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Abstract

Alternative splicing is an important post-transcriptional process that serves to in-

crease the diversity of proteins in different tissues and developmental stages, and its

dysregulation is often associated with diseases. Large-scale RNA-seq experiments

and bioinformatic approaches already found evidence of splice site selections and

interaction among cis-regulatory elements and trans-acting factors. However, in most

cases, the mechanisms behind are still incompletely understood and remain to be

determined. Therefore, there is a great need to accurately map and quantify gene

splice variants, identify differences in splicing between conditions and computationally

reveal the splicing regulation. In this dissertation, we investigate those challenges and

propose novel computational methods to mitigate them. I will highlight my Ph.D.

works on alternative splicing and present machine learning and statistical methods to

extract gene and alternative splicing features from large collections of RNA-seq data,

determining statistically significant differences in expression and splicing measurements

between conditions, and predicting the splicing regulations of cis-regulatory sequence

elements and trans-acting factors.
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Chapter 1

Introduction

In this thesis, we focus on the pre-messenger RNA (pre-mRNA) splicing process, and

design computational methods to predict and reveal the splicing regulatory code.

To start, I will introduce the biological background, namely what is pre-mRNA

splicing, why alternative splicing is important, what is the machinery that regulates

splicing events, and where the gene data come from.

1.1 Biological background

Three major kinds of molecules are important for most of the living organisms,

namely deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and protein. DNA is a

long double-stranded molecule that contains the genetic code for the development,

functioning, growth and reproduction of all known organisms. A set of special sequences

in the DNA, called genes, carry the genetic instructions needed for making the proteins.

Protein, on the other hand, is an essential functional part of organisms. Proteins are

made of amino acids, function as a cell’s "building blocks", and participate in virtually

every process within cells. In between, RNA acts as a carrier that translates genetic

information that is encoded in the DNA into protein.

According to the central dogma, DNA contains the information needed to make all

of the proteins (Figure 1-1). RNA is "transcribed" from DNA, acting as a messenger
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that carries the information encoded in DNA to the ribosomes. The ribosomes serve as

factories in the cell where the information is "translated" from a code into the functional

product - proteins. This process by which the DNA instructions are converted into

the functional product is called gene expression.

Figure 1-1. The central dogma.

Gene expression involves two key stages, transcription and translation. In tran-

scription, the information in the DNA of every cell is converted into small, portable

RNA messages. During translation, these messages travel from where the DNA is in

the cell nucleus to the cytoplasm where ribosomes direct protein synthesis.

1.1.1 RNA transcription and RNA splicing

In humans and other eukaryotes, transcription of eukaryotic organisms contains two

main stages. In the first stage, an RNA sequence is formed by reverse complementing

the original DNA sequence. When an enzyme called RNA polymerase binds to a DNA

strand of a gene in a region called the promoter, the RNA polymerase reads the DNA
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strand and builds the pre-mRNA molecule, using complementary base pairs. This

process continues until the RNA polymerase crosses a stop (termination) sequence in

the gene. This newly generated RNA is called pre-messenger RNA (pre-mRNA) and

it is not quite ready to go. Pre-mRNA has to go through several processing steps to

become a mature messenger RNA (mRNA) that can be translated into a protein.

These include the addition of a 5’ cap and a 3’ poly-A tail molecules to the two

ends of the transcript to prevent degradation by the enzymes, and an excision process

of removing non-coding sequences (called introns) and joining together the coding

sequences (called exons) to form the mRNA.

The excision process is called the RNA splicing. The RNA splicing reactions are

carried out by the spliceosome — a dynamic RNA–protein complex with a highly

regulated functional cycle found in all eukaryotes [1]. There are two kinds of splicing

events. Constitutive splicing events are recognized efficiently by the spliceosome

and are spliced the same way in each pre-mRNA from a given gene. In contrast, in

alternative splicing events, recognition and joining of a 5’ and 3’ splice site pair are in

competition with at least one other 5’ or 3’ splice site.

1.1.2 Splicing, spliceosome, and RNA binding proteins

Splicing is the RNA regulatory process that we are mainly interested in, therefore it

is necessary to describe this process in more detail. A splicing event can be described

as the excision of the non-coding sequences (introns) from a pre-mRNA and joining

of the coding sequences (exons). The special sequences at the intron/exon junctions

are called the splice sites. Typically, the splice sites include a GU dinucleotide at the

intron 5’ end (5’ splice site), a terminal AG at the 3’ end (3’ splice site) and a branch

point (with an A) close to the 3’ splice site [2] (Figure 1-2).

The splicing process involves a series of biochemical reactions that are catalyzed

by the spliceosome, a large molecular complex composed of four small nuclear ribonu-
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cleoproteins (U1, U2, U4/U6 and U5 snRNPs) and approximately 50–100 non-snRNP

splicing factors [3]. The spliceosome assembles onto each intron, with the binding of

the U1 and U2 snRNP to the splice sites and the assistance of the splicing factors

(e.g. SF1, U2AF65, U2AF35) to help locate the binding sites (Figure 1-3).

Figure 1-2. Illustration of pre-mRNA
splicing (image from [4]).

Figure 1-3. Illustration of spliceosome
assembly (image from [4]).

1.1.3 Alternative splicing

Because of the alternative splicing events, the pre-messenger RNA is not always the

same. A pre-messenger RNA segment may be spliced out or included in different

ways (Figure 1-4), giving rise to several different possible mRNA products, potentially

coding for different protein isoforms [4]. These protein isoforms differ in their peptide

sequence and hence have different biochemical properties and biological functions.

Alternative splicing is a major contributor to both protein diversity and genetic

regulation in higher eukaryotes. It is important in many cellular and developmental

processes, including sex determination, apoptosis, axon guidance, cell excitation and

contraction, and many others [5–7]. Estimates are that more than 90% of human
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genes undergo alternative splicing [8]. Moreover, many genes have multiple splicing

patterns, and some have thousands [9, 10]. Splicing is tightly regulated in different

tissues and developmental stages, and the mis-regulation of splicing is often involved

in human diseases [11–13], with an estimate that as many as 50% of disease causing

mutations affect splicing [14–16].

Figure 1-4. Illustration of alternative splicing.

1.1.4 Next generation sequencing

To understand splicing regulation and other gene processes, the sequencing reads

from the next generation sequencing (NGS) platform are typically used. NGS is a

technology for determining the sequence of DNA or RNA molecules to study genetic

variation associated with diseases or other biological phenomena. With its ultra-high

throughput, scalability, and accuracy, NGS has revolutionized genomics analyses and

enabled new applications in genomic and clinical research, reproductive health, and

many other areas.

Reads are pieces of sequencing fragments of DNA or RNA generated by NGS

platforms. Bioinformatics analysis tools typically map the individual reads to the

human reference genome to detect related genes (or features), alternatively spliced

transcripts, allelic gene variants and single nucleotide polymorphisms.

Detection of splicing variations and mapping of the complex transcriptome have
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been greatly facilitated by the development of the NGS high-throughput RNA sequenc-

ing (RNA-seq) technology, which enables quantitative profiling of the transcriptome in

a wide variety of cell types and conditions. Briefly, millions of RNA sequencing reads

are generated from the gene features, thus providing an effective means to determine

the set of genes and splice isoforms. For the purposes of evaluating differences in

splicing patterns and expression levels of genes between conditions, RNA-seq read

counts are summarized at the genomic level of interest, such as introns, exons or full

isoforms. In particular, introns reflect both the structure and abundance of genes and

their isoforms, and are the gene features to most accurately detect from sequencing

data, and therefore can be used more reliably to detect alternative splicing variation.

However, accurately quantifying intron abundance, determining the full extent of

splicing variation, and comparing gene splicing profiles among biological states remains

challenging.

1.2 Outline

My work entails developing statistical and machine learning models and tools for

characterizing the cellular transcriptome and its variations along RNA processing

pathways, in particular as it relates to primary RNA splicing, using large scale genomics

data. In particular, we developed several methods under the umbrella of the JULiP

project (JULiP, JULiP2 and MntJULiP) to determine and characterize alternative

splicing variation of genes as represented by splice junctions (introns), and to compare

them between experimental conditions in large-scale RNA-seq experiments. Second,

we developed a deep learning model of sequences and alignments for the bioinformatics

problem of predicting alternative splicing from the local genomic sequence context.

In this thesis, I will describe the primary projects that I worked on during my

Ph.D. study; the remaining chapters are organized as follows.
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1.2.1 JULiP and JULiP2

In Chapter 2, I will discuss the JULiP and JULiP2 methods for selecting, quantifying

and comparing intron sets from large collections of RNA-seq data. JULiP and JULiP2

are based on the Generalized Linear Model (GLM), and leverage the latent gene

information across all of the analysis samples. JULiP predicts an accurate set of

introns from a large RNA-seq sample databases and JULiP2 uses the predicted introns

to determine differential splicing of genes.

1.2.2 MntJULiP and Jutils

In Chapter 3, I will present MntJULiP and Jutils. MntJULiP is a differential splicing

analysis tool that implements novel Dirichlet-multinomial and zero-inflated negative

binomial models within a Bayesian framework to detect both changes in splicing ratios

and in absolute splicing levels of introns with high accuracy, and can find classes of

splicing variation overlooked by reference tools. Additionally, a mixture model allows

multiple conditions to be compared simultaneously. MntJULiP is highly scalable, and

can process hundreds of GTEx samples in <1 hour to reveal splicing constituents of

phenotypic differentiation.

To visualize the results of MntJULiP and other popular differential splicing pro-

grams, we developed the toolkit Jutils. Jutils extracts the program predictions into a

unified format file for visualization. Jutils can visualize alternative splicing events in

several ways, including heatmaps, Venn diagrams and sashimi plots.

1.2.3 A Deep Learning (DL) splicing model

In Chapter 4, I will introduce a deep learning (DL) based model of alternative splicing,

trained to predict splicing ratios of given splice junctions (introns). The previously

described MntJULiP program receives as input the RNA-seq reads directly, from

which it extracts the read counts and predicts the splicing ratio. In contrast, the
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DL model receives as input the motif information of known RNA binding proteins

(RBPs) as position weight matrices (PWMs) along with the RNA sequences around

the alternative splice junctions. The network then learns the latent information on

trans-factors (RBPs), cis-elements (motifs), and how they work together to regulate

the splicing events, which it uses to predict the intron splicing ratios.
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Chapter 2

JULiP and JULiP2

A typical RNA-seq data analysis aims to analyze the transcriptome in a given RNA-seq

sample, condition, or experiment. In more specific terms, it aims to determine the

expressed genes and transcripts, their expression levels and, in a multi-condition

experiment, differences in expression levels and splicing patterns that could lead to

reproducible markers. The RNA-seq data analysis component starts with the millions

of short reads generated from a given RNA sample. Reads are mapped to a reference

genome and to the genomic feature of interest (e.g., gene, transcript, exon or intron),

and the normalized and/or estimated read counts are used to measure the abundance

of the feature in the analyzed samples. A critical problem in the analysis work is

determining a reliable set of features that can be used as the basis for measuring

expression and splicing levels. Accurate detection of such features is hampered by

sequencing and alignment artifacts. Further, once a reference ‘database’ of features

has been established, determining biologically significant differences in expression and

splicing levels of features, using rigorous statistical methods that take into account

information from multiple biological replicates, is critical for identifying a set of

informative and reproducible markers.

Our first major research interest in this area, therefore, involves developing machine

learning and statistical methods to extract gene and alternative splicing features (herein,

introns) from large collections of RNA-seq data and refine them into high-confidence
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reference sets. Our second major interest is in determining statistically significant

differences in expression and splicing measurements between conditions.

In the following section, we present background information and previous work.

We then describe our tools JULiP, for accurate intron selection from multiple RNA-seq

samples, and JULiP2, which extends JULiP’s statistical model and incorporates

differential splicing prediction.

2.1 Background

2.1.1 Accurate prediction of alternatively spliced features

By far the most efficient means for detecting splice variation large scale is by com-

putational prediction. When a reference genome is available, transcript assembly

programs (e.g., Cufflinks [17], CLASS2 [18], StringTie [19], FlipFlop [20] and others

reviewed in [21]) can be used to assemble RNA-seq reads aligned to the genome

into gene and transcript models. These methods create a graph representation of

a gene and its possible alternative splicing combinations, from which a subset of

transcripts is selected using linear or quadratic programs, dynamic programming,

and network flow optimization [21]. Local splice variation can then be extracted

from these annotations. The assembly process, however, is difficult and fraught with

errors [18, 22]. As an alternative, introns represent the building blocks of full-length

isoforms as well as of local alternative splicing events, such as exon skipping, mutually

exclusive exons, and alternative exon and gene ends, and have been used to detect and

characterize alternative splicing variation in practice [23, 24]. Therefore, accurate and

comprehensive identification of the set of expressed introns in a given set of RNA-seq

samples is critical for all gene and splice variation analyses downstream.

Current assembly-based methods depend critically on the quality of the reference

genome, precision of the read mapping software, and depth of coverage with RNA-
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seq reads. False positives can result from spurious RNA fragments during library

preparation, incorrect alignment, and intronic and intergenic ‘noise’ from unspliced

RNA. False negatives can arise from low expression genes, which typically have only a

handful of reads and are partially reconstructed. Therefore, analyzing each sample

individually limits both the accuracy and the potential to identify splice variants, in

particular rare or low expression events.

Batch sequencing of large numbers of RNA-seq samples from multiple replicates,

tissues or populations is becoming increasingly common [25–27]. Current approaches

that process one data set at a time are not capable of seamlessly and efficiently analyzing

such massive collections. Designing tools that can simultaneously analyze multiple

samples, however, is challenging due to the large number of artifacts compounded

over the full collection of data sets and also to the sheer volume of data. So far only a

handful of algorithms have been proposed to assemble reads across multiple sample:

CLIIQ [28], an early prototype algorithm that uses an integer linear programming

(ILP) approach with variables the full set of isoforms; MiTie [29], which builds a

splicing graph representing the gene and maximizes a likelihood function using mixed

integer programming with a regularization penalty; and ISP [30], which solves an

LP or ILP problem iteratively on a weighted connectivity graph derived from the

input samples. While marking significant conceptual advances, they scale poorly

(MiTie) or otherwise have limited performance in detecting splicing variation (ISP).

Therefore, a highly efficient and accurate feature selection algorithm is needed. Our

JULiP algorithm selects a highly accurate subset of introns from a large collection

of RNA-seq data directly from alignments, using latent gene information across the

samples incorporated into generalized linear models.
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2.1.2 Detection of differentially spliced features

Gene alternative splicing plays an important role in development, tissue specialization

and disease, and differences in splicing patterns can reveal important factors for

phenotypic differentiation. Aberrant alternative splicing has been associated with

a wide spectrum of diseases, including cancers [31]. The importance of alternative

splicing emphasizes the need to accurately map and quantify splice variations, and to

detect differences in splicing patterns between cellular conditions.

There are three classes of methods for differential splicing detection, based on the

splicing feature of interest (Figure 2-1). The first class is that of isoform based methods,

such as the assembly-based Cufflinks/Cuffdiff pipeline [17, 32]. The Cufflinks/Cuffdiff

pipeline constructs a set of isoforms, quantifies the expression that best explains

the observed reads, and determines differential splicing in two ways. First, Cuffdiff

measures differences in isoform expression between conditions, to determine instances

of isoform-level regulation. Second, it determines differences in the relative usage of

isoforms within a gene, using the Jensen–Shannon divergence to measure and compare

the similarity between two probability distributions.

Figure 2-1. Methods may detect differential splicing at the isoform, alternative splicing
event, and exon/intron level.
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The second class of methods focuses on specific types of alternative splicing events

which have been categorized into several common types, including exon skipping,

mutually exclusive exons, intron retention and alternative 3’/5’ splice sites. Alternative

splicing events can be detected from RNA-seq reads mapped to exons or exon junctions,

either starting from a reference set of gene annotations or by building a gene schematic

representation such as a splice graph, annotated with the number of observed reads

that unambiguously support the presence or absence of each splicing event. Comparing

the read counts between mutually exclusive paths (isoforms) gives an estimate of the

relative contribution of each isoform, which can then be compared between conditions.

As an example, the software rMATS [33] retrieves candidate alternative splicing

events from an input annotation, extending the set with introns from the input

alignments. It then uses the counts of reads mapped to the two mutually exclusive

isoforms, for instance exon inclusion or exon skipping in the case of an exon skipping

event, in a bayesian framework to estimate a value called the percent splicing inclusion

levels (ψ), and determine statistically significant differential events.

Another tool, MAJIQ [34], quantifies RNA splicing in units of local splicing

variations (LSV). LSVs are defined in the splice graph where several edges share either

the start or the end endpoint of a same exon. MAJIQ models LSVs as structural

network motifs and estimates an a posterior marginal distribution over the fractions

on LSVs, defined by the percent selected index (PSI), and further determines changes

in PSI between two conditions (dPSI).

Further, DiffSplice [35] defines so called Alternative Spliced Modules (ASM) in

splice graphs. An ASM is a region in a splice graph where isoforms differ from each

other, hence each ASM has at least two alternative paths. ASM seeks to minimize

the ambiguity in isoform resolution by only considering regions that are not shared

by all isoforms. DiffSplice tests for differential splicing of each ASM instead of whole

transcripts. The relative abundances of alternative paths are estimated using the
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maximum likelihood method. As with Cuffdiff, the difference of the relative abundance

composition is measured using the Jensen-Shannon divergence metric (JSD) at the

level of ASMs.

