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Abstract

The abundance of large-scale datasets both in industry and academia today

has lead to a need for scalable data analysis frameworks and libraries. This as-

sertion is exceedingly apparent in large-scale graph datasets. The vast majority of

existing frameworks focus on distributing computation within a cluster, neglecting to

fully utilize each individual node, leading to poor overall performance. This thesis is

motivated by the prevalence of Non-Uniform Memory Access (NUMA) architectures

within multicore machines and the advancements in the performance of external mem-

ory devices like SSDs. This thesis focusses on the development of machine learning

frameworks, libraries, and application development principles to enable scalable data

analysis, with minimal resource consumption. We develop novel optimizations that

leverage fine-grain I/O and NUMA-awareness to advance the state-of-the-art within

the areas of scalable graph analytics and machine learning.

We focus on minimality, scalability and memory parallelism when data re-

side either in (i) memory, (ii) semi-externally, or (iii) distributed memory. We target

two core areas: (i) graph analytics and (ii) community detection (clustering). The
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ABSTRACT

semi-external memory (SEM) paradigm is an attractive middle ground for limited

resource consumption and near-in-memory performance on a single thick compute

node. In recent years, its adoption has steadily risen in popularity with framework

developers, despite having limited adoption from application developers. We address

key questions surrounding the development of state-of-the-art applications within an

SEM, vertex-centric graph framework. Our target is to lower the barrier for entry to

SEM, vertex-centric application development. As such, we develop Graphyti, a library

of highly optimized applications in Semi-External Memory (SEM) using the Flash-

Graph framework. We utilize this library to identify the core principles that underlie

the development of state-of-the-art vertex-centric graph applications in SEM. We then

address scaling the task of community detection through clustering given arbitrary

hardware budgets. We develop the clusternor extensible clustering framework and li-

brary with facilities for optimized scale-out and scale-up computation. In summation,

this thesis develops key SEM design principles for graph analytics, introduces novel

algorithmic and systems-oriented optimizations for scalable algorithms that utilize

a two-step Majorize-Minimization or Minorize-Maximization (MM) objective func-

tion optimization pattern. The optimizations we develop enable the applications and

libraries provided to attain state-of-the-art performance in varying memory settings.
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Chapter 1

Introduction

1.1 Introduction

Scalable machine learning is at the epicenter of academia and industry alike as datasets

grow exponentially. Performing analysis on such data is challenging from the perspective of frame-

work choice, programming paradigm and hardware selection. Furthermore, there is often interest

in performing different types of analysis on data based upon the type of data available. Graphs

naturally produced by social networks [1], transactional banking [2], telecommunications [3] and

more, contain a wealth of information and require specialized processing frameworks and libraries

for analysis. Furthermore, data derived from streaming services [4], connectomics [5–7], image/video

processing [3] and more produce dense feature vector datasets for which different types of frameworks

are necessary.

This thesis explores machine learning from the perspective of (i) graph analysis and (ii)

clustering. The most popular programming model for scalable graph analysis is the vertex-centric

paradigm. Furthermore, the semi-external memory paradigm for computing has been shown to

provide comparable performance to in-memory on a single machine without the need to distribute

computation to a cluster. Though its adoption among developers has been limited due to the
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perceived difficulty in programming. We address questions regarding how to effectively and efficiently

design graph applications in semi-external memory (SEM). We develop illustrative and generalizable

optimizations for adoption by developers in addition to providing them as an open source package.

We then tackle the task of clustering in-memory, in distributed memory and in SEM. We address

questions of how to design and implement a scalable and extensible clustering environment.

Today’s graphs far outsize the in-memory capacity of most standalone machines. As such,

system developers move towards distributed and out-of-core solutions. SEM systems are an attrac-

tive alternative as they provide a reasonable trade-off between resource consumption and perfor-

mance. Understanding how to programmatically achieve highly parallel, I/O minimal applications

is critical to SEM adoption.

Furthermore, when considering dense structured, feature-vectorized datasets, community

detection is of great importance. The decomposition of extremely large datasets into clusters of data

points that are similar is a topic of great interest in industry and academia. Clustering multi-billion

data points is essential to targeted ad-driven organizations such as Google [8]. Behavioromics [9]

uses clustering to map neurons to distinct motor patterns. In genetics, clustering is used to infer

relationships between genetically similar species [10,11].

The challenge with developing SEM vertex-centric applications is that now vertices must

explicitly request edge data from disk. Additionally, one must maintain at most O(n) in-memory

state for an n vertex, m edge graph. Vertex-centrism necessitates algorithmic evolution; SEM adds

another layer of complexity as developers must now also encode I/O and memory minimalism into

applications. These components constitute barriers to entry for application development.

The greatest challenges facing clustering tool builders are (i) reducing the cost of the

synchronization barrier between the MM steps, (ii) mitigating the latency of data movement through

the memory hierarchy, and (iii) scaling to arbitrarily large datasets. In addition, fully asynchronous

computation of both MM steps is mostly infeasible because global state updates are performed

between each step. The resulting global barriers pose a major challenge to the performance and

2
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scalability of parallel and distributed implementations. This is especially true for data that require

large numbers of iterations to converge.

Popular scalable frameworks and libraries [12–14] have converged on scale-out, distributed

processing in which data are partitioned among cluster nodes, often randomly, and global updates

are transmitted at the speed of the interconnect. These frameworks are negatively affected by

inefficient data allocation, management, and task scheduling protocols. These negative attributes

are exacerbated for both graph algorithms and clustering. This design incurs heavy network traffic

owing to data shuffling and centralized master-worker designs.

A current trend for hardware design scales up a single machine, integrating large memories

and using solid-state storage devices (SSDs) to extend memory capacity. This conforms to the node

design for supercomputers [15]. Recent findings [16,17], show that increasingly large graph analytics

tasks can be done on a small fraction of the hardware, at less cost, as fast, and using less energy

on a single shared-memory node. As such, we advocate for the SEM approach to graph library

development.

Our findings on scalable clustering reveal similar structure as graph analytics though to

a lesser degree. We discover that there is need for a fully inclusive hybridized design that encom-

passes fully in-memory, SEM and distributed capabilities. Doing so permits users to select both

the application performance and scalability requirements. A core argument we develop is that most

clustering frameworks neglect to optimize computation within single machines before distributing

computations. This thesis demonstrates the massive performance improvements, and resource sav-

ings foregone by doing so.

We present Graphyti, a vertex-centric SEM graph library developed for use in Python.

Through illustrative examples implemented within Graphyti, we present guiding principles and tech-

niques which serve to lower the barrier of entry for the development of state-of-the-art, vertex-centric,

SEM applications. We demonstrate the practical application of these principles through Graphyti and

release it as an extensible library. We demonstrate that when optimized, SEM graph applications

3
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can perform on par and even surpass the performance of popular distributed graph frameworks.

We then present clusternor, a scalable hybridized clustering framework and library. cluster-

nor prefers scale-up computation on shared-memory multicore machines in order to eliminate network

traffic and perform fine-grained synchronization. Once datasets outgrow in-memory computation

and SEM, it is then appropriate to perform distributed computation. clusternor provides this capa-

bility while still optimizing per-machine computation. clusternor introduces a novel NUMA-aware

data partitioning scheme and scheduler for MM algorithms that is applicable in all memory set-

tings. Additionally, clusternor develops a hierarchical clustering model that eliminates recursion and

maximizes cache line utility. Lastly, clusternor introduces an algorithmic advancement on Elkan’s

triangle inequality algorithm (TI) [18] for algorithms that contain k-means. We develop the Minimal

Triangle Inequality (MTI) algorithm that scales to large-scale datasets.

1.2 Background

We describe the architecture building blocks upon which this thesis relies. We begin

by describing SAFS (Section 1.2.3) the file system on which FlashGraph (Section 1.2.4) is built.

FlashGraph is a fundamental component that we modify and utilize for the development of Graphyti

(Chapter 2), and the Semi-External-Memory capabilities of clusternor (Chapter 4).

We then describe the algorithmic building blocks upon which this thesis relies. We de-

scribe the k-means [19] algorithm in Section 1.2.5. This core algorithm is the basis upon which

we develop clusternor (Chapter 4). A core argument we develop is that k-means is fundamental to

many highly utilized clustering algorithms today. As such, we develop the clusternor system based

on this argument. Finally, we describe the triangle inequality with bounds [18] computation reduc-

tion/pruning technique for k-means in Section 1.2.5. This thesis develops an asymptotically more

efficient variant of this algorithm.

4
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1.2.1 Nomenclature

Throughout this thesis, the following conventions are assumed. Let N be the set of all

natural numbers. Let R be the set of all real numbers. Let v⃗ be a d-dimensional vector in dataset

V⃗ with cardinality, |V⃗ | = n. Let j be the number of iterations of the algorithm we perform. Let

t ∈ {0...j} be the current iteration of the algorithm. Let c⃗ t be a d-dimension vector representing the

mean of a cluster (i.e., a centroid), at iteration t. Let C⃗t be the set of the k centroids at iteration t,

with cardinality |C⃗t| = k. In a given iteration, t, we can cluster any point, v⃗ into a cluster c⃗ t.

For some algorithms, we use Euclidean distance d as the dissimilarity metric between any

v⃗ and c⃗ t, such that d(v⃗, c⃗ t) =√
(v⃗1 − c⃗ t

1)
2 + (v⃗2 − c⃗ t

2)
2 + ...+ (v⃗d−1 − c⃗ t

d−1)
2 + (v⃗d − c⃗ t

d)
2.

Let f(c⃗ t|t > 0) = d(c⃗ t, c⃗ t−1). Finally, let T be the number of threads of concurrent

execution, P be the number of processing elements available (e.g. the number of cores in the

machine), and N be the number of NUMA nodes.

1.2.2 Non-Uniform Memory Access Architectures

NUMA machines (Figure 1.1) constitute the majority of multi-socket machines within

commodity grade servers today. NUMA machines are characterized by NUMA zones associated

with each socket. A chip with CPUs on a socket within a NUMA zone has affinity to the memory

within that particular zone. CPUs with affinity to a particular zone enjoy reduced latency and

increased throughput for memory access compared to accessing memory banks within other NUMA

zones. Memory accesses to non-local memory banks constitute Remote Memory Accesses (RMA).

RMA is penalized because data must traverse through the NUMAlink interconnect before reaching

the NUMA node-local memory bank, and finally caches, where data must then traverse the caching

hierarchy before it is within registers accessible by the CPU. The latency and throughput degradation

due to RMA is referred to as “NUMA effects”. This work explores how frameworks can exploit NUMA

effects to their advantage to improve application performance without sacrificing parallelism, load
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balancing and scalability.

NUMA Node 0
Shared L3 Cache

CPU0 CPU1

CPU2 CPU3

Memory Bank 0

NUMA Node 1
Shared L3 Cache

CPU4 CPU5

CPU6 CPU7

Memory Bank 1

NUMAlink

Interconnect

Figure 1.1: An example of a 2 NUMA node (2 Socket), 8 CPU machine.

1.2.3 Set-Associative File System (SAFS)

SAFS [20] is a file system developed to extract maximal file system IOPS from hardware

arrays of solid state drives (SSDs) in NUMA machines running Linux. SAFS introduces a novel page

caching design that overcomes the bottlenecks associated with traditional disk array solutions such

as distributed file systems and Redundant Arrays of Independent Disks (RAID). SAFS demonstrates

that inexpensive commodity hardware can produce performance comparable to that of customized

alternatives that are orders of magnitude more expensive. Additionally, SAFS introduces optimiza-

tions to mitigate the bottlenecks introduced by:

• lock contention in device drivers and the operating system.

• the lack of support for multicore NUMA processors and SSDs.

• the design of page caches and device drivers in Linux.

• the several layers within the Linux block subsystem that must be traversed for disk-parallel

I/O.
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• the lack of support for a unified page cache view for I/O merging even for Linux Asynchronous

I/O (AIO).

File Abstraction Interface

Data Mapping

SSD SSD

FS FS

Processor 0 Processor 1

SSD SSD

FS FS

Application Thread

SSD I/O thread

Callback Thread

Request

Request
Completion

Figure 1.2: The architecture and design of the SAFS.

