimulated MDMs did produce IL-18 in response to the virus 

indicating that SARS-CoV-2 is capable of activating the inflammasome in primary human cells 

under certain conditions (Figure 26C). Primary MDMs also do not support SARS-CoV-2 

replication, as supernatants from inoculated MDM cultures showed a decline in viable viral 

particles nearly identical to that seen in THP-1 cells (Figure 26D).  

 

SARS-CoV-2 Inflammasome Activation in Macrophages Requires NLRP3, Caspase-1, and 

ASC 

  Studies in SARS-CoV-1 indicate that the inflammasome adapter, NLRP3, is predominantly 

responsible for inflammasome formation in SARS [142, 144, 145]. Given the genetic similarity to 

SARS-CoV-1, it has been hypothesized that SARS-CoV-2 also activates the NLRP3 

inflammasome [138, 168]. To test whether SARS-CoV-2 inflammasome activation requires 

NLRP3, we inoculated a panel of THP-1 cells deficient in various inflammasome-related genes 

with SARS-CoV-2 and collected cell culture supernatants at 24 hours post-infection. These cells 

were constructed using the CRISPR-Cas9 system and previously used to determine the 

requirements for human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1) 

inflammasome activation in macrophages [155, 165]. The ΔHUMCYC cell-line (WT) was derived 
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from the same THP-1 cells, but targeting a human pseudogene (HUMCYCPS3) and was used to 

control for any off-target effects of the CRISPR-cas9 system. 

 

Figure 27. SARS-CoV-2 inflammasome activation is primed through MyD88 and is activated 
through NLRP3, Caspase-1, and ASC. 
A) THP-1 cells with the indicated gene disrupted via CRISPR-cas9 (D) were stimulated overnight 
with PMA, inoculated with SARS-CoV-2 (blue) or media (red) alone for 24 hours before IL-18 
was measured by ELISA. B, C, D) WT (light green) or KO (orange) THP-1 cells were stimulated 
overnight with PMA and inoculated with SARS-CoV-2 prior to measurement of IL-1b (left panels) 
and IL-6 (right panels) by ELISA. E. LDH activity was measured in cell culture supernatants from 
A and normalized to mock inoculation. F. WT (red) or DMyD88 THP-1 cells from Invivogen were 
stimulated overnight with PMA, inoculated with media alone (left panel), SARS-CoV-2 (middle 
panel), or Ng+LPS (right panel) and supernatants were collected 24 hours later and IL-18 was 
measured. DHUMCYC cells are labeled as “WT” in A-E. Differences between groups were 
determined by a Student’s t-test. NS, *,** indicate p-values  >0.05, <0.05, <0.01, respectively. 
 

We measured IL-18 in cell culture supernatants from these THP-1 cells inoculated with 

SARS-CoV-2, media control, or nigericin and lipopolysaccharide (Ng+LPS). Inoculation of cells 

lacking NLRP3, ASC, and caspase-1 with SARS-CoV-2 did not produce amounts of IL-18 

significantly different from media control (Figure 27). However, WT and DAIM2 cells produce 
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significant amounts of IL-18 in response to SARS-CoV-2. AIM2 is a dsDNA sensor and therefore 

would not be expected to be involved in the inflammasome response to the RNA virus SARS-

CoV-2. These results are consistent with the hypothesis that SARS-CoV-2 activates canonical 

caspase-1-dependent inflammasomes through NLRP3. As expected, cells lacking NLRP3, ASC, 

and caspase-1 did not produce significant amounts of IL-18 in response to Ng+LPS either (Figure 

28). 

Disruption of NLPR3, ASC, or caspase-1 also led to reduced amounts of IL-1b in response 

to SARS-CoV-2, but did not decrease IL-6 production (Figure 27 B,C,D). These data support the 

idea that inflammasome signaling in SARS-CoV-2 is dependent on the NLRP3 inflammasome, 

but disruption of this pathway leaves additional innate sensing pathways intact.  

