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Abstract

Detecting evidence of genetic engineering in the wild is a problem of growing importance

for biosecurity, provenance, and intellectual property rights. This thesis describes

a computational system designed to detect engineering from DNA sequencing of

biological samples and presents its performance on fully blinded test data. The

pipeline builds on existing computational resources for metagenomics, including

methods that use the full set of reference genomes deposited in GenBank. Starting

from raw reads generated from short-read sequencers, the dominant host species are

identified by k-mer analysis. Next, all the sequencing reads are mapped to the imputed

host strain; those reads that do not map are retained as suspicious. Suspicious reads

are de novo assembled to suspicious contigs, followed by sequence alignment against

the NCBI non-redundant nucleotide database to annotate the engineered sequence

and to identify whether the engineering is in a plasmid or is integrated into the host

genome. Our initial system applied to blinded samples provides excellent identification

of foreign gene content, the changes most likely to be functional. We have less ability

to detect functional structural variants and small indels and SNPs produced by genetic

engineering but which are more difficult to distinguish from natural variation. Future

work will focus on improved methods for detecting synonymous recoding, used to

introduce watermarks and for compatibility with synthesis and assembly methods,

for using long read sequence data, and for distinguishing engineered sequence from

natural variation.
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Chapter 1

Introduction

1.1 Background of the study

Genetic engineering and synthetic biology focus on technologies that deliver foreign

genes into host organisms to introduce desired new functions as well as to understand

the function of the native genome. For decades, the U.S. government has been funding

synthetic biology research to develop genetically engineered organisms in order to

expand application and boost production across industries such as agriculture, phar-

maceuticals, and biofuels. While this has considerable benefits, deliberate misuse or

release of engineered organisms can pose threats to human health and the environment.

As a result, challenges regarding both ethics and safety arise — if an engineered

organism is deliberately released into the environment, how can we tell it apart from

the millions of microorganisms that exist naturally in the wild?

Our group is funded by the US Intelligence Advanced Research Projects Activity

(IARPA) under their Finding Engineering-Linked Indicators (FELIX) program as

part of an effort led by Raytheon BBN Technologies (BBN). BBN terms this effort

GUARDIAN (Guard for Uncovering Accidental Release, Detecting Intentional Alter-

ations, and Nefariousness), an initiative that combines wet-lab and computational

analyses. As part of this multidisciplinary collaborative project led by BBN, we aim to

improve the ability to detect engineered organisms and enable a new era of synthetic
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biology focused on safety and efficacy.

The IARPA program also funds Testing and Evaluation groups that generate

fully blinded data from real organisms, both native and genetically engineered. Most

of the initial data has been generated using Illumina short-read DNA sequencing

data, but Nanopore and PacBio long-read DNA sequencing data will be generated

in increasing volume to increase throughput and sensitivity for detection. According

to Gargis et al. (2019) [1], short-read sequencing technologies have lower error rates

than long-read technologies, which makes short-read sequencing particularly useful for

microbial strain matching and single nucleotide polymorphism (SNP) identification

[2, 3]. However, the disadvantage is that the read length (100-300 nt) is too short to

resolve repetitive regions or structural variants, and their de novo assemblies often

result in contigs with many gaps [3, 4]. Long-read sequences can span more than

10 kilobases (kb) in length, which makes them effective for closing the gaps in the

scaffolds [3]. Unfortunately, long reads have higher error rates [5] and suffer from

insertions and deletions (indels) in homopolymeric regions [2, 6]. It is also difficult to

accurately assemble small plasmids (<7 kb) from PacBio long-read because shorter

reads will typically be down-selected from library preparation and data analysis [7,

8]. While IARPA’s assessment strategy favors an initial focus on short-reads, the

complementary characteristics of the two types of sequencing data available motivates

an ultimate desire to develop a detection system that combines short- and long-read

data in order to generate high-quality hybrid assemblies [3, 4, 9, 10] and more accurate

detection of engineering.

This thesis describes a semi-automated cross-platform pipeline, the “JHU pipeline”

in the context of the BBN GUARDIAN system, that detects evidence of genetic

engineering. We aimed to develop a generalizable methods requiring no training data

beyond native genomes deposited in GenBank. We note that other groups within the

BBN group pursued machine learning approaches using engineered and non-engineered
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training sets. Our hypothesis was that classifiers based on training sets of engineered

genomes would suffer from large generalization error, performing well on the relatively

small body of positive training examples but degrading when applied to novel examples.

Comparisons of our generalizable system to the other BBN system, provided in the

results, support this hypothesis. It is our sincere hope that our efforts will contribute

to the diverse computational analytics developed in addressing growing challenges in

the field of synthetic biology.

1.2 Statement of the problem

A genetically modified organism (GMO) can be created using multiple techniques.

Traditional methods of genetic engineering insert genes of interest randomly into the

host organism’s genome via a suitable vector. Technology advances in gene targeting

and gene editing have allowed genes to be delivered at specific locations more accurately.

Since 2009, gene editing has made major breakthroughs, with Transcription Activator-

Like Effector Nucleases (TALENs) and the CRISPR-Cas9-gRNA (guide RNA) system

developed and commonly used in research and industry alike. Therefore, as the

capability of genome-wide engineering techniques is rapidly growing, bioanalytical

as well as computational tools must catch up with the growing need to distinguish

naturally occurring organisms from those that are engineered.

Before discussing detection of engineering in cells, we note that the availability

of synthetic biology resources has made it important to check DNA sequence orders

for potentially dangerous sequences, such as those encoding pathogens or toxins. At

present, identification of target nucleic acid sequences from a list of dangerous sequences

relies heavily on exhaustive alignment via BLAST [11], or other related techniques for

biosynthesis screening, such as the International Gene Synthesis Consortium (IGSC)’s

“Harmonized Screening Protocol” [12]. In screening for detection, typical standards

are approximately 80% sequence similarity with a length of at least 200 bp [13].
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Sequences shorter than 200 bp have been difficult to classify accurately as native

versus engineered, or similarly as mapping to a pathogenic versus non-pathogenic

strain [13]. Methods have been designed to search for specific sequences that are often

used for engineering [14], including recombination sites and selectable markers, but

these are limited to known examples and can be evaded by newer synthetic biology

techniques for scarless editing. Moreover, the set of known signatures should have a

broader scale to include specific signatures for different organisms: yeast, bacterial,

mammalian, or other hosts.

In physical samples, detection of genetic alterations in GMOs commonly identifies

target nucleic acid sequences that are previously known. One of the wet-lab approaches

is by Polymerase Chain Reaction (PCR), which has seen wide use for GMO detection

[15]. The principle behind this method is to design a pair of primers that bind, in

reverse complementary fashion, to regions that flank specific sequence of interest.

Then going through controlled PCR cycles, the target sequence is amplified. The PCR

products are subjected to electrophoresis, which separates the products by length. If

the fragment amplified has the expected length, then it is presumably not engineered.

For a specific locus, different primer sets may be designed for the native and the

engineered versions, with either presence/absence or length as a read-out. Other

methods are possible, such as Southern blotting or brute-force sequencing.

This PCR approach for physical samples is analogous to the methods for screening

DNA sequence orders: both rely on a curated list of DNA signatures of engineering.

This requirement for pre-existing knowledge is an intrinsic disadvantages of the PCR

detection method. It certainly does not serve well in GMOs that are modified using

modern-day gene editing techniques, like the CRIPR-Cas system. Rather than PCR,

the low costs of next-generation sequencing (NGS) have made full genome sequencing

a viable approach for engineering detection.

This thesis describes methods that use whole-genome sequencing data as a source
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of evidence of genetics engineering. Other members of the BBN consortium, and

other teams funded by IARPA, started by re-purposing existing genome annotation

pipelines, attempting to build high-quality full genome assemblies. We viewed this

as wasteful: even in an engineered genome, only a small fraction of the bases are

engineered, perhaps only 10 kb in a typical 5-10 Mb bacterial or fungal genome. We

took a different approach, unique across the IARPA teams, to first filter out native

and near-native reads, and only then attempt to analyze the (hopefully) small fraction

of suspicious reads.