The third type of methods do not directly quantify the expression levels of tran-

scripts or AS events, rather they use differential exon/intron usage as a surrogate to

infer differential isoform usage. These methods divide a gene into typically disjoint

counting bins, and the number of observed reads overlapping each bin is counted.

Bins can be full or truncated exonic regions, junction regions, or both. To infer

differential exon/intron (bin) usage between conditions, these methods often make use

of (generalized) linear models with the assumption of Poisson or negative binomial

distributions on read mappings. The models contain an interaction term between the

bin identifiers and the condition of interest to search for non-proportionality of the

bin counts within a gene between the conditions.

One such method, DEXSeq [36], collects reads by bins of exons or subexons, and

uses a generalized linear model to detect the differential usage of counting units across

conditions. Similar to DEXSeq, JunctionSeq [37] constructs bins for read counts

on individual exons and/or splice junctions from the counts of the whole gene. In

contrast, LeafCutter [38] clusters introns that share a donor or an acceptor splice

site. Introns are represented by splice junction read counts and jointly modeled by a

Dirichlet-multinomial generalized linear model.

In the following sections, we present our tools JULiP and JULiP2, two new

statistical models to select introns and to determine differential alternative splicing

events at the intron-level from two-group RNA-seq data with replicates. As a brief

introduction, JULiP and JULiP2 work in multiple steps (Figure 2-2)

• receive as input RNA-seq read alignments (the BAM file) and construct the set

of candidate introns and their splice junction read counts;
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• use the gene regions extracted from a reference genome annotation to group the

introns and their read counts;

• for each gene region intron group, estimate intron abundance using the regularized

program and select an optimal set of introns;

• in addition, for the differential analysis task in JULiP2, estimate the differential

usage of introns by a generalized linear model (GLM) coupled with a Wald test.

Figure 2-2. The architecture of JULiP and JULiP2

15



2.2 JULiP: An efficient model for accurate intron
selection from multiple RNA-seq samples

Determining a high confidence and complete set of features is critical for the accuracy of

downstream differential and functional analyses. Our tool JULiP (JUnction prediction

using an L1-regularized Program) implements a L1-regularized model to identify and

select a highly accurate set of introns from large scale RNA-seq data sets [39]. Unlike

traditional approaches that extract introns from each sample and then merge them

per sample sets, our model selects introns directly by criss-crossing information across

all input samples. Specifically, for each gene region, JULiP solves an L1-regularized

program iteratively on the aggregate set of introns extracted from the multi-sample

RNA-seq data set. When evaluated on simulated and real data, JULiP detected introns

with both very high precision (>98%) and high sensitivity (>89%). In particular, it

detected at least 30% more introns in each sample compared to traditional assembly-

based approaches, and 10% more than the cumulative intron set of all samples, at

higher or comparable precision [39].

We next introduce the mathematical model and provide details of the algorithm and

implementation. We then compare JULiP with existing approaches on both simulated

and real RNA-seq data sets, and discuss scalability and practical implications.

2.2.1 Methods and implementation

2.2.1.1 The core optimization formulation

We assume that reads from RNA-seq samples are generated independently and follow

a Poisson distribution. Given a gene region, we denote V the candidate set of introns,

and S the sample set. We define a set of observations X = {xs
v | v ∈ V, s ∈ S}, where

xs
v is a random variable representing the number of reads aligned to intron v in sample

s. Each variable xs
v follows a Poisson distribution with mean λs

v, which is the expected
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count of intron v in sample s. More specifically:

λs
v = N sβv, (2.1)

where N s is the total number of mapped reads in sample s and βv is a coefficient

that describes the abundance ratio of intron v in transcripts of the gene, which needs

to be estimated. We assume samples are derived from the same cell type or condition,

and therefore intron utilization is similar across all samples. Thereby, the likelihood

function is:

P (X = xs
v, v ∈ V, s ∈ S | β) =

∏︂
s∈S

∏︂
v∈V

P (X = xs
v | β)

=
∏︂
s∈S

∏︂
v∈V

e−λs
v(λs

v)xs
v

xs
v!

(2.2)

Taking the logarithm of the above equation, we have:

F (β) = −
∑︂
s∈S

∑︂
v∈V

(λs
v − xs

vlnλ
s
v + ln(xs

v!)) (2.3)

Since xs
v does not depend on β, maximizing F (β) with respect to β is equivalent

to minimizing:

L(β) =
∑︂
s∈S

∑︂
v∈V

(λs
v − xs

vlnλ
s
v) (2.4)

The total number of candidate introns collected from all samples is large, but only

a limited number of introns are expected to be real. Therefore, the solution must be

sparse, and L1 (Lasso) regularization can be used to encode sparseness. Together with

L(β), we propose:

J(β; t) =
∑︂
s∈S

∑︂
v∈V

(λs
v − xs

vlnλ
s
v) + t∥β∥1 (2.5)

where t > 0 is the regularization parameter, and β = [β1, β2, ..., β|V |].

Since the read count for each intron cannot be negative, βv ≥ 0 for v ∈ V . Hence,

t∥β∥1 = t
∑︂
v∈V

βv (2.6)
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To summarize, the optimization problem can be expressed as:

arg minβ J(β; t)

s.t. t > 0,

βv ≥ 0,

λs
v = N sβv

(2.7)

2.2.1.2 Implementation

JULiP works in three steps (Figure 2-3):

(1) construct the set of candidate introns and their read counts;

(2) assign reads from multiple samples into gene regions (as bins); and

(3) estimate intron abundance using the regularized program and select an optimal

set of introns.

Figure 2-3. Overview of JULiP implementation.

In step 1, JULiP aligns all reads to the genome, separately for each sample, using

the spliced alignment program TopHat2 [40]. A set of candidate introns and their

read counts in each sample are then inferred from the spliced alignments. To reduce

ambiguity due to reads mapping to multiple locations, we use the counts of uniquely

mapped reads.
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In step 2, overlapping read alignments in each sample are merged to form contiguous

exonic regions, which are then connected via the introns from step 1 into larger gene

regions. Regions from individual samples are further merged across all samples and

used as ‘bins’ for clustering introns. This process may create long regions possibly

containing several genes. Large ‘bins’ harboring hundreds of introns can significantly

affect performance as well as the accuracy of the program, for instance when genes

with varying expression levels are being clustered together. Therefore, before intron

selection JULiP splits a region if the sequence of intron counts changes abruptly over

a fixed window.

Lastly, step 3 selects a subset of candidate introns believed to be expressed in

the samples and estimates their abundance levels, using the L1-regularized program

from the previous section. The algorithm iteratively estimates the abundance ratio

β of introns based on their read counts. The process updates β and reduces the

regularization parameter t simultaneously, and is iterated until convergence.

To further speed up the program for application to very large RNA-seq collections,

we also implemented our model using the Hadoop distributed framework. With this

implementation, JULiP can solve individual programming problems from hundreds and

potentially thousands of samples simultaneously across tens or hundreds of computers.

2.2.2 Evaluation

An accurate set of introns is critical for building complete transcript models and for

identifying alternative splicing variation. We evaluated JULiP and several transcript

assembly methods including Cufflinks (v2.2.1) [32], CLASS2 (v2.1.2) [18], StringTie

(v1.2.2) [19] and FlipFlop (v1.9.6) [20], as well as the multi-sample assembler ISP

(v0.3) [30] on both simulated and real RNA-seq data. (MiTie [29] was prohibitively

slow, requiring more than a week to process a single gene region, and was unable to

handle long gene regions, and therefore was omitted.)
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For the single-sample programs, we assemble transcripts for individual samples,

then extract and aggregate introns from all samples. We ran each program with the

default settings and, where applicable, in ‘sensitive’ mode (denoted ‘_F001’), where

we adjusted the minimum isoform fraction (parameter ‘-F 0.01’) to report more splice

isoforms. For ISP, we extract introns directly from the isoforms predicted from the

multiple samples.

In the following sections we assess the accuracy of intron selection as a general

indicator for the programs’ ability to reconstruct as complete as possible a set of

transcripts and to detect splicing variation.

2.2.2.1 Performance on simulated data

We simulated 25 RNA-seq samples, each with roughly 85.9 million 100 bp paired-

end reads, starting from the expression profile of GENCODE v.22 [41] genes and

transcripts in five hippocampus samples (data not shown) and using the program

Polyester [42]. Polyester incorporates typical biases from library preparation and

sequencing, generating reads from the reference genome and randomly introducing

errors. Reads were mapped to the entire human genome (GRCh38) using TopHat2

(v2.1.0). For illustration purposes, we restricted our analysis to reads mapping to

chromosome 12. For evaluation, we consider GENCODE junctions contained in the

reads for each sample as the gold reference, and declare a match between a predicted

feature and a reference intron if their genomic coordinates match exactly. Hence, a

predicted intron is a true positive (TP) if it exactly matches an intron in the reference,

a false positive (FP) if it has no counterpart in the reference, whereas a reference

intron is deemed a false negative (FN) if it was not reported by the program. We use

the standard sensitivity Sn = TP/(TP + FN) and precision Pr = TP/(TP + FP )

measures as well as the combined F − value = 2 ∗ Sn ∗ Pr/(Sn+ Pr) [43] to measure

accuracy.
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We first assessed the potential of methods to uncover introns from single samples

when using local information only versus information from multiple samples. When

each sample is considered individually, programs find between 7,795-10,113 (per sample

average) of the introns in a sample, for 78%-95% sensitivity, while precision is very high

for all programs, at >96% (Figure 2-4 and Table 2-I, column 2). JULiP’s sensitivity

is 16-30% higher than those of the single-sample assemblers, and a remarkable 13%

higher than the sensitivity of the multi-assembler ISP.
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Figure 2-4. Sensitivity (A) and precision (B) of programs for each sample. Per sample
precision cannot be calculated for ISP and JULiP, as they have access to additional
information and predict true introns in the simulated model that may not have been
sampled in an individual data set. Boxplots indicate the minimum, maximum and median
values, and the .25 and .75 quantiles for each program over the 25 samples. Circles indicate
the values for the pooled set of samples.
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Set TP (sample avg.) TP FP Sn Pr F-val
Gold reference 10,659 12,996 NA NA NA NA
Cufflinks 7,795 9,832 248 0.757 0.975 0.852
CLASS2 8,193 10,194 51 0.784 0.995 0.877
StringTie 8,245 10,093 29 0.777 0.997 0.873
Cufflinks_F001 8,749 10,601 506 0.816 0.954 0.880
CLASS2_F001 8,593 10,418 61 0.802 0.994 0.888
StringTie_F0.01 8,575 10,462 50 0.805 0.995 0.890
FlipFlop 8,351 10,214 2,437 0.786 0.807 0.797
ISP 8,961 9,949 187 0.766 0.982 0.860
JULiP 10,113 11,628 182 0.895 0.985 0.938

Table 2-I. Performance of methods on the simulated data. TP = true positives, per
sample average (column 2) and pooled across all samples (column 3); FP = false positives;
Sn = TP/(TP + FN), Pr = TP/(TP + FP) and F-val = 2 * Sn * Pr/(Sn + Pr).

Even when junctions are pooled across all samples, JULiP significantly outperforms

all other methods (Table 2-I, columns 3-7). It detects 89.5% of the introns encoded

in the data, compared to 81.6% or lower for the rest of the methods, at higher

or comparable precision (98.5%). Therefore, JULiP takes advantage of the latent

information in multiple samples to improve the sensitivity and precision of predictions

simultaneously and in a significant way.

Last but not least, JULiP found a total of 11,628 of the 12,996 introns generated

by the simulator, which is >30% more introns than found on average by any of

the other programs in a single sample. This difference represents introns missed by

the conventional assemblers but also new introns, i.e. which were included in the

simulation set but are not present in that sample, thus illustrating the power of a

multi-sample approach.
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Genes detected Genes detected
only by JULiP only by the counterpart

JULiP vs CLASS2_F001 136 2
JULiP vs StringTie_F001 193 4
JULiP vs Cufflinks_F001 218 1
JULiP vs FlipFlop 252 4
JULiP vs ISP 129 2

Table 2-II. Performance in gene detection.

To more specifically assess the contribution to gene and transcript reconstruction,

we mapped the introns found from the pooled data back to the reference annotations

to determine the set of genes they represent. In pairwise comparisons, JULiP found

between 129-252 genes that were not discovered by the other method, and only missed

1-4 genes in each comparison (Table 2-II). Therefore, JULiP was significantly more

sensitive and more robust in detecting the genes expressed in the set of samples,

utilizing the hidden information from multiple samples to identify genes with weak

signal that could not be detected by other methods.

2.2.2.2 Performance on real data

To observe the behavior of programs in a more realistic setting, we applied all methods

to 50 randomly chosen lymphoblastoid RNA-seq samples sequenced as part of the

GEUVADIS population variation project [25]. Samples contained between 23-57

million 75 bp paired-end Illumina reads. As before, we mapped all reads to the

reference genome with TopHat2, and extracted alignments on chromosome 12 for

analysis.

Unlike with simulated data, the true set of introns in the samples is not known. As

a notable consequence, it is impossible to distinguish between novel junctions not yet

recorded in the annotations and artifacts, or false positives. Nevertheless, we compile a

comprehensive reference set of introns from transcript annotations in the GENCODE

v.22, RefSeq and KnownGenes repositories, the latter two obtained from the Genome
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Browser at the University of California Santa Cruz (http://genome.ucsc.edu).

Set TP FP Sn Pr F-val Sn’ Pr’ F’-val
Reference 20,171 NA NA NA NA NA NA NA
Cufflinks 9,507 2,424 0.471 0.797 0.592 0.575 0.971 0.722
CLASS2 9,917 3,351 0.492 0.747 0.593 0.633 0.962 0.763
StringTie 9,206 1,948 0.456 0.825 0.588 0.550 0.994 0.708
Cufflinks_F001 10,883 8,739 0.540 0.555 0.547 0.842 0.866 0.854
CLASS2_F001 10,521 5,286 0.522 0.666 0.585 0.737 0.940 0.826
StringTie_F001 9,688 3,089 0.480 0.758 0.588 0.629 0.992 0.770
FlipFlop 9,960 13,656 0.494 0.422 0.455 0.684 0.584 0.630
ISP 9,030 1,723 0.448 0.840 0.584 0.507 0.952 0.662
JULiP 11,846 5,049 0.587 0.701 0.639 0.825 0.985 0.898

Table 2-III. Performance of programs on the GEUVADIS data set. Except for ISP and
JULiP, introns were pooled across all samples. Sn (Pr) = sensitivity (precision) on the
combined GENCODE, KnownGenes and RefSeq reference database; Sn’ (Pr’) = potential
sensitivity (precision) with additional EST, mRNA and multi-sample support.

Programs report between 9,000–12,000 junctions across all samples, with sensitivity

values ranging between 45.6% and 58.7%, where JULiP is the most sensitive of the

programs while ISP and StringTie are the least sensitive (Table 2-III). Precision varies

more widely across methods, with StringTie and ISP seemingly being the most precise.

Even so, JULiP has the best overall accuracy as measured by the F-value, 4% more

than the runner ups, CLASS2 and Cufflinks. We hypothesize, however, that most

of the additional introns predicted by JULiP are in fact true but unannotated splice

junctions.

Set FP ESTs, mRNAs ≥2 samples ≥5 samples Explained
Cufflinks 2,424 295 1,493 941 0.738
CLASS2 3,351 344 2,160 1,258 0.747
StringTie 1,948 278 1,326 916 0.823
Cufflinks_F001 8,739 665 4,770 2,360 0.622
CLASS2_F001 5,286 487 3,361 1,876 0.728
StringTie_F001 3,089 412 2,168 1,440 0.835
FlipFlop 13,656 495 2,845 1,673 0.245
ISP 1,723 146 913 516 0.615
JULiP 5,049 546 3,698 2,003 0.841

Table 2-IV. False positive introns explained by other data sources.
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To test this assumption, we searched the predicted but unexplained introns for

all programs against the collection of introns extracted from spliced alignments of

ESTs and full-length mRNA sequences, obtained from the UCSC Table Browser.

Also, introns that occur in two or more of the samples are more likely to represent

true but rare or cell type specific introns, not yet included in the databases. These

two categories accounted for more than 84% of the unannotated introns predicted

by JULiP, and smaller fractions for the other programs (Table 2-IV). When these

additional introns are considered, the fraction of predicted introns for each program

(Table 2-III, Sn′) grows to 50.7–82.5%, and similarly for precision (Pr′), 58.4–99.2%.

JULiP has slightly lower sensitivity than Cufflinks_F001, which is the most sensitive,

however its precision is higher by a significant 12%, namely 98.5% compared to 86.6%.

Overall, JULiP once again has the best F-value, 89.8%, and has the best tradeoff

between sensitivity and precision, and therefore is the method best suited to extract

splice information from the large collection of RNA-seq data.

2.2.2.3 Scalability with large collections of data

To test JULiP’s scalability with large collections of RNA-seq data, we simulated

100 samples using the protocol earlier. We tested the parallel version of JULiP on

the Johns Hopkins University MARCC computing cluster, using 20, 40, 60, 80 and

100 simulated samples, with varying levels of resources. Tests were performed on

4 Linux cluster nodes with 24 cores each, to capture the potential of JULiP under

a resource-rich scenario, and on a single 24-core node, to assess performance under

a typical bioinformatics computing environment. For comparison, we also ran the

non-parallel, single-threaded version of JULiP on all data sets. All nodes had 2.5 GHz

CPUs and 128 GB of memory.
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No. samples 20 40 60 80 100
4 x 24 CPUs 1m1.5s 1m8.3s 1m22.0s 1m41.0s 1m54.3s

(0m38.1s) (0m41.5s) (0m51.8s) (1m7.3s) (1m17.2s)
1 x 24 CPUs 1m14.0s 2m15.1s 3m11.9s 4m12.5s 5m15.9s

(0m50.3s) (1m37.8s) (2m21.9s) (3m7.9s) (3m50.4s)
1 x 1 CPU (1 thread) 6m14.7s 12m20.1s 18m21.8s 24m11.9s 29m15.8s

(1m39.2s) (3m19.3s) (4m32.7s) (5m58.9s) (7m38.9s)
Max memory 597 Mb 605 Mb 608 Mb 607 Mb 616 Mb

Table 2-V. Run time and memory requirements for JULiP with 20, 40, ... , 100 simulated
data sets with varying resource levels (Numbers in parentheses indicate run times for the
LP solver only).