 

Figure 28. Cells with NLRP3 inflammasome pathway knockouts do not show IL-18 
production in response to positive control agents. 
WT, DAIM2, DNLRP3, DCaspase-1, and DASC knockout THP-1 cells were exposed to Ng+LPS 
for 24 hours and then supernatants were used for quantification of IL-18 by ELISA. Differences 
between groups were determined by a Student’s t-test. NS, *,** indicate p-values  >0.05, <0.05, 
<0.01, respectively. 
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LDH activity was also measured in the THP-1 cells after inoculation with SARS-CoV-2 to 

assess for cell death. While knock-out of NLRP3, ASC, and caspase-1 reduced LDH activity 

compared to WT THP-1 cells, disruption of these inflammasome genes did not reduce LDH levels 

to those of media control (Figure 27E). These findings suggest that while inflammasome 

activation/pyroptosis is responsible for some cell death in response to SARS-CoV-2, there are 

additional cell death pathways activated. Recently, a study on mouse hepatitis virus (another 

Betacoronavirus), demonstrated that coronaviruses can induce necroptosis when the NLRP3 

inflammasome is inhibited which likely explain our findings of reduced, but not absent LDH 

activity [169]. 

 

Macrophage Priming for Inflammasome Signaling In Response to SARS-CoV-2 is MyD88-

dependent 

 As described above, the NLRP3 inflammasome is thought to require a priming step through 

activation of the NF-kB pathway [152]. It is not known exactly how SARS-CoV-2 is initially 

sensed, but it is possible that multiple TLRs or intra-cellular PRRs could act as sensors [138]. Most 

known TLRs (aside from TLR3 and TLR4) depend on the adapter molecule, MyD88, for signaling 

[146]. Therefore, we inoculated MyD88 KO THP-1 cells with SARS-CoV-2 or Ng+LPS and 

measured IL-18 24 hours post-infection. While deletion of MyD88 had no effect on IL-18 

produced in response to Ng+LPS, it significantly reduced IL-18 released in the SARS-CoV-2 

inoculated cells (Fig 27F). However, MyD88KO did not reduce the IL-18 to background levels 

implying that while a MyD88-dependent TLR is primarily responsible for SARS-CoV-2 sensing, 

there are potentially other innate sensing pathways capable of sensing the virus and priming for 

inflammasome activation.  
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Inflammasome Activation Does Not Occur in SARS-COV-2-infected Respiratory Epithelial 

Cells 

Respiratory epithelia are the primary targets of SARS-CoV-2 [170]. Consistent with this, 

SARS-CoV-2 replicates well in primary human nasal epithelial cultures (hNEC), as shown by viral 

titer and by immunofluorescence in (Fig 29A,B). To determine if infection of primary hNEC  

 

Figure 29. Respiratory Epithelial Cells Support SARS-CoV-2 Replication, But Do Not 
Activate Inflammasomes. 
A) Confocal images showing 3 examples of SARS-CoV-2-infected hNEC cells and one mock-
infected culture (right). Cells are stained with anti-S antibody to viral antigen (green) and beta 
tubulin IV epithelial cell marker (red). The top row shows both markers, and the bottom row shows 
green fluorescent channel only. B) TCID50 of two hNEC infections to show consistently high viral 
burden. C and D) IL-18 and IL-1β measured by ELISA from supernatants of hNEC (C) and HBE 
cells (D) infected with SARS-CoV-2. Differences between conditions containing virus and mock 
infection were determined by a Student’s t-test. NS, *,** indicate p-values  >0.05, <0.05, <0.01, 
respectively. 
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results in elevations of inflammasome cytokines we measured these cytokines in basolateral cell 

culture supernatants from SARS-CoV-2 infected hNEC and compared to influenza or mock 

infected hNEC. Unlike macrophages exposed to SARS-CoV-2, we did not observe elevations in 

IL-18 or IL-1b in SARS-CoV-2 infected primary hNEC, but IL-18 and IL-1b were produced in 

response to influenza (Fig. 28C). These data indicate that hNEC are capable of activating 

inflammasomes in response to an RNA virus, but that these responses are not unique to SARS-

CoV-2. We also measured these cytokines in cell culture supernatants from human bronchial 

epithelial (HBE) cells infected with SARS-CoV-2. Similarly, the inflammasome cytokines IL-18 

and IL-1b were not elevated in supernatants from SARS-CoV-2-infected HBEs (Fig. 29D). These 

data illustrate that inflammasome activation is a result of interactions between SARS-CoV-2 and 

macrophages rather than infection of epithelial cells. 