Phase 1 of the IARPA FELIX program concluded in October 2019 with a challenge

to detect engineering in blinded samples from four yeast species: Saccharomyces

cerevisiae, Yarrowia lipolytica, Komagataella pastoris, and Komagataella phaffii. This

thesis primarily discusses what we achieved by the end of Phase 1. Limitations are

followed in later sections and are the subject of ongoing work. The JHU pipeline

described here has the ability to analyze sequencing data generated from mixtures

of multiple species including engineered and non-engineered strains, with minimal

meta-data needed (it is helpful to know, for example, whether sequencing standards

such as PhiX have been spiked in as controls). The pipeline employs several best-

performing and widely cited molecular sequence analysis tools developed in other labs

at JHU. Removing reads that are native to the host organism as soon as possible

and then assembling the suspicious reads only reduces computational requirements

substantially. Compared to other groups within BBN that focused on machine

learning (e.g. Hidden Markov Model) or deep learning (e.g. Neural Network for

Natural Language Processing), the JHU pipeline extracts features by annotating them

using NCBI non-redundant databases. In Phase 1, semi-automated annotation was

performed to classify these features as native vs. engineered; full automation of this

step is underway.
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1.3 Objectives of the pipeline

We aim to identify foreign gene content (extrachromosomal plasmid vs integrated),

structural variants (breakpoints, amplifications, deletions), non-synonymous editing,

synonymous recoding (watermarks, restriction enzyme site addition or subtraction,

codon optimization, codon minimization), and other engineering markers in DNA

sequencing data from pure strains and mixtures.

These performance objectives are summarized by the mnemonic GRAIP.

Generalization. Generalize readily to multiple species and mixed or diluted

samples.

Re-use. Rely on top-of-class implementations of unit operations for biological

sequence analysis.

Automation. Design towards a system that permits beginning-to-end automation.

Interpretation. Make decisions that a person can interpret.

Performance. Discard as many native reads as possible and as quickly as possible.
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Chapter 2

Background: Existing approaches
to detect evidence of genetic
engineering

2.1 Introduction

Conventional genetic engineering integrate DNA elements into the host genome via

techniques such as homologous recombination for nuclear integration or transformation

or transfection for plasmids. Two general considerations are the type of sequence intro-

duced and the method used to synthesize, assemble, and integrate the target sequence

into the plasmid or genome. If the introduced sequence is foreign, for example a

foreign gene, the resulting combination of DNA sequences does not occur naturally and

therefore can be readily detected via site-specific PCR-based methods targeting if the

insertion site or the insert is known. Modifications that do not introduce foreign genes

are also readily introduced, especially since gene editing and other related techniques

have been added to the engineering toolbox. These more subtle modifications can

entirely resemble natural mutations or gene polymorphisms but nevertheless achieve

intended functional changes, such as functional knock-out or unregulated activation.

Therefore, improved analytical tools for detection, identification, and quantification of

such GMOs are needed.
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The second consideration, the method used to synthesize, assemble, and integrate,

in the past placed constraints on the DNA sequences flanking an engineered region.

These constraints, for example requirements for the presence or absence of restriction

enzyme recognition sites, are often termed “scars”, and at one time provided additional

evidence of engineering. With the advent of methods such as homologous recombination

and CRISPR/Cas9 editing, however, scarless editing is much more feasible and scars

can be avoided. Scarless editing is therefore an additional challenge for detection.

In this chapter, we will review existing and proposed detection and identification

methods for various types of engineering, with a focus on the use of bioinformatics and

other computational approaches. Then we will investigate several gaps in the literature

that our JHU pipeline aims to address. These gaps motivated the performance

objectives denoted by the mnemonic GRAIP in the preceding chapter: generalization,

re-use, automation, interpretation, performance.

2.2 Targeted DNA Amplification-Based Methods

A standard PCR-based method to detect genetic engineering requires knowing the

target DNA sequence of the modified locus, so that a pair of primers that are

complementary to the sites flanking the locus of interest can be designed accordingly.

The resulting molecular constructs, with the addition of a suitable polymerase, undergo

cyclic DNA replication to amplify the intended product. Because PCR-based detection

methods are highly sensitive and specific, PCR-based detection remains a leading

method for known targets [16].

How about shorter sequence modifications, such as those induced by genome

editing techniques such as site-directed nuclease systems (SDN) 1, 2, and 3 [17]?

Shorter sequence changes (substitutions or indels of one or a few nucleotides) are

also detectable using specific probes, for instance TaqMan real-time-PCR or digital
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PCR [18]. SNP genotyping approaches can be applied to detect very small sequence

differences of a few nucleotides, given an adequate reference sequence [19, 20].

These bioanalytical detection approaches have continued to improve. They are most

valuable when a large number of biospecimens are to be assayed for a small number

of pre-defined targets. This remains a limitation — PCR and related techniques are

only able to detect a small subset of targets with known sequence. For the efforts

devoted in the FELIX project, we aim to achieve similar goals for unknown targets

by using sequencing data instead. The resulting computational system will be more

generalizable to detect a wider range of engineering.

2.3 Untargeted DNA Sequencing-Based Methods

Next-generation sequencing (NGS) technologies takes advantage of massive parallel

sequencing for the whole genome, therefore boosting the speed and decreasing the cost.

Whole genome sequencing (WGS) has become increasingly feasible as an analytical

approach for GMO detection. It requires no prior information of a specific genetic

alteration, or even of the host species, and thus can be applied readily as an untargeted

detection approach for generic alterations [16]. NGS platforms produce millions of

DNA sequencing reads in parallel.

Traditional methods use the raw sequence output as input to traditional genome

sequencing pipelines that perform assembly (either de novo or with the assistance of

a reference genome) and then compare the result to high-quality reference genomes

using bioinformatics software.

The comparison between de novo genome assemblies and a well-annotated reference

has its own complications. Even without engineering, a substantial amount of sequence

differences are to be expected due to natural genome diversity within strains of the same

species. Distinguishing sequence polymorphisms from true engineering is therefore a
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critical task. Furthermore, another challenge of WGS is that highly repetitive regions

in the genome can be difficult to assemble, and even difficult to assign if multiple species

with similar repeats are present in a single sample. Flanking an engineered region

with native repeats, for example, can be very effective in obfuscating its location. Also

considering heterogeneous or contaminated samples, WGS might find its limitations in

separating sequences that are discrete in their genetic coordinates. Finally, assembly

itself can introduce errors that might resemble engineering, for example non-native

junctions that appear chimeric in connecting DNA from different species present in a

single sample.

If the resulting genome assembly reveal foreign DNA sequences, it is possible that

the genetic modification was introduced by either genome editing or conventional

genetic engineering. However, due to sequence homology shared among multiple

organisms, WGS approaches are prone to false positives and often confounded by

sequences not only from the target organism but also from a wide array of contaminants

or pathogens [16]. Furthermore, gene content can vary widely across different strains

of a single species, and many such genes may be absent from the reference strain or

even the full complement of strains with sequenced genomes. Therefore, detected

sequences that are not present in a reference genome or previously sequenced genomes

must be carefully evaluated, or experimentally verified if needed, to assess whether

they are native or engineered.

Beyond detecting what was introduced or engineered, it is also desirable to detect

how it was introduced: classic genetic engineering, genome editing, genome synthesis,

or even mutagenesis and selection. These hopes are becoming more and more futile.

Modifications introduced by conventional mutagenesis techniques, such as irradiation

or mutagenic chemicals as well as genome editing applications, do not leave specific

imprints in the genome. Classic genetic engineering using restriction enzymes is

decreasing as newer scarless editing becomes easier. If the genes coding for the genome
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editing components are absent, it cannot be deduced from the altered sequence

which specific process has been used. Even for the conventional genetic engineering

techniques, it may be impossible to unequivocally identify the underlying technique

for the integration of foreign DNA [16]. For these reasons, distinguishing between

conventional genetic engineering and genome editing or identifying the process of

genetic engineering is difficult.

2.4 Bioinformatics and Statistical Methods

In Lusser et al. (2011) [21], the minimum length of a unique random sequence in a

genome was calculated by correlating the genome size with the possible number of

combinations for this sequence length. For example in a plant genome, it reports a

DNA sequence of at least 20 nt is needed to be considered as unique. However, the

probability calculation for theoretical uniqueness is based on the naive assumption that

the four bases, A, C, G, and T, are equally distributed and statistically independent.

The complexity of alteration, the amount of repetition, and the diversity of genomes

are not taken into account. This piece of information, however, might provide insights

into how long a DNA sequence we should reliably call for a foreign gene content in

terms of an insertion of longer sequences.