JULiP took less than 2 minutes to complete each run in the resource-rich envi-

ronment, and less than 6 minutes on the 24 CPU single server (Table 2-V). Most

importantly, JULiP took less than 30 minutes to complete the largest run sequentially,

of which only 7m39s solving the LP problems and the rest preparing the read count

and region information. Therefore, JULiP can be used on a variety of computing

platforms and with varying amounts of resources, from a single desktop to large-scale

computing clusters. In contrast, Cufflinks, CLASS2 and StringTie took roughly 20, 12

and 10 minutes per sample on average, all with 4 threads, FlipFlop required more than

7 hours per sample single-threaded, and ISP took 1h 10min with 48 threads for the 25

sample data set. While these numbers are not directly comparable, they showcase the

capabilities and potential of JULiP to perform calculations on very large collections

of data.
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2.3 JULiP2: A robust model for intron selection
and detection of differential alternative splic-
ing from multiple RNA-seq samples

Once an accurate set of features is generated, the next step in an RNA-seq analysis

involves comparing and identifying differences in usage between two conditions. To

address this problem, we developed the JULiP2 method that incorporates differential

splicing detection. Additionally, the Poisson read count model in JULiP may not be

suitable to capture the over-dispersion in some biological data; therefore, in JULiP2 we

formulated a new intron selection method, based on the negative binomial distribution

to model read counts.

JULiP2 detects introns from the read alignments and uses the read counts of

splice junctions to estimate the relative expression of introns under the experimental

conditions. JULiP2 adopts a generalized linear model (GLM) to model read counts

and test for differential usage of individual introns for each gene. More specifically,

to detect differential isoform usage represented as differential intron abundance in

different conditions, JULiP2 tests for differentials in read counts supporting splice

junctions (introns). Testing for differential usage of introns, compared to whole

isoforms or even local alternative splicing events, has a number of benefits. Introns as

splicing events are discrete and identifiable, capture a variety of splicing patterns, and

make it easy to incorporate novel splicing variants. This allows us to indirectly query

for differential regulation in unknown isoforms, improving performance on unknown

genes or sparsely annotated genomes.

Following the general approach of its predecessor JULiP, JULiP2 extracts the

introns in a gene region from read alignments, calculates the read counts for these

introns, and fits the values to a generalized linear model (GLM). In the model, the

parameters mean µ and variance σ are estimated, and then tested by a likelihood
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ratio test to detect differences between conditions, using the p-value of the test to

report statistically significant results.

JULiP2 has the following key features that distinguish it from other similar RNA-

seq analysis methods:

• JULiP2 can be run without a reference annotation, accurately detecting novel

splice junctions as well as infering gene regions, which benefits analyses where

the available transcript annotation is flawed or incomplete.

• JULiP2 can detect differentials in novel introns without the need for an additional

isoform assembly step or the assistance of a reference annotation.

• JULiP2 is efficient, lightweight and faster than existing approaches while provid-

ing estimates of equal accuracy and substantially reducing parametric complexity.

2.3.1 Methods and implementation

2.3.1.1 Core statistical methodology

We assume the RNA-seq reads are generated independently for each samples. Given a

gene region, we define a set of observation X = {xs
v|v ∈ V, s ∈ S}, where V is a set of

candidate introns, S is the sample set, and xs
v is a random variable representing the

splice junction reads counts of intron v in sample s. Unlike the Poisson regression model

in JULiP with the assumption that variable xs
v has equal mean and variance. Here,

we consider an over-dispersion model that variance can differ from the mean, because

of our observations of the real RNA-seq data, which almost reject the restriction that

the variance equals to the mean.

In detail, we assume xs
v follows a negative binomial distribution (NB) with mean

µs
v and variance σs

v,

xs
v ∼ NB(µs

v, σ
s
v)
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It is natural to model the variance σ as a function of the mean, σ = µ + αµ2,

where α is the dispersion parameter.

The joint distribution of P (X|µ, α) can be represent as,

P (X|µ, α) =
∏︂
s∈S

∏︂
v∈V

P (X = xs
v|µs

v, αv)

=
∏︂
s∈S

∏︂
v∈V

Γ(xs
v + α−1

v )
Γ(xs

v + 1)Γ(α−1
v )( α−1

v

α−1
v + µs

v

)α−1
v ( µs

v

α−1
v + µs

v

)xs
v

Where Γ() is the gamma function. Taking the logarithm with respected to all

samples and splice junctions in given gene region,

F (µ, α) = log(P (X|µ, α))

=
∑︂
s∈S

∑︂
v∈V

log(P (X = xs
v|µs

v, αv))

=
∑︂
s∈S

∑︂
v∈V

(log(Γ(xs
v + α−1

v )) − log(Γ(xs
v + 1)) − log(Γ(α−1))

− (xs
v + α−1

v )log(1 + αvµ
s
v) + xs

vlog(αvµ
s
v))

Ignoring xs
v from the above equation, we have the loss function,

L(µ, α) =
∑︂
s∈S

∑︂
v∈V

(log(Γ(α−1
v ))−log(Γ(xs

v+α−1
v ))+(xs

v+α−1
v )log(1+αvµ

s
v)−xs

vlog(αvµ
s
v))

The splice junction representing the true introns should be consistent and significant

between replicates. We use a single parameter βv to represent µs
v (µs

v = βv) for splice

junction (intron) v across multiple samples and the above equation can be simplify as,

L(µ, α) = L(β, α)

=
∑︂
s∈S

∑︂
v∈V

(log(Γ(α−1
v )) − log(Γ(xs

v + α−1
v )) + (xs

v + α−1
v )log(1 + αvβv) − xs

vlog(αvβv))

2.3.1.2 Model for intron detection

For the intron detection task, the total number of candidate splice junctions collected

from all samples is large, but only a few splice junctions are expected to be real.
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Therefore, the solution must be sparse, and we can use L1(Lasso) regularization to

encode sparseness. Together with L(β, α), we propose:

J(β, α; t) = L(β, α) + tβ||β||1 + tα||α||1

where t = (tβ, tα), t > 0 is the regularization parameter. Since β ≥ 0 and α ≥ 0,

for v ∈ V

tβ||β||1 = tβ
∑︂
v∈V

βv

tα||α||1 = tα
∑︂
v∈V

αv

Finally, for intron detection task, the optimization problem can be expressed as:

argminβ,αJ(β, α; t)

s.t. t > 0

β ≥ 0

α > 0

2.3.1.3 Model for differential splicing

To further estimate differential usage of introns and gene expression in different

condition groups, we redesign the mean µs
v to include more information. Specifically,

µs
v is predicted via a log-linear model, log µs

v = β1 +β2 +β3 + · · · , where the parameter

βi is used to model the potential factors of interest. The factors we considered for

our model included (1) the fraction of the reads mapped to splice junction, βv; (2)

the sample the reads came from, βs; (3) the treatment condition, βcv; (4) the control

condition, βtv; (5) the baseline expression strength of the gene, βg; (6) the fraction of
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the reads mapped to the gene that overlap with the splice junction, βfg; and (7) the

logarithm of the fold change in the overall expression of the gene, βfcg. We evaluated

multiple combinations of parameters and parameter values, to select a subset that

had a critical impact on the results, which led to:

log µs
v = βv + βs + βcv + βtv

Where, µs
v is decompose into four factors, βv is the logarithm of the expected

fraction of the reads mapped to splice junction v. βs is the logarithm of the expected

fraction of the reads came from sample s, βtv is the effect of the test condition has

on the fraction of reads falling into splice junction v. βcv is the effect of the control

condition has on the fraction of reads falling into splice junction v. hence, L(µ, α)

change to,

L(µ, α) = L(β, α) =
∑︂
s∈S

∑︂
v∈V

(log(Γ(α−1
v )) − log(Γ(xs

v + α−1
v ))

+ (xs
v + α−1

v )log(1 + αvexp(βv + βs + βcv + βtv))

− xs
vlog(αvexp(βv + βs + βcv + βtv)))

s.t. βv, βs, βcv, βtv ≥ 0

αv > 0

2.3.1.4 Implementation and parameter selection

Like JULiP, JULiP2 works in four phases:

(1) construct the set of candidate introns and their read counts;

(2) detect mapping regions and merge into gene regions;

(3) for the intron detection task, estimate intron abundance using the GLM and select

an optimal set of introns;
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(4) for the differential analysis task, estimate the differential usage of introns by GLM

coupled with a Wald test.

In step 1, a list of RNA-seq BAM files and optionally a transcriptome database

are accepted as the JULiP2 input. A set of candidate introns and their read counts

in each sample are inferred from the spliced alignments (in BAM file). To reduce

ambiguity due to reads mapping to multiple locations, we use the count of primary

mapping reads.

In step 2, if a transcriptome database is provided, genes and exons info will be

extracted, otherwise, genic and exonic regions will be inferred by JULiP2. For the

inference, overlapping read alignments in each sample are merged to form contiguous

exonic regions. Exonic regions from individual samples are then merged across all

samples and used as ‘bins’ for clustering introns. Exonic regions are further connected

via the candidate introns from step 1 into larger gene regions. This process may create

long regions that contain several genes. Large ‘bins’ harboring hundreds of introns can

significantly affect performance as well as the accuracy of the program, for instance

when genes with varying expression levels are being clustered together. Therefore, an

optional approach can be adopted to split regions. The idea is to cut region if intron

counts change abruptly over a fixed window.

In step 3, the model selects a subset of candidate introns believed to be expressed

in the samples and estimates their abundance levels, using the L1-regularized linear

program described in the previous section. The algorithm iteratively estimates the

abundance ratio β of introns based on their read counts. The process updates β and

reduces the regularization parameters t accordingly, and is iterated until convergence.

In step 4, the GLM algorithms described in the previous section are used to

reconstruct the read counts of introns under the null and the alternative hypotheses.

The null hypothesis is that there is no difference in intron usage between the conditions,
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while the alternative hypothesis assumes some introns are differentially used between

the two conditions. A likelihoood ratio test is applied to evaluate the results. A

p-value is calculated on each intron within a gene and a Benjamini-Hochberg (BH)

correction for multiple testing is used to reduce the false discovery rate and calculate

a gene-wise q-value.

JULiP2 is designed take advantage of multiple CPU cores and scales well with

the input RNA-seq alignment data. JULiP2 can quantify abundance from pre-

computed alignments provided in SAM or BAM format. JULiP2 is written in Pyhton,

is open-source and free licensed (GPL v3). It has been developed and tested on

Linux and Macintosh OS X. The software and user manual are freely available at

https://github.com/Guangyu-Yang/JULiP2 .

2.3.2 Evaluation

2.3.2.1 Performance of feature selection

We used the framework developed for evaluating JULiP, including measurements on

both simulated and real data, to compare the performance of JULiP2 vis-à-vis its

predecessor and several transcript assembly methods, including Cufflinks, CLASS2,

StringTie, FlipFlop and the multi-sample assembler ISP. As before, introns were

extracted from transcript predictions for the single-sample assemblers and were then

combined across all samples, whereas for the multi-assembler ISP introns were extracted

from the reported joint transcript set. For JULiP2, we used four types of models and

parameter values for estimating the parameters of the negative binomial distributions

(nb1-4).
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Set TP FP Sn Pr F-val
Gold reference 12,996 NA NA NA NA
Cufflinks 9,832 248 0.757 0.975 0.852
CLASS2 10,194 51 0.784 0.995 0.877
StringTie 10,093 29 0.777 0.997 0.873
Cufflinks_F0.01 10,601 506 0.816 0.954 0.880
CLASS2_F0.01 10,418 61 0.802 0.994 0.888
StringTie_F0.01 10,462 50 0.805 0.995 0.890
FlipFlop 10,214 2,437 0.786 0.807 0.797
ISP 9,949 187 0.766 0.982 0.860
JULiP 11,628 182 0.895 0.985 0.938
JULiP2 (nb1) 12,089 294 0.930 0.976 0.953
JULiP2 (nb2) 11,899 235 0.916 0.980 0.947
JULiP2 (nb3) 11,671 212 0.898 0.982 0.938
JULiP2 (nb4) 11480 185 0.883 0.984 0.931

Table 2-VI. Performance of JULiP2 (versions nb1, nb2, nb3 and nb4) and other methods
on 25 simulated RNA-seq data sets.

The first, accuracy test, on 25 simulated RNA-seq samples, showed JULiP2 to

achieve better or comparable results with JULiP, as measured by the F-value as well

as by the individual sensitivity and precision measures, and both JULiP programs in

turn were significantly more sensitive than the other methods, namely >30% more

than the most sensitive single-sample method, and 10% more introns in the cumulative

set of samples (Table 2-VI). The second test, on real data, assessed the programs on

50 RNA-seq data sets from lymphoblastoid RNA-seq samples sequenced as part of

the GEUVADIS population variation project. JULiP2 detected a number of known

introns comparable to JULiP, but produced a larger number of additional introns,

apparent false positives. Most of the additional introns, however, could be explained by

new sources of information (dbEST, GenBank RNA-seq, recurrence), thus rendering

JULiP2 as the tool with the highest capacity for finding intron features (Table 2-VII).
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Set TP FP Sn Pr F-val Sn’ Pr’ F-val’
Reference (GENCODE) 20,171 NA NA NA NA NA NA NA
Cufflinks 9,507 2,424 0.471 0.797 0.592 0.575 0.971 0.722
CLASS2 9,917 3,351 0.492 0.747 0.593 0.633 0.962 0.763
StringTie 9,206 1,948 0.456 0.825 0.588 0.550 0.994 0.708
Cufflinks_F0.01 10,883 8,739 0.540 0.555 0.547 0.842 0.866 0.854
CLASS2_F0.01 10,521 5,286 0.522 0.666 0.585 0.737 0.940 0.826
StringTie_F0.01 9,688 3,089 0.480 0.758 0.588 0.629 0.992 0.770
FlipFlop 9,960 13,656 0.494 0.422 0.455 0.684 0.584 0.630
ISP 9,030 1,723 0.448 0.840 0.584 0.507 0.952 0.662
JULiP 11,846 5,049 0.587 0.701 0.639 0.825 0.985 0.898
JULiP2 (nb1) 11,954 10,526 0.593 0.532 0.561 0.995 0.893 0.941
JULiP2 (nb2) 11,631 7,336 0.577 0.613 0.594 0.909 0.967 0.937
JULiP2 (nb3) 11,271 5,433 0.559 0.675 0.611 0.821 0.992 0.898
JULiP2 (nb4) 10,967 4,390 0.544 0.714 0.617 0.759 0.995 0.861

Table 2-VII. Performance of JULiP2 (nb1, nb2, nb3 and nb4) and other methods on the
GEUVADIS data set (50 lymphoblastoid RNA-seq samples).

2.3.2.2 Performance of differential splicing on simulated data

We evaluated the performance of JULiP2, comparing it with the programs JunctionSeq,

rMATS, LeafCutter and MAJIQ for the differential analysis task, and with Cufflinks,

Stringtie, and CLASS for the intron detection task. All the approaches were run with

the default settings in the experiments.

We first evaluate the programs in a controlled setting where the true transcripts’

expression and splicing levels are known. For this task, we generate 50 synthetic

samples (7 million 101 bp paired-end reads/sample) by Polyester. The simulator

was trained on GenBank SRR493366 reads, with gene expression levels (in FPKM)

estimated with Ballgown [44] from Tophat2 alignments. For the simulation pipeline,

we randomly select 2000 protein coding genes from among those containing at least

two different expressed isoforms. We set the expression levels of the selected genes in

the control samples to be the same as in the original sample. For the ‘test’ samples,

we assign the selected protein coding genes into 4 groups, each with 500 genes, as

follows. 1) The first group had no change in FPKM values. 2) For the second group,

we simulated differential gene expressions (DE) by changing (doubling or halving) the
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FPKM values of the genes, randomly. 3) In the third group, we simulated differential

splicing (DS) by swapping the expression levels of the two most highly expressed

isoforms for the gene. 4) In the fourth group, we applied the modification in 2) and 3)

to create a mixture of differential expression and differential splicing events.

A true positive (TP) occurs when the prediction matches the gene settings, a

false positive (FP) when the prediction does not appear in the gene settings, and

lastly, a false negative (FN) occurs when a true differential event is not reported by

the program. We calculate the standard sensitivity, precision and the F-value for

each program. As seen in (Figure 2-5A), JULiP2 has the best performance in our

testing, and sensitivity, precision and F-value are all very high. Of the programs

tested, only JunctionSeq achieves a similar level of performance, but we note that

JunctionSeq incorporates external information about the annotations and exon counts.

Additionally, as a drawback, JunctionSeq has a large running time and cannot process

large datasets.