FlashGraph [17], discussed in Section (1.2.4) relies on SAFS for high speed parallel I/O, I/O

merging and page caching to deliver state-of-the art performance for SEM applications. The SAFS

page cache delivers roughly 2X more user-perceived IOPS for applications, improving its suitability

for high-speed parallel random and sequential I/O.

1.2.4 FlashGraph

FlashGraph [17] is a SEM graph computation framework that places edge data on SSDs

and allows user-defined vertex state to be held in memory. FlashGraph partitions a graph then

exposes a vertex-centric programming interface that permits users to define functions written from

the perspective of a single vertex, known as vertex programs. Parallelization is obtained from running

multiple vertex programs concurrently. The vertex-centric interface was introduced by Google’s

Pregel engine [21] and became the most popular abstraction for graph parallelism [22–24].

The key differentiating component of FlashGraph is the addition of a semi-external memory
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user graph algorithms

asynchronous user-task I/O interface

SSD SSD SSD SSD

vertex tasks

graph engine

vertex-centric interface

vertex scheduler

vertex programs

SAFS page cache

Figure 1.3: The architecture and design of FlashGraph.

interface to the vertex-centric paradigm. The implication is that users must now encode I/O into

application development by specifically requesting egde data they require. FlashGraph then overlaps

I/O with computation to mask latency in data movement through the memory hierarchy, delivering

data to the page cache for consumption by applications. FlashGraph is also tolerant to in-memory

failures, allowing recovery in SEM routines through lightweight check-pointing.

Both SAFS and FlashGraph work to merge I/O requests when requests are made for data

located near one another on disk. This I/O merging amortizes the cost of accesses to SSDs. SAFS

directly exposes FlashGraph to its page cache, allowing vertex programs to access it when a vertex’s

requested data is available. The key components in the architecture of FlashGraph are illustrated

in Figure 1.3.

The programming interface for FlashGraph permits vertices to be in of four states:

• inactive: A vertex will not be processed by the graph engine in the upcoming iteration.

• active: A vertex will be processed by the graph engine in the upcoming iteration, at which

point it may request data residing on disk.

• running : A vertex’s requested data is within the page page of FlashGraph and can now be

8
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utilized within in the user defined run method.

1.2.5 k-means

K-means is an intuitive and highly popular method of clustering n points in d-dimensions

into k clusters. K-means maximizes within-cluster similarity and cross-cluster variance. The ob-

jective function being minimized by k-means is the residual sum of squares (RSS), i.e., the sum of

squared distances of each sample/data point from it’s nearest centroid:

RSSk =
∑
v⃗∈V⃗

|v⃗ − µ⃗|2, (1.1)

in which µ⃗ is the nearest centroid to any data point, v⃗.

The most popular synchronous variant of k-means is Lloyd’s algorithm [25]. Similar to

Expectation Maximization [26], Lloyd’s algorithm proceeds in two phases. However, k-means is a

Majorize-Minimization or Minorize-Maximization (MM) algorithm as it performs hard clustering, in

which each data point is assigned exactly one cluster. EM algorithms perform soft-clustering in which

each data point is assigned a probability of cluster membership. Phase one of k-means computes

the distance from each data point to each centroid (cluster mean). In phase two, we update the

centroids to be the mean of their membership. This proceeds until the centroids no longer change

from one iteration to the next. The algorithm locally minimizes within-cluster distance, for some

distance metric that often is Euclidean distance (Section 1.2.1).

1.2.6 Triangle Inequality with Bounds

Elkan’s algorithm for triangle inequality pruning with bounds (TI) [18] reduces potential

distance computations between data points and centroids in k-means. TI relies on the fact that for

any three points, x⃗, y⃗, z⃗:

d(x⃗, z⃗) ≤ d(x⃗, y⃗) + d(y⃗, z⃗). (1.2)
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Here we use Euclidean distance, but the algorithm guarantees correctness for any arbitrary

distance metric for which the inequality holds true.

Elkan proves that if x⃗ is a point and b⃗ and c⃗ are centroids:

If d(⃗b, c⃗) ≥ 2d(x⃗, b⃗), then d(x⃗, c⃗) ≥ d(x⃗, b⃗), (1.3)

additionally,

d(x⃗, c⃗) ≥ max(0,d(x⃗, b⃗)− d(⃗b, c⃗)) (1.4)

This completes the theoretical framework enabling TI.

The basis of TI derives from the observation that many distance computations performed

within k-means are redundant and can be obviated. TI achieves this by maintaining the following

data structures:

• an O(n) data point to nearest centroid distance upper bound vector

• an O(k2) centroid to centroid distance matrix

• an O(nk) data point to centroid lower bounds matrix

This method is extremely effective in pruning computation in real-world data, i.e. data

with multiple natural clusters. It is proved that in the limit the number of distance computations

when using TI is closer to n as compared with non-pruned k-means at nkj computations. The

algorithm provides strong guarantees of algorithmic equivalence. TI guarantees that the centroids

and cluster membership in each iteration will exactly match that of the non-pruned algorithm given

identical initializations.

The single fundamental drawback of the algorithm for large-scale datasets is the increase in

memory of O(nk) due to the data point to centroid lower bounds matrix. This storage requirement

limits the setting in which TI is suitable to relatively small datasets.
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1.3 Related Work

Today’s popular graph libraries [27–29] are flexible, but lack multithreaded support and

thus scalability. These represent the simplest case for application development because implemen-

tations are directly derived from algorithmic specifications. Optimizations within these libraries

revolves around efficient data structure design. As such, optimizations developed here represent a

small proportion of those applicable to the SEM setting. This is because developers can assume all

vertices are in-memory at all times obviating I/O.

Graph frameworks like Turi [22], Giraph [30], and Mahout [13] scale through distributed

processing in which datasets must fit in the aggregate memory of a cluster. Such frameworks use

vertex-centric or edge-centric computation abstractions. Libraries developed within these frame-

works are performance bottlenecked by network traffic. As such, optimizations focus on reducing

network I/O, neglecting memory consumption and NUMA effects. Finally, such frameworks utilize

process-level concurrency, obviating many of the shared-memory optimizations that are essential for

SEM library acceleration.

Some out-of-core graph frameworks [31–33] focus on memory minimization, streaming

datasets and thus provide scalability with minimal resources, but neglect performance. Applica-

tion optimization here differs from SEM because entire datasets are streamed to memory in each

algorithmic iteration. SEM instead permits O(n) data be held in-memory in addition to selective

I/O. This leads to greater opportunity for I/O reduction and caching optimization.

Other out-of-core frameworks rely on heavy graph format preprocessing and non-commodity

hardware like co-processors [34] and GPUs [35] to improve performance. Libraries developed in this

space focus on minimizing device to host and host to device I/O. Furthermore, the architecture,

memory hierarchy and processor density within co-processors vastly differ from that of CPUs. This

leads to programming patterns that are distinct from those that accelerate SEM applications on

CPUs.
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SEM frameworks are the most performant of out-of-core solutions. The vast majority of

which [17,36–41], like FlashGraph [17] require only commodity hardware. The key difference is that

within the SEM abstraction, vertices must now explicitly issue I/O requests for edge-related data.

Once requests are fulfilled and data are in memory, activated vertices are processed. Graphyti is built

on FlashGraph and exhibits application optimizations that are unique to SEM. The optimizations

are derived from core principles that we enumerate in Chapter 2 as a blueprint for developers on

which to build their own SEM applications.

Mahout [13] provides a machine learning library that combines canopy (pre-)clustering [42]

alongside MM-style algorithms to cluster large-scale datasets. Mahout relies on Hadoop! an open

source implementation of MapReduce [43] for parallelism and scalability. Map/reduce allows for

effortless scalability and parallelism, but little flexibility in how to achieve either. As such, Mahout

is subject to load imbalance in the second MM phase as this is generally an operation that can

utilize fewer processors than are available for computation. This results in skew in one of the two

MM phases.

MLlib is a machine learning library for Spark [44]. Spark imposes a functional paradigm

to parallelism allowing for deferred computation through the use of transformations that form a

lineage. The lineage is then evaluated and automatically parallelized. MLlib’s performance is highly

coupled with Spark’s ability to efficiently parallelize computation using the generic data abstraction

of the resilient distributed datasets (RDD) [45]. The in-memory data organization of RDDs does not

currently account for NUMA architectures, but many of the NUMA optimizations that we develop

could be applied to RDDs.

Popular machine learning libraries, such as Scikit-learn [46], ClusterR [47], and mlpack [48],

support a variety of clustering algorithms. These frameworks perform computation on a single

machine, often serially, without the capability to distribute computation in the cloud or perform

computation on data larger than size of the machine’s memory. clusternor presents a lower-level

API that allows users to distribute and scale many algorithms. Once implemented, Python and R
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bindings allow an algorithm to be called directly from user code.

Other works [49, 50] focus on developing serialized clustering approximations. Sophia-ML

uses a mini-batch application that uses sampling to reduce the cost of Lloyd’s k-means algorithm (also

referred to as batched k-means) and stochastic gradient descent k-means [50]. Sophia-ML’s target

application is online, real-time applications. We demonstrate that clusternor can handle larger batch

sizes than possible with Sophia-ML as we develop a parallel, and thus more scalable and performant

mini-batch algorithm. Shindler et al [49] developed a fast approximation that addresses scalability

by streaming data from disk sequentially, limiting the amount of memory necessary to iterate. This

shares some similarity with the SEM capability of clusternor, but is designed for a single processor,

whereas we optimize for both memory reduction and parallelism.

Euclidean distance (Section 1.2.1) defines a metric space and is commonly used in MM-style

algorithms, like k-means, for computing the difference between feature-vectors. Given k clusters

and a dataset V⃗ ∈ Rnxd, k-means assigns a cluster , ci, i ∈ {1...k} to each data point vi. Elkan

proposes the use of the triangle inequality (TI) with bounds [18], to reduce the number of distance

computations in k-means to fewer than O(kn) per iteration. TI determines when the distance of

data point, vi, that is assigned to a cluster, ci, is far enough from any other cluster, cx, x ∈ {1..k}−i,

so that no distance computation is required between vi and cx. This method is extremely effective in

pruning computation in real-world data, i.e. data with multiple natural clusters. The method relies

on a sparse lower bound matrix of size O(nk). Yinyang k-means [51] develop a competitor pruning

technique to TI that maintains a lower-bound matrix of size O(nt), in which t is a parameter

and t = k/10 is generally optimal. Yingyang k-means outperforms TI by reducing the cost of

maintenance of their lower-bound matrix. Both Yinyang k-means and TI suffer from scalability

limitations because the lower-bound matrix increases in-memory state asymptotically.
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Graphyti

2.1 Introduction

Graph datasets exceed the in-memory capacity of most standalone machines. Traditionally,

graph frameworks have overcome memory limitations through scale-out, distributing computing.

However, with hardware advancements in multi-core NUMA machines, and fast external memory

storage devices like NVMe SSDs, framework developers strongly embraced the semi-external memory

(SEM) [52] paradigm for graph analytics.

A large number of frameworks [17,36–40] aimed at reducing overhead from distributed data

have adopted single-node scale-up computation. FlashGraph [17] was the first to adopt the SEM

model for vertex-centric processing. In SEM O(m) data resides on disk and O(n) data in memory,

for a graph with n vertices and m edges.

For developers, this adds complexity because they must explicitly encode I/O within ap-

plications. We present key principles that are critical for application developers to adopt in order

to achieve state-of-the-art performance, while minimizing I/O and memory for algorithms in SEM.

We present Graphyti, an extensible parallel SEM graph library built on FlashGraph and available

in Python via pip as graphyti. In SEM Graphyti achieves 80% of the performance of in-memory

14
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(b) Graphyti Architecture.