The integration of nucleic acid sequences from foreign organisms can also occur

naturally, although rarely, as seen in the sweet potato, which was shown to contain

Agrobacterium genes [22]. In most cases, a sequence of foreign origin can be detected

if it has sufficient length. This enables identification of more complicated pathway

insertions, typically consecutive foreign genetic elements comprising a combination of

promoter, coding sequence, and terminator from different species. For this purpose,

search packages like BLAST or k-mer based tools like NIKS [23] can be used to find

such DNA elements in WGS data.
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A European study applied NGS data to characterize transgenic insertions in GMOs

[24]. The reference genome for Oryza sativa ssp. japonica was input for the Illumina

“Consensus Assessment of Sequence and Variation” (CASAVA) software (Elandv2e),

which reported all DNA polymorphisms (SNPs, insertions, deletions and breakpoints)

between the rice reference genome and the reads obtained for the LLRice62 DNA

sample. CASAVA’s Elandv2e generated 5′- and 3′-borders of inserted sequences at

the breakpoints (breakpoint border sequences) by collecting orphan reads, defined as

reads that do not map to the reference genome but have a mate read that maps to the

reference genome at regions that flank a breakpoint. For each breakpoint, orphan reads

were collected and de novo assembled to breakpoint border sequences. To distinguish

between natural insertions and insertions caused by transformation of the native

genome, all breakpoint border sequences larger than 30 bp were compared against

a plant transformation vector (pCAMBIA-1300) using MegaBLAST algorithm [25].

The result was promising — one breakpoint on chromosome 6 was identified in the

LLRice62 sample as a putative insertion site, with a left breakpoint border sequence

of 79 bp and a right breakpoint border sequence of 275 bp exhibiting homology to the

transformation vector. This is in complete agreement with the information provided

by the LLRice62 breeding company (EFSA 2007).

Essentially orphan reads correspond to reads only at the breakpoint, because

to qualify it must have a mate read that maps to the native reference. These two

paired-end reads are within the same fragment so that they should be close enough to

each other. Assembly of the orphan reads result in contigs covering either flank of the

inserted region, but not the middle if the insertion is larger than a single read length

100 bp. This means that this approach is unable to detect transgenic insertions less

than 100 bp, but hardly can such short sequence produce any important functions.

Based on this effort, we would like to extend the underlying methods to investigate

not only the breakpoint border sequence but the whole sequence within the inserted
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region. More importantly, we would like to generalize such approach to deal with

GMOs beyond the domain of food and crops.

Statistical methods are also appropriate for detecting synonymous recoding. The

more common type of synonymous recoding is to optimize codon usage for high

protein expression when moving a protein-coding sequence across species. Usually

the foreign gene content is already easier to detect than the more subtle changes in

codon usage, however. This can be phrased more quantitatively by noting that the

information content or Shannon entropy of an amino acid is much larger than the

conditional entropy of a codon given its amino acid, averaged over amino acids. Two

less common types of synonymous recoding involve codon minimization, in which

certain codons are eliminated from a genome to permit an enlarged genetic code

encoding unnatural amino acids, and watermarks, in which synonymous recoding is

used to introduce detectable signatures or perhaps to encode hidden information with

DNA steganography. Codon minimization is easy to detect given WGS sequence,

although it is more difficult in shorter sequences. Watermarks that are contiguous

may be detectable if they are sufficiently long and different from native sequences.

Distributed watermarks, for example a unique haplotype constructed from natural

alleles scattered along a chromosome, can be impossible to detect statistically.

2.5 Considerations

As discussed above, targeted and untargeted detection methods are useful in comple-

mentary scenarios: targeted approaches may be favored when the engineered sequences

or loci are known, and untargeted methods become essential when these are unknown.

Since deep sequencing data is relatively unbiased and agnostic as to the type of

engineering, the untargeted approach is more easy to generalize to detect combinations

of engineering and to unforeseen types of engineering. Some types of engineering

may be difficult to impossible to detect versus the native background, for example
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distributed watermarks or small indels that could occur naturally and have functional

consequences.

In the realm of WGS approaches, perhaps the the biggest limitation is for methods

that require use of a reference genome or require a wide array of native genomes to

build a model for natural variation. Usually, any species that is a possible host for

genetic engineering already has well-characterized genetics, at least one high-quality

reference genome, and an increasing number of well-annotated diversity strains. Even

as the number of diversity strains increases, however, genome comparative approaches

remain unlikely to be definitive in describing a DNA sequence as engineered merely

because it does not occur in any of the known strains (provided, of course, that the

sequence also does not match the DNA sequence or protein sequence of a foreign

source).

What if we don’t know which reference genome or genomes to use? Luckily, given

sufficient NGS coverage, this problem is within the domain of meta-genomics and

environmental genomics. Meta-genomics refers the study of genetic material recovered

directly from environmental samples. Meta-genomics has established methods for

inferring the species present in an environmental sample that are applicable to host

inference in the context of detecting GMOs as well. We will describe how we have

used these methods to infer host species in blinded samples, and then use available

sequence data for these inferred hosts as part of further analysis.

Another consideration is computational performance. Broadly speaking, systems

that take NGS data can be divided into (1) read-first (2) assembly-first approaches.

Namely, read-first approaches first match the reads to some references, either by

alignment or by k-mer analysis, whereas assembly-first approaches first assemble the

reads to contigs, essentially reproducing a genome assembly pipeline and then compare.

The method used in Wahler et al. (2013) [24] is considered a read-first approach.

In the literature there have been insufficient studies that compare the classification
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performance of read-first vs. assembly-first methods. However, even for an engineered

sample, the sequences are still predominately native. And the native reads really

just provide information about the native background host, not whether it has been

engineered. Finally, assembly errors themselves can create spurious sequences or

non-native junctions that may appear to be evidence of engineering. These errors are

more likely if an entire genome assembly is attempted, rather than just assembly of a

small number of reads that are marked as suspicious. Consequently, discarding native

reads early should both reduce computational burden and also increase classification

accuracy.

2.6 Summary

Several DNA-based procedures are suitable for detection of various types of engineering.

For the targeted PCR-based methods, sequence information of the modified locus

is indispensable. For the untargeted WGS-based methods focusing on sequence

differences, a robust reference genome is helpful. Combined approaches of the two

might work well — once a difference is revealed, this knowledge may be used to develop

a targeted PCR-based detect method to further confirm the identity of the suspicious

content or detect it in new samples.

Detecting conventional genetic engineering, where transgenic elements are fused

by promoters or terminators with target sequence in between, is quite feasible. But

there are also challenges: for genome edited sites that do not carry foreign DNA

traces as screening targets, detection and identification methods are limited; for

genome sequence difference between a genome assembly and a reference genome, it is

often difficult to tell if it is because of assembly artifacts, natural mutations, or real

engineering; for identification of how the engineering was done, it is nearly impossible

if the engineering was scarless.
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Chapter 3

Methods

3.1 Data

IARPA enlisted Testing and Evaluation (T&E) groups to perform genetic engineering

on fungal species and generate DNA-Seq data provided as 50 blinded DNA-Seq data

sets. We were to (1) classify each sample as native vs. engineered and (2) if engineered,

report the host species, the type of engineering, and the and evidence, including

the engineered sequence, whether it resided on a plasmid or was integrated, and if

integrated the location relative to the host reference genome. Each sequencing data

set had approximately 30x coverage by Illumina short-read paired-end sequence, with

a read length of 300 nt and an insert size of 400-500 bp, with the paired ends reads

often overlapping. Along with the Illumina short reads, T&E also provided Nanopore

long reads for a subset of samples. Given the high coverage of the short reads, our

Phase 1 pipeline focused on analyzing the short-read data, with long read analysis

deferred for planned future work in Phase 2.

3.2 Identifying the host strain

Our first step was to determine the host strain or strains that might exist in our

sequencing data. Although a standard mapping approach could work for this purpose,

this is computationally expensive. Alternative mapping-free methods that instead
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use k-mer matching are much more computationally efficient, without much loss of

accuracy for host strain identification (personal communication, Steven Salzberg and

Ben Langmead). We then tested one such method, Kraken2 [26, 27], using default

parameters. This software first builds a k-mer hash table from GenBank genomes

with known taxonomic classification, where the key is the minimizer of the k-mer

and the value is NCBI Taxonomic Identifier (taxon ID). Kraken2’s performance is

boosted through several mechanisms. First, the 31-mer minimizers are themselves

spaced seeds of 35-mers. Second, these minimizers are used to create a sketch of the

true 35-mer distribution. These improvements allow Kraken2 to run with a small

memory footprint and faster operation.

The output of Kraken2 is a taxonomic classification of every continuous 35-mer

subsequence within a read. Each genome containing that unique k-mer is identified,

and the subsequence is then annotated to the least common taxonomic ancestor and

assigned a taxon ID. This resulting assignment might correspond to an individual

strain if the k-mer happens to be unique to that strain. Otherwise the assignment is

made at the lowest taxonomic category in which the k-mer is unique: species, genus,

or higher level category. The special taxon ‘0’ is reserved for k-mers that do not map

to any known sequences. For the choice of databases, we used NCBI non-redundant

nucleotide database (nt) together with the vector and plasmid database (UniVec) to

build Kraken2 k-mer indices.