2.3.2.3 Performance of differential splicing on real data

Further, to test the programs for their abilities in detecting differential splicing events

in a real setting, we ran JULiP2, rMATS, MAJIQ and LeafCutter on an RNA-seq data

set from hippocampus tissue of healthy and epileptic mice (PRJEB18790) [45]. We

used 10 randomly selected control samples and 10 epilepsy samples. We aligned the

reads with STAR [46] and applied each method to identify splicing differences between

the two conditions (chr2 only, for simplicity). Figure 2-5B shows the correspondence

between the sets of results, indicating that many of the predictions are program

specific.
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(A) (B)

Figure 2-5. Evaluation of differential splicing prediction methods. (A) Simulated data:
2D column plots of the sensitivity, precision and F-values for the selected programs. The
p-value thresholds are chosen based on the recommendation in the papers. (B) Real data:
Correlations of differential splicing predictions by different methods.

2.3.2.4 Detection of non-canonical splice junctions from a collection of
human liver RNA-seq data

To further assess the usefulness of our method, we applied JULiP2 to a collection

of post-mortem human liver tissue samples from individuals with mental illness

(schizophrenia, 21 samples) and unaffected controls (17 samples) (GenBank accession:

PRJNA575230). We chose to focus on non-canonical splice junctions because they are

difficult to sift from a large number of false positives in the initial set of alignments.

Filter All Non-canonical
Original 1,058,787 382,272
Alignment 830,791 154,276
JULiP2 (β ≥ 0.1) 195,938 5,328
JULiP2 (DS, sufficient input) 183,632 3,457
Context (C=1) 182,136 3,445
Diff. spliced 11,258 720

Table 2-VIII. Non-canonical intron detection and selection from 21 RNA-seq liver samples
from schizophrenia and 17 unaffected individuals.

Specifically, our approach was as follows (Table 2-VIII). We used STAR to generate

genome-wide spliced alignments, from which we extracted candidate splice junctions
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(introns) with the tool ‘junc’ [18], modified and included in the JULiP2 package. This

procedure generated 1,058,787 splice junctions across all samples, including 382,272

candidate non-canonical (NC) splice junctions. To reduce the number of false positive

NC junctions and select an accurate subset for further investigation, we applied a three

step filtering procedure. First, we employed the alignment-based filters implemented

in the tool ‘junc’ to remove alignment artifacts, namely inconsistent mappings between

reads within the same pair, reads with low alignment scores, and reads from non-

concordant pairs. This step reduced the number of unique introns to 830,791, including

154,276 NC introns. Second, we applied the intron selection procedures implemented

in JULiP2 to select a subset of high-confidence introns (183,632 introns, of which

3,457 non-canonical). Third, we selected only those introns that were identified as

‘reliable’ based on sufficient original read mapping support in at least C samples

(default: 1). This resulted in 183,136 introns, including 3,445 NC introns. Of these

remaining candidates, we further prioritized 720 putative NC junctions that JULiP2’s

differential splicing module identified as differentially spliced between schizophrenic

and unaffected individuals (C = 1). Figure 2-6 shows the alignments of one such

example, intron chr6:25137823-25138073 with the genomic signal CT-GC (GC-AG on

the gene’s strand) at the CMAHP gene.

2.4 Discussion

In this section, we described JULiP and JULiP2, two novel methods for intron

selection from multiple RNA-seq samples and for differential splicing detection. The

methods simultaneously model splice junction information across the samples into

linear models, namely a regularized linear program for JULiP and a GLM for JULiP2,

taking advantage of the latent information in the set of samples to extract a highly

accurate set of introns.

When evaluated on simulated data, JULiP significantly outperformed current
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Figure 2-6. IGV plot showing the non-canonical splice signal CT-GC at the CMAHP
gene.

assembly based approaches in the ability to select an accurate set of features (introns).

In particular, JULiP could identify 16-30% more introns from a single sample compared

to reference (single-sample) programs at precision comparable to the highest, and

9-18% more features when introns were pooled together across all samples. When

applied to real data, JULiP had the highest potential to identify splice variation from

multiple samples, demonstrating both high sensitivity and very high precision, >98%.

An implementation of JULiP using the Hadoop parallel framework scaled well

with the number of nodes and samples, and ran in under 2 minutes for up to 100

samples. Therefore, JULiP provides a highly efficient model for intron selection from

multiple, potentially hundreds and thousands of RNA-seq samples, and can be used

as a standalone tool or can be efficiently integrated into a transcript assembly method

for comprehensive annotation of splice variation.

While JULiP is restricted to the problem of intron selection, JULiP2 offers a more

comprehensive and flexible approach, with the addition of a differential splicing model
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and a more realistic read count model based on the negative binomial distribution.

The negative binomial distribution facilitates an intuitively interpretable separation

of biological from technical variation, while the GLM allows for arbitrarily complex

experiments.

Using both simulated and real data, we benchmarked JULiP2 against Cufflinks,

Stringtie, and CLASS for the intron detection task, and against CuffDiff, JunctionSeq,

and DEXSeq for the differential analysis task. The experiments demonstrated that

our method has high sensitivity and precision, while better controlling the rate of false

positives.

In summary, both JULiP and JULiP2 are novel and representative models for

leveraging latent gene information from multiple related RNA-seq samples to signif-

icantly increase the accuracy of feature selection. Additionally, JULiP2 provides a

robust and flexible framework for differential splicing analysis at the intron level. Our

tools are annotation and assembly free, and therefore avoid the pitfalls of assembly

while allowing for the detection of new splice variants. Lastly, they are lightweight,

memory efficient and highly scalable, offering a powerful and practical solution for the

analysis of large scale RNA-seq experiments.
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Chapter 3

MntJULiP and Jutils

In Chapter 2, we discussed JULiP and JULiP2 and their applications to intron selection

and differential splicing analysis. While our assessments indicate that JULiP and

JULiP2 perform well, there are still limitations. For instance, because they rely on

the gene context for estimating intron parameters and for testing, their performance

suffers when used without a reference gene annotation to accurately determine the

boundaries of the gene. To address this and other challenges, we developed MntJULiP,

a comprehensive and scalable tool for differential splicing detection at the intron

level, based on generalized linear models. Further, there is a scarcity of tools to

present differential splicing events to biologists in an intuitive way. To fill this gap, we

developed the visualization toolkit Jutils, to create representations of results produced

by MntJULiP and other differential splicing tools as heatmaps, sashimi plots and

Venn diagrams.

3.1 Background

Gene alternative splicing is a fundamental biological process that gives rise to a wide

array of protein isoforms with modified properties in plant and animal systems. Most

splicing variations are tissue specific, but splicing is also altered by external stimuli [15]

and aberrant splicing has been associated with diseases [31]. Therefore, there is a
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great need to accurately map and quantify gene splice variants, as well as to identify

differences in splicing between conditions.

As described in Chapter 2, current methods for differential splicing detection can

detect and quantify alternative splicing from RNA sequencing (RNA-seq) data at the

level of transcripts (isoforms), splicing events (exon skipping, mutually exclusive exons,

alternative exon ends, intron retention), or primitive features (subexons, introns).

Isoform-level quantification methods (Cuffdiff, Cuffdiff2, MISO [17, 32, 47]) require

a reference annotation or a reconstructed set of transcripts, and their performance

suffers from incompleteness and inaccuracies in the assemblies. Event level methods

(DiffSplice, rMATS [23, 33]) are less affected by assembly errors, but represent only a

subset of alternative splicing variations. For both of these methods, quantification is

further complicated by the ambiguity in assigning reads that map to multiple locations

in the genome and multiple transcripts of a gene. In contrast, more recent methods

(LeafCutter, MAJIQ, JunctionSeq [34, 37, 38]) target introns, which can be more

reliably identified from read alignments, capture a wider variety of splicing variations,

and are less ambiguous to quantify, as intron-spanning reads associate with unique

gene splice patterns.

Methods further differ in how they define splicing differences. Most methods

quantify changes in the relative splicing levels of the target feature within a group of

mutually exclusive local splicing patterns (LeafCutter, MAJIQ, rMATS, DiffSplice),

or alternately identify features with splicing usage inconsistent with the rest of the

gene (JunctionSeq, DEXseq [48]). Yet others look for changes in the overall (absolute)

abundance levels, as a means to identify changes in isoform regulation leading to

functional effects (Cuffdiff, Cuffdiff2, ALEXA-seq [17, 32, 49]).

Lastly, to increase accuracy, some methods rely on a pre-existing set of gene

annotations to identify relevant splicing variations, limiting discovery of novel and

potentially condition-specific features. The rich spectrum of methods for alternative
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splicing quantification and differential analysis offer a multifaceted yet inconsistent

view of alternative splicing variation [50].

3.2 MntJULiP: Comprehensive and scalable quan-
tification of splicing differences from RNA-seq
data

We introduce MntJULiP, a statistical learning method based on a novel mixture

Bayesian framework, for detecting differences in splicing between large collections

of RNA-seq samples. MntJULiP represents splicing variation at intron level, thus

capturing most splicing variations while avoiding the pitfalls of assembly. It infers

intron annotations directly from the alignments, making it possible to discover new

unannotated candidate markers. MntJULiP detects both differences in intron splicing

levels, herein called differential splicing abundance (DSA), and differences in intron

splicing ratios relative to the local gene output, termed differential splicing ratio (DSR)

(Figure 3-1). Salient features of MntJULiP include: i) a novel statistical framework,

including a zero-inflated negative binomial mixture model for individual introns, in

the DSA model, and a Dirichlet multinomial mixture model for groups of alternatively

spliced introns, in the DSR model; ii) it captures significantly more alternative splicing

variation, and more types of variation, than existing tools; iii) superior performance

compared to reference methods, including increased sensitivity in control experiments,

and high reproducibility and reduced false positives in comparisons on real data; iv) a

unique mixture model that allows comparison of multiple conditions simultaneously, to

aptly capture global variation in complex and time-series experiments; and v) highly

scalable, it could process hundreds of GTEx samples in less than half an hour.

MntJULiP differs from and improves upon the model implemented in JULiP and

JULiP2 in multiple ways. The main difference is that, unlike JULiP and JULiP2

that jointly model the set of all introns at a gene, MntJULiP targets individual
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introns (DSA) or groups of introns that share the same splice site (DSR). In this way,

MntJULiP can extract splicing events directly from the RNA-seq alignments, without

the need for a reference gene annotation. Moreover, such setup can avoid grouping

large numbers of introns from a gene region, which usually results in poor performance

for some low expressed splice junctions or genes. Further, unlike JULiP/JULiP2 that

select introns directly via the L1 regulated model, MntJULiP can be used for intron

selection in an implicit way. Specifically, the MntJULiP DSA model estimates the

mean expression level of an intron in given condition(s), which it then uses to filter out

introns below a user specified threshold, likely caused by ’noise’ or alignment errors.

3.2.1 Methods

MntJULiP consists of two components, a ‘builder’ and a ‘quantifier’. The builder

takes as input the aligned RNA-seq reads, extracts the splice junctions (introns) and

their supporting read counts, and filters introns with low support (≤ 3 reads in each

of the samples). A second, context-based filter for low support introns is embedded

in the statistical model below. Individual introns are the subject of DSA analysis.

For the DSR analysis, introns that share an endpoint are grouped into ‘bunches’.

If a reference gene annotation is provided, both individual introns and bunches are

associated with an annotated gene if they share at least one intron coordinate. The

quantifier subsequently evaluates candidate introns, building a learning model for each

intron and performing two statistical tests: i) a test for a change in intron abundance

between the two (or more) conditions (DSA), and ii) a test for a change in the splicing

level of the intron relative to its ‘bunch’ (DSR). For DSA, MntJULiP uses a mixture

zero-inflated negative binomial model to estimate individual introns’ abundance levels

from the raw read counts. For DSR, it estimate the relative splicing ratios with a

mixture multinomial Dirichlet distribution. In both models, log-likelihood ratio tests

are used to determine differential splicing events. P-values are then adjusted for
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Figure 3-1. (A) RNA-seq reads are aligned to the genome and spliced alignments are used
to detect the genomes and calculate their read counts. MntJULiP then tests individual
introns for differential intron abundance (DSA), and groups of introns sharing a splice site
(’bunches’) for differential splicing ratio (DSR). (B) Left, DSA: Each intron is analyzed
individually, and the expression (abundance) level is compared between conditions. Right,
DSR: Introns that share a splice junction (‘bunch’) are collectively analyzed, and the PSI
value for each intron is compared between conditions. Shown are: an individual exon
in a three-condition experiment, in the DSA diagram, and a three-intron ‘bunch’ in a
two-condition experiment, in the DSR diagram.

multiple testing using the Benjamini-Hochberg correction. The entire framework is

described in detail below.
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3.2.1.1 Bayesian read count model

We use a Bayesian statistical framework to estimate intron splicing levels for differential

analyses. This framework also provides another way to distinguish true introns from

sequencing and systematic errors, as a second context-based intron filter. To start, we

assume that the read count y of intron v in a given sample follows a negative binomial

distribution NB(µ, θ). We next add a loose prior with an empirical µ̂ (the sample

mean) modeled by a normal distribution: µ ∼ N(µ̂,
√︂
µ̂/10) to model subtle variability

between conditions and among the individual samples, and a restriction to the dis-

persion parameter ϕ as an inverse Half-Cauchy distribution: ϕ−1 ∼ Half Cauchy(0, 5).

Lastly, to account for low expression genes and transcripts, and for low read count

introns from library preparation and sequencing artifacts, we introduce a zero inflated

modifier on the negative binomial Bayesian model [51]:

y ∼

⎧⎨⎩0, with probability π
NB(y), with probability 1 − π

where NB(y) is the probability density function of the negative binomial model

described above.

Let p(y) denote the probability density function for this model. For n samples and

intron read count yj in sample j, we define the log likelihood:

L(θ) = log p(y1, y2, . . . , yn) =
n∑︂

j=1
log p(yj)

We maximize the log likelihood function using the Limited memory Broyden Fletcher

Goldfarb Shanno (LM-BFGS) optimization method [52] and obtain point estimates

for parameter θ over the samples.

3.2.1.2 The differential splicing abundance (DSA) model

The previous section established a general Bayesian model to estimate intron abun-

dance. Next we describe the framework for modeling individual intron abundance and
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for DSA testing in a multi-condition experiment. Assume that samples are drawn

from m (typically 2) conditions. Given an intron v and a sample generated from

condition i, its intron read count y follows a negative binomial distribution NBi(y)

with the condition specific parameters µi, θi , ϕi and πi, as defined earlier.

Let pi(y) be the probability density function for the complete model for condition

i ∈ {1, . . . ,m}. We define a mixture probability model for y:

p̄(y) =
∏︂

i

pi(y)zi

where zi is the indicator variable for that sample, equal to 1 iff the sample belongs to

condition i and 0 otherwise.

To formulate the problem, given n samples, m conditions and yj the intron read

count in sample j ∈ {1, . . . , n}, we define the log likelihood:

L(θ) = log p̄(y1, y2, . . . , yn) =
m∑︂

i=1

n∑︂
j=1

zij log pi(yj)

with zij ∈ {0, 1} the indicator variable for sample j and condition i.

Having these two Bayesian models, we establish a hypothesis test for differential

intron abundance given the data: the null hypothesis is that samples are generated

from the same condition, and the alternative hypothesis is that the samples belong to

different conditions, and apply a likelihood-ratio test:

LR = −2[L(θ0) − L(θ1)],

where L(θ0), L(θ1) are the log likelihoods of the null and alternative hypothesis models,

respectively, with parameters θ0 and θ1 .

Lastly, since the parameter µj of the alternative hypothesis model is the expected

read count (mean) of the intron in condition j, we can establish an additional intron

filter by setting a threshold for µj (e.g., µj ≥ 1), to separate a ‘true’ intron from noise.
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3.2.1.3 The differential splicing ratio (DSR) model

We next formulate a framework to test for differences in splicing ratios of introns

within a ‘bunch’, or groups of introns sharing an endpoint. For simplicity, we start

by assuming that all samples belong to the same condition and the read counts

y1, y2, . . . , yk in a bundle with k introns follow a Dirichlet-multinomial distribution

with priors α1, α2, . . . , αk: y1, y2, . . . , yk ∼ DM(α1, α2, . . . , αk)

Let p(y1, y2, . . . , yk) be the probability density function. For intron read counts

(y1j, y2j, . . . , ykj) in sample j = 1, . . . , n, we define the log likelihood function:

L(θ) = log p(y1, y2, . . . , yn) =
n∑︂

j=1
log p(yj)

Similar to the discussion in the previous subsection, to extend to the case where

samples belong to multiple conditions we define a Dirichlet-multinomial distribution

with prior αi1, αi2, . . . , αik for each condition i ∈ {1, . . . ,m}.

yi
1, y

i
2, . . . , y

i
k ∼ DM(αi1, αi2, . . . , αik)

Let pi(yi
1, y

i
2, . . . , y

i
k) be the probability density function for condition i. We define

the log likelihood function

L(θ) = log p(y1, y2, . . . , yn) =
m∑︂

i=1

n∑︂
j=1

zij log pi(yj),

where yj = (y1j, y2j, . . . , ykj are the read counts of introns in the bundle in sample j,

zi,j ∈ {0, 1} indicates whether sample j belongs to condition i or not, and θ represents

the parameter set of the model.