SAFS

Async I/O interface

FlashGraph Engine

Vertex-centric Interface

FlashGraph Graphyti Library

Python Graphyti Interface

External Memory Devices

class vertex {
  // entry point (runs in memory)
  void run(engine&);
  // per vertex computation
  void run_on_vertex(engine&,vertex&);
  // process a message
  void run_on_message(engine&, msg&);
  void run_on_iteration_end(engine&);
}; 

(a) FlashGraph Programming Interface.

Figure 2.1: The programming interface of FlashGraph and architecture of Graphyti.

execution and retains the performance of FlashGraph, which outperforms distributed engines, such

as PowerGraph [53] and Galois [24].

2.2 Architecture

Graphyti provides python bindings and a C++ library that runs on the FlashGraph engine.

FlashGraph builds upon the SAFS userspace file system [20] that performs asynchronous parallel I/O

from external memory devices. SAFS is distributed and installed transparently with FlashGraph.

Figure 2.1 shows the C++ FlashGraph programming interface and architecture.

2.3 Principles

We present six representative algorithms that demonstrate the principles that are critical

to realize state-of-the-art performance for SEM vertex-centric applications. The patterns in these

algorithms serve as a blueprint for the developers of other SEM algorithms. Each subsection (2.3.1
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– 2.3.6) describes an algorithm followed by the vertex-centric, SEM optimizations.

We conduct validation experiments on either the directed or undirected version of the

Twitter [54] graph dataset which contains 42 Million vertices and 1.5 Billion edges of size 14 GB.

All experiments require no more than 4 GB of memory of which 2 GB is used for FlashGraph’s

configurable page cache.

2.3.1 PageRank

The PageRank [55] algorithm identifies vertices of high importance in a graph. The algo-

rithm assigns a higher rank to vertices referenced by other high ranking vertices as follows:

R(u) = c
∑
v∈Bu

R(v)

Nv
, (2.1)

in which R(x) is the PageRank of vertex x, Bx is the set of all inward pointing neighbors of vertex

x, c is a normalization factor, and Nx is the number of outward pointing neighbors of vertex x.

Traditionally, developers adopt the following algorithm for vertex-centric interfaces:

1. gather in-edge neighbor PageRanks.

2. compute a vertex’s updated PageRank.

3. if the updated PageRank value surpasses a predefined threshold, multicast out-bound neighbors

informing them to activate.

We refer to this as the PR-pull algorithm and it is utilized by both Google’s Pregel [21]

and Apple’s Turi [22]. In the pull model vertices extract information from their neighbors.

When developing the application for SEM we must prioritize I/O minimization. We instead

adopt a push (PR-push) model as follows:

1. compute a vertex’s PageRank.
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2. if a vertex’s current PageRank exceeds a predefined threshold, multicast its PageRank to its

out-bound neighbors.

Limit superfluous data reads: The key insight is that PR-pull often activates vertices

and requests data for neighbors whose PageRank has already converged. PR-push instead computes

a delta then sends messages only activating the minimal subset of vertices necessary, though possibly

many times in a single iteration.

Vertex activation, processing and the superfluous I/O reads degrade the performance of

PR-pull. Even though PR-push and PR-pull share the same upper bound of messaging complexity

(O(m2)), on average PR-push sends fewer messages, reducing I/O and improving performance.

Figure 2.2 demonstrates a reduction of I/O by a factor of 1.8, and improvement in runtime of 2.2.

Furthermore, PR-push reduces I/O read requests by a factor of nearly 5. Finally, a reduction in

messages leads to reduced burden on FlashGraph to load balance message queues for worker threads.
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Read Request
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PR-push

Figure 2.2: Runtime, Read I/O, I/O requests, and thread context switches of PR-push when com-

pared with PR-pull.

2.3.2 Coreness Decomposition

Coreness decomposition extracts a maximal subgraph in which each vertex has at least

degree kmax. The algorithm proceeds by iteratively deleting vertices (and adjacent edges), beginning
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with those with degree 0 until kmax. Deleted vertices notify neighboring vertices to reduce their

degree until only vertices with a coreness of ≥ kmax remain. The optimizations we employ to improve

the performance of coreness highlight the following core principles:

Minimize messaging: Graphyti’s coreness adopts a hybrid messaging discipline inspired

by guided schedulers. Almost all vertices will need to modify their degree and inform neighbors of

their deletion in early iterations in natural graphs. During this phase, multicast messages are most

efficient. As the graph becomes sparser, multicast messages incur higher overhead because many

neighboring vertices with lower coreness values are already deleted. At this juncture, point-to-point

messages greatly reduces messaging overhead, improving runtime as shown in Figure 2.3. To facilitate

this, the coreness application maintains a distribution over all remaining vertices to determine when

each one should should switch to point-to-point messaging. We empirically determine that once

a vertex has 10% of its original degree, point-to-point messaging improves the time necessary to

process a single vertex by an order of magnitude.

Algorithmically prune computation: At the completion of a coreness iteration, ki,

in which ki < kmax, as stated, the algorithm would proceed to ki+1, ki+2 and so forth. Graphyti

prunes unnecessary ki values by observing the next possible core value is at least kmin(deg(α))∀α ∈ A,

in which deg the degree of a vertex, α ⊂ V and V is the set of all vertices in the graph. This

optimization alone improves performance by an order of magnitude (Figure 2.3).

2.3.3 Graph Diameter

Graph diameter is defined for connected graphs as the maximum of the all pairs shortest

paths in a graph. Exact graph diameter is of computation complexity O(n3) and is thus computa-

tionally challenging for any framework. As such, Graphyti computes an estimated diameter using a

series of breadth-first searches from pseudo-peripheral vertices i.e., ones as close to the extremities of

the graph as possible. Diameter estimation optimization highlights the following guiding principle:

Decouple algorithm development from framework constructs: Though simple,
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Figure 2.3: The relative factor of runtime performance improvement of Graphyti’s coreness com-

pared to an unoptimized implementation i.e., one with only point-to-point messages and no pruning.

Pruning + hybrid messaging is 2.3X faster than pruning alone and 60X faster than unoptimized.

this algorithm provides developers with the opportunity to design a more efficient vertex-centric

application. A straightforward way to perform this is to repeat the following until all reachable

vertices are visited:

1. select a peripheral source vertex.

2. perform a parallel BFS from the selected vertex.

3. update neighboring vertex distances to one greater than their nearest neighbor in parallel.

We refer to this as uni-source BFS. This can be performed multiple times with different

source vertices in order to attempt to find larger diameters. Though parallel, this algorithm limits

the potential amount of work each vertex performs in a single BFS iteration limiting CPU cache data

reuse, leading to more data stalls, and increasing the relative overhead of synchronization barriers at

each BSP step. This is because uni-source BFS alone is computationally inexpensive, leading to no

edge data reuse when brought into memory. This results in increased data stalls as the application

becomes heavily I/O bound.
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Source vertex BSP barrier

(a) Uni-source parallel BFS (b) Multi-source parallel BFS 

Figure 2.4: Uni-source BFS (left) is susceptible to terminal paths due to sink vertices and loops.

Multi-source BFS (right) increases page cache hits by improving data reuse because multiple paths

activate the same vertices in each BFS frontier.

Graphyti rethinks the computation to minimize the overhead of each BSP step, by perform-

ing concurrent parallel breadth-first searches (Figure 2.4). We refer to this as multi-source BFS. This

strategy mitigates the effect of vertices with already discovered neighbors and sink vertices, both

of which result in the termination of a particular path. Additionally, this reduces cache thrashing,

because requested data that are now in-memory have greater opportunity for reuse. Finally, this

strategy lowers the overhead of global barriers by performing significantly more work within each

iteration when compared with uni-source BFS. In multi-source BFS each vertex holds a bitmap

indicating which BFS path(s) it is on and updates state appropriately. Figure 2.5b demonstrates

the performance improvements and I/O reduction induced by these optimizations.

2.3.4 Betweenness Centrality (BC)

Betweenness centrality measures the importance of a vertex in a network by computing the

number of shortest paths in which a vertex participates. The most efficient algorithm to compute

betweenness centrality [56] is an iterative algorithm with computation complexity O(nm+n2 log n),
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(a) Quantity of data read from SSDs when performing parallel uni-source BFS compared with that of parallel
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(b) Runtime performance of parallel uni-source BFS compared with that of parallel multi-source BFS used

in diameter.

Figure 2.5: I/O and Runtime performance of parallel multi-source BFS used in Graphtyi’s diameter

application, compared to performing parallel uni-source BFS.

for weighted graphs.

Betweenness centrality has three phases per iteration, (i) breadth-first search (BFS) from

a source vertex (ii) backward propagation (BP), and (ii) an accumulation phase (ACC). We derive

the following principles:
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Develop applications asynchronously: Graphyti adopts a multi-source betweenness

centrality strategy, similar to that of the graph diameter application. The existence of 3 phases,

however, provides the opportunity for further application optimization. The observation is that

developers can further improve parallel efficiency by eliminating phase synchrony for the multiple

sources. Vertex activation messages now contain metadata for both the current path(s) and the

current phase(s).

Graphyti’s betweenness application separates algorithmic design from the innate BSP

paradigm within all vertex-centric frameworks. Asynchronous design improves runtime by over

10% when compared with just multi-source and 40% when compared to uni-source at 32 sources.

Figure 2.6. Furthermore, multi-source asynchronous betweenness centrality reduces the amount of

data brought to disk by a factor of 4 when 32 concurrent searches are performed.

Utilize functional constructs: Vertex-centric frameworks provide abstractions over

threads that are accessible to developers. Each partition thread in FlashGraph is a mechanism to

represent contention-free structures. As such, associative operations such as functional reductions

(e.g., max, min, sum etc.) are naturally supported without resource contention. The BFS phase,

computes a global per-source-vertex max. The ACC phase, computes a global per-source-vertex add.

Both phases utilize this optimization.

2.3.5 Triangle Counting

Triangle counting is a topological structure discovery algorithm concerned with determining

the number of pairs of vertices that share a common neighbor. When performed in SEM the com-

plexity is O(n3). In SEM, the fundamental task is the comparison of neighboring vertex adjacency

lists in order to determine the intersection, which constitutes the discovery of triangles. Therefore, a

vertex requests neighbor adjacency lists, when each list hits the page cache the vertex performs the

intersection computation. We discount alternative implementations in which the state of a vertex

can exceed the size of its own edge list and that of one other neighbor because they would violate
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(b) Multi-source and multi-source + async increase the ratio of cache hits per accessed page.

the SEM limited memory usage guarantee.

Optimize in-memory operations: Once data has been brought into memory it is es-

sential to not only reuse cached data, but perform in-memory optimizations. The following is done

to accelerate the intersection search operation:

• Store a running vertex’s adjacency list in sorted order. This enables the use of both binary

search and sequential scans when appropriate.

• Store the adjacency list of a vertex with degree higher than a certain threshold in a hash table
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Figure 2.6: Multi-source asynchronous betweenness centrality reduces context switching, improves

cache utility and lowers runtime compared to multiple uni-source and multi-source BC alone.

to improve lookup performance.

• Perform a restarted binary search in the event an element is not found. A restarted binary

search looks for the next item using the end point of the previous search. This is possible

because edge lists are stored in sorted order.

• Order the adjacency list enumeration appropriately. This choice will lead to either forward

or reverse traversal of edge lists being more efficient. In our case, reverse iteration leads to

an improvement of 1.7X in search. This is because the discovery of triangles is performed by

higher degree vertices leading to fewer requests for edge lists of lower degree vertices.

Figure 2.7 displays the improvement we obtain from each of the in-memory optimizations.

After all optimizations are applied Graphyti’s triangle counting application performs on average two

orders of magnitude faster.

24



CHAPTER 2. GRAPHYTI

0

1500

3000

4500

6000

R
un

ti
m

e
(s

ec
)

Optimization Level

Scan
Scan + Bin Search

Scan + Bin Search + Hash
Scan + Rev Bin Search + Hash

Figure 2.7: Incremental optimizations applied Graphyti’s Triangle counting application. The appli-

cations is two orders of magnitude faster than a scan adjacency list intersection implementation.