Initially, we intended to use the Kraken2 output to not only detect the native

host but also to remove sequences that are perfect match to a native host. When we

attempted this, however, we ran into difficulties in interpreting the mapping from

k-mers to taxon ID’s. For example, how many 0’s in a row as a cutoff would we require

to call a sequence non-native? What should we do with long foreign gene content

where short reads would be entirely within the foreign gene? These could map perfectly

to the source organism, yet we do not want to remove them without checking that

17



the organism’s entire genome was present, rather than just an isolated gene without

whole genome context. How should we account structural variations or breakpoints,

which correspond to rearrangements within the native genome? Additional issues arise

because a single nucleotide variant and breakpoint both affect all the k-mers within

the 35 nt window, even though they are very different types of variation.

After encountering these difficulties, we decided to split apart host species iden-

tification from read subtraction: for host species identification, k-mer matching is

sufficient, but for read subtraction, mapping is required. Speed-ups are still possible

for read subtraction, though, because a custom database can be built for the dominant

host inferred from k-mer analysis. To determine the dominant species, the read-level

analysis of Kraken2 can be used as input for companion software Bracken [28],

which performs Bayesian re-estimation of species abundance, and all higher levels of

taxonomy hierarchy as requested by the user, at the sample level. We therefore used

Bracken post-processing to identify the host dominant species for each sample. We

classified each sample at species and genus level, and simply chose the organism which

has the highest abundance as host.

Our annotation of the dominant host species was correct in every case. Some

samples contained mixtures of multiple hosts. For these, our Phase 2 plans are to run

species identification and read subtraction (described immediately below) iteratively,

identifying the major species and their relative frequencies in the sample.

3.3 Mapping-based subtraction of native reads

Our second step was to align the reads against the host reference genomes, and then

remove reads that were presumably native based on high sequence identity with the

reference. We anticipated that it would take too long and too much memory to map

against a non-redundant database using any existing aligner. By determining the host
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species first, we saved computational resources by mapping only to that single host

species, rather than to a much larger non-redundant database.

We downloaded the best-quality genome assemblies for the identified species,

labeled as either the “reference” or “representative” in the RefSeq section of GenBank.

We used one of the best-performing aligners, Bowtie2 [29], for mapping the reads to the

reference. Although HISAT2 is a newer version of this read-mapper, it was optimized

for mammalian applications rather than for fungal and bacterial applications, for which

Bowtie2 remains well-suited (B. Langmead, personal communication). For paired-end

reads, native read-pairs were defined as read-pairs that mapped either concordantly

(perfect match to native) or discordantly (sequences match native but with a different

distance or orientation, suggesting a structural variation). These native read-pairs

were filtered out. In future research, we plan to investigate by retaining the discordant

pairs as evidence of structural variation. For reads where neither end mapped, we

kept both ends as suspicious. For reads where a single end mapped and the other

end did not map, we kept only the non-mapping end as suspicious. Although keeping

both ends may provide greater sequence context for the native region from the host if

the purposed engineering is integrated, we found in the end that our choice of keeping

only the non-mapping read gave a sufficiently long native flanking region for native

genome context.

A schematic illustrates the workflow described in Sections 3.2 and 3.3 (Fig. 3-1).

In most samples, this procedure retained only 5-15% of the reads for downstream

analysis. The retained fraction is higher than necessary because we used only a single

best reference or representative genome assembly for mapping. We anticipate that

when we use all available native genomes for a species, the fraction retained should

drop substantially to the true fraction of the reads that are engineered. For example,

in the highly engineered Sc2.0 genome, this fraction is roughly 10 KB engineered / 12

MB genome, about 0.1% [30]. Of course an engineered nucleotide affects all reads that
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Figure 3-1. Host identification and native read subtraction. We used Kraken2 and
Bracken to identify taxonomic sources based on 35-mer subsequences within each read.
The top species was chosen as the native host. The corresponding GenBank assembly
denoted as the RefSeq “reference” or “representative” was then selected as the reference
genome for Bowtie2 mapping. Unmapped reads were sent to assembly.

contain it. Much of the Sc2.0 engineering comes in the form of PCRTags in which

approximately 30 nt within a coding domain are synonymously recoded to create a

watermark. Since these 30 nt will affect reads starting within roughly a 300 nt window,

the result is 10× more suspicious reads than based on recoded sequence along, or

approximately 1% for Sc2.0.

The mapping results were also used to estimate the coverage of the host genome.

We used a simple estimate calculated as the number of reads mapped to the native

host multiplied by the read length and divided by the host genome size. Although

more sophisticated methods are available, this method was suitable for our purposes

of estimating the relative copy number of suspicious contigs.
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3.4 Assembling suspicious reads into suspicious con-
tigs

Our third step was to assemble the suspicious reads into suspicious contigs. Most

assemblers use similar algorithms but optimize for different scenarios or needs: memory

footprint, CPU time, sample ploidy. MEGAHIT [31] was suggested as a robust short-

read assembler appropriate for our scenario of 30× coverage of multiple mini-contigs of

primarily fungal or bacterial origin, without complexities of high ploidy or long repeats

(personal communication, S. Salzberg). MEGAHIT performs de novo metagenomics

assembly using a succinct de Bruijn graph, where all non-branching paths become the

output contigs. Reads were assembled successfully at the first attempt. Multiplicity

of the assembled contigs was compared with the original sequencing coverage. These

comparisons were quite informative: contigs with coverage much greater than the host

tended to indicate multi-copy plasmids; contigs with coverage much less than the host

suggested dilution of an engineered strain in a native background of the same species,

which was possible in the T&E samples.

3.5 Classification of suspicious contigs as native or
engineered

The final step was to annotate suspicious contigs as engineered vs. native origin.

Sequence analysis was performed by automated BLAST [32] against several databases

available from NCBI: non-redundant nucleotide (nt), 6-frame translation vs. non-

redundant protein (nr), and UniVec database. Again for pragmatic reasons, only

the top-scoring hit was retained for each contig and database. In many cases, the

nucleotide hit and the protein hit both pointed to a single foreign content, increasing

the confidence in the annotation.

As mentioned above, reads from native genes that happen to be absent from a

21



reference genome can be marked as suspicious and lead to suspicious contigs. BLAST

annotation using a full non-redundant database, rather than a single reference genome,

should identify these as native, however. We therefore removed any suspicious contigs

that matched non-engineered genomes from the host species.

Unfortunately, we were unable to fully automate the removal of contigs matching

alternative genomes from the host species because most of the genomes deposited in

GenBank lack meta-data describing the biological sample as native vs. engineered.

A logical place for this meta-data would be in the NCBI BioSample table, which

provisions a unique identifier for each biological sample. Submissions do not require

meta-data indicating native vs. engineered, however, and this information is not

reported for most samples. A single BioProject corresponds to one or more

scientific publications with PubMed identifiers (PMIDs), which can provide more

complete information about the biological samples. The PMIDs links are not always

included, however, and can be ambiguous because the link is at the BioProject

level rather than the BioSample| level. This makes it difficult to match strains

described in research publications and assembly IDs in GenBank. Thus, for many

of the matches to alternative genomes for a species, manual analysis was required

to distinguish between a match to a native gene versus a match to a foreign gene in

an engineered host, for example an integrated cloning vector or antibiotic resistance

marker.

Subsequent analysis was partially automated and involved manual sequence analy-

sis, including visual inspection of the junctions between regions of the suspicious contig

query matching native host sequence and regions of the query matching engineered

sequence. Manual analysis was also performed to identify the location of engineering

as integrated into the host genome (either based on native flanks or presence of an

integrating vector) vs. presence of a plasmid. In certain cases, literature analysis was

also used to identify the likely provenance of a strain.
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The assembly and annotation steps described in Sections 3.4 and 3.5 are illustrated

in a schematic (Fig. 3-2).

Figure 3-2. Assembly and annotation. Suspicious reads were assembled into contigs with
MEGAHIT and then annotated using BLAST against non-redundant nucleotide (nt) and
protein (nr) databases. Flanking sequence on a contig that matched a native host provided
the context of the integrated engineering relative to the reference. Matches to UniVec and
differences in copy number between the suspicious contig and the host genome identified
plasmid-based engineering (often higher copy number of the suspicious contig) or dilution
(integrating plasmid and lower copy number of the suspicious contig).