 

IL-1b, but not IL-18, increases SARS-CoV-2 viral burden 

 Given the finding that macrophages activate the NLRP3 inflammasome when exposed to 

SARS-CoV-2 and, in contrast, that epithelial cells support viral replication in absence of 

inflammasome activation, we sought to understand how inflammasome activation in macrophages 

may alter overall outcome of SARS-CoV-2 infection. To test this, we exposed ACE2 

overexpressing A548 lung epithelial cells (A549-ACE2) to SARS-CoV-2 at an MOI of 2 with or 

without addition of exogenous human IFN, IL-18, IL-1b, or IL-6. We found that viral genome 

copies and viable viral particles were higher in infected cells exposed to exogenous IL-1b (Figure 

30). Both viral copies and viral titer increased over controls that were not exposed to any 

exogenous cytokines and cells exposed to IFN, IL-18, or IL-6 starting at 48 hours and continuing 

through 72 hours post infection. This suggests that IL-1b produced by macrophages following 
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viral sensing of SARS-CoV-2 may stimulate viral replication in epithelial cells and drive higher 

viral burdens and worse disease.  

 

 

Figure 30. Exogenous IL-1b drives viral replication in SARS-CoV-2-infected lung epithelial 
cells. 
Human lung epithelial A549-ACE2 cells were exposed to physiological levels of exogenous IFN, 
IL-18, IL-1b, and IL-6 and SARS-CoV-2 at an MOI of 2 for various time points up through 72 
h.p.i. For all time points, viral burdens were measured by qRT-PCR and TCID50. 
 

 

3.3 Conclusions 

We provide evidence that inflammasome activation by SARS-CoV-2 in macrophages takes 

place through direct sensing via a MyD88 dependent TLR and activation though the NLRP3- and 

caspase-1- dependent canonical inflammasome. Furthermore, this activation is not the result of 

productive replication in these cells. In contrast, robust infection of replication-permissive 

respiratory epithelial cells does not result in production of inflammasome cytokines. Therefore, it 

is likely that the elevated IL-18 and IL-1b detected in patients with COVID-19 is a result of sensing 

by myeloid-derived cells rather than infection of the respiratory epithelium. 
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 This is the first direct evidence that NLRP3 is required for SARS-CoV-2-induced 

inflammasome activation. This is important as numerous potential therapeutics targeting NLRP3 

and/or IL-1b and IL-18 are in preclinical and clinical trials [168]. While our data provide rational 

mechanistic evidence for their use, what remains unclear is whether IL-1b or IL-18 exert any 

specific anti-viral effect in SARS-CoV-2. IL-1b can have both direct and indirect antiviral effects 

in other viruses, but is also associated with a variety of pathological inflammatory disorders 

including autoimmunity, cardiovascular disease, and cancer [164, 171-173]. It remains unclear in 

COVID-19 if this is primarily driving pathology, or if the elevations in IL-1b and IL-18 are 

appropriate in response to uncontrolled viral replication. There is evidence that severe COVID-19 

cases are associate with both elevations in these (and other) proinflammatory cytokines and higher 

viral loads (as measured by qRT-PCR) [132]. So, it is possible that the excess inflammasome 

activation is an appropriate response to uncontrolled viral replication. Clinical studies 

demonstrating that non-specific immunosuppression with dexamethasone or specific inhibition of 

IL-1b and IL-1a with Anakinra provide therapeutic benefit argue for a predominantly pathological 

role for these cytokines [174-176]. Furthermore, it is possible that pyroptosis itself is also 

pathological. If this is the case, then inhibition of inflammasome formation with either a caspase-

1 or NLRP3 inhibitor may be a logical therapeutic strategy and potentially more beneficial than 

blocking the cytokines alone.  

 Our results clearly identify NLRP3 as the inflammasome adapter responsible for SARS-

CoV-2-mediated inflammasome activation by using both knock-out cell lines and pharmacological 

inhibitors with whole replication competent SARS-CoV-2. However, in this study we do not 

identify the specific viral PAMP responsible for this interaction. While multiple ORFs of SARS-