2.3.6 Louvain Modularity

Louvain modularity [57] is an agglomerative community detection algorithm that aims to

maximize the density of edges within communities and minimize those outside. Modularity for any

pair of communities i and j is computed as follows:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(ci, cj), (2.2)

in which m is the sum of all graph edge weights, Aij is the edge weight between vi and vj , ki and kj

are the weighted sum of edges between vi and vj , δ is a function that differentiates one community

from the next.

We adopt the most popular two phase, greedy algorithm [57] because exact solutions are

computationally infeasible for very large networks. A vertex changes community to another that

contains the maximum positive modularity among neighboring communities. For a vertex i, moving

to community, C, the change in modularity is as follows:

∆Q =

[
ζ + kin
2m

−
(
λ+ ki
2m

)2]
−
[

ζ

2m
−

(
λ

2m

)2

−
(

ki
2m

)2]
, (2.3)

in which ζ is the weight of links inside C, kin is the sum of the weights of edges from i to C, and λ
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is the sum of weights of edges within C.
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(a) The breakdown of runtime for Graphyti’s louvain.
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(b) The breakdown of performance of Louvain when computed through progressive materializations of com-

munities.

Figure 2.8: Graphyti’s optimized louvain routine runs 2 X faster than a traditional one with physical

graph modifications.

This algorithm poses challenges for SEM frameworks because graph modification is typically

extremely expensive, and often not supported. To overcome this, we encourage developers to adopt

the following principles:

Avoid graph structure modification: Edge data are on disk, thus modifying the graph
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is prohibitively expensive. Furthermore, write amplification within SSDs causes their degradation

and premature failure if writes are performed frequently. With SEM applications, modification

can easily surpass the algorithmic runtime due to disk write throughput typically being orders of

magnitude slower than memory throughput. We demonstrate this in Figure 2.8b. Accordingly,

we circumvent modification through (i) lazy deletion and (ii) vertex nomination of a community

representative vertex. We achieve this by maintaining a partitioned bitmap with lookups for deleted

vertices in addition to an index for vertex-to-community lookups. This ensures all messages are

appropriately routed to the correct vertex without involving the graph engine or requiring messages

to be forwarded.

Figure 2.8b represents the “best-case scenario” for an SEM implementation that physically

modifies the graph. We maintain a RAMDisk in fast DDR4 to hold the new physical state of the

graph prior to striping edge data across disks during the SAFS ingest procedure. Despite this, we

observe Graphyti’s louvain will still perform twice as fast (Figure 2.8a). We trade-off graph structure

modification with metadata updates and messaging. Naturally, as the algorithm progresses to deeper

levels, more vertices merge, resulting in fewer clusters. This reduces the cost of traditional graph

modification, while conversely increasing the overhead of messaging and metadata maintenance for

Graphyti’s louvain. Accordingly, Graphyti’s louvain design capitalizes most during early levels to

attain its performance gains.

2.4 Software

Graphyti is an open source library available through Python’s pip package manager under

the name graphyti. To extend the library, developers can visit

https://github.com/flashxio/Graphyti. Furthermore, we provide Docker integration for developers

to reduce the barrier to entry.
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2.5 Conclusions

We present key principles identified as critical for state-of-the-art application performance

for vertex-centric semi-external-memory graph algorithms. Through illustrative examples within

Graphyti we demonstrate the positive performance effects of adoption of these principles. At the

core of the applications and principles are novel advancements in fine-grain I/O management for

graph analytics.

The optimizations we develop are NUMA sensitive. Because FlashGraph provides NUMA

sensitive partitioning and vertex scheduling for graphs, we develop our optimizations to capitalize

on higher I/O throughput rates and lower latency from NUMA local access. As such, optimizations

we develop that improve cache reuse, eliminate cache thrashing and enable sequential access leading

to compounded gains in improvement in performance due to circumventing negative NUMA effects.

The themes of NUMA sensitivity, efficient caching, scheduling and computation pruning are recurrent

within this thesis and are revisited from the perspective of divisive community detection within

Chapters 3 and 4.

This work advances the knowledge of SEM application developers while providing a scal-

able, open source, extensible tool. Graphyti’s final contribution is the improvement of accessibility of

SEM graph applications to users by providing a high level Python interface. Throughout this thesis

we continually provide scalable utilitarian tools and packages that leverage the fine-grain NUMA

sensitive I/O optimizations similar to the graphyti package.
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knor: k-means Algorithmic and

Computation Advancements for

Multicore NUMA Machines

3.1 Introduction

K-means is one of the most influential and utilized unsupervised machine learning algo-

rithms. Its computation limits the performance and scalability of many statistical analysis and

machine learning tasks. With the popularity of deep neural networks soaring, k-means remains rel-

evant as a critical component within unsupervised deep learning [58, 59]. K-means enables the fast

computation of (approximate) nearest neighbor search [60], representation learning [61], computer

vision [62]i, dimensionality reduction and manifold learning [63]. Finally, k-means has two desirable

properties that generalize the optimization strategies we develop to other relevant algorithms:

1. k-means forms the basis upon which many popular clustering algorithms [50,64–69] are built.
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2. The Majorize-Minimization or Minorize-Maximization (MM) two-step patten is common to

many popular machine learning algorithms [26,70–72].

We rethink and optimize k-means in terms of modern NUMA architectures. We develop

a novel parallelization scheme that delays synchronization barriers, and minimizes superfluous com-

putations while maintaining practicality. We detail algorithmic contributions and later demonstrate

their capacity to enable state-of-the art performance for k-means in all memory settings. We then

demonstrate that when combined with framework optimizations, our k-means application outper-

forms distributed commercial products like H2O, Apple’s Turi (formerly GraphLab) and Spark’s

MLlib, by more than an order of magnitude for datasets of 107 to 109 points.

3.2 Algorithmic advancements

We develop algorithmic optimizations applicable to k-means and by extension other al-

gorithms embodying the MM computation paradigm. To achieve state-of-the-art performance on

multi-core NUMA machines, we maximize parallel processing (Section 3.2.1) and minimize super-

fluous computations while maintaining practical storage bounds (Section 3.2.2).

3.2.1 Barrier Minimization

We minimize synchronization barriers for algorithms in which (all or parts of) the two

M-steps can be performed simultaneously. We maintain per-thread data structures and compute

partial-aggregations that are finalized in a parallel reduction operation at the end of the computation.

All algorithms that utilize k-means have this property. Our implementation modifies the most

popular synchronous algorithm for k-means, Lloyd’s algorithm [25]. The result is a parallelized,

barrier-minimized and NUMA-aware algorithm we refer to as “||Lloyd’s”.

||Lloyd’s reduces factors limiting parallelism in a naïve parallel Lloyd’s algorithm. Tradi-

tionally, Lloyd’s operates in two-phases each separated by a global barrier as follows:
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(a) Ground truth solution.
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(b) Iteration 2 of k-means.
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(c) Iteration 4 of k-means.
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(d) Iteration 8 of k-means.

Ground truth cluster centroids
Computed cluster centroids
Data points

Figure 3.1: The k-means algorithm on the normalized petal and sepal areas of the 3 classes of flowers

in the iris dataset. Each class contains 50 samples. K-means converges with over 90% accuracy

within 8 iterations.

1. Phase I: Compute the nearest centroid, µ⃗t to each data point, v⃗, at iteration t.

2. Global barrier.

3. Phase II: Update each centroid, for the next iteration, c⃗ t+1 to be the mean value of all points

nearest to it in Phase I.

31



CHAPTER 3. KNOR

4. Global barrier.

5. Repeat until converged.

Naïve Lloyd’s uses two major data structures; A read-only global centroids structure, c⃗ t, and a

shared global centroids for the next iteration, c⃗ t+1. Parallelism in Phase II is limited to k threads

because c⃗ t+1 is shared. As such, Phase II is plagued with substantial locking overhead because

of the high likelihood of data points concurrently attempting to update the the same nearest cen-

troid. Consequently, as n gets larger with respect to k this interference worsens, further degrading

performance.

||Lloyd’s retains the read-only global centroid structure c⃗ t, but provides each thread with

its own local copy of the next iteration’s centroids. Thus we create T copies of c⃗ t+1. Doing so

means ||Lloyd’s merges Phase I and II into a super-phase and delays the barrier (Step 3 above).

The super-phase concurrently computes the nearest centroid to each point and updates a local

version of the centroids to be used in the following iteration. These local centroids can then be

merged in parallel through a reduction operation at the end of the iteration. ||Lloyd’s trades-off

increased parallelism for a slightly higher memory consumption by a factor of O(T ) over Lloyd’s.

This algorithm design naturally leads to lock-free routines that require fewer synchronization barriers

as we show in Algorithm 1.

3.2.2 Minimal Triangle Inequality (MTI) Pruning

We relax the constraints of Elkan’s Algorithm for triangle inequality pruning (TI) [18] by

removing the the need for the lower bound matrix of size O(nk). Omitting the lower bound matrix

means we forego the opportunity to prune certain computations. We accept this tradeoff in order

to limit memory consumption. Section 3.2.2 empirically demonstrates on real-world data that: (1)

MTI pruning efficacy is comparable to that of TI and (2) as the number of clusters, k, increases, the

performance of MTI approaches that of TI while using a fraction of TI’s memory. MTI prunes an

32



CHAPTER 3. KNOR

Algorithm 1 || Lloyd’s algorithm

1: procedure ||means(V⃗ , C⃗t, k)

2: ⃗ptCt ▷ Per-thread centroids

3: ⃗clusterAssignmentt ▷ Shared, no conflict

4: tid ▷ Current thread ID

5: parfor v⃗ ∈ V⃗ do

6: dist =∞

7: µ⃗t = INVALID

8: for c⃗ t ∈ C⃗t do

9: if d(v⃗, c⃗ t) < dist then

10: dist = d(v⃗, c⃗ t)

11: µ⃗t = c⃗ t

12: end if

13: end for

14: ⃗ptCt[tid][µ⃗t] += v⃗

15: end parfor

16: clusterMeans = mergePtStructs( ⃗ptCt)

17: end procedure

18: procedure mergePtStructs( ⃗vectors)

19: while | ⃗vectors| > 1 do

20: PAR_MERGE( ⃗vectors) ▷ O(T logn)

21: end while

22: return vectors[0]

23: end procedure
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average of 84% of distance computations pruned by TI, with an average reduction in performance

of only 15%.The drastic memory reduction achieved by MTI far outweighs the minor performance

loss. MTI makes pruning tractable for datasets that were previously intractable using TI in which

the lower bound matrix quickly consumes more memory than the data, specifically when k > d.

With O(n) memory, we implement three of the five [18] pruning clauses in an iteration of k-means

using MTI. Let ut = d(v⃗, µ⃗t)+f(µ⃗t), be the upper bound of the distance of a sample, v⃗, in iteration

t from its assigned cluster µ⃗t. Finally, we define U to be an update function such that U(ut) fully

tightens the upper bound of ut.

Clause 1: if ut ≤ mind(µ⃗t, c⃗ t ∀ c⃗ t ∈ C⃗t), then v⃗ remains in the same cluster for the current

iteration. For semi-external memory, this is extremely significant because no I/O request is made

for data.

Clause 2: if ut ≤ d(µ⃗t, c⃗ t ∀ c⃗ t ∈ C⃗t), then the distance computation between data point v⃗ and

centroid c⃗ t is pruned.

Clause 3: if U(ut) ≤ d(µ⃗t, c⃗ t ∀ c⃗ t ∈ C⃗t), then the distance computation between data point v⃗ and

centroid c⃗ t is pruned.

MTI vs. TI pruning

We empirically determine the efficacy of our Minimal Triangle Inequality algorithm in

comparison to Elkan’s Triangle Inequality with bounds algorithm on the k-means application. Figure

3.2 presents our findings on Friendster-32, a real-world dataset derived from a natural graph that

follows a power-law distribution in connectivity. This dataset is representative of many real-world

datasets studied today.

Figure 3.2 demonstrates that MTI is comparable to TI in computation pruning capacity.