3.6 Alternatives and Improvements

3.6.1 Chronology

The methods described here were developed under time pressure. At the start of the

FELIX effort in September 2018, our assigned role within the BBN consortium was

to provide biological knowledge in the form of databases of non-engineered genomes,

obtained from GenBank, and engineered genomes, including the Sc2.0 genomes with

sequences designed at JHU [30]. We planned to advise other participants on methods,

but not to create our out method. A first round of T&E occurred with sequences
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provided to BBN in April 2019. Results were disclosed in May-June 2019.

At the June 2019 Face-to-Face meeting organized by IARPA for all FELIX per-

formers, the results we observed from all the groups, including BBN, were disappoint-

ing. Most methods had only 70-80% accuracy for what seemed should be an easy

classification problem. These methods generally followed the pattern of generating

full-genome assemblies, then annotating with existing genome annotation pipelines

or with sequence-based features extracted from comparisons of native vs. engineered

genome training sets. Unfortunately, these were the only type of methods being

developed within the BBN consortium. Notably, all of the funded efforts took a similar

approach; no groups were pursuing what appeared to us to be a more efficient and

potentially more accurate approach of first removing all the native sequences and then

analyzing what could be a much smaller data set.

After discussing our thoughts with BBN, we began work on the reads-first methods

described here in June 2019, with the knowledge that a new round of T&E data

would be arriving in August 2019 with answers due in September-October 2019. Our

goal was to construct a working pipeline end-to-end in time for T&E, rather than to

optimize any particular step. As will be presented in a subsequent chapter, our initial

pipeline, developed over approximately three months primarily by a single person,

out-performed all the other methods, which had been developed for a year by much

larger and better resourced groups.

3.6.2 Input data: short vs. long reads

As discussed above, while T&E provided short-read data for all samples, long-read

data was only available for a subset of samples. Furthermore, the estimated coverage

of the short-read data was higher than the coverage of the long-read data. Short-read

technologies remain superior to long-read technologies for error rates. Our impression

was that the long-read data was requested by groups influenced by whole genome
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assembly, in which long reads are important for linking together contigs. We therefore

postponed work on long reads.

Focusing on short reads simplified subsequent steps. Meta-genomics methods such

as Kraken2 and Bracken often assume similar lengths for each read, which is not

true of long-reads. Assembly methods for mixtures of long and short reads remain an

active area of research.

When we compared with results from other groups using long-read data (estimated

coverage 15x), there were one or two samples in which evidence of engineering was

present in the long-read data but not the short-read data. The most likely explanation

appears to be incorrect deconvolution of barcodes used for multiplexed sequencing

runs. The effort that would be required for a definitive answer may be beyond the

resources of the T&E team that generated the data, however.

3.6.3 Mapping to the native reference

For simplicity, reads were mapped to a single native reference genome. This is

problematic for two reasons. First, species do not have a true single reference genome

because gene content (not just alleles) can vary from strain to strain. For example,

the reference genome for Saccharomyces cerevisiae was generated from the S288 strain.

Gene content in the S288 strain and the CEN.PK strain differ by over 100 genes,

however. And, most importantly, they are both non-engineered, although they are

laboratory strains that were derived by selection. Our plan, which was successful,

was to permit reads for these genes to be marked as suspicious, to build them into

suspicious contigs, and then to identify them as native in the BLAST-based annotation

step. In future work, it would likely be better to use genomes from multiple strains to

identify and filter out native reads.

This brings up the second problem: GenBank has both native and engineered

genomes, and there is no clear annotation in meta-data of whether a BioSample
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(biological specimen from which the sequencing data are derived) is native or engineered.

Furthermore, in addition to the native and engineered categories, there is also a derived

category, in which cells have been subjected to classical mutagenesis with the mutants

then selected for desired properties. Some of the genomes marked as “reference” or

“representative” in GenBank are actually derived strains rather than native isolates.

The standard reference for Bacillus subtilis is a derived strain, for example. Therefore,

we also delayed work on a multiple-strain mapping reference until we could reliable

identify just native strains, as opposed to derived and engineered strains. We return

to the genome curation problem later in Chapter 5.
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Chapter 4

Results

Please refer to Appendix A for decisions as well as evidence the JHU pipeline presented,

and Appendix B for the sample key table provided by T&E. Summary results and

interpretation are provided here.

4.1 Native hosts

Although the JHU pipeline is agnostic as to host species, other classifiers require

training data including samples of engineered and native genomes. Before T&E, BBN

and IARPA agreed upon three host species: Saccharomyces cerevisiae (Sce), Yarrowia

lipolytica (Yli), and Pichia pastoris (Ppa). Depending on personal preference, Sce

is better known as either bakers’ yeast or brewers’ yeast. More genetic engineering

has been performed with Sce that with all other eukaryotes put together, at least

according to literature publication counts. The fungus Yli has gained recent interest

for bioenergy because of its robust lipid metabolism, as indicated by its name. Ppa is

yeast used for industrial production because it grows to high density in batch culture.

While ‘pichia’ remains used as a common term, in fact it no longer exists as part of

formal taxonomy. Instead, all Pichia strains have been formally re-classified into two

closely related species, Komagataella pastoris (Kpa) and Komagataella phaffii (Kph).

This came as a surprise to many of the IARPA program managers and performers
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and demonstrates the fluidity of taxonomy at the species and genus levels.

The number of assemblies in GenBank varies widely for these hosts (Table 4-I).

These numbers are relevant in determining whether classification accuracy depends

on the number of genomes available as background to assess natural diversity and to

distinguish diversity from engineering.

Species Taxon ID Size (Mb) RefSeq Total
Saccharomyces cerevisiae 4932 12.2 S288C 854
Yarrowia lipolytica 4952 20.5 CLIB122 22
Komagataella pastoris 4922 9.4 ATCC 28485 33
Komagataella phaffii 460519 9.4 GS115 6

Table 4-I. A summary table of GenBank genome assemblies. RefSeq: reference strain (S.
cerevisiase) or representative strain (Y. lipolitica, K. pastoris, K. phaffii) in RefSeq. Total:
total number of assemblies in GenBank.

4.2 Host selection

Sequence data was provided for 50 T&E samples. The number of reads available for

each sample ranged from about 700,000 to over 2,000,000 (Fig. 4-1). The reads were

input to Kraken/Bracken for read-level analysis and sample-level species composition

prediction. We selected the highest predicted frequency species as the as host organism

(Figure 4-1). The JHU pipeline assigned 16 samples as S. cerevisiae, 25 Y. lipolytica,

6 K. phaffii, and 3 K. pastoris. Their identities were all confirmed with the sample

key provided.

Some of the S. cerevisiae samples had significantly greater read counts and coverage

(around 150x) compared to most of the other samples (around 40-50x) (Figure 4-1a,

4-1b). In the Bracken assignment of dominant species (Figure 4-1c), we noticed that

some of the native Y. lipolytica samples, for example Y105, Y134, and Y154, had

only around 50% of the reads assigned. The second major species that co-existed

was Y. deformans, which accounted for an additional 20% of reads. The reason
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Species Total Native Engineered TP TN FP FN
S. cerevisiae 16 3 13 9 3 0 4
Y. lipolytica 25 6 19 16 6 0 3
K. pastoris 3 3 0 0 3 0 0
K. phaffii 6 3 3 3 3 0 0
Total 50 15 35 28 15 0 7

Table 4-II. Species: known species as provided by IARPA. Total, Native, Engineered:
number of samples provided for this species total, without engineering, and with engineering.
TP, TN, FP, FN: classification performance, true positive = engineered classified as
engineered, true negative = native classified as native, false positive = native classified as
engineered, false negative = engineered classified as native. Host species also had to be
detected, and in all cases was assigned correctly.

was similar to Ppa case discussed before — taxonomic classification is entirely a

human-labeled process, which sometimes places what could be considered different

strains into different species. Furthermore, the small number of Y. lipolytica genomes

available probably under-represents the full diversity of the species. Due to large

sequence similarity shared among multiple species within the Yarrowia fugal genus, it

is nearly impossible to classify at species level for these samples in our case.

4.3 Suspicious reads and suspicious contigs

For each of the four host species, we downloaded the RefSeq Reference or Representative

genome (as of October 2019) (Table 4-I), and then built the corresponding Bowtie2

database, creating four corresponding databases. Reads from each sample were then

mapped to the database corresponding to the samples’ dominant host. Unmapped

reads, specified as SAM flag ‘4’, were collected as suspicious, with about 5-10% of

reads classified as suspicious per sample (Fig. 4-2).

While most samples had 5% to 10% of the reads marked as suspicious, the samples

Y105, Y134, and Y164 had much higher rates, approximately 90% marked as suspicious.