With the two Bayesian models above, we formulate a log-likelihood ratio test

as before: the null hypothesis assumes all samples belong to the same condition,

and the alternative hypothesis assumes multiple conditions. Under the alternative

hypothesis, the parameters αi1, αi2, . . . , αik for condition i can be used to define the

splicing ratio, similar to Percent Splicing Inclusion [16, 38], Ψil of intron l ∈ {1, . . . , k}
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under condition i as:

Ψil = αil∑︁k
l′=1 αil′

3.2.1.4 Sequences and materials

Simulated data. We generated 25 control and 25 perturbed RNA-seq samples with

86 million 101 bp paired-end reads each, using the software Polyester with human

GENCODE v.22 as reference annotation. For the control samples, we used a model of

gene and transcript abundance inferred from lung fibroblasts (GenBank Accession:

SRR493366). To simulate the perturbed condition, we randomly selected 2,000

annotated protein coding genes with two or more expressed isoforms and assigned

them to four groups as follows [37, 53]: i) 500 genes were left unperturbed (NONE);

ii) 500 genes had only expression changes (DE), where genes were randomly assigned

one half or double the original FPKM value; ii) 500 genes had only splicing differences

(DS), obtained by swapping the expression values of the top two isoforms; and iv)

500 genes had both expression and splicing changes (DE-DS). Thus, 1,500 genes

underwent changes in splicing abundance, and 1,000 had differences in splicing, and

were used as the gold reference for evaluating the tools under the DSA and DSR

models, respectively.

Real data. Reads for 44 mouse hippocampus samples (24 cases and 20 controls)

were obtained from GenBank (ProjectID: PRJEB18790). Tissue RNA-seq samples for

comparative analyses (121 cortex, 105 frontal cortex, 132 cerebellum, and 196 lung

samples) were obtained from the GTEx collection [27]. Lastly, RNA-seq data from

differentiating mouse taste organoids [54] (14 samples, 7 stages) were obtained from

the Sequence Read Archive (Accession: DRA005238).
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3.2.1.5 Performance evaluation

Reads were mapped with the program STAR v.2.4.2a to the human genome GRCh38

or mouse genome GRCm38 (mm10), as applicable. Alignments were analyzed with

the programs MntJULiP v1.0, LeafCutter v0.2.8, MAJIQ v1.1.7a, rMATS v3.2.5 and

Cuffdiff2 v2.2.1 to determine changes in alternative splicing profiles. For the simulated

tests, transcripts were reconstructed across each sample with StringTie v2.1.4 then

merged across samples with StringTie(ST)-merge and the GENCODE transcripts

as reference, to create a set of gene annotations to be used with all programs. To

evaluate the programs’ accuracy in predicting differentially spliced genes from the

simulated data, the 1000 (DS, DE-DS) gene set and the 1,500 (DS, DE, DE-DS)

gene set were used as the gold standard for DSR and DSA prediction, respectively.

Any other program predictions were deemed false positives. Standard sensitivity (Sn

= TP/(TP+FN)), precision (Pr = TP/(TP+SP)), and the F1 = Sn*Pr/(Sn+Pr)

value were used to measure accuracy. To assess the programs’ fidelity in quantifying

alternative splicing for the DSR test, reference Percent Splice Inclusion (PSI) values

for all reference introns were calculated from the simulated data, as the ratio between

the intron abundance and that of its bunch. Similarly, for the DSA test, reference

log fold change values were calculated for each intron as the log fold change of the

cumulative expression levels of all splice isoforms containing that intron.

3.2.2 Evaluation

We assess the performance of MntJULiP and other programs on simulated and

real RNA-seq data, with varying degrees of splice variation and different dataset

sizes. We illustrate MntJULiP’s ability to detect more types of alternative splicing

variation in the comparison of hippocampus samples from healthy and epileptic

mice. We then demonstrate MntJULiP’s unique capability for simultaneous multi-

condition comparisons in a 7-point time series experiment on differentiating mouse
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taste organoids, and its ability to handle large data sets on a large collection of RNA-

seq samples from four human tissues obtained from the GTEx project. We include

in the comparisons, as feasible, the state-of-the-art intron-based tools LeafCutter,

MAJIQ, JunctionSeq, and the event-based rMATS, and Cuffdiff2 as the only tool

among them compatible with the DSA test.

3.2.2.1 Performance on simulated data

In a first, controlled experiment we used simulated data, namely 25 control and 25

perturbed samples, to evaluate MntJULiP (DSR), MAJIQ, LeafCutter, and rMATS

in detecting differences in splicing ratios, and MntJULiP (DSA) and Cuffdiff2 in

detecting differences in splicing abundance (see Methods and Figure 3-2). On the

DSR experiment, MntJULiP(DSR) achieved sensitivity 74.5%, which was 8.0-60.0%

higher than its competitors, at very high and comparable precision, 97.4%. Notably,

Cuffdiff2, which was not designed as a DSR method, had the highest sensitivity

at 94.9%, however at a very significant drop in precision, to 46.4%. On the DSA

experiment, MntJULiP(DSA) had very high 97.9% sensitivity and 95.3% precision, to

Cuffdiff2’s values of 95.9% and 70.3%, respectively. Sensitivity of MntJULiP’s DSA

test was also significantly higher than any of the DSR programs’, which ranged between

31.7-50.3%, illustrating the fact that methods developed for DSR detection are in

general not suitable to detect changes in splicing abundance. We further examined in

more details the programs’ results by gene class. While true positives for all programs

were fairly uniformly distributed across the constituent gene categories, false positives

for MAJIQ, rMATS and Cuffdiff2 were dominated by genes outside of the simulated

gene set, underscoring the difficulty for these programs to effectively distinguish and

filter paralogs and other alignment and assembly artifacts.

We further assessed the methods’ accuracy in quantifying the amount of change

in splicing of individual introns. For the DSR experiment, MntJULiP predictions
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most closely aligned with the reference annotation (R2 = 0.935, Pearson correlation

coefficient) between predicted and reference dPSI values, compared to 0.879 for

LeafCutter and 0.847 for MAJIQ. For the DSA experiment, MntJULiP had the higher

correlation (0.991 versus 0.848) between predicted and reference log fold change values

of the two methods. Therefore, MntJULiP predicted values are strongly indicative of

the amount of change, and can be used reliably to inform event selection, for instance

to select candidate events for experimental validation.

Figure 3-2. Comparative evaluation of differential splicing methods on 25 control and
25 perturbed simulated RNA-seq data sets: (top) DSR, (middle) DSA, and (bottom)
breakdown of programs’ predictions by the four gene categories (DS, DE, DE-DS and
NONE), and novel (NA), i.e. not in the simulation set.
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3.2.2.2 Performance on real data

We next applied the methods to RNA-seq samples from hippocampus tissue of 24

healthy mice and 20 mice with pilocarpine induced epilepsy, illustrating a typical

RNA-seq experiment. Programs MntJULiP(DSR), LeafCutter, MAJIQ and rMATS

predicted between 700 and 1,137 DSR genes (Figure 3-3, left). While it is not possible

to precisely measure the prediction accuracy in the absence of a ground truth reference,

we deem genes predicted by multiple tools as being more reliable. A majority of DSR

genes (974 out of 1,878) were predicted by two or more tools. Importantly, MntJULiP

had the smallest number and proportion of uniquely predicted genes, 84 (9.7% of

its predictions), compared to 350 genes (35.5%) for rMATS, 367 genes (32.3%) for

LeafCutter and 103 genes (14.7%) for MAJIQ, and therefore potentially reported the

smallest number of putative false positives.

Figure 3-3. Venn diagram of methods’ gene-level predictions on samples from 24 healthy
and 20 epileptic mice.

DSR tests capture only a fraction of the alternative splicing variation in an

experiment. To showcase the potential of MntJULiP to expand upon the classes of

alternative splicing events detected, we assessed the outcomes of MntJULiP’s DSA test.
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Of the 4,187 genes predicted, 485 were also reported by MntJULiP’s DSR test and an

additional 379 by other tools, representing genes with traditional splicing patterns

(Figure 3-3, right). An additional 2,510 genes were determined to be differentially

expressed by the DESeq2 14 method, a category that is captured by the DSA test.

The remaining 813 genes represent a combination of genes with traditional event

patterns that could not have been discovered by other tools and putative complex or

non-conventional splicing events.

Figure 3-4 illustrates some of these cases. The Pyruvate Kinase M 1/2 (Pkm) gene

has two isoforms resulting from the use of mutually exclusive exons (Figure 3-4A). Pkm1

is expressed in the adult stage where it promotes oxidative phosphorylation, whereas

Pkm2 is prevalent during embryogenesis and promotes aerobic glycolysis. Splicing

dysregulation at this gene has been identified as an oncogenic driver and passenger

factor in brain tumors [55]. While the difference in the isofoms’ splicing ratio is low

(0.05) and may have contributed to being missed by other tools, introns flanking both

exons yielded positive MntJULiP DSA tests. Most importantly, MntJULiP can detect

classes of events that cannot be detected by other methods. In one example at the

CWC22 Spliceosome Associated Protein Homolog (Cwc22) gene, the two overlapping

and mutually exclusive introns at the 3’ end of the gene (chr2:77881490-77903814

and chr2:77896578-77903796) do not share an endpoint and therefore could not have

been interrogated by other methods (Figure 3-4B). Similarly, none of the traditional

methods can capture variation that results when one isoform’s intron chain is entirely

subsumed by another, where the ‘extension’ introns do not share endpoints with others.

The ZXD Family Zinc Finger C (Zxdc) gene illustrates this example with its 3’ most

terminal introns. The GENCODE annotation for this gene lists five isoforms, of which

two can be eliminated based on the fact that their unique introns do not appear in

any of the 44 samples. Of the remaining isoforms, two have their intron chains entirely

subsumed by the longest isoform. In Figure 3-4D, the distribution and average fold

54



change abundance differs significantly between the shared (average 1.03) and isoform

specific (average 1.45) intron sets, which can only be explained by a difference in

the proportion of splice isoforms in the gene’s output. Lastly, further case analyses

revealed other intriguing scenarios, such as at the Zfp91-Cntf gene locus (Figure 3-4C).

The two genes have in common the only intron in the Ciliary Neurotrophic Factor

(Cntf) gene (chr19:12.764.380-12,765,281), which shows a significant six-fold increase

in abundance in the epileptic mice, whereas all other introns for Zfp91 show a slight

decrease within statistical error. While the event can be at first sight attributed to

the differential splicing of Zfp91, careful observation of the expressed introns reveals

that the sole Zfp91 isoform containing the intron is present at residual levels or not at

all in both conditions. Therefore, the increase in abundance appears to be due to the

change in the expression of Cntf, which owing to the special sharing of gene structure

was missed by DESeq2. Cntf is a survival factor for multiple neuronal cell types, and

an increase in its levels was shown to be involved in attenuating epilepsy-related brain

damage [56, 57].

True accuracy cannot be assessed in analyses on real data. However, to evaluate

robustness and reproducibility in the tools’ predictions as an alternative measure of

performance 9, we divided and analyzed the data into two sets of 10 healthy and

12 epileptic mouse samples. The graphs in Figure 3-5 show the scatterplots of the

estimated difference in percent splicing inclusion (dPSI) between the two replicated

experiments. MntJULiP has the highest correlation between the runs (0.579), followed

closely by MAJIQ (0.577) and LeafCutter (0.460), and therefore its results are the

most robust with the sample set.
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(A)

(B)

(C)

(D)

Figure 3-4. Examples of MntJULiP DSA predictions not identified by other tools (mouse
hippocampus data set), at the (A) Pkm, (B) Cwc22, (C) Cntf-Zfp91 and (D) Zxdc gene
loci. At Zxdc, introns are annotated with the fold change values in the comparison of
healthy and epileptic mice. Note that the genes in (B), (C) and (D) do not have any
endpoint sharing introns, and therefore are not identifiable by any of the other tools.
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(A) (B)

(C) (D)

Figure 3-5. Reproducibility plots for MntJULiP, LeafCutter and MAJIQ (DSR test)
and MntJULiP (DSA test) on the mouse hippocampus data (A-D). Mouse hippocampus
samples were divided randomly into two sets of 10x12 samples (healthy versus epileptic)
each, and the per intron dPSI values (log2fc) predicted by each program are plotted
between the two comparisons. Number of introns represented: 16,607 for MntJULiP
(DSR), 30,738 for LeafCutter, 93,642 for MAJIQ, and 132,289 for MntJULiP (DSA).
Correlation coefficients for the 4 comparisons are 0.579 for MntJULiP (DSR), 0.460 for
LeafCutter, 0.577 for MAJIQ, and 0.665 for MntJULiP (DSA).

3.2.2.3 Performance on large data sets

To demonstrate the scalability of MntJULiP and its unique capability to perform

simultaneous multi-way comparisons, we applied it to four tissue datasets (frontal

cortex, cortex, cerebellum, and lung; 554 samples total) extracted from the GTEx RNA-

seq collection. We performed pairwise comparisons as well as three-way comparisons

among tissues. In a first experiment comparing the three brain tissues, the multi-way

comparison largely recapitulated the individual pairwise comparisons, detecting 99.0%
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(1,070) of the 1,081 genes and 11 additional genes (Figure 3-6A). The test also revealed

highly similar splicing profiles between cortex and frontal cortex, with only one gene

differentiating the samples. The robustness of the method was confirmed in a second

test, comparing the cortex, cerebellum and lung samples (Figure 3-6C). All but 14, 18

and 21 of the genes reported from the three pairwise comparisons were selected by the

multi-way test, and 37 genes were unique to the three-way comparison, for a 99.3%

(5,324 out of 5,364 predicted genes) recovery rate. Figure 3-7 shows the heatmaps of

PSI values, reiterating these observations. Similar results can be observed for the DSA

test, where the multi-way comparison discovered 97.1% (15,090 out of 15,491) of all

genes detected by pairwise comparisons, and only 36 (0.02%) unique genes among the

15,126 predicted (Figure 3-6D). Importantly, the comparisons highlighted thousands

of differential splicing events that distinguish among the tissues [58]. Experiments

took between 18-44 minutes per comparison on a 24 CPU Intel processor, thereby

demonstrating the ability of MntJULiP to handle large-scale applications.
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(A) (B)

(C) (D)

Figure 3-6. Multi-way versus all-against-all pairwise comparisons on GTEx tissue samples
- gene sets. (A-B) Venn diagram of gene sets predicted by MntJULiP DSR (DSA) in
comparisons of frontal cortex (105 samples), cortex (121 samples) and cerebellum (132
samples) RNA-seq collections. (C-D) Venn diagram of gene sets predicted by MntJULiP
DSR (DSA) in comparisons of cortex (121 samples), cerebellum (132 samples) and lung
(196 samples) RNA-seq collections (A p-value cutoff of 0.05 was used for all comparisons).
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(A) (B)

(C) (D)

Figure 3-7. Heatmaps of differentially spliced introns from multi-way tissue comparisons.
(A) DSR, frontal cortex-cortex-cerebellum comparison. (B) DSR, cortex-cerebellum-lung
comparison. (C) DSA, frontal cortex-cortex-cerebellum comparison. (D) DSA, cortex-
cerebellum-lung comparison. Note: Introns from genes with > 30 reads across all samples,
with dPSI ≥ 0.2 (for DSR) and q-value < 0.05, were plotted. For DSA, additionally, only
the intron with the largest log 2 fold change was chosen to represent the gene.

3.2.2.4 Application to complex and time-series experiments

All differential splicing methods to date are designed for comparing two conditions,

typically ‘cases’ versus ‘controls’. This simple framework is inadequate and impractical

for scenarios that involve time-series or complex multi-condition experiments, which

seek to determine features that vary across the full range of conditions. As an illustra-

tion, we applied both LeafCutter and MntJULiP to RNA sequencing data from mouse

taste organoids) at seven growth stages [54] (Accession: DRA005238; two samples each
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at days 2D, 4D, 6D, 8D, 10D, 12D and 14D, for a total of 14 samples). LeafCutter

predicted DSR events in 889 genes and MntJULiP in 3,285 genes when combining the

results from all-against-all pairwise analyses. By comparison, MntJULiP’s multi-way

test predicted 204 differentially spliced genes across all conditions. While true accuracy

cannot be measured, we deem features (genes) reported by multiple comparisons to

have higher confidence than those predicted in a single comparison, on the basis that

features that are differentiated between two stages will likely show variation in other

comparisons involving one of the original conditions.

Figure 3-8. Assessment of program predicted features for the time-series taste organoid
data set, based on the assumption of continuity of feature space. The distribution of
program-predicted features by number of comparisons is shown for three methods: i) union
of MntJULiP predicted features from all (21 total) pairwise comparisons, ii) MntJULiP
multi-way predicted features, and iii) union of LeafCutter predicted features, from all
pairwise comparisons (21 total). For MntJULiP multi-way predictions, features were traced
back to the pairwise comparisons in which they were reported (from i).

As Figure 3-8 indicates, the distribution of genes according to the number of

comparisons in which they are reported is very similar for the LeafCutter and Mn-

tJULiP pairwise protocols, with 31-36% of the genes found in only one comparison,

pointing to potentially large numbers of false positives. In contrast, the distribution

for MntJULiP multi-way predicted genes follows a Bell curve distribution with the
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mode at 8 comparisons, which provides a more realistic reflection of the experiment.

Therefore, the multi-way comparison more accurately identified differences in splicing

across the experimental range.