MTI is within 15% of the pruning ability of TI. Furthermore, Figure 3.2 shows that as the number

of clusters increase, MTI performance rapidly approaches that of TI. Finally, Figure 3.2 highlights
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MTI’s constant memory consumption with respect to the number of clusters. We contrast this with

TI in which memory consumption grows proportionally with the number of clusters, k, making it

infeasible for many practical applications. Finally, the cost of storage and index lookups for TI ad-

versely affects its runtime, especially as k increases, making it unsuitable for large-scale applications.
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Figure 3.2: Comparison of the pruning efficacy, memory consumption and runtime performance of

MTI vs. TI on the Friendster-32 dataset using k-means.

3.3 Software

The advancements to k-means developed in Chapter 3 are further generalized in Chapter

in 4. We begin by developing the k-means application and publicly release it as a standalone

application for in-memory, semi-external memory, and distributed processing of k-means. We are

an open source project available at https://github.com/flashxio/knor. The in-memory capabilities

are provided transparently to users on the Python package manager pip and the R programming

language manager CRAN under then name knor (k-means NUMA Optimized Routines).
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3.4 Conclusion

We rethinking Lloyd’s algorithm for modern multiprocessor NUMA architectures through

memory partitioned, conflict free data structures and the delay and minimization of critical regions.

We formulate a minimal triangle inequality pruning technique (MTI) that is a relaxation of the

Elkan’s triangle inequality with bounds algorithm. MTI’s pruning capacity is the first practical ap-

proach at large-scale computation pruning for k-means. In addition to inheriting all the theoretical

guarantees of Elkan’s triangle inequality, MTI also respects semi-external memory resource consump-

tion bounds. This property enables the acceleration of the knor library and clusternor framework,

described in Chapter 4.
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clusternor: A NUMA-Optimized

Clustering Framework

4.1 Introduction

We build upon the algorithmic advancements described in (Chapter 3) and generalize the

computation model to all MM clustering algorithms through clusternor. We rethink the paralleliza-

tion of clustering for modern non-uniform memory architectures (NUMA) to maximize independent,

asynchronous computation. We defer barriers, reduce remote memory accesses, and maximize cache

reuse.

Clustering algorithms are iterative and have complex data access patterns that result in

many small random memory accesses. We recognize the performance of parallel implementations

suffer from synchronous barriers for each iteration and skewed workloads. To address these short-

comings, we present the Clustering NUMA Optimized Routines (clusternor) extensible parallel frame-

work that provides algorithmic building blocks. The system is generic, we demonstrate nine modern

clustering algorithms that have simple implementations. clusternor includes (i) in-memory, (ii) semi-
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external memory, and (iii) distributed memory execution, enabling computation for varying memory

and hardware budgets. clusternor provides a uniform programming interface with facilities for hier-

archical, non-hierarchical, and linear algebraic classes of algorithms.

4.2 Applications

To motivate design decisions we select nine popular clustering algorithms that exhibit

hierarchical, non-hierarchical and linear algebraic formulations for evaluation. We then implement

these algorithms to demonstrate the utility, extensibility and performance of clusternor. Finally, we

provide them as an open source library. We describe the algorithms below.

4.2.1 k-means

A detailed description exists in Section 1.2.5. An iterative partitioning algorithm in which

data, V⃗ , are assigned to one of k clusters based on the Euclidean distance, d, from each of the

cluster means c⃗ t ∈ C⃗t. A serial implementation requires memory of O(nd+ kd). The computation

complexity of k-means both serially and parallelized within clusternor remains O(knd). The asymp-

totic memory consumption of k-means within clusternor is O(nd+Tkd+n+ k2). The term T arises

from the per-thread centroids we maintain. Likewise, the O(n + k2) terms allow us to maintain

a centroid-to-centroid distance matrix and a point-to-centroid upper bound distance vector of size

O(n) that we use for computation pruning as described in Section 3.2.2. For SEM, the computation

complexity remains unchanged, but the asymptotic memory consumption drops to O(n + Tkd).

k-means minimizes the residual sum of squares objective function for each data point, v⃗:

RSSk =
∑
v⃗∈V⃗

|v⃗ − µ⃗|2, (4.1)

the selection of the nearest centroid to a data point is computed as the minimum euclidean distance,

d, of all clusters. This is computed as follows:
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min
∑
v⃗∈V⃗

||d(v⃗, c⃗ t)|| (4.2)

We utilize k-means as the baseline algorithm for optimization. We empirically demonstrate

that its optimization directly results in the optimization of other algorithms. As such, we utilize

the majority of Section 4.8 to demonstrate the performance of k-means, before turning to other

algorithms.

4.2.2 Spherical k-means (sk-means)

Spherical k-means (sk-means) [67] projects all data points, V⃗ , to the unit sphere prior

to performing the k-means algorithm. Unlike k-means, spherical k-means uses the cosine distance

function, dcos =
V⃗ ·C⃗t

||V⃗ ||||C⃗t||
, to determine data point to centroid proximity.

4.2.3 k-means++

We develop a standalone k-means++ [64] stochastic clustering algorithm that performs

multiple runs, r, of the k-means++ algorithm then selects the best run. The best run corresponds

to the run that produces the minimum RSS. The k-means++ algorithm shares both the memory

and computational complexity of k-means, but k-means++ chooses each new centroid c⃗ t from the

dataset through a weighted random selection such that:

C⃗ ← D(v⃗)
2∑

v⃗∈V⃗ D(v⃗)
2 , (4.3)

in which D(v⃗) is the minimum distance of a datapoint to the clusters already chosen.

4.2.4 Mini-batch k-means (mbk-means)

Lloyd’s algorithm is often referred to as batched k-means because all data points are eval-

uated in every iteration. Mini-batch k-means (mbk-means) [50] incorporates random sampling into
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each iteration of k-means thus reducing the memory cost of each iteration by a factor of B, the

batch size, to O(nkdB ) per iteration. Furthermore a parameter η = 1

C⃗t
is computed per centroid to

determine the learning rate and convergence. Batching does not affect the memory requirements of

k-means when run in-memory. In the SEM setting, the memory requirement is O(kndB ), reducing by

a factor of B. Finally, the update function is as follows:

C⃗t ← (1− η)Ct−1 + ηV⃗ (4.4)

4.2.5 Fuzzy C-means (fc-means)

Fuzzy C-means (fcm) [71] is an iterative ‘soft’ clustering algorithm in which data points

can belong to multiple clusters by computing a degree of association with each centroid. A fuzziness

index, z, is a hyper-parameter used to control the degree of fuzziness. Similar to k-means, the

computation complexity in the serial case is O(knd) per iteration, thus has the same asymptotic

complexity ofO(nd+Tkd+n+k2) when parallelized within the framework. Fuzzy C-means computes

J ∈ Rnxk:

J =

|N |∑
i=1

|C|∑
k=1

uz
ik||v⃗i − c⃗j ||2, 1 ≤ z < inf, (4.5)

in which uik is the degree of membership if v⃗i in cluster k.

4.2.6 k-medoids

K-medoids is a clustering algorithm that uses data point feature-vectors as cluster repre-

sentatives (medoids), instead of centroids like k-means. In each iteration, each cluster determines

whether to choose another cluster member as the medoid. This is commonly referred to as the swap

step and is NP-hard, with complexity O(n2d). This is followed by an MM step to determine cluster

assignment for each data point given the updated medoids, resulting in a complexity of O(n− k)2.

40



CHAPTER 4. CLUSTERNOR

We reduce the computation cost by implementing a sampled variant called (CLARA) [72] that is

more practical, but still has a high asymptotic complexity of O(k3 + nk).

4.2.7 Hierarchical k-means (H-means)

We implement a divisive version of k-means using clusternor’s hiearchical interface. All data

points begin in the same cluster and are partitioned recursively into two splits of their original cluster

in each iteration until convergence is reached. The computation complexity is O(nd+Tkd+n+4
B ), in

which the factor 4 is derived from the fact that we perform k-means with k = 2 centroids for each

partition/cluster.

4.2.8 X-means

X-means [68] is a form of divisive hierarchical clustering in which the number of clusters is

not provided a priori. Instead, X-means determines whether or not a cluster should be split using

Bayesian Information Criterion (BIC) [73]. Computationally, it differs from H-means (Section 4.2.7)

by an additional O(kn) step in which a decision is taken on whether or not to split after cluster

membership is accumulated. We build X-means on clusternor’s hiearchical interface.

4.2.9 Gaussian Means (G-means)

G-means is built on clusternor’s hiearchical interface and is identical to X-means in its

computation complexity and in that it does not require the number of clusters k as an argument.

G-means mostly varies from X-means in that it uses the Anderson-Darling statistic [74] as the test

to decide splits. The Anderson-Darling statistic performs roughly four times more computations

than BIC, despite having the same asymptotic complexity.
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4.3 In-memory design

We prioritize practical performance when we implement in-memory optimizations. We

make design tradeoffs to balance the opposing forces of minimizing memory usage and maximizing

CPU cycles spent on parallel computing.

Prioritize data locality for NUMA: As discussed in Section 1.2.2, NUMA, architectures

are characterized by groups of processors that have affinity to a local memory bank via a shared

local bus. Other non-local memory banks must be accessed through a globally shared NUMAlink

interconnect. The result is low latency accesses with high throughput to local memory banks, and

higher latency and lower throughput for remote memory accesses to non-local memory.

To minimize remote memory accesses, we bind every thread to a single NUMA node,

equally partition the dataset across NUMA nodes, and sequentially allocate data structures to the

local NUMA node’s memory. Every thread works independently. Threads only communicate or

share data to aggregate per-thread state as required by the algorithm. Figure 4.1 shows the data

allocation and access scheme we employ. We bind threads to NUMA nodes rather than specific

CPU cores because the latter is too restrictive to the OS scheduler. CPU thread-binding may cause

performance degradation if the number of worker threads exceeds the number of physical cores.

Customized scheduling and work stealing: clusternor customizes scheduling for algorithm-

specific computation patterns. For example, Fuzzy C-means 4.2.5 assigns equal work to each thread

at all times, meaning it would not benefit from dynamic scheduling and load balancing via work

stealing. As such, Fuzzy C-means invokes static scheduling. Conversely, k-means when utilizing MTI

pruning would result in heavy skew without dynamic scheduling and thread-level work stealing.

For dynamic scheduling, we develop a NUMA-aware partitioned priority task queue (Figure

4.6) to feed worker threads, prioritizing tasks that maximize local memory access and, consequently,

limit remote memory accesses. The task queue enables idle threads to steal work from threads bound

to the same NUMA node first, minimizing remote memory accesses. The queue is partitioned into T
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Thread T-1 data[(T-1)𝝰] … data[T𝝰]

: : :

Figure 4.1: The memory allocation and thread assignment scheme we utilize in memory on a single

machine or in the distributed setting. α = n/T is the amount of data per thread, β = T/N is the

number of threads per NUMA node, and γ = P/N is the number of physical processors per NUMA

node. Distributing memory across NUMA nodes maximizes memory throughput while binding

threads to NUMA nodes reduces remote memory accesses.

parts, each with a lock required for access. We allow a thread to cycle through the task queue once

looking for high priority tasks before settling on another, possibly lower priority task. This tradeoff

avoids starvation and ensures threads are idle for negligible periods of time. The result is good load

balancing in addition to optimized memory access patterns.

Avoid interference and defer barriers: Whenever possible, per-thread data structures

maintain mutable state. This avoids write-conflicts and obviates locking. Per-thread data are

merged using a parallel reduction operator, much like funnel-sort [75], when algorithms reach the

end of an iteration or the whole computation. For instance, in k-means, per-thread local centroids

contain running totals of their membership until an iteration ends when they are finalized through

a reduction.
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Figure 4.2: The NUMA-aware partitioned task scheduler. The scheduler minimizes task queue lock

contention and remote memory accesses by prioritizing tasks with data in the local NUMA memory

bank.