These were all Y. lipolytica samples. Possible reasons could include the choice of a
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Figure 4-1. Samples are ordered by dominant host species as determined by sc
Kraken2/Bracken, and for each predicted host ordered by native (green) and then en-
gineered (red). (a) Total number of read-pairs (mates count as two). (b) Estimated
coverage of the host genome. (c) Fraction of read-pairs assigned to the dominant host
species.
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Figure 4-2. Fraction of reads that did not map to the reference genomes, customized for
each species. The spikes correspond to the three Y. lipolytica samples, Y105, Y134, and
Y164, reporting over 90% of the total reads as suspicious.

single best reference for Y. lipolytica was not representative enough of these three

specific strains. Post-analysis was performed on these three samples by mapping

those reads to all 22 Y. lipolytica assemblies deposited in GenBank. The unmapped

percentage dropped to around 83.5%. We next expanded the native database to

include all 42 genomes within the Yarrowia genus. At this point only about 5% of the

reads were suspicious, comparable to other samples. These results suggest that using

the entire native genus database instead of a species-level database could be beneficial

when the species-level under-represents the true diversity. We have not implemented

this type of expansion yet, however, due to the need to ensure that the assemblies in

GenBank correspond to native isolates rather than engineered strains.

These suspicious reads were then sent to assembly using MEGAHIT. Contig

coverage was estimated by MEGAHIT from k-mers, and the relative coverage was

defined as the ratio of the contig coverage estimated from k-mers to the host coverage

estimated from read mapping.
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Figure 4-3. Statistics of the suspicious contigs. (a) Total number of suspicious contigs
assembled. (b) Total length of suspicious contigs, as an estimate of the length of the
suspicious region. (c) Maximum length of suspicious contigs, as a measure of the assembly
quality.

32



4.4 Contig annotation and classification

The resulting assembly were BLAST against non-redundant nucleotide, protein and

vector databases. We noted that of the many suspicious contigs we obtained, only

a handful few had hits in the database, which allowed for manual inspection at this

point. In fact, after this post-processing, we retained only 10-20 contigs per sample

with meaningful annotation. The decision on whether a sample was engineered was

made following the method described in Section 3.4. Figure 4-4 shows an example

contig with foreign genetic content integrated into the host genome.

Figure 4-4. This diagram shows a typical instance of foreign gene content integrated into
the host genome. Y197, a Y. lipolytica sample, has a suspicious contig of length 4776.
flag=1 means this is an isolated contig with in-degree and out-degree equals to 0. multi
means the multiplicity or the depth of the contig. Annotation with BLAST mapped the
flanking regions (black) perfectly to Y. lipolytica chromosome E, in which the junction is
the site of the insertion. The sequence in the middle (red) matches a cloning vector with
high identity. The chimeric structure of this contig, together with coverage similar to the
host genome, indicates an engineered insertion into the nuclear genome.
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4.5 Other classifiers

We note that there are no standard methods that could serve as benchmarks for

classification performance. As part of the overall BBN effort, however, several other

types of classifiers were developed. We describe results for two general strategies:

expert knowledge, represented by targeted search, and machine learning, represented

by FAST-NA [33]. Targeted search relied on expert knowledge to define a list of DNA

sequences used in engineering. These signature sequences included cloning vectors

and selectable markers. The machine learning classifier was trained on native genomes

to build a Bloom filter (similar to a hash table thats permits collisions) of k-mers that

occur in non-engineered genomes, then flags as suspicious reads containing k-mers

that are not in the hash table.

4.5.1 Targeted Search

The short-read targeted search approach used known engineered targets identified

during targeted panel design, and re-used them directly on short-read data. First,

Illumina adapter and low quality sequences were trimmed off. Next, BWA [34] aligned

the reads first to S. cerevisiae, Y. lipolytica, K. pastoris, and K. phaffi reference

genomes, and secondly to known engineered targets. Targeted Search then filtered

reads that aligned to both a reference genome and an engineering signature using a

PostgreSQL database, with a goal of capturing only reads that crossed an integration

junction. For Batch 2 of T&E samples, an additional filter step was added to validate

a junction point in the read between the engineering signature and the reference

genome, reducing false positives from multi-mapping regions.

An additional use of the targeted search database was for an experimental approach

to use wet-lab methods to identify the presence of these signature sequences in physical

samples.
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4.5.2 FAST-NA

FAST-NA first created four contrasting Bloom filters, one for each taxon, by processing

native assemblies from GenBank. Then for an unknown sample, FAST-NA first

assembled raw reads using ABySS [35]. The resulting contigs were then aligned

against four yeast reference genomes using BWA [34]. The best alignment was found

so the host was therefore determined. All contigs that belonged to a particular taxon

were merged together into a single FASTA file. The associated contigs were then run

through FAST-NA using the contrasting Bloom filter corresponding to the host species.

The unique k-mers that did not have a hit to the Bloom filters were reconstructed

into contiguous regions for manual inspection via BLAST. Engineering decisions were

made by visualizing a histogram of region of interest (ROI) lengths in comparison to

that for native samples of that taxon, which was considered to be the background

noise level.

4.6 Classification performance

Of the 50 unknown samples provided, 35 were revealed to be positives (of which 28

were correctly classified by the JHU pipeline) and 15 were revealed to be negatives

(all correctly classified by the JHU pipeline), with overall accuracy = 0.86, sensitivity

= 0.8, and specificity = 1 (Table 4-II).

4.6.1 Performance across types of engineering

Four of the known positives had two types of engineering, with 39 total instances to

detect. Point mutations, native indels, and structural variations were more difficult to

detect than insertion of foreign genetic content.

As shown in Table 4-III, the JHU pipeline performs readily in detecting inserted

foreign gene content. The capability to detect minor genetic alterations, such as
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Pattern Sensitivity
D-P-S-I # Strains JHU Pipeline FAST-NA Targeted Search
N-Y-N-N 8 0.500 0.375 0.500
Y-N-N-N 6 0.667 0.000 0.000
Y-N-Y-N 3 0.667 0.000 0.333
N-N-N-Y 6 1.000 0.833 1.000
N-N-Y-Y 9 1.000 0.556 0.556
Y-N-Y-Y 3 1.000 0.000 0.000

Table 4-III. Performance is categorized by engineering type. D-P-S-I stands for Deletion-
PtMut-StrutVar-Insertion, where Deletion = part of the host genome is deleted or truncated;
PtMut = point mutation or small edits induced by CRISPR; StructVar = mislocalized/re-
combinant structural variant involving native genes; Insert = introduction of foreign gene
content. Patterns were organized in combinations of these engineering types, in the order
mentioned above. For instance, a pattern of N-Y-N-N means only PtMut was present,
while the other three were absent.

single base changes, is much limited. This is because during the stage of Bowtie2’s

mapping to a native genome, reads with small edits may be still be aligned. To address

some of these issues, we are planning to build a reverse comparison where a native

genome is used as query against the DNA sequencing reads of an unknown sample as

subject. This may be an effective approach to identify gene deletions, synonymous

recoding, and other small edits associated with functional relevance or watermarks.

It is still questionable, however, if these types of changes will be recognizable above

the background level of natural variation. Many yeast and bacterial species vary

substantially in gene content at the strain level, possibly making it unclear whether

a deletion is native or engineered. Watermarks created by synonymous recoding

may actually be easier to detect with a dedicated method if nucleotide sequences are

conserved among strains that carry a particular gene.

4.6.2 Performance across host species

As shown in Figure 4-5a, the JHU pipeline performed well across all host species,

suggesting that the generalizable approach fulfilled its design goals. The small per-
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formance differences between species, with better performance for Y. lipolytica, K.

phaffii, and K.pastoris than for S. cerevisiae, was due to the type of engineering

rather than to the host species: the engineering in S. cerevisiae included more subtle

single-nucleotide changes without introduction of foreign genes, whereas the the other

species were engineered primarily with foreign gene content or cloning vectors.

4.6.3 Comparison with other classifiers

As shown in both Figure 4-5 and 4-III, JHU pipeline performed the best, with the

highest accuracy and sensitivity on the two major species S. cerevisiae (16) and Y.

lipolytica (25). The performance on other two minor species is all perfect. Our JHU

pipeline also performed better than FAST-NA and Targeted Search when looking at

different engineering signatures. Specially, JHU pipeline had perfect sensitivity in

terms of detecting insertion and foreign gene content. To certain extent, it can detect

deletion and structural variant, which are more limited in the other two, given reads

covering the breakpoint junction were successfully captured in the mapping step. All

of the three methods suffer greatly in detecting point mutation or small edits.