CoV-1 are postulated to activate the inflammasome [144, 157, 177], early evidence in SARS-CoV-
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2 suggests that the SARS-CoV-2 viroporin (ORF3a) leads to NLRP3 activation likely through 

potassium efflux [178]. These authors also posulate that ORF3a primes cells for inflammasome 

activation through stimulation of the NF-kB pathway. However, we did not find evidence that 

macrophages support a productive replication cycle and the protein encoded by ORF3a is not part 

of the viral particle [179]. Therefore, there are either multiple mechanisms of inflammasome 

activation, or a small amount of ORF3a is transcribed and translated before the infectious cycle is 

aborted. It is possible that other viral proteins found in the viral particle might serve as PAMPs for 

NLRP3 recognition or the viral genome itself as in the case of HCV [136, 180]. On the contrary, 

in epithelial cells where the virus does complete a replication cycle, we did not find evidence of 

inflammasome activation as measured by IL-1b and IL-18 in cell culture supernatants. Therefore, 

the role of ORF3a (and other non-structural proteins) in the innate response to SARS-CoV-2 

remains unclear. 

 With regard to the priming step, we provide evidence that this is at least partially mediated 

through a MyD88-dependent process. While multiple TLRs signal through MyD88, TLR7 is a 

reasonable candidate for the PRR sensing of SARS-CoV-2 as it recognizes ssRNA such as the 

viral genome [146], and is encoded on the X chromosome, potentially contributing to the male 

bias in severe disease and death due to COVID-19 [181]. Remarkably, a recent study identified 

mutations in the TLR7 gene associated with severe cases of COVID-19 in young men lending 

credence to the possibility that the sensing is predominantly through TLR7 [182].  The potential 

mechanism of SARS-CoV-2 mediated NLRP3 inflammasome activation is depicted below 

(Figure 31).  
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Viral PAMPs (likely viral RNA) bind MyD88 dependent TLRs (likely TLR7 or 9) on the surface 
of macrophages. This acts as signal one priming that triggers activation of the NLRP3 
inflammasome. Here the MyD88-NFkB signaling signal cascade drives the expression of NLRP3, 
pro-IL-1b, and pro-Il-18. Complexing of NLRP3 with ASC and pro-caspase-1 activates the 
NLRP3 inflammasome which drives cleavage and activation of caspase-1 which then cleaves pro-
IL-1b and pro-Il-18 into their active forms. Increases in these cytokines drives the pro-
inflammatory programmed cell death pathway of pyroptosis.  
 
 
 Aside from challenges identifying the specific TLR responsible for sensing, other 

limitations of this study include reliance on cancer-derived macrophage cell lines in absence of 

validation in primary human MDMs. In our optimization studies, we found MDMs to require a 

much higher MOI to generate inflammasome activation when unstimulated. We were able to 

observe inflammasome activation in MDMs pre-treated with PMA, as is done for the THP-1 cells. 

This may suggest that inflammasome activation occurs primarily in M1-stimulated MDMs and 

that PMA facilitates inflammasome activation during SARS-CoV-2 exposure by skewing a larger 

proportion of the MDMs towards an M1 phenotype. While validation data in PMA-stimulated 

MDMs is currently being generated, further optimizations are required.   

In summary, we present compelling evidence that NLRP3 inflammasome activation occurs 

in by macrophages sensing of SARS-CoV-2, but not epithelial cells. These findings significantly 

advance our understanding of the pathogenesis of this infection and highlight areas for potential 

pharmacological intervention. 

 

 

 

Figure 31. SARS-CoV-2 infection drives MyD88-dependent activation of the host NLRP3 
inflammasome via direct macrophage sensing. 
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Chapter 4: Discussion and Future Directions 

Overall, this collective work has provided insight into the host response to two important 

pathogens, Mtb and SARS-COV-2. Together, the unbiased descriptive and targeted mechanistic 

work detailed here show that a complex network of factors including miRNAs, tRFs, mRNAs, and 

methylation regulates the macrophage response to infection with Mtb. These studies represent the 

first description of tRF dysregulation in bacterial infections and uncover a novel relationship 

between ANG and mitochondrial function during Mtb infection. Further, this work has shown that 

inflammasome activation in SARS-COV-2 infection is mediated by direct macrophage sensing of 

extracellular virus and occurs through the MyD88-dependent NLRP3 pathway. Though they are 

very different pathogens, it is clear that host macrophages play major roles in controlling infection 

with both Mtb and SARS-COV-2.  