Effective data layout for CPU cache exploitation and cache blocking: Both per-

thread and global data structures are placed in contiguously allocated chunks of memory. Contiguous

data organization and sequential access patterns improve processor prefetching and cache line uti-

lization. Furthermore, we optimize access to both input and output data structures to improve

performance. In the case of a dot product operation (Figure 4.3), we access input data sequentially

from local NUMA memory and write the output structure using a cache blocked scheme for higher

throughput reads and writes. The size of the block is determined based on L1 and L2 cache specifi-

cations reported by the processor on a machine. We utilize this optimization in Fuzzy C-means.
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Figure 4.3: Data access patterns support NUMA locality, utilize prefetched data well and optimize

cache reuse through a cache blocking scheme.

4.4 Hierarchical design

clusternor rethinks computation and data access patterns for traditionally recursive algo-

rithms for the multicore NUMA setting. clusternor supports hierarchical clustering in which appli-

cations are written iteratively rather than recursively. Naïve implementations assign a thread to

each cluster and shuffle data between levels of the hierarchy (Figure 4.4a). This incurs a great deal

of remote memory access and non-contiguous I/O for each thread. clusternor avoids these pitfalls

by not shuffling data. Instead, threads are assigned to contiguous regions of memory. Figure 4.4b

shows the computation hierarchy in a simple two thread computation. This results in entirely local

and sequential data access, which enhances prefetching.

Data movement is eliminated at the cost of an increase in managed state during clustering.

We maintain a data-point to partition-identifier structure. The structure maps each data point

to a specific partition that contains cluster labels that are eventually assumed by the data point.

This design eliminates recursive calls, stack creation overhead during recursion, data movement and

random data accesses.
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(a) Naïve recursive parallel hierarchical clustering exhibits poor data locality, and non-contiguous data access

patterns.
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Figure 4.4: A naïve hierarchical implementation with unfavorable data access patterns compared to

clusternor. clusternor enforces sequential data access, naturally load-balances and maximizes use of

cache data.
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4.5 Semi-external Memory Design

We design a highly-optimized, semi-external memory module that targets scale-up com-

puting on multi-core NUMA machines, rather than distributed computing. With SEM, we scale to

problem instances that exceed the memory size of the machine and typically find that single-node

systems are much faster than distributed systems that use an order of magnitude more hardware.

We realize single-node scalability by placing data on SSDs and performing asynchronous I/O re-

quests for data as necessary while overlapping computation. The SEM model allows us to reduce

the asymptotic memory bounds. A SEM routine uses O(n) memory for a dataset, V⃗ ∈ Rnxd that

when processed completely in memory would require O(nd) memory.

4.5.1 FlashGraph Modifications

Our implementation modifies the FlashGraph system to support matrix-like computations.

FlashGraph’s primitive data type is the page_vertex that is interpreted as a vertex with an index to

the edge list of the page_vertex on SSDs. We define a row of data to be equivalent to a d-dimension

data point, v⃗i. Each row is composed of a unique identifier, row-ID, and d-dimension data vector,

row-data. We add a page_row data type to FlashGraph and modify the asynchronous I/O layer

to support floating point row-data reads rather than the numeric identifiers for graph edge lists.

The page_row type computes its row-ID and row-data location on disk meaning only user-defined

state is stored in-memory. The page_row reduces the memory necessary to use FlashGraph by O(n)

because it does not store an index to data on SSDs unlike a page_vertex. This allows our SEM

applications to scale to larger datasets than possible before on a single machine.

4.5.2 I/O minimization

I/O bounds the performance of most well-optimized SEM applications. Accordingly, we

reduce the number of data-rows that need to be brought into memory each iteration. In the case of
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k-means, only Clause 1 of MTI (Section 3.2.2) facilitates the skipping of all distance computations

for a data point. Likewise for mini-batch k-means and k-medoids that subsample the data, we need

not read all data points from disk in every iteration. We observe the same phenomenon when data

points have converged in a cluster for H-means, G-means and X-means as well. In these cases, we do

not issue I/O requests but still retrieve significantly more data than necessary from SSDs because

pruning occurs near-randomly and sampling pseudo-randomly. Reducing the filesystem page size,

i.e. minimum read size from SSDs alleviates this to an extent, but a small page size can lead to a

higher number of I/O requests, offsetting any gains achieved from reduced fragmentation. We utilize

a minimum read size of 4KB. Even with this small value, we receive much more data from disk than

we request. To address this, we develop an optionally lazily-updated partitioned row cache that

drastically reduces the amount of data brought into memory.

Partitioned Row Cache (RC)

We add a layer to the memory hierarchy for SEM applications by designing an optionally

lazily-updated row cache (Figure 4.5). The row cache improves performance by reducing I/O and

minimizing I/O request merging and page caching overhead in FlashGraph. A row is active when it

performs an I/O request in the current iteration for row-data on disk. The row cache pins active rows

to memory at the granularity of a row, rather than a page, improving its effectiveness in reducing

I/O compared to a page cache.

We partition the row cache into as many partitions as FlashGraph creates for the underlying

matrix, generally equal to the number of threads of execution. Each partition is updated locally in

a lock-free caching structure. This vastly reduces the cache maintenance overhead, keeping the RC

lightweight. The size of the cache is user-defined, but 1GB is sufficient to significantly improve the

performance of billion-point datasets.

The row cache operates in one of two modes based upon the data access properties of the

algorithm:
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Figure 4.5: The structure of the row cache for SEM applications in a four socket, four NUMA node

machine utilizing 16 threads. Partitioning the row cache eliminates the need for locking during cache

population. The aggregate size of all row cache partitions resides within the NUMA-node shared L2

cache.

Lazy update mode: the row cache lazily updates on specified iterations based on a user

defined cache update interval (Icache). The cache updates/refreshes at iteration Icache then the

update frequency increases quadratically such that the next row cache update is performed after

2Icache, then 4Icache iterations and so forth. This means that row-data in the row cache remains static

for several iterations before the row cache is flushed then repopulated. This tracks the row activation

patterns of algorithms like k-means, mb-kmeans, sk-means, and divisive hierarchical clustering. In

early iterations, the cache provides little benefit, because row activations are random. As the
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algorithm progresses, the same data points tend to stay active for many consecutive iterations.

As such, much of the cache remains static for longer periods of time. We set Icache to 5 for all

experiments. The choice trades-off cache freshness for reduced cache maintenance. We demonstrate

the efficacy of this design in Figure 4.10.

Active update mode: the row cache can also function as a traditional Least Recently

Used (LRU) cache. This mode simply stores the more recently requested rows and evicts those that

are less popular. Intuitively, this mode has higher maintenance overhead, but is more general for

cases in which data access patterns are less predictable.

4.6 Distributed Design

We scale to the distributed setting through the Message Passing Interface (MPI). We

employ modular design principles and build our distributed functionality as a layer above our parallel

in-memory framework. Each machine maintains a decentralized driver (MPI) process that launches

worker threads that retain the NUMA performance optimizations across its multiple processors. We

partition a data set once per machine in the cluster, then again within a single machine. Global

data is each specified as duplicated or can be requested from the initiating process.

We do not address load balancing between machines in the cluster. We recognize that in

some cases it may be beneficial to dynamically dispatch tasks, but we argue that this would negatively

affect the performance enhancing NUMA polices. We further argue that the gains in performance of

our data partitioning scheme (Figure 4.1) outweigh the effects of skew in this setting. We validate

these assertions empirically in Section 4.8.8

4.7 Application Programming Interface (API)

clusternor provides a C++ API on which users may define their own algorithms. There are

two core components:
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Figure 4.6: The decentralized distributed design of clusternor utilizes per-machine NUMA optimiza-

tions developed for single-node computations leading to state-of-the-art performance.

• the base iterative interface, base.

• the hierarchical iterative interface, hclust.

, in addition to two API extensions:

• the Semi-External Memory interface, sem.

• the distributed memory interface, dist.

4.7.1 base

The base interface provides developers with abstract methods that can be overridden to

implement a variety of algorithms, such as k-means, mini-batch k-means, fuzzy C-means, and k-mediods

(Sections 4.2.1, 4.2.4, 4.2.5, and 4.2.6).
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• run(): Defines algorithmic specific steps for a particular application. This generally follows

the serial algorithm.

• MMStep(): Used when both MM steps can be performed simultaneously. and reduces the effect

of the barrier between the two steps.

• M1Step(): Used when the Majorize or Minorize step must be performed independently from

the Minimization or Maximization step.

• M2Step(): Used in conjunction with M1Step as the Minimization or Maximization step of the

algorithm.

4.7.2 hclust

The hclust interface extends base and is used to develop algorithms in which clustering is

performed in a hierarchical fashion, such as H-means, X-means, and G-means (Sections 4.2.7, 4.2.8,

and 4.2.9). For performance reasons, this interface is iterative rather than recursive. We discuss

this design decision and its merits in Section 4.4. hclust provides the following additional abstract

methods for user definition:

• SplitStep(): Used to determine when a cluster should split.

• HclustUpdate(): Used to update the hierarchical global state from one iteration to the next.

4.7.3 sem

The SEM interface builds upon base and hclust and incorporates a modified FlashGraph

[17] API that we extend to support matrices and iterative clustering algorithms. The interface

provides an abstraction over an asynchronous I/O model in which data are requested from disk and

computation is overlapped with I/O transparently to users:

• request(ids[]): Issues I/O requests to the underlying storage media for the feature-vectors

associated with the entries in ids[].
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4.7.4 dist

The distributed interface builds upon base and hclust creating infrastructure to support

distributed processing. As is common with distributed memory, there also exist optional primitives

for data synchronization, scattering and gathering, if necessary. Mandatory methods pertain to

organizing state before and after computation and are abstractions above MPI calls:

• OnComputeStart(): Pass state or configuration details to processes when an algorithm begins.

• OnComputeEnd(): Extract state or organize algorithmic metadata upon completion of an al-

gorithm.

4.7.5 Code Example

We provide a high-level implementation of the G-means algorithm written within clusternor

to run in parallel on a standalone server. The simple C++ interface provides an abstraction that

encapsulates parallelism, NUMA-awareness and cache friendliness. This code can be extended to

SEM and distributed memory by simply inheriting from and implementing the required methods

from sem and dist.
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using namespace clusterNOR;

class gmeans : public hclust {

void MMstep() {

for (auto& sample : samples()) { // Data iterator

auto best = min(Euclidean(sample, clusters()));

JoinCluster(sample, best);

}

}

void SplitStep() override {

for (auto& sample : samples())

if (ClusterIsActive(sample))

AndersonDarlingStatistic(sample);

}

void run() override {

while (nclust() < kmax()) {

initialize(); // Starting conditions

MMstep();

SplitStep();

Sync(); // Split clusters

if (SteadyState())

break; // Splits impossible

}

}

4.8 Experimental Evaluation

We begin the evaluation of clusternor by benchmarking the performance and efficacy of our

optimizations for the k-means application alone. k-means is a core algorithm for the framework and

a building block upon which other applications like mini-batch k-means, H-means, X-means and

G-means are built. For brevity we refer to the k-means NUMA Optimized Routine as knor. Finally,

we complete our evaluation by benchmarking all applications described in Section 4.9.
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We evaluate knor optimizations and benchmark against other state-of-the-art frameworks.

In Section 4.8.3 we evaluate the performance of the knor baseline single threaded implementation to

ensure all speedup experiments are relative to a state-of-the-art baseline performance. Sections 4.8.4

and 4.8.5 evaluate the effect of specific optimizations on our in-memory and semi-external memory

tools respectively. Section 4.8.6 evaluates the performance of k-means both in-memory and in the

SEM setting relative to other popular state-of-the-art frameworks from the perspective of time and

resource consumption. Section 4.8.8 specifically performs comparison between knord and MLlib in

a cluster.

We evaluate knor optimizations on the Friendster top-8 and top-32 eigenvector datasets,

because the Friendster dataset represents real-world machine learning data. The Friendster dataset

is derived from a graph that follows a power law distribution of edges. As such, the resulting

eigenvectors contain natural clusters with well defined centroids, which makes MTI pruning effective,

because many data points fall into strongly rooted clusters and do not change membership. These

trends hold true for other large-scale datasets, albeit to a lesser extent on uniformly random generated

data (Section 4.8.6). The datasets we use for performance and scalability evaluation are shown in

Table 4.2. Additionally, a summary of knor routine memory bounds is shown in Table 4.1.