4.7 Computational requirements

4.7.1 Identifying the host species

CPU requirements were moderate, 5-10 minutes estimated for typical 30x coverage

sequence data. Data storage was primarily for the one-time build of the Kraken2

indices. Construction of a Kraken2 standard database required approximately 100

GB of disk space. Around 50 GB of RAM was required to hold the database. Output

size was approximately the same size as the input as one line of text was generated

per read or read-pair.
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Figure 4-5. Performance is categorized by species, where each colored bar shows accuracy
(blue), precision (orange), recall or sensitivity (grey), and specificity (yellow). Bars for
precision and recall are absent for K. pastoris because all samples were native, making
these quantities undefined.
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4.7.2 Mapping native reads

CPU requirements were minimal, around 1 hour per 30x coverage data set. Disk

space to hold the FM indices used in Bowtie2 increased linearly with respect to the

input. Memory requirements peaked around 5 GB, which is available on most modern

PCs. Output size was about 10% of input size, corresponding to the fraction of reads

marked as suspicious.

4.7.3 Assembly and annotation

Assembly was quite fast, 10–15 min per sample. Annotation required more time, 30-60

min per sample for BLAST searches versus non-redundant databases. This could be

reduced by better approaches for removing native reads, for example the iterative

approach discussed for Yarrowia samples. We anticipate that future implementations

will need 1-5 min for annotation. We downloaded the offline pre-indexed non-redundant

databases (nt/nr), which together took up about 500 GB of disk space. Memory usage

was around 15 GB. Output size was relatively small — only the annotation from the

top BLAST hit was selected for each contig, and typically around 10-20 contigs had

meaningful annotations for each sample.
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Chapter 5

Discussion

We have presented a method that builds on robust sequence analysis and meta-

genomics computational infrastructure to predict the presence or absence of genetic

engineering from DNA sequence data. While there are no standard methods for this

application, our methods were developed in the context of a joint effort pursuing

several types of approaches. Our method had two fundamental differences from other

methods developed for this effort. First, we filtered out native and near-native reads

at the start, and then assembled the remaining suspicious reads into suspicious contigs.

The other methods first assembled all the reads and then identified suspicious regions.

The benefit of our approach is far lower CPU requirements, and possible additional

benefits in avoiding assembly errors that may be confused with engineering. Second,

rather than using training examples, our methods used traditional sequence annotation

pipelines for classification. This approach maintained good performance for species

with insufficient examples of native and engineered genomes for traditional machine

learning classifiers. In an assessment with 50 blinded Testing and Evaluation samples,

our method performed better than these other types of methods, with 0.86 accuracy,

0.8 sensitivity, and perfect specificity and precision.

Unlike machine learning methods that learn discriminating features from training

sets of known positives and known negatives, the JHU pipeline draws conclusions by

inferring engineering from sequence that differs from native genomes and by subsequent
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annotation of the suspicious content. Our interpretation is that the JHU pipeline

in general performed at least as well as methods based on machine learning. We

correctly identified essentially all engineering that involved foreign gene content or

vectors. However, the major challenge is that we have difficulty with engineering

involving only host genome sequence, such as point mutations, structural variants,

and deletions.

We note that when introducing new functions to genomes, the types of engineering

that this approach was able to detect, namely foreign gene content, appears to be

the most important to detect. Moreover, some examples of engineering in the T&E

samples, such as point mutations, may be fundamentally impossible to distinguish

from natural variations — it is likely that their sequences are completely the same.

We also note that our GRAIP design goals (generalization, re-use, automation,

interpretation, performance) were for the most part achieved.

The results from Phase 1 suggest a path for improving classification performance

for Phase 2, outlined below and already underway.

5.1 Native genome curation in GenBank

An important assumption is that the reference genomes used to filter out the native

reads are indeed native. However, many of the GenBank genomes are in fact engineered,

and even for those marked as “reference” or “representative”, some are “derived” (which

means mutagenized and then selected), and some are “engineered”. The BioSample

submission process does not enforce an explicit annotation of native diversity versus

derived or engineered. In Phase 2, we will use expert curation to classify genome

assemblies from target species as native or engineered, which could in turn be used

to develop better automatic classifiers. One interesting early observation is that

some genomes annotated as “native isolates” have sequence features that resemble
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engineering; these are primarily hospital isolates, and the features may be antibiotic

resistance markers acquired by natural processes and selected for in the hospital

setting.

For a select number of species, it should be possible to read all the publications

associated with the corresponding genomes. Curated genomes could then serve as a

gold standard for selecting native genomes. It might then be possible to train a classifier

for native versus engineered based on full text analysis and natural language processing

of BioSample and BioProject descriptions and journal articles linked through PubMed

IDs. A weakness of this approach is that many GenBank assemblies have no PubMed

links. Even with PubMed links, an assembly can be difficult to assign definitively. A

publication may describe a mixture of native and engineered genomes, for example,

making it unclear which linked genomes belong in which category. A simple alternative

approach is to use methods like “targeted search” to exclude genomes, and to require

“native isolate” in the BioSample annotation. These approaches could reduce the

number of genomes available, which underestimates native diversity.

Once a subset of genomes are identified as likely native, these could be used to

improve methods by filtering out more native reads. As described in the results, using

only a single reference genome can result in 90% of reads being flagged as suspicious;

expanding the native database to include other species-level and genus-level assemblies

can improve performance.

5.2 Long-read pipeline

In Phase 1, we used only Illumina short reads as input. The reason, as mentioned

before, is that we believed 30× coverage would be high enough to cover every foreign-

native-foreign or native-foreign-native junction. We also had practical constraints on

the time available to build a classifier. In Phase 2, we will incorporate Nanopore long
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reads as well. Because of the intrinsic error rate in long reads, k-mer approaches may

not work well for host identification. Thus, we will likely continue to use the short

reads to determine the dominant host species. We plan instead to use Minimap2 [36]

to map long reads to native genomes (analogous to the use of Bowtie2 for short reads)

and then retain suspicious reads that do not map.

Combining the suspicious short reads and long reads, we plan to use MaSuRCA

[37] the hybrid assembler to construct assemblies from the both types of reads. The

resulting suspicious contigs will then be annotated.

5.3 Iterative mapping for complex samples

To deal with mixed samples (samples containing multiple species of host), our plan

is to perform iterative host identification and native read removal. The dominant

species could be identified, its reads filtered out, and the remaining suspicious reads

re-analyzed to identify a new dominant species.

We plan to use Kraken2/Bracken to identify the major host, followed by removing

reads that are native to that host. In the next iteration, we will re-analyze the

remaining reads using Kraken2/Bracken, which will give the next most abundant host.

Reads mapping to this host will then be removed. The Kraken2/Bracken/Bowtie2

for short-read, or Kraken2/Bracken/Minimap2 for long-read, would then be repeated

to iteratively remove additional native species. This could be repeated until falling

below a threshold based on a criterion such as fraction of reads remaining, estimated

coverage of the dominant species genome, or re-appearance of a previous dominant

species.
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5.4 Annotation automation

Although we have relied on expert analysis of BLAST output for the final decisions

about engineering, the process that proved most useful could be automated in part or

whole. The typical pattern of a suspicious contig involves a junction between a shorter

native flanking region and a longer engineered region. The BLAST output usually

placed the long engineered region at the top of the list of matches because longer

sequence matches give higher scores. The shorter flanking regions appeared further

down the list, or sometimes not at all if there were many matches to the engineered

region.

To automate this step, we propose a simple greedy algorithm. We will use BLAST

as before for a suspicious contig (the query) versus the non-redundant nucleotide

database (the subject). The top hit will be recorded and used to annotate the matching

region of the query. Next, we mask the matched region and re-run BLAST. This

should provide a robust approach for automated annotation.

5.5 Dedicated predictors for complex samples

Meanwhile we will implement dedicated predictors for types of engineering that may

not be readily detected. These include gene deletion (possibly by suing the host genome

as the query and the sequencing data as the subject), identification of synonymous

recoding (identifying reads that are perfect matches to host protein but poor matches

to host DNA), and other more subtle watermarks of engineering. Watermarks based

on synonymous recoding could potentially be identified as regions where the DNA does

not match the host but the protein sequence it encodes matches exactly. Tests with

the Sc2.0 genome have been successful in identifying PCRtags, which are synonymous

recoding watermarks that can be rapidly checked by PCR [30]. Engineered stop

codons in non-essential genes could be difficult to identify if similar variations occur
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at a sufficient frequency in native isolates. Similarly, engineered deletions of native

genes could also be difficult to identify because gene content can vary substantially

for different strains of the same species.