To further examine the landscape of alternative splicing variation during organoid

differentiation, we generated heatmaps of the introns discovered with the MntJULiP

all-pairwise and the MntJULiP multi-way comparison methods (Figure 3-9). Introns’

PSI values show small variation in splicing between consecutive stages, but clear

distinguishing characteristics when comparing across all experimental timepoints. In

particular, features detected by the multi-way comparison clearly distinguish between

the organoid growth stages, with a significant inflexion point between early (days

2D-6D) and late development and differentiation into taste cells (days 8D-14D), and

facilitate more accurate clustering of samples. Interestingly, the visualizations point

to distinguishing features separating stage 2D from the other non-differentiated stages,

and the separation becomes even more apparent in the DSA visualizations (Figure 3-

9B). The two visualizations provide complementary and overlapping views of the

changes in the global transcriptome, with DSA reflecting changes in the expression level

of features, and DSR reflecting changes in the relative contribution of isoforms. We

note here that, from a technical standpoint, the DSR and DSA maps reflect different

data types and characteristics; while the PSI values in the DSR maps are restricted

to the [0,1] interval and are more limited in their variability, the feature expression

levels in the DSA displays potentially range over 4-5 orders of magnitude (4-5 fold in

logistic conversion) and exhibit over-dispersion, and therefore may reflect more clearly

the changes in the global transcriptome, and be better suited to highlighting more

subtle changes. (These observations have led us to develop the comprehensive and

flexible visualization tools in section 3.3.) Importantly, these graphical representations

highlight the ability of MntJULiP to detect even mild differences between conditions.

We also note the ability of MntJULiP to work with very small numbers of samples

62



per condition, as low as two samples per organoid stage.

(A) (B)

Figure 3-9. Heatmaps of differentially spliced features (introns) in the taste organoid data
set. (A) MntJULiP DSR, features discovered via multi-way comparison; (B) MntJULiP
DSA-predicted features. Heatmaps show PSI (A) or expression log fold change (B) values.
Features were filtered at p-value<0.05 and dPSI>=0.2 (for DSR). Grouping was performed
using weighted hierarchical clustering with the Bray-Curtis metric.
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3.3 Jutils: A visualization toolkit for differential
alternative splicing events

While multiple methods have been developed to determine differential splicing patterns

from RNA-seq data (LeafCutter, MAJIQ, rMATS, MntJULiP [33, 34, 38, 59], there

is a scarcity of tools to present the results to the user in a way that is intuitive and

easy to explore. Moreover, most visualization tools are designed for a particular

differential splicing method, such as rmats2sashimiplot (https://github.com/Xinglab/

rmats2sashimiplot) and LeafViz (https://leafcutter.shinyapps.io/leafviz/), and are not

adapted for general use. To fill this gap, we developed Jutils, a toolkit for visualizing

alternative splicing differences that can be used across methods.

3.3.1 System design

Jutils works with the output of a differential splicing tool, converting it into a unified

data file that contains the information necessary for the visualizations. (Additional

information, such as the BAM files, can be optionally provided.) Metadata about

experiment design, such as the condition associated with each sample, can be provided

in a specification file. Jutils then extracts events to include in the visualizations based

on user specified criteria. Lastly, it generates one of three types of visualizations:

heatmap, sashimi plot, and Venn diagram. Details of each component are provided

below.

3.3.1.1 The unified file format

Jutils uses an intermediate Tab Separated Values (TSV) file format to collect event

information generated by a differential splicing program, which it then uses to create

visualizations. Jutils has built-in output conversion modules for several analysis

programs, including LeafCutter, MAJIQ, MntJULiP, and rMATS, and users can

develop their own conversion scripts for other programs of interest.
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The TSV file has 14 columns containing, in order: gene name, group id, feature id,

feature type (e.g., intron, event skipping), feature label (derived from the chromosomal

location), strand, p-value, q-value, dPSI (difference in Percent Splice In values), read

count 1, read count 2, and PSI values per sample, estimated PSI per condition. The

default feature for Jutils is introns, but the program can represent more complex events

such as those reported by rMATS, for instance, exon inclusion and exon exclusion

constituted as a single exon-skipping event. Programs may further aggregate features

into groups, for instance LeafCutter and MntJULiP group introns that share a splice

junction. Jutils supports identifiers and operations on individual features as well as

groups. Read count 1, read count 2, and PSI represent vectors of per sample values.

Read counts 1 and 2 correspond to the paired splice forms in a complex feature (e.g.,

exon skipping), whereas for simple features (e.g., introns) read count 2 is marked with

‘.’.

3.3.1.2 Heatmaps

Jutils generates heatmaps of differential splicing events represented in the TSV file. A

metadata file contains the classification of each sample. Jutils generates heatmaps of

PSI values, either Z-score normalized or absolute values (Figure 3-10A). The software

allows clustering by rows (events) and columns (samples), using different distance

metrics and clustering methods. By default, the ‘cityblock’ (Manhattan distance)

metric with the ‘weighted’; (weighted pair group with arithmetic mean) method is

used. Events can be filtered at run time based on quality and confidence measures

such as p-value, q-value and dPSI, and the user may choose to visualize all relevant

features or select a representative feature per group or per gene. Lastly, while Jutils is

intended to work primarily with the output of differential splicing tools, it can also be

used to display the features with the highest variance (option ‘–unsupervised’).
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3.3.1.3 Sashimi plots

Sashimi plots have been previously introduced to visually represent differences in

splicing. A traditional sashimi plot shows raw RNA-seq densities along with exons

and junctions for multiple samples. The Jutils sashimi visualization utilizes a modified

version of the ggsashimi package [60] to display graphical representations of intron

read counts within a specified genomic region, intron, or intron group (Figure 3-10B).

By default, Jutils provides a lightweight repre-sentation based solely on the intron read

counts provided in the TSV file, without the flanking exon read depth information.

When alignment files are also provided, Jutils extracts alignments from the BAM files

and provides full sashimi representations reflecting the accurate exonic coverage.

3.3.1.4 Venn diagrams

Methods for differential splicing detection employ a variety of models for features

and objective functions. Therefore, it becomes desirable to compare the outputs of

different programs to obtain a complete view of the predicted differential splicing and

to gauge support from multiple tools. Jutils provides a Venn diagram visualization of

the gene sets predicted by multiple programs (Figure 3-10C), along with a text file

containing the list of genes in each category.
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(A)

(B) (C)

Figure 3-10. Jutils visualization of differential splicing events from the comparison of hip-
pocampus samples of 12 healthy and 10 epileptic mice (GenBank ProjectID: PRJEB18790).
(A) Heatmaps of absolute (left) and Z-score normalized (right) PSI values generated with
MntJULiP shown, respectively, at the intron and group level. Left: darker red indicates
PSI values closer to 1; Right: blue colors mark values lower than the row average, and
red ones values higher than the row average. (B) Sashimi plot of events at the Dync1i2
gene, predicted by LeafCutter. (C) Venn diagram of gene predictions from four analysis
methods.
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3.4 Discussion

Detecting differences in splicing patterns between cellular conditions is a critical task.

Multiple methods have been developed that differ in their target features, objective

function, and employed techniques, which makes selecting a tool and comparing

the results across methods daunting [50]. To answer the need for highly accurate

methods combined with a systematic approach to problem definition, we developed

MntJULiP. MntJULiP provides a comprehensive view of alternative splicing variation,

by representing it at the most granular level (intron) and by implementing two objective

functions, aimed at determining differences in the absolute and relative (ratios) intron

splicing levels. In comparisons on simulated and real data, we demonstrated that

MntJULiP identifies more alternative splicing variation and more classes of variation

than other tools, and across a spectrum of experimental conditions, dataset sizes and

degrees of variation.

Traditionally, differential analyses have targeted gene expression changes that

could lead to the discovery of causative or marker genes for diseases or other cellular

conditions. The advent of deep RNA sequencing has made it possible to uncover

finer grained changes in the gene’s output, at the level of the transcripts that it

expresses. Both changes in the expression level of a given transcript, often referred to

as isoform specific regulation, and changes in the relative proportion of splice isoforms

of a gene, lead to biological and phenotypic changes. Therefore, it is important to

design tools that address each of these problems. The differential splicing abundance

(DSA) and differential splicing ratio (DSR) define the two problems in computational

terms, and methods for differential splicing detection have adopted either of these

models. However, there has been no software that implements them both, in a unified

framework, to allow comprehensive discovery and the unbiased comparison of their

results. Our DSA and DSR models, implemented in MntJULiP using a unified bayesian

68



architecture and feature selection filters, are individually powerful, and taken together

provide a comprehensive view of transcriptomic variation.

MntJULiP introduces several technical innovations, including its zero-inflated

negative binomial and multinomial Dirichlet models to account for low count genes

and splice junctions, and the mixture distributions that allow for modeling multiple

conditions, thus facilitating multi-way differential analyses. The ability to perform

multi-way comparisons, in both its DSA and DSR modes, is unique to MntJULiP, and

is desirable when characterizing complex time series or multi-condition experiments,

to identify a global set of features that distinguish among subgroups or stages.

MntJULiP also has limitations. While it benefits from being able to extract the

splicing event information directly from the RNA-seq read alignments, without the

need for reference gene annotations, MntJULiP relies on the splice junction information

gathered from the sequence alignments. Therefore, the performance of MntJULiP

largely depends on the reliability of the alignments. Spliced alignment is a highly

complex computational problem, with heuristic solutions that may not accurately

capture all biological patterns, for instance non-canonical splice sites or introns flanking

very short exons. Further, sequencing errors as well as genuine differences between

the RNA-seq sample and the reference genome can lead to difficulty in mapping

to the correct location, if multiple potential matches exist. Furthermore, aligners

could introduce biases to the alignments. For example, sequence-specific bias due

to GC-content and dinucleotide frequencies and motif content in hexamer primer

regions could reduce the ability of MntJULiP and other alternative splicing analysis

tools to accurately quantify the events. Moreover, the existing aligners that utilize a

standard reference genome as a template sometimes have difficulty in mapping reads

that carry rare genomic variants, which can lead to allelic ratio biases and could

hamper MntJULiP’s ability to accurately assess the differences in splicing patterns.

Lastly, to complement our effort with designing differential splicing tools, and to
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meet the needs for intuitive and easy to use visual representations, we also developed

Jutils, to make the results accessible and easy to interpret by the users. Jutils is

a lightweight toolkit for visualizing differential alternative splicing between cellular

conditions. It can be used automatically with the popular differential splicing analysis

tools LeafCutter, MAJIQ, MntJULiP, and rMATS, and can be easily adapted to any

other program, and thus represents a useful and practical tool to explore the landscape

of alternative splicing.

Overall, our tools are highly efficient and scalable, providing an effective platform

for comprehensive differential splicing analyses of RNA sequencing data from a wide

range of experiments and data collections.
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Chapter 4

A Deep Learning (DL) splicing
model

As we discussed in the previous Chapters, alternative splicing of pre-mRNA represents

an important regulatory mechanism that contributes to protein diversity in the cellular

environment. However, its mechanisms are still incompletely understood. While a

plethora of regulatory cis- and trans-factors are known to interact to determine the

splice site selection and alternative splicing outcome, the mechanisms remain to be

revealed. Splicing signals can be very complex, and most alternative splicing outcomes

involve the competition among candidate splice sites. Therefore, splicing patterns can

be controlled by any mechanism that alters the relative rates of splice site recognition.

In this chapter, we focus on the RNA sequences around the splice sites, and build a

computational model aimed at revealing the splicing regulation. More specifically, we

describe a probabilistic deep learning model to predict and quantify alternative splicing

events from the information on cis-regulatory sequence elements and trans-splicing

factors in different tissues.
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4.1 Background

4.1.1 Regulation of alternative splicing

In the pre-mRNA splicing process, relatively small exons (∼100 nt) are generally ligated

while much longer introns (>1000 nt) are excised. Pre-mRNA splicing is carried out

by spliceosome, a large complex consisting of several small nuclear ribonucleoproteins

(snRNPs) and auxiliary protein factors. The spliceosome removes introns from a

transcribed pre-mRNA, a type of primary transcript. A spliceosome is either recruited

or assembled at the correct 5’ splice site (donor) and 3’ splice site (acceptor), in part

through recognition of conserved sequences spanning the intron-exon junctions [61]. A

canonical splice site contains the dinucleotides ‘GU’ and ‘AG’ at the 5’ end and 3’ end

of an intron, respectively, and a branch point containing a conserved ‘A’ upstream

of the 3’ end in the intron. The snRNPs recognize these splicing signals, bind to

the pre-mRNA sequence and help assemble the spliceosome. The splice site signals

are typically only a few nucleotides long and very common in pre-mRNA sequences,

resulting in a large number of candidate splice sites. In reality, however, only a

handful of splice sites are recognized by the spliceosome, and the splicing process

is conservative and highly regulated, especially for the protein coding genes. These

suggest the existence of a global and local regulated machinery that precisely controls

the recognition of splice sites.

While splice site consensus sequences are necessary for splicing, starting with

the formation of the spliceosome, they are not sufficient in many eukaryotic systems.

Changes in splice site choice (alternative splicing) arise from combinatorial interactions

among cis- and trans-regulatory factors mediated by the spliceosome. Outside of

the core splice signals, the bulk of the information required for splicing is thought

to be contained in exonic and intronic cis-regulatory elements. Those cis-regulatory

elements function by recruiting sequence-specific RNA-binding proteins that either
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activate or repress the use of adjacent splice sites [2]. The RNA sequences that act

positively to stimulate spliceosome assembly are called splicing enhancers. Conversely,

the RNA sequences that act negatively to block the spliceosome assembly and certain

splicing choices are called splicing silencers or repressors.

Besides their mode of action, the location of cis-regulatory sequences is also

important. Exons often contain enhancer or silencer elements that affect their ability

to be spliced. There are many exonic splicing enhancers (ESEs) and most of them

interact with a family of splicing regulatory proteins known as SR proteins. The SR

proteins form a group of highly conserved proteins that are required for constitutive

splicing and also influence alternative splicing regulation. SR proteins bound to ESEs

can promote U2AF recruitment to the polypyrimidine tract and activate an adjacent

3’ splice site[62–64] (Figure 4-1). Moreover, other non-SR proteins may also interact

with the ESEs to regulate splicing. In one example, proteins YB-1 and p72 are found

to mediate an AC-rich splicing enhancer at the human CD44 gene [65, 66]. To contrast

the positive action of exonic splicing enhancers, exonic splicing silencers (ESSs) have

also been identified. The best characterized of these are bound by the hnRNP proteins

[67]. As an example, the hnRNP A1 protein can bind to an ESS to create a zone of

the RNA where spliceosome assembly is repressed (Figure 4-2A).

Many splicing regulatory sequences are present in introns rather than exons. Bind-

ing sites for regulators are often found within the polypyrimidine tract or immediately

adjacent to the branch point or the 5’ splice site. Similarly to exonic regulation,

positive- and negative-acting sequences make up intronic splicing enhancers and si-

lencers, respectively (ISEs and ISSs). In the example in Figure 4-2B, the hnRNP A1

protein binds to an ISS adjacent to the branch point to block U2 snRNP binding to

the branch point. Further, the uridine-rich sequence immediately downstream of the

5’ splice sites was found to bind the protein TIA-1 (Figure 4-1), and TIA-1 stimulates

U1 snRNP binding to 5’ splice sites [68].
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Therefore, alternative splicing is regulated by the complex interactions of cis-

acting regulatory sequences, which can act to enhance or suppress splicing, and the

trans-acting proteins that bind to them.

Figure 4-1. Mechanisms of splicing ac-
tivation with SR proteins as splicing acti-
vators (image from [4]).

Figure 4-2. Models for splicing repres-
sion by hnRNP A1 (image from [4]).

4.1.2 RNA binding proteins

RNA binding proteins (RBPs) are a specialized type of proteins that can bind to

RNA sequences and potentially play a role in the regulation of gene expression. Each

alternative splicing event is controlled by multiple RBPs, the combined action of which

creates a distribution of alternatively spliced products in a given cell type. Therefore,

the interpretation of regulatory information on a given RNA target is exceedingly

dependent on the cell type. Current estimates are that more than 1,500 proteins have

the capacity to bind the human RNA sequences, and as many as 690 proteins are

mRNA-binding [69]. Some RBPs are key regulators of post-transcriptional regulation.

The functions of RBPs are largely dependent on the binding location, either activating

or repressing the splice site choice.

As an example of RBPs, SR proteins are a conserved family of proteins involved

in RNA splicing. An SR protein has one or several RNA recognition domains (RRM

domains) to bind the RNA sequence, and an arginine and serine residues domain (SR

domains) to interact with other proteins. SR proteins promote the binding of U1
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snRNP, and U2AF auxiliary factor, and stimulate the formation of the spliceosome.

Therefore, SR proteins contribute to splice site recognition by directing the splicing

machinery to different splice sites under different circumstances.

Another class of important splicing factors is that of hnRNP proteins. hnRNP

proteins are less conserved compared to the SR proteins. hnRNP proteins contain the

RRM domains but lack an RS domain. hnRNP proteins can bind to RNA sequences

but are unable to interact and recruit the snRNPs. Therefore, they play a role in

repressing splicing by directly antagonizing the recognition of splice sites, blocking

the SR proteins’ binding to splicing enhancers, or hindering communication between

splicing factors.

The major families of RBPs contain canonical RNA-binding protein domains, such

as the RNA-recognition motif (RRM), CCCH zing finger, K homology (KH) and cold

shock domain (CSD). Recently developed technologies such as crosslinking of RNA

to proteins followed by sequencing (CLIP-seq) [70], SELEX [71], RNAcompete [72],

RNA Bind-n-Seq (RNBS) [73] have been used to determine the binding locations and

specificities of a growing number of RBPs [74–76].

4.1.3 Sequence motifs

Deciphering the mechanisms behind splice site choice requires a comprehensive list

of splicing regulatory RNA-binding proteins (RBPs) and their cis-acting binding

sites. Recent technologies mentioned above (CLIP-seq, RNAcompete, RBNS) can

help identify the binding preferences of RBP, in vitro or in vivo.