We use the following notation throughout the evaluation:

• knori: k-means, in-memory, on a standalone machine.

• knori-: knori, with MTI pruning disabled.

• knors: k-means, in SEM mode, on a standalone machine with attached SSDs.

• knors-: knors, with MTI pruning disabled.

• knors--: knors, with both MTI pruning and the row cache (RC) disabled.

• knord: k-means, in a distributed cluster of machines, completely in-memory and in the cloud.

• knord-: knord with MTI pruning disabled.
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• MLlib-EC2: MLlib’s k-means, on Amazon EC2 instances [76].

• MPI: a pure MPI [77] distributed implementation of ||Lloyd’s (Section 3.2.1) with MTI prun-

ing.

• MPI-: a pure MPI distributed implementation of ||Lloyd’s with MTI pruning disabled.

Table 4.1: Asymptotic memory complexity of knor routines.

Module / Routine Memory complexity

Naïve Lloyd’s O(nd+ kd)

knors-, knors-- O(n+ Tkd)

knors O(2n+ Tkd+ k2)

knori-, knord- O(nd+ Tkd)

knori, knord O(nd+ Tkd+ n+ k2)

Table 4.2: The datasets under evaluation in this study.

Data Matrix n d Size

Friendster-8 [78] eigenvectors 66M 8 4GB

Friendster-32 [78] eigenvectors 66M 32 16GB

Rand-Multivariate (RM856M ) 856M 16 103GB

Rand-Multivariate (RM1B) 1.1B 32 251GB

Rand-Univariate (RU2B) 2.1B 64 1.1TB

For completeness we note versions of all frameworks and libraries we use for comparison in

this study; Spark v2.0.1 for MLlib, H2O v3.7, Turi v2.1, R v3.3.1, MATLAB R2016b, BLAS v3.7.0,

Scikit-learn v0.18, MLpack v2.1.0.
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4.8.1 Single Node Evaluation Hardware

We perform single node experiments on a NUMA server with four Intel Xeon E7-4860

processors clocked at 2.6 GHz and 1TB of DDR3-1600 memory. Each processor has 12 cores. The

machine has three LSI SAS 9300-8e host bus adapters (HBA) connected to a SuperMicro storage

chassis, in which 24 OCZ Intrepid 3000 SSDs are installed. The machine runs Linux kernel v4.4.0-

124. The C++ code is compiled using mpicxx.mpich2 version 4.8.4 with the -O3 flag.

4.8.2 Cluster Evaluation Hardware

We perform distributed memory experiments on Amazon EC2 compute optimized instances

of type c4.8xlarge with 60GB of DDR3-1600 memory, running Linux kernel v3.13.0-91. Each ma-

chine has 36 vCPUS, corresponding to 18 physical Intel Xeon E5-2666 v3 processors, clocking 2.9

GHz, sitting on 2 independent sockets. We allow no more that 18 independent MPI processes or

equivalently 18 Spark workers to exist on any single machine. We constrain the cluster to a single

availability zone, subnet and placement group, maximizing cluster-wide data locality and minimizing

network latency on the 10 Gigabit interconnect. We measure all experiments from the point when all

data is in RAM on all machines. For MLlib we ensure that the Spark engine is configured to use the

maximum available memory and does not perform any checkpointing or I/O during computation.

4.8.3 Baseline Single-thread Performance

knori, even with MTI pruning disabled, performs on par with state-of-the-art implementa-

tions of Lloyd’s algorithm. This is true for implementations that utilize generalized matrix multipli-

cation (GEMM) techniques and vectorized operations, such as MATLAB [79] and BLAS [80]. We

find the same to be true of popular statistics packages and frameworks such as MLpack [48], Scikit-

learn [46] and R [81] all of which use highly optimized C/C++ code, although some use scripting

language wrappers. Table 4.3 shows performance at 1 thread. Table 4.3 provides credence to our

speedup results because our baseline single threaded performance tops other state-of-the-art serial
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routines.

Table 4.3: Serial performance of popular, optimized k-means routines, all using Lloyd’s algorithm,

on the Friendster-8 dataset. For fairness all implementations perform all distance computations.

The Language column refers to the underlying language of implementation and not any user-facing

higher level wrapper.

Implementation Type Language Time/iter (sec)

knori- Iterative C++ 7.49

MATLAB GEMM C++ 20.68

BLAS GEMM C++ 20.7

R Iterative C 8.63

Scikit-learn Iterative Cython 12.84

MLpack Iterative C++ 13.09

4.8.4 In-memory Optimization Evaluation

We show NUMA-node thread binding, maintaining NUMA memory locality, and NUMA-

aware task scheduling is highly effective in improving performance. We achieve near-linear speedup

(Figure 4.7). Because the machine has 48 physical cores, speedup degrades slightly at 64 cores;

additional speedup beyond 48 cores comes from simultaneous multithreading (hyperthreading). The

NUMA-aware implementation is nearly 6x faster at 64 threads compared to a routine containing

no NUMA optimizations, henceforth referred to as NUMA-oblivious. The NUMA-oblivious routine

relies on the OS to determine memory allocation, thread scheduling, and load balancing policies.

We further show that although both the NUMA-oblivious and NUMA-aware implementa-

tion speedup sub-linearly, the NUMA-oblivious routine has a lower linear constant when compared

with a NUMA-aware implementation (Figure 4.7).

Increased parallelism amplifies the performance degradation of the NUMA-oblivious im-

plementation. We identify the following as the greatest contributors:

• the NUMA-oblivious allocation policies of traditional memory allocators, such as malloc, place
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data in a contiguous chunk within a single NUMA memory bank whenever possible. This leads

to a large number of threads performing remote memory accesses as the number of threads

increase;

• a dynamic NUMA-oblivious task scheduler may give tasks to threads that cause worker threads

to perform many more remote memory accesses than necessary compared to a NUMA-aware

scheduler.
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Figure 4.7: Speedup of knori (which is NUMA-aware) vs. a NUMA-oblivious routine on the Friend-

ster top-8 eigenvector dataset, with k = 10.

We demonstrate the effectiveness of a NUMA-aware partitioned task scheduler for pruned

computations via knori (Figure 4.8). We define a task as a block of data points in contiguous memory

given to a thread for computation. We set a minimum task size, i.e. the number of data points in

the block, to 8192. We empirically determine that this task size is small enough to not artificially

introduce skew in billion-point datasets while simultaneously providing enough work to amortize the

cost of locking at the task scheduler. We compare against a static and a first in, first out (FIFO) task

scheduler. The static scheduler preassigns n/T rows to each worker thread. The FIFO scheduler

first assigns threads to tasks that are local to the thread’s partition of data, then allows threads to

steal tasks from straggler threads whose data resides on any NUMA node.

We observe that as k increases, so does the potential for skew. When k = 10, the NUMA-
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aware scheduler performs negligibly worse than both FIFO and static scheduling, but as k, increases

the NUMA-aware scheduler improves performance—by more than 40% when k = 100. We observe

similar trends in other datasets; we omit these redundant results.
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Figure 4.8: Performance of the partitioned NUMA-aware scheduler (clusternor default) vs. FIFO

and static scheduling for knori on the Friendster-8 dataset.

4.8.5 Semi-External Memory Evaluation

We evaluate knors optimizations, performance and scalability. We set a small page cache

size for FlashGraph (4KB) to minimize the amount of superfluous data read from disk due to data

fragmentation. Additionally, we disable checkpoint failure recovery during performance evaluation

for both our routines and those of our competitors.

We drastically reduce the amount of data read from SSDs by utilizing the row cache.

Figure 4.9a shows that as the number of iterations increase, the row cache’s ability to reduce I/O

and improve speed also increases because most rows that are active are pinned in memory. Figure

4.9b contrasts the total amount of data that an implementation requests from SSDs with the amount

of data SAFS actually reads and transports into memory. When knors disables both MTI pruning

and the row cache i.e., knors--, every request issued for row-data is either served by FlashGraph’s
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(RC) is enabled or disabled. MTI pruning allows fewer data points to be requested from SSDs, but the file

system must still read an entire block from SSDs in which some data may not be useful. As a result, there

is a discrepancy between the quantity of data requested and the quantity read.
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(b) Total data requested (req) vs. data read from SSDs when (i) both MTI and RC are disabled (knors--),

(ii) Only MTI is enabled (knors-), (iii) both MTI and RC are enabled (knors). Without pruning, all data are

requested and read.

Figure 4.9: The effect of the row cache and MTI on I/O for the Friendster top-32 eigenvectors

dataset. Row cache size = 512MB, page cache size = 1GB, k = 10.

page cache or read from SSDs. When knors enables MTI pruning, but disables the row cache i.e.,

knors-, we read an order of magnitude more data from SSDs than when we enable the row cache.

Figure 4.9 demonstrates that a page cache is not sufficient for k-means and that caching at the
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granularity of row-data is necessary to achieve significant reductions in I/O and improvements in

performance for real-world datasets. Additionally, this observation is applicable to all computation

pruning and sub-sampling applications where selective I/O is possible.

0

2

4

6

8

0 20 40 60 80 100

N
o.

of
po

in
ts

x
1
0
6

Iteration No.

Cache hits Active points

Figure 4.10: Row cache hits per iteration contrasted with the maximum achievable number of hits

on the Friendster top-32 eigenvectors dataset.

clusternor’s lazy row update mode reduces I/O significantly for this application. Figure

4.10 justifies our design decision for a lazily updated row cache. As the algorithm progresses, we

obtain nearly a 100% cache hit rate, meaning that knors operates at in-memory speeds for the vast

majority of iterations.

MTI Performance Characteristics

Figures 4.11a and 4.11b highlight the performance improvement of knor modules with MTI

enabled over MTI disabled counterparts. We show that MTI provides a few factors of improvement

in time when enbabled. Figure 4.11c highlights that MTI increases the memory load by negligi-

ble amounts compared to non-pruning modules. We conclude that MTI (unlike TI) is a viable

optimization for large-scale datasets.

4.8.6 knor vs. Other Frameworks

We evaluate the performance of knor in comparison with other frameworks on the datasets

in Table 4.2. We show that knori achieves greater than an order of magnitude improvement over
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Figure 4.11: Performance and memory usage comparison of knor modules on matrices from the

Friendster graph top-8 and top-32 eigenvectors.
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other state-of-the-art frameworks. Finally, we demonstrate knors outperforms other state-of-the-art

frameworks by several factors.

Both our in-memory and semi-external memory modules incur little memory overhead

when compared with other frameworks. Figure 4.12c shows memory consumption. We note that

MLlib requires the placement of temporary Spark block manager files. Because the block manager

cannot be disabled, we provide an in-memory RAM-disk so as to not influence MLlib’s performance

negatively. We configure MLlib, H2O and Turi to use the minimum amount of memory necessary to

achieve their highest performance. We acknowledge that a reduction in memory for these frameworks

is possible, but would degrade computation time and lead to unfair comparisons. All measurements

are an average of 10 runs. We drop all caches between runs.

We demonstrate that knori is no less than an order of magnitude faster than all competitor

frameworks (Figure 4.12). knori is often hundreds of times faster than Turi. Furthermore, knors

is consistently twice as fast as competitor in-memory frameworks. We further demonstrate perfor-

mance improvements over competitor frameworks on algorithmically identical implementations by

disabling MTI. knori- is nearly 10x faster than competitor solutions, whereas knors- is comparable

and often faster than competitor in-memory solutions. We attribute our performance gains over

other frameworks when MTI is disabled to our parallelization scheme for Lloyd’s (Algorithm 1).

Lastly, Figure 4.11 demonstrates a consistent 30% improvement in knors when we utilize the row

cache. This is evidence that the design of our lazily updated row cache provides a performance

boost.

Finally, comparing knori- and knors-- to MLlib, H2O and Turi (Figures 4.11 and 4.12)

reveals knor to be several times faster and to use significantly less memory. This is relevant because

knori- and knors-- are algorithmically identical to k-means within MLlib, Turi and H2O.