This research has also laid the foundation for a significant amount of continuing and future 

work. Future studies should be aimed at targeted manipulation of miRNA candidates, differentially 

expressed mRNA targets, and differently methylated genes discovered by our next generation 

sequencing studies. These unbiased analyses of transcriptomic and epigenetic changes may serve 

as a guide for identifying candidates for mechanistic studies designed to uncover the function of 

each small RNA or gene in regulating specific pathways central to the macrophage response to 

Mtb.  

 Additionally, further investigations of the biological mechanisms underlying the biased 

production of mtRFs could improve our understanding of this novel phenomenon. These studies 

may include technical tool development to allow for the detection of fluorescently labeled 

intracellular tRFs and protein studies designed to elucidate how ANG interacts with other 

mitochondria-associated markers, such as XIAP and Bax. As the key mechanism by which Mtb 
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suppresses apoptosis to shift cells towards necrosis remains unknown, expanding knowledge of 

critical pivot points such as functional Bax pore formation may provide important answers for a 

longstanding question in TB research. Future imaging studies should include investigations 

complexing between Bax and Bak, the second component of OMM pores involved in cytochrome 

c release. High resolution imaging including electron microscopy should be performed to 

determine how the structure of Bax/Bak pores are altered and whether or not ANG is binding to 

mitochondrial membranes or fully internalized.  

 In silico and in vitro assays for tRF-target binding may also provide a more concrete 

understanding of if and how specific tRFs interact with their cognate mRNA targets, similarly to 

miRNAs. In vivo experiments that investigate the importance of ANG in the overall outcome of 

Mtb infection will also be important for determining the essentiality of ANG and the tRFs it cleaves 

in acute and chronic TB.  

Our studies on inflammasome signaling in SARS-COV-2 infection also provide opportunities 

for more in depth research. Importantly, future work should focus on identifying the specific TLRs 

that are responsible for sensing extracellular virus. Technical challenges with finding specific 

inhibitors for TLRs 7 and 9 have complicated the identification of a single essential TLR, however, 

these obstacles can be overcome through generation and use of stable single TLR knockout THP-

1 cell lines created via CRISPR-Cas9-targeted genome editing. Additionally, further functional 

analysis of the role of the inflammasome in altering the outcome of infection in vivo will be critical. 

Given that elevated levels of IL-18 have been associated with worse prognosis in patients with 

COVID-19 patients, more research should be done on developing NLRP3-inhibitors as potential 

host-directed therapies for COVID-19 [159].  
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In addition to continuing bench research built on these studies, there is a desperate need for 

additional focus on all areas of research related to TB and COVID-19. The WHO and Global Fund 

estimate that there is a gap in funding of approximately $1.6 billion annually [1]. This constitutes 

a small fraction of the $2.59 trillion budget allocated for COVID-19 in the US in 2020 alone [183]. 

While neither amount of funding has resulted in eradication of each respective disease, undeniable 

progress has been made. The rapid development of the COVID-19 vaccines exemplifies the power 

of global attention and dedicated funding. Especially given the setbacks in global TB management 

that will follow the COVID-19 pandemic, the fight to end TB will depend on our ability to bring 

TB back to the forefront of discussion and secure increased funding. As for COVID-19, though 

the development of effective vaccines is reassuring, continuing research is required to achieve a 

complete understanding of this devastating disease and the virus that causes it, improve vaccines, 

and expand on effective treatment options.  

The research detailed in this dissertation expands our understanding of basic biological 

mechanisms that underlie TB and COVID-19 disease. With continued focus, this work could serve 

as a foundation for future translational work.  
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Scientific Findings for Clinical and Public Health Impact Abstract Book, 
2031 
 
Le HH, Edwards LO, Looney MM, Strauss B, Bloodgood M, Jose AM. 
(2015). Tissue homogeneity requires inhibition of stochastic RNA silencing. 
Genetics Society of America Conference Abstract Book, 1008B 
 

Talks Pathobiology Recruitment                                                       January 2020                                                                           
Johns Hopkins University 
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tRNA-derived fragments and mitochondrial dysfunction in tuberculosis 
 
Center for Tuberculosis Research Annual Meeting                    June 2019                                                    
Johns Hopkins University 
Small RNA dysregulation in tuberculosis 
 
Pathology Grand Rounds                                                                July 2018                                                                   
Johns Hopkins University 
Investigations into the roles of microRNAs in tuberculosis pathogenesis and 
treatment 
 