To represent RBP binding affinities to an RNA sequence computationally, so called

Position Weight Matrices (PWMs), as designed for transcription factor binding sites,

have been adopted [77]. A typical PWM is a 4 × W matrix in which position (j, w)

gives the probability of observing the nucleotide j at position w of a motif of length

W. PWMs are most often derived from collections of known binding sites for a given
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protein, or through computational methods applying pattern discovery algorithms to

functional genomics data.

4.1.4 Other splicing regulatory mechanisms

SR proteins and hnRNP proteins can explain a large variety of splicing decisions, but

the control mechanisms of alternative splicing are diverse and complex. In one scenario,

binding of SR proteins to the ESEs can antagonize the activity of hnRNP proteins

recognizing ESS elements [78]. Therefore, the relative abundance of SR proteins and

hnRNP proteins could be important in regulating the patterns of alternative splicing

in a tissue-specific or developmentally regulated manner [79].

Although a single critical factor (the binding proteins) has not been shown to

determine the tissue specificity of splicing in any system, the expression of some

splicing regulatory proteins is restricted to certain cells. NOVA-1, a neuron-specific

RNA binding protein regulates neuron-specific alternative splicing (Figure 4-3A)

and is essential for neuronal viability [80]. CELF proteins bound to muscle-specific

enhancers (MSE) in the cardiac troponin-T gene (cTNT) can promote inclusion of

the developmentally regulated exon [81].

Different binding regions and concentration of a factor may also alter its functional

activity. SR proteins bound to an intronic sequence near a branch point would block

the use of this 3’ splice site and shift splicing to an adjacent site [82]. Excess of hnRNP

A/B proteins has the opposite effect, promoting the selection of intron-distal 5’ splice

sites.

4.1.5 Mutations affect alternative splicing

Point mutations, such as base substitutions, in genes may alter the target sequences by

changing a codon for one amino acid into one coding for another or into a premature

termination codon (PTC). Additionally, point mutations could change the sequence
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around the splice site, and therefore have a more subtle influence on alternative

splicing. Synonymous single-nucleotide polymorphisms (SNPs) located in coding

regions can disrupt (or create) exonic splicing enhancers and silencers [83, 84]. The

mutations located in non-coding regions, such as those affecting 5’ and 3’ splice sites,

branch sites or polyadenylation signals, can also alter the splicing pattern [85, 86].

Other types of mutations, for example, nonsense and missense mutations as well

as exonic deletions or insertions, can affect alternative splicing in similar ways [87].

Mutations, as a consequence, can lead to the appearance of truncated proteins or to

the lack of the correct gene product, and are frequently the cause of hereditary disease

(Figure 4-3B). However, the incomplete understanding of the mechanisms for splice

site choice hampers our ability to accurately predict the effects of mutations and to

identify splice altering variants around the splice sites.

(A) Splicing regulatory proteins regulate
neuronal cell differentiation through alter-
native splicing (image from [55]).

(B) Mutations lead to abnormal splicing
patterns and result in tumor proteins.
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4.1.6 The ‘splicing code’

To understand the complexity of pre-mRNA splicing, we must study how changes in

splice site choice come about. For several decades now, the molecular components

have been characterized and evidence for protein-nucleic acid interactions have been

accumulating. A long list of splicing regulatory cis-elements have already been

identified, and their associated trans-acting factors determined. Hence, it has become

possible to assemble the available information into a computational framework to

predict the splicing patterns of different cells and developmental stages. A long-term

goal in the area of alternative splicing is to determine a set of rules (or code) for

splicing [88]. Such a code would also be instrumental in predicting the consequence

of mutations on splicing. It would be of great value not only to molecular biologists

and geneticists, to enable better understanding of splicing events and the effect of

mutations on mRNA splicing, but also to clinical researchers, to design new therapeutic

approaches based on splicing interference [89].

Efforts to understand the splicing code have previously entailed statistical or

machine learning methods that extensively integrate combinations of diverse RNA

features. Barash et al. [90] adopted hundreds of RNA features to predict tissue-

dependent changes in alternative splicing for thousands of exons. Zhang et al. [91]

used Bayesian networks to probabilistically model diverse datasets and predict the

target networks of specific regulators. With the advance of next-generation sequencing

technologies, new tools have been designed to predict the splicing pattern largely

based on the DNA/pre-mRNA sequences. Xiong et al. [92] and Zijun et al. [93]

used deep learning to derive a computational model that takes DNA sequences

as input and applies general rules to predict splicing in human tissues. Given a

variant, Xiong’s model computes a score that predicts how much the variant disrupts

splicing. Jaganathan et al. [94] developed a deep residual neural network (spliceAI)

to predict cryptic splice sites and the effects of mutations on splice site usage, using
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pre-mRNA sequences as inputs. Unlike other computational models, this model works

on long-range primary genomic sequences (>5k bp), and therefore can include multiple

candidate splice sites and nonfunctional regions into consideration.

4.2 A Deep Learning (DL) splicing model

In this Chapter, we describe a novel probabilistic deep learning splicing model, using

as input sequence elements and trained on intron-supporting read counts extracted

from RNA-seq data. The model predicts intron splicing ratios from cis-acting sequence

elements around the splice sites and the trans-acting splicing factors, represented by

learned motifs.

4.2.1 Model design

Our deep learning splicing model consists of a sequence of individual networks that

learn increasingly deeper hidden relationships among the data. The input to the model

are sequences surrounding the splice sites of introns along with tissue information, in

combination with splicing ratio derived from RNA-seq data using MntJULiP, and the

output is, for a given intron, its splicing ratio in a specified tissue.

4.2.1.1 The learning model

Over-dispersion is a known characteristic of RNA-seq data and needs to be accounted

for in modeling count data. To model over-dispersion, similarly to our approach

implemented in MntJULiP, we use a Dirichlet-Multinomial distribution. Let x =

(x1, x2, . . . , xK) be the counts of sequencing reads mapped to the K alternative splice

junctions (introns) in a ‘bunch’ that shares a splice site. Then, we assume x follows a

Dirichlet-Multinomial distribution with unknown parameter α = (α1, α2, . . . , αK):

x1, x2, . . . , xK ∼ Dirichlet−Multinomial(α1, α2, . . . , αK)
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Unlike MntJULiP, which estimates the parameter α for each individual ‘bunch’ of

introns using a Bayesian model, here we design a neural network that takes as input of

sequence elements, learns hidden relatoinships, and reports, as the output, the α for

the Dirichlet-Multinomial distribution. More specifically, we propose a probabilistic

deep learning model (PDL) to predict the introns’ splicing ratios given the sequence

elements around the splice sites (Figure 4-4). The PDL model consists of several

convolutional neural networks (CNNs) to extract features from the sequence elements

around the splice sites, a fully connected layer to convert the feature representations

to scores for different tissue types, and a Dirichlet-Multinomial layer that learns and

predicts the splicing ratios as PSI values. Each individual network component is either

a specifically designed convolutional neural network, a fully connected network, or

a probabilistic module to extract information from its input. The details of each

component are described below.

Figure 4-4. The architecture of the probabilistic deep learning splicing model.

4.2.1.2 The RBP-PWM CNN layer

A key functionality of convolutional neural network (CNN) is to filter and summarize

latent features from its inputs. The CNN functions by multiplying the CNN weight

matrix (called filter) with the input matrix to generate one value to summarize the

input. This process is very similar to how a position weight matrix (PWM) function.

For the first CNN layer, we optionally initialize the CNN filter by the RBP PWMs
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collected from the public RBP databases. Given the sequence inputs, the first CNN

layer outputs the scores representing the binding affinity of RBPs to particular sequence

positions.

4.2.1.3 The Deep CNN layer

Followed by the RBP-PWM CNN layer is a deep CNN layer. The purpose of this

layer is to extract and combine the latent information from the RBP PWM score

vectors, forming a deep representation of the sequence elements that can be used as a

key latent feature for a splice junction (intron).

4.2.1.4 The Scoring layer

Further, we design a fully connected layer, taking as input the sequence representation,

summarizing it, and generating scores to represent a splice junction. For example, for

a model with 7 tissues, the model will generate 7 scores to represent a splice junction

under the 7 different tissues.

4.2.1.5 The Dirichlet-Multinomial layer

The scores generated by the scoring layer can be used as the hyper parameter α for

our Dirichlet-Multinomial distribution. In the training step, the Dirichlet-Multinomial

layer receives the inputs of α, sampling the probabilities p = p1, p2, . . . , pK that will

be used in the loss function. Following training, the Dirichlet-Multinomial layer can

predict the splicing ratio for each intron, and for each tissue.

4.2.1.6 The loss function

For training, the model requires two types of inputs: the first is the sequence elements

s = (s1, s2, . . . , sK) of the candidate splice junctions, and the second is the RNA

sequence read counts x = (x1, x2, . . . , xK) that mapped to the splice junctions. A

log likelihood estimate is used to train the model. In detail, fnn(s; θ) is the neural
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network (with parameters θ), receiving the sequence elements s and generating as

output the parameter α of the Dirichlet-Multinomial distribution. The probability

mass function of the K-categories Multinomial distribution of N trials (sum of read

counts) is given by:

fMN(x;N, p) = N !∏︁K
k=1 xk!

K∏︂
k=1

pxk
k ,

Where the probabilities p follow a prior Dirichlet distribution, and the probability

mass function is as follows:

fDir(p;α) = Γ(A)∏︁K
k=1 Γ(αk)

K∏︂
k=1

pαk−1
k ,

Where Γ(x) is the gamma function and A = ∑︁K
i=1 αi. Putting together the two

functions, the probability mass function of the Dirichlet Multinomial distribution is

derived:

fDir(x : N ;α) = N !∏︁K
k=1 xk!

Γ(A)
Γ(A+N)

K∏︂
k=1

Γ (αk + xk)
Γ (αk)

Removing terms only containing N and x, and taking the logarithm, we have the

loss function with respect to the parameters θ,

L(θ; s, x) = logΓ(A) − logΓ(A+N)
K∑︂

k=1
(logΓ(fnn(sk; θ) + xk) − logΓ(fnn(sk; θ))

After defining the loss function, the PDL model can be trained with the Adam

optimization algorithm [95].

4.2.1.7 Input and Output

To allow investigating how the sequence elements and associated trans-splicing factors

affect the selection of introns, the model implements three types of inputs. The
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first input is the RNA sequence (Figure 4-5). The RNA sequence around the splice

site contains the exonic splicing enhancers (ESEs), exonic splicing silencers (ESSs),

intronic splicing enhancers (ISEs), and intronic splicing silencers (ISSs), which are

the binding motifs for RBPs. The second type of input consists of the splice junction

read counts to represent the ‘expression’ level of an intron. The third type of input

is the RBP RNA recognition motif (RRM), the RNA binding domain of the RBP.

For this type of input, we downloaded position weight matrices (PWMs) of RBPs

from online databases, such as the ATtRACT database [96]). Due to the structure

similarity between PWMs and filters in the neural net, we can initialize and fix the

neural filters in the RBP-PWM CNN layer by the downloaded PWMs (Figure 4-4).

In this way, we incorporate the biological knowledge in the RNA binding proteins

and their associated motifs into the PDL model, which would potentially improve the

model performance.

To investigate the differential usage of the introns, we group introns into ‘bunches’

by their sharing splice sites, as described in Chapter 3. Given a set of introns that

share either a 5’ splice site or a 3’ splice site, and I1, I2, . . . , In their (expected) read

counts, we define the splicing ratio Ψj for intron j as: Ψj = Ij/
∑︁n

k=1 Ik. It is easy to

see that Ψj ∈ [0, 1], and can be viewed as a probability. See Figure 4-6 for a simple

example of Ψ value.

To implement the model, we used an engineering solution, feeding into the PDL

model batch inputs grouped by the intron ‘bunches’. For example, assume we have

256 bunches, where each bunch contains 2 introns that share a splice site. We merge

the one-hot encoding inputs (4 × 200 matrix) of the 2 introns, forming a 2 × 4 × 200

tensor. We group those 2 × 4 × 200 tensors into a batch, forming a 256 × 2 × 4 × 200

tensor that we feed into the PDL model.
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Figure 4-5. Two example sequences of 14 bp each, centered by the left and right splice
sites of the intron. These two sequences are concatenated together to form a sequence
element to describe the intron.

Figure 4-6. An example of a mutually exclusive splicing event. Let I1 be the (expected)
read counts of intron 1, I2 be the (expected) read counts of intron2, then Ψ1 = I1/(I1 +I2)
and Ψ2 = I2/(I1 + I2).

4.2.1.8 The sequence element and one-hot encoding

200 bp sequences are extracted for each splice site for training, and the ‘ATCG’

sequences are converted to a one-hot 4 × 200 encoding matrix for each splice site. An

intron contains two splice sites, hence the input is a 4 × 400 matrix (Figure 4-7).

Figure 4-7. An example of the one-hot encoding of a given sequence.

4.2.2 Experiment setup and results

We evaluated our model for its ability to learn splicing information, in several ways.

First, we tested the program to predict intron splicing ratios learned from RNA-seq
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data in 7 tissues. Second, we evaluated the ability of the model to learn sequence

features that are important for splicing, such as binding sites of core and auxiliary

splicing regulatory proteins. Third, we assessed the potential to predict the impact of

sequence variants (mutations) on splicing using an in silico mutagenesis experiment.

4.2.2.1 Sequences and reference splice junctions

We obtained 144 RNA-seq samples from 7 tissues (Table 4-I) from the NIH Roadmap

Epigenomics Mapping Consortium [97]. After downloading the FASTQ files, we

aligned the reads to the reference genome (hg38) with STAR and extracted the splice

junction read counts from the alignments with the tool junc [18]. To build a reliable

reference set to train the deep learning model, we filtered out splice junctions with low

read counts (i.e., average read count ≤ 4 across all 144 samples). We considered the

remaining splice junctions that were not found in the GENCODE v.37 gene annotation

as novel introns.

Tissue Sample
Adipose 29

Esophagus 19
Lung 16
Ovary 4

Pancreas 20
Gastric 28
Spleen 28

Table 4-I. The 7 tissues.

Next, we extracted the splice sites in protein coding genes from the GENCODE

annotation v.37 [41], and used them to group the introns (splice junctions) into

‘bunches’ as defined earlier. Hence, two or more introns that share an annotated splice

site were kept (including the novel introns that were not in the reference annotation).

We did not consider the novel splice sites present in the data, because they may be

problematic and therefore not of a quality that would be suitable for training the
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model.

4.2.2.2 DNN models

We build two PDL models for training and evaluation, which largely share the same

architecture, but with a key difference. For the first model, herein named DNN1, we

initialize the filters of the RBP PWMs CNN Layer by RBP PWMs downloaded from

the ATtRACT database [96]. A quality value of 0.1 was used to filter the PWMs, and

1041 PWMs for 151 human RBPs were selected. For the second model, named DNN2,

we randomly initialized 1024 (4 × 1024) filters for the RBP PWMs CNN Layer.

4.2.2.3 Training and testing data

We split the data into a training set and a test set. We randomly selected 10% of the

non-homologous protein coding genes as testing genes, and extracted the alternative

splice sites and introns from these genes for testing; all the remaining alternative splice

sites and introns were used for training. In our case, 51,165 splice sites were used for

training, and 4,931 splice sites from 1,079 genes were used for testing.

4.2.2.4 Performance in predicting splicing ratios

Building a ground truth splicing ratio data set for evaluation is a daunting task,

as experimentally validated data are not available at genome-wide scale. Instead,

we used MntJULiP on the testing splice sites and introns to generate the splicing

ratios to be used as reference. Note that an exact splicing ratio match between the

PDL and MntJULiP is impossible, because MntJULiP and PDL are two different

types of machine learning models and receive different inputs (read counts versus

sequence elements). Therefore, we adopt the evaluation metrics previously proposed

in the literature that classify the splicing ratio Ψ into low (0 ≤ Ψ < 0.33), median

(0.33 ≤ Ψ < 0.66) and high (0.66 ≤ Ψ ≤ 1). With this convention, we define a

true positive (TP) if the predictions of MntJULiP and PDL for a given intron lie
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within the same category, and otherwise we define a false positive (FP). The AUC

metric is then used to measure the performance, and the statistical results are listed

in Table 4-II. Surprisingly, DNN2’s performance appears better than DNN1’s, despite

the fact that DNN1 adopted the referenced RBP PWMs as additional information in

its RBP PWMs CNN Layer. We set to investigate this observation in the following

sections.

Tissue Method Low Medium High

Adipose DNN1 0.6940 0.5375 0.7013
DNN2 0.6968 0.5506 0.7043

Esophagus DNN1 0.6917 0.5263 0.6998
DNN2 0.6959 0.5388 0.7043

Lung DNN1 0.6879 0.5286 0.6971
DNN2 0.6936 0.5598 0.7010

Ovary DNN1 0.6825 0.5593 0.6896
DNN2 0.6884 0.5358 0.6963

Pancreas DNN1 0.6906 0.5243 0.6991
DNN2 0.6942 0.5414 0.7020

Gastric DNN1 0.7160 0.5609 0.7185
DNN2 0.7285 0.6112 0.7305

Spleen DNN1 0.7001 0.4901 0.7104
DNN2 0.7090 0.5935 0.7171

Table 4-II. Comparison of the two models AUC performance on RoadMap Epigenomics
data.

4.2.2.5 The model learns RBP binding motifs

We hypothesize that DNN2 automatically discovers known and novel sequence motifs.