64



CHAPTER 4. CLUSTERNOR

0.01

0.1

1

10

100

k=10 k=20 k=50 k=100

L
og

Sc
al

e
T

im
e/

it
er

(s
ec

)

knori
knors

H2O
MLlib

Turi

(a) Runtime performance of k-means on the Friendster-8 dataset.
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(b) Runtime performance of k-means on the Friendster-32 dataset.

4.8.7 Single-node Scalability Evaluation

To demonstrate scalability, we compare the performance of k-means on synthetic datasets

drawn from random distributions that contain hundreds of millions to billions of data points. Uni-

formly random data are typically the worst case scenario for the convergence of k-means, because

many data points tend to be near several centroids.

Both in-memory and SEM modules outperform popular frameworks on 100GB+ datasets.

We achieve 7-20x improvement when in-memory and 3-6x improvement in SEM when compared to
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(c) Peak memory consumption on the Friendster datasets, with k = 10. Row cache size = 512MB, page

cache size = 1GB.

Figure 4.12: knor routines outperform competitor solutions in runtime performance and memory

consumption.

MLlib, H2O and Turi. As data increases in size, the performance difference between knori and knors

narrows because there is now enough data to mask I/O latency and to turn knors from an being

I/O bound to being computation bound. We observe knors is only 3-4x slower than its in-memory

counterpart in such cases.

Memory capacity limits the scalability of k-means and semi-external memory allows algo-

rithms to scale well beyond the limits of physical memory. The 1B point matrix (RM1B) is the

largest that fits in 1TB of memory on our machine. At 2B points (RU2B), semi-external memory

algorithms continue to execute proportionally and all other algorithms fail.

4.8.8 Distributed Comparison vs. Other Frameworks

We analyze the performance of knord and knord- on Amazon’s EC2 cloud in comparison to

that of (i) MLlib (MLlib-EC2), (ii) a pure MPI implementation of our ||Lloyd’s algorithm with MTI

pruning (MPI), and (iii) a pure MPI implementation of ||Lloyd’s algorithm with pruning disabled
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Figure 4.13: Performance comparison on RM856M and RM1B datasets. Turi is unable to run on

RM1B on our machine and only SEM routines are able to run on RU2B on our machine. Page cache

size = 4GB, Row cache size = 2GB.

(MPI-). Note that H2O has no distributed memory implementation and Turi discontinued their

distributed memory interface prior to our experiments.
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(b) Distributed speedup comparison on the RM1B dataset.

Figure 4.14: Speedup experiments are normalized to each implementation’s serial performance. Each

machine has 18 physical cores with 1 thread per core.

Figures 4.14 and 4.15 reveal several fundamental and important results. Figure 4.14 shows

that knord scales well to very large numbers of machines, performing within a constant factor of

linear performance. This is a necessity today as many organizations push big-data computation to

the cloud. Figure 4.15 shows that in a cluster, knord, even with TI disabled, outperforms MLlib by

a factor of 5 or more. This means we can often use fractions of the hardware required by MLlib

to perform equivalent tasks. Figure 4.15 demonstrates that knord also benefits from our in-memory

NUMA optimizations as we outperform a NUMA-oblivious MPI routine by 20-50%, depending on

the dataset. Finally, Figure 4.15 shows that MTI remains a low-overhead, effective method to reduce
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Figure 4.15: Distributed performance comparison of knord, MPI and MLlib on Amazon’s EC2 cloud.

Each machine has 18 physical cores with 1 thread per core.

computation even in the distributed setting.

Semi-External Memory in the Cloud

We continue knor evaluation by measuring the performance of knors on a single 32 core

i3.16xlarge machine with 8 SSDs on Amazon EC2 compared to knord, MLlib and an optimized MPI

routine running in a cluster. We run knors with 48 threads, with extra parallelism coming from

symmetric multiprocessing. We run all other implementations with the same number of process-

es/threads as physical cores.
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Figure 4.16 highlights that knors often outperforms MLlib even when MLLib runs in a

cluster that contains more physical CPU cores. knors has comparable performance to both MPI and

knord, leading to our assertion that the SEM scale-up model should be considered prior to moving

to the distributed setting.
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Figure 4.16: Performance comparison of knors to distributed packages. knors uses one i3.16xlarge

machine with 32 physical cores. knord, MLlib-EC2 and MPI use 3 c4.8xlarge with a total of 48

physical cores for all datasets other than RU1B where they use 8 c4.8xlarge with a total of 128

physical cores.

4.9 Application Evaluation

We benchmark the performance of the nine applications developed using clusternor (Sec-

tion 4.2). We present results for in-memory execution. The relative performance in other settings,

SEM and distributed memory, track in-memory results closely. Figure 4.17 demonstrates that for

applications with similar computational complexity as k-means, clusternor achieves comparable per-
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formance to knor, which we have shown to be state-of-the-art. This is a strong indication that

all other applications are comparable to state-of-the-art as well. At this time, to our knowledge,

there exist no other open-source large-scale parallel clustering libraries with whom we can compare

performance. As such the clusternor benchmark applications enable scientific experimentation with

clustering algorithms at a scale previously unavailable.

Figure 4.17 demonstrates that applications with similar algorithmic complexity to k-means

perform comparably to knor. This is a strong demonstration that clusternor optimizations are appli-

cable to a wide range of MM algorithms. For mini-batch k-means (mbk-means), we set the batch size,

B, to 20% of the dataset size. This is roughly twice the value used in experiments by Sculley [50] in

his seminal work describing the algorithm. We highlight that even though mbk-means performs sev-

eral factors fewer distance computations compared to batched k-means (e.g., knor), its computation

time can be greater due to the algorithmically serial gradient step (Equation 4.4). Furthermore,

we note that the computation time of fuzzy c-means can be up to an order of magnitude slower

than that of k-means. This is due to fc-means performing a series of linear algebraic operations,

some of which must be performed outside the confines of the parallel constructs provided by the

framework. As such, the application’s performance is bound by the computation of updates to the

cluster contribution matrix, an O(kn) data structure containing the probability of a data point being

in a cluster.

Hierarchical clustering algorithms also perform well in comparison to knor, despite requiring

heavier logic between iterations. To benchmark H-means, X-means and G-means we perform 20

iterations of k-means between each divisive cluster-splitting step i.e., the SplitStep. We recognize

that the computation cost of the hierarchical algorithms for one iteration is lower than that of

k-means, but argue that performing the same number of iterations at each level of the hierarchy

provides a comparable measure of computation. Furthermore, X-means requires the computation of

BIC and G-means requires the computation of the Anderson-Darling statistic between SplitSteps.

This increases the cost of hierarchical clustering over H-means (Figure 4.18), in which X-means and
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Figure 4.17: In-memory performance of clusternor benchmark applications on the Friendster-32

dataset. We fix the number of iterations to 20 for all applications and use a mini-batch size of 20%

of the data size for mb-kmeans.

G-means perform at about 70% and 30% of the performance of H-means.

We present the result of the k-medoids experiment (Table 4.4) on a 250 thousand subsam-

pling of the Friendster-32 dataset. We subsample because the complexity of k-medoids is significantly

higher than that of all other applications making it infeasible for even our smallest dataset. Never-

theless, k-medoids demonstrates the programming flexibility of our framework. We observe that as

the number of clusters, k, increases the computational overhead reduces. This is due to the size of

each cluster generally decreasing as data points are spread across more clusters. clusternor ensures

that the degree of parallelism achieved is independent of the number of clusters. The most intensive

medoid swap procedure now requires less inter-cluster computation leading to reduced computation

time. We vary the degree to which we subsample within the swap procedure from 20% up to 100%

to highlight the observed phenomenon.
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Figure 4.18: The relative performance of hierarchical algorithms in comparison to H-means, the

baseline hierarchical cluster application on the Friendster-32 dataset

Table 4.4: The performance of k-medoids on a 250 thousand random sampling of the Friendster-32

dataset run for 20 iterations.

Sample % k = 10 k = 20 k = 50 k = 100

20 455.95s 679.52s 262.42s 134.46s

50 2003.74s 1652.90s 717.19s 342.34s

100 2154.81s 2616.57s 1801.56s 761.98s

4.10 Discussion

clusternor demonstrates that there are large performance benefits associated with NUMA-

targeted optimizations. Data locality optimizations, such as NUMA-node thread binding, NUMA-

aware task scheduling, and NUMA-aware memory allocation schemes, provide several times speedup

for MM algorithms. Many of the optimizations within clusternor are applicable to data processing
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frameworks built for non-specialized commodity hardware.

For technical accomplishments, we accelerate k-means and its derived algorithms by over an

order of magnitude by rethinking Lloyd’s algorithm for modern multiprocessor NUMA architectures

through the minimization of critical regions. Our modifications to Lloyd’s are relevant to both

in-memory, distributed memory and semi-external memory. Additionally, we formulate a minimal

triangle inequality (MTI) pruning algorithm that further boosts the performance of k-means on

real-world billion point datasets by over 100x when compared to some popular frameworks. MTI

does so without significantly increasing memory consumption.

Finally, clusternor provides an extensible unified framework for in-memory, semi-external

memory and distributed memory iterative algorithm development. The clusternor benchmark appli-

cations provide a scalable, state-of-the-art clustering library. Bindings to the open source library

are accessible within ‘CRAN’, the R Programming Language [82] package manager, under the name

clusternor. We are an open source project available at

https://github.com/flashxio/knor. Our flagship knor application, on which this work is based, re-

ceives hundreds of downloads monthly on both CRAN and pip, the Python package manager.
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Chapter 5

Conclusion

This thesis investigates the effects of NUMA optimizations, fine-grained I/O management

and effective caching policies on algorithms for large-scale data analysis. We address the need for

libraries and frameworks that target large-scale data analysis from the perspective of graphs, and

dense feature vector datasets. We scale graph and iterative machine learning algorithms through

semi-external memory, and eventually, distributed memory, once the capacity of a single machine is

exhausted.

This thesis advances the state-of-the art in multicore NUMA optimizations and semi-

external memory computation for graphs and Majorize-Minimization algorithms. Core contributions

within this body of work include:

• Identification of key principles for SEM vertex-centic graph application development.

• The development of an extensible high-level language, vertex-centric SEM graph library, Gra-

phyti.

• Algorithmic and multi-core computation advancements of pruning techniques for the k-means

algorithm via the Minimal Triangle Inequality (MTI), and ||Lloyds.

• The development of an extensible framework for community detection that encompasses fully
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in-memory, SEM, and distributed memory.

We glean several conclusions from this line of investigation. From knor and clusternor we

conclude that large performance gains ranging from several factors to several orders of magnitude

improvement are left on the table by neglecting NUMA optimizations on modern multicore machines.

The clusternor framework is evidence that NUMA-centric, fine-grain, caching and I/O optimizations

are effective tools enabling resource minimality while not sacrificing performance. We show that

our k-means application developed within clusternor out-performs commercial grade products in all

memory settings.

From Graphyti, we conclude that there are a few key principles that developers should follow

in order to develop I/O minimal, performant, vertex-centric SEM applications. We demonstrate that

by incorporating these principles into applications, they stand to gain several factors of improvement

over unoptimized algorithms. These principles encode latent asynchrony into applications, minimize

I/O and, reduce memory consumption, and optimize cache access patterns and reuse. The afore-

mentioned principles are manifested within Graphyti, but are further generalized and incorporated

into the design of the clusternor framework.

Through Graphyti, knor and clusternor we comprehensively investigate the runtime and

memory improvements attainable through NUMA and I/O sensitive design of libraries and frame-

works. We demonstrate the efficacy and suitability of the semi-external memory paradigm for large-

scale graph analysis and machine learning. We do so by modifying the FlashGraph engine to support

larger dense feature-vector datasets. Additionally, we rethinking the bulk-synchronous processing

model within vertex-centric graph engines and incorporate asynchrony in multi-stage algorithms.

Finally, we demonstrate the applicability of NUMA optimizations beyond a single machine into the

distributed setting. We conclude that a combination of I/O optimizations and NUMA awareness are

at the core of scaling graph analytics and iterative Majorize-Minimization algorithms in the future.
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