Undergraduate Cell Biology and Molecular Genetics                April 2016 
Honors Thesis Defense                                     
University of Maryland, College Park 
Regulation of RNA-directed silencing of repetitive DNA in Caenorhabditis 
elegans 
 
Baltimore Worm Club                                                                     July 2015                                                                                                    
University of Maryland, Baltimore County 
Inhibition of stochastic RNA silencing reduces cell-to-cell variation in 
Caenorhabditis elegans 
 

Posters Keystone Tuberculosis eSymposia                                       December 2020                        
Science Aimed at Ending the Epidemic 
Virtual Symposia 
Looney MM, Lu Y, Butscheck G, Hamacher-Brady A, Karakousis PC, 
Halushka MK. Mycobacterium tuberculosis infection drives mitochondria-
biased dysregulation of host tRNA-derived fragments.  
 
Keystone Tuberculosis Meeting                                               January 2020                                                
Immunity and Immune Evasion                            
Eldorado Hotel, Santa Fe, New Mexico 
Looney MM, Halushka MK, Saorin A, Hamacher-Brady A, Karakousis PC. 
MicroRNA and tRNA fragment dysregulation in Mycobacterium 
tuberculosis-infected primary human macrophages 
 
Pathobiology Program Retreat                                            September 2019                                                                                                       
Mount Washington Conference Center, Baltimore, Maryland 
Looney MM, Halushka MK, Karakousis PC. The marvelous microcosm of 
microRNAs (and tRFs) in Mycobacterium tuberculosis infected macrophages 
 
Pathology Young Investigators Day                                           March 2019                                                                             
Johns Hopkins University, School of Medicine 
Looney MM, Karakousis PC. Combining inflammasome activation with 
direct antimicrobial activity to enhance killing of Mycobacterium 
tuberculosis 
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Pathobiology Program Retreat                                            September 2018                                                                  
Mount Washington Conference Center, Baltimore, Maryland 
Looney MM, Karakousis PC. The roles of microRNAs in tuberculosis 
pathogenesis and treatment 
 
Keystone Tuberculosis Meeting                                                    April 2018 
Translating Scientific Findings for Clinical and Public Health Impact                                    
Fairmont Chateau, Whistler, British Columbia, Canada 
Dutta NK, Looney MM, Bruniers N, Pinn ML, Dartois V, Gennaro ML, 
Karakousis PC. Preclinical testing of statins as adjunctive, host-directed 
therapy for TB 
 
Department of Medicine Retreat                                                  April 2018                                                                 
Johns Hopkins University, School of Medicine 
Looney MM, Karakousis PC. Protocol optimization for tuberculosis miRNA 
biomarker discovery assays 
 
Pathology Young Investigators Day                                           March 2018                                                                 
Johns Hopkins University, School of Medicine 
Looney MM, Karakousis PC. Protocol optimization for tuberculosis miRNA 
biomarker discovery assays 
 
Pathobiology Program Retreat                                            September 2017                                                 
Mount Washington Conference Center, Baltimore, Maryland 
Looney MM, Karakousis PC. Preliminary investigations into microRNA-
mediated modulation of lipogenesis and inflammation in pravastatin 
adjunctive therapy for active TB 
 
HHMI Undergraduate Research Symposium                           March 2016                                                                 
University of Maryland, College Park 
Le HH*, Looney MM*, Strauss B, Bloodgood M, Jose AM. Tissue 
homogeneity requires inhibition of stochastic RNA silencing (*Equal 
Contribution) 
 
International C. elegans Meeting                                                   June 2015                                                                            
University of California, Los Angeles 
Le HH*, Edwards LO*, Looney MM*, Strauss B, Bloodgood M, Jose AM. 
Tissue homogeneity requires embryonic inhibition of stochastically-initiated 
RNA silencing (*Equal Contribution) 
 

Professional 
Experience 
and 
Leadership 

Don Amolo Memorial Kid’s Ark                            January 2015 – Present                                                         
Volunteer Foreign Contact                                               
- Travel to Kenya to assist the Don Amolo Memorial Kid’s Ark for children  
  affected by HIV with coordinating free medical camps and conducting  
  community needs assessments 
- Facilitate collaborations with The Orphan Grain Train 
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- Designed and implemented a trackable inventory system for the St. James  
  Memorial Medical Clinic 
 