To evaluate this hypothesis, we extracted the 1024 filters from DNN2’s RBP PWMs

CNN Layer. We view the filters as PWMs and search for them in the CISBP-RNA

database [72] and the RNAcompete RBP database [72]. We then used the TomTom

motif comparison tool [98], with a q-value threshold of 0.1 to filter the results. We

found that our PWMs matched 62 human RBP PWMs in the RNAcompete database

(102 in total), and 51 PWMs in CISBP-RNA database (97 in total). Further, the

predicted motifs matched annotated motifs for important RBPs, such as the SR
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Figure 4-8. Model predicted motifs versus the annotated motifs of key splicing factors.
Top left: SRSF1, top right: SRSF2, bottom left: hnRNPA2B1, bottom right: U2AF2.

protein family, the hnRNP protein family, and key splicing auxiliary factors (e.g.,

U2AF) (Figure 4-8). Hence, DNN2 can be used to model the sequence characteristics

of the core splicing motifs, and can potentially characterize exonic and intronic splicing

enhancers and silencers.

4.2.2.6 Performance robustness with different test data

Next, we tested whether the performance of the PDL models generalize to RNA-seq

data from a different experiment. We obtained RNA-seq data from 7 human tissues

(adipose, esophagus, lung, ovary, pancreas, stomach and spleen) from the GTEx

project, with 5 samples for each tissue, where ‘stomach’ matches the ‘gastric’ in

RoadMap project. As before, we aligned the reads to the hg38 human genome with

STAR, and used the tool junc to calculate the splice junction read counts. Using the

same test genes, we extracted the alternative splice sites and their associated introns,

and predicted the splicing ratios for specific tissues with DNN1, DNN2, and with

MntJULiP as reference. The AUC results are reported in Table 4-III.
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Tissue Method Low Medium High

Adipose DNN1 0.6878 0.5442 0.6958
DNN2 0.6944 0.5442 0.7031

Esophagus DNN1 0.6827 0.5559 0.6883
DNN2 0.6975 0.5460 0.7045

Lung DNN1 0.6846 0.5188 0.6950
DNN2 0.6987 0.5460 0.7082

Ovary DNN1 0.6831 0.5398 0.6928
DNN2 0.6964 0.5426 0.7059

Pancreas DNN1 0.6827 0.5205 0.6913
DNN2 0.6982 0.5453 0.7050

Stomach DNN1 0.6834 0.5406 0.6908
DNN2 0.7015 0.5511 0.7078

Spleen DNN1 0.6852 0.5346 0.6961
DNN2 0.6961 0.5563 0.7055

Table 4-III. Comparison of the two models’ AUC performance on GTEx data.

4.2.2.7 Mutations affect splice site choice

Single nucleotide polymorphisms (SNPs) occurring in splicing enhancers and silencers

could affect RBP binding affinity and result in differential intron selection. To

investigate the PDL model’s awareness of sequence changes and whether it could take

the SNP into consideration for prediction, we established an in silico mutagenesis

experiment as follows. We chose alternative splice sites from the Cystic Fibrosis

Conductance Regulator (CFTR) gene, mutations in which have been associated with

cystic fibrosis through dysregulation of splicing. Specifically, we selected 15 ‘bunches’

(30 introns, 2 introns per ‘bunch’), and mutated the nucleotides (one by one) in the

200 bp sequence centered on each splice site. We then measured how the changes in

sequence elements affected the PDL model’s prediction. Figures 4-9, 4-10, 4-11 show

the 3 splice sites in a ‘bunch’, namely the shared splice site and the two alternate

ones, at three individual loci (’bunches’). We observe that mutations within the

25 bp around the splice site could potentially affect alternative splicing. Also, the

mutations on the shared splice site, as opposed to the alternative splice site, have

a less pronounced effect, suggesting that it plays a smaller part in the alternative
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splicing outcome.

Figure 4-9. PDL predicts splicing ratio changes affected by point mutations. The top
sub-graph is the RNA sequence around the shared splice site, the bottom two sub-graphs
are the sequences of the other splice sites in the ‘bunch’. The sequences have 200
nucleotides, centered by the splice site. Colors represent the nucleotide to which the
wild-type nucleotide is mutated. The height of a nucleotide indicates the predicted splicing
ratio change which affected by this point mutation. Splice sites: chr7:117301030 (top),
chr7:117322058 (middle), chr7:117465747 (bottom).
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Figure 4-10. The point mutations on the shared splice site have a less pronounced effect.
Splice sites chr7:117542108 (top), chr7:117548641 (middle), 117559464 (bottom).

Figure 4-11. Mutations within the 25 bp around the splice site could potentially affect
alternative splicing. For this ‘bunch’, mutations in Exon regions brings more affection
to the splicing ratio change, compared to the intron regions. Splice site chr7:117714171
(top), introns: chr7:117710701 (middle), chr7:117712404 (bottom).
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4.3 Discussion

The mechanisms of alternative splicing as a gene regulatory process are still incom-

pletely understood. The splice site selection and the abundance of each splice variant

are determined by the combinatorial action of multiple regulatory factors, which act

in cis- or in trans to enhance or repress a particular outcome. Their signatures, and

the signatures of their interactions, are encoded in the sequence proximal to the splice

sites on the pre-mRNA molecule.

We described a probabilistic deep learning model (DPL model) to learn and reveal

how the interactions of cis-regulatory elements and trans-factors affect alternative

splicing, from the pre-mRNA sequence. The DPL model is trained on the reference

human genome sequences and splice junction read counts, extracted from spliced

RNA-seq read alignments generated by a ’splicing-aware’ aligner. This presents several

practical challenges. For instance, depending on the stringency of the alignment in

the presence in the reads of sequencing errors or other differences from the genome

reference, the aligner may report a number of false spliced alignments. Even when

the aligner uses existing gene annotations to inform the spliced-read placement, some

aligners will seek and force a false positive alignment that involves an annotated

exon boundary. Also, aligners may incorrectly place a read that matches to multiple

loci, altering the read counts. Prioritizing alignments in which read pairs map

concordantly may alleviate this problem, but only partly. In general, aligners have

different advantages and report spliced alignments leading to potential new and/or

different splice variants, either real or artifactual, according to different protocols. For

example, STAR produced substantially fewer spliced mappings when the alignment

was not guided by known splice sites [99]. A direct consequence to our model, when

aligners report numerous splices not corresponding to known introns, more effort

is required to construct a reliable set of introns for training from the novel splices.
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Moreover, to craft an accurate training and testing dataset for the DPL model, more

effort is needed to select alignment filters to fit the metrics and overall objectives of

the RNA-seq study. One particular challenge is the imbalanced data. For example, in

most cases where an alternative splicing event involves two or more introns sharing a

splice site, only one intron is highly expressed while the others have low expression

values and PSI ratios. Therefore, the data is biased towards introns with high and

low PSI ratios, resulting in higher performance of the models on these categories and

poorer performance in the cases when the intron is expressed at a moderate level.

Despite significant progress, the interplay between alternative splicing (AS) and

other RNA and DNA processes is poorly characterized. Recent evidence also indicates

that alternative splicing might be regulated not only by the concentrations of the

splicing factors or the relative concentrations of available splicing activators and

repressors, but also by a more complex process involving the transcription machinery.

In fact, transcription and pre-mRNA processing are not independent events. Rather,

they are highly coordinated in both time and space because splicing occurs in close

association with the transcript elongation by RNA polymerase II (Pol II). The 5’-

terminal exons can be switched through the use of alternative promoters and alternative

splicing. Similarly, the 3’-terminal exons can be switched by combining alternative

splicing with alternative polyadenylation sites [100].

Apart from the relationships that arise from the co-transcriptional splicing, DNA

methylation has more recently been reported to play a role in pre-mRNA splicing. As

evidence, human exons are more highly methylated than introns, and methylation

differences are stronger at the exon–intron boundaries [101].

Addressing these challenges requires integrative methods that combine data from

multiple technologies and convert them into biologically and clinically meaningful

insights. Particularly relevant, a deep neural network-based integration model learns a

joint representation of multiple datasets, preserving the structure of data and merging
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them during the analysis stage to generate diverse types of predictions. As two

examples, the program DeepCode was designed to predict splicing patterns and their

changes during hESC differentiation [102], and [103] propose a deep learning framework

to integrate RNA-seq and CLIP-seq data to analyze RBP-RNA interactions. As a

future research direction, we will investigate combining the PDL model with a deep

learning based methylation prediction module, to jointly measure the co-transcriptional

splicing.

To conclude, our sequence-based model is a first and important step in constructing

a deep learning based framework for alternative splicing regulatory and functional

inference, in the wider context of RNA processing pathways, from heterogeneous omics

resources.

94



Conclusions

In this thesis, we introduced several computational tools, aimed at quantitatively

measuring the splicing events, revealing the splicing regulation and understanding

the splicing process. Our methods leverage large scale RNA-seq data, reference RNA

sequences and RNA binding motifs. We first describe our contributions, then outline

limitations and possible extensions of the tools.

RNA-seq analyses aimed at determining differential splicing require a collection

of features, such as exons, introns, local events or full transcripts, based on which

to identify differences between two or more conditions. The accuracy of this set is

critical for the downstream quantification and differential analyses. These features are

extracted from a reference database, generated de novo by assembling the reads, or

simply enumerated from the input alignments where possible. Each of these methods

has drawbacks: reference features do not contain novel events, de novo ones may be

inaccurate and may miss low expression isoforms, and raw features contain artifacts.

So far there has been no judicious approach to selecting an optimal set of features. In

JULiP and JULiP2, we present two mathematically rigorous methods for selecting an

accurate set of introns that is as complete as possible. JULiP and JULiP2 extract

introns from large collections of RNA-seq data, directly from the spliced alignments,

and then refine them into a high-confidence set. JULiP and JULiP2 use similar

generalized linear models only with different read count models, based on the Poisson

and the negative binomial distributions, respectively. Additionally, an important

technical innovation of the tools is that they work by simultaneously modeling splice
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junction information across all samples, taking advantage of the latent information in

the set of samples to extract a highly accurate set of introns. Our evaluations showed

that JULiP and JULiP2 were superior methods for feature (intron) selection, being

able to reconstruct almost the entire set of features (90%) present in a collection of

RNA-seq samples and >10% more compared to assembly-based methods, with very

high precision. Additionally, JULiP2 builds on the selection step by incorporating a

statistical model for testing for differential splicing, including covariates from condition-

, sample- and gene-specific contributions. Overall, JULiP and JULiP2 are powerful

tools that can be used to select a nearly complete and highly accurate feature set for

downstream RNA-seq analyses to characterize splicing variation within and between

conditions.

Our second effort addresses a core problem in transcriptomics, namely identifying

differences in splicing between conditions. Currently, a variety of methods for differen-

tial splicing analysis are available, which differ in their selection of target features,

objective functions, and technical approaches, leading to poor consistency among the

results they produce. So far, there has been no tool that comprehensively addresses the

wide range of differential splicing patterns, and that allows for unbiased comparisons.

We designed MntJULiP to fill this gap and to computationally provide a comprehensive

view of alternative splicing variation. In MntJULiP, we implemented two Bayesian

models with two different objective functions: for determining the differences in intron

splicing abundance (DSA) and differences in intron splicing ratios (DSR) relative to

the local gene output, the two primary objective functions targeted by differential

splicing methods. MntJULiP represents splicing variation at intron level, inferring

introns directly from the alignments, thus capturing most splicing variations and

discovering new unannotated candidates while avoiding the pitfalls of assembly. A

unique capability of MntJULiP is its ability to perform multi-way comparisons, which

is desirable when characterizing complex time series or multi-condition experiments,
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to identify a global set of features that distinguish among subgroups or stages. To

complement our effort with designing differential splicing tools, and to meet the needs

for intuitive and easy to use visual representations, we developed a lightweight toolkit

Jutils. MntJULiP and Jutils collectively allow researchers to comprehensively survey

and characterize the complexity of splicing variation across collections of samples.

Additionally, JULiP, JULiP and MntJULiP are highly scalable and efficient tools,

and can process large collections comprising hundreds of RNA-seq data sets in a short

amount of time, typically <1 hour.

Lastly, it is important to understand the complexity of pre-mRNA splicing and how

changes in splice site choice come about. In recent years, a few machine learning based

methods were developed that take DNA sequences as input and apply general rules or

include results from state-of-the-art methods to predict splicing patterns [92, 93]. Such

rules or features may include the lengths of donor/acceptor exons, the lengths of introns,

motif scores, strength of donor/acceptor sites, whether exon can be translated without

stop codon, junction conservation scores in multiple species, and others. While these

early methods represent a modeling breakthrough, they are complicated, relying on

heterogeneous collections of previously curated motifs but without providing insights

into their role in the biological processes, and are designed for specific alternative

splicing patterns or events, such as exon skipping and alternative 3’/5’ site. To address

this challenge and provide a flexible model to analyze any types of alternative splicing

events, we developed a probabilistic deep learning method to predict alternative

splicing through deep modeling of cis-regulatory elements and trans-splicing factors.

Our model uses introns as the features, and therefore can capture a wide range of

alternative splicing patterns. It also achieves similar performance when trained solely

on the pre-mRNA sequences, without prior knowledge of regulatory motifs, which

means it can be applied effectively to other systems and species where such knowledge

is not available. Our PDL model can be trained rapidly with the aid of GPUs, thereby
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allowing it to have a large set of parameters and to deal with complex relationships

present in the data. It is our first and important attempt to computationally reveal

the tissue-regulated splicing code. Importantly, this DNN architecture can potentially

be extended to include heterogeneous data from different sources, to characterize the

cellular transcriptome and its variations along RNA processing pathways.

Overall, methods to characterize alternative splicing are structured around a set of

features, used to characterize splicing variation in a sample or condition, which they

quantify using read counts extracted from the alignment data, and then interrogate

with statistical tests to detect differences between conditions. Each step in this process,

including the selection of features, quantification and testing, is important to the

outcome of the analysis. Our work contributes in a significant way to all of these

computational problems. As an important design choice, our methods focus on introns

as the features used to represent alternative splicing. This choice avoids the pitfalls of

assembly, allows for the discovery of novel events, and captures most comprehensively

the variety of alternative splicing patterns. Introns are extracted directly from the

read alignments, thus ensuring the broadest collection of candidates, which is further

curated with the selection methods implemented in JULiP, JULiP2 and MntJULiP

before further analysis or modeling.

Nevertheless, some limitations, in particular related to the characteristics and

biases of the aligner and the ’mappability’ of the sequences, remain. For instance,

aligners may not be able to detect short exons, and shorter reads will be harder to

align across splice junctions and may result in underestimating the abundance or

even missing some low expression splice junctions entirely. Reads from repetitive

or duplicated regions may not be unambiguously aligned, as sequencing errors and

polymorphisms in the reads along with differences in the sequences of the genomic

loci may make it impossible to determine the true location. Further, alignment at

polymorphic loci may be biased against reads containing the non-reference allele.
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Methods that alleviate these biases, such as the use of a pangenome reference [104] or

accounting for read mappability [105] may be productive. Any further improvement

in the alignment software will directly contribute to improvements in our and others’

alternative splicing analysis tools.

Future extensions of these tools may target applicability to other sequencing

technologies, in particular long RNA sequencing reads. Short read RNA-seq, such as

Illumina RNA sequencing, has greatly expanded our ability to study the complexity

of transcriptomes, including the computational prediction of alternative splicing

events. However, short read RNA-seq reads have their shortages. Sufficient read

depth is necessary to cover the alternative exon-exon boundaries to allow detection,

which may hamper the identification of low expression isoforms and their unique

splicing variations. Further, short reads mapping to multiple isoforms would confound

alternative isoform identification and quantification. In contrast, long-read sequencing

technologies are making it possible to sequence single full-length transcripts. With

sufficient sequencing coverage, isoforms and the splice junctions can potentially be

reconstructed unambiguously. However, analysis of long-read sequences has it own

challenges, primarily the high error rates. To extend our tools to predict and analyze

alternative splicing variation using long reads, several changes must be made to adapt

to the inaccuracies in the sequencing data, while the statistical framework can be

more readily adapted. First, we will error correct the reads to increase the accuracy of

alignment [106]. Secondly, to correct for slight inaccuracies in the mapping of splice

junctions of the error corrected reads, we can jointly analyze alignments of the reads

along the genome, clustering candidate splice junctions within vicinities and selecting

representative splice sites, as implemented for instance in [107]. Multiple sequencing

runs per sample will produce sufficient reads to allow quantification and differential

analyses. Lastly, a benefit of long reads is that they can be more accurately aligned

to their correct location on the genome, thus improving the quantification. With
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these changes and other, we expect our JULiP family of tools to be able to accurately

predict and analyze alternative splicing events from long read RNA sequencing data.

Also, as future work on our modeling of alternative splicing in the larger context of

RNA processing pathways, we aim at designing an integrative machine learning frame-

work, which incorporates heterogeneous data -including sequences, motifs, epigenomic

data, tissue or condition labels, and expression data, examining the relationships

between the different components in the RNA processing pathways - DNA methylation,

RNA splicing and alternative splicing, and potentially RNA editing, and predicting

the effects of sequence variation. The rapid and widespread adoption of deep learning

in computational biology promises computational flexibility to effectively model and

integrate data given enough context and scale. Currently, identification of causality

and interaction in complex genotype-phenotype systems requires custom analyses

and domain expert interpretation. However, one might envision a future of data

accessibility, quality, and scale, that could enable near automated DL-based detection

of the genetic and epigenetic events and their phenotypic effects.

In conclusion, predicting alternative splicing of the pre-mRNA is a fundamental

and long standing problem in computational biology. Our work indicates that novel

machine learning algorithms, high performance hardware and large amounts of data,

be together, have the potential to enable drastically enhanced performance on such

problems.
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