One mitigating factor is that loss-of-function created by stop codons or deletions

seems less likely to be dangerous than gain-of-function engineering. Thus, while

detecting loss-of-function may be difficult or impossible in the background of natural

variation, methods that are able to detect gain-of-function (foreign gene insertions)

and gain-of-information (watermarks) may already detect the most important types

of variation. The methods that we have presented achieve these goals.
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Chapter 6

Conclusion

We describe results of a computational system designed to detect engineering from

DNA sequencing of biological samples, including automated identification of host

strains and detection of foreign gene content, host structural variation and smaller

edits, and watermarks. Our initial system applied to blinded samples provides excellent

identification of foreign gene content, the changes most likely to be functional. We

have less ability to detect structural variation and small indels and SNPs produced

by genetic engineering. Future work will focus on improved methods for detecting

synonymous recoding (for watermarks and recoding) and for distinguishing engineered

sequence from natural variation.
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Appendix A

JHU Pipeline Decisions and
Evidence

Sample Engineered? Detected? What was Detected?
Y100 yes yes U59231.1 Cloning vector

cLHYGpk, complete se-
quence;XP_003071652.1
hygromycin-B [synthetic con-
struct]

Y105 no no
Y107 yes yes MG883678.1, Expression vec-

tor pCPC66;WP_000027060.1
MULTISPECIES: class A beta-
lactamase TEM-181 [Bacte-
ria][Archaea] YP_001409239.1
b-lactamase (plasmid) [Escherichia
sp. Sflu5]

Y109 no no
Y115 yes no
Y116 yes yes U59231.1 Cloning vector

cLHYGpk, complete se-
quence;XP_003071652.1
hygromycin-B [synthetic con-
struct]

Y120 yes yes
Y121 yes yes U59231.1 Cloning vector

cLHYGpk, complete se-
quence;XP_003071652.1
hygromycin-B [synthetic con-
struct]

Y122 no no
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Y123 no no
Y125 yes yes
Y128 yes yes KU378202.1,Cloning vector

pYL2;KU378203.1 Cloning vector
pYL2, complete sequence

Y129 yes yes JN160804.1,Cloning vector
pRS316-1B9

Y130 no no
Y131 yes yes
Y132 yes no U59231.1 Cloning vector

cLHYGpk, complete se-
quence;XP_003071652.1
hygromycin-B [synthetic con-
struct]

Y134 no no
Y136 no no
Y137 yes yes U59231.1 Cloning vector

cLHYGpk, complete se-
quence;XP_003071652.1
hygromycin-B [synthetic con-
struct]

Y140 yes no
Y141 yes yes WP_007048783.1 tetracycline

resistance MFS efflux pump,
partial [Subdoligranulumvari-
abile];WP_010922251.1 type II
CRISPR RNA-guided endonucle-
ase Cas9 [Streptococcus pyogenes]
NP_269215.1 hypothetical pro-
tein SPy_1046 [Streptococcus
pyogenes M1 GAS]

Y144 yes yes
Y145 yes yes MG252999.1 Synthetic construct

green fluorescent protein gene,
complete cds

Y148 yes yes WP_010922251.1 type II CRISPR
RNA-guided endonuclease
Cas9 [Streptococcus pyogenes]
NP_269215.1 hypothetical pro-
tein SPy_1046 [Streptococcus
pyogenes M1 GAS]

Y150 no no
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Y153 yes yes U14125.1 Cloning vector pSG926,
HIS4-based plasmid, complete se-
quence

Y154 yes no
Y155 yes yes U59231.1 Cloning vector

cLHYGpk, complete se-
quence;XP_003071652.1
hygromycin-B [synthetic con-
struct]

Y159 yes yes XM_013480424.1 Eimeria maxima
hypothetical protein, conserved
partial mRNA

Y162 yes yes
Y163 no no
Y164 no no
Y165 yes yes
Y168 no no
Y170 no no
Y172 yes yes WP_000027060.1 MULTI-

SPECIES: class A beta-lactamase
TEM-181 [Bacteria][Archaea]
YP_001409239.1 b-lactamase
(plasmid) [Escherichia sp. Sflu5]

Y174 yes yes
Y175 yes yes WP_120322739.1 aminoglycoside

O-phosphotransferase APH(4)-Ia
[Bacillus subtilis]

Y176 yes no
Y178 no no
Y180 no no
Y187 yes yes WP_010922251.1 type II CRISPR

RNA-guided endonuclease
Cas9 [Streptococcus pyogenes]
NP_269215.1 hypothetical pro-
tein SPy_1046 [Streptococcus
pyogenes M1 GAS]

Y188 yes no
Y189 yes yes MG252999.1 Synthetic construct

green fluorescent protein gene,
complete cds
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Y190 yes yes WP_000027060.1 MULTI-
SPECIES: class A beta-lactamase
TEM-181 [Bacteria][Archaea]
YP_001409239.1 b-lactamase
(plasmid) [Escherichia sp. Sflu5]

Y191 yes yes U59231.1 Cloning vector
cLHYGpk, complete se-
quence;XP_003071652.1
hygromycin-B [synthetic con-
struct]

Y195 no no
Y197 yes yes WP_120322739.1 aminoglycoside

O-phosphotransferase APH(4)-Ia
[Bacillus subtilis]

Y198 yes no
Y199 yes yes U14125.1 Cloning vector pSG926,

HIS4-based plasmid, complete se-
quence

Table A-I. Decisions and evidence. The second column is from T&E Sample Key, revealed
after our decisions were submitted. Evidence corresponds to BLAST annotations of
suspicious contigs.
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Appendix B

T&E Phase 1 Batch 2 Sample Key

Sample Organism Engineered? Which Gene was Engineered?
Y100 Y. lipolytica yes v5 epitope
Y105 Y. lipolytica no
Y107 P. pastoris yes mislocalized GAP promoter
Y109 K. pastoris no
Y115 S. cerevisiae yes point mutation in HIS3
Y116 Y. lipolytica yes truncate NADK2, YALI0E27874g
Y120 S. cerevisiae yes m13_origin
Y121 Y. lipolytica yes ura3 distruption
Y122 Y. lipolytica no
Y123 S. cerevisiae no
Y125 S. cerevisiae yes m13_origin
Y128 Y. lipolytica yes mislocalized leu2
Y129 S. cerevisiae yes m13_origin
Y130 P. pastoris no
Y131 Y. lipolytica yes deletion of gene YALI0A19844
Y132 Y. lipolytica yes truncate NADK2, YALI0E27874g
Y134 Y. lipolytica no
Y136 S. cerevisiae no
Y137 Y. lipolytica yes v5 epitope
Y140 Y. lipolytica yes truncate NADK2, YALI0E27874g
Y141 Y. lipolytica yes Mutation to stop codons in open

reading frame (ORF) of the hap4
gene

Y144 S. cerevisiae yes delete HO
Y145 Y. lipolytica yes mislocalized leu2
Y148 Y. lipolytica yes Mutation to stop codons in open

reading frame (ORF) of the hap4
gene

Y150 Y. lipolytica no
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Y153 P. pastoris yes mislocalized GAP promoter
Y154 Y. lipolytica yes deletion of gene YALI0A19844
Y155 Y. lipolytica yes ura3 distruption
Y159 S. cerevisiae yes m13_origin
Y162 S. cerevisiae yes delete HO
Y163 Y. lipolytica no
Y164 Y. lipolytica no
Y165 S. cerevisiae yes delete HO
Y168 P. pastoris no
Y170 S. cerevisiae no
Y172 S. cerevisiae yes m13_origin
Y174 Y. lipolytica yes Missense point mutations in pro-

tein coding genes
Y175 Y. lipolytica yes ura3 distruption
Y176 S. cerevisiae yes 3bp change on gene Cdc48 at lo-

cation 105 bases into the gene so
that it codes and R instead of a G

Y178 K. pastoris no
Y180 P. pastoris no
Y187 Y. lipolytica yes Mutation to stop codons in open

reading frame (ORF) of the hap4
gene

Y188 S. cerevisiae yes point mutation in HIS3
Y189 Y. lipolytica yes mislocalized leu2
Y190 S. cerevisiae yes m13_origin
Y191 Y. lipolytica yes v5 epitope
Y195 K. pastoris no
Y197 Y. lipolytica yes deletion of gene YALI0A19844
Y198 S. cerevisiae yes point mutation in HIS3
Y199 P. pastoris yes mislocalized GAP promoter

Table B-I. Sample Key. Summary of the full information provided by T&E after the
submission of classification results.
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