Pathobiology Graduate Program                              July 2018 – June 2019                                            
Chief Graduate Student                                                                                                    
- Coordinated with faculty and administrators to develop and implement  
  program changes aimed at addressing student concerns 
- Facilitated expansion of mental health resources for students 
- Planned / organized journal club, student lunch meetings, recruitment, and  
  orientation events 
- Served as a mentor for lowerclassmen 
 
International Volunteer Headquarters                     June 2018 – July 2018 
Imara Foundation HIV/AIDS Support Program Volunteer                                                                     
- Traveled to Arusha, Tanzania to assist women with HIV/AIDS develop /  
  market income-generating skills 
- Facilitated collaborations with The One Acre Fund and the Don Amolo  
  Memorial Kid’s Ark  
 
Graduate Student Association                          July 2017 – December 2018                                         
Student Assistance Program Committee Representative                                 
- Coordinated with Student Assistance Program staff members to determine  
  ways to improve graduate student access to psychological health resources 
- Coordinated with executive board members of the Graduate Student  
  Association to facilitate discussion about the importance of psychological  
  health on campus and in the community 
- Wrote and distributed to the Johns Hopkins School of Medicine graduate  
  students a monthly Wellness Newsletter that provides information and tips 
for maintaining psychological, physical, and social wellness  
 

Teaching 
and 
Mentoring 
Experience 

Tender Bridge                                                           January 2021 – Present  
Mountain biking program and COVID19 safety coordinator 
- Coordinate mountain biking focused sports-mentoring program for at risk  
  Baltimore youth 
- Develop a COVID19 response strategy to encourage adherence to public  
  health guidelines and vaccine uptake amongst mentors and mentees  
 
Karakousis Lab                                                    September 2017 – Present  
Graduate Student Mentor 
- Train junior lab members on laboratory techniques and biosafety level 3  
  standard operating procedures 
- Teach trainees to conceptualize independent research projects 
- Assist trainees in the process of applying for independent research funding 
- Current Trainees: Harley Parker (junior PhD student, Pathobiology  
  Program, Johns Hopkins School of Medicine), Samuel Ayeh (clinical  
  fellow), Pranita Neupane (clinical fellow) 
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- Former Trainees: Rachel Lorenc (undergraduate, Johns Hopkins  
  University), Grace Ren (undergraduate, Johns Hopkins University), Nathan  
  Crilly (rotation PhD student, Johns Hopkins School of Medicine) 
 
Pathobiology PhD Program                            September 2017 – June 2019                                                     
Big Sibling 
- Assist lowerclassmen in the Pathobiology PhD Program with their  
  transition into graduate school 
 
Graduate Infectious Disease and Immunology                 April 2018, 2019 
Teaching Assistant 
- Scheduled faculty lectures 
- Assisted students with course content during class and review sessions 
- Taught lecture on Zika, Dengue, and Yellow Fever  
 
Graduate Basic Mechanisms of Disease      August-September 2017, 2018                                                             
Teaching Assistant  
- Helped re-design course material 
- Served as lead TA for content related to infectious disease and immunology 
- Taught lecture on fundamental immunology 
 
Johns Hopkins Peer Mentoring Committee  August 2017 – January 2018                                             
Peer Mentor 
- Participated as a mentor for other graduate students during scheduled group  
  discussion about stressful situations students may experience 
- Assisted in planning group discussions and peer mentoring events 
- Served as a liaison to the Student Assistance Program  
 

Professional 
Societies 

American Society for Microbiology                      February 2018 – Present 
American Association for the Advancement         February 2018 – Present 
of Science 
American Institute of Biological Sciences            February 2018 – Present 
 

Grants and 
Funding 

Keystone Tuberculosis Meeting Scholarship                        December 2020 
Eukaryotic Tissue Core Facility Core Coins                         December 2017 
Howard Hughes Medical Institute Undergraduate    May 2015 – May 2016 
Research Fellowship 
Howard Hughes Medical Institute Capstone Travel Award          June 2015 
 

Awards and 
Honors 

Johns Hopkins Pathobiology Chief Graduate Student                    May 2018 
Omicron Delta Kappa National Leadership Honor Society           May 2016 
Primannum Honors Society                                                            May 2013 
Alicia Betancourt Scholarship                                                       April 2012 
National Order of the Elks Scholarship                                          May 2